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Editorial on the Research Topic 


Maternal-fetal interface: new insight in placenta research


Pregnancy, a complex and multifaceted biological process, often goes underappreciated despite involving intricate mechanisms to ensure the well-being of both the mother and the fetus. The placenta, often regarded as the bridge between mother and baby, plays a central role in this process. Recent studies have shed light on the importance of placental health, revealing potential therapeutic targets (1).

The objective of the Research Topic “Maternal-Fetal Interface: New Insights in Placenta Research” was to bring together original research articles and reviews that highlight recent advances in understanding the functions of the placenta and its impact on the health of both the mother and her future child. This Research Topic includes a diverse range of studies, encompassing ten original articles, six reviews, and one systematic review.

One significant concern is obesity, affecting approximately 30% of expectant mothers in the US (2). Its adverse effects on pregnancy, including issues like mitochondrial dysfunction and placental inflammation, may be linked to reduced Vitamin D levels. Encouragingly, Vitamin D supplementation emerges as a potential remedy, offering a relatively straightforward solution to a complex problem.

Furthermore, maternal hypothyroidism is associated with fetal growth, placental dysfunction, and reduced kisspeptin/Kiss1R at the maternal-fetal interface (3, 4). In this regard, daily treatment with kisspeptin improves fetal development and placental morphology in an experimental model of hypothyroid rats, blocking placental oxidative damage, and increasing the expression of growth factors and antioxidant enzymes in the placenta.

Chronic histiocytic intervillositis (CHI) is a rare placental lesion associated with recurrent pregnancy issues (5). A systematic review and meta-analysis aimed to understand the perinatal consequences of CHI pregnancies and the potential benefits of treatment. While various drugs show potential, more research is needed to validate their safety, efficacy, and optimal dosage.

Shiga toxin-producing Escherichia coli (STEC) in the endocervix of asymptomatic pregnant women could have a potential role in adverse pregnancy outcomes (6). Bacterial findings reveal that a significant percentage of asymptomatic pregnant women with STEC in their endocervical samples. These findings suggest that STEC may be present in the lower female reproductive tract during pregnancy, raising new questions about its potential impact on pregnancy complications.

The impact of COVID-19 on pregnant women has been a cause for concern (7, 8). Findings suggest that certain molecules are upregulated in placentas exposed to COVID-19, indicating a potential innate defense mechanism of the placenta against the SARS-CoV-2 virus.

Advanced techniques have allowed for the study of microRNAs (miRNAs) in placenta accreta, revealing altered expressions and potential regulatory networks (9). Similarly, research into the serotonin system in the human placenta has illuminated its potential pathways and alterations, which could have consequences for the fetus.

Oxysterols, small molecules with a potentially monumental role in maternal-fetal health, hypertension during pregnancy, and the placental serotonin system are other areas being thoroughly investigated (10). The research aims to detect oxysterols and their subsequent metabolites in the placenta, umbilical cord blood plasma, maternal plasma, and amniotic fluid. This study contributes to a deeper understanding of the role of these molecules at the maternal-fetal interface.

Placental dysfunction can lead to gestational hypertension (11). In fact, it is well established that defective placental development/function is the root cause of early-onset preeclampsia and fetal growth restriction (12). Protein modifications (O-GlcNAcylation) are linked to hypertension, but their impact on placental function remains unclear (13). Female Wistar and spontaneously hypertensive rats (SHR) were studied during pregnancy, revealing that SHR had higher blood pressure, smaller fetuses, and reduced placental efficiency. Morphological changes in the placenta were observed, with lower O-GlcNAc protein expression and enzyme levels in hypertensive rats. This suggests that insufficient placental O-GlcNAcylation impairs fetal growth by disrupting placental function.

Environmental factors, especially air pollution, have been shown to pose risks to pregnancy, emphasizing the need for global efforts to improve air quality (14).

The pattern of glycan expression at the maternal-fetal interface could have a crucial role in driving the physiological alterations during pregnancy (15). Glycans’ role emerges as a key player in understanding disorders like preeclampsia. On the other hand, lipids and fatty acids are essential elements in the metabolic processes within the human placenta, actively participating in fetal development (16). Dysregulated lipid metabolism and abnormal functioning of lipases in the placenta have been associated with various pregnancy-related complications, including conditions like preeclampsia and preterm birth. In this regard, the significance of diacylglycerol lipase β (DAGLβ) highlights the importance of intracellular lipases in lipid network regulation, with potential implications for placental function in normal and compromised pregnancies.

Addressing complications like fetal intrauterine growth restriction (IUGR), which results from impaired trophoblast syncytialization, requires a deeper understanding of the involved regulators (17). Machine learning is innovatively employed to identify patterns and predict perinatal disorders, marking a new era in maternal and fetal healthcare.

The successful implantation of a blastocyst in a healthy pregnancy relies on the decidualization of uterine endometrial stromal fibroblast cells (hESF) (18). MicroRNAs (miRs) play a critical role in cellular function and can influence recipient cells. Investigating how decidualization affects miR release by hESF, with a focus on miR-19b-3p linked to recurrent pregnancy loss, reveals that in vitro decidualization reduces the release of several miRs. Notably, miR-19b-3p is elevated in the endometrium of patients with a history of early pregnancy loss. Functionally, miR-19b-3p overexpression impedes trophoblast cell proliferation and increases HOXA9 expression, suggesting that miR release by decidualized hESF may regulate other cell types in the decidua, emphasizing the importance of proper miR release for healthy implantation and placental development.

Nutrient transport, especially in conditions like gestational diabetes mellitus (GDM), plays a crucial role (19). Leptin’s role in modulating this transport, particularly in GDM, emerges as a critical research avenue.

Traditional Chinese medicine (TCM) offers potential solutions for complications like GDM (20). The discovery of the significance of ferroptosis in GDM pathogenesis and the potential therapeutic properties of Coptis chinensis underscore the harmonious integration of traditional knowledge and modern science.

In conclusion, placental health is a diverse and intricate field. Advances in research, a deeper understanding of molecular mechanisms, and innovative solutions are converging to shape a brighter future for maternal and fetal health. Interdisciplinary collaboration and a commitment to scientific excellence hold the promise of better interventions and therapies. We aspire to a future where every pregnancy is celebrated with the expectation of a healthy and thriving outcome, free from complications and disease.

This journey of discovery and understanding opens the door to innovations that can transform maternal-fetal health, offering hope and happiness for all mothers and unborn children. It is a future that honors the miracle of life in all its wondrous and complex forms, where each step brings us closer to realizing a vision of a brighter and healthier future for all.
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Background

About 30% of women entering pregnancy in the US are obese. We have previously reported mitochondrial dysregulation and increased inflammation in the placentae of obese women. Vitamin D (VitD) is a major player in calcium uptake and was shown to modulate mitochondrial respiration and the immune/inflammation system. Studies show decreased VitD levels in obese individuals; however, the effect of maternal obesity on VitD metabolism and its association with placental function remains understudied.



Methods

Maternal and cord blood plasma and placental samples were collected upon C-section from normal-weight (NW, body mass index [BMI]<25) and obese (OB, BMI>30) women with uncomplicated pregnancies at term. We measured 25(OH)D3 (calcidiol) levels in maternal and cord blood plasma using ELISA. We assessed the expression of CYP27B1, an activator of calcidiol, and Vitamin D receptor (VDR) in placentae from NW and OB, and women with gestational diabetes and preeclampsia. In addition, we examined the effects of VitD supplementation on mitochondrial function and inflammation in trophoblasts from NW and OB, using the Seahorse Bioanalyzer and Western blot, respectively.



Results

Vitamin D levels in blood from OB but not NW women and in cord blood from babies born to NW and OB women showed a significant inverse correlation with maternal pre-pregnancy BMI (r=-0.50, p<0.1 and r=-0.55, p=0.004 respectively). Cord plasma VitD levels showed a positive correlation with placental efficiency, i.e., the ratio between fetal and placental weight, as well as with maternal blood VitD levels (r=0.69 and 0.83 respectively, p<0.00). While we found no changes in CYP27B1 in OB vs. NW women, VDR expression were decreased by 50% (p<0.03) independent of fetal sex. No changes in VDR expression relative to BMI-matched controls were observed in the placentae of women with gestational diabetes or preeclampsia. Cytotrophoblasts isolated from placentae of OB women showed a dose-dependent increase in VDR expression after 24-hour treatment with calcitriol (10 nM and 100 nM), an active form of VitD. Trophoblasts isolated from OB women and treated with calcitriol improved mitochondrial respiration (p<0.05). We also found a two-fold increase in expression of the NLRP3 inflammasome and the pro-inflammatory cytokine IL-18 in trophoblasts isolated from placentae of OB women (p<0.05), with IL-18 expression being reversed by calcitriol treatment (100 nM).



Conclusions

We show that VitD deficiency is at least partially responsible for mitochondrial dysfunction and increased inflammation in the placentae of obese women. Vitamin D supplementation could be beneficial in improving placental dysfunction seen in obese women.





Keywords: maternal obesity, Vitamin D, cord blood, maternal blood, placenta, mitochondrial function, placental inflammation



Introduction

Epidemiological studies have shown that obese individuals have lower levels of circulating Vitamin D (VitD) compared with normal-weight people (1), though the mechanism for this has not yet been extensively studied. Vitamin D is a lipid-soluble vitamin that performs many important functions in the human body, including aiding in calcium absorption (2), exerting antimicrobial properties (3), and helping to reduce inflammation (4). Once VitD is obtained, either through sunlight or the diet, it enters the bloodstream, where it is transported to the liver for hydroxylation to its inactive form, calcidiol [25(OH)D3], and subsequently to the kidney for its final hydroxylation by cytochrome P450 family 27 subfamily B member 1 (CYP27B1) to the active form, calcitriol [1a,25(OH)2D3] (5). During pregnancy, VitD plays important roles in supporting calcium absorption and the healthy growth of bones in the developing fetus; it also aids immune system function (6).

In the United States, it is estimated that over one-third of the adult population is obese, defined as having a body mass index (BMI) greater than 30 (7). More than 65% of women entering pregnancy in the US are either overweight or obese. Pregnancies in obese mothers generate an adverse intrauterine environment via both their inflammatory milieu (8) and metabolic and endocrine derangements (9). Obesity impacts the outcome of the pregnancy per se, and is associated with hypertensive disorders, gestational diabetes, preeclampsia, and thromboembolic events (10). It also affects the fetus and newborn, causing congenital malformations, large- and small-for-gestational-age infants, and stillbirth. Importantly, maternal obesity leads to cardiovascular dysregulations (11–13) and to obesity and metabolic diseases in offspring (10). In addition, data also show that maternal obesity results in metabolic inflammation in the mother and programs inflammation in the offspring (14).

The placenta is now recognized as a critical regulator of fetal growth and development and as the transducer for communication of maternal and uterine environments to the fetus, whether normal or adverse (15). Thus, despite its short lifespan, the placenta plays a crucial role in offspring health. Several groups including our own have shown that maternal obesity compromises placental function, even in pregnancies having apparently “normal” outcomes (10, 16–18). In particular, maternal obesity has been reported to dysregulate placental metabolism, leading to abnormal mitochondrial respiration and excessive production of reactive oxygen species (16), accumulation of inflammation (19), dysregulated autophagy (17), and changes in miRNA expression (20) and epigenetic modifications (21).

At the molecular level, placentae from obese women were demonstrated to have increased expression of the nucleotide-binding oligomerization domain, leucine-rich repeat-, and pyrin domain-containing 3 (NLRP3) inflammasome, a key mediator of sterile inflammation (22). Inflammasomes are multiprotein complexes, assembly of which is triggered by both microbial and endogenous danger signals and results in activation and cleavage of caspase-1. When activated, caspase-1 cleaves gasdermin D (23) to generate an N-terminal cleavage product that triggers inflammatory cell death (pyroptosis) and the release of pro-inflammatory cytokines interleukin-1β (IL-1β) and IL-18 (24). Excessive activation of the NLRP3 inflammasome has been shown to lead to diabetes, atherosclerosis, and obesity-induced insulin resistance (25). Vitamin D has been found to inhibit the NLRP3 inflammasome either by direct binding between NLRP3 and the Vitamin D receptor (VDR) (26) or via VDR signaling-mediated inhibition of cytokine secretion (27). However, the specific role of VitD in maternal obesity-mediated placental inflammation remains understudied.

The aim of this study was to determine whether obesity in pregnancy affects circulating Vitamin D levels. Using maternal and umbilical cord blood collected from normal-weight and obese women at term, we found maternal BMI-dependent changes in the levels of VitD and its receptor. We also assessed the role of VitD supplementation in addressing the placental mitochondrial dysfunction and increased placental inflammation seen in the setting of maternal obesity.



Materials and Methods


Ethics Statement

The studies involving human participants were reviewed and approved by the Institutional Review Board of Oregon Health & Science University. Maternal blood, cord blood, and placental tissue were collected from labor and delivery units with informed consent from the patients.



Collection and Processing of Placental Tissue

Placentae were collected at term, immediately after elective C-section (gestational weeks 39-40) with no labor. C-sections deliveries prior to labor were chosen because uterine contractions during labor have been shown to be associated with activation of oxidative stress and pro-inflammatory signaling, with increased accumulation of COX-2, TNFα, and IL-1β as well as stabilization of HIF-1α in placental tissue (28). In addition, the duration of labor increases the severity of the impact, which is to be expected. This study was supported by report from Lager et al. (29). These findings indicate that in many respects a vaginally delivered placenta does not accurately reflect the organ’s normal in vivo state and caution against the use of such placentae for biochemical and molecular studies. Placental tissues for this study were collected from subjects who: 1) Had a singleton pregnancy; 2) Delivered by C-section; 3) Had either normal or high pre-pregnancy body mass index (BMI), respectively grouped as normal-weight (NW; BMI=18.5-24.9) or obese (OB; BMI=30-45); 4) Had either uncomplicated pregnancy or developed gestational diabetes A2GDM controlled by insulin; and 5) Were either normotensive or developed severe preeclampsia defined as presence of hypertension (systolic blood pressure >160 mmHg and/or diastolic blood pressure >110 mmHg on two occasions 2 - 240 hours apart) and proteinuria (≥2 protein on dipstick) occurring after 20 weeks of gestation in a previously normotensive woman. Exclusion criteria included multifetal gestation; pre-gestational chronic inflammatory diseases (asthma, type 2 diabetes, rheumatoid arthritis, Crohn’s disease, etc); use of tobacco or illicit drugs, or both; and recent bariatric surgery. The placentae were randomly sampled as described previously (30). Placental efficiency was calculated as the ratio between birth weight and placental weight.



Plasma Collection

Maternal blood was collected from fasting patients before C-section. Cord blood was collected and placed in EDTA-containing collection tubes. Plasma was immediately separated from whole blood by centrifugation at 2000 g for 10 min at 4°C, then flash-frozen in liquid nitrogen and stored at -80°C for further analyses.



Materials

ELISA kits to detect circulating 25(OH) Vitamin D (calcidiol) were purchased from Abcam (Cambridge, MA). Antibodies against Vitamin D receptor (VDR) and against mouse and rabbit IgG were purchased from Cell Signaling Technology (Danvers, MA), and the antibody against cytochrome P450, family 27, subfamily B, polypeptide 1 (CYP27B1) was purchased from ThermoFisher (Waltham, MA). Anti-NLRP3 was purchased from Novus Biologicals (Centennial, CO), and antibodies against gasdermin D and anti-IL-18 were purchased from Biolegend (San Diego, CA). Antibodies against caspase-1 that recognized both total and cleaved forms were purchased from Cell Signaling, and the antibody against endogenous control β-actin (ACTB) was purchased from Sigma-Aldrich St. Louis, MO). Pierce™ BCA Protein Assay Kits were also purchased from ThermoFisher. For cell culture experiments, calcitriol was purchased from Cayman Chemical Company (Ann Arbor, Michigan). Mitochondrial inhibitors oligomycin, FCCP, antimycin A, and rotenone were purchased from Sigma.



Maternal Serum and Cord Blood Vitamin D Content

Circulating levels of 25(OH) Vitamin D were measured using an enzyme-linked immunosorbent assay (ELISA) according to manufacturer instructions.



Tissue Processing and Sampling

Villous tissue was dissected from placentae and flash-frozen in liquid nitrogen for protein expression measurements. Cytotrophoblasts (CTBs) were isolated by enzymatic digestion followed by density gradient purification as we previously described (30). CTBs were plated in Iscove’s Modified Dulbecco’s Medium (ThermoFisher Scientific, catalog # 12440), containing 25 mM D-glucose (dextrose), and supplemented with 10% FBS and penicillin/streptomycin. Cells were allowed to fuse and form a multinucleated syncytium for 72 hours before measurements were taken.



Protein Isolation

Proteins were isolated from flash-frozen villous tissue or from cytotrophoblasts that were cultured for 72 hours. Samples were lysed using ice-cold radioimmunoprecipitation assay (RIPA) buffer with freshly-added protease and phosphatase inhibitors. The resulting mixture was transferred to a 1.5 ml tube and centrifuged at 1000 x g for 10 minutes at 4°C to remove cellular debris. The supernatant was transferred to a fresh tube and protein concentration was quantified using a Pierce Bicinchoninic Acid (BCA) Protein Assay Kit.



Western Blotting

About 25 μg of protein was separated on a 4-20% SDS-PAGE gel, then transferred to a polyvinylidene difluoride (PVDF) membrane and blocked for one hour in 5% (w/v) milk in TBS solution with 0.1% Tween 20. Membranes were subsequently incubated with primary antibodies, then washed, blocked in 1% milk, and probed with secondary antibodies conjugated to HRP. Western blot membranes were visualized using the G: Box from Syngene (Frederick, MD) and analyzed using Genetools software (Syngene). All samples were normalized to β-actin (ACTB).



Cell Culture Experiments

Cytotrophoblasts (CTB) were isolated from term placentae collected at C-section. At 24 hours after plating, the CTBs were treated with two concentrations (10 nM and 100 nM) of the active form of Vitamin D (calcitriol) for 24 hours. CTBs were then cultured another 24 hours for a total of 72 hours, after which the cells were harvested for protein detection by Western blot. Mitochondrial respiration in isolated trophoblasts was assessed using a Seahorse Bioscience XFe96 analyzer (Agilent, USA).



Mitochondrial Respiration Assay

Twenty-four hours before mitochondrial respiration was measured, a sensor cartridge was calibrated using Seahorse Calibrant Solution (Agilent, CA) and placed in a non-CO2 incubator overnight. One hour before the assay, complete Iscove’s Modified Dulbecco’s Medium (IMDM) media was exchanged for Seahorse base media supplemented with 25 mM glucose, 4 mM glutamine, and 1 mM pyruvate (same as culture media). Cells were then placed in a non-CO2 incubator for one hour and were allowed to equilibrate before the oxygen consumption rate (OCR) was measured using a Seahorse XFe96 Analyzer. Basal respiration was calculated from four baseline OCR readings. ATP-coupled respiration, maximum respiration, spare capacity, proton leak, and non-mitochondrial respiration was calculated from OCR readings following the injection of oligomycin (1 μM), FCCP (1 μM), and a mixture of rotenone (3 μM) and antimycin A (1.5 μM) as we described previously (16). The effect of Vitamin D treatment was calculated by taking the ratios of parameters in treated and untreated cells. All assays were normalized to total DNA content per well using the Quant-iT Picogreen dsDNA assay kit.



Statistical Analysis

The Shapiro–Wilk test was used to test for normal distribution in all data sets. For normally distributed data, significant differences between groups were tested as an interaction between fetal gender (M, F) and pregnancy complications such as maternal obesity with a two-way ANOVA followed by Student’s t-test. For non-parametric data, the Kruskal–Wallis test was applied for the same factors (fetal sex and maternal adiposity), followed by the Mann–Whitney U post hoc test. Data from males and females were pooled when no fetal sex-dependent differences were observed. P-values < 0.1 are reported as statistically significant.




Results


Clinical Characteristics of Study Participants

Table 1 shows the clinical characteristics of the patients participating in this study. By experimental design, maternal BMI was significantly different between the groups. The gestational weight gain in OB mothers with female fetuses was significantly smaller than that in NW mothers (p<0.05). No significant differences in maternal age, gestational age, birth weight, or placental weight were detected between the groups.


Table 1 | Clinical characteristics of study patients.





Effect of Maternal BMI on Fetal and Maternal Circulating Vitamin D

Inactive Vitamin D (VitD) is synthesized primarily in human skin and converted to its active form of 1α,25-dihydroxyvitamin D3, or calcitriol, in the kidney, placenta, and other target organs by 25-hydroxyvitamin D-1 alpha hydroxylase (CYP27B1) (31) (Figure 1A). The actions of calcitriol are mediated by the Vitamin D receptor (VDR), a ligand-dependent nuclear receptor. As circulating levels of VitD are reported to be decreased in obese individuals (32), we hypothesized that Vitamin D status could also be affected by maternal obesity. In the group of normal-weight (NW) women, we observed no correlation between maternal plasma VitD levels and maternal BMI (Figure 1B). However, an inverse correlation between maternal circulating VitD and maternal BMI was present in OB women (r=-0.5, p<0.1), independent of fetal sex (Figure 1C). In addition, male and female cord blood levels of VitD inversely correlated with maternal BMI (r=-0.47, p<0.001), but showed positive correlation with maternal plasma VitD (r=0.83, p<0.000; Figures 1E, F). We also observed a significant correlation between cord blood levels of VitD and placental efficiency, calculated as the ratio of fetal and placental weights (r=0.69, p<0.0001, Figure 1G). No relationship, however, was observed between maternal blood VitD concentrations and placental efficiency (p=0.35, Figure 1D).




Figure 1 | (A) Simplified diagram showing pathways for Vitamin D synthesis, bioactivation, and function. Created in Biorender.com. (B–G), 1α,25-dihydroxyvitamin D3 (calcidiol) levels in maternal and cord blood plasma from normal-weight (NW) and obese (OB) women, measured by ELISA. (B–D), Correlations between maternal blood plasma Vitamin D concentration and maternal pre-pregnancy BMI in normal-weight (B) and obese (C) women, and placental efficiency calculated as the ratio between birth weight (BW) and placental weight (PW) (D). (E–G), Correlations between cord blood plasma vitamin D levels and maternal pre-pregnancy BMI (E), maternal plasma Vitamin D (F), and placental efficiency (G). Sample sizes are given in Table 1.





Placental Expression of CYP27B1 Is Not Affected by Maternal Obesity

CYP27B1 is the sole Vitamin D 1α-hydroxylase responsible for the last activation step to produce the fully-active VitD hormone calcitriol (31). Since VitD levels were decreased in maternal and cord blood of obese women, we wanted to understand if the placenta plays a role in this process. We began by measuring protein levels of CYP27B1 in placentae from NW and OB women. As shown in Supplemental Figures 1A, B, we observed no differences in CYP27B1 expression between the groups. However, within the OB group, levels of CYP27B1 were significantly lower in placentae of female offspring vs. males. Since the placenta is composed of multiple cell types, we next measured expression of CYP27B1 in primary trophoblasts isolated from NW and OB women. We found no statistically significant differences between groups or between sexes (Supplemental Figures 1C, D).



Vitamin D Receptor Protein Expression Is Decreased in Placentae From Obese Women

The genomic functions of VitD are mediated through its binding to the Vitamin D receptor (VDR) in target tissues (33). It has been estimated that binding of calcitriol to VDR regulates the expression of about 2000 genes involved in numerous intracellular functions (34). We next hypothesized that the reduced circulating VitD in OB women is a result of decreased VDR expression in the placenta. Western blot analysis of placental tissue from NW and OB women showed a significant 50% reduction in VDR expression in OB vs. NW women, whether having male (p<0.001) or female (p<0.1) fetuses (Figures 2A, C).




Figure 2 | Effect of maternal obesity, gestational diabetes, and preeclampsia on placental expression of Vitamin D receptor (VDR). (A, C), Representative images (A) and quantification (C) by Western blot of VDR in placentae from normal-weight and obese women with male and female fetuses. (B, D), Representative images (B) and quantification (D) by Western blot of VDR in placentae from pregnancies complicated by gestational diabetes regulated by insulin (A2GDM). (E, F), Representative images (E) and quantification (F) by Western blot of VDR in placentae from pregnancies complicated by preeclampsia (PE). Control samples for A2GDM and PE were matched by BMI. Data were normalized to β-actin; values are mean ± SEM.*, p<0.05. Sample sizes are given in Table 1 and Supplemental Tables 1, 2.



Vitamin D deficiency in pregnant women is associated with increased risk for pregnancy complications (35) such as gestational diabetes mellitus (GDM) (36) and preeclampsia (37). We next examined VDR expression in placentae from pregnancies complicated by gestational diabetes regulated by insulin (A2GDM) and preeclampsia (PE). To rule out an effect of maternal adiposity, control samples were matched by maternal BMI. Clinical characteristics of the A2GDM and PE groups and corresponding controls are presented in Supplemental Tables 1 and 2 (S1 and S2). The A2GDM women were slightly older compared to the control group, whether with male or female fetuses (p<0.01, Supplemental Table S1). Since the C-sections in pregnancies complicated by preeclampsia were performed prior to term, there were significant differences in gestational age and fetal birth weight in the PE group relative to normotensive controls (Supplemental Table S2). Nonetheless, when stratified by maternal pre-pregnancy BMI, no statistically significant differences in VDR expression were seen in placentae from women with A2GDM or PE vs. corresponding control groups (Figures 2B, D–F).



Treatment With Vitamin D Increases VDR levels in Primary Trophoblast Cells

Given ongoing debate concerning the efficacy of VitD supplementation and the proper dosage for optimal health during pregnancy (38), we conducted in vitro studies to determine the effect of VitD supplementation on placental function. We treated cytotrophoblasts (CTBs) with calcitriol, an active form of VitD, in concentrations previously reported to be effective in cell culture studies using various types of cells, including trophoblasts (39–41). Measuring VDR expression in calcitriol-treated trophoblasts revealed a dose-dependent increase over the 24 hours following treatment, independent of fetal sex and maternal adiposity (Figure 3).




Figure 3 | Effect of 24-hour treatment with calcitriol, an active form of Vitamin D, on expression of VDR in primary trophoblasts isolated from placentae of NW and OB women. Representative Western blots (A, B) and quantification data (C) demonstrating a dose-dependent response to treatment. Data were normalized to β-actin (ACTB) and expressed as fold-change relative to untreated cells. *, p < 0.05. N=3-5/dose/group/fetal sex.





Vitamin D Improves Mitochondrial Respiration in Primary Trophoblasts

It has been previously reported that VitD supplementation of deficient individuals improves mitochondrial function (42). Reports from our group indicate mitochondrial dysfunction to occur in trophoblasts isolated from the placentae of obese women (16). We therefore next aimed to determine whether VitD supplementation would be sufficient to improve mitochondrial respiration in primary trophoblasts isolated from NW and OB women. To this end, trophoblasts were either left untreated or treated with 10 or 100 nM of calcitriol. Oxygen consumption rates were measured using a Seahorse XF Analyzer (Figure 4). No changes associated with calcitriol treatment were observed in trophoblasts isolated from placentae of NW women. However, treated trophoblasts from OB women showed significant improvements in spare capacity (Figure 4F) and proton leak (Figure 4G), independent of fetal sex.




Figure 4 | Dose-dependent effect of 24-hour treatment with calcitriol on mitochondrial function in cytotrophoblasts isolated from placentae of NW and OB women. Data from males and females were combined. (A) Flowchart of the Seahorse XF Cell Mito Stress test; (B, C) Representative curves. (D) Basal respiration. (E) Maximal respiration. (F) Spare capacity. (G) Proton leak. *, p < 0.05, N=6-7.





Vitamin D Reduces Expression of the NLRP3 Inflammasome in CTBs From Obese Women

Vitamin D has been shown to inhibit the NLRP3 inflammasome either by direct binding between NLRP3 and VDR (26) or via VDR signaling-mediated inhibition of cytokine secretion (27). We measured the protein expression of NLRP3 and its downstream factors such as gasdermin D, caspase-1, and IL-18 in primary trophoblasts isolated from male and female placentae from normal-weight and obese women, and further assessed the effect of calcitriol in that context. Protein levels of NLRP3 and IL-18 were significantly increased in trophoblasts from OB women vs. NW women (Figures 5A–C), whether with male or female fetuses. Calcitriol treatment reduced expression of IL-18 but not NLRP3 (p<0.05) in trophoblasts of OB women, independent of fetal sex. No change in IL-18 or NLRP3 expression was detected in trophoblasts from NW women. Likewise, levels of gasdermin D and total and cleaved (p20) caspase-1 remained unchanged across the groups (Figures 5D–F).




Figure 5 | Effect of 24-hour calcitriol treatment on protein expression of NLRP3 inflammasome and the downstream inflammasome activation and pyroptosis factors IL-18, gasdermin D, and caspase-1 in trophoblasts isolated from placentae of normal-weight and obese women. Data from males and females were combined. (A) Representative Western blots. (B) NLRP3. (C) IL-18. (D) Gasdermin (D, E) Total caspase-1. (F) Cleaved p20 caspase-1. Data were normalized to β-actin (ACTB) and expressed as fold-change relative to untreated cells. *, p < 0.05. N=6-7. #, p<0.05 vitamin D treated vs. untreated cells.



We also measured expression of NLRP3 and IL-18 in whole placentae collected from NW and OB women, but found no changes associated with maternal adiposity, suggesting that the increases in these proteins were trophoblast-specific (Supplemental Figure 2). Importantly, we found that expression of NLRP3 was two-fold higher in female NW placentae and that of IL-18 was two-fold higher in female OB placentae when compared with males within the same maternal BMI group (p<0.05).




Discussion

In this study, we investigated the effect of maternal obesity on maternal and fetal circulating Vitamin D levels, along with the effect of VitD supplementation on VDR expression and on mitochondrial respiration and inflammation in human trophoblasts. Previous studies have shown that people with obesity have less circulating VitD than normal-weight individuals (43). Vitamin D deficiency during pregnancy has been linked to adverse health outcomes including preeclampsia (44), gestational diabetes mellitus (36), increased risk for a cesarean section (45), and preterm birth (46). Maternal VitD deficiency has also been linked to fetal growth restriction (47), congenital heart defects (48), type 1 diabetes mellitus (49), schizophrenia (50), and weak bones in offspring (51). The offspring of mothers who had low circulating VitD concentrations during late pregnancy have been reported to have reduced bone mass at nine years of age (51). Vitamin D has been also shown to play an important role in regulating immune responses during gestation (52).


Vitamin D in Maternal and Cord Plasma

The only source of Vitamin D for a fetus is the mother, who transfers it across the placenta (53). Maternal 25-hydroxyvitamin concentrations are higher than fetal concentrations, and this metabolite crosses the placenta in relatively large quantities. In agreement with previous studies (54), we found a strong positive correlation between maternal and cord plasma VitD concentrations in both male and female offspring. Bodnar et al. (44) have previously reported a two-fold increase in maternal and neonatal VitD deficiency as maternal BMI increases from 22 to 34 kg/m2; we also observed a reduction in maternal plasma VitD levels with increased maternal adiposity, but only in the group of women with BMI higher than 30. The reason for high within-group variability in VitD levels could be that plasma VitD concentrations show seasonal variation, being significantly higher in samples collected during warmer months (April-September) than in winter (55). Due to the smaller sample size in this study, we were unable to factor seasonal periodicity into our data analysis. Another reason could be confounding from VitD supplementation, as maternal plasma concentrations are known to be significantly higher in mothers who receive VitD with their prenatal vitamins.

Our data indicate that in both male and female offspring, there is a significant decrease in cord blood levels of calcidiol with increased maternal BMI. While we observed no relationship between maternal or fetal VitD levels and birth weights (not shown), we found that cord blood VitD deficiency in obese women was correlated with decreased ratio between fetal and placental weights, suggesting placental insufficiency. These findings are in agreement with previously published data showing placental insufficiency in two different mouse models of gestational VitD deficiency (56).



VDR Expression in the Placenta

The physiologically-active Vitamin D metabolite, 1a,25(OH)2D3 or calcitriol, does not readily cross the placenta; this is addressed through placental expression of the enzyme CYP27B1, which hydroxylates the inactive form that does cross, 25(OH)D3 or calcidiol, to the active form (54). In a study undertaken in a small cohort of 70 pregnant adolescents (<18 years of age) with normal BMI and their term neonates, O’Brien et al. showed a significant correlation between maternal calcidiol and placental expression of CYP27B1, suggesting a link between substrate availability and placental production of calcitriol (57). We, in contrast, found no difference in placental CYP27B1 expression between normal-weight and obese women. This could be explained by differences in clinical characteristics of participants including maternal age (adolescent vs. adult), and maternal pre-pregnancy BMI (all lean vs. lean and obese).

Calcitriol is the major active ligand of the Vitamin D receptor (VDR), a nuclear steroid hormone receptor that acts as a transcriptional activator (58) but can also exert rapid non-genomic effects that influence processes such as cell proliferation and differentiation and apoptosis; these are probably realized via VDRs located within the plasma membrane (59). Placentae from obese mothers have lower levels of VDR than those from normal-weight mothers, which means that less active VitD can bind to and be utilized by the organ. Vitamin D deficiency in the placenta has previously been associated with adverse health outcomes including preeclampsia, gestational diabetes, increased risk of having a C-section delivery, and bacterial vaginosis (59). However, in our study, no differences in VDR expression were observed in maternal BMI-matched placentae, whether from normal pregnancies or complicated by preeclampsia or gestational diabetes. This potentially suggests that maternal adiposity is a key determinant in dysregulation of placental VitD metabolism.



Treatment of CTBs With Vitamin D

Our data show that treatment of cytotrophoblasts with calcitriol increases VDR expression independent of maternal adiposity and fetal sex. We observed a dose-dependent response in trophoblast VDR concentration after short-term treatment with calcitriol, indicating a relationship between VitD levels and de novo translation or reduced degradation of VDR; the mechanism underlying this relationship is not yet understood. While the increased presence of VDR in CTBs upon treatment with the active form of VitD may conceptually seem beneficial to overall placental health, it has also been shown that high concentrations of VitD can induce apoptosis (60). Therefore, more research must be done regarding what concentration of prenatal VitD supplementation is optimal to reduce deficiency and increase VDR production while avoiding harm to maternal and fetal cells.



Mitochondrial Respiration in CTBs Treated With Vitamin D

We have previously reported reduced placental mitochondrial respiration in pregnancies complicated by maternal obesity (16). Since a growing body of evidence suggests that VitD supplementation in deficient individuals improves measures of mitochondrial function (61, 62), we investigated the effects of calcitriol on mitochondrial respiration in trophoblasts. No clear responses of trophoblast mitochondrial respiration to VitD supplementation were seen in either female or male offspring of normal-weight mothers. In contrast, calcitriol-treated trophoblasts from placentae of obese women showed increased spare capacity and proton leak.

In fact, recent studies have confirmed that Vitamin D regulates oxidative capacity through binding of calcitriol to VDRs in skeletal muscle (63). Furthermore, mitochondrial ATP production has been shown to be significantly reduced in VDR-deficient C2C12 myoblasts. These results were recapitulated by an in vivo experiment in VitD-deficient mice, which exhibited decreased maximum oxidative capacity (63). Ryan et al. (64) explored the effect of VitD supplementation on human skeletal muscle cells and found that calcitriol administration increases the oxygen consumption rate. Meanwhile, a mouse study similarly looking at the effect of VitD supplementation on mitochondrial function found that treatment with calcitriol leads to inhibition of oxygen consumption, maximal respiration, and proton leak in brown adipocytes (65). Given these disparate findings, future research will reveal potential crosstalk between tissue-specific VDR expression, different VitD doses, and mitochondrial respiration. In our study, the isolation and purification of cytotrophoblasts from term placentae was performed using media with 25 mM glucose, consistent with previous reports (66–68). Further studies are needed to determine the effect of culture conditions, and particularly glucose levels, on the trophoblasts’ response to Vitamin D supplementation.



Vitamin D Supplementation and Trophoblast Inflammation

Vitamin D is thought to play a role in reducing inflammation and infection in the placenta (69), and has previously been shown to reduce lipopolysaccharide-induced inflammation in the placenta by suppressing placental translocation of the NFκB subunit from cytoplasm to nucleus (70). A mouse model of VitD deficiency revealed immune challenge to elicit a large inflammatory response in the placenta, further underscoring the importance of VitD in placental immune function (52). Inflammasomes are large protein complexes that assemble in the cytosol after activation by pathogen-associated and danger-associated molecular patterns (71). Both direct and indirect interactions have been reported between VitD and the NLRP3 inflammasome. Using immunoprecipitation, Huang et al. demonstrated that VDR forms complexes with NLRP3 in nuclear extracts (26). Rao et al. further demonstrated that binding of the VDR to NLRP3 appears to attenuate deubiquitination of the latter, which is a critical step in inflammasome activation (27). Studies have also shown that calcitriol is capable of inhibiting NLRP3 inflammasome activation and its downstream cytokine signaling in mouse models of liver injury and fibrosis (72), ulcerative colitis (73), and diabetic retinopathy (74). In our study, calcitriol-treated trophoblasts showed no change in NLRP3 expression, but exhibited significantly reduced expression of IL-18. Interestingly, a recent study in COVID-19 patients observed a strong inverse correlation between VitD levels and cytokine production, suggesting a potential role of VitD in reducing complications attributed to the cytokine storm and unregulated inflammation (75).

In summary, receiving adequate amounts of Vitamin D is highly important for maintaining normal placental function in the setting of maternal obesity. We observed beneficial effects of VitD supplementation on VDR expression, mitochondrial respiration, and inflammation in trophoblasts from placentae of obese women. It is unclear whether or not maternal VitD deficiency in obese women is directly responsible for placental dysfunction, but work is underway to evaluate this potentially important phenomenon. Several published reports suggest that VitD controls about 3% of the human genome (76–79), and maternal and fetal deficiencies in VitD could potentially lead to genetic and metabolic abnormalities that emerge later in offspring life. If this is the case, future studies will need to address the important question of when in gestation supplementation with Vitamin D is particularly beneficial in improving placental function, and thus offspring health.
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The presence of Escherichia coli in the vaginal microbiome has been associated with pregnancy complications. In previous works, we demonstrated that Shiga toxin-producing Escherichia coli (STEC) can produce abortion and premature delivery in rats and that Shiga toxin type 2 (Stx2) can impair human trophoblast cell lines. The hypothesis of this work was that STEC may colonize the lower female reproductive tract and be responsible for adverse pregnancy outcomes. Thus, the aim of this work was to evaluate the presence and prevalence of virulence factor genes from STEC in the endocervix of asymptomatic pregnant women. For that purpose, endocervical swabs were collected from pregnant women during their prenatal examination. Swab samples were enriched in a differential medium to select Enterobacteria. Then, positive samples were analyzed by PCR to detect genes characteristic of Escherichia sp. (such as uidA and yaiO), genes specific for portions of the rfb (O-antigen-encoding) regions of STEC O157 (rfbO157), and STEC virulence factor genes (such as stx1, stx2, eae, lpfAO113, hcpA, iha, sab, subAB). The cytotoxic effects of stx2-positive supernatants from E. coli recovered from the endocervix were evaluated in Vero cells. Our results showed that 11.7% of the endocervical samples were positive for E. coli. Additionally, we found samples positive for stx2 and other virulence factors for STEC. The bacterial supernatant from an isolate identified as E. coli O113:NT, carrying the stx2 gene, exhibited cytotoxic activity in Vero, Swan 71 and Hela cells. Our results open a new perspective regarding the presence of STEC during pregnancy.
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Introduction

Shiga toxin-producing Escherichia coli (STEC), a bacterium that belongs to the family Enterobacteriaceae, can cause severe foodborne diseases. The main reservoir for STEC is the intestinal tract of cattle, and the bacterium can survive for months in soil, water, or organic material (1). The main route of transmission is through contaminated food, mainly minced meat (undercooked meat below 71°C), unpasteurized food, contaminated vegetables and person-to-person contact by the fecal-oral route (2, 3).

STEC comprises strains producing two Shiga toxins: Stx type 1 (Stx1) and Stx type 2 (Stx2) (4) and its variants, Stx1 (a – c) and Stx2 (a – k) (5–7). Not all Stx subtypes have been associated with severe illness (8). In this sense, it has been described that Stx2a and Stx2c are clinically more related with severe cases of hemolytic uremic syndrome (HUS), and that STEC O157 strains carrying stx2a predominate in human infections, causing more severe disease symptoms than those carrying stx2c (9, 10).

Stx is the main virulence factor of STEC and, in combination with other virulence factors, contributes to the pathogenic potential of STEC strains. In this sense, intimin (eae gene) plays an essential role in the intimate attachment and colonization of intestinal cells of STEC O157:H7, although many STEC isolates lacking the eae gene are also able to efficiently colonize the human gut (11). Many other proteins, such as the long polar fimbriae (Lpf) (12), the hemorrhagic coli pilus (Hcp) (13), the IrgA homolog adhesin (IhA) (14), and the STEC autotransporter contributing to biofilm formation (Sab) (15), are also involved in the adherence of O157 and non-O157 STEC strains. Non-O157 STEC strains also produce Subtilase cytotoxin (SubAB), able to cause cytotoxic effects in epithelial cells (16).

It is currently known that E. coli strains can colonize the vagina, usually asymptomatically, although epidemiological studies have shown that the presence of these bacteria in the female reproductive tract may be a risk factor for pregnancy (17). Some studies developed in Argentina and other countries have shown a high prevalence of E. coli in vaginal microbiota of adult women (17, 18). However, to our knowledge, there are no reports about the effects of STEC infection on human pregnancy, although some reports have indicated that STEC transmission from the mother to the child during delivery can cause neonatal HUS (19) or STEC-mediated HUS during pregnancy (20). In Argentina, the most common STEC serotype is O157:H7 (21, 22). Nevertheless, the appearance of non-O157 STEC strains is a clear evidence of the dynamic genome of these E. coli pathogens and their ability to transfer or acquire important virulence factors (23, 24). Since there are no epidemiological studies regarding STEC infections during pregnancy, it is difficult to know their impact on reproductive health.

Previous works in our laboratory have demonstrated that Stx2 injection in pregnant rats in early and late pregnancy causes premature delivery, miscarriage and impairments in placental development (25, 26). Also, we have shown that the immunization of rats against Stx2 can prevent the detrimental effects of the toxin during pregnancy (27). Taking these previous findings into account, we hypothesized that STEC can colonize the endocervix and may be responsible for complications in pregnancy. The main goal of this work was to evaluate the presence and prevalence of virulence factor genes from STEC in the endocervix from asymptomatic pregnant women and to better understand the possible clinical relevance of this pathogen during human pregnancy.



Materials and Methods


Endocervical Samples

Asymptomatic pregnant women (from 17 to 37 years old) with gestational age from 12 to 34 weeks were enrolled (n=103) during their prenatal examination in the Obstetrics Service of the Maternal and Child Department of the Prof. A. Posadas National Hospital (Buenos Aires, Argentina) between January and March 2019. Endocervical swab samples were collected under direct visualization during a speculum examination. Swabs were transported in sterile tubes containing Cary Blair transport medium (Britania, Argentina) and stored at 4-8°C until used.



Selection of Enterobacteria From Endocervical Samples

Endocervical swabs were enriched in 3 mL of Tryptic Soy Broth (Oxoid, UK) overnight (ON) at 37°C and shaken at 150 rpm. Then, cultures were streaked into Sorbitol MacConkey (SMAC) agar (Oxoid, UK) and incubated ON at 37°C. SMAC agar was used for a preliminary selection of Enterobacteria based on a differential sorbitol and lactose fermentation profile. SMAC agar is recommended as a selective and differential medium for the detection of STEC O157:H7. Enterobacteria capable of fermenting sorbitol form pink colonies on SMAC agar, while non-sorbitol fermenting bacteria, such as STEC O157:H7, form white/colorless colonies.



Detection of E. Coli and STEC O157:H7 in Enriched Endocervical Samples by PCR

Total genomic DNA from colonies grown in SMAC agar was obtained to detect the presence of E. coli by PCR. DNA was purified using PURO bacteria Kit (PB-L products, Bio-Logicos, Argentina) according to the manufacturer’s instructions and quantified by Nanodrop One (Thermo Fisher Scientific, USA). Specific genes encoding for the enzyme beta-glucuronidase (uidA gene) (28) and external membrane protein of E. coli (yaiO gene) (29), and genes specific for portions of the rfb (O-antigen-encoding) regions of STEC O157 (rfbO157gene) (11) were detected by PCR using specific primers (Table 1).


Table 1 | Primers used.



PCRs were performed in a total volume of 20 µL: 6 µL H2O, 3 µL DNA, 0.5 µL of each forward and reverse primer (10 µM) and 10 µL Master Mix 2X Kit (M024, Inbio Highway, Argentina). The thermocycler (Thermo Fisher Scientific, USA) program used consisted of one cycle at 95°C for 10 min followed by 35 cycles of 94°C for 40 s, 58°C for 30 s, and 72°C for 60 s, ending with one cycle of 72°C for 2 min. A total of 10 μL of each PCR reaction product was loaded into an agarose gel to confirm the presence and size of the corresponding amplicon.

Samples positive for yaiO were analyzed for rfbO157 as well as for the presence of other STEC virulence factor genes, including: stx1, stx2, stx2a, stx2c (4), subAB (30), eae (31), lpfAO113 (12), hcp (13), iha (32) and sab (15) by PCR (Table 2).


Table 2 | Evaluation of STEC virulence factors, primer sequences and size of amplicons .





Cell Line Cultures

The Vero cell line (Vero), derived from African green monkey kidney, was purchased from the American Type Culture Collection (ATCC-CCL-81, Manassas, VA, USA). The HeLa cell line (ATCC-CCL-2), derived from a human cervix adenocarcinoma, was used as a human endocervical model. The Swan 71 cell line, derived by telomerase-mediated transformation of a 7-week cytotrophoblast isolate, was kindly provided by Dr. Gil Mor, Yale University, New Haven, CT, USA (33).

All cell lines were cultured in Dulbecco’s Modified Eagle Medium/Nutrient Mixture F-12 (DMEM-F12 medium, Sigma Aldrich, USA) supplemented with 10% Fetal Bovine Serum (FBS, Internegocios S.A., Argentina), 100 U/mL penicillin/streptomycin, and 2 mM L-glutamine (GIBCO, USA), and grown at 37°C in a humidified 5% CO2 incubator. For growth-arrested conditions, the medium was used without FBS.



Evaluation of the Cytotoxic Effects of Bacterial Supernatants From Bacteria Isolated From the Endocervical Samples

Endocervical samples that were positive for stx2 by PCR were grown ON in Luria-Bertani Broth (LB) (Sigma Aldrich, USA) at 37°C with shaking at 150 rpm. Then, the cultures were diluted (1:20) in DMEM-F12 medium (Sigma Aldrich, USA), supplemented with 1 mM of HEPES buffer solution (4-(2-Hydroxyethyl)piperazine-1-ethanesulfonic acid, N-(2-Hydroxyethyl)piperazine-N′-(2-ethanesulfonic acid)) (GIBCO, USA) and grown until exponential phase (OD600 = 0.4-0.5) at 37°C with shaking at 150 rpm. Subsequently, bacterial supernatants were collected after centrifugation at 10,000 x g for 5 min and filtered (0.22-μm pore-size filter; Millipore, USA). In some experiments, to induce Stx2 production, mitomycin-C (1 µg/mL) was added at the exponential phase and the bacterial culture was grown for additional 3 h (34).



Cell Viability Assays

Cell viability assays were performed as previously described (35). Briefly, 15x 103 cells/well (Vero, Swan 71, and HeLa) were seeded in 96-well plates and grown at 80% of confluence. Then, cells were exposed for 72 h to different concentrations (1x10-6 – 0.1 µg/mL) of purified Stx2 (Phoenix Laboratory, Tufts Medical Center, Boston, USA) or to serial dilutions of bacterial supernatant (10-1-10-6) in growth-arrested conditions. After treatment, cells were incubated with a neutral red solution (50 µg/mL) at 37°C for 1 h in 5% CO2. Then, cells were washed and fixed with 1% CaCl2-1% formaldehyde and finally lysed with 1% acetic acid in 50% ethanol solution to solubilize the neutral red uptake by cells. Absorbance in each well was read at 540 nm in an automated plate spectrophotometer (RT-6000, Rayto Life and Analytical Sciences Co. Ltd., China). Results are expressed as percentage of cell viability, where 100% represents control cells without toxin or supernatant treatment. The 50% cytotoxic dose (CD50) of Stx2 and the bacterial supernatant corresponded to the dilution required to kill 50% of cells.



Stx2-Neutralization Assay

For the neutralization assay, bacterial supernatant in a dilution required to kill 50% of Vero cells (CD50) was co-incubated with 25 µg/mL of the mouse monoclonal antibody 2E11 against the A-subunit of Stx2 (anti-Stx2 mAb) at 37°C for 1 h (36). The mixture was added to a 96-well culture plate containing Vero cells grown at 80% of confluence and then incubated for 72 h. The cytotoxicity was analyzed by neutral red uptake as previously described. The CD50 of purified Stx2 (1 ng/mL) was used as control.



Isolation and Characterization of STEC Samples From the Endocervix

The enriched bacterial culture from endocervical samples carrying the stx2 gene and showing cytotoxic effects on Vero was streaked onto LB agar plates and incubated ON at 37°C. Grown colonies were picked and added in 96-well plates and grown in LB medium ON at 37°C with agitation at 150 rpm. The next day, wells of each column were pooled and the DNA was purified to test the presence of the stx2 gene. Afterward, individual colonies grown in each well of stx2-positive columns were directly picked and confirmed to be STEC by testing the presence of the stx2 gene by PCR and by Vero cell assays. Isolates were then sub-cultured for further genetic or phenotypic typing.



Determination of the Serotypes of STEC Isolates

The serotypes (O and H) of STEC isolates were determined by microagglutination, as described by Blanco etal. (37).



Ethical Approval

This study had the approval of the Human Research Ethics Committee of the Prof. A. Posadas National Hospital, Buenos Aires, Argentina (Ref # 423 EMnPeSe/20), in accordance with the Argentine Good Clinical Practice Guidelines. All pregnant women were thoroughly informed about the purpose of the study and provided a written informed consent. The exclusion criteria were: women with genital papilloma virus infection (HPV), human immunodeficiency virus (HIV), pelvic inflammatory disease (PID) and sexually transmitted diseases such as chlamydia, gonorrhea, and genital herpes.



Statistical Analysis

Data were plotted and statistically analyzed using Graph Pad Prism 5.0 (San Diego, CA, USA). Cytotoxicity curves were fitted using a four-parameter logarithmic regression. Statistical significance for all experiments was assessed using analysis of variance (ANOVA) with Tukey’s multiple comparison test as a posteriori test. In all cases, statistical significance was set at *p < 0.05.




Results


Detection and Identification of E. coli From Endocervical Swab Samples

Sixteen out of the 103 endocervical swab samples developed colonies on SMAC agar. Only non-sorbitol fermenting colonies were observed. Fifteen out of those sixteen samples had the uidA gene and 12 out of the 16 had the yaiO gene (Table 3). Considering that the yaiO gene is more specific than the uidA gene for the identification of E. coli, only those containing the yaiO gene were considered positive for E. coli (29). One sample (S12) was negative for both genes (Table 3). Therefore, 12 out of the 103 endocervical samples recruited for this study (11.7%) were considered positive for E. coli spp. in the endocervical microbiota. The absence of sorbitol-fermenting colonies (characteristic of O157:H7 E. coli) on SMAC agar was confirmed by PCR (none of the samples evaluated were positive for the rfbO157 gene) (Table 3).


Table 3 | Genotypic characterization of E. coli in endocervical samples grown on SMAC agar.





Detection of STEC Virulence Genes in Bacterial Isolates Obtained From Endocervical Swab Samples

The presence of STEC virulence factors was analyzed in the 12 endocervical samples that developed colonies on SMAC agar and were confirmed positive for E. coli by the presence of the yaiO gene. Seven out of the 12 samples (58.3%) amplified for the stx2 gene, 5 out of the 12 (41.7%) for the lpfAO113 gene, 8 out of the 12 (66.7%) for the hcpA gene and 3 out of the 12 (25%) for the iha gene (Table 4). None of them were positive for the eae, stx1 or sab genes.


Table 4 | Genotypic identification of STEC virulence factors in E. coli-positive samples .





Evaluation of the Cytotoxic Activity of Bacterial Supernatants Obtained From Endocervical Swab Samples Positive for the Stx2 Gene

The cytotoxic activity of filter-sterilized bacterial supernatants obtained from endocervical samples positive for E. coli carrying the stx2 gene was evaluated in Vero cells (Figure 1).




Figure 1 | Cytotoxicity of E. coli-positive endocervical samples carrying the stx2 gene on the viability of Vero cells. Vero cells were exposed to serial dilutions of bacterial supernatants (SN) from endocervical samples carrying the stx2 gene or different concentrations of purified Stx2 under growth-arrested conditions. Cell viability was determined by neutral red uptake after 72 h of incubation, and 100% represents cells incubated under identical conditions but without treatment. Data are shown as means ± S.D from at least three independent experiments performed in triplicate. **p < 0.01.



Incubation of Vero cells for 72 h with serial dilutions of the bacterial supernatant corresponding to sample 14 (S14-SN) caused a significant cytotoxicity in a dose-dependent manner, reaching a CD50 at 2x10-4 dilution. The CD50 of Stx2 in S14-SN was equivalent to that elicited by approximately 5 µg/mL of purified Stx2 (Figure 1). In contrast, the other filter-sterilized bacterial supernatants showed no cytotoxic effects on the viability of Vero cells, even if previously grown with mitomycin-C, an inductor of stx2 phages (data not shown).



Neutralization of Stx2 Cytotoxicity of Bacterial Supernatants From Endocervical Samples

Neutralization studies were used to confirm that the significant decrease in Vero cell viability caused by S14-SN was due to the cytotoxic action of Stx2. The results showed that S14-SN cytotoxicity was prevented by preincubation of the bacterial S14-SN (1:5000) with the anti-Stx2 mAb (25 µg/mL) at 37°C for 1 h. Neutralization of purified Stx2 was used as control (Figure 2).




Figure 2 | Neutralization of the Stx2 cytotoxicity of bacterial supernatants isolated from endocervical samples on the viability of Vero cells. The bacterial supernatant from the endocervical sample 14 (S14-SN, dilution 1:5000) was preincubated with the mouse monoclonal antibody 2E11 against the A-subunit of Stx2 (anti-Stx2 mAb, 25 µg/mL) at 37°C for 1 h. The mixture was then added to a 96-well culture plate containing Vero cells and incubated for 72 h. The CD50 of purified Stx2 (1 ng/mL) incubated with anti-Stx2 mAb was used as control. Cell viability was analyzed by neutral red uptake. Data are shown as mean ± S.D from at least three independent experiments performed in triplicate. **p < 0.01, n=3.





Cytotoxic Effects of STEC-Positive Endocervical Samples on the Viability of Human Endocervical and Extravillous Trophoblast Cells

A significant cytotoxic effect was observed when monolayers of human endocervical (HeLa) cells were exposed to different concentrations of Stx2 or serial dilutions of the filter-sterilized bacterial supernatants or bacteria isolated from endocervical sample S14 (S14-SN) for 72 h. The CD50 was obtained with 10 ng/mL of purified Stx2 and with a 5x10-3 dilution of S14-SN. In agreement with the results described above, cytotoxicity was also observed with purified Stx2 on monolayers of extravillous trophoblasts (Swan 71 cells). The CD50 after 72 h of incubation with purified Stx2 was obtained at 100 ng/mL and with a dilution of approximately 2x10-2 of S14-SN (Figure 3). These results indicate that filter-sterilized bacterial supernatants from the STEC-positive endocervical microbiota can impair endocervical and trophoblast cell viabilities mediated by Stx2.




Figure 3 | Cytotoxic effects of STEC-positive endocervical samples on the viability of Swan 71 and HeLa cell lines. Cells were exposed to purified Stx2 or serial dilutions of the supernatant from endocervical sample S14 (S14-SN) for 72 h. Cell viability was analyzed by neutral red uptake. Data are shown as mean ± S.D from at least three independent experiments performed in triplicate. *p < 0.05, n=3.





Genotypic Characterization of STEC Isolated From an Endocervical Sample

The bacterial isolate from endocervical sample S14, named STEC 123/21, was subtyped for stx2 by PCR, using specific primers for the stx2a and stx2c genes (Table 2). Figure 4 shows a representative gel of the STEC isolate subjected to PCR assay. Results showed PCR products of the expected sizes, consistent with the presence of the stx2a gene (Figure 4) and the absence of the subAB gene (S14 in Table 3).




Figure 4 | Characterization of a STEC strain isolated from an endocervical sample by PCR assays. The STEC strain named 123/21 was subtyped for the stx2 gene. The amplicons were seeded on 1.5% agarose gel for 30 min at 80 Volts. A: STEC strain 123/21. C1: E. coli O157:H7 strain 125/99 (stx2a+ 349 bp; stx2 627 bp), C2: negative control of PCR; C3: E. coli O113:H21 (subAB; 556 bp); DNA size marker (MK).





Serotypification of STEC Strain 123/21

STEC strain 123/21 belonged to the O113 type, but the H type could not be determined (nondetermined, NT). The analysis of the supernatant from STEC O113:NT demonstrated that it was able to induce a marked decrease in cell viability. The cytotoxicity of the supernatant of this STEC isolate was similar to that obtained from the initial endocervical sample S14 containing other bacteria (SN-S14) (Figure 5).




Figure 5 | Cytotoxic effects of the STEC isolate O113:NT obtained from an endocervical sample on the viability of Vero cells. Cells were exposed to purified Stx2 or serial dilutions of supernatants from STEC O113:NT or sample S14 for 72 h. Cell viability was analyzed by neutral red uptake. Data are shown as mean ± S.D from at least three independent experiments performed in triplicate. *p < 0.05.






Discussion

The vaginal microbiota is a complex ecosystem consisting of around 200 species of microorganisms, being Lactobacillus crispatus, L. jensenii and L. gasseri the most represented species. Several studies have shown that around 70% of the vaginal microbiota in pregnant and non-pregnant women is composed of Lactobacillus (38–40). The substitution of Lactobacillus by pathogenic or opportunistic microorganisms is associated with the development of bacterial vaginosis and lower urinary tract infections, and the presence of non-Lactobacillus species has been associated with poor reproductive health and/or complications in pregnancy (41–44). In this regard, the presence of E. coli in the female reproductive tract has been found to be a risk factor for the progression of pregnancy (17, 45, 47).

The results of this work demonstrate the prevalence of E. coli in the endocervical microbiota in 11.7% of asymptomatic pregnant women. Previous studies performed in Argentina (18) and other countries of South America, Europe and North America (17) have reported an incidence similar to that found in this work. E. coli are commensal bacteria of the intestine of humans and animals, and some pathogenic strains, such as STEC, can cause moderate to severe gastrointestinal disease in humans. However, the risk of spontaneous abortion or preterm delivery in humans associated with STEC infection or its main virulence factor, Stx2, has not yet been evaluated.

Our results showed that 7 out of the 12 endocervical samples positive for E. coli carried the stx2 gene, although only one of them (1/12, 8.3%) caused significant cytotoxicity in Vero cells due to the presence of Stx2 in the bacterial culture supernatant. The isolated STEC was identified as O113:NT Stx2a-positive. The Stx2 cytotoxicity evaluated by neutral red uptake method in the remaining stx2-positive E. coli samples was undetectable. We hypothesized that the composition of the endocervical gram-negative microbiota may be negatively regulating Stx2 expression and/or STEC growth, as previously described (46, 47). Moreover, the relationship between induction of Stx2-encoding phages and toxin production in STEC (48) may vary considerably in response to the microenvironment (49).

An interesting finding was the detection of lpfA0113 and hcpA in our samples, considering that lpfAO113-positive STEC strains are associated with the appearance of small outbreaks of intestinal and extra-intestinal diseases in humans (50) and that the hcpA gene is associated with the pathogenicity of non-O157 STEC (51).

The fact that the microbiological selection by SMAC was negative for O157:H7, together with the absence of amplification for the eae gene that encodes for Locus of Enterocyte Effacement (LEE), led us to study the expression of the iha gene, which encodes an outer membrane adhesin protein. This adhesin was detected in 25% (3/12) of the endocervical samples also positive for E. coli, which is an interesting finding because previous studies have demonstrated the positivity of the iha gene in non-STEC uropathogenic E. coli (52). LEE-negative STEC strains have been found to be associated with clinical cases of HUS (53, 54). In the present work, we also studied the sab gene, which encodes an adhesin that promotes adherence to human epithelial cells, mediates the formation of biofilm, and is involved in intestinal colonization of LEE-negative STEC strains (15), but found no positive samples.

It is known that non-O157 STEC expressing Stx2 can affect the adult population, as observed in the outbreak that occurred in Germany in 2011, which produced approximately 3,500 cases of infection, 810 cases of HUS, and 39 deaths (55). Detailed studies of this outbreak demonstrated that the stx2-encoding phage can insert into the genome of non-O157 STEC strains and cause serious disease in the adult population, mostly women (56), although details on complications of pregnant vs non-pregnant women were not reported.

In summary, our results show the presence of a STEC O113:NT strain with Stx2a production in the endocervix of an asymptomatic woman during the first trimester of pregnancy. The patient (sample S14) received cephalexin, a broad-spectrum antibiotic, during the second trimester of gestation (20 weeks) to treat uterine inflammation and urinary infection. Probably antibiotic administration is the reason for no longer presence of the STEC strain in subsequent analysis of the endocervical samples during the second and third trimester as well as urine and fecal sample during the third trimester. At birth, the newborn presented a good general condition, and subsequent clinical checks of the mother and baby were normal. Therefore, the contributions of this study encourage us about the importance of the detection of E. coli during prenatal studies to prevent possible complications in pregnancy. Epidemiological studies related to the presence of vaginal STEC may establish its association with possible risks for the reproductive health of women.
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Background

Chronic histiocytic intervillositis (CHI) is a rare placental lesion with a high recurrence rate and poor perinatal outcomes. There are currently limited guidelines regarding the diagnosis of this condition in the index pregnancy and treatment where recurrence is suspected.



Objective

The primary objective of this systematic review and meta-analysis was to determine the perinatal outcomes of pregnancies affected by chronic histiocytic intervillositis and to what extent they can be improved with treatment. The secondary objective was to assess the relationship between CHI lesion severity and pregnancy loss.



Methods

A systematic search of Ovid Embase, Web of Science, Science Direct, PubMed, Ovid Medline, Google Scholar and CINAHL was carried out. Case reports, cohort, case-control and randomised controlled trials (RCT) detailing the perinatal outcomes of CHI pregnancies, both treated and untreated, were included.



Results

No RCTs were identified. However, in a review population of 659 pregnancies, with additional 7 in case reports, CHI treatments included aspirin, prednisone, prednisolone, low molecular weight heparin (LMWH), hydroxychloroquine and adalimumab. A descriptive synthesis of data found mixed results for treatments in relation to live birth, miscarriage and fetal growth restriction outcomes. Furthermore, quantitative synthesis of 38 pregnancies revealed a non-significant improvement in live birth rate with CHI targeted treatment (OR 1.79 [95% CI 0.33-9.61] (p=0.50), while meta-analysis of CHI severity in line with pregnancy loss, in a sample of 231 pregnancies, revealed lower odds of pregnancy loss with less severe lesions (OR: 0.17 [0.03-0.80], p=0.03).



Conclusions

This systematic review and meta-analysis reinforce notions surrounding the insufficient evidence for CHI treatment. It also strengthens previous hypotheses detailing the positive association between CHI lesion severity and odds of pregnancy loss. Aspirin, LMWH, prednisolone, hydroxychloroquine and adalimumab are candidates with varying levels of weak to moderate evidence supporting their use. Further prospective research is required to obtain robust evidence pertaining to treatment safety and efficacy and optimal drug regimes.



Systematic Review Registration

[website], identifier CRD42021237604





Keywords: CHI, recurrent miscarriage, intervillositis, stillbirth, small gestation age (SGA)



Introduction

Chronic histiocytic intervillositis (CHI) (also referred as CHIV) is a rare but severe placental condition characterised by the presence of an inflammatory mononuclear infiltrate in the intervillous space. CHI has been estimated to affect 6 in every 10 000 pregnancies that reach 12 weeks gestation (1, 2) and the term was first introduced by Labarrere and Mullen in 1987 as massive chronic intervillositis (3). This pathology has since been referred to by several names across the literature, including chronic intervillositis of unknown aetiology (CIUE), massive chronic intervillositis, massive perivillous histiocytosis and shortened forms - chronic intervillositis or intervillitis. Diagnostic understanding has also grown in differentiating CHI from other placental lesions through its non-infectious origin and minimal involvement of the villi or basal plate (1). Although the lesion is well described in the placental pathology literature, there is no agreed standardised diagnostic criteria or grading system for the severity of this lesion (4–7). However, the paucity of knowledge surrounding CHI biomarkers only permits retrospective diagnosis following examination of the placenta postpartum.

Furthermore, while the aetiology of CHI remains undetermined, the pathology’s high recurrence rate, reported to lie between 70 and 100% (8), highlights the need for effective treatment in future pregnancies. Some evidence of pathogenic immune mechanisms has been proposed, including an absence of the usual Th1 to Th2 immune response shift observed in normal pregnancy (1, 9–13). This raises the question of possible therapeutic benefits for immunologically based CHI treatments, with steroids and other immunosuppressants having been used in some cases.



Objectives

This systematic review summarises the available research on treatment approaches for gravid women diagnosed with CHI in a previous pregnancy, including antithrombotic and immunosuppressive drug combinations. Primary objectives include quantifying the effectiveness of these therapies in improving perinatal outcomes compared to baseline data without treatment. Moreover, further analysis was undertaken to determine how CHI severity impacts perinatal outcomes.



Methods


Search strategy

PROSPERO registration for the review was fulfilled following the completion of the protocol form (CRD42021237604).

The literature search was carried out by the two reviewers, CS and LM, across seven databases: PubMed, OVID MEDLINE, Google Scholar, OVID EMBASE, Web of Science, Science Direct and CENTRAL (Cochrane Central Register of Controlled Trials) between 15th February and 16th February 2021. Each reviewer used the search strategy (1) comprising all known terms for CHI and a period spanning from Jan 1990 to December 2020, in three databases. CENTRAL was searched by both reviewers. Formatting adjustments were made to the search terms to optimise the strategy for each database, and email alerts were put in place to notify the reviewers of new results after the search period (Table 1). The two reviewers screened the search results independently, and discussions were held at both screening stages to resolve any disagreements before the final papers were decided.


Table 1 | Search strategy for database.





Study selection

Selection criteria were based on the following predetermined characteristics from the protocol, starting with the population in question being identified as pregnant women of any age diagnosed with CHI in a previous pregnancy. CHI was defined as an idiopathic inflammatory lesion in the intervillous space in line with the criteria devised by Bos and colleagues (4). All other similar but distinct placental lesions were excluded, including villitis, even if in co-occurrence with CHI. Interventions described included varying doses of drug-based mono or combination therapy for CHI. However, studies without interventions were also included for comparison. Outcomes assessing the efficacy of treatment and impact of disease severity included, but were not limited to, quantitative measures such as live birth rate and birth weight. Only randomised controlled trials, cohort, case-control studies and case reports were included, with abstracts excluded. While there were no geographical limits, time constraints enforced excluding texts not in English.



Data extraction

A modified Cochrane Public Health Group (CPHG) data extraction form was used to collect population, intervention and outcome data from the chosen papers independently by both reviewers (C.S and L.M). Additionally, each structure underwent a data checking process against the original article to detect and minimise human error. The specific information collected for each study included authors, publication year; study design, location; the number of women, number of CHI pregnancies, and number undergoing treatment. Authors were contacted to confirm information regarding population data where clarification was needed (14, 15).



Outcome measures

Outcome measures reported in the systematic review included growth restriction and preterm birth, while those of interest in the meta-analysis were live birth rate and pregnancy loss. The preterm birth rate was defined as a live birth before 37 + 0 weeks gestation. Fetal growth restriction (FGR) or intrauterine growth restriction (IUGR) was defined as a birth weight below the 10th percentile (16).

Several terms were used when determining rates of pregnancy loss in CHI. In this paper, pregnancy loss data were divided into early miscarriage (before 14 + 0 weeks gestation), late miscarriages (14 + 1 to 24 + 0 weeks gestation) and stillbirths (intrauterine death after 24 + 0 weeks gestation). Some studies also included neonatal deaths as an outcome, where this term described the loss of an infant within seven days of birth (17).

In some cases (such as with FGR), there was variation in how outcomes were classified (e.g., birth weight below 10th percentile versus 3rd percentile, stillbirth including pregnancy loss as early as 20 weeks versus after 24 weeks) in different studies. Such instances of outcome measure variation are indicated in the review.



The measure of CHI lesion severity

The extent of intervillous space involvement defined CHI lesion severity as a quantifiable and standard measure. In this case, low to moderate grading referred to infiltrate occupying less than 50% of the intervillous space, and severe grading infiltrate more than 50% of the intervillous space [Parant (18), Simula (6), Sauvestre (15) but not Marchaudon (19)].



Risk of bias and quality assessment

The risk of bias and quality of included studies was assessed independently by both reviewers using adapted versions of the Newcastle-Ottawa scale (20) and Critical Appraisal Skills Programme (CASP) checklist (21).

The 7-point system of the Newcastle Ottawa scale contained domains of selection, comparability, and outcome, while the CASP checklist aimed to detect instances of selection, measurement, classification or reporting bias. Additional consideration was given to the lack of accountability for confounding factors.



Analysis and data synthesis

The Cohen kappa coefficient was used to assess agreement between the two reviewers at the full-text eligibility stage before generating a narrative synthesis of the findings. A high ratio indicated a reasonable level of agreement between the reviewers.

Inclusion in the meta-analysis component depended on cohort studies with a suitable differentiation of outcomes according to the presence of treatment or severity of lesions. The chosen effect measures for the meta-analyses were relative risk (RR) of pregnancy loss in moderate vs severe CHI and odds ratios (OR) for live births in treated vs untreated pregnancies, each with a 95% confidence interval and calculated based on the number of pregnancies and events. All analyses herein were carried out using RevMan (Review Manager (RevMan) Version 5.4.1, The Cochrane Collaboration 2020). Heterogeneity was measured using the I2 statistic, with an I2 >50% indicating significant heterogeneity, not due to chance. As recommended, random-effects models were used to determine the summary effect estimate where considerable heterogeneity was detected (I2>30%) (22).

Due to the small meta-analysis population, no additional sensitivity, subgroup, or meta-regression analyses were undertaken.




Results


Study selection

Figure 1 summarises (23) the study selection process and its outcomes. In total, 805 papers were found, and of these, 384 remained for the title and abstract screening once duplicates were removed. Titles and abstracts were excluded for review format, language limitation and lack of relevance leading to 66 full texts, which were narrowed down to the final 20 for systematic review inclusion. Reasons for exclusion included irrelevance, language limitation, conference abstract, poster or thesis format, full-text unavailability, and data insufficiency.




Figure 1 | Study selection process of the systematic review and meta-analysis into outcomes of pregnancies affected by CHI.



The Cohen kappa coefficient for full-text screening between the two reviewers was 0.81, indicating almost perfect agreement at this stage of study selection.


Study characteristics

The final twenty papers comprised 12 cohort studies and 8 case reports as no RCTs were identified. The characteristics of these mainly retrospective studies and case reports are summarised in Table 2. Five of the twelve cohort studies were selected for inclusion in either meta-analysis. The limited number of studies selected for meta-analysis was due to treated vs untreated outcomes being unavailable for pooling in the other seven studies.


Table 2 | Characteristics of studies included.



Excluding case reports and series, the review population included the outcomes of 527 pregnancies affected by CHI in 439 women with a mean age of approximately 31.9 years. Fifty-eight of these cohort study pregnancies were treated, and sample size ranged from 6 to 122 pregnancies. A further 6 instances of treatment were reported in case reports and series. In total, 64 pregnancies were treated out of 554 across cohort studies, case reports and case series.

Email correspondence with authors confirmed a shared cohort between two papers, and this is highlighted in all subsequent results tables to avoid duplication and reporting errors. For review population totals, these cohorts have been counted as one (14, 15).




Risk of bias of included studies

The risk of bias scores for each case-control and cohort study can be seen in Table 3. Following a judgement by both reviewers, the risk of bias was considered generally low, with an average bias score of 1.83 out of 4 across the twelve studies.


Table 3 | Risk of bias.



Selection bias was reported in four of the twelve studies due to how participants were selected from a pathology database (15, 18, 37, 39). Furthermore, in other cases, selection bias was detected because of limited search terms comprising only of ‘CIUE and chronic intervillositis’ in one study and ‘intervillositis’ in another (15, 39).

Seven studies indicated measurement/classification bias in diagnosis and grading of CHI, whereby pathologists were aware of and not blinded to the previous CHI diagnosis.

Reporting bias was undetected. However, ten out of twelve studies did not state accountability for confounding variables.

Study quality assessment outcomes are shown in Table 4. High scores were obtained in the selection domain, with participants seen as broadly representative of the population in question. The area in which numerous studies were deficient was comparability and outcome measures. Lack of differentiation between early and late miscarriage outcomes and methods that did not describe the assessment of lesion severity as a possible mediator of perinatal outcome was also suboptimal. Furthermore, lack of information on population comorbidities or medication also led to lower quality scores in the outcome domain.


Table 4 | Quality assessment using Newcastle-Ottawa scoring system.





Treatment combinations

None of the cohorts included in the systematic review was fully treated. The proportion of the four cohorts receiving targeted treatment for CHI ranged from 18-88%, and the other eight cohorts were labelled as untreated. Table 5 summarises the treatment combination details in the treated pregnancies.


Table 5 | Treatment combinations used in case pregnancies affected by CHI.



There was a variation of gestational ranges when the treatment was commenced. Those containing aspirin were the most common of the treatment regimes, followed by low molecular weight heparin (LMWH) and finally corticosteroid regimes (prednisone/corticoid), either alone or in combination.



Outcomes

Table 6 summarises the perinatal outcomes of these studies. Continuous variables are reported as means followed by the standard deviation and range in brackets if available.


Table 6 | Perinatal outcomes for CHI pregnancy cohorts.




Live births

The live birth rate varied considerably between studies, ranging from 30.4% to 100%. Interestingly, neither of the cohorts displaying results at these extremes were indicated as receiving target CHI treatment (19, 40). There was also variance within similar populations, as several of the papers were based within the same countries yet yielded different live birth rates for example the study by Bos et al., 2020 reported a live birth rate more than twice as high as that reported by Reus et al., 2013 (11, 37). Comparable live birth rates of 67% and 70% were observed in two studies with a similar cohort size despite 88% of one cohort receiving targeted treatment (25) versus none of the other (27). Overall, the average live birth rate for cohorts in which no treatment was stated was 58.3% versus 40.9% in cohorts with a partial treatment.



Birth weight

Data on average live birth weight were available in seven studies, three of which had a proportion receiving treatment. In most cases, this outcome rarely reached 2500g however, the highest mean birth weight of 2493g was achieved in one study in which 88% of the cohort received treatment (25). Furthermore, a low average birth weight of 995g was reported by Traeder and colleagues (40) across a case series of four untreated pregnancies. However, this positive treatment effect was not always reflected, with higher birth weight observed in untreated cohorts (19, 27, 28) compared to partially treated cohorts (18, 38).



Preterm birth

In five out of six studies, a low average birth weight was accompanied by an average gestational age at delivery <37+0 weeks. The general trend towards high preterm birth in both untreated and treated CHI pregnancies is also evident in a preterm birth rate of 40.2% across the twelve studies. Interestingly, the study by Mekinian and colleagues in which the largest proportion of the cohort was treated (88%) had a lower preterm birth rate of 31.25% (25). However, this was not the case for all partially treated cohorts, which, for the most part, had a lower mean gestational age at delivery (38) and higher preterm live birth rate than the untreated cohort (19, 27, 28).



Fetal growth restriction

Many infants were small for gestational age. Studies reported fetal growth restriction of below 10th centile (with some even below 3rd centile) in both live and stillborn or neonatal death groups.

Similar prevalence of FGR < 10th centiles was reported in two studies (66.7% and 69.7%, respectively), both of which had entirely untreated cohorts (27, 31). In treated cohorts, this same variable ranged from 12.5% (25) to 72.7% (18)19 with treated proportions being 88% and 42.8%, respectively.

Severe FGR, <3rd centile, was only reported as an outcome in 5 studies (19, 31, 37, 40). Of these, one study had an 18.9% treated cohort with a severe FGR prevalence of 55.9% (38). Four untreated study cohorts have reported an occurrence rate of severe FGR as 69.7%, 42.1%, 34.8% and 50% (19, 31, 37, 40) respectively.



Miscarriage, stillbirth and neonatal death

Overall, miscarriage rates ranged between 2.63% and 20% in untreated cohorts (11, 37). The miscarriage rate was much wider in treated cohorts (range between 5.4% and 75%). In some cases, miscarriage timing was before 14 weeks rather than after 14 weeks, but this was only in five out of the twelve cohorts (11, 15, 18, 28, 39).

Stillbirth rates varied between 10.7% and 19.8% in treated pregnancies (38, 39). Like miscarriage rates, this was comparatively higher than the untreated cohort range of 7.9% to 13.1% (15, 22). Interestingly, there were also instances of no reported stillbirths in untreated populations with small sample sizes (28, 40).



Neonatal death

Neonatal death was not widely reported as an outcome and ranged from 1.11% up to 23.3% across four studies (11, 14, 15, 38). There are no reported cases in both partially treated and untreated cohorts (18, 27).



Individual pregnancy outcomes

As shown in Table 7, individual patient outcomes were available from seven case reports, one case series, and two retrospective cohort studies that reported individual patient details. 21 of the 31 case pregnancies were treated, and 9 of these resulted in a live birth, of which 4 were at term. This is compared to 6 out of 10 untreated pregnancies resulting in live births and 1 of these 6 occurring at term.


Table 7 | Individual patient outcomes in pregnancies affected by CHI.






Meta-analysis

Meta-analysis of live birth outcomes in two studies in which treated and untreated data was available revealed a non-significant improvement in live birth rates with treatment (Odds Ratio: 1.79 [0.33-9.61], p=0.50) (Figure 2). The pooled population included 27 treated and 11 untreated pregnancies. Heterogeneity (I2) was estimated to be 6%, using fixed effect model.




Figure 2 | Forest plot summarising odds of live birth rates in treated vs untreated pregnancies.



Meta-analysis of pregnancy loss in relation to CHI severity across four studies with a pooled population of 174 low to moderate severity cases and 84 severe cases indicated significantly lower odds of pregnancy loss in cases with less severe lesions vs those with increased severity (Odds Ratio: 0.17 [0.03-0.80], p=0.03) (Figure 3). Largely homogenous grading criteria in all four studies permitted low to moderate lesions to be defined as <50% intervillous infiltrate involvement and >50% leading to a severe classification (supplementary data file).




Figure 3 | Forest plot summarising risk ratios of pregnancy loss in low/moderate vs severe CHI.






Discussion


Principle findings

The primary objective of this systematic review and meta-analysis was to identify and quantify the effectiveness of current treatment regimens for pregnant women diagnosed with CHI following a previous pregnancy. Effectiveness was quantified by comparing perinatal outcomes, including live birth, miscarriage, stillbirth rates and neonatal death in treated and untreated pregnancies, birth weight (normal, IUGR), as well as preterm birth rate, with a positive effect in such measures indicating effective treatment.

The commonly used treatment regimens for CHI, either as standalone or as combination therapy include aspirin, prednisone, low molecular weight heparin, biological agents most commonly adalimumab and hydroxychloroquine (Table 8). The partially treated cohorts often performed equally or even worse in the outcome domains of live birth rates, preterm birth, fetal growth restriction, miscarriage and stillbirth rates. Indeed, the pooled treatment effect for live birth rates in treated vs untreated pregnancies produced an odds ratio of 1.79 [95% CI 0.33-9.61] (p=0.50). This converts to a risk ratio of 1.4 [95% CI 0.48-4.05] (p=0.54), which reveals the likelihood of live births in the treated group was 1.4 times that in the untreated, although this was not statistically significant. Taken collectively, this suggests that antithrombotic and immunosuppressive treatment for CHI cannot be significantly effective in improving perinatal outcomes in affected pregnancies. However, classifying these results as clinically insignificant due to exceeding the arbitrary cut off p=0.05 would be misleading as such a small, pooled population of 27 treated and 11 untreated pregnancies suggests a degree of imprecision. Consequently, we can conclude that these findings are inconclusive, and there is insufficient evidence of a treatment effect, as opposed to proof of no treatment effect (34).


Table 8 | Summary of CHI treatments, their indication in mild, moderate, or severe cases and the strength of evidence surrounding each.



The secondary objective of this review was to determine the extent to which CHI severity – measured as a percentage of intervillous space occupied by infiltrate- impacts perinatal outcomes. It was anticipated that establishing a relationship between progression of placental pathology, in subsequent pregnancies, and extent of adverse outcomes would improve understanding of treatment potential as seen by the effect of treatment (monotherapy or combination therapy) on the placental tissue. This in turn would help to explore if improvements in lesions (with or without complete remission) positively correlate with more favourable perinatal outcomes. Results demonstrate a small severity effect in relation to pregnancy loss (Odds Ratio: 0.17 [0.03-0.80], (p=0.03). The larger pooled population of 174 low or moderately affected pregnancies and 84 pregnancies affected with severe CHI infers a more reliable evidence that any improvement in the severity of lesions correlates to a reduction (albeit small) in the odds of miscarriage or stillbirth.

The proposed hypothesis around the effect of treatment regimens is the reduction in the severity of lesions through targeted anti-inflammatory, immunosuppressive and anti-thrombotic mechanisms, which in turn would help improve the perinatal outcome.

The discrepancies in severity classification systems between papers cannot be ignored. It is known that CHI can exist with or without fibrin deposition and so while it is not necessary for diagnosis, the role of fibrin in severity classification systems is interesting. While in some, fibrin was acknowledged, this was not the case in studies with methods that did not call for fibrin to be noted (19, 39). Table 9 illustrates the varying inclusion and exclusion criteria for CHI classification in all the studies included.


Table 9 | Different diagnostic criteria for CHI among included studies in which it was stated.



In retrospective studies, it was not possible for all placentas in the database to be examined for CHI. Therefore, many relied on the assumption that CHI placentas had accurately been documented as such and the search terms used to recover them were adequate (38).

Furthermore, there was an invariable absence of adjustment for confounders known to increase risk of adverse perinatal outcomes such as maternal BMI and smoking which at times, were not measured during the process of data gathering in some cases or noted in many of the case reports.



Comparison with existing literature

Overall, the findings of this review were consistent with those previously available evidence. For instance, the strong association between FGR, miscarriage, and stillbirth reflected in Table 6 (2). FGR frequency <10th percentile, was estimated at 61% across nine studies in our review population compared to 48% in a previous meta-analysis (35). The total population in our review did not confirm a higher prevalence of early miscarriage compared to late, as was seen by Rota and colleagues (5), however it was found that there was a higher rate of intrauterine deaths in the remit of early miscarriage rather than stillbirth or late miscarriage. Nevertheless, the relatively high incidence of either early or late pregnancy loss emphasises the impact of placental insufficiency without maternal vascular malperfusion on increased adverse pregnancy outcomes.

Interestingly, our conclusion that increased CHI lesion severity correlates with increased risk of pregnancy loss disagrees with the findings of the most prominent prospective study in the area (25) which states that maintenance of visible CHI pathology is not always indicative of adverse outcomes. However, this study did find that the absence of these lesions was linked to more positive outcomes. Further investigation may be required to find a more definitive answer. It is worth acknowledging here that there has previously been a lack of international consensus on indications for sending placental pathology (and for reporting by perinatal pathologists), following an adverse pregnancy outcome, and therefore CHI itself may be under-reported. However, there has been a reform in this area more recently due to the creation of the international Amsterdam consensus criteria in 2016 (36).

The lack of significant treatment effects in CHI, though cautiously interpreted by our review, was also highlighted by Contro et al (41). This 2010 review on CHI concluded that treatments investigated at the time had no significant, and even a detrimental, effect on perinatal outcome. Our review provides evidence supporting this conclusion, despite numerous novel studies conducted in the 10-years since the last systematic review (41). However, one of the explanations for this may be a lack of consensus about the case selection for treatment, gestation of commencing treatment (and stopping), and treatment regimens (monotherapy or combination therapy). Further explanation for individual worse outcomes in combination therapy pregnancies has been highlighted by Mekinian et al., pertaining to confounding by indication and severity – whereby pregnancies with worse prognoses (maternal history of previous IUD) are targeted with combination treatment, while those with prognostically better outcomes are not (25).

Historically, there has been a lack of evidence around the generic use of immunosuppressive therapies in the management of recurrent pregnancy loss (42). A previous study, albeit with suboptimal case selection and design, highlighted a possible association between first-trimester prednisone exposure and cleft lips and palates in infants (43). This has since been disputed (44), and there is considerable experience in the use of oral steroids for many a condition in pregnancy, including lupus, transplants, severe asthma, etc. Nevertheless, long term use of steroids has been linked with increased preterm delivery rates (secondary to preterm prelabour rupture of membranes), neonatal intensive care admission and low birth weights in the neonates, and increased chance of maternal dependence on steroids and steroid induced diabetes (and its associated complications) (45–47). While it is not clear whether any of these adverse outcomes were documented as a result of oral steroids like prednisone in our review studies, its use in the management of pregnancies previously affected by CHI as a part of off-label treatment regimes in the UK, in order to optimise pregnancy outcome (improve live birth rate, and prolong gestation at delivery), is still surrounded by controversy (48).

Antithrombotic therapy is relatively effective in treating pregnancy loss, particularly in those with associated antiphospholipid syndrome (42, 46). A recent Cochrane review concluded that combined treatment of aspirin with heparin is more likely to lead to higher birth rates in women with recurrent pregnancy loss associated with antiphospholipid antibodies, compared to aspirin alone (49). Though still yet to be confirmed, this offers a potential means of treating the proposed antibody mediated and pro-inflammatory pathophysiology of CHI. A recent review drew upon the application of immunomodulatory drugs in autoimmune conditions during pregnancy to emphasise the safety and merit of hydroxychloroquine in CHI (50).

Additionally, CHI has been associated with maternal hypertensive disorders in some studies but evaluating this was outside the remit of this paper (8). Antithrombotic therapy such as aspirin is also cited by The American College of Obstetricians and Gynaecologists as appropriate in the prevention of fetal growth restriction, which in some cases is due to placental insufficiency (16, 51). Hence, despite further research being warranted, the practice of the use of aspirin and heparin in the management of pregnancies affected by CHI, is not discordant with current practice. Anti-thrombotic drugs such as unfractionated and low molecular weight heparin, adjunctive low dose aspirin (with or without other immunosuppressive agents such as hydroxychloroquine, azathioprine, adalimumab, tacrolimus) currently form the basis of off-label CHI treatment in the UK (48). A 2021 study by Brady and colleagues has however offered some promising results in the application of hydroxychloroquine and prednisolone (in conjunction with mainstay aspirin and heparin) in improving CHI lesion severity and bringing about a 62.3% reduction in subsequent pregnancy loss (52). The study reported lower FGR, preterm, stillbirth and neonatal death rates in treated pregnancies although statistical significance was restricted by the small sample size (52).

Co-occurrence of placental lesions was encountered as frequently as 30% in one study and 25% in another (5, 18). While these cases were beyond the scope of the review, the reality of coexisting pathology is worth recognising (50). In one study, combined lesions formed a considerable proportion of placental samples (35%). Although these were excluded from our data, the debate on viewing combined lesions as separate entities continues (27). The application of aspirin and corticosteroids in a pregnancy affected by both villitis and CHI was documented as having a positive outcome in one case report (53). It is questionable whether the same treatment effect would be observed in pregnancies affected by other placental lesions adjunct to CHI, and further research into this should be encouraged. We stress the value of a multidisciplinary discussion involving perinatal pathologists in such cases, where there are such services available, to have a case-based consensus of treatment regimes (36).



Strengths and limitations

This is a rare condition. As discussed above, there is a lack of consensus and guidance on indications for placental pathology following pregnancy loss or adverse pregnancy outcomes. Not all placental pathology is assessed by perinatal pathologists. Therefore, it can be acknowledged that the actual incidence of CHI is underreported. There is only a small amount of literature on CHI, and it is unlikely that any relevant studies were omitted through the search strategy. It has been noted that observational study titles can be misleading and require full-text screening for relevance (22). The manageable number of search results enabled manual screening and several checking processes to be carried out to ensure that no relevant studies were missed. Saved search alerts permitted new papers released after the search period to be identified and screened equally.

However, it must be acknowledged that there was an enforcement of an English-language criterion due to time constraints, and it is possible that this introduced a level of selection bias to this systematic review and meta-analysis.

Lastly, not all relevant data, i.e., treated vs untreated outcomes, appeared to be included in studies, and although raw data were requested through email correspondence, this was not available. As a result, only 38 untreated and treated cases across two studies could be included in the meta-analysis for treatment effect concerning live birth rates specifically, and while data from individual studies appeared to favour untreated cohorts, pooled data in the meta-analysis revealed a non-significant improvement in treated outcomes may suggest publication bias. This is likely due to the exclusion of multiple studies from the meta-analysis. There was a lack of data distinguishing treated vs untreated outcomes in all these other partially treated cohorts (18, 25).

Associated maternal outcomes like hypertensive disorders in pregnancy and treatment-related adverse effects like steroid-induced diabetes have been noted in case reports and from experience with our group. However, evaluating this was outside the remit of this review (54).




Conclusion

This review examined the outcomes of 554 pregnancies, 64 of which were treated by either aspirin, prednisolone or LMWH alone or in conjunction. Additional therapies included hydroxychloroquine and adalimumab. Based on efficacy being defined as significantly reducing the prevalence of adverse perinatal outcomes in affected pregnancies, the findings have further strengthened the available evidence that there is no known effective treatment for CHI in pregnancy. The paucity of research using comparison groups in a case-control design has led to challenging analysis and equivocal results. Gaining a deeper insight into novel, effective therapeutics will require international collaboration due to the rare nature of this pathology.

Current therapies for the general treatment of recurrent pregnancy loss form a basis for building these next steps for CHI treatment. Existing recommendations support the use of antithrombotic therapies more than immunosuppressants. The likely need for combination therapy in the event of previous IUFD has been highlighted (25), and this review showed the general value of combination therapy in current practice. Novel therapies not previously reviewed, such as adalimumab and hydroxychloroquine, warrant further research as uncertainty surrounding their efficacy and safety has led to their application only informally recommended in moderate to severe cases.

Compared to other lesions, the high recurrence rate and more severe perinatal outcomes associated with CHI underscore the value of a precise differential diagnosis. Further research may permit a stepwise approach utilising aspirin, heparin, and hydroxychloroquine to form the basis of individualised treatment plans with cost/benefit analysis in line with the previous pregnancy outcomes and multidisciplinary treatment counselling.

Fundamentally, research needs to address the aetiology of CHI to gain a complete understanding of possible ways to treat it. Once this is achieved, observational studies are of value, and even if still retrospective, augmentation of database results with additional hospital data will help account for confounding. Our review only identified one complete and one ongoing prospective multi-centre study. A prospective registry of women with pregnancies previously affected by CHI, involving non-profit organisations like CHI support (48), who may provide ongoing support to these families, may help with a holistic multidisciplinary approach to the management of these pregnancies and improve our understanding of this rare pathology. Equally, a prospective multi-centre design should be the objective model of future studies with additional outcome measures such as Apgar Scores and NICU admissions and later achievement of neurodevelopmental milestones.

Interventions should include, but not be limited to, aspirin, prednisone, and heparin, with or without other immunosuppressive agents such as hydroxychloroquine, azathioprine, adalimumab, tacrolimus). Researchers should be attentive to side effects caused by therapies and their comparative effectiveness in combination or alone. This will help develop future guidelines for CHI treatment, and hopefully, long-term follow-up data regarding childhood outcomes in untreated versus treated CHI pregnancies will also become available.

The best effort to improve pregnancy outcomes in pregnancies associated with CHI is surveillance and identification of screening tools in the index pregnancy, where CHI is suspected. Equally, where CHI has been previously identified, screening tools may help increase surveillance and tailor treatment modalities and regimens. Use of first-trimester markers (55, 56) like placental growth factor or second-trimester markers like alkaline phosphatase, ultrasound markers like increased uterine artery pulsatility index and reduction in amniotic fluid in the third trimester, and use of fetal placental MRI using diffusion imaging have all been reported either alone or in conjunction with each other. Although a single sufficiently specific biomarker is yet to be identified (31), further research into these potential prognostic biomarkers would be invaluable (54) in reducing the prevalence of adverse perinatal outcomes in this pathology by permitting earlier intervention and better treatment.
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Kisspeptin treatment improves fetal-placental development and blocks placental oxidative damage caused by maternal hypothyroidism in an experimental rat model
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Maternal hypothyroidism is associated with fetal growth restriction, placental dysfunction, and reduced kisspeptin/Kiss1R at the maternal-fetal interface. Kisspeptin affects trophoblastic migration and has antioxidant and immunomodulatory activities. This study aimed to evaluate the therapeutic potential of kisspeptin in the fetal-placental dysfunction of hypothyroid Wistar rats. Hypothyroidism was induced by daily administration of propylthiouracil. Kisspeptin-10 (Kp-10) treatment was performed every other day or daily beginning on day 8 of gestation. Feto-placental development, placental histomorphometry, and expression levels of growth factors (VEGF, PLGF, IGF1, IGF2, and GLUT1), hormonal (Dio2) and inflammatory mediators (TNFα, IL10, and IL6), markers of hypoxia (HIF1α) and oxidative damage (8-OHdG), antioxidant enzymes (SOD1, Cat, and GPx1), and endoplasmic reticulum stress mediators (ATF4, GRP78, and CHOP) were evaluated on day 18 of gestation. Daily treatment with Kp-10 increased free T3 and T4 levels and improved fetal weight. Both treatments reestablished the glycogen cell population in the junctional zone. Daily treatment with Kp-10 increased the gene expression levels of Plgf, Igf1, and Glut1 in the placenta of hypothyroid animals, in addition to blocking the increase in 8-OHdG and increasing protein and/or mRNA expression levels of SOD1, Cat, and GPx1. Daily treatment with Kp-10 did not alter the higher protein expression levels of VEGF, HIF1α, IL10, GRP78, and CHOP caused by hypothyroidism in the junctional zone compared to control, nor the lower expression of Dio2 caused by hypothyroidism. However, in the labyrinth zone, this treatment restored the expression of VEGF and IL10 and reduced the GRP78 and CHOP immunostaining. These findings demonstrate that daily treatment with Kp-10 improves fetal development and placental morphology in hypothyroid rats, blocks placental oxidative damage, and increases the expression of growth factors and antioxidant enzymes in the placenta.
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Introduction

Kisspeptin, encoded by the gene Kiss1, was first purified from human placenta (1, 2). Soon after kisspeptin was discovered, it was recognized as essential for fertility, as it regulates gonadotropin-releasing hormone (GnRH) secretion by the hypothalamus through the G protein-coupled receptor GPR54 (Kiss1R). Therefore, failures in the kisspeptin/Kiss1R signaling system result in hypogonadotropic hypogonadism (3, 4). In addition to its hypothalamic action, however, the kisspeptin/Kiss1R system is expressed in a variety of tissues, including the placenta (5, 6), although studies on the action of kisspeptin on the placenta are still scarce (7–9).

In humans, circulating levels of kisspeptin are low in most physiological conditions, except in the final third of gestation, when these levels increase almost 10, 000 times, after which they quickly return to basal level after delivery (10–12). This suggests that the placenta is one of the main sources of systemic kisspeptin. Studies have shown that kisspeptin influences the adhesion and implantation of blastocysts and the decidualization and migration of trophoblasts, and regulates the immunological profile and uterine natural killer cells (uNKs) (5, 7–9, 11–17), suggesting that faults in its expression in the maternal-fetal interface may be involved in placental disorders (12, 18).

Gestational diseases such as preeclampsia, gestational hypertension, miscarriage, gestational diabetes, and obesity have altered plasma and/or placental levels of kisspeptin (17–30). Therefore, its plasma profile can be assessed to predict gestational success (12, 18). We have recently demonstrated that rats with maternal hypothyroidism, another important gestational disease, also exhibit decidual and placental reduction of the kisspeptin/Kiss1R system (31).

Women with maternal hypothyroidism are more likely to suffer miscarriage and intrauterine growth restriction (Silva et al., 2012; Silva, Ocarino, and Serakides, 2018). Moreover, plasma levels of triiodothyronine (T3) and thyroxine (T4) are low in patients with preeclampsia (32, 33). Studies in rats have also shown that hypothyroidism reduces intrauterine trophoblast migration and proliferation, increases placental apoptosis, compromises placental morphogenesis and vascularization, causes oxidative and reticular stress, and alters the immune profile and uNK cell population at the maternal-fetal interface (34–40). However, the role of kisspeptin in these placental changes is still unknown.

Although T4 replacement is the first choice in patients with hypothyroidism, some patients are refractory to T4 replacement (41) and need other therapeutic alternatives when they need to treat a medical condition, such as infertility problems. In this sense, exogenous kisspeptin has been shown to restore ovarian function in hypothyroid rats (42). Furthermore, studies have shown that kisspeptin administration has an immunomodulatory effect on gestation (15) and an antioxidative effect on the ovary (43), liver (44), and testicle (45), and blocks the occurrence of reticular stress in hypothalamic GT1-7 cell line (46). Therefore, this study aimed to evaluate the therapeutic potential of kisspeptin in placental dysfunction caused by maternal hypothyroidism. We demonstrate that daily kisspeptin treatment improves development of the fetus and placenta in hypothyroid rats, increases the expression of growth factors and antioxidant enzymes by the placenta, and positively modulates oxidative stress, reticular stress and immune mediators, thus characterizing the therapeutic potential of kisspeptin in a gestational disease for the first time.



Materials and methods


Animal management and induced hypothyroidism

Adult Wistar rats (200-250 grams) were kept in plastic boxes with controlled temperature (22 ± 2°C) and brightness (12 h light/12 h dark), and water and feed ad libitum. The animals were equally distributed into euthyroid (control) (n=13), hypothyroid (n=15), and hypothyroid groups treated with kisspeptin-10 (Kp10) every other day (KpT1; n=15) or every day (KpT2; n=15). Hypothyroidism was induced by administering 6-propyl-2-thiouracil (PTU) (4 mg/Kg/day) through an orogastric tube every day, starting five days before mating, while the control group received water as a placebo (35, 36). All experimental procedures were approved by the Ethics Committee on the Use of Animals of Santa Cruz State University (UESC) (Protocol 036/16).

Five days after the start of treatment with PTU, five animals from each group were euthanized by decapitation for blood collection and dosage of free T4 to confirm the induction of hypothyroidism (Control, 1.20 ± 0.05 µg/dL; Hypothyroid, 0.47 ± 0.09 µg/dL; KpT1, 0.52 ± 0.06 µg/dL; KpT2, 0,42 ± 0.08 µg/dL (P<0.01)). Vaginal cytology was performed in the remaining rats, and the animals in proestrus were housed with fertile adult males for mating. The presence of spermatozoa in the vaginal cytology the next morning confirmed copulation and was defined as day 0 of gestation (0 GD). All animals from control group were mated and became pregnant, while from hypothyroid groups (Hypothyoid; KpT1; KpT2) around 86.6% of the females became pregnant.



Treatment with kisspeptin-10

The hypothyroid animals treated with Kp10 were distributed into two groups, one treated every other day (KpT1) and one treated daily with Kp10 (KpT2). Treatment was initiated on the 8th GD (8 µg/Kg/day) (Cat. No. 4243, Tocris Bioscience, Bristol, UK), intraperitoneally, and was maintained until the day of euthanasia. Kp10 treatment was initiated on the 8th GD so that it would not influence embryo implantation. The animals in the control and hypothyroid groups received sterile water as a placebo.



Euthanasia and material collection

The animals were euthanized by decapitation on the 18th GD and blood was collected from the neck into tubes with heparin for dosage of free T3 and T4. The blood was centrifuged at 3000 rpm for 20 min and the plasma was obtained and stored at -20°C.

At necropsy, the entire genital system was collected. Subsequently, the uterus containing the placenta and fetuses, and the uterus with placenta were weighed, as were the fetuses, individually. Hysterectometric (maternal weight without the gravid uterus) maternal weight gain was also evaluated. The weight of amniotic fluid was estimated by subtracting the weight of the uterus and placenta with the fetuses from the weight of the fetuses and the weight of the uterus and placenta without the fetuses. The number of fetuses and the number of sites with resorption or fetal death were also counted. Fragments of the central region of the placenta measuring 2 mm in diameter were dissected and removed from two placental sites/animal and separately immersed in TRIzol®, followed by freezing in liquid nitrogen and storing at -80°C for quantitative real-time reverse transcriptase-polymerase chain reaction (qRT-PCR) analyses. The remaining discs (placenta+basal decidua+metrial gland) were fixed in 4% paraformaldehyde at 4°C for 24 hours and processed using the paraffin embedding technique for histomorphometry and immunohistochemistry analysis. The tissues were dehydrated in a serial solution of 70% to 100% alcohol, with subsequent xylene diaphanization and paraffin impregnation and embedding. Microtomy on histological slides was used to obtain 4-µm tissue sections for histomorphometry evaluation. Silane-coated polarized slides (StarFrost Polycat, Germany) were used for immunohistochemistry.



Hormone analysis

Dosage of Free T3 and T4 was performed using enzyme-linked immunosorbent assay (ELISA) kits according to the manufacturer’s instructions (IMMULITE, Siemens Medical Solutions Diagnostics, Malvern, PA, USA).



Evaluation of fetal development

The brain, heart, liver, lungs, and kidneys of each fetus were dissected and weighed, and the relative weight of the organs in relation to fetal weight was obtained. After weighing the fetal organs, the brain to liver ratio, an indicator of asymmetric fetal growth restriction, was calculated (47).

For analysis of fetal weight distribution and risk of fetal growth restriction, fetal weight histograms were constructed for each group with the individual fetal weight and non-linear regression was performed according to Dilworth et al. (48). The 5th percentile weight was calculated as: (-Z score x SD) + mean, assuming that Z score = 1.645, SD = standard deviation, mean = mean of control group.



Histomorphometry analysis

Histomorphometry analysis of the placenta was performed on 4 µm histological sections stained with hematoxylin and eosin. All evaluations were performed blindly by two evaluators and without knowledge of the experimental groups. The quantitative evaluation was performed on 7-8 placental discs/group, and a histological section/placental disc was obtained from the center of the tissue with maternal central blood vessel to ensure the histological sections were uniform. Images of each placental disc were captured using a Leica S9i stereo microscope, and the thickness of each placental layer (junctional zone and labyrinth zone) was assessed in 10 random regions and averaged per placental site. The analyses were performed using Image Pro Plus® version 4.5 software and the values were transformed into millimeters using a micrometer scale.

In the junctional zone, the proportion of area occupied by glycogen cells, spongiotrophoblasts, and trophoblastic giant cells per field was evaluated by selecting 5 random fields with the 20x lens. In the labyrinth zone, the proportion of area occupied by maternal vascular sinus, fetal capillaries, and fetal mesenchyme/trophoblastic cells per field was evaluated by selecting 10 random fields of the labyrinth with the 40x lens. The images were captured on a Leica DM2500 photon microscope and quantification was performed using a graticule of 99 (junctional zone) and 100 (labyrinth zone) points with Image Pro Plus® software version 4.5 (35).



Immunohistochemistry

Histological sections of the placental discs were submitted to immunohistochemistry analysis using the antibodies anti-8-OHdG (sc-393871), anti-HIF1α (sc-13515), anti-SOD1 (sc-101523), anti-catalase (sc-271803), anti-GPx 1/2 (sc-133160), anti-GRP78 (sc-13539), anti-CHOP (sc-71136), anti-ATF4 (sc-390063), anti-TNFα (sc-52746), anti-IL-10 (sc-365858), and anti-VEGF (sc-152), from Santa Cruz Biotechnology, CA, USA. All antibodies used in this study were validated by the manufacturer.

The streptavidin-biotin-peroxidase staining technique (Novolink Polymer Detection Systems, Leica Biosystems Inc., Buffalo Grove, IL, USA) was used and antigen retrieval was performed with heat in a water bath at 98°C using citric acid solution at pH 6.0. The slides were incubated in a humid chamber for 18 or 40 hours with the primary antibody (Supplementary Figure 1) and for 30 minutes in the blocking stages of endogenous peroxidase, serum blocking, and streptavidin peroxidase. The chromogen was diaminobenzidine (EnVision FLEX DAB+ Chromogen, Agilent Technologies, Inc., Santa Clara, CA. USA). The sections were counterstained with Harris hematoxylin. The negative control was obtained by replacing the primary antibody with phosphate buffered saline (PBS) (36).

A descriptive and quantitative evaluation of the immunohistochemistry expression of HIF1α, 8-OHdG, SOD1, Catalase, GPx1/2, GRP78, CHOP, ATF4, VEGF, TNFα, and IL-10 was performed in the junctional zone and labyrinth zone layers of the placenta. A quantitative evaluation was performed randomly on six placental discs/group. Images of 5 random fields in each region of the placental disc were obtained with a Leica DMI 300B photon microscope (Leica Microsystems, Germany) with the 40x lens. The immunolabeling area was determined using WCIF ImageJ® software (Media Cybernetics Manufacturing, Rockville, MD, USA). The images were subjected to color deconvolution and thresholding. Data from each placental disc were archived, analyzed, and expressed as immunolabeling area in pixels (36).



qRT-PCR

For the qRT-PCR technique, total RNA from the placenta was extracted using TRIzol® according to the manufacturer’s instructions (Invitrogen, Life Technologies, Carlsbad, CA, USA). Subsequently, 1 µg of RNA was used for the reverse transcription reactions with the GoTaq® qPCR and RT-qPCR Systems kit (A6010, PROMEGA). The transcripts of the target genes were quantified by qPCR using SYBR Green in the Applied Biosystems® 7500 Real-Time PCR System. For the reactions, 1.5 μL of cDNA, 100 nM of each primer, and 12.5 μL of the GoTaq® qPCR Master Mix 2X reagent was used in a final volume of 20 μL of reaction. As a negative control, the DNA amplification mix was used, in which the cDNA sample was replaced by water. The amplifications were performed under the following conditions: enzyme activation at 95°C for 2 min, 40 cycles of denaturation at 95°C for 15 s, and annealing/extension at 60°C for 60 s. To evaluate the linearity and efficiency of qPCR amplification, standard curves of all transcripts were generated using serial dilutions of the cDNA, followed by an evaluation of the melting curve of the amplification products. The primers for Sod1, Catalase, Gpx1, Hif1α, Grp78, Chop, Il-10, Tnf, Il-6, Dio2, Igf1, Igf2, Glut1, Vegf, and Plgf were delineated based on Rattus norvegicus mRNA sequence (Table 1). Gene expression was calculated by the 2-ΔΔCT method, where the results obtained for each group were quantitatively compared after normalization based on the expression of Polr2a Rattus norvegicus (36, 49).


Table 1 | List of genes and nucleotide sequences for qPCR primers.





Statistical analysis

The differences of means among of the groups were determined by performing ANOVA followed by the Student-Newman-Keuls (SNK) test. The data were tested for normality (Shapiro-Wilk) and homoscedasticity (Brown-Forsythe) of the residuals, and for those that did not meet the assumptions, even after logarithmic transformation, the non-parametric Kruskal-Wallis test followed by Dunn’s test were used. Generalized linear mixed-model analysis followed by the Tukey test was used to evaluate the fetal and fetal organs’ weight and liver/brain ratio (50). Parametric data were represented by mean ± standard error of the mean (SEM), while non-parametric data were represented by median and interquartile range. The analyses were performed using GraphPad Prism 9.0.0 and R version 4.2.0 software, and differences where P<0.05 were considered significant.




Results


Daily kisspeptin treatment improves fetal restricted growth and plasma free T3 and T4 levels in hypothyroid rats

Because fetal growth restriction in hypothyroid rats is associated with reduced Kiss1 and Kiss1R expression at the maternal-fetal interface (31), the effect of two treatment protocols with Kp-10 was evaluated every other day (KpT1) and daily (KpT2), starting on the 8th GD, on the maternal and fetal parameters of hypothyroid rats. The evaluation of maternal and placental parameters revealed that daily treatment with Kp-10 increased hysterectometric maternal weight gain during gestation when compared to the hypothyroid and KpT1 groups (Figure 1A; P<0.05), which had lower gestational weight gain compared to the control (P<0.001). No significant difference was observed between the hypothyroid and KpT1 groups for hysterectometric maternal weight gain (P>0.05). Interestingly, there was an increase in plasma free T3 and T4 levels in the group treated daily with Kp10 compared to the hypothyroid and KpT1 groups (Figures 1B, C; P<0.0001; P<0.05) which had lower free T3 and T4 levels compared to the control (P<0.001). Furthermore, the KpT1 and KpT2 treatments did not increase the uteroplacental weight or the amniotic fluid of the hypothyroid animals (P>0.05), which showed a reduction compared to the control group (P<0.05) (Figures 1E, F).




Figure 1 | Maternal and fetal parameters of control, hypothyroid, and kisspeptin-10-treated rats on the 18th GD. (A) Hysterectometric maternal weight gain (mean ± SEM; n = 8). (B) Free T3 (mean ± SEM; n = 4-5). (C) Free T4 (mean ± SEM; n = 4-5). (D) Representative image of fetuses and placentas from each experimental group … (E–F) Uteroplacental (E) and amniotic fluid (F) weight (mean ± SEM; n = 8). (G) Number of viable fetuses/litter (mean ± SEM; n = 8). (H) Percentage of fetal death (median, interquatile range; n = 8). (I) Fetal weight (mean ± SEM; n = 63-76). (J) Relative frequency distribution curve of fetal weight. (K) Weight of fetal organs (liver, brain, heart, lung, kidney) (mean ± SEM; n = 15-30). (L) Brain/liver ratio (mean ± SEM; n = 15-30). Significant differences were determined by ANOVA post hoc SNK except for fetal weight and fetal organs’ weight, which were determined by Generalized linear mixed-model analysis followed by the Tukey test, and fetal death which was determined by Dunn’s post hoc Kruskal-Wallis test, *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001. KpT1, yes/no day treatment with Kp10; KpT2, daily treatment with Kp10; GD, gestational day.



In the evaluation of fetal parameters, although a significant difference was not observed in the number of viable fetuses between the experimental groups (Figure 1G), the KpT1 and KpT2 treatments did not present any differences in the percentage of fetal death when compared to the hypothyroid group (P>0.05), which showed a higher percentage of fetal death when compared to the control (Figure 1H; P<0.05). The KpT1 and KpT2 treatments were also unable of restore the reduction of fetal weight cause by hypothyroidism when compared to the control (Figures 1D, I; P<0.001; P<0.05). However, in assessing the relative frequency of fetal weight distribution, both the KpT2 (87.30%) and control (95.05%) groups had a greater distribution than 5th percentile (1.278g) (dashed line), while most fetuses in the hypothyroid (61.49%) and KpT1 (78.58%) groups was below the 5th, with a shift to the left of the distribution curve (Figure 1J).

The KpT2 treatment did not restore the lower heart and lung weights exhibited by the fetuses of hypothyroid animals (P>0.05), which had reduced weights when compared to the control (Figure 1K; P<0.001; P<0.01). However, the fetuses in the KpT1 group had lower liver weight when compared to the control and KpT2 groups (P<0.001), as well as lower heart and lung weight in relation to the control and hypothyroid groups. Regarding kidney weight, the fetuses of the KpT1 group also showed a reduction compared to the control (P<0.01), hypothyroid (P<0.001), and KpT2 (P<0.01) groups. No significant difference was observed for fetal brain weight and the brain/liver ratio between the experimental groups (Figures 1K, L; P>0.05). Together, these data demonstrate that daily treatment with Kp10 was not able to increase fetal weight, but improved the “growth restricted” condition demonstrated by the fetal weight distribution curve. This was unlike the KpT1 treatment, which did not increase fetal weight, kept the greater part of the fetal weight below the 5th percentile of the control group, and had negative effects on fetal organogenesis.



Kisspeptin treatment improves placental development in hypothyroid rats

After observing that daily treatment with Kp-10 improved fetal development in hypothyroid rats, it was necessary to assess whether this effect could result from improved placental morphology (Figures 2A–D). No difference was observed in the thickness of the junctional zone between the experimental groups, while the hypothyroid and KpT1 groups showed reduced thickness of the labyrinth zone when compared to the control group (Figure 2E; P<0.05). In the cellularity evaluation of the junctional zone, the placenta of hypothyroid animals had a higher percentage of area occupied by glycogen cells and fewer spongiotrophoblasts when compared to the control group (P<0.05). The treatments with KpT1 and KpT2 were able to restore the population of glycogen cells and/or spongiotrophoblasts in the placenta of hypothyroid animals, resembling that of the control animals (Figure 2F; P>0.05). A significant reduction was also observed in the giant cells from junctional zone in the KpT1 and KpT2 groups compared to the control (P<0.01;P<0.05) and to the hypothyroid group (Figure 2F; P<0.01;P<0.05). In the evaluation of the labyrinth zone, no significant difference was observed in the regions evaluated (fetal capillary, maternal vascular sinus and fetal mesenchyme/trophoblastic cells) between the groups (Figure 2G; P>0.05).




Figure 2 | Histomorphometry evaluation of the placenta of control, hypothyroid, and kisspeptin-10 treated-rats on the 18th GD. (A–D) Illustrative photomicrographs of the maternal-fetal interface (A) and placental layers (B), giant cells; (C), spongiotrophoblast; (D), labyrinth zone) (Hematoxylin and eosin staining; Bar = 500μm (A); 50μm (B–D). (E) Thickness of the junctional zone (giant cells+spongiotrophoblast) and labyrinth zone (mean ± SEM; n = 8). (F) Percentage of area occupied by glycogen cells, spongiotrophoblasts, and giant cells in the junctional zone (mean ± SEM; n = 8). (G) Percentage of area occupied by maternal vascular sinus, fetal capillaries, and fetal mesenchyme/trophoblast in the labyrinth zone (mean ± SEM; n = 8). Significant differences were determined by ANOVA post hoc SNK, *P<0.05, **P<0.01. MT, mesometrial triangle; BD, basal decidua; JZ, junctional zone; LZ, labyrinth zone; CV, central vessel; SP, spongiotrophoblast; Arrow, glycogen cells; Arrowhead, fetal capillaries; Asterisks, maternal vascular sinus; KpT1, yes/no day treatment with Kp-10; KpT2, daily treatment with Kp-10; GD, gestational day.





Kisspeptin treatment increases placental gene expression of growth (Plgf, Igf1) and transport (Glut1) factors in rats with hypothyroidism

The macroscopic evaluations of fetal-placental development and histological evaluations of the placenta showed that daily treatment with Kp10 had a better effect on fetal and placental development of hypothyroid rats, particularly by improving fetal weight distribution and junctional zone cellularity, while the group KpT1 presented negative effects on fetal organogenesis. For this reason, the placental expression of growth (VEGF, PLGF, IGF1, IGF2) and hormonal (Dio2) factors, and transporters (GLUT1) was evaluated in the KpT2 group in relation to the control and hypothyroid groups, as the altered expression of these factors is associated with altered fetal-placental growth (51–54).

Immunolabeling for VEGF was cytoplasmic and heterogeneous in trophoblasts in the junctional and labyrinth zones, regardless of the experimental group. However, the analysis of the labeled area revealed that the hypothyroid and KpT2 groups had higher expression of VEGF in the junctional zone when compared to the control group (Figures 3A–C, G). This was also observed in the placental gene transcript expression for Vegf, which had higher expression in the hypothyroid and KpT2 groups compared to the control group (Figure 3H; P<0.05). In the labyrinth zone, on the other hand, KpT2 treatment reduced VEGF immunolabeling compared to the hypothyroid group (P<0.001), equaling the control group (Figures 3D–G; P>0.05). Regarding the other placental growth and transport factors, daily treatment with Kp10 significantly increased mRNA expression for Plgf, Igf1, and Glut1 in the placenta when compared to the control and hypothyroid groups (Figure 3H; P<0.05; P<0.01). For Igf2, no difference was observed between the groups (P>0.05), while Dio2 had lower expression in the hypothyroid and KpT2 groups compared to the control group (Figure 3H; P<0.01; P<0.01).




Figure 3 | Expression of VEGF, PIGF, IGF1, IGF2, GLUT1 and DIO2 in the placenta of control, hypothyroid, and kisspeptin-10-treated rats on the 18th GD. (A–F) Photomicrographs of immunohistochemical expression of VEGF in the junctional zone (A–C) and labyrinth zone (D–F) (Streptavidin-biotin-peroxidase; Harris hematoxylin; Bar = 50 µm). (G) Immunolabeling area, in pixels, of VEGF expression in the junctional zone and labyrinth zone on the 18 GD (mean ± SEM; n = 8). (H) Relative gene expression of Vegf, Pigf, Igf1, Igf2, Glut1, and Dio2 in the placenta (mean ± SEM; n = 8). Significant differences were determined ANOVA post hoc SNK, *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001. KpT2, daily treatment with Kp10; GD, gestational day.





Kisspeptin treatment alters placental IL10 and TNFα expression in rats with hypothyroidism

Since fetal-placental development is influenced by immune mediators produced by the placenta, and considering that previous studies have shown that maternal hypothyroidism affects placental TNFα, MIF, and NOS2 expression in rats (36), the effect of daily treatment with Kp-10 on placental TNFα, IL-10, and IL-6 expression was evaluated in hypothyroid rats. TNFα and IL-10 immunolabeling was cytoplasmic in trophoblastic cells of the junctional and labyrinth zones, and was heterogeneous for TNFα and homogeneous for IL-10 (Figures 4A, C). Immunolabeling for TNFα was more intense in the junctional zone of the Kp10 group than in the control and hypothyroid groups (Figure 4A), as confirmed by the immunolabeling area analysis (Figure 4B; P<0.05). In the labyrinth zone, hypothyroid rats showed higher TNFα expression compared to the control (P<0.05), while the Kp10 treatment was similar to the hypothyroid group (P>0.05). No significant differences in mRNA expression for Tnf were observed between the groups (Figure 4E; P>0.05).




Figure 4 | Expression of TNFα, IL-10, and IL-6 in the placenta of control, hypothyroid, and kisspeptin-10-treated rats on the 18th GD. (A) Photomicrographs of immunohistochemical expression of TNFα in the junctional zone and labyrinth zone (Streptavidin-biotin-peroxidase; Harris hematoxylin; Bar = 50 µm). (B) Immunolabeling area, in pixels, of TNFα expression in the junctional zone and labyrinth zone (mean ± SEM; n = 8). (C) Photomicrographs of immunohistochemical expression of IL-10 in the junctional zone and labyrinth zone (Streptavidin-biotin-peroxidase; Harris hematoxylin; Bar = 50 µm). (D) Immunolabeling area, in pixels, of IL-10 expression in the junctional zone and labyrinth zone (mean ± SEM; n = 8). (E) Relative gene expression of Tnf, Il10, and Il6 in the placenta (mean ± SEM; n = 8). Significant differences were determined by ANOVA post hoc SNK, *P<0.05, **P<0.01. KpT2, daily treatment with Kp10; GD, gestational day.



For IL-10, both the hypothyroid and KpT2 groups showed higher immunolabeling in the junctional zone compared to the control (Figure 4C), as confirmed by the immunolabeling area analysis (Figure 4D; P<0.05; P<0.01). In the labyrinth zone, however, while hypothyroidism also increased the IL-10 labeling area when compared to the control (P<0.05), Kp10 treatment reduced IL-10 immunolabeling, matching it to that of the control group (Figure 4D; P>0.05). As observed in the immunohistochemistry, hypothyroidism increased mRNA expression for Il10 compared to the control (P<0.05), while daily treatment with Kp10 showed no significant differences compared to the control and hypothyroid groups (Figure 4E; P>0.05). There was no difference in the mRNA expression for Il6 between the groups (Figure 4E).



Kisspeptin treatment blocks oxidative damage in the junctional zone of hypothyroid rats

Since oxidative stress is associated with placental dysfunction (55–57), and maternal hypothyroidism has been recently reported to cause oxidative damage in rat placenta (40), it was important to evaluate whether daily treatment with Kp10 can reverse or reduce this oxidative stress caused by hypothyroidism. To this end, the gene and/or protein expression profile of HIF1α and 8-Hydroxy-2′-deoxyguanosine (8-OHdG), biomarkers of hypoxia and oxidative DNA damage, respectively (58–60), were analyzed.

HIF1α and 8-OHdG immunolabeling were cytoplasmic and heterogeneous in trophoblastic cells of the junctional and labyrinth zones, regardless of the experimental group (Figures 5A, B). In the HIF1α immunolabeling analysis, both the hypothyroid and Kp10-treated groups showed a larger immunolabeling area in the junctional zone when compared to the control (Figures 5C, P<0.05). In the labyrinth zone, in contrast, no significant differences in immunolabeling were observed between the groups (P>0.05). However, in gene evaluation, similar to the result of junctional zone immunolabeling, the hypothyroid and Kp10-treated groups showed higher placental mRNA expression of Hif1α compared to the control (Figure 5E; P<0.05).




Figure 5 | Expression of HIF1α and 8-OHdG in the placenta of control, hypothyroid, and kisspeptin-10-treated rats on the 18th GD. (A) Photomicrographs of immunohistochemical expression of HIF1α in the junctional zone and labyrinth zone (Streptavidin-biotin-peroxidase; Harris hematoxylin; Bar = 50 µm). (B) Immunolabeling area, in pixels, of HIF1α expression in the junctional zone and labyrinth zone (mean ± SEM; n = 8). (C) Immunolabeling area, in pixels, of HIF1α expression in the junctional zone and labyrinth zone (mean ± SEM; n = 8). (D) Relative gene expression of Hif1α in the placenta (mean ± SEM; n = 8). Significant differences were determined by ANOVA post hoc SNK, *P<0.05, **P<0.01. KpT2, daily treatment with Kp10; GD, gestational day.



Regarding 8-OHdG immunolabeling, Kp10 treatment reduced the greater immunolabeling in the junctional zone caused by hypothyroidism (P<0.05), equaling the control (Figure 5D; P >0.05). No difference was observed in 8-OHdG expression in the labyrinth zone between the groups (P>0.05).



Kisspeptin treatment increases placental expression of antioxidant enzymes in hypothyroid rats

Since studies have already demonstrated that exogenous administration of kisspeptin exhibits antioxidant action in the ovary (43), liver (44), and testicle (45), the placental profile of SOD1, catalase, and GPx1/2 was evaluated for the animals in the present study. The immunostaining of SOD1, catalase, and GPx1/2 was cytoplasmic and heterogeneous in trophoblast cells of the junctional and labyrinth zones, and the expression of catalase was weaker in the junctional zone when compared to that of SOD1 and GPx1/2 (Figures 6A, C and E). Treatment with Kp10 significantly increased the expression of SOD1 and catalase in the junctional zone when compared to the control and hypothyroid groups (Figures 6B, D; P<0.01, P<0.0001). In the labyrinth zone, while the KpT2 group showed reduced SOD1 immunolabeling compared to the control (P<0.05), Kp10 treatment increased catalase expression when compared to the hypothyroid group (Figures 6B, D; P<0.05). No significant difference was observed in the GPx1/2 immunolabeling between groups in both the junctional zone and labyrinth zone (Figure 6F; P>0.05). However, in the gene transcript expression analysis, Gpx1, Sod1, and Cat showed higher mRNA expression in the Kp10-treated group when compared to the control and hypothyroid groups (Figure 6G).




Figure 6 | Expression of SOD1, catalase, and GPx1/2 in the placenta of control, hypothyroid, and kisspeptin-10-treated rats on the 18th GD. (A) Photomicrographs of immunohistochemical expression of SOD1 in the junctional zone and labyrinth zone (Streptavidin-biotin-peroxidase; Harris hematoxylin; Bar = 50 µm). (B) Immunolabeling area, in pixels, of SOD1 expression in the junctional zone and labyrinth zone (mean ± SEM; n = 8). (C) Photomicrographs of immunohistochemical expression of catalase in the junctional zone and labyrinth zone (Streptavidin-biotin-peroxidase; Harris hematoxylin; Bar = 50 µm). (D) Immunolabeling area, in pixels, of catalase expression in the junctional zone and labyrinth zone (mean ± SEM; n = 8). (E) Photomicrographs of the immunohistochemical expression of GPx1/2 in the junctional zone and labyrinth zone (Streptavidin-biotin-peroxidase; Harris hematoxylin; Bar = 50 µm). (F) Immunolabeling area, in pixels, of GPx1/2 expression in the junctional zone and labyrinth zone (mean ± SEM; n = 8). (G) Relative gene expression of Sod1, catalase, and Gpx1 in the placenta (mean ± SEM; n = 8). Significant differences were determined by ANOVA post hoc SNK, *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001. KpT2, daily treatment with Kp10; GD, gestational day.





Kisspeptin treatment affects the expression of reticular stress mediators in the placenta of hypothyroid rats

Since maternal hypothyroidism causes reticular stress in rat placenta (40), and in vitro and in vivo studies have demonstrated that Kp-10 administration blocks the occurrence of reticular stress in hypothalamic neuronal cells exposed to androgen (46), it was evaluated whether Kp-10 treatment would affect the expression of GRP78, CHOP and ATF4 in the placenta of rats with hypothyroidism. Immunolabeling of these three mediators was cytoplasmic and heterogeneous in the junctional and labyrinth zones, and expression in the junctional zone was usually in isolated spongiotrophoblast cells or in glycogen cells (Figures 7A, C and E). According to the immunolabeling area analysis, the hypothyroid group showed higher immunolabeling of GRP78 and CHOP in the junctional zone when compared to the control (Figures 7B, D; P<0.05), while the KpT2 group showed no significant difference compared to the hypothyroid group for CHOP. However, with respect to GRP78, Kp-10 treatment increased immunolabeling in the junctional zone when compared to the control and hypothyroid groups (Figure 7B; P<0.05; P<0.01). In contrast, in the labyrinth zone, KpT2 treatment reduced the immunolabeled area of both GRP78 and CHOP relative to the hypothyroid group (Figures 7B, D; P<0.05; P<0.01). For ATF4, no differences in the immunolabeling area were observed between the groups (Figures 7F; P>0.05).




Figure 7 | Expression of GRP78, CHOP, and ATF4 in the placenta of control, hypothyroid, and kisspeptin-10-treated rats on the 18th GD. (A) Photomicrographs of immunohistochemical expression of GRP78 in the junctional zone and labyrinth zone (Streptavidin-biotin-peroxidase; Harris hematoxylin; Bar = 50 µm). (B) Immunolabeling area, in pixels, of GRP78 expression in the junctional zone and labyrinth zone (mean ± SEM; n = 8). (C) Photomicrographs of immunohistochemical expression of CHOP in the junctional zone and labyrinth zone (Streptavidin-biotin-peroxidase; Harris hematoxylin; Bar = 50 µm). (D) Immunolabeling area, in pixels, of CHOP expression in the junctional zone and labyrinth zone (mean ± SEM; n = 8). (E) Photomicrographs of immunohistochemical expression of ATF4 in the junctional zone and labyrinth zone (Streptavidin-biotin-peroxidase; Harris hematoxylin; Bar = 50 µm). (F) Immunolabeling area, in pixels, of ATF4 expression in the junctional zone and labyrinth zone (mean ± SEM; n = 8). (G) Relative gene expression of Grp78 and Chop in the placenta (mean ± SEM; n = 8). Significant differences were determined by ANOVA post hoc SNK, *P<0.05, **P<0.01, ****P<0.0001. KpT2, daily treatment with Kp10; GD, gestational day.



In the gene transcript analysis, treatment with Kp-10 increased the placental expression of Grp78 compared to the control and hypothyroid groups (P<0.0001), as observed in junctional zone immunolabeling, while an increase in Chop gene expression was also observed relative to the hypothyroid group (Figure 7G; P<0.05). Taken together, these results demonstrate that daily treatment with Kp10 differentially affects the expression of reticular stress mediators in the placenta of hypothyroid rats since it maintains high expression in the junctional zone and reduces immunolabeling in the labyrinth zone.




Discussion

Although the kisspeptin/Kiss1R system is mainly known for its action on the hypothalamic-pituitary-gonadal axis, stimulating the secretion of GnRH/LH, studies have shown that kisspeptin has peripheral action in the genital tract (5, 6). and gestational dysfunctions such as preeclampsia, spontaneous abortion, gestational diabetes, obesity, and even maternal hypothyroidism, are associated with alterations in the serum and/or placental profile of kisspeptin (12, 17, 20, 26–28, 30, 31). The results of the present study demonstrated that daily kisspeptin treatment was able to improve fetal development and placental morphology in hypothyroid rats. This improvement in fetal-placental development was associated with both increased expression of growth and transport factors in the placenta (Plgf, Igf1, and Glut1), and with blockage of placental oxidative damage and increased antioxidant enzymes (SOD1, catalase, GPx1).

Daily treatment with Kp-10 from the 8th GD not only increased maternal weight gain and plasma free T3 and T4 levels of hypothyroid rats, but also improved fetal weight distribution, which was not observed in the treatment performed every other day. These results reaffirm the need for precise control of kisspeptin plasma levels during pregnancy, since only daily treatment with Kp-10 had a positive effect on maternal weight gain, fetal weight distribution and on free T3 and T4 levels. This is the first in vivo study to demonstrate that kisspeptin can modulate the Corroborating our study, Radwańska and Kosior-Korzecka (61) demonstrated that in vitro treatment of ovine pituitary cells with 10−11 to 10−8 M of Kp10 increased TSH secretion. However, despite the increase in plasma levels of free T3 and T4 caused by the daily treatment with Kp-10, it is suggested that the local availability of T3 in the placenta has not changed, since the treatment with Kp-10 did not change the lower placental expression of Dio2 caused by hypothyroidism, the enzyme responsible for the intracellular availability of T3 (62). This reduction of Dio2 in the placenta of the hypothyroid rats may be associated with fetoplacental dysfunction presented by these animals, since Dio2 is involved in proliferation, differentiation and trophoblastic migration and low placental expression was associated early recurrent miscarriage (54).

The increase in the maternal weight gain and improviment fetal weight distribution of hypothyroid rats may be associated not only with increased levels of free T3 and T4 but also with the action of kisspeptin on maternal pancreatic function, as exogenous kisspeptin increases in vivo and in vitro insulin secretion by pancreatic β-cells in rats, mice, humans, and non-human primates (63–67), and pharmacological blockade or in vivo genetic ablation of the Kiss1R receptor in β-cells of pregnant mice results in glucose intolerance and impaired insulin secretion (68).

For fetal weight distribution, most fetuses (61.49%) of the hypothyroid group were below the 5th percentile of the control group, indicating the growth restriction (48, 50, 69, 70). Once the reduced body weight was accompanied by reduced fetal organ weight (heart and lung), prioritizing the brain development, we suggest the growth restriction caused by hypothyroidism was asymmetric, even though was no difference in the liver/brain ratio (48, 50, 71). Daily treatment with Kp-10 improved fetal weight distribution once most of the fetal weight (87.30%) were above the 5th percentile of the control group. This outcome in terms of fetal development is very important, as fetal growth restriction is associated with an increased risk of cardiovascular and metabolic diseases in postnatal life (51, 72).

However, optimal fetal development depends not only on maternal and fetal metabolism but also on adequate placental function (32). In the present study, daily treatment with Kp10 also improved the placental morphology of hypothyroid rats by restoring the proportion of trophoblastic cells forming the junctional zone. Previous studies have also demonstrated altered trophoblast population in the junctional zone of hypothyroid rats (35). The cells in the junctional zone are mainly responsible for the synthesis and secretion of peptides and hormones by the placenta, which are fundamental for controlling maternal and fetal metabolism (73).

In addition to improving placental morphology, daily treatment with Kp-10 increased mRNA expression for Plgf, Igf1, and Glut1 in the placenta. These factors are decisive for proper fetal growth and placental development (32, 51, 74, 75). PLGF is responsible for placental vascular bed maturation (76), and low plasma PLGF levels are associated with fetal growth restriction, HELLP syndrome, preeclampsia, and gestational hypertension (74). Therefore, plasma PLGF is considered an important predictor of fetal development (74). Reduced placental expression of IGF1 also compromises fetal and placental development (75), while GLUT1 is an important placental glucose transporter. The expression of GLUT1 is reduced when the placental expression of IGF1 fails (77, 78).Therefore, in the present study, restored fetal weight distribution caused by Kp-10 treatment may have also resulted from increased placental IGF1/GLUT1 signaling, as kisspeptin stimulates the release of insulin (63–68).

However, in relation to VEGF, treatment with Kp-10 did not reverse the increase in placental gene and protein expression caused by hypothyroidism, particularly in the junctional zone. In addition to the critical role of VEGF in the process of placental angiogenesis, especially in early to mid-gestation (79), it is an indicator of hypoxia since low oxygen levels stimulate its expression (80). In this sense, higher gene expression of VEGF in the placenta of hypothyroid and Kp-10-treated animals, and the higher immunolabeling in the junctional zone, suggest a low oxygen tension environment in the junctional zone of these animals. This hypothesis is supported by the higher gene and protein expression of HIF1α, especially in the junctional zone, observed in the hypothyroid and Kp-10-treated animals. HIF1α is expressed under hypoxic conditions and performs its functions in vascular permeability and cell survival by signaling via VEGF (81). Furthermore, studies have already demonstrated increased expression of HIF1α and VEGF in preeclamptic placentas, which are known to present a hypoxic environment (81–83). However, when evaluating the labyrinth zone, Kp10 treatment reduced the increase in VEGF immunolabeling caused by hypothyroidism, matching its expression to that of the control animals. These data reinforce the importance of immunohistochemistry analysis to discriminate and adequately evaluate the protein expression profile of the mediators evaluated in each region of the placenta.

Regarding TNFα, Kp10 treatment increased immunolabeling in the junctional zone, while in the labyrinth zone, hypothyroid animals showed higher expression compared to the control animals. In vitro studies have shown that TNFα secreted by decidual macrophages is recognized by TNF-R1 receptors in the trophoblasts and activates the extrinsic apoptosis pathway (84), while, according to a recent study, kisspeptin increases cell apoptosis (85). Therefore, Kp-10 treatment may have increased activation of placental apoptosis via TNFα signaling, although studies are needed to confirm this hypothesis. However, increased TNFα also occurs with increasing insulin resistance (86). Thus, another possibility to explain its higher expression in the junctional zone of Kp-10-treated animals may be the increase in insulin that occurs after kisspeptin administration (63–68).

As observed for TNFα, IL-10 showed higher expression in the junctional zone of hypothyroid and Kp-10-treated animals compared to the control, as well as higher gene expression in the placenta of hypothyroid animals. This increase in IL-10 may be a reflection of increased TNFα expression, as IL-10 attenuates the effects of pro-inflammatory cytokines at the maternal-fetal interface (38, 87) and TNFα stimulates the in vitro secretion of IL-10 in first-trimester trophoblastic villi (88). However, Kp-10 treatment reduced the higher IL-10 immunolabeling in the labyrinth zone caused by hypothyroidism, matching it to that of the control. Further studies are needed to elucidate the reduction of IL10 and VEGF in the labyrinth zone of the hypothyroid rats caused by Kp10 treatment.

As previously described, the increased mRNA and immunolabeling of HIF1α in the junctional zone of hypothyroid and Kp-10-treated animals signals low oxygen tension and suggests the occurrence of oxidative stress in the placenta of hypothyroid rats, which was recently confirmed in a previous study (40). Activation of HIF1α in the placenta of rats also favors the reduction of labyrinth zone thickness (89), thus corroborating the histomorphometry results of the present study. Moreover, Kp-10 treatment blocked the increase in placental immunolabeling of 8-OHdG caused by hypothyroidism. 8-OHdG is a biomarker of oxidative stress that signals DNA damage resulting from oxidative stress and lipid peroxidation (90), and studies have shown increased placental expression in preeclampsia, gestational diabetes mellitus, and maternal smoking (60, 90, 91). Thus, the results of the present study suggest that although Kp-10 treatment was not able to protect against placental hypoxia caused by maternal hypothyroidism, it was effective in protecting against the occurrence of placental oxidative damage.

Daily treatment with Kp-10 also increased the gene and/or protein expression of SOD1, catalase, and GPx1 in the placenta of hypothyroid rats. This suggests an antioxidant function of kisspeptin at the maternal-fetal interface. These results are in line with those of previous studies conducted on the ovary (43), liver (44), and testicle (45), that demonstrated increased antioxidant enzymes after kisspeptin treatment. Thus, together, these data suggest that in the condition of placental oxidative stress caused by hypothyroidism, treatment with Kp-10 can improve placental antioxidant defenses, inhibit oxidative damage, and, consequently, improve fetus and placenta development.

Furthermore, hypothyroidism increased immunolabeling in the junctional zone of endoplasmic reticulum stress mediators, GRP78, and CHOP, another pathophysiological process involved in placental dysfunction in preeclamptic women (92–94) and that has been recently demonstrated in the placenta of hypothyroid rats (40). Interestingly, although treatment with Kp-10 was not able to reverse the expression of these mediators in the junctional zone of hypothyroid rats, including with increased placental gene expression of Grp78 and Chop when compared to the hypothyroid group, Kp-10 treatment reduced GRP78 and CHOP immunolabeling in the labyrinth zone of hypothyroid animals. This suggests attenuation of reticular stress in this placental layer after Kp-10 treatment. Furthermore, a recent study demonstrated in vitro in hypothalamic GT1-7 cells, that silencing of Kiss1 or inhibition of Kiss1r with the antagonist Kp234 resulted in endoplasmic reticulum stress, while treatment with Kp-10 blocked its activation (46). Since maternal hypothyroidism in rats reduces placental and decidual expression of the Kiss/Kiss1r system (31), this may also be one of the reasons for the activation of reticular stress in the placenta of these animals (40).

The findings of this study demonstrated that daily treatment with Kp-10 in hypothyroid pregnant rats was able to improve fetus and placenta development and the plasma free T3 and T4 levels. This improvement was associated with not only increased expression of placental growth factors and antioxidant enzymes, but also with blockage of oxidative damage and positive modulation of reticular stress mediators, IL-10, and VEGF in the labyrinth zone. This is the first study to use kisspeptin as a therapeutic tool in a gestational disease.
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The aim of this study was to identify oxysterols and any down-stream metabolites in placenta, umbilical cord blood plasma, maternal plasma and amniotic fluid to enhance our knowledge of the involvement of these molecules in pregnancy. We confirm the identification of 20S-hydroxycholesterol in human placenta, previously reported in a single publication, and propose a pathway from 22R-hydroxycholesterol to a C27 bile acid of probable structure 3β,20R,22R-trihydroxycholest-5-en-(25R)26-oic acid. The pathway is evident not only in placenta, but pathway intermediates are also found in umbilical cord plasma, maternal plasma and amniotic fluid but not non-pregnant women.
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1 Introduction

Amongst other functions, the placenta plays a key role in the transport of cholesterol from the mother to the fetus (1). The placenta is rich in cholesterol metabolising enzymes, particularly those involved in progesterone and estrogen synthesis (2). Hence, it should also be a site for oxysterol synthesis and further metabolism. Cytochrome P450 (CYP) 11A1 (also known as P450SCC) is the enzyme that generates pregnenolone from cholesterol via consecutive 22R- and 20R-hydroxylations followed by side-chain cleavage (3). Progesterone is then formed from pregnenolone by oxidation at C-3 and Δ5 – Δ4 isomerisation by hydroxysteroid dehydrogenase (HSD) 3B1 (See Figure 1). Although 22R-hydroxycholesterol (22R-HC) and 20R,22R-dihydroxycholesterol (20R,22R-diHC) are known intermediates in CYP11A1-mediated side-chain cleavage of cholesterol to give pregnenolone (4), few studies have explored the oxysterol profile of placenta (5, 6). One important, but until now not replicated, finding made in the early 2000’s was the presence of 20S-hydroxycholesterol (20S-HC) in human placenta (7). 20S-HC is an enigmatic oxysterol with many biological properties, but seldom reported in mammalian systems (8). Note, the actual stereochemical location of the 20S-hydroxy group in 20S-HC is the same as that of the 20R-hydroxy group in 20R,22R-diHC (see structures in Figure 1), but they are named 20S and 20R, respectively, according to rules of chemical priority. Similar to the situation with placenta, there are few reports of the oxysterol profiles of umbilical cord blood (5), i.e. blood of fetal origin that remains in the placenta and in the attached umbilical cord after childbirth, or of amniotic fluid, the fluid that acts as a cushion for the growing fetus and serves to facilitate the exchange of biochemicals between mother and fetus. Interestingly, however, oxysterols have been found as their sulphate esters in meconium, the earliest stool of a mammalian infant, including 20,22-diHC, 22-HC, 23-hydroxycholesterol (23-HC) and 24-hydroxycholesterol (24-HC) (9, 10).




Figure 1 | Proposed metabolism of cholesterol to the C27 bile acid 3β,20R,22R-triH-Δ24-CA (green background). For comparison the acidic pathway to the C27 bile acid 3β,7α-diH-Δ24-CA is shown (blue background) as is the pathway to progesterone (yellow background). Enzymes are indicated in blue. When shown in bold the enzymatic reactions can be found in the literature, when shown in normal typeface and with a broken arrow they are postulated. Cholesterol is shown in red with full stereochemistry and numbering system on a salmon background. For simplicity the 3β,20R,22R-triH-Δ24-CA and 3β,7α-diH-Δ24-CA are shown as the acids rather than the CoA-thioester products of SLC27A5 (bile acid CoA ligase). 20S-HC is shown on an orange background, although the enzyme responsible for its formation is unproven, it can be converted to 20R,22R-diHC by CYP11A1. Note the stereochemistry of metabolites down-stream of 20R,22R-diHC towards and including 3β,20R,22R-triH-Δ24-CA are assumed based on biosynthetic considerations.



Here we report liquid chromatography (LC) – mass spectrometry (MS)-based methods for the identification of oxysterols in full term placenta, plasma derived from cord blood and pregnant female blood (maternal blood) and in mid-gestation amniotic fluid. The methods are based on high mass resolution MS with multistage fragmentation (MSn) exploiting charge-tagging to enhance analyte signal (Supplemental Figure S1A).



2 Materials and methods


2.1 Human material

Maternal blood was taken 24 - 48 hr prior to elective caesarean section at 37+ weeks of gestation for reasons that did not include maternal or fetal anomaly. Umbilical cord blood was collected at delivery of the baby. Control plasma was from non-pregnant females. Amniotic fluid was obtained at 16 – 18 weeks of pregnancy during diagnostic amniocentesis; only samples with no fetal chromosomal abnormality were used. All samples were collected with approval from an appropriate Health Research Authority Research Ethics Committee. All participants provided informed consent and the study adhered to the principles of the Declaration of Helsinki.



2.2 Sterol and oxysterol standards

Isotope-labelled standards [25,26,26,26,27,27,27-2H7]24R/S-hydroxycholesterol ([2H7]24R/S-HC), [25,26,26,26,27,27,27-2H7]22R-hydroxycholesterol ([2H7]22R-HC), [25,26,26,26,27,27,27-2H7]22S-hydroxycholesterol ([2H7]22S-HC), [25,26,26,26,27,27,27-2H7]7α-hydroxycholesterol ([2H7]7α-HC), [26,26,26,27,27,27-2H6]7α,25-dihydroxycholesterol ([2H6]7α,25-diHC) were from Avanti Polar Lipids, Alabaster, AL. [25,26,26,26,27,27,27-2H7]20S-Hydroxycholesterol ([2H7]20S-HC) was purchased from Toronto Research Chemicals (TCI, Toronto, Canada). [2H7]22R-Hydroxycholest-4-en-3-one ([2H7]22R-HCO) was prepared from [2H7]22R-HC by treatment with cholesterol oxidase enzyme (Streptomyces sp., Merck, Dorset, UK) (11).



2.3 Sterol and oxysterol extraction


2.3.1 Placenta

Sterols and oxysterols were extracted from placental tissue using a modified protocol previously used to extract oxysterols from brain and liver tissue (12, 13). Approximately 400 mg of tissue was cut from the maternal side of fresh placenta, weighed and washed three times in PBS to remove blood. The tissue was then transferred to a gentleMACS™ C tube (Miltenyi Biotec, Woking, UK) followed by 4.2 mL of absolute ethanol containing 50 ng of [2H7]24R/S-HC and 50 ng of [2H7]22R-HCO. The tissue was homogenised for 2 min. The homogenate was transferred to a 15 mL corning tube and sonicated for 15 min. Whilst sonicating, 1.8 mL of HPLC grade water was added dropwise to give 6 mL of homogenate at 70% ethanol. The homogenate was then centrifuged for 1 hr at 4,000 x g. The supernatant was transferred to a fresh 15 mL corning tube and the remaining pellet re-suspended in a further 4.2 mL ethanol containing 50 ng of [2H7]24R/S-HC and 50 ng of [2H7]22R-HCO. The suspension was vortex mixed and transferred back into the original gentleMACS™ C tube where it was then homogenised for a further 2 min. The homogenate was removed and sonicated for 15 min, then 1.8 mL of water added to give 6 mL of 70% ethanol. The supernatants from the two extractions were combined to yield 12 mL in 70% ethanol. This was mixed by vortex and sonicated for a further 10 min followed by centrifugation for 1 hr at 4,000 x g. Ten % (1.2 mL) of the total supernatant was added to 300 µL of 70% ethanol under sonication. The 1.5 mL of sample was subjected to solid phase extraction (SPE) by a procedure modified from an earlier protocol (12, 13) to allow the collection of C21 steroids besides sterols and oxysterols including sterol acids.

The sample from above was loaded onto a Certified Sep-Pak C18, 200 mg (3 cm3, Waters Inc. Elstree, UK) reversed-phase SPE column previously conditioned with ethanol (4 mL) followed by 70% ethanol (6 mL). The sample flow-through (1.5 mL) was combined with a column wash of 70% ethanol (5.5 mL) resulting in SPE1-Fr1 (7 mL) which contained oxysterols, sterol acids and C21 steroids. A second fraction was obtained by further washing with 70% ethanol (4 mL) and collected as SPE1-Fr2. Cholesterol and other sterols of similar hydrophobicity were eluted from the SPE column with absolute ethanol (2 mL) to give SPE1-Fr3. A final fourth fraction was eluted with a further 2 mL of absolute ethanol (SPE1-Fr4). Each of the four fractions was divided equally into A and B sub-fractions and dried overnight under vacuum by centrifugal evaporation (ScanLaf ScanSpeed vacuum concentrator, Lynge, Denmark).

Each lyophilised sample was reconstituted in propan-2-ol (100 µL) and mixed thoroughly by vortex. To fractions (A), 50 mM K2HPO4 buffer, pH 7 (1 mL) containing cholesterol oxidase solution (3.0 µL, 2 mg/mL in water, 44 units/mg of protein) was added. The samples were mixed by vortex and incubated at 37°C for 1 hr in a water bath. The reaction was then quenched by the addition of methanol (2 mL). Fractions (B) were treated in parallel in an identical fashion to fractions (A) but in the absence of cholesterol oxidase. Glacial acetic acid (150 µL) was added to fractions (A) and (B) and mixed by vortex. [2H5]Girard P (GP) reagent (11) (190 mg, bromide salt) was added to fractions (A) and [2H0]GP reagent (150 mg, chloride salt, TCI Europe, Oxford UK) was added to fractions (B). The samples were mixed by vortex until the derivatising reagent had dissolved. The reaction was left to proceed overnight at room temperature protected from light.

An OASIS HLB 60 mg (3 cm3) SPE cartridge was washed with methanol (6 mL), 5% methanol (6 mL) and conditioned with 70% methanol (4 mL). Sample from above (3.25 mL, 69% organic) was loaded onto the column and the flow-through collected. The sample tube was rinsed with 70% methanol (1 mL) which was then loaded onto the SPE column, and the eluent combined with the earlier flow-through. The column was re-conditioned with 35% methanol (1 mL) and the eluent combined with the earlier collection. The total eluent (~5 mL) was diluted with 4 mL of water to give ~9 mL of 35% methanol. The 9 mL sample solution was loaded onto the column and the flow-through collected. The sorbent was re-conditioned with 17.5% methanol (1 mL) and the eluent combined with earlier flow-through. To the combined 10 mL, water (9 mL) was added to give a 19 mL of 17.5% methanol. This solution was loaded onto the column and the flow-through collected once more. The sorbent was re-conditioned with 8.75% methanol (1 mL) and the flow-through combined with the earlier collection. The total combined eluent of 20 mL was diluted with 19 mL of water to give 39 mL 8.75% methanol. The solution was loaded onto the column and the flow-through discarded. A 5% methanol solution (6 mL) was used to wash the column before the analytes were eluted. The samples were eluted into four separate 1.5 mL microcentrifuge tubes using 3 x 1 mL methanol followed by 1 mL ethanol to give SPE2-FR1, -Fr2, -Fr3, -Fr4. Oxysterols originating from SPE1-Fr1 elute across SPE2-Fr1 and SPE2-Fr2, cholesterol originating from SPE1-Fr3 elutes across SPE2-Fr1,-Fr2, Fr-3. Here we report data only for oxysterols and more polar metabolites.

Immediately prior to LC-MS analysis of oxysterols, equal volumes of SPE2-Fr1A and SPE2-Fr2A were combined with equal aliquots of SPE2-Fr1B and SPE2-Fr2B and diluted with water to form a solvent composition of 60% methanol.



2.3.2 Plasma

The extraction protocol for sterols and oxysterols was essentially that described previously (11, 13, 14), with minor modification to allow for extraction of C21 steroids. 100 µL of plasma was added dropwise to a solution of acetonitrile (1.05 mL) containing 20 ng of [2H7]24R/S-HC and 20 ng of [2H7]22R-HCO in an ultrasonic bath with sonication. After a further 5 min of sonication, 350 µL of water was added. The sample (1.5 mL), now in 70% acetonitrile, was sonicated for a further 5 minutes and centrifuged at 17,000 x g at 4°C for 30 min. The sample was subjected to SPE and prepared for LC-MS analysis exactly as for the placental extract with the following modification: SPE1, Certified Sep-Pak C18, 200 mg, was conditioned with 70% acetonitrile rather than 70% ethanol.



2.3.3 Amniotic fluid

The protocol for extraction of sterols and oxysterols from amniotic fluid was exactly as that described for plasma except the internal standards were 7 ng of [2H7]24R/S-HC and 7 ng of [2H7]22R-HCO.




2.4 LC-MS(MSn)

Analysis was performed on a Dionex Ultimate 3000 UHPLC system (Dionex, now Thermo Fisher Scientific, Hemel Hempstead, UK) interfaced via an electrospray ionisation (ESI) probe to an Orbitrap Elite MS (Thermo Fisher Scientific). Chromatographic separation was carried out on a Hypersil Gold reversed phase C18 column (1.9 µm particle size, 50 x 2.1 mm, Thermo Fisher Scientific, UK). Details of the mobile phase and gradients employed are given in Supplemental Materials and Methods. MS analysis on the Orbitrap Elite was performed in the positive-ion mode with five scan events, one high resolution (120,000 full width at half maximum height at m/z 400) scan over the m/z range 400 – 610 in the Orbitrap and four MS3 scans performed in parallel in the linear ion trap (LIT). Mass accuracy in the Orbitrap was typically < 5 ppm. More details of the scan events are provided in Supplemental Materials and Methods. Injection volumes were 35 µL for plasma extracts and at 90 µL for amniotic fluid and placental extracts.




3 Results

The aim of this study was to identify oxysterols and any down-stream metabolites in placenta, cord plasma, maternal plasma and amniotic fluid to enhance our knowledge of the involvement of these molecules in pregnancy. For side-chain oxysterols expected to be present quantitative measurements were possible by reference to an isotope-labelled standard, for unexpected metabolites only semi-quantitative data was obtained, however, this could be used for relative quantification between sample sets (Table 1).


Table 1 | Oxysterols in placenta, cord plasma, maternal plasma and amniotic fluid.




3.1 Identification of oxysterols in placenta

The placenta is a blood-rich organ. The maternal side contains less vascular tissue than the fetal side and was selected for analysis. During sample preparation tissue was washed three times with PBS to remove blood.


3.1.1 Monohydroxycholesterols:- 20S-HC, 22R-HC, 22S-HC, 24S-HC, 26-HC, 7α-HC and 7β-HC

Shown in Figure 2A (upper panel) is the LC-MS reconstructed ion chromatogram (RIC) for monohydroxycholesterols (HC, m/z 539.4368 ± 5ppm) found in placenta following derivatisation with [2H5]GP reagent. At first glance, the chromatogram shows some similarity to that of adult plasma (Figure 2A central panel) except for the additional presence an intense pair of peaks corresponding to the syn and anti conformers of [2H5]GP-derivatised 22R-HC in the placental sample. Note syn and anti conformers are a consequence of GP-derivatisation at C-3 of the sterol A-ring (see Supplemental Figure S1B). 22R-HC is usually only a minor oxysterol in adult plasma/serum (14, 16) and is essentially absent in the NIST SRM 1950 plasma sample (representative of the adult population of the USA) illustrated here (15). The observation of 22R-HC in placenta is not surprising as CYP11A1, the enzyme which generates this oxysterol in the pathway from cholesterol to pregnenolone, is abundant in placenta (2, 17). The identity of the two early eluting peaks was confirmed by reference to [2H7]22R-HC authentic standard which co-elutes and gives an identical MS3 ([M]+ ➔[M-Py]+ ➔, where Py is pyridine) fragmentation pattern (Figures 2A, B). A major advantage of the GP-derivatisation method is that unlike the un-derivatised [M+H]+, [M+NH4]+ or [M-(H2O)n+H]+ ion, the [M]+ ion of the GP-derivative gives a structurally informative MS3 spectrum. The fragmentation of GP-derivatised oxysterols has been described in detail elsewhere (18, 19). In brief, a 3β-hydroxy-5-ene function in the parent structure, with no additional substitutions on the ring system, gives following cholesterol oxidase treatment, GP derivatisation and MS3, a pattern of low-m/z fragment ions at 151.1 (*b1-12), 163.1 (*b3-28) and 177.1 (*b2) and a mid-m/z fragment ion at 325.2 (‘*e, Supplemental Figure S1C). A characteristic, but not unique, fragment ion of 22R-HC is at m/z 355.3 (*f’, Figure 2B and Supplemental Figure S2A), this appears alongside a satellite peak at m/z 353.3 (‘*f). By generating a multiple reaction monitoring (MRM)-like chromatogram [M]+ ➔[M-Py]+ ➔355.3 the 22R-HC peaks in placenta are highlighted (Figure 2C upper panel). A minor unknown pair of peaks were also observed eluting much later in the MRM chromatogram. Their MS3 spectra suggests that these correspond to the 22S-epimer (Figure 2D). This was confirmed by analysis of [2H7]22S-HC which gave an identical MS3 fragmentation pattern and co-eluted with the endogenous molecule.




Figure 2 | LC-MS(MSn) analysis of GP-derivatised monohydroxycholesterols (HC) in placenta and NIST SRM 1950 plasma. (A) Reconstructed ion chromatograms (RICs) for monohydroxycholesterols (HC, m/z 539.4368 ± 5 ppm) in placenta (upper panel), NIST SRM 1950 plasma (15) (central panel), and of [2H7]-labelled standards (546.4807 ± 5 ppm, lower panel). GP-derivatised oxysterols give syn and anti conformers about the CN double bond which may or may not be resolved. (B) MS3 ([M]+ ➔[M-Py]+ ➔) spectra of 22R-HC identified in placenta (upper panel) and [2H7]22R-HC reference standard (lower panel). (C) Multiple reaction monitoring-like (MRM) chromatograms targeting 22-HC isomers ([M]+ ➔[M-Py]+ ➔355) found in placental (upper panel), and authentic standards of [2H7]22S-HC (central panel) and [2H7]22R-HC (lower panel). (D) MS3 ([M]+ ➔[M-Py]+ ➔) spectra of 22S-HC identified in placenta (upper panel) and [2H7]22S-HC reference standard (lower panel). (E) MRM-like chromatograms targeting 20S-HC ([M]+ ➔[M-Py]+ ➔327) in placenta (upper panel) and [2H7]20S-HC authentic standard (lower panel). (F, G) MS3 ([M]+ ➔[M-Py]+ ➔) spectra of syn and anti conformers of 20S-HC identified in placenta (upper panels) and of [2H7]20S-HC reference standard (lower panels). (H) 20S-HC and 24S-HC can be resolved via MRM but not by chromatography alone even when using an extended chromatographic gradient (37 min). Peaks corresponding to 20S-HC and 24S-HC coalesce in the RIC for their [M]+ ions (upper panel), but are resolved by their specific MRMs, i.e. 20S-HC ([M]+ ➔[M-Py] ➔327, central panel) and 24S-HC ([M]+ ➔[M-Py]+ ➔353, lower panel). See Supplemental Figure S3 for MS3 spectra of 24S-HC. As data was collected during different sessions, 17 min gradient chromatograms (A, C, E), have been aligned to the peak corresponding to 26-HC in NIST SRM 1950 plasma.



In many LC-MS/MS studies oxysterols are identified by MRM where the transition is often non-specific (16, 20). This provides high sensitivity but relies on chromatographic separation of isomers and co-elution with isotopic labelled standards (21). In an initial interpretation of the data presented in Figure 2A (upper panel), the peak at 6.90 min was assumed to be 24S-HC, presumably from contaminating blood. However, closer scrutiny of the chromatogram and relevant MS3 spectra suggested that the earlier eluting peak 6.64 min was one of the syn or anti conformers of 20S-HC. 20S-HC has a characteristic MS3 fragmentation spectrum with a major fragment ion at 327.2 (*e’, Figure 2F and Supplemental Figure S2B). By generating a MRM chromatogram for [M]+ ➔[M-Py]+ ➔327.2, two peaks corresponding to the syn and anti conformers of 20S-HC are revealed (Figure 2E). The second peak co-elutes with 24S-HC, of which minor quantities are present as revealed by the 24S-HC characteristic fragment ion at m/z 353.3 (‘*f, Figure 2G upper panel & Supplemental Figure S1D). However, by extending the chromatographic gradient and by exploiting the specific MRM chromatograms i.e. [M]+ ➔[M-Py]+ ➔327.2 for 20-HC and [M]+ ➔[M-Py]+ ➔353.3 for 24-HC, the two isomers can be partially resolved (Figure 2H, see Supplemental Figure S3 for the MS3 spectrum of 24S-HC). Fortuitously, as both 20S-HC and 24S-HC give syn and anti conformers following GP-derivatisation, the first peak of 20S-HC (12.73 min) is completely resolved from both peaks of 24S-HC and it is only the second peak of 20S-HC and the first peak of 24S-HC that partially co-elute, leaving the second peak of 24S-HC (16.04 min) completely resolved from 20S-HC.

As is evident from Figures 2A, H, other monohydroxycholesterols were also observed in placenta including (25R)26-hydroxycholesterol (26-HC, also known by the non-systematic name 27-hydroxycholesterol, 27-HC) and 7α-hydroxycholesterol (7α-HC). MS3 spectra are shown in Supplemental Figure S3. 7β-Hydroxycholesterol (7β-HC) was also observed, this like 7α-HC may be endogenous, but can also be formed during sample preparation by ex vivo oxidation (22). In placenta minor quantities of (25R)26-hydroxycholest-4-en-3-one and 22R-hydroxycholest-4-en-3-one, the natural 3-oxo-4-ene relatives of 26-HC and 22R-HC, respectively, were also observed, but are the subject of a separate report (23).



3.1.2 Dihydroxycholesterols, trihydroxycholesterols, pregnenolone and progesterone

The second step in the conversion of cholesterol to pregnenolone by CYP11A1 is the generation of 20R,22R-diHC from 22R-HC (Figure 1). The RIC (m/z 555.4317 ± 5 ppm) for dihydroxycholesterols reveals two major peaks which appear at retention times, and give identical MS3 ([M]+ ➔[M-Py]+ ➔) spectra, to the authentic standard of 20R,22R-diHC and are identified as the syn and anti conformers of the GP-derivative (Figures 3A, B). The MS3 fragmentation pattern shows features of both 20-HC (*e’, m/z 327.2, Supplemental Figure S2C) and 22-HC (*f’-16, m/z 355.3, Supplemental Figure S2D) and to search for possible epimers of 20R,22R-diHC, MRM-like chromatograms were constructed for the transitions [M]+ ➔[M-Py]+ ➔327.2 and [M]+ ➔[M-Py]+ ➔355.3 (Figure 3A). A minor peak was observed at 5.04 min, but the MS3 fragmentation pattern corresponded to a different isomer (x,y-diHC), possibly 22,23-dihydroxycholesterol (22,23-diHC, Figures 3C upper panel, and Supplemental Figure S2E). Unsurprisingly, when a search was made for pregnenolone by constructing the appropriate RIC (m/z 450.3115) this steroid was evident as was progesterone (m/z 448.2959), its HSD3B1 oxidised metabolite, in the fraction not treated with cholesterol oxidase i.e. fraction B (Figures 3D, E). Besides 20R,22R-diHC and the presumptively identified 22,23-diHC, low levels of 7α,(25R)26-dihydroxycholesterol (7α,26-diHC) were also found in placenta (Figures 3A, C).




Figure 3 | LC-MS(MSn) analysis of GP-derivatised 20R,22R-diHC and its metabolites in placenta. (A) RIC (m/z 555.4317 ± 5 ppm) corresponding to the [M]+ ion of dihydroxycholesterols (diHC, upper panel). MRM-like chromatograms targeting 20R,22R-diHC ([M]+ ➔[M-Py]+ ➔327, central panel) and ([M]+ ➔[M-Py]+ ➔355, lower panel). (B) MS3 ([M]+ ➔[M-Py]+ ➔) spectra of 20R,22R-diHC from placenta (upper panel) and of an authentic standard (lower panel). (C) MS3 ([M]+ ➔[M-Py]+ ➔) spectra of other dihydroxycholesterols found in placenta, possibly 22,23-diHC (upper panel) and 7α,26-diHC (lower panel). (D) RICs (m/z 450.3115) corresponding to pregnenolone (upper panel) and m/z 448.2959 corresponding to progesterone. (E) MS3 ([M]+ ➔[M-Py]+ ➔) spectra of progesterone from placenta (upper panel) and of the reference standard (lower panel). (F) RIC (m/z 571.4266 ± 5 ppm) corresponding to the [M]+ ion of trihydroxycholesterols (triHC, upper panel). MRM-like chromatograms targeting 20R,22R,x-triHC ([M]+ ➔[M-Py]+ ➔327, central panel) and ([M]+ ➔[M-Py]+ ➔353, lower panel). In the structure shown in the lower panel, one of R1, R2 or R3 is a hydroxy group, the other two are hydrogens. (G) MS3 ([M]+ ➔[M-Py]+ ➔) spectrum of the trihydroxycholesterol found in placenta and commensurate with the 20R,22R,26-triHC structure. (H) MS3 ([M]+ ➔[M-Py]+ ➔) spectra of other trihydroxycholesterols with possible structures of 20R,22R,24-triHC (upper panel) and 20R,22R,23-triHC. In the absence of authentic standards 20R,22R stereochemistry is assumed on the presumption that the triHCs are derived from 20R,22R-diHC.



20R,22R-diHC extracted from placenta gives intense signals in LC-MS and based on this and on the additional presumptive identification of 22,23-diHC, it is likely that other hydroxylase activities are present in placenta besides those normally associated with CYP11A1, potentially resulting in the formation of trihydroxycholesterols (triHC). The RIC for triHC (m/z 571.4266 ± 5 ppm) reveals three major peaks (Figure 3F upper panel). To tighten the search for hydroxylated metabolites of 20R,22R-diHC, MRM-like chromatograms were generated for the major side-chain cleavage fragment ions associated with the 20R,22R-diHC structure i.e. [M]+ ➔[M-Py]+ ➔327.2, [M]+ ➔[M-Py]+ ➔353.3 (cf. Figure 3B). Again, three major peaks were evident in these chromatograms. Interrogation of the respective MS3 spectra suggested isomers of 20,22,x-triHC, where x is the location of an additional hydroxy group on the side-chain. Considering the spectrum of the last eluting isomer at 3.05 min (Figures 3F, H lower panel), besides pairs of fragment ions at m/z 325/327 (‘*e/ *e’),  m/z 353/355 (‘*f-16/ *f’-16) a dominating fragment ion is observed at m/z 383 (‘*g-16), this pattern is consistent with a 20R,22R,23-triHC isomer (Supplemental Figure S2F cf. S2C). Considering the isomer eluting second at 2.01 min (Figure 3F), the MS3 spectrum shows an additional fragment ion at m/z 397 (‘*h-16, Figure 3H upper panel); the structure that explains this fragment ion formation most easily is 20R,22R,24-triHC (Supplemental Figure S2G, cf. S2C & S2D). The MS3 spectrum of the first eluting peak at 1.56 min (Figure 3G) does not show the fragment-ions at m/z 383 or 397 (Figure 3H), suggesting that the extra hydroxy group does not encourage additional side-chain fragmentation. The most likely structures for this isomer are 20R,22R,26-triHC or perhaps 20R,22R,25-triHC (Supplemental Figure S2H, I, cf. S2C & S2D). Note, authentic standards are not available for the 20,22,x-triHC isomers and stereochemical assignments are made based on biosynthetic considerations. As was the situation with 22R-HCO, a minor proportion of 20R,22R-dihydroxysterols are found as the 3-oxo-4-ene, i.e. 20R,22R-dihydroxycholest-4-en-3-one (20R,22R-diHCO) (23).



3.1.3 Cholestenoic acids

Sterol 27-hydroxylase (CYP27A1) is the enzyme that introduces both (25R)26-hydroxy and (25R)26-carboxy groups to sterols (Figure 1) (24), it is expressed in trophoblast cells of the placenta (25). We identify 26-HC (Figures 2A, H; Supplemental Figure S3D) and 3β-hydroxycholest-5-en-(25R)26-oic acid (3β-HCA, Supplemental Figure S4) in placenta, and there is the possibility that 20R,22R-diHC may be a substrate for CYP27A1 and be metabolised via 20R,22R,26-triHC to the C27 bile acid 3β,20R,22R-trihydroxycholest-5-en-(25R)26-oic acid (3β,20R,22R-triHCA) in placenta (Figure 1). The RIC appropriate for 3β,20R,22R-triHCA (m/z 585.4059 ± 5ppm) reveals two major and a minor peak (Figure 4A) of which only the first gives an MS3 spectrum compatible with a 3β,20R,22R-triHCA structure (Figure 4B & Supplemental Figure S2J & K, cf. Supplemental Figure S2H, I). The similarity between the MS3 spectra of 20R,22R-diHC, and the presumptively identified 20R,22R,26-triHC and 3β,20R,22R-triHCA can be visualised in Figure 4C where the low-middle m/z range of the three spectra are shown on the same m/z scale. While the low-middle m/z range provides evidence for the 20,22-dihydroxy structural motif (presumably 20R,22R-) the high m/z range (Figure 4B) is indicative of a C-26 acid. Sterol acids show characteristic neutral losses from the [M-Py]+ ion corresponding to the net loss of H2CO2 + n(H2O), where n is the number of OH groups on the sterol beyond that derivatised at C-3 (19). In Figure 4B we see such losses giving fragments at m/z 437 (M-Py-H2O-H2CO2 i.e. ‘*j-18) and m/z 419 (M-Py-2H2O-H2CO2 i.e. ‘*j-36). These fragment ions are associated with satellite peaks at m/z 440 ([M-Py-61]+ and 422 ([M-Py-79]+) providing a pattern characteristic of a trihydroxycholestenoic acid (See Supplemental Figure S2L). Note, the third hydroxy group is the site of derivatisation. The other two chromatographic peaks give almost identical MS3 spectra (Figure 4D) presumably syn and anti conformers of a second isomer whose structure is not obvious from the MS3 spectra, although fragment-ions at m/z 385, 397 and 471 are probably structurally significant.




Figure 4 | LC-MS(MSn) analysis of GP-derivatised 3β,20R,22R-triHCA, its isomers and of 3β,20R,22R-triH-Δ24-CA in placenta. (A) RIC (m/z 585.4059 ± 5 ppm) corresponding to the [M]+ ion of trihydroxycholestenoic acids (upper panel). MRM-like chromatograms targeting 3β,20R,22R-triHCA ([M]+ ➔[M-Py]+ ➔327, central panel) and ([M]+ ➔[M-Py]+ ➔353, lower panel). (B) MS3 ([M]+ ➔[M-Py]+ ➔) spectrum postulated to correspond to 3β,20R,22R-triHCA. (C) Comparison of MS3 ([M]+ ➔[M-Py]+ ➔) spectra of 20R,22R-diHC (upper panel) with spectra postulated to correspond to 20R,22R,26-triHC (central panel) and 3β,20R,22R-triHCA (lower panel) over the m/z range 130 – 400. (D) MS3 spectra of two other isomers but the spectra do not appear to be of cholestenoic acids. (E) RIC (m/z 583.3902 ± 5 ppm) corresponding to the [M]+ ion of a trihydroxycholestadienoic acid (upper panel). MRM-like chromatograms targeting 3β,20R,22R-triH-Δ24-CA ([M]+ ➔[M-Py]+ ➔327, central panel) and ([M]+ ➔[M-Py]+ ➔353, lower panel). (F) MS3 ([M]+ ➔[M-Py]+ ➔) spectrum postulated to correspond to 3β,20R,22R-triH-Δ24-CA. As was the case with 20R,22R,26-triHC in Figure 3, the 20R,22R-stereochemistry is assumed in 3β,20R,22R-triHCA and 3β,20R,22R-triH-Δ24-CA.



Cholestenoic acids are intermediates in bile acid biosynthesis pathways (26–28). In the route towards C24 acids, C27 acids become converted to their CoA-thioesters by bile acid CoA-synthetase (BACS, SLC27A5), stereochemistry at C-25 is inverted by α-methylacyl-CoA racemase (AMACR) and a double bond introduced at Δ24 with trans geometry by acyl-CoA oxidase 2 (ACOX2, see Figure 1) (27). The next steps are catalysed by D-bifunctional protein (DBP, HSD17B4) and lead to a C-24 oxo group. Beta-oxidation by sterol carrier protein 2 (SCP2) then gives a C24 CoA-thioester which is finally amidated with glycine or taurine or hydrated to give the C24 acid (27). In bioanalysis, intermediates are almost always observed as the carboxylic acids rather than the thioesters (28). Following this pathway, the CoA-thioester of 3β,20R,22R-triHCA would be isomerised from the 25R-epimer to one with 25S-stereochemistry which would then be oxidised to the CoA-thioester of 3β,20R,22R-trihydoxycholest-5,24-dienoic acid (3β,20R,22R-triH-Δ24-CA, Figure 1). Shown in Figure 4E is the RIC (m/z 583.3902 ± 5 ppm) appropriate to the [M]+ ion of 3β,20R,22R-triH-Δ24-CA, along with MRM-like chromatograms characteristic of sterols with 20- and 22-hydroxylation of the side-chain. One major chromatographic peak is evident at 2.20 min, and the MS3 ([M]+ ➔[M-Py]+ ➔) spectrum associated with this peak (Figure 4F) resembles, in the low to middle m/z range, that of 3β,20R,22R-triHCA (Figure 4B), however, the fragment-ion observed at m/z 355 (*f’-16) in spectrum of 3β,20R,22R-triHCA is replaced by one at m/z 371 (*f’) in the spectrum shown Figure 4F. This spectrum is compatible with the 3β,20R,22R-triH-Δ24-CA structure (see Supplemental Figures S2M–O). Further evidence for the MS3 spectrum presented in Figure 4F corresponding to 3β,20R,22R-triH-Δ24-CA is the presence of fragment ions characteristic of sterol acids, ‘*j-18 (M-Py-H2O-H2CO2) at m/z 435 and ‘*j-36 (M-Py-2H2O-H2CO2) at m/z 417. These fragment ions are associated with satellite peaks at m/z 438 ([M-Py-61]+ and 420 ([M-Py-79]+, see Supplemental Figure S2N). However, as is the case with other postulated structures definitive identification awaits synthesis of the authentic standard. Again, as was the case with 20R,22R,26-triHC, the 20R,22R-stereochemistry is assumed in 3β,20R,22R-triHCA and 3β,20R,22R-triH-Δ24-CA. Note the ultimate C24 bile acid 3β,20R,22R-trihydroxychol-5-enoic acid was not observed, perhaps due to low expression of HSD17B4 or SCP2 in placenta.




3.2 Identification of oxysterols in cord and maternal plasma

To investigate if the placental oxysterols are transported to the fetus, umbilical cord plasma derived from umbilical cord blood was analysed for oxysterols. The data was compared to the oxysterol profiles in plasma from maternal blood, taken 1 - 2 day before elective caesarean section and plasma from “control” non-pregnant females. As might be expected, the oxysterol profile of cord plasma resembles that of non-pregnant females, but with the additional presence of CYP11A1-derived oxysterols. 22R-HC is present in both cord and maternal plasma but is absent from controls (Figures 5A, B, 6A–C; Table 1). If present, 20S-HC is at levels in cord, maternal and control plasma samples below the limit of detection (0.1 ng/mL). The dihydroxycholesterol 20R,22R-diHC is the dominant oxysterol in cord plasma, it is also a major oxysterol in maternal plasma but is absent from control plasma (Figures 5C, D, 6D–F). Presumptively identified 20R,22R,26-triHC was near the limit of quantification in both cord and maternal plasma but was absent from controls (Figures 5E, F, 6G, H). The presumptively identified C27 bile acid 3β,20R,22R-triHCA was evident in cord plasma and just detected in maternal plasma but was absent from control plasma (Figures 5G, H, 7A–C). Presumptively identified 3β,20R,22R-triH-Δ24-CA was only detected in cord plasma (Supplemental Figures S5A, B).




Figure 5 | LC-MS(MSn) analysis of GP-derivatised oxysterols in umbilical cord plasma. (A) RICs for monohydroxycholesterols (m/z 539.4368 ± 5 ppm) in cord (upper panel) and control non-pregnant female plasma (lower panel). (B) MS3 ([M]+ ➔[M-Py]+ ➔) spectrum of 22R-HC from cord plasma. (C) RICs for dihydroxycholesterols (m/z 555.4317 ± 5 ppm) in cord (upper panel) and control female plasma (lower panel). (D) MS3 ([M]+ ➔[M-Py]+ ➔) spectrum of 20R,22R-diHC from cord plasma. (E) RICs for trihydroxycholesterols (m/z 571.4266 ± 5 ppm) in cord (upper panel) and control female plasma (lower panel). (F) MS3 ([M]+ ➔[M-Py]+ ➔) spectrum postulated to correspond to 20R,22R,26-triHC. (G) RIC (m/z 585.4059 ± 5 ppm) corresponding to the [M]+ ion of trihydroxycholestenoic acids in cord plasma (upper panel) and control female plasma. (H) MS3 ([M]+ ➔[M-Py]+ ➔) spectrum postulated to correspond to 3β,20R,22R-triHCA. Note, cord and control female plasma were analysed using a different LC column (same type, different batch) to placenta.






Figure 6 | LC-MS(MSn) analysis of GP-derivatised oxysterols in amniotic fluid and plasma from pregnant females (maternal plasma). (A) RICs for monohydroxycholesterols (m/z 539.4368 ± 5 ppm) in amniotic fluid (upper panel), and in plasma from pregnant females (lower panel). (B) MRM-like ([M]+ ➔[M-Py]+ ➔355) chromatograms targeting 22-HC in amniotic fluid (upper panel) and in plasma from pregnant females (lower panel). (C) MS3 ([M]+ ➔[M-Py]+ ➔) spectra of 22R-HC identified in amniotic fluid (upper panel) and in plasma from pregnant females (lower panel). (D) RIC (m/z 555.4317 ± 5 ppm) corresponding to the [M]+ ion of dihydroxycholesterols identified in amniotic fluid (upper panel) and in plasma from pregnant females (lower panel). (E) MRM-like chromatograms targeting 20R,22R-diHC ([M]+ ➔[M-Py]+ ➔327) in amniotic fluid (upper panel) and in plasma from pregnant females (lower panel). (F) MS3 ([M]+ ➔[M-Py]+ ➔) spectra of 20R,22R-diHC in amniotic fluid (upper panel) and in plasma from pregnant females (lower panel). (G) RICs for trihydroxycholesterols (m/z 571.4266 ± 5 ppm) in amniotic fluid (upper panel) and in plasma from pregnant females (lower panel). (H) MS3 ([M]+ ➔[M-Py]+ ➔) spectra of the trihydroxycholesterols found in amniotic fluid (upper panel) and in plasma from pregnant females (lower panel) commensurate with the 20R,22R,26-triHC structure.






Figure 7 | LC-MS(MSn) analysis of GP-derivatised trihydroxycholestenoic acids found in amniotic fluid and plasma from pregnant females (maternal plasma). (A) RICs (m/z 585.4059 ± 5 ppm) corresponding to the [M]+ ion of trihydroxycholestenoic acids found in amniotic fluid (upper panel) and in plasma from pregnant females (lower panel). (B) MRM-like ([M]+ ➔[M-Py]+ ➔327) chromatograms targeting 3β,20R,22R-triHCA in amniotic fluid (upper panel) and in plasma from pregnant females (lower panel). (C) MS3 ([M]+ ➔[M-Py]+ ➔) spectra postulated to correspond to 3β,20R,22R-tiHCA in amniotic fluid (upper panel) and in plasma from pregnant females (lower panel).



Besides the oxysterols discussed above, the profile of cord and maternal plasma was investigated for other oxysterols and sterol acids routinely found in adult plasma, this data is included in Table 1. While it was possible to make quantitative measurements for mono- and di-hydroxycholesterols thanks to the availability of authentic standards, the absence of standards for 20R,22R,26-triHC and 3β,20R,22R-triHCA means that the values determined for these metabolites are semi-quantitative, but by using the same internal standard for quantification across samples should give reliable measurements for relative quantification across the sample groups.

In cord plasma, but not plasma from pregnant and non-pregnant females, 22R-HCO was found but at a much lower level than 22R-HC. 20R,22R-diHCO was found in both cord plasma and plasma from pregnant females, but not non-pregnant females. Further details are reported elsewhere (23).



3.3 Identification of oxysterols in amniotic fluid

Amniotic fluid is derived from maternal plasma but also contains progressively more fetal urine as pregnancy continues. One of its functions is to facilitate the exchange of biochemicals between mother and fetus. Based on the data from analysis of placenta and cord plasma, it is reasonable to expect to find 22R-HC and its down-stream metabolites in amniotic fluid. As in cord and maternal blood 22R-HC (Figures 6A–C), 20R,22R-diHC (Figures 6D–F), 20R,22R,26-triHC (Figures 6G, H) and 3β,20R,22R-triHCA (Figures 7A–C) were identified and quantified in amniotic fluid (Table 1). Presumptively identified 3β,20R,22R-triH-Δ24-CA was also detected but not quantified (Supplemental Figures S5C, D).



3.4 Relative quantification between samples groups

As mentioned above although the measurement of some of the metabolites of 22R-HC is only semi-quantitative, relative values are likely to be accurate (Table 1). Shown in Figure 8 are plots displaying the quantities determined in the different samples for 22R-HC and its dominant metabolites. With respect to these metabolites, cord plasma is very different to control plasma from non-pregnant females with statistical differences also observed between cord and maternal plasma for 20R,22R-diHC and 3β,20R,22R-triHCA.




Figure 8 | Concentration of 22R-HC and downstream metabolites. For each sample type: Control non-pregnant female plasma (plasma, n = 5); cord plasma (n = 14); maternal (pregnant female) plasma (n = 10); and amniotic fluid (n = 5). Concentrations of (A) 22R-HC, (B) 20R,22R-diHC, (C) 20R,22R,26-triHC and (D) 3β,20R,22R-triHCA were determined by LC-MS exploiting charge-tagging utilising GP derivatisation. Vales in (A) and (B) are quantitative (authentic standards available), those in (C) and (D) are semi-quantitative (authentic standards not available). The band represents the median where the whiskers extend to the most extreme upper and lower data points which are no more than 1.5 times the range between the first and third quartile. Non-parametric Kruskal-Wallis multiple comparisons test was used for comparison of data. *P < 0.05; **P < 0.01, ***P < 0.001 ****P < 0.0001.





3.5 Quantification of other oxysterols

Besides the oxysterols discussed in the previous section, other oxysterols typically measured by the charge-tagging approach were also measured and are presented in Table 1 (11, 14, 19). Note the values for the oxysterols and sterol acids for which there is no authentic standard were quantified against [2H7]24R/S-HC and are only semi-quantitative values.




4 Discussion

In the current study we have investigated the oxysterol profile of placenta, cord plasma, maternal plasma, non-pregnant female plasma (control plasma) and amniotic fluid. In each of the pregnancy samples we identify metabolites derived from CYP11A1 which are essentially absent from non-pregnant females (Figure 8; Table 1). There are two significant findings from the current study. Firstly, the rediscovery of 20S-HC and the discovery of 22S-HC in human placenta (7), and secondly the uncovering of a shunt pathway for 22R-HC metabolism to C27 bile acids.

20S-HC is a controversial oxysterol as it has been detected in very few analytical studies (7, 8, 29, 30) despite being biologically active in vitro. 20S-HC, like 22R-HC, is a ligand to the liver X receptors α and β (LXRα, LXRβ) (31) and to the retinoic acid receptor-related orphan receptor γ (RORγ) (32), but unlike 22R-HC, activates the G protein-coupled receptor (GPCR) Smoothened (SMO), a key protein in the hedgehog signalling pathway, required for proper cell differentiation in the embryo (33, 34). 20S-HC also inhibits the processing of SREBP-2 (sterol regulatory element-binding protein 2) to its active form as the master transcription factor regulating cholesterol biosynthesis (35, 36), presumably by binding to INSIG (insulin induced gene) in a manner similar to other side-chain hydroxycholesterols (37). Recently, 20S-HC has been identified as a ligand to the sigma 2 (σ2) receptor (38), also known as transmembrane protein 97 (Tmem97), which is expressed in the central nervous system (39), and has been suggested to be a chaperone protein for NPC1 (Niemann Pick C1), the lysosomal cholesterol transport protein (38). The enzyme required to biosynthesise 20S-HC has not been identified, although CYP11A1 has been reported to generate both 20-hydroxyvitamin D3 and 20,22-dihydroxyvitamin D3 or 20,23-dihydroxyvitamin D3 from vitamin D3 (40, 41). The high level of CYP11A1 in placenta (17), makes this a good candidate enzyme for biosynthesis of 20S-HC. Like 20S-HC, there are few reports of the detection of 22S-HC in biological systems (30), however, 22S-HC has been identified as the sulphate ester in human meconium (10), the earliest stool of a mammalian infant, and in the human cell lines HCT-15 and HCT-116 (42). Unlike 20S-HC and most other side-chain oxysterols, 22S-HC is not an LXR agonist (43), behaving more like an antagonist (44), neither does it activate the Hh signalling pathway through SMO (33).

22R-HC and 20R,22R-diHC are abundant oxysterols in cord plasma and placenta. 20R,22R-diHC, like 22R-HC and 20S-HC, is an LXR ligand and all three appears to have similar activating capacity (45). Although the primary function of the LXRs is considered to be the regulation of cellular cholesterol (46), LXRs also appear to have developmental functions, being required for the development of dopaminergic neurons in midbrain (47). In fact, LXRβ also appears to have a protective role towards dopaminergic neurons, as the synthetic agonist GW3965 protects against the loss of dopaminergic neurons in a Parkinson’s disease mouse model (48).

CYP11A1 is an inner mitochondrial membrane protein and catalyses the side-chain cleavage of cholesterol to pregnenolone. The intermediates in this reaction scheme i.e. 22R-HC and 20R,22R-diHC, bind more tightly to CYP11A1 and are converted to pregnenolone at a greater rate than cholesterol (49). It is generally considered that 22R-HC and 20R,22R-diHC remain in the active site until all three oxidation steps are complete (3), however, the abundance of 22R-HC, and the observation of 20R,22R-diHC, in cord plasma, maternal plasma and placenta in this study would argue that this is not always the case.

Pregnenolone is converted to progesterone by HSD3B1 which is localised in both mitochondria and the endoplasmic reticulum (50, 51), and is highly expressed in placenta (52). Progesterone has many roles associated with the establishment and maintenance of pregnancy, including ovulation, uterine and mammary gland development and the onset of labour (53). Progesterone suppresses spontaneous uterine contractility during pregnancy and, in most mammals, a fall in systemic progesterone is required for the initiation of labour at term. However, in humans, labour occurs in the presence of elevated circulating levels of progesterone. Despite this, disruption of progesterone signalling by the progesterone receptor (PR) antagonist RU486 at any stage of pregnancy results in myometrial contractions and labour, strongly suggesting that reduced progesterone signalling is responsible for labour in women (54). In the current study we have uncovered a shunt pathway that operates in parallel to pregnenolone/progesterone biosynthesis in the placenta (Figure 1). Beyond 20R,22R-diHC we identified three trihydroxycholesterol isomers, one of which gives an MS3 fragmentation pattern consistent with 20R,22R,26-triHC, and two dihydroxycholestenoic acid isomers one of which gives a fragmentation pattern we assign to 3β,20R,22R-triHCA. A down-stream metabolite 3β,20R,22R-triH-Δ24-CA was also presumptively identified. Here we assign stereochemistry based on the assumption of 20R,22R-diHC being the precursor, but we await the chemical synthesis of these metabolites to definitively confirm their identification, this will be required whether LC-MS/MS or gas chromatography - MS is the identification method. However, their presence during pregnancy would define a new pathway of C27 bile acid biosynthesis (Figure 1). Most of the metabolites of this pathway are also observed in cord plasma, maternal plasma and amniotic fluid (Table 1). Notably, the amniotic fluid samples were from 16 – 18 weeks of gestation and the other pregnancy samples 37+ weeks indicating a pathway operational throughout pregnancy. CYP27A1 is the likely sterol hydroxylase which will convert 20R,22R-diHC to 20R,22R,26-triHC and on to 3β,20R,22R-triHCA. Like CYP11A1, CYP27A1 is an inner mitochondrial membrane enzyme and is expressed in placenta (6, 25). Although the C27 bile acid 3β,20R,22R-triHCA has not previously been identified, a C27 bile acid with 22R-hydroxylation has been identified in a patient with Zellweger’s syndrome (55). It should be noted that 20S-HC will also act as a substrate for pregnenolone formation via a CYP11A1 catalysed reaction (30), presumably via 20R,22R-diHC (56). Thus, a potential route for 20S-HC metabolism is through 20R,22R-diHC and on to C27 bile acids.

How important is the 20R,22R-diHC shunt pathway? At present we can only speculate, but the LXR-activating capacity of 22R-HC and 20R,22R-diHC and the expression of both LXRα and β during mammalian development makes it tempting to speculate that 20R-HC, 20R,22R-diHC and also 20S-HC by activating LXR, and in the case of 20S-HC by binding to Smo and Tmem97, are important for development of the embryo (Figure 9). Interestingly Tmem97 is a SREBP target gene (57), meaning that 20S-HC is both a Tmem97 ligand and a regulator of its synthesis. Tmem97 is associated with NPC1 in the endosomal-lysosomal compartment linking it to cholesterol transport. Little is known about the biological activities of trihydroxycholesterols and trihydroxycholestenoic acids and it is unknown whether 20R,22R,26-triHC, 3β,20R,22R-triHCA and 3β,20R,22R-triH-Δ24-CA are simply inactive intermediates on the road to bile acids or biologically active molecules themselves. A final point of note, during the course of this study we found evidence that HSD3B1 can oxidise sterols as well as steroids. Further details are reported elsewhere (23).




Figure 9 | Schematic showing some cholesterol metabolites identified in placenta and their interactions with protein receptors. 22R-HC, 22S-HC and 20S-HC are formed from cholesterol, 22R-HC by CYP11A1 which may also be the enzyme that catalyses the formation of 20S-HC. Oxysterols are shown on a light green background, steroids on a light blue background, bile acids on a brown background and enzymes on a dark green background. Nuclear receptors are shown on a purple background, GPCR on an orange background, sigma-2 receptor on a black background and INSIG on a mustard background. Blue arrows indicate a “process”, red arrows a chemical reaction, T signifies inhibition of a process, arrows with a diamond arrowhead indicate activation of a receptor, and green oval arrowheads indicate catalysis. Pink double headed arrows link processes.
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Introduction

During pregnancy, arterial hypertension may impair placental function, which is critical for a healthy baby's growth. Important proteins during placentation are known to be targets for O-linked β-N-acetylglucosamine modification (O-GlcNAcylation), and abnormal protein O-GlcNAcylation has been linked to pathological conditions such as hypertension. However, it is unclear how protein O-GlcNAcylation affects placental function and fetal growth throughout pregnancy during hypertension.



Methods

To investigate this question, female Wistar and spontaneously hypertensive rats (SHR) were mated with male Wistar rats, and after pregnancy confirmation by vaginal smear, rats were divided into groups of 14, 17, and 20 days of pregnancy (DOPs). On the 14th, 17th, and 20th DOP, rats were euthanized, fetal parameters were measured, and placentas were collected for western blot, immunohistochemical, and morphological analyses.



Results

SHR presented a higher blood pressure than the Wistar rats (p=0.001). Across all DOPs, SHR showed reduced fetal weight and an increase in small-for-gestational-age fetuses. While near-term placentas were heavier in SHR (p=0.006), placental efficiency decreased at 17 (p=0.01) and 20 DOPs (p<0.0001) in this group. Morphological analysis revealed reduced junctional zone area and labyrinth vasculature changes on SHR placentas in all DOPs. O-GlcNAc protein expression was lower in placentas from SHR compared with Wistar at 14, 17, and 20 DOPs. Decreased expression of O-GlcNAc transferase (p=0.01) and O-GlcNAcase (p=0.002) enzymes was found at 14 DOPs in SHR. Immunohistochemistry showed reduced placental O-GlcNAc content in both the junctional zone and labyrinth of the placentas from SHR. Periodic acid-Schiff analysis showed decreased glycogen cell content in the placentas from SHR at 14, 17, and 20 DOPs. Moreover, glucose transporter 1 expression was decreased in placentas from SHR in all DOPs.



Conclusions

These findings suggest that decreased protein O-GlcNAcylation caused by insufficient placental nutritional apport contributes to placental dysfunction during hypertensive pregnancy, impairing fetal growth.
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Introduction

Hypertensive disorders of pregnancy (HDPs) are a worldwide health problem that complicate up to 10% of all pregnancies and are among the leading causes of pregnancy-related mortality and morbidity, with an estimated 14% of global pregnancy deaths (1, 2). Therefore, the term HDP is commonly used to describe a wide spectrum of patients, including those with mildly elevated blood pressure, as well as those with severe hypertension, with or without organ dysfunction (3). Although many pregnancies affected by hypertension usually progress well and have normal outcomes, there is an increased risk of complications such as preeclampsia, fetal growth restriction, and perinatal death (4). Despite various etiopathologies, HDPs are characterized by structural and functional alterations of the placenta (5, 6).

The placenta is undoubtedly known to be vital during pregnancy because it helps to establish the pregnant state, protect the embryo, and promote the exchange of nutrients, gasses, and waste products so that the embryo can survive and develop in the intrauterine environment (7). During the multiple events of placental development, several signaling pathways are triggered to coordinate these processes, and specific proteins that regulate placental function are known to be targets for post-translational modification involving glycans (8).

O-linked β-N-acetylglucosamine modification (O-GlcNAcylation) is a dynamic and reversible process that regulates protein stability, activity, and localization, and therefore cellular response, by the addition of a single saccharide to the serine, threonine, and tyrosine sites of nuclear, cytosolic, and mitochondrial proteins (9). The cycling of O-GlcNAcylation is tightly controlled by two unique and essential enzymes: O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), which catalyze the addition and removal of O-GlcNAc, respectively (10). The substrate for O-GlcNAcylation requires glucose conjugation with amino acids, lipids, and nucleic acids to produce uridine diphosphate-N-acetylglucosamine (UDP-GlcNAc) through the hexosamine biosynthetic pathway (HBP) (11). Therefore, HBP and O-GlcNAcylation are considered to be major nutrient-sensitive pathways (12, 13) and aberrant O-GlcNAcylation has been associated with metabolic disruption and pathological conditions, such as diabetes and arterial hypertension (14, 15).

The growth and development of a healthy baby require the transport of essential nutrients through the placenta, such as glucose and amino acids. Glucose reaches the growing fetus via numerous glucose transporters (GLUT) present in the placenta, where GLUT1 and GLUT3 isoforms are known to be major contributors to placental glucose transport (16, 17). Moreover, nutrient uptake in response to fetal demand is tightly coordinated by an array of signaling pathways, and O-GlcNacylation is known to be a nutrient-sensing pathway involved in glucose utilization (12, 13). Interestingly, arterial hypertension during pregnancy has been associated with impaired fetal growth and small-term babies. However, the involvement of the O-GlcNacylation pathway on placental nutritional apport and fetal development in this condition remains unknown.

Therefore, in the present study, we investigated how hypertension affects O-GlcNacylation of proteins, availability of glucose in the placenta, and fetal growth during pregnancy in hypertensive rats.



Materials and methods


Ethics statement

All the procedures and animal handling and maintenance were carried out according to the guidelines provided by the Brazilian College of Animal Experimentation upon approval by the Ethics Committee on the Use of Animals of the Federal University of Mato Grosso (CEUA-Araguaia; #23108.038471/2019-14).



Animals

Female Wistar and Spontaneously Hypertensive Rats (SHR) (12-14 weeks old, 180-200 g) obtained from the Laboratory of Vascular Biology and Histopathology of the Institute of Biological and Health Sciences at the Federal University of Mato Grosso were used in this study. The rats were maintained in the animal facility room, at 23 ± 2°C, with 12-hour light/dark cycles, fed a standard commercial diet, and received free water intake. The blood pressure was measured by tail-cuff plethysmography after three days of adaptation to the device, before mating.



Mating and pregnancy determination

For mating, females were housed with males of the same species during the night (of ±4 females for each male). By the morning of the following day, the rats were separated, and vaginal smears were taken to observe the presence of sperm and keratinized cells from the estrous cycle. If positive for the presence of spermatozoa, this was designated gestational day 0.



Experimental design

Pregnant SHR and Wistar rats were separated into hypertensive and normotensive groups, respectively, and divided into 14, 17, and 20 days of pregnancy (DOP) subgroups (n = 6, for each group). On the 14th, 17th, and 20th DOP, rats were anesthetized with 3% sodium pentobarbital (50 mg/kg body weight, i.p.) and submitted to laparotomies for removal of the placentas and fetuses. The placentas were cleaned of connective tissue, cut in half, and stored at -80°C or immersed in a fixative solution for the histological experiments. The living fetuses were individually weighted and classified according to the mean values of fetal weights in the normotensive group as small for gestational age [(SGA) fetal weight < Wistar mean - SD x 1.7]; appropriate for gestational age [(AGA) fetal weight within Wistar mean ± SD x 1.7]; and large for gestational age [(LGA) fetal weight > Wistar mean +SD x 1.7] (18), demised fetuses were not included. Posteriorly, rats were killed by pneumothorax, and fetuses were killed by placement in a CO2 chamber.



Western blotting

Placentas were immersed in liquid nitrogen and mechanically macerated to obtain total cell lysate by incubating samples with lysis buffer containing protease inhibitors. Protein concentration was determined using the Bradford Assay Kit (Sigma-Aldrich). Extracted proteins (60 μg per lane) were loaded and separated on a polyacrylamide gel (8-10%) by electrophoresis and transferred to a nitrocellulose membrane (Sigma-Aldrich). The success of protein transfer was further detected by Ponceau S staining. Non-specific binding sites were blocked with 5% skimmed dry milk in Tris-buffered saline solution with Tween-20 (TBS-T, pH 7.6) for 1 hour, at room temperature. Membranes were rinsed and incubated with primary antibodies overnight at 4°C under constant agitation. The following antibodies were used: anti-O-GlcNAc (Sigma-Aldrich Cat# O7764, RRID : AB_1079524, 1:500), anti-OGT (Abcam Cat# ab50273, RRID : AB_881784, 1:1000), anti-OGA (Sigma-Aldrich Cat# SAB4200311, RRID : AB_10898726, 1:500), anti-GLUT1 (Abcam Cat# ab115730, RRID : AB_10903230, 1:8000), anti-β-actin (Abcam Cat# ab8227, RRID : AB_2305186, 1:3000). Thereafter, membranes were removed from primary antibodies and washed with TBS-T. Membranes were treated with the respective secondary antibodies for 1 hour at room temperature. Protein bands were detected using the ECL Plus Western Blotting Detection System (GE Healthcare) and then quantified using an image-analysis software program. The protein expressions were normalized to the intensity of β-actin protein and were further expressed as arbitrary units.



Histological procedures

Placentas were fixed in methacarn solution (60% methanol, 30% chloroform, and 10% acetic acid), for 3 hours, at 4 °C, under constant agitation. Then, the placentas were dehydrated in successive alcohol dilutions, clarified in xylene, and subsequently infiltrated with paraffin. Sections of 4 µm thickness were made using a microtome, stretched in a floating bath at 50°C, and adhered to glass slides previously treated with poly-L-lysine 0.1% (Sigma) for better adhesion of the sections.



Hematoxylin and eosin staining

For morphological analysis, hematoxylin-eosin staining was performed. Sections were deparaffinized and rehydrated, and the slides were immersed in hematoxylin for 1 minute, rinsed in running water and in distilled water, and subsequently counterstained with aqueous eosin for 30 seconds.



Periodic Acid-Schiff (PAS) staining

Sections were deparaffinized and rehydrated. Slides were dipped in a periodic acid solution and rinsed in distilled water. Subsequently, slides were placed in Schiff’s solution (basic fuchsin, sodium bisulfite, hydrochloric acid, and distilled water) at room temperature and rinsed in sulfuric water. Finally, the histological sections were counterstained with Harris hematoxylin to fully recognize PAS-positive staining and rinsed well in distilled water.



Immunohistochemistry

Immunohistochemistry was performed according to a previously established protocol (19). Sections were deparaffinized and rehydrated. Each of the following steps was followed by rinses in 0.1M phosphate buffer solution (PBS) – pH 7.2-7.4. Antigenic epitope retrieval was performed by immersing slides in citrate buffer (pH 6.0) at 95°C for 25 minutes. Then, sections were incubated in a hydrogen peroxide solution (3% H2O2 (v/v) in PBS) to block endogenous peroxidase activity. To reduce nonspecific antigenic sites (background), the slides were incubated with Cas-Block solution (ThermoFisher Scientific), for 30 minutes. The incubation of the primary antibody was preceded by a series of standardizations, and the antibody dilutions were previously determined. The slides were subsequently incubated with the anti-O-GlcNAc primary antibody (Cell Signaling Technology Cat# 9875, RRID : AB_10950973), diluted 1:50 in PBS containing 0.3% (v/v) Tween 20, overnight at 4°C in a humid chamber. After extensive rinsing in PBS, all sections were incubated with biotin-conjugated goat anti-mouse IgG (Sigma-Aldrich Cat# A9044, RRID : AB_258431) diluted 1:250 in PBS for 1 h, at room temperature. The peroxidase reaction was visualized using the NovaRED® kit (Vector). A slight counter-stain was performed with Harris hematoxylin to provide a contrast to the chromogen. The secondary antibody specificity was tested by omitting the primary antibody. The specificity of the primary antibody was tested in experiments with positive control tissues, already described in the literature (19).



Histochemical, morphological, and morphometric analysis

Sections were examined in a Nikon Eclipse microscope, and the images were captured using a digital camera (Opton) and TCapture software. For morphometric analyses, the areas of the junctional zone and the labyrinth were measured in (mm2) using the Image-Pro-Plus software (Media Cybernetics, Silver Spring, MD, USA). PAS stain-positive cells were counted for each captured field and normalized by the area (mm2) of the junctional zone. They were expressed as the number of cells per mm2 of the junctional zone. Protein expression of immunohistochemistry staining was determined by semi-quantitative analysis using ImageJ Fiji (WS Rasband, National Institute of Health, Bethesda, MD) and was expressed as the percentage of staining intensity normalized by the nuclei number, as described previously (20).



Statistical analysis

Data were presented as mean ± standard error of the mean (SEM), and “n” represents the number of animals used in the experiment. Statistical analysis was performed using the Prisma program (GraphPad Prism 5.0, GraphPad Software Incorporated, CA) (GraphPad Software Inc.), with Student t test, compared to the respective normotensive group. For analysis between three or more groups, a one-way analysis of variance (One-Way ANOVA) followed by the Tukey post-test was used. For percentage analysis, Fisher’s exact test was used in the SPSS program (IBM SPSS Statistics 20). P values <0.05 were considered statistically significant.




Results


Reduced placental O-GlcNac, OGT, and OGA expression in SHR

Systolic blood pressure (SBP) was higher in SHR when compared to Wistar rats [(mmHg) 181 ± 3 vs. 128 ± 5 Wistar; p < 0.001] (Figure 1A). We accessed the O-GlcNac protein expression on placentas from SHR and Wistar rats at 14, 17, and 20 DOP. Placentas from SHR presented reduced O-GlcNac protein expression at 14, 17, and 20 DOP when compared to those from Wistar rats (Figure 1B). Moreover, reduced expression of OGT (0.5 ± 0.01 vs. 0.9 ± 0.1 Wistar; p = 0.01) and OGA (0.4 ± 0.01 vs. 1 ± 0.1 Wistar; p = 0.002) enzymes was found on 14 DOP in SHR (Figures 1C, D), but not in 17 or 20 DOP.




Figure 1 | Reduced placental O-GlcNAc, OGT and OGA expression in SHR. (A) Bar graph showing SBP (mmHg) in Wistar and SHR; n = 6 each group. (B) Upper representative picture of western blot membrane of placental O-Glcnac expression in Wistar and SHR at 14, 17 and 20 DOP. Bar graph showing the O-Glcnac expression in Wistar and SHR at 14, 17 and 20 DOP; n = 6 each group. (C) Upper representative picture of western blot membrane of placental OGT expression in Wistar and SHR at 14, 17 and 20 DOP. Bar graph showing the OGT expression in Wistar and SHR at 14, 17 and 20 DOP, n = 6 each group. (D) Upper representative picture of western blot membrane of placental OGA expression in Wistar and SHR at 14, 17 and 20 DOP. Bar graph showing the OGA expression in Wistar and SHR at 14, 17 and 20 DOP, n = 6 each group. Values are presented as means ± SEM, and data were analyzed by one‐way ANOVA, followed by Tukey post-test. *p < 0.05 vs Wistar at respective DOP. Protein expression was individually determined and corrected by β−actin expression.





Reduced fetal weight and increased percentage of small for gestational age (SGA) fetuses in SHR

Fetal parameters from pregnant SHR and Wistar rats at 14, 17, and 20 DOP are shown in Table 1. SHR presented increased pre-implantation losses. Reduced fetal weight with an increased number of small for gestational age (SGA) fetuses was found on SHR at 14, 17, and 20 DOP when compared to Wistar. The percentage of SGA fetuses increased throughout pregnancy in SHR, and near term, 100% of all the fetuses were found to be SGA in this group.


Table 1 | Fetal parameters from Wistar and SHR at 14, 17 and 20 DOP.





Placental structural and functional alterations in SHR

Once the fetal weight was decreased and the fetuses were smaller in SHR, we investigated the placenta (Table 2). Placental weight was found to increase throughout pregnancy, and near-term placentas from SHR were found to be significantly heavier when compared to those from Wistar rats [(g) 0.6 ± 0.02 vs. 0.4 ± 0.02 Wistar; p = 0.006]. On the other hand, placental efficiency, indicated by the fetal/placental weight ratio, decreased in SHR at 17 (1.7 ± 0.1 vs. 2.3 ± 0.1 Wistar; p=0.01) and 20 DOP (6 ± 0.2 vs. 10 ± 0.2 Wistar; p<0.0001).


Table 2 | Placental parameters from Wistar and SHR, at 14, 17 and 20 DOP.



Morphometric analysis showed that the junctional zone (Jz) increases throughout pregnancy, reaching a higher peak area on day 17 of pregnancy in both Wistar and SHR. However, placentas from SHR presented decreased Jz area on all DOP analyzed, compared to the respective Wistar group (Figures 2A–C). Although no alterations were found in the labyrinth zone (Lz) between groups (Figure 2B), the placental Lz from SHR presented a compacted area with thicker wall vessels and vascular congestion (Figure 2C).




Figure 2 | Morphometric and morphological alterations in placentas from SHR. (A) Bar graph showing the Jz area (mm2) of placentas from Wistar and SHR at 14, 17 and 20 DOP; n = 5-6 each group. (B) Bar graph showing the Lz (mm2) area of placentas from Wistar and SHR at 14, 17 and 20 DOP; n = 5-6 each group. (C) Hematoxylin & eosin-stained placentas (40X) from SHR and Wistar at 14, 17 and 20 DOP; Overall view of the labyrinth (Lz) region, junctional zone (Jz) and maternal decidua (Md). Values are presented as means ± SEM, and data were analyzed by Student unpaired t-test. *p < 0.05 vs Wistar at respective DOP.





Reduced protein O-GlcNAcylation on both Jz and Lz of the placentas from SHR

We performed immunohistochemistry to characterize the localization of the O-GlcNAc protein profile in placental tissue. Immunohistochemistry analysis showed reduced O-GlcNAc deposition on both Jz and Lz of the placentas from SHR when compared to Wistar rats (Figures 3A, B). In these zones, proteins from both endothelial and trophoblast cells were the most frequent targets for O-GlcNAcylation (Figure 3C).




Figure 3 | Reduced O-GlcNAc protein expression on both Jz and Lz of the placentas from SHR. (A) Bar graph showing the % of O-GlcNAc protein expression on the Jz of the placentas from Wistar and SHR; n = 4 each group. (B) Bar graph showing the % of O-GlcNAc protein expression on the Lz of the placentas from Wistar and SHR; n = 4 each group. (C) Immunoreaction on the Jz and Lz of the placentas from Wistar and SHR. After antigen retrieval, sections were treated with anti-O-GlcNAc (1:50) and biotin-conjugated goat anti-mouse IgG (1:250). Negative control sections were incubated with PBS or with the secondary antibody (omitting the primary antibody). Values are presented as means ± SEM, and data were analyzed by Student unpaired t-test. *p < 0.05 vs Wistar.





Reduced glucose storage and GLUT1 expression on placentas from SHR

Thus, we decided to investigate placental glucose uptake and storage. PAS analysis evidenced the presence of islets of glycogen cells in the Jz of placentas from both groups, with a greater amount of glycogen cells at 17 DOP when compared to the other gestational time points. We observed a decreased glycogen cell content in placental tissue from SHR at 14, 17, and 20 DOP when compared to Wistar (Figures 4A–D).




Figure 4 | Reduced glycogen cells content in placentas from SHR at 14, 17 and 20 DOP. (A-C) Bar graph showing the placental amount of glycogen cells per mm2 of Jz in Wistar and SHR at 14, 17 and 20 DOP, respectively. (D) Representative placental tissue sections showing PAS positive stained glycogen cells in Wistar and SHR at 14, 17 and 20 DOP. Values are presented as means ± SEM, and data were analyzed by Student unpaired t-test. *p < 0.05 vs Wistar at respective DOP.



Moreover, GLUT1 expression was found to be decreased in placentas from SHR at 14, 17, and 20 DOP when compared to Wistar rats (Figure 5).




Figure 5 | Reduced placental GLUT1 expression in SHR at 14, 17 and 20 DOP. Upper representative picture of western blot membrane of placental GLUT1 expression in Wistar and SHR at 14, 17 and 20 DOP. Bar graph showing the GLUT1 expression in Wistar and SHR at 14, 17 and 20 DOP; n=6 each group. Values are presented as means ± SEM, and data were analyzed by one‐way ANOVA, followed by Tukey post-test. *p < 0.05 vs Wistar at respective DOP. Protein expression was individually determined and corrected by β−actin expression.






Discussion

In this study, we sought to investigate the relationship between protein O-GlcNAcylation, placental glucose availability, and fetal growth throughout the pregnancy affected by hypertension. Our findings showed that hypertension interestingly promotes alterations in the protein O-GlcNAc profile throughout pregnancy that are associated with placental structure-function alterations and impaired fetal growth, due to decreased placental glucose availability in SHR.

In the present study, SHR presented decreased fetal weight at 14, 17, and 20 DOP with an increasing percentage of SGA fetuses. Near-term, 100% of all the fetuses from SHR were SGA, indicating intrauterine growth retardation. The growth of a healthy baby relies on a healthy placenta, and functional or structural defects of the placenta impact fetal growth (21). In this study, the placental weight increased throughout pregnancy, and near-term placentas from SHR were found to be significantly heavier, compared to Wistar. A bigger placenta could indicate a compensatory mechanism to ensure proper nutrient supply to the growing fetus due to uteroplacental hypoperfusion resulting from increased blood pressure (22). Moreover, the fetal/placental weight ratio was found to be decreased in SHR at 17 and 20 DOP, indicating a loss of placental efficiency from the 17th DOP until term. In rodents, placental efficiency can be estimated by the grams of fetus produced per gram of placenta (23), and a reduced fetal/placental weight ratio may indicate a dysfunctional placenta because fetuses do not grow properly despite an enlarged placenta. These findings are in accordance with previous studies that already described fetal and placental parameters in this animal model (24–26). However, the previous reports did not show the relation between O-GlcNAc, placental development, and fetal growth, as reported here.

O-GlcNAcylation is known to regulate the function of more than 4000 proteins, therefore contributing to the appropriate modulation of cellular responses and adaptation to cellular stress (27). Several stages of embryonic development during pregnancy have been shown to depend on the O-GlcNAc cycling, including placentation (28). Protein O-GlcNAcylation has been implicated in embryonic development once the OGT enzyme was determined to be essential for embryonic stem cell viability and OGT depletion was related to embryonic lethality (29, 30). Lately, O-GlcNAc was found to promote trophectoderm differentiation into invasive trophoblast, a pattern required during embryo implantation (31). These data could relate to our findings once SHR presented an increased number of pre-implantation losses along with reduced placental O-GlcNAc expression since 14 DOP. We speculate that protein O-GlcNAcylation may be reduced in the early stages of embryonic development as a consequence of hypertension in these animals.

To better understand the importance of O-GlcNAc in placental tissue, a recent study documented approximately 750 O-GlcNAcylated proteins in trophoblast and fetal capillaries within the villous of the human placenta (32). Here, we show structural alterations of the placenta in SHR at 14, 17, and 20 DOP. A reduced Jz area of the placenta was found on all DOPs analyzed, and the Lz showed a compacted area with thicker wall vessels and vascular congestion. Interestingly, immunohistochemistry showed reduced protein O-GlcNAcylation on both Jz and Lz of the placentas from SHR. The Jz contains three main cell types (spongiotrophoblast cells, trophoblast giant cells, and glycogen cells), and constitutes the main endocrine compartment of the placenta (33). The Lz comprises the entire placental exchange area and is responsible for transport in which maternal and fetal blood circulations come into close contact without mixing (34). Structural defects in both Jz and Lz during placentation impair fetal development (35, 36). In this regard, a few proteins and transcription factors that are important for the development of the placental tissue were found to be O-GlcNAcylated. For example, the hypoxia-inducible factor-1 alpha (HIF-1α), essential for placental vascular development, is a target for the O-GlcNAc cycling enzymes OGA and OGT, playing a critical role in HIF-1α stabilization (37). Another example is the histone H2A, which is highly expressed in the early mouse placenta (38), where its O-GlcNAcylation was found to be important for trophoblast differentiation and placental development (39). Finally, the specific protein 1 (SP1), a transcription factor involved in placental trophoblast invasion and migration, is also a target for O-GlcNAc (40).

As mentioned before, HBP and O-GlcNAcylation have been established as nutrient sensor signaling pathways (10). Therefore, O-GlcNAc pathway regulation is critical for growth signaling of the human placenta, and OGT has been elicited as a primary nutrient sensing protein, involved in glucose and amino acid utilization, and as a biomarker of cellular stress (11, 41). Hypertension in pregnancy is known to be associated with placental hypoperfusion (42, 43) and hypoxia was shown to decrease O-GlcNAcylation. Here, we observed reduced placental protein O-GlcNAcylation in all DOP analyzed concomitantly with reduced OGT and OGA expression in 14 DOP in SHR. These data, combined with the reduced PAS stain, could indicate nutrient stress in the early placenta as a consequence of decreased placental glucose uptake during chronic hypertension. In fact, disruption in this nutrient-sensing pathway is related to placental insufficiency and fetal growth restriction. Moreover, we believe that the decreased OGA expression observed here may be a compensatory mechanism to raise protein O-GlcNAc levels. Furthermore, while maternal nutrition influences significant placental changes that affect fetal growth, the majority of cases of fetal growth restriction result from changes in placenta function that result in the dysfunctional transport of nutrients, especially glucose and amino acids, which have been linked to OGT sensing pathways (44, 45).

Thus, we decided to investigate glucose transport availability in the placentas of hypertensive rats. In rodents, glucose is stored in the form of glycogen cells grouped in clusters in the Jz of the placenta. PAS analysis showed a reduced number of glycogen cells per mm2 of Jz in placentas from SHR at 14, 17, and 20 DOP when compared to Wistar rats. On day 17, a substantial amount of glycogen cells was found in both SHR and Wistar placentas when compared to the other days. This indicates that glycogen storage peaks at this period. Previous studies have also shown a peak in placental glycogen stores between 15.5 and 18.5 days (46, 47). Moreover, reduced glycogen stores in placentas of stroke-prone SHR have been described previously at 18 DOP, compared to the Wistar-Kyoto strain (48) and this was associated with inadequate uterine artery remodeling and uteroplacental blood flow in these animals.

Fetal growth and development require glucose as the primary nutrient, which is transported across the placenta through facilitated diffusion by the glucose transporter family. GLUT1 was described as the principal glucose transporter in the placenta (49), and its expression was found to increase throughout gestation in humans (45). In this study, placentas from SHR presented decreased GLUT1 expression at 14, 17, and 20 DOP when compared to Wistar. Thus, nutrient flux from glucose, fatty acid, and nucleotide metabolism in the placenta is expected to impact OGT’s enzymatic activity in the placenta. Less is known about the role of OGT regulation of nutrients in fetal growth restriction. However, OGT-deficient placentas and those from growth-restricted fetuses contain diminished levels of GLUT1 receptors (50). GLUT1 protein expression was found to be down-regulated, and glucose transport activity was decreased in placentas from pregnancies affected by preeclampsia (51). Recently, a study showed that in addition to reduced GLUT1 in the decidua of patients with severe preeclampsia, GLUT1 deficiency may trigger aberrant glycolysis, thereby leading to poor decidualization and subsequent impaired placental development (52). Furthermore, a recent study showed that O-GlcNAcylation mediates the regulation of the water channel aquaporin 3 (AQP3) and that both elevated O-GlcNAcylation and AQP3 increase glucose uptake via GLUT1 (53). Interestingly, we have previously described that SHR presents a lack of placental AQP3 expression and that AQP3 is important for trophoblast cell migration, a crucial step during placentation (54). Curiously, loss of AQP3 in the placentas was shown to induce growth restriction in mice (55). O-GlcNAcylation was found to regulate GLUT1 through c-Myc (56) and AQP3 through SP1 (53). Together, our findings make a significant contribution to our understanding of how protein O-GlcNAcylation affects fetal growth and placental function during hypertension.

Finally, the data we presented establish protein O-GlcNAcylation cycling as a nutrient sense signaling and cellular stress biomarker of placental dysfunction and impaired fetal growth during hypertension in pregnancy. Moreover, we showed reduced O-GlcNAc in the two main functional parts of the placenta, which could be related to structural and functional derangements of the placenta in SHR.
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The biogenic monoamine serotonin (5-hydroxytryptamine, 5-HT) is a chemical messenger widely distributed in the brain and various other organs. Its homeostasis is maintained by the coordinated activity of a variety of proteins, including enzymes of serotonin metabolism, transmembrane transporters of serotonin, and serotonin receptors. The serotonin system has been identified also in the placenta in rodent models as a key component of placental physiology. However, serotonin pathways in the human placenta are far from well understood. Their alterations may have long-lasting consequences for the fetus that can manifest later in life. In this review, we summarize information on the location of the components of the serotonin system in the human placenta, their regulation, function, and alterations in pathological pregnancies. We highlight current controversies and discuss important topics for future research.
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1.  Introduction.

The placenta is a temporary fetal organ that develops early in pregnancy. It acts as a barrier/facilitator for transport of gases, nutrients, and waste between maternal and fetal blood. In addition, the placenta produces and secretes a variety of hormones, cytokines, and growth factors that are essential for proper placental and fetal development and for facilitating maternal adaptation to and maintenance of pregnancy (1). Human placental development begins shortly after the blastocyst implants into the uterine wall, when cytotrophoblast cells begin to proliferate and fuse into a multinucleate syncytiotrophoblast. During the first trimester of pregnancy, as the cytotrophoblasts continue to invade the uterine wall, protrusions and fetal vessels form, eventually giving rise to chorionic villi. At the end of the first trimester, flow of fully oxygenated maternal blood is established enabling maternal blood to fill the lacunae formed within the syncytiotrophoblast (2). At the sites where the chorionic villi anchor into the maternal decidua (anchoring villi), a subpopulation of trophoblasts, the extravillous cytotrophoblasts, remodels the maternal spiral arteries by transiently partially replacing the endothelial cells lining the arteries and colonizing the inner layers of the myometrium (1, 3). Finally, the placental barrier formed consists of feto-placental endothelial cells lining the fetal capillaries, a mesenchymal core (Hofbauer cells, fibroblasts, and collagenous stroma), and cytotrophoblast cells overlaid by a continuous layer of syncytiotrophoblast (4). Although essential to the life of the fetus, the placenta is in many aspects still a rather mysterious organ.

Primary biogenic monoamines, such as dopamine, epinephrine, norepinephrine and serotonin, are widely used chemical messengers that act as neurotransmitters, hormones and autacoids. As low weight molecules with an amino group attached to an aromatic ring, all are synthesized from aromatic L-amino acids and inactivated by removal of the amino group. They play various regulatory roles in the nervous system and other organ systems. Serotonin not only regulates functions in the mature organism, but also acts as a significant growth factor during development and regulates various developmental processes, including nervous system development. Homeostasis of serotonin signaling during both development and adulthood is maintained by the coordinated activity of a variety of serotonin-regulating proteins, including its metabolic enzymes, membrane transporters and receptors. These proteins are widely distributed in the brain and various other organs, including the placenta.

Available evidence from clinical and animal studies suggests that placental serotonin system regulates placental development and functions and plays a role in proper embryo/fetal development. Its alterations may have long-lasting consequences for the fetus, which may manifest later in life like reverberations of the original effect. Despite the emerging evidence of the important role of serotonin for the feto-placental unit, its pathways in the human placenta are still far from being understood.

Here, we summarize the current data on the presence, regulation and function of serotonin system components in the human placenta, as well as on their putative role in normal and pathological pregnancy. We also highlight gaps and controversies in current knowledge and discuss directions for future research.



2.  Serotonin system and its components in general .

Serotonin (5-hydroxytryptamine, 5-HT), originally called enteramine, is a biogenic monoamine first isolated in 1937 from enterochromaffin cells of the intestine, and shown to induce intestinal contractions (5). In the 1940s, the same substance was identified as a “tone-modifier” present in serum and therefore named serotonin (6). Soon thereafter, its synthesis was discovered in the brain and more recently in several other peripheral sites (cf. below).

Today, serotonin is best known for its neurotransmitter role in the brain, but it acts also as a hormone and autocrine/paracrine messenger in various other organs (7). Many of its roles are highly conserved in a variety of animal species (8). In vertebrates, it modulates brain functions such as mood, emotion, cognition, sleep/wake rhythm, appetite, sexual behavior, pain perception, and response to stress (9). In addition, it regulates and fine tunes numerous other physiological processes, including hemostasis and vascular tone, gastrointestinal functions, immune response, reproductive functions, bone remodeling, and energy balance (7, 10, 11). Moreover, it contributes to regulating organ development and regeneration, by controlling basic cellular processes such as proliferation, differentiation, and migration (12, 13). In the developing fetal brain, it acts as a neurotrophic factor for various neuronal populations and also regulates the maturation of its own neurons (14, 15). Less well known are the antioxidant effects of serotonin in scavenging reactive oxygen species and inhibiting lipid peroxidation (16).

The effects of serotonin are primarily mediated by its interaction with plasma membrane receptors. In humans, 14 different serotonin receptor subtypes were identified and classified into 7 families (HTR1 to HTR7) based on structural, pharmacological, and signal transduction properties. With the exception of HTR3, a ligand-gated cation channel, all other subtypes are G protein-coupled receptors that activate various intracellular signaling pathways (17, 18). Serotonin receptors are widely distributed in the brain and various peripheral organs. During development, several serotonin receptor subtypes emerge in the developing brain prior to enzymes for serotonin synthesis, suggesting an extra-embryonic source of serotonin in the early stages of neurodevelopment (19).

Serotonin can also act in a receptor-independent manner by covalently binding to glutamine residues of various extracellular, cytoplasmic or nuclear proteins, in a process known as serotonylation. Serotonylation has been implicated in the regulation of platelet functions (20, 21), insulin secretion (22) and gene expression regulation (23).

Most of serotonin in the human body is produced and stored in the gastrointestinal tract. Some of the intestine-derived serotonin is secreted into the blood, where it is rapidly internalized in platelets and only a tiny fraction (< 1%) remains free in plasma (24). There are other niches of local serotonin synthesis in the human body, including serotonergic neurons, pinealocytes, pulmonary artery endothelial cells, mammary epithelial cells, mast cells, pancreatic beta cells, adipocytes, hepatocytes, osteoclasts, melanocytes, keratinocytes, and fibroblasts (25–27).

Serotonin biosynthesis uses essential amino acid L-tryptophan (L-trp) as precursor and involves two enzymatic steps (
Figure 1
). The first step, conversion of L-trp to 5-hydroxytryptophan (5-HTP), is catalyzed by rate-limiting tryptophan hydroxylase (TPH) and subsequent decarboxylation of 5-hydroxytryptophan to serotonin, is catalyzed by aromatic acid decarboxylase. There are two TPH isoforms, TPH1 and TPH2, encoded by genes located on human chromosome 11 and 12, respectively. The two TPH isoforms have different tissue expression – TPH1 (peripheral) is abundant in enterochromaffin cells of the intestine and in other peripheral tissues, whereas TPH2 (neuronal) is found mainly in serotonergic neurons of the brain (28).




Figure 1 | 
Serotonin metabolism. The figure shows the serotonin pathways in the gastrointestinal tract and in the central nervous system, the main sites of its synthesis in the human body. Serotonin synthesized in the enterochromaffin cells of the intestine is released into the portal circulation, taken up into platelets, and distributed to various other organs. Created with BioRender.com.




Serotonin is catabolized mainly to the final metabolite 5-hydroxyindoleacetic acid (5-HIAA), which can be excreted by the kidneys. The first step in this catabolic pathway, oxidative deamination, is catalyzed by the outer mitochondrial membrane enzyme monoamine oxidase (MAO). Its two isoforms, MAOA and MAOB, are encoded by distinct genes on the human X chromosome (29). Both isoforms catalyze oxidative deamination of serotonin and various other endogenous and dietary monoamines, with MAOA having preferential affinity for 5-HT over other substrates (30). Serotonin can also be converted into melatonin via two enzymatic steps.

As a hydrophilic substance, serotonin cannot freely pass through the phospholipid bilayer of the plasma membranes but is transported by specialized transmembrane proteins. These plasma membrane transporters mediate the uptake of extracellular serotonin into cells, which is the key mechanism responsible for terminating receptor-mediated serotonin signaling. There are two plasma membrane transport systems for serotonin, with fundamentally different kinetic properties: the high-affinity/low capacity (uptake-1) system and the low-affinity/high capacity (uptake-2) system. The uptake-1 system is represented by the serotonin transporter (SERT, also known as 5-HTT) (31), whereas the uptake-2 system includes the plasma membrane monoamine transporter (PMAT) and organic cation transporters (OCTs) 1, 2 and 3 (32). SERT is highly selective for serotonin while PMAT and OCTs can transport both serotonin and other monoamines.

Once inside the cell, another group of transmembrane transporters, the vesicular monoamine transporters (VMATs), mediate the transfer of cytosolic serotonin into secretory/storage organelles such as dense granules in platelets, synaptic vesicles in neurons, and secretory granules in enterochromaffin cells, pancreatic beta cells, mastocytes, and adipocytes (33–35). The storage of serotonin in intracellular organelles protects it from degradation by MAO and enables its release via exocytosis. There are two closely related VMATs, VMAT1 and VMAT2, with different pharmacological properties and tissue distribution (36).

Export of serotonin from cells storing the amine in secretory/storage organelles occurs via calcium-stimulated exocytosis (37–39). The export mechanism(s) from cells where it is not stored in intracellular vesicles are much less well understood. One possible efflux pathway could be via OCT2 (40) or OCT3 (41), which transport organic cations in both directions across the plasma membrane. It has been observed that SERT also reverses the direction of transport in the presence of some exogenous substrates (42), but it is unknown whether this phenomenon occurs under physiological conditions. Serotonin “leakage” via passive diffusion is generally considered insignificant because of its hydrophilic properties, but ability of serotonin to bind to lipid membranes (43) suggests that this may be more important than assumed. Nevertheless, a thorough investigation of more efficient and regulated, carrier-mediated efflux mechanisms for serotonin is warranted.

The activity of serotonin metabolizing enzymes, receptors, and transmembrane transporters is regulated by multiple mechanisms. In general, transcription of serotonin-related genes is modulated by genetic (44, 45) and epigenetic factors (45–47) and transcripts are further processed by prominent, tissue-specific alternative splicing and RNA editing (48, 49). In addition, the activity of serotonin-related proteins is controlled by post-translational modifications such as palmitoylation, phosphorylation, glycosylation, serotonylation, and disulfide bond formation, as well as by membrane trafficking, cell-surface localization and interactions with other proteins (50–55).

An interesting feature of the serotonin system, observed in both rodents and humans, is the presence of sex differences in some of its components resulting in functional differences between males and females. In humans, sex differences have been found in the concentration of serotonin and its metabolite 5-HIAA (56, 57) and in the rate of serotonin synthesis (58) in the central nervous system. The function/density of SERT and certain serotonin receptors in the human brain also differs between men and women (59, 60). In rodent models, pharmacological (61, 62) or genetic (63) manipulation of the serotonergic system causes sex-dependent behavioral and biochemical changes.

Sex differences in the serotonin system occur early in development. Studies in animal models have shown that the developing serotonergic system of males and females is differentially affected by various prenatal and perinatal factors including the microbiome (64), maternal overnutrition (65), and traumatic experiences such as parental separation (66). In humans, prenatal exposure to selective serotonin reuptake inhibitor (SSRI) antidepressants had sex-dependent effects on neonatal brain microstructure (67). Sexually dimorphic features of the human serotonergic system during the prenatal period were also evidenced by a positive correlation between placental and brain serotonin levels found only in male but not female human fetuses (65).



3.  Serotonin system and its components in the human placenta.


3.1.  Localization of serotonin system components in the human placenta.

The human placenta expresses many components of the serotonin system, including multiple serotonin receptor subtypes and several other proteins responsible for handling serotonin (
Figure 2
). The results of studies that examined the expression and/or localization of serotonin-related genes in human placenta are shown in 
Table 1
 (studies in placental tissue homogenates), 
Table 2
 (studies in placental tissue sections) and 
Table 3
 (studies in isolated placental cells). Several studies have also compared the expression of serotonin-related genes in the human placenta between different stages of pregnancy (
Table 4
).





Figure 2 | 
Localization of the serotonin system components in the human placenta according to gestational age. The figure shows the presence and localization of the components of the serotonin system in the human first trimester and term placenta according to the available literature. For details see main text. Components for which the results of different studies do not agree or which are reported only at the mRNA level are indicated with a question mark (?). Cell types not studied to date, such as mast cells, Hofbauer cells and other stromal cells are not shown. Created with BioRender.com.





Table 1 | 
Presence of components of the serotonin system in homogenates of human placental tissue.





Table 2 | 
Results on the localization of mRNAs and proteins of serotonin-related genes in human placenta obtained by in situ hybridization (ISH) and by immunohistochemical analysis (ISH), respectively.





Table 3 | 
Results on the presence of components of the serotonin system in human primary cell cultures (PCC) or single cells (SC).





Table 4 | 
Changes in the expression of serotonin components in human placenta in the third trimester compared with the first trimester of pregnancy.





3.1.1. Serotonin.

Evidence on the presence of serotonin itself in the human placental cells is yet inconclusive. An early immunohistochemical (IHC) study of the human term placenta reported the presence of serotonin in syncytiotrophoblast, stromal cells, and capillary endothelium (86). However, recent IHC study of the human term placenta detected serotonin only in platelets in the chorionic villus vessels and maternal intervillous space, but not in untreated syncytiotrophoblast and cytotrophoblasts (82). Similarly, in the human first and second trimester placentas, platelets were strongly stained for serotonin, while only traces of serotonin were seen in untreated trophoblast cells (82). In the presence of exogenously added serotonin, both cytoplasmic and nuclear compartments of the cytotrophoblast stained for serotonin, but only nuclei in the syncytiotrophoblast stained for serotonin, whereas cytoplasmic serotonin staining in the syncytiotrophoblast was observed only after pharmacological blockade of serotonin catabolism (82). This suggests that serotonin levels in the syncytiotrophoblast are tightly controlled by rapid enzymatic degradation.



3.1.2.  Serotonin-synthesizing enzymes.

Studies also disagree about the presence of serotonin synthesis and expression of serotonin-synthesizing enzymes in the placenta. It has long been assumed that all serotonin affecting peripheral organ functions is synthesized in the intestine and distributed throughout the body by circulating platelets (
Figure 1
). This classical view of serotonin as a gut-derived hormone has been extended by the discovery of local sources of serotonin in various organs expressing TPH1, a peripheral isoform of the rate-limiting enzyme in serotonin synthesis (26). As for the placenta, an initial study demonstrated a lack of serotonin synthesis in the mouse placenta (92). However, Bonnin et al. (93) found evidence for serotonin synthesis in both mouse and human placenta. They demonstrated that levels of both serotonin and its immediate precursor (5-HTP) increase in homogenates of human first trimester placenta incubated with L-tryptophan (L-trp) and tetrahydrobiopterin (BH4, cofactor for TPH1 and TPH2 activity) (93). Conversion of L-trp to 5-HTP or serotonin in homogenates of human first trimester placenta has been replicated in independent studies and has also been demonstrated in homogenates of human term placenta (68, 69) and in cultured human term syncytiotrophoblast (83).

In addition, the presence of TPH1 and TPH2 mRNAs (encoding the peripheral and neuronal isoforms, respectively, of the rate-limiting enzyme of serotonin synthesis) and the presence of TPH1 and TPH2 proteins was demonstrated in primary syncytiotrophoblast and cytotrophoblasts isolated from human first trimester and term placentas (83). Studies in human placental homogenates reported that TPH1 mRNA was the predominant isoform throughout pregnancy (69) or the only one detected in the first trimester (68). In IHC analysis, TPH1 and TPH2 proteins were localized in syncytiotrophoblast, cytotrophoblasts, and some stromal cells of human first trimester and term placentas (68, 83).

In contrast to the above results, another IHC study failed to find TPH1 protein in human placentas from the first and second trimesters of pregnancy, while rare TPH1 signals were observed in human term placentas, differing from strong signals in human appendix (82). In addition, single-cell transcriptome analysis by RNA-sequencing (RNA-seq) did not detect TPH1 mRNAs in human term syncytiotrophoblast and cytotrophoblasts, whereas TPH2 mRNAs were detected only in term cytotrophoblasts, but at very low levels (87).



3.1.3.  Serotonin-catabolizing enzymes.

Serotonin catabolizing isoenzyme MAOA is abundant in the human placenta throughout pregnancy, as demonstrated by IHC (82) and enzyme activity studies (69). Known sites of MAOA expression in human placenta appear to be syncytiotrophoblast (29, 72, 82, 84), cytotrophoblasts (72, 87, 88) and feto-placental endothelial cells (89). Single cell transcriptomic data show that syncytiotrophoblast as compared with cytotrophoblasts contain much higher levels of MAOA mRNA (about 10-fold higher in the first trimester, and about 2-fold higher at term) (87, 88). mRNA encoding MAOB, MAO isoform with a lower affinity for serotonin, was detected at very low levels in term placenta (70, 87) and was absent in first trimester placenta (88).



3.1.4.  Serotonin receptors.

Ten serotonin receptor subtypes (HTR1A, HTR1D, HTR1E, HTR1F, HTR2A, HTR2B, HTR3 (subunit HTR3A), HTR4, HTR5A and HTR5B) have been reported to be expressed in the human term placenta (68, 79–81, 86, 87, 91). HTR2A has been localized in syncytiotrophoblast, cytotrophoblasts and fetal capillary endothelium of human term placentas (80). HTR2B, the most abundant subtype according to single cell transcriptomic analyses, is also expressed in both syncytiotrophoblast and cytotrophoblasts (81, 87). In contrast, HTR1D and HTR1F mRNAs were detected only in syncytiotrophoblast, whereas HTR3A and HTR4 mRNAs were found at low levels only in cytotrophoblasts (87) of human term placentas. So far, only HTR1D, HTR2B and HTR7 mRNAs have been detected in human first trimester placentas (specifically in cytotrophoblasts) (88).

However, it should be emphasized that the expression of most serotonin receptor subtypes in human placenta (with the exception of HTR2A (79, 80, 91) and HTR1A (86)) has been detected only at the mRNA level, so the presence and location of their proteins and their functions in human placenta require further investigation.



3.1.5.  Vesicular transporters.

Transcripts encoding VMAT2 were not detected in cultured human term trophoblasts by Northern blot analysis, and functional analysis demonstrated the absence of VMAT activity in the human trophoblast cell line JAR (90). Furthermore, in situ hybridization (ISH) did not detect VMAT2 mRNA in human villous trophoblasts, while only a weak signal was occasionally seen in extravillous trophoblasts within the uterine wall; very low levels were detected in placental homogenates by the more sensitive RT-PCR analysis (78), which may also have targeted platelet mRNA content. Single-cell transcriptome (RNA-seq) analyses reported that VMAT1 mRNA was not found in trophoblasts throughout pregnancy, while only very low levels of VMAT2 mRNA were detected in term trophoblasts (87, 88). Taken together, these results indicate that serotonin in trophoblasts is not stored in intracellular vesicles.



3.1.6.  Plasma membrane transporters.

Human placenta expresses several plasma membrane transporters for serotonin. Activity of the high-affinity SERT has been shown in plasma membrane vesicles (70, 94) and primary trophoblasts (89) isolated from human term placenta. SERT mRNA levels were lower in term compared to first trimester placentas, while the opposite was found for SERT protein levels (69). IHC analyses localized SERT protein to both syncytiotrophoblast and cytotrophoblasts (80, 82). Single-cell transcriptome analyses showed lower SERT mRNA levels in syncytiotrophoblast and cytotrophoblasts, both in the first trimester (88) and at term (87). On the other hand, recent study found that SERT mRNA levels were upregulated during spontaneous syncytialization of human primary trophoblasts, but SERT protein and activity levels were downregulated by syncytialization (95). Low levels of SERT mRNA and SERT protein were also detected in feto-placental endothelial cells (80, 82, 89), but functional analysis did not support significant SERT activity in these cells (89).

Low-affinity, polyspecific transporters OCT1 and OCT2 have been reported to be absent (77) or expressed at very low levels (74–76, 78, 89) in human first trimester and term placentas. This is consistent with the absence of their mRNAs in single cell transcriptome analyses (87, 88).

OCT3 is the most prominent member of OCT family and abundant in the human placenta throughout pregnancy (76, 77), with slightly lower mRNA and protein levels found in the first trimester than at term (69, 75). OCT3 protein and activity were detected in membrane vesicles isolated from the fetus-facing (basal) side, but not from the maternal-facing (microvillous) side of the human term placenta (70, 77). However, the exact cell type(s) harboring this transporter are not entirely clear. Thus, in one IHC study, prominent OCT3 staining was found on basolateral surface and in cytoplasm of cytotrophoblasts, while it was absent in syncytiotrophoblast in all three trimesters of pregnancy (82). This is consistent with OCT3 protein levels being down-regulated during spontaneous syncytialization of human term primary trophoblasts (95). However, in another study, OCT3 was localized to the basal (fetal-facing), but not the apical (maternal-facing) membrane of term syncytiotrophoblast (85). Weak OCT3 staining was occasionally observed in fetal capillaries (82, 85), but OCT3 mRNA was not detected in primary feto-placental endothelial cells (89). Single-cell transcriptome analysis by RNA-Seq demonstrated weak OCT3 mRNA signal in all types of first trimester trophoblasts (88), while at the end of pregnancy, OCT3 transcripts were detected only in syncytiotrophoblast (87).

Low levels of PMAT mRNA, encoding another low-affinity serotonin transporter, were detected in human term placental tissue (75). PMAT mRNA was absent in human first trimester (88) and term trophoblasts (87, 89), but was detected in human term feto-placental endothelial cells (89). In addition, efficient low-affinity serotonin uptake activity was detected in feto-placental endothelial cells, most likely mediated by PMAT (89).




3.2.  Functions of serotonin system components in the human placenta.

Serotonin is a potent vasoactive agent. Therefore, it was recognized early on that the placental serotonin system may contribute to the regulation of umbilico-placental blood flow. Serotonin induced a strong contractile effect on human umbilical and placental arteries and veins in tissue explants (96–98). Ketanserin, a known antagonist of the HTR2A receptor, significantly decreased the contractile response to serotonin in chorionic artery and vein segments from human placentas, suggesting that HTR2A is likely the receptor subtype mediating the vasoconstrictive effects of serotonin (98). At the cellular level, several studies have aimed to understanding the function and regulation of the serotonin system in the human placenta using cell culture models. Some of these studies have been performed on the human trophoblast-like cell lines such as BeWo, JEG-3 and JAR. These choriocarcinoma-derived cells are commonly used in vitro models in human placenta research (99). Recently, however, concerns have been raised about their suitability for studying serotonin pathways (70, 89, 95). Suitable in vitro models for future studies would be primary trophoblasts, placental explants, and organoid trophoblast cultures (100), as well as primary feto-placental endothelial cells, Hofbauer cells, and other cell types. Also, in vitro studies should preferably be conducted at physiological oxygen tension as TPH1 and SERT have been shown to be oxygen-regulated in pulmonary endothelial and smooth muscle cells, respectively (101, 102).

Thus, serotonin has been shown to stimulate proliferation of human placental trophoblast-like cell lines (BeWo, JEG-3) through activation of the HTR2A receptor and subsequent activation of a downstream signaling cascade involving both the ERK1/2 and STAT3 signaling pathways (79, 103, 104). Based on the known roles of the ERK1/2 and STAT3 signaling pathways, it has been proposed that serotonin regulates placental development and structure by controlling cell viability, differentiation, migration and invasion (103, 104). In vivo, the role of serotonin in regulating placental development is supported by a study in a knock-out mouse model showing that altered serotonin levels in placental intervillous space impair trophoblast survival and disrupt normal placental structure (105).

One more role assigned to the HTR2A receptor in the human placenta relates to the regulation of placental estrogen production. Specifically, studies in human primary trophoblasts (106) as well as trophoblast-like cell lines (BeWo, JEG-3) (107) have shown that serotonin induces the expression and activity of aromatase CYP19, a key enzyme in placental estrogen synthesis, via activation of the HTR2A receptor. The observed increase in aromatase activity was induced by HTR2A-mediated stimulation of the protein kinase C pathway (107) and possibly the JAK2/STAT3 pathway (104).

The expression of various serotonin receptor subtypes (cf. 3.1.4), coupled to different intracellular signaling pathways, suggests diverse and as yet unknown roles for serotonin in the human placenta. For example, some of the serotonin receptor subtypes expressed in the human term placenta (i.e., HTR1F, HTR3, and HTR4) have been shown to regulate mitochondrial function and homeostasis in different mouse organs (108, 109). It would be interesting to investigate whether serotonin plays a similar role in the human placenta during late pregnancy.



3.3.  Regulation of serotonin system components in the human placenta.

The mechanisms that regulate components of the serotonin system in the human placenta are largely unexplored, with studies to date focusing on SERT and MAOA.

Expression of the SERT is regulated by two distinct variable number tandem repeat polymorphisms in the promoter and intron 2 region (5HTTLPR and STin2, respectively), as well as by several single nucleotide polymorphisms (SNPs) in the promoter region, including rs25531 and rs25532 (110). In addition to genetic variants, epigenetic mechanisms play an important role in the regulation of SERT expression. SERT promoter contains a region enriched in CpG dinucleotides (CpG island), a sequence context in which cytosine is frequently methylated. Increased methylation of this region correlates with decreased SERT mRNA expression (111). We have found that SERT mRNA levels in the human term placenta are predominantly determined by SERT methylation in this region and not by SERT genetic variants (45). Studies in the trophoblast-like cell line JAR suggest that small noncoding RNAs, namely miR-15a and miR-16, also play an important role in the epigenetic regulation of SERT expression in the human placenta (46).

Expression and activity of the SERT in JAR cells is modulated by cytokines. Interleukin-1 upregulated SERT expression in JAR cells via cyclic adenosine monophosphate-independent signaling pathways (112), whereas interleukin-6 downregulated its expression and activity via a STAT3-dependent signaling pathway (113).

SERT activity in placental cells is regulated also by hormones such as insulin and estrogen. Insulin upregulates SERT activity in primary human trophoblast by enhancing dissociation of SERT protein from the endoplasmic reticulum chaperone ERp44, thereby enabling its maturation and translocation to the cell surface (55). Estrogen (17β-estradiol) decreased the activity of SERT in trophoblast-like BeWo cells, but increased the level of SERT protein and had no effect on the level of SERT mRNA (114). A discrepancy between the levels of SERT mRNA and SERT protein in human placenta was also observed in relation to the effects of gestational age (69) and trophoblast differentiation (95), indicating the presence of important regulatory mechanisms acting at the translational level.

The increasing use of SERT-targeting antidepressants (115–117) and psychostimulants (118) during pregnancy has led to investigations into the potential of these drugs to alter SERT activity in the placenta. We have shown that many common antidepressants at therapeutic plasma concentrations effectively inhibit the activity of SERT in primary trophoblasts isolated from human term placentas (89). This finding and studies in other placental models (82, 94, 119–121) highlight that antidepressant therapy in pregnancy may affect serotonin homeostasis in the placenta.

Expression of the MAOA gene is regulated by a variable number tandem repeat polymorphism located upstream of the MAOA coding region (MAOA-uVNTR), consisting of a 30-bp sequence present in 2, 3, 3.5, 4 or 5 copies (122). In trophoblast-like JAR cells, alleles with 3.5 and 4 repeats were transcribed more efficiently than those with 3 or 5 repeats (122), suggesting that alleles with 3.5 and 4 repeats correspond to the optimal length of this regulatory region. Consistent with this, the 4-repeat allele was associated with higher levels of MAOA mRNA in human term placenta than the 3-repeat allele (123). The MAOA promoter also contains two CpG islands (124), but their role in regulating MAOA transcription in the placenta has not yet been studied.



3.4.  Changes of placental serotonin system components in pregnancy pathologies.

It has long been known that serotonin signaling plays a role in the pathogenesis of pre-eclampsia (PE), a hypertensive pregnancy disorder characterized by multiple organ dysfunction. As suggested recently (125), dysregulation of serotonin signaling may underlie several features of PE, including excessive platelet aggregation, vascular hyporeactivity, and pro-inflammation. The placentas of pregnancies complicated with PE show decreased MAOA activity (71, 126), which may lead to decreased serotonin catabolism and contribute to the elevated circulating serotonin levels observed in women with PE. On the other hand, placental SERT activity is unchanged in PE (126). Decreased vascular reactivity of placental and umbilical vessels to serotonin has also been noted in PE (96, 98), possibly contributing to decreased umbilico-placental blood flow (127).

Changes in placental serotonin system have been found also in gestational diabetes mellitus (GDM), with most studies focusing on SERT. An initial study in a small cohort found decreased SERT mRNA and protein levels in placentas from GDM pregnancies (80). However, later studies with larger and better defined samples reported increased SERT mRNA levels in GDM placentas (45, 128). In contrast, primary trophoblasts isolated from GDM placentas showed decreased activity of SERT, which was attributed to decreased localization of the SERT protein to the plasma membrane (55). Interestingly, trophoblasts isolated from GDM placentas also showed an attenuated response to in vitro insulin treatment in terms of dissociation of SERT from the endoplasmic reticulum chaperone ERp44, suggesting that defects in insulin signaling are responsible for the impaired functional expression of SERT on the cell surface in GDM trophoblasts (55). In addition to increased expression of SERT, GDM placentas exhibited decreased methylation of the SERT promoter region (45). It may be speculated that epigenetic mechanisms increase SERT transcription to counteract the impact of defective insulin signaling on the activity of SERT in GDM placentas. It has also been reported that expression of serotonin receptor HTR2A is decreased in GDM placentas (80). Interestingly, DNA methylation of the placental HTR2A gene was associated with maternal overweight/obesity and GDM only in female, but not in male placentas (129).

Maternal mental health in pregnancy was also associated with alterations in placental serotonin homeostasis. As with PE, downregulation of MAOA expression in the placenta has been associated with increased symptoms of maternal depression during pregnancy (130). Maternal alcohol consumption during pregnancy was associated with decreased SERT mRNA levels and increased TPH1 mRNA levels in the placenta (131).

Recent evidence links alterations in the placental serotonin system to fetal growth restriction (FGR) (68) and preterm birth (132), serious pregnancy conditions accounting for significant perinatal morbidity and mortality. Thus, increased TPH activity and altered expression of SERT, TPH2, HTR1D, and HTR5A genes were found in third-trimester placentas from FGR pregnancies compared with gestational age-matched control pregnancies (68). In placentas from spontaneous preterm births, expression of both SERT and OCT3 transporters was upregulated compared with placentas from term births (132).

In summary, changes of serotonin system in the human placenta have been associated with several pregnancy-related medical conditions, including PE, GDM, maternal overweight/obesity, maternal mental health in pregnancy, FGR, and preterm birth. Whether the observed changes are causally involved in the pathogenesis of the above pathologies or are their consequence, or both, requires further investigation. Further studies are also needed to validate these findings in independent samples and to investigate the mechanisms underlying the observed changes.




4.  Outlook - future perspectives.


4.1.  Does the human placenta provide serotonin to the fetus?.

An important role attributed to the placental serotonin system in animal studies is to provide the embryo/fetus with an exogenous source of serotonin needed for proper brain and other organ development (93, 133, 134). However, studies disagree on the exact source of serotonin delivered to the fetus via the placenta, supporting either its maternal origin (133) or its synthesis in the placenta (93). In humans, it is generally believed that the placenta supplies maternal and/or placental serotonin to the developing fetal brain until the late first/early second trimester of pregnancy, when serotonergic neurons organize in the raphe nuclei and synthesis begins in situ (19, 135). This is supported by a recent discovery of a (male-specific) correlation between serotonin levels in the human fetal brain and the placenta (65).

As mentioned earlier (cf. 3.1.2), most studies to date support the ability of the human placenta to synthesize serotonin during both early and late pregnancy (68, 69, 83, 93). However, it should be noted that none of these studies examined the time and substrate concentration dependence of 5-HTP or serotonin production, or applied pharmacological approaches to demonstrate the involvement of TPH1/2 enzyme(s) (68, 69, 83, 93). In addition, the TPH activity assays used relatively high concentrations of L-trp (200 or 250 µM) compared with the Michaelis-Menten constant of human TPH for L-trp (7.5 µM) (136). Thus, convincing evidence for serotonin synthesis in the human placenta is still lacking. This is also supported by contrasting results obtained with a combination of immunohistochemical and pharmacological experiments on human placental tissue sections and placental explants (82). These argue that serotonin synthesis does not occur in the human placenta at any stage of pregnancy. Rather, the results suggest that serotonin released from maternal platelets into the intervillous space may be taken up into the syncytiotrophoblast via SERT and subsequently transferred to the fetal blood via a putative pathway involving several other proteins such as gap junction connexin-43 and OCT3 (82).

Placental perfusion is a method allowing studies into potential transfer of substances from the maternal to the fetal side of the placenta or in the opposite direction. The possible release of substances synthesized in the placenta into the maternal or fetal circulation can also be studied by this method. The only perfusion study performed to date on the human placenta suggests that serotonin is not transferred in appreciable amounts from the maternal to the fetal side at term pregnancy (137). This is consistent with results showing that serotonin taken up in the human term syncytiotrophoblast is rapidly catabolized by MAOA (70). Perfusion studies investigating the transfer of maternal/placental serotonin into fetal blood during early human pregnancy have not yet been performed.

In conclusion, current evidence does not support transplacental transfer of maternal serotonin into the fetal circulation at the end of human pregnancy. Further studies are needed to determine whether this might be different at earlier stages of pregnancy and to clarify whether the human placenta is capable of synthesizing serotonin under physiological conditions.



4.2.  Epigenetic regulation of serotonin system components and epigenetic effects of serotonin.

Epigenetic mechanisms are central to gene regulation and gene-environment interactions and are therefore of particular importance to the biology of the placenta as an organ that responds to changes in the intrauterine environment (138). The regulation of placental serotonin homeostasis by epigenetic mechanisms remains largely unexplored – so far, only two studies have addressed the role of DNA methylation (45) and noncoding RNAs (46) in the regulation of serotonin-related genes in the human placenta. Further studies on the role of DNA methylation, histone modifications, and noncoding RNAs and how they are modulated by various factors are warranted. In addition, further important studies should encompass the interaction of epigenetic mechanisms with functionally relevant genetic polymorphisms and post-translational regulatory mechanisms.

In addition to investigating the epigenetic regulation of genes involved in serotonin signaling, also the possible role of serotonin as a regulator of placental gene expression warrants studies. Recently, serotonylation of glutamine 5 on histone H3 (H3Q5ser) was identified as an epigenetic mechanism involved in the regulation of genes important for neuronal cell differentiation (23). The H3Q5ser modification was found in both neuronal and non-neuronal brain cells as well as in heart, colon, and blood samples. Its presence in the placenta has not been examined. However, findings on the presence of serotonin in the nuclei of various human placental cells (82) encourage future research on its presence and role in the human placenta.



4.3.  Role of placental serotonin system in the developmental origins of health and disease.

Animal studies show that changes in maternal and placental serotonin homeostasis not only impact the developing fetal brain but also have lasting neurochemical and neurobehavioral consequences (113, 114, 116, 117). In humans, changes in serotonin levels in maternal blood have been linked to an increased risk of neurodevelopmental disorders in the offspring, such as attention deficit/hyperactivity disorder (139) and autism (140). As for the human placenta, methylation of the placental HTR2A gene has been linked to key behavioral measures of neurodevelopment (quality of movement and attention) in human newborns (141), and placental expression of the SERT gene has been linked to regulatory behaviors in infants at two weeks of age (142). Furthermore, placental expression of the SERT and HTR2B genes has been associated with the incidence of febrile seizure in children (81), while placental expression of the MAOA gene has been identified as a biological mediator of the association between prenatal stress and child temperament at 12 months of age (143). Further longitudinal studies in human cohorts are needed to better understand the consequences of altered placental serotonin homeostasis in the developmental origins of health and disease. As mentioned earlier, changes in placental serotonin homeostasis have been associated with various pregnancy disorders (cf. 3.4). It is, therefore, of utmost importance to clarify whether they are innocent bystanders or play a role in the development of the disorder or in mediating the consequences for fetal health outcomes. This could easily open up new therapeutic opportunities, as there are already many approved drugs available that modulate the activity of various serotonin system components (144–146).



4.4.  The importance of fetal sex.

A well-established feature of the serotonin system in the brain of both humans and rodents is sexual dimorphism (cf. 2). Studies in rodents showing that serotonin uptake into placental membrane vesicles differs between female and male fetuses (70) suggest a sexual dimorphism also in placental handling of serotonin. The sexually dimorphic nature of the serotonin system in the human placenta is supported by the male-specific correlation of serotonin levels in placenta and fetal brain (65). In addition, methylation of the HTR2A gene in human placenta has been shown to be associated with maternal overweight/obesity only in female placentas (129), suggesting that fetal sex modulates the sensitivity of the placental serotonin system to the intrauterine environment. Furthermore, studies in animals and humans suggest an interaction between sex hormones and the serotonin system. For example, estrogens modulate the synthesis, uptake and catabolism of serotonin (147), while changes in serotonin signaling have been reported to affect estrogen production (106, 148). Overall, the influence of fetal sex needs to be considered in future studies of the function, regulation, and pathology-related changes of the serotonin system in the human placenta.




5.  Final comments.

Phylogenetically, serotonin is an ancient molecule. However, it has taken a long while until the components of the complex system regulating activity of serotonin have been identified in general. Only in the past decade, the serotonin system has received attention for its potential role in reproduction and development. Studies into serotonin’s involvement in the maternal-fetal interplay to ultimately contribute to fetal development through its actions on and within the placenta have been hampered for a variety of reasons. These include, but are not limited to, availability of proper experimental systems that fully capture the complexity of cellular interplay in the placenta, the difficulty in separating potential effects of maternal from those of fetal serotonin and by the temporal changes of placental cellular composition and function throughout pregnancy.

In this review we have not only summarized the current knowledge in this emerging field, but also provided suggestions for further studies. We hope that new molecular and cellular data can be integrated into a larger framework to better understand the role of serotonin system for placental and fetal development and its potential dysregulation in pathological pregnancy conditions.
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Background and objective

COVID-19 infection in pregnancy significantly increases risks of adverse pregnancy outcomes. However, little is known how the innate immunity at the placental maternal-fetal interface responds to COVID-19 infection. Type I IFN cytokines are recognized as a key component of the innate immune response against viral infection. In this study, we specifically evaluated expression of IFN antiviral signaling molecules in placentas from women infected with COVID-19 during pregnancy.



Methods

Expression of IFN activation signaling pathway molecules, including cyclic GMP–AMP synthase (cGAS), stimulator of interferon genes (STING), interferon regulatory factor 3 (IRF3), Toll-like receptor 7 (TLR7), mitochondrial antiviral-signaling protein (MAVS), and IFNβ were determined in formalin-fixed paraffin embedded (FFPE) placental tissue sections (villous and fetal membrane) by immunostaining. A total of 20 placentas were examined, 12 from COVID-19 patients and 8 from non-COVID-19 controls. Patient demographics, clinical data, and placental pathology report were acquired via EPIC medical record review.



Results

Except BMI and placental weight, there was no statistical difference between COVID and non-COVID groups in maternal age, gestational age at delivery, gravity/parity, delivery mode, and newborn gender and weight. In COVID-exposed group, the main pathological characteristics in the placental disc are maternal and fetal vascular malperfusion and chronic inflammation. Compared to non-COVID controls, expression of IFN activation pathway molecules were all upregulated with distinct cell-type specific distribution in COVID-exposed placentas: STING in villous and decidual stromal cells; IRF3 in cytotrophoblasts (CTs) and extra-villous trophoblasts (EVTs); and TLR7 and MAVS in syncytiotrophoblasts (STs), CTs, and EVTs. Upregulation of STING, MAVS and TLR7 was also seen in fetal endothelial cells.



Conclusions

STING, IRF3, TLR7, and MAVS are key viral sensing molecules that regulate type I IFN production. Type I IFNs are potent antiviral cytokines to impair and eradicate viral replication in infected cells. The finding of cell-type specific distribution and activation of these innate antiviral molecules at the placental maternal-fetal interface provide plausible evidence that type I IFN pathway molecules may play critical roles against SARS-CoV-2 infection in the placenta. Our findings also suggest that placental maternal-fetal interface has a well-defined antiviral defense system to protect the developing fetus from SARS-CoV-2 infection.
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Introduction

The pandemic coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has significantly impacted public health worldwide. Women infected with COVID-19 during pregnancy results in higher rate of adverse maternal and fetal outcomes, including preterm birth, preeclampsia, stillbirth, gestational diabetes, and low birth weight, than those were not (1–3). Furthermore, emerging studies of placenta, embryos, and cerebral organoids also suggest that fetal organs, such as the brain, could be vulnerable to COVID-19 infection (4). Although newborns delivered to women infected with COVID-19 was reported (5–7), vertical transmission of the virus is rare. However, the findings of detection of SARS-CoV-2 spike protein, nucleocapsid protein, and viral nucleic acids in the placenta from women with COVID-19 infection during pregnancy demonstrated that SARS-CoV-2 can infect placenta (8–11).

Placenta controls oxygen and metabolite exchange, produces growth factors and hormones, and transfers nutrients to support fetal development and growth. Placenta is also an important structural and immunological barrier to prevent pathogen transmission to fetus during pregnancy. In terms of the immune barrier, there are at least 3 boundaries at the maternal-fetal interface: A) intervillous space: where syncytiotrophoblasts (STs) overlay villous tissue and are in direct contact with maternal blood. STs are highly resistant to infection to pathogens (12–14); B) the implantation site or decidua basalis: where the invading extra-villous trophoblasts (EVTs) are in direct contact with maternal decidual cells; and C) fetal membrane, which contains EVTs and maternal decidual cells, is in direct contact with the uterine cavity. Although the placental cells express high levels of antimicrobial defense molecules (15) such as antimicrobial peptides defensins and pattern recognition receptors (PRRs), it remains unclear how the placental defense system functions against SARS-CoV-2 infection at the maternal-fetal interface.

Abnormal vascular development and increased inflammatory response have been characterized in placentas from women infected with COVID-19 during pregnancy as evidenced by substantial maternal vascular malperfusion (MVM) in decidua and fetal vascular malperfusion (FVM) in villous tissue, along with increased focal fibrin deposition and increased lymphocyte and macrophage infiltration, etc. (14–16). These findings indicate that aberrant vascular development and hyper-inflammatory status in the placenta are associated with maternal COVID-19 infection. However, despite fast-tracked intensive research on many aspects of COVID-19, the impact of the viral infection in the placenta and the immune response of the placental defense mechanism(s) are poorly explored.

Interferon (IFN) cytokines are key molecules modulating immune responses and type I IFNs are considered to play crucial roles in protection of pregnancy via their antiviral and immune modulatory properties (17–19). The baseline expression of type I IFN is very low in most tissues and could be rapidly triggered by viral attack and bacterial infections. It was reported that SARS-CoV-2 infection in pregnancy is associated with robust inflammatory response at the maternal-fetal interface, with increased activation of natural killer (NK) and T cells and increased expression of interferon-related genes, such as ISG15, an interferon-induced protein (20). In this study, we investigated if type I IFN pathway molecules are differentially activated at the maternal-fetal interface in placentas from women infected with COVID-19 during pregnancy. We specifically evaluated several key molecules that are involved in type I IFN activation, including 1) cyclic GMP–AMP synthase (cGAS); 2) stimulator of interferon genes (STING); 3) interferon regulatory factor 3 (IRF3); The cGAS-STING-IRF3 pathway plays critical roles in the induction of type I IFN activation in cells encountered viral infection (21, 22). We also examined Toll-like receptor 7 (TLR7) and mitochondrial antiviral-signaling protein (MAVS) expression. TLR7 is an endosomal innate immune sensor capable of recognizing single-stranded RNA (ssRNA) of virus infection (23, 24). MAVS is an essential adaptor protein of antiviral immunity in mitochondria, which could activate IRF3 and subsequently induce type I IFN expression (22). We also assessed IFNβ expression, a key type I IFN cytokine. These type I IFN activation markers were examined in both villous tissue and fetal membrane of placentas from women infected with COVID-19 during pregnancy.



Materials and methods


Study subjects and placenta specimen

This study was approved by the Institutional Review Board (IRB) at Louisiana State University Health Sciences Center-Shreveport (LSUHSC-S). Formalin-fixed paraffin embedded (FFPE) placental tissue sections, including villous tissue and fetal membrane, were obtained from Pathology archives at LSUHSC-S. A total of 20 placentas were examined, 12 from women infected with COVID-19 during pregnancy and 8 controls from women never infected with COVID-19 before and during pregnancy. Patients diagnosed with COVID-19 infection were detected by polymerase chain reaction (PCR) of SARS-CoV-2 RNA in nasopharyngeal swab specimens. Patients classified as asymptomatic, mild to moderate, or severe were based on their symptoms and clinical findings as defined by the NIH COVID-19 guidelines (25). Demographic and clinical information was obtained by chart review via EPIC medical record system. As showed in Table 1, BMI was significantly higher in the COVID-19 than in the control group. There were no statistical differences between control and COVID-19 groups in maternal age, gestational age at delivery, gravity/parity, racial status, delivery mode, and newborn gender and weight. However, placental weight was significantly less in the COVID-19 than in the control group.


Table 1 | Demographic data of pregnant women with or without COVID-19 infection from whom placenta was studied.





Immunohistochemical (IHC) staining

IHC was performed to evaluate expression and distribution of cGAS, STING, IRF3, TLR7, MAVS, and IFNβ in villous and fetal membrane tissue sections from all study subjects. Expression of vimentin (a marker of mesenchymal stromal cells) and CD68 and CD16 (markers of macrophage) were also determined. Villous tissue section contains STs, cytotrophoblasts (CTs), mesenchymal stromal cells (MSCs), Hofbauer cells (placental macrophages), and fetal endothelial cells. Fetal membrane contains amnionic epithelial cells, EVTs, and maternal decidual cells and MSCs. Supplemental Figure S1 shows a sagittal plan of a placenta and hematoxylin and eosin (H&E) and cytokeratin 5/8 (a marker of trophoblasts) staining in villous and fetal membrane tissue sections, which provide a general overview of villous and fetal membrane structure to show the typical layout and cell distribution of the tissue sections.

A standard immunohistochemistry staining procedure was performed. Briefly, a series of deparaffinization was carried out with xylene and ethanol alcohol. Antigen retrieval was performed by boiling tissue slides with 0.01mol/L citric buffer. Hydrogen peroxide was used to quench the endogenous peroxidase activity. After blocking, tissue sections were incubated with primary antibody overnight at 4°C. Corresponding biotinylate-conjugated secondary antibodies and ABC staining system (Santa Cruz Biotechnology) were used subsequently according to the manufacturer’s instruction. Stained slides were counterstained with Gill’s formulation hematoxylin. Tissue sections stained with isotype IgG or secondary antibody only were used as controls. Stained slides were reviewed under an Olympus microscope (Olympus IX71, Tokyo, Japan). In general, 3-4 images were randomly captured by a digital camera and recorded into a microscope-linked PC computer. The source of antibodies used in the study and antibody dilution factors are present in Supplemental Table S1.

For semi-quantification analysis of villous tissue immunostaining, STING and IRF3 positive cells were analyzed using Image J Plugins IHC profiler as described by Seyed Jafari and Hunger (26) with modification. Percentage contribution of high positive and percentage contribution of positive were combined as relative positive cell accounts. The intensity of TLR7, MAVS, and IFNβ staining in villous tissue sections was analyzed using semi-quantitative H-score as described by Lockwood et al. (27). Categories 1-4 were assigned: 1 (negative staining); 2 (detectable but weak staining); 3 (moderate or distinct staining), and 4 (intensive staining). The mean of H-score was generated as relative intensity immunostaining in each specimen. Semi-quantification was not done in fetal membrane staining since cell types and staining intensity can be easily differentiated.



Statistical analysis

Comparisons of clinical demographic data were performed with un-paired t-test or Chi-square test and data are presented as mean ± SD. Data for villous immunostaining were analyzed with un-paired t-test and expressed as mean ± SE. Computer software Prism 9 (GraphPad Software, Inc. La Jolla, CA) was used. A probability level less than 0.05 was considered statistically significant.




Results


Clinical data and placental pathology of COVID-19 subjects

Clinical characteristics of women infected with COVID-19 in pregnancy, including gestational age at COVID-19 infection and delivery, and maternal and newborn complications and outcomes are presented in Table 2. There were 2 cases (cases 5 and 6) infected with COVID-19 in the first trimester, 4 cases (cases 7-11) in the second trimester, and 5 cases (cases 1-4 and 12) in the third trimester. Among them, except case 11, who was complicated with antiphospholipid syndrome (APS) and delivered at 26 weeks of gestation, and case 12, a twin pregnancy complicated with severe preeclampsia and asthma, with severe COVID-19 complication of acute respiratory distress syndrome (ARDS) delivered at 30 weeks of gestation, cases 1-10 were all delivered at term or closed to term (Table 2). The two preterm cases could impact the relatively lower mean newborn weight in the COVID-19 group. None of the newborns was infected with COVID-19. It was noted that placental weight was significantly less in the COVID group than in the control group, Table 1. If excluding cases 11 and 12 (the two preterm births in the COVID group), the mean placental weight was still significantly less in the COVID group than in the control group, 501 ± 77 grams vs. 615 ± 124 grams, p = 0.0289. Supplemental Figure S2 shows the correlation of newborn weight with placental weight in the control and COVID groups.


Table 2 | Clinical characteristics of women infected with COVID-19 in pregnancy.



Characteristics of placental microscopic pathology for COVID-19 patients were extracted from pathology report, re-evaluated by pathologist at LSUHSC-S, and presented in Table 3. The main pathological characteristics in placental disc are maternal and fetal vascular malperfusion and chronic inflammation. The main features of maternal vascular malperfusion include infarct, intervillous thrombus, and peri-villous fibrin deposition. The main features of fetal vascular malperfusion include avascular villi, vascular thrombi (infarction), and perivascular fibrin deposition. Chronic deciduitis is the major inflammatory pathology highlighted in the placental disc. For fetal membrane, 6 out of the 12 cases showed acute or chronic chorioamnionitis and/or chronic deciduitis. These placental vascular abnormalities and inflammatory marks found in our study are consistent with what were reported previously (8, 11, 13, 14). Figure 1A shows representative H&E staining in control (a) and COVID placentas (b and c). H&E staining in COVID-exposed placentas clearly shows the features of fetal vascular malperfusion including avascular villi, vascular thrombi, and perivascular fibrin deposition in villous tissue from COVID-19 exposed placentas.


Table 3 | Placental microscopic pathology of COVID-19 subjects.






Figure 1 | Representative villous tissue H&E staining and expression of STING and IFNβ in villous tissue and fetal membrane in placentas exposed to maternal COVID-19 infection. (A) Representative villous tissue H&E staining in COVID-exposed (b and c) placentas compared to non-COVID control (a) showing features of fetal vascular malperfusion including avascular villi, vascular thrombi, and perivascular fibrin deposition in villous tissue from COVID-19 exposed placentas. IVS: intervillous space; double arrow: STs; *: villous stroma; bold arrows: avascular villi and perivascular fibrin deposition; green arrow: fetal vessel thrombi. Bar = 50µm. (B) STING and IFNβ expression in villous tissue and fetal membrane in placentas exposed to maternal COVID-19 infection. a and b: villous tissue; a1 and b1: fetal membrane; a and a1: STING; and b and b1: IFNβ. In villous tissue: double arrow: STs; *: villous stroma. In fetal membrane: ‡: EVTs; #: decidua. Bar = 50µm in a and b; Bar = 100µm in a1 and b1.





Detection of STING and IFNβ expression in villous tissue and fetal membrane

To determine if type I IFN pathway is activated in placentas exposed to maternal COVID-19 infection, we first examined cGAS, STING, and IFNβ expression. Our results showed that cGAS expression was neither detected in villous nor fetal membrane tissue sections in placentas with or without exposure to COVID-19 in pregnancy (data not shown). Surprisingly, abundant STING positive cells were detected in villous stroma in all placentas in the COVID group (Figure 1B, a). Stromal cells in chorionic mesoderm (CM) and decidual layer in fetal membrane also showed positive STING staining (Figure 1B, a1). STING expression was not detected in trophoblasts, including STs, CTs, and EVTs, in COVID-19-exposed placentas. Interestingly, strong IFNβ expression was detected in villous trophoblasts (STs, CTs) (Figure 1B, b) in COVID-19-exposed placentas. IFNβ signal was also detected in fetal membrane cells, including amnion epithelial cells, EVTs, stromal cells in chorionic mesoderm (CM) and decidual layer (Figure 1B, b1). These results suggest that STING and IFNβ expressing cells are cell type-specific at the placental maternal-fetal interface in response to maternal COVID-19 infection.

Hofbauer cells (placental macrophages) locate in villous stroma. To determine if the STING positive cells are Hofbauer cells, expression of CD68, CD16, and vimentin were determined in villous tissue sections. CD68 and CD16 are markers of macrophages, and vimentin is a marker of stromal mesenchymal cells. Figure 2 shows representative STING, CD68, CD16, and vimentin expression in villous tissue sections from active infection and COVID-19 recovered cases, and non-infected controls. Active infection was the placenta from pregnant women with positive detection of SARS-CoV-2 RNA in nasopharyngeal swab specimen when admitted to hospital for delivery. COVID-19 recovered was the placenta from women infected with COVID-19 during first or second trimester with negative detection of SARS-CoV-2 RNA when admitted to hospital for delivery. Non-infected control was a placenta from women never infected with COVID-19 before and during pregnancy. Abundant STING expressing cells are seen in villous stroma in placentas from COVID-19 infected cases (Figure 2, a1, b1), but not in non-COVID controls (Figure 2, c1). For CD68 and CD16 expression, only a few positive cells were detected in villous tissue sections from COVID-19-exposed and non-COVID placentas, CD68: Figure 2, a2, b2, and c2 and CD16: a3, b3, and c3, respectively. However, abundant vimentin positive cells were detected in villous stroma in all specimens regardless of COVID-19 infection status, Figure 2, a4, b4, and c4. These results demonstrate that STING positive cells may not be macrophages, but MSCs. These results also suggest that placental villous MSCs are activated in response to maternal COVID-19 infection.




Figure 2 | STING, CD68, CD16, and vimentin expression in villous tissue of placentas with or without exposure to maternal COVID-19 infection. Active infection: from placentas delivered by women with positive detection of SARS-COV-2 RNA when admitted to Labor and Delivery. Recovered case: from placentas delivered by women with positive detection of SARS-COV-2 RNA at second trimester and negative detection of SARS-COV-2 RNA when the patient was admitted to hospital for delivery. Non-infected control: from placenta delivered by women who was never infected with COVID-19 before and during pregnancy. STING is strongly expressed in villous stromal cells in both active infection (a1) and recovered (b1) cases, but only a few positive cells were seen in villous stromal in non-infected control (c1) placentas. Both CD68 and CD16 are markers for macrophages. Only a few positive CD68 and CD16 cells were detected in villous stromal in active (a2, a3), recovered (b2, b3), and control (c2, c3) placentas. Vimentin is a marker of mesenchymal cells. Vimentin positive cells were detected in villous stroma in all villous tissue examined: active infection (a4), recovered (b4), and non-COVID control (c4) placentas. These results indicate that STING positive cells are villous mesenchymal stromal cells (MSCs), not Hofbauer cells (macrophages), in placentas exposed to COVID infection. Bar = 50µm.





Differential activation of type I IFN pathway molecules in villous tissue cells in placentas from women infected with COVID-19 in pregnancy

Figure 3A shows representative images of STING, IRF3, TLR7, MAVS, and IFNβ expression in villous tissue sections from COVID-19 exposed placentas compared to non-COVID controls. Again, abundant STING positive cells were detected in stromal cells and fetal endothelial cells in COVID-19 exposed placentas (Figure 3A, f and f1) vs. non-COVID controls (Figure 3A, a and a1). Interestingly, increased IRF3 expression was detected in CTs in COVID-19 exposed placentas (Figure 3A, g and g1) compared to that in non-COVID controls (Figure 3A, b and b1). STING and IRF3 expression were not detected in STs in COVID-19 exposed placentas. In contrast to STING and IRF3 expression, upregulation of TLR7 was seen in both STs, and CTs in COVID-19 exposed placentas (Figure 3A, h and h1) compared to non-COVID controls (Figure 3A, c and c1). Upregulation of TLR7 expression was also seen in stromal cells and fetal endothelial cells in COVID-19 exposed placentas (Figure 3A, h and h1). STING, IRF3, and TLR7 are all viral sensing molecules in type I IFN pathway. The findings of STING, IRF3, and TLR7 upregulation in different cell-types in villous tissue of COVID-19 exposed placentas suggest that cells at the placental maternal-fetal interface react differently in response to maternal COVID-19 infection.




Figure 3 | STING, IRF3, TLR7, MAVS, and IFNβ expression in villous tissue of placentas with or without exposure to maternal COVID-19 infection. (A) STING, IRF3, TLR7, MAVS, and IFNβ expression in villous tissues from placentas with or without exposure to maternal COVID-19 infection. Images a to e are representative images of STING, IRF3, TLR7, MAVS, and IFNβ expression in villous tissue sections in non-COVID control placentas, and images a1 to e1 show zoom of enlarged rectangle area in a to e of each, respectively. Images f to j are representative images of STING, IRF3, TLR7, MAVS, and IFNβ expression in villous tissue sections in COVID-exposed placentas, and images f1 to j1 show zoom of enlarged rectangle area in f to j of each, respectively. Bar = 50µm. Activation or upregulation of STING, IRF3, TLR7, MAVS, and IFNβ expression were found in different cell-types in COVID-exposed placental villous tissue compared to non-COVID controls: 1) strong STING expression signal in stromal cells and fetal endothelial cells; 2) activation of IRF3 in CTs; and 3) increased TLR7 expression in STs, CTs, and fetal endothelial cells; 4) upregulation of MAVS expression in STs, CTs, stromal cells, and fetal endothelial cells; and 5) increased IFNβ expression in STCs and fetal endothelial cells, respectively. Red arrow: CTs; Green arrow: fetal endothelial cells. (B) Violin graphs show that relative expression for STING, IRF3, TLR7, MAVS, and IFNβ in villous tissue sections are significantly increased in COVID-exposed placental villous tissue (COVID) vs. non-COVID controls (Cont), * p<0.05 and ** p<0.01, respectively.



MAVS plays a major role in antiviral defense mechanisms by coordinating and activating IFN pathway signaling. Our results showed that MAVS was expressed in STs and fetal endothelial cells in villous tissue of non-COVID control placentas (Figure 3A, d and d1). However, MAVS expression was robustly upregulated in all villous cells, including STs, CTs, stromal cells, and fetal endothelial cells in COVID-exposed placentas (Figure 3A, i and i1) compared to the controls (Figure 3A, d and d1). The observation of MAVS upregulation in all villous cells provides further evidence that mitochondria act as a platform and are actively involved in antiviral immunity against SARS-CoV-2 infection in cells at the maternal-fetal interface. Compared to non-COVID controls (Figure 3, e and e1), strong IFNβ expression was detected in placental STs and fetal endothelial cells in villous tissue in COVID-19 exposed placentas (Figure 3, j and j1), respectively.

Figure 3B shows relative expression of STING, IRF3, TLR7, MAVS, and IFNβ in villous sections from COVID-19 exposed placentas compared to non-COVID controls. Significant upregulation of STING, IRF3, TLR7, MAVS, and IFNβ expression was found in COVID-19 exposed placentas vs. controls (p<0.01 for STING, TLR7, MAVS, and IFNβ, and p<0.05 for IRF3).



Differential activation of type I IFN pathway molecules in fetal membrane cells in placentas from women infected with COVID-19 in pregnancy

We also examined STING, IRF3, TLR7, MAVS, and IFNβ expression in fetal membrane from non-COVID and COVID-exposed placentas. We found that differential upregulation of these antiviral molecules in fetal membrane cells are also present in COVID-exposed placentas. Figure 4 shows representative images of STING, IRF3, TLR7, MAVS, and IFNβ expression in non-COVID controls (Figure 4, a to e) and in COVID-exposed (Figure 4, f to j) fetal membranes, respectively. Compared to non-COVID controls, increased STING expression in chorionic mesoderm and decidual stromal cells, and upregulation of IRF3 in EVTs were observed in fetal membranes in COVID-exposed placentas. TLR7 expression was also upregulated in EVTs and decidual cells in COVID-exposed placentas. Although, MAVS expression did not show different in fetal membrane cells between non-COVID control and COVID-exposed placentas, upregulation of IFNβ expression was detected in EVTs and decidual cells in COVID-exposed in comparison to non-COVID control placentas.




Figure 4 | STING, IRF3, TLR7, MAVS, and IFNβ expression in fetal membrane of placentas with or without exposure to maternal COVID-19 infection. Images a–e show STING, IRF3, TLR7, MAVS, and IFNβ expression in fetal membrane from non-COVID control placentas, and images f–j show STING, IRF3, TLR7, MAVS, and IFNβ expression in fetal membrane from COVID-exposed placentas. Upregulation of IRF3 in EVTs, and increased STING, TLR7, and IFNβ expression in chorionic mesoderm and decidual stromal cells were detected in fetal membrane of COVID-exposed vs. non-COVID control placentas. Increased IFNβ expression was also noticed in EVTs in fetal membrane of COVID-exposed placentas. ‡: EVTs and # decidual cells. Bar = 100µm.






Discussion

In the present study, we specifically examined expression of antiviral sensing molecules associated with activation of type I IFNs in placentas with or without maternal COVID-19 infection. Strikingly, we found that compared to non-COVID controls, antiviral sensing molecules including STING, IRF3, and TLR7 that link to type I IFN production are substantially upregulated with distinct cell type specific distribution at the maternal-fetal interface in COVID-exposed placentas, i.e., STING in villous and decidual MSCs; IRF3 in CTs and EVTs; and TLR7 in almost all three types of trophoblasts, fetal vessel endothelial cells, and decidual stromal cells.

STING activation in villous MSCs in COVID-19-exposed placentas is a novel finding in our study. Demonstration that STING expressing cells are MSCs, but not Hofbauer cells, is supported by the pattern of vimentin expressing cells in the villous stroma with no differences in CD68 and CD16 positive cells in both COVID-19 infected and non-infected placentas. There are number of biomarkers for macrophages, including CD14, CD16, CD64, CD68, CD71, and CD163, etc. Using CD68 as the marker for placental Hofbauer cells, Rebutini et al. studied the correlation of COVID-19 severity in pregnant women with placental morphologic features. Their results showed no difference in CD68 account in placentas between control and COVID-19 cases (13), which was consistent with ours. While using CD163 as the marker for macrophages, Sharps et al. did find increased CD163 positive cells in villous tissue following maternal COVID-19 infection (16). Increased placental macrophages was also reported in severe preeclampsia complicated by HELLP syndrome (28). It is possible that different subset of macrophages might be activated in the placenta in response to maternal COVID-19 infection and in placentas from various pregnancy complications, which warrant further investigation.

STING is an endoplasmic reticulum-associated membrane protein and can be activated by cGAS when cGAS recognizes cellular DNA in cytosol. cGAS-STING pathway plays critical roles in inducing type I IFN production and activating innate immune defense system in response to both DNA and RNA viral infection (21). Our results of undetectable cGAS expression in villous tissue and fetal membrane from COVID-19 placentas suggest that STING activation in villous and decidual stromal cells is cGAS-independent. In fact, cGAS-independent STING activation has been reported and considered as non-canonical activation of STING in cells after DNA damage (29). Stromal cells possess diverse immune regulatory capacities (30). Although villous stromal cells do not directly contact to maternal components that circulate in placental intervillous space, the finding of STING activation in villous stromal cells suggests that these cells are activated in response to maternal SARS-CoV-2 infection, which could be a feature of antiviral defense network at the placental maternal-fetal interface.

Another important finding is increased IRF3 levels in villous CTs and chorion EVTs in COVID-19 exposed placentas. IRF3 is a member of the interferon regulatory transcription factor (IRF) family. IRF3 activation could lead to type I IFN production in cells respond to viral infection (31). EVTs or invasive trophoblasts are trophoblasts residing outside of villi, which can be found in chorion, cell columns, basal plate, and decidua basalis. These cells directly contact maternal cells, including decidual cells, macrophages, dendritic cells, and T cells, etc. Currently, little is known about specific immune function of EVTs in viral infection, the finding of IRF3 activation in chorion EVTs suggests that EVTs may play vital roles at the boundary of EVTs and maternal decidual cells against COVID infection. Further study is needed to define the function of EVTs in the host innate immune system.

Elevated TLR7 positivity was noticed almost in all types of cells in villous tissue and fetal membrane, including STs, CTs, EVTs, fetal endothelial cells, amnion epithelial cells, and maternal decidual cells. It is known that among the TLR family members, TLR7 and TLR8 are recognized as sensors to ssRNA viruses (32) and SARS-CoV-2 genome contains a large number of fragments that can be recognized by TLR7/8 (24). TLR7/8 are X-linked genes. It was reported that X-linked recessive TLR7 deficiency was a highly penetrant genetic etiology of critical COVID-19 pneumonia (33, 34) and deficient TLR7 gene was associated with severity of SARS-CoV-2 infection in young male patients (35). Further study needs to determine if TLR7 gene deficiency in placenta or fetus is associated with vertical transmission of SARS-CoV-2 in pregnancy. It is worth to note that upregulation of TLR7 expression was also observed in villous core fetal endothelial cells in COVID-exposed placentas. Activation of TLR receptors has been linked to endothelial dysfunction in various cardiovascular diseases, such as atherosclerosis, hypertension, and ischemic injury (36). Although endothelial cells are not considered as classical immune cells, they are actively involved in inflammatory responses to various stimuli. Increased TLR7 expression seen in fetal endothelial cells could be a sign of fetal vascular response to maternal COVID infection. Whether TLR7 upregulation contributes to fetal endothelial cell dysfunction warrants further investigation. Nonetheless, upregulation of TLR7 expression in cells at the maternal-fetal interface indicates that TLR7 plays an important role in response to maternal COVID-19 infection.

MAVS is an adaptor protein that locates in multiple intracellular membranous compartments including mitochondria, peroxisomes, and endoplasmic reticulum (37). MAVS is also known as IFN-β promoter stimulator I (IPS-1) or virus induced signaling adaptor (VISA) (38). It is activated when pattern recognition receptors, such as retinoic acid-inducible gene I (RIG-I)-like receptors and melanoma differentiation-associated gene 5 (MDA5), detect the presence of viruses within cells. Aggregated MAVS activates a series of cellular responses which directly induce type I IFN production. Upregulation of MAVS expression in villous STs in COVID-exposed placentas indicates that MAVS could be a key antiviral sensing molecule in STs. Moreover, the finding of strong MAVS signals in fetal membrane cells in both control and COVID-exposed placentas also suggests that MAVS may play a dominant antiviral role in EVTs at the maternal decidual boundary.

Increased STING, IRF3, TLR7, and MAVS expression directly link to IFN activation in cells at the maternal-fetal interface in COVID-exposed placentas. This notion is supported by the finding of strong IFNβ (a type I IFN) expression in villous STs and in EVTs and maternal decidual cells in fetal membrane in COVID-exposed placentas. IFN response is considered a first line of defense against viral infection because it promotes virus clearance, induces tissue repair, and triggers a prolonged adaptive immune response against viruses (39). Type I IFN family has several members, including IFNα, IFNβ, IFNε, IFNω, and IFNv. IFNα and IFNβ are major type I IFNs. Humans produce 13 IFNα and 2 IFNβ. We evaluated IFNβ1 expression, and our results showed that IFNβ1 expression was robustly upregulated especially in STs and maternal decidual cells in COVID-exposed placentas, which indicates activation of IFNβ1 in cells at the maternal-fetal interface. IFN signaling is a main driver of the antiviral defense. Therefore, our findings support the notion that activation of type I IFN signaling pathway is a pivotal antiviral defense mechanism at the maternal-fetal interface against SARS-CoV-2 infection.

In addition, we did notice that placental weight was significantly less in the COVID group than in the control group (Table 1). Our data also showed that newborn weight was correlated with placental weight (Supplemental Figure 2). As mentioned early that abnormal vascular development and hyper-inflammatory status in the placenta are associated with maternal COVID-19 infection. There is no doubt that COVID-19 infection during pregnancy has significant impact on placental vascular development, which may account to low birth weight in COVID cases. Whether type I IFN upregulation plays a role in aberrant placental vasculature development warrants further investigation.

There are some limitations in our study. This is a retrospective specimen analysis using archived placental tissues. All placentas in the COVID-19 group are from Africa American women. This disproportionate COVID-19 infection population represents the demographic and ethnic disparities in the Shreveport community. Although the sample size is small and the intensity of immunostaining in fetal membrane is not quantified, the staining results are consistent showing distinct cell-type specific upregulation of the markers tested in the COVID group. Since SARS-CoV-2 antibody test was not the standard of care and no maternal and fetal blood specimen were preserved, viral load and maternal/fetal antibody (IgG and IgM) levels were not available to these subjects. Therefore, whether activation of antiviral IFN signaling pathway at the maternal-fetal interface correlates with maternal antibody levels or transplacental antibody transfer are not known. It is also unknown if maternal type I IFN levels affect IFN signaling pathway activation at the maternal-fetal interface in placentas exposed to CIVID-19 infection.



Conclusion

In the present study, we identified distinct cell-type specific sensing and activation of type I IFN pathway molecules at the maternal-fetal interface in placentas exposed to maternal COVID-19 infection. As summarized in Figure 5, STING in villous and decidual MSCs; IRF3 in CTs and EVTs; and MAVS, and TLR7 in STs. Upregulation of MAVS and TLR7 was also seen in fetal endothelial cells. These findings highlight that type I IFN signaling pathway is an important antiviral defense network at the maternal-fetal interface in the course of SARS-CoV-2 infection in pregnancy. Our data also suggest that the placenta has a well-defined innate antiviral defense system to limit and eradicate SARS-CoV-2 infection, which could, in part, explain why vertical transmission of SARS-CoV-2 is rare in pregnancy.




Figure 5 | A summary of type I IFN pathway molecule activation in different cell types at the maternal-fetal interface in placentas from women infected with COVID-19 in pregnancy. ST, Syncytiotrophoblasts; CT, cytotrophoblasts; HC, Hofbauer cells; SC, stromal cells; FEC, fetal endothelial cells; DC, decidual cells; AE, amnion epithelial cells; EVT, extra-villous trophoblasts, respectively.
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Placental dysfunction refers to the insufficiency of placental perfusion and chronic hypoxia during early pregnancy, which impairs placental function and causes inadequate supply of oxygen and nutrients to the fetus, affecting fetal development and health. Fetal intrauterine growth restriction, one of the most common outcomes of pregnancy-induced hypertensions, can be caused by placental dysfunction, resulting from deficient trophoblast syncytialization, inadequate trophoblast invasion and impaired vascular remodeling. During placental development, cytotrophoblasts fuse to form a multinucleated syncytia barrier, which supplies oxygen and nutrients to meet the metabolic demands for fetal growth. A reduction in the cell fusion index and the number of nuclei in the syncytiotrophoblast are found in the placentas of pregnancies complicated by IUGR, suggesting that the occurrence of IUGR may be related to inadequate trophoblast syncytialization. During the multiple processes of trophoblasts syncytialization, specific proteins and several signaling pathways are involved in coordinating these events and regulating placental function. In addition, epigenetic modifications, cell metabolism, senescence, and autophagy are also involved. Study findings have indicated several abnormally expressed syncytialization-related proteins and signaling pathways in the placentas of pregnancies complicated by IUGR, suggesting that these elements may play a crucial role in the occurrence of IUGR. In this review, we discuss the regulators of trophoblast syncytialization and their abnormal expression in the placentas of pregnancies complicated by IUGR.
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Introduction

Small for gestational age (SGA) refers to new-borns whose birth weight is below the 10th percentile for gestational age (1). A pregnancy in which an SGA fetus that cannot reach its genetically determined growth potential at any gestational age is diagnosed with IUGR (2). According to the literature, fetal IUGR occurs in 4% to 7% of global live births each year and occurs either alone or accompanied by pre-eclampsia (PE) or syndrome hemolytic anemia (HELLP) (3, 4). IUGR is the second leading cause of perinatal mortality (5). IUGR not only increases the incidence of fetal distress, premature delivery, and stillbirth, but also significantly increases the risk of various neurological and respiratory diseases in newborns (6, 7). Moreover, the incidence of cognitive impairment in childhood and the risk of heart disease, hypertension, and type 2 diabetes in adulthood are also increased (8–10).

Fetal growth is a continuous process in which cells, tissues, and organs differentiate and undergo maturation. During this process, the transport of primary nutrients, such as glucose, amino acids, and lipids, is essential for the development of a healthy baby (11). The placenta not only maintains the pregnant state and protects the embryo from infection, but also promotes the exchange of nutrients, gases, and waste products so that the embryo can safely survive and grow in a healthy intrauterine environment (12). In pregnancies complicated by placental dysfunction, oxygen and nutrient supply is inadequate to meet the metabolic demand of the growing fetus. This condition may lead to fetal growth restriction and fetal hypoxia, and in severe cases, irreversible ischemic organ damage and intrauterine fetal death may occur (13). Recent study findings suggested that insufficient placental nutrition transport during hypertensive pregnancy impairs fetal growth by decreasing placental protein O-GlcNAcylation (11). The proper functioning of the placenta depends on the integrity of its structure, which involves trophoblasts, immune cells and other placental cells proliferating, differentiating, and undergoing apoptosis at proper rates and in a balanced state. Unlike other placental cells, cytotrophoblasts (CTBs) have a tendency to fuse during pregnancy, which promotes the form of a multinucleated syncytial barrier that constitutes the interface between the maternal and fetal circulation and has the main function of transporting gases, nutrients and wastes between the fetus and the mother. On the other hand, extravillous trophoblasts (EVTs) invade the decidua and arterial vessels to participate in vascular remodeling. In hypertensive pregnancies, dysfunctional placentas showed a deregulation of cell fusion in the formation of the syncytiotrophoblast (STB) and increased apoptosis (14). In addition, the shallow invasion of trophoblasts and incomplete remodeling of the uterine arteries reduced vessel pulsatility, preventing placentas from achieving a steady blood flow to ensure the perfusion of the intervillous space and adequate transit time for exchange (15). In humans, placental tissues from pregnancies complicated by PE showed a lower STB/CTB ratio than normal placentas (16). Similarly, placental tissues from pregnancies complicated by IUGR showed evidence of placental underdevelopment, including villous hypermaturity and distal villous hypoplasia (17). Moreover, primary CTBs isolated from placentas of PE and IUGR pregnancies showed evidence of impaired syncytialization compared to those from normal pregnancies (18). During the multiple processes of trophoblast syncytialization, specific proteins and several signaling pathways are involved in coordinating these events and regulating placental function. It has been reported that cytokines and growth factors act on different signaling pathways to produce a series of cascade effects and to induce the expression of downstream molecules to regulate the syncytialization of trophoblasts (19). In this article, we discuss the relationships between abnormal trophoblast syncytialization and IUGR caused by placental dysfunction.



The etiology of IUGR

IUGR and PE are two different but clinically relevant pregnancy disorders attributed to an inadequate depth of trophoblast invasion into the maternal endometrium (20). At present, the causes of approximately one-third of IUGR cases including genetic factors, placental dysfunction and maternal influences. The remaining cases of IUGR are classified as idiopathic (21, 22). Although the causes are ambiguous, most of them are frequently associated with placental perfusion insufficiency. In patients with idiopathic IUGR, the placentas are smaller in size, the proliferation of trophoblasts is reduced, and the structures of placental villi are shortened. Interestingly, pathological results show that these small placentas are ischemic, indicating inadequate invasion of trophoblasts into the placental bed and deficient remodeling of the uterine spiral arteries, which eventually leads to chronic placental hypoxia (23, 24).

The development of the placenta depends on the balance of trophoblast proliferation, differentiation, and apoptosis. As with tumor cells, trophoblasts also have the ability to migrate into and invade the endometrium with strict biological regulation (25). On the 12th day after fertilization, CTBs invade STB columns to form primary villi. Approximately 10 days later, the chorionic trophoblasts in contact with maternal decidua differentiate into interstitial cytotrophoblasts (iCTBs) and endovascular cytotrophoblasts (eCTBs). iCTBs then invade the decidual matrix to control the depth of placental implantation and establish contact with decidual matrix cells, giant cells, and uterine natural killer (uNK) cells to accelerate the apoptosis of smooth muscle cells and the degradation of elastin (26–28). The latter passes through arterial walls and replaces vascular endothelial cells to participate in uterine spiral artery remodeling (26). This process changes the state of placental blood vessels from a high-resistance and low-flow state in early pregnancy to a low-resistance and high-volume state in subsequent pregnancy stages, thus improving placental perfusion and promoting villous microvascular formation to ensure sufficient material exchange between the mother and fetus (29). Although the existence of a low oxygen environment in the first trimester of pregnancy is essential to protect the fetus from injury due to excessive oxidative stress, persistently low perfusion with hypoxia can result in the development of pregnancy complications (30). Doppler ultrasound detected increased resistance of uterine spiral arteries in placentas from pregnancies complicated by PE or IUGR (31, 32). Interestingly, the clinical outcomes depend on the number of arteries involved and the extent of arterial involvement in remodeling in these pregnancies (33, 34).

To date, most scholars believe that the reduced migration and survivability of trophoblasts may be a key feature leading to IUGR. However, changes in other trophoblast cell behaviors can also lead to IUGR. In early pregnancy, placental CTBs proliferate and fuse to form a multinucleated syncytial barrier that mediates immune tolerance, steroid and peptide hormone synthesis, nutrient and gas exchange, and waste product removal between the mother and fetus. Apoptosis occurs throughout placental development, which causes senescent trophoblasts or damaged syncytia to be continuously released into the maternal circulation in the form of fragments or vesicles; this process is called syncytial deportation (35). In normal placentas, the formation and deportation of the syncytial barrier are in equilibrium. Nevertheless, as fetal growth is closely correlated with the nutrient supply mediated by the syncytium, the imbalance between trophoblast syncytialization and syncytial deportation could lead to nutrient deficiency and eventually cause pathologies such as PE, fetal IUGR, and embryonic death (36, 37). It has been reported that placentas from patients with pregnancies complicated by IUGR showed a reduced fusion index, which was calculated as “the ratio of the number of nuclei in the syncytia divided by the total number of nuclei”, where the syncytium was defined as at least three nuclei surrounded by a cell membrane (38, 39). In addition, studies have also shown that the proportion of syncytial deportation to the maternal circulation increased, while the expression of the fusion protein syncytin-1, which mediates syncytia formation, was reduced in placentas from pregnancies complicated by PE and IUGR (35). Furthermore, cultured CTBs from pregnancies complicated by PE and HELLP-associated IUGR were correlated with a pronounced lower cell fusion index, human chorionic gonadotropin beta (β-hCG) secretion, syncytin gene expression, and a significantly higher apoptosis rate (14). The above findings suggest that the occurrence of IUGR may be related to insufficient syncytialization of trophoblasts (14, 40).



Trophoblast syncytialization

Cell fusion processes occurring in a variety of biological contexts share many steps that are tightly regulated in space and time. Trophoblast cell fusion is mainly divided into three steps, in which a variety of proteins are involved and function in a space- and time-regulated manner (41, 42). For example, the first stage (competence stage) involves cell morphological changes with proliferative activity loss. The second stage (commitment stage) is characterized by cell adhesion and communication processes that lead to the activation, expression, exposure or assembly of the fusogenic machinery. In this stage, adherens junctions, tight junctions and gap junctions trigger the commitment of primary cells, followed by their fusion (39). The final stage (cell-cell fusion stage) is defined by the merging of two plasma membranes and the mixing of cellular contents (43) (see Figure 1).




Figure 1 | The three stages of trophoblast syncytialization.



In placentas, the process in which CTBs break down cell boundaries, and gradually fuse into a multinucleated STB layer is called trophoblast syncytialization (44). Under the physiological conditions of pregnancy, syncytialization is divided into two stages. The first stage begins on the 7th day and lasts until the 11th day after fertilization. During this phase, trophoblasts make contact with the maternal endometrium and begin to differentiate into STB. Then, STB fuse and lose their cell boundaries to form a multinucleated structure called the primitive syncytium, which facilitates the implantation of the embryo into the maternal endometrium (39, 45). After blastocysts are completely implanted, the fusion between STB ceases, while the proliferation of CTBs continues (39). The second stage begins on the 12th day after fertilization. As the pregnancy progresses, the surface area of the villi is expanded and regenerated, which depends on the continuous fusion of CTBs. This stage continues until delivery (45). These two syncytialization stages involve two different types of trophoblasts, and the processes involved in these two stages may be regulated by different mechanisms (45). The first stage of syncytialization occurs after early apoptosis. A series of apoptotic cascades cause negatively charged phosphatidylserines to accumulate in the outside of the cell membrane, which is a prerequisite for the fusion of trophoblasts (46, 47). However, it is not clear whether these processes of apoptosis or differentiation are the same prior to cell fusion because the initial stages of these two processes depend on the same molecular mechanism (48, 49). During the second stage of syncytialization, when the CTBs begin to fuse into the STB layer, the apoptotic cascade is immediately suppressed by high levels of apoptosis suppressors, such as MCL-1 and BCL-2. After the fusion is completed, the apoptotic cascade is restarted; this induces syncytial knots to be released into the maternal circulation (48). The result of syncytialization is the creation of a complete epithelial-like barrier covering the surface of all villi. The STB layer is supplied by the mother’s blood and transports oxygen and nutrients to the developing fetus. As a barrier between the mother and the fetus, the STB layer protects the fetus from attack by pathogens and the mother’s immune system. In addition, the STB can also secrete a large number of hormones, including β-hCG; the presence of this hormone provides the basis of one of the diagnostic criteria used to confirm early pregnancy (45).



Syncytialization-related proteins

A multitude of proteins are strictly regulated to participate in cell fusion via appropriate mechanisms at the correct place at the right time [reviewed in (39)]. For example, the first stage involves hCG, which has the capacity to induce cell differentiation and the formation of the syncytia. The second stage involves certain gap junction proteins, including connexins, that enhance cellular communication by forming intercellular channels (50). In addition, the expression levels of several cell adhesion molecules, including cadherins and zonula occludens-1 (ZO-1), are altered during the trophoblast syncytialization process. In the final stage, fusogenic proteins (syncytin-1 and syncytin-2), along with their transcription factor (glial cell missing 1 (GCM1)), play a crucial role in trophoblast syncytialization (51). Furthermore, 11β-hydroxysteroid dehydrogenase 2 (11β-HSD2) can convert cortisol into inactive metabolites and is also regarded as a biochemical marker of syncytialization (52).


hCG

During the early stages of pregnancy, hCG is secreted by embryonic trophoblasts. In contrast, during the latter phases of pregnancy, hCG is produced by the STB layer (39). hCG is a heterodimer composed of α and β subunits and serves as the trigger for the formation of the primitive syncytium; it also promotes syncytialization via an autoparacrine loop (53, 54). Research has shown that hCG is vital for the production of estrogen and preventing the decline in progesterone as a result of the degradation of the corpus luteum during early pregnancy (55, 56). hCG is also involved in promoting trophoblast invasion; regulating the growth of the uterus, fetus, and placenta; and protecting the fetus from attack by the mother’s immune system (56, 57). β-hCG is expressed only in the STB layer, and the level rises gradually with cell fusion; consequently, hCG is regarded as a biochemical marker of trophoblast syncytialization (58, 59). Typically, hCG increases intracellular cAMP levels via autocrine methods and regulates the expression of both GCM1 and syncytin-1 through the cAMP/PKA pathway to promote the syncytialization of trophoblasts (60). In addition, the abnormally low or high maternal serum levels of free β-hCG during different trimesters are closely associated with adverse pregnancy outcomes, including fetal IUGR, spontaneous abortion, and preterm birth. For this reason, free β-hCG is also regarded as a predictor of pregnancy complications (61, 62).



Cadherins

Cadherins are calcium-dependent integral member glycoproteins that not only function as cell shape and polarity stabilizers by promoting the formation of adherens junctions but also contribute to the balance of cell proliferation, migration and tissue homeostasis by interacting with the intracellular cytoskeleton (63). Cell-cell adhesion is triggered by the extracellular N-terminal domain of cadherins clustering with cadherins located on neighboring cells. E-cadherin, localized in the cell membrane of epithelial trophoblasts (cell columns and CTBs) and the inner STB, is known to be decreased after cell fusion, and is regarded as a morphological marker of cell fusion (16, 64, 65). Specific antibodies against the extracellular domain of E-cadherin have been shown to impede the human trophoblast syncytialization process by disrupting the aggregation of mononuclear CTBs, indicating that E-cadherin is directly involved in the cellular adhesion step of trophoblast syncytialization (66). It has been reported that E-cadherin is involved in regulating human trophoblast syncytialization by interacting with the β-catenin signaling complex and mediating the formation of cell junctions (67). In contrast to E-cadherin expression, cadherin-11 expression increases during trophoblast syncytialization (68). Cadherin-11 antisense treatment resulted in cellular aggregation but fusion deficiency in human trophoblasts. These data suggest that cadherins are vital for the whole process of trophoblast syncytialization, in which E-cadherin mediates mononuclear cell aggregation, while cadherin-11 is required for syncytialization.

Successful placentation relies on appropriate formation of syncytia and homing of trophoblasts to maternal spiral arteries. These processes involve a number of cell-cell adhesion molecules, the abnormal expression of which ultimately results in impaired placentation (69). In the placentas of pregnancies complicated by PE and IUGR, abnormally elevated cadherin levels may participate in the destruction of epithelial-mesenchymal transition (EMT) and the alteration of epithelial/mesenchymal balance, finally resulting in a shallower depth of trophoblast invasion into the decidua (20). Although cadherins are required for the entire trophoblast syncytialization process and change dynamically in the placentas of pregnancies complicated by IUGR and PE, until recently, there was a lack of direct evidence of abnormal cadherin expression causing fetal IUGR owing to syncytialization deficiency.



ZO-1

Tight junctions consist of transmembrane proteins such as the cytoplasmic scaffolding protein ZO-1 that regulate cell-cell adhesion and contribute to epithelial barrier function (70). ZO-1 is a 220 kDa protein that zips cells together and maintains cell polarity. In a mouse model, ZO-1 knockout (KO) induced defects in mouse placental development, mainly in vascular tree formation and chorioallantoic fusion (71). In humans, the involvement of ZO-1 in cell fusion and subsequent trophoblast differentiation has been established by morphological and biochemical data. ZO-1 is localized mainly in CTBs and at the intercellular boundaries between CTBs and between CTBs and STB, where its expression substantially decreases during cell fusion (72). In human primary trophoblast cultures, ZO-1 was predominant during the aggregation of CTBs and then decreased drastically with cell fusion. It has been proven that the decrease in ZO-1 induces cell fusion by establishing gap junction communication between two fusion-competent cells, where the expression of the gap junction protein connexin 43 is upregulated to initiate cell fusion (39, 72). In PE placentas, the expression levels of E-cadherin and ZO-1 were elevated compared to the controls (73). MiR-200 family members are highly relevant to PE and IUGR pregnancies. MiR-200 family impaired trophoblast invasion and altered the EMT process by stimulating the expression of the epithelial markers E-cadherin and ZO-1 (74). In contrast, Misan et al. reported that ZO-1 levels in both serum and placentas showed no significant difference between IUGR and control groups (75). Although recent study findings suggest that ZO-1 participates in the trophoblast syncytialization process, there is not sufficient evidence to prove that the occurrence of IUGR is related to the syncytialization deficiency caused by abnormal expression of ZO-1, which may be a new direction for future research.



Syncytins

Syncytins are endogenous retroviral envelope proteins containing a disulfide sequence, a furin cleavage site, a fusion peptide, and a receptor-binding domain. There are two pairs of retrovirus-derived envelope genes named syncytin-1 and syncytin-2 in humans and syncytin-A and syncytin-B in mice (76, 77). Both are expressed in placental trophoblasts and specifically mediate the formation of the STB layer, particularly through their fusogenic activity (78–80). In humans, syncytin-1 mediates cell fusion first by seeding its fusion peptide into the targeting membrane, then bending the cytomembrane, and finally forming fusion pores (39). During the spontaneous syncytialization process of human primary CTBs, the expression level of syncytin-1 is increased (81). It has been reported that the silencing of syncytin-1 gene expression could significantly reduce β-hCG secretion and cell fusion (7, 51). In contrast, after transferring syncytin-1 vectors into BeWo choriocarcinoma cell lines without forskolin induction, cell-cell fusion was directly induced, suggesting that syncytin-1 may be directly involved in regulating the syncytialization of trophoblasts (51, 78). Syncytin-2 is another fusion protein expressed only in CTBs, and its receptor, major facilitator superfamily domain-containing 2 (MFSD2), is also found in CTBs (82). A previous study showed that syncytin-2 was confined to G0 cells when all trophoblasts were ready to fuse, and the overexpression of syncytin-2 resulted in the unstable fusion of cells in their S/G2/M phases (83). As syncytin-2 works on CTBs and induces the initiation of cell fusion, syncytin-2 could be regarded as a marker of the initiation of trophoblast syncytialization (84). Reduced expression of syncytin-1 and syncytin-2 was detected in IUGR placentas compared to controls (14, 38). In mice, syncytin-A disruption caused fetal IUGR and embryonic lethality by reducing glucose transport between the maternal-fetal interface (85). Syncytin-A gene KO changed placental morphology, resulting in low expression of neovascularization-related genes and widespread vascular abnormalities in the labyrinth, which were characterized by irregular distribution and reduced numbers of fetal vessels (86). In addition, BCL9L-deficient mice exhibited a striking downregulation of syncytin-A in the placenta with severe disruption of trophoblast fusion (87, 88). Moreover, syncytin-A null mouse embryos died between embryonic days E11.5 and E13.5 due to the failure of placental formation (89). The level of the human antiangiogenic molecule sFlt-1 was markedly increased in syncytin-A KO mice, which prevented spongiotrophoblast from differentiating into glycogen cells and reduced the exchange area of the labyrinth and glycogen stores, which were highly relevant to fetal IUGR (86, 90). Therefore, syncytins directly contribute to trophoblast syncytialization, and placental syncytin deficiency may be associated with the occurrence and development of fetal IUGR in both humans and mice (38).



GCM1

GCM1 is a key transcription factor that regulates placental development and is predominantly expressed in mammalian trophoblasts, regulating cell differentiation, turnover and maintenance (91, 92). GCM1 functions as a regulator of STB formation and the expression of fusogenic genes such as syncytin-1 and syncytin-2 (93, 94). GCM1 regulates syncytin gene expression by binding to two GCM1-binding sites located upstream of the 5’-long terminal repeats of the syncytin-1 promoter region, which is essential for cell fusion (93, 95, 96). A previous study found that syncytin-A was downregulated in the placenta of GCM1-deficient mice (97). In humans, both reduced and increased levels of GCM1 have been described in several pregnancy complications and have been linked with altered trophoblast function in vitro (98–100). The expression level and transcriptional activity of GCM1 are reduced in the primary CTBs of first trimester and term pregnancies under hypoxia, along with syncytia formation deficiency (87, 101, 102). In addition, the excessive expression of syncytin-1 caused by abnormal regulation of GCM1 also leads to extensive cell fusion and cell death (103). Moreover, GCM1 promotes the transcription of syncytin-2 following interaction with the cell cycle inhibitor p21 (83). It has been reported that GCM1 is among the top scoring genes with the greatest negative association with fetal growth in human placentas from pregnancies complicated by IUGR (104). The transcription factor p45 NF-E2 (nuclear factor erythroid derived 2) has recently been found to regulate trophoblast differentiation, and its absence causes placental insufficiency and IUGR in mice (105). P45 NF-E2 negatively regulates human STB differentiation and apoptosis activation by modulating GCM1 acetylation and sumoylation, which is associated with IUGR (92). Collectively, these results suggest that the transcription factor GCM1 may play a crucial role in the trophoblast syncytialization process and that its abnormal regulation may lead to the occurrence of IUGR caused by syncytialization deficiency.



11β-HSD2

11β-HSD2 is an NAD+-dependent oxidase that converts active cortisol to inactive cortisone and is expressed from the earliest 3 weeks after embryo implantation. The levels of 11β-HSD2 drop intensely during the third trimester. 11β-HSD2 localizes in the STB layer, where it acts as a placental glucocorticoid barrier to protect the fetus from excessive maternal glucocorticoid disturbance (106–108). It is reported hCG upsurges 11β-HSD2 expression by activating the cAMP/PKA pathway, resulting in histones modification alteration and specificity protein 1 (Sp1) expression increase, which activates the transcription of HSD11B2 during trophoblast syncytialization (109). In IUGR pregnancy caused by different etiologies, placental 11β‐HSD2 expression is attenuated by distinct mechanisms. For examples, stress and nutritional deprivation reduce 11β‐HSD2 expression by increasing its methylation, while hypoxia decrease 11β‐HSD2 expression via alternative mechanisms rather than by methylation. A recent study revealed that the accumulation of cadmium in the placenta causes fetal IUGR by downregulating 11β‐HSD2 expression via Sp1, which binds to GC‐rich sections of the 11β‐HSD2 promoter region (110, 111; ). Although most of studies have shown the reduced level and activity of placental 11β-HSD2 in pregnancies complicated by PE and fetal IUGR, and the impairment of 11β‐HSD2 glucocorticoid barrier is associated with fetal IUGR and the development of chronic diseases in later life (109, 112, 113). Nevertheless, increased maternal 11β-HSD2 activity was observed many weeks before the clinical manifestations of PE and preterm fetal IUGR appeared (114).




The signaling pathways involved in syncytialization

A wide range of intracellular molecules are known to participate in the regulation of trophoblast syncytialization. In vitro, research has identified several signaling pathways, including the cAMP/PKA, Wnt/β-Catenin, MAPK, PI3K/AKT, JAK/STAT, and TGF-β/SMAD signaling pathways, that regulate trophoblast syncytialization by targeting syncytialization-related proteins or in other ways (see Figure 2). Furthermore, abnormalities in these signaling pathways have also been reported in cases of fetal IUGR caused by placental dysfunction.




Figure 2 | The signaling pathways participate in syncytialization.




cAMP dependent signaling pathways

The cAMP signaling pathway is one of the most common signaling pathways involved in cell fusion; this pathway is strictly controlled by a range of regulators that act in a spatial and temporal manner to convey appropriate messages (115). Signaling molecules, such as hCG and forskolin, first act on their receptors to activate adenylate cyclase (AC). This, combined with ATP catalysis, results in an increase in the intracellular level of cAMP (115). As a second messenger, cAMP then activates various downstream intracellular molecules, such as cAMP-dependent protein kinase (PKA) and the exchange protein that is directly activated by cAMP1 (EPAC1) (116, 117). Both of these factors eventually target fusogenic genes, leading to cell fusion.

PKA mediates many cAMP-induced biological effects, including cell fusion (19). For example, the activation of the cAMP/PKA signaling pathway by forskolin and β-hCG has a positive impact on trophoblast fusion (60, 118). Furthermore, the inhibition of fusion arising from hypoxia can be alleviated through the activation of the PKA pathway (119). Increased levels of fusion were detected in BeWo cells following the transfer of PKA plasmids; this was associated with upregulated transcriptional activity of GCM1 and an increase in the levels of syncytin-1 protein. These studies also showed that fusion was compromised when a PKA inhibitor, such as H89, was added (120, 121). Moreover, the expression levels and distribution of type I and type II PKA showed changes during the fusion between human CTBs; this was considered to be associated with the secretion of hormones and the reorganization of the cytoskeleton (120). Research has also proven that activated cAMP/PKA phosphorylates CREB (cAMP response element-binding protein), a downstream transcription factor that binds to CBP (CREB binding protein) and P300, to increase the expression levels of several fusogenic genes, including syncytins, hCG, GCM1, and Cx43 (39). Furthermore, cAMP, PKA, and CREB upregulate GCM1, then increase the expression levels of syncytin-2 via STAT5B (84). Furthermore, previous research found that cAMP can also upregulate the expression levels of the GTP-binding protein RhoE via cAMP and PKA, while RhoE was shown to influence the fusion of BeWo cells by activating the transcription factor GCM1 (122).

It is reported that ethanol reduces placental 11β-HSD2 expression via cAMP/PKA signaling, thus leads to glucocorticoids over-exposure for fetuses, which eventually induces fetal IUGR (123). Moreover, caffeine reduces placental 11β-HSD2 by decreasing intracellular level of cAMP, which is linked to fetal IUGR (124).



Wnt/β-Catenin signaling pathways

Research has shown that Wnt family members play a key role in embryonic development and tumorigenesis (125). In human cells, Wnt signaling pathways include the classic Wnt/β-catenin signaling pathway, the nonclassic Wnt/Ca2+ signaling pathway, and the nonclassic cell polarity pathway (126). The activation of the classic Wnt signaling pathway depends on the binding of Wnt ligands to the heterodimeric frizzled protein (FZD) or the low-density lipoprotein receptor-related protein (LRP-5/6) receptor on the cytomembrane, thereby destroying the CK1-GSK-3β-AXIN-APC phosphorylation complex; this prevents β-catenin from being degraded after undergoing phosphorylation in the cytoplasm and entering the nucleus to bind to transcription factors such as T-cell factor 4 (TCF4) and lymphocyte enhanced binding factor (LEF). Finally, target genes such as c-Myc, Cyclin D1, and Mmp7 are activated, which causes abnormal cell proliferation and apoptosis (25).

The classic Wnt/β-Catenin signaling pathway is associated with trophoblast syncytialization. In vitro, silencing of TCF-4 or β-Catenin has been shown to inhibit forskolin-induced BeWo cell fusion, at least to a certain extent (88). Other studies found that GCM1 upregulates FZD5 and that elevated levels of FZD5, in combination with nuclear β-Catenin signaling, can maintain the expression of GCM1 during trophoblast differentiation and chorionic branching morphogenesis. These results indicated that Wnt/β-Catenin regulates the syncytialization of trophoblasts by directly targeting GCM1 (127). The expression levels of Wnt10b have also been shown to increase in BeWo cells during the process of forskolin-induced fusion (128). In contrast, the protein levels of Wnt10b, and the nuclear concentration of β-Catenin were both found to be decreased after the addition of a PKA inhibitor. This indicated that cAMP may upregulate Wnt10b via the PKA pathway. Wnt10b promoted the migration of β-Catenin into the nucleus by activating the classic Wnt/β-Catenin signaling pathway, which acts on GCM1 and finally upregulates the expression of syncytin-1 (121).

Dickkopf1 (DKK1) is a secreted glycoprotein that can block the classic Wnt/β-Catenin signaling pathway by binding to LRP5/6 (129). A previous study found that the overexpression of the transcription factor HOXB7 inhibited the differentiation of human trophoblasts by downregulating the expression of DKK1 and the transcription of Wnt1/β-Catenin in the placentas of pregnancies complicated by IUGR. This indicated that the Wnt/β-Catenin signaling pathway may play a significant role in the pathogenesis of IUGR (130). Secreted frizzled-related protein (SFRP) is another Wnt signaling pathway inhibitor. In rats, the increased expression of SFRP4 and the reduced expression of nuclear β-Catenin were related to reduced growth in certain regions of the placenta after glucocorticoid-induced growth restriction (131). Furthermore, SFRP1 and SFRP3 were reported to be highly expressed in human placentas from pregnancies complicated by IUGR (132–134).



The MAPK signaling pathway

The MAPK signaling pathway plays an important role in cell proliferation, differentiation, invasion, aging, and apoptosis (135–138). When signaling molecules act on their receptors, the signal is transmitted to the nucleus by activating a series of factors within the cascade, including MAPKKK, MAPKK, and MAPK, thereby regulating the activity of transcription factors and the expression of target genes; collectively, these actions induce a range of intracellular responses (125). The MAPK family includes four different kinases: extracellular regulated kinase (ERKs), ERK5, c-JUN N-terminal kinase (JNKs), and p38 MAPK (125, 135). ERKs are mainly activated through mitogenic signals, while JNKs and p38 MAPK respond to stress and inflammatory conditions (139).

The ERK1/2 and p38 MAPK signaling pathways regulate the differentiation and fusion of trophoblasts under the effect of various growth factors and cytokines. For example, epidermal growth factor (EGF) and leukemia inhibitory factor (LIF) both exert a positive effect on the syncytialization of trophoblasts via MAPK signaling pathways, while specific inhibitors of MAPKs have an opposite effect on primary trophoblast cultures (140–142). Some data have shown that the MAPK and cAMP/PKA signaling pathways communicate by crosstalk. It has been reported that ERK1/2 can be phosphorylated by either PKA or RAP1, factors that are activated by members of the Ras superfamily (143, 144). Conversely, CREB can also be activated by ERK1/2. Together, these two signaling pathways regulate the expression of fusogenic genes, such as syncytin-1 through GCM1 and collectively mediate cell fusion (145). Furthermore, cAMP/PKA and p38α can both promote the expression of syncytin-1 and hCG via PPARγ/RXRα during the fusion of BeWo cells and primary human trophoblasts (146).

Placental dysfunction could lead to the development of fetal IUGR; these cases were characterized by the significantly reduced expression of p38 MAPK (147). For example, the expression of both p38 and syncytin-1 was both found to be downregulated in placentas from pregnancies complicated by IUGR, while levels of the transcription factor PPARγ/RXRα remained unchanged (146). Previous research found that insulin-like growth factors (IGFs) promoted trophoblast syncytialization and proliferation in vitro by binding to their receptor (IGF-IR) via the MAPK signaling pathway (148). Moreover, marked impairment of the coordinated activation of MAPKs, with reduced p38 and JNK phosphorylation, was observed in placentas from pregnancies complicated by IUGR; these factors resulted in extensive placental apoptosis and the impairment of maternal-fetal exchange functions (149).



The PI3K/AKT signaling pathway

The PI3K/AKT signaling pathway is of great significance for regulating trophoblast proliferation, differentiation, migration, and invasion (150, 151). PI3K is a heterodimer composed of the p85 regulatory subunit and p110 catalytic subunit and has both lipid kinase activity and protein kinase activity (152, 153). When signaling molecules such as hormones and growth factors bind to their receptors on the cell surface, PI3K is activated. Then, activated PI3K phosphorylates phosphatidylinositol-4,5-bisphosphate (PIP2) to phosphatidylinositol-3,4,5-triphosphate (PIP3) (154). Subsequently, AKT is recruited and activated by PIP3 with the help of PDK1, and activated AKT then phosphorylates downstream factors such as mammalian rapamycin (mTOR) to transduce signaling messages (155).

Studies have found that in addition to increasing cAMP levels, simultaneous inhibition of the PI3K/AKT signaling pathway and reduction of intracellular calcium also result in BeWo cell fusion. Moreover, individual blockade of calcium channel function or PI3K/AKT signaling potentiate cell fusion combined with forskolin (156). The above finding suggests that the PI3K/AKT pathway may be involved in the process of trophoblast syncytialization with cAMP activation, but the mechanism of its effects on syncytialization is still unclear.

Researchers have found that some components of the PI3K/AKT signaling pathway are decreased in dysfunctional human placentas, which causes fetal IUGR. For example, defects in p110α signaling impair angiogenesis, leading to placental regional morphogenesis alteration and placental exchange deficiency, which is associated with a severe and early-onset form of IUGR (157–159). Akt-1 KO mice have fetal growth restriction due to placental insufficiency (160). In human placentas of pregnancies complicated by IUGR, the expression level and activity of mTOR and its upstream molecule AKT are reduced, while those of AMPKα, a negative regulator of mTOR, are increased (161).



The JAK/STAT signaling pathway

Cytokines and growth factors interact with RTK on the cell membrane to activate JAK. Activated JAK subsequently phosphorylates tyrosine residues of STAT, and the latter forms dimers or multimers through its SH2 domain and is transported from the cytoplasm to the nucleus, where it combines with DNA sequences to activate gene transcription, leading to cell proliferation, differentiation, migration, and apoptosis (162–166).

A significant increase in STAT3 expression was observed during the process of forskolin-induced syncytialization of BeWo cells, and the spontaneous differentiation of primary trophoblasts was also associated with an increase in STAT3 expression (167). The above results suggest that STAT3 may participate in trophoblast syncytialization in vitro. In addition, the JAK/STAT signaling pathway also participates in BeWo cell fusion and β-hCG secretion mediated by LIF (142).

The study found that the expression of p-STAT3, a key molecule in the JAK/STAT signaling pathway, was decreased in human placentas from pregnancies complicated by IUGR. In addition, the expression of the JAK/STAT signaling pathway target genes IFNAR1 and IFNAR2 was also significantly downregulated in human IUGR placentas, suggesting that the JAK/STAT signaling pathway was inhibited (168). Moreover, the mRNA level of STAT5B is also decreased in the STB of placentas from pregnancies complicated by IUGR, which may affect syncytin-2 expression through GCM1, resulting in insufficient cell fusion (84, 167). STAT3 is located on the STB layer. The decreased level of STAT3 may lead to premature differentiation and increased apoptosis or shedding of STB (48).



The TGF-β/SMAD signaling pathway

TGF-β is a member of the transforming growth factor family, which is important for cell proliferation, differentiation, migration, apoptosis, and extracellular matrix deposition (169). TGF-β transmits signals through SMAD-dependent and non-SMAD-dependent pathways (170–172). For the SMAD-dependent pathway, TGF-β activates its type II receptors and recruits and phosphorylates type I receptors, and the activated dimeric receptor complex in turn activates SMAD transcription factors and induces them to enter the nucleus to regulate target gene transcription (173).

Expressed by STB, TGF-β negatively controls the fusion of CTBs into syncytia (174). A study revealed that after adding TGF-β1 to differentiated human primary trophoblasts, the potential for syncytialization was decreased with a reduction in hCG and human placental prolactin (hPL) secretion, suggesting that TGF-β1 signaling pathway may affect trophoblast syncytialization by generating a negative effect on the differentiation of trophoblasts, but the specific mechanism is not yet clear (175).

Aberrant activation of the TGF-β signaling pathway causes abnormal development of the placenta and induces disorders such as pregnancy-induced hypertension (PIH) (176, 177). It has been reported that TGF-β1 affects trophoblast invasion and migration abilities by suppressing EMT progression, which disrupts placental vascular remodeling, eventually inducing the occurrence and development of PE. At present, most studies have confirmed that the TGF-β1/SMAD signaling pathway is involved in the development of PE, and it is an integral part of PE treatment. For example, placenta-derived peptide regulates placental function during PE progression via the TGF-β1/SMAD signaling pathway (178). In addition, miR-140-5p may be involved in PIH progression by regulating the TGF-β1/SMAD signaling pathway (179). In IUGR placenta, the abnormal TGF-β signaling leads to dysregulated sphingolipoid metabolism, which may favor increased trophoblast cell death (180).

Although these signaling pathways are involved in the regulation of trophoblast syncytialization and the components of which are abnormally expressed in placentas from pregnancies complicated by IUGR, there is still a lack of direct evidence to prove that the aberrant expression of these signaling pathways leads to IUGR by impairing trophoblast syncytialization, which may be a promising direction for further research.




Epigenetic modifications involved in syncytialization

The syncytin-1 gene contains two long terminal repeat (LTR) regions: the 5’LTR and the 3’LTR. The U3 region of the 5’LTR overlaps with the CpG island, which extends from the proximal promoter region to the first exon, and the tissue-specific expression of syncytin-1 is determined by the degree of DNA methylation (181). Studies have found a negative relationship between syncytin-1 expression and gene methylation. Previous studies of both placentas from pregnancies complicated by PE and placentas from pregnancies complicated by IUGR reported the downregulation of syncytin-1 caused by promoter hypermethylation resulting from the overexpression of DNA methyltransferase (14, 182b; 183). However, in another study, Makaroun et al. detected a marked increase in syncytin-1 expression accompanied by reduced levels of syncytin-1 and syncytin-2 methylation in placentas from pregnancies complicated by IUGR (184). This concurred with the findings of Gao et al., who reported that the expression of syncytin-1 was upregulated due to insufficient promoter methylation in the placentas of pregnancies with discordant twins that were SGA (185). One speculation is that this may represent a compensatory mechanism for fetal growth retardation caused by placental dysfunction (186). The administration of 5-AZA-2’deoxycytidine (5-AZA), a DNA demethylation agent, into a range of trophoblast-like cell lines during their fusion process led to a reduction in 5’LTR methylation and an increase in the expression levels of syncytin-1 and hCG (183).



GCM1 ubiquitination, acetylation, and sumoylation

The ubiquitin-proteasome degradation system plays an essential role in many cellular processes, including cell cycle progression, signal transduction, transcriptional regulation, receptor downregulation, and endocytosis. Studies have found that the human GCM1 (HGCM1) protein has poor stability and is degraded by the ubiquitin-proteasome degradation system under the influence of SCF-human F box protein FBW2 (hFBW2)-E3 (SCFhFBW2E3) complex ubiquitination during cell fusion, thereby permitting GCM1 to be regulated on the posttranslational level (187). Given that GCM1 regulates syncytin-1-mediated trophoblast fusion, Yang et al. speculated that the abnormal expression of hFBW2 may hinder placental development (187). In addition, the activated cAMP protects GCM1 from being degraded by FBW2-mediated ubiquitination via two independent pathways: the cAMP/PKA pathway or the cAMP/EPAC1/CaMK1 pathway (60, 188). Studies have already demonstrated reduced levels of HGCM1 protein in the placentas of patients with PE (189). Hypoxia is the leading cause of PE and is known to activate and recruit GSK-3β and FBW2, respectively, to trigger ubiquitination and the degradation of GCM1 via the PI3K/AKT signaling pathway (190). During the fusion of placental trophoblasts, histone acetyltransferases (HATs) and histone deacetylases (HDACs) play a joint role in regulating the degree of GCM1 acetylation and thus determine the transcriptional activity of GCM1 (191). It has been reported that the cAMP/PKA signaling pathway recruits CBP to mediate the acetylation of GCM1 following phosphorylation at the Ser269 and Ser275 sites (60). Moreover, the cAMP/EPAC1/CaMK1 pathway subsequently enhances the binding of GCM1 to its target genes by increasing GCM1 desumoylation (192). Collectively, these actions eventually promote cell fusion by targeting the genes downstream of GCM1, such as syncytins. Furthermore, increased acetylation and desumoylation of GCM1 have been observed in the placentas from pregnancies complicated by IUGR, thus indicating that the posttranslational modification of GCM1 may be involved in the occurrence of fetal IUGR (92).



Metabolism and syncytialization


Hypoxia

In the early stages of embryonic development, the uterus is a hypoxic environment. It continues until the completion of vascular remodeling and the fetal-maternal interface becomes full of blood from the mother, thus providing oxygen to the developing fetus. If vascular remodeling fails, then there is a direct influence on the fetus with respect to the source of oxygen. The failure of vascular modeling can also damage the structure and function of the placenta via a range of different mechanisms; this can also have indirect effects on fetal development, thus leading to IUGR.

CTBs spontaneously fused into multinucleated STB in an environment where the concentration of oxygen is 21%; when the oxygen level was reduced to 10%, the majority of trophoblasts remained mononucleated, and there was a significant reduction in the secretion of hCG and hPL (193). Research has shown that under hypoxic conditions (the concentration of oxygen is 1%), there is a reduction in the expression levels of GCM1 and syncytin-1 in primary human trophoblasts, along with reduced levels of cell fusion (87). Hypoxia-inducible factor (HIF) is a heterodimeric transcription factor, stabilized under low oxygen tension to mediate cellular responses, composed of HIFα and the arylhydrocarbon receptor nuclear translocator (ARNT/HIF1β). Studies have shown that the downregulation of GCM1 caused by hypoxia is regulated by HIF. The increased level of GCM1 in Arnt-null mouse trophoblast stem (TS) cells induces TS cells differentiated into chorionic trophoblasts and syncytiotrophoblasts (194). Similarly, Arnt KO was also shown to partially restore the secretion of hCG in primary human trophoblasts (195). Furthermore, the inhibition of STB differentiation induced by hypoxia is also related to members of the ligand-activated nuclear hormone receptor superfamily, such as peroxisome proliferator-activated receptor gamma (PPARγ). PPARγ is expressed in villous CTBs and is activated during their differentiation into STB (196). It has been reported that PPARγ-deficient embryos die at 10.5-11.5 dpc due to placental labyrinth deformation (197). PPARγ-null TS cells showed a defect in differentiation into labyrinthine trophoblasts (198). GCM1 reduction in mouse placenta leads to defective STB differentiation and gestational hypertension in later pregnancy, a phenotype resembling PE (100). A previously study showed that the treatment of differentiating TS cells with a PPARγ agonist induced GCM1 expression. Conversely, the overexpression of PPARγ in PPARγ-null TS cells promoted both the expression of GCM1 and the formation of multinucleated STB in vitro (199). In addition, the failure to form a labyrinth and midgestation lethality were observed in both GCM1 and PPARγ-null gestations, suggested that PPARγ may regulate syncytiotrophoblast syncytialization via GCM1 (199). In another study, PPARγ agonists resulted in increased secretion of hCG and hPL and reduced expression of the apoptosis-related gene P53 in primary human trophoblasts in a hypoxic environment (the concentration of oxygen is 1%) (200). Hypoxia can play a critical role in the induction of human IUGR by inhibiting the differentiation of STB via GCM1 downregulation. However, there is very little evidence to support the fact that HIF and PPARγ play a role in hypoxia-induced human fetal IUGR. Other studies have shown that hypoxia can lead to an increase in placental oxidative stress and reactive oxygen species (ROS). The latter induces placental dysfunction by increasing the levels of cellular DNA damage, apoptosis, and the peroxidation of both proteins and lipids; these factors can all cause fetal IUGR (201).




Amino acids

Taurine is the most abundant amino acid in the placenta and is expressed in STB layer. Studies have found that taurine can induce the differentiation and fusion of trophoblasts but does not increase the secretion of hCG (202); these findings demonstrated that the biochemical differentiation and morphological differentiation of trophoblasts are two independent processes (198, 203). Studies of placentas from pregnancies complicated by IUGR have identified a reduction in the activity of the taurine transporter (TauT) and syncytia formation failure; the mechanisms underlying these effects, however, remain unknown (202). However, some researchers have speculated that these effects may be related to the involvement of taurine in transducing intracellular differentiation signals or maintaining intercellular molecular exchange (204, 205). Moreover, STB showed enhanced macropinocytosis induced by mTOR signaling inhibition, which serves as an essential adaptation to amino acid shortages in the placentas from pregnancies complicated by fetal growth restriction patients (206).



Senescence and syncytialization

Cellular senescence is characterized by cell cycle arrest accompanied by morphological and metabolic changes, including a shift to a proinflammatory phenotype (207). It has a positive effect with regard to limiting injured cell replication, inhibiting tumor growth, and facilitating cell fusion. However, senescence can also induce tumorigenesis as well as a number of age-related pathologies as senescent cells begin to accumulate (208–210). Senescence is caused by oncogene activation, telomere shortening, oxidative stress, and other types of stress leading to DNA damage (211, 212). Interestingly, the fusion of cells mediated by fusogenic proteins can also induce placental senescence, which p21 is activated and the p53 pathway of senescence becomes functional; this activates the p16-pRb (retinoblastoma protein)-dependent pathway, thus inhibiting the proliferation of CTBs (213–215). Cox et al. considered that senescence involves an extension of cell volume, as it provides sufficient space for the continued formation of multinucleated STB; this would also allow the terminally differentiated syncytia to function well and sustain pregnancy (207, 216). Furthermore, senescence can exert an anti-apoptotic effect (217), thus explaining the existence of nonapoptotic yet Caspase-8-positive STB expressing decoy receptor 2 (DCR2), an anti-apoptotic marker of senescence (217, 218).

Some studies reveal that the occurrence IUGR may provide a link to accelerated placental aging, senescence and major obstetric complications, and an arrested release of syncytial knots are observed in the placentas of pregnancies complicated by IUGR (219, 220). Telomerase is an enzymatic complex that completes the replication of telomeres, genetic elements that cap and protect the ends of chromosomes (221). Suppression of telomerase activity and reduced telomere length was found in IUGR placenta with elevated expression of telomere-induced senescence biomarkers, p21, p16 and elongation factor 1 alpha (EF-1α) (219).



Autophagy and syncytialization

Autophagy protects cells from senescence by degrading and recycling senescence-related components such as misfolded proteins and damaged organelles in a lysosome-embedded manner. Autophagy can be activated under conditions of mild stress and involves two essential organelles: the mitochondria and the endoplasmic reticulum (ER) (222). Calcium can be transferred between these two organelles in a bidirectional manner by virtue of the mitochondria-associated ER membrane (MAM), which is similar to the synapses of the nervous system. The MAM features a large number of calcium transporters and ion channels and is known to play an important role in both oxidative and ER stress (223, 224). Another study showed that an important prerequisite for autophagy was the differentiation-dependent downregulation of p53 (225). Autophagy is a constitutive process, and is activated during villous CTBs syncytialization, which provides energy to cells under situations involving the moderate depletion of nutrients or oxidative stress, and is advantageous in terms of the reorganization of organelles and the degradation of cytoplasmic contents (226–228). A change in autophagy activation in response to chemical treatments or the modulation of Beclin-1 expression was shown to result in a reduction in trophoblastic syncytialization (228). Furthermore, the unfolded protein response (UPR) is activated and protects cells suffering from ER stress during syncytialization, thus inducing autophagy and apoptosis. Consequently, autophagy plays a pivotal role in cell fusion and differentiation. However, increased levels of autophagy have been reported in placentas from pregnancies complicated by IUGR with or without PE; this process provides a nutritional reserve to protect the fetus from acute deprivation (229, 230).



Conclusion

In this review, we primarily discuss the regulators of trophoblast syncytialization and their aberrant expression in placentas of pregnancies complicated by IUGR. For syncytialization-related proteins, hCG, cadherins, ZO-1, syncytins, GCM1, and 11β-HSD2 are strictly regulated to participate in cell fusion via appropriate mechanisms at different fusion stages. Signaling pathways, including the cAMP/PKA, Wnt/β-Catenin, MAPK, PI3K/AKT, JAK/STAT, and TGF-β/SMAD signaling pathways, are involved in coordinating trophoblast syncytialization events and regulating placental function. The DNA methylation of syncytin-1 and the posttranslational modifications of GCM1 are reported to affect trophoblast syncytialization and associate with fetal IUGR. In addition, metabolic mechanisms, senescence and autophagy are also vital elements involved in regulating the trophoblast syncytialization process.

Thus far, research has shown that the PI3K/AKT, JAK/STAT, and TGF-β/SMAD signaling pathways play key roles in trophoblast syncytialization in vitro; however, it is not yet clear how these pathways act on downstream factors and cause syncytialization. Furthermore, little is known about whether the aberrant expression of cAMP/PKA, Wnt/β-Catenin, MAPK, PI3K/AKT, JAK/STAT, and TGF-β/SMAD signaling pathways leads to IUGR by affecting other biological behaviors of trophoblasts, as the etiologies of IUGR are diverse. Thus, clarifying whether these signaling pathways participate in the pathology of IUGR caused by inadequate trophoblast syncytialization and how they act on syncytialization-related molecules is of great significance to clarify the mechanism underlying IUGR development.

This review provides us with not only a better understanding of the pathogenesis of placental dysfunction caused by insufficient trophoblast syncytialization, but also new ideas and insights to select a comprehensive approach to therapy and prevent fetal IUGR occurrence.
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   Introduction

Lipids and fatty acids are key components in metabolic processes of the human placenta, thereby contributing to the development of the fetus. Placental dyslipidemia and aberrant activity of lipases have been linked to diverse pregnancy associated complications, such as preeclampsia and preterm birth. The serine hydrolases, diacylglycerol lipase α and β (DAGLα, DAGLβ) catalyze the degradation of diacylglycerols, leading to the formation of monoacylglycerols (MAG), including one main endocannabinoid 2-arachidonoylglycerol (2-AG). The major role of DAGL in the biosynthesis of 2-AG is evident from various studies in mice but has not been investigated in the human placenta. Here, we report the use of the small molecule inhibitor DH376, in combination with the ex vivo placental perfusion system, activity-based protein profiling (ABPP) and lipidomics, to determine the impact of acute DAGL inhibition on placental lipid networks.


 Methods

DAGLα and DAGLβ mRNA expression was detected by RT-qPCR and in situ hybridization in term placentas. Immunohistochemistry staining for CK7, CD163 and VWF was applied to localize DAGLβ transcripts to different cell types of the placenta. DAGLβ activity was determined by in- gel and MS-based activity-based protein profiling (ABPP) and validated by addition of the enzyme inhibitors LEI-105 and DH376. Enzyme kinetics were measured by EnzChek™ lipase substrate assay. Ex vivo placental perfusion experiments were performed +/- DH376 [1 µM] and changes in tissue lipid and fatty acid profiles were measured by LC-MS. Additionally, free fatty acid levels of the maternal and fetal circulations were determined.


 Results

We demonstrate that mRNA expression of DAGLβ prevails in placental tissue, compared to DAGLα (p ≤ 0.0001) and that DAGLβ is mainly located to CK7 positive trophoblasts (p ≤ 0.0001). Although few DAGLα transcripts were identified, no active enzyme was detected applying in-gel or MS-based ABPP, which underlined that DAGLβ is the principal DAGL in the placenta. DAGLβ dependent substrate hydrolysis in placental membrane lysates was determined by the application of LEI-105 and DH376. Ex vivo pharmacological inhibition of DAGLβ by DH376 led to reduced MAG tissue levels (p ≤ 0.01), including 2-AG (p≤0.0001). We further provide an activity landscape of serine hydrolases, showing a broad spectrum of metabolically active enzymes in the human placenta.


 Discussion

Our results emphasize the role of DAGLβ activity in the human placenta by determining the biosynthesis of 2-AG. Thus, this study highlights the special importance of intra-cellular lipases in lipid network regulation. Together, the activity of these specific enzymes may contribute to the lipid signaling at the maternal-fetal interface, with implications for function of the placenta in normal and compromised pregnancies.




 Keywords: human placenta, lipid metabolism, endocannabinoid system, 2-arachidonoylglycerol, diacylglycerol lipase, activity-based protein profiling, chemical proteomics, ex vivo placental perfusion 

  1. Introduction.

The two transmembrane enzymes diacylglycerol lipase alpha (DAGLα) and beta (DAGLβ) possess sn-1 specific hydrolytic activity for diacylglycerols (DAG), preferably hydrolyzing DAG species with mono- or polyunsaturated fatty acids (FA) at sn-2 position, leading to the formation of monoacylglycerols (MAG) (1). Interestingly, DAGLα/β exhibit a diverse cell-type and tissue-specific abundancy and it has been shown that specific expression patterns and regulatory mechanisms converge into distinct physiological roles of these enzymes. DAGLα is predominately expressed in the central nervous system and mainly confined to neurons (2, 3). In contrast, DAGLβ is mainly expressed in peripheral tissues where its activity is elevated in immune cells including microglia (3), macrophages (4), dendritic cells (5) and, importantly, associated with inflammatory responses. Besides the constitutive role of DAGLα/β in DAG catabolism, DAGLβ has also been proposed as polyunsaturated fatty acid-specific triacylglycerol lipase (6).

Cell membranes of the human placenta exhibit a high abundance of polyunsaturated arachidonic acid (AA) esterified phosphoglycerides (7) and quantitative analysis of placental lipid profiles revealed a high concentration of unsaturated triacylglycerol species (8). In particular, AA is essentially involved in the development of the fetal brain during the course of pregnancy (9, 10). DAGLα/β are renown as key components of the endocannabinoid system (ECS), regulating the biosynthesis of an AA-esterified monoglyceride, namely 2-arachidonoylglycerol (2-AG). 2-AG is one of the main endocannabinoids, acting as chemical messenger and full agonist for cannabinoid receptors 1 and 2. Both, 2-AG and AA serve as substrates for the synthesis of prostanoid-esters and prostanoids, respectively. These metabolites play an important role during parturition as they mediate processes like contractions of the myometrium and they are involved in a variety of pregnancy pathologies (11–13). The importance to tightly regulate bioactive lipid species is emphasized by several studies reporting aberrant lipase action linked to first trimester miscarriage (14, 15), endometrial cancer (16) and pregnancy associated disorders such as preeclampsia (17, 18). Furthermore, emerging evidence demonstrates a strong association between pregnancy disorders and dyslipidemia (19, 20). Thus, examining one of the key enzymes in lipid metabolism, contributes not only to the basic understanding of the ECS in the human placenta, but more importantly elucidates the potential role of DAGL in pregnancy pathologies.

Although many efforts have been made to describe placental hydrolases in the past decades, many functional aspects are still unknown (21–23). Furthermore, the extent to which DAGL activity may affect metabolic cellular pathways by regulating bioactive lipids in this tissue is not yet understood. Notably, animal models have major limitations to answer this question due to differences in physiology and metabolism of the human placenta compared to other species. In human cytotrophoblasts the presence of DAGLα and the main 2-AG degradative enzyme monoacylglycerol lipase (MGL) has previously been reported (24). Epithelial-like trophoblasts build up the outermost layers of the placenta and are in direct contact with the maternal blood. The multinucleated syncytiotrophoblast derives from underlying cytotrophoblasts and facilitates the exchange of nutrients, wastes and gases between the maternal and fetal circulations. In addition, it has been demonstrated that 2-AG reduced cell viability in a choriocarcinoma cell line and showed antiproliferative effects (24). In this study, we aimed to determine the function of DAGL enzymes in bioactive lipid metabolism in the human term placenta. Furthermore, we generated a profile of catalytically active serine hydrolases in placental tissue by using activity-based protein profiling (ABPP). Lipidomics, chemical proteomics, and ex vivo placental perfusion were applied to comprehensively study in vitro and ex vivo the effect of acute enzyme inhibition on placental lipid homeostasis.


 2. Materials and methods.

 2.1. Experimental model and subject characteristics.

Study was performed in accordance with the protocols approved by the ethical committee of the Medical University of Graz (Vote no: 29-319 ex 16/17 and 24-529 ex 11/12). All subjects gave written informed consent. Placentas from caesarean section and vaginal delivery were used within 20 min after delivery. Important subject characteristics of this study cohort are depicted in  Table 1 . In order to collect tissue samples, the placenta was divided into quadrants and a cross sectioned piece of 7-10 mm diameter was scissored from each quadrant. Tissue samples were either snap frozen in liquid nitrogen and stored at −80°C for protein isolation, or formalin fixed and embedded into paraffin for immunohistochemistry.

 Table 1 | Subject characteristics. Term placentas were collected from either caesarean section (CS) or vaginal deliveries (VD). 




 2.2. Quantitative real-time PCR.

Frozen 20-30 mg placental tissue pieces were homogenized in 700μl Qiazol lysis reagent (Qiagen, Cat# 217004) for 20 seconds 6500 revolutions per minute, by MagnaLyser (Roche, Basel, Switzerland) followed by 1 minute on ice and repeated 3 times. Next, total RNA content from cells and tissue lysates were isolated using the RNeasy®Mini Kit (Qiagen, Cat# 217004). Reverse transcription was performed using 1μg of RNA and LUNA Script RT SuperMix Kit (New England Biolabs, Cat#E3010L). For RT-qPCR analysis LUNA Universal qPCR Master Mix (New England Biolabs, Cat#M3003E) and BioRad CFX384 Touch Syllabus were used. QuantiTect Primer Assays were used for gene amplification. For 18S reference gene amplification custom DNA oligos were designed (F-(5 ‘-3 ‘) CTACCACATCCAAGGAAGCA/R-(5 ‘-3 ‘) TTTTTCGTCACTACCTCCCCG). The expression of target genes DAGLα (GeneGlobe ID - QT00038164) and DAGLβ (GeneGlobe ID - QT00074319) was normalized to reference genes 18S, RPL30 (GeneGlobe ID - QT00056651) and HPRT1 (GeneGlobe ID - QT00059066). Target and reference gene ΔCT values are corrected for respective primer efficacy.


 2.3. DAGLα/β .in situ hybridization

To detect and discriminate DAGLα and DAGLβ mRNA on cellular level, RNAscope® 2.5 HD Reagent Kit-RED assay (Advanced Cell Diagnostics, Cat#PN 322350) was used according to the manufacturer’s protocol. In short, 5 µm thick formaldehyde-fixed paraffin-embedded sections were de-paraffinized and pre-treated under standard pre-treatment conditions with hydrogen peroxide, target retrieval reagents and protease solution. The sections were covered with probe solution and incubated for 2 hours at 40°C using the HybEZ Hybridization System (Advanced Cell Diagnostics, Cat#PN 321710/321720). The sections were treated with AMP 1 to 6 according to the manufacturer´s manual, using the HybEZ Hybridization System. The multi-step hybridization process included hybridization to alkaline phosphatase-labeled probes and resulted in the detection of signal using Fast Red as a substrate. To combine ISH with immunohistochemistry (IHC), after performing ISH IHC was started from the blocking step as described below.


 2.4. Immunohistochemistry.

Placental tissue sections were blocked with 4% BSA and 10% secondary antibody host serum in PBS/0.3% Triton X100 and incubated overnight with primary antibody solutions. Primary antibodies for cytokeratin 7 (1:500, Abgent, Cat#AJ1229a), CD163 (1:200, Thermo Fisher Scientific, Cat#MA1-82342), and Von Willebrand Factor (1:500, Dako, Cat#A0082) were used. To detect Cytokeratin 7 (CK7) and Von Willebrand Factor (VWF) goat anti-rabbit Alexa Fluor 647 secondary antibody was used (1:500, Cell Signaling Technology, Cat#4414) and displayed in white. CD163 primary antibody incubation was followed by goat anti- mouse Alexa Fluor 488 secondary antibody application (1:500, Invitrogen, Cat#A32723) and displayed in green. Sections were counterstained with DAPI, sealed with a coverslip using VECTASHIELD® Antifade Mounting Medium with DAPI (Vector Laboratories, Cat# H-1200-10) and stored at 4°C until imaged. Representative images were captured on Nikon A1 confocal microscope (original magnification ×40) and prepared using FIJI software v.1.51h.


 2.5. Microscopy and signal quantification.

For quantitative determination and localization analysis, ten z-stacks of each section were acquired using a Nikon A1 confocal with a ×40 objective at a step size of 0.5 µm. An automated image analysis was created with the software package FIJI v.1.51h. The analysis entailed a basic pre-processing, generating a maximum intensity projection and mean filter smoothing, followed by application of an algorithm-based threshold. Feature detection of channels containing CK7 or ISH information was achieved employing RenyiEntropy (25), IsoData for the CD163 channel (26) and Otsu for the VWF containing channel (27). Generated regions of interest (ROI) of the ISH were separated by watershed and counted the ROIs of the remaining channels were used to determine the cell type specific ISH localization due to overlap.


 2.6. Gel-based activity-based protein profiling.

Gel-based ABPP experiments were performed as previously described (28). Frozen tissues were thawed on ice and homogenized in cold lysis buffer (20 mM HEPES pH 7.2, 250 mM sucrose, 1 mM MgCl2, 2.5 U/mL benzonase). After incubation on ice for 15 min, tissue debris was pelleted by centrifugation (2500 × g, 3 min, 4°C) and supernatant was transferred to a clean tube. Subsequently the supernatant was centrifuged at 30.000 × g (90-120 min, 4°C) to pellet the membrane-associated fraction and separate it from the soluble proteome. After removal of the soluble supernatant, the membrane pellet was washed with cold HEPES buffer (20 mM, pH 7.2) followed by resuspension in cold HEPES buffer by pipetting. Concentration of membrane-associated and soluble proteome was quantified (Bradford; BioRad Technologies, CA, USA) and adjusted to desired concentration (2 mg/mL) in HEPES buffer (20 mM, pH 7.2). For direct labeling, proteomes were sequentially treated with one-step activity-based probes DH379 (30 min, 1 µM, Cy3, RT) and FP-Bodipy (15 min, 500 nM, Cy2, RT) or MB064 (30 min, 250 nM, Cy3, RT) alone in a 15 µL total reaction volume. For competitive ABPP experiments, this step was preceded by incubation with DH376 in vitro or ex vivo and LEI-105 in vitro at indicated concentrations. The reactions were quenched by the addition of 5 µL 4x Laemmli-buffer (BioRad Technologies, CA, USA). After separation by SDS-PAGE (10% acrylamide) at 180V for 75 min, samples were visualized by in-gel fluorescence scanning (Cy2 532/28, Cy3 605/50, Cy5 700/50 filter settings) using a flatbed fluorescent scanner ChemiDoc™ MP Imaging System (Bio-Rad, Hercules, CA, USA). Coomassie staining was used to control the protein loading. Gel fluorescence is shown in greyscale, and optical density of the signals was determined using ImageLab 6.1 Biorad.


 2.7. DAGLβ activity assay.

Membrane fractions of placental tissues were prepared as described above (see Gel-based activity-based protein profiling (ABPP)). Membrane lysates were diluted to 10 ng/µL in assay buffer (50 mM HEPES pH 7.5, 0.0025% Triton X-100). Fluorescent measurements were carried out at RT in a black flat bottom 96-well plate (Thermo Fisher Scientific, MA, USA) in the presence of 0.5 µM EnzChek™ lipase substrate (Thermo Fisher Scientific, Cat#E33955) in 100 μL final volume using a Clariostar plate reader (BMG Labtech, Germany) and excitation/emission wavelengths of 477/525. For competitive experiments placental membrane lysates were pre-incubated with DH376 (100 nM) and LEI-105 (1 µM) for 30 min at RT, respectively. DMSO served as vehicle control and denatured samples (1% SDS, 5 min, 100°C) served as background controls. Background substrate hydrolysis was deducted from each measurement. Each data point is the mean of three technical replicates of n=3 placentas, for concentration testing and n=4 placentas for competitive experiments. The slope t=10 min to t=60 min was used as the enzymatic rate (RFU/min). Enzyme kinetics were plotted as curves in Graph Pad Prism 9 Software (GraphPad Software Inc., CA, USA).


 2.8. Chemical proteomics with label-free quantification.

Placental tissues were homogenized and prepared as described in Gel-based activity-based protein profiling (ABPP) section. The chemical proteomics workflow is based on previously published protocol (29) and conducted with minor modifications. In short, cytosolic and membrane fractions of placental tissue lysates (250 µg protein, 1 mg/mL, n=5) were incubated with serine hydrolase probe cocktail (10 µM MB108, 10 µM FP-Biotin, 30 min, 37 ˚C, 300 rpm). A pool of denatured vehicle control samples (1% SDS, 5 min, 100°C) was taken along as a negative control. Following steps were preformed according to protocol, including precipitation, alkylation, avidin enrichment, on-bead digestion, and sample preparation. Dried and desalted peptide samples were stored at -20°C until LC-MS analysis. Prior to measurement, samples were reconstituted in 50 µL 97:3:0.1 solution (H2O, ACN, FA) containing 10 fmol/µL yeast enolase digest (Waters, cat# 186002325) and transferred to LC-MS vials. Additionally, a quality control sample was prepared to prevent overloading the nanoLC system and the automatic gain control (AGC) of the QExactive HF mass spectrometer. LC-MS data was analyzed by MaxQuant software 2.0 applying match between runs. For further analysis, the following cut-offs were used: unique peptides ≥ 2, identified peptides ≥ 2, ratio positive over negative control ≥ 2. Additionally, targets were filtered against a putative probe-target list including human metabolic serine hydrolases.


 2.9. .Ex vivo placental perfusion

Placental perfusion setup is based on the setup published by Schneider et al. (30) and adapted as published by Hirschmugl et al. (31). In short, within 30 min after delivery of the placenta a single placental cotyledon chorionic-artery and vein pair was cannulated and flushed with perfusion buffer, containing DMEM (DMEM, phenol red free, Gibco by Life Technologies, ThermoFisher Scientific, MA, USA) mixed (3:1) with Earl's buffer (6.8 g/L NaCl, 0.4 g/L KCl, 0.14 g/L NaH2PO4, 0.2 g/L MgSO4•7H2O, 0.2 g/L CaCl2, 2.2 g/L NaHCO3, pH 7.4, all Merck, Darmstadt, Germany), amoxicillin (250 mg/L, Sigma-Aldrich, Steinheim, Germany), glucose (2 g/L Merck, Darmstadt, Germany), and essential fatty acid free bovine serum albumin (BSA) (35 g/L, Sigma-Aldrich, Seinheim, Germany). The cannulated cotyledon and surrounding tissue were placed in the pre-warmed perfusion chamber and the fetal circulation was connected to a magnetic pump (Codan, Salzburg, Austria) with a constant fetal artery inflow of 3 mL/min. The perfusion buffer is constantly fumigated by a gas exchange device (LivingSystems, St. Albans, VT, US) operated with 95% N2 and 5% CO2 on the fetal site during the experiment. A micro catheter pressure sensor (Millar, US) inserted into the fetal arterial cannula recorded the backflow pressure which should not exceed an average of 65 mbar. The impermeability of the perfused cotyledon was monitored within the first 30 min and each cotyledon displayed at least 95% fetal flow recovery. The maternal circulation was established by inserting three rounded needles into the intervillous space of the cotyledon with a flow rate of 9 mL/min. During the experiment, the perfusion buffer was gassed with 5% CO2, 20% O2 and 75% N2 through the gas exchanging device. DH376 (1 µM) was added to the fetal and maternal perfusion buffer reservoirs and the system changed to closed circuit in all inhibitor experiments. During the experiment maternal and fetal perfusates were collected every 30 min via a sampling port and oxygen (pO2), carbon dioxide (pCO2), pH, lactate production, and glucose consumption measurements were applied by a blood gas analyzer (Radiometer, Copenhagen, Denmark). The data sets obtained by the blood gas analyzer, magnetic pumps, and pressure sensor were registered and recorded via LabVIEWbased recording software (Beko engineering, Graz, Austria). After 4h of closed perfusion time, samples of both circuits were collected, centrifuged, and stored at −80°C. The perfused placental tissue was processed in cold PBS and snap frozen in liquid nitrogen until further analysis.


 2.10. Lipid analysis by LC-MS.

Placenta (pl, ~10 mg powdered), and perfusate (pf, 140 µl) samples were extracted according to Matyash et al. (32). In brief, samples were homogenized using two beads (stainless steel, 6 mm) on a Mixer Mill (Retsch, Haan, GER; 2x10sec, frequency 30/s) in 700 µl methyl-tert-butyl ether (MTBE)/methanol (3/1, v/v) containing 500 pmol butylated hydroxytoluene, 1% acetic acid, and internal standards (IS; pl: 20 pmol 15:0/15:0/15:0 triacylglycerol, 13 pmol rac-17:0/17:0 diacylglycerol, rac-17:0 monoacylglycerol, 50 pmol 17:0/17:0 phosphatidylcholine, Larodan, Solna, Sweden; 133 pmol 17:0/17:0 phosphatidylethanolamine, 30 pmol 17:0/17:0 phosphatidylserine, 8 pmol 17:1 lyso-phosphatidylcholine, 30 pmol 17:1 lyso-phosphatidylethanolamine, Avanti Polar Lipids, Alabaster, AL, USA; cb and pf: 2 nmol 17:0 FA, 800 pmol C21:0 FA, Sigma-Aldrich, St. Louis, MO, USA). Total lipid extraction was performed under constant shaking for 30 min at RT. After addition of 140 µl dH2O (pl) and further incubation for 30 min at RT, samples were centrifuged at 1,000 x g for 15 min. 500 µl of the upper, organic phase were collected and dried under a stream of nitrogen. Lipids were resolved in 500 µl MTBE/methanol (3/1, v/v). Pl extracts were diluted 1:4 in 2-propanol/methanol/dH2O (SolA; 7/2.5/1, v/v/v) for LC-MS analysis. To determine fatty acid levels, 200 µl (pf) were derivatized according to Bollinger et al. (33) using the AMP+ MS Kit (Cayman Chemical, Michigan, USA) and resolved in 500 µl SolA for LC-MS analysis. Protein precipitates of the extractions were dried, solubilized in NaOH (0.3 N) at 65°C for 4 h and the protein content was determined using Pierce™ BCA reagent (Thermo Fisher Scientific, MA, USA) and BSA as standard. Chromatographic separation was performed on a 1290 Infinity II LC system (Agilent, CA, USA) equipped with Zorbax RRHD Extend-C18 column (2.1x50 mm, 1.8 µm; Agilent, CA, USA) running a 10 min linear gradient from 60% solvent A (H2O; 10 mM ammonium acetate, 0.1% formic acid, 8 µM phosphoric acid) to 100% solvent B (2-propanol; 10 mM ammonium acetate, 0.1% formic acid, 8 µM phosphoric acid). The column compartment was kept on 50°C. A 6470 Triple Quadrupole mass spectrometer (Agilent, CA, USA) equipped with an ESI source was used for detection of lipids in positive mode. Data acquisition was done by MassHunter Data Acquisition software (B.10, Agilent, CA, USA) either in MRM (glycerol- and glycerophospholipids) or SIM (fatty acid derivatives) mode. Lipidomic data were processed using MassHunter Workstation Quantitative Analysis for QQQ (V.9, Agilent, CA, USA), normalized for recovery, extraction-, and ionization efficacy by calculating analyte/IS ratios (AU) and expressed as AU/µg protein.


 2.11. Statistical analysis.

Graph Pad Prism 9.02 Software (GraphPad Software Inc., CA, USA) was used for statistical analysis and graph plotting. Data are presented as mean ± SEM. All obtained datasets were tested for normal distribution with the Shapiro-Wilk and Kolmogorov-Smirnov test. Depending on the distribution of datasets parametric or non- parametric statistical tests were applied. If two or more normal distributed groups were compared student`s t-test or one-way ANOVA, including Benjamini- Hochberg post-hoc was performed. If the dataset did not show a normal distribution Mann-Whitney U test or Kruskal-Wallis test followed by Benjamini- Hochberg post hoc was applied. Two-way ANOVA was applied comparing two or more groups including different variables using Benjamini- Hochberg post hoc for multiple comparison correction. All herein presented p-values correspond to a FDR of 1% for multiple testing and p-values below 0.05 were considered statistically significant.



 3. Results.

 3.1. Detection of DAGL mRNA and activity in placental tissue lysates.

To elaborate DAGL expression in placental tissues, we first determined DAGLα/β mRNA levels by RT-qPCR. In comparison to DAGLα substantially higher DAGLβ expression was observed ( Figure 1A , p<0.0001). Serine hydrolase activities in the placenta were examined by gel-based ABPP. To obtain a broad view of placental serine hydrolase activities and DAGL-specific signals, we used a probe cocktail of non- selective FP-Bodipy (34) and the DAGLα/β directed fluorescent probe DH379 (28). Using FP-Bodipy, we detected a broad spectrum of active enzymes in placental lysates. Application of DH379 visualized DAGLβ at the expected molecular weight of ~70 kDa ( Figures 1B, C ). To confirm the presence of active DAGLβ, competitive ABPP was applied using the DAGL inhibitors DH376 (IC50 3–8 nM) (28) and LEI-105 (IC50 ~32 nM) (35). Application of DH376 and LEI-105 reduced DAGLβ activity in a dose-dependent manner. DH376 led to full inhibition at the lowest concentration of 0.1 µM ( Figure 1B ), while LEI-105 treatment led to a substantial reduction of DAGLβ signals at a concentration of 0.5 µM ( Figure 1C ). Notably, we were not able to detect DAGLα activity at the expected molecular weight of ~120 kDa, using the DAGLα tailored probe MB064 (36), likely due to low expression levels compared to DAGLβ ( Supplementary Figure 1 ). DAGLβ activity in placenta tissue lysates was also investigated using the commercially available lipase substrate EnzChek™ ( Figure 1D ). We applied 100 nM of DH376, which represented the lowest inhibitor concentration leading to potent enzyme inhibition of DAGLβ in-gel ( Figure 1B ). In comparison to DH376, LEI-105 exhibits lower activity against DAG-lipases and acts as a reversible enzyme inhibitor. Although a substantial reduction in DAGLβ enzyme activity was observed by application of 0.5 µM ( Figure 1C ), we applied 1 µM LEI-105 to ensure complete enzyme inhibition over time. The application of LEI-105 and DH376 reduced hydrolase activity by 51% and 70%, respectively ( Figure 1E ). The differences in inhibitor efficacy can be explained by previous observations showing that LEI-105 exhibits higher selectivity for DAGLβ than DH376. At the used inhibitor concentration, DH376 is expected to inhibit α/β hydrolase domain-containing protein 6 (ABHD6), carboxylesterase 1 and 2 (CES1/2), and hormone- sensitive lipase (HSL) (28), which can contribute to the hydrolysis of the EnzChek™ substrate. Gel-based ABPP experiments enabled us to detect specific DAGLβ activity in placental tissue and we could further decipher DAGL-dependent substrate hydrolysis by administration of DH376 and LEI-105. Overall, our observations indicate that the placenta predominantly expresses DAGLβ, which consequently can affect DAG, MAG, and fatty acid (FA) metabolism.

 

Figure 1 | Detection of DAGL mRNA and activity in placental tissue lysates. (A) Relative DAGLα/β target gene mRNA levels were detected by RT-qPCR. Results were normalized to reference genes (RefG) 18S, RLP30 and HRPT1 detected in each sample and calculated as ΔCT. For statistics student`s t-test was applied and ΔCT values are depicted as 2 -ΔCT (n=13). (B), (C) Visualization of DAGLβ activity and selectivity profile of DH376 and LEI-105 using in-gel ABPP. Placental membrane proteomes were profiled by competitive ABPP using a probe cocktail of FP-Bodipy [500 nM] (Cy2, green) and DH379 [1 µM] (Cy3, red). Samples were incubated with indicated inhibitor concentrations or DMSO as a vehicle control. Concentration-dependent inhibition of DAGLβ by DH376 (B) and LEI-105 (C). Coomassie staining served as a protein loading control. (D) Hydrolase activity was determined using EnzChek™ lipase substrate [0.5µM] and displayed as relative fluorescence units (RFU) per time. DAGLβ activity determined by applying LEI-105 [1 µM] and DH376 [100 nM]. (E) The slope of the linear interval t=10 to t=60 min was used to calculate the enzymatic rate (RFU/min). One-way ANOVA for multiple comparisons followed by Benjamini- Hochberg post hoc was applied to quantify the differences of enzymatic activities (n=4). Data are depicted in mean ± SEM; ****p ≤ 0.0001. 




 3.2. Activity profiling of placental metabolic serine hydrolases.

ABPP using FP-Bodipy already suggested that the placenta expresses a broad spectrum of serine hydrolases ( Figures 1B, C ). To get a profile of these enzymes, we performed mass spectrometry-based chemical proteomics utilizing the biotinylated non- selective probes MB108 and FP-Biotin for target identification. While gel-based ABPP experiments strongly rely on specific inhibitors for target identification, MS- based ABPP enables target enrichment and provides high sensitivity. To increase the resolution of proteins, tissue lysates were separated into membrane and cytosolic fraction. This approach resulted in the identification of 38 and 33 different serine hydrolases in membrane and cytosolic fractions, respectively ( Figure 2 ). Activities of several α/β hydrolase domain-containing protein family members (ABHD) and phospholipases such as DDHD2, patatin-like phospholipase domain-containing proteins (PNPLA) and members of the phospholipase A2 family (PLA2) were identified. Furthermore, lipases involved in DAG, MAG and FA metabolism, including HSL, CES1/2 and acyl-coenzyme A thioesterase (ACOT1) were detected. Within the 2-AG biosynthetic active enzymes, we again exclusively detected DAGLβ activity. Taken together, performing chemical proteomics allowed us to generate an overview of the lipolytic proteome of human placental tissue and demonstrated a broad spectrum of metabolic hydrolase activities.

 

Figure 2 | Activity profiling of placental metabolic serine hydrolases. Membrane and cytosolic tissue protein fractions were labeled with hydrolase probe cocktail (MB108, FP-Biotin [10 µM]) and analyzed by chemical proteomics. Absolute abundance refers to the mean of LFQ intensities of vehicle perfused placentas and is depicted in alphabetical order as heat map (blue scale, log2), not detected proteins are depicted in grey (n=5). 




 3.3. DAGLβ expression is mainly confined to trophoblasts.

As the human placenta is composed of different highly specialized cell types, we aimed to determine the localization of DAGLβ in situ, by using specific RNA probes. To localize the transcripts to distinct cell types of the placenta, immunofluorescence (IF) was applied. The visualization of DAGLβ transcripts was combined with cytokeratin 7 (CK7) staining, representing trophoblasts, which are building up the first structural barrier between maternal and fetal compartment and CD163 as a pan macrophage marker ( Figure 3A ). To identify feto-placental endothelial cells, which are lining placental vessels and are in direct contact with fetal blood, Von- Willebrand Factor (VWF) was applied ( Figure 3B ). We localized DAGLβ transcripts mainly to CK7 positive trophoblasts ( Figure 3A ). Quantitative analysis of the signals revealed that 54% of DAGLβ mRNA was localized to trophoblasts (T), while negligible signals of 2% and 3% were detected in endothelial cells (E) and macrophages (M), respectively ( Figure 3C ). In contrast to DAGLβ, we could not detect clear signals for DAGLα, confirming our observation that this enzyme is poorly expressed in the human placenta ( Supplementary Figure 2 ).

 

Figure 3 | DAGLβ expression is mainly confined to trophoblasts. DAGLβ transcripts were detected in placental tissues using RNAscope® 2.5 HD RED assay. (A) DAGLβ transcripts detected in CK7 positive trophoblasts and CD163 positive placental macrophages. (B) DAGLβ mRNA was localized to VWF stained endothelial cells. Nuclei were counterstained with DAPI (blue). Arrowheads in merged micrographs indicate probe co-localization to different cell types. Magnification x40, Scale bar 100 µm. For quantitative determinations, ten images of four individual placentas were captured on Nikon A1 confocal microscope. Probe co-localization was quantified by Fiji software. (C) Relative distribution of DAGLβ transcripts to trophoblasts (T), endothelial cells (E) and placental macrophages (M) based on ISH signals (n=4). Statistical analysis was performed using one- way ANOVA, followed by Benjamini- Hochberg post hoc test (n=4). Representative stainings are shown in (A) and (B). Data are depicted in mean ± SEM; ****p < 0.0001. 




 3.4. Inhibition of DAGLβ activity leads to reduced DAG, MAG and FA levels in perfused placental tissue.

To better understand the specific function of DAGLβ in the intact organ, the lipid profile was examined after tissue perfusion with/out inhibitor. First, we examined the extent of DAGLβ inhibition obtained after perfusion by in-gel ABPP. Using DH379, we again identified the DAGLβ band (~70 kDa) in the vehicle perfused proteome ( Figure 4A ;  Supplementary Figure 3 ). By co-application of DH376 [1µM], signal intensity was strongly reduced by 87%, confirming target engagement ( Figure 4B ). Thus, our results suggest that the application of DH376 at a concentration of 1 µM in an ex vivo setting leads to substantial inhibition of DAGL, which may also be accompanied by changes in the lipid profile. To examine the consequences of DAGLβ inhibition under the applied conditions, we analyzed changes in lipid species in perfused placental tissue. In accordance with the proposed cellular function of DAGL, total MAG levels were decreased by 60% ( Figure 4C ), resembled by a reduction of all detected MAG species ( Figure 4D ). Notably, the obtained data further demonstrated significant decreased 2-AG levels (MAG 20:4) upon inhibition of DAGLβ ( Figure 4D ). Interestingly, decreased MAG levels were not accompanied by augmented DAG concentrations, but a trend to decreased levels could be detected ( Figure 4E ). In fact, we observed significant reductions in specific DAG species, including DAG 32:0-16:0, DAG 34:2-18:2 and DAG 36:2-18:2 ( Figure 4F ). Furthermore, FA concentrations showed a downward trend in inhibitor perfused tissues ( Figure 4G ), of which eicosenoic acid (FA 20:1) was significantly reduced, indicating an effect on the hydrolysis of sn-1 FA of DAGs ( Figure 4H ). In contrast, FA levels in the maternal and fetal circuit remained unchanged ( Supplementary Figures 4A, B ).

 

Figure 4 | Inhibition of DAGLβ activity leads to reduced DAG, MAG and FA levels in perfused placental tissue. (A) In vitro labeling of enzymes in DH376 [1 µM] and vehicle perfused placental membrane proteomes by direct ABPP using DH379. (B) Densiometric quantification of in gel ABPP demonstrated significantly decreased DAGLβ activity in DH376 perfused placentas compared to vehicle controls. Student´s t-test was performed for statistical testing (n=5). (C) Total monoacylglycerol (MAG) tissue levels in DH376 [1 µM] and vehicle perfused tissues. (D) Depiction of all measured MAG species by LC-MS. (E) LC-MS analysis of total diacylglycerol tissue levels (DAG) and diacylglycerol species in vehicle and DH376 perfused placental tissues (F). (G) Total tissue FA levels and corresponding FA species (H). Lipid levels are expressed as arbitrary units (AU) and were normalized to total tissue protein (µg). Student´s t-test and multiple t-test followed by Benjamini- Hochberg post hoc was performed, respectively (n=3 lipid levels, n=5 FA levels). Data are depicted as mean ± SEM; *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, ****p< 0.0001. 





 4. Discussion.

DAG lipases occupy a central role in multiple lipid signaling pathways by regulating DAG (37), endocannabinoid levels and downstream inflammatory mediators (4, 28). Studies in mice demonstrated that acute blockade of DAGL by DH376 in vivo led to significant reductions in endocannabinoid-, AA-, and prostaglandin levels in the central nervous system (28). Moreover, it has been shown that pharmacological inhibition and genetic disruption of DAGLα/β suppress induction of 2-AG and prostaglandin levels upon lipopolysaccharide treatment, which was accompanied by decreased pro-inflammatory cytokine secretion (4, 5, 28). Recently, Shin et al. identified DAGLβ as polyunsaturated fatty acid- specific triacylglycerol lipase by demonstrating robust hydrolysis activity for triarachidonin (C20:4 FA) or tridocosahexaenoin (C22:6 FA) in vitro (6). Hence, understanding the role of these versatile enzymes in human physiology and disease gained considerable interest. Here, we aimed to study the role of DAGL in placental lipid homeostasis.

ABPP assays were used to screen for serine hydrolase activities in the human placenta and particularly to examine the functional state of DAGL enzymes. The use of a fluorescent DAGL-tailored probe enabled us to detect DAGLβ activity at the corresponding molecular weight of ~70 kDa. Competitive ABPP with selective inhibitors confirmed that the signal was DAGLβ. DH376 has been described as potent, central active and covalent DAGL inhibitor (IC50 of 3-8 nM) (28). Since it has been reported that this compound cross-reacts with several other lipases such as CES1/2, HSL and ABHD6, we decided to include LEI-105 to verify our findings. LEI-105 is described as highly selective, but reversible DAGL inhibitor (IC50 ~32 nM) (35). Importantly, it has been shown that this compound did not affect the activity of other endocannabinoid-related hydrolases such as ABHD6 (35). Complete enzyme inhibition of placental DAGLβ could be achieved by applying relatively high inhibitor concentrations, as LEI-105 represents a non-covalent inhibitor and shows ~4-fold lower activity against DAGL enzymes compared to DH376. In conclusion, administration of LEI-105 validated our observations in-gel and contributed to the determination of DAGL- dependent substrate hydrolysis. Conversely, DAGLα activity was not detectable by ABPP, suggesting that DAGLβ is the principal active DAG-lipase in the human term placenta. The predominance of DAGLβ over α in placental tissue was further corroborated on transcriptional level in vitro as well as in situ. These findings are in accordance with previous studies showing that DAGLβ is mainly found in peripheral metabolically active tissues such as the liver, where DAGLβ-/- mice showed 90% reductions in 2-AG levels (2). As placental tissue is composed of different cell types, we specifically looked at the spatial expression of DAGLβ. DAGLβ transcripts were mainly located to CK7-postive trophoblasts, lining the first cellular barrier between the maternal and fetal circulation. Co-localization of DAGLβ to trophoblasts, which reflect the main site of action upon maternally derived signals, is in concordance with the expression sites of other lipid related enzymes in this organ (38).

In order to assess the importance of DAGL in the spectrum of the lipolytic enzymes in placental tissue we further generated an activity- based profile of serine hydrolases. The chemoproteomic analysis revealed a broad spectrum of hydrolases, which determine lipid metabolism and signaling. Within the 2-AG biosynthetic enzymes we again exclusively detected DAGLβ. Further, specific activity of enzymes involved in degradation of 2-AG, such as MGL, fatty acid amide hydrolase (FAAH), ABHD6 and ABHD12 was detected. It has been shown that beside MGL, which is the main enzyme for 2-AG hydrolysis, ABHD6/12 and FAAH also possess 2-AG hydrolytic activity (39, 40). Blankman et al. suggested that the simultaneous occurrence of different 2-AG hydrolytic enzymes could be explained by the regulation of distinct subcellular 2-AG pools. In accordance with previous observations, ABHD6/12 were exclusively identified in placental membrane preparations, whereas MGL activity was found in the cytosolic and membrane fraction (40). Interestingly, ABHD12 showed the highest activity in our dataset, compared to other 2-AG metabolizing enzymes. The major function of ABHD12 is the hydrolysis of lysophosphatidylserine as shown by genetic depletion in mice (41). The specific role of this enzyme in the placenta remains to be investigated, since only descriptive data is available yet (22). Besides 2-AG, anandamide (AEA) was one of the first discovered endocannabinoids and FAAH is the main catabolic enzyme in this pathway (42). Moreover, ABHD4 activity was detected, which contributes to AEA biosynthesis. In addition, several hydrolases determining lipid and FA metabolism, including (lyso)phospholipases, HSL and CES1/2 were identified.

This study set out with the aim of assessing the importance of DAGLβ activity in the lipid homeostasis of the human term placenta. Therefore, we looked at the functional consequences of pharmacological enzyme inhibition ex vivo, by applying DH376 as an inhibitor targeting DAGL activity. Lipidomic analysis of perfused tissue samples showed that acute inhibition of DAGLβ led to significantly reduced total MAG tissue levels, confirming the well-described role of DAGL in DAG catabolism. In fact, we could observe a significant decrease in 2-AG levels and a trend towards reduced saturated as well as mono- and polyunsaturated MAG species. In contrast to previously published data, the decrease in MAG levels was not followed by an increase in respective DAGs, suggesting that DAGs are efficiently metabolized in the absence of DAGL. Interestingly, specific DAG species showed a significant reduction upon DAGLβ inhibition, indicating that the enzyme may possess hydrolase activity against TAGs. In this context, DAGLβ has been previously described as polyunsaturated- specific TAG lipase in mice using genetic and pharmacological approaches (6). The decline in eicosenoic acid (FA 20:1), in inhibitor perfused tissues, suggests that DAGLβ prefers 20:1 species at sn-1 position of DAGs. Interestingly, we could not detect considerable differences of FA levels neither in the maternal nor in the fetal circulation. In contrast, in vivo pharmacological inhibition of DAGLα/β by DH376 led to significant reductions of AA levels in murine central nervous tissues (28). Unchanged AA levels could be explained by compensatory or bypass activities ensuring a constant supply of polyunsaturated fatty acids to the fetus. Furthermore, Hirschmugl et al. demonstrated that only a small proportion of free FA are directly transferred across the placenta and emphasized the tightly regulated release of FA out of metabolic pools of the placenta (31). It is also important to note that DAGLβ is predominantly expressed in trophoblasts and lipid extracts were obtained from whole tissue. Nonetheless, we observed a substantial decrease in MAGs indicating that DAGLβ activity strongly affects lipid homeostasis distinctively in this specific placental cell type.

This study describes for the first time that 2-AG is dramatically reduced after DAGL inactivation in the human placenta. Since 2-AG represents only one of the main endocannabinoids, this study is limited by the lack of information on the potential simultaneous regulation of AEA. Although, both endocannabinoids exhibit distinct synthesis, transport and degradation processes, one may speculate that alterations in lipid levels affect concomitant lipid signaling pathways, and compensatory or bypass mechanisms could be activated to restore lipid homeostasis. In particular, a potential mechanism for synaptic crosstalk and feed-back regulatory mechanisms between the two pathways has already been described in tissues of the central nervous system (43, 44). Furthermore, only one inhibitor concentration and experimental timepoint was used for ex vivo experiments. Since DAGLα exhibits a short half- life (< 4 h) and cumulative evidence supports the on-demand model of endocannabinoid biosynthesis (28, 45), it would be of great interest to study the consequences of enzyme blockage on the dynamic composition of placental lipids over time.

In summary, our study demonstrates that the application of small molecule inhibitors in perfusion experiments provides a very useful tool to investigate enzyme function as close as possible to the in vivo situation. In addition, ABPP is a powerful technique to visualize the active pool of enzymes and confirm target engagement in such ex vivo tissue experiments. The integration of these two approaches provided evidence that inhibition of DAGLβ affects tissue lipid homeostasis with no direct effect on the FA profile in the maternal or fetal compartment. We expect that further experiments by utilizing serine hydrolase inhibitors will strongly improve our understanding of the role of these enzymes in lipid signaling and metabolism at the maternal-fetal interface and reveal important insights related to placental function in normal and compromised pregnancies.
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Pregnancies are a critical window period for environmental influences over the mother and the offspring. There is a growing body of evidence associating indoor and outdoor air pollution exposure to adverse pregnancy outcomes such as preterm birth and hypertensive disorders of pregnancy. Particulate matter (PM) could trigger oxi-inflammation and could also reach the placenta leading to placental damage with fetal consequences. The combination of strategies such as risk assessment, advise about risks of environmental exposures to pregnant women, together with nutritional strategies and digital solutions to monitor air quality can be effective in mitigating the effects of air pollution during pregnancy.
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  1 Introduction

Urban daily exposures to chemical mixtures originated from air pollution have a profound effect on health, especially during vulnerable periods of development such as intrauterine life (1, 2). Pregnancy exposome has been emerging as a focal point in developmental origins of diseases, because of its ability to influence the epigenome and thus to affect gene activity and expression, modifying the likelihood of maternal comorbidities and perinatal outcomes risk (2–4). The exposome, defined as the totality of environmental exposure of an individual over the lifespan, is proposed to complement the genome information since the exposome is highly variable and dynamic (5). The exposome includes the general external environment factors, for example, environmental pollution, climate, and sociodemographic factors (6). According to the World Health Organization (WHO), air pollution (indoor and outdoor) “represents the single largest environmental risk to health globally” (7). Moreover, exposure to air pollutants is emerging as another key factor to determine the susceptibility of an adverse pregnancy outcome (8).

Fetal development is a critical window for every single mammal on earth, including human beings (9). During this period, the embryos depend on the health, nutrition, activities, and emotional status of the mother, which can modify the fetal exposome (2). According to Barker’s theory, embryonic development determines the physiological and metabolic responses that the individual will have into adulthood, in a process known as fetal programming. Thus, any stimulus or insult during embryonic development will result in developmental adaptations that produce permanent structural, physiological, and metabolic changes that predispose to cardiovascular, metabolic, and endocrine disease in adult life (10). Epidemiological data associates air pollution exposure during pregnancy with adverse outcomes such as preterm birth (<37 weeks of gestation) (11, 12), low birth weight (< 2500 g at birth) (13), miscarriage (14), preeclampsia and hypertensive disorders of pregnancy (15). Although the mechanisms responsible for the adverse pregnancy outcomes related to air pollution are not elucidated, recent experimental evidence indicates that the placenta is a direct target tissue for air pollution (16, 17). It is suggested that oxidative stress, endocrine disruption, inflammatory response, and DNA damage are the main contributors (18, 19). The immature metabolism and cellular proliferation period that characterizes the growing fetus is highly vulnerable to pollutants exposure (20).

The aim of this review is to provide an updated overview of the evidence linking exposure to outdoor or indoor air pollution during pregnancy with effects at the cellular level and some ways to mitigate these effects will also be discussed.


 2 Air pollution

Air pollution is defined as environmental contamination by toxic chemical compounds, gases, and particles that could modify the natural characteristics of the atmosphere with potential adverse health effects (21). Air pollution encompasses a mixture of different pollutants including particulate matter (PM), among many sources of PM, the combustion emissions from fossil fuel engines and degradation of vehicle parts and road surfaces abrasions represent substantial contributions (22). PM are defined according to their aerodynamic diameter as ultrafine particles PM0.1 (median aerodynamic diameter <0.1 μm), fine particles PM2.5 (median aerodynamic diameter <2.5 μm), coarse particles PM10 (median aerodynamic diameter <10 μm) and gaseous components like ozone (O3), carbon monoxide (CO), sulfur dioxide (SO2), nitrogen dioxide (NO2), carbon dioxide (CO2), black carbon (BC), diesel exhaust fumes, a wide variety of toxic chemicals such as polycyclic aromatic hydrocarbons (PAHs) and volatile and semi-volatile organic compounds (VOCs) (23, 24). Air pollution is a dynamic phenomenon where both outdoor and indoor pollutants interact and affect air quality (25).

The particulate matter often derives from a different source and has different chemical compositions. PM10 commonly includes pollen debris, dust from landfills or construction sites, industrial sources, wildfires, brush or waste burning, wind-blown dust from open lands, and microbial fragments (26). PM0.1 and PM2.5, often linked to biomass and traffic combustion (27, 28), are relevant in rural and urban environments, since they can be inhaled deeply into the lungs and enter the bloodstream, increasing the potential risk for cardiovascular diseases (29), lung cancer (30) and adverse pregnancy outcome (31). PM2.5 is composed of a mixture of natural crustal materials (carbonates, silicates), metals (copper, arsenic, and vanadium), inorganic molecules (sulfate, nitrate, sodium, potassium, and ammonium), black carbon and organic compounds (such as polycyclic aromatic hydrocarbons) (32). Polycyclic aromatic hydrocarbons (PAHs) are a large family of organic compounds, formed as products of incomplete combustion from natural (fly ash and soot from wood burning) and anthropogenic sources (motor vehicle exhaust, tobacco smoking, industrial processes, demolition waste), and are often present in the air, soil, and water (33). PAHs are comprised of two or more fused benzene rings in different arrangements (linear, clustered, and angular) highly lipophilic with relatively low solubility in water, that are stable and resistant to hydrolysis (34). Ambient air is one of the major sources of PAHs exposure (35). In the atmosphere, most PAHs present on PM2.5 have low volatility (particle-phase), which is characteristic of PAHs containing five or six aromatic rings such as benzo[b]fluoranthene, benzo[g,h,i]perylene, and benzo[a]pyrene (B[a]P). These compounds are linked to mutagenic, teratogenic, and carcinogenic properties (34).

PAHs have short half-lives in the blood (36). Inside the cells, the first phase of biotransformation starts with the recognition of the PAHs by the aryl hydrocarbon receptor (AhR), the complex PAH-AhR is translocated into the nucleus and induces cytochrome P450 (Cyp)1a1 gene expression, that encodes for xenobiotic-metabolizing enzyme CYP1A. The specific metabolites (several phenols) can bind DNA and form PAH–DNA adducts (37). In the second phase of biotransformation, the resulting phenolic compounds from the metabolization reactions are conjugated to glutathione, glucuronides, and sulfate esters to enhance the aqueous solubility to finally be excreted in urine (38). B[a]P (five-ring) is a member of the PAH family that can accumulate in the placenta (39, 40) inhibiting trophoblast cells differentiation and proliferation (41), disrupting the endocrine placental function (42), disturbing the redox balance (39) and forming DNA adducts (43).


 3 Air pollution exposure during pregnancy

 3.1 Pregnancy outcomes and outdoor air pollution

Outdoor air pollution exposure during pregnancy has been linked to fetal development problems, preterm birth, and pregnancy complications, including pregnancy-induced hypertensive disorders (44–49). In general, outdoor pollutants refer to exhaust emissions from vehicle emissions, however, in recent years these emissions have been significantly reduced, especially in developed countries (50). While non-exhaust PM emissions have gained interest in the developed countries (51), these emissions are generated by clutch and engine wear, abrasion of wheel bearings, corrosion of other vehicle components, street furniture, crash barriers or resuspension of road dust has been rising (52). Only a few studies distinguish between exhaust and non-exahust airbone particles. Regarding this, a retrospective population-based cohort study performed in 540 365 singleton births used two pollutant models including source specific PM2.5 and found that the magnitude of the association between low birth weight (LBW) and the exhaust PM2.5 component was consistently stronger than with non-exhaust PM2.5 (53). A cohort study with 34,705 singleton births delivered at Pittsburgh, between 1999 and 2002, reports the association between preeclampsia, gestational hypertension, and preterm delivery with increased exposure to an ambient source of PAHs (PM2.5) during the first trimester of pregnancy (54). Non-exhaust emissions contribute primarily to PM10 and to a lesser extent PM2.5 however the effects have been less explored compared to those of exhaust PM (55). PM10 has been associated with fetal overgrowth (56), with preeclampsia, particularly during humid periods (autumn/winter seasons) (57); conversely PM10 has also been associated with small for gestational age (a birth weight of less than 10th percentile for gestational age) in twins born between 32 and 36 weeks, but not associated in term twins (58). Suggesting that PM10 increases the risk of abnormal fetal growth (59). Additionally, it has been reported that exposure to PM10 during the first trimester can alter the fetal heart response rate without evidence of acidemia or fetal asphyxia (60). Regarding other compounds, several studies have concluded that outdoor SO2 exposure during the third trimester was associated with early-term births (birth between 37 and 38 weeks) (61). While the associations for NO2, NO, CO and O3 were inconclusive in some cases (62), in other cases NO2 was linked to preterm birth, even among pregnant women living in an area with relatively low average air pollution concentrations (63) and consistently associated with term low birth weight (64). On the other hand, a systematic review of 84 studies found that most types of particulate matter (PM) were associated with low birth weight, but these associations had many inconsistencies in terms of PM sources and the characteristics of the built environment, proximity to traffic, and green spaces near the residence of the pregnant women (65). A recent study that analyzed the records of almost 600,000 pregnant patients demonstrated a positive association between preterm birth and PM10, PM2.5, SO2, NO2 and CO, where NO2 was the largest pollutant contributor while the third trimester was identified as the most sensitive exposure window (66). Meanwhile, a recent report showed a positive association between three-month mean residential NO2 concentrations and maternal hair cortisol as a biomarker for longer-term biological stress during pregnancy (67). Another meta-analysis that included more than 60 studies found that exposure to PM2.5, PM10, and O3 during pregnancy correlates with the risk of preterm birth at 32-35 weeks, 28-31 weeks, and before 28 weeks (68). Exposure to PM2.5 pollution during pregnancy is significantly associated with preeclampsia and hypertensive disorders of pregnancy (69). Preeclampsia is a pregnancy pathology associated with placental dysfunction and defined by a new onset of hypertension with or without proteinuria after 20 weeks of gestation (70). A recent meta-analysis performed with data up to March 2020, summarized 9 cohort studies and concluded that maternal exposure to PM2.5 during the third trimester of pregnancy elevates the risk of preeclampsia (71). Some epidemiological studies, use the distributed lag linear model, which is a statistical analysis model that distributes the effect of a single exposure event over a specific time period, in order to estimate the lag effect between exposure to ambient air pollutants and a health outcome (72). During pregnancy, several studies have analyzed the lag effect of different air pollutants exposure and its association with the risk of adverse pregnancy outcomes for example, a study reported a significant association between preconceptional air pollution exposure (PM2.5, PM10, and O3) during the cold season and the termination of pregnancy (73). A recent study applied distributed lag nonlinear model to investigate the association between early pregnancy to midpregnancy exposures to PM2.5, PM10, and NO2 and lower birth weight (74). Another study found that the acute and lag effects of high levels PM2.5, PM10, NO2, and SO2 exposure of the calculated fertilization time was associated with spontaneous abortion preterm birth (75). The identification of critical windows of susceptibility in which exposure to air pollutants may alter pregnancy outcome is key to improve environmental health interventions and prevent vulnerable populations, currently remains inconsistent across studies, further research is needed to investigate the most likely window of exposure, as well as to estimate the lag and acute effect of exposure to air pollutants during pregnancy (76).


 3.2 Maternal physiological adaptation during pregnancy and particulate matter exposure

Normal pregnancy implies profound cardiovascular changes necessary to meet the increased demands of the growing fetoplacental unit (77). These changes occur very early in pregnancy, then, the exposure to PM2.5 in this period could have a detrimental effect on cardiovascular adaptations during pregnancy leading to the development of hypertensive disorders (78). It has been shown that the smaller particles are more harmful than the larger particles inducing adverse health effects, as the deposition rate is strongly influenced by particle size (79). Fine particles (PM2.5) are stable in the atmosphere with a residence time of 7 to 30 days, being wet deposition by precipitation the predominant removal mechanism (80), in addition dry deposition by gravitational settling has been reported (81). Recent work showed an association between the PM2.5 exposure during the first trimester and the development of hypertensive disorders of pregnancy (82) and maternal thyroid dysfunction (75). Since pregnancy is associated with maternal respiratory adaptations, mainly related to significantly increasing tidal volume, pregnant women could inhale more polluted air (83). The acute or chronic exposure to PM2.5 causes activation of inflammatory responses ( Table 1 ) together with structural damage to the alveoli, which facilitates the passage of PM2.5 into the systemic circulation (84, 104).

 Table 1 | Cellular effects associated to air pollution exposure during pregnancy. 




 3.3 Fetal and maternal vascular alteration by particulate matter exposure

Translocation of inhaled PM2.5 into the systemic circulation has been associated with vascular endothelial cell damage, promoting increased risk of cardiovascular disease (105, 106). The most prominent mechanisms associated with PM2.5 health effects are oxidative stress and inflammation ( Table 1 ) (107).

This crosstalk between altered redox homeostasis and inflammation-related pathways has been termed “oxi-inflammation” to describe the pre-pathological condition (108). This issue requires a special attention for pregnant women since normal pregnancy itself is characterized by systemic inflammatory activity and the placenta is a great source of reactive oxygen species (ROS) (109). In this regard, increased levels of 8-hydroxy-2′-deoxyguanosine (8-OHdG), an indicator of ROS-mediated mitochondrial damage, have been found in both maternal and cord blood during pregnancy in women exposed to both PM2.5 and PM10 (92). This has been interpreted as that exposure to air pollution in the first years of life plays an important role in the appearance of oxidative stress, both at the mitochondrial and systemic level (92). Furthermore, high levels of 8-OHdG in the cord blood increase the probability of intrauterine growth restriction as compared with newborns below the median level of mitochondrial damage (110). Moreover, HUVEC incubation with 10 μg/cm2 of PM2.5 induces alterations in the mitochondria, leading to an increase in the mitochondrial fusion gene Mfn1 and a decrease in the fission genes Opa1 and Drp1 (87). Authors suggest that fusion-fission imbalance is associated with mitochondrial dysfunction that could induce cardiovascular disease (87), and during pregnancy this imbalance has been associated with preeclampsia (111, 112). In vitro experiments in HUVEC demonstrated that PM2.5 increases the expression of adhesion proteins (ICAM-1 and VCAM-1) and decreases the expression of a tight junction protein, zonula occludens-1 (ZO-1) leading to endothelial activation and increases the endothelial barrier permeability, respectively (85, 113). In this experimental setup, PM2.5 triggers the secretion of inflammatory interleukins such as IL-6 and IL-1β, increasing the inflammatory response (85, 86). A breakdown of intercellular junctions and increased adhesion molecules are characteristic events of inflammation and endothelial dysfunction, which are observed in pregnancy pathologies such as gestational diabetes, preeclampsia and obesity (114). On the other hand, the endothelial damage related to PM2.5 exposure involves endothelial-mesenchymal transition (EndMT), triggered by the activation of the transforming growth factor-β (TGF-β) pathway, linked to high levels of reactive oxygen species (ROS) and PAHs (88, 115). Interestingly, it has been reported that EndMT contributes to the development of atherosclerotic lesions, which could explain the role of air pollution in the development and progression of cardiovascular disease (116), where upregulation of angiotensinogen and the angiotensin-converting enzyme has been shown, resulting in increased circulating angiotensin II and activation of the angiotensin II receptor type 1, thus favoring vascular contractility (89, 117). Furthermore, exposure to PM2.5 causes a reduction in the bioavailability of NO in the vessel wall, impairing the endothelial-dependent vasorelaxation (90). On the other hand, a study performed in children (7.9 ± 1.3 years of age) chronically exposed to outdoor air pollution showed increased levels of circulating endothelin-1 (ET-1), a potent vasoconstrictor, with a positive correlation with PM2.5 exposure levels (91). However, a study conducted in young healthy adults who were exposed to natural variations in PM2.5 showed a negative correlation between ET-1 levels and PM2.5 exposure levels (118). Another mechanism that could explain the endothelial dysfunction induced by PM2.5 exposure, is the interleukin 22/interleukin 22 receptor (IL22/IL-22R) pathway (119, 120). The exposure to PM2.5 activates the AhR in circulating innate lymphoid cells and induces cytokine IL-22 gene expression (121). IL-22 is a cytokine that plays pro- and anti-inflammatory functions, through interactions with hematopoietic cells, such as macrophages and with endothelial and epithelial cells (122). Endothelial cells express IL-22R, the interaction of IL-22 with its receptor can induce the production of adhesion molecules, endothelial activation, and the secretion of numerous proinflammatory mediators (123). Increased IL-22 has been observed in the blood of pregnant women with preeclampsia and premature rupture of membranes (124, 125).


 3.4 Placental tissue and particulate matter exposure

It was reported that black carbon particles from air pollution can translocate from the maternal lungs into the maternal circulation reaching the placenta (17). The PM2.5 exposure during the first and second trimesters of gestation has been positively associated with the amount of 3-nitrotyrosine (3-NTp) in the placental tissue from 330 mother-newborn pair cohorts (93). 3-NTp is a well-known biomarker of peroxynitrite because of its positive association with the rate of protein degradation and therefore for a biomarker of both nitrosative and oxidative stress and inflammation (126).

On the other hand, placental methylation status of circadian pathway genes (CLOCK, BMAL1, NPAS2, CRY1-2, and PER1-3) were positively and significantly associated with intrauterine PM2.5 exposure during the third trimester (127). Genetic abnormalities in the molecular circadian pathway have been associated with chronic noncommunicable diseases, such as obesity (128), metabolic syndrome (129) and diabetes (130). It has been reported that the accumulation of PAHs in the placenta from healthy pregnancies decreases the presence of PAHs in fetal blood, suggesting that under normal conditions the placenta acts as a reservoir decreasing the transfer of PAHs from the mother to the fetus (40). While, in placental tissues from pregnancies associated with hypertensive disorders, diabetes, or preterm delivery, PAHs concentration decreases together with an increase of PAHs in fetal blood (40). Familari and colleagues (94) reported that the exposure of HTR-8/SVneo cells (immortalized first trimester trophoblast cell line) to urban pollution particles led to reduced cellular growth, increased proinflammatory cytokines (IL-6), upregulated expression of endocytosis and intracellular transport proteins, as well as an alteration in the amino acid metabolism and autoimmune responses. Similarly, another study showed that the cell line exposed to PM2.5 for 48 h, undergoes cytotoxicity, diminution of hCG secretion, and an increase of IL-6 production (95). The exposure of these cells to PM2.5 (120 µg/ml) induced cell-cycle arrest and inhibited migration and invasion of HTR-8 cells by up-regulating the expression of tissue inhibitors of metalloproteinases (TIMP1 and TIMP2) and down-regulating Collagen I expression (96).

Elevated levels of B[a]P in placental tissue from women with preterm delivery shows a significant correlation with lower glutathione (GSH) levels and higher levels of thiobarbituric acid-reactive substances (TBARS) in this tissue (39). This has been taken as an indication of a possible contribution of PAHs in preterm delivery through redox imbalance (39). Moreover, PAHs exposure (between 0.24 and 2.47 ng/m3), during the third trimester of pregnancy, was associated with lower global DNA methylation in umbilical cord white blood cells (97). Additionally, the presence of detectable PAH-DNA adducts in cord blood was shown to be positively associated with global methylation levels. Since both global hypomethylation and hypermethylation of specific genes have been associated with cancer and other diseases in humans, it is remarkable that maternal PAHs exposure can modify genomic DNA methylation status in the fetus (97). In this regard, the presence of PAHs from air pollution in placental tissue is inversely associated with placental weight and cord length (38).

The PAHs are linked with endocrine disruption in trophoblast cells, since a steroidogenic enzyme, aromatase that catalyzes the aromatization of fetal and maternal androgens into estrogens is inhibited in placental JEG-3 cells exposed to organic extracts from biomass burning collected in winter (98). The most abundant and studied PAHs, B[a]P, enters human cells and is metabolized by cytochrome P450 1A1 (CYP1A1) into different compounds. The benzo(a)pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE) metabolite can cross the placenta and reach the fetal compartments leading to toxicity and DNA damage through the generation of BPDE-DNA adducts (43). In addition, the incubation of human trophoblast cells Swan 71 with 2.0 µM of BPDE for 24 h reduces the human chorionic gonadotropin (hCG) secretion, promotes the increase of pro-inflammatory cytokines IL-6 (27.5-fold), TNF-α (51.9-fold), and induces mitochondrial fragmentation and dysfunction due to an increase in mRNA and protein levels of mitochondrial fission genes in these cells (99). On the other hand, JEG-3 cells exposed to PM2.5 increase their hCG secretion, and an important inhibition of progesterone synthesis, which could be an indication that PM2.5 may directly inhibit the phosphorylation status of Protein Kinase A in JEG-3, with a concomitant inhibition of the protein expression in progesterone-synthesis, leading to a suppression of the progesterone levels (100). Furthermore, placental JEG-3 cells exposed to 10 μM B[a]P for 72 h leads to cell cycle arrest (G2/M phase) and a significant decrease in cell proliferation, likely through the phosphorylation of histone H2A variant H2AX (γ-H2AX) (101).

The exact concentration of PM2.5 that reaches the placenta of a woman exposed to air pollution is unknown. It is not valid to convert from the unit used in most experimental studies (μg/ml or ng/ml) to the unit reported by air quality sensors (μg/m3). However, one study indicates that levels of 5000 ng/ml (5 μg/ml) could correspond to 25 μg/m3 (95). The same study indicates that 10,000 ng/ml (10 ug/ml) could correspond to levels that can be observed in a more polluted city with PM2.5 concentrations of 50 μg/m3 (95). The reference value for 24 h exposure to PM2.5 established by WHO global air quality guidelines is 15 ug/m3 (7, 131).


 3.5 Pregnancy outcomes and indoor air pollution

The main literature on-air quality-related mortality is focused on pollutant measurements taken outdoors. However, the influx of outdoor air influences indoor air quality, which already includes specific indoor emissions sources, relationships between building systems/construction methods, and occupant behavior (7). According to the United States federal government agency called Environmental Protection Agency (EPA), the levels of indoor air pollutants are often 2 to 5-fold higher than outdoor levels (23). Since people spend most of their time inside, indoor conditions play a prominent part in the overall human exposure to air pollution (132). This is particularly relevant since pregnant women spend most of their time indoors, especially toward the end of pregnancy (133). Indoor pollutants are mostly caused by human interaction at home and in classrooms, but they can also be found in daycare centers, social entertainment settings, and micro-environments, including automobiles, buses, trains, and airplanes (132, 134). Indoor air pollutants can become outdoor air pollutants, resulting in the so-called “neighborhood” pollution effect (132); this is especially relevant in disadvantaged neighborhoods that may use biomass for cooking or heating, which increases the concentration of pollutants in their living area, compared to people living in more socioeconomically advantaged neighborhoods (135). Allergens, mainly house dust mites and insects, pollen, animal sources, molds, and bacterial endotoxins, are examples of biological indoor air pollutants (136). Chemical air pollutants such as gases, particulate matter, formaldehyde, and volatile organic compounds (VOCs) are also present (134). The latter derive from various sources, the most common indoor are burning wood, household chemicals (disinfectants, bleach, dry cleaning fluid, aerosols, air fresheners, paint, varnish, and pesticides), also incense, candles, and cooking (137–140). Cooking with polluting fuels such as gasoline, kerosene, and biomass (wood, charcoal, crop residues, and animal manure) causes household air pollution, which is a global environmental health problem (132). There is evidence that the exposure to labeled carbon particles (less than 100 nm) for 1 min is sufficient to appear in the blood of healthy volunteers and to remain detectable for 60 min (141). However, there are very few studies that have evaluated the effect of indoor exposures to PM2.5 on pregnancy and delivery outcomes (142–144). A predominantly indoor air pollutant, formaldehyde has been associated with reduced birth weight (142). The kinetics of transplacental transfer (from the maternal to the fetal compartment) of formaldehyde was studied with a perfused human placental cotyledon model, showing that the compound can accumulate in the placenta and fetus (102). In addition, formaldehyde exposure reduced the synthesis and secretion of the peptide placental hormones (pGH: placental growth hormone, hPL: human placental lactogen, and hCG: human chorionic gonadotrophin), a fact that appears to be mediated by oxidative stress, since hCG production was restored by n-acetylcysteine (102). The cooking oil fumes-derived PM2.5, is another source of indoor air pollution that has been associated with preterm birth (145) and low birth weight (57). Human umbilical vein endothelial cells (HUVEC) exposed in vitro to PM2.5 derived from cooking oil fumes lead to overproduction of ROS, inflammation, and inhibition of angiogenesis (103).

A study conducted on 68 pregnant women using kerosene stoves, found that cooking with kerosene is associated with reduced birth weight and low levels of micronutrients such as iodine, vitamin B6 and homocysteine in mothers and newborns (146). Solid fuel for cooking has been associated with an increased risk of cesarean delivery, low birth weight, neonatal mortality, and acute respiratory infection among children (147). While another study performed on 695 pregnant women using biomass fuels for cooking in Temuco (Chile) and Bariloche (Argentina), found no association between perinatal morbidity (pre-term birth and low birth weight) and household air pollution exposure; the study highlights that these results may be related to the fact that the studied population cooks in ventilated rooms compared to other studies (148). The link between poor ventilation and persistent indoor air pollution has been explored by different studies, suggesting its association with the development of adverse pregnancy outcomes (147, 149–151). The assessment of exposure to indoor air pollution during intrauterine life has some limitations. For example, some studies have evaluated the personal exposure of pregnant women to various pollutants, however, they do not distinguish indoor and outdoor concentrations of these pollutants and therefore cannot specifically explore associations between indoor air pollutants and birth (142, 152). In this regard, an attempt has been made to evaluate compartmentalized exposure, using passive sampling techniques and surveys that include questions about the types of chemicals used to clean, the type of kitchen, and the time spent indoors (142). When analyzing the personal variability of indoor and outdoor exposures, some of them may be misclassified, furthermore, in many cases, seasonal changes and spatio-temporal variability are not considered during pregnancy exposition measurements (153, 154). The source of individual pollutants is challenging; therefore, it is necessary to apply integrated approaches (i.e. survey and exposure models) (155).



 4 Mitigation strategies

The most obvious way to avoid the deleterious effect of air pollution is not to be exposed to it. However, this recommendation is not practical since everyone must breathe the available air. We need to reduce the air pollution in our cities, but unfortunately is a long-term process that demands a government commitment, along with education and other strategies related to reduce the sources of pollution. While in some cities it is possible to avoid busy roads or highways at least during pregnancy, however in many cities this is not possible. Thus, individual and public strategies focused to reduce the harmful effects of the available polluted air are needed ( Figure 1 ).

 

Figure 1 | Proposed approaches to reduce exposure to air pollution during pregnancy. 



 4.1 Behavior actions

Reducing exposure to air pollution during pregnancy is a key opportunity to provide better health to the child (156). A primary prevention measure that can be given to the mother at prenatal care, is to ensure good ventilation to reduce the exposure to indoor air pollution (157). One of the biggest sources of pollution in homes is the use of the kitchen. To reduce or to eliminate air pollution in the kitchen, the American Lung Association recommends using the exhaust fan and ensuring ventilation in the kitchen (158). Another recommendation made by the same association is to get rid of fragrant and scented products such as air fresheners and cleaners, replacing them with natural products such as vinegar, peroxide, and baking soda, or non-toxic brands. Another individual measure is to check daily air quality levels and to perform outdoor activities when pollution levels are lower. It is also recommended that pregnant women avoid sharing space with people who are smoking.


 4.2 Nutrition

Since the imbalance in oxidant production is one of the prominent mechanisms leading to cellular damage linked to air pollution, the presence of antioxidants from nutrition represents an opportunity to mitigate the air pollution effects (159–164). According to the Food and Drug Administration antioxidants are substances that, following absorption from the gastrointestinal tract, participate in physiological, biochemical, or cellular processes that inactivate or prevent free radical-initiated chemical reactions (165). The common antioxidants from diet or supplementation, are DL-alpha-tocopherol acetate (vitamin E), ascorbic acid (vitamin C), beta-carotene (vitamin A), omega-3 polyunsaturated fatty acids (omega-3), and selenium, that has been reported to be involved in the deactivation of free radicals (166, 167). About the antioxidant air pollution mitigation, a study conducted in individuals chronically exposed to PM2.5 shows that supplementation with omega-3 could modulate the plasma levels of cellular redox systems by increasing glutathione (GSH) and Cu/Zn superoxide dismutase (SOD) activity (168). Additionally, another study shows that oxidized low-density lipoprotein (OxLDL) decreased following the fish oil supplementation in a cohort of healthy university students exposed to the average level of PM2.5 of 38 ug/m3 for four months (169). Simultaneous treatment of human umbilical vein endothelial cells (HUVECs) with vitamin E and PM2.5 protects against the reactive oxygen species (ROS) production and the increased levels of lipid peroxidation (161). An epidemiologic cohort study found that women in the first and second trimesters of pregnancy with lower vitamin A intakes have higher negative effects on birth weight due to prenatal PM2.5 exposure than women with higher intakes (170). Indeed, concurrent air pollution and poor nutritional status are associated with adverse health and pregnancy outcomes such as low birth weight and preterm birth (171). The lack of vitamin D is mainly due to low exposure to ultraviolet B (UVB) radiation since the skin synthesis provides 90% of all the body’s requirements (172). The levels of air pollution influence the percentage of the ground level of UVB (173). In this way, a longitudinal cohort study conducted in 3285 pregnant women, found that the PM2.5 exposure during the third trimester and the entire pregnancy was inversely associated with 25(OH)D levels (174). In addition, the mediating effect of total net daily UV-B radiation (radiation reaching ground level) on the inverse association between prenatal PM2.5 exposure and maternal circulating 25(OH)D levels was 70% (174). Similar results were found in a study performed in 375 mother-child cohorts. It was found that the exposure to ambient urban air pollution during late pregnancy may contribute to hypovitaminosis D in the offspring and suggest that this factor could affect the child’s risk of developing diseases later in life (175). Epidemiological data associates the presence of urban particulate matter in polluted air with respiratory diseases, and vitamin D deficiency (176). This could be linked to the induction of a proinflammatory and potentially pathogenic T helper 17 cell (Th17) profile (176). Lower levels of vitamin D could increase the risk of low birth weight (177, 178). In addition, the incidence of asthma linked to air pollution exposure is higher among low-term-birthweight children (179). It has been proposed that restoring levels of vitamin D may mitigate the urban particulate matter adverse effect associated with respiratory health (176).

On the other hand, a study found that maternal exposure to NO2 from traffic-related air pollution, along with low dietary intake of methyl nutrients such as folate, vitamins B6 and B12 are related to the greatest odds of congenital heart defects (180). Recent experimental evidence suggests that vitamin B (folates, vitamin B12, and B6) supplementation in healthy non-smoking volunteers could mitigate the effect of PM2.5 exposure on cardiac autonomic dysfunction and inflammation (181). More data of the same studied population showed that vitamin B supplementation prevents alterations in mitochondrial DNA content in circulating CD4+ Th cell induced by PM2.5 exposure (182). Folate (vitamin B9) and vitamin B12 (cyanocobalamin) are hydrosoluble vitamins naturally present in some foods, added to others, and in the dietary supplement (183). Folate together with vitamin B12, acts as a coenzyme in the metabolism of 1-carbon compounds, required for numerous cellular functions such as de novo synthesis of purines, thymidylate, and the generation of the methyl groups for the methylation reactions of DNA, RNA, proteins, and lipids (184, 185). Considering all this information, monitoring the levels of vitamin D as well as those of B12 during pregnancy should receive more attention in clinical practice. An important educational campaign could be aimed at raising awareness among pregnant women about the importance of dietary practices to mitigate the health risks of air pollution (164).



 5 Concluding remarks

This study reviews the experimental evidence on the effects of indoor and outdoor pollution during pregnancy and discusses some mitigation strategies. The deposition of air pollutants on the air-blood barrier triggers oxidative stress and inflammation, during pregnancy increasing the risk of developing complications that affect the health of the mother and the offspring. Mitigation strategies should include advice to pregnant women on ways to reduce exposure to indoor and outdoor pollution and the importance of this issue during pregnancy. There is a knowledge gap regarding the effects of non-exhaust emissions on intrauterine development. Greater efforts and interaction between different disciplines are needed to develop effective prevention and risk assessment strategies that can significantly reduce the adverse effects of air pollution during pregnancy.
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Placenta accreta spectrum (PAS) is one of the major causes of maternal morbidity and mortality worldwide with increasing incidence. PAS refers to a group of pathological conditions ranging from the abnormal attachment of the placenta to the uterus wall to its perforation and, in extreme cases, invasion into surrounding organs. Among them, placenta accreta is characterized by a direct adhesion of the villi to the myometrium without invasion and remains the most common diagnosis of PAS. Here, we identify the potential regulatory miRNA and target networks contributing to placenta accreta development. Using small RNA-Seq followed by RT-PCR confirmation, altered miRNA expression, including that of members of placenta-specific miRNA clusters (e.g., C19MC and C14MC), was identified in placenta accreta samples compared to normal placental tissues. In situ hybridization (ISH) revealed expression of altered miRNAs mostly in trophoblast but also in endothelial cells and this profile was similar among all evaluated degrees of PAS. Kyoto encyclopedia of genes and genomes (KEGG) analyses showed enriched pathways dysregulated in PAS associated with cell cycle regulation, inflammation, and invasion. mRNAs of genes associated with cell cycle and inflammation were downregulated in PAS. At the protein level, NF-κB was upregulated while PTEN was downregulated in placenta accreta tissue. The identified miRNAs and their targets are associated with signaling pathways relevant to controlling trophoblast function. Therefore, this study provides miRNA:mRNA associations that could be useful for understanding PAS onset and progression.
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1.  Introduction

Placenta Accreta Spectrum (PAS) is the term that integrates the different grades of abnormal placental adherence and invasion (1, 2). The most current classification of PAS includes three grades: 1. Placenta accreta or adherenta, 2. Placenta increta and 3. Placenta percreta. In adherent placenta accreta, the decidua basalis is partly or completely lost so that the trophoblast layer is directly apposed to the myometrial tissue, but without invading it. Placenta increta is defined by deep invasion of trophoblast cells into the myometrium, and placenta percreta when trophoblast cells invade and penetrate the uterine serosa (2, 3). An additional classification recently suggested by FIGO included the subclassification of grade 3a: Placenta percreta limited to the uterine serosa grade 3b: Placenta percreta with urinary bladder invasion; and grade 3c: Placenta percreta with the involvement of pelvic organs (2–4). PAS severity can be evaluated during pregnancy by ultrasound examinations (5, 6), but many cases remain undiagnosed antepartum and are later classified based on the intraoperative situation and histological findings related to partial or complete loss of decidua basalis and the depth of myometrial trophoblast cell invasion (2, 3, 5). The most common diagnosis of PAS cases is placenta accreta (>70%), followed by increta (~15%) and percreta (10%) (5, 7, 8).

The differences in the clinical and histopathological criteria used to define PAS in previous studies make it difficult to compare data and reach a consensus on the etiology of the disease. A failure in normal decidualization caused by previous endometrial damage is currently the most favored hypothesis, but the abnormal invasive capacities of trophoblast cells may also contribute to the disease (9, 10). PAS is frequently associated with a previous cesarean section, which is increasingly applied, thus, the worldwide prevalence of PAS has risen over the last four decades (11, 12). However, only a few investigations have focused on the molecular mechanisms associated with PAS that may also explain its development in women during their first pregnancy. As PAS does not naturally occur in animals and due to its uniqueness to human pregnancy (3, 13), its study in animal models is highly constricted despite one published mouse model (14).

A recent study reported a very low correlation between transcriptome and proteome profiling of PAS samples suggesting a significant role of post-transcriptional regulation (15), which may be mediated by non-coding RNAs including miRNAs. The human placenta harbors miRNAs (20-22 nucleotides size), which regulate its development and functionality (16). This regulation is further demonstrated by the fact that placenta-specific and -associated miRNAs have particular expression patterns during different stages of pregnancy (17–19). As demonstrated in several pioneer studies, dysregulation of specific miRNAs is associated with pregnancy pathologies, including PAS (20–23). Some of the altered miRNAs are linked with intracellular signaling networks implicated in angiogenesis (24), trophoblast apoptosis (20), and epithelial-mesenchymal transition (23).

In this study, next-generation sequencing was used to screen the miRNA signature of PAS placentas and compare it to healthy pregnancies. Altered miRNAs, as well as their targets, were validated and localized in placental tissues. Our results offer molecular elements for understanding the etiology of PAS and promote the identification of markers in PAS.




2.  Material and methods

The Placenta Lab strictly applies quality management and is certified after DIN EN ISO 9001.



2.1.  Patient samples

Patients were recruited for the study from the Department of Obstetrics, University Hospital Jena and the Department of Gynecology and Obstetrics, University Hospital Essen, Germany, between 2014 and 2018. The respective ethics committees approved the study according to the Helsinki Declaration on ethical principles for medical research involving human subjects by obtaining consent forms (Amendment to No: 1509-03/05 Jena and 12-5212-BO Essen). Multiple pregnancies, fetal anomalies, and infections were excluded from the study.

Samples obtained in Jena were collected intraoperatively in cases where a postpartum curettage had to be performed due to incomplete placenta or retention of the placenta after delivery, even under administration of uterotonic drugs or controlled cord traction. An additional sample was taken during cesarean section of a patient with placenta praevia, intraoperatively diagnosed to be an abnormal adherent placenta. Placenta tissue samples were taken in all cases from the suspected sight of detachment failure. Histopathological findings such as loss of decidua basalis or the direct trophoblast apposition to the myometrial tissue without invasion were used as confirmers for the diagnosis of placenta accreta. For controls, placental chorionic tissue was collected from normally delivered placentas including (for ISH and IF) or excluding decidua (RNA analysis). Samples were immediately washed with sterile phosphate buffer solution (PBS) and placed in RNA later (cat. No. AM7021; Invitrogen Life Technologies, Darmstadt, Germany) overnight and then stored in cryotubes at -80°C until RNA extraction, or fixed in 4% formalin overnight before paraffin-embedding. A sub-set of 17 samples was used for the initial RNA-Seq analysis and a complete set of 26 samples to perform the validation PCR. Samples for immunostaining and in situ hybridization were also selected from the complete set. Clinical characteristics are summarized in Table 1.


Table 1 | Clinical characteristics of PAS samples.



Placental tissue from Essen was obtained at the time of vaginal delivery or caesarian section from cases where PAS was diagnosed at the third stage of delivery or based on antepartum ultrasound measurements. Samples were classified into placenta accreta, increta or percreta (each n=1) according to the criteria defined by Cali et al. (6) and following the International Federation of Gynecology and Obstetrics (FIGO) guidelines based on intraoperative situation and histological findings (2). Intraoperatively, the area of placental tissue with the highest degree of invasion was chosen for analysis and was collected including surrounding tissue (decidua, myometrium, uterine serosa, broad ligament tissue). In the cases of placenta increta and percreta, the specimens were obtained by focal resection of the placenta or hysterectomy. Tissue samples were fixed in 4% formalin overnight followed by standard processing to obtain paraffin-embedded sections for ISH. The clinical characteristics are summarized in Table 1.




2.2.  RNA isolation

Total RNA was isolated using a mirVana™ miRNA Isolation Kit (cat. No. AM1561; Invitrogen), according to the manufacturer’s protocol. Approximately 100 mg placenta tissue per sample was transferred to a Medicon (cat. No. 340591; BD Biosciences, Franklin Lakes NJ, USA) disposable for biological sample disaggregation containing 1 ml of lysis buffer (provided in the kit) and processed in a Medimachine (Dako; BD) for 20 s. Tissue suspension was collected, and Total RNA concentration was determined in a high-speed microfluidic UV/VIS spectrophotometer (QIAxpert System, Qiagen Hilden, Germany). Samples with A260/A280 ratio >1.8 were stored at −80°C until further processing.




2.3.  Next-generation sequencing

GATC Biotech AG, Konstanz, Germany, performed the next-generation sequencing. The small RNA libraries were created using Illumina’s small RNA sample preparation protocol (TruSeq Small RNA Sample Prep Kits; Illumina, San Diego, CA, USA) with minor adaptations to the manufacturer’s instructions. Single read sequencing of the libraries was performed on a HiSeq 2500 (Illumina) according to the manufacturer’s protocol. At least 10 million reads per sample were generated.




2.4.  Small RNA-Seq library processing, mapping, and differential expression analysis

First, the RA2 adapter sequences (5’-TGGAATTCTCGGGTGCCAAGG) of the TruSeq small RNA preparation kit were clipped from all reads, using cutadapt (25) (version 2.0), and all reads shorter than 15 bp or with a mean quality lower than 20 were removed subsequently. Read quality was monitored using FastQC (v0.11.3; http://www.bioinformatics.babraham.ac.uk/projects/fastqc). Quality reports of the raw and processed RNA-Seq libraries can be found at https://osf.io/8wq9h. Mapping was performed using TopHat2 (26)(version 2.1.1) with standard parameters onto the human reference genome (Ensembl release 98), and read counting was done using the respective Ensembl gene annotation. For counting, featureCounts (27) (version 1.6.3) with the parameters -M, -O 0.5 was used to count reads for the mature miRNA annotations of each human pre-miRNA separately. Analysis of differentially expressed miRNAs (DEmiRNAs), as well as plotting PCA, was performed by the Bioconductor R package DESeq2 (28) (version 1.10.0). Multiple testing adjustment of the resulting p-values was performed using Benjamini and Hochberg’s FDR approach (29). Mature miRNA loci with an identified adjusted p-value < 0.05 were considered differentially expressed. RNA-Seq datasets including DEmiRNA results and the count values are available at NCBI’s GEO database https://www.ncbi.nlm.nih.gov/geo/ under the accession IDGSE216742.




2.5.  Biological pathway analysis and interaction network of miRNA targets

Target mRNAs of DEmiRNAs were obtained from the miRTarBase (30) (release 8.0) to get a non-redundant list of experimentally verified genes being potentially altered in PAS. Following the strategy used in our earlier study (31), DEmiRNA targets were assigned within the human regulatory pathways of the KEGG database. KEGG pathways were ranked individually according to the number of targeted genes within each pathway. The hypergeometric test was used to assess if specific pathways were significantly targeted by calculating the corresponding p-values for each pathway. Analysis of sub-pathways was performed by manually identifying key altered regions. To estimate which of the genes of the sub-pathway were most likely affected by the altered DEmiRNAs in PAS, an impact score was calculated based on the frequencies of the genes within the enriched pathways and the amount of DEmiRNAs targeting each gene.




2.6.  Confirmation of DEmiRNAs

Expression levels of representative miRNAs were analyzed using the TaqMan™ Advanced miRNA cDNA Synthese-Kit (cat. No. A28007, Applied Biosystems, Darmstadt, Germany) and the TaqMan™ Fast Advanced Master Mix, no UNG (cat. No. A44360, Applied Biosystems) according with the manufacturer’s protocol with specific miRNA probes (hsa-miR-193b-3p, Assay ID: 478314_mir; hsa-miR-519d-3p, Assay ID: 478986_mir; hsa-miR-331-3p Assay ID: 478323_mir; hsa-miR-3074-5p Assay ID: 479606_mir; hsa-miR-24-3p Assay ID: 477992_mir; hsa-miR-382-3p Assay ID: 479458_mir; hsa-miR-376c-3p Assay ID: 478459_mir; hsa-miR-495-3p Assay ID: 478136_mir; hsa-miR-370-3p Assay ID: 478326_mir; hsa-miR-423-3p Assay ID: 478327_mir; hsa-miR-222-3p Assay ID: 477982_mir; hsa-miR-106b-3p Assay ID: 477866_mir; hsa-miR-4732-3p Assay ID: 478118_mir; hsa-miR-454-5p Assay ID: 478919_mir; hsa-mir-3615-3p Assay ID: 478837_mir; hsa-miR-16-2-3p Assay ID: 477931_mir; hsa-miR-39-3p Assay ID: 478293_mir). The Caenorhabditis elegans miRNA cel-miR-39 (Assay ID: 000200; 5′-UCACCGGGUGUAAAUCAGCUUG) was added at a concentration of 1.6 x 108 copies/μL and used as spike-in control. PCR reactions were run in duplicates including no-template controls in 96-well plates on a Mx3005P qPCR System (Applied Biosystems) using 40 cycles, at the following conditions: 95°C for 3 sec and anneal/extend at 60°C for 20 sec. Fold changes were calculated by the formula 2–ΔCt using cel-miR-39 as normalizer.




2.7.  In situ localization of DEmiRNA

Representative miRNAs were localized in the placenta tissue by using the microRNA in situ hybridization (ISH) Buffer Set for formalin-fixed paraffin-embedded (FFPE) tissue samples (cat. No. 339457; Qiagen). Specific miRCURY LNA™ microRNA detection probes (cat. No. 339501; Qiagen), as well as positive and negative controls, were purchased from Qiagen (cat. No 339451). The one-day microRNA ISH protocol was carried out according to the supplier’s recommendations. In brief, paraffin blocks were cut into 6 μm-thick sections. Slides were dewaxed in a train of different percentages of xylene and ethanol solutions ending in phosphate-buffered saline (PBS) (cat No. 14190-094; Gibco, Schwerte, Germany). Following, slides were incubated with Proteinase-K for 10 min at 37°C in a CytoBrite Duo slide incubation system (SciGene; Sunnyvale, CA, USA) and then washed twice with PBS. Hybridization mix containing 10 nM of double-DIG LNA™ microRNA probe (miR-519d-3p, miR-193b-3p, miR-106b-3p, miR-370-3p or the negative control scramble probe SCR, which represents random sequence) was added to the slides and hybridized for 1 h. Slides were then washed in a slide rack with different concentrations of 5xSSC buffer (cat. No. 15557-044; Invitrogen) and placed in PBS. A hydrophobic barrier was created around the tissue sections using a Dako-Pen (Cat. No. H-4000; Vector Laboratories, Newark, CA, USA), and slides were incubated in a humidifying chamber with a blocking solution for 15 min. The blocking solution was removed, anti-DIG reagent (cat. No. 11093274910; Sigma Aldrich; Taufkirchen, Germany) was applied on the slides for 60 min incubation at RT. Sections were incubated with freshly prepared alkaline phosphatase substrate (cat. No. 11697471001; Merck, Darmstadt, Germany) for 2 h at 30°C, protected from light in the humidifying chamber. The reaction was stopped by incubating slides in KTBT buffer (Potassium-Tris Buffer with Triton). Nuclear Fast Red™ (cat. No. H-3403; Vector Laboratories) was applied for 1 min for nuclear counterstaining. Slides were dehydrated in ethanol solutions and mounted with 1-2 drops of mounting medium (cat. No. 03989; Sigma Aldrich), avoiding air-drying. The precipitate was allowed to settle overnight, and slides were analyzed using an Axio Imager A2 microscope and Zen Blue software (Carl Zeiss Microscopy GmbH, Jena Germany).




2.8.  Expression of target mRNAs

Total RNA (300 ng) from NP and placenta accreta samples PAS was used to analyze the expression of selected mRNAs by reverse transcription using High-Capacity RNA-to-cDNA™ Kit (cat. No. 4368814; Applied Biosystems). Quantitative real-time PCR was performed using TaqMan assays (ERK1, Assay ID: Hs00385075_m1; NFKB1, Assay ID: Hs00765730_m1; AKT1, Assay ID: Hs00178289_m1; PTEN, Assay ID: Hs02621230_s1; STAT3, Assay ID: Hs00374280_m1; TGFB1, Assay ID: Hs00171257_m1; and GAPDH, Assay ID: Hs03929097_g1) and TaqMan Universal PCR Master Mix reagents (cat. No. 4440040; Applied Biosystems). qPCR was run on a Mx3005P qPCR System (Applied Biosystems). mRNA expression was normalized using the 2−ΔCt method relative to GAPDH.




2.9.  Immunofluorescence staining

Paraffin-embedded tissue sections were deparaffinized, hydrated in a graded ethanol series, and quenched by antigen retrieval with a citrate buffer (10 mM Sodium citrate, 0.05% Tween 20, pH 6.0) at >95° C for 10 min. Tissue sections were blocked with 0.1% BSA for 20 min and incubated with the primary antibodies mouse-anti-cytokeratin-7 (cat. no. MA1-06316; Invitrogen), rabbit-anti-PTEN (cat. No. 9559S; Cell Signaling, Danvers, MA, USA), and rabbit-anti-NF-κB (cat. No. SC-109; Santa Cruz Biotechnology, Heidelberg, Germany) for 2 h at 37°C in a humid atmosphere followed by incubation with the secondary antibodies goat anti-mouseAF488 (cat. No. A11017; Invitrogen) or goat anti-rabbitAF647 (cat. No. A21246; Invitrogen). All antibodies diluted 1:200 were applied and incubated 1 h at 37°C under humidity. DAPI (1 µg/mL) (cat. No. D9542; Sigma Aldrich) was used for nuclei staining. Fluorescence was visualized and recorded using a Zeiss LSM 710 confocal laser scanning microscope (Carl Zeiss Microscopy GmbH).




2.10.  Statistical analysis

Unpaired Student t-test with Mann-Whitney test was applied to assess differences between groups using Prism software version 9 (GraphPad, San Diego, CA) as indicated at every figure legend. A p-value < 0.05 was considered significant.





3.  Results



3.1.  Identification of DEmiRNA in placenta accreta by high-throughput small RNA-Seq

Normal (NP; n=9) and adherent accreta (PAS; n=8) placentas were analyzed by sRNA-Seq. At least 10 million reads per sample were obtained and used for library processing and mapping. Principal component analysis (PCA) revealed a separation of samples belonging to NP and PAS groups with some overlaps (Figure 1A). Most small RNA molecules were identified as miRNA species (39.9%), followed by small nucleolar RNAs (snoRNA; 22.2%) and long non-coding RNAs (lncRNA; 16.3%). A minor proportion included small nuclear RNAs (snRNA; 5.3%) and ribosomal RNA (rRNA; 2.0%) (Figure 1B). To identify the significant genes in PAS (p< 0.05), the DESeq2 R package was used. Placental tissues of NP and PAS shared a common miRNA signature consisting of 994 active miRNAs. Exclusively expressed were 95 miRNA species in NP and 37 in PAS placentas (Figure 1C). A total of 147 mature miRNAs were up- and 151 were downregulated in PAS compared to NP (Figure 1D). A selective analysis of miRNAs (17, 32–34) revealed DEmiRNAs in the placenta-associated clusters including the chromosome 19 miRNA cluster (C19MC; 33 out of 46 miRNA species in the cluster), the chromosome 14 miRNA cluster (C14MC; 19 out of 42), the miR-17/92 cluster (4 out of 6), the miR-106a cluster (3 out of 6), and the miR-106b cluster (3 out of 3), but not the miR-371 cluster (Figure 1E). A full list of miRNAs included in the clusters is presented in Supplementary Table. 1.




Figure 1 | Small RNA-Seq analysis reveals a distinct expression pattern of miRNAs in placenta accreta samples. (A) PCA of the investigated samples based on all detected miRNAs. (B) Mapped sRNA reads were sorted into RNA classes. (C) Overlap of the actively transcribed miRNA genes in NP and PAS samples. (D) MA plot showing mature DEmiRNAs in PAS relative to NP. The x-axis is the log2 average expression over all samples, and the y-axis is the log2 fold change between PAS and NP groups. Red and blue dots represent respectively the significant differentially up- and down-expressed miRNAs. (E) Number of DEmiRNAs in PAS that belong to placental miRNA clusters. Numbers indicate total miRNA species in the cluster/miRNAs upregulated/miRNAs downregulated. NP, Normal pregnancy; PAS, Placenta Accreta Spectrum; C19MC, chromosome 19 miRNA cluster; C14MC, chromosome 14 miRNA cluster.






3.2.  Validation of DEmiRNAs in placenta accreta

DEmiRNAs were sorted according to the adjusted p-value, and a group of 16 DEmiRNAs exhibiting fold-change > 2.0, and good abundance (base mean > 100) were selected for individual validation using RT-qPCR in a larger cohort of samples (NP:14; Placenta accreta PAS:12) that includes the ones used for RNA-Seq. In this group, members of the C19MC (miR-519d-3p) and C14MC (miR-370-3p and miR-454-5p), as well as miRNAs not reported in PAS were included. Small RNA-Seq data was successfully validated in eight out of eight selected upregulated miRNAs in PAS samples: miR-24-3p, miR-193b-3p, miR-331-3p, miR-376c-3p, miR-382-3p, miR-495-3p, miR-519d-3p and miR-3074-5p (Figure 2A). Among downregulated miRNAs in PAS, five out of eight miRNA species were validated by RT-PCR (miR-106b-3p, miR-222-3p, miR-370-3p, miR-454-5p, and miR-3615-3p (Figure 2B).




Figure 2 | Validation of DEmiRNAs in placenta accreta samples. Expression patterns of differentially expressed miRNAs (DEmiRNAs) identified by RNA-Seq were validated by qRT-PCR in a larger sample cohort NP (n = 14) and PAS (n = 12). (A) Upregulated miRNAs and (B) downregulated miRNAs. The relative expression of each unique miRNA was normalized to the value of the exogenous cel-miR-39 using the 2-ΔCt formula. Data are shown as the mean ± SE. Significant differences were determined by unpaired t- and Mann-Whitney test. ***p < 0.001, **p < 0.01, *p < 0.05.






3.3.  DEmiRNAs localize mainly in trophoblast but also in endothelial cells

To determine the possibility of cell-specific expression, localization of DEmiRNAs in PAS was examined by ISH within placental villous tissue (Figure 3). Tissue sections of placenta accreta, placenta increta and percreta were stained with hematoxylin and eosin (H&E) to visualize morphological differences. Abnormally deep anchoring of the placental villi, as well as fibrin and trophoblast cells invaded into decidual tissue, were present in PAS samples (Figure 3). According to CK7 expression by IHC, extravillous trophoblast cells (EVTs) deeply infiltrating the decidual tissue were often observed in invasive PAS but not in NP samples (red arrows in Figure 3). To investigate the location of DEmiRNAs in the tissue, in situ hybridization was performed using digoxigenin-labeled LNA probes, which bind specifically to their target miRNA or that contain a random non-genomic scramble sequence (SCR) as negative control. ISH revealed miR-193b-3p signal in STB of both PAS and NP placentas, elevated miR-193b-3p expression was observed in PAS compared to NP samples, especially in the EVTs and areas of trophoblast invasiveness into the decidual tissue. The expression of miR-519d-3p, a placenta-specific miRNA, was restricted to trophoblast cells and strongly present on invasive trophoblast cells of PAS tissue. In NP tissue, the expression of miR-106b-3p and miR-370-3p was found mainly delimited in trophoblast cells, although endothelial cells were also positive for miR-370-3p. In PAS, miR-370-3p was highly expressed by invasive trophoblast cells. Contrary to PCR results, a downregulation of miR-106b-3p and miR-370-3p was not observable in PAS compared to NP samples.




Figure 3 | Differentially expressed miRNAs visualized by in situ hybridization in normal placenta (NP), placenta accreta, and placenta increta and percreta samples (invasive PAS). Areas containing villi and uterine tissue have been selected, in placenta accreta and invasive PAS with implanted villi and extravillous trophoblast cells (EVTs). The hematoxylin and eosin (H&E) staining shows nuclei in blue, cytoplasm in pink; cytokeratin-7 (CK7) staining marks positive cells brown (mainly syncytiotrophoblast and trophoblast cells) red arrows show areas of deep trophoblast infiltration; in situ hybridization of miR-193b-3p, miR-519d-3p, miR-106b-3p, and miR-370-3p shows positive cells in blue. Sections were counterstained with Nuclear Red. IVS, intervillous space; DE, decidua; FV, fetal vessel; S, Syncytiotrophoblast. Scale bar: 100 µm.






3.4.  Biological pathway analysis identifies cell cycle and inflammation pathways as networks of DEmiRNAs in placenta accreta

To explore alterations in gene expression, a hypergeometric test was run to identify KEGG pathways that the identified DEmiRNAs could alter. This analysis is based on the number of genes involved in each pathway which the DEmiRNAs can potentially regulate. As a result, 87 potentially altered pathways were identified. An additional inspection of these pathways allowed the identification of 7 shared sub-pathways, including cell cycle control, actin regulation, TGF-β, MAPK, PI3K-AKT, NF-κB, and the JAK-STAT signaling pathways (Figure 4A). A representative gene from each pathway was selected for validation by PCR. No significant expression difference was found for ERK1 and AKT mRNA (MAPK and PI3K-AKT signaling pathways are targeted by miR-382-3p and miR-495-3p), but a significant reduction of NF-κB mRNA was confirmed in PAS samples. As a representative of the JAK-STAT pathway with high invasion-inducing capacities (35), STAT3 expression was investigated but was not altered in PAS. Among the TGF-β pathway, TGF-β1 was downregulated in PAS samples. PTEN mRNA, which is involved in the cell cycle control pathway and a potential target of miR-106b-3p, miR-222-3p, and miR-519d-3p (36), was also decreased in PAS compared to NP samples (Figure 4B).




Figure 4 | Expression of potential DEmiRNA targets in PAS. (A) Enriched pathways found in the KEGG analysis and putative DEmiRNAs targeting components of the pathway. The score assigned to each gene roughly describes the probability that this gene is regulated by the DEmiRNAs. The higher the score, the greater the influence of the DEmiRNAs on the gene within the pathway. (B) Expression of DEmiRNA mRNA targets by qRT-PCR in NP (n = 14) and PAS placentas (n = 12). The relative expression of each unique mRNA was normalized using the formula 2-ΔCt with GAPDH as endogenous control. Data are shown as the mean ± SE. Significant differences were determined by the unpaired t- and Mann-Whitney test. *P < 0.05, **P < 0.01..






3.5.  PTEN is down- while NF-κB is upregulated in placenta accreta

Based on the network of signaling pathways described above, two main transcription factors were selected for further investigation: PTEN, which is involved in cell cycle functions including proliferation, migration, and metabolism (37), and NF-κB, which is involved in the expression of inflammatory factors (38). To localize these proteins in placental tissues from NP and placenta accreta PAS samples, double immunofluorescence staining was carried out as described in the method section. In NP, the placenta villi appeared well delimitated by CK7 positive STB as observed in IHC staining. In contrast, PAS tissue showed zones with unorganized STB and the presence of large areas of EVT infiltration in the decidual tissue (Figure 5). In NP and PAS placenta, NF-κB was expressed in STB and the stroma of placental villi. Additionally, focal expression in areas of column-like EVTs was also observed in PAS (Figure 5A, white arrow). Contrary to the mRNA analysis, the fluorescence intensity of NF-kB protein was higher in PAS than NP (Figure 5C). In NP, PTEN was localized mainly in STB, endothelial cells surrounding fetal blood vessels, and in minor proportion in the stroma. Contrarily, in PAS samples, PTEN localized mainly in the stroma, partially in Hofbauer cells (white arrowheads), and in minor proportion in STB and EVTs (Figure 5B). In agreement with the mRNA validation, PTEN protein expression was reduced in PAS compared to NP tissues (Figure 5C).




Figure 5 | Immunolocalization of NF-κB and PTEN in normal and placenta accreta samples. Double immunolabelling of cytokeratin-7 (CK7, pseudo-green) with (A) NF-κB (pseudo-red) or (B) PTEN (pseudo-violet). Yellow boxes show the zoom-in area of white dotted boxes. White arrows and arrowheads indicate respectively invasive trophoblast columns and potential hofbauer cells. The scale bar represents 100 µm. (C) Extracted fluorescent intensity from representative pictures (n=3-5) in slides of NP (n=3) and PAS (n=3). Significant differences were determined by unpaired t- and Mann-Whitney test ***p < 0.001, *p < 0.05. DE, Decidua; NC, Negative control; NP, normal pregnancy; PAS, placenta accreta spectrum.






3.6.  Regulation of trophoblast invasion and migration are the most common functions of DEmiRNAs in PAS

To clarify the function of DEmiRNAs, literature was screened for investigations in physiological or pathological pregnancies. Among the confirmed DEmiRNAs, only miR-495-3p has not been reported as differentially expressed in any pathological pregnancy. Several DEmiRNAs have been previously identified altered in preeclampsia (PE), pre-term birth (PTB), fetal growth restriction (FGR), or gestational diabetes mellitus (GDM). To the best of our knowledge, no reports on PAS regarding the here described DEmiRNAs exist. Target genes confirmed in this study (e.g., TGF-β, MAPK, PETN) have been reported as validated targets of DEmiRNAs in other studies supporting the network associations proposed here. Most of the found studies described miRNA functions in trophoblast cells, and reported their association with cell migration, proliferation and epithelial-mesenchymal transition (Table 2).


Table 2 | Previous reports of DEmiRNAs in PAS.







4.  Discussion

The definition of PAS has been constantly revised in the last century because of the heterogeneous histological and clinical characteristics of deliveries complicated by placental retention. The currently recommended terminology includes different degrees of abnormal placentation from abnormally adherent villi towards extended EVT invasion into the uterine wall and beyond into adjacent organs (1). The incidence of this life-threatening disease is increasing rapidly, affecting at least 1 in 817 pregnancies worldwide and approximately 1 in 500 pregnancies in developed countries. A recent report indicates an incidence as high as 1 in 272 pregnancies (10).

In contrast to placenta accreta, the etiology of severe PAS (placenta increta/percreta) remains largely well defined since in nearly all cases a surgical damage of the decidua preceded. Currently, the most accepted hypothesis is a combination of scarred endometrium caused by damage prior to gestation and the subsequent abnormal invasion of trophoblast cells (74). Consequently, the most common risk factor for PAS is a history of cesarean deliveries and/or previous uterine surgeries (myomectomy, operative hysteroscopic procedures, dilation, and curettage, etc.), followed by assisted reproductive technology, especially in vitro fertilization and embryo transfer (IVF-ET) and advanced maternal age (75, 76). In our hands, the number of previous pregnancies was similar among the control and PAS groups, but all women with placenta increta or percreta presented previous uterine surgery. In contrast, several women included in the PAS group that suffered from adherent placenta accreta were primigravida, supporting the role of additional factors other than previous cesarean sections play a role in placenta accreta etiology.

Advanced clinical examinations, including ultrasound and in some cases also magnetic resonance imaging, may allow the diagnosis of severe PAS (placenta increta and percreta) with high sensitivity (88-97%) when used by skilled personnel (6). However, antenatal identification of adherent placenta accreta is limited and is reported as low as in only 33% of the cases (5). Making the diagnosis can be more challenging when patients are not considered at risk because they have no placenta previa or no history of previous uterine surgery (77). Likewise, these measures are insufficient to reliably predicting the exact extent of trophoblast invasion (78, 79). Consecutively, the final decision on the optimal method to deliver the placenta depends on the knowledge of the degree of placental invasion, that often only can be decided intraoperatively. Therefore, several authors attempted to identify biomarkers, including placental proteins (e.g., PAPP-A, AFP), hormones (e.g., hCG and human placenta lactogen), and, more recently, cell-free fetal DNA and cell-free placental mRNA, that could improve the accuracy of antenatal diagnosis of PAS [revised in (80, 81)]. Although these factors may be altered in PAS, there is a significant overlap with their concentration in unaffected pregnancies, which limits their applicability. Combining these with other markers such as miRNAs may potentially improve the diagnosis and clinical management of PAS. A deeper knowledge about the clinical behavior of PAS trophoblast cells may offer better surgical treatment or preventative procedures.

In the last years, miRNAs have been widely accepted as critical players in placental development. miRNA dysregulation is found in pregnancy complications such as preeclampsia (PE), early pregnancy loss, and fetal growth retardation (FGR) (82–84), but very few studies have sought to identify the miRNA expression profile in PAS. Here, we found that the placental expression of miRNAs differs between the adherent PAS and control groups. Although the statistical tool DESeq2 was initially designed to identify differential expression of mRNA and not miRNA genes, its basic model and normalization assumptions hold true for the investigated RNA-Seq datasets, e.g., most genes are not differentially expressed and there is a balance of over- and under-expression (28) (see Figure 1D). An independent study showed that DESeq2 could maintain a reasonable false-positive rate without a significant loss of power, even when executed on a dataset with a relatively low number of highly expressed genes, which is the case for most sRNA-Seq datasets (85). Using this strategy, a group of DEmiRNAs was identified which includes some members of the placenta-associated miRNA clusters C19MC, C14MC, miR-106a, miR-106b, and miR-17-92. These miRNA clusters regulate trophoblast functions, cell-cell communication, and are involved in viral infection responses and placental homeostasis (17, 32–34). In our hands, validation PCR for specific miRNAs carried out in a larger cohort of placenta accreta samples confirmed the differential expression of 13 miRNAs (8 upregulated and 5 downregulated), previously not reported concerning a role in PAS development. These miRNAs were localized by in situ hybridization revealing that they are expressed mainly by trophoblast cells and, in some cases, overexpressed by the invasive EVTs, especially observed in PAS placentas strengthening their role as regulators of trophoblast function. Remarkably, for ten of these miRNAs (miR-331-3p, -193b-3p, -376c-3p, -3074-5p, -222-3p, -519d-3p, -106b-3p, -3615, -16-2-3p und -454-5p, see Table 2), in vitro studies have already been carried out in trophoblastic cell lines, and they are reported to control trophoblast invasion and migration. Some of these miRNAs are also altered in PE, FGR, or other pregnancy disorders, suggesting their central role in placental functions and potentially a common alteration of trophoblast regulation in distinct pathologies. However, it cannot be ruled out that these miRNAs regulate different mRNAs to promote PAS development since there are certain redundancies and compensation effects among miRNAs (86). Likewise, the presence of DEmiRNAs considered of trophoblast origin (e.g., miR-519d-3p) in other cell types such as endothelial cells could indicate intercellular transfer from trophoblast to other placental cell types, which may cause alteration in the function of recipient cells. In the context of PAS, the relevance of this mechanism has not been addressed yet and could contribute to clarifying its etiology.

The majority of here identified miRNAs have been already tested in pregnancy-related pathologies at the placental level (Table 2), but researchers are now seeking to determine whether these miRNAs may serve as serum biomarkers. For instance, plasma miR-139-3p, miR-196a-5p, miR-518a-3p, and miR-671-3p were found downregulated in serum of patients diagnosed with placenta increta or percreta compared to healthy pregnancies (87). In our hands, miR-139-3p and miR-671-3p were also found downregulated in placenta accreta compared to NP placentas, which may support their use as biomarkers. However, miR-518a-3p appeared upregulated in our study. Likewise, the assessment of the secretory form of clusterin combined with the expression of either miR-21-5p, miR-92a-3p or miR-320a-3p in plasma of pregnant women were reported as potential predictors for the development of different forms of PAS with high specificity and sensibility (88). While no changes in miR-21-5p or miR-320a-3p were identified in our study, miR-92a-3p was found downregulated and not upregulated as suggested by that publication. Likewise, while our results showed increased miR-382-3p and decreased miR-423-5p expression in placenta tissue from adherent PAS, their serum levels appeared unchanged in the aforementioned studies (87, 88). Other miRNAs such as miR-24 and miR-519d were found here upregulated in PAS tissue and their plasma levels were found upregulated in other pathologies such as preeclampsia (89). Considering that placental miRNA expression changes with the gestation age (90) and the samples included in this study were taken after delivery, the low correlation with the reported alterations in plasma may be due to the differences in the gestational age at sampling. Therefore, although having the potential, more comprehensive studies are needed to determine whether the DEmiRNAs reported in this study may in fact serve as early diagnostic markers for PAS.

To further examine the biological relevance of DEmiRNAs in PAS, an in silico analysis was carried out to assign functional meaning for regulation at the mRNA level. To improve the interpretation of biological phenomena related to the extensive list of enriched KEGG pathways, analysis of local regions or sub-pathways has been achieved following a similar strategy as that published by others (91) and in our previous study (31). In the context of PAS, these bioinformatic strategies allowed the identification of biological pathways involved in angiogenesis, embryonic development, cell migration and adhesion, and tumor-related pathways that are deregulated in serum of PAS patients (87). Using a similar strategy, a network of lncRNAs, miRNAs and mRNAs implicated in reduced angiogenesis has been reported in PAS placentas (24). Here, seven sub-pathways, including cell cycle control, actin regulation, TGF-β, MAPK, PI3K-AKT, NF-κB, and the JAK-STAT signaling, were consistently mapped as targets of DEmiRNAs in the enriched KEGG pathways, which highlights them as the major cascades affected in PAS pathophysiology. Some molecules within these pathways have been previously reported as affected in PAS. For instance, an investigation by us reported increased mRNA and protein expression of cell cycle mediators (p21, p16, and CyclinD1) in PAS placentas compared to NP. However, this effect was reported to be significant only when delivery occurred after week 34, suggesting an additional temporary regulation (92). Other factors previously reported in PAS include TGF-β, which regulates cellular growth, motility, tumorigenesis, and trophoblastic EMT. It suppresses trophoblast invasion by regulating the transcription factors zinc finger protein SNAI (SNAIL) and Twist family basic helix-loop-helix transcription factor (TWIST) (93–95). In addition, silencing TGF-β type 1 receptor (TGFBR1) expression in trophoblastic cells significantly enhanced their trophoblastic invasiveness related to EMT promotion. Congruently, TGF-β negatively regulates trophoblast invasion by upregulating miR-7 in a SMAD2-dependent manner supporting the repression of EMT (96). Consistent with our findings, a significant decrease in relative TGF-β1 mRNA expression in tissue of PAS versus NP placenta has been reported (97). TGFB genes have been proposed in literature as targets of three DEmiRNAs identified in this study (miR-24-3p, miR-193b-3p and miR-3615-3p) (42) (71). Because miR-24-3p and miR-193b-3p were upregulated while miR-3615-3p was downregulated in PAS samples, it is unfeasible to estimate the contribution of each of these miRNAs to the overall decrease in TGF-β1 mRNA expression nor to the development of PAS. Therefore, these observations reinforce the need to consider larger miRNA:mRNA networks as causative of PAS rather than the association of a single miRNA and its targets reported in vitro.

Abnormal expression of other genes identified in sub-pathway analyses has been reported in pregnancy malignancies. For instance, dysregulated PTEN expression in blastocyst implantation, spontaneous abortion, and PE has been reported suggesting its critical role during pregnancy (98–101). Although NF-κB signaling is mainly involved in regulating inflammatory factors, there is evidence that it negatively regulates cell cycle and cell proliferation (102). Several studies have reported associations between PTEN and NF-κB. Increased PTEN, dependent on the AP-1/NF-κB pathway, impairs human trophoblast cell invasion and is related to PE development (103). Furthermore, PTEN has been shown to promote NF-κB activation or suppression in other cell systems (104, 105). In our study presented here, we have found downregulated PTEN and NFKB mRNA in placenta accreta samples, while PTEN protein was downregulated and NF-κB protein was upregulated (in EVTs). Previously, we have reported that overexpression of miR-519d-3p in trophoblast cell lines is related to AKT upregulation but PTEN downregulation. We found miR-519d-3p associated with augmented trophoblast proliferation but reduced migration (56). Here, PAS samples showed high expression of miR-519d-3p, reinforcing its link with the PTEN/AKT/NF-κB system, which constitutes a vital cell cycle signaling pathway involved in trophoblast proliferation and metabolism. PTEN has been demonstrated as a common target of numerous miRNAs, including miR-21, miR-214, and miR-217, which are involved in regulating several cancer types (106, 107). In our study, in addition to miR-519d-3p, PTEN appears to be a potential target of miR-222-3p and miR-106b-3p and AKT of miR-382-3p and miR-495-3p.

In summary, this study provides a set of miRNAs as potential biomarkers for the diagnosis of PAS, especially for placenta accreta. Additionally, these miRNAs and their targets are associated with signaling pathways relevant for controlling trophoblast function, providing preliminary evidence for their role in the pathogenesis of PAS.
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Introduction

A healthy pregnancy requires successful blastocyst implantation into an adequately prepared or ‘receptive’ endometrium. Decidualization of uterine endometrial stromal fibroblast cells (hESF) is critical for the establishment of a healthy pregnancy. microRNAs (miRs) are critical regulators of cellular function that can be released by a donor cell to influence the physiological state of recipient cells. We aimed to determine how decidualization affects hESF miR release and investigated the function of one decidualization regulated miR, miR-19b-3p, previously shown to be associated with recurrent pregnancy loss.





Method

miR release by hESF was determined by miR microarray on culture media from hESF decidualized in vitro for 3 and 14 days by treatment with oestradiol and medroxyprogesterone acetate. Cellular and whole endometrial/decidual tissue miR expression was quantified by qPCR and localized by in situ hybridization. The function of miR-19b-3p in HTR8/Svneo trophoblast cells was investigated using real time cell analysis (xCELLigence) and gene expression qPCR.





Results

From our miR screen we found that essentially all hESF miR release was reduced following in vitro decidualization, significantly so for miR-17-5p, miR-21-3p, miR-34c-3p, miR-106b-5p, miR-138-5p, miR-296-5p, miR-323a-3p, miR-342-3p, miR-491-5p, miR-503-5p and miR-542-5p. qPCR demonstrated that miR-19b-3p, 181a-2-3p and miR-409-5p likewise showed a significant reduction in culture media following decidualization but no change was found in cellular miR expression following decidualization. In situ hybridization localized miR-19b-3p to epithelial and stromal cells in the endometrium and qPCR identified that miR-19b-3p was significantly elevated in the cycling endometrium of patients with a history of early pregnancy loss compared to normally fertile controls. Functionally, overexpression of miR-19b-3p significantly reduced HTR8/Svneo trophoblast proliferation and increased HOXA9 expression.





Discussion

Our data demonstrates that decidualization represses miR release by hESFs and overexpression of miR-19b-3p was found in endometrial tissue from patients with a history of early pregnancy loss. miR-19b-3p impaired HTR8/Svneo proliferation implying a role in trophoblast function. Overall we speculate that miR release by hESF may regulate other cell types within the decidua and that appropriate release of miRs by decidualized hESF is essential for healthy implantation and placentation.





Keywords: decidua, decidualization, microRNA release, miR-19b-3p, trophoblast, early pregnancy loss




1 Introduction

A healthy pregnancy requires successful blastocyst implantation into an adequately prepared or ‘receptive’ endometrium. Decidualization of human uterine human uterine endometrial stromal fibroblast (hESF) is critical for the establishment of a healthy pregnancy (1, 2); impaired decidualization is associated with poor pregnancy outcomes including recurrent early pregnancy loss and preeclampsia (3–5). Decidualization is initiated post-ovulation by corpus luteum-secreted progesterone and involves the reprogramming of hESF, including significant phenotypic and functional changes: hESF become rounded, highly secretory and with altered extellular matrix expression (1). In women, decidualization begins each menstrual cycle regardless of the presence of a functional blastocyst (1). Decidual cells interact with the implanting blastocyst to facilitate implantation and placentation: they regulate extravillous trophoblast (EVT) proliferation, migration and invasion (6–8), shield the conceptus from environmental stress signals (1), regulate the recruitment and differentiation of the uterine-resident immune cell population (9–11) and are thought to ‘sense’ the quality of the conceptus, facilitating rejection of incompetent embryos (12, 13).

microRNAs (miRs) are critical regulators of cellular function and have been most intensively investigated in cancer, where they regulate metastasis, angiogenesis and inflammation (14, 15). miRs can also act as ‘hormones’ – donor cells (which release the miR) can influence the physiological state of recipient cells (cells which take up the miR) over short (cell to neighboring cell) and long (effects on a different organ) distances (15, 16). In pregnancy, miRs are produced by cells within the decidua (decidual cells, leucocytes and endothelial cells) (17) and placental villous trophoblast (18). miR expression is altered in the decidua of early pregnancy loss compared to healthy pregnancies (18).

Less is known about miRs during endometrial remodelling. In vitro, decidual cellular miRs regulate decidualization (19), however little known about how secreted endometrial miRs may regulate other cells within the decidua including trophoblast. We aimed to determine how decidualization affected hESF miR release and determine the expression and function of one hESF released miR, miR-19b-3p, previously associated with recurrent early pregnancy loss (20).




2 Methods



2.1 Primary tissue collection

This study followed the NHMRC guidelines for ethical conduct in human research. Ethics approvals for this study were provided by The Royal Women’s Hospital and Monash Health Human Research and Ethics Committees (#90317B, #06014C and #03066B). Written and informed consent was obtained from each participant.

Endometrial biopsies were collected by dilatation and curettage (n=26 women; Table 1). Five biopsies were used for decidualization experiments (1 with history of early pregnancy loss), 3 for in situ (2 with history of early pregnancy loss) and 18 for RNA extraction (12 fertile, 6 with a history of early pregnancy loss). The women had no hormonal treatment for ≥ 3 months before tissue collection.


Table 1 | Characteristics of non-pregnant participants.



First trimester products of conception were collected following elective termination of pregnancy by evacuation for psychosocial reasons (n=4; amenorrhea 6-11 weeks). Term placental villous and decidual tissue was donated by healthy women following spontaneous labor at term (>37 weeks; n=4).

Serum was collected from women aged >18 years (n=5/group) attending an IVF clinic, who had successful pregnancies following IVF and those who had repeated pregnancy loss following IVF. Serum was collected from women undergoing oocyte collection, two days after induction of ovulation by human chorionic gonadotrophin. Subsequent details of outcomes of embryo transfer in the same cycle were recorded.




2.2 Cell culture

All cells were cultured at 37°C in a 5% CO2 humidified culture incubator. hESF were maintained in DMEM/F12 (Gibco, Thermo Fisher Scientific, Inc.) plus 10% charcoal stripped Fetal Bovine serum (FBS; Gibco, Thermo Fisher Scientific, Inc.) and 1% antibiotics (penicillin, streptomycin, amphoceterin B; Gibco, Thermo Fisher Scientific, Inc.). HTR8/SVneo cells (CRL-3271) were from the ATCC and cultured with RPMI (Gibco, Thermo Fisher Scientific, Inc.) plus 10% heat inactivated FBS (Gibco, Thermo Fisher Scientific, Inc.).




2.3 Decidualization

hESF were isolated using collagenase digestion and filtration as previously described (21), resulting in a 97% stromal fibroblast population (22). hESF were decidualized as previously described (21) by treatment for 14 days with oestradiol (E, 10-8M; Sigma) and medroxyprogesterone acetate (MPA, 10-7M; Sigma) in DMEM/F12 containing 2% charcoal stripped FBS and 1% antibiotics. The media was refreshed every 2-3 days, on a Monday, Wednesday and Friday. Cells and culture media were collected on Day 3 and Day 14, both after 72h of culture. Cells were pelleted by centrifugation at 500xg then snap-frozen. Culture media was centrifuged at 500xg for 5 minutes to pellet cell debris then the supernatant snap-frozen.




2.4 Prolactin ELISA

PRL secretion by decidualized hESF (culture media collected on days 3 and 14) was quantified by ELISA as per the manufacturer’s instructions (DuoSet kit #DY682, R&D systems) (23).




2.5 RNA isolation

Decidual culture media: RNA was isolated from 200uL culture media collected on Day 3 and Day 14 of culture and media only control using the RNeasy Micro Kit (Qiagen) according to the manufacturer’s instructions.

hESF & HTR8/Svneo cells, endometrial and decidual tissue: RNA extraction was performed as previously described using Tri Reagent  according to the manufacturer's instructions (Sigma-Aldrich, Merck).

Serum: RNA extraction (from 250uL serum) was performed using the TRIzol LS reagent (Ambion, Life Technologies) as per the manufacturer’s instructions.

Genomic DNA was removed from isolated RNA using the DNAfree kit (Ambion; Thermo Fisher Scientific, Inc.) according to the manufacturer’s protocol. A spectrophotometer (Nanodrop Technologies; Thermo Fisher Scientific, Inc.), was used at an absorbance ratio of 260/280 nm to analyze RNA sample concentration, yield and purity.




2.6 microRNA array

cDNA synthesis was performed using the miRCURY LNA™ Universal RT microRNA PCR system (Qiagen) and microRNA PCR Human Panel (I) as previously described (24). cDNA products diluted 60-fold were plated on the microRNA PCR Human Panel (I) plate and qPCR was performed using a 7900HT thermocycler (Applied Biosystems) using the recommended parameters (Qiagen). Raw CT values were normalized (ΔCT) to the average of the control wells (UniSP3) on the plate, then ΔΔCT calculated by normalizing the ΔCT to the average of the day 3 samples for each gene (Supplementary Table 1). A media only control was run to enable exclusion of miRs present in the treatment media.




2.7 miR RT-qPCR

cDNA was synthesized from 10ng total RNA using the TaqMan reverse transcription kit (Applied Biosystems; Thermo Fisher Scientific, Inc), and specific TaqMan miR primer sets (cat no. #4427975; miR-19b-3p #000396; miR-181a-2-3p #002317; miR-409-5p #002331; rnU6, #001973; Applied Biosystems; Thermo Fisher Scientific, Inc.) on the Veriti 7 fast block real-time qPCR system (Applied Biosystems). miR qPCR was performed in triplicate (final reaction volume, 10 μl) in 384-well micro- optical plates (Applied Biosystems; Thermo Fisher Scientific, Inc.) on the ABI 7900HT fast block or Viia 7 qPCR systems (Applied Biosystems; Thermo Fisher Scientific, Inc.). A template-free negative control and RNase-free water only was added for each run. The qPCR conditions were: 95°C for 10 min and 40 cycles of 95°C for 15s followed by 60°C for 1 min. Relative expression levels were calculated as per the manufacturer’s instructions using the comparative cycle threshold method (ΔΔCT).




2.8 mRNA RT-qPCR

Total RNA (250ng) was reverse transcribed using Superscript III (Invitrogen) (0.5 µL per reaction) as previously described (25). qPCR was performed as previously described (25) using Power SYBR Green master mix (Applied Biosystems) on the Veriti 7 fast block real-time qPCR system (Applied Biosystems). Primer sequences are as follows: 18s Fwd: 5`GATCCATTGGAGGGCAAGTCT3`, Rev: 5`CCAAGATCCACCTACGAGCTT3`; Fwd: HOXA9 5`TACGTGGACTCGTTCCTGCT3`, Rev: 5`CGTCGCCTTGGACTGGAAG3`; PTEN Fwd: 5`TCCATCCTGCAGAAGAAGCC3`, Rev: 5`AGGATATTGTGCAACTCTGCAA3`; (Sigma-Aldrich). A template-free negative control in the presence of primers and RNase-free water only negative controls were added for each run. The qPCR conditions were: 95°C for 10 min and 40 cycles of 95°C for 15s followed by 60°C for 1 min. Relative expression levels (normalized to 18s ribosomal RNA) were calculated as per the manufacturer’s instructions using the comparative cycle threshold method (ΔΔCT).




2.9 In situ hybridization

In situ hybridization was performed as previously described (26). Briefly, 4 μm thickness endometrial sections were deparaffinized and rehydrated in xylene, neat ethanol, 96% ethanol, and 70% ethanol and then placed in PBS Proteinase K (15 μg/mL) digestion was performed at 37°C for 15 min. Following PBS wash, 100 nM miR-19b-3p detection probe (#339111, YD00619863-BCG; Qiagen) or scramble control probe (cat no. #339111 YD00699004-BCG) was applied to sections and placed in a 60°C incubator for 1 h. Slides were then washed in 5x sodium-saline citrate (SSC), 1x SSC and 0.2x SSC buffers at 60°C for 5 min, and 0.2x SSC at room temperature (RT) for 5 min, then placed in PBS. Blocking solution of 10% CAS block (008120, Thermo), 2% sheep serum, 1% bovine serum albumin (BSA) in PBS-Tween (T) was applied to sections and incubated at RT for 15 min. After incubation, sections were treated with anti-DIG-fluorescein 1:50 in 0.5% BSA/PBS at RT for 1 h. Following additional washes in PBS-T, sections were counterstained with DAPI to indicate the cell nuclei (blue). Sections were visualized using Olympus BX63 fluorescence microscope and cellSense software. All images were taken under the same exposure and settings.




2.10 Real time cell analysis

The real-time cell analyser (RTCA) MP xCELLigence instrument (ACEA Biosciences; Agilent Technologies GmbH) was used to interrogate the effect of miR-19b-3p on HTR8/Svneo adhesion and proliferation. HTR8/Svneo were transfected with 100nM miR-19b-3p mimic (cat no. 339173 YM00470545-ADB) or negative control (cat no. 339173 YM00479902-ADB) using Lipofectamine RNAiMAX (13778100, Thermo Fisher) and Opti-MEM medium (11524456, Fisher) following manufacturer’s instructions for 72 h. After transfection cells were seeded into E-plate 96 (ACEA Biosciences; Agilent Technologies GmbH) at ~10,000 cells/well in RPMI supplemented with 5% FCS. Data was collected ever 15 minutes for a total of 96h.




2.11 Statistical analysis

Statistical analyses were performed using GraphPad Prism 9.5.0. Paired t-tests, one-way ANOVA and repeated measures ANOVA were performed. All data is presented as mean ± SEM. P<0.05 was considered statistically significant.





3 Results



3.1 hESF miR release is repressed by decidualization

We identified 98 miRs released by hESF into the culture media (Figure 1A; Supplementary Table 1). The most highly expressed miRs were miR-125b-5p, -23a-3p and let-7b-5p. miR release into the culture media was highly repressed following in vitro hESF decidualization (Figure 1A): 11 miRs showed a significant reduction at Day 14 of in vitro decidualization (Figure 1B). Decidualization was confirmed by PRL secretion (Figure 1C).




Figure 1 | miR release was reduced following hESF decidualization. (A) Fold-change of all miRs identified in hESF culture media by microarray from Day 3 to Day 14. (B) miRs with significantly reduced levels in hESF culture media between Day 3 and Day 14. (C). Prolactin (PRL) secretion by hESF on Day 3 and Day 14 of decidualization. (D–F). qPCR of miR-19b-3p (D), miR-181a-2-3p (E) and miR-409-5p (F) in hESF cells and culture media on Day 3 and Day 14 of decidualization. (G–I). qPCR of miR-19b-3p (G), miR-181a-2-3p (H) and miR-409-5p (I) in whole tissue biopsies collected during the proliferative (prolif) and late secretory (LSec) stages of the menstrual cycle and 1st trimester and term decidua. Data shows mean ± SEM; *P<0.05; **P<0.01; ***P<0.001; (C–F), paired t-test; (G–I), one-way ANOVA.



To confirm the array data, we investigated the expression of 3 different miRs in hESF matched cellular and culture media RNA (Figures 1D–F). Interestingly, although the cellular levels of miRs-19b-3p, -181a-2-3p and -409-5p were not altered by decidualization, miR concentration in culture media was significantly reduced (Figures 1D–F). In contrast when we investigated whether decidualization altered miR-19b-3p, -181a-2-3p or -409-5p expression in whole endometrial tissue biopsies (non-decidualized:proliferative endometrium; decidualized: late secretory endometrium, 1st trimester or term decidua) (Figures 1G–I) we found no difference in expression between non-decidualized and decidualized tissue, although miR-181a-2-3p was significantly elevated in term decidua compared to late secretory endometrium (Figure 1H) and miR-409-5p was significantly elevated in 1st trimester decidua compared to late secretory endometrium (Figure 1I).




3.2 Endometrial miR-19b-3p is increased in women with a history of early pregnancy loss

In situ hybridization of cycling endometrial tissue biopsies localized miR-19b-3p to most cell types in the endometrium, although endometrial glandular epithelial cell expression was variable even within adjacent glands (Figure 2A). Using qPCR, we found that expression miR-19b-3p in endometrial tissue biopsies was significantly increased in patients with a history of early pregnancy loss compared to fertile controls (Figure 2B). This increase was not found in serum from women undergoing IVF with a history of repeated early pregnancy loss (Figure 2C).




Figure 2 | miR-19b-3p expression is elevated in endometrium from women with a history of early pregnancy loss. (A) In situ hybridization of miR-19b-3p in endometrium. Localization of miR-19b-3p indicated by green fluorescent staining. DAPI (blue) counterstaining identifies nuclei. (B) qPCR of miR-19b-3p in endometrium from fertile patients and patients with a history of early pregnancy loss (EPL). (C) qPCR of miR-19b-3p in serum from fertile patients and patients with a history of early pregnancy loss. g, glandular epithelium; l, luminal epithelium; s, stroma; Data shows mean ± SEM; **P<0.01; (B, C), paired t-test.






3.3 miR-19b-3p reduces HTR8/Svneo trophoblast proliferation

As impaired decidualization is associated with recurrent pregnancy loss and miR-19b-3p release was suppressed by decidualization, we investigated the effect of miR-19b-3p on trophoblast function using the HTR8/Svneo cell line. HTR8/Svneo transfected with miR-19b-3p mimic showed elevated miR-19b-3p expression in the cell pellet (Figure 3A), suggesting that miR-19b-3p is taken up from the media. Using a Real-Time Cell Analysis system (xCELLigence) we found there was no effect of miR-19b-3p on HTR8/Svneo adhesion (Figure 3B) but after 60h miR-19b-3p significantly inhibited HTR8/Svneo proliferation compared to control (Figure 3C). We investigated whether transfection with the miR-19b-3p affected HTR8/Svneo production of predicted miR-19b-3p targets (27, 28): miR-19b-3p increased HOXA9 mRNA but had no effect on PTEN mRNA (Figure 3D).




Figure 3 | miR-19b-3p overexpression in HTR8/Svneo cells impaired proliferation. (A) Treatment with miR-19b-3p mimic (○) significantly increased miR-19b-3p levels in HTR8/Svneo culture media (CM) and cell pellet compared to scramble control (●). (B) miR-19b-3p mimic had no effect on HTR8/Svneo adhesion (n=3/group). (C) miR-19b-3p mimic significantly reduced HTR8/Svneo proliferation after 60h (n=3/group). (D) miR-19b-3p mimic significantly increased HOXA9 expression but had no effect on PTEN. Alignment of miR-19b-3p and the 3`UTR of HOXA9 and PTEN is also shown. Data shows mean ± SEM; *P<0.05; **P<0.01; ***P<0.001; (A–C), repeated measures ANOVA; (D), paired t-test.







4 Discussion

Here we showed for the first time that decidualization was associated with a global repression of miR release by hESFs. We found that endometrial tissue collected from women with a history of early pregnancy loss had significantly higher mir-19b-3p production conmpared to fertile controls and transfection of miR-19b-3p mimic to HTR8/Svneo trophoblast cells significantly impaired cell proliferation and increased HOXA9 mRNA production.

Our observation that global miR release was reduced in decidualized hESF is striking. Released miRs can be transferred to another cell, triggering actions in target cells (15). Certainly, decidualized cell secretions promote decidualization of surrounding stromal cells (1), regulate uterine-resident lympocyte recruitment and differentiation (29) and promote trophoblast invasion (8, 30, 31). We hypothesize hESF-released miRs would be taken up by surrounding cells (eg. other decidual cells, trophoblast, immune and endothelial cells) and our data suggests that decidualization may release these other cells from hESF mediated control. We did not investigate the mechanism by which this repression in miR release occurs, however extracellular vesicle production is increased following decidualization with cAMP (32), suggesting that there may be a change in other methods of release (eg argonaute proteins). Whether argonaute proteins in hESF are regulated by decidualization has not been investigated.

It was somewhat surprising that we didn’t see a change in cellular miRs using this in vitro model as have been seen in other models that investigated only cellular miRs following in vitro decidualization, including miR-181a (downregulated 3-fold) and miR-409-5p (upregulated 2.3-fold) (17). We saw a non-significant trend to increased miR-409-5p cellular expression and a significant increase in production in the 1st trimester decidua compared to late secretory phase endometrium. To exclude the direct effect of oestradiol or MPA on miR release in this study we collected cells and culture media 3 days after initiating the decidualization treatments. Although there is negligible PRL secretion on day 3, it is possible that alterations to miR production are initiated early in decidualization and we may have seen an effect on miR production if we compared hESF before and after decidualization hormone treatment as is done in other studies.

Collectively, previous studies and our results suggest that dysregulated miR-19b-3p production may be involved in the etiology of recurrent pregnancy loss. We found that miR-19b-3p was significantly elevated in the cycling endometrium of patients with a history of early pregnancy loss and Tian et al. showed that miR-19b-3p is decreased in the placental villous of patients with a history of recurrent early pregnancy loss (20). Furthermore, miR-19b-3p is dysregulated in monocytes from patients with antiphospholipid syndrome (33), an acquired thrombophilia diagnosed in 15-20% of patients with recurrent early pregnancy loss (5).

The function of miR-19b-3p appears highly cell type specific. In trophoblast miR-19b-3p overexpression prevents syncytialization of primary human cytotrophoblasts (34), decreased PTEN production in JEG-3 (20) and here we found miR-19b-3p impaired HTR8/Svneo trophoblast proliferation. In other tissues miR-19b-3p mostly promotes proliferation (35–39). The inhibition of proliferation by miR-19b-3p mimic seen here may be due to the increase in HOXA9 production also stimulated by the miR-19b-3p mimic: HOXA9 inhibits HTR8/Svneo proliferation (40), migration and invasion (41).

A role for miR-19b-3p in inflammation is also proposed, however again the function of miR-19b-3p in regulating inflammatory responses is not clear. miR-19b-3p increases apoptosis and intracellular reactive oxygen species in endothelial cells (42), enhances Th1/M1 inflammatory responses (43–45) and inhibits Treg differentiation (43), but may also promote M2 polarization (46, 47). That miR-19b-3p may be pro-inflammatory in pregnancy is suggested by elevated levels in maternal plasma of pregnancies with gestational diabetes mellitus (48, 49), and preterm birth (50), both inflammatory conditions. Loss of miR-19b-3p in the endometrium during decidualization therefore may be crucial to promote trophoblast differentiation and maternal tolerance.

In conclusion, we found that in vitro decidualization was associated with reduced miR release and that overexpression of miR-19b-3p was found in endometrial tissue from patients with history of early pregnancy loss. Finally, we found that miR-19b-3p impaired HTR8/Svneo proliferation implying a role for this decidual-released miR in trophoblast function. Overall we speculate that decidualization may act to reduce endometrial stromal cell regulation of other cell types within the decidua, particularly trophoblast, enabling healthy implantation and placentation during early pregnancy.
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Preeclampsia is a pregnancy-related multisystem disorder characterized by altered trophoblast invasion, oxidative stress, exacerbation of systemic inflammatory response, and endothelial damage. The pathogenesis includes hypertension and mild-to-severe microangiopathy in the kidney, liver, placenta, and brain. The main mechanisms involved in its pathogenesis have been proposed to limit trophoblast invasion and increase the release of extracellular vesicles from the syncytiotrophoblast into the maternal circulation, exacerbating the systemic inflammatory response. The placenta expresses glycans as part of its development and maternal immune tolerance during gestation. The expression profile of glycans at the maternal–fetal interface may play a fundamental role in physiological pregnancy changes and disorders such as preeclampsia. It is unclear whether glycans and their lectin-like receptors are involved in the mechanisms of maternal–fetal recognition by immune cells during pregnancy homeostasis. The expression profile of glycans appears to be altered in hypertensive disorders of pregnancy, which could lead to alterations in the placental microenvironment and vascular endothelium in pregnancy conditions such as preeclampsia. Glycans with immunomodulatory properties at the maternal–fetal interface are altered in early-onset severe preeclampsia, implying that innate immune system components, such as NK cells, exacerbate the systemic inflammatory response observed in preeclampsia. In this article, we discuss the evidence for the role of glycans in gestational physiology and the perspective of glycobiology on the pathophysiology of hypertensive disorders in gestation.
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1 Introduction

Preeclampsia is the most common hypertensive disorder in pregnancy, characterized by mild-to-severe microangiopathy of the placenta, kidney, liver, and brain (1–3). Before clinical signs of the disease appear, altered placental development exacerbates the local and systemic inflammatory status targeting the vascular endothelium (4–6). The systemic inflammatory response and clinical signs of preeclampsia end shortly after the fetus and placenta are removed during cesarean section, though hypertensive episodes may persist in some patients beyond the postpartum period. This situation increases the risk of renal disease or new episodes of preeclampsia in the subsequent gestation (7–9).

Preeclampsia is defined as a new onset of maternal hypertension after 20 weeks of gestation and systemic endothelial dysfunction manifested by new onset proteinuria (though not in all patients), hepatic dysfunction, and thrombocytopenia, among other symptoms (10, 11). Furthermore, preeclampsia exhibits diverse clinical manifestations, such as mild or severe, early or late onset (>34 weeks), or the presence or absence of intrauterine growth restriction (12–14). Pathological features of preeclampsia include shallow trophoblast invasion and poor spiral artery remodeling, resulting in placental hypoperfusion and intrauterine growth restriction (15, 16). These events occur during the first trimester of pregnancy and initially compromise the maternal–fetal interface, resulting in increased anti-angiogenic (17) and inflammatory factor production (18–22). Two pathophysiological stages have been proposed (23) to understand better the underlying mechanisms of preeclampsia: The first stage includes poor placentation, placental hypoperfusion, hypoxia, and trophoblast oxidative damage, followed by endothelial dysfunction and hypertensive clinical signs in the second stage (21, 24–26). Endothelial activation is intrinsic to the exacerbated systemic inflammatory response in severe preeclampsia (27), which involves NK cell activation rather than monocyte or lymphocyte activation (28, 29), resulting in coagulation dysfunction, insulin resistance, and hyperlipidemia (30).

In this context, the etiopathogenesis of preeclampsia is unknown, and the factors triggering its onset and progression to a multisystemic syndrome are unpredictable. Preeclampsia pathophysiology has traditionally focused on abnormal trophoblastic invasion, vascular inflammation, and the systemic inflammatory response (Croci et al., 2014). A more comprehensive approach is required to understand the occurrence of the multisystem syndrome (31). In this review, we focused on glycan recognition by peripheral NK cells and modulation of activation toward the cytotoxic phenotype to uncover new insights into molecular communication mechanisms between the trophoblast and the peripheral innate immune system. In the last two decades, a glycobiological perspective on pregnancy has emerged (32–35), and these new approaches have the potential to provide critical insights into the pathogenesis of preeclampsia and the development of severe clinical forms of the disease (36–43).



1.1 The role of glycans in cell-to-cell communication

The glycocalyx is the cell’s outermost layer of glycoconjugates, mainly glycoproteins and proteoglycans. The glycans bound to these glycoconjugates participate in ligand–receptor interactions in biological processes involving cell-to-cell interaction and function as a barrier and filter in endothelia (44, 45). In turn, the set of glycoprotein modifications complements the glycocalyx, and its more complex structure is encoded by nearly 10% of the transcribed genes that comprise the so-called glycome (46). The glycocalyx conformation may vary depending on the cell type, its activation and differentiation state, the cellular microenvironment, and the physiological or pathological conditions of the cells (47). Therefore, two of the systems in which the physiological role of glycocalyx has been studied are the immune system (reviewed in 48) and the vascular endothelium (reviewed in 49), particularly in pathological conditions (reviewed in 47, 50).




1.2 Structure of glycans

The glycocalyx is made up of monosaccharides or carbohydrates. In this review, glycan is preferred over carbohydrates because, unlike carbohydrates, not all glycans are monomers. Additionally, carbohydrate is often used interchangeably with components of intermediary metabolism. Glycans are composed of one carbonyl group, and the rest of the carbons contain hydroxyl groups. Carbonyl position and hydroxyl group orientation of atoms in asymmetric carbon determine monosaccharide structure. The anomeric carbon is derived from the carbonyl group; depending on the orientation of the anomeric carbon’s hydroxyl group, the monosaccharide exists in either a or b anomer (48). The identity, variety, and functions of glycans are determined by chemical modifications of the hydroxyl groups, such as oxidation, N-acetylation, and sulfation (51, 52). Finally, when glycans combine to form linear and branched glycan structures, the variety of glycans exponentially increases. The diversity of glycans is estimated to be 1.05 × 1012 of linear and branched glycan structures (53). The most common monosaccharides found in mammalian cells include glucose (Glc), galactose (Gal), mannose (Man), N-acetylneuraminic acid (NeuAc), N-acetylglucosamine (GlcNAc), N-acetylgalactosamine (GalNAc), glucuronic acid (GlaA), xylose (Xyl), and fucose (Fuc) (48).

The DNA code does not determine protein modifications by enzymatic glycosylation because cellular enzymatic expression varies between species, cellular microenvironments, and cell types (54). Besides, glycosylation is a remarkably well-conserved enzymatic process (55). Specific changes in each glycan sequence will depend on the expression of glycosidases and glycosyltransferases, the availability of nucleotide sugar donor sources, and external influences mediated by cytokines and hormones in the cell microenvironment (56, 57). Glycosidases are enzymes that catalyze the hydrolysis of a bond linking a sugar of a glycoside to alcohol or another radical in the glycan molecule, whereas glycosyl transferases are enzymes that catalyze the transfer of glycosyl groups in biochemical reactions (58).

The structural diversity of the mammalian glycome is supported by the synthesis of glycans and their enzymatic regulation, which occurs in the endoplasmic reticulum and Golgi apparatus when added to proteins. If the glycan binds to the nitrogen of asparagine in the protein, it is called N-glycosylation or N-glycan; if it binds to the oxygen of a serine or threonine, it is called O-glycosylation or O-glycan (Figure 1A). In the case of proteoglycans, an unbranched polysaccharide chain composed of disaccharide units of a sulfated amino sugar (N-acetylglucosamine or N-acetylgalactosamine) and uronic acid (iduronic or glucuronic) is attached to a large protein core in a serine residue (59–61).




Figure 1 | (A) Schematic representation of the main types of glycoproteins expressed in mammalian glycocalyx. Types of cell-surface glycans, including N-linked and O-linked glycans from glycoproteins. Each glycan has a common core whose terminal or internal sequences can vary, leading to a complex diversity among cells or defined microenvironments. (B) A consensus sequence for N-glycosylation (Asp-X-Ser/Thr, designated sequon) is used as an acceptor in polypeptide chains of a preformed oligosaccharide attached to a dolichol phosphate in the endoplasmic reticulum. The oligosaccharide glucose3–mannose9–N–acetylglucosamine2 is transferred to the protein chain by an oligosaccharyltransferase acting as a chaperone and modulating its folding to transport toward the Golgi complex. Trimming and processing of the attached glycan are performed in Golgi compartments by specific glycosyltransferases and glycosidases for each nucleotide sugar donor. It is in the Golgi apparatus that glycans become oligomeric and branched. (C) Eukaryotic N-glycan biosynthesis in the endoplasmic reticulum and Golgi complex. Processing intermediates of N-glycans preserve a unique sequence core Manα1-6 (Manα1-3) Manβ1-4GlcNAcβ1-4GlcNAcβ1-Asn-X-Ser/Thr. Three types of N-glycans are found: oligomannose, complex, and  hybrid.






1.3 N-linked glycosylation

In N-glycosylation, a series of glycosyltransferases use nucleotide-activated sugar donors as substrates to form the mannose oligosaccharide 5-N-acetylglucosamine (Figure 1A). Oligosaccharide portions formed in the endoplasmic reticulum, specifically terminal glucose, and mannose, combined with molecular chaperones and thiol-disulfide oxidoreductases, help to fold newly synthesized proteins (62). The N-glycosylated polypeptide is delivered into the Golgi apparatus following interaction with cargo receptors in the vesicular transport system (63). If the protein is misfolded, it is translocated to the cytosol, deglycosylated by the enzyme peptide N-glycanase, or degraded by the ubiquitin/proteasome. In this pathway, glycosidases and mannosidases in the endoplasmic reticulum trim the N-glycans bound to the nascent protein, resulting in intermediate processing forms (Figure 1B; 64). The mannose residues are trimmed in the endoplasmic reticulum and subsequently in the Golgi complex, where the processed glycans undergo the addition of N-acetylglucosamine (N-acetylglucosaminylation), galactose (galactosylation), sialic acid (sialylation), or sulfate (sulfation). The intermediate forms of N-glycans share a common glycan core consisting of Manα1-6 (Manα1-3) Manβ1-4GlcNAcβ1-4GlcNAcβ1-Asn-X-Ser/Thr and have been classified into three types: (a) oligomannose, in which the mannose residues are attached to the core; (b) complex, in which the mannose residues are trimmed and replaced by N-acetylglucosamine, resulting in new elongated branches attached to the N-acetylglucosamine residues called “antennae”; and (c) a hybrid, in which only the mannose residues attached to Manα1-6 are conserved, while the mannose attached to Manα1-3 is trimmed and replaced in an antennae sequence by a branched N-acetylglucosamine (Figure 1C; reviewed in 64, 65).




1.4 O-linked glycosylation

O-linked glycosylation involves the formation of O-glycosidic bonds between oligosaccharide chains via N-acetylgalactosamine and GalNAc (1β-3), which is found in mucin glycoproteins (Figure 1A) (66). These glycans are mucins with GalNAc O-linked to Ser or Thr. O-glycosylation occurs in mucin domains containing many serine, threonine, and proline sequences. O-glycan processing occurs in the Golgi apparatus and has little impact on the early stages of protein folding. In mammalian mucins, the first attached GalNAc can be replaced by GlcNAc, GalNAc (linkage 1α-3), or Gal, forming up to eight different core structures: core 1: Galβ1-3GalNAc; core 2: GlcNAcβ1-6(Galb1-3)GalNAc; core 3: GlcNAcβ1-3GalNAc; core 4: GlcNAcβ1-6(GlcNAcβ1-3)GalNAca; core 5: GalNAcα1-3GalNAc; core 6: GlcNAcβ1-6GalNAc; core 7: GalNAcα1-6GalNAc; and core 8: Galα1-3GalNAc (67). The most common core sequences are 1 and 2; cores 3 and 4 are only found in mucins. The core structures can be substituted or elongated with sialic acid residues. O-glycan biosynthesis is initiated by the enzyme O-GalNAc transferase, which transfers the GalNAc residue of UDP-GalNAc to serine or threonine residues in a protein with the α-configuration (68). O-glycan processing does not require dolichol derivatives or specific glycosidases, and the mRNA levels of glycosyltransferases are critical factors for their assembly (69). Additionally, glycosyltransferases may form complexes with other proteins, influencing their activities, or metal ion concentrations in the Golgi apparatus may regulate them. The presence of an unsubstituted GalNAc on O-glycoproteins forms the Tn antigen in tumor metastasis (70), and GalNAC can be directly substituted with sialic acid to form the sialyl-Tn (STn) antigen. These glycans are truncated and not used in subsequent elongation reactions (68, 70–72).




1.5 Glycan receptors and ligand-receptor interactions

Glycan receptors are proteins with carbohydrate recognition domains (CRDs) called lectins. Lectins bind to clustered CRDs with high affinity via (a) binding to multiple epitopes on a single oligosaccharide or polysaccharide, (b) multiple glycans attached to a single protein scaffold, and (c) binding to adjacent glycoproteins or glycolipids in the cell membrane. Plants produce the well-known lectins, followed by those isolated from animals and pathogenic microorganisms (73). The various types of CRDs are classified into four major lectin groups: (a) Siglecs (short for sialic acid binding immunoglobulin-type lectins) or I-type lectins, in which the CRDs are formed by an immunoglobulin domain fold (sialic acid is the major glycocalyx component related to immune system regulation); (b) galectins (predominantly binding to β-galactosidase), which contain CRDs formed from a beta-like fold of the protein; (c) C-type lectins, in which the sugars bind directly to a calcium ion attached to the CRD; and (d) lectins containing R-type CRDs, whose structure is related to the plant toxin ricin (reviewed in 74). The most important biological functions of ligand–receptor interactions between glycan ligands and lectin-like receptors include cell adhesion, intracellular trafficking, glycoprotein elimination and turnover, cell signaling, and pathogen recognition (48, 65, 74).




1.6 Trophoblast differentiation in human placental development, hypoxia, and glycan expression

The human placenta is an autonomous and transient anatomical structure that allows the mother and fetus to exchange nutritional, gas, and waste products. The trophoblast layer mediates fetal growth and maternal pregnancy adaptation generating a new vascular bed in the placental interface. These trophoblast cells are the first to separate from the developing blastocyst, giving rise to cytotrophoblast stem cells (75, 76). Placental villous tissue develops from primary to secondary and tertiary villous tissue with the progressive development of villous tree circulation complexity. Primary villi containing cytotrophoblast and syncytiotrophoblast cells predominate during the first four weeks of gestation. Secondary villi develop in the fifth week of gestation, with the extraembryonic mesoderm forming villi and covering the surface of the chorionic sac to provide a framework for intra-villi blood circulation. In the third stage of chorionic villi development, which occurs during the sixth week of gestation, mesenchyme differentiates into blood vessels and cells, resulting in the arteriocapillary framework that fuses with placental vessels into the connecting stalk (reviewed in 77). Besides, they develop with greater complexity, resulting in the formation of (a) stem villi or anchoring villi, from which cytotrophoblast cells migrate into the decidua and become extravillous cytotrophoblast (Figure 2A); (b) branched villi, which grow from the stem villi and represent the most critical portion for exchange with maternal blood from the placental bed through the intervillous spaces (Figure 2B); (c) terminal villi, which consist of protrusions caused by trophoblast proliferation due to the coiling of the fetal capillaries within the mature intermediate villi beginning in the third trimester of gestation; and (d) chorionic plate, which is the region at the base of the villi through which the placental arteries and vein pass (Figure 2A; 78–80). The villous cytotrophoblast stem cell population supports the differentiation of trophoblast into two major cell lineages, syncytiotrophoblast and the invasive trophoblast (named extravillous trophoblast [EVT]; 76, 81–83). The most invasive trophoblast wave occurs when EVT cells infiltrate the endothelium of maternal spiral arteries to come into direct contact with systemic circulation, forming placental villi and a maternal–fetal interface (78). The cell layer responsible for maternal–fetal nutrient and gas exchange is the well-differentiated syncytiotrophoblast cells, which cover the anchoring, branched, and terminal villi (84–86).




Figure 2 | Main cellular components found at the maternal–fetal interface and the proposed stages of preeclampsia. (A), Interface I: Villous tree represents a tertiary villous and its predominant cellular components at interface: Columnar cytotrophoblast, anchoring trophoblast, and extravillous trophoblast subsets. (B), Interface II: Floating villi are in contact with maternal blood flow and release syncytiotrophoblast extracellular vesicles into circulation. Peripheral Natural Killer (NK) cells are highlighted as a significant maternal innate immune system component. (C), Spiral arteries remodeling in the placental bed occurs extensively in a normal pregnancy but not in preeclampsia. (D), Extended interface II: Syncytiotrophoblast extracellular vesicles are delivered into maternal circulation and promote the systemic inflammatory response observed during normal pregnancy. This inflammatory response is exacerbated in the case of women with preeclampsia, and it is linked to abnormal placental invasion, low placental perfusion, and increased oxidative stress accompanied by chronic hypoxia. CC, columnar cytotrophoblast; DC, dendritic cells; EVs, syncytiotrophoblast extracellular vesicles; EVT, extravillous trophoblast. This figure is adapted from Sargent et al. (232).






Figure 3 | A glycobiological view of the systemic inflammatory response in preeclampsia. (A), Sialylated glycoproteins and glycoproteins with LacNAc glycotopes, among others glycoconjugates in the trophoblast glycocalyx, are expressed in maternal–fetal interface II. (B), The recognition by LacNAc by Gal-1 promotes angiogenesis in the placental bed, and impaired balance in the Gal-1 function results in a PE-like syndrome. Furthermore, defective trophoblast invasion has been associated with specific blocking of Gal-1. (C), Glycoconjugates could be recognized by peripheral NK cells in the maternal–fetal interface I, modulating the NK cell activity. The released syncytiotrophoblast EVs found in preeclampsia could transport glycoproteins with immunomodulatory activity and increase the systemic inflammatory response. (D), EVs released from maternal–fetal interface II spread into the systemic circulation and promote endothelial activation. The type and quantity of VES found in preeclampsia could initiate endothelial damage and exacerbate inflammation. The role of glycan recognition in syncytiotrophoblast VES-mediated endothelial damage is not elucidated yet.



One of the most intriguing aspects of placental development during the first trimester is that the partial occlusion of the maternal spiral artery lumen by the extravillous invading endothelial trophoblast (see 87) results in a temporary condition of placental hypoxia, with approximately 20-mm Hg O2 concentration during the first trimester compared with 60 and 40-mm Hg during the second and third trimesters, respectively (Figure 2C) (88). During the first trimester of gestation, hypoxia at the maternal–fetal interface shapes placental development, which involves cellular and molecular adaptations to compensate for the low oxygen tension. As a result, trophoblast cells are a highly dynamic cellular type responsible for proper placental development. However, these processes are disrupted during pathological gestation conditions, resulting in a loss of placental architecture and abnormalities in fetal growth and development (Figure 2C) (89).

Extravillous trophoblast cells exhibit an invasive phenotype that shares molecular mechanisms with tumor cells, such as binding to the extracellular matrix, extracellular matrix degradation by metalloproteases, and migration through the extracellular matrix mediated by N-linked complex-type glycans (90–92). Truncated forms of O-glycans, such as core 1 (the Thomsen–Friedenreich [T or TF] antigen) and core 1 with a sialic acid substitution at the α2-3 bond to Gal and at the α2-3 bond to GalNAc to form the sialyl-T antigens, are associated with metastasis in some tumors (93, 94). Furthermore, the environment of tumor cells and EVTs are hypoxic, which confers invasive characteristics. About 60% of solid tumors have an oxygen partial pressure of less than 10 mm Hg compared with 50- to 60-mm Hg observed in adjacent non-tumor tissues (95). These values are comparable with the hypoxic state of the maternal–fetal interface during the first trimester of gestation (96–99). Hung and Burton (100) and Robins et al. (99) identified fluctuations in placental oxygen tension as a determinant of trophoblast invasion and differentiation associated with maternal spiral artery endothelial remodeling and placental angiogenesis.

There is low intrauterine oxygen tension at early implantation, and these oxygen levels are maintained during the first trimester of pregnancy. However, when the placental vascular bed is established, the degree of differentiation of trophoblasts to EVTs and interstitial and endovascular EVT subsets between 8 and 24 weeks of gestation promote increased oxygen tension (97, 99, 101, 102). Besides, the microenvironment into which the EVT invades the decidual stroma influences the release of soluble factors (e.g., immunomodulatory, pro-inflammatory, and anti-inflammatory cytokines, growth, and angiogenic factors), and oxygen concentration influences changes in the invasion process. As previously mentioned, physiologically hypoxic conditions (2%–3% compared with the usual 20% oxygen) in the first trimester promote differentiation toward an invasive pathway and establish a new placental vascular bed (96, 103).

Kang et al. (21) proposed that a failure of trophoblast invasion causes preeclampsia, and Goldman, Wohl, and Yagel (24) proposed that preeclampsia is caused by complex pathological events related to shallow invasion of endovascular and interstitial trophoblast, which reduces the transformation of spiral arteries into low-capacitance vessels (Figure 2C). Despite all evidence, it is inconclusive that the diseases have a distinct placental etiology. Thus, Staff (26) revised the concepts of the two-stage placental model of preeclampsia, which proposed a stage 1 caused by placental dysfunction and a stage 2 related to maternal clinical syndrome (25). In stage 1, maternal factors include a lack of tolerance to allogeneic trophoblasts, impaired placentation, altered spiral artery remodeling, and an oxidative stress state of the placenta. In stage 2, the impaired placenta and trophoblast stress send stress signals to the maternal endothelium, resulting in widespread vascular inflammation and the clinical signs of early-onset and late-onset preeclampsia (26). These concepts have recently been validated by evidence of atherosclerosis and spiral artery remodeling failure as determinants of preeclampsia and other pathological gestation conditions. Furthermore, Staff et al. (104) reaffirmed their proposal for a multistage placental model of preeclampsia.




1.7 HIF and hypoxia-related signaling

Low oxygen tension at the maternal–fetal interface promotes the accumulation of hypoxia-inducible factor, HIF-1, a regulator of oxygen homeostasis (105). HIF-1 is a heterodimeric protein composed of a constitutively expressed β subunit and an α subunit regulated by the partial oxygen pressure (pO2; 106). Low oxygen concentrations promote cell invasion and progressions by activating more than 60 putative genes after HIF-1 receptor activation (HIF-R) (107–109). Human cytotrophoblast cells express HIF-1α (20, 110), which regulates the expression of target genes in cells subjected to hypoxia, including transferrin receptor (TfR1), vascular endothelial growth factor (VEGF), erythropoietin, endothelin-1, leptin, and glucose transporter 1 (106). HIF-1α regulates the iron and 2-oxoglutarate-dependent dioxygenase family enzymes known as prolyl hydroxylases (PHD1, PHD2, and PHD3) and asparaginyl hydroxylases (95). The PHD2 enzyme is responsible for hydroxylating one of the two proline residues present in HIF-1α (pro402 and pro564), promoting its interaction with the von Hippel-Lindau protein (pVHL) and subsequent polyubiquitination and degradation in the proteasome (103). When a cell is deprived of its oxygen supply, hydroxylation, and subsequent degradation of HIF-1α are significantly reduced, resulting in accumulation (111). HIF-1α accumulates in the nucleus, where it forms a complex with HIF-1β (HIF-1α/HIF-1β heterodimer) that is selectively expressed in the placenta (112, 113). The HIF-1α/HIF-1β heterodimer binds to hypoxia-responsive elements, acting as transcription factors for genes involved in cellular stress response (114). Thus, hypoxia stimulates tumor cell and trophoblast migration and invasion, and the invasive phenotype is activated via multiple mechanisms, including direct and indirect regulation of the epithelial to mesenchymal transition and upregulation of proteolytic enzymes, primarily matrix metalloproteinases (115, 116).

During the first trimester of gestation, hypoxic conditions stimulate the production of soluble factors associated with placental angiogenesis and immune tolerance to trophoblast invasion at the maternal–fetal interface (117). However, hypoxia in the second or third trimester may promote an increase in placental apoptosis and a significant decrease in trophoblast invasion, exacerbating the pro-inflammatory state at the maternal–fetal interfaces (99, 101, 118). The significant reduction in maternal spiral artery remodeling during the trophoblastic invasion and the consequent decrease in placental perfusion could correlate with overexpression of HIF-1α, VEGF, soluble FMS-like tyrosine kinase (sFlt1), and soluble VEGF receptor (sVEGFR-1), all elicited by HIF (119, 120). Failure to detect low oxygen tension has been proposed as a cause of early-onset preeclampsia (121), supporting the concept of abnormal placental development as one of the triggering processes (122).




1.8 Glycans as mediators between the placenta and peripheral circulation

The glycosylation profile of trophoblast and glycans do change during endometrium trophoblast invasion. Because of their molecular versatility, they form new affinities and cell–to-cell crossovers and develop complex intercellular structures supporting trophoblast differentiation (123). Changes in glycan profiles could be new biomarkers for diseases such as preeclampsia (124, 125). These changes involve the underexpression and overexpression of naturally occurring glycans in response to the environment- or stress-induced signaling (126). Thus, glycosylation of glycoproteins may contain previously unknown patterns that control stem cell differentiation, phenotype changes, invasion, and mobilization (60, 127), vasculogenesis (128, 129), and extravillous trophoblast invasion (130). The maternal immune system regulates trophoblast differentiation and invasion at multiple levels: locally in the maternal–fetal interface I by uterine NK-to-dendritic cell interaction and systemically in the maternal–fetal interface II by trophoblast-derived extracellular vesicles (EVs) (Figure 2D) or in the vascular compartment by VEGF production (Figures 2A–D; 131, 132). In this regard, Clark et al. (133) proposed that the human embryo–fetus’ primary defense mechanism for protecting itself from maternal immune system recognition and rejection is the induction of specific immunosuppressive oligosaccharides in glycoconjugates of placental tissues (133). The syncytiotrophoblast in the full-term placenta expresses up to 95% N-linked oligosaccharides with complex sugars, with the remaining 5% being high mannose type (134). These glycan structures were immunosuppressive because the oligosaccharide membrane fraction isolated from syncytiotrophoblast decreased 3H thymidine uptake in a mixed leucocyte reaction (135).

Glycosylation changes can manifest in various ways, including impairing naturally occurring glycans through the influence of environmental or stress-induced signaling pathways. These changes can lead to either under-expression or overexpression of glycans. Additionally, the expression of glycans that are typically restricted to embryonic tissues can occur during the development of a tumor phenotype. (94). Changes in glycosyltransferase levels can lead to modifications in the core structure of N-linked and O-linked glycans, e. g. the oligosaccharide size and branching of N-linked glycans. The increased activity of N-acetylglucosaminyltransferase V (GlcNAc-TV, or MGAT5; the enzyme that leads to β1,6GlcNAc branching) promotes β1-6- linked branching and the invasive phenotype in transfected non-metastatic clones of murine mammary carcinoma (136). The placentation process resembles cancer metastasis in the invasion waves during the first trimester. Therefore, the expression of β1-6- linked branching increases in the trophoblast layer when it is detected by phytohemagglutinin lectin blotting (137). The increased branching creates additional sites for terminal sialic acid residues, which, in conjunction with the corresponding upregulation of sialyltransferases, ultimately leads to an increase in global sialylation. N-glycan structures obtained from syncytiotrophoblast proteins are highly sialylated during pregnancy, as was confirmed by mass spectrometry (43), which could explain syncytiotrophoblast resistance to NK cell—and other cytolytic leukocytes—mediated cytolysis (138). These patterns of glycosylation were confirmed later by Chen et al. (43), who proposed that biantennary bisecting type N-glycans(a particular type of glycan modification consisting of four-linked β1 GlcNAc structure attached to the core β-mannose residue expressed in syncytiotrophoblast), could protect class I MHC non-expressing trophoblast cells from NK cell-mediated cytotoxicity. However, further experimental evidence is needed to confirm this. A knockdown of the MGAT5 enzyme increases the migration capacities of first-trimester human placental villi, which are correlated with the upregulation of metalloproteases (MMP-9) and the downregulation of the invasion inhibitor TIMP1/2 (139). Furthermore, the ischemia-reperfusion insult of the placenta may promote the shallow trophoblastic invasion observed in preeclamptic pregnancies, whereas specific changes in N-glycans could be involved in migration and differentiation processes. Thus, N-acetylglucosaminyltransferase III (GnT-III) catalyzes the bisecting GlcNAcβ1 modification, which can suppress the processing and branching of the glycan catalyzed by GnT-V (140).

Reduction of biantennary de-sialylated non-fucosylated N-glycans was reported in first-trimester decidual tissue as a normal finding (141), but no reports on the expression by placental villi tissue were found. Furthermore, Whyte and Loke (142) reported increased sialylation of trophoblast glycoproteins compared with fetal and tumor cells. According to Jeschke et al. (143), one possible mechanism of immunosuppression in human gestation is the expression of TF antigen at sites of trophoblast invasion.

Placental proteins have different glycosylation patterns depending on gestational age or extracellular cell microenvironmental changes. For instance, Dell et al. (56) reported that glycodelin-A —a potent immunosuppressive protein in the human placenta— expresses biantennary N-glycans with the bisecting GlcNAc sequence and sialylated complex N-glycans (143–145). The syncytiotrophoblast layer of chorionic villi produces human chorionic gonadotrophin (hCG) throughout human pregnancy (146). hCG, an N-glycan glycoprotein, is also secreted by EVT during trophoblast invasion in a hyperglycosylated form, exerting potent immunomodulatory effects (147, reviewed in 146).

Changes in glycosylation profiles of placental glycoproteins associated with preeclampsia have been proposed to be related to oxidative stress-promoting hypoxia in the placental bed and the consequent accumulation of the HIF heterodimer, as mentioned above. For example, LewisY, a well-recognized glycan associated with angiogenesis, was found in cytotrophoblast cells and villous trophoblastic cells in cases of severe preeclampsia (148) and unexplained miscarriage (149). These results could be explained by a compensatory mechanism triggered by an increase in angiogenic factors, common in pregnancy-related hypertensive disorders, such as preeclampsia (28, 150). Besides, changes in glycan expression at the maternal–fetal interface caused by chronic hypoxia could be associated with increased lectin expression in preeclampsia. This is the case with galectins (Gal), soluble non-glycosylated proteins with a unique sequence motif in their CRDs that show an increased affinity for N-acetylated disaccharides such as N-acetyl-galactosamine (LacNAc; Galβ1,4GlcNAc) and similar structures. In murine models, Gal-1 exhibits proangiogenic functions during the early stages of pregnancy, promoting decidual vascular expansion via VEGF receptor 2 (VEGR2) signaling. A specific blockage of Gal-1 promotes defective trophoblast invasion and impaired maternal spiral artery remodeling, resulting in a PE-like syndrome (151). Gal-1 expression was significantly upregulated in the decidua of preeclamptic placentas and the villous trophoblast of placentas in women with hemolysis, elevated liver enzymes, and low platelet (HELLP), which is consistent with previous findings (144).




1.9 Changes in glycosylation are mediated by hypoxia and inflammation

As mentioned above, hypoxia affects metabolism cells and glycosyltransferase expression in placenta and tumors (139, 140, 152) such as colon cancer cell lines (153, 154) and the immortalized prostate cell line RWPE1 (155). It also promotes the transcription of genes encoding fucosyltransferases and sialyltransferases. Although the role of HIF-1α in placental glycosylation remains unknown, indirect evidence in tumor tissues indicates that HIF-1α upregulation increased fucosyltransferases (FUT)-1-2 mRNA levels and overexpression of fucosylated proteins on the surface of pancreatic adenocarcinoma cells (156). Hypoxia appears to alter endothelial cell glycosylation, inducing the expression of N-glycoproteins containing glycans with less α2,6-linked sialic acid, elongated poly-LacNAc (Gal-GlcNAc) residues, and β1,6-linked N-glycan structures branching (157, 158). Furthermore, pathophysiological changes of the endothelial surface layer occur following a variety of insults, among these, hypoxia associated with ischemia/reperfusion injury (159). The oxidative and inflammatory stress accompanying hypoxic insult promotes glycocalyx damage via reactive oxygen species (Ros), increasing vascular permeability and perivascular inflammation. These ROs-mediated changes to the glycocalyx are dependent on Ca2+ signaling and possibly matrix metalloproteinase activation (160). However, another signaling pathway could be implied in the hypoxic insult associated with glycosyltransferase expression.

Additionally, HIF-1 activates tumor and placental inflammatory signaling, particularly nuclear factor-kappa B (NF-κB) transcription. Inhibitory IκB dissociates from NF-κB during inflammation, allowing for nuclear translocation and multiple gene transcriptions, mainly IL-6, cycloxygenase-2, and matrix metalloproteinase 9 (161, 162). These findings imply that HIF-1 and NF-κB interaction activates the transcription factors of these genes. In preeclampsia, NFκB expression may stimulate pro-inflammatory and anti-angiogenic protein production, promoting oxidative stress, inflammation, and vascular dysfunction. On the contrary, in normal pregnancies, NFκB promotes placental cellular migration, invasion, and angiogenic protein production (163). In preeclamptic women, local placental inflammation and oxidative stress are associated with placental hyperactivation of NfκB and its release into the maternal circulation, with levels nearly 10-fold higher than in normal pregnancies (163, 164).

Abnormal placental blood perfusion increases hypoxia-induced placental-derived circulating agents and sFlt1 production (120). HIF-1α, the primary regulator of oxygen hemostasis in the placenta, induces TGF-β production (165, 166). The β3 isoform of TGF-β suppresses trophoblast trans-differentiation, reducing its differentiation toward EVT and invasive capacity (165). Therefore, reduced growth of maternal–fetal interfaces 1 and 2 could restrict blood perfusion and promote EV release into the general circulation, contributing to the exacerbated pro-inflammatory status observed after 20 weeks of gestation (167). Placental hypoxia occurs in diseases such as gestational iron deficiency anemia, associated with increased accumulation of HIF-1α, similar to preeclampsia. Additionally, alterations in iron status have been associated with hypertensive disorders of pregnancy (168–171). Glycosylation profiles induced by hypoxia and placental inflammation have been proposed to alter the exchange of macronutrients and micronutrients across the syncytiotrophoblast (172, 173). Iron is transferred from the mother to the fetus via the placenta after being taken up by TfR1 at the apical membrane of the syncytiotrophoblast (174–177). TfR1 contains three N-glycan and O-glycan chains in its extracellular domain (178–180). TfR1 expression may be altered in hypoxic conditions, such as in women with diabetes, due to post-translational modifications, including glycosylation (181). Thus, women with preeclampsia whose placenta is exposed to prolonged hypoxia may have elevated levels of TfR1, one of the HIF-1 target genes. In preeclamptic women, the galactose-N-acetylglucosamine and terminal mannose patterns detected by DSA and GNA lectins, respectively, were overexpressed in TfR1. In addition, TfR1 expressed α2-3 sialic acid rather than α2-6 sialic acid, and preeclamptic placentas overexpressed α2-3 sialic acid (182). Depleting α2-6 sialic acid may promote increased binding of gal-3 to terminal galactose in TfR1 and formation of the transferrin–iron–TfR1 complex during iron uptake (183, 184). Furthermore, overexpression of α2-3 sialic acid in TfR1 of preeclamptic placentas may be associated with resistance to cell membrane scission, which is consistent with the findings of Rutledce and Enns (185), where removal of α2-3 sialic acid released TfR1 protein into the culture medium. We wonder if differences in TfR1 glycosylation patterns in preeclamptic women have implications for TfR1 exportation to the cell membrane or ligand affinity modifications, events that could affect iron uptake by the placenta resulting in impaired fetal nutritional status and, in some cases, intrauterine growth restriction.




1.10 Role of glycan recognition by cells of innate immunity in the pathogenesis of the exacerbated systemic inflammatory response in preeclampsia

Because preeclampsia is a preclinical condition characterized by a prolonged hypoxic state, it may be associated with an increased release of EVs and soluble factors capable of initiating a systemic inflammatory response and impairing endothelial function (131). Murrieta-Coxca et al. (186) recently proposed that EVs could play a critical regulator of feto-maternal tolerance by transferring allogeneic material from fetal to maternal immune cells to remodel their function (in the context of fetal allograft tolerance) and fetal–maternal microchimerism. Darmochwal-Kolarz et al. (187) reported that in preeclamptic patients, there was an imbalance of pro-inflammatory cytokines (IL-2 and IFN-γ) compared with the anti-inflammatory profile (IL-4 and IL-10) characteristic of mitogen-activated CD4+/CD8+ T lymphocytes and NK cells. However, studies on cytokine production by NK cells in preeclampsia used chemical stimulation with Phorbol Myristate Acetate (PMA) and Ca2+ ionophores, which could alter the cytokine profile observed in these assays (188).

The pro-inflammatory profile of NK cells could be induced by lectin-mediated glycan recognition at maternal–fetal interface 2, where peripheral immune cells come into contact with the syncytiotrophoblast layer in circulating microvilli. Under hypoxic conditions, for example, the glycan profile of invasive tumor cells and tumors may change, revealing truncated glycans such as Tn antigen or polysialylated N-glycan complexes (93, 189, 190). Recognition of these glycans by NK cells is mediated mainly by lectin-like and immunoglobulin-like receptors (called Siglecs; 191). On the other hand, the functional profile of peripheral NK cells is known to depend on their CD56 phenotype. Therefore, the CD56bright NK cell subset can promote the PMA and the Ca2+ ionophore-induced IFN-γ and TNF-α intracellular production (192). In non-pregnant women, the major NK cell subset is IFN-γ or TNF-α producing NK cells (NK1 profile), and IL-4, IL-5, and IL-13 producing NK cells (NK2 profile) or IL-10/TGF-β non-producing PMA-stimulated CD56bright and CD56dim NK cells (193–195). In pregnant women, the cytokine profile observed in NK cells changes to IL-10-producing NK cells; IFN-γ, TNF-α, IL-4, IL-5, or TGF β-producing CD56dim and CD56bright subsets corresponding to NK regulatory and NK3 profiles, respectively, with no difference between these subsets (194). This way, we evaluated the activation of peripheral NK cells before the more advanced stages of preeclampsia in women with early-onset severe preeclampsia without HELLP syndrome. Monocytes, T lymphocytes, NKT cells, and NK cell proportions were not significantly different compared with healthy pregnant women. Moreover, CD56dim and CD56bright NK cell subsets from the early-onset of severely preeclamptic women significantly produced more intracellular cytokines than NK cells from healthy pregnant women, with no cytokine imbalance. However, peripheral NK cells demonstrated increased cytotoxic activity in vitro (28), consistent with reports of increased NK cell cytotoxic activity in NK cells from mild preeclampsia cases (196). Besides, an increased percentage of NK cells bearing the CD96-NKGA/C receptors and CD56bright–NKG2C and NKG2A positive in NKdim and NKbright subsets (28). CD96-NKG2 heterodimers are lectin-like receptors that recognize protein-bound terminal glycans. They are members of the C-type lectin-like receptor superfamily, which includes six NKG2 molecular species (A, B, C, D, E, and H).

The heterodimer CD94/NKG2A is an inhibitory receptor with intracellular motifs that negatively regulates activation signaling for cytotoxic activity and anti-inflammatory cytokine production (197). Both CD94/NKG2 heterodimers can bind to non-classical HLA molecule HLA-E; however, their affinity varies: CD94/NKG2A binds to HLA-E with low affinity and very rapid association and dissociation rates, whereas CD94/NKG2C binds to HLA-E with nearly 10-fold lower affinity than CD94/NKG2A (198). This affinity is determined by the peptide sequence bound to HLA-E. However, evidence suggests a direct recognition of NKG2A/C receptors mediated by α2-3 sialic acid, a terminal residue of sialic acid monosaccharide-containing glycoproteins (199). NKG2A and NKG2C receptor expression on peripheral blood NK cells was reduced in women with preeclampsia (200). EA.hy296 endothelial cell line expresses HLA-E, and serum from severely preeclamptic women increased its expression (201). In severe preeclampsia, NK cell adhesion to the endothelium is significantly higher than in normal pregnancy, implying an interaction with an overexpressed HLA-E in the endothelial cell membrane (202). Endothelial HLA-E recognition by peripheral NK cells most likely modifies NK cell activity toward a low cytotoxic profile and promotes the production of pro-inflammatory cytokines such as TNF-α and IFN-γ (203, 204). A possible role of terminal α2-3 sialic acid in the HLA-E α1-domain could be relevant to explain this activation profile in peripheral NK cells mediated by NKG2 receptor activation in severe stages of preeclampsia. We wonder if changes in the endothelium and innate response cell (mainly NK cells) activation and cytokine influence the systemic inflammatory response observed during pregnancy. Although the putative role of cytokines produced by peripheral NK cells in the systemic inflammatory response of hypertensive disorders in pregnancy remains unknown, we propose that peripheral NK cells modulate their cytokine profile in preeclampsia via HLA-E signaling or lectin-like receptors such as members of NKG2 family, as previously reported (29).

There is little knowledge about glycan recognition in the context of NK cell activation. Previous studies identified glycophorin A, glycodelin-A, and sialic acid-related structures (sialyl Lewis X, among others) as negative modulators of NK cell-mediated cytolysis (205–207). Indirect evidence suggests that glycan recognition may activate NK cells during systemic inflammatory response in preeclampsia, including differential expression of lectin-like receptors or sialic acid-recognition receptors from the Siglec family (208, 209). Ibeto et al. (210) evaluated the glycosylation profile of hCG isolated in urine from women at 7 and 20 weeks of gestation (first and second trimesters, respectively) and urine samples from women suffering from gestational trophoblastic disease. Ibeto et al. (210) found mono-antennary, bi-antennary, tri-antennary, and tetra-antennary N-glycans in serum hCG from early and late gestation and significantly lower hCG containing bisected N-glycans in patients with the gestational trophoblastic disease. Ibeto et al. (210) suggested that hCG-related bisected type N-glycans may directly suppress NK cell cytotoxicity, consistent with the report of Chen et al. (43).

Campuzano et al. (211) investigated the effects of placental glycans on NK cell activity using a peripheral NK cell with a full-term human villous tissue co-culture system to assess whether changes in glycosylation profile could account for differences in cytokine production and cytotoxicity. Peripheral mononuclear leukocytes-containing NK cells co-cultured with fresh villous tissue or BeW0 cells showed that CD56Bright NK cells did significantly produce higher concentrations of IFN-γ and TGF-β than CD56Dim NK cells, consistent with a previous report in which circulating CD56dim and CD56bright NK cells exhibited predominantly cytotoxic and cytokine-producing phenotypes, respectively (211). Besides, blocking glycosylation in a BeWo cell syncytialization model using N-glycosylation inhibitors (e.g., castanomycin and tunicamycin) revealed differences in intracellular IFN-γ production by CD56Bright NK cells in co-culture (211). It demonstrated that co-culture of primary placental villous tissue with the choriocarcinoma cell line BeWo modulates NK cell function through specific glycan expression. Tunicamycin specifically inhibits N-linked glycosylation by preventing core oligosaccharide addition to the nascent protein, and thereby, it may interfere with specific ligand-receptor interaction by a decrease of the trophoblast protein synthesis(Surani, 1979). Additionally, castanospermine is a potent inhibitor of alpha- and beta-glucosidases and alters the distribution of insulin-like growth factor (IGF) receptors in villous tissue explants, which reduces the effect of IGF (212).

Based on this, it has been proposed that end-glycans of glycoproteins participate in the syncytiotrophoblast–NK cell interaction during pregnancy inflammatory response regulation (Figures 3A, B). Thus, increased expression of sialic acid binding immunoglobulin-like lectin-6, a unique sialic acid receptor in the placenta, was found during severe preeclampsia (213), and its concentrations were related to the severity of the pathology (214, 215). A case report of a woman presenting gestational diabetes mellitus, overweight, and severe PE, lower staining of Gal-GlcNAc (detected by the DSA lectin), mannose (detected by the GNA lectin), and Sia α2-3 (detected by the MAA lectin) was found in TfR. Accordingly, we propose that increased α2-3 sialyltransferase activity in this woman could explain the increased sialylation in TfR from placental villi (182).

The improved protein stability conferred by sialic acid may be advantageous because there is an increase in inflammatory status ROs production in preeclampsia (reviewed in 216–218). Protein stability is influenced by ROs (219). In placental malaria, increased chorionic villi α2,6 sialylation may influence intervillous placental parasite density as a compensatory response to Plasmodium falciparum infection (220). Preeclampsia and placental malaria are diseases with a placental and systemic inflammatory response in which NK cell activity increases progressively throughout gestation and may affect the communication between syncytiotrophoblast and immune cells (123, 221–223).




1.11 An emerging role of EVs in the physiology of the maternal-fetal interface and the exacerbated systemic inflammatory responses?

During the differentiation of cytotrophoblast and fusion to form the syncytiotrophoblast, glycosylation patterns change in a carbohydrate-driven pattern to provide the immunosuppressive microenvironment required for successful placentation, which appears impaired in pathological conditions of gestation. The released EVs from syncytiotrophoblast also carry various conjugated molecules in the maternofetal interface II context. Their size ranges from 30 to 150 nm, increasing in patients with an exacerbated systemic inflammatory response (224, 225). Studies have shown that levels of EVs increase in patients with systemic inflammatory response (224, 225), and this increase is even more pronounced in preeclampsia, where EVs have been found to increase three-fold compared to normal gestation (226, 227). To better understand the composition of EVs in placenta from normal and preeclamptic women, researchers have used perfusion systems to identify their main components (227). These EVs appear to play a role in the transfer of intercellular biomolecules such as flt1, the VEGF membrane receptor, as suggested by recent studies (228, 229). Thus, the exacerbated systemic inflammatory response in EP is associated with the number and variety of EVs found in healthy pregnancies (226, 227). The preeclampsia-associated chronic placental hypoxia and inflammatory status promote EVs shedding from syncytiotrophoblast to the maternal–fetal interface 2 and increase the systemic inflammatory response (230–233). Research suggests that glycans play a crucial role in EVs biogenesis, cellular recognition, and cell receptor interaction. In particular, mannosylated and sialylated N-glycans, with their antennae structures, are believed to mediate important biological functions such as inflammatory cascade activation and other paracrine events (234, 235) Thus, some glycan biomarkers, such as α-2-6 sialic acid and Gal or terminal GlcNAc in complex N-glycans, have been identified in syncytiotrophoblast-derived EVs (236). However, despite advancements in understanding the roles of syncytiotrophoblast-derived EVs glycans, their functional capabilities and interactions with target endothelial cells in both the glomerular filtration barrier and cerebral microcirculation remain largely unknown. Research conducted by our group has shown that serum from women with preeclampsia can affect the function of the glomerular filtration barrier in an in vitro model (237–239). This effect appears to be caused by a reduction in the anionic charge of the glomerular endothelium, allowing selective filtration of blood components into the urine. This raises the question of whether the glycans present in EVs from the placenta of women with preeclampsia could modify the permeability of the glomerular endothelium and cerebral microvasculature to albumin, and if they could affect endothelial integrity (43, 145, 240).

These EVs could explain the connection between the maternal–fetal interface and target organs such as the blood–brain barrier and the glomerular filtration barrier, where glycans are the most promising exchange molecules for research purposes. Further research is needed to fully decipher the complex mechanisms at play in these important physiological processes.




1.12 Perspectives on the role of glycans in gestation and preeclampsia: Connecting the network

Gérard Chaouat proposed nearly a decade ago that the specific immune system evolved to be adapted to vertebrate placentation (in the sense of subordination) as a critical feature of successful vertebrate reproduction (241). Decidual and circulating immune cells must undergo a series of molecular adaptations to avoid conceptus rejection and allow successful embryo and fetus development. The profile of glycan expression at the maternal–fetal interface, the phenotype and functional profile of innate immune cells present in the decidua, the presence of regulatory T cells (242, 243), and the production of soluble factors related to apoptosis, among others, may be responsible for such adaptation process (243–245).

The presence of immunomodulatory glycans in trophoblast is one fundamental mechanism supporting successful placental reproduction, along with the selective expression of “friendly” natural killer cells and low expression and activity of effector T cells capable of exerting cytotoxic activity. Most cellular and molecular mechanisms of the effector adaptive immune response are absent or regulated at the maternal–fetal interface. On the contrary, decidual NK cells are the primary immune cell population in up to 85% of decidua and are responsible for decidualization in early human pregnancy. Interestingly, one of the most abundant proteins produced by syncytiotrophoblast is β-hCG, a placental hormone sharing N-glycans coupled to asparagine residues that function as a potent immunomodulatory and angiogenic glycoprotein inducing decidual NK proliferation via mannose receptor activation (127, 246, 247). In healthy dynamics that support placental angiogenesis, decidualization, and establishing the maternal–fetal interface, uterine dendritic cells recruit decidual NK cells. Thus, the placenta of pregnant mice depleted of decidual NK cells shows a reduced expression of α2,3-sialylation and O-glycans, whereas the expression of branched N-glycans and Gal-1 increased. Ablation of decidual NK cells in the pre-implantation period could influence VEGF-mediated angiogenesis changes and depend on GAL-1 signaling. Experimental murine models of abnormal pregnancy show that changes in trophoblast glycosylation patterns precede poor pregnancy outcomes such as intrauterine growth restriction (248–250).

In conclusion, the fact that fetal and maternal cells exchange, at least in specific windows and compartments during the gestation period, adds to our understanding of the complex interplay between the maternal endocrine and immune systems as part of the maternal, placental, and fetal physiological environments and the maintenance of a balanced, functional immune response. Furthermore, evidence supports the theory of the involvement of the innate immune response in mediating critical processes required for early placental development and maintenance, such as decidual growth-supported placental development. In that context—and evolutionary highly conserved—glycans emerged as crucial innate immune cell regulators that support the maintenance of gestation. Because glycan expression profiles are essential modulators of adaptive and effector immune functions, critical advances in understanding successful human and mammalian gestation may provide a comprehensive understanding of normal and pathological pregnancy conditions (Figures 3C, D). We contributed to the discussion on the role of glycans in the pathophysiology of hypertensive disorders of gestation, as proposed by Gérard Chaouat in criticizing the pitfalls of the old immunotropic hypothesis. The main findings are summarized in the Table 1.


Table 1 | Hypothetical and confirmed role of glycans in physiological and complicated pregnancy.
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Introduction

Machine learning (ML) corresponds to a wide variety of methods that use mathematics, statistics and computational science to learn from multiple variables simultaneously. By means of pattern recognition, ML methods are able to find hidden correlations and accomplish accurate predictions regarding different conditions. ML has been successfully used to solve varied problems in different areas of science, such as psychology, economics, biology and chemistry. Therefore, we wondered how far it has penetrated into the field of obstetrics and gynecology.





Aim

To describe the state of art regarding the use of ML in the context of pregnancy diseases and complications.





Methodology

Publications were searched in PubMed, Web of Science and Google Scholar. Seven subjects of interest were considered: gestational diabetes mellitus, preeclampsia, perinatal death, spontaneous abortion, preterm birth, cesarean section, and fetal malformations.





Current state

ML has been widely applied in all the included subjects. Its uses are varied, the most common being the prediction of perinatal disorders. Other ML applications include (but are not restricted to) biomarker discovery, risk estimation, correlation assessment, pharmacological treatment prediction, drug screening, data acquisition and data extraction. Most of the reviewed articles were published in the last five years. The most employed ML methods in the field are non-linear. Except for logistic regression, linear methods are rarely used.





Future challenges

To improve data recording, storage and update in medical and research settings from different realities. To develop more accurate and understandable ML models using data from cutting-edge instruments. To carry out validation and impact analysis studies of currently existing high-accuracy ML models.





Conclusion

The use of ML in pregnancy diseases and complications is quite recent, and has increased over the last few years. The applications are varied and point not only to the diagnosis, but also to the management, treatment, and pathophysiological understanding of perinatal alterations. Facing the challenges that come with working with different types of data, the handling of increasingly large amounts of information, the development of emerging technologies, and the need of translational studies, it is expected that the use of ML continue growing in the field of obstetrics and gynecology.





Keywords: machine learning, artificial intelligence, pregnancy diseases, pregnancy complications, adverse perinatal outcomes




1 Introduction

Pregnancy is a physiological process that provides all conditions for normal fetus growth and subsequent birth. Due to certain circumstances, a seemingly normal pregnant woman starts with physiological disorders that can trigger pregnancy diseases (e.g. gestational diabetes mellitus and preeclampsia) or other perinatal complications (e.g. stillbirth, cesarian section, macrosomia and respiratory distress). The search for new strategies for early diagnosis, screening and risk determination could reduce the severity of these alterations and also the negative impact in both mother’s and offspring’s health. Interestingly, in recent years, machine learning (ML) has been used to find solutions for these problems.

ML corresponds to a wide variety of methods that use mathematics, statistics and computational science to learn from multivariate data. By means of pattern recognition performed on various measured variables, different algorithms are able to find correlations, often hidden to the human eye, and perform accurate predictions about different conditions, such as the belonging of an individual to a certain group or class, or the concentration of a particular biomarker in a sample of interest.

Multivariate methods (i.e. those employed to analyze the behavior of multiple variables simultaneously) have been used for several decades to solve problems in different areas of knowledge, such as psychology, economics, biology, chemistry, etc. However, in the clinical field these tools have begun to penetrate only recently. Remarkably, the use of these tools has received different names throughout history depending on the area of application, i.e. psychometrics in psychology, biometrics in biology, chemometrics in chemistry, etc. In the last years it has become popular to address to these methods as artificial intelligence, ML, data mining, or in a more general sense, data science. The boundaries between the scopes of these different terms are still a subject of debate, and several different opinions and definitions can be found in specialized literature (1, 2). However, unconcerned of this debate, it seems that ML has been the preferred name used in healthcare-related studies, therefore that will be the term used in this manuscript.

One of the most common applications of ML in biomedicine is the detection or prediction of particular pathological conditions (3). It seems logical that in pregnancy the focus has also been in diagnostics (4, 5). However, as it has been evidenced in different disciplines, ML can also be used for other purposes, such as identification of important variables in a system or process, correlation analysis, data management and extraction, noise removal, dimensionality reduction, among others (6, 7). Given the success ML has had in other areas of science, we wondered how far it has penetrated into the field of obstetrics and gynecology. In this review we propose to describe the state of art regarding the use of ML in the context of pregnancy diseases and complications, including its capability for early diagnosis, screening and risk determination, and also other applications of this versatile tool.




2 Methodology



2.1 Type of study and search strategy

This is a narrative review. Publications regarding the use of ML in maternal and fetal health were searched in different databases, including PubMed, Web of Science and Google Scholar. Seven subjects of interest were considered as representative conditions of the vast domain of obstetrics and gynecology, due to their prevalence and clinical relevance (8): gestational diabetes mellitus, preeclampsia, perinatal death, spontaneous abortion, preterm birth, cesarean section, and fetal malformations.




2.2 Information synthesis

The papers main results were summarized in tables, comprising input, ML technique and output. Tables should be understood as follows: each table is associated with a specific pregnancy disease or complication, as stated on the table’s title. For every table, each row refers to a particular study. For each reference (first column), the input, the ML technique and the output (third, fourth and fifth columns, respectively) are directly linked to the ML application (second column) of that study. Most of the tabulated information is written and further extended in the text related to each table.




2.3 Manuscript organization

This manuscript is organized as follows: section 3 gives a general overview on ML-related definitions and concepts, section 4 describes different ML applications in the context of pregnancy diseases and complications, addressed from the highest to the lowest prevalence, section 5 discusses the current state and future challenges in the field, and section 6 rounds off with a brief conclusion.





3 ML: definitions and concepts

ML models can have varied purposes. The most typical one is early detection, but they can also be used for alternative screening, risk estimation, correlation assessment, biomarker discovery, among other possible applications.

In very simple terms, the development of a ML model requires three main parts: the input, the ML technique and the output.

The input is the data that is used to build the ML model. It consists of samples (usually in the biomedical field, the subjects) and variables, which can be very diverse. There is discrete data, e.g. the information retrieved from questionaries; the clinical and biochemical data found in physical and electronic health records (EHR); and the metabolites, peptides/proteins, transcripts or genes identified as relevant in omics studies. Likewise, there is continuous data, e.g. the traces obtained by Doppler ultrasonography, electrohysterography (EHG) or cardiotocography (CTG); and the images recorded by ultrasonography, computed tomography (CT) or echocardiography. The type of data determines what kind of pretreatment has to be performed prior to ML analysis, an aspect that is described in detail elsewhere (9, 10).

The selection of the ML technique depends on the purpose of the study. Non-supervised techniques are used to explore the data, i.e. to assess if there is any spontaneous clustering or correlation between samples and/or variables. Typical examples of non-supervised techniques are principal component analysis (PCA) and K-means. In contrast, supervised techniques are used to predict a property. In the ML field, the word “prediction” refers to the forecast of future behaviors or unobserved outcomes (11). In particular, classification ML techniques allow to predict a class or category, e.g. healthy or diseased; whereas regression ML techniques allow to predict a continuous quantity, e.g. the concentration of a specific biomarker. Moreover, supervised techniques can be linear or non-linear, depending on the nature of the mathematical function that underlies the classification or regression task. The most common linear classifiers are logistic regression (LR) and linear discriminant analysis (LDA), while some examples of linear regression techniques are linear regression and partial least squares (PLS). On the other hand, random forest (RF), support vector machines (SVM) and neural networks (NN) are classical examples of non-linear ML techniques that allow to perform both classification and regression analyses.

The output is the result of having applied the ML model. The most common outputs are those that account for the model predictive performance. In classification, the performance is typically expressed using parameters such as sensitivity, specificity, accuracy and area under the receiver operating characteristic curve (AUC). In regression, other parameters, such as mean absolute error and root mean squared error (RMSE), are used. These and other performance metrics are well described in literature (12, 13). It is important to mention that the aforementioned metrics can be calculated in different stages of the model’s development: training, internal validation and external validation. The ideal situation is that the model is tested in all the three stages, to ensure it will be accurate and useful in different populations. This idea has been discussed in greater depth by other authors (14, 15). Another very common output is variable importance. This information allows to identify the variables that contribute the most to predict the property under study, which is useful to identify new biomarkers for a certain condition. There are other possible outputs, depending on the ML application. They are addressed and discussed throughout section 4.




4 ML in pregnancy diseases and complications: applications



4.1 Pregnancy diseases



4.1.1 Gestational diabetes mellitus

The American Diabetes Association defines gestational diabetes mellitus (GDM) as a “diabetes diagnosed in the second or third trimester of pregnancy that was not clearly overt diabetes prior to gestation” (16). This disease has been related to several negative outcomes on maternal and fetal health. In the short-term, it increases the risk of pre-eclampsia, preterm delivery, macrosomia and clinical neonatal hypoglycemia; and in the long-term, of maternal prediabetes, maternal diabetes, offspring obesity and offspring impaired fasting glucose (17).

ML has been applied in GDM research, for diverse purposes (Table 1).


Table 1 | ML applications in GDM research.





4.1.1.1 ML for GDM prediction

Numerous studies that have applied ML in the context of GDM, have used it to predict this disease at early stages of pregnancy (32). Some of them have based their predictive models on a small number of variables. For example, Xiong et al. assessed hepatic, renal and coagulation function biochemical data to predict GDM at 10-19 gestational weeks (18). Univariate analysis showed that coagulation parameters differed between GDM and control women, so they combined two of them, patient prothrombin time and reference activated partial thromboplastin time, to build different ML predictive models. They achieved AUCs of 99.83% and 99.74% by light gradient boosting and SVM, respectively. Likewise, Zheng et al. used known GDM clinical and biochemical risk factors to predict it at 8-20 gestational weeks (19). By Bayesian adaptive sampling, they selected four maternal variables, maternal age, pre-pregnancy body mass index (BMI), fasting plasma glucose and triglycerides, and then used them to generate a multivariate Bayesian logistic regression model. They got an AUC of 0.766. In contrast, some articles have based their predictive models on a large number of variables. For instance, Wu et al. assessed 73 maternal clinical and biochemical variables and different ML techniques for GDM prediction before 12 gestational weeks (20). Their deep neural networks (DNN) model achieved an AUC of 0.80. Furthermore, they built a simpler model in order to facilitate clinical application. By using seven sequential feature selection chosen variables and LR they got an AUC of 0.77. Similarly, Artzi et al. used 2355 variables from EHR and gradient boosting (GB) to predict GDM before 20 gestational weeks, and obtained an AUC of 0.85 (21). They also built a simpler model to ease clinical implementation. Their nine questions based model yielded an AUC of 0.80. Interestingly, both the full and the simplified models outperformed a baseline score, which involved seven GDM known risk factors and got an AUC of 0.68.

It is worth mentioning that some papers that have sought GDM prediction, have also revealed GDM novel risk factors. That is the case of Artzi et al. study, in which the most important predictor of their full model was the prior pregnancy glucose challenge test result, a previously unreported risk factor for GDM (21). Likewise, Balani et al. used clinical data and different ML techniques to predict GDM in obese pregnant women at 14-17 gestational weeks (22). Their RF model achieved an accuracy of 77.53%, and showed that the most relevant predictor was visceral fat mass, a previously unknown risk factor for GDM.

In addition, it is interesting to notice that all the aforementioned studies reported models that allow to predict GDM, but that are restricted to do so under a particular diagnostic criteria. Recently, Mennickent et al. reported a novel strategy that overcomes that limitation (23). The authors used first trimester clinical and biochemical data and PLS to predict the very post load glycemia value that pregnant women would have at 24-28 gestational weeks. Since the predicted value can be interpreted as control or GDM with any diagnostic criteria, the prediction of GDM is no longer restricted to a particular criteria. Their best model allowed to predict the second trimester post load glycemia with a RMSE of 23.1 and a relative error of 20.7% in cross-validation analyses.




4.1.1.2 ML for GDM biomarker discovery

Several studies have applied ML to search new biological markers for GDM. This has been typically done by means of omics techniques. For example, Scott et al. used 1H-NMR metabolomics and 14-27 gestational weeks urine samples to find novel biomarkers for GDM (24). Their statistically significant metabolites, identified through variable importance analysis based on random variable combination, were tested for classification by orthogonal partial least squares discriminant analysis, and achieved an AUC of 0.803. The top three metabolic markers for that model were formic acid, dimethylamine and galactose, which were downregulated in GDM. Similarly, Yoffe et al. applied a targeted transcriptomics approach and 9-11 gestational weeks plasma samples to identify miRNAs that could serve as early biomarkers for GDM (25). Based on multiplex expression assays and RT-qPCR data and DESeq2 analyses, they found two differentially expressed miRNAs, miR-223 and miR-23a, which were upregulated in GDM. These miRNA markers were combined and assessed for classification by LR, and reached an AUC of 0.91. Another case is the study of Guo et al., who used a genomics strategy and 18 or less gestational weeks plasma samples to find cfDNA biosignatures that could be useful for GDM detection at early stages of pregnancy (26). Based on whole-genome sequencing and qPCR promoter profiling data, they identified 800 differentially expressed genes between GDM and control women. Eleven of those genes, CC2D2B, NAT10, SIPA1, ZNF565, ZNF552, WDR35, MICALL1, CTNNB1, CLOCK, BCKDHB and TGIF2LY, were selected by a step-wise feature selection method, and then combined and tested for classification by LR. The eleven marker based model yielded an overall accuracy of 72.1%. Likewise, Liu et al. applied an epigenomics approach to identify CpG markers for GDM (27). They used DNA methylation data from two previous studies, in which placenta samples from GDM and control mothers, and blood samples from children born in GDM and control pregnancies were analyzed. By an overlapped CpGassoc epigenome-wide association study they identified nine differentially methylated CpGs between GDM and control subjects. The LR model built with five of them revealed that the most important CpGs for GDM and control samples differentiation were cg11169102, cg21179618 and cg21620107. The combination of those three biomarkers was assessed for classification by the same ML technique, and achieved an AUC of 0.8519.




4.1.1.3 Other ML applications in GDM research

Some GDM studies have used ML for other purposes, such as risk estimation, screening, correlation assessment and management. For instance, Ehrlich et al. aimed to evaluate the effect of exercise during the first trimester of pregnancy on the risk of GDM (28). Data from a pregnancy physical activity questionnaire, effected at 10-13 gestational weeks, were analyzed by different ML techniques. Their targeted maximum likelihood estimation (TMLE) and SuperLearner (SL) method with extra learners model showed that meeting or exceeding the cohort’s 75th percentile of moderate to vigorous intensity exercise reduced the risk of GDM by 2.1 fewer cases per 100 women. Another example is Bernardes-Oliveira et al. study. They intended to develop a fast and low-cost screening tool for GDM, using 9-39 gestational weeks plasma samples, attenuated total reflection Fourier-transform infrared spectroscopy and ML techniques (29). Their genetic algorithm with LDA model, which comprised ten wavenumbers mainly from lipids and proteins spectral regions, achieved an accuracy of 100%. A different case is the study of Araya et al., who meant to determine whether there was a correlation between the maternal thyroid profile and GDM (30). Using clinical and biochemical data registered at 10-14 and 24-28 gestational weeks, and PCA, they demonstrated that maternal thyroid-related hormones from the first and the second trimesters of pregnancy were strongly correlated with GDM. Finally, Velardo et al. aimed to develop a ML tool capable to improve the timeliness of GDM management (31). They used mobile health real-time collected data and different ML techniques to automatically evaluate the switch from diet-based management to pharmacological treatment. Data included blood glucose levels measured at different time points, maternal age, BMI and other GDM clinical risk factors. Their lasso feature selection LR model allowed to predict the timing of initiation of pharmacotherapy with an AUC of 0.8.





4.1.2 Preeclampsia

Preeclampsia (PE) is a pregnancy syndrome that presents two different clinical scenarios, both characterized by the development of maternal hypertension from the 20th week of gestation, an alteration that persists throughout pregnancy. The first of the scenarios is characterized by a moderate form of PE, which symptoms become evident late, from 34 weeks of gestation. It is characterized by blood pressure ≥140/90 mmHg, and other symptoms that indicate liver or renal damage, thrombocytopenia or proteinuria ≥3g/24h, and by not inducing alterations on fetal growth. The second of the scenarios correspond to a severe form of PE, which symptoms become evident before 34 weeks of gestation. It is characterized by blood pressure ≥160/110 mmHg, multisystemic damage and/or proteinuria ≥5g/24h, and for being generally associated with intrauterine growth retardation (IUGR) (33). These conditions can also lead to more serious situations than PE alone, such as HELLP syndrome and eclampsia, which is a severe form of PE accompanied by seizures (34). Severe forms of PE are associated with at least two times the risk of IUGR, and fetal and neonatal death (35). The origin of PE is still unknown, however, the most accepted hypothesis indicates that the placenta does not form properly. The latter would not allow a correct flow of maternal blood towards the placenta, triggering a compensatory response that would increase blood pressure to meet the metabolic requirements of the fetus in gestation. This process would begin during the first trimester of pregnancy, producing serious effects on the mother, and affecting the fetus during the second and third trimesters of pregnancy (36). Thus, the early detection of PE, i.e. before the appearance of adverse symptoms in the mother, is necessary.

The early detection of PE has been assessed through the determination of the levels of human chorionic gonadotropin (37), anti-Müllerian hormone (38), sFlt-1 (39), the soluble form of Endoglin (40), among others, with sensitivities between 20 and 80%, and specificities between 40 and 90%. Interestingly, algorithms mediated by ML have been proposed as new strategies to predict this pathology earlier (Table 2). Various ML models have been developed for PE prediction using different types of variables, such as metabolites (41), proteins (42), plasma DNA (26) and circular RNA (43), but by far the most common approaches are based on maternal medical data (44–51).


Table 2 | ML applications in PE research.



Some ML-based studies have aimed to predict PE before 20 weeks of pregnancy. For example, Marić et al. used clinical and biochemical maternal data and different ML techniques to predict this pregnancy complication before 16 gestational weeks. Their elastic net (EN) model achieved an AUC of 0.79 for all cases of PE, and an AUC of 0.89 for early-onset PE, showing that ML approaches can become a powerful early prediction tool for this obstetric disorder (46). Sandstrom et al. also used clinical and biochemical maternal variables and different ML techniques to predict PE, but before 15 weeks of gestation. Their LR model with 12 pre-specified variables yielded AUCs of 0.68, 0.68 and 0.67 for PE with delivery <34, <37 and ≥37 weeks of pregnancy, respectively (48). A different example is the study of Gupta et al., who aimed to predict hypertensive disorders of pregnancy, including PE, with placenta ultrasound images from the first trimester of gestation. The analysis of abnormal placental image texture with deep convolutional neural networks (CNN) achieved a sensitivity of 70.6% and a specificity of 76.6% (51). In contrast to the aforementioned articles, other ML-based studies have intended to predict PE from 20 weeks of gestation onwards. For instance, Han et al. measured 25 parameters of maternal clinical chemistry before PE clinical diagnosis, and combined them to predict this pregnancy disorder. Their back-propagation neural networks (BPNN) model, which strongest predictors were ALB, MPV, BUN, LDH and TG, displayed an accuracy of 79.8% (44). Likewise, Jhee et al. retrieved maternal data (collected between 14 and 34 weeks of pregnancy) from EHR and tested them to predict late-onset PE. Their ML models, based on decision trees (DT), naïve Bayes (NB), SVM, RF, stochastic GB, and LR reached AUCs of 0.857, 0.776, 0.573, 0.894, 0.924 and 0.806, respectively (45).

Other PE-related studies have applied ML in additional contexts, such as biomarker identification, risk estimation and drug screening. For example, Liu et al. analyzed microarray data to identify hub genes as diagnostic biomarkers of PE. Their bioinformatics approach revealed 17 differentially expressed hub genes between PE and control subjects: IL7R, IL18, CCL2, HLA-DRA, CD247, ITK, CD2, IRF8, CD48, GZMK, CCR7, HLA-DPA1, LEP, IL1B, CD8A, CD3D and GZMA. Those hub genes were combined and assessed for classification by SVM. Their model reached an AUC of 0.958 in the training set, and an AUC of 0.834 in the test set (52). Similarly, Guo et al. screened placental mRNA data to identify PE biomarkers. Their ML-based approach allowed them to select a subset of 13 mRNA features: HTRA4, PROCR, MYCN, ERO1A, EAF1, PPP1R16B, CRH, FLNB, PIK3CB, PLAAT3, FBN2, RFLNB, and TKT, which were combined and tested for PE and control subjects classification by ML. Their model, which fused three ML classifiers, C4.5, AdaBoost and multilayer perceptron, yielded an accuracy of 82.2% (53). A different case is the study of Bodnar et al., who aimed to assess the effect of fruit and vegetable intake and dietary synergy on the risk of various adverse pregnancy outcomes. Their SL with TMLE ML model revealed that high fruit and vegetable densities were associated with 3.2 and 4.0 fewer cases of PE per 100 births, respectively (54). A final example is the article of Tejera et al., who developed a ML-based strategy to identify currently existing drugs that could be repurposed for PE management. Their approach was built on pharmacological targets of drugs under clinical trial for PE, and was designed to exclude those that have shown negative effects in pregnancy. Their ML-based virtual screening identified estradiol, estriol, vitamins E and D, lynestrenol, mifrepristone, simvastatin, ambroxol, and some antibiotics and antiparasitics as potential drugs for PE treatment (55).





4.2 Pregnancy complications



4.2.1 Perinatal death

The World Health Organization (WHO) defines perinatal deaths as those that occur from late stillbirth, i.e. after 28 weeks of gestation, up to 28 days of extra-uterine life, including late neonatal deaths (56). Worldwide, more than 5 million perinatal deaths happen every year (57). Progress in reducing the high numbers of stillbirths and neonatal deaths has been slow. Even though the rate of perinatal deaths has been lowered in developed countries, its reduction in low- and middle-income countries has been insufficient. Indeed, low- and middle-income countries present the highest rates and the slowest reduction (58, 59). The Sustainable Development Goals set by the United Nations General Assembly include to put an end to the avoidable deaths of newborns by 2030 (60), however, during 2019 there were approximately 7000 newborns deaths each day (61). These numbers highlight the necessity to implement new methods and techniques to identify high-risk pregnancies, early enough to be able to provide them personalized attention so as to improve prevention, or reduce risk and perinatal death.



4.2.1.1 Stillbirth

Studies to predict pregnancies with high risk of perinatal death have been difficult due to small sample size (62). This, along with the difficulty posed by a relatively high percentage of missing data, forces researchers to look for strategies to impute missing data or lose variables to avoid biased results (63). Routinely collected perinatal records have a great potential to improve the risk assessment of perinatal death, by providing massive databases that are available for researchers to develop and test ML-based models (Table 3). These records are commonly composed of maternal demographic and medical history information, which can be used as predictors. The high amount of data available in these records also allows to have appropriate validation sets to assess the quality of the prediction. Koivu et al. used publicly available data obtained from the US Centers for Disease Control and Prevention, to build ML-based risk prediction models for early stillbirth, late stillbirth and preterm birth (PTB) pregnancies (64). Using only maternal demographic and medical history data (pregnancy and sexual transmitted diseases) from almost 16 million pregnancies, of which 92,753 were infant deaths, they achieved AUCs of 0.76 for early stillbirth, 0.63 for late stillbirth and 0.64 for PTB. Those results were obtained using an algorithm based on self-normalizing neural networks. An important highlight of this study is that model validation was performed using an external set from a different population, which is the strictest and most reliable type of validation, often resulting in lower performances compared to other more permissive validation methods (such as resampling methods), which are prone to overfitting.


Table 3 | ML applications in perinatal death research.



Using a similar approach, Malacova et al. developed stillbirth risk prediction models using different ML algorithms (62). The study population was a cohort from Western Australia, consisting in almost 1 million births, of which 5,788 were stillbirths. The variables used to build the models were a combination of maternal socio-demographic characteristics, medical history, congenital anomalies and, more importantly, current pregnancy complications, which helped to achieve the greatest sensitivity. Different models were built, since not all subjects had the same amount of information available. For all models AUC varied from 0.59 to 0.84, which suggests the importance of variable selection to achieve better performances. The best results were obtained using XGBoost, resulting in a correct prediction of 45% of all stillbirths.

Shukla et al. also performed ML-based predictive modeling for perinatal mortality, but in a wider population, a cohort of near half million pregnancies in low- and middle-income countries located in South Asia, Africa and Central America (65). They developed different models using prenatal and post-delivery variables up to two days after birth, to predict outcomes from intrapartum stillbirth and neonatal death at different time frames. The variables used included maternal, socio-demographic, and medical information along with delivery and neonatal variables (the last two for neonatal death prediction only). They observed that the prediction of perinatal deaths using just prenatal and predelivery information reached AUC values of 0.72 or less, and that the predictive accuracy of the model improved as more post-delivery variables were included. Indeed, their best results were obtained with post-delivery data, which allowed to predict neonatal deaths with an AUC value of 0.87 by LR.

Mboya et al. studied a cohort of 42,319 singleton deliveries in Tanzanian population (66) and build ML models to predict both stillbirth and neonatal death (defined as death of live births within 7 days of life) using data available in the birth registry, i.e. mainly sociodemographic characteristics. The best results were achieved using RF, NB and Boosting with an AUC of 0.79. Khatibi et al., used a two-step ensemble classifier ML-based method (including DT, GB, LR, RF and SVM) to predict both stillbirth before delivery and stillbirth during labor occurred in Iran in a population of almost 1,5 million births (67). They used a combination of maternal socio-demographic features, labor descriptors, delivery properties and clinical history of the mother and fetus, and achieved an average AUC of 0.9. Although this value is much higher than the previously discussed studies, the aim of the authors was not early prediction, but to predict stillbirth at labor-delivery instead, therefore they used variables that are not available in early prediction studies.

A common result in these studies is that gestational age and fetal height are the two most important features to discriminate livebirth from stillbirth (65–67). Some authors suggest that risk prediction models that only use demographic and medical history could be further improved with the addition of biochemical and/or biophysical variables, however to the date these approaches are yet to be explored.




4.2.1.2 Neonatal death

Regarding neonatal death prediction, a recent work published in early 2021 made a systematic review on ML models used to predict neonatal mortality (72). They focused on works with a high amount of subjects (n>500 individuals) that analyzed both perinatal and neonatal factors, and excluded studies using exclusively antenatal factors, and in which neonatal mortality was not the primary outcome of study. They found eleven publications that met their criteria, among which the AUC value varied from 0.58 to 0.97. The most used ML methods were artificial neural networks (ANN), RF and LR, although the best overall model was obtained using LDA. Interestingly, from all studies reviewed in that work, only two conducted an external validation, which ensures a higher reliability. This fact also stresses the necessity of appropriate analytical methodologies and validations in future studies to ease their application by health care providers.

Other research groups, not covered in the aforementioned systematic review, have reported the prediction of neonatal death using ML-based models, with relatively high success (AUC of 95.99% for the best results) (68–70). In a different study conducted in Iran, different ML-based models were built to predict neonatal deaths in neonatal intensive care units (71). This work stands out since its models were prospectively applied and evaluated in a new cohort of neonates. Seventeen variables considered important in neonatal mortality prediction were used and different ML methods were tested, such as ANN, DT, SVM, Bayesian network and ensemble classifier. The highest AUC was achieved by the RF, SVM and ensemble models with a value of 0.98, however, when they prospectively applied the models for mortality prediction in new neonates, the best overall performance was obtained using ANN, with an AUC of 0.92, whereas the highest precision and specificity were obtained using DTs (0.97 and 0.87 respectively).





4.2.2 Spontaneous abortion

Spontaneous abortion (SA) is defined as the loss of pregnancy before the 20th week of gestation (73). It is often referred also as miscarriage, but according to literature, miscarriage is considered to occur before the 24th week of gestation (74). Both situations imply a common and serious pregnancy complication that has a significant psychological impact on the mother and the family. For this reason, and due to its complicated etiology (75), SA has become a hot topic in scientific research and gynecology.

Recent advances in technology, particularly in the artificial intelligence field, have allowed the use of the increasing amount of data that can be obtained in biomedical studies to improve patients’ outcomes. This is consistent with the notion of precision medicine, that is, the need of a more personalized medicine to improve or predict the medical outcome (76), in this case, of a pregnant woman.

Interestingly, ML has been applied in the context of SA and miscarriage (Table 4). In 2013, Bottomley at al., developed a score based on demographic data, symptom variables and ultrasound data to predict the likelihood of a woman to have a successful pregnancy by performing a retrospective study (74). The ML method used was LR. Interestingly, the authors found that the combination of all the factors was able to provide a more accurate prediction of pregnancy viability than the obtained by analyzing the factors in a separated way, with an AUC of 0.924. This score model worked, but at that time it was not proven if it would be able to prevent miscarriage and, as the authors pointed out, the psychological morbidity associated with pregnancy loss should be integrated to the analyses. A distinct approach was made in 2019 using next generation sequencing to analyze 200 DNA samples of 100 couples presenting recurrent miscarriages (RM) (77). This work aimed to develop an algorithm based on the genetic analysis of the HLA protein codifying genes, considering the relationship of the HLA antigen sharing between couples and SA (81) in the context of immune interactions as a possible cause of SA and RM. It has been described that when the mother and the father share HLA antigens, the mother and the fetus will be homozygous for several of these loci. This issue alters the mother immunologic protection to the fetus inducing immunologic rejection and consequently SA (82). The SVM-based algorithm was able to correctly classify 67% of the total subjects, with an AUC of 0.71 and a false positive rate of 57%, which negatively affected the algorithm performance. Interestingly, this study is one of the first to predict RM probabilities in a case-by case basis, having a potential use in couple genetic counseling before conception. A different example is the study of Wu et al., who aimed to predict recurrent SA with prethrombotic state (PTS) serum biomarkers. PTS is known as one of the possible causes of SA. Wu et al. work was based on the analysis of different PTS-related proteins using multiplex array technology (78). They were able to distinguish control and affected individuals with high accuracy and precision using IL-24, exotoxin-3 and epidermal growth factor. Indeed, their DT model got an AUC of 1.000. Despite this excellent result, the cohort used for this study needs to be incremented to evaluate the real diagnostic power of this promising model.


Table 4 | ML applications in SA research.



In vitro fertilization embryo transfer (IVF-ET) is nowadays an alternative for couples with difficulties to conceive. This procedure implies high risks of miscarriage, being psychologically stressful for couples. Therefore, it becomes necessary to find a way or system that allows the prediction of the transfer outcome, and the early detection of possible problems (83). Recently, Liu et al. developed a ML-based model with historic data obtained by transvaginal ultrasonography from females that underwent IVF-ET. The study only considered women with viable singleton and 6-12 weeks of pregnancy (79). The authors were able to predict embryonic development after transfer using six different ML-classifiers, with AUCs ranging from 0.91 to 0.97 when fetal heart rate (FHR) was included among the predictors. The most accurate prediction was obtained by RF at the 10th week after embryo transfer, with an AUC of 0.99. Other example is the article of Huang et al., who used deep learning to predict pregnancy outcomes in patients with recurrent reproductive failure (RRF), including recurrent pregnancy loss (RPL) and recurrent implantation failure (RIF). The study defined RPL as two or more SA before 20 weeks of pregnancy, and RIF as couples unable to conceive after multiple IVF-ET cycles. The authors analyzed EHR data with sparse coding, and predicted four pregnancy outcomes: biochemical pregnancy, clinical pregnancy, ongoing pregnancy and live birth. They got testing accuracies that ranged between 54.2% and 89.7% for the different pregnancy outcomes. Notably, the best model for the prediction of biochemical pregnancy was obtained with a panel of 10 endometrial immunological markers, while the best models for the other three outcomes, were obtained with a panel of 15 autoantibodies. The authors discussed that this knowledge could help clinicians to plan a more personalized diagnosis and treatment for patients with RRF (80).




4.2.3 Preterm birth

The WHO defines PTB as the delivery of alive babies before 37 weeks of pregnancy are completed (56). Based on gestational age, it can be sub-categorized as: extremely preterm, before 28 weeks; very preterm, between 28 and 32 weeks; and moderate to late preterm, between 32 and 37 weeks. Most of preterm deliveries are spontaneous, although some are provider-initiated (56).

PTB is the main cause of death in children under 5 years of age worldwide. Furthermore, it has short and long-term consequences on newborns’ health, which imply a significant psychological and economic burden to families and health systems (84). The development of PTB predictive tests could be useful to identify high risk pregnancies, which could guide the healthcare personnel to offer prophylactic interventions and make antenatal management decisions (85).

ML has already been applied to develop predictive models for PTB (Table 5). For instance, Khatibi et al. aimed to predict spontaneous and provider-initiated PTB with data from the Iranian Maternal and Neonatal registry, which includes information of more than 1,400,0000 deliveries and 112 features. The authors used different big data ML algorithms to classify pregnant women in two steps. In the first step, all subjects were classified into term or PTB; and in the second step, the subjects classified as PTB in the first step, were then sub-classified as spontaneous or provider-initiated. Their best model, an ensemble of DT, SVM and RF, achieved a weighted average accuracy of 81%, and an AUC of 68% (86). Similarly, Belaghi et al. used first and second trimester information from the Ontario’s Better Outcomes Registry and Network database, and different ML methods to predict overall and spontaneous PTB. The investigation considered 112,963 pregnancies. For overall cases, the best models were obtained by ANN, and reached AUCs of 60.3% and 79.8% in the validation cohort at the first and second trimester, respectively. For spontaneous cases, the best results were obtained by LR, and got validation AUCs of 59.4% and 64.5% at the first and second trimester, respectively (87). A different approach was followed by Gao et al., who used EHR text data and deep learning ML methods to predict extreme PTB. Their dataset involved 10 years of EHR information from 25,689 deliveries at the Vanderbilt University Medical Center. The long short-term memory (LSTM) recurrent neural networks (RNN) ensemble model allowed to predict extreme PTB with an AUC of 0.744 in the validation cohort, greater than the obtained by LR, SVM and GB (88). This is an interesting result, although this work didn’t differentiate spontaneous from provider-initiated cases. Likewise, Zhang et al. aimed to predict PTB with continuous EHR data and LSTM. Their dataset included first and second trimester medical parameters from more than 25,000 pregnant women who received antenatal care and had vaginal delivery at the Hangzhou Women’s Hospital. Notably, the time-series deep learning technique LSTM achieved a better predictive performance than the traditional cross-sectional ML technique XGBoost, with cross-validation AUCs of 0.651 and 0.516-0.601, respectively (89).


Table 5 | ML applications in PTB research.



All the aforementioned studies based their predictive models on clinical and biochemical maternal information available in databases. However, other articles have assessed alternative types of data to predict PTB. Such studies are very useful to find novel biomarkers for PTB, and to propose informed hypotheses about its causes and underlying mechanisms, which are not fully understood (84, 85). For instance, Aung et al. measured an extensive set of 65 urine and plasma biomarkers, and combined them with ML to predict PTB at 26 weeks of gestation. They tested three ML methods: LR, adaptive EN and RF. The best validation results were obtained with the latter. The combination of all the biomarkers with RF yielded AUCs of 0.85 and 0.79 for overall and spontaneous PTB, respectively. Then, the authors divided the biomarkers into five groups, i.e. DNA damage markers, angiogenic factors, protein damage markers, inflammatory markers and lipid damage markers. The best predictive performances were obtained with lipid damage markers and RF, with AUCs of 0.84 and 0.79 for overall and spontaneous cases, respectively. Furthermore, the study identified the enzymatic pathway that contributed the most to that prediction: the eicosanoid lipoxygenase pathway. The combination of 15 lipoxygenase metabolites with RF got AUCs of 0.83 and 0.82 for overall and spontaneous PTB, respectively (90). Another example is the study of Chen et al., who applied untargeted LC-MS plasma metabolomics to identify metabolites that could be related to PTB, at 24-28 gestational weeks. The authors identified 17 and 16 biomarkers for overall and spontaneous cases, respectively, and tested their predictive performance with seven ML classifiers. The best results were obtained by RF, with AUCs of 0.92 and 0.89 in the testing dataset. Interestingly, most of the identified biomarkers were fatty acids, which suggests their involvement in the pathogenesis of PTB (91). Similarly, Jehan et al. performed an early pregnancy multiomics characterization of PTB. The authors applied untargeted transcriptomics and targeted proteomics on plasma samples, and untargeted metabolomics on urine specimens. They used a 2-step ML algorithm, in which a model was first trained for each omics dataset, and then combined into a final model. The integrated model achieved a cross-validation AUC of 0.83, higher than the obtained for the different omics datasets alone. The work also identified the features that were more associated with PTB: a proteomics inflammatory module, including IL-6, IL-1RA, G-CSF, RARRES2 and CCL3; and an urine metabolomic module, enriched for glutamine and glutamate metabolism, and valine, leucine and isoleucine biosynthesis pathways (92).

Some less common approaches have also been applied in the context of PTB prediction. For example, Despotovic et al. tested EHG recordings to predict PTB. They built ML models using k-nearest neighbors (KNN), SVM, RF, RF with synthetic minority oversampling technique (SMOTE), and RF with adaptative synthetic (ADASYN) sampling. Their RF-ADASYN model allowed to predict PTB at 22-25 weeks of pregnancy, with an accuracy of 99.23% and an AUC of 0.999 in cross-validation (93). A different case is the work of Rawashdeh et al., who combined 19 clinical maternal parameters with ML methods to predict PTB in a high risk cohort. They developed two different strategies to analyze their data. The first one aimed to predict whether the pregnancy would continue beyond 26 gestational weeks (the lower limit for PTB in this study) and the potential value of performing cervical cerclage to prolong the pregnancy. For this first aim, the authors tested four different classification ML methods, DT, RF, KNN and NN; solo and with SMOTE. The highest testing AUC was obtained by the KNN-SMOTE model, with a value of 1.000. The second strategy of the authors aimed to predict the timing of spontaneous delivery after cervical cerclage, an approach that wasn’t assessed in any of the previously discussed articles. For this second aim, they tested five different regression ML methods, linear regression, Gaussian process, RF, K-star and locally weighted learning. The best correlation with the actual gestational age at delivery was obtained by the RF model, with a value of 0.752 in the testing dataset. Such a regression ML model could help physicians to define prophylactic interventions timely, and reduce PTB-related perinatal morbidity and mortality (94).




4.2.4 Cesarean section

Cesarean section is an effective mean to solve medical and surgical complications during dystocia and severe pregnancy disorders, and has an irreplaceable role (95). Delivery through cesarean section reduces the risk of maternal-fetal morbidity and mortality, when is medically indicated (96). Emergency cesarean section (EMCS) can be a procedure that saves lives if pregnant women experience abnormal conditions during vaginal delivery, such as fetal suffering, eclampsia or severe preeclampsia (97). Deciding to perform an EMCS is a complicated process, occurring only in specific obstetric conditions, and requires awareness and rapid assessment of the risk of the situation (98). Failure to perform EMCS on time can lead to postpartum mental disorders and other severe adverse maternal and fetal outcomes (99, 100). Recognizing an acute situation during pregnancy, labor or delivery, that can be life threatening and that could require an EMCS, is considered one of the most challenging tasks in obstetrics (101).

Visual inspection of CTG traces by obstetricians and midwives is the gold standard for monitoring the wellbeing of the fetus during antenatal care (102). One of the areas in which mathematical and computational tools for data analysis, such as ML methods, excel is in the analysis of instrumental continuous signals (Table 6). Several output data from instruments used in clinical diagnosis or monitoring are composed of this type of signals, in which between any two points there can be a large amount of data points, as large as allowed by the signal resolution, or even an infinite amount in the case of analog instruments. CTG traces are a great example of this type of data in obstetrics. The problem with this type of data is that its visual interpretation is highly dependent on the observer’s experience and can be strongly subjective. Most importantly, clinical decisions such as pregnancy intervention through cesarean section are made using visual inspection of CTG traces. It has been reported that the positive predictive value produced by obstetricians to anticipate negative outcomes that require cesarean section deliveries is only 30% (110). However, although human eye may fail to provide a reliable and objective interpretation, mathematical tools for pattern recognition are not subjected to the observer’s bias.


Table 6 | ML applications in cesarean section research.



Two different articles published by the same group in Liverpool have addressed the observer variability of CTG traces using a ML approach (102, 103). The authors applied signal processing techniques to extract relevant features from CTG traces and modeled the data using different ML methods, such as DNN, LDA, RF, SVM and ensemble classifiers. They were able to classify cesarean section and vaginal deliveries from CTG traces with cross-validation AUC values of 96-99%. Other study performed by an Italian research group used a similar methodology and obtained consistent results, that is, a cross-validation AUC value of 96.7% by RF (104). Likewise, a Chinese study that proposed a comparable strategy to classify normal and abnormal CTG traces reported an AUC of 0.95 by CNN in cross-validation (105). Their results demonstrate that ML methods significantly improve the prediction efficiency of necessary cesarean sections, and that their use provide a valuable decision support tool to minimize subjective interpretations of CTG traces from medical practitioners.

Besides CTG traces analysis, ML methods have been applied on EHR information to predict cesarean section and identify important variables, as well as to understand the interaction between those variables. The model developed by Clark et al. using a classification and regression tree had an AUC value of 0.7, which was considered acceptable (106). The three features that contributed the most to that model were hospital type, maternal BMI and intrapartum oxytocin dose.

Other uses of ML have been tested in the context of cesarean sections. For example, a decision-support ML-based model for assessing intrathecal hyperbaric bupivacaine dose using physical variables during cesarean section was developed, providing the anesthesiologists a new tool that gives new insights into the potential impact of controversial parameters (107). The least absolute shrinkage and selection operator regression model got a mean squared error of 0.0087. ML has also been applied to predict surgical site infection in cesarean section wounds, which is a leading cause of mortality and an important health concern in low-resource countries (108). The best model was obtained with mobile device images and LR, and achieved an AUC of 1.0. Prediction of likelihood of a successful vaginal birth after former cesarean deliveries has also been addressed using ML, which may help as a decision-making tool that could contribute to a reduction in cesarean deliveries rates (109). The EHR-based RF model reached an AUC of 0.69, better than the obtained by DT and LR.




4.2.5 Fetal malformations



4.2.5.1 General congenital diseases

Congenital anomalies are seen in 1–3% of the population, and approximately 60–70% of the anomalies can be diagnosed via ultrasonography, while the remaining 30–40% can be diagnosed after childbirth. An e-Health android application was developed by comparing the performance of nine binary ML classification models (averaged perceptron, boosted DT, Bayes point machine, decision forest, decision jungle, locally-deep SVM, LR, NN, SVM) (Table 7). The models were trained with the clinical dataset of 96 pregnant women and used to predict fetal anomaly status based on maternal clinical data. The decision forest model reached the best performance, with 89.5% of accuracy, 75% of F1-Score and 95% of AUC. An external validation testing with 16 users, showed that the classification algorithm accuracy was 87.5%. This estimate is enough to give a general overview of fetal health before the patient visits the physician (111).


Table 7 | ML applications in fetal malformations research.






4.2.5.2 Craniosynostosis

Craniosynostosis is a congenital condition characterized by a premature fusion of the fetal cranial sutures, which induces one or more cranial bones in a fetal skull to join too early. Since this happens before the fetal brain is fully formed, as the brain grows, the skull can become deformed. Craniosynostosis is a common cause of pediatric skull deformities, affecting 1 of every 2000 to 2500 live births worldwide. This birth defect occurs in a predictable pattern because of localized fusions and the compensatory expansion of the cranial vault (136). It is usually detected early in life, both due to its cosmetic manifestations and functional consequences, as it can result in limited brain growth, elevated intra-cranial pressure, and respiratory and visual impairment. Early diagnosis is crucial for management, prevention of complications, and consideration for early surgical correction (112). In parallel with the growing understanding of the pathophysiology of craniosynostosis, new advances include the improvement of existing technologies such as ultrasound, and the introduction of new technologies such as ML and augmented reality (137).

Various algorithms and mathematical models have been developed to allow the computer to reliably and accurately predict specific outcomes, based on premature fusion suture input data. Using data from CT-derived measurements of cranial suture fusion, cranial deformation and curvature discrepancy, different ML methods (RF, LDA and SVM) were tested to determine the presence or absence of craniosynostosis. The best classification performance was obtained by the LDA model, with 92.7% of sensitivity, 98.9% of specificity and the probability of correctly classifying a new subject of 95.7% (112). In a different study, SVM and RF were used on ultrasound images in order to decrease the user error involved in the interpretation of craniosynostosis diagnostic imaging. They got a diagnostic accuracy of 88.63% and an AUC of 0.89 by SVM (113). Finally, PCA has proven effective in differentiating between healthy controls, scaphocephalic, and trigonocephalic patients, when applied on images obtained via stereophotogrammetry (114).




4.2.5.3 Congenital heart disease

The incidence of congenital heart disease (CHD) has been estimated between 0.6% and 1.2% among live births (138); however, it has been reported an increased incidence of 8.3% when stillborn infants of ≥26 weeks of gestation are included (139). There could be an even higher incidence in early gestation, given spontaneous and elective pregnancy termination. A multitude of factors are associated with an increased risk of identifying CHD in the fetus, which are related to familial, maternal, or fetal conditions. The leading reason of referral for fetal cardiac evaluation is the suspicion of a structural heart abnormality on obstetric ultrasound, which results in a diagnosis of CHD in 40% to 50% of the referred fetuses. In general, subjects with risk levels exceeding ≥2% should have a detailed fetal echocardiogram by a trained examiner.

Fetal echocardiology has evolved from the description of cardiac anatomical abnormalities toward the quantitative assessment of cardiac dimensions, shape, and function. It has been demonstrated to be useful in the diagnosis and monitoring of fetuses with a compromised cardiovascular system, which may be related to several fetal conditions, such as IUGR, twin-to-twin transfusion syndrome, and CHD (140, 141). Different ultrasound approaches are currently used to evaluate fetal cardiac structure and function, including conventional 2D imaging, and M-mode and tissue Doppler imaging, among others (142). However, assessing fetal cardiac function is still challenging due to fetus involuntary movements, the small size of the heart, the high heart rate, the limited access to the fetus, and the lack of expertise in fetal echocardiography of some sonographers. After having obtained an optimal image, various measurements must be performed to extract relevant cardiac features related to remodeling and functional status. Therefore, the use of new technologies to improve the primary acquired images, or to help extract and standardize measurements is of great importance for optimal assessment of the fetal heart. ML techniques can help to optimize three different aspects of fetal echocardiology: acquisition, quantification and features extraction, and fetal diagnosis.



4.2.5.3.1 Acquisition

ML-powered methods can speed up the acquisition process, decreasing the learning curve, standardizing the resulting images and increasing data quality. In such case, standardization occurs with minimal human intervention. In this regard, Bridge et al. implemented a framework for tracking key features from healthy fetal heart ultrasound videos through RF (115); and Yu et al. and Muduli et al. used independent component analysis along with a DT (116) and a stacked denoising autoencoder neural networks-based deep learning approach (117) to reconstruct fetal electrocardiography (ECG) signals from abdominal ECG recordings.




4.2.5.3.2 Quantification and feature extraction

The vast majority of the research in this field focuses on automatically measuring the heartbeat. Some examples are the detection of fetal cardiac activity from maternal abdomen ultrasound videos using SVM (118), the extraction of FHR features from CTG recordings applying empirical mode decomposition (EMD) (119), the extraction of FHR from fetal ECG signals employing a combination of CNN and LSTM RNN (120, 121), and the detection of fetal heart beats from continuous Doppler ultrasound signals by EMD (122).




4.2.5.3.3 Fetal diagnosis

One of the subfields in which ML has been extensively applied is the improvement of the diagnosis of fetal hypoxia or acidemia, based on CTG analyses. For example, Zhao et al. used CNN and got an AUC value of 97.82% for fetal acidemia caused by hypoxia (123). There have also been some attempts to translate these methods into clinical practice via the development of software that could provide additional support in the interpretation of CTG signals and, therefore, improve the assessment of fetal status. Some examples are Infant (124), PeriCALM (125) and Foetos (126).

ML has also been assessed to improve the diagnosis of IUGR, a pathology that affects about 10% of pregnancies and that has been associated with cardiac remodeling in utero (143). IUGR early detection models have been developed using ultrasound biometric measurements and NN (127), CTG data and SVM (128), and 2D ultrasound images and ANN (129). Such strategies got classification accuracies of 95%, 78% and 91-94%, respectively.

Finally, ML has been recently applied to improve heart diseases prenatal diagnosis. Yeo et al. presented an intelligent ML navigation method called FINE, to automatically obtain different echocardiography anatomical views of the fetal heart and identify abnormalities within the cardiac anatomy (130). Their method allowed to predict CHD with a sensitivity of 98% and a specificity of 93%. Moreover, Han et al. used an artificial intelligence algorithm based on a compound network to segment echocardiography images, and then screen for fetal CHD during pregnancy. Their method achieved an accuracy of 99.0% (131).





4.2.5.4 Fetal alcohol spectrum disorder (FASD)

Gestational alcohol exposure is the most important known cause of neurodevelopmental disability, affecting nearly 5% of children in the US. It leads to complex epigenetic and transcriptomic modifications, which subsequently impair signaling pathways in neural and morphological development (144). In this regard, identifying transcriptomic mechanisms that regulate alcohol’s teratogenicity during embryonic development is crucial to understand different phenotypic outcomes, and may allow future therapeutic interventions that could mediate alcohol’s effects. In order to understand transcriptomic changes in FASD, spanning gene, exon and splicing variants, ML approaches can be used to corroborate traditional statistical methods, and to robust genomic functional studies. For example, Al-Shaer. applied PCA and K-means clustering on transcriptome sequencing (RNA-Seq) data. They identified 6857 differentially expressed exons, which represented 1251 gene IDs that deviated from baseline expression, and 18 miRNAs with significantly different expression profiles in response to alcohol. Several of those exons regulate focal adhesion, FoxO signaling, insulin signaling and Wnt signaling (132).




4.2.5.5 Macrosomia

Fetal macrosomia is diagnosed when fetal growth is beyond a specific threshold, regardless of the gestational age. In developed countries, the most used threshold is a weight above 4,000 g (145). Macrosomia is associated with an increased risk of several maternal and newborn delivery complications, like shoulder dystocia, brachial plexus injury, asphyxia, prolonged labor, postpartum hemorrhage, and laceration of the anal sphincter (146). Predicting macrosomia is important for making decisions about induction or cesarean delivery before the start of labor. For example, Shigemi et al. developed LR and RF ML models to predict macrosomia using maternal clinical parameters. The generated LR risk scoring system allowed to determine the association of each predictor with macrosomia, and achieved an AUC value of 0.880 (133). Likewise, Tao et al. tested different ML techniques to predict fetal birthweight from EHR data. They considered three categorical outcomes: small for gestational age (SGA), appropriate for gestational age (AGA) and large for gestational age (LGA). SGA was defined as birthweight lower than 2,500 g; AGA as birthweight between 2,500 and 4,000 g; and LGA as birthweight greater than 4,000 g. Remarkably, the time-series deep learning technique LSTM achieved a classification accuracy of 93.3%, outperforming the traditional cross-sectional ML techniques LR, BPNN, CNN and RF (134).




4.2.5.6 Teratogenicity

Teratogenicity is the most serious manifestation of iatrogenic fetal toxicity. Developing fetuses are especially sensitive to chemical exposures. Teratogens lead to fetal malformation and are implicated in lifelong physical and/or mental disabilities (135). Teratogenicity scoring for small molecules is unsystematic, and is performed outside the clinical environment (147). Moreover, prescribing behavior for gravid patients is based on limited human data and conflicting cases of adverse outcomes, due to the exclusion of pregnant populations from randomized controlled trials (148). Using unsupervised t-distributed stochastic neighbor embedding and supervised GB ML methods, Challa et al. demonstrated that small molecule drug structure is a good predictor of teratogenicity. The application of such methods also allowed to discover relationships between chemical functionalities within drugs prescribable in pregnancy and existing teratogenicity information. Three chemical functionalities that predispose a drug towards increased teratogenicity and two moieties with potentially protective effects were discovered. The ML algorithm predicted three clinically relevant classes of teratogenicity with an AUC of 0.8, and nearly double the predictive accuracy of a blind control for the same task, suggesting a successful modeling (135).







5 ML in pregnancy diseases and complications: current state and future challenges



5.1 Current state

ML has been widely applied in all the seven subjects considered in this review: gestational diabetes mellitus, preeclampsia, perinatal death, spontaneous abortion, preterm birth, cesarean section, and fetal malformations. The applications are varied, including early detection, alternative screening, biomarker discovery, risk estimation, correlation assessment, pharmacological treatment prediction, drug screening, data acquisition, data extraction, among others. We observed that the most common ML use is the prediction of perinatal diseases or complications. This is in line with what was described in two recent reviews on ML and pregnancy care. The scoping review of Abuelezz et al. explored the contribution of artificial intelligence in pregnancy, and categorized the applications in “prediction of pregnancy disorders/complications”, “treatment and management” and “assist with patients’ safety outcome”. 75% of the reviewed studies fell into the first category (4). Likewise, the systematic review of Islam et al. dug into the use of ML to predict pregnancy outcomes. They categorized the reviewed articles according to their scope: “predicting pregnancy risks/complications”, “exploring pregnancy factors”, “predicting mode of delivery”, “predicting outcome of IVF treatment”, “predicting labor outcome” and “comparing two birth weight groups”. The most common was the first category, with a frequency of 35% (5). Furthermore, we noted that the number of studies employing ML in pregnancy has increased over time, with most of the reviewed articles being published in the last five years. This tendency was also identified by previous reviews in the field (4, 5, 149).

Depending on the type of data available, different ML methods are preferred for studying pregnancy-related alterations. When the data available come from medical records, the information available is rich in socio-demographic characteristics, medical history variables and anthropometric measurements. We observed that when this is the case, the researchers usually have a massive amount of data (patients) available, obtained from the aforementioned medical records, to train the ML model. In this scenario, the most used ML methods correspond to non-linear methods, such as SVM, NN, DT, ensemble methods, etc. This could be explained by the fact that correlations between this type of data and the diseases or complications we focused on in this review are complex, not directly or linearly correlated. Non-linear and non-parametrical methods seem to be more suitable in such scenario, in which data is affected by a higher amount of variability and uncertainty. This is especially true when data from medical questionnaires and other surveys are used, in which the answers and values obtained thereof are highly dependent on the patient’s perception. Appropriate variable selection and validation of the models is perhaps even more important in those cases. In several studies reviewed in this work, the authors used some level of validation to test their models, and therefore, the accuracies they reported demonstrate a certain relationship between the data used and the pathology studied, even though that relationship is not necessarily linear. Therefore, it is possible to obtain adequate ML models to study adverse perinatal outcomes from data already available. This adds value to currently existing medical records databases.

A fundamental precept in data science is that, in order to predict a property (e.g. a pathology, or the concentration of a particular biomarker) the data must contain information related to that property, and the stronger the correlation, the better the performance of the model. In this regard, it has been suggested that prediction models could be improved when using biochemical or biophysical variables (64). This type of data is less affected by human bias and is more directly related to the physiology of an individual, or the pathophysiology of a disease. Most variables of this type correspond to biochemical analytes or ultrasonography parameters. In this scenario, the type of variables used are not too different from the data used in chemical, environmental or pharmaceutical sciences. Analytical chemists have been successfully using chemometrics (i.e. ML applied in chemistry) for several decades to extract relevant information from chemical data, to find correlations or predict a sample property. In essence, the exercise to identify the origin of certain wine from its metal profile, an example of a common application of chemometrics in analytical chemistry, would be no different than predicting a pathology based on the characteristic multivariate pattern of a blood biochemical profile. Likewise, biophysical variables such as the continual recording of FHR through CTG are very similar to the graphical outputs obtained from the analytical instruments used in chemistry (e.g. chromatogram or spectrogram), in the sense that an analytical signal is continuously recorded from an instrument. Therefore, the robust chemometrical platform used in analytical chemistry for the analysis of this type of data could also be exploited in biomedical science. In chemometrics, the most used methods are linear, i.e. are based on linear combinations of the original variables, with which they find hidden correlations that can be used to predict a particular property. Methods such as PCA, partial least squares regression, soft independent modeling of class analogies, discriminant analysis, or variations of them, are among the most used in chemistry (6, 7). These methods are more intuitive than the non-linear methods mentioned before. Furthermore, they usually provide valuable information about the importance or weight of the variables on the prediction of a certain property, as well as variable-variable and variable-sample relationships, which are some of the reasons they are preferred in chemical analysis. Curiously, in this review we observed that these methods are not common in pregnancy-related applications, where non-linear methods are the trend and LR seems to be almost the only linear method chosen. This observation is consistent with the systematic review and meta-analysis of Sufriyana et al., who found that the most common ML techniques in prognostic prediction studies for pregnancy care are LR (64.8%) and ANN (14.1%) (150). As clinical chemistry can be considered as a type of analytical chemistry, a more widespread application in biomedicine of the linear ML methods used in chemistry could be highly beneficial, whenever biochemical data is available.




5.2 Future challenges

It is difficult to think of a field of knowledge in which ML has not been applied. Consequently, it is quite challenging to be innovative regarding the use of ML in the context of pregnancy diseases and complications. An aspect that could be improved is data management, for example by automating their recording, storage and update in both medical and research settings. The later could ease data extraction, analysis and posterior interpretation. Even though EHR are common in developed countries, they are not frequent in low- or middle- income countries (151, 152). Therefore, the spread of EHR and their adaptation to different realities is an important task for the scientific community in the near future. Moreover, it is necessary to adapt ML applications to the emerging technologies in biomedical sciences, with which novel and more complex types of data can be obtained (153). This could be employed not only to develop more accurate predictive models, but also to find new biomarkers that could help to better understand the pathophysiology of a particular disease or complication, which could in turn lead to an improvement in its prevention, management or treatment. Furthermore, although there are a lot of published ML models aiming to improve maternal and fetal health, many of them have never been validated, nor subjected to impact analysis. This translational issue was also identified by a recent systematic review on ML-based clinical decision support systems in the context of pregnancy care (154). To be considered suitable for clinical implementation, ML models have to exhibit a good predictive performance in both internal and external validation, and also prove to foster positive changes in medical settings (e.g. improve patients outcomes, reduce management costs, etc.) without impairing care quality and patient satisfaction (14). Hence, besides developing new ML tools in the field of pregnancy alterations, it is necessary to carry out studies to test the already published models in different populations and healthcare facilities. This would allow to know if it is really worthwhile to implement them in clinical practice. To perform such studies is a demanding task, since the recruitment and follow-up of large cohorts of subjects require a very well-coordinated multidisciplinary work, and both time and financial resources are spent. However, it is the only way to lead ML models closer to real medical applications.

Pregnancy lasts only nine months, and the first three have been proposed as the ideal time frame for the early detection, treatment and management of gestational alterations (155–157). This window of time is narrow, but represents a great opportunity to exploit all the advantages that are associated with the use of ML, i.e. finishing complex assignments rapidly, dealing with multiple tasks efficiently, and predicting short- and long- term outcomes accurately (158, 159). Indeed, this review widely demonstrates that ML methods have a great potential to be applied in such a context, and to contribute to reducing the impact of pregnancy diseases and complications on maternal and fetal health.




5.3 Strengths of this review

This review is not restricted to a particular ML application on pregnancy diseases and complications. There are a couple of recent systematic reviews that are similar to our work, however they focus on a specific ML application in the field of pregnancy care, such as the screening of adverse perinatal outcomes (160) and the prediction of perinatal complications (149). In contrast, this review covers the wide variety of applications that ML may have on maternal and fetal health, including not only the screening or prediction of perinatal alterations, but also biomarker discovery, risk estimation, correlation assessment, pharmacological treatment prediction, drug screening, data acquisition, data extraction, among others, in the context of such alterations. Moreover, this review has a marked clinical focus. There are some recent narrative and systematic reviews that describe different pregnancy-related ML applications, but their emphases are on the applications themselves, and not on specific perinatal pathologies (4, 5, 161, 162). On the contrary, this review focuses on particular diseases and complications, and gives a broad overview of ML applications for each, which allows to visualize how much ML has penetrated into specific areas of the field of obstetrics and gynecology. Finally, this review covers a considerable body of literature. Most of the reviews found in literature regarding ML and perinatal care include a small number of references (4, 5, 149, 160, 162). Contrarily, this review comprises an important number of scientific articles, which ensures giving a comprehensive overview of the state of art regarding the use of ML in the context of pregnancy diseases and complications.




5.4 Limitations of this review

Due to the narrative nature of this review, the search and selection of articles was not performed by means of a systematic protocol. Hence, it could be subjected to bias. In addition, this review was restricted to seven selected pregnancy diseases and complications, and English-written articles. Hence, we may have missed some promising ML applications in the field of maternal and fetal health.





6 Conclusion

The use of ML methods in the context of pregnancy diseases and complications is fairly recent, and is becoming increasingly popular. The applications are varied, and go beyond diagnosis. Indeed, ML has been used to improve the management, treatment, and also the understanding of the pathophysiological mechanisms underlying different perinatal alterations. Facing the challenges that come with working with different types of data, the handling of increasingly large amounts of information, the development of emerging technologies, and the need of translational studies, it is expected that the use of ML methods continue growing in the field of obstetrics and gynecology in the coming years.
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Gestational diabetes mellitus (GDM) is the most frequent pathophysiological state of pregnancy, which in many cases produces fetuses with macrosomia, requiring increased nutrient transport in the placenta. Recent studies by our group have demonstrated that leptin is a key hormone in placental physiology, and its expression is increased in placentas affected by GDM. However, the effect of leptin on placental nutrient transport, such as transport of glucose, amino acids, and lipids, is not fully understood. Thus, we aimed to review literature on the leptin effect involved in placental nutrient transport as well as activated leptin signaling pathways involved in the expression of placental transporters, which may contribute to an increase in placental nutrient transport in human pregnancies complicated by GDM. Leptin appears to be a relevant key hormone that regulates placental transport, and this regulation is altered in pathophysiological conditions such as gestational diabetes. Adaptations in the placental capacity to transport glucose, amino acids, and lipids may underlie both under- or overgrowth of the fetus when maternal nutrient and hormone levels are altered due to changes in maternal nutrition or metabolic disease. Implementing new strategies to modulate placental transport may improve maternal health and prove effective in normalizing fetal growth in cases of intrauterine growth restriction and fetal overgrowth. However, further studies are needed to confirm this hypothesis.
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Graphical Abstract | Nutrient transport in normal and altered conditions.






1 Introduction

Gestational diabetes mellitus (GDM) is a condition characterized by glucose intolerance that occurs during pregnancy (1). It is one of the most common complications, affecting 3–8% of all pregnancies (1, 2). The prevalence of GDM has increased in recent decades, reaching rates of ≥20% in some parts of the world, due to factors such as increased maternal age and obesity (3). In Spain, the estimated prevalence of GDM ranges from 3 to 5% of pregnancies, depending on factors such as ethnicity, age, fetal sex, and diagnostic criteria. It is considered the leading cause of fetal macrosomia, which is associated with an increased risk of perinatal mortality and neonatal morbidity (4, 5).

The placenta from GDM subjects is often susceptible to altered metabolism, which could change the expression of placental nutrient transporter systems (6). In fact, this change may disrupt fetal growth and expose offspring to long-term consequences of GDM. Consequently, the offspring of women affected by GDM are more likely to suffer from long-term conditions such as obesity, cardiovascular disease, metabolic syndrome, and type 2 diabetes mellitus later in life (7). Therefore, it has been hypothesized that fetal development is more closely linked to altered placental transport resulting from GDM-associated conditions rather than maternal circulation.

An array of maternal circulating factors has been shown to alter placental macronutrient metabolism in pregnancies complicated by GDM (8). For example, a wide range of hormones and cytokines such as insulin, leptin, insulin-like growth factors (IGFs), and molecular signaling pathways, including the mammalian target of rapamycin (mTOR), phosphatidylinositol 3-kinase (PI3K), and mitogen-activated protein kinases (MAPK), have been reported to be activated in the maternal-facing microvillous (MVM) of human placentas affected by GDM (6, 9, 10). Based on these facts, the activity of placental nutrient transport might be modulated by the maternal environment and placental metabolism (11). Therefore, since the human placenta is responsible for the production of adipokines (12), leptin has been implicated in various related pathologies of pregnancy such as GDM, obesity, fetal growth abnormalities, and metabolic dysfunction (6, 13, 14).

Maternal-fetal macronutrient transport is primarily mediated by a family of placental transporters. For example, glucose transport, in particular, is mediated by glucose transporters (GLUTs) (15), while amino acid transport is mediated by several membrane transport proteins, including the sodium-dependent system A transporter, also called the serotonin N-acetyltransferase (SNAT) family and the sodium-independent system L transporter, known as the large neutral amino acid transporters (LATs) family (16, 17). On the other hand, lipid transport is mediated by the free fatty acid transporter (FATB), fatty acid-binding proteins (FABPs), and the activity of lipases in the MVM of syncytiotrophoblast (18).

During pregnancy, placental leptin levels increase in pregnancies complicated by GDM (19). This suggests a physiological role for leptin in the placental uptake of nutrients. However, the mechanism by which leptin may act as a modulator of placental transporter expression in GDM pregnancies is not well understood. Recently, leptin and insulin signaling pathways have been demonstrated in placentas from GDM pregnancies (20), suggesting a role for leptin in the expression of placental transporters in GDM. However, data and evidence on this topic are limited, and therefore it is not fully understood.

Previous studies have shown that leptin increases the glucose uptake rate in cultured trophoblasts by increasing GLUT1 expression in the human placenta BeWo cell line (21, 22). Additionally, leptin increases the expression of Aquaporin-9 (AQP9), an aquaglyceroporin membrane channel, in normal trophoblasts (23), providing a substrate for gluconeogenesis. Increased expression of AQP9 has been found in placental trophoblasts from patients with GDM (24). Leptin has also been implicated in placental amino acid uptake. In this regard, several studies have reported that leptin stimulates the system A transporter in villous fragments via PI3K and the JAK (Janus tyrosine kinase)-STAT (signal transducer and activator of transcription) (JAK/STAT) pathway in obese pregnant women (25, 26). These data suggest a role of leptin in regulating amino acid metabolism in the human placenta and probably in placentas affected by GDM linked to maternal obesity (7). Concerning placental fatty acid transport, little is known about the leptin effect in GDM. However, in normal pregnancy, it has been shown that leptin increased fatty acid translocase, such as FAT/CD36, expressions in the syncytiotrophoblast of human placentas in primary cell cultures (27).

Taking all these facts together, we aimed to review the reported placental transport changes during GDM and to elucidate the possible role/impact of leptin on placental transporter expressions altered by GDM.




2 Gestational diabetes mellitus

GDM is one of the most common complications of pregnancy (28, 29) and affects 6–25% of pregnant women (depending on diagnostic criteria) (30). Although the GDM phenotype is highly heterogeneous (28), half of its prevalence can be explained by being overweight and obesity (3). GDM is associated with an increased risk of stillbirth and neonatal death, as well as multiple serious morbidities for both the mother and baby (28). The main pathophysiological complications of GDM are due to fetal macrosomia, which is characterized by a larger placenta weight and size to support the increased needs of the macrosomic fetus. The alteration of placental function may be a reason for abnormal fetal growth (29) observed in this pregnancy pathology (30). However, its pathophysiology is not fully clarified yet. In this sense, women with GDM have increased plasma leptin levels (31). Additionally, insulin levels are also increased in GDM, and hyperinsulinemia may mediate an increase in leptin synthesis in the placenta (32). In fact, the role of leptin in the growth and metabolism of the placenta has been demonstrated (9), where the trophic action of leptin may mediate an increase in the size of placentas affected by GDM (6, 33), as both the expression of leptin and its receptor were increased (34).



2.1 Diagnostic criteria of GDM

Unfortunately, there is no scientific consensus on the best way to diagnose GDM due to discrepancies in the definition criteria. Expert professional worldwide organizations acknowledge several acceptable options (35, 36), each with its own advantages and disadvantages. According to the American Diabetic Association and the National Institute for Health and Care Excellence, the diagnosis of GDM is defined as glucose intolerance diagnosed in the second or third trimester of pregnancy. Both criteria consider a fasting plasma glucose level ≥ 5.6 mmol/L or a 2-h plasma glucose level ≥ 7.8 mmol/L (7).

In Spain, a screening approach is used [preferred by the National Diabetes Data Group (NDDG) (37)] for gestational diabetes at week 24 of gestation, employing the O’Sullivan test (oral glucose tolerance test (OGTT) with 50 g of glucose). This includes an initial non-fasting 1-h glucose challenge test (35), which is logistically simpler for patients and can easily be performed as part of a scheduled prenatal visit. Most women do not require further screening. However, approximately 20% of patients fail this screening [values ≥ 140 mg/dL (≥ 7.77 mmol/L)], and a diagnostic test is then carried out using an OGTT of 100 g, with assessment of glycemia at baseline and at 3 h (38). Two or more increased values are diagnostic for GDM.

In the first trimester of pregnancy, and if there are risk factors (family history of diabetes, previous child weighing more than 4,500 g, age > 35 years, or history of gestational diabetes in a previous pregnancy), an O’Sullivan test is required. If the O’Sullivan test is pathological, the OGTT with 100 g is performed. If the result is normal, the OGTT with 100 g would be performed again in the second trimester.




2.2 Risk factors of GDM

GDM is a complex pathophysiological state of pregnancy in which both genetic and environmental factors are involved. Maternal obesity is considered the main risk factor for developing GDM (7). Indeed, obese women have an increased risk of GDM compared to women of normal weight (28). Therefore, both obesity and GDM lead to fetal overgrowth, which is associated with an increased capacity for maternal nutrient supply across the placenta to the fetus (11). Nevertheless, many other factors could contribute to a high risk of GDM, such as a family history of any form of diabetes, advanced maternal age, race (particularly non-white), or having previously given birth to large babies. Moreover, pathologies related to insulin resistance and leptin resistance, such as polycystic ovarian syndrome (PCOS) and pre-eclampsia, may also lead to GDM (39, 40).

The consequences of GDM during pregnancy can have significant impacts on both the mother and the newborn later in life. Castillo et al. have recently described the short-term and long-term complications of GDM in their work (7). Short-term complications may include maternal pre-eclampsia, fetal macrosomia, shoulder dystocia, and higher body fat. Additionally, complications during delivery, such as prolonged labor, caesarean birth, surgical complications, hemorrhage, infection, and extended hospital stays, may also occur in some cases. Moreover, the long-term complications of GDM can increase the risk of both the mother and her child developing type 2 diabetes mellitus, cardiovascular disease, metabolic syndrome, and obesity (7) later in life.





3 Leptin

Leptin is the satiety hormone secreted by adipose tissue and plays a crucial role in regulating energy balance (41). In fact, circulating leptin levels reflect adipose tissue size and also change with the nutritional state. Furthermore, leptin is considered a pleiotropic hormone that regulates not only body weight but also many other functions, including the immune system and the systemic inflammatory response, as well as the normal physiology of the reproductive system (9, 42). In this sense, leptin is involved in the ovulatory cycle, where it acts to maintain the energy balance linked to this process (43). Therefore, leptin can act as a metabolic switch connecting the nutritional status of the body to high energy-consuming processes. This is especially important in pregnancy, where leptin not only modulates satiety and energy homeostasis in the mother (41), but is also produced by the placenta. This is why, during pregnancy, high leptin secretion levels have been detected in both maternal and fetal circulations, which rise until childbirth (44, 45). The serum leptin concentration is two- to three-fold higher in pregnant women compared to nonpregnant counterparts and peaks at approximately 28–32 weeks of gestation. Immediately after delivery, levels rapidly decrease back to pre-gestational levels (46). This significant increase in maternal circulating leptin during pregnancy is caused by increased leptin production from adipose tissue in connection with weight gain and fat deposition in the mother from the late second trimester onwards, as well as by placental leptin production in the first trimester, which constitutes approximately 15% of the total maternal serum leptin concentration (47). In this sense, leptin modulates the dialogue between fetal and maternal metabolism (48). The leptin expression increases in the human (and non-human primate) placenta as pregnancy proceeds (49).



3.1 Leptin in normal pregnancy

Leptin is not only an adipokine hormone secreted by adipose tissue but also an autocrine trophic factor produced by trophoblast cells to regulate the growth and metabolism of the placenta (50–55). Leptin also plays an essential role in reproduction by regulating gonadotropin-releasing hormone secretion (56). Moreover, overexpression of leptin in animal models has been reported to cause early puberty (57). In humans, maternal leptin levels have been shown to be higher in the early stages of pregnancy (45). This data was later confirmed in 2004 by Nuamah et al., where the authors demonstrated an increase in maternal leptin levels during induced delivery, along with an increase in placental leptin mRNA production (58). The various reproductive functions of leptin include the regulatory control of different processes, such as placental growth, macronutrient transport, placental angiogenesis, trophoblast mitogenesis, and immunomodulation (6, 14), all crucial events for fetal development and adequate placental function.




3.2 Leptin in pathologic pregnancy

During pregnancy, the majority of plasma leptin is secreted by the placenta. The increased level of placental leptin has been linked to several metabolic conditions during pregnancy, such as maternal obesity and gestational diabetes mellitus (GDM) (6). Leptin and its receptors are key regulatory factors implicated in various pregnancy complications. Its role has been further studied in pregnant women with obesity, GDM, and pre-eclampsia. A summary of the more relevant implications of leptin in pregnancy complications is provided in Table 1.


Table 1 | Summary of the most common pregnancy complications and the role of leptin in their pathophysiology.



Pregnancies complicated by GDM are under the influence of many regulatory factors such as growth hormones, insulin resistance, and leptin, which may impact placental transport and fetal growth (7). Maternal obesity and the differences in diagnosis criteria may also impact the accuracy of the available data related to the involvement of leptin in the regulation of the placental transporter mechanism altered by GDM (7). Currently, several studies consider hyperleptinemia to be a good parameter in predicting GDM in early pregnancy (6, 19, 74). In addition, another group have shown that leptin levels are higher in women with early onset of GDM during pregnancy compared with standard onset and overweight women (75). Moreover, the authors of the same paper mentioned that these women had an inflammatory profile. Therefore, leptin is likely involved in the inflammatory response during pregnancy complicated by GDM.

An array of metabolic and endocrine alterations, such as hyperinsulinemia, hyperleptinemia, and oxidative stress, have been linked to pregnancy complicated by GDM. In this sense, Shang et al. reported that the increase of leptin levels in GDM was significantly correlated with markers of oxidative stress such as malondialdehyde, 8-isoprostane, and xanthine oxidase (76). Furthermore, the increase of leptin levels in GDM is more likely linked to body mass index (BMI) and is probably expected to alter fetal growth, leading to high fat body in GDM offspring. In this context, recent studies have demonstrated that higher leptin levels are associated with insulin-resistance in newborns from mothers with GDM (77, 78). Additionally, Powe et al. have demonstrated that an adjustment of leptin levels in early pregnancy enhances the insulin secretory response in GDM women (79). Such a result may indicate the possible beneficial role of leptin in GDM therapy.

GDM is the most common metabolic disorder that may alter placental nutrients transport. GDM is mainly characterized by insulin-resistance and leptin-resistance (10). Thus, higher concentrations of placental leptin mRNA and protein have been shown in placentas affected by GDM compared to healthy controls (13), and placental leptin production is increased in GDM. In this context, leptin is a regulatory factor that can modulate placenta functions in an autocrine or paracrine manner, involved in many processes such as proliferation and protein synthesis (51, 53, 80–82) and probably placental transporter activity or expression. Thus, the role or impact of leptin on placental transporters of macronutrients such as glucose, amino acids, and lipids in GDM will be further explored in the following sections.

Based on the literature, we hypothesized that the increase of leptin in GDM may enhance placental macronutrient uptake by increasing placental transporter expression. Figure 1. represents the proposal algorithm we have adopted in order to support our hypothesis and provide further insight to the role of leptin in GDM and its impact on placental nutrient availability compared to other pregnancy complications related to hypoleptinemia, such as fetal growth restriction (65–67) and spontaneous miscarriage in the first pregnancy trimester (69, 70), as mentioned in the previous section (see Table 1 for more details).




Figure 1 | Proposed Algorithm: Leptin’s Role in the Expression of Placental Transporters in Pregnancy Complicated by GDM.



In order to fulfill the demands of the fetus and normal growth, the human placenta promotes an array of macronutrient transporters, summarized in Figure 1. Their expression and activity in response to leptin and in GDM will be discussed in more detail, and further insight will be provided in the next sections.





3.3Role of leptin in glucose transport in GDM

Glucose is the primary nutrient required for fetal growth and development. Glucose transport across the placenta to the fetus is mediated by a family of facilitated diffusion transporters, named GLUTs, encoded by the solute carrier family 2 and facilitated glucose transporter (SLC2A) family of genes (83). Seven GLUT isoforms have been reported to be expressed in the human placenta at different sites of the syncytiotrophoblast membrane (84). Placental GLUT activity/expression have been found at distinct sites in the human placenta trophoblast. Most placental GLUTs are expressed in both polarized syncytiotrophoblast membranes of the placenta; in the maternal-facing microvillous plasma membrane (MVM) and the fetal-facing basal plasma membrane (BM), see Figure 1 for more detail. Leptin has been shown to increase the expression of GLUT1 in human placental trophoblasts under physiological conditions (21). In GDM, leptin could act to further upregulate the expression of GLUT1 and GLUT3 transporters, contributing to hyperglycemia in the fetus.



3.3.1 GLUT1

Glucose transfer from mother to fetus across the placenta takes place primarily through glucose transporter isoform 1 (GLUT1) because of its abundance in both the MVM and BM membranes of the human placenta syncytiotrophoblast (85). GLUT1 plays a regulatory role in the transplacental transport of glucose (86). GLUT1 is the primary glucose transporter protein isoform mediating glucose transport across the syncytiotrophoblast, the transporting epithelium of the human placenta (86). Relevant data related to this isoform have been provided. Thus, the GLUT1 expression is approximately 3-fold greater in the MVM than BM in the syncytiotrophoblast of normal pregnancy conditions (86). On the other hand, conflicting data have been reported, where the activity or expression of GLUT1 differs from first to third trimester of pregnancy (84, 87).

Interestingly, placental GLUT1 mRNA expression was positively correlated with maternal age and inversely correlated with placental weight (88). Moreover, placental GLUT1 protein expression was positively correlated with the pre-pregnancy maternal BMI and umbilical artery glucose levels, but was not associated with umbilical insulin levels (89, 90).

Moreover, GLUT1 activity in the human placenta is likely to be more dependent on maternal glucose metabolism and placenta function. In fact, this may justify the impact of other placental regulatory factors such as leptin, for instance. In term placenta affected by GDM, Gaither et al. reported an increase in GLUT1 expression leading to an increase in glucose uptake in the syncytial BM and no differences with respect to the MVM (85). Regarding the analysis of GLUT1 expression, conflicting studies have demonstrated no differences between placentas affected by GDM and nondiabetic pregnancies (91). Taking all these data in consideration, we can assume that other GDM- related conditions, in addition to insulin-resistance, might be responsible for the altered GLUT1 expression, and that placental leptin or leptin receptor, which are overexpressed in the MVM of human placentas, are affected by GDM, as we have recently shown (20).

GLUT1 expression appears to be inversely related to the maternal glucose concentration; however, within the physiological range, GLUT1 expression is relatively refractory to glucose concentration. Information is still needed on the expression and activity in well-defined conditions of GDM, on the mechanisms and consequences of the changes observed in pregnancy complicated by GDM, and on the role of leptin in regulating placental glucose transport. In this context and regarding GDM, evidence related to the effect of leptin on the expression of GLUT1 is sparse. Thus, the effect of leptin on GLUT1 is indirect. However, as discussed in-depth in recent studies, increased levels of leptin and activation of the leptin receptor in placentas affected by GDM (25–27) may modulate the activity of GLUT1 via the activation of cascade placental signaling pathways such as JAK/STAT or PI3K pathways. Proposal models of this association are shown in Figure 2. However, the direct effect of leptin on GLUT1 expression in GDM is unknown, and further investigation is needed to elucidate this effect.




Figure 2 | Proposed model of glucose transport in a trophoblast cell, adapted from references listed in Table 2. MVM, microvillous plasma membrane; BM, basal plasma membrane; GLUT, glucose transport; PI3K, phosphatidylinositol 3-kinase; IRS, insulin receptor substrate; Akt, protein kinase; mTOR, mammalian target of rapamycin; JAK/STAT, main leptin pathway in trophoblast cell.






3.3.2 GLUT3

Glucose transporter isoform 3 (GLUT3) provides high-affinity glucose transport to crucial organs and tissues that are highly dependent on a constant supply of glucose, even during hypoglycemia (92). In human trophoblast cells, GLUT3 is present during the first trimester of pregnancy and is characterized by a higher affinity for glucose compared to GLUT1. GLUT3 is an important isoform that ensures an adequate availability of glucose in fetal tissues early in gestation (93). However, there is limited information available on the activity or expression of GLUT3 in human placentas affected by GDM. Only two groups have reported the expression of GLUT3 in human placentas affected by GDM (94, 95). Some investigators have demonstrated a decrease in GLUT3 expression in diabetic groups (mice and human placentas) compared to normal controls (94). In contrast to this data, other studies conducted on animal models (diabetic rats) have shown that placental GLUT3 mRNA and protein levels were increased four-to-fivefold compared to nondiabetic rats (96). These findings suggest that GLUT3 expression may play a major role in placental glucose uptake in GDM by regulating hyperglycemia. Rong et al. discovered decreased GLUT3 gene methylation and increased mRNA expression in GDM patients compared with control pregnant women (97).

Regarding the effect of leptin or LEPR on placental GLUT3 expression, there is a lack of data. However, data from animal models in obese mothers, without diabetic conditions, have demonstrated that leptin and insulin increase GLUT3 expression via activation of the PI3K pathway (98). It is well-established that maternal obesity increases the risk of GDM. These findings support the possible role of leptin in increased glucose transport in GDM.




3.3.3 GLUT4

Another GLUTs family expressed in human placentas is glucose transporter isoform 4 (GLUT4). What is unique about GLUT4 is that it is an insulin-dependent transporter predominantly expressed in adipose tissue, as well as in skeletal and cardiac muscle (99). GLUT4 is also expressed in the MVM of the syncytiotrophoblast of human placentas (100). Xing et al. detected the colocalization of GLUT4 with insulin receptors in term human placental tissue (101). Zang et al. reported a decrease of GLUT4 expression in pregnancy complicated by GDM due to insulin signaling components (IRS-2) and sex hormone-binding globulin (SHBG) impact (102, 103).

On the other hand, the placental GLUT4 protein density was positively correlated with the fetal birth weight in patients with insulin-dependent GDM (89).

Considering the aforementioned data, the activity or expression of GLUT4 might be influenced by other GDM- related conditions in addition to insulin impact. Interestingly, recent research in non-GDM obese pregnancies conducted by Powell and coworkers demonstrated that maternal insulin stimulates placental glucose transport by promoting GLUT4 trafficking to the fetal-facing syncytiotrophoblast BM (104). A possible interpretation of the mechanism might involve the role of leptin and insulin receptor signaling pathways, whose overexpression in GDM have been shown in human placentas (20).

The role of leptin in GLUT4 expression in human placentas complicated by GDM is unknown. However, other studies on animal models, such as heterozygous C57BL6/J-Lepr(db/+) mice that develop spontaneous GDM, have shown that GLUT4 overexpression markedly improves insulin-signaling in GDM, resulting in increased insulin secretion and improved glycemic control (105). These data may indicate a beneficial role of leptin in future GDM therapy.




3.3.4 GLUT8

Glucose transport isoform 8 (GLUT8) is an insulin-dependent transporter similar to GLUT4. It participates in placental glucose transport. Its activity or expression has been confirmed in the syncytiotrophoblast and endothelium of villous vessels of term placentas (106). Currently, the available data on GLUT8 functions and its relationship with fetal growth complications are based on animal models (106, 107). However, there is no data regarding GLUT8 expression in placentas affected by GDM.




3.3.5 GLUT9

Glucose transport isoform 9 (GLUT9) is the only isoform in the GLUT family of glucose transporters that consists of 2 splice variants: GLUT-9a and GLUT-9b, both of which are responsible for transporting glucose and fructose. Additionally, they participate in urate transfer (91, 108). Both forms of the GLUT9 proteins are expressed in the syncytiotrophoblast of the human placenta. Their expression was significantly increased in diabetic placentas from pregnancies complicated by GDM and pre-gestational diabetes (PGDM) compared to healthy controls. Despite the differences in the expression of both GLUT9 forms (109), in trophoblasts, these findings were confirmed by a significant increase in GLUT9 expression in placentas from patients with insulin-dependent diabetes, GDM, and PGDM (110). These findings suggest that GLUT9 expression may play a role in the long-term consequences of fetal overgrowth associated with GDM. Unfortunately, there is a lack of information regarding the link between leptin and leptin receptor activation and their effect on GLUT9 in GDM.




3.3.6 GLUT10

The glucose transporter isoform 10, also known as GLUT10, is characterized by its high affinity for both D-glucose and D-galactose, but not fructose, unlike GLUT9 (111). Recent studies have indicated that DNA methylation regulates GLUT10 gene expression in the human placenta, which may influence the function of other members of the GLUT family in the placenta during pregnancy and in various disease conditions, as suggested by the authors. Additionally, the GLUT10 gene has been found to be involved in a region of human chromosome 20q12-13.1 associated with type 2 diabetes, indicating a potential role for GLUT10 in glucose metabolism and type 2 diabetes (112). To the best of our knowledge, the expression of GLUT10 in normal placentas or placentas affected by GDM has not yet been investigated. Unfortunately, there is currently no available information regarding the role of leptin in its expression.




3.3.7 GLUT12

Glucose transporter isoform 12 (GLUT12) has been reported to be predominantly expressed in the basal membrane of the syncytiotrophoblast and in extra-villous trophoblast cells of the human placenta during the first trimester of pregnancy (113). However, there is currently no available information regarding changes in placental GLUT12 expression related to any form of diabetes.

Furthermore, the existing data regarding changes in the expression of GLUTs during pregnancy and the impact of GDM appear to have conflicting reports. This discrepancy may make it difficult to understand the molecular mechanisms of GDM and further elucidate the role of GLUTs in diabetes-associated conditions. Hyperleptinemia, hyperinsulinemia, and fetal overgrowth (macrosomia) are the primary hallmarks of GDM. Therefore, gaining further insight into their role in placental glucose metabolism and GLUTs expression is necessary to develop new interventions or therapeutic approaches that can improve pregnancy outcomes or at least reduce the exposure of pregnant women and newborns to the consequences of GDM, both in the short and long term.





3.4 Role of leptin in amino acids transport in GDM

Concentrations of most amino acids are higher in fetal plasma than in maternal plasma, indicating active accumulation across the syncytiotrophoblast, which is the transporting and hormone-producing epithelium of the human placenta (114). The supply of amino acids to the fetus is critically dependent on the transport capacity of the placenta. This directional transfer requires the coordinated action of over 20 different amino acid transporter proteins, which are localized to both the maternal-facing and fetal-facing plasma membranes of the placental epithelium. These transporters facilitate the uptake of amino acids from the mother and their delivery to the fetus (115, 116). Placental amino acid transport can be categorized based on substrate specificity and sodium dependence, although only two systems have been extensively studied. System A is sodium-dependent and facilitates the uptake of non-essential neutral amino acids, while System L is sodium-independent and facilitates the uptake of essential amino acids in the placenta (17, 117, 118).



3.4.1 System A

The System A transporter is responsible for transporting a wide range of non-essential neutral amino acids, including alanine, serine, and glutamine (119). It is highly regulated and consists of three isoforms (SNAT1, SNAT2, and SNAT4), which are encoded by the SLC38A family of genes and expressed in the human placenta (7, 120). System A facilitates the uptake of non-essential neutral amino acids, and SNAT1 is the major contributor to amino acid uptake in cultured primary human trophoblasts. Higher expression of SNAT1 has been positively correlated with birth weight in human placentas from pregnancies affected by GDM, which is associated with fetal macrosomia (121). Regarding the expression of placental amino acid transporters in GDM, some studies have reported a decrease in the expression of system A amino acid transporters in the microvillous membrane (MVM) of placentas from pregnancies complicated by GDM. This decrease may be attributed to a reduction in the number of amino acid transporters, as suggested by the authors (122). However, contrasting these findings, Jansson et al. demonstrated an increase in placental amino acid uptake in human pregnancies complicated by GDM compared to control pregnancies (123). Additionally, the same investigators reported that leptin is involved in the regulation of placental amino acid transport by stimulating the activity of the system A amino acid transporter in term placentas (26) (Table 2). In line with this, a recent study has reported that leptin modulates the expression of the system A amino acid transporter in normal placentas through the JAK/STAT pathway (126). A theoretical model of this mechanism is proposed in Figure 3.


Table 2 | Summary of Altered Expressions of Placental Transporters in GDM and Leptin Expressions.






Figure 3 | Theoretical model of amino acid transport in GDM conditions, and the effect of leptin signaling on amino acid transporters, adapted from references listed in Table 2. Leptin binds to its receptor and activates a cascade of signaling in trophoblast cells, similar to the effects of insulin and the insulin receptor. Leptin and insulin exert their effects by modulating the expression of amino acid transporters via the PI3K and mTOR pathways. NEAA, non-essential neutral amino acid; EAA, essential amino acid; SNAT1, sodium-coupled neutral amino acid transporter 1; LAT1, large neutral amino acid transporter; MAPK, mitogen-activated protein kinases; PI3K, phosphatidylinositol 3-kinase; mTOR, mammalian target of rapamycin.






3.4.2 System L

As mentioned previously, the System L or large neutral amino acid transporter system (LAT) is a sodium-independent obligatory exchanger responsible for the transport of neutral amino acids (17, 135). This system primarily transports essential amino acids, such as L-leucine and L-phenylalanine, across the placenta. The System L of amino acid transport consists of two isoforms: LAT1 (also known as SLC7A5) and LAT2. Both isoforms have been found to be expressed in trophoblast cells of the human placenta, and they are localized in the microvillous membrane (MVM) and basal membrane (BM) of the syncytiotrophoblast (7, 118), as shown in Figure 4.




Figure 4 | Schematic diagram representing the most relevant placental macronutrient transporters for maternal-to-fetal circulation across the human syncytiotrophoblast. MVM, microvillous plasma membrane; BM, basal plasma membrane; GLUTs, glucose transporters; SNATs, sodium-coupled neutral amino acid transporters; LATs, large neutral amino acid transporter (sodium-independent); CD36, fatty acid translocase; FATP, fatty acid transporter proteins; FABPs, plasma membrane fatty acid binding protein; LC-PUFA, long-chain polyunsaturated fatty acids.



Increased activity or expression of both System A and System L in GDM have been reported to accelerate fetal growth and contribute to fetal overgrowth in women with GDM (123, 136), thereby affecting placental function. As mentioned earlier, leptin plays a crucial role in cell proliferation and protein synthesis. In human trophoblastic cells, leptin promotes amino acid synthesis through the activation of MAPK and PI3K pathways (51, 82).

However, changes in placental amino acid transporter expression modulated by leptin, whether through direct or indirect mechanisms, have not been well established, and the available data on this topic are limited.





3.5 Role of leptin in lipids transport in GDM

Fatty acids (FAs) play crucial roles in fetal growth and development. An increase in maternal circulating triglycerides (TGs) and dyslipidemia, as well as hyperleptinemia, are associated with GDM complications. These hallmarks of GDM can affect placental FA uptake. The transport of FAs from the maternal circulation to the fetus is mediated by the placenta. Maternal TGs require lipase enzyme activity to cross the placenta as non-esterified fatty acids (NEFAs) and glycerol. Placental NEFAs, under normal conditions, provide the necessary nutrients for fetal development. However, pregnancies complicated by GDM and obesity may be exposed to an excess supply of lipids, leading to an increase in placental FA transporters. This observation has been associated with an increase in fat mass in newborns from mothers with GDM (137).

Maternal FAs can cross the placenta through the microvillous membrane (MVM) of the syncytiotrophoblast via simple diffusion or facilitated transport by FA carriers such as FA translocase (FAT/CD36), FA transport proteins (FATPs), and plasma membrane fatty acid binding protein (FABpm) (7, 135). The expression of these transporters in the placenta facilitates the transfer of NEFAs from the placenta to the fetus through the basal membrane (BM) of the syncytiotrophoblast. However, the available data regarding the expression levels of these transporters in both the MVM and BM of the syncytiotrophoblast are unclear and conflicting in normal physiological pregnancies and altered conditions.

Moreover, placental fatty acid (FA) transport in GDM is more complex and has shown to be more susceptible to alterations in placental factors and pathologic pregnancies related to GDM-induced metabolic changes. In this section, we will focus on the most relevant long-chain polyunsaturated fatty acids (LC-PUFAs) and their related transporters involved in fetal growth and development to gain further insight into the molecular mechanisms altered by GDM pregnancy and the possible role of leptin. As mentioned previously, maternal triglycerides (TGs) need to undergo processing by lipases (7, 18), such as lipoprotein lipase (LPL) and endothelial lipase (EL), in order to cross the placental microvillous membrane (MVM) and basal membrane (BM) and reach the fetus as non-esterified fatty acids (NEFAs). LPL and EL activities are likely required to generate NEFAs from maternal TGs. These two lipases have been found to be highly expressed in the human placenta (138); LPL is particularly abundant in the MVM (132), while EL is present in the membrane of capillary endothelial cells in the human placenta (7, 18, 135).

Fatty acid transport proteins (FATPs) are integral placental transporters for long-chain polyunsaturated fatty acids (LC-PUFAs) such as arachidonic acid (AA) and docosahexaenoic acid (DHA), which are both essential for fetal growth and brain development. The FATP family consists of six isoforms, of which five (FATP1-4, 6) are encoded by the SLC27A gene family (7, 139). All of these isoforms have been reported to be expressed in the human placenta (140). Various studies have indicated that FATP isoforms 1 and 4 are the primary transporters of DHA across the human placenta (18). However, recent research has demonstrated that the sodium-dependent lysophosphatidylcholine symporter (MFSD2A) mediates DHA delivery across the human placenta to the fetus, and its expression may affect placental DHA uptake (131).

In contrast to the FATP family, the placental fatty acid binding protein family (FABPpm) is mainly characterized by its high affinity for LC-PUFAs. It consists of five members (FABP1-5) and is exclusively located in the microvillous membrane (MVM) of the syncytiotrophoblast in the human placenta (140–142). Unfortunately, there is a lack of information regarding FABP expression in the human placenta and in pregnancies complicated by GDM. Nevertheless, some data have been reported regarding altered gene expression of FABP in GDM (133).

The expression and activity of proteins involved in fatty acid transport are influenced by insulin, IGF1, and leptin (69–71). In pregnancies complicated by GDM and a high body mass index (BMI), some alterations in placental fatty acid transport have been observed. These include a decrease in FATP1 and FATP4 expressions, but an increase in FAT/CD36 and FATP6 expressions compared to normal controls (128) (see Table 1 for more details). These findings suggest that GDM and high BMI increase the uptake of fatty acids in the placenta independent of maternal fatty acid supply, which is reported to be the main factor for fatty acid transport in the placenta. Regarding DHA, a decreased level has been observed in pregnancies complicated by GDM due to low expression of the MFSD2A transporter (131). Interestingly, in contrast to these findings, Ortega et al. have demonstrated unaltered levels of both AA and DHA concentrations in pregnant women with GDM. Additionally, the authors have reported a decrease in most fatty acids in cord serum from GDM subjects, except for α-linolenic acid (ALA), which was higher in the GDM group (143). It is important to note that ALA is one of the most important LC-PUFAs required for fetal growth, as the placenta and fetus cannot synthesize adequate amounts of this molecule to sustain normal fetal development (7).

Despite hyperlipidemia associated with GDM and high fetal fat mass, the potential effect of leptin on placental fatty acid transport is not well understood. Leptin and insulin stimulation have been reported to influence fatty acid uptake in BeWo cell placental choriocarcinoma. It has also been shown that an increase in leptin levels leads to an increase in FAT/CD36 expression in cultured samples from the human placenta in obese pregnant women without GDM (27). Leptin may also be related to the antioxidant system. In this context, a recent study has demonstrated that supplementation with 100 mg of alpha-lipoic acid in women with GDM leads to an increase in leptin and adiponectin levels (144). These findings suggest that leptin is likely involved in the regulation of oxidative stress related to GDM. Evidence of this correlation has been mentioned before (76). Figure 5 summarizes the altered expressions of fatty acid transporters in GDM.




Figure 5 | Adapted model for placental fatty acid transport in GDM and the role of leptin signaling in lipid metabolism. FAT/CD36, fatty acid translocase; FATP, fatty acid transporter proteins; FABPs, plasma membrane fatty acid binding protein; MFSD2A, major superfamily domain 2A; DHA, docosahexaenoic acid.






3.6 Leptin and GDM: an integrated model of molecular regulatory mechanisms

A wide range of growth factors, pro-inflammatory cytokines, and hormones, including leptin, insulin, and IGF-1, are highly expressed in diabetic placentas in the MVM of the syncytiotrophoblast (10, 82, 122, 137, 145). In pregnancies complicated by GDM, changes in maternal and fetal circulatory levels of leptin are believed to modulate placental functions related to nutrient transport and may potentially alter the expression of placental transporters through intracellular signaling cascades. Therefore, this can be considered the main cause of higher placental nutrient uptake during pregnancy, which can lead to fetal growth disorders such as macrosomia, being large for gestational age (LGA), and an increased risk of metabolic dysfunction in offspring.

Leptin is a proinflammatory factor that modulates the expression of FA and glycerol transporters and mediates placental NEFA uptake by promoting oxidative stress in GDM conditions, as shown in Figure 6. As discussed above, many studies have reported higher leptin levels in GDM pregnancy compared to normal pregnancy. Thus, it is expected that the potential impact of placental leptin signaling on the expression of macronutrient transporters altered in GDM can help elucidate the molecular mechanisms underlying GDM pathophysiology. Furthermore, this may provide insights into the main cause of fetal macrosomia, resulting from changes in the expression pattern of placental transporters.




Figure 6 | Proposed signaling of leptin and insulin in human trophoblastic cell with GDM. IR-1, Insulin receptor substrate 1; AKT, protein kinase; TNFα, tumor necrosis factor-α; MAPK, mitogen-activated protein kinases; PI3K, phosphatidylinositol 3-kinase; mTOR, mammalian target of rapamycin.



Leptin serves as both a proinflammatory factor involved in lipid metabolism and GDM pathophysiology, as well as an antiapoptotic factor that acts via the MAPK pathway in the human placenta (50). As mentioned earlier, leptin stimulates system A amino acid transporters through the activation of the JAK2/STAT3 pathway. This provides a compelling reason to investigate other activated signaling pathways through which leptin may modulate glucose uptake and protein synthesis. In this context, the mammalian target of rapamycin (mTOR) is another positive signaling regulator of key placental functions. Given that the mTOR pathway plays a crucial role in nutrient sensing in the human placenta (118), it has been proposed that the activation of placental mTOR signaling may contribute to increased nutrient delivery to the fetus. Therefore, the activation of mTOR and IGF-1 pathways in the placentas of women with GDM who give birth to macrosomic babies has been attributed to the increased expression of SNAT1 (121). A proposed model illustrating the underlying mechanism of mTOR and leptin signaling is presented in Figure 6.

Placental leptin binds to the leptin receptor in the MVM of the syncytiotrophoblast and triggers a variety of intracellular functions in the human placenta via the MAPK pathway. Put simply, placental leptin receptor signaling has been shown to promote the MAPK pathway and processes that are important for regulating amino acid metabolism (82) in human trophoblast cells. A recent study demonstrated that an increase in the proinflammatory cytokine TNF-alpha, observed in maternal obesity and GDM, leads to increased amino acid uptake in cultured primary human trophoblast cells in a MAPK-dependent manner. In the context of obesity, it has been shown that leptin stimulates the production of TNF-α in the human placenta (6, 118). Furthermore, Jansson et al. demonstrated that TNF-α regulates placental amino acid uptake by increasing the protein expression of both SNAT1 and SNAT2 isoforms of system A amino acid transporters via p38 MAPK (145). This evidence highlighting the significant association between leptin and TNF-α as proinflammatory mediators in the pathophysiology of GDM may help elucidate the connection between leptin and the MAPK pathway, as well as its role in amino acid and lipid metabolism in diabetic placentas.

Figure 6 shows the possible molecular mechanism of the link between leptin and proinflammatory TFN-α in the regulation of amino acid metabolism via the MAPK pathway.





4 Conclusion

Nutrient transport across the syncytial epithelium of the placenta is a highly regulated process that depends on various nutritional and hormonal signals. In general, obesity and GDM indicate abundant maternal fuel reserves, which stimulate the placental transport of glucose, amino acids, and lipids, thereby increasing their availability for fetal growth and optimizing offspring fitness. The primary objective of this review was to provide an overview of the expression of placental transporters that are altered by GDM, while also assessing the effect of leptin on these transporters and their expression. However, it should be noted that GDM, as a pathophysiological condition, may impact the accuracy of data related to the effect of leptin on placental transporters. Increases in leptin levels during pregnancy complicated by GDM may be associated with an increase in placental nutrient uptake. Nevertheless, the specific effect of leptin on the expression of GLUTs in human placentas affected by GDM remains unclear. Leptin signaling pathways may serve as crucial targets for new GDM therapies. However, further in vivo and in vitro experiments are required to evaluate the impact of leptin on placental nutrient transport under normal and altered conditions.
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Background

Studies have demonstrated that high iron status is positively associated with gestational diabetes mellitus (GDM), implying that iron overload and ferroptosis play important roles in the development of GDM. The aim of this study was to explore effective therapeutic drugs from traditional Chinese medicine (TCM)formulas for the treatment of GDM based on ferroptosis.





Methods

In this study, the presence of ferroptosis in the placenta was verified through clinical and experimental data, and key genes were subsequently screened for association with ferroptosis in the development of GDM. The analysis was based on transcriptome sequencing of datasets combined with differentially expressed genes (DEGs) analysis and weighted gene correlation network analysis (WGCNA); functional enrichment analysis was also performed. A protein−protein interaction (PPI) network was constructed and pivotal genes were identified using Cytoscape. Finally, traditional Chinese medicine (TCM)formulas related to treating GDM were collected, then the proteins corresponding to the key genes were molecularly docked with the small molecular structures of clinically proven effective herbal tonics, and molecular dynamic simulations were performed to select the best candidates for pharmacological compounds.





Results

Elevated ferritin levels in patients with GDM were verified using clinical data. The presence of ferroptosis in placental tissues of patients with GDM was confirmed using electron microscopy and western blotting. Ninety-nine key genes with the highest correlation with ferroptosis were identified from DEGs and weighted gene co-expression network analysis (WGCNA). Analysis using the Kyoto Encyclopedia of Genes and Genomes demonstrated that the DEGs were primarily involved in the oxidative phosphorylation pathway. The key genes were further screened by PPI; two key genes, SF3B14 and BABAM1, were identified by combining the gene corresponding to protein structure and function, followed by molecular docking and molecular dynamic simulation. Coptis chinensis was proposed as the best candidate for herbal treatment at the molecular level.





Conclusion

This data revealed the presence of ferroptosis in patients with GDM and identified possible modulatory roles of ferroptosis-related genes involved in the molecular mechanisms of GDM, providing new insights into the pathogenesis of GDM, which also provided new directions for the systematic optimization of TCM formulas for the management and targeted treatment of GDM.
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1 Introduction

Gestational diabetes mellitus (GDM) is traditionally defined as glucose intolerance of variable severity, with onset or first detection during pregnancy. The global prevalence of GDM is up to one in seven pregnancies (1). GDM is associated with long-term adverse health outcomes in women and their offspring and is at the center of the “diabetes begetting diabetes” vicious circle (2). For example, women with GDM experience an increased risk of hypertensive disorders in pregnancy, preterm delivery, and an exceptionally high risk for type 2 diabetes, metabolic syndromes, and cardiovascular diseases later in life (3). Children born to pregnant women affected by GDM often experience excess growth during the fetal period, resulting in increased adiposity at birth and an increased risk for obesity and cardiometabolic disorders later in life (2, 4). Current studies have demonstrated that the occurrence and development of GDM is influenced by multiple factors, among which genetic, metabolic and environmental factors are important in the pathogenesis of GDM(5). Currently, we recommend dietary modification and increasing appropriate physical activity to improve gestational diabetes, and when basic methods cannot control blood glucose, insulin therapy (6) or oral hypoglycemic agents, mainly metformin and glibenclamide (7), are mostly used. The majority of current studies have focused on hypoglycemic approaches to treat GDM. However, the efficacy in preventing and stopping further disease progression have not been completely satisfactory. Therefore, identifying women at increased risk of GDM at an early stage and exploring markers to predict GDM can aid in the diagnosis and treatment of GDM.

The average daily iron requirement during pregnancy increases to approximately 1,000–1,200 mg to meet the maternal and fetal placental needs for erythropoiesis, growth, and development (8). Therefore, much attention has been focused on the prevention of iron deficiency, that is anemia, and iron supplementation has become a routine recommendation for all women throughout pregnancy (9). Nonetheless, as early as 20 years ago, studies suggested that iron accumulation increases the risk of glucose intolerance in late pregnancy and iron overload may play a role in the development of GDM (10). Many subsequent clinical studies have demonstrated a correlation between disturbances in iron homeostasis during pregnancy and GDM. A recent meta-analysis included 32 prospective cohort or case-control studies investigating the relationship between serum iron metabolic markers and GDM, and higher levels of serum iron, ferritin, transferrin saturation, ferritin, and hemoglobin were reported in patients with GDM than in those without GDM, suggesting that high serum ferritin and hemoglobin levels are positively associated with the risk of developing GDM (11). Recent studies have questioned the recommendation of routine iron supplementation during pregnancy in iron-sufficient and non-anemic women and have further suggested that excessive iron intake may paradoxically increase the risk of reproductive disorders (12). Several relevant clinical, in vitro, and in vivo studies have validated the correlation between iron overload and the development of GDM (13, 14); nonetheless, the specific mechanisms by which iron overload causes GDM are not fully understood. Iron death is an iron-dependent process characterized by dysregulation of iron homeostasis, leading to excessive iron death, which is a recently described programmed cell death process mediated by iron-dependent lipid peroxidation of the cell membrane. Iron overload drives iron accumulation and the biological effects thereof (15). Iron overload during pregnancy leads to ferroptosis, which causes GDM (12). Therefore, iron overload may be presumed to play a crucial role in GDM. However, whether iron overload actually causes GDM or is simply a byproduct of iron death remains to be proven.

As a type of programmed cell death, ferroptosis is dependent on iron and induced by the accumulation of oxidatively damaged phospholipids. It is associated with the malfunction of glutathione-dependent antioxidant defenses mediated by glutathione peroxidase 4 (Gpx4) via different pathways (8, 10), resulting in an increased amount of reactive oxygen species (ROS). This in turn leads to a reduction in the metabolism of lipid peroxides catalyzed by Gpx4 and intracellular glutathione, which causes Fe2+ to oxidize lipids in a Fenton-like manner, resulting in the production of large amounts of ROS and promotion of ferroptosis (16). Recently, the importance of ferroptosis has been demonstrated in the antioxidant activity of pancreatic β-cells and insulin resistance (17). However, the specific role of ferroptosis in GDM currently remains elusive.

Traditional Chinese medicine (TCM) is an effective way to treat GDM with chemical diversity, effectiveness and few side effects (18). In recent years, TCM has made remarkable progress in the treatment of GDM, and a large number of effective formulas have been accumulated. However, due to the complexity of TCM components, the formulations of TCM vary greatly. Current TCM-related studies have focused on given formulations, herbs or single compounds, and we performed screening of specific core drugs for the treatment of GDM by transcriptomics, network analysis and computer virtualization.

In this study, clinical data were applied to reaffirm the positive association of ferritin with the development of GDM, confirming the occurrence of ferroptosis in the placental tissue of patients with GDM by using electron microscopy, and the expression of GPX4, SLC7A11, and FTH1 was evaluated by western blot analysis. Recent advances in sequencing technology have greatly facilitated genetic studies of GDM. Reliable differentially expressed genes (DEGs) were identified in GDM based on the GSE70493 dataset. A weighted gene co-expression network analysis (WGCNA) in 32 patients with GDM and 31 non-GDM controls was conducted. Compared with traditional methodologies that take every transcript in the microarray alone and only capture two less pieces of information than that provided by the microarray, WGCNA takes correlations among those transcripts into account and identifies potential disease-related gene co-expression modules (GCMs) by considering associations between GCMs and disease traits as well as intramodular associations. A gene module closely associated with ferroptosis was identified and screened for potential biomarkers via a combination of protein–protein interaction (PPI) networks. Wheat-flavored Rehmannia decoction, Astragalus Sijunzi decoction, Radix Astragali and Radix Ophiopogonis decoction, and Shenqi Dihuang decoction have been used for many years in the clinical treatment of GDM with remarkable efficacy. The complexity of Chinese herbal medicine suggests a potential for multiple therapeutic applications. We analyzed the herbs that could be evaluated for the treatment of GDM from the perspective of ferroptosis. In summary, we analyzed the impact of ferroptosis on GDM utilizing a bioinformatics approach and found a significant association between ferroptosis and GDM. In addition, we analyzed the herbs targeted ferroptosis to treat GDM based on molecular docking and molecular dynamic simulation. This study provided new directions for the management and targeted treatment of GDM.




2 Materials and methods



2.1 Collection of clinical data and tissue samples

A procedural flowchart of the study is illustrated in Figure 1. A retrospective analysis was performed from January 2020 to December 2020 at the Shengjing Hospital, China Medical University. Pregnant women who completed the oral glucose tolerance test (OGTT) from 24–28 weeks of pregnancy and received a diagnosis of GDM based on abnormal OGTT defined as per the criteria of the International Association of Diabetes and Pregnancy Study Groups (IADPSG) were included in the study; patients with normal OGTT in the same period were included as controls. A total of 65 GDM patients with ferritin and 153 normal pregnant women with ferritin were included during the first trimester. And 330 GDM patients with ferritin and 920 normal pregnant women with ferritin were included during the second trimester. Detailed information is listed in Supplementary Table 1. Subjects with a history of GDM, smoking before and during pregnancy, and medical conditions, such as hemoglobinopathies, infections, and other chronic diseases, were excluded. Serum ferritin levels were measured during early (8–12 weeks) and mid-pregnancy (24–28 weeks). Ferritin and blood glucose levels were measured using ferritin kit for the DXI800 instrument (Beckman Coulter, Brea, CA, USA) and blood glucose kit for the c16000 instrument (Abbott Diagnostics, Abbott Park, IL, USA).




Figure 1 | Flowchart.



Women with full-term singleton pregnancies who underwent cesarean delivery at the Shengjing Hospital of China Medical University, from January 2021 to June 2021, were selected. GDM was diagnosed based on the criteria of the IADPSG. The exclusion criteria included twin (multiple) pregnancies; diabetes diagnosis prior to pregnancy; pregnancy complications such as preeclampsia; essential (primary) hypertension; hyperthyroidism; hypothyroidism; Cushing’s syndrome; smoking; assisted reproduction; and severe liver, kidney, or heart disease. 10 women with GDM and 10 healthy controls were included in the study. Placental tissue samples from women with GDM and healthy women were collected randomly from the substrate (2 cm from the periphery to avoid placental infarction) immediately after delivery for western blotting. The tissue samples were washed repeatedly with phosphate buffered saline (PBS), placed in labeled lyophilized tubes, and stored in liquid nitrogen. Two or three pieces of placental tissue approximately 0.5 cm3 in size were randomly sampled from the substrate (in the middle of the central tufts of villi connecting to the maternal region) immediately after delivery for electron microscopic evaluation. The placental tissue samples were washed in saline, and the washed placental tissue was immersed in 2.5% glutaraldehyde fixative (0.1 mol/L sodium dimethylarsonate buffer, pH 7.4). The tissue blocks were cut into 1 mm3 pieces and fixed at 4°C for at least 2 h. Sampling was performed simultaneously by YW and BL. This study was conducted in accordance with the principles of the Declaration of Helsinki and approved by the Research Medical Ethics Committee of Shengjing Hospital of China Medical University (The ethics number of the experiment:2017PS066K).




2.2 Validation of ferroptosis in placental tissues of patients with GDM

Electron microscopy was used to examine mitochondrial changes in placental tissues of patients with GDM. After fixation, the placental tissues were washed with 0.1 mol/L PBS for 30 min and post-fixed with 1% osmium tetroxide fixative for 90 min at 4°C. After rinsing, dehydration, permeabilization, embedding, sectioning, and staining, changes in mitochondrial morphology in the placental tissue cells were observed under an electron microscope (H-7650, Hitachi, Japan) and photographed for sample retention. Protein levels associated with ferroptosis were subsequently evaluated. Placental tissues collected from patients with GDM (n = 10) as well as from normal pregnancies (n = 10) were removed from the liquid nitrogen, and the samples were lysed with RIPA lysis buffer (P0013B, Beyotime, Beijing, China) and phenylmethylsulfonyl fluoride (PMSF). Proteins in the lysates were electrophoresed on 10% sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and subsequently transferred to polyvinylidene fluoride (PVDF) membranes. After closure with 5% skim milk to block non-specific binding, the specific primary antibody was placed and incubated overnight at 4°C, followed by incubation at 37°C for 1 h with horseradish peroxidase-labeled secondary antibodies (Cell Signaling Technology). The following primary antibodies were used: SLC7A11 (1:500; ab175186; Abcam), GPX4 (1:1000; ab231174; Abcam), FTH1 (1:500; ab75972; Abcam), and GAPDH (60004-1-Ig; Proteintech).

Antibody-labeled proteins were detected using chemiluminescence with a LAS-3000 luminescence image analyzer (Fujifilm Holdings Corporation, Tokyo, Japan) and SuperSignal West Femto maximum sensitivity substrate (Thermo Fisher Scientific, Inc., Waltham, MA, USA). Using the gel image processing software image J, the backgrounds were removed, units and assay data were adjusted, and grayscale values were calculated. Values were entered into GraphPad Prism 7 (GraphPad Software 7.0.1, San Diego, CA, USA) for statistical analyses. Experiments were performed in triplicate for each target protein strip. Antibody-labeled proteins were detected using chemiluminescence with a LAS-3000 image analyzer (Fujifilm Holdings Corporation, Tokyo, Japan), and ImageJ was used to remove the background, adjust the units with the assay data, and calculate the grayscale values. The values were entered into GraphPad Prism 7 for statistical analysis. Triplicate experiments were performed for each target protein strip.




2.3 Microarray data source

GSE70493 with the GPL17586 platform was collected from Gene Expression Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/geo/). In total, 63 samples were obtained, including RNA-seq data and clinical data; 32 placenta samples from patients with GDM and 31 placenta samples from patients without GDM, and 253 ferroptosis-related regulators were collected from the FerrDb database (19).




2.4 Identification of differentially expressed genes

Following potent mean background correction, the microarray matrix file was subjected to quantile normalization and expression calculation using Affymetrix to obtain gene expression profiles. The differentially expressed genes (DEGs) between placental samples from 32 patients with GDM and 31 matched pregnancies without GDM were identified using the R package Limma (available online: http://www.bioconductor.org/). The criteria for DEGs considered included |log2(FC)| > 0.1 and a p-value < 0.05. Subsequently, a heatmap of the obtained differential genes was constructed using the pheatmap package (version 1.0.8, https://cran.r-project.org/web/packages/pheatmap).




2.5 Functional enrichment analysis

The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Gene Ontology (GO) analyses were used to investigate underlying potential mechanisms; the GO analysis consisted of biological process (BP), cellular component (CC), and molecular function (MF). This analysis was performed using the R package ClusterProfiler. In this study, GO and KEGG pathway enrichment analyses were performed for the DEGs obtained. False discovery rate (FDR) <0.05 was identified as the threshold for enrichment analysis.




2.6 Weighted gene co-expression network analysis

A weighted gene co-expression network was constructed to explore the correlation with ferroptosis. The co-expression similarity network was composed of the GSE70493 mRNA expression profile and 253 ferroptosis-related regulators, using the R package WGCNA. The soft thresholding was set at seven. A matrix of weighted adjacency was created using the formula amn = |cmn|β (amn: adjacency between gene m and gene n; cmn: Pearson’s correlation; β: soft-power threshold). Subsequently, the clinical trait data were loaded, and scale independence and mean connectivity were estimated. Additionally, the topological overlap measure (TOM) matrix, transformed by the adjacency matrix, was used to estimate the connectivity property in the network. A hierarchical clustering dendrogram of the TOM matrix was constructed using the average distance with a minimum size threshold of 30 to classify similar gene expression profiles into different gene modules. Different module eigengenes (MEs) and clinical traits were then correlated. The gene significance (GS) quantifying the associations of individual genes with the clinically interesting trait and module membership (MM), which acted as the correlation between the MEs and the gene expression profiles, were calculated. As previously reported, if GS and MM were highly correlated, the most important (central) elements in the modules were also tightly associated with the trait. As such, they can be used to construct the PPI network with the use of Cytoscape software to identify hub genes.




2.7 Molecular docking and molecular dynamics analysis

To evaluate whether Wheat-flavored Rehmannia decoction, Astragalus Sijunzi decoction, Radix Astragali and Radix Ophiopogonis decoction, and Shenqi Dihuang decoction tonics can bind to the ferroptosis-related genes and play a therapeutic role, molecular docking of key active ingredients with key targets was performed, and the binding energies were evaluated as evaluation indices. Given the complexity of the active ingredients of herbal medicines, we screened all active ingredients based on multiple commonly used herbal ingredients (https://old.tcmsp-e.com/index.php; http://www.tcmip.cn/TCMIP/index.php/Home/; http://119.3.41.228:8000/tcmid/herb/1138/).The molecular structures of the akey active ingredients of all Chinese medicine components involved in the four tonics were downloaded from the PubChem database (https://pubchem.ncbi.nlm.nih.gov/), along with a total of 218 ingredients. After format conversion using Open Babel, AutoDockTools 1.5.7 was used to process the ligands and receptors. Core target protein structures were downloaded from the protein database (PDB; http://www.rcsb.org/pdb/home/home.do). We used PyMol software to remove water molecules and residues from the receptor proteins, followed by the addition of nonpolar hydrogens to generate coordinate files using AutoDockTools 1.5.7. Protein-binding pockets were predicted using DoGSiteScorer (https://proteins.plus/). Using the key target as the receptor and the corresponding key active ingredient as the ligand, AutoDockTools was used to set the docking box center and the box grid parameters, including the active pocket sites where the small molecule ligand might bind. Molecular docking was performed using AutoDock Vina 1.1.2, maintaining the top 10 ligands with the lowest binding free energy. The lowest energy conformation was selected as the best binding conformation, and the protein-ligand forces were mapped in two dimensions using Poseview. The binding sites, interaction forces between amino acid residues, and binding pocket surfaces were analyzed in three dimensions using PyMOL. The molecular structures of 218 active ingredients were obtained by docking, and the best-scoring-complex conformation was applied for mapping using PyMOL.

Based on the results of molecular docking, molecular dynamic simulations of the obtained protein-ligand complexes were performed using GROMACS 5.0 software (http://www.gromacs.org/); GROMOS was used to generate input files, where the topology files of the small-molecule ligands were generated using the ATB website (http://atb.uq.edu.au/index.py). All simulations were performed using periodic boundaries, and all were placed in a dodecahedral cell box (with a 1 nm edge distance). The simple point charge solvent model was initially added as a water model, and five chloride ions were added to the solventized system to maintain the electrical neutrality. The simulations were performed using a periodic boundary approach with 1,000 steps of energy minimization at 300 K for the protein and small-molecule ligand complexes, followed by 100 ps canonical ensemble (NVT) systemic equilibrium and 100 ps of isothermal–isobaric (NPT) systemic equilibrium for the optimized system, in which the system positions were constrained. Finally, the entire system was maintained at 300 K for 20 ns of kinetic simulations, where the time interval was 2 fs, and the coordinate trace files were saved every 10 ps. The post-simulation analysis included structure comparison (alignment), calculation of root mean square deviation (RMSD), hydrogen bonding (H-bond), solvent accessible surface area (SASA), temperature, total energy, and radius of gyration (Rg). The RMSD was used as an evaluation index of the stability of the complexes; the smaller the average RMSD, the more stable the bonding.




2.8 Statistical analysis

All analyses were performed using R software (version 3.6.1, www.r-project.org). All statistical tests were two-sided, and statistical significance was set at p < 0.05. Group comparisons were performed using the independent t-test for normally distributed variables and the Mann–Whitney U test for variables showing an abnormal distribution. The statistical methods and algorithms used were described in the corresponding steps.





3 Results



3.1 Validation of ferroptosis in patients with GDM

Retrospective analysis of ferritin levels measured in early and mid-pregnancy between the GDM and healthy groups (Figure 2A) demonstrated that serum ferritin levels in early pregnancy were positively associated with the risk of GDM and serum ferritin levels in mid-pregnancy were significantly higher in pregnant women with GDM than in non-GDM women (p < 0.05). Thus, our results are consistent with the findings of previous studies indicating that high ferritin levels are an important factor in GDM development. To further investigate whether ferroptosis was activated during GDM, western blotting to detect the levels of protein associated with ferroptosis and electron microscopic observation of changes in intracellular mitochondria were performed. As depicted in Figure 2B, western blotting indicated reduced levels of GPx4 (p < 0.01), SLC7A11 (p < 0.01), and FPN1 (p < 0.01) in placental tissues of patients with GDM compared with healthy controls. Mitochondrial morphology was observed using electron microscopy: mitochondria were swollen, and mitochondrial cristae were reduced or absent (Figure 2C). Overall, this evidence suggests that iron death is activated during GDM.




Figure 2 | Evaluation of ferroptosis in GDM patients. (A) ferritin in early and mid-pregnancy between the GDM group and non-GDM group. (B) Levels of proteins associated with ferroptosis were assessed using western blot between the GDM group (n = 10) and non-GDM group (n = 10). (C) Mitochondrial morphology was observed under electron microscopy between the GDM group and non-GDM group(Red arrows point to changes in mitochondria. Mitochondria in GDM placental tissue conform to ferroptosis changes, with reduced or disappeared mitochondrial cristae and rupture of mitochondrial outer membrane; Mitochondria in normal placental tissue are normal). ***p<0.001.






3.2 Identification of DEGs in GDM

In this study, DEGs and their significant biological characteristics were identified based on GEO mRNA microarray datasets (GSE70493); there were 32 GDM cases and 31 matched pregnancies, without maternal complications. Following gene expression assays, data processing, and normalization, DEGs were screened among each mRNA dataset using the Limma R package with the criteria of |log2(FC)| > 0.1 and a p-value <0.05. The volcano plot contained each of the DEGs in the dataset, and 172 upregulated and 324 downregulated genes were identified (Figure 3A). The DEGs are listed in Supplementary Table 2.




Figure 3 | The DEGs based on GEO mRNA microarray datasets (GSE70493). (A) The volcano plot of DEGs in GSE70493. (B)The heatmap of top 200 DEGs in GSE70493. (C) KEGG enrichment analysis. (D) GO enrichment analysis of biological process. (E) GO enrichment analysis of cellular component. (F) GO enrichment analysis of molecular function.



A heatmap was compiled for the top 20 genes with the most significant differential expression from the 63 samples. Cluster analysis suggested that these DEG expression profiles were able to distinctly distinguish GDM from non-GDM samples (Figure 3B).

Subsequently, functional enrichment analysis was performed to identify the signaling pathways differentially affected by GDM using the ClusterProfiler package. The DEGs between the GDM group and the normal group were chiefly enriched in “oxidative phosphorylation” pathways, “thermogenesis” pathways, and “non-alcoholic fatty liver” disease pathways as determined using KEGG analysis, while the group without GDM was highly associated with “allograft rejection” pathways, and “graft-versus-host disease” pathways (Figure 3C). The GO analysis of the DEGs demonstrated that the differential genes were primarily enriched in the “lymphocyte-mediated immune” pathway, “adaptive immune response based on somatic” pathway, and “recombination of immune receptors built from immunoglobulin superfamily domains” pathway in BP (Figure 3D). In terms of cellular components, the DEGs were primarily enriched in the immunoglobulin complex, external side of plasma membrane, and circulating immunoglobulin complex (Figure 3E); with respect to MF, the DEGs were primarily enriched in antigen binding, immunoglobulin receptor binding, and peptide binding (Figure 3F).




3.3 Genes co-expressed with ferroptosis-related genes via WGCNA

To determine whether ferroptosis affects GDM, 253 ferroptosis-related regulators from FerrDb were collected and a co-expression network based on the ferroptosis signature genes and average expression values of 496 differential genes was constructed (Supplementary Table 3). Differences in the expression of ferroptosis signature genes between the two groups was compared. The ferroptosis signature expression was greater in the GDM group than in the non-GDM group (Figure 4A). Then, using 10 as a soft threshold (Figures 4B, C), a co-expression network with six modules using DEGs in the GDM group was constructed with the WGCNA package (Figure 4D). The clustering results between modules demonstrated that the blue module, which contained 99 genes, showed the highest correlation with ferroptosis-related genes (Figure 4E; r = 0.72, P = 6e-06), and genes from this module were selected as ferroptosis co-expression genes.




Figure 4 | Screening of key ferroptosis-related genes using WGCNA and PPI network. (A) The differences in expression of ferroptosis signature genes between the two groups. (B) The correlation between various soft-thresholding power and scale-free topology model fit index. (C) The correlation between various soft-thresholding power and mean connectivity (degree). (D)The dendrogram clustered using topological overlap based on ferroptosis signature genes and mean mRNA expression of DEGs. (E) The correlation among different modules and traits. (F) The analysis of bule module genes and GDM. (G) PPI network.



The correlation between DEGs and the members in the blue module, as well as that between the genes and ferroptosis was analyzed individually; additionally, the two variables were plotted as abscissa and ordinate, and the result was positively correlated. The blue modules were again highly correlated with ferroptosis (Figure 4F).

A PPI network was then constructed to explore the hub genes (Figure 4G). Notably, COX7A2, NDUFA6, UQCR10, UXT, SELT, SF3B14, BABAM1, SUPT4H1, and SCARNA12 were revealed as the top 10 hub genes according to the decreasing order of “Vlength” (illustrated in Supplementary Table 4).




3.4 Identification of potential ferroptosis-related hub gene drug targets

Based on the top 10 hub genes obtained, the proteins corresponding to SF3B14 and BABAM1 were determined to be potential drug targets in terms of protein structure and function. The core target protein structures were downloaded from the PBD protein database (http://www.rcsb.org/pdb/home/home.do). Based on the source of the structure, complexity of the structure, influencing factorsand, We finally chose BABAM1_6H3C and SF3B14_2F9D. Two protein structures were docked with each of the 218 Chinese herbal ingredients in the four tonics. AutoDock evaluated the energy match between the receptor and ligand based on a semi-empirical free energy calculation method; the smaller the value, the greater the affinity between the ligand and receptor (20). Molecular docking of protein SF3B14_2F9D with 218 herbal components and the top 10 best results for binding free energy are listed in Table 1. The top 10 binding free energy produced negative results for 218 docking experiments, and the binding energy of the best top 3 docking results were -9.6, -9.4, and -9.3 kcal/mol, indicating that protein SF3B14_2F9D had good binding effects with glucopyranoside, epifriedrine, and pyrantel bases. Molecular docking of BABAM1_6H3C with 218 herbal components was then performed, and the top 10 best results for the binding free energy are listed in Table 2. The top 10 binding free energy results were negative among the 218 docking experimental results, and the binding energy of the best top 3 docking results were -8.2, -8, and -7.9 kcal/mol, indicating that protein BABAM1 had good binding effect with Coptis chinensis, Nanwuji, and Zedoary. Combining drug efficacy and drug binding efficacy, we determined that Coptis Chinensis demonstrated the optimal binding energy.


Table 1 | The TOP10 docking binding energy between 218 herbal components and the active site of the protein target (SF3B14_2F9D).




Table 2 | The TOP10 docking binding energy between 218 herbal components and the active site of the protein target (BABAM1_6H3C).






3.5 Molecular docking and molecular dynamics simulation of targeted drugs

We further validated the stability and biological activity of SF3B14_2F9D with coptisine, a component of Coptis Chinensis, BABAM1_6H3C, and berberine, a component of Coptis Chinensis. Initially, SF3B14_2F9D was docked with coptisine to form more hydrophobic interactions and predict the location of the protein binding pocket as depicted in Figure 5A, followed by the establishment of the binding surface map (Figure 5B), two-dimensional spatial model (Figure 5C) and three-dimensional spatial model (Figure 5D). As illustrated in the figure, coptisine bound to SF3B14_2F9D in the predicted binding pocket. The molecular dynamics of SF3B14_2F9D with coptisine were then further simulated. In the 20 ns molecular dynamics simulation, the protein SF3B14_2F9D reached the equilibrium state at 0.45 nm, and coptisine reached the equilibrium state (tuA) at 0.075 nm based on RMSD over time (Figure 5E). Molecular dynamic simulations of the equilibrium trajectories were used for further analysis; SF3B14_2F9D and coptisine were able to form 725 hydrogen bonds (Figure 5F). Combining the radius of gyration (Figure 5G), SASA (Figure 5H), temperature (Figure 5I), and total energy (Figure 5J) between SF3B14_2F9D and coptisine, the results suggest that SF3B14_2F9D can stably bind to coptisine and exert potential biological activity.




Figure 5 | Molecular docking and molecular dynamics simulation of SF3B14_2F9D with coptisine. (A) Location of the predicted binding pocket of SF3B14_2F9D; (B) Surface map of the docking result of SF3B14_2F9D with coptisine; (C) Two-dimensional structure of the docking result of SF3B14_2F9D with coptisine; (D) Three-dimensional structure of the docking result of SF3B14_2F9D with coptisine; (E) RMSD between SF3B14_2F9D and coptisine using molecular dynamics simulation; (F) Hydrogen bonding network between SF3B14_2F9D and coptisine using molecular dynamics simulation (G) Gyration radius between SF3B14_2F9D and coptisine using molecular dynamics simulation; (H) Solvent accessible surface area between SF3B14_2F9D and coptisine using molecular dynamics simulation; (I) Temperature between SF3B14_2F9D and coptisine using molecular dynamics simulation; (J) Total energy between SF3B14_2F9D and coptisine using molecular dynamics simulation;.



As with the process above, protein BABAM1_6H3C was again docked with berberine to form more hydrophobic interactions, predict the location of the protein binding pocket as illustrated in Figure 6A, and establish the binding surface map (Figure 6B), two-dimensional spatial model (Figure 6C) and three-dimensional spatial model (Figure 6D). As depicted in the figure, berberine was able to bind to BABAM1_6H3C in the predicted binding pocket. Subsequently, molecular dynamic simulations of BABAM1_6H3C with berberine were performed. In the 20 ns molecular dynamic simulation, protein BABAM1 reached equilibrium at 0.4 nm, and berberine reached equilibrium at 0.075 nm based on RMSD over time (Figure 6E). Subsequently, BABAM1_6H3C and berberine formed 725 hydrogen bonds (Figure 6F). Combining the radius of gyration (Figure 6G), solvent-accessible surface area (Figure 6H), temperature (Figure 6I), and total energy (Figure 6J), the results suggest that BABAM1_6H3C can be stably bound to berberine and exert potential biological activity.




Figure 6 | Molecular docking and molecular dynamics simulation of BABAM1_6H3C with berberine. (A) Location of the predicted binding pocket of BABAM1_6H3C; (B) Surface map of the docking result of BABAM1_6H3C with berberine; (C) Two-dimensional structure of the docking result of BABAM1_6H3C with berberine; (D) Three-dimensional structure of the docking result of BABAM1_6H3C with berberine; (E) RMSD between BABAM1_6H3C and berberine using molecular dynamics simulation; (F) Hydrogen bonding network between BABAM1_6H3C and berberine using molecular dynamics simulation (G) Gyration radius between BABAM1_6H3C and berberine using molecular dynamics simulation; (H) Solvent accessible surface area between BABAM1_6H3C and berberine using molecular dynamics simulation; (I) Temperature between BABAM1_6H3C and berberine using molecular dynamics simulation; (J) Total energy between BABAM1_6H3C and berberine using molecular dynamics simulation;.







4 Discussion

One of the most common complications of pregnancy worldwide is GDM, and it causes many long-term maternal and neonatal complications affecting 2%–22% of all pregnancies (21). Adverse consequences of GDM for both mother and fetus can lead to damage or functional disorders in various organs of the pregnant woman and are associated with adverse fetal outcomes such as macrosomia, pre-eclampsia, obstructed shoulder birth, stillbirth, neonatal hyperbilirubinemia, neonatal hypoglycemia, and respiratory distress (22, 23). Patients with GDM and newborns with GDM are at increased risk of obesity, type 2 diabetes, and other metabolic diseases in the long term (24). Despite tremendous progress in its treatment, GDM still has adverse effects on the long-term health of both the mother and her offspring. The pathogenesis of GDM is influenced by multiple factors, among which epigenetic alterations are important mechanisms affecting the development of GDM. The placenta serves as an important connecting organ that maintains normal fetal growth and development, providing nutrition, oxygen, and other essential factors to the fetus. The placenta maintains a normal pregnancy by selectively regulating and transporting nutrients and vital ions. A common complication of pregnancy is GDM and various studies have demonstrated a correlation between impaired iron homeostasis and GDM (13, 25). Studies have reported that ferroptosis may play a central role in major placenta-related obstetric disorders (26). The results of a meta-analysis that included 10 studies showed that the risk of GDM increased with increasing ferritin (27). Higher levels of ferritin in mid-trimester are significantly associated with risk of GDM and adverse pregnancy outcomes associated with GDM (28). Ferroptosis has been reported to impair islet cell viability and function; ferroptosis inhibitors can reverse this damage (29). Hyperglycemia reportedly leads to impaired iron transport and increased lipid peroxidation. However, treatment with the antioxidant sodium selenite (NaSe) altered the expression of iron homeostasis genes, suggesting that hyperglycemia is involved in the induction of ferroptosis (14). These features suggest that ferroptosis is closely related to the development of GDM. We hypothesized that dysregulation of iron homeostasis genes in placental tissues and ferroptosis are likely potential mechanisms for the development of GDM. The aim of this study was to determine the correlation between GDM and ferroptosis through clinical studies, molecular biological data, and bioinformatics analysis, with the aim of identifying targets for the early treatment of GDM.

In this study, the correlation between GDM and serum ferritin levels was investigated, and increased iron levels inducing the development of ferroptosis in placental tissue and alteration of the protein expression of ferroptosis-related genes were subsequently verified. The results of the clinical correlation analysis demonstrated that serum ferritin levels were higher in patients with GDM than in patients without GDM in both early and mid-pregnancy, and there was a significant difference in mid-pregnancy serum ferritin levels between the two groups. Ferroptosis is characterized by the onset of mitochondrial dysfunction, primarily in the form of mitochondrial swelling, with a reduction in cristae and increased mitochondrial membrane permeability (30). We observed the mitochondrial ultrastructural changes in trophoblasts in the GDM and normal groups using electron microscopy. The mitochondria within trophoblast cells appeared significantly swollen and were accompanied by specific changes in the disappearance or reduction of cristae. Changes in the expression of ferroptosis-related genes in placental tissues were subsequently measured. Western blotting demonstrated reduced expression of GPx4, SLC7A11, and FTH1 in placental tissues of patients in the GDM group. These results confirm the presence of elevated ferritin levels and occurrence of ferroptosis in placental tissues in patients with GDM. The alteration of expression of ferroptosis-related genes in placental tissues was then verified.

DEGs are generally recognized as an important feature of disease progression. The genes involved in the pathogenesis of GDM and associated with ferroptosis were examined; 172 upregulated and 324 downregulated genes were identified by analyzing the differential expression profiles of placental tissues from GDM and non-GDM samples. Clustering analysis was then performed; it was observed that these DEG profiles clearly distinguished between GDM and non-GDM samples. The differential expression of these genes provides a new direction for further exploration of the underlying molecular mechanisms involved in GDM. To reveal the potential functions of the DEGs, functional enrichment analysis was performed using GO analysis by database for annotation, visualization and integrated discovery and KEGG pathway analysis by gene set enrichment analysis. The functions of DEGs in three components, CC, MF, and BPs, were revealed using GO analysis. Following annotation of the genes themselves, the pathways involved in DEGs were explored using KEGG analysis; this revealed that the “oxidative phosphorylation” pathway was significantly activated in the GDM group. Under aerobic conditions, cells obtain energy mainly through oxidative phosphorylation, and during hypoxia, they undergo glycolysis (31). Mitochondria are an important source of ROS in human cells, and glycolysis is increased when mitochondrial metabolism is reduced. Increased mitochondrial ROS production reportedly promotes ferroptosis, and the application of mitochondria-targeted antioxidants or enzyme inhibitors can inhibit this process (32). The tricarboxylic acid cycle is an enzymatic pathway located in the mitochondrial matrix that transfers electrons to the mitochondrial electron transport chain through a series of redox reactions, resulting in the production of ATP through oxidative phosphorylation. Altered ATP/ADP ratios play a dual role in ferroptosis (32). Deficient oxidative phosphorylation may lead to iron sagging. These findings suggest that the “oxidative phosphorylation” pathway, which is significantly activated by differential genes, is closely related to the occurrence of ferroptosis in GDM. Placental development requires a unique oxidative stress environment, and when an imbalance of oxidative stress occurs in the placenta, lipid metabolism in placental tissues is disrupted, which can promote the onset of ferroptosis. Within the last several years, studies have described the interrelationship between maternal iron status, placental lipid metabolism, hyperglycemia and oxidative stress, which may be attributed to the effects or outcomes of ferroptosis. It has been found that synergistic mechanism of obesity before and during pregnancy increases inflammation and lipid peroxidation in trophoblasts which triggers a ferroptotic impairment of pancreatic islet function, resulting in GDM. High glucose conditions, reduced glutathione levels, impaired iron transport, and increased lipid peroxidation in trophoblast cells suggest that hyperglycemia causes ferroptosis. Iron accumulation may lead to increased lipid peroxidation and intracellularly generated protein carbonation, which in turn causes ferroptosis. The synergistic relationship between hyperglycemia and altered placental iron homeostasis during pregnancy was suggested as the mechanistic basis for ferroptosis (33). Although several clinical studies have reported a correlation between GDM and elevated maternal iron plasma levels, however, the associated pathophysiologic links and their underlying mechanisms are unclear. The fact that current studies on ferroptosis macrosomia have only scratched the surface of the phenomenon and its outcome remains a challenge for precision medicine, with detailed roles for iron prolapse in the onset and progression of GDM needing in-depth study.

Gene association patterns described by WGCNA explore the relationship between phenotypic data and gene modules based on the endogeneity of gene sets and identify the hub genes in the modules. The PPI network was then used to filter out genes that played a key role in this process. The expression of ferroptosis genes in both groups was analyzed, and the results confirmed the ferroptosis signature expression was greater in the GDM group than in the non-GDM group, and the changes were not statistically significant. Subsequently, WGCNA was applied to rapidly identify GCMs with the highest correlation with ferroptosis characteristics. The clustering results of the six modules constructed demonstrated that the blue module containing 99 genes was included in the PPI network to determine the pivotal genes due to the highest correlation with ferroptosis-related genes. Finally, 10 hub genes were identified. Based on the top 10 hub genes obtained, the use of the proteins corresponding to SF3B14 and BABAM1 as drug targets in terms of protein structure and function was determined. Homo sapiens splicing factor 3b subunit 14(SF3B14), also named SF3B6,encodes a 14 kDa protein subunit of the splicing factor 3b complex. This protein interacts directly with the adenosine that carries out the first transesterification step of splicing at the pre-mRNA branch site. It is well known that splicing of pre-mRNA is a critical step in gene expression and is accomplished by the spliceosome. The spliceosome specifically recognizes pre-mRNA, where U1 snRNP recognizes 5′-SS, U2 snRNP recognizes intronic Branch Site (BS). SF3B6 is involved in mRNA processing and RNA metabolism(34)。Sf3b6 stabilizes the BS:U2 snRNA duplex, contributing to the recognition of intronic (35). In addition, it has been found that functional knockdown of SF3B14 results in normal mulberry development but failure to form a blastocyst cavity or morphologically differentiated trophoblast ectoderm, which correlates with subsequent placentation (36). Previous studies have found that LUC7L2 is involved in coding for snRNP to affect pre-mRNA splicing and gene expression. The largest differential gene in the splicing analysis after knockdown of LUC7L2 is SLC7A11, which is required for SLC7A11 (xCT) splicing. LUC7L2 deletion leads to a reduction in SLC7A11 (xCT) and controls glycogen and glutamate metabolism (37), and promotes ferroptosis (25). It is reasonable to speculate that SF3B14, which is involved in pre-mRNA splicing, may contribute to ferroptosis by affecting the expression of key proteins for ferroptosis, which deserves to be further investigated in the future. BRISC and BRCA1 A complex member 1(BABAM1), locates in cytosol and nuclear body and involved in several processes, including mitotic G2 DNA damage checkpoint signaling; protein K63-linked deubiquitination; and positive regulation of DNA repair. Previous studies found that BABAM1 is regulated by mTORC2 to initiate DNA damage response, which can lead to ferroptosis (38). In addition, the kinase complex mTORC2 was found to prevent ferroptosis (39). Further studies can be conducted in the future both in vivo and in vitro.

We further verified the differential expression of SF3B14 and BABAM1 in women with GDM and normal pregnancy based on the GSE70493 dataset. SF3B14 and BABAM1 were significantly elevated in GDM (Supplementary Figure 1). With the rapid development of high-throughput analyses, molecular level targeting therapy has become a major trend in drug development. Molecular docking and molecular dynamic techniques can provide insights into the interactions between molecules and explain the mechanisms of interactions in a visual manner, which have now become important research methods for elucidating biological mechanisms. Additionally, molecular docking and molecular dynamic techniques provide important tools for predicting the binding types and interaction patterns of biomolecular complexes. The mechanisms of action and molecular targets of Wheat-flavored Rehmannia decoction, Astragalus Sijunzi decoction, Radix Astragali and Radix Ophiopogonis decoction, and Shenqi Dihuang decoction for the treatment of GDM are currently largely unknown. To assess whether these traditional Chinese medicines can bind to ferroptosis-related gene loci for preventive and therapeutic effects, the central gene expression proteins were combined as receptors for the downloaded molecular structures of 218 herbal ingredients involved in the four tonics. Coptis Chinensis has optimal binding energy when the drug efficacy and drug binding efficacy are combined. Further molecular dynamic simulations demonstrated that SF3B14_2F9D could stably bind and exert potential bioactivity with coptisine, a component of Coptis Chinensis, and BABAM1_6H3C could stably bind and exert potential bioactivity with berberine, another component of Coptis Chinensis. This result indicates that at the molecular level, Coptis Chinensis can bind better to these target proteins, providing a theoretical basis for the treatment of GDM with Coptis Chinensis.

There are certain limitations to this study. First, no clear indicator of iron overload was identified, and the ferritin detected in the study was subjected to multiple factors. In addition, Since the retrospective study, pregnant women in the first trimester were mostly examined in the community hospital, so the amount of data and the population was limited. The first trimester and second trimester samples didn’t collected from the same patients. Also, women were all in a pool not differentiating whether they were with pre-pregnancy normal weight, overweight or obese and weight gain during pregnancy due to data limitations. There is some bias in the data, and thus more prospective studies on ferritin and multiple iron-related indicators which need to take into account the pre-pregnancy weight and metabolic condition are needed for more extensive validation. Next, there was limited data available on public databases to screen for relevant genes that met the inclusion criteria; therefore, further validation on a larger scale is anticipated. Only electron microscopy and iron death-related protein alterations were used to verify the occurrence of ferroptosis in GDM placental tissues; hence, further studies are needed to verify the relevance of ferroptosis in the development of GDM. In addition, we selected the optimal PDB IDs and the full selection of active ingredients of herbal tonics currently available on the website for analysis in this article because of technical limitations. Finally, this study lacks validation of SF3B14 and BABAM1 in placental tissues, and related study whether the compound can regulate the expression of ferroptosis related gene. Thus, the genes, proteins, and regulatory mechanisms associated with ferroptosis require further validation.

In conclusion, we verified the elevation of serum ferritin in patients with GDM from a clinical perspective, confirmed the occurrence of ferroptosis in placental tissues in patients with GDM, and proposed an important role of ferroptosis in the pathogenesis of GDM. Next, based on a comprehensive bioinformatics analysis, we screened ferroptosis-related genes with clinical value in GDM, among which SF3B14 and BABAM1 were key genes involved in ferroptosis in the pathogenesis of GDM. Finally, based on the screened proteins corresponding to SF3B14 and BABAM1, we performed molecular docking and molecular dynamic simulations with small molecules that can be bound in clinically proven effective traditional Chinese medicine tonics and proposed the mechanism of action of Coptis Chinensis for the treatment of GDM at the molecular level. Thus, our findings provide a theoretical basis for the future clinical application of Coptis Chinensis. We have combined a variety of methods to reveal the active ingredients in herbal formulas, and the results might provide new directions for the systematic optimization of TCM formulas for the management and targeted treatment of GDM.
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Placental transporters Leptin/LEPR Activated pathway. References

Glucose transporters

GLUT1 1 1 (BeWo cells line) IRs and PI3K (85, 95, 119, 124)
GLUT3 Tl NA (94-96)

GLUT4 JA | (human placenta); 1 (animal model) IR and PI3K (95, 105, 125)
GLUT8 NA NA NA ‘

GLUT9 1 NA NA (91, 109)
GLUT10 NA NA NA

GLUT12 NA NA NA

Amino Acid transporters

SNAT1 1 1 PI3K and mTOR, (26, 122, 126)
SNAT2 NA NA NA
LAT1-2 1 1 PI3K and mTOR, (119, 127)

Lipids transporters

FAT/CD36 1 1 MAPK (27, 128)
EL 1 1 MAPK & TNF-o. (129)

LPL 1 NA NA (128)

FATP1 ! NA (128)

FATP2 ! 1 NA (130)

FATP4 ! NA NA (128)

FATP6 [ 1 NA (128, 130)
MFSD2A 1 NA NA (131)

FABP1 1 NA NA (132)

FABP4 1 NA NA (128, 133, 134)
FABP5 0 NA NA (133, 134)

1, increase in expression levels; |, decrease in expression levels.
GLUT, glucose transport; SNAT, sodium-coupled or system A for neutral amino acid transporters; LAT, large neutral amino acid transporter; FAT/CD36, fatty acids translocase; EL, endothelial
lipase; LPL, lipoprotein lipase; MESD2A, major superfamily domain 2A; FATP, fatty acid transporter proteins; FABP, plasma membrane fatty acid binding protein; LEPR, leptin receptor; NA, not
available or unknown.
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Pregnancy  Role of leptin. Expressions  References

disease-

related

Maternal Increased leptin levels in obese pregnant women are significantly correlated with fetal overgrowth, leading to 1 (59)
obesity macrosomia.

Pre-eclampsia  Leptin is a predictive marker of pre-eclampsia in obese pregnancies. Increased placental leptin levels in all Lt (60-64)

trimesters of pregnancy represent risk factors for pre-eclampsia. Higher maternal leptin levels increase oxidative
stress in high-altitude (HA) residents with pre-eclampsia. Lower serum leptin levels decrease placental production
when pre-eclampsia is associated with HIV infection. Lower leptin levels in newborn babies from pre-eclamptic
pregnancies are significantly correlated with obesity and oxidative stress.

Intrauterine Higher maternal leptin levels may contribute to fetal distress. Increased leptin concentration in prepubertal males 5 (65-67)
growth born with TUGR is emerging as an early marker of metabolic syndrome. (68)
restriction Maternal serum leptin and endothelin-1 (a highly potent vasoconstrictor released in conditions of hypoxia) was
(IUGR) found to be increased and positively correlated with the degree of fetal growth restriction in women with pre-

eclampsia.

Lower leptin levels are associated with intrauterine growth restriction (IUGR) in discordant dichorionic twins.
The evidence strongly correlates lower leptin concentrations with pregnancies complicated by IUGR, leading to
fetal malnutrition.

Recurrent Leptin gene polymorphisms at different levels may increase the risk of recurrent spontaneous abortion 1 (69, 70)
miscarriage

Polycystic Hyperleptinemia is significantly associated with PCOS and may lead to an increased free leptin index in young 1 (39,40, 71-
ovary women. Increased leptin levels, along with other biochemical parameters, contribute to increased oxidative stress 73)
syndrome in adolescent girls with PCOS. The leptin signaling pathway plays a crucial role in the production of male

(PCOS) hormones in women with PCOS. Leptin and insulin resistance mediate lower expression of aromatase in granulosa

cells from women with PCOS.

1, increase in expression levels; |, decrease in expression levels.
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Air pollution mitigation
strategies during pregnancy

Individual —

Behaviour

Nutrition

Ensure good ventilation of the house, especially in the
kitchen

Avoid frequenting high traffic routes

Check daily air quality levels and forecasts to plan
outdoor activities

Avoid sharing space with people who are smoking
Replace scented cleaning products with natural
products

Healthy diet rich in vitamins: A, B6, B12, C, D, E and
PUFAs
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Reference

Study design

Retrospective population-

Exhaust/

non-

exhaust

Pollutants associate to
observed effects

Exposure
concentration/
time associate

to observed
effects

Observed effects

Residential exposure to PM traffic exhaust during pregnancy is directly

Statistics of associations

Odds ratio (95% CI)

y exhaust | PMa suatic cshous from London, UK attributable to 3% of term LBW cases in London PMa st cxhase 104 (101 10 107)
Smith ctal. | based cohort study. ; 1
- " O | PMasuratic mo-eshaus from London, | >13.8 pug/m By analogy, the authors hypothesize that the mechanisms involved may
3) 540365 singleton term live
o exhaust | UK include, oxidative stress, changes in oxygen or nutrition transfer, placental
mitochondrial damage, or endocrine disruption
Cohort of 1060 mother- % change (95% CI)
Jhoueta, | Child pairs recrited PM,  inorganic constituents, such as Al Si, K, Mn, and Zn, appear tobe | Maternal TSH: increases of 12.75%
Goy % between Aprl 2016 and mixture | PMy from Shanghai, China Mean 3774 ug/m® | responsible for increase in maternal TSH and decreased in maternal serum | (1.01%, 24.61%)
December 2018 free thyroxine (T4) that lead changes in fetal growth measures Maternal T4 decreases of 5.82%
Sample: maternal blood (8.61%, -296%)
Liv etal, Cellline: Epithelial mixtare | PM from urban dust SRMCIGIS) Increases the expression of ROS, ICAM-1 and the production of -
(31) alveolar cells (A549) purchased from NIST (MD, USA) e/ interleukin-6 (IL-6)
I 95% CI)
annual means The presence of particles from air pollution within the placenta of all ncreaies ( y i
. _ £ ) Increased placental BC load associated
Bovéetal | 20 mothers . . ranging from 0.63 to | participating mothers was evidenced. The number of placental particles per |
(7) Sample: Placenta hiist; | BCifom Befluni 242 g per m¥fentice. | mm® was positvely associated with the mothers’ residential exposure to. | 111 ncreased residential BC exposure
sampl; 2 8 e s s ey st e mothers os 2045 % 10" pr (01110t
pregoancy luring pregnancy 0.0 x 10%
Diesel exhausted particles, ; . g
Down-regulation of Zonular Occludin-1 (20-1) lead
Lictal (85)  Cell line: HAEC exhaust | collected from a 1998 Kenworth 50 ug/ml/a h own-regulation of Zonular Occludin-1 (20-1) leading an increase in na
permeability
truck
Primary cel culture: : Increases mRNA and protein levels of TLR, TLR4
Leetal 66 yuvec misture. | PMas, Chica 10 hgmL/12 b Increase mRNA expression of IL-1 3, and IL e
— Induced significant structural and functional damage in mitochondria and
5y | Primary cell culture: ; 2
Suetal. (7) | mixture | PMy from Taiyuan, China 10 pglem?6 h ysosomes na
PM, s internalization is mediated by clathrin and caveolin
Ma et PMy s induces Endothelial-Mesenchymal Transition
Cellline: MH PMy from Langfan, Chis 500 pg/mL/48 h a
(88) Cellling; MHC mixture om Langfan, China Hgmll (EndMT) by activating the TGF-B1/Smad3/p-Smad3 pathway. »
Xuetal Primary cell culture: ' The activation of ERKs, p38 kinase and JNKs mediates the induction of
i s miture | PMy from Wuhan, China 125 pg/mLi2a b ey na
Induction of endoplasmie reticulum stress leading to HIF1oc
Xuetal Primary cell culture: transactivation, which in turn mediates endothelial dysfunction by
mixture | PMy s from Wuhan, China 12.5 pg/mL/24 h i
(89) HUVEC o ol Ol Hg/ml. upregulation of components of the ACE/ANGIVATIR axis in the s
endothelil cell
— P fom diesel exhaust fom |40 “The acetylchalinesodium nisoprusside vasodlation rato decresed aier L
12 healthy male volunteers  exhaust | PSA DW10 engine (common in : polluted air decreased significantly and was inversely correlated to the total
etal. (90) minutes at rest . (=055, P<0.01)
Europe) amount of PMy ; inhaled.
Impairments in microvascular function measured by NO bioavailability
decrease and ROS increase.
Calderon- Phi7- The incr lating ET-1 concentrations show it
Caderin- L ildren, 613 ) ) 4000 ug/mh/7-day | The increase in crculting ET-1 concentrations showed a posive Gearsoris contision
Garciduenas " mixture | PMa from Mexico City comulative outdoor | association with the number of daily hours outdoors. e os o 0ot
etal. (91) IARAIE dose An increase in mean pulmonary arterial pressure (PAPM) was observed. refalps
i i i o Beta (95% CI)
Finchetal. | Young, health 5 Ney b PM, 5 and circul 4
| mixture | PMys from Utah, USA 50 ug/m*24 b e o e egomE g ceali ambient PMy 5 and blood ET-1:
0773 (-1.18, -0365)
% change (95% CI)
v PMy s exposures increase of
Grevendonk :r zr(‘p‘ée:n:f: PM,g and PM,.; exposure during the entire pregnancy were positively fetachondial 8:OHAG levels [
o 293 mother-newbor PM, 5 and PM10, from Bel 19 P 3 JoRnG =Ny Sxposure (Ut ire preg were posity 1 blood 13.9% (0.4 to 29.4%)
etal. (92) mohernesbonipelrs | | foiure ol SETER PMyo, 214 pg/m¥ | correlated with mitochondrial 8-OHdG levels in maternal blood matermal lood 15,9 (040 204%)
bt PMyo exposure: increase of
prrgnaney mitochondrial 8-OHAG levels in
maternal blood 18.3% (5.6 to 33:4%)
PMys, 158 pg/m”
e . I"‘/r % change (95% CI)
e Placental 3-NTp increases by each
pregnancy e
1o gl gestational time window of exposure
Saenen et al. . e Placental nitrosative stress marker, 3-nitrotyrosine (3-NTp) were positively  PMy first trimestre exposure: 29.0%,
502 mother-newborn pairs | mixture | PM and BC from Belgium second trimester of il 2 A :
©3) associated with PM and BC exposure levels during gestation (4.9, 58.6); second trimestre exposure:
pregnancy 2
BC, 090 pg/mfirst 39.3%, (12,3, 72.7)
b BC first trimester exposure: 23.6%,
(14, 164)
pregnancy
wiwPAHY componnds; raloly The low accumulation of PAHs inside the placenta was related to
Dong et al. from the incomplete combustion i
64 pregnant women exhaust na. pregnancy complications and increased levels of PAHs in maternal and na.
(10) or pyrolysis of biomass from
o - umbilical cord blood.
Kunming, China
Familari HIR-8/SVneo : My from Malm, Swedenand o
ool e e, Cocch Repablic | 05000 ng/mL/ASh | Decrased hCGR scrtion and increased 116 scretion na.
i et al. L -8/5V1
T;s“) el % HIRHEVie0, mixture | PMy from Malma, Sweden 500 ng/mL/48h Cytotoxicity, increase in progesterone and IL-6 secretion na.
i invasion, !
— i HIR8/SVico ) » 120 pgmi 2t ang | IPhbiion of migration and invason, DNA damage and el eycle G2/
% o misture | PMys from Tianjin Ciy, China 0! arrest na.
s Higher ROS generation and increasing TIMP1 and TIMP2 expression
Agarwal 84 pregnant women . LwPAHs 2047 g/ | Negative correlation was observed betuween low, high, total PAHs and GSH | Pearson’s correlation
h PAHs from Agra, Ind;
etal. (39) Sample: Placental tissue et RO RS CRIR Lna levels, both in placental tissue. The level of MDA was significantly high i GSH and 1ynPAHS (r = -0.306, p <
ssawPAHs 3016 g/ | placental tissue and was associated with total PAHs levels. 0.01), uwPAHS (1 = 0441, p <
Lina The observed increase in MDA and decrease in GSH suggests an 0.001), and TPAHs (¢ = -0.388, p <
total PAHs 5064 g/ | imbalance in oxidant homeostasis 0.001)
Lina MDA and total PAHs (r = 027, p =
0.0128)
Bovalues (95% CI)
Global methylation in umbilcal cord
L6t preannt women blood and prenatal PAHs exposure: B
damas | aa c”x 3 PAHs, including Maternal exposure to PAHS decreased cord blood global methylation = ~0.11; (-0.21, 0.00)
iil? | Sombesibieiond exhaust | PAHs from New York City, USA | pyrene, 5314 ng/m"/ | however, BfaP-DNA adduct formation was associated with higher global ~ Odds ratio (95% CI)
' s third trimester DNA methylation in umbilical cord white blood cells BaP-DNA adducts in umbilical cord
blood leukocytes -
blood and increased levels of genomic
methylation
235; (1,35, 409)
Bovalues (P)
ALsden 1578 women High levels of BaP in the placenta were associated with decreased placental  Placental thickness ~0.071 (0.018)
taLGry | Semples maternal urine exhaust | PAHs from Al-Kharj, Saudi Arabia | PAHs na. thickness and decreased cord length. A positive relationship was found Cord length ~0.074 (0013)
ek and placental tissue between the levels of 8-OHAG and 1-HP in maternal urine. B Weight (P)
8-OHAG and 1-HP 0303 (<0.001)
van Drooge Rural and urban PM, from PM, 1land 12m® | PAHs from PMI emitted by biomass burning induce cytotosicity and
Cellline: JEG-3 cel ixture
etal. (98) Cell line: JEG-3 cells MU prcelona, Spain eqAirimlL/24 h inhibition of aromatase activity in JEG-3 cells na
——— Transfer of BP from the placental materal side to the fetal circulation was
Karttunen HcomprIcats: haust | ? HoBP (Amersham Biosciences) | 1 = KM BP/IS confirmed by placental perfusion experiments
etal. (43) e o e e min-6h BPDE-DNA adducts were found in placental tissue afier the perfusion =
e with 1 uM BP
BPDE reduces hCG seretion and also prevents trophoblast cell invasion in
a dose-dependent manner
W L B 7,8-dihydrodiol- | 0.25 - 4 uM BPDE/
A8l | el line: Swan71 cells exhaust erizo(@pyren 78 dihprodio K 'BPDE induces apoptosis in a dose-dependent manner and induced na
©9) 9,10-epoxide (BPDE) 24h
mitochondrial damage
BPDE increase in ROS, MDA, and inflammation, and decrease in SOD
Wang et al. 1-10 ug/mL/a8 - 96 | JEG-3 cells exposure to PMy increased hCG levels at both 24 h and 48 h
Cellline; JEG-3 cel PMy. from Shanxi, Chi
(100) Cellline: JEG-3 cells i LR SN h Cell proliferation decreased at 24 h g
3 healthy mothers with
uncomplicated In ex vivo placental cells, incubation with 10 jM BlalP for 48 h did not
Wakxetal.  pregnancies by | BlalP (Sigma, Saint-Quentin P — cause loss of cell viability or DNA fragmentation.
(101 Primary cell culture: Ex "' Fallavier, France) G JEG-3 cells exposed to 10 M Bla]P for 72 h leads to cell eycle arrest (G2/
vivo trophoblasts cells M phase) and a significant decrease in cell proliferation and DNA damage.
Cellline: JEG-3
Pidouxetal. | [14C]-formaldehyde (50 mCi/ Accumulation of formaldehyde in the placenta and the fetal compartments
(102) Tissue Placenta e ‘mmol, Perkin-Elmer) logum and hormonal dysfunction i
Son il 25, 56, 100, 150,ang | Reduce celsviabilty, overproduction of ROS, actvation of NLRPS and IL-
o HUVECs na Cooking Ol Fames derved Pz 00 Y 1§ inflammasome, and inhibition of VEGF expression which directly na

affects angiogenesis

UK, United Kingdom; LBW, Low birth weight; TSH, thyroid-stimulating hormone; /14, free thyroxine 4; ROS, Reactive oxygen species; ICAM, Endothelial adhesion molecule; BC, Black carbon; HAEC, Human aortic endothelial cells; HUVEC, Human umbilical vein endothelial
cells; TLR2, Toll Like Receptor 2; TLR4, Toll Like Receptor 4; IL-1 B, Interleukin 1; IL-6, Interleukin 6; MHC, Mouse pulmonary microvascular endothelial cells; TGF-B1, Transforming growth factor- 1; Smad3, Mothers against decapentaplegic homolog 3; p-Smad3,
Phospho-Smad3; ERK, Extracellular signal regulated protein kinase; p38, Family is a highly evolutionarily conserved group of mitogen-activated protein kinases; INK, c-Jun N-terminal kinase; ATIR, Angiotensin I type 1 receptor; HIF1a, hypoxia inducible factor 1 subunit
alpha; ACE, Angiotensin-Converting enzyme: ANGII, Angiotensin I; PSA DW10, diesel engine manufactured by Peugeot .A; NO, Nitric oxide; ET-1, Endothelin 1; 8-OHAG, 8-Hydroxy-2"deoxyguanosine; 1-HP, 1-hydroxypyrene; HMWPAHs, High-molecular-weight
polycycic aromatic hydrocarbons; HTR-8/SVneo, Immortalized first trimester human trophoblast cels hCGP, Human chorionic gonadotropin B; TIMP1, Tissue inhibitor of metalloproteinase 13 TIMP2, Tissue inhibitor of metalloproteinase % G2/M arrest, Cell cycle arrest at
the G2/M phase occurs when DNA is damaged; PAHS, Polycyclic Aromatic Hydrocarbons; GSH: Glutathione; LMWPAHs, Low-molecular-weight polycyclic aromatic hydrocarbons; MDA, malondialdehyde; BlalP-DNA or BaP-DNA, DNA binding by Benzolalpyrene; BlalP
or BaP, Benzofalpyrene; JEG-3 cells, Human choriocarcinoma cel line; 3H-BP, 3H-benzo(a)pyrene (BP); BPDE-DNA, DNA binding by Benzo(a)pyrene diolepoxide; Swan71 cels, Immortalized human trophoblast cells; hCG, Human chorionic gonadotropin; SOD, Superoxide:
dismutase; NLRP3, NOD-, LRR- and pyrin domain-containing protein 3 IL-1B, interleukin-Lbeta; VEGF, Vascular Endothelial Growth Factor; n.a, not available; CI, Confidence interval. Particulate matter from urban samples was understood as a mixture of exhaust and non-
exhaust emissions.
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Term placentas, n=31

Mode of birth (%) CS 61.3
VD 38.7
Gestational age weeks + days 39+9
Placental weight [g] 616 (+ 93.4)
Fetal sex (n) Male 17
Female 14
Fetal [g]/[cm] weight 33124 (+ 348.6)
length 50.6 (+2.1)
Maternal [kg/m?] pre-pregnancy BMI 21.5 (£ 2.4)
BMI at delivery 26.8 (+3)

Subjects with a pre-pregnancy recorded disease and/or BMI >26 kg/m2 were excluded. Values

are depicted as mean (+ SD); n represents number of placentas used in this study.
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Reference = ML appli- ML Main output

cation technique
(111) Complication Mobile collected data DF Ac = 87.5%
prediction
(112) Complication Computed tomography ~ LDA Ac =95.7%, Se = 92.7% and Sp = 98.9% for craniosynostosis
prediction images
(113) Complication Ultrasound images SVM AUC = 0.89, Ac = 88.63%, Se = 95%, Sp = 82% and +LR = 5.25 for craniosynostosis
prediction
(114) Complication Stereophotogrammetry  PCA Clear differentiation between craniosynostosis and control patients
differentiation images
(115) Data Ultrasound videos RF Estimation of heart position, orientation, viewing plane and cardiac phase
acquisition
(116) Data Electrocardiography ICA and DT Reconstruction of fetal electrocardiogram
acquisition recordings
(117) Data Electrocardiography SDAE Reconstruction of fetal electrocardiogram
acquisition recordings
(118) Data Ultrasound videos SVM Detection of fetal presentation and heartbeat
extraction
(119) Data Cardiotocography EMD Extraction of fetal heart rate
extraction recordings
(120) Data Electrocardiography CNN and Extraction of fetal heart rate
extraction recordings LSTM
(121) Data Electrocardiography CNN and Extraction of fetal heart rate
extraction recordings LSTM
(122) Data Doppler ultrasound EMD Extraction of fetal heart rate
extraction recordings
(123) Complication Cardiotocography CNN AUC = 97.82%, Ac = 98.34%, Se = 98.22%, Sp = 94.87% and QI = 96.53% for fetal
prediction recordings acidemia caused by hypoxia
(124) Decision Cardiotocography Infant Identification of fetal status
making recordings software
support
(125) Decision Cardiotocography PeriCALM Identification of fetal status
making recordings software
support
(126) Decision Cardiotocography Foetos Identification of fetal status
making recordings and software
support ultrasound
measurements
(127) Complication Ultrasound NN Ac = 95% for intrauterine growth restriction
prediction ‘measurements
(128) Complication | Cardiotocography SVM Ac = 78,26%, Se = 0.78 and Sp = 0.79 for intrauterine growth restriction
prediction recordings
(129) Complication Ultrasound images ANN Ac = 91-94% for intrauterine growth restriction
prediction
(130) Complication Echocardiography FINE Se = 98%, Sp = 93%, +LR = 14 and -LR: 0.02 for congenital heart disease
prediction images software
(131) Complication Echocardiography CON Ac =99.0%, Se = 75%, Sp = 99.6%, PPV = 99% and NPV = 88.5% for congenital heart
prediction images disease
(132) Biomarker Transcriptomics data PCA and K- miR-1647, miR-3064, mirR-3533, miR-6544, miR-6590, miR-6593, miR-6602, miR-6604,
discovery means miR-6639, miR-6667, miR-6706, miR-6710, miR-1650, miR-1665, miR-6542, miR-6565,
miR-6619 and miR-6706 as novel biomarkers for fetal alcohol spectrum disorder
(133) Complication Clinical parameters LR AUC = 0.880, Se = 1.00, Sp = 0.49, PPV = 0.03 and NPV = 1.00 for macrosomia
prediction
(134) Complication Electronic health LSTM Ac = 93.3% for small, appropriate and large for gestational age
prediction records
(135) Drug Drug databases t-SNE and AUC = 0.8
teratogenicity  information GB
prediction

ML, machine learning; DF, decision forest; LDA, linear discriminant analysis; SVM, support vector machines; PCA, principal component analysis; RE, random forest; ICA, independent
component analysis; DT, decision tree; SDAE, stacked denoising autoencoder; EMD, empirical mode decomposition; CNN, convolutional neural networks; LSTM, long short-term memory; NN,
neural networks; ANN, artificial neural networks; CON, compound network; LR, logistic regression; t-SNE, t-distributed stochastic neighbor embedding; GB, gradient boosting; Ac, accuracy; Se,
sensitivity; Sp, specificity, AUG, area under the receiver operating characteristic curve; +LR, positive likelihood ratio; QI, quality index; -LR, negative likelihood ratio; PPV, positive predictive
value; NPV, negative predictive value.
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(102) Complication prediction Cardiotocography traces DNN AUC = 99%, Se = 94%, Sp = 91%, F1 = 100% and MSE =
1%
(103) Complication prediction Cardiotocography traces LDA, RF and AUC = 96%, Se = 87%, Sp = 90% and MSE = 9%
SVM
(104) Complication prediction Cardiotocography traces RF AUC = 96.7%, Ac = 91.1%, Se = 90.0%, Sp = 92.2% and Pr =
92.1%
(105) Complication prediction Cardiotocography traces CNN AUC = 0.95, Ac = 94.70%, Pr = 94.71% and Re = 94.68%
(106) Complication prediction Electronic health records CART AUC=07
(107) Anesthesia dose prediction Clinical parameters LASSO MSE = 0.0087 and R* ~ 0.8070
(108) Surgical site infection Clinical parameters and mobile LR AUC = 1.0, Ac = 100%, Se = 1.0 and Sp = 1.0
prediction images
(109) Later vaginal birth Electronic health records RF AUC = 0.69, Ac = 70.0%, Se = 97.9% and Sp = 6.9%
prediction

ML, machine learning; DNN, deep neural networks; LDA, linear discriminant analysis; RF, random forest; SVM, support vector machines; CNN, convolutional neural networks; CART,
classification and regression tree; LASSO, least absolute shrinkage and selection operator; LR, logistic regression; AUC, area under the receiver operating characteristic curve; Se, sensitivity; Sp,
specificity; MSE, mean squared error; Ac, accuracy; Pr, precision; Re, recall.
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ML technique
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(86)

87)

(88)

(89)

(90)

1)

(92)

(93)

(94)

Complication
prediction

Complication
prediction

Complication
prediction

Complication
prediction

Biomarker
discovery

Biomarker
discovery

Biomarker
discovery

Complication
prediction

Complication
prediction

Clinical and
biochemical factors

Clinical and

biochemical factors

Electronic health
records

Electronic health
records

Biochemical markers

Metabolomics data

Metabolomics,
proteomics and
transcriptomics data

Electrohysterography
recordings

Clinical parameters

DT, SVM and RF

ANN

LSTM

LSTM

RF

RF

RF

RF

KNN; RF

AUC = 68% and Ac = 81% for spontaneous and provider-initiated cases

AUC = 79.8%, Se = 62.7%, Sp = 84.6%, PPV = 23.2% and NPV = 97.0%

AUC = 0.744, Se = 0.682, Sp = 0.743 and PPV = 0.028 for extreme cases

AUC = 0651, Ac = 0.739, Se = 0.407 and Sp = 0.982

PGA2, 15D012,14-PGJ2, BCPGE2, 13,14DHK-PGF2a, RVDI, LTE4, LTB4, linolenic
acid and IL-10 as novel biomarkers

FA(17:1), FA(24:6), FA(14:2), CAR(18:2), hexanoylcarnitine, FA(14:0(Ke)), FA(26:1),
raffinose, PC(18:0/16:3), FA(16:3), glycocholic acid, PC(33:4), FA(22:5), FA(14:1(Ke)),
heptadecanoic acid, FA(19:1) and FA(14:1) as novel biomarkers

IL-6, IL-1RA, G-CSF, RARRES2, CCL3, ANGPTL4, PAD12, TfR, and metabolites from
glutamine/glutamate metabolism, and valine/leucine/isoleucine biosynthesis pathways
as novel biomarkers

AUC = 0.999, Ac = 99.23%, Se = 98.40%, Sp = 99.76% and Pr = 95.86%
AUC = 1.00, Ac = 0.95, Se = 0.67, Sp = 1.00, G-means = 0.82 for PTB and the potential

value of performing cervical cerclage to prolong the pregnancy; MAE = 3.521, MSE =
4.560 and R = 0.752 for timing of spontaneous delivery

ML, machine learning; PTB, preterm birth; DT, decision trecs SVM, support vector machines; RE, random forest; ANN, artificial neural networks; LSTM, long short-term memory; KNN, k-nearest neighbors;
AUG, area under the receiver operating characteristic curve; Ac, accuracy; Se, sensitivity; Sp, specificity; PPV, positive predictive value; NPV, negative predictive value; Pr, precision; MAE, mean absolute error;
MSE, mean squared error.
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(74) Complication Clinical LR AUC = 0.924, Se = 0.922, Sp = 0.733, PPV = 84.7% and NPV = 85.4%
prediction parameters
(77) Complication Genomics data SVM AUC = 0.71, Ac = 67%, Se = 86% and Sp = 43%
prediction
(78) Complication Proteomics data DT AUC = 1, Ac = 100%, Se = 100%, Sp = 100%, Kappa = 1, PPV = 1 and NPV = 1 for
prediction recurrent SA with prethrombotic state
(79) Complication Clinical RF AUC = 0.99, Ac = 0.99, Pr = 0.99, Re = 0.99, F1 = 0.99
prediction parameters
(80) Complication Electronic health Ne AUC = 0.909 and Ac = 89.7% for live birth
prediction records

ML, machine learning; SA, spontaneous abortion; LR, logistic regression; SVM, support vector machines; DT, decision tree; RF, random forest; SC, sparse coding; AUG, area under the receiver
operating characteristic curve; Se, sensitivity; Sp, specificity; PPV, positive predictive value; NPV, negative predictive value; Ac, accuracy; Pr, precision; Re, recall.
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Gene
UidA
yaioO

0157

primers

UidA for
UidA rev
yaiO for
yaiO rev
rbOys7 for
rbOy57 rev

Sequence (5-3)

TGGTAATTACCGACGAAAACGGC
ACGCGTGGTTACAGTCTTGCG
TGATTTCCGTGCGTCTGAATG
ATGCTGCCGTAGCGTGTTTC
CGGACATCCATGTGATATGG
TTGCCTATGTACAGCTAATCC

Amplicon size (bp)
162
116

259






OPS/images/fendo.2022.945736/table2.jpg
Virulence factor

Shiga toxin
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Shiga toxin
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Shiga toxin
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Subtilase
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Long polar

fimbriae Ao113
Hemorragic coli pilus

IhA adhesion

Sab (STEC AT) mediating biofilm formation

primers

stx1 for
stx1 rev
stx2 for
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stx2a for
stx2a rev
stxc for
stxec rev
SubAB for
SUbAB rev
eae for
eae rev
IpfAoi13 for
IpfAo113 rev
hep for
hep rev

iha for

iha rev

sab for
sab rev

Sequence (5-3)

ATGTCATTCGCTCTGCAATAGGTAC
GAAGAAGAGACTGAAGATTCCATCTG
GGCACTGTCTGAAACTGCTCCTGT
ATTAAACTGCACTTCAGCAAATCC
GCGATACTGRGBACTGTGGCC
CCGKCAACCTTCACTGTAAATGTG
GAAAGTCACAGTTTTTATATACAACGGGTA
CCGGCCACYTTTACTGTGAATGTA
TATGGCTTCCCTCATTGCC
TATAGCTGTTGCTTCTGACG
GGAACGGCAGAGGTTAATCTGCAG
GGCGCTCATCATAGTCTTTC
ATGAAGCGTAATATTATAG
TTATTTCTTATATTCGAC
TCGCTAGTTGCTGACAGATTT
AATGTCTGTTGTGTGCGACTG
CAGTTCAGTTTCGCATTCACC
GTATGGCTCTGATGCGATG
GGTGGATACAGCAGGTAATG
TATCTCACCACCTGCTATCG

Amplicon size (bp)
1020
627
349
177
556
346
573
868
1305

163
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Initial RNA-Seq PCR Validation cohort Immunostaining

P PAS NP PAS p-
(n=8) (n=3) (n=3) Value
Maternal age 289 + 302+ 0.62 304 + 30.6 + 0.91 313+ 387+ 0.29 308 + 378 +£23 0.05
) 3.0 7.5 35 6.8 10.0 29 7:2
Gestational age 39.8 + 394 0.58 392+ 39.6 + 0.51 395+ 379+ 0.50 40.1 + 36.6 £ 4.7 0.19
(w) 0.7 22 15 1.8 L6 33 14
Placenta weight 641.5 509.5 + *<0.05 632.8 £ 536.3 + 0.07 664.3 £ 5273 £ 0.18 654.8 £ 5273+ 1128 * 0.12
[¢4] 93.2 455 116.6 56.9 90.7 112.8 70.2
Birth weight (g) 3512.2 31644 0.07 3469.3 £ | 34292 £ 0.83 3481.7 3016.7 0.36 3598.8 2814.2 £918.8.9 0.14
+2952 +434.4 3759 570.0 +123.9 +767.9 +215.6

Size birth (cm) 517 £ 514 + 0.73 515+ 522+ 0.38 53.0 + 492 + 0.02 525+ 492+ 0.8 *<0.05

2.0 20 24 20 17 0.8 17
Neonate gender 333 87.5 375 83.3 66.7 333 50 50
(% male)
Delivery mode 444 25 64.3 16.6 66.7 333 50 Accreta: 25
(% Cesarean) Increta:100

Percreta: 100

Gravida 18 + 18 + 0.95 24+ 21t 0.54 43+ 37+ 0.74 28+ 43 +1.6 0.29

L1 0.9 1.6 12 30 12 29

Parity 17+ 15+ 0.64 20+ 17+ 0.39 3.0+ 13+ 0.24 22t 29+15 0.82
0.9 05 14 0.9 20 0.6 19

PAS disorder None Accreta None Accreta None Accreta None Accreta (4) Increta
9) (8) (14) (12) (3) (3) (4) (1) Percreta (1)

Values are presented as the mean + SD. NP, Normal pregnancy; PAS, placenta accreta spectrum. PCR Validation set includes samples of the initial set. *p<0.05 *: Information of placenta weight is
‘missing for placenta increta and percreta cases.
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miRNA

Chr. Location

Expression in healthy and

pathological pregnancy

Target gene(s)

Reported function

Reference

miR-24-

miR-
376¢-3p

382-3p
miR-
495-3p

miR-
519d-3p

miR-
3074-5p

miR-16-
2-3p

106b-3p

miR-
222:3p

4233p
miR-
454-5p
miR-
3615-3p
miR-
4732-3p

chr9: 95,086,064-
95,086,085 chr19:
13,836,289-13,836,310

chr16: 14,304,017-
14,304,038

chr12: 95,308,420
95,308,513

chr14: 101,039,732~
101,039,752 (miR-379/
miR-656 cluster)

chr14: 101,054,352~
101,054,372

chr14: 101,033,804~
101,033,825

chr19: 53,713,400~
53,713,421 (C19MC
cluster)

chr9: 95,086,063-
95,086,083

chr3: 160,404,797-
160,404,818

chr7: 100,094,002-
100,094,023

chrX: 45,747,036~
45,747,056

chr14: 100,911,186~
100,911,207

chr17: 30,117,131~
30,117,153

chr17: 59,137,828-
59,137,849

chr17: 74,748,663-
74,748,683

chr17: 28,861,668-
28,861,688

Upregulated in PE

Upregulated in PPROM and PTB

Upregulated in PE
Upregulated in FGR

Downregulated in PE

Upregulated at term labor

Present in umbilical cord serum-
derived exosomes

Downregulated in PE

Upregulated in PE

Not reported yet

Expressed almost exclusively in
placenta tissue

Upregulated in PE

Upregulated in placental villi
from recurrent miscarriage
Low expressed in placental villi
from NP

Upregulated in placental villi and
decidua from recurrent
spontaneous abortion

Upregulated in DICE-deficient
HTR-8/SVneo trophoblast cell
line

Upregulated in PE

Upregulated in PE

Dysregulated in GTD
Upregulated in FGR
Downregulated in first-trimester
healthy placenta

Upregulated in early onset PE

Downregulated in PE

Upregulated in plasma exosomes
from PTB

Dysregulated in serum from PE
Downregulated in GDM

TGF-B, MAPK, CDK,
PI3K, p85, MYC, MM14

TGE-B2

TGE-BRI

PHLDA2, HBEGF,
TGF-BIR (ALK5 and
ALK7)

STATI1, NEAT1,
ROCKI, PTEN

CXCL6, NR4A2,
FOXL2, PDCD4, PTEN,
MMP-2

BCL2, FGF1, P27, BCL-
G, DLST, GAP43,
CCR3, RUNX2

VEGF

COL1A2

MMP-2

BCL2L11

HDAC6

MAPK signaling
pathway

ALK7

TGF- signaling

Regulation of actin organization. Cell
migration and proliferation.

Promotes trophoblast (HTR-8/SVneo) cell
motility, migration and motion

Regulates the invasion of human
trophoblastic HTR-8/SVneo cells

Promotes trophoblast outgrowth and
invasion

Inhibits cell proliferation and migration and
its downregulation promotes invasiveness in
cancer models

Reduces trophoblast cell migration and
invasion
Downregulates the EVT invasive phenotype

Suppresses invasion and migration of
trophoblast cells by targeting MMP-2

Promotes apoptosis but inhibits invasion of
HTR-8/SVneo cell line

Regulates placental angiogenesis and
development

Reduces invasion of HTR-8/SVneo cell line

Inhibits the invasion and proliferation of
JAR and JEG3 cells

Promotes apoptosis of mesenchymal stem
cells in response to hypoxia

Inhibits trophoblast proliferation and
migration

Involved in regulating proliferation,
‘migration, and invasion of cancer cells

Promotes proliferation reduces apoptosis
and increases invasion of trophoblast cells

Possibly involved in trophoblast
proliferation

Possibly involved in cellular development
and cellular movement

(39, 40)
(41)
(42-44)
(45)

(46, 47)

(48)

(49)

(50-52)

(53-55)

(56, 57)

(58)

(59, 60)

(61)

(62)

(©3)

(64)

(65)

(19, 66, 67)

(68, 69)

(70)

(71)

(72, 73)
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Pre-pregnancy BMI (kg/m?)
Maternal Age (years)
Gestational age (weeks)
Fetal Birth Weight (g)
Placenta Weight (g)

Maternal Weight Gain (kg)

Nw

Females n = 26

2277
(18.3-24.9)
31.60
(24-41)
39.32
(39.0-39.7)
3477
(2370-4975)
581.94
(457.4-758.6)
16.65
(6.1-30.7)

Males n =29

2243
(19.2-24.7)
32.70
(23-46)
39.23
(39.0-39.6)
3448
(2845-3941)
512.39
(273.6-649.9)
13.02
(-3.2-20.4)

oB

Females n = 25

36.49%
(30.03-43.8)
31.32
(22-43)
39.305
(39.0-39.8)
3346
(2865-3980)
530.53
(389-719.7)
11.25%
(0.7-45.4)

Males n = 28

35.78
(29.0-45.5)
3040
(20-41)
39.24
(39.0-40.0)
3392
(2220-4305)
549.13
(349-762.6)
1023
(-5.5-20.9)

Maternal and cord plasma samples were collected from male and female offspring of normal-weight (NW) and obese mothers (OB). BMI, body mass index. Data are presented as median
(range). *, p<0.05 OB vs. NW group with same fetal sex.

The bold values are statistically significant.
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Gene

Enzymes
TPH1

TPH2

MAOA

MAOB
Transporters
SERT
(SLC6A4)
OCT1
(SLC22A1)
OCT2
(SLC22A2)
OCT3
(SLC22A3)

PMAT
(SLC29A4)
Receptors

HTRID

HTR2A
HTR2B
HTR7

Location

Tissue homogenate
Tissue homogenate
Tissue homogenate
Tissue homogenate
Tissue homogenate
Tissue homogenate
Tissue homogenate
Tissue homogenate
Syncytiotrophoblast
Cytotrophoblasts

Tissue homogenate

Tissue homogenate

Tissue homogenate

Tissue homogenate

Tissue homogenate

Tissue homogenate
Cytotrophoblasts
Extravillous cytotrophoblasts
Cytotrophoblasts

Cytotrophoblasts
Syncytiotrophoblast
Extravillous cytotrophoblasts
Cytotrophoblasts
Syncytiotrophoblast
Cytotrophoblasts

y: detected, n: not detected.

* 1, up-regulated; |, down-regulated; =, no change at term of pregnancy compared to first trimester.
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(69, 75)
(74)
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Gestational period mRNA Protein Activity Study

Enzymes
TPH1 First trimester +? n.a. +8 (68)
Term +° n.a. +8 (68)
First trimester +° +)°¢ +8 (69)
Term (O + +8 (69)
Term (+)-* n.a. n.a. (70)
TPH2 First trimester -2 n.a. +8 (68)
Term +? n.a. +8 (68)
First trimester +)°® na. +8 (69)
Term +)°® n.a. +8 (69)
Term +)-* n.a. n.a. (70)
MAOA First trimester +° i + (69)
Term 40 +¢ + (69)
Term 4B s + (71)
Term +° na. na. (72)
Term n.a. gk + (73)
MAOB Term n.a. sl - (73)
Term 4 n.a. n.a. (71)
Term +° na. na. (72)
Transporters
OCT1 First trimester +? na. n.a. (74)
(SLC22A1) Term +? na. na. (74)
Term +)* na. na. (75)
Term -2 na. na. (76)
Term -* na. na. (77)
OCT2 First trimester +° na. na. (74)
(SLC22A2) Term +)* na. n.a. (74)
Term +)* na. na. (75)
Term - na. n.a. (76)
Term n.a. n.a. 77)
0OCT3 First trimester n.a. na. (74)
(SLC22A3) First trimester [ON n.a. (75)
Second trimester +? fid n.a. (75)
Term +)* na. na. (74)
Term +? +4 na. (75)
Term +? na. na. (76)
Term ERL) n.a. n.a. @7
PMAT (SLC29A4) Term +)* n.a. n.a. (75)
VMAT2 (SLCI8A2) Term [ON na. na. (78)
Receptors
HTR2A Term +° +° na 79)
Term B +° na (80)
HTR2B Term +? na. na. (81)
HTR1D Term +° n.a. na. (68)
HTRIE Term +? na. n.a. (68)
HTR5A Term +? na. na. (68)
HTR5B Term +? na. na. (68)

“RT-qPCR (quantitative reverse transcriptase—polymerase chain reaction).

PRT-PCR (reverse transcription-end point PCR).

“ddPCR (digital droplet PCR).

4LC-MS/MS (liquid chromatography coupled with tandem mass spectrometry).

“Western blot.

‘ELISA (enzyme-linked immunosorbent assay).

#The activity assay used does not distinguish between the activity of TPH1 and TPH2.

"Binding studies with isoform-specific inhibitors.

n.a.: not analysed; +: detected; —: not detected; (+): low levels detected; (+)/—: low levels detected or below detection limit.
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Chinese Medicine Chemical Composition ingredients PubChem ID Affinity
(kcal/mol)

g;’:::mis Phellodesidton Obacunone 119041 -82

Southern Schisandra Schisandrin acid schizandronic 101277401 -8

Zedoary Xanthohumol C alisol C 46173914 <79

Huanglian Phellodendrine; Berberine coptisine 72322 -7.8

Southern Schisandra Neo-South schisanic acid neokadsuranic acid B 145709631 7.8

Mai Dong Hydroxymethyl maidenhair flavonoid A Hydroxymethylophiopogonone A 101238141 7.7

Mai Dong Macroisoflavone A Ophiopogonone A 10087732 <75

Yam Schisandrin; Dihydroquercetin; Flavopiridol; Yewaxanthin; taxifolin 712316 -7.5

Mai Dong Maidenhair Flavonoid A Ophiopogonanone A 92449512 75
Pinusolitrin; Dihydroquercetin; Flavopiridol; Yewcitrin; taxifolin 439533 -74

Chasteberry
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Chinese Medicine

Chemical Composition

PubChem ID

Ingredients

Affinity
(kcal/mol)

Poria cocos

Chasteberry

Huang Lian

Radix Codonopsis
Fructus Schisandrae
Yam

Huanglian

Cornus officinalis
Yellow Essence

Coptis Chinensis

N, none.

Glucopyranose

Epiberberine; Epiflorine

Phellodendrine

Chrysoprase

Neonanwort B
Phellodendrin

Pawpaw rhubarb dianthrone
N

Diosgenin

Phellodendron

1-O-(3-Carboxy-5,6-dihydroxyphenyl)-

6-0-galloyl-beta-D-glucopyranose. Hg7ees
epiberberine 160876
coptisine 72322
Chrysanthemaxanthin 21160900
neokadsuranic acid B 145709631
Doradexanthin 16061189
Palmidin A 5320384
galloyl(-3)[galloyl(-6)]a-All 6398541
diosgenin 99474
Obacunone 119041

-9

-9

-9
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Case# Weight (grams) Placental Disc Fetal Membrane

Placenta

1 556 intervillous thrombus, infarction, dystrophic calcification ~ acute chorioamnionitis

2 538 focal infarct, subchorionic hematoma no histopathological abnormality

3 451 peri-villous fibrin deposition no significant pathology finding

4 570 fibrin deposition, villous congestion acute chorionitis

5 430 fibrin deposition necrotic changes

6 394 fibrin deposition, focal infarction no significant pathology finding

7 568 fibrin deposition, calcification, focal chorangiomatosis chorioamnionitis

8 487 focal infarction, fibrin deposition no significant pathology finding

9 409 decidual vasculopathy acute chorioamnionitis

10 | 608 villous congestion, subchorionic hematoma no histopathological abnormality

11 194 acute chorioamnionitis chorionic plate vasculitis acute chorioamnionitis

12 526* dichorionic, diamnionic twins | A: lymphoplasmacytic infiltration chronic deciduitis Chronic deciduitis lymphoplascytic infiltration
B: lymphoplasmacytic infiltration chronic deciduitis chronic deciduitis lymphoplasmacytic infiltration

*Total placental weight.





OPS/images/fendo.2023.1107182/crossmark.jpg
©

2

i

|





OPS/images/fendo.2023.1107182/fendo-14-1107182-g001.jpg
Cytotrophoblasts

Competence stage
..'.' " O "¢'
9 o0, ] § ”
X €8 oA

Human bléstocyst
Commitment stage

Cytoskeleton

~
.

Cytotrophoblasts Adherens junction
Cell-cell fusion stage _
fusogenic
signals o’j’chMp

Syncytins Gap junction Hemifusion

g ——

Fusion Pore





OPS/images/fendo.2023.1107182/fendo-14-1107182-g002.jpg
LRP

K

s\

(e

B-catenin

© Phosphorylation™.
— Activation
............... » Inhibi‘tion
— Crosstalk
............... > Unknown .'"-..----........-..:::::::::::::::. FUSion






OPS/images/fendo.2022.951388/fendo-13-951388-g004.jpg
Non-COVID Control

COVID-19 - Exposed






OPS/images/fendo.2022.951388/fendo-13-951388-g005.jpg
Villous Decidua Fetal Membrane
ST CT HC SC FEC EVT DC SC AE EVT SC DC

- = 2?2 + o+ - =+ - =+ =
- 4+ - = = + = = - + = =
+ + 2?2 % + + + o+ + + o+ o+
+ + + + o+ + + o+ + + + o+
+ + 2?2 % + + + o+ + + o+ o+





OPS/images/fendo.2022.951388/table1.jpg
COVID-19 Infection

n=8 n=12
Maternal age 29+9 267 04387
Racial status*, AA/Caucasian 513 12/0 0.0491
Gestational age (weeks %) 38%° + 1% 36" + 4" 0.1308
Singleton/Twins* 8/0 11/1 1.0000
Nulliparous*, n (%) 2 (25%) 3 (25%) 1.0000
BMI 317 £65 386+ 6.7 0.0345
Delivery mode*, Vaginaldelivery/C-section 4/4 715 1.0000
Placental weight (gram) 615 + 124 441 + 134 0.0078
Newborn gender* (male/female) 4/4 7/6 1.0000
Newborn weight (gram) 3405 + 365 2702 + 992 0.0711

Data are expressed as mean + SD. Statistics was calculated by un-paired test; *Statistics on racial status, singleton/twin, nulliparous, delivery mode, and newborn gender were done by
Fisher’s exact test. AA, African American; BMI, body mass index.
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GA at Newborn
Maternal coviD GAat COVIDtest COVID-19 CovID

Case# Age Parity (+) Delivery ~at Delivery = Symptoms Maternal Outcomes Newborn Outcomes Test

Singleton, M/3260g NICU 3days,

1 2 AA G4P1 36.2 39 397 Pos Asymptomatic ~ Severe PE Sepsis evaluation Neg
Singleton, M/3282g, NICU 3days,
2 35 AA G7Ps | 412 370 39" Pos Asymptomatic | Type-2 DM COVID/glucose monitoring Neg
Singleton, F/3280g NICU 3days,
3 26 AA G3P2 36.8 37 37t Pos Mild Type-2 DM RDS, COVID monitoring Neg
Singleton, M/3,250g NICU 11days
4 20 AA G2Po | 412 35 38" NT Mild SIPE, CHTN, Syphilis, Marijuana abuse  Congenital syphilis NT
5 20 AA GIPO 2 8" 40%° Neg N/A GBS (+) Singleton, M/3315g Meconium NT
Singleton, M/2,500g Extra digit on
6 35 AA G7P2 417 47 357 Neg Mild PE both hands NT
Singleton, /3,670g NICU 1day,
7 19 AA Gp2 301 147 39 Neg Mild GBS (+), Cannabis abuse Sepsis evaluation NT
il 39 AA G8PO 445 147 37 Neg Mild Severe PE, Type I Diabetes Singleton, F/3,450g NT
9 20 AA GIPO 465 167 37 Neg N/A ‘Type-2 DM, Hodgkin Lymphoma Singleton, F/3,200g NT
CHTN, GBS(+), Oligohydramnios, Singleton, M/2,770g Abnormal quad
10 33 AA G6P1 438 20" 37*° Neg Mild Cigarette smoking screen NT
Singleton, F/730g NICU 59 days,
1 23 AA G3PO 333 18 26" Neg Asymptomatic |~ APS, GPS(+), Syphilis, Oligohydramnios Prematurity NT
ARDS, Severe PE, Asthma, Di/Di Twins,  Twins, M/E. 1,320¢/1,100g,
Thrombocytosis, Leukocytosis, Prematurity Sepsis, BPD, RDS, NICU
12 27 AA G5P4 435 28" 30 Pos Severe Hypokalemia 78/79days Neg/Neg.

AA, African American; GA, gestational age; BMI, body mass index; PE, preeclampsia; SIPE, superimposed preeclampsia; CHTN, chronic hyperte
syndrome; NICU, neonatal intensive care unit; BPD, bronchopulmonary dysplasia; RDS, respiratory distress syndrome. Pos, Positive; Neg, negative;

n; GBS, Group B Streptococcus; APS, antiphospholipid syndrome; ADRS, acute respiratory distress
NT, not tested; N/A, information is not available.
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Sequence (5'->3')

GAAAGGACGGTGTGGCCAATR: CTCGTGGACCACCATAGTACG
AGCAATTCTCCAAGCCCTCCR: TTCATCAGTGGTGGCAGTTG
CTGACTGACGCGATTGCCTAR: GTGGTCAGGACATCGGGTTT
GCGCTACAGCGGATTTTTGAR: GAAGGCATACACGGTGGACT
TGAAGGGGAGCGTCTGATTGR: TCATTCCAAGTGCGTCCGAT
TGGCACAGCTTGCTGAAGAGR: TCAGGCGCTCGATTTCCT
GGCCATTCCATCCGGGGTGAR: AAGGCAGCCCTCAGCTCTCG
AGCCCGTAGCCCACGTCGTAR: CGGTGTGGGTGAGGAGCACG
GACTTCCAGCCAGTTGCCTTR: AAGTCTCCTCTCCGGACTTGT
GCCCAGACGGGGTGGAGAGTR: AGGGTTGGCCAGGCTGGGAA
CCGGCCCTGGCTGCATTGAAR: CAGGCAAAGCCCACAGGCGA
ACCCGGGACGTACCAAAATGR: CGAGCTGGTAAAGGTGAGCA
CATCATGTCCCACACTAAGGR: GTGCCAATTGGGTTGTTTAG
TGCAGTCTCATAGGTGCCTGGAAAR: ACCACTCCCAGCAACAACAACAAC
CAATCAAACATGGAACCACCGR: CGATTGATGAGCAGGAAGCG
GCTGGACCTACTGGCATGTTR: ACCATAGGCTGGAGTTGCAC

Accession number

NM_017050.1
NM_024359.1
NM_012520.2 R
NM_030826.4
NM_013083.2
NM_001109986.1
NM_012854.2
NM_012675.3
NM_053595.2
NM_001110336.1
NM_053595.2
NM_178866.4
XM_008760074.2
NM_031720.5
NM_138827.1
XM_001079162.5
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Compound Placenta”

Abbreviation

70-HC

70-HCO

7B-HC

208-HC
22R-HC

228-HC

24S8-HC

26-HC

70.,26-diHC

70.,26-diHCO

20R,22R-
diHC
22,23-diHC”

20R,22R,23-
triHC 7

20R,22R,24-
triHC 7

20R,22R,26-
triHC 7
3B-HCA

3B,20R,22R-
triH-A>'-CA 7

3B,20R,22R-
triHCA 7

isomer of
triHCA 7

ng/g (SD)
n=3

D/NM

D/NM

D/NM

D/NM
2103 (16.1)

D/NM

D/NM

41.5 (3.20)

D/NM®

D/NM®

D/NM

D/NM

D/NM

D/NM

D/NM

4.14 (0.48)

D/NM

D/NM

D/NM

Cord
Plasma

ng/mL
(SD)
n=14
31.46

(32.45)

0.65
(0.74)

33.87
(38.68)

ND

6.19
(3.01)

ND

7.34
(2.38)

7.23
(2.88)

0.49
(0.23)

3.24
(1.26)

49.74
(23.97)

ND
D/NM
D/NM

0.30

(0.23)

10.56
(4.71)

D/NM

9.32
(4.93)

ND

Maternal
Plasma

ng/mL (SD)
n=10

57.27 (35.00)

12.51 (9.34)

77.26 (61.09)

ND
255 (1.18)

ND

14.99 (4.28)

21.61 (5.63)

1.03 (0.54)

3.89 (1.19)

13.23 (6.79)

ND

ND

ND

0.06 (0.06)

43.64 (13.71)

ND

0.48 (0.38)

D/NM

Control
Female
Plasma

ng/mL (SD)
n=5

46.08 (39.70)

1.33 (2.97)

70.77 (74.37)*

ND
ND

ND
14.48 (3.33)
25.67 (2.30)
1.08 (0.55)
4.13 (1.23)

ND

ND

ND

ND

ND

90.02 (21.40)

ND

ND

ND

Amniotic
Fluid

ng/mL (SD)
n=5

D/NM

D/NM

D/NM

ND
031 (0.34)

ND

D/NM

D/NM

0.04 (0.03)

0.19 (0.13)

3.02 (1.63)

ND

ND

ND

0.04 (0.03)

0.73 (0.46)

D/NM

0.64 (0.43)

ND

Quantification

Semi-quantitative’
Semi-quantitative’
Semi-quami(a(ive3

Not quantified”

Quantitative®

Not quantified
Quantitative®
Quantitative®
Semi-quantitative®
Semi-quantitative®
Qua\nti(ative5
Semi-quatita(ive7
Not quantified
Not quantified
Semi-
quantitative”®
Quantitative®

Not quantified

Semi-quantitative’

Not quantified

Characteristic ion

151 (*b;-12), 231 (*c,-H,O0+2H)

151 (*b;-12), 231 (*c,-H,0+2H)

151 (*b;-12), 231 (*c,-H,0+2H)

151 (*b;-12), 163 (*bs-28), 327 (*¢’)
151 (*b;-12), 163 (*bs-28), 273 (*d,-12), 353
(*f), 355 (*)
151 (*by-12), 163 (*b;-28), 273 (*d;-12), 353
(*f), 355 (*f)
151 (*by-12), 163 (*bs-28), 353 (“f)

151 (*by-12), 163 (*bs-28), 427 (M-Py-CO) >
437 (M-Py-H,0)
151 (*by-12), 231 (*c,-H,0+2H), 410 (M-Py-
H,0-CO-NH)
151 (*by-12), 231 (*c,-H,0+2H), 410 (M-Py-
H,0-CO-NH)
151 (*by-12), 163 (*bs-28), 325 (*e), 327 (*¢),
353 (*£-16), 355 (*f-16)
151 (*by-12), 163 (*bs-28), 327 (*¢’), 353 (*f),
367 (*g-16)
151 (*by-12), 163 (*bs-28), 325 (*e), 327 (*¢),
353 (*£-16), 355 (*f-16), 383 (*g-16)
151 (*by-12), 163 (*bs-28), 325 (*e), 327 (*¢),
353 (*f-16), 383 ("'g-lﬁ), 397 (**h-16)
151 (*by-12), 163 (*bs-28), 325 (*e), 327 (*¢),
353 (*f-16), 355 (*f-16)
151 (*by-12), 163 (*bs-28), 423 (%)), 426 (M-
Py-CO-NH)

151 (*by-12), 163 (*bs-28), 325 (*e), 327 (*¢),
353 (*f-16), 369 (*f), 371 (*F), 417 (*j-36),
435 (*j-18)

151 (*by-12), 163 (*bs-28), 325 (), 327 (*¢),
353 (*£-16), 355 (*F-16), 419 (*j-36), 437 (*}-
18)

163 (*bs-28), 385, 397, 415, 453, 471

D/NM, detected but not measured. ND, not detected. Authentic standards are available for each metabolite unless otherwise noted. An asterisk preceding a fragment describing letter
indicates that the fragment-ion has lost the pyridine ring. A prime before the fragment describing letter indicates that the fragment-ion is deficient in a hydrogen atom compared to a similar
fragment formed by a homolytic cleavage, A prime after the fragment describing letter indicates that the fragment-ion has gained a hydrogen atom compared to a similar fragment formed
by homolytic cleavage. See Supplemental Figure SIC for examples.
'Extraction of oxysterols was performed according to methods designed primarily for brain and liver without further validation.
Single outlier removed.
*Ring-oxysterols were not the focus of this study, and their measurement is only semi-quantitative.

'20S-HC and 24S-HC give chromatographic peaks that were not completely resolved so were not quantified.

*Previous studies have shown [*H;]24R/S-HC to be a satisfactory internal standard for the quantification of side-chain oxysterols and steroid-acids [Yutuc E, et al,, 2021, Anal Chim Acta
1154: 338259].
°70,26-diHC and 70,26-diHCO were not differentiated.
’Presumptive identification, no authentic standard available.
8Quantification at the MS? level.
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Reference

M

application

ML technique

Main output

(41)

(42)

(26)

(43)

(44)

(45)

(46)

(47)

(48)

(49)

(50)

(51)

(52)

(53)

(54)

(55)

Disease
prediction

Disease
prediction

Disease
prediction

Disease
prediction

Disease
prediction

Disease
prediction

Disease
prediction

Disease
prediction

Disease
prediction

Disease
prediction

Disease
prediction

Disease
prediction

Biomarker
discovery

Biomarker
discovery

Risk
estimation

Drug
screening

Metabolomics data

Proteomics data

Genomics data

Transcriptomics data and
biochemical markers

Biochemical markers

Electronic health records

Electronic health records

Clinical and biochemical

factors

Clinical and biochemical
factors

Clinical and biochemical
factors

Clinical parameters

Ultrasound images

Genomics data

Transcriptomics data

Food frequency

questionnaire data

Drug databases
information

LR

LDA

LR

LR

BPNN

Stochastic GB

EN

LR

LR

RF

RF

CNN

SVM

C4.5, AB and

MLP

SL

TPOTC

AUC = 0.868, Se = 75.1% and Sp = 83.0%

AUC = 0.96, Se = 0.90 and Sp = 0.90 for early-onset cases with maternal vascular
malperfusion

AUC = 0.825, Ac = 83.0%, Se = 81.7% and Sp = 83.3%

AUC = 0.940, Se = 86.67% and Sp = 96.67%

Ac =79.8%

AUC = 0.924, Ac = 0.973, Se = 0.603, Sp = 0.991 and DR = 0.771 for late-onset

cases

AUC = 0.89, Se = 72.3% and Sp = 91.2% for early-onset cases

AUC = 0.962, Se = 79.3%, Sp = 97.7%, PPV = 92% and NPV = 93.4%

AUC = 0.68, Se = 30.6% and Sp = 90% for early-onset cases

AUC = 0.976, AUPR = 0.958, Ac = 92.6%, Se = 91% and Sp = 93% for placental
dysfunction-related disorders

AUC = 0.90, Se = 0.70, Sp = 0.89 and Pr = 0.88

Se = 70.6% and Sp = 76.6% for hypertension disorders of pregnancy

IL7R, IL18, CCL2, HLA-DRA, CD247, ITK, CD2, IRF8, CD48, GZMK, CCR7,
HLA-DPAL, LEP, IL1B, CD8A, CD3D and GZMA as novel biomarkers

HTRA4, PROCR, MYCN, EROI1A, EAF1, PPP1R16B, CRH, FLNB, PIK3CB,
PLAATS3, FBN2, RFLNB, and TKT as novel biomarkers

3.2 and 4.0 fewer cases of PE per 100 births for high density fruit and vegetable
intake

Estradiol, estriol, vitamins E and D, lynestrenol, mifrepristone, simvastatin,
ambroxol, and some antibiotics and antiparasitics as potential drugs for PE

ML, machine learning; PE, preeclampsia; LR, logistic regression; LDA, linear discriminant analysis; BPNN, back-propagation neural networks; GB, gradient boosting; EN, elastic net; RF, random
forest; CNN, convolutional neural networks; SVM, support vector machines; AB, adaptative boosting; MLP, multilayer perceptron; SL, SuperLearner; TPOTC, tree-based pipeline optimization
tool classifier; AUC, area under the receiver operating characteristic curve; Se, sensitivity; Sp, specificity; Ac, accuracy; DR, detection rate; PPV, positive predictive value; NPV, negative predictive
value; AUPR, area under the precision-recall curve; Pr, precision.
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EE

ML technique

(18)

(19)

(20)

(21)

(22)

(23)

(24)

(5)

(26)

(27)

(28)

(29)

(30)

(31)

Disease prediction

Disease prediction

Disease prediction

Disease prediction

Disease prediction

Disease prediction,

independent of diagnostic
criteria

Biomarker discovery

Biomarker discovery

Biomarker discovery

Biomarker discovery

Risk estimation

Disease screening

Correlation assessment

Pharmacological treatment
prediction

Biochemical
markers

Clinical and
biochemical factors

Electronic health
records

Electronic health
records

Clinical parameters

Clinical and
biochemical factors

Metabolomics data

Transcriptomics
data

Genomics data

Epigenomics data

Physical activity
questionnaire data

Spectrochemical
data

Clinical and
biochemical factors

Mobile real-time
collected data

Light GB

Bayesian LR

DNN

GB

RF

PLS

OPLS-DA

LR

LR

LR

SL-EL

LDA

PCA

LR

AUC = 99.83%, Se = 92.5% and Sp = 99.2%

AUC =0.766, Ac = 0.64, Se = 0.66 and Sp = 0.75

AUC = 0.80, Se = 63%, Sp = 82% and YI = 0.45

AUC = 0.850 and AUPR = 0.324

Ac =77.53%

RMSE = 23.1, RE = 20.7% and r = 0.259 for post load glycemia prediction

Formic acid, dimethylamine and galactose as novel biomarkers

miR-223 and miR-23a as novel biomarkers

CC2D2B, NATI10, SIPAL, ZNF565, ZNF552, WDR35, MICALLL,
CTNNBI, CLOCK, BCKDHB and TGIF2LY as novel biomarkers

cgl1169102, cg21179618 and cg21620107 as novel biomarkers
2.1 fewer cases of GDM per 100 women for moderate to vigorous
intensity exercise

Ac = 100%, Se = 100% and Sp = 100%

Strong correlation between maternal thyroid profile and GDM

AUC=08

ML, machine learning; GDM, gestational diabetes mellitus; GB, gradient boosting; LR, logistic regression; DNN, deep neural networks; RF, random forest; PLS, partial least squares; OPLS-DA,
orthogonal PLS discriminant analysis; SL-EL, SuperLearner with extra learners; LDA, linear discriminant analysis; PCA, principal component analysis; AUC, area under the receiver operating
characteristic curve; Se, sensitivity; Sp, specificity; Ac, accuracy; Y1, Youden index; AUPR, area under the precision-recall curve; RMSE, root mean squared error; RE, relative error.
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Org

Placenta

Decidua

Source

Glycan

Reference

Extravillous trophoblast  TF antigen Normal Probably migration through the extracellular matrix (93, 94)
pregnancy for promoting invasion
Sera samples hCG (N-glycan glycoprotein) Normal Promotes trophoblast invasion by its (146, 147)
pregnancy immunomodulatory action
Syncytiotrophoblast highly sialylated N-glycan Normal Syncytiotrophoblast resistance to NK cell—and other (43,135)
structures pregnancy cytolytic leukocytes—mediated cytolysis
Terminal Villi Mannose, sialic acid, and B- Severe Increased expression (251)
galactose preeclampsia
Stromal cells/Stroma Glycodelin-A Normal Biantennary N-glycans with the bisecting GIcNAc (143-145)
pregnancy sequence and sialylated complex N-glycans
Cytotrophoblast/ LewisY Preeclampsia Angiogenesis-related glycan (148, 149)
Villous trophoblast Unexplained
miscarriage
Syncitialized BeWo cells  Reduced 0(2-3) sialylation Choriocarconoma  Immunorregulation of peripheral NK cell cytokine (211)
BeWO cells production
Chorionic Villi Gal-1 HELLP syndrome Defective trophoblast invasion (144)
Capillary Endothelium Increased Mannose and f- Severe Placentation and angiogenesis (251)
galactose; decreased sialic acid preeclampsia
Decidual stroma Biantennary de-sialylated non- Normal Reduced expression (141)
fucosylated N-glycans pregnancy
Decidual stroma Gal-1 Upregulated in Defective trophoblast invasion (144)
Preeclampsia
Placental tissues Bisecting GleNAc Early-onset severe  Reduced expression (172, 182)

(decidua and
trophoblast)

preeclampsia
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Maternal age (years)" 35.5+/-1.5 (26-46)

Gravidity” 2.3+/-0.2 (1-3)
Parity median® 2.0 (0-3)
Number of previous losses® 0

Data provided as the mean + SEM; range given in brackets.

“data unavailable for 3 fertile patients; 2 pregnancy loss patients.

“data unavailable for 6 fertile patients; 6 pregnancy loss patients.

“data unavailable for 5 fertile patients; 4 pregnancy loss patients.

“data unavailable for 6 fertile patients; 6 pregnancy loss patients ~ defined as ‘multiple’ only.

37.3+/-1.3 (33-41)

3.7+/-12 (2-6)
0.0 (0-1)

3.3+/-09 (2-5)
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Study

Parant 2009
(18)

Traeder 2010
(40)

Marchaudon
2011 (19)

Reus 2013
(11)
Mekinian
2015 (25)
Nowak 2016
(27)

Sabra 2016
(28)

Koby 2018
(31)

Bos 2020
(37)

Homatter
2020 (38)

Mattuizzi
2020 (14)

Simula 2020
(39)

Sauvestre
2020 (15)

Total

Year

2009

2010

2011

2013

2015

2016

2016

2018

2020

2020

2020

2020

2020

n/N Live
pregnancies Birth
treated Rate

6/14 5/14
NONE 4/4
NONE 21/69
NONE 10/30
2124 16/24
NONE 17/24
NONE 2/6
NONE 20/33
NONE 31/38
21/111 62/111
NONE 70/122
10/56 3/56
NONE 70/122
58 336/659

Avg.
Live
Birth
weight
(8)

1550

(590-2760)

995
(495-1640)

1780 + 590
(920-2830)

NR
2493 + 678
1634

(610-2875)

1695
(1290-
2100)

NR

NR

1500 + 885

NR

NR

NR

1679.68

Gestational Spontaneous
preterm live
birth

age at
delivery
(weeks)

34.6
(27.5-37)

312
(27-35.6)

350 +25
(30.6-39.0)

NR
38+ 1.6
343+ 37

35,5
(33-38)

NR

NR

336+47

NR

NR

NR

3447

10/10

4/4

13/21

6/10

5/16

11/17

12

16/20

21/31

4/62

38/70

1/6

5/70

135/336

FGR
(<10™
centile)
live or not

8/11

3/4

(<10th
percentile) 2/
4

(<3rd
percentile)
24/69

(<3rd
percentile)

NR
3/24
14/21

2/6

23/33
(<10th
percentile),
15/33
(<3rd
percentile)
16/38
(<3rd
percentile)
62/111
(<3rd
percentile)

81/122

7115 at 20
weeks

46/70 (alive)

289/424

Miscarriage
< 14 weeks

2/14

NO

21/69
(<12 weeks)

4/30

(<12 weeks)
4/24
(<10 weeks)
/124

4/6

2/33
(<20 weeks)

NR

NR

17/122

29/56
(<12 weeks)

17/122

101

Miscarriage
14 -24 weeks

1/14

NO

9/69
(12-22 weeks)

2/30

(12-16 weeks)
4/24

(>10 weeks)
2/24

NO

NR

1/38

6/111
(14-21 weeks)

17/122

13/56
(12-22 weeks)

1/122

56

Still
birth
IUD >
24 weeks

2/14

NO

18/69
(>22
weeks)

NR

2/24

NO

11/31
(>20
weeks)

3/38

22/111
(22-42
weeks)

NR

6/56
(>23
weeks)

16/122

80

Live birth rate is as a fraction over total CHI pregnancies in each study, * pregnancies with villitis excluded, NR - not reported, average birth weight and gestational age at delivery with
standard deviation if reported and range in parentheses. Parentheses in miscarriage and FGR indicate differing classification criteria.
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Author/
Year

Doss
1995 (9)
Parant
2009 (18)
a

Parant
2009 (18)
b

Parant
2009 (18)
c

Parant
2009 (18)
d

Parant
2009 (18)
e

Parant
2009 (18)
f

Parant
2009 (18)
8

Parant
2009 (18)
h

Parant
2009 (18)
i

Parant
2009 (18)
j

Parant
2009 (18)
k

Parant
2009 (18)
L

Parant
2009 (18)
m

Parant
2009 (18)
n

Traeder
2010 (40)
a

Traeder
2010 (40)
b

Traeder
2010 (40)
c
Traeder
2010 (40)
d

Ramya
2014 (24)

Crawford
2016 (26)

Ozawa
2017 (29)

Vardi
2017 (30)

Mekinian
2019 (32)
a
Mekinian
2019 (32)
b

NK
Simula
2020 (39)
a

NK
Simula
2020 (39)
b

NK
Simula
2020 (39)
c

NK
Simula
2020 (39)
d

NK
Simula
2020 (39)
e

NK
Simula
2020 (39)
f

NK
Simula
2020 (39)
8

NK
Simula
2020 (39)
h

NK
Simula
2020 (39)
i

NK
Simula
2020 (39)
j

Nohr
2020 (33)

Maternal G
Age
36 13
35 8
25 5
29 2
31 2
31 2
29 1
24 4
25 2
31 3
28 3
27 2
33 3
25 3
31 2
30 2
40 4
30 1
36 1
22 1
28 5
29 7
31 6
37 13
10 NR
NR 6
NR NR
NR NR
NR NR
NR NR
NR NR
NR NR
NR NR
NR NR
NR NR
34 4

P

NR

NR

NR

NR

NR

NR

NR

NR

NR

NR

No. previ-
ous CHI
pregnancies

4/12

NR

NR

NR

NR

NR

NR

NR

NR

NR

NR

NR

NR

NR

NR

NR

NR

NR

NR

NR
3/4
2/6 **

3/5

NR

NR

5/5*

NR

NR

NR

NR

NR

NR

NR

NR

NR

2/3

Case Pregnancy Treatment

Prednisone

None listed

Aspirin/corticoid (prednisone 20mg)

None listed

None listed

None listed

None listed

Aspirin

Aspirin

Aspirin/corticoid (prednisone 5mg)

Aspirin

Aspirin

None listed

None listed

None listed

NONE

NONE

NONE

NONE

None listed
None listed
Prednisolone 20mg + LDA

20mg oral prednisone OD, 40mg LMWH
(enoxaparin) subcutaneously OD, aspirin
100mg OD

Adalimumab + aspirin 100mg/day +
prednisone 10mg/day

Adalimumab 40mg every 2 weeks
subcutaneously

Aspirin 81mg daily, dalteparin 7500 TU

daily, hydroxychloroquine

Aspirin 81mg daily

Aspirin 81mg daily

Aspirin 81mg daily

Dalteparin 5000-7500 TU daily

Prednisone

Aspirin 81mg daily, dalteparin 5000-7500
1U daily

Aspirin 81mg daily, dalteparin 5000-7500
1U daily

Aspirin 81mg daily, dalteparin 5000-7500
1U daily

Aspirin 81mg daily, dalteparin 7500 TU
daily, hydroxychloroquine

1VIg therapy, prednisone, LMWH,
Aspirin

Treatment duration

NR

Full gestation

Full gestation

Full gestation

Full gestation

Full gestation

Full gestation

NONE

NONE

NONE

NONE

4 - 29 weeks

Prednisone conception-20weeks and
decreasing dose to 28 weeks; LMWH 6
weeks onwards

2 months preconception - 9 weeks
gestation

2 months prior to oocyte donation - 9
weeks gestation

From positive pregnancy test - delivery

From positive pregnancy test - delivery

From positive pregnancy test - delivery

From positive pregnancy test - delivery

From positive pregnancy test - delivery

From positive pregnancy test - delivery

From positive pregnancy test - delivery

From positive pregnancy test - delivery

From positive pregnancy test - delivery

From positive pregnancy test - delivery

NR

Case Pregnancy
Outcome

Live birth, 2170g

Miscarriage 14 weeks

Miscarriage 8 weeks

Live birth, 2310g, 34
weeks

TUFD (Intrauterine fetal
death), 180g, 23 weeks
severe [IUGR

TOP, 190g fetal weight, 22
weeks, severe IUGR

Live birth, 2080g, 37
weeks, severe [IUGR

Miscarriage 10 weeks

TUFD, 330g, 26.5 weeks
FGR

TOP, 215g, 22.5 weeks,
FGR

Live birth, 2760g, 37
weeks

Live birth, 2320g, 37.5
weeks, IUGR

TOP, 392g fetal weight, 26
weeks, FGR

Live birth, 590g, 27.5
weeks, FGR

TUED, 160g, 28.5 weeks,
FGR

Live birth, 1640g, 32
weeks

Live birth FGR, 1440g, 35
weeks

Live birth FGR, 405g, 29
weeks

Live birth FGR, 495g, 27
weeks

TUD 460g, 24 weeks
TOP 21 weeks

Live birth, 2051g, 35
weeks

Live birth, 2200g, 34
weeks

Live birth, 2960g 38 weeks

Live birth, - g, 39 weeks

Live birth, -g, - weeks

Live birth at term, - g

Pregnancy loss

Pregnancy loss

Pregnancy loss

Pregnancy loss

Pregnancy loss

Pregnancy loss

Pregnancy loss

Ongoing?

TUGR, TUFD 25 weeks

Live birth rate as a fraction over total CHI pregnancies in study, * 3/5 treated with Aspirin 81mg daily, dalteparin 5000-7500 IU daily, prednisone 10-40mg daily; 1/5 treated with aspirin
81mg daily, dalteparin 7500 IU daily, hydroxychloroquine 400mg daily.** pregnancy 5 treated with aspirin 81mg/ day resulted in IUD and IUGR 210g at 17 weeks; pregnancy 6 treated with
aspirin 81mg/day, heparin 10 000-15 0001U/day IUGR 33 weeks 1032g.
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Study

Doss 1995
©)

Parant 2009
(18)*c
Marchaudon
2011 (19)0
Reus 2013
(11)

Ramya 2014
(24)
Mekinian
2015 (25)0
Crawford
2016 (26)
Nowak 2016
(27)

Sabra 2016
(28)

Ozawa 2017
(29)

Vardi 2017
(30)

Koby 2018
(31)

Mekinian
2019 (32)
Bos 2020
(37)

Homatter
2020 (38)

Mattuizzi
2020 (14) T

Nohr 2020
(33)
Sauvestre
2020 (15)0F
Simula 2020
(390
Traeder 2010
(40)

Location

USA

France

France

Netherlands

India

France

Australia

France

Spain

Japan

New

Zealand

Canada

France

Netherlands

France

France

Canada

France

Canada

Germany

Study
design

Case report

retrospective
cohort

retrospective

retrospective
cohort study

Case report

multi-centre
prospective

Case report

retrospective
cohort

retrospective
Case report
Case report

retrospective
observational

Case report

Observational
cohort

retrospective
case-control

retrospective

Case report

multi-centre
retrospective

retrospective
cohort

case series

Duration

1974-1994

2000-2006

1997-2006

2000-2010

2014

2011-2013

2016

1998-2010

2012-2016

2010-2017

2003-2013

2001-2014

2019

2000-2015

2000-2016

1997-2018

2020

1997-2018

2006-2019

1994-2008

N

women pregnancies

10

50

22

24

NR

29

38

111

102

102

47

N CHI

69

30

24

24

33

38

111

122

122

56

Mean age

36
30 (24-39)
31 (16-43)
318
(22-45)
22
34
28
NR
34.83
(32-39)
29

31

Median 31
(IQR 28.5-
345)
38.5 (33-36)
34 (24-43)

30.8

Median 32
(IQR 28-36)

34
317
332

34 (30-40)

Ethnicity

NR

99% white
NR

NR

NR

46% white
NR

NR

83.3% European
16.7% Latinx
NR

NR

45.5% white, 42.4%
African, 12.1% Asian

NR
NR
72.1% white

61.6% white,

2% Asian

19.2% North African,
15.2% South African,
2% Hispanic

NR

NR

NR

BMI

NR

21 (19-27)

NR

NR

NR

26

NR

NR

NR

NR

NR

median
29.8 (26-
317)
NR

NR

NR

median 22

NR

NR

n/N
pregnancies treated

1/4
6/14
NONE
NONE
NR
NONE
NONE
NONE
NONE

1/1

NONE

2/2
NONE
21/111

21/24

1/1
NONE
10/56

NONE

N CHI pregnancies - only includes pregnancies diagnosed with CHI, NR - not reported, * - pregnancies with villitis excluded, all ages are means with range included in brackets if reported,
** _ median and IQR used where mean and range not available, ¢ included in either one or both of the meta-analyses, § studies share same cohort.
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Study selection bias
Parant 2009 4
(18)

Reus 2013 4
an

Mekinian 4
2015 (25)

Nowak 2016 4
27)

Sabra 2016 4
(28)

Koby 2018 4
(€]

Marchaudon v
2011 (19)

Bos 2020 (37) 4
Homatter 4
2020 (38)

Mattuizzi 4
2020 (14)

Sauvestre x
2020 (15)

Simula 2020 X
(39) Database search was for CIUE and

chronic intervillositis

“Risk of bias score is out of a total of 4.
/ Low risk of bias.
x High risk of bias.

Only database search term was
‘intervillositis’

measurement/classification
bias

x
No mention of blinding

v

%
No mention of blinding

%

No blinding mentioned

x

Investigator was aware of diagnosis no
mention of blinding

x

Histology in conjunction with fetal
autopsy so outcome known

x

No mention of blinding when
pathologist reviewed slides

x

Only CHI positive cases assessed
histologically

x

No blinding to CHI diagnosis

v

All 3 pathologists blinded to diagnosis

reporting
bias

4

confounding not accounted for
(no regression model)

score*
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Study

Parant 2009
(18)
Marchaudon
2011 (19)
Reus 2013
(11)
Mekinian
2015 (25)
Nowak 2016
27)

Sabra 2016
(28)

Koby 2018
(31)

Bos 2020
(37)
Homatter
2020 (38)
Mattuizzi
2020 (14)
Sauvestre
2020 (15)
Simula 2020
(39)

year

2009

2011

2013

2015

2016

2016

2018

2020

2020

2020

2020

2020

Study
design

retrospective
cohort

retrospective
retrospective
prospective

retrospective
cohort

retrospective

retrospective
observational

observational
cohort

retrospective
case-control

retrospective

retrospective

retrospective
cokioit

Selection Comparability Outcome total

3)

)

)

7)

6

Comment

No details of whether pathologists were blinded

Pathologists carried out histological analysis in conjunction with
autopsy - no blinding, no mention of medications

No blinding mentioned, and only 6 patients

Pathologist was aware of diagnosis, no details on medication
No comment on whether pathologists were blinded to prior
diagnosis.

Early miscarriage excluded

No comments on anyon any blinding

Only histological database search term was ‘intervillositis’, live

birth outcomes unclear in table, 10 placentas missing

No comment on whether pathologist was blinded
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Parant 2009 (18)

Traeder 2010 (40)
Marchaudon 2011 (19)
A. Reus 2013 (11)
Mekinian 2015 (25)

Nowak 2016 (27)
Sabra 2016 (28)
Koby 2018 (31)

Bos 2020 (37)
Homatter 2020 (38)

Mattuizzi 2020 (14)
N.K Simula 2020 (39)

Sauvestre 2020 (15)

in combination but assessed separately.

14

69
30
24

24

33

38
111

122
56

122

Intervention details

Untreated
8

69
30

24

33

38
90

122
37

122

Treatment details

aspirin (n=4)

aspirin + corticoid (n=2)

NONE

NONE

NONE

aspirin/LMWH (n=4)

aspirin + prednisone (n=6)

aspirin+ prednisone+ LMWH (n=5)
aspirin +prednisone+ LMWH+ hydroxychloroquine (n=6)
NONE

NONE

NONE

NONE

aspirin (n=18)

LMWH (n=7)

corticosteroids(n=6)

NONE

aspirin 81mg +dalteparin 7500 U+ hydroxychloroquine 400mg (n=2)
aspirin 81mg (n=3)

dalteparin (n=1)

prednisone (n=1)

aspirin + dalteparin (n=3)

NONE
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Full-text articles assessed reasons
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(n = 66) Irrelevant/ combined lesions = 10
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Cenference abstract/poster/book

Studies and case reports section/thesis =15

included in qualitative ;
synthesis Full text unavailable= 5

(n=20) Insufficient data=4

Additional references
forward and backward Duplicate=4
citations (n=3)

Additional saved search Additional references excluded for
alerts {n=3) irrelevance (n=8)

Studies included in
quantitative synthesis

(meta-analysis)
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Odds Ratio Odds Ratio
. . [V, Fixed, 95% Cl
Meklnlan2015 3 425% 500[038 66.01]
Parant 2009 8 67.5% 0.83[0.09, 7.68]

Total (95% CI) 11 100.0% 1.79 [0.33, 9.61]
Total events 17 4

Heterogeneity: Chi? = 1.06, df =1 (P = 0.30); F =6% 0.02 0.1 1 10 50
Test for overall effect: Z = 0.68 (P = 0.50) "Favours non-treatment Favours treatment
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Study or Subgroup Events Total Events Total Welight [V, Random, 95% CI [V, Random, 5% CI
Parant 2009 0 4 6 7 142% 0.03[0.00,078] o

Simula 2020 21 24 32 32 16.6% 0.09 [0.00, 1.92] -

Sauvestre 2020 30 91 26 31 36.0% 0.09 [0.03, 0.27] — L

Marchaudon 2011 38 65 10 14 33.2% 0.89 [0.25, 3.26] L

Total (5% CI) 174 84 100.0% 0.17 [0.03, 0.80] _ —

Total events 89 74

Heterogenelty: Tau* = 1.50; Chi? = 8.72, df = 3 (P = 0.03); # = 66% 0.002 01 1 10

Test for overall effect Z = 2.24 (P = 0.03) Favours low/moderate CHIV Favours severe CHIV
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1

Science Direct, Ovid Embase, Web of Science search strategy

(((chronic histiocytic intervill*) OR (chronic intervill*)) OR (chronic intervill* of unknownZetiology)) OR (massive chronic intervill*)) OR (massive perivillous
histiocyt*)

“chronic histiocytic intervillositis” [All Fields] OR “chronic histiocytic intervillositis chi” [All Fields] OR “chronic histiocytosis” [All Fields] OR “chronic
histiocytosis x” [All Fields]

Search 1 OR 2
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Reference ML Input ML technique Main output

application

(62) Complication Clinical Extreme GB AUC = 0.842, Ac = 94.71%, Se = 45.3%, Sp = 95%, PPV = 4.81%, NPV = 99.68%, +LR =
prediction parameters 9.03 and -LR = 0.58 for stillbirth

(63) Complication Clinical LR AUC = 0.82 for stillbirth
prediction parameters

(64) Complication Clinical SNNN AUC = 0.76, Se = 38% and Sp = 90% for early stillbirth
prediction parameters

(65) Complication Clinical LR AUC = 0.872 for neonatal death
prediction parameters

(66) Complication Clinical RF AUC =079, Ac = 0.87, Se = 0.54, Sp = 0.88, PPV = 0.15 and NPV = 0.98
prediction parameters

(67) Complication Clinical DT, GB, LR, RF AUC =90.00%, Ac = 90.56%, Se = 91.37%, Sp = 88.10%, Pr = 88.02% and F1 = 90.58% for
prediction parameters and SVM stillbirth before delivery and during labor

(68) Complication Clinical MLP AUC = 95.99%, Ac = 96.79%, Se = 86.20%, Sp = 98.37%, RMSE = 0.1702 and RRSE =
prediction parameters 47.47% for neonatal death

(69) Complication Clinical SL AUC = 0.89 and U = -0.0003 for neonatal death
prediction parameters

(70) Complication Clinical RF AUC = 0.922, Ac = 0.903, Se = 0.674, Sp = 0.919, PPV = 0.377, F1 = 0.477 and mean
prediction parameters F1 = 0.712 for neonatal death

(71) Complication Clinical ANN AUC =092, Ac = 0.86, Se = 0.86, Sp = 0.83, Pr = 0.96 and F1 = 0.91 for neonatal death
prediction parameters

ML, machine learning; GB, gradient boosting; LR, logistic regression; SNNN, self-normalizing neural networks; RE, random forest; DT, decision tree; SVM, support vector machines; MLP,
multilayer perceptron; SL, SuperLearner; ANN, artificial neural networks; AUC, area under the receiver operating characteristic curve; Ac, accuracy; Se, sensitivity; Sp, specificity; PPV, positive
predictive value; NPV, negative predictive value; +LR, positive likelihood ratio -LR, negative likelihood ratio; Pr, precision; RMSE, root mean squared error; RRSE, root relative squared error.
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Aspirin
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Enoxaparin
Prednisone/Prednisolone
Adalimumab
Hydroxychloroquine

Tacrolimus

Dose

75-100mg

Indication

Low, modemle, severe
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Moderate to severe

Strength of Evidence
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