

[image: image]





FRONTIERS EBOOK COPYRIGHT STATEMENT

The copyright in the text of individual articles in this ebook is the property of their respective authors or their respective institutions or funders. The copyright in graphics and images within each article may be subject to copyright of other parties. In both cases this is subject to a license granted to Frontiers. 

The compilation of articles constituting this ebook is the property of Frontiers. 

Each article within this ebook, and the ebook itself, are published under the most recent version of the Creative Commons CC-BY licence. The version current at the date of publication of this ebook is CC-BY 4.0. If the CC-BY licence is updated, the licence granted by Frontiers is automatically updated to the new version. 

When exercising any right under the CC-BY licence, Frontiers must be attributed as the original publisher of the article or ebook, as applicable. 

Authors have the responsibility of ensuring that any graphics or other materials which are the property of others may be included in the CC-BY licence, but this should be checked before relying on the CC-BY licence to reproduce those materials. Any copyright notices relating to those materials must be complied with. 

Copyright and source acknowledgement notices may not be removed and must be displayed in any copy, derivative work or partial copy which includes the elements in question. 

All copyright, and all rights therein, are protected by national and international copyright laws. The above represents a summary only. For further information please read Frontiers’ Conditions for Website Use and Copyright Statement, and the applicable CC-BY licence.



ISSN 1664-8714
ISBN 978-2-83252-047-5
DOI 10.3389/978-2-83252-047-5

About Frontiers

Frontiers is more than just an open access publisher of scholarly articles: it is a pioneering approach to the world of academia, radically improving the way scholarly research is managed. The grand vision of Frontiers is a world where all people have an equal opportunity to seek, share and generate knowledge. Frontiers provides immediate and permanent online open access to all its publications, but this alone is not enough to realize our grand goals.

Frontiers journal series

The Frontiers journal series is a multi-tier and interdisciplinary set of open-access, online journals, promising a paradigm shift from the current review, selection and dissemination processes in academic publishing. All Frontiers journals are driven by researchers for researchers; therefore, they constitute a service to the scholarly community. At the same time, the Frontiers journal series operates on a revolutionary invention, the tiered publishing system, initially addressing specific communities of scholars, and gradually climbing up to broader public understanding, thus serving the interests of the lay society, too.

Dedication to quality

Each Frontiers article is a landmark of the highest quality, thanks to genuinely collaborative interactions between authors and review editors, who include some of the world’s best academicians. Research must be certified by peers before entering a stream of knowledge that may eventually reach the public - and shape society; therefore, Frontiers only applies the most rigorous and unbiased reviews. Frontiers revolutionizes research publishing by freely delivering the most outstanding research, evaluated with no bias from both the academic and social point of view. By applying the most advanced information technologies, Frontiers is catapulting scholarly publishing into a new generation.

What are Frontiers Research Topics? 

Frontiers Research Topics are very popular trademarks of the Frontiers journals series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area.


Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers editorial office: frontiersin.org/about/contact





Prognostic factors in non-small cell lung cancer

Topic editors

Luciano Mutti – Temple University, United States

Jun Zhang – University of Kansas Medical Center, United States

Mohamed Rahouma – Weill Cornell Medical Center, NewYork-Presbyterian, United States

Citation

Mutti, L., Zhang, J., Rahouma, M., eds. (2023). Prognostic factors in non-small cell lung cancer. Lausanne: Frontiers Media SA.  doi: 10.3389/978-2-83252-047-5





Table of Contents




Editorial: Prognostic factors in non-small cell lung cancer

Mohamed Rahouma, Massimo Baudo, Jun Zhang and Luciano Mutti

Prognostic Impact of PCK1 Protein Kinase Activity-Dependent Nuclear SREBP1 Activation in Non-Small-Cell Lung Carcinoma

Fei Shao, Xueli Bian, Juhong Wang, Daqian Xu, Wei Guo, Hongfei Jiang, Gaoxiang Zhao, Lei Zhu, Shuai Wang, Dongming Xing, Yibo Gao, Jie He and Zhimin Lu

Identifying and Validating Potential Biomarkers of Early Stage Lung Adenocarcinoma Diagnosis and Prognosis

Yingji Chen, Longyu Jin, Zhibin Jiang, Suo Liu and Wei Feng

Identification of Prognostic Model Based on Immune-Related LncRNAs in Stage I-III Non-Small Cell Lung Cancer

Qiaxuan Li, Lintong Yao, Zenan Lin, Fasheng Li, Daipeng Xie, Congsen Li, Weijie Zhan, Weihuan Lin, Luyu Huang, Shaowei Wu and Haiyu Zhou

Premalignant Changes in the Bronchial Epithelium Are Prognostic Factors of Distant Metastasis in Non-Small Cell Lung Cancer Patients

Olga V. Pankova, Liubov A. Tashireva, Evgeny O. Rodionov, Sergey V. Miller, Sergey A. Tuzikov, Dmitry S. Pismenny, Tatiana S. Gerashchenko, Marina V. Zavyalova, Sergey V. Vtorushin, Evgeny V. Denisov and Vladimir M. Perelmuter

Identification of a N6-Methyladenosine (m6A)-Related lncRNA Signature for Predicting the Prognosis and Immune Landscape of Lung Squamous Cell Carcinoma

Chengyin Weng, Lina Wang, Guolong Liu, Mingmei Guan and Lin Lu

Prognostic Role of Soluble Programmed Death Ligand 1 in Non-Small Cell Lung Cancer: A Systematic Review and Meta-Analysis

Guixiang Liao, Zhihong Zhao, Yuting Qian, Xiean Ling, Shanyi Chen, Xianming Li and Feng-Ming (Spring) Kong

Identification and Validation Prognostic Impact of MiRNA-30a-5p in Lung Adenocarcinoma

Xiulin Jiang, Yixiao Yuan, Lin Tang, Juan Wang, Dahang Zhang, William C. Cho and Lincan Duan

Corrigendum: Identification and Validation Prognostic Impact of miRNA-30a-5p in Lung Adenocarcinoma

Xiulin Jiang, Yixiao Yuan, Lin Tang, Juan Wang, Dahang Zhang, William C. Cho and Lincan Duan

LncRNA-AC068228.1 Is a Novel Prognostic Biomarker That Promotes Malignant Phenotypes in Lung Adenocarcinoma

Xiulin Jiang, Min Chen, Junyi Du, Hong Bi, Xiang Guo, Chao Yang, Xu He and Zhixian Jin

NcRNA-Mediated High Expression of HMMR as a Prognostic Biomarker Correlated With Cell Proliferation and Cell Migration in Lung Adenocarcinoma

Xiulin Jiang, Lin Tang, Yixiao Yuan, Juan Wang, Dahang Zhang, Kebao Qian, William C. Cho and Lincan Duan

Identification of a Prognostic Signature Composed of GPI, IL22RA1, CCT6A and SPOCK1 for Lung Adenocarcinoma Based on Bioinformatic Analysis of lncRNA-Mediated ceRNA Network and Sample Validation

Wenjun Tang, Qiaonan Lu, Jianling Zhu, Xiaowei Zheng, Na Fang, Shaoping Ji and Feng Lu

Prognostic Factors and Survival Benefits of Antitumor Treatments for Advanced Non-Small Cell Lung Cancer Patients With Central Nervous System Metastasis With or Without Driver Genes: A Chinese Single-Center Cohort Study

Xiaoxing Gao, Minjiang Chen, Xiaoyan Liu, Yuequan Shi, Hongge Liang, Qing Zhou, Jing Zhao, Ruili Pan, Wei Zhong, Yan Xu and Mengzhao Wang

The Difference and Significance of Parietal Pleura Invasion and Rib Invasion in Pathological T Classification With Non-Small Cell Lung Cancer

Lei-Lei Wu, Chong-Wu Li, Kun Li, Li-Hong Qiu, Shu-Quan Xu, Wei-Kang Lin, Guo-Wei Ma, Zhi-Xin Li and Dong Xie

Deciphering the Role of Shugoshin-Like Protein 1 in Lung Adenocarcinoma: A Comprehensive Analysis and In Vitro Study

Yixiao Yuan, Juan Wang, Dahang Zhang, Lin Tang, Lincan Duan and Xiulin Jiang

Immune-Related miRNA-195-5p Inhibits the Progression of Lung Adenocarcinoma by Targeting Polypyrimidine Tract-Binding Protein 1

Lincan Duan, Juan Wang, Dahang Zhang, Yixiao Yuan, Lin Tang, Yongchun Zhou and Xiulin Jiang

Long Non-Coding RNA AL139385.1 as a Novel Prognostic Biomarker in Lung Adenocarcinoma

Xi Chen, Jishu Guo, Fan Zhou, Wenjun Ren, Xiaobin Huang, Jun Pu, Xiaoqun Niu and Xiulin Jiang

LncRNA-AL035458.2/hsa-miR-181a-5p Axis-Mediated High Expression of NCAPG2 Correlates With Tumor Immune Infiltration and Non-Small Cell Lung Cancer Progression

Xi Chen, Jishu Guo, Wenjun Ren, Fan Zhou, Xiaoqun Niu and Xiulin Jiang

Identifying Immune Cell Infiltration and Effective Diagnostic Biomarkers in Lung Adenocarcinoma by Comprehensive Bioinformatics Analysis and In Vitro Study

Xinyan Li, Xi Chen, Yixiao Yuan, RuiQing Zhai, William C. Cho and Xiulin Jiang

Construction and Verification of Nomogram Model for Lung Adenocarcinoma With ≤ 5 Bone-Only Metastases Basing on Hematology Markers

Chunliu Meng, Fang Wang, Minghong Chen, Hongyun Shi, Lujun Zhao and Ping Wang

Identification and Validation of lncRNA-SNHG17 in Lung Adenocarcinoma: A Novel Prognostic and Diagnostic Indicator

Xinyan Li, Yixiao Yuan, Mintu Pal and Xiulin Jiang

Case Report: Exceptional Response to Poziotinib in Patient with Metastatic Non-Small Cell Lung Cancer With EGFR Exon 20 Insertion Mutation

Arsela Prelaj, Achille Bottiglieri, Gajanan Bhat, Rocky Washington, Giuseppina Calareso, Gabriella Francesca Greco, Roberto Ferrara, Marta Brambilla, Alessandro De Toma, Mario Occhipinti, Sara Manglaviti, Alberto Soro, Monica Ganzinelli, Giuseppe Lo Russo and Claudia Proto

Long Non-Coding RNA-TMPO-AS1 as ceRNA Binding to let-7c-5p Upregulates STRIP2 Expression and Predicts Poor Prognosis in Lung Adenocarcinoma

Juan Wang, Yixiao Yuan, Lin Tang, Haoqing Zhai, Dahang Zhang, Lincan Duan, Xiulin Jiang and Chen Li

Construction of a Novel Prognostic Model in Lung Adenocarcinoma Based on 7-Methylguanosine-Related Gene Signatures

Fei Lu, Jingyan Gao, Yu Hou, Ke Cao, Yaoxiong Xia, Zhengting Chen, Hui Yu, Li Chang and Wenhui Li

Extra Spindle Pole Bodies-Like 1 Serves as a Prognostic Biomarker and Promotes Lung Adenocarcinoma Metastasis

Zhi Nie, Tong Pu, Zhaojie Han, Chenyang Wang, Chenglong Pan, Ping Li, Xiaoling Ma, Yanfei Yao, Youmei Zhao, Chunyan Wang, Xiulin Jiang and Jianyang Ding

Development and Validation of a DeepSurv Nomogram to Predict Survival Outcomes and Guide Personalized Adjuvant Chemotherapy in Non-Small Cell Lung Cancer

Bin Yang, Chengxing Liu, Ren Wu, Jing Zhong, Ang Li, Lu Ma, Jian Zhong, Saisai Yin, Changsheng Zhou, Yingqian Ge, Xinwei Tao, Longjiang Zhang and Guangming Lu

Identification and Validation of a Four-Gene Ferroptosis Signature for Predicting Overall Survival of Lung Squamous Cell Carcinoma

Qi Wang, Yaokun Chen, Wen Gao, Hui Feng, Biyuan Zhang, Haiji Wang, Haijun Lu, Ye Tan, Yinying Dong and Mingjin Xu

Establishment of a Nomogram-Based Prognostic Model (LASSO-COX Regression) for Predicting Progression-Free Survival of Primary Non-Small Cell Lung Cancer Patients Treated with Adjuvant Chinese Herbal Medicines Therapy: A Retrospective Study of Case Series

Bin Luo, Ming Yang, Zixin Han, Zujun Que, Tianle Luo and Jianhui Tian

Deciphering Prognostic Value of TTN and Its Correlation With Immune Infiltration in Lung Adenocarcinoma

Jianing Chen, Yaokai Wen, Hang Su, Xin Yu, Ruisheng Hong, Chang Chen and Chunxia Su

Clinical M2 Macrophage-Related Genes Can Serve as a Reliable Predictor of Lung Adenocarcinoma

Chaojie Xu, Lishan Song, Yubin Yang, Yi Liu, Dongchen Pei, Jiabang Liu, Jianhua Guo, Nan Liu, Xiaoyong Li, Yuchen Liu, Xuesong Li, Lin Yao and Zhengjun Kang

In 18F-positron emission tomography/computed tomography-guided precision radiotherapy for centrally located non-small cell lung cancer, tumor related atelectasis is a prognostic factor of survival

Nan Wang, Yun Qiao, Yingqiu Song, Zheng Wang, Xia Li, Chengsen Liu, Ye Wang, Yu Wu, Rong He, Chenyu Wang, Yangwu Ren, Guang Li and Tianlu Wang

The nomogram for the prediction of overall survival in patients with metastatic lung adenocarcinoma undergoing primary site surgery: A retrospective population-based study

Chao Ma, Shuzhen Peng, Boya Zhu, Siying Li, Xiaodong Tan and Yaohua Gu

Adjuvant chemotherapy can benefit the survival of stage I lung adenocarcinoma patients with tumour spread through air spaces after resection: Propensity-score matched analysis

Shaonan Xie, Qingyi Liu, Yaqing Han, Shize Wang, Huiyan Deng and Guangjie Liu

Pulmonary mucoepidermoid carcinoma in the Chinese population: A clinical characteristic and prognostic analysis

Qiuyu Li, Xuejing Wei, Yanfei Wang, Chang Liu, Boshi Fan, Cheng Lv, Wenzhe Si and Min Li

Development and validation of a prognosis prediction model based on 18 endoplasmic reticulum stress-related genes for patients with lung adenocarcinoma

Long Shu, Shuang Liu and Yongguang Tao

PD-1/PD-L1 immune-checkpoint blockade induces immune effector cell modulation in metastatic non-small cell lung cancer patients: A single-cell flow cytometry approach

Antonella Fameli, Valerio Nardone, Mojtaba Shekarkar Azgomi, Giovanna Bianco, Claudia Gandolfo, Bianca Maria Oliva, Marika Monoriti, Rita Emilena Saladino, Antonella Falzea, Caterina Romeo, Natale Daniele Calandruccio, Domenico Azzarello, Rocco Giannicola, Luigi Pirtoli, Antonio Giordano, Pierfrancesco Tassone, Pierosandro Tagliaferri, Maria Grazia Cusi, Luciano Mutti, Cirino Botta and Pierpaolo Correale

Comprehensive analysis of the cuproptosis-related model to predict prognosis and indicate tumor immune infiltration in lung adenocarcinoma

Minle Wu, Jie Bao, Youfeng Lei, Shuai Tao, Qiurong Lin, Liang Chen, Yinpeng Jin, Xiaohong Ding, Yufeng Yan and Ping Han





EDITORIAL

published: 14 March 2023

doi: 10.3389/fonc.2023.1174625

[image: image2]


Editorial: Prognostic factors in non-small cell lung cancer


Mohamed Rahouma 1,2*†, Massimo Baudo 1,3†, Jun Zhang 4,5 and Luciano Mutti 6,7


1 Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, NY, United States, 2 Surgical Oncology Department, National Cancer Institute, Cairo University, Cairo, Egypt, 3 Department of Cardiac Surgery, Spedali Civili di Brescia, Brescia, Italy, 4 Division of Medical Oncology, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, United States, 5 Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, United States, 6 Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, United States, 7 Department of Applied Clinical Sciences and Biotechnology, L’Aquila University, L’Aquila, Italy




Edited and Reviewed by: 

Lizza E.L. Hendriks, Maastricht University Medical Centre, Netherlands

*Correspondence: 
 Mohamed Rahouma
 Mmr2011@med.cornell.edu 
 mhmdrahouma@gmail.com


†These authors have contributed equally to this work


Specialty section: 
 This article was submitted to Thoracic Oncology, a section of the journal Frontiers in Oncology


Received: 26 February 2023

Accepted: 06 March 2023

Published: 14 March 2023

Citation:
Rahouma M, Baudo M, Zhang J and Mutti L (2023) Editorial: Prognostic factors in non-small cell lung cancer. Front. Oncol. 13:1174625. doi: 10.3389/fonc.2023.1174625



Keywords: immune checkpoint inhibitors, prognosis, survival, immunotherapy, lung cancer, noncoding RNA


Editorial on the Research Topic


Prognostic factors in non-small cell lung cancer


Lung cancer is the most frequent cause of cancer deaths, and non-small-cell lung cancer (NSCLC) accounts for 85% of all lung cancer cases (1). In 2023, 1,958,310 new cancer cases and 609,820 cancer deaths are projected to occur in the United States, including approximately 350 deaths per day from lung cancer (2). It is the second most frequently diagnosed cancer in both males and females, while the first for number of deaths in both sexes (2). Besides and in comparison to the most common cancers, malignancy-associated suicide risk is the highest among patients with lung cancer, particularly elderly, widowed, male patients and patients with unfavorable tumor characteristics (3). Currently, different cancer treatment options are available such as surgery, chemotherapy, radiotherapy, targeted therapy, immunotherapy, or combination of these. However, there are many patients who receive therapy from which the benefit is minimal or even absent, whilst they do experience treatment-related toxicity. This has raised the need to improve the outcomes by selecting the best patient for an anticancer treatment through prognostic and predictive biomarkers investigation especially in the current personalized medicine era. Prognostic factors provide information about the patients’ overall cancer outcome, regardless of therapy. On the other hand, a predictive biomarker gives information about the effect of a therapeutic intervention, i.e. the treatment benefit (4).

This Research Topic in Frontiers in Oncology “Prognostic Factors in Non-Small Cell Lung Cancer” comes to shed light on potential treatment target for NSCLC through the identification of the

	prognostic value of tumor pathological characteristics,

	prognostic gene signatures,

	non-coding RNAs (ncRNA) as prognostic biomarkers, and

	immune-related prognostic biomarkers.



A total of 12 studies analyzed non-coding RNA as possible prognostic biomarkers (Chen et al., Chen et al., Duan et al., Jiang et al., Jiang et al., Li et al., Li et al., Li et al., Tang et al., Wang et al., Weng et al., Yuan et al.). Long non-coding RNAs (lncRNAs) are a particular type of RNA transcripts that don’t code for proteins but are involved in the regulation of critical biological processes and cellular behavior (5). Besides, lncRNAs influence gene expression and have essential roles in carcinogenesis (6). MicroRNA (miRNA) refers to a class of short endogenously ncRNAs that negatively regulate mRNA expression by binding the complementary sequences in the target genes’ 3′-untranslated region (7). Similar to lncRNA, miRNA was shown to be of paramount importance in cancer development and progression. Both these forms of ncRNA interact and compete with each other as competing endogenous RNA (ceRNA) to indirectly regulate downstream target mRNA expression (8).

Our current Research Topic identified various lncRNAs (Chen et al., Jiang et al., Li et al., Li et al., Weng et al.) and miRNA (Duan et al., Jiang et al.), whose up- or down-regulation in cancer tissue compared to normal tissue were associated with adverse clinical outcomes and prognostic models were built upon. Interestingly, five papers (Chen et al., Li et al., Tang et al., Wang et al., Yuan et al.) were able to analyze the ceRNA network (lncRNA-miRNA-mRNA) demonstrating high performance in predicting the survival and chemotherapeutic responses of low- and high-risk patients.

The focus of other 12 papers were the genes and related coded proteins. Elevated expression levels of phosphoenolpyruvate carboxykinase 1 (Shao et al), ASPM, CCNB2, CDCA5, PRC1, KIAA0101, and UBE2T (Chen et al.), soluble Programmed Death Ligand 1 (PD-L1) (Liao et al.), HMMR (Jiang et al.), four particular genes in the 7-methylguanosine-related gene signatures (Lu et al), eighteen endoplasmic reticulum stress-related genes (Shu et al.), two M2 macrophage-related genes (GRIA1 and CLEC3B) (Xu et al.), and Extra Spindle Pole Bodies-Like 1 (Nie et al.) were associated with poorer overall survival. On the other hand, lower expression levels of TTN (Chen et al.) was also associated with worse survival. Of note, Prelaj et al. published the first case of a patient affected by metastatic NSCLC harboring an EGFR exon 20 insertion mutation who achieved a complete response under treatment with poziotinib. This affirms that certain mutations such as EGFR exon20ins has predictive value in certain targeted therapy.

Two cell death paths were further investigated: ferroptosis and cuproptosis. Ferroptosis is a type of oxidative cell death presented in neurological disorders, blood diseases, and tumors that has been proposed as a promising target for killing cancer cells that are resistant to conventional treatment. In their paper, Wang et al. constructed a predictive model of ferroptosis related gene showing that the low-risk group in their model might profit more from immune checkpoint inhibitors. On the other hand, cuproptosis is a novel programmed cell death pathway different from apoptosis and characterized by mitochondrial copper-dependent functional destruction. Wu et al. were able to construct a nomogram for predicting patients’ prognosis from cuproptosis-associated clusters.

As far as pathological features, new insights on patients’ subdivision were analyzed. Morphological changes in the bronchial epithelium (e.g. basal cell hyperplasia, squamous cell metaplasia, and dysplasia) away from tumor foci were associated with a high-risk of distant metastasis and less 5-year metastasis-free survival (Pankova et al.). Besides, tumor-related atelectasis was associated with shorter overall survival (Wang et al.), while adjuvant chemotherapy seems to be beneficial in the survival of stage I lung adenocarcinoma patients with tumor spread through air spaces after resection (Xie et al.). Patients with rib and parietal pleura invasion were also assessed. Patients with rib invasion had poorer survival than those with the invasion of parietal pleura. In addition, in the cohort for parietal pleura invasion, patients were further classified by tumor size and patients with tumor size >5cm had less satisfactory survival outcomes than those with tumor size ≤5cm (Wu et al.). The development of a nomogram of patients with stage I to IIIA NSCLC using machine learning based on radiomic features extracted from computed tomography images and clinicopathological factors suggested that stage IIB -IIIA patients didn’t show any statistically significant difference in the survival rate, irrespective of administration of adjuvant chemotherapy, while stage I-IIA patients displayed a poorer prognosis in patients who had received chemotherapy (Yang et al.). This is arguably not in line with most of the guidelines, and might be related to the technique of analysis used by the authors therefore remains debatable. Of note, Meng et al. analyzed and developed a nomogram model in patients for lung adenocarcinoma (LUAD) with 1 to 5 bone-only metastases, reporting that adding alkaline phosphatase, albumin and leukocyte would improve the predictive accuracy of survival. The prognosis of non-small cell lung cancer patients with central nervous system (CNS) metastasis is poor and the study by Gao et al. deepened the knowledge of this subset of lung cancer patients. They observed that patients with ≥5 CNS metastases or that were developed during treatment were independent risk factors for poor survival. However, radiotherapy for CNS metastasis showed a survival benefit in the entire group, and in patients with driver mutations that can be treated by available targeted therapy such as EGFR, ALK, ROS-1, RET, and other mutations. Despite occurring mostly in the salivary glands, mucoepidermoid carcinoma may occur also in the lungs. When analyzing pulmonary mucoepidermoid carcinoma, stage IV, degree of differentiation (high grade), and lymph node metastasis were associated with worse survival (Li et al.).

Finally, some papers in this Research Topic evaluated different therapeutic strategies or analyzed their outcomes. Luo et al. investigated the adjuvant use of Chinese herbal medicines preparations in the treatment of primary NSCLC. Although Chinese herbal medicines are quite often used in China, such treatments are unlikely to be generalized in other countries, therefore data interpretation has to be careful. PD-1/PD-L1 immune-checkpoint blockade is becoming widely used for metastatic NSCLC. Nevertheless, the pathway inhibited by these drugs is a biological mechanism that prevents autoimmunity when prolonged and/or repeated exposure to the same antigens occurs (9, 10). Fameli et al. reported in their single-cell cytometry study that there is an increase in antinuclear antibodies (ANAs) and extractable nuclear antigen (ENA) antibodies, and that the increased immune-related adverse events were associated with the deregulation of specific immune subpopulations. Ma et al. constructed a nomogram based on patients with metastatic LUAD undergoing primary surgery and three different risk groups could be identified based on the risk score that was constructed using age, gender, primary location, N stage, bone metastasis, liver metastasis, radiotherapy, and chemotherapy.

The brief overview of the articles included in this Research Topic provides important updates regarding prognostic factors in NSCLC from new ncRNAs and their interaction with the related genes, possible subclassification of patients by pathological features, and new insights of current therapies. Eventually it results in a particularly intriguing question regarding how to apply novel techniques, e.g. machine learning and radiomics possesses to improve the current clinical practice.
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Metabolic enzymes can perform non-metabolic functions and play critical roles in the regulation of a variety of important cellular activities. Phosphoenolpyruvate carboxykinase 1 (PCK1), a gluconeogenesis enzyme, was recently identified as an AKT-regulated protein kinase that phosphorylates INSIG1/2 to promote nuclear SREBP1-dependent lipogenesis. However, the relationship of this regulation with the progression of non-small-cell lung carcinoma (NSCLC) is unclear. Here, we demonstrate that epidermal growth factor receptor (EGFR) activation induces AKT-dependent PCK1 pS90, PCK1-mediated INSIG1 pS207/INSIG2 pS151, and nuclear SREBP1 accumulation in NSCLC cells. In addition, the expression levels of AKT pS473, PCK1 pS90, INSIG1 pS207/INSIG2 pS151, and nuclear SREBP1 are higher in 451 analyzed human NSCLC specimens than in their adjacent normal tissues and positively correlated with each other in the tumor specimens. Furthermore, the expression levels of PCK1 pS90, INSIG1 pS207/INSIG2 pS151, and nuclear SREBP1 are associated with TNM stage and progression in NSCLC. Importantly, levels of PCK1 pS90 or INSIG1 pS207/INSIG2 pS151 are positively correlated with poor prognosis in NSCLC patients, and the combined expression value of the PCK1 and INSIG1/2 phosphorylation has a better prognostic value than that of each individual protein phosphorylation value and is an independent prognostic marker for NSCLC. These findings reveal the role of PCK1-mediated nuclear SREBP1 activation in NSCLC progression and highlight the potential to target the protein kinase activity of PCK1 for the diagnosis and treatment of human NSCLC.
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Introduction

Lung cancer is a leading cause of cancer-related death worldwide (1). Non-small-cell lung carcinoma (NSCLC) is the most common type of lung cancer, accounting for approximately 85% of all cases (2). Its prognosis remains poor because of the high rates of metastasis, recurrence, and drug resistance (3). Therefore, identification of novel biomarkers is vital to improve the diagnosis and treatment of NSCLC patients.

Metabolism reprogramming is an emerging hallmark of cancer biology (4–6). For instance, cancer cells acquire energy mainly through upregulated glycolysis but not oxidative phosphorylation. This characteristic of cancer cells is known as the Warburg effect. As the reverse process of glycolysis, gluconeogenesis converts non-glycolytic precursors to glucose. Phosphoenolpyruvate (PEP) carboxykinase 1 (PCK1), the rate-limiting enzyme of gluconeogenesis, converts oxaloacetate and GTP into PEP and CO2 and is regarded as a tumor suppressor because of its inhibitory effect on glycolysis (7). Our recent studies demonstrated that AKT activation in response to activation of growth factor receptors, including insulin-like growth factor 1 receptor (IGF1R), epidermal growth factor receptor (EGFR), and platelet-derived growth factor receptor (PDGFR), and active K-RAS mutations, results in the binding of AKT to PCK1 and AKT-mediated phosphorylation of PCK1 at S90. Phosphorylated PCK1 translocates to the endoplasmic reticulum (ER) and is associated with INSIG1/2. Importantly, PCK1 acts as a protein kinase by using GTP as a phosphate donor and phosphorylates INSIG1 S207 and INSIG2 S151 (INSIG1 pS207/INSIG2 pS151), which are in cytosolic loop 2 of INSIG1/2. This phosphorylation reduces the binding of sterol to INSIG1/2, leading to disruption of the INSIG-SCAP interaction, translocation of the SCAP-sterol regulatory element-binding protein 1 (SREBP1) complex to the Golgi apparatus, cleavage of SREBP1, and nuclear accumulation and activation of nuclear SREBP1. As a result, the transcription of the genes for lipogenesis is activated. In addition, activated nuclear SREBP1 induces its own gene transcription in a positive feedback manner. Blockade of AKT-mediated phosphorylation of PCK1 and PCK1-mediated phosphorylation of INSIG1/2 inhibits lipid synthesis, hepatocellular carcinoma (HCC) cell proliferation, and tumor formation in mice (8, 9). These findings underscore the significance of the newly identified protein kinase activity of gluconeogenesis enzyme PCK1 in nuclear SREBP1 activation, lipogenesis, and HCC development (8). Although the role of PCK1-dependent lipogenesis in HCC cell proliferation was revealed, whether AKT-phosphorylated PCK1 pS90, INSIG1 pS207/INSIG2 pS151, or nuclear SREBP1 expression is associated with progression and prognosis in NSCLC patients is unknown.

In this study, we demonstrated that EGFR activation induces AKT-dependent PCK1 pS90, PCK1-mediated INSIG1 pS207/INSIG2 pS151, and nuclear SREBP1 accumulation in NSCLC cells. In addition, the levels of AKT pS473, AKT-dependent PCK1 pS90, PCK1-mediated INSIG1 pS207/INSIG2 pS151, and nuclear SREBP1 expression were higher in human NSCLC specimens than in their adjacent normal tissues. Importantly, AKT-dependent and PCK1-mediated INSIG1/2 phosphorylation and nuclear SREBP1 expression were associated with progression and poor prognosis in NSCLC.



Materials and Methods


Cell Lines and Cell Culture Conditions

H1395, H226, A549, H358, H460, H1299, H1993, and H322M NSCLC cells were from ATCC. The cells were maintained in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% fetal bovine serum (FBS), 1,000 U ml−1 penicillin, and 100 μg ml−1 streptomycin. Before EGF (100 ng ml−1) treatment, the cells were serum-starved for 16 h. Cell lines were authenticated by short tandem repeat profiling and were routinely tested for mycoplasma contamination at Qingdao Cancer Institute. Cells were plated at a density of 4 × 105 per 60-mm dish 18 h before transfection. The transfection procedure was performed, as previously described (10).



DNA Construction and Mutagenesis

PCR-amplified human wild-type (WT) PCK1, INSIG1, and INSIG2 were cloned into pcDNA3.1/hygro(+)-Flag, pCDH-CMV-MCSEF1-Puro-SFB or pET32a vectors. pcDNA3.1 rPCK1 S90A, rINSIG1 S207A, rINSIG2 S151A were mutated using a QuickChange site-directed mutagenesis kit (Stratagene). pGIPZ shRNA was constructed via ligation of an oligonucleotide targeting human PCK1 into an XhoI/MluI-digested pGIPZ vector. The following pGIPZ shRNA target sequences were used: control shRNA oligonucleotide, 5’-GCTTCTAACACCGGAGGTCTT-3’; PCK1 shRNA oligonucleotide, 5’-TGTGCGTCAAACTTCATCC-3’; INSIG1 shRNA oligonucleotides, 5’-TAATGGTGTCTATCAGTATAC-3’ and 5’-GGAACATAGGACGACAGTTA-3’; INSIG2 shRNA oligonucleotides, 5’-CATCTAGGAGAACCTCATAAA-3’ and 5’- CTTCAGCTGTGATTGGGTT-3’.



Immunoprecipitation and Immunoblotting Analysis

The extraction of proteins using a modified buffer from cultured cells was followed by immunoprecipitation and immunoblotting using corresponding antibodies, as described previously (11).



Mouse Studies

One million H1395 cells with expression of rPCK1, rPCK1 S90A, rINSIG1/INSIG2 or rINSIG1 S207A/rINSIG2 S151 double mutants were collected in 20 μl DMEM with 33% matrigel and subcutaneously injected into 6-week-old female BALB/c athymic nude mice. The injection was performed, as described previously (12). Six mice per group in each experiment were used. Mice were euthanized 28 days after injection. The tumors were dissected and then fixed in 4% formaldehyde. The mice were treated in accordance with relevant institutional guidelines and regulations. The use of the mice was approved by the Institutional Review Board and the Institutional Animal Care and Use Committee (IACUC) of Qingdao Cancer Institute, China. Mice arriving in the animal facility were randomly put into cages with five mice each. No statistical methods were used to predetermine sample size.



Patients and Tissue Samples

We retrospectively collected surgically resected, formalin-fixed, paraffin-embedded NSCLC tissue samples from the biobank of the Affiliated Hospital of Qingdao University (Qingdao, China) and the National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (Beijing, China). Tissue samples from 450 treatment-naïve patients who underwent surgery for pathologically diagnosed cancer between 2002 and 2013 were selected as an independent cohort, including 306 cases of lung adenocarcinoma (LUAD) (with 302 paired normal specimens) and 145 cases of lung squamous cell carcinoma (LUSC) (with 145 paired normal specimens). The patient cohort is not population-based, but consists of consecutive patients.

We obtained clinical data by reviewing the patients’ medical histories. Pathological staging was assessed by the 8th edition of the American Joint Committee on Cancer/Union for International Cancer Control TNM classification system (13).



Tissue Microarray Construction

Anti-AKT pS473 (#4060) rabbit antibody (for IHC) and a rabbit monoclonal antibody recognizing IgG were purchased from Cell Signaling Technology (Danvers, MA). Rabbit antibodies that recognize PCK1 pS90, INSIG1 pS207 and INSIG2 pS151 were obtained from Signalway Biotechnology (Pearland, TX). Nuclear SREBP1 antibody (2A4) (NB100-2215) (for IHC analyses) was purchased from Novus (Littleton, CO). The specificities of these antibodies were previously validated (8). Formalin-fixed and paraffin-embedded tissues were obtained by surgical resection and stained with Mayer’s hematoxylin and eosin (H&E; Biogenex Laboratories, San Ramon, CA).

Tumor samples from 451 cancer cases with 447 paired normal tissues were subjected to tissue microarray (TMA). Employing an automated tissue array instrument (Minicore® 3, Alphelys, Plaisir, France), cancer tissue (diameter at 2 mm, selected by a pathologist) from each specimen was extracted and fixed into a paraffin block. After quality control, the TMA blocks were sectioned into slides for immunohistochemistry analysis.



Immunohistochemistry and Evaluation

Immunohistochemistry analyses were performed according to a previous publication (14). After deparaffinization, rehydration, and antigen retrieval, TMA slides were incubated with primary rabbit anti-human AKT pS473 (dilution 1:200), primary rabbit anti-human phospho-PCK1 S90 (dilution 1:200), primary rabbit anti-human INSIG1 pS207 and INSIG2 pS151 (dilution 1:500), primary rabbit anti-human SREBP1 (dilution 1:100) or nonspecific IgG (as a negative control) overnight at 4°C. The slides were then incubated with anti-rabbit secondary antibody (Cell Signaling Technology; #8114), followed by chromogen diaminobenzidine (DAB) (Cell Signaling Technology) and hematoxylin staining. We quantitatively scored the tissue slides under a microscope according to the percentage of positive cells and staining intensity. We assigned the following proportion scores: 0, 0% of cells being positive; 1, 0% to 1%; 2, 2% to 10%; 3, 11% to 30%; 4, 31% to 70%; and 5, 71% to 100%. We also rated the staining intensity on a scale of 0 to 3: 0, negative; 1, weak; 2, moderate; and 3, strong. The proportion and intensity scores were then added to obtain a total score (range, 0-8), as described previously (15). Two pathologists who were blinded to the clinical information independently validated the reproducibility of the scores.



Statistical Analysis

SPSS version 20.0 software (SPSS Inc., Chicago, IL, USA) was used for data analysis. The expression levels of AKT pS473, PCK1 pS90, INSIG1 pS207/INSIG2 pS151, and nuclear SREBP1 in tumor and normal tissues were compared using the independent variable t test. The associations between the expression levels of the biomarkers and clinicopathologic characteristics of patients were analyzed using one-way analysis of variance (ANOVA) with the post hoc Bonferroni test for multiple comparisons and least significant difference test. The correlations between the expression levels of the biomarkers were analyzed using the Pearson correlation coefficient. Overall survival (OS) was defined as the duration from the date of diagnosis to the date of death or the last known date of follow-up. The survival analyses were performed using K-means cluster analyses to stratify the expression levels of related markers, the Kaplan-Meier method to plot survival curves, the log-rank test to compare survival rate, and a Cox regression model with two-sided Wald tests to calculate hazard ratios (HR) and 95% confidence intervals (CIs). Censored data were used for patients who were alive at last follow-up or who were lost to follow-up. Variables in univariate analysis with P values less than 0.05 were included in multivariate analysis. P < 0.05 was considered statistically significant. All statistical tests were two-sided.




Results


PCK1 Protein Kinase Activity-Mediated Activation of SREBP1 Occurs in NSCLC Cells and Promotes Tumor Growth in Mice

We treated human NSCLC cells with epidermal growth factor (EGF) and found that EGFR activation induced a substantial increase of phosphorylation levels of AKT S473, PCK1 S90, INSIG1 S207 and INSIG2 S151, and the cleavage of SREBP1 in H1395 lung adenocarcinoma (LUAD) cells and H226 lung squamous cell carcinoma (LUSC) cells. Expression of PCK1 S90A mutant inhibited EGF-induced INSIG1/2 phosphorylation and SREBP1 cleavage (Figure 1A). In addition, we examined a panel of NSCLC cell lines, including A549, H358, H460, H1299, H1395, H1993, H322M, and H226, and showed that PCK1 pS90, INSIG1 pS207/INSIG2 pS151, and nuclear SREBP1 accumulation were correlated with each other (Figure 1B). These results indicated that EGFR activation activates the AKT pS473-PCK1 pS90-INSIG1 pS207/INSIG2 pS151-activated SREBP1 cascade in NSCLC cells.




Figure 1 | PCK1 protein kinase activity-mediated activation of SREBP1 occurs in NSCLC cells and promotes tumor growth in mice. (A) H1395 and H226 cells were transfected with the indicated plasmids. Immunoprecipitation or immunoblotting analyses were performed with the indicated antibodies. (B) Immunoprecipitation or immunoblotting analyses were performed with the indicated antibodies in the indicated cells. Correlation analyses were performed. A Pearson correlation test was used (two-tailed) (n = 8). (C, D) H1395 cells (1 × 106) with expression of rPCK1, rPCK1 (S90A), rINSIG1/INSIG2 or the rINSIG1 S207A/rINSIG2 S151A double mutants were subcutaneously injected into the left or right flanks of athymic nude mice, respectively (n = 6 per group). The resulting tumors were resected 28 days after injection (C). The tumors in the mice were weighed (D). Data are mean ± S.D. (n = 6). ***P < 0.001 compared with the wild-type group (two-tailed t-test). Immunoblotting analyses were performed with the indicated antibodies.



To determine the role of the signaling axis activation in tumor development, we subcutaneously injected H1395 cells with expression of rPCK1, rPCK1 S90A, or rINSIG1 S207A/rINSIG2 S151A into nude mice. Expression of these mutant proteins substantially inhibited tumor growth in the mice (Figures 1C, D). These results indicated that PCK1 protein kinase activity-mediated activation of SREBP1 promotes tumor growth in mice.



The Expression Levels of AKT pS473, PCK1 pS90, INSIG1 pS207/INSIG2 pS151, and Nuclear SREBP1 Are Upregulated in NSCLC Specimens

We performed immunohistochemical (IHC) staining of NSCLC specimens (n = 451), including 306 cases of LUAD and 145 cases of LUSC. Using specificity-validated antibodies (8), we showed that the levels of AKT pS473, PCK1 pS90, INSIG1 pS207/INSIG2 pS151, and nuclear SREBP1 expression were significantly higher in LUAD (Figures 2A, B) and LUSC (Figures 2C, D) tissues than in adjacent normal tissues, indicating that the levels of AKT pS473, PCK1 pS90, INSIG1 pS207/INSIG2 pS151, and nuclear SREBP1 are significantly increased in NSCLC.




Figure 2 | The expression levels of AKT pS473, PCK1 pS90, INSIG1 pS207/INSIG2 pS151, and nuclear SREBP1 were upregulated in NSCLC specimens. IHC staining of 451 paired NSCLC specimens with their adjacent tissues was performed with the indicated specificity-validated antibodies. (A) Representative IHC staining of low and high levels of AKT pS473, PCK1 pS90, INSIG1 pS207/INSIG2 pS151, and nuclear SREBP1 expression in LUAD tissues and normal tissues. (B) Expression levels of AKT pS473, PCK1 pS90, INSIG1 pS207/INSIG2 pS151, and nuclear SREBP1 in LUAD tissues (n = 306) and normal tissues (n = 302). (C) Representative IHC staining of low and high expression levels of AKT pS473, PCK1 pS90, INSIG1 pS207/INSIG2 pS151, and nuclear SREBP1 in LUSC tissues and normal tissues. (D) Expression levels of AKT pS473, PCK1 pS90, INSIG1 pS207/INSIG2 pS151, and nuclear SREBP1 in LUSC tissues (n = 145) and normal tissues (n = 145).





The Expression Levels of AKT pS473, PCK1 pS90, INSIG1 pS207/INSIG2 pS151, and Nuclear SREBP1 Are Positively Correlated With Each Other in LUAD

To determine whether the AKT-PCK1-INSIG1/2-SREBP cascade is activated in NSCLC tissues, we analyzed the correlation of expression levels of these biomarkers and showed that AKT pS473, PCK1 pS90, INSIG1 pS207/INSIG2 pS151, and nuclear SREBP1 expression levels were positively and significantly correlated with each other in LUAD specimens (Figure 3A). In LUSC samples, the correlation of INSIG1 pS207/INSIG2 pS151 with PCK1 pS90 phosphorylation and nuclear SREBP1 expression was strong and significant, whereas PCK1 pS90 levels had a weak correlation with nuclear SREBP1 expression levels and no correlation with AKT pS473 (Figure 3B). These results indicated that the levels of AKT pS473, PCK1 pS90, INSIG1 pS207/INSIG2 pS151, and nuclear SREBP1 expression are positively correlated with each other in LUAD specimens and that the correlation of INSIG1 pS207/INSIG2 pS151 with PCK1 pS90 and nuclear SREBP1 expression is significant in LUSC.




Figure 3 | The expression levels of AKT pS473, PCK1 pS90, INSIG1 pS207/INSIG2 pS151, and nuclear SREBP1 are positively correlated with each other in LUAD IHC staining of 451 NSCLC specimens was performed with the indicated specificity-validated antibodies. (A) The correlations between the expression levels of AKT pS473, PCK1 pS90, INSIG1 pS207/INSIG2 pS151, and nuclear SREBP1 in LUAD specimens. (B) The correlations between the expression levels of AKT pS473, PCK1 pS90, INSIG1 pS207/INSIG2 pS151, and nuclear SREBP1 in LUSC specimens.





The Levels of PCK1 pS90, INSIG1 pS207/INSIG2 pS151, and nuclear SREBP1 Are Associated With the Progression of NSCLC

To determine whether the activated AKT-PCK1-INSIG1/2-SREBP cascade is associated with the progression of NSCLC, we analyzed the expression levels of these four biomarkers in NSCLC specimens with different T, N, and M (TNM) stages. We demonstrated that all these biomarkers were associated with T stage, N stage, M stage, and TNM stage in LUAD (Table 1). However, in LUSC, the expression levels of PCK1 pS90, INSIG1 pS207/INSIG2 pS151, and nuclear SREBP1, but not the expression levels of AKT pS473, were associated with these clinical characteristics (Table 1). These results indicated that the expression levels of PCK1 pS90, INSIG1 pS207/INSIG2 pS151, and nuclear SREBP1 are associated with the progression of NSCLC.


Table 1 | Associations of AKT pS473, PCK1 pS90, INSIG1/2 pS207/S151 and SREBP1 with clinicopathologic features in LUAD and LUSC.





The Levels of PCK1 pS90 and INSIG1 pS207/INSIG2 pS151 Are Positively Correlated With Poor Prognosis of NSCLC Patients

To further determine the clinical significance of AKT pS473, PCK1 pS90, INSIG1 pS207/INSIG2 pS151, and nuclear SREBP1 expression levels, we determined their relationship with NSCLC patient survival time. We showed that PCK1 pS90 and INSIG1 pS207/INSIG2 pS151 levels, but not AKT pS473 and nuclear SREBP1 expression levels, were positively correlated with poor prognosis in both LUAD (Figure 4A) and LUSC (Figure 4B) patients. In addition, the combined expression values of PCK1 pS90 and INSIG1 pS207/INSIG2 pS151 and the combined expression values of all four markers were positively correlated with poor prognosis of both LUAD (Figure 4A) and LUSC (Figure 4B). These results indicated that increased levels of PCK1 pS90 and INSIG1 pS207/INSIG2 pS151 are positively correlated with poor prognosis in NSCLC patients.




Figure 4 | The levels of PCK1 pS90 and INSIG1 pS207/INSIG2 pS151 are strongly correlated with progression and poor prognosis of NSCLC. IHC staining of 451 NSCLC specimens was performed with the indicated specificity-validated antibodies. (A) The correlation of the expression levels of AKT pS473, PCK1 pS90, INSIG1 pS207/INSIG2 pS151, and nuclear SREBP1 with prognosis of LUAD patients. (B) The correlations of the expression levels of AKT pS473, PCK1 pS90, INSIG1 pS207/INSIG2 pS151, and nuclear SREBP1 with prognosis of LUSC patients.





Combined Expression Values of PCK1 pS90 and INSIG1 pS207/INSIG2 pS151 Are an Independent Prognostic Factor for NSCLC

To further determine the prognostic values of PCK1 pS90 and INSIG1 pS207/INSIG2 pS151 in NSCLC, we performed univariate and multivariate Cox regression analyses. Univariate analysis revealed that advanced age (p < 0.05), TNM stage (p < 0.05), high expression of PCK1 pS90 (p < 0.05) or INSIG1 pS207/INSIG2 pS151 (p < 0.05), and high combined expression value of PCK1 pS90 and INSIG1 pS207/INSIG2 pS151 (p < 0.01) were associated with shorter overall survival time of both LUAD and LUSC (Table 2) patients. Of note, in LUAD, combined expression values of PCK1 pS90 and INSIG1 pS207/INSIG2 pS151 were a better prognosis predictor (median survival time, low vs. high: 67.7 vs. 33.1 months; Hazard Ratio (95% confidence interval) (HR (95% CI)), 1.996 (1.496-2.663)) than PCK1 pS90 expression (low vs. high: 67.6 vs. 39.2 months; HR (95% CI), 1.649 (1.223-2.223)), INSIG1 pS207/INSIG2 pS151 expression (low vs. high: 58.2 vs. 40.4 months; HR (95% CI), 1.555 (1.164-2.076)), and combined expression values of the four markers (low vs. high: 62.3 vs. 40.2 months; HR (95% CI), 1.581 (1.185-2.134)). Similarly, in LUSC, combined expression values of PCK1 pS90 and INSIG1 pS207/INSIG2 pS151 were also a better prognosis predictor (low vs. high: 90.2 vs. 41.1 months; HR (95% CI), 3.405 (2.215-5.232)) than PCK1 pS90 expression (low vs. high: 81.4 vs. 44.5 months; HR (95% CI), 2.917 (1.902-4.473)), INSIG1 pS207/INSIG2 pS151 expression (low vs. high: 88.3 vs. 59.8 months; HR (95% CI), 3.129 (2.014-4.861)), and combined expression values of the four markers (low vs. high: 89.1 vs. 57.2 months; HR (95% CI), 3.208 (2.105-4.997)).


Table 2 | Univariable and multivariable overall survival analysis in patients with LUAD and LUSC.



Multivariate analysis of patients with NSCLC demonstrated that, in addition to age (p < 0.05) and TNM stage (p < 0.05), combined expression values of PCK1 pS90 and INSIG1 pS207/INSIG2 pS151 were an independent poor prognostic factor in LUAD (HR, 1.365; 95% CI, 0.777-2.154; p = 0.040) and LUSC (HR, 1.443; 95% CI, 0.935-2.156; p = 0.033) (Table 2). However, individual PCK1 pS90 or INSIG1 pS207/INSIG2 pS151 level was not an independent prognostic marker for NSCLC (Table 3). These results indicated that combined expression values of PCK1 pS90 and INSIG1 pS207/INSIG2 pS151 is an independent prognostic factor for NSCLC patients.


Table 3 | Multivariable overall survival analysis in patients with LUAD and LUSC.






Discussion

The abnormal metabolism pathways and gene expression are crucial for tumor cell proliferation. Importantly, these two processes can be mutually regulated (5, 16). In addition to their canonical metabolic functions, metabolic enzymes can perform non-metabolic functions and play critical roles in the regulation of a variety of important cellular activates (5, 6, 17). Metabolic enzymes, such as pyruvate kinase M2 isoform (PKM2), phosphoglycerate Kinase 1 (PGK1), and ketohexokinase (KHK)-A can function as a protein kinase and phosphorylates various protein substrates for promoting tumor development (5, 17–26). We recently demonstrated that PCK1, a gluconeogenesis enzyme, is phosphorylated at S90 by AKT, which is activated by active IGF1R, EGFR, and PDGFR and K-RAS mutations and promotes tumor progression (27, 28). This phosphorylation not only inhibits the canonical enzymatic activity of PCK1 for the production of phosphoenolpyruvate during gluconeogenesis but also translocates PCK1 to the ER, where PCK1 acts as a protein kinase and phosphorylates INSIG1/2. Consequently, nuclear SREBP1 is activated, leading to the promotion of lipogenesis and HCC tumor development (8, 29). In the present report, we reveal the clinical relevance and significance of this signaling cascade in NSCLC.

Gluconeogenesis, the reverse pathway of glycolysis, antagonizes aerobic glycolysis in cancer and suppresses tumor growth (30). In gluconeogenic tissues, such as the liver and kidney, activation of canonical function of PCK1 inhibits glycolysis, thereby tumorigenesis. However, in non-gluconeogenic lung and colon tissues, gluconeogenesis and canonical functions of gluconeogenic enzymes are suppressed, restricting their tumor suppressor functions (30). Importantly, as we demonstrated in our recent publication (8, 29) and current studies, activation of IGF1R in HCC (8, 29) and EGFR in NSCLC inhibited canonical functions of PCK1 and induced PCK1 pS90, INSIG1 pS207/INSIG2 pS151, and nuclear SREBP1 accumulation. In addition, expression of PCK1 S90A and the INSIG1/2 phosphorylation-dead mutant inhibited the growth of tumor in mice derived from human NSCLC cells. These findings suggested that activated AKT signaling in tumor cells converts PCK1 from a gluconeogenic enzyme to a protein kinase that plays a critical role in lipid synthesis.

Our results showed that AKT pS473, PCK1 pS90, INSIG1 pS207/INSIG2 pS151 and nuclear SREBP1 expression levels were positively and significantly correlated with each other in LUAD specimens. While in LUSC, we observed a weak but statistically significant correlation between PCK1 pS90 and nuclear SREBP1 expression levels and no correlation between AKT pS473 and PCK1 pS90. Protein phosphorylation is dynamically regulated by both protein kinases and protein phosphatase. Protein phosphorylation levels and duration can vary among different types of cancer, which have drastic difference in heterogeneity and oncogenic signaling network. Thus, PCK1 pS90 may be differentially regulated in LUSC due to the impact from yet unidentified protein phosphatases, which may result in a rapid turn-over of PCK1 pS90 or AKT pS473 and alter the correlation status between AKT pS473 and PCK1 pS90.

AKT is frequently activated in NSCLC and promotes tumor progression (27, 28). Our work demonstrated that the expression levels of AKT pS473, PCK1 pS90, INSIG1 pS207/INSIG2 pS151, and nuclear SREBP1 were higher in tumor specimens than in their adjacent normal tissues. In addition, the expression levels of these biomarkers were positively correlated with each other in LUAD specimens, and the correlation of INSIG1 pS207/INSIG2 S151 with PCK1 pS90 phosphorylation and nuclear SREBP1 expression was significant in LUSC. Furthermore, the expression levels of PCK1 pS90, INSIG1 pS207/INSIG2 S151, and nuclear SREBP1 are associated with TNM stage and progression in NSCLC. We found that the expression levels of PCK1 pS90 or INSIG1 pS207/INSIG2 pS151 are positively correlated with poor prognosis in NSCLC patients and that the combined expression value of PCK1 pS90 and INSIG1 pS207/INSIG2 pS151 exhibits a better prognostic value than that of each individual expression level. Our results underscore the critical role of PCK1-mediated nuclear SREBP1 activation in NSCLC progression. These findings shed light on the potential for the application of PCK1-mediated INSIG1/2 phosphorylation as a biomarker of NSCLC patient progression and prognosis and highlight the inhibition of the protein kinase activity of PCK1 as a treatment strategy against human NSCLC.
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Background

Lung adenocarcinoma (LUAD) is the most common pathological type of lung cancer. At present, most patients with LUAD are diagnosed at an advanced stage, and the prognosis of advanced LUAD is poor. Hence, we aimed to identify novel biomarkers for the diagnosis and treatment of early stage LUAD and to explore their predictive value.



Methods

The microarray datasets GSE63459, GSE27262, and GSE33532 were searched, and the differentially expressed genes (DEGs) were obtained using GEO2R. The DEGs were subjected to gene ontology (GO) and pathway enrichment analyses using METASCAPE. A protein–protein interaction (PPI) network was plotted with STRING and visualized by Cytoscape. Module analysis of the PPI network was performed using MCODE. Overall survival (OS) analysis and analysis of the mRNA expression levels of genes identified by MCODE were performed with UALCAN. Western blot analysis of hub genes in LUAD patients, MTS assays, and clonogenic assays were performed to test the effects of the hub genes on cell proliferation in vitro.



Results

A total of 341 DEGs were obtained, which were mainly enriched in terms related to blood vessel development, growth factor binding, and extracellular matrix organization. A PPI network consisting of 300 nodes and 1140 edges was constructed, and a significant module including 15 genes was identified. Elevated expression of ASPM, CCNB2, CDCA5, PRC1, KIAA0101, and UBE2T was associated with poor OS in LUAD patients. In the protein level, the hub gene was overexpressed in LUAD patients. In vitro experiments showed that knockdown of the hub genes in the LUAD cell lines could promote cell proliferation.



Conclusions

DEGs are potential biomarkers for early stage lung adenocarcinoma and could have utility for the diagnosis and predicting treatment efficacy.
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Introduction

Lung cancer is one of the most common malignancies and is the leading cause of cancer mortality (1). Non-small cell lung cancer (NSCLC) accounts for 80% of lung cancer cases (2), and adenocarcinoma is the most prevalent form of NSCLC, causing almost 40% of all lung cancers (3). Despite advances in the treatment of LUAD, such as targeted and immune therapy, the long-term survival of patients with LUAD is still poor (4, 5). Diagnosis at an advanced stage is one of the main reasons for the poor prognosis of LUAD patients. Hence, it is necessary to identify biomarkers that can be detected at the early stage of the disease and can serve as potential treatment targets.

Currently, high-throughput bioinformatics technologies such as microarrays are widely used to screen for differentially expressed genes (DEGs) (6). In the present study, we used well-established bioinformatics tools to screen potential biomarkers for the early diagnosis of LUAD. The Gene Expression Omnibus (GEO) database, an open-access database, was used to select appropriate mRNA profiles. The online analysis tools assisted in analyzing DEGs between tumor and normal tissues. We downloaded three microarray datasets, GSE63459, GSE27262, and GSE33532 from GEO. DEGs were obtained using GEO2R. Functional and pathway enrichment analysis was performed for DEGs using the METASCAPE online tool. A protein–protein interaction (PPI) network was established by using STRING, and it was visualized with Cytoscape. Module analysis of the PPI network was performed by using MCODE. Subsequently, overall survival (OS) analysis and mRNA expression of genes from MCODE were performed with UALCAN. Finally, several of the DEGs were tested in vitro to verify their functions.



Materials and Methods


Tissue Collection and Ethic Statement

Twelve primary LUAD patients undergoing surgical resection were collected at the Third Xiangya Hospital of Central South University (Changsha, China) from June 2019 to December 2019. None of the patients received chemotherapy or radiotherapy before surgery. Appropriate ethical approval was obtained from the Third Xiangya Hospital Ethics Committee, and written informed consent was obtained from all patients. Tissue specimens were snap frozen and kept in liquid nitrogen until further use.



Data Acquisition

GEO is a public functional genomics data repository of high-throughput gene expression data, chips, and microarrays. Three gene expression datasets were downloaded from GEO. The GSE63459 dataset (GPL6883 Illumina HumanRef-8 v3.0 expression beadchip) contains 33 stage I LUAD tissues and 32 adjacent non-tumor tissues. The GSE27262 dataset (GPL570 HG-U133_Plus_2 Affymetrix Human Genome U133 Plus 2.0 Array) contains tumor and adjacent normal tissue pairs from 25 stage I LUAD patients. The GSE33532 dataset (GPL570 HG-U133_Plus_2 Affymetrix Human Genome U133 Plus 2.0 Array) contains 40 stage I and II LUAD tumor samples and 10 normal samples.



Identification of DEGs

The DEGs between tumor and normal tissue were detected by GEO2R. GEO2R is a powerful interactive online tool that allows users to screen differentially expressed mRNAs between two or more groups in GEO series. A P value <0.05 and |logFC|>1 were used as selection criteria.



Pathway and Functional Enrichment Analysis

Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed for the identified DEGs using METASCAPE (https://metascape.org/), a gene annotation and analysis resource. A P value <0.05 was used to distinguish significantly enriched genes.



Integration of the PPI Network

STRING is an online tool designed to evaluate PPI (protein–protein interaction networks) information. To detect the potential relationships among the DEGs, the STRING database was used to construct a PPI network. Cytoscape, a free visualization software, was applied to visualize the PPI network. In addition, the Molecular Complex Detection (MCODE) app in Cytoscape was used to check the modules of the PPI network (degree cutoff = 2, max. depth = 100, K-core = 2, and node score cutoff = 0.2).



Survival Analysis and Expression Level of the Hub Genes

The survival analysis and the evaluation of the mRNA expression levels at different tumor stages of the hub genes were performed using UALCAN (http://ualcan.path.uab.edu), a user-friendly, interactive web resource for analyzing cancer transcriptome data from The Cancer Genome Atlas (TCGA). A P value <0.01 was used to select the hub genes for the survival analysis.



Cell Culture and siRNA-Mediated Knockdown

The A549 and H460 LUAD cell lines obtained from ATCC (Gaithersburg, MD, USA) were cultured in RPMI-1640 containing 10% fetal bovine serum in a humidified 5% CO2 incubator at 37°C. Small interfering RNAs (siRNAs) against ASPM, CCNB2, CDCA5, KIAA0101, PRC1, UBE2T, and negative control siRNAs (NC-siRNA), which were obtained from GeneChem (Shanghai, China), were transfected into cell lines using Lipofectamine 2000 transfection reagent (Invitrogen, Shanghai, China) according to the manufacturer’s instructions.



Western Blot Analysis

Cells were harvested and lysed in RIPA buffer (CWbio, Beijing, China) containing 0.1 mg/ml PMSF (Keygen, Nanjing, China) and protease inhibitors (Roche, Mannheim, Germany). The western blot procedure was the same as that described in our previous research (7). Antibodies against ASPM, CCNB2, CDCA5, PRC1, UBE2T, goat anti-rabbit IgG-HRP antibodies, and goat anti-mouse IgG-HRP were purchased from Proteintech (Wuhan, China). The antibody KIAA0101 was purchased from Cell Signaling Technology (Danvers, USA).



Cell Proliferation Assay

Cell proliferation was assessed using MTS and clonogenic assays. For the MTS assay, transfected A549 and H460 cells were seeded (2 × 103 cells/well in 200 μl) into 96-well plates and divided into the si-control group (four wells) and the si-hub gene groups (four wells). After incubation for 0, 24, 48, or 72 h, MTS reagent (Promega, Madison, USA) was added to assess cell viability according to the manufacturer’s instructions. For the clonogenic assay, transfected A549 and H460 cell lines were seeded (1 × 103 cells/well) into six-well plates and divided into a si-control and si-hub gene groups. After 1–2 weeks of culture, the colonies were stained with crystal violet and analyzed using Image-Pro Plus 7.0 software.



Statistical Analysis

All in vitro experiments were repeated three or more times. All values were mean ± standard deviation. Statistical significance was measured with PRISM 8. P <0.05 was considered statistically significant.




Results


Identification of DEGs

A total of 2,298 DEGs were successfully identified in early stage LUAD following GSE27262 dataset analysis, including 925 up-regulated and 1,373 down-regulated genes (Figure 1A). A total of 2,906 DEGs were extracted from the GSE33532 dataset, including 1,170 up-regulated and 1,736 down-regulated genes (Figure 1B). In the GSE63459 dataset, 407 DEGs involving 98 up-regulated and 309 down-regulated genes were found (Figure 1C). Then, we used Venn diagram software to identify the common DEGs in the three datasets. A total of 341 common DEGs in early stage LUAD tissues were detected, including 78 up-regulated genes and 263 down-regulated genes (Figures 1D–G).




Figure 1 | Identification of DEGs. Volcano plot of the distribution of all differentially expressed genes including GSE27262, GSE33532, and GSE63459. (A–C) Venn diagram of (D) up-regulated and (E) down-regulated DEGs were selected with P < 0.05 and fold change >2 among the mRNA expression profiling sets GSE27262, GSE33532, and GSE63459. (F, G) Gene symbol of up-regulated and down-regulated DEGs.





GO and KEGG Enrichment Analyses of the DEGs

BP (biological processes) analysis demonstrated that a total of 341 DEGs were dramatically enriched in blood vessel development, extracellular structure organization, and regulation of cell adhesion (Figure 2A). MFs (molecular functions) showed that the overlapping DEGs were significantly enriched in growth factor binding, glycosaminoglycan binding and extracellular matrix structural constituents (Figure 2B). CCs (cellular components) showed that the overlapping DEGs were significantly concentrated in the extracellular matrix, membrane raft, and collagen trimer (Figure 2C). In addition, KEGG analysis revealed that all DEGs were mainly enriched in protein digestion and absorption, ECM–receptor interaction and leukocyte transendothelial migration (Figure 2D).




Figure 2 | GO, KEGG and PPI network. GO enrichment analysis with all DEGs. (D) KEGG Pathway analysis with all DEGs. (A–C) PPI network of DEGs. (E) A significant module selected from protein–protein interaction network. Red nodes are up-regulated genes, blue nodes are down-regulated genes. (F) Western blot analysis of hub genes protein level expression in tumor tissues (T) and adjacent non-malignant lung tissues (N) in LUAD patients (G).





PPI Network Construction and Analysis of Modules

A total of 300 DEGs were imported into the DEG PPI network complex, which included 300 nodes and 1,140 edges, containing 232 down-regulated genes and 68 up-regulated genes (Figure 2E). Then, we applied MCODE for further analysis, and the results showed 15 central nodes, which were all up-regulated genes, among the 300 nodes (Figure 2F).



Analysis of Hub Genes by UALCAN

Fifteen genes in the PPI network were evaluated for their prognostic value by UALCAN. Only six genes, including ASPM, CCNB2, CDCA5, KIAA0101, PRC1, and UBE2T, exhibited potential in the prediction of survival based on their expression level (Figures 3G–L). In addition, the mRNA expression levels of the six genes were dramatically increased in early stage tumor tissues relative to normal tissues (Figures 3A–F).




Figure 3 | Analysis of hub genes. Expression of genes in different stages including ASPM, CCBN2, CDCA5, KIAA0101, PRC1, and UBE2T in lung adenocarcinoma patients. (A–F) Prognostic estimation of genes including ASPM, CCBN2, CDCA5, KIAA0101, PRC1, and UBE2T in lung adenocarcinoma patients (G–L).





The Hub Genes Were Up-Regulated in LUAD Tissues Compared With Normal Lung Tissues

We investigated the expression of ASPM, CCNB2, CDCA5, KIAA0101, PRC1, and UBE2T in 12 LUAD tumor tissues and their adjacent non-malignant lung tissues. The results also showed these hub genes were overexpressed in LUAD patient samples (Figure 2G). These results indicated that hub genes are overexpressed in LUAD cells and might promote tumor genesis.



Validation of the Hub Genes In Vitro

To further validate the relationship between the hub genes and LUAD, we generated transient hub gene knockdown A549 LUAD cells. We found that knockdown of these genes significantly inhibited their clonogenic ability and proliferation (Figures 4A–L). The same results were observed in H460 cell lines (Supplementary Figure 1). These results demonstrate that the six hub genes are potential biomarkers for early stage LUAD diagnosis and prognosis.




Figure 4 | Hub genes promote proliferation of lung adenocarcinoma cell. (A, C, E, G, I, K) Clone formation assay showing the proliferation ability of the A549 cells with genes knockdown including ASPM, CCBN2, CDCA5, KIAA0101, PRC1, and UBE2T. Western blot showing the expression of hub genes in A549 cells. (B, D, F, H, J, L) MTS assay showing the proliferation ability of the A549 cells with genes knockdown including ASPM, CCBN2, CDCA5, KIAA0101, PRC1, and UBE2T. *P < 0.05.






Discussion

Regardless of the comprehensive treatments available in the clinic, LUAD has a high mortality. The main reason is the lack of sufficient screening methods for early stage LUAD. To improve the prognosis of the patients, we attempted to identify biomarkers of LUAD that can be used for screening. In this study, bioinformatics analysis was performed to identify the candidate key genes correlated with early stage LUAD.

By comparing the three DEG profiles of early stage LUAD from the GEO datasets, 78 up-regulated and 263 down-regulated DEGs were selected. Then, a total of 341 DEGs were analyzed for the functions using GO terms and KEGG pathways. The BPs were abundantly enriched in blood vessel development, extracellular structure organization, and regulation of cell adhesion. The MFs were enriched in growth factor binding, glycosaminoglycan binding, and extracellular matrix structural constituent. The CCs were enriched in extracellular matrix, membrane raft, and collagen trimer. For pathway analysis, the DEGs were particularly enriched in protein digestion absorption, ECM–receptor interaction and leukocyte transendothelial migration. This GO term and KEGG pathway analysis revealed that the DEGs were significantly associated with extracellular matrix-related functions. A previous study showed that the extracellular matrix has crucial roles in tumor metastasis (8).

Next, a DEG PPI network complex of 300 nodes and 1,140 edges was constructed via the STRING online database and Cytoscape software. Then, 15 vital up-regulated genes were extracted from the PPI network complex by Cytotype MCODE analysis. Furthermore, through Kaplan–Meier plotter analysis, we found that the expression levels of seven of the 15 genes had a correlation with a significantly worse survival. In addition, the mRNA expression levels of six genes, ASPM, CCNB2, CDCA5, KIAA0101, PRC1, and UBE2T were overexpressed in early stage LUAD relative to normal tissues.

ASPM (abnormal spindle microtubule assembly) is connected to the development of diverse tumors. For example, ASPM expression is incrementally up-regulated in primary and metastatic prostate cancer (9). In addition, ASPM is associated with cell cycle progression in pancreatic ductal adenocarcinoma (10) and cell proliferation in lung squamous cell carcinoma (11). However, the role of ASPM in LUAD has rarely been reported.

CCNB2 (Cyclin B2), a member of the cyclin family of proteins, plays a key role in the progression of the G2/M transition (12–14). Recently, studies have suggested that CCNB2 expression is increased in a variety of human cancers. CCNB2 functions as an oncogene and could serve as a potential biomarker of an unfavorable prognosis over short-term follow-up in breast cancer (15). In hepatocellular carcinoma, CCNB2 may serve as a prognostic factor and participate in tumor development and progression by promoting cell proliferation and migration (16). Regarding lung cancer, Qian X et al. showed that CCNB2 overexpression is positively associated with the degree of differentiation, tumor size, lymph node metastasis, distant metastasis, and clinical stage in NSCLC (17).

CDCA5 (Cell Division Cycle Associated 5) is required for stable binding of cohesion to chromatid in the S and G2/M phases and is degraded through anaphase-promoting complex-dependent ubiquitination in the G0/G1 phase (18–21). CDCA5 expression is elevated and is associated with a poor prognosis in several human cancers, such as urothelial carcinoma and oral squamous cell carcinoma (22, 23). In addition, knockdown of CDCA5 could inhibit cancer cell growth by arresting the cell cycle in the G2/M phase and promoting apoptosis (23). In lung carcinoma, CDCA5 and its phosphorylation at Ser209 by ERK play an important role in lung cancer cell proliferation (24).

KIAA0101 (PCNA-associated factor) is a supplementary factor for DNA polymerase and is required for DNA replication or repair (25). KIAA0101 functions as an oncogene and is up-regulated in many cancers. W. Lv et al. found that inhibition of KIAA0101 could suppress cell proliferation and cell cycle progression in breast cancer (26). Similarly, M. Hosokawa et al. revealed that suppression of KIAA0101 caused a drastic attenuation of cell proliferation and a significant decrease in the DNA replication rate in pancreatic cancer (27). Consistent with our work, studies have shown that KIAA0101 could regulate the cell cycle of NSCLC and that high-level KIAA0101 expression could serve as an independent prognostic factor in NSCLC (28–30).

PRC1 (Protein Regulator of Cytokinesis-1) is characterized as a mitotic spindle-associated cyclin-dependent kinase (CDK) substrate (31). It has already been reported that PRC1 is overexpressed in different cancers, such as hepatocellular carcinoma and pancreatic cancer (32, 33). A mechanistic study showed that PRC1 could promote LUAD cell proliferation, invasion, and metastasis by limiting G2/M phase cell cycle arrest and apoptosis (34).

UBE2T (ubiquitin-conjugating enzyme E2T), a typical ubiquitin-conjugating enzyme, connects with a particular E3 ubiquitin ligase to degrade related substrates (35). Numerous studies have identified that its overexpression is involved in tumorigenesis in a number of different types of cancer (36). For example, UBE2T promotes breast cancer cell proliferation by inhibiting the expression of BRAC1 (37). The expression of UBE2T increases with the progression of multiple myeloma, especially in the early stage (38). UBE2T silencing inhibited non-small cell lung cancer cell proliferation and invasion by suppressing the Wnt/β-catenin signaling pathway (39).

To provide strong support for the results of our bioinformatics analyses, we carried out in vitro experiments. We verified that silencing the hub genes separately in LUAD cell lines could decrease cell viability, and we observed that these hub genes’ protein levels were up-regulated in LUAD patients. These results indicate that the six hub genes may play a vital role in LUAD. Nevertheless, the underlying molecular mechanisms of these hub genes in the development and progression of early stage LUAD remain to be further explored.
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Background

Long non-coding RNAs (lncRNAs) participate in the regulation of immune response and carcinogenesis, shaping tumor immune microenvironment, which could be utilized in the construction of prognostic signatures for non-small cell lung cancer (NSCLC) as supplements.



Methods

Data of patients with stage I-III NSCLC was downloaded from online databases. The least absolute shrinkage and selection operator was used to construct a lncRNA-based prognostic model. Differences in tumor immune microenvironments and pathways were explored for high-risk and low-risk groups, stratified by the model. We explored the potential association between the model and immunotherapy by the tumor immune dysfunction and exclusion algorithm.



Results

Our study extracted 15 immune-related lncRNAs to construct a prognostic model. Survival analysis suggested better survival probability in low-risk group in training and validation cohorts. The combination of tumor, node, and metastasis staging systems with immune-related lncRNA signatures presented higher prognostic efficacy than tumor, node, and metastasis staging systems. Single sample gene set enrichment analysis showed higher infiltration abundance in the low-risk group, including B cells (p<0.001), activated CD8+ T cells (p<0.01), CD4+ T cells (p<0.001), activated dendritic cells (p<0.01), and CD56+ Natural killer cells (p<0.01). Low-risk patients had significantly higher immune scores and estimated scores from the ESTIMATE algorithm. The predicted proportion of responders to immunotherapy was higher in the low-risk group. Critical pathways in the model were enriched in immune response and cytoskeleton.



Conclusions

Our immune-related lncRNA model could describe the immune contexture of tumor microenvironments and facilitate clinical therapeutic strategies by improving the prognostic efficacy of traditional tumor staging systems.
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Introduction

Lung cancer has the leading rates of incidence and mortality worldwide, with the highest estimated deaths and 119,100 newly diagnosed cases in USA from Cancer statistic, 2021 (1). Non-small cell lung cancer (NSCLC) is the most common subtype, accounting for 85% of lung cancer cases. Target therapy and immune checkpoint inhibitors are emerging therapeutic strategies for NSCLC, but the identification of potential responders remains critical (2).

Long non-coding RNAs (lncRNAs) are diverse repertoires of RNA transcripts that are over 200 nucleotides in length, which lack the capacity for direct protein coding but are involved in the regulation of critical biological processes and cellular behavior (3). LncRNAs influence gene expression and have essential roles in carcinogenesis by combining regulatory molecules with proteins or directly binding to nucleic acids, protein complexes, or transcription factors (4). The roles of lncRNAs in immune systems are extensively investigated, and it has been summarized that lncRNAs are involved in the differentiation, activation, and function of immune cells. Emerging research has emphasized the role of lncRNAs in the regulation of carcinogenesis, immunosurveillance, and antitumor immune responses. (5) Specific lncRNAs have been found overexpressed in tumor-associated macrophages, shaping the tumor immune microenvironment and inhibiting tumor apoptosis (6).

Tumor infiltrating immune cells, compromising dendritic cells, mast cells, natural killer (NK) cells, macrophages, and tumor infiltrating lymphocytes (TILs), are present in the tumor microenvironment such as the tumor center peritumor stroma, or invasive margin (7). Immune checkpoints such as LAG-3, CTLA-4, and PD-L1 expressed in TILs are associated with cancer prognosis and therapeutic response, especially immunotherapy (8). It is evident that CD8+ T cells in tumor microenvironments are critical to the immune response. Recent studies have emphasized the function of tumor infiltrating B cells in immune surveillance and regulation of immunotherapy (9).

The traditional staging system for non-small cell lung cancer is the tumor, node, and metastasis (TNM) classification, which stratifies tumor subtypes and predicts cancer prognosis based on tumor size and its invasiveness to lymph nodes or distant organs, but does not take account of the tumor molecular and immune characteristics (5). Immune characteristics could be good candidates to improve prognostication of the TNM staging system in NSCLC (10).

Based on the fact lncRNAs could shape tumor microenvironments and predict the characteristics of NSCLC, we focused on immune-related lncRNAs to filter effective prognostic signatures. In this study, we extracted significant immune-related lncRNAs in stage I-III NSCLC and constructed immune-related lncRNAs based prognostic model, exploring the immune characteristics in tumor microenvironments and the potential therapeutic response of immunotherapy.



Material and Methods


Data Acquisition

All the clinical information and RNA-sequencing data of patients with NSCLC were downloaded from the Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO). NSCLC patients with clinical stage I-III samples and complete follow-up information were included in this study. After sifting, 1357 cases with NSCLC from three data sets were incorporated into this study, including 970 patients from TCGA (https://portal.gdc.cancer.gov), 226 patients in GSE31210 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE31210), and 161 patients in GSE30219 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE30219). The 970 patients from TCGA were randomly separated in a 7:3 ratio to form the training cohort (n=717) and the testing cohort (n=253). GSE31210 and GSE30219 were combined into another independent validation cohort. Detailed baseline clinical features of three datasets are shown in Table 1. Batch effects were removed by the “ComBat” package of R software. Meanwhile, immune-related lncRNAs were downloaded and extracted from the Immlnc dataset (http://bio-bigdata.hrbmu.edu.cn/ImmLnc) (11).


Table 1 | Characteristics baseline of patients in cohorts.





Construction and Validation of the Immune-Related LncRNA Model

The immune-related lncRNA model was identified using the training cohort, and the validation cohort and GEO datasets were used to validate the accuracy and efficacy of the model. We selected the immune-related lncRNAs by taking the intersection of lncRNAs between and TCGA and GEO datasets. The least absolute shrinkage and selection operator (LASSO) was chosen to reduce overfitting and to analyze the optimal immune-related lncRNA signature for predicting the overall survival of NSCLC patients. The “glmnet” R package was used for LASSO regression analysis. We calculated the risk score of each sample as follows: risk score = expression value of lncRNA 1 * coefficient + expression value of lncRNA 2 * coefficient + … + expression value of lncRNA n * coefficient. Then, the NSCLC patients were sorted into high-risk and low-risk groups based on the optimal cut-off value of the risk score. The area under the curve (AUC), performed by the “Survival” package of R software, was used to validate the sensitivity and specificity of the immune-related signature.



Tumor Infiltrating Immune Cells Signature

Single sample gene set enrichment analysis (ssGSEA) was applied to quantify the immune infiltration level of 28 immune cell phenotypes. We obtained the gene set from previous studies, which included various immune cell phenotypes such as activated B cells, activated CD8 T cells, T follicular helper cell, and so on (12, 13). Also, CIBERSORT (https://cibersort.stanford.edu/) was applied to describe the abundance of 22 immune cell types in each NSCLC sample using R software. We evaluated the immune cell infiltration, stromal content, and tumor purity with the ESTIMATE algorithm. By comparing the results of ssGSEA, CIBERSORT, and ESTIMATE among high-risk and low-risk groups, we described the relationship between the tumor immune microenvironment and the immune-related lncRNA signature.



Prediction of Potential Immunotherapy Response

A T cell dysfunction and exclusion signature was constructed by the tumor immune dysfunction and exclusion (TIDE, http://tide.dfci.harvard.edu/) algorithm to predict tumor immune escape, which could influence patients’ response to immunotherapy. We used TIDE score mapping to compare the potential clinical response to immune checkpoint inhibitors between high-risk and low-risk groups.



Potential Biological Mechanisms of the Immune-Related LncRNA Model

We downloaded the single nucleotide variation (SNV) data from TCGA to analyze the difference of SNV among high-risk and low-risk groups through Fisher test. To explore the potential biological mechanisms, we used the “Limma” package of R software to identify the differentially expressed genes (DEGs) between high-risk and low-risk groups in training cohort. The gene ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed to analyze the functional enrichment of DEGs, using R software. The protein-protein interaction (PPI) network of DEGs was described by using the STRING database (Version 11.0) and constructed by using Cytoscape (Version 3.8.2). Then, gene set enrichment analysis (GSEA) was performed on GSEA software (http://software.broadinstitute.org/gsea/) by using the Molecular Signatures Database (MSigDB) Version 7.2 collections C2 (curated gene sets) (14).



Verification of the LncRNA Expression Between NSCLC Tissues and Adjacent Normal Tissues by qRT-PCR

We collected sixteen paired NSCLC and adjacent normal tissue samples from Jiangxi Cancer Hospital after gaining ethical approval from the Human Research Ethics Committee in Jiangxi Cancer Hospital. Total RNA was isolated using RNAiso Plus (Takara) according to the manufacturer’s instructions. The RNA was reverse-transcribed using the Primer Script Reverse Transcriptase Reagent Kit with gDNA Eraser (Takara, RR047A). Real-time PCR was performed using the TB Green™ Premix Ex Taq™ (Takara, RR420A) and analyzed using the Bio-Rad CFX96 thermal cycler. The primer sequences used for the investigated genes are listed in online Supplementary Table 3. GADPH was used to standardize the gene expression. In order to compare the expression levels of lncRNA in different samples, the 2-ΔΔCt method was adopted to calculate the expression levels of the immune-related lncRNA from the risk model.



Statistical Analysis

Univariate cox proportional hazard regression was applied to assess the prognostic value of immune-lncRNA signatures by evaluating the association between risk score and overall survival in the training cohort. The correlation of the overall survival with immune-related lncRNA signature and the clinicopathological characteristics was calculated using the Kaplan-Meier curve. The Wilcoxon rank sum test and t-test were conducted for the comparison between two groups. Two-tailed P value < 0.05 was considered significant statistically. All statistical analyses were performed in R software, version 4.0.1.




Results


Construction and Verification of the Immune-Related LncRNA Model

We extracted 1034 immune-related lncRNAs by taking the intersection among the lncRNAs in the TCGA-LUAD dataset, GEO and Immlnc database. We filtrated 15 immune-related lncRNAs with LASSO, then constructed the prognostic immune-related lncRNA model. (Figures 1A, B) Multivariate cox regression analysis showed potential prognostic properties in these 15 immune-related lncRNAs, and the expression level of 9 of the lncRNAs were positively associated with overall survival. Reciprocally, 6 immune-related lncRNAs were correlated with worse prognosis. All 15 lncRNAs are either significantly protective or risk factors for survival of stage I-III LUAD. (Figure 1C) Survival analysis of these 15 lncRNAs suggest significant survival differences between high and low expression levels of lncRNAs. (Supplementary Figure 1) Equation for the risk model from 15 significant immune-related lncRNAs is exhibited as follows:




Figure 1 | Construction and verification of the immune-related lncRNA prognostic model. (A, B) The least absolute shrinkage and selection operator was utilized to construct an immune-related lncRNA model. (C) The forest plot of fifteen immune-related lncRNAs was figured by multivariate cox regression analysis. (D–F) Survival analysis showed better survival among low-risk patients in training cohort, internal validation cohort, and external validation cohort. lncRNA, long non-coding RNA.



Risk score = 0.0136*expression value of LINC01116 + 0.1285*expression value of WWC2.AS2 + 0.0415*expression value of CASC15 + 0.0545*expression value of PRKG1.AS1 + 0.1052*expression value of HOTAIR + 0.0011*expression value of TMPO.AS1 - 0.0711*expression value of CDC42.IT1 - 0.1914*expression value of BANCR - 0.0866*expression value of COLCA1 - 0.1751*expression value of RPARP.AS1 - 0.1610*expression value of CRNDE - 0.0422*expression value of C20orf197 - 0.1677*expression value of CSNK1G2.AS1 - 0.1954*expression value of LINC00528 - 0.0693*expression value of LINC00896.

Training cohort was divided into a high-risk group (n=109) and a low-risk group (n=608) according to the optimal cut-off value which was most significantly associated with overall survival. The high-risk group showed higher mortality than the low-risk group. The Kaplan-Meier survival analysis of the immune-related lncRNA signatures suggested better a survival probability in the low-risk group of the training cohort. (Figure 1D) Similar results for score distribution and survival analysis were found in the validation cohort and GEO cohort (Figures 1E, F).



Clinical Value of Immune-Related LncRNA Model

Univariate cox regression analysis of the clinical characteristics and immune-related lncRNA model suggested that gender, AJCC T stage, AJCC N stage, AJCC TNM stage, and immune lncRNA model were significant prognostic factors for overall survival in NSCLC. All the significant candidates were included into multivariate cox regression analysis, indicating that AJCC T stage and immune-related lncRNA model were independent prognostic factors (Table 2).


Table 2 | Univariate and multivariate analysis of clinical characteristics.



To explore the robustness of the prognostic effect of the immune-related lncRNA model, Kaplan-Meier survival analysis was performed and stratified by clinicopathological characteristics, including T stage (T1, T2, T3-T4), N stage (N0, ≥N1), and gender (male, female). Similar results were found in the high-risk group, which had worse overall survival than low-risk group, and were delivered from different gender, T stage, and N stage in the training cohort (Figures 2A–G).




Figure 2 | Clinical value of immune-related lncRNA model. (A–G) Survival analysis showed favorable survival for low-risk patients in different gender, node stage, and tumor stage. (H, I) Receiver operating characteristic curves were used to compare the predictive efficacy of the immune-related lncRNA based model alone, AJCC TNM staging alone, and the combination model in training cohort and validation cohort. lncRNA, Long non-coding RNA; AJCC, American Joint Committee on Cancer; TNM staging, Tumor, Node, and metastasis staging system.



The area under the curve (AUC) of the combination between the AJCC TNM staging system and the immune-related lncRNA model was 0.90, while the AUC of AJCC TNM staging system alone was 0.88 in the training cohort for 3 years survival (Figure 2H). The combination of the AJCC TNM staging system and the immune-related lncRNA model presented a larger AUC than the AJCC TNM staging system alone in the internal validation cohort (AUC: 0.92 vs 0.89, Figure 2I) and external validation cohort (AUC: 0.64 vs 0.61, Supplementary Figure 2). Enhancement of prognostic accuracy of AJCC staging indicated a potential clinical application of the immune-related lncRNA model.



Exploration of Immune Landscape and Immune Response

Tumor infiltrating lymphocytes analysis was conducted through ssGSEA and CIBERSORT. Through ssGSEA, almost all of the infiltrating immune cells showed higher infiltration abundance in low-risk group, especially activated B cells (p<0.001), immature B cells (p<0.001), effector memory CD4 T cells (p<0.001), activated CD8 T cells (p<0.01), effector memory CD8 T cells (p<0.001), activated dendritic cells (p<0.01), immature dendritic cells (p<0.001), CD56+ Natural killer cells (p<0.01), mast cells (p<0.001), monocytes (p<0.01), and T follicular helper cells (p<0.001) (Figure 3A). A higher proportion of CD8+ tumor infiltrating lymphocytes could be detected in the low-score group with CIBERSORT (Supplementary Figure 3). Tumor purity as calculated by the ESTIMATE algorithm was not a significant prognostic factor for NSCLC based on univariate cox regression analysis in our study (Table 2).




Figure 3 | Exploration of immune landscape and immune response. (A) Single sample gene set enrichment analysis suggested a higher proportion of multiple immune cells such as activated B cells, CD8+ T cells, CD4+ T cells, and dendritic cells. ns for p>0.001, * for p<0.001, ** for p<0.0001, *** for p<0.00001. (B–D) Higher immune score, estimate score, and lower tumor purity are analyzed by ESTIMATE algorithm. (E, F) TIDE analysis estimated T cell dysfunction and exclusion and predicted response of immunotherapy. (G) Low-risk patients showed significantly higher PD-1 and CTLA-4. lncRNA, Long non-coding RNA; ssGSEA, Single Sample Gene Set Enrichment Analysis; TIDE, Tumor Immune Dysfunction and Exclusion. ns for p>0.05, * for p<0.05, ** for p<0.01, *** for p<0.001.



To assess the immune infiltration in histological aspects, the ESTIMATE algorithm was used to infer the proportion of stromal cells and immune cells in tumor tissue. The low-risk group has higher immune score (p<0.001) and estimate score (p=0.004) significantly, which indicates more immune cell infiltration and lower tumor purity (p=0.004). (Figures 3B–D) ESTIMATE analysis verified the results of the tumor infiltrating lymphocyte evaluation with ssGSEA and CIBERSORT.

Observing the correlation between the immune-related lncRNA model and the tumor microenvironment, we further explored the association between this model and the response of immunotherapy. The TIDE score integrates the T cell dysfunction and exclusion signature to evaluate tumor immune escape. The high-risk group calculated from immune-related lncRNA signature was found to have a higher TIDE score, indicating potential tumor T cell dysfunction and exclusion. The predicted proportion of responders to immune checkpoint blockade was lower in the high-risk group as well. (Figures 3E, F) In addition, among patients in low-risk group, the gene expression of PDCD1 and CTLA-4 were significantly higher than those in high-risk group (Figure 3G).



Somatic Mutation and Pathway Analysis of the Immune-Related LncRNA Model

In order to compare the difference of somatic mutation of the immune-related lncRNA model, we used the “maftools” R package to calculate the SNV among the high-risk and low-risk groups. We found that the high-risk group had high mutation of TP53, TTN, MUC16, RYR2, CSMD3, XIRP3, USH2A, ZFHX4, LRP1B, and KEAP1 (Supplementary Figure 4A). The low-risk group was characterized by frequent mutation of TP53, TTN, MUC16, CSMD3, RYR2, LRP1B, USH2A, ZFHX4, KRAS, and FLG (Supplementary Figure 4B). Meanwhile, we analyzed the level of EGFR mutation in the two groups and we found no difference between the high-risk group and low-risk group (Fisher test, p=0.246, Supplementary Figure 4C).

We identified 19592 differentially expressed genes (DEGs) between the high-risk and low-risk groups, among which 72 DEGs were significant (p<0.05) and had fold change ≥2. GO functional enrichment analysis showed up-regulated DEGs for the low-risk group enriched in humoral immune response and channel activity, and down-regulated DEGs for the low-risk group enriched in skin development, keratinocyte differentiation, and cytoskeleton. (Figures 4A, B) KEGG pathway analysis indicated significant enrichment in the PI3K-AKT signaling pathway, Ras/Rap signaling pathway, MAPK signaling pathway, and regulation of actin cytoskeleton. (Supplementary Figure 5) GSEA showed significantly positive enrichment of the Fc epsilon RI pathway, asthma, vascular smooth muscle contraction, T cell receptor signaling, B cell receptor signaling, renin-angiotensin-aldosterone system, and VEGF signaling pathways in the low-risk group. (Figures 4C, D and Supplementary Table 1) Meanwhile, up-regulated pathways enriched in high-risk group were DNA replication, cell cycle, nucleotide excision repair, p53 signaling, homologous recombination, mismatch repair, pentose phosphate pathway, and tricarboxylic acid cycle. (Figures 4E, F; Supplementary Figure 6 and Supplementary Table 2).




Figure 4 | Pathway analysis of immune-related lncRNA model. (A, B) Gene ontology analysis was used to explore the potential functional mechanism of immune-related lncRNA model, and the results are visualized in the low-risk group (A) and high-risk group (B). Immune-related lncRNA signaling pathway obtained by gene set enrichment analysis, including T cell receptor signaling pathway (C), Fc epsilon RI pathway (D), p53 signaling pathway (E), and cell cycle (F).





Expression Level of 15 Immune-Related LncRNAs Between NSCLC Tissues and Adjacent Normal Tissues by qRT-PCR

Finally, we measured the expression levels of 15 immune-related lncRNA from the risk model in the sixteen paired NSCLC and adjacent normal tissues using qRT-PCR. The result showed that three lncRNAs (CASC15, BANCR, and RPARP.AS1) had low expression in NSCLC tissues when compared with normal tissues (Supplementary Figure 7).




Discussions

We constructed a 15 immune-related lncRNA based model using the LASSO algorithm for NSCLC in the TCGA dataset and validated it using the GEO datasets. Combined model demonstrated an enhanced prognostic efficacy compared to AJCC TNM staging system alone. A higher proportion of immune cell infiltration was detected in the survival-benefit group stratified by our model. The immune infiltration score described by the ESTIMATE algorithm is higher in the survival-benefit group, which is predicted with better immunotherapy response reasonably. GO functional analysis showed an enrichment in the humoral immune response, while KEGG showed enrichments in the PI3K-AKT signaling pathway, MAPK signaling pathway, and Ras/Rap signaling pathway. GSEA showed enrichments in the Fc epsilon RI pathway, asthma, T cell receptor signaling, and B cell receptor signaling.

Our study constructed and validated an immune-related lncRNA signature for stage I-III NSCLC with good prognostic AUC in all enrolled datasets. A total of 15 lncRNAs were identified to construct the immune-related lncRNA model, including 9 lncRNAs (CDC42.IT1, BANCR, COLCA1, RPARP.AS1, CRNDE, C20orf197, CSNK1G2.AS1, LINC00528, and LINC00896) associated with better overall survival and 6 lncRNAs (LINC01116, WWC2.AS2, CASC15, PRKG1.AS1, HOTAIR, and TMPO.AS1) correlated with worse prognosis. Some of these lncRNAs had been confirmed to be related to cancer progression and prognosis in previous studies. CASC15 has been reported to be upregulated in various types of tumor tissues (15), including NSCLC. As part of HIF-1α/CASC15/SOX4/β-catenin axis, CASC15 plays an essential role in cell proliferation, invasion, and tumor development in NSCLC (16). Meanwhile, CASC15 can promote lung cancer metastasis via miR-766-5p/KLK12 axis (17). Homebox (HOX) are vital in embryonic development and oncogenesis and the most studied HOX-lncRNAs is HOTAIR. HOTAIR is also significantly upregulated in NSCLC and is known for its association with higher TMN staging, lymphatic metastasis, and poor prognosis (18). The previous studies had found that HOTAIR could promote the level of miR-149-5p to facilitate the process of invasion, migration, and cell proliferation in NSCLC (19). Furthermore, HOTAIR has been linked to drug resistance in several types of tumor. Silencing HOTAIR expression can revert the gefitinib resistance of lung adenocarcinoma (20). Several studies have emphasized the potential value of LINC01116 as a prognostic marker or therapeutic target in various kinds of cancer. LINC01116 has been confirmed to accelerate tumor progression by regulating tumor-associated genes such as MYC (21) and p53 (22). In lung cancer, the upregulation of LINC01116 is an important reason for tumor cell proliferation and migration as it enhances the process of epithelial-mesenchymal transition (EMT) (23). In addition, as one of effectors in the IFN/STAT1 pathway, IFI44 is repressed by LINC01116, leading to acquired resistance of gefitinib in NSCLC (24). TMPO.AS1 performs its tumor-promoting function via activating the PI3K/AKT/mTOR pathway in gastric cancer and HCC (25). However, studies on BANCR and CRNDE function on tumor procession have shown conflicting results. For BANCR, some researchers have identified its influence in tumor invasion and migration (26). In contrast, overexpression of BANCR can control the content of N-cadherin, and vimentin and E-cadherin were shown to inhibit EMT in another study. (27) In our study, BANCR was used as a positive prognostic predictor for overall survival in NSCLC. As for CRNDE, most studies show that CRNDE can promote cell proliferation, invasion, and migration and inhibit apoptosis in colorectal cancer, lung cancer, glioma, and other cancers. CRNDE was also shown to affect cancer microenvironments and metabolism via the PI3K/AKT/mTOR and Raf/MAPK pathways. In conclusion, CRNDE might be a potential cancer promoter (28). However, recent research indicates the unique function of CRNDE in attenuating chemoresistance in gastric cancer by reducing the stability of SRSF6 (29). Meanwhile, our immune-related lncRNA signature also describes CRNDE as a favorable factor for overall survival in NSCLC. KEGG pathway analysis of our signature also shows enrichment of the PI3K/AKT and MAPK signaling pathways. The molecular mechanism of CRNED in cancer prognosis has not been completely investigated, and requires additional experiments to explore it in the future.

The TNM staging system is a cancer staging manual constructed by the American Joint Committee on Cancer on anatomic extent, in the pursuit of definitive prognoses and selecting the most beneficial therapeutic strategies. However, clinical outcomes vary among different patients in the same stage due to diverse biological behavior determined by molecular and genetic features (30). Immune contexture represents the results of dynamic interaction between tumor cells and the immune system in the tumor microenvironment. Prognostic immune parameters have been studied to predict the prognosis of cancer. Immunoscore is an unprecedented biomarker describing the proportion of immune cells in the tumor centre, invasive edge, and peritumor stroma (31). In colorectal cancer, immunoscore is used to predict prognosis, therapeutic effects, and disease relapse after immune checkpoint inhibitor therapy (32). With respect to NSCLC, a Norwegian study identified stromal CD8+ density and CD45RO+ memory T lymphocytes as independent prognostic factors for NSCLC regardless of endpoints, and proposed them as a supplement to the TNM-staging system (10). Prospective multicenter clinical trials are designed to evoke the attention of TNM-immunoscore for clinical application (33). After identifying prognostic immune-related lncRNA signatures, the differences of immune contexture including tumor infiltrating lymphocytes and immunescore were explored with our immune-related lncRNA model. An improvement of prognostic efficacy was found in the training cohort, internal validation cohort, and external validation cohort, and provides a novel immune indicator as a nonanatomic supplement of tumor features for the TNM staging system.

Infiltration of different types of immune cells is associated with cancer progression and patient survival in NSCLC (34). Our study identified differences in tumor infiltrating cells between high-risk and low-risk groups according to an immune-related lncRNA model, focusing on cells including dendritic cells, B cells, CD4 T cells, CD8 T cells, Natural killer cells, T follicular helper cells, and mast cells. Cytotoxic CD8+ T lymphocytes (CTLs) are essential immune cells against tumor cells (35). The priming of CTLs requires antigen presentation and co-interaction with mature dendritic cells, natural killer cells, and CD4+ T cells. Mature dendritic cells and natural killer cells, motivated and licensed by CD4+ T cells, secret costimulatory molecules and cytokines, and then CTL is priming (36). Infiltrating B cells are emphasized as active participants that orchestrate the antitumor immune response. B cells are involved in antigen presentation to T cells directly, or facilitate the antigen uptake of dendritic cells (37). T follicular helper cells rely on antigen-specific B cells, and reciprocally facilitate B cell proliferation and differentiation, which is crucial in humoral response (38). Significant associations have been verified by multiple studies between the clinical outcome of cancer patients and CD4+ T cells, CD8+ T cells, B cells, dendritic cells, natural killer cells, and mast cells (39, 40).

In the present study, we inferred that atopy may be relevant to the development and prognosis of lung cancer based on evidence that the low-risk group had a higher infiltration of mast cells, and enriched Fc epsilon RI pathways, asthma and vascular smooth muscle contractions from GSEA. An up-to-30 year prospective study with 37747 participants in Denmark observed a 10-fold higher IgE level in non-Hodgkin lymphoma, oral or pharynx cancer, lung cancer, and esophagus cancer. However, these results were non-significant after multivariable adjustment (41). Recent research based on the Surveillance, Epidemiology, and End Results (SEER) database in the United States suggested asthma was associated with reduced risk of liver cancer, which could be attributed to the activation of immunosurveillance from allergic response (42). The cellular mechanism of the antitumor function of IgE/FcϵRI combination could be explained by cross-presentation with dendritic cells to induce the priming of cytotoxic T lymphocytes (43). High-affinity IgE receptors and Fc epsilon RI signaling pathways constituted the most significant pathway of prognostic signature for lung adenocarcinoma. MS4A2, an IgE receptor related gene expressed in tumor-infiltrating mast cells, was an independent favorable prognostic biomarker (44). Ultra-low IgE is correlated with a higher risk of malignancy and could be a diagnostic and prognostic biomarker for lung adenocarcinoma (42). Hence, our results validate the critical role of IgE and allergic reactions in the antitumor response of low-risk patients, stratified based on immune-related lncRNA signature.

Immune checkpoint inhibitor (ICI) immunotherapy has emerged as an effective treatment for various kinds of cancers, including NSCLC (45). However, only 20%-30% patients with NSCLC respond to immunotherapy. Predictive biomarkers, such as PD-1 (programmed cell death protein 1) and CTLA-4 (cytotoxic T lymphocyte-associated antigen-4), are frequently used to assess the response of ICI in NSCLC. In our study, immune checkpoint genes such as PD-1 and CTLA-4 were significantly higher in the low-risk group than in high-risk group (46). The TIDE scores were also significantly higher in the low-risk group. Thus, patients in the low-risk group may have better response to ICI therapy. Tumor-infiltrating immune cells have also been regarded as a predictor for response to immunotherapy (46). For example, KEYNOTE-001 has found that a high percentage of CD8+ T cell infiltration showed a strong association with superior ICI treatment responses when treated with pembrolizumab. (47) We also found that the low-risk group showed higher immune cells infiltration abundance, such as activated B cells, immature B cells, CD8+ T cells, and so on. In conclusion, our 15-immune-related lncRNA signature was closely related to ICI response.

Some limitations of this study should be considered when interpreting the results. First, all of the results were completed based on retrospective studies and public datasets. The accuracy of our immune-related lncRNA signature should be further verified with a clinical real-world dataset. Second, laboratory explorations are needed to verify and illuminate the molecular mechanisms of these immune-related lncRNAs. Finally, as the predictive marker of ICI response, TIDE score is just verified in several datasets. Hence, available immunotherapy cohorts are warranted to confirm the clinical application of the immune-related lncRNA signature.

In conclusion, we established a 15-immune-related lncRNA prognostic model for NSCLC. This model could be applied in clinical situations as a supplement to the TNM staging system for an improvement in the predictive efficacy of cancer malignancy and prognosis. Low-risk patients stratified by our model have higher infiltration of immune cells such as dendritic cells, CD8+ T cells, CD4+ T cells, B cells, natural killer cells, and mast cells. Pathway analysis of our immune-related lncRNA signature might indicate an underlying mechanism associated with humoral immunity, cell-mediated immunity, and the regulation of the cell cycle.
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Background

The study assessed the possibility of dividing patients into groups based on the assessment of morphological changes in the epithelium of small-caliber bronchi located near the primary tumor in order to predict high and low risks of distant metastasis of non-small cell lung cancer.



Methods

In 171 patients with non-small cell lung cancer (T1-4N0-3M0) in small-caliber bronchi taken at a distance of 3–5 cm from the tumor, various variants of morphological changes in the bronchial epithelium (basal cell hyperplasia (BCH), squamous cell metaplasia (SM), and dysplasia (D)) were assessed. Long-term results of treatment, namely, distant metastasis, were assessed after 2 and 5 years.



Results

During the follow-up period, distant metastases were found in 35.1% (60/171) of patients. Most often, they were observed in patients of the high-risk group: BCH+SM−D− (51.6%, 40/95) and BCH−SM+D+ (54.4%, 6/11). Less often, distant metastases were observed in low-risk group patients: BCH+SM+D− (6.7%, 3/45) and BCH−SM−D− (10.0%, 2/20). Tumor size, grade, and stage were significant predictors of metastasis only in the high-risk group. The 5-year metastasis-free survival was better in the low-risk group of distant metastases.



Conclusions

Isolated BCH or dysplasia in small bronchi distant from foci of tumor is associated with a high-risk distant metastasis and less 5-year metastasis-free survival.





Keywords: non-small cell lung cancer (NSCLC), bronchial lesion, distant metastasis, metastasis-free survival, basal cell hyperplasia, squamous cell metaplasia



Introduction

The most common cause of cancer death in 2020 was lung cancer (1). High mortality is associated with the progression of the tumor process. Therefore, the search for various molecular biological markers involved in the mechanisms of distant metastasis in non-small cell lung cancer (NSCLC) remains relevant. The identification of patients with a high risk of tumor progression can be used to adequately prescribe adjuvant chemotherapy (AC) and to adjust its regimen in order to minimize adverse effects.

The most important factors associated with progression of NSCLC and predicting survival are tumor stage, histologic structure, grade, and biological aggressiveness (2–5). However, these factors are not always effective in predicting the outcome of the tumor process. Our earlier study showed that different variants of the combination of morphological changes in the epithelium of small bronchi [basal cell hyperplasia (BCH), squamous cell metaplasia (SM), and dysplasia (D)], distant from foci of squamous cell carcinoma and lung adenocarcinoma, are associated with recurrence. The combination of BCH and SM is associated with high risk of recurrence of NSCLC regardless of the histologic type of tumor and neoadjuvant chemotherapy (NAC) (6, 7). In this study, we considered the association of different variants of morphological changes of the respiratory epithelium of small bronchi adjacent to the tumor as risk factors for distant metastasis.



Methods


Patients

The study enrolled 171 patients with NSCLC (squamous cell carcinoma and adenocarcinoma, T1-4N0-3M0) who were treated in the Cancer Research Institute, Tomsk NRMC, between 2005 and 2011. Patients were excluded if they were refused surgery and had an Eastern Cooperative Oncology Group (ECOG)/WHO performance score >2, small-cell lung cancer, associated severe diseases, and cardiovascular and pulmonary decompensation. Metastatic involvement was identified from the Local Cancer Register. The study was approved by the Institutional Review Board (IRB) (December 10, 2012; the number of approvals is 16).

The histologic diagnosis of lung cancer was made according to the International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society (IASLC/ATS/ERS) lung adenocarcinoma classification (8) and the WHO criteria (9) and was confirmed by immunohistochemistry using a panel of antibodies: TTF-1 (clone 8G7G3/1, Dako), Napsin A (Rabbit Polyclonal, Cell Marque), and p63 (Rabbit Polyclonal, Leica) (Figure 1).




Figure 1 | Difference in H&E and IHC staining of two histologic types of NSCLC. Magnification, ×100. IHC, immunohistochemistry; NSCLC, non-small cell lung cancer.



Cancer stage was determined according to the TNM classification (10). The type of morphological lesions in the bronchial epithelium (BCH, SM, and D) of small bronchi (d = 0.5–2 mm), obtained at a distance of ~3 cm from the tumor edge during surgery, was assessed as described earlier (11).



Statistical Analysis

The data were analyzed with the statistical software STATISTICA 12 (StatSoft, OK, USA) and GraphPad Prism 9 (GraphPad Software, San Diego, CA, USA). A multivariate logistic regression model was used to calculate odds ratios (OR) for type of bronchial lesions, histologic type, recurrence, type of therapy, gender, smoking status, grade, and stages T and N. p-Values for 2 × 2 tables were obtained by using Fisher’s exact test. Survival was investigated with univariate and multivariate Cox regression models, yielding hazard ratios (HRs). This model adjusted for type of bronchial lesions, histologic type, recurrence, type of therapy, gender, smoking status, grade, and stages T and N. Metastasis-free survival (MFS) was calculated by the Kaplan–Meier method, and differences in survival curves among the groups were evaluated by the log rank test. p < 0.05 was considered statistically significant.




Results

Over the entire follow-up period, distant metastases occurred in 35.1% (60/171) of patients with NSCLC. The clinical and pathological parameters of NSCLC patients depending on the presence or absence of distant metastasis are presented in Table 1.


Table 1 | Clinicopathologic features of NSCLC patients with or without distant metastases.



Of those cases that developed metastasis, 81.7% (49/60) had BCH+SM−D−; 10.0% (6/60), BCH−SM+D+; 5.0% (3/60), BCH+SM+D−; and 3.3% (2/60), BCH−SM−D−. Patients with BCH+SM−D− and BCH−SM+D+ had the highest percentage (51.6% (49/95) and 54.5% (6/11), respectively) of metastasis than had BCH+SM+D− [6.7% (3/45)] and BCH−SM−D− [10.0% (2/20)] patients.

Based on these results, we identified two groups of patients: with low (BCH−SM−D− and BCH+SM+D−) and high (BCH+ SM−D− and BCH−SM+D+) risk of distant metastases. We used univariate and multivariate prognostic analyses to assess the prognostic effect of the risk score system based on type of bronchial lesions and clinical and pathologic parameters of NSCLC patients (Table 2).


Table 2 | Univariate and multivariate logistic regression analyses of factors associated with distant metastasis in NSCLC patients.



In the univariate logistic regression analysis, the high-risk group (OR = 12.9; 95% CI = 4.8–34.7, p < 0.001), T3-4 (OR = 3.4; 95% CI = 1.5–7.7, p = 0.002), grade 3 (OR = 3.6; 95% CI = 1.6–7.9, p = 0.001), and stage III (OR = 5.1; 95% CI = 2.2–11.8, p = 0.0001) were significantly associated with higher risks of distant metastasis. The ORs of histologic type, nodal status, recurrence, NAC, intraoperative radiotherapy (IORT), gender, smoking status, and AC (p > 0.05) were insignificant in the univariate logistic regression analysis. The multivariate logistic regression models (all variables and variables significant after univariate analysis) confirmed that the high-risk group, T3-4, grade 3, and stage III (OR > 1; p < 0.001) were still significantly associated with higher risks of metastasis. As a result, based on OR, being a high-risk group was the most influential risk factor for distant metastasis of NSCLC.

The frequency of the stage T at diagnosis and the grade between the low- and high-risk groups were not significant (Fisher’s exact test, p > 0.05) (Figure 2).




Figure 2 | The distribution of NSCLC patients by T and grade depending on low- and high-risk groups of distant metastases. Fisher’s exact test. NSCLC, non-small cell lung cancer; ns, not significant.



This, as well as no correlation between stage T and grade (r2 = 0.3448, p = 0.6998), may indicate the independence of three factors in the distant metastasis prognosis. The results presented in Table 3 allow us to compare the significance of three factors (risk groups, T, and grade) to determine the rate of developing distant metastases in NSCLC.


Table 3 | The frequency of distant metastases depending on the cancer stage and the grade, separately for the low- and high-risk in NSCLC patients.



There is every reason to believe that the assignment of patients to high- and low-risk groups by the risk score system based on type of bronchial lesions is the most significant and independent prognostic factor of distant metastasis. Moreover, it is acceptable to believe that T3-4 and grade 3 are unfavorable factors only in the high-risk group of distant metastases.

We described the frequency of metastases depending on the cancer stage and the grade, separately for the low- and high-risk groups (Figure 3).




Figure 3 | The frequency of distant metastases in NSCLC patients with different bronchial lesions (A–D) depending on the cancer stage. BCH, basal cell hyperplasia; SM, squamous metaplasia; D, dysplasia; Mts, distant metastases; NSCLC, non-small cell lung cancer.



The evaluation of the relationship of distant metastasis of NSCLC with the cancer stage showed that in BCH−SM−D− group single distant metastases occurred only in patients with stage IIIA, 16.7% (2/12) (Figure 3A). In another low-risk group (BCH+SM+D−), metastases were in 11.1% (1/9) of patients with stage IIB, in 8.3% (1/12) of patients with IIIA, and in 9.09% (1/11) of patients with stage IIIB (Figure 3B).

There were no metastases in the low-risk group of distant metastases in I–II stage during the observation period, while in the high-risk group of distant metastases (BCH+SM−D− and BCH−SM+D+), metastases occurred at any cancer stage (Figures 3C, D). From Table 4, it follows that only the high-risk group of distant metastases is associated with the cancer stage (p = 0.0028).


Table 4 | The frequency of distant metastases in groups of high and low risk of metastasis, depending on the cancer in NSCLC patients.



The comparison of the rates of metastasis in cases with stage IIIA shows that at the same stage, the frequency of metastasis in the high-risk group is 20 times higher than in the low-risk group.


Survival Analyses

We explored the potential prognostic factors in NSCLC patients using univariate and multivariate Cox regression analyses. None of the investigated parameters in univariate and multivariate Cox analyses influenced 2-year MFS in NSCLC patients (Table 5).


Table 5 | Univariate and multivariate Cox regression analyses of prognostic factors for 2-year metastasis-free survival in NSCLC patients.



As shown in Table 6, the univariate Cox regression analysis revealed that the BCH+SM−D− type of bronchial lesions was significantly associated with poor 5-year MFS in patients with NSCLC.


Table 6 | Univariate and multivariate Cox regression analyses of prognostic factors for 5-year metastasis-free survival in NSCLC patients.



The multivariate Cox regression analysis showed that the BCH+SM−D− type of bronchial lesions was an independent prognostic factor for the 5-year MFS. The Kaplan–Meier plots indicated that NSCLC patients with BCH+SM−D− exerted significantly worse survival than the patients with other type of bronchial lesions (p < 0.05; Figure 4).




Figure 4 | The 5-year MFS for NSCLC patients according to the different types of bronchial lesions. Log rank test. MFS, metastasis-free survival.



The survival rates of NSCLC patients with different types of bronchial lesions who were alive for 5 years was 52.0% at BCH+SM−D−, 97.5% at BCH+SM+D−, 80.0% at BCH−SM+D+, and 100.0% at BCH−SM−D−.

Even more clearly, the association between the type of bronchial lesions and the frequency of distant metastasis was demonstrated when evaluating the curves of 5-year MFS in the low- and high-risk groups (Figure 5).




Figure 5 | The 5-year MFS for NSCLC patients according to the group of low and high risk of distant metastasis. Log rank test. MFS, metastasis-free survival.



The survival rates of the high-risk and low-risk groups of patients who were either diagnosed with NSCLC or who were alive at 5 years were 52.5% and 98.2%, respectively.




Discussion

The results of the study indicate that the state of the epithelium in the small bronchi distant from the tumor can be considered as a factor that can be used to divide patients with NSCLC into groups of low and high risk of distant metastasis. The absence of changes in the epithelium (BCH−SM−D−) or the combination of BCH with squamous metaplasia (BCH+SM+D−) is associated with a low frequency of metastasis (10% or 6.7%, respectively). A high risk of distant metastases is associated with the isolated BCH (BCH+SM−D−) and SM combined with D of the respiratory epithelium (BCH−SM+D+).

Metastases in these groups were found in 51.6% and 54.5% of cases. The significance of the type of morphological premalignant changes in the epithelium of small bronchi is a predictor of the incidence of distant metastases, and the time of their clinical manifestation is also confirmed by the results of the Cox regression analyses. In the low-risk group of distant metastases, 5-year MFS was higher. It is noteworthy that the study demonstrated the significance of generally recognized factors in predicting distant metastasis: tumor size, grade, and stage of the process. However, an important innovation lies in the fact that these factors have a significant prognostic ability precisely in the high-risk group, stratified by type of bronchial lesions.

It is known that microenvironment determines the invasiveness and ability of cells to intravasate, which is the first step in the metastatic process. This view explains the probability of a complex chain of cause-and-effect relationships between parenchymal–stromal relationships in small bronchi located near the tumor and the risk of distant metastasis of NSCLC.

The results of the study suggest that the variant of a combination of different types of morphological and molecular changes in the bronchial epithelium under conditions of chronic inflammation in the bronchi (in chronic bronchitis or NSCLC) is a stable condition reflecting the constitutive features of stromal–parenchymal relationships during inflammation and the divergent nature of the progression of precancerous changes in the bronchial epithelium.

Previously, we analyzed the expression profiles of the BCH, SM, and D genes in small bronchi near the primary tumor in NSCLC. It was found that isolated BCH in the high-risk group of distant metastasis differs from the BCH combined with SM in the low-risk group of metastases (BCH+SM+D−) by the expression of immune response genes. Increased expression of genes for regulation of the cell cycle and downregulation of genes for assembly of cilia of the epithelium distinguish SM combined with D in the second high-risk group (BCH−SM+D+) from SM, which is combined with BCH in the group of low risk of metastasis (BCH+SM+D−). Finally, in the epithelium with dysplastic changes, overexpression of genes regulating cell division and insufficient expression of genes regulating inflammation are noted (7). The described differences in gene expression suggest variability in epithelial–stromal relationships, including the nature of inflammation and the response of the epithelium to inflammation-associated cytokines, with different combinations of morphological changes in the respiratory epithelium. Because of this, it can be expected that different variants of epithelial–stromal relations in small bronchi adjacent to the tumor, which may have a constitutive nature, may be associated with different variants of parenchymal–stromal relations in carcinomas, which substantially determine the risk of distant metastasis.

Unfortunately, prior to this study, there was no concept of morphological changes in the epithelium of small bronchi as a factor associated with distant metastasis, and their prognostic significance in patients with NSCLC. Numerous studies are aimed at characterizing different types of changes in the epithelium, their order, reversibility, and, most importantly, the significance in the occurrence of carcinomas. Particular attention, of course, is paid to D as a precancer process. Overall, there are no studies about the mechanisms of the association discussed in this paper. We can only suggest a possible mechanism underlying the association of variants of morphological changes in the bronchi adjacent to the tumor with the risk of distant metastasis in lung cancer. It is assumed that the mechanism of this relationship is due to the genetic determination of immune-inflammatory reactions in the development of chronic bronchitis and the types of epithelial–stromal interactions associated with them. Shortly, various combinations of morphological changes in the bronchi reflect the constitutive features of parenchymal–stromal relations, which are formed under conditions of chronic inflammation in the bronchial wall.

A possible chain of events could be presented as follows: 1) constitutively isolated variants of the development of the immune-inflammatory reaction in the bronchial mucosa determine the dominant spectrum of cytokines affecting the epithelium. 2) Depending on the cytokines affecting the epithelium of the bronchi and/or the response of the epithelium to the action of cytokines, different morphological changes and their combinations develop in the bronchi. 3) Different variants of morphological changes in small bronchi in NSCLC are markers of discrete variants of epithelial–stromal relations during chronic inflammation and can be a criterion for discriminating patients by group. 4) The invasive phenotype of primary tumor cells and their ability to intravasate are largely formed under the influence of the microenvironment. 5) In the tumor microenvironment, immuno-inflammatory reactions almost are observed (“non-healing wound”). 6) The nature of inflammation and the spectrum of cytokines in the tumor microenvironment are determined not only by the tumor specificity but also by the reflection of the constitutive features of the development of immune-inflammatory reactions. 7) Constitutive features of immune-inflammatory reactions and epithelial–stromal relations in the wall of bronchi adjacent to the tumor reflect significant manifestations of immune-inflammatory reactions in the tumor microenvironment, including their ability to increase the invasive and intravasation potential and the ability to metastasize. 8) The morphological type of precancerous changes in the bronchial epithelium of the bronchi adjacent to the tumor is a prognostic sign of the risk of metastasis.
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Background

m6A-related lncRNAs emerged as potential targets for tumor diagnosis and treatment. This study aimed to identify m6A-regulated lncRNAs in lung squamous cell carcinoma (LUSC) patients.



Materials and Methods

RNA sequencing and the clinical data of LUSC patients were downloaded from The Cancer Genome Atlas (TCGA) database. The m6A-related lncRNAs were identified by using Pearson correlation assay. Univariate and multivariate Cox regression analyses were utilized to construct a risk model. The performance of the risk model was validated using Kaplan–Meier survival analysis and receiver operating characteristics (ROC). Immune estimation of LUSC was downloaded from TIMER, and the correlations between the risk score and various immune cells infiltration were analyzed using various methods. Differences in immune functions and expression of immune checkpoint inhibitors and m6A regulators between high-risk and low-risk groups were further explored. Finally, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were utilized to explore the biological functions of AL122125.1.



Results

A total of 351 m6A-related lncRNAs were obtained from TCGA. Seven lncRNAs demonstrated prognostic values. A further multivariate Cox regression assay constructed a risk model consisting of two lncRNAs (AL122125.1 and HORMAD2-AS1). The Kaplan–Meier analysis and area under the curve indicated that this risk model could be used to predict the prognosis of LUSC patients. The m6A-related lncRNAs were immune-associated. There were significant correlations between risk score and immune cell infiltration, immune functions, and expression of immune checkpoint inhibitors. Meanwhile, there were significant differences in the expression of m6A regulators between the high- and low-risk groups. Moreover, GO and KEGG analyses revealed that the upregulated expression of AL122125.1 was tumor-related.



Conclusion

In this study, we constructed an m6A-related lncRNA risk model to predict the survival of LUSC patients. This study could provide a novel insight to the prognosis and treatment of LUSC patients.
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Introduction

Lung cancer, as the most prevalent malignancy, ranks as the leading cause of cancer-related deaths worldwide (1, 2). Non-small cell lung cancer (NSCLC), as the major histological type, accounts for 85% of lung cancer. Lung squamous cell carcinoma (LUSC) accounts for 30% NSCLC (3, 4). Currently, the targeted therapy and immunotherapy mainly benefit the non-LUSC NSCLC (5, 6). The 5-year survival rate for LUSC patients remains unsatisfactory (7). Therefore, identifying novel biomarkers for diagnosis and treatment is of great potential.

Long noncoding RNAs (lncRNAs) are non-coding transcripts with a length longer than 200 nucleotides (8, 9). lncRNA regulates gene expressions in transcriptional and post-transcriptional mechanisms (8, 10, 11). Although lncRNAs have been used as biomarkers in predicting survival and treatment response in LUSC (12, 13), more and more research started to investigate lncRNA correlated to cellular functions, such as ferroptosis-related lncRNA (14–16) and autophagy-related lncRNA (17, 18).

N6-Methyladenosine (m6A), as the most abundant and reversible RNA modification, is involved in the regulation of RNA splicing, localization, stability, and translation (19, 20). m6A modification could regulate the expression and biological processes of mRNAs and non-coding RNAs (21, 22). The m6A-regulated process was involved in three kinds of m6A regulators, which include methyltransferases (writers), demethylases (erasers), and m6A-binding proteins (readers). Gu et al. identified three m6A regulators (WTAP, YTHDC1, and YTHDF1) as independent prognostic factors for LUSC patients (23). Liu et al. found that FTO was correlated with poor overall survival of LUSC patients (23). m6A-related lncRNAs demonstrated promising roles in tumor diagnosis, prognosis, and treatment. Yu et al. constructed an m6A-related lncRNA signature which could accurately predict the survival of kidney renal clear cell carcinoma patients (24). Moreover, m6A regulators also demonstrated potential therapeutical roles in disease treatment (25), such as FTO inhibitors MO-I-500 (26) and FB23-2 (27). However, whether m6A-related lncRNAs are involved in LUSC progression needed to be elucidated.

In the present study, we identified m6A-related lncRNAs with independent prognostic value to construct a risk model. The correlations of the risk model with the immune microenvironment were further studied.



Materials and Methods


Data Source and Retrieve

Transcriptome profiling data and corresponding clinical data were downloaded from The Cancer Genome Atlas (TCGA) database (https://portal.gdc.cancer.gov). A list of 23 m6A regulators was obtained from a published article, which include writers (METTL3, METTL14, METTL16, WTAP, VIRMA, RBM15, RBM15B, and ZC3H13), erasers (FTO and ALKBH5), and readers (YTHDC1, YTHDC2, IGF2BP1, IGF2BP2, IGF2BP3, YTHDF1, YTHDF2, YTHDF3, HNRNPC, LRPPRC, HNRNPA2B1, FMR1, and RBMX) (24, 28, 29). The differential analysis of m6A regulators and m6A genes was obtained using “limma” package in R software.



Identification of m6A-Related lncRNAs

Firstly, differentially expressed lncRNAs were retrieved using “limma” package. Then, correlations between these lncRNAs and m6A regulators were analyzed using Pearson correlation analysis. m6A-related lncRNAs were selected with the following criteria: coefficient >0.4, P <0.001. The results were demonstrated by a network graph using “igraph” package in R.



Construction and Validation of an m6A-Related lncRNA Risk Model

Univariate and multivariate Cox regression analyses were performed to screen m6A-related lncRNAs with prognostic values using “survival” package. Ultimately, we identified two prognostic m6A-related lncRNAs to construct a risk model. The risk score was calculated by coefficient(1) * lncRNA(1) expression + coefficient (2) * lncRNA(2) expression. Then, the LUSC patients were classified into high-risk and low-risk groups based on the median risk score. The Kaplan–Meier survival curve was used to evaluate the prognostic capability of the risk model. The area under the curve (AUC) value of the receiver operating characteristics (ROC) was used to assess the sensitivity and specificity of the risk model. The distributions of risk scores, survival status, and these two m6A-related lncRNA were visualized by “pheatmap” package.



Immune Estimations of the Risk Model

Tumor immune estimation resource was downloaded from TIMER (http://timer.cistrome.org/) (30, 31). The immune infiltration estimations were analyzed by TIMER, CIBERSORT, quanTIseq, xCell, MCP-counter, and EPIC algorithms. The correlations between the risk score and immune functions and the expression of checkpoint inhibitors were demonstrated by a package in R software.



Correlation Between Risk Model and m6A Regulators

The differential expression of the 23 m6A regulators between the high- and low-risk groups was analyzed using a package in R software.



Gene Ontology and Kyoto Encyclopedia of Genes and Genomes Analysis

Gene Ontology (GO) enrichment analysis was performed to annotate the functions of AL122125.1, which included biological process (BP), cellular component (CC), and molecular function (MF) in R software. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis was performed to reveal the associated signaling pathways. GO and KEGG enrichment analyses were performed by using “colorspace”, “stringi”, “clusterProfiler”, “org.Hs.eg.db”, and “pathview” packages in R software.



Statistical Analysis

Data processing was performed by Perl programming language. The statistical analysis was carried out in R software (version 4.1.0). P-value <0.05 was considered as statistically significant.




Results


Expression of m6A Regulators in LUSC

In total, there were 501 LUSC tumor tissues and 48 normal tissues in this study. According to a literature search, we investigated the expression profiles of 23 m6A regulators in LUSC. An upregulated expression of 17 m6A regulators (METTL3, METTL16, VIRMA, ZC3H13, RBM15, RBM15B, FTO, YTHDC1, YTHDF1, YTHDF2, HNRNPC, FMR1, LRPRPC, IGFBP2, IGFBP3, and RBMX) was observed in LUSC tumor tissues (Figure 1). The downregulated expression of m6A regulator ALKBH5 was observed in tumor tissues (Figure 1).




Figure 1 | Expression profiles of m6A regulators in lung squamous cell carcinoma (LUSC). The data was retrieved from The Cancer Genome Atlas database. The expression of 23 m6A regulators between LUSC tumor tissues and normal tissues was compared. Eighteen out of 23 m6A regulators demonstrated significant differences in expression.





Identification of m6A-Related lncRNAs in LUSC

The correlations between m6A regulators and lncRNAs were calculated using Pearson correlation coefficient. There were 351 lncRNAs related to m6A regulators. Figure 2 shows a network graph of the lncRNAs correlated to m6A regulators. As shown in Figure 2, 18 m6A regulators were significantly related to various lncRNAs. There were 188 lncRNAs demonstrating significant correlations with METTL3. Other m6A regulators demonstrated less correlated lncRNAs.




Figure 2 | m6A-related lncRNAs. Graphs summarizing the m6A-related lncRNAs.



Univariate Cox regression analysis was performed to filter lncRNAs with prognostic values. There were six lncRNAs (AL122125.1, AC138035.1, AP001469.3, AC243919.2, HORMAD2-AS1, and PRC1-AS1) in the TCGA-LUSC cohort that were significantly correlated with the survival of LUSC patients (Figure 3A). Figure 3B shows the differential expression of these lncRNAs. As we can see, there were significant differences in the expression of AL122125.1, AP001469.3, HORMAD2-AS1, and PRC1-AS1 between LUSC tumor tissues and normal tissues. A subsequent multivariate Cox regression analysis selected two m6A-related lncRNAs (AL122125.1 and HORMAD2-AS1) to construct a risk model (Figure 3C).




Figure 3 | Construction of an m6A-related lncRNA risk model. (A) Univariate Cox regression was used to identify m6A-related lncRNAs with prognostic value. (B) Expression of m6A-related lncRNAs identified from univariate Cox regression analysis. (C) Multivariate Cox regression assay was used to identify m6A-related lncRNAs with an independent prognostic value. **P < 0.01; ***P < 0.001.



LUSC patients were classified into high- and low-risk groups based on the median risk score. The risk score could well predict the survival of LUSC patients. As shown in Figure 4A, the Kaplan–Meier survival curve showed that there was a significance difference in the survival of high- and low-risk groups. Figures 4B, C depict the distribution of risk scores and survival status in the two groups. The ROC curve was conducted to assess the performance of this risk model in predicting the survival of LUSC patients. As shown in Figure 4D, the AUC results indicated that this risk model demonstrated better sensitivity and specificity than conventional clinical risk factors (age, gender, and stage). The AUC values for 1, 2, and 3 years were 0.572, 0.602, and 0.597, respectively (Figure 4E). Figure 4F shows the relative expression of the two m6A-related lncRNAs between the high- and low- risk groups.




Figure 4 | Validation of the risk model. Patients were divided into high- and low-risk groups based on the risk score. (A) Kaplan–Meier survival curve of the risk model. (B) Distribution of the risk scores. (C) Distribution of the survival status. (D) Receiver operating curve (ROC) of the risk score and conventional clinical factors. (E) ROC curves of the risk score in predicting 1-, 2-, and 3-year survival. (F) A heat map of the differential expression of AL122125.1 and HORMAD2-AS1 the between high- and low- risk groups.





Correlations Between the Risk Model and Immune Microenvironment

We further investigated the correlation between the m6A-related lncRNA risk model and the immune microenvironment. The immune estimation data of the TCGA cohort was downloaded from TIMER. The infiltration of immune cells demonstrated prominent differences between the high- and low-risk groups. Figure 5 shows the infiltration of immune cells, which were calculated by TIMER, CIBERSORT, quanTIseq, xCell, MCP-counter, and EPIC algorithms. The immune functions in the high- and low-risk groups were assessed using R software. As shown in Figure 5, different algorithms demonstrated different immune cell infiltration between the high- and low-risk groups. Some immune cells demonstrated significant differences according to most of the algorithms, such as B cell, T cell CD8+, neutrophil, macrophage, and NK cell. Moreover, the two groups demonstrated significant differences in APC co-inhibition, APC co-stimulation, CCR, check-point, cytolytic activity, Type I IFN response, etc. (Figure 6A). Moreover, the differences in the expression of immune checkpoint inhibitors, such as CD86, TIGIT, BTLA, etc., are demonstrated in Figure 6B. Thus, these findings indicated that the m6A-related lncRNA model may have potential roles in predicting the immune response.




Figure 5 | Immune cell infiltration features in the high- and low- risk groups. A heat map of the differences of immune cell infiltrations between the high- and low-risk groups.






Figure 6 | Immune functions (A) and expression of immune checkpoint inhibitors (B) between the high- and low-risk groups. *P < 0.05; **P < 0.01; ***P < 0.001.





Correlations Between the Risk Model and m6A Regulators

The expression of the 23 m6A regulators between the high- and low-risk groups was compared. As shown in Figure 7, the expression of ZC3H13, YTHDC2, METTL3, YTHDC1, YTHDF1, and RBM15 was significantly downregulated in the high-risk group, while FTO expression was significantly upregulated in the high-risk group.




Figure 7 | Differences in the expression of m6A regulators between the high- and low-risk groups. **P < 0.01; ***P < 0.001. ns, no significance.





Expression and Biological Roles of AL122125.1

Multivariate Cox regression results showed that AL122125.1 was an independent prognostic factor for LUSC patients. We further explored the expression, prognostic value, and biological functions of AL122125.1. Both TCGA and Gene Expression Profiling Interactive Analysis database showed the upregulated expression of AL122125.1 in LUSC tumor tissues (Figures 8A, B). Kaplan–Meier survival analysis revealed that the upregulated expression of AL122125.1 was correlated with poor overall survival of LUSC patients (Figure 8C).




Figure 8 | Expression and prognosis value of AL122125.1. The differential expression of AL122125.1 was retrieved from The Cancer Genome Atlas (TCGA) (A) and Gene Expression Profiling Interactive Analysis (B). (C) Kaplan–Meier survival curve of AL122125.1. Data was retrieved from TCGA database.



To explore the underlying mechanisms of AL122125.1, GO enrichment analysis and KEGG pathway analysis were performed. As shown in Figure 9A, the GO results showed that AL122125.1 was related to ion channel regulator activity, protein tyrosine kinase binding, histone acetyltransferase binding, and ATP transmembrane transporter activity. Further KEGG pathway enrichment analysis showed that AL122125.1 was involved in many tumor-related pathways and metabolic pathways (Figure 9B).




Figure 9 | Functional analysis of AL122125.1. (A) Gene Ontology enrichment analysis of AL122125.1. (B) Kyoto Encyclopedia of Genes and Genomes enrichment analysis of AL122125.1.






Discussion

Unlike lung adenocarcinoma, the treatment strategies for LUSC patients are limited (23). Thus, identification of novel biomarkers could provide novel strategies for LUSC patients. Many biomarkers, such as lncRNAs and m6A genes, have emerged to have important roles in tumor diagnosis and treatment (13, 15). RNA modification plays crucial roles in the transcriptional and post-transcriptional regulation of gene expression (19, 22). m6A modification is the most common RNA modification form (19, 22). Meanwhile, there was a close correlation between lncRNAs and m6A regulators (24, 29). Their interaction could regulate the expression of target genes as well as the cellular biological functions (21, 32, 33). Thus, in this study, we identified m6A-related lncRNAs to construct a risk model in LUSC. The risk model was closely correlated to immune microenvironment.

Firstly, differentially expressed m6A regulators were screened between LUSC tumor tissues and normal tissues. We identified a dysregulated expression of 18 m6A regulators. Increasing studies revealed that m6A modification of lncRNAs could regulate the progression of various tumors, and lncRNAs might regulate the expression of m6A regulators (34). We next identified a total of 351 m6A-related lncRNAs from the TCGA-LUSC cohort. Univariate and multivariate Cox regression analyses were accordingly applied to construct an m6A-related lncRNA risk model. Here we identified two m6A-related lncRNAs, AL122125.1 and HORMAD2-AS1. There were no studies that reported the prognostic values and biological functions of AL122125.1 and HORMAD2-AS1 in tumors. Both m6A-related lncRNAs were revealed for the first time. Thus, there are a lot of work that need to be carried out.

LUSC patients were classified into high- and low-risk groups based on the constructed risk model. The KM analysis revealed that the high-risk group demonstrated poor overall survival than the low-risk group. Although the AUC values for 1-, 2-, and 3-year OS were 0.572, 0.602, and 0.597, respectively, the AUC values for the risk model seemed better than the conventional clinical parameters. These results suggested that this risk model still demonstrated good sensitivity and specificity.

The immune microenvironment includes various immune cells and secreted factors (35). The infiltration of tumor cells, the immune functions, as well as the expression of immune checkpoint inhibitors could influence the prognosis of cancer patients as well as predict the response to immunotherapies (35, 36). Manipulating the expression of m6A regulators or lncRNAs could modify the immune microenvironment and immune-related biological processes (15, 29). Here we found that there were significant differences in the immune cell infiltrations, immune functions, and expression of immune checkpoint inhibitors between the high- and low-risk groups. Thus, further understanding of the m6A-regulated lncRNAs and immune microenvironment could improve the immunotherapy strategies for LUSC patients. Jin et al. construct an m6A-related signature which could predict the response to immunotherapy in adrenocortical carcinoma (37). Wang et al. constructed an m6A-related lncRNA signature which could discriminate patients with response to immune checkpoint inhibitor in gastric cancer (28).

Moreover, given that multivariate Cox regression analysis showed that AL122125.1 demonstrated a better prognostic value than HORMAD2-AS1 and could independently predict the survival of LUSC patients, we thus further explored the expression and biological function of AL122125.1 in LUSC. The upregulated expression of AL122125.1 was correlated with poor overall survival of LUSC patients. The GO and KEGG enrichment analyses revealed that the biological functions of AL122125.1 were tumor-related. There are some limitations of this study. Firstly, the AUC values of the risk model and other clinical risk factors (age, gender, and stage) were below 0.6. Among them, the AUC value of the risk model was the highest. These might be due to the high heterogeneity of LUSC. Thus, the validation of expression and biological functions of AL122125.1 still needs to be carried out in our clinical samples—cellular and mice experiments. Secondly, AL122125.1 and the corresponding m6A regulators need to be further explored by using cellular experiments.

In conclusion, we identified an m6A-related lncRNA prognostic risk model from the TCGA-LUSC cohort. This risk model demonstrated close associations with the immune microenvironment, which may provide novel insights into LUSC therapeutic strategies and guide effective immunotherapy.
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Objective

The objective of this study was to explore whether soluble programmed death ligand 1 (sPD-L1) is a potential prognostic biomarker in patients with non-small cell lung cancer (NSCLC).



Methods

A comprehensive search of electronic databases was carried out. Original studies with inclusion of sPD-L1, progression-free survival, and overall survival in NSCLC were eligible. The primary endpoints were overall survival and progression-free survival. Hazard ratios (HRs) and 95% confidence intervals (CIs) were applied for data analysis.



Results

Eight studies involving 710 patients with NSCLC were included in the analysis. A pooled data analysis revealed that high levels of sPD-L1 were correlated with poorer overall survival (HR = 2.34; 95% CI = 1.82–3.00; P < 0.001) and progression-free survival (HR = 2.35; 95% CI = 1.62–3.40, P < 0.001). A subgroup analysis revealed that high levels of sPD-L1 were correlated with poor overall survival in patients treated with immunotherapy (HR = 2.40; 95% CI = 1.79–3.22; P < 0.001).



Conclusion

This pooled analysis of published data suggests that sPD-L1 may serve as a readily available biomarker for survival in NSCLC patients treated with ICI based treatment. Prospective studies with well-designed standard assessment methods should be conducted to validate the prognostic role of sPD-L1 in NSCLC.



Systematic Review Registration

https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42021283177.





Keywords: overall survival, prognosis, soluble programmed death ligand 1, immunotherapy, non-small cell lung cancer, immune checkpoint inhibitors



Introduction

Lung carcinoma is the most aggressive cancer worldwide (1). Approximately 85% of lung carcinomas are non-small cell lung cancers (NSCLC) (2). Accumulating evidence suggests that programmed death 1 receptor (PD-1) and its ligand, programmed death ligand 1 (PD-L1), are upregulated in lung cancers (3). Inhibition of the PD-1 and PD-L1 pathways are novel targets for immunotherapy, which has improved the outcomes of lung cancer (4).

PD-L1 is expressed in different types of cancer (5); membrane-bound PD-L1 is regarded as a prognostic factor in lung cancer (6, 7). However, apart from tumor tissue biomarkers, some blood-based biomarkers have been reported as valuable biomarkers (8, 9). In fact, blood tests have the benefits of being minimally invasive and allow monitoring of the ongoing treatment (10). Notably, both PD-1 and PD-L1 can exist either as membrane-bound or soluble form (11, 12). Some studies have reported that soluble PD-L1 (sPD-L1) can be detected in the blood of patients with cancer and is regarded as a prognostic marker (13–15). Although the source of sPD-L1 remains elusive, data from NSCLC favors the point that the proteins are derived from cancer cells (16). While the functions of sPD-L1 remain unclear, several biological effects have been proposed (17). Tumor cell-derived sPD-L1 has been suggested to induce apoptosis in T cells in patients with advanced renal carcinoma (18). SPD-L1 has also been hypothesized to inactivate the circulating tumoricidal T cells, thereby reducing antitumor immune activity. Furthermore, sPD-L1 can compete and saturate PD-1 binding sites, thereby eluding the activity of anti-PD-1 agents (16). Other study has indicated that sPD-L1 can promote Th1/Th17 cell proliferation (19).

PD-L1 can be divided into membrane-bound PD-L1 and sPD-L1 (17), and the detection of sPD-L1 in the plasma of cancer patients has gained great interest among researchers. Interestingly, recent studies have indicated that sPD-L1 may be a prognostic factor in multiple types of cancers (20–24). Previous meta-analyses have suggested that sPD-L1 can predict OS by combining data from various types of cancers (25–27). However, the prognostic value of sPD-L1 in several types of cancers has conflicting results (17, 28, 29). Zheng et al. (28) reported that patients with gastric cancer and with a higher sPD-L1 level had better overall survival (OS) than those patients with a low sPD-L1 level. Zhang et al. (29) indicated that a higher sPD-L1 level had a poor prognosis in patients with lung cancer. However, the predictive role of sPDL1 in NSCLC remains unknown. Moreover, whether sPD-L1 could be a prognostic factor in patients with NSCLC receiving immune checkpoint inhibitors (ICIs) is not clear. This study aimed to conduct a systematic review and meta-analysis to study these questions.



Methods


Literature Search

This systematic review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) (30). The protocol was registered on PROSPERO: CRD4202128377. Electronic databases from PubMed, Web of Science, EMBASE, and Cochrane library were searched to identify studies that evaluated the prognostic role of sPD-L1 in NSCLC. The following keywords were applied: cancer, carcinoma, tumor, or neoplasm; serum, plasma, blood serum, blood, circulating, or soluble; sPD-L1 or B7-H1 or PD-L1; survival or predictive or prognosis or prognostic, and non-small cell lung cancer. The latest search was conducted on October 1, 2021. Furthermore, the references of the included studies were screened for missing studies that potentially met the inclusion criteria. Two independent reviewers (GL and ZZ) performed the study selection.



Inclusion and Exclusion Criteria for Meta-Analysis

The inclusion criteria were as follows: (a) patients were with NSCLC, (b) the sPD-L1 levels were analyzed in serum or plasma, (c) the study was reported in a full research publication in English, (d) the relationship with human survival outcomes (overall survival, OS, or progression-free survival, PFS) was determined, and (e) the number of included cases was not less than 20. The exclusion criteria were as follows (27): (a) comments, systematic reviews, case reports, animal studies, and studies without sufficient data for meta-analysis were excluded and (b) studies with survival outcomes provided with survival cure and with the precision HR cannot be calculated were excluded.



Data Extraction

Two independent reviewers (GL and ZZ) extracted information by reviewing the eligible studies. The extracted data were as follows: the first author, the year of publication, the country where the study originated from, cancer type, sample size, age, study design, cutoff value of sPD-L1, Eastern Cooperative Oncology Group performance status, smoking status, lines of ICI treatment, tissue PD-L1 tumor proportion score, follow-up time, survival outcomes with regard to high/low sPD-L1 levels, and the relationship between clinicopathologic features and sPD-L1 concentrations.



Quality Assessment

The quality of the included studies was evaluated according to the Newcastle–Ottawa Quality Assessment Scale (NOS) (31). The scores were given from 0 to 9, according to the quality of the studies. A score equal to or higher than seven was regarded as high quality. Quality assessment was performed GL and ZZ. Any disagreements were resolved by a discussion with the author group.



Statistical Analysis

The association between sPD-L1 and survival outcomes was measured with hazard ratios (HRs) and 95% confidence interval (CI). Review Manage (5.4 version) (Cochrane Centre) was used. Furthermore, random-effect model was applied. Heterogeneity was evaluated using I2 (32, 33). Subgroup analyses were conducted based on Asian and non-Asian populations, the year of publication, sample size, cutoff values, study types, and NOS score. Sensitivity analysis was also carried out using “leave-one-out” analysis. Egger’s test and Begg’s test were conducted to assess publication bias (33, 34). STATA software (version 12.0) was used. If existing significant publication, “trim and fill” method was applied. A P-value <0.05 indicated a significant difference.




Results

A total of 2,382 studies were retrieved from the database search. The study selection process is illustrated in Figure 1. Overall, 15 studies were included for full-text screening. Four studies were excluded due to a lack of related survival data (29, 35–37). One study was excluded for cases less than 20 (38). Two studies focusing on small-cell lung cancer (39) and lung carcinomas (40) were excluded. Finally, eight studies (20, 41–47) were included in this study. The information of the included studies is summarized in Table 1 with inclusion of NOS scale for quality evaluation. The baseline patient and tumor characteristics are detailed in Table 2. OS was described in eight studies (20, 41–47), and PFS was mentioned in five studies (41, 43–46). The cutoff values ranged from 0.03 to 7.32 ng/ml. All studies had high NOS scores (≥7). Immunotherapy was adopted in six studies (20, 26, 41, 43–46). Five studies (20, 41, 43, 46, 47) were prospective studies, while three (42, 44, 45) studies were retrospective studies.




Figure 1 | The process of study selection.




Table 1 | Information on the included studies and quality assessment.




Table 2 | The characteristic of included patients.




High sPD-L1 Level Is Associated With Poorer Survival Outcomes in NSCLC

All eight included studies reported OS (20, 41–47). The combined data indicated that a higher level of sPD-L1 was associated with a significantly worse OS, compared with a lower level of sPD-L1 (HR = 2.34; 95% CI, 1.82–3.00; P < 0.001). Moreover, there was no significant heterogeneity among the studies (I2 = 1%; P = 0.43) (Figure 2A). By pooling the data of five studies, a higher level of sPD-L1 was found to be correlated with an unfavorable PFS (41, 43–46) using the random-effect model (HR = 2.35; 95% CI, 1.62–3.40; P < 0.001), with no heterogeneity (I2 = 0, P = 0.48) (Figure 2B).




Figure 2 | Forest plots of hazard ratio for the relationship between sPD-L1 level and survival outcomes. (A) Overall survival (OS) in patients with non-small cell lung cancer. (B) Progression-free survival (PFS) in patients with non-small cell lung cancer. (C) OS in patients with non-small cell lung cancer receiving immune checkpoint inhibitors. (D) PFS in patients with non-small cell lung cancer receiving immune checkpoint inhibitors.





High sPD-L1 Level Is Associated With Poorer Survival Outcomes in Patients With NSCLC Receiving Immunotherapy

Six studies (496 patients) reported the outcomes of patients receiving ICIs (20, 41, 43–46). The pooled data revealed that a higher level of sPD-L1 was related to a significantly worse OS in patients with NSCLC receiving ICI (HR = 2.34; 95% CI, 1.82–3.00; P < 0.001). Moreover, there was no significant heterogeneity among the studies (I2 = 1%; P = 0.43) (Figure 2C). Furthermore, a high level of sPD-L1 was found to be correlated with an unfavorable PFS by pooling data from five studies in patients with NSCLC receiving immunotherapy (41, 43–46) using a random-effect model (HR = 2.35; 95% CI, 1.62–3.40; P < 0.001) (Figure 2D).



Sensitivity and Subgroup Analysis

A sensitivity analysis was performed to determine the stability of the findings (48). The analysis was omitted from any single study for OS at each time point. As illustrated in Supplementary Figure S1, the sensitivity analysis did not affect the results. Subgroup analyses were performed to confirm the reliability of the results (48). The subgroups were divided according to Asian and non-Asian populations, publication year, sample sizes, cutoff values, study types, received immunotherapy, and NOS scores. The results are presented in Table 3 and Figure 3. High levels of sPD-L1 were associated with worse OS in all subgroup analyses and indicated the reliability of the results.


Table 3 | Subgroup assessing the high sPD-L1 level and overall survival in patients with lung cancer.






Figure 3 | Forest plot overall survival of all patients and subgroup analysis.



Moreover, in patients with NSCLC receiving ICIs, the characteristic of patients from the included studies were provided in Table S1. the baseline of sPD-L1 concentrations was detected in six studies (20, 41, 43–46), and five studies were reported with the OS in regard to the baseline level of sPD-L1 (20, 41, 43–45). The combined data suggested that the baseline level of sPD-L1 is a prognostic factor in patients with NSCLC receiving ICIs (Supplementary Figure S2).

Furthermore, age is quite associated with immunotherapy response (49) because the elderly patients will always be coupled with poor function of T cells and aggressive T cell exhaustion. In addition, we performed an analysis to determine whether age is a prognostic factor in patients with NSCLC receiving ICI. Five studies were focused on the prognostic value of age. The combined data revealed that age was not a prognostic factor for OS in patients with NSCLC receiving ICI (HR: 0.98, 95% CI: 0.94 to 1.02, P = 0.40) (Supplementary Figure S3).

Publication bias was evaluated using Begg’s test and Egger’s test for OS. No potential publication bias was detected (P = 0.621 for Begg’s test; P = 0.499 for Egger’s test) (Figure 4). Using the funnel plot of PFS, all the studies were found to be within the 95% CI, which further confirmed that there was no potential publication bias (Supplementary Figure S4).




Figure 4 | Publication bias evaluated by Begg’s test.






Discussion

Based on 8 studies of 710 patients, this study demonstrated that higher levels of sPD-L1 were associated with unfavorable OS (HR = 2.34; P < 0.001) and PFS (HR = 2.35; P < 0.001) in patients with NSCLC. Moreover, the level of sPD-L1 may be considered as a prognostic marker for patients with NSCLC who received immunotherapy—poorer (HR = 2.40; P < 0.001). This was consistent with previous studies by Khan et al. (17) that higher sPD-L1 levels were correlated with a worse prognosis. Several studies have reported similar results, with a correlation between the high expression of sPD-L1 and poorer survival in breast cancer (50), renal cell carcinoma (21), and other solid cancers (17). Zheng et al. (29) also reported that the median OS in patients with high sPD-L1 concentrations and low sPDL-L1 levels were 18.7 and 26.8 months, respectively (P < 0.001). Okuma et al. (20) also reported similar results, and patients with low sPD-L1 levels had a high objective response rate. It is also important to note that enzyme-linked immunosorbent assay was the most frequently used method for measuring sPD-L1 (16), and seven of the included studies (20, 41, 43–47) used plasma. Positive results were determined based on specific receiver operating characteristic curves in most of the studies included. It was not inclusive to reach a consensus on the cutoff of positive from normal controls. Cheng et al. reported that the plasma sPD-L1 levels were different according to pathological types (51). Jin et al. (39) reported that the sPD-L1 levels were lower in healthy controls than in patients with lung cancer (1.2 vs. 7 ng/ml). He et al. (42) also described that the mean sPD-L1 concentrations in patients with NSCLC and healthy volunteers were 3.84 and 0.79 ng/mL, respectively. Thus, there is an urgent need to determine the optimal cutoff value in the future based on large case studies.

Six studies (496 patients) (20, 41, 43–46) reported results focusing on patients with NSCLC treated with immunotherapy. Costantini et al. (41) indicated that patients with low sPD-L1 concentrations were likely to benefit from immunotherapy. A study reported by Okuma et al. (20), including 39 patients with NSCLC treated with nivolumab, indicated that OS was significantly reduced in patients with high sPD-L1 levels than in those with low sPD-L1 levels. A recent study of 51 nivolumab-treated patients with NSCLC revealed that the baseline sPD-L1 levels were related to poor survival outcomes (45). Another study (43) with 109 patients with NSCLC received immunotherapy suggested that the median OS was 5.8 and 15.0 months in high and low levels of sPD-L1 patients, respectively. Murakami et al. (44) reported a study of 233 patients with NSCLC treated with immunotherapy revealed that the PFS and OS in the low-sPD-L1 group were longer than those in the high-sPD-L1 group. In the study of Okuma et al. (20), it was noted that high sPD-L1 levels in patients were correlated with a shorter time to treatment failure compared with those patients with low sPD-L1 levels. The objective response rate was favorable to the low-plasma-sPD-L1-concentration group (20). Similar results were found in patients with gastric cancer receiving ICIs (52). This pooled data of the six included studies indicated that sPD-L1 had a prognostic role in patients with NSCLC treated with immunotherapy (HR = 2.40; P < 0.001). This is consistent with a previous study showing that the sPD-L1 levels can be a prognostic marker in patients with melanoma receiving ICIs (53). Moreover, monitoring the level of sPD-L1 may be helpful for predicting survival in patients with cancer and subsequently improving the treatment effect (14).

An open question that remains to be answered is what makes sPD-L1 a suitable prognostic marker for cancer. The biology rationale is not clear to us. A potential hypothesis is that the inhibition of sPD-L1 can result in a similar function to other checkpoint inhibitors, thereby achieving a checkpoint inhibitor effect. Some studies reported that the inhibition of sPD-L1 restricting tumor growth showed a similar mechanism to that of anti-PD-L1 in mAb-injected mice (54, 55). A future study is needed. Secondly, the sPD-L1 levels were mostly tested at baseline. No dynamic analysis was carried out in the majority of patients. The sPD-L1 level at baseline was also a prognostic factor in patients with NSCLC receiving ICIs. The variation of sPD-L1 was reported between baseline and after 2 and 4 weeks of radiotherapy in the study of Zhao et al., which indicated a reduction of sPD-L1 after radiotherapy and patients with low baseline sPD-L1 concentrations reached a longer OS than those with higher sPD-L1 concentrations (47). Costantini et al. (41) indicated that there was no statistical difference in sPD-L1 levels between responders and non-responders to ICIs. High sPDL-L1 levels at baseline and an increase in sPD-L1 levels were correlated with poor survival outcomes (OS and PFS). In the study by He et al. (42), the detection time of sPD-L1 was 1 to 2 days before surgery.

The relationship between the PD-L1 expression of the tissue and the level of sPD-L1 is not fully understood. As described in the study of Mazzachi et al. (43), there was no significant correlation between sPD-L1 level and the expression of tissue PD-L1 assessed on primary tumors. Murakami et al. (44) reported the expression of tissue PD-L1 and sPD-L1 level, but the details of the two parameters were not shown. In the study of Costantini et al. (41), no correlation was found between sPD-L1 concentrations and the expression of PD-L1 in immunohistochemistry performed on the initial biopsy. In contrast, Yang et al. revealed that the blood PD-L1 had a significant positive correlation with tissue PD-L1 expression at the same time points. More studies are needed to explore these topics.

As described by He et al. (42), there was no association between sPD-L1 levels and clinicopathologic features (sex, histologic type, differentiation degree, T stage, N stage, tumor size, pTNM stage, and smoking status) in patients with NSCLC. Moreover, Murakami et al. (44) also indicated that there was no significant correlation between sPD-L1 concentrations and clinicopathologic characteristics, including age, sex, Eastern Cooperative Oncology Group performance status, smoking status, histology, brain metastasis, and EGFR mutations. However, sPD-L1 concentrations were associated with live metastasis (P = 0.015). Mazzachi et al. (43) also indicated that sPD-L1 concentrations were not associated with sex, age, smoking status, or histology. However, the authors indicated that sPD-L1 levels were related to N metastatic sites and live metastasis, and another study indicated that the sPD-L1 levels were related to abdominal organ metastasis (29). Some researchers have revealed that there may be a relationship between high lung cancer tumor burden and the elevated sPD-L1 levels in patients with NSCLC (56). Okuma et al. (40) also investigated the relationship between sPD-L1 levels and the clinical features and revealed that the sPD-L1 levels were not related to the clinicopathological features in patients with advanced lung cancer. Due to the limited data and studies, combined data studies were not performed.

The relationship between age and immunotherapy response in patients receiving ICIs is controversial. In a clinical study, subgroup analyses (≥65 vs. <65 years old) suggested no significant difference in survival outcomes (57). A study reported that patients with advancing age with NSCLC and receiving ICIs seem to have a longer PFS (58). In contrast, a study published in 2015 indicated that elderly patients have a shorter OS (59). A meta-analysis comparing the efficacy of immunotherapy in elderly vs. young populations indicated that OS was not significant between the two groups (HR = 0.76, P = 0.66) (60). This is in consistent with our analysis. More studies are required to evaluate the effect of age on immunotherapy.

This study had some limitations. First, some of the included studies were retrospective studies, and there may have been a selection bias or publication bias, as positive results are more easily published in journals compared with negative results. Second, in regard to heterogeneity, all analyses used the random-effect model (61). In the process of evaluation of the results from different studies, the heterogeneity among these studies should be taken into consideration. Heterogeneity could have come from study design, different stages, different management, different detection method, sample sizes, or ages. Moreover, sensitivity and subgroups analyses were performed to identify the potential source of heterogeneity. Our analyses indicated that all the analyses were with low heterogeneity and indicated the reliability of the results. Moreover, the cutoff values, the definitions of abnormal high level, and the evaluation methods for sPD-L1 and high PD-L1 were not consistent, all of which may have contributed to heterogeneity, and the cutoff values of sPD-L1 were not uniform, leading to limitations in clinical applications (25). However, all of the analyses in this meta-analysis had low heterogeneity, and the analyses used a random-effect model, where the results were reliable. Finally, due to the limited data and small number of patients in a few studies, we were unable to determine the relationship between sPD-L1 concentrations and the clinical features due to an inability to pool the data together.

In conclusion, our meta-analysis indicates that sPD-L1 has a prognostic role in patients with NSCLC. Moreover, low sPD-L1 levels may be a prognostic factor in patients receiving immunotherapy. A high expression of sPD-L1 was correlated significantly with worse OS and PFS. Prospective studies with well-designed and standard assessment methods (41) should be carried out in the future to determine the prognostic role of sPD-L1 in NSCLC.
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Supplementary Figure 1 | Sensitivity analysis by omitting every single study.
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MiRNA-30a-5p is a microRNA found to be decreased in various human cancers, including lung adenocarcinoma (LUAD). However, the molecular mechanisms of miRNA-30a-5p involve in the progression of LUAD remains unclear. In this study, we found that miRNA-30a-5p expression was significantly decreased in LUAD cells lines, LUAD tissues, and peripheral blood serum. Besides, LUAD patients with decreased miRNA-30a-5p expression exhibit worse clinical outcomes compared to the patients with higher miRNA-30a-5p expression, decreased expression of miRNA-30a-5p was associated with advanced clinical outcomes. Receiver operating characteristic (ROC) curve analysis of miRNA-30a-5p showed an area under the curve (AUC) value of 0.902, indicating its prognostic value in LUAD. Moreover, immune infiltration and gene set enrichment analysis (GSEA) enrichment analyze demonstrated that miRNA-30a-5p expression was associated with immune cell infiltrated in LUAD. Finally, we found that miRNA-30a-5p inhibits cell proliferation, migration, and self-renewal abilities of LUAD in vitro. In summary, this is the first report that miRNA-30a-5p correlated with progression and immune infiltration, which shed some lights on potential prognostic and therapeutic biomarker for LUAD.
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Introduction

Lung cancer is a malignancy that originates in the bronchial mucosa or glands of the lungs. As cancer cells grow and spread, they severely damage the patient’s respiratory system and compromise oxygen exchange (1). As the tumor with the highest mortality, lung cancer mainly includes small cell lung cancer and non-small cell lung cancer (NSCLC), the NSCLC is comprised of adenocarcinoma (AC), squamous cell carcinoma (SCC), and large-cell carcinoma (LCC) (1). Compared with SCLC, LUAD usually grows and spreads more slowly. For patients diagnosed with early stage LUAD, tumors can usually be resected surgically (2). When the tumor has metastasized locally, it is treated by the simultaneous use of radiotherapy and chemotherapy (1). For the last decade, limited by the treatment options, many endeavors targeting various signaling pathways and putative driver mutations, as well as angiogenesis mechanisms, have been carried out to improve the clinical outcome. However, the overall survival time of lung cancer remains measured in months. Therefore, it is urgent that develop effective therapeutic strategies to improve the survival time of lung patients.

As one of noncoding RNA, MicroRNAs (miRNAs) refers to a class of short endogenously noncoding RNAs that negatively regulate mRNA expression by binding the complementary sequences in the target genes 3′-untranslated region (UTR) (3). Emerging evidence has demonstrated that miRNAs play crucial roles in cancer development and progression (2). The miR-30 family is composed of miR-30a, miR-30b, miR-30c, miR-30d, and miR-30e, which play different roles in regulating cancer progression (3). MiR-30a-5p is a member of the miR-30 family and has been reported to be located in the genome-vulnerable region of lung cancer (4). Mounting evidence indicated that miRNA participates in the cancer hallmarks via activation of diverse oncogenes and growth enhancers (4). For example, it has been shown that miRNA−30a−3p inhibits the expression of IGF−1R and result in reduced cell migration ability of esophageal carcinoma (5). In hepatocellular carcinoma, the study has reported that miR-30a markedly decreased in hepatocellular carcinoma (HCC) tissues and cell lines, overexpression of miR-30a restrain the lung cancer cell proliferation and migration, a further study has shown that miR-30a by down-regulated the expression of Atg5 and lead to inhibits hepatocellular carcinoma (HCC) metastasis (6). However, the potential roles of miR-30a-5p in regulation the lung cancer stem cell maintenance and tumor microenvironment were unclear.

In this study, we compared the expression of miR-30a-5p between LUAD tissues and normal samples, and investigated the correlation between miR-30a-5p expression and clinical parameters of LUAD. In addition, we explored the prognostic value and clinical significance of miR-30a-5p in LUAD. Meanwhile, the correlation between miR-30a-5p expression and immune infiltration was analyzed using ssGSEA (single-sample Gene Set Enrichment Analysis) to explore the potential mechanisms involved in miR-30a-5p modulation in the carcinogenesis of LUAD. Finally, the biological role of miR-30a-5p was identified in LUAD. In summary, we demonstrated that the potential role of miR-30a-5p in regulating tumor progression and its potential application in the diagnosis and prognostic evaluation in LUAD. qRT-PCR, growth curve, colony formation, tumor sphere, transwell and Wound healing assay used to determine the function of miR-30a-5p in LUAD progression. Our findings underline the vital role of miR-30a-5p in LUAD prognosis. We found that forced miR-30a-5p significantly inhibited the LUAD cell proliferation, migration, and self-renewal abilities of LUAD. Also, we provide an underlying mechanism of miR-30a-5p expression in potentially regulating the infiltration of immune cells partly affecting the prognosis of LUAD.



Materials and Methods


Data Collection

TCGA-LUAD cohort data and corresponding clinical information of 535 LUAD patients were downloaded from the TCGA website (https://portal.gdc.cancer.gov/repository). The gene expression profiles were normalized using the scale method provided in the “limma” R package. Data analysis was performed with the R (version 3.6.3) and ggplot2 [3.3.3] packages. The expression data were normalized to transcripts per kilobase million (TPM) values before further analysis.



Nomogram Construction and Evaluation

Nomogram Construction was performed as previously described (5). Based on the multivariate Cox analysis results, we established a nomogram to predict the prognosis of lung adenocarcinoma patients. According to the prognosis model, we calculated each patient’s risk score as the total score of each parameter, which could predict the prognosis of lung adenocarcinoma patients. The accuracy estimation of nomogram prediction was obtained from a calibration plot. It was found that the bias-corrected line in the calibration plot was close to the ideal curve (Keynesian cross), indicating a strong consistency between predicted values and observed values. The nomogram discrimination was determined using a concordance index (C-index), and 1,000 resamples were used in calculation by bootstrap approach. In this study, all statistical tests were two-tailed, with a statistical significance level of 0.05. The discrimination ability of miRNA-30a-5p in LAUD was evaluated through receiver operating characteristic (ROC) analysis using the pROC package (6).



Gene Set Enrichment and Immune Infiltration Analysis

The target genes of miRNA-30a-5p were predicted by starbase (https://starbase.sysu.edu.cn/) (7). The GO and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed for the target gene of miRNA-30a-5p using the clusterProfiler package (8).We also utilized the cluster Profiler package and GSEA software to analyze the potential signaling pathway and molecular function in LUAD (8, 9). We used a GSVA R package to examine the LUAD immune infiltration of 24 tumor-infiltrating immune cells in tumor samples through ssGSEA (10, 11). The correlation between miRNA-30a-5p and immune infiltration levels was analyzed by the Spearman correlation, and these immune cells with the different expression groups of miRNA-30a-5p were analyzed by the Wilcoxon rank-sum test.



StarBase V2.0 Analysis

StarBase v2.0 (http://starbase.sysu.edu.cn/) an systematically identify the RNA-RNA and protein-RNA interaction networks from 108 CLIP-Seq (PAR-CLIP, HITS-CLIP, iCLIP, CLASH) data sets generated by 37 independent studies. By combining 13 functional genomic annotations, we developed miRFunction and ceRNAFunction web servers to predict the function of miRNAs and other ncRNAs from the miRNA-mediated regulatory networks. In this study, we used starbase to predicte the target gene of miRNA-30a-5p.



Kaplan-Meier Plotter Database Analysis

We used KM Plotter (http://kmplot.com), an online database that contains gene expression data and survival information of 3452 clinical lung cancer patients, to analyze the prognostic value of miRNA-30a-5p in pan-cancer cancer. The patient samples were separated into two groups by median expression (high expression and low expression) and diverse immune cell (increased and decreased group) to analyze the overall survival (OS), progression-free survival (PFS) and postprogression survival (PPS) with hazard ratios (HRs) with 95% confidence intervals (95% CIs) and log-rank p-values.



Cell Culture and Micro-RNA Transfection

BEAS-2B cell line was purchased from Cell Bank of Kunming Institute of Zoology, and cultured in BEGM media (Lonza, CC-3170). Lung cancer cell lines, including A549, H1299, and SPC-A1, were purchased from Cobioer, China with STR document, and were cultured in RPMI-1640 medium (Corning) supplemented with 10% fetal bovine serum (FBS) and 1% penicillin/streptomycin. The NC control and miRNA-30a-5p mimics were purchased from RiboBio (China). Cells were transfected with indicated miRNA mimics or control NC using Lipofectamine 3000 (Invitrogen), and then collected for various experiments.



Cell Proliferaion Assay

For the colony formation assay, 500 cells were seeded on soft agar in 6-well plates, and colonies were counted 3 weeks after seeding. The resulting colonies were then washed twice with PBS and fixed with 4% formaldehyde for 30 min and stained for 12 hours with 0.01% crystal violet. The number of colonies was then counted. For the BrdU incorporation assay, 20 min before fixation, indicated cells were pre-treated with 10 588 μM BrdU (Abcam, ab142567, 1:100), and fixed with 4% PFA followed by BrdU primary antibody staining (CST, 5292s, 1:1000), then further stained by secondary antibody (Abclonal, 61303, 1:500). DAPI was used to stain the cell nuclei. More than five fields/samples randomly selected were imaged by a Nikon Ti fluorescence microscope and quantified.



Cell Migration Assay

Cell migration assay was performed as previously described (12). Briefly, indicated cells were seeded into 6-well plates (1×106/cell) and incubated for one day, and then a straight line was scraped with pipette tips. Detached cells were removed. Photographs were taken at the indicated time, and the relative traveled distance was measured. For the trans-well migration assay, 3×104 cells/well in 100μL serum-free medium were plated in a 24-well plate chamber insert, and the lower chamber was filled with 10% FBS. After incubation for 24 h, cells were fixed with 4% PFA, washed, and then stained with 0.5% crystal violet for further pictures captured.



Tumor Sphere Formation

Cells 3×104 well were plated in ultralow-attachment 6 well plates (Corning; 3471) and grown in serum-free DMEM/F12, supplemented with B27, 20 ng/mL EGF and 20 ng/mL bFGF, and 4 μg/mL heparin. The spheres were cultured for 14 days, and then pictured and counted.



Real-Time RT-PCR Assay

The qRT-PCR assay was performed as documented (13). For the qRT-PCR assay, indicated total RNAs were extracted from cells using RNAiso Plus (Takara, 108-95-2), following which they were reverse transcribed using a PrimeScript RT reagent Kit (Takara Bio, RR047A). cDNA was subjected to RT-qPCR analysis using FastStart Universal SYBR Green Master Mix (Roche, 04194194001). All reactions were performed in triplicate using an Applied Biosystems 7500 machine. The primer sequences are list follows MiRNA-30a-5p-F: GGGCCTGTAAACATCCTCG, miRNA-30a-5p-R: GAATACCTCGGACCCTGC, U6-F: GGTCGGGCAGGAAAGAGGGC, U6-R: GCTAATCTTCTCTGTATCGTTCC, SOX2-F:CACAGATGCAACCGATGCA, SOX2-R:GGTGCCCTGCTGCGAGTA, CD44-F: CTGCCGCTTTGCAGGTGTA, CD44-R: CATTGTGGGCAAGGTGCTATT, NANOG-F: TTTGTGGGCCTGAAGAAAACT, NANOG-R: AGGGCTGTCCTGAATAAGCAG, OCT4-F: CTGGGTTGATCCTCGGACCT and OCT4-R: CCATCGGAGTTGCTCTCCA. The expression quantification was obtained with the 2−ΔΔCt method.



Statistical Analysis

Correlation analysis was performed using the Pearson correlation test. Kaplan-Meier survival curves were plotted to exhibit the overall survival for LUAD patients. We employed The Wilcoxon rank-sum

Test and Chi-square test examine the correlation between miRNA-30a-5p and clinical features. Univariate and multivariate Cox regression analyses were used to examine the independent prognostic significance of each variable enrolled in this finding. For the function of miRNA-30a-5p in LUAD, GraphPad Prism 7.00 was utilized for statistical analyses. The significance of the data between the two experimental groups was determined by Student’s t-test, and multiple group comparisons were analyzed by one-way ANOVA. P < 0.05 (*), P < 0.01 (**) and P < 0.001 (***), were considered significant.




Results


MiRNA-30a-5p Is Decreased in Pan-Cancer

To examine the expression of miRNA-30a-5p in diverse human cancer, we utilized starbase to examine its expression pattern, the results demonstrated that miRNA-30a-5p decreased in bladder urothelial carcinoma (BLCA), breast invasive carcinoma (BRCA), esophageal carcinoma(ESCA), head and neck squamous cell carcinoma (HNSC), kidney chromophobe (KICH), kidney renal clear cell carcinoma (KIRC), kidney renal papillary cell carcinoma (KIRP), liver hepatocellular carcinoma (LIHC), lung adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC), stomach adenocarcinoma and (STAD), thyroid carcinoma (THCA) (Figure 1A). On the contrary, the high expression of miRNA-30a-5p was observed in colon adenocarcinoma (COAD) and prostate adenocarcinoma (PRAD). Taken together, these results demonstrate that miRNA-30a-5p was down-regulated in most human cancer.




Figure 1 | Expression analysis for miRNA-30a-5p in human cancers. (A) The expression of miRNA-30a-5p in pan-cancer. (B) The overall survival of miRNA-30a-5p in pan-cancer analysed by the Kaplan-Meier Plotter database. **P < 0.01, ***P < 0.001, NS: p >0.05.



To uncover that the prognostic value of miRNA-30a-5p in pan-cancer, we perform the OS analysis in human cancers, the result showed that miRNA-30a-5p high expression correlated with better overall survival in BRCA, CESC, ESCA, KIRC, KIRP, LUAD, READ, and THYM, as well as associated with the shorter disease-free survival in HNSC, PRAD, SARC and STAD (Figure 1B).



Analysis of the Diagnosis Value of MiRNA-30a-5p in Diverse Human Cancer

We previously showed that miRNA-30a-5p was the low expression and correlated with prognosis in several cancers, we, therefore, examined whether miRNA-30a-5p act as a detection index for the diagnosis of diverse cancer, ROC curve analysis of miRNA-30a-5p showed an area under the curve (AUC) value of 0.700 in BLCA, the AUC value of 0.728 in CHOL, the AUC value of 0.831 in COAD, the AUC value of 0.856 in ESCA, the AUC value of 0.908 in HNSC, the AUC value of 0.948 in KICH, the AUC value of 0.761 in KIRC, the AUC value of 0.678in KIRP, the AUC value of 0.692 in LIHC, the AUC value of 0.705 in PRAD, the AUC value of 0.752 in STAD and the AUC value of 0.828 in THCA (Figures 2A–C). These results confirmed that miRNA-30a-5p has a higher diagnostic ability for the diagnosis of various cancer.




Figure 2 | Analysis of the ROC curve for miRNA-30a-5p in human cancers. (A–C) ROC curves of miRNA-30a-5p for predicting overall survival in diverse cancer patients.





Analysis of the Function of Target Genes of MiRNA-30a-5p

Considering the miRNA-30a-5p was markedly related to the prognosis, tumor stage, and lymph node metastasis, we next explored the functions of a miRNA-30a-5p target gene in cancer, we utilized the starbase and targets can databases to obtain the target gene of miRNA-30a-5p, and using this gene to perform the gene ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. The analysis revealed that the target gene of miRNA-30a-5p is mainly involved in signaling pathway including the Non-Small Cell Lung Cancer, Ubiquitin Mediated Proteolysis, Focal Adhesion, Wnt Signaling Pathway, Adherens Junction, apoptosis, B Cell Receptor Signaling Pathway, T Cell Receptor Signaling Pathway, Insulin Signaling Pathway, P53 Signaling Pathway, MAPK Signaling Pathway and Natural Killer Cell-Mediated Cytotoxicity (Figure 3A). The miRNA-30a-5p target gene is mainly involved in the biology process including the endomembrane system organization, cellular response to steroid hormone stimulus, cytoplasmic ribonucleoprotein granule, ubiquitin-like protein ligase activity, ubiquitin ligase complex, histone modification, and covalent chromatin modification (Figure 3B). These findings suggested that the target gene of miRNA-30a-5p plays a pivotal role in immune responses and cancer progression.




Figure 3 | Analysis of the biological function for miRNA-30a-5p downstream target genes in human cancers. (A) The KEGG signaling pathway of miRNA-30a-5p downstream target genes in pan-cancer analysis by the starbase database. (B) The biological process of miRNA-30a-5p downstream target genes in pan-cancer analysis by the starbase.





Identification of MiRNA-30a-5p Target Gene-Associated Signaling Pathways Using GSEA

To uncover the potential mechanism related to the miRNA-30a-5p target gene expression, we further explored the most significant enrichment signaling pathways with miRNA-30a-5p target gene expression by utilizing GSEA software (9), the results demonstrated that the miRNA-30a-5p target gene expression mainly involved in Non-small cell lung cancer, apoptosis, chemokine signaling pathway, cytokine-cytokine receptor interaction, ECM receptor interaction, INFγ mediated phagocytosis, JAK-STAT signaling pathway, MAPK signaling pathway, Natural killer cell-mediated cytotoxicity, NOD-like receptor signaling pathway, T cell receptor signaling pathway, and Toll-like receptor signaling pathway (Figures 4A–C).




Figure 4 | Analysis of the signaling pathway for miRNA-30a-5p target genes in human cancers. (A–C) The potential signaling pathway of miRNA-30a-5p target gene analysed using GSEA software.





Analysis of the Correlation Between MiRNA-30a-5p Expression and Clinicopathologic Characteristic

In the TCGA LUAD dataset, miRNA-30a-5p is down-regulated in LUAD (Figure 5A). Correlation analysis was used to identify the clinic-pathologic characteristic and miRNA-30a-5p expression level. As shown in Table 1 and Figures 5B–G, low expression of miRNA-30a-5p was significantly correlated with the TNM stage, smoking, and age (p < 0.05). Using univariate analysis, as a categorical dependent variable, the expression of miRNA-30a-5p was correlated with TNM stage, pathologic stage, Gender, Age, and Smoker (Table 2). The ROC curve analysis of miRNA-30a-5p showed an AUC value of 0.902, indicating its prognostic value in LUAD (Figure 5H), the down-regulation of miRNA-30a-5p was verified in paired peripheral blood serum (n=20), using real-time quantitative-PCR compared with reciprocal controls (Figure 5I). As shown in Table 3, LUAD patients having complete clinical data were included in further Cox regression analysis. In the Cox univariate regression analysis, lower expression of miRNA-30a-5p, TN stage, pathologic stage, residual tumor, and primary therapy outcome were correlated with overall survival in LUAD patients.




Figure 5 | miRNA-30a-5p was down-regulated in LUAD. (A) MiRNA-30a-5p was down-regulated in lung cancer based on TCGA-LAUD dataset. (B–G) Correlation between miRNA-30a-5p and clinicpathologic features, including the pathology stage, TNM stage, smoker, and therapy outcome in LUAD. (H) ROC curve analysis of miRNA-30a-5p showed an AUC value of 0.902 in LUAD. (I) miRNA-30a-5p was down-regulated in peripheral blood serum of LUAD analysed using qRT-PCR assay. *P < 0.05, ***P < 0.001. CR, complete response; PR, partial response; SD, stable disease; PD, progressive disease. NS: p >0.05.




Table 1 | Analysis of the correlation between miR-30a-5p expression and clinic-pathologic features in the TCGA LUAD dataset.




Table 2 | miR-30a-5p expression correlated with clinical pathological characteristics (logistic regression).




Table 3 | Univariate regression and multivariate survival model of prognostic covariates in patients with LUAD.





Analysis of the Prognosis Value of MiRNA-30a-5p in LUAD

We examined the prognostic value of miRNA-30a-5p in LUAD patients based on different subgroups, mainly comprise of the different pathological stage, TNM stage, smoker, residual tumor, age and race groups. Results confirmed that decreased miRNA-30a-5p expression was correlated with adverse clinical outcomes in diverse groups (Figures 6A, B). To accurately predict the 1-, 3-, and 5-year overall survival (OS), disease-free survival (DFS), and progression-free survival (PFS) in LUAD patients, we used miRNA-30a-5p expression and (TNM stage, age, and pathologic stage) to construct a nomogram. Result confirmed that this nomogram could predict the overall survival (OS), disease-free survival (DFS), and progression-free survival (PFS) of LAUD patients (Figures 7A–F). To sum up, this nomogram may be a model for predicting the overall survival (OS), disease-free survival (DFS), and progression-free survival (PFS) in LUAD patients with miRNA-30a-5p.




Figure 6 | Prognostic value of differential expression of miRNA-30a-5p in different subgroups. Prognostic value of miRNA-30a-5p in diverse subgroups, including (A) pathologic stage and TNM stage, (B) smoking, residual tumors, age, and ace. CR, complete response; PR, partial response; SD, stable disease; PD, progressive disease.






Figure 7 | Construction and performance validation of the miRNA-30a-5p based nomogram for LUAD patients. Nomogram to predict overall survival (OS) (A), disease-free survival (DFS) (B), and progression-free survival (PFS) (C) for lung cancer patients. The calibration curve and Hosmer–Lemeshow test of nomograms in the TCGA-LUAD cohort for (D) OS, (E) DSS, and (F) PFI.





Overexpression of MiRNA-30a-5p Inhibits Proliferation and Migration of LUAD Cells

To determine the expression of miRNA-30a-5p in lung cancer, we examined the GEO dataset found that miRNA-30a-5p was decreased in lung cancer tissue and peripheral blood serum (Figures 8A–C). Next, we utilized the qRT-PCR assay to examine the expression of miRNA-30a-5p in diverse LUAD cells line, these data imply that miRNA-30a-5p was down-regulated in LUAD cells than the control normal lung cells (Figure 8D). Given the low expression of miRNA-30a-5p in LUAD tissues, we speculate that miRNA-30a-5p might play suppresses role in the pathogenesis of LUAD. To investigate the functional roles of miRNA-30a-5p in LUAD cells, we transiently overexpressed miRNA-30a-5p mimics in A549 cell, the expression of miRNA-30a-5p after overexpression was confirmed by qRT-PCR assay. As expected, the result suggested that increasing the expression of miRNA-30a-5p after over-expression of miRNA-30a-5p (Figures 8E, F). Next, we performed the function assay to examine the over-expression of miRNA-30a-5p on the cell proliferation and migration ability of LUAD cells. The result indicated that elevated miRNA-30a-5p expression was significantly inhibited the cell proliferation and migration abilities of LUAD cells (Figures 8G–L). Collectively, these data imply that miRNA-30a-5p plays tumor suppressor role in the LUAD progression.




Figure 8 | Over-expression of miRNA-30a-5p inhibits the cell proliferation and migration ability of LUAD cells. (A–C)The expression of miRNA-30a-5p in LUAD was examined by GEO datasets. (D) The expression of miRNA-30a-5p in LUAD cell lines was examined by qRT-PCR assay. (E, F) The expression of miRNA-30a-5p in LUAD cells lines after over-expression of miRNA-30a-5p was examined by using the qRT-PCR assay. (G–J) Over-expression of miRNA-30a-5p on cell growth ability examined by clone information and BrdU assays. (K, L) Over-expression of miRNA-30a-5p on cell migration ability examined by transwell and wound healing assay. Quantification data were also indicated. Scale bar=50 μm. ***P < 0.001.





MiR-30a-5p Inhibits Cancer Stem Cell Maintenance in LUAD

Previous KEGG analysis show that miR-30a-5p target gene may participate in the Wnt signaling pathway, to further characterize the function of miR-30a-5p regulates LUAD cancer stem cell maintenance, we performed correlation analysis and showed that miR-30a-5p negative correlated with the expressions of well define cancer stem cell marker genes, including CD44, Sox2, Oct4 and NANOG (Figure 9A) (14). We showed that forced miR-30a-5p expression was reduced the expression of stem cell marker genes in LUAD cells (Figures 9B, C). Furthermore, we revealed that over-expression of miR-30a-5p inhibits the lung cancer stem cell self-renewal ability (Figures 9D, E). Above all, these results demonstrated that miR-30a-5p plays an important role in regulating LUAD cancer stem cell maintenance.




Figure 9 | Over-expression of miRNA-30a-5p inhibits cancer stem cell maintenance in LUAD. (A) The correlation between miRNA-30a-5p and cancer stem cell maintenance-related factors, including SOX2, CD44, OCT4, and NANO in TCGA-LUAD, was examined using Pearson’s correlation analysis. (B, C) Relative mRNA expressions of cancer stem cell marker genes, including CD44, OCT4, SOX2, NANOG in A549, and SPC-A1cells, were examined by Real-time RT-PCR upon over-expression of miRNA-30a-5p. (D, E) Tumor sphere formation abilities of indicated cells after over-expression of miRNA-30a-5p were examined by tumorsphere assay. Scale bar=50 μm. . ***P < 0.001.





Correlation Analysis Between MiRNA-30a-5p Expression and Infiltrating Immune Cells

Considering miRNA-30a-5p plays crucial roles in the immune response and progression of lung cancer. We explored the correlation between the expression of miRNA-30a-5p and immune infiltration in LUAD by using Spearman correlation, the analysis data demonstrated that miRNA-30a-5p positively correlated with the immune infiltration of mast cells, DC, IDC, eosinophils, macrophages, neutrophils, NK cells, pDC, T cells, cytotoxic cells, CD8 T cells, NK, CD56bright cells, ADC, Th1 cells, TFH, B cells, Th17 cells, T helper cells and Tem in LUAD (Figures 10 and 11). These results demonstrated that miRNA-30a-5p plays a significant role in the immune response of LUAD.




Figure 10 | Analysis of the correlation between miRNA-30a-5p expression and immune infiltration. (A) Correlation between the relative abundances of 24 immune cells and miRNA-30a-5p expression level. (B) Diverse proportions of immune cell subtype in tumor samples in high and low miRNA-30a-5p expression groups.






Figure 11 | Analysis the correlation between miRNA-30a-5p expression and diverse immune infiltration. (A–C) Correlation between miRNA-30a-5p and various immune infiltrate in LUAD.





Kaplan-Meier Survival Curves According to High and Low Expression of MiRNA-30a-5p in Immune Cell Subgroups in LUAD

Since miRNA-30a-5p expression was significantly positive with diverse immune cells infiltration. We next studied the expression of miRNA-30a-5p and diverse immune cells infiltrate whether affecting the prognosis of LUAD patients. We uncover that increased miRNA-30a-5p expression and enriched the B cells, CD4+ cells and Macrophages cells will indicate a better prognosis. While high expression miRNA-30a-5p and decreased the B cells, CD4+ cells, and macrophages were correlated with poor clinical outcomes (Figure 12).




Figure 12 | Overall survival curves based on the expression of miRNA-30a-5p in the immune cell subgroups in LUAD. (A–F) Correlation between miRNA-30a-5p expression and overall survival in different immune cell infiltration groups in LUAD patients.






Discussion

Lung adenocarcinoma is a malignant tumor characterized by uncontrolled growth of cells in the lung and bronchus (15). The clinical LUAD outcomes are far from satisfactory using current treatments. Therefore, it is crucial to find stable potential biomarkers to predict prognosis and guide individualized therapies (12). Accumulating evidence has indicated that miRNAs play indispensable roles in cancer progression and drug resistance, while the potential molecular mechanism of miRNA-30a-5p in the tumor microenvironment (TME) is still unclear. MiRNAs via regulation the expression of oncogenes or tumor suppressors and participate in diverse cancer development. For instance, it has been shown that elevated the expression of microRNA-30a-5p could reduce liver cancer cell growth and promotes cell apoptosis via inhibiting the MTDH/PTEN/AKT signaling pathway (16). Recently, a new opinion has emerged that miR-30a-5p inhibits tumor growth via down-regulation of the expression of denticles protein homolog in colon carcinoma (17). In renal cancer, the study has been reported that MicroRNA−30a−5p inhibits the MTDH/PTEN/AKT pathway and leads to reducing the tumor cell proliferation of human renal cancer (18). In this study, we analyzed miR-30a-5p expression, prognostic value, genetic variations, and correlation with tumor immune cell infiltration in LUAD for the first time.

In the present study, we found that miRNA-30a-5p significantly decreased in BLCA, THCA, STAD, PRAD, LUSC, LUAD, KIRP, KICH, HNSC, ESCA, and BRCA, and low expression of miRNA-30a-5p was associated with the poor prognosis of diverse cancer. More importantly, we found that miRNA-30a-5p expression was significantly decreased in LUAD cells lines, LUAD cancerous tissues, and blood serum, miRNA-30a-5p lower expression patients exhibit worse clinical outcome compared to the patients with higher miRNA-30a-5p expression, decreased expression of miRNA-30a-5p was associated with advanced clinical pathologic characteristics, including the TNM stage, pathologic stage, Gender, Age Primary therapy outcome, and smoking. ROC curve analysis of miRNA-30a-5p showed an AUC value of 0.902, indicating its prognostic value in LUAD. These results suggest that miRNA-30a-5p plays an important role in the progression and metastasis of LUAD. Our findings are consistent with previous researches. MiRNA-30a-5p was down-regulated in some tumor tissues and associated with clinic-pathological features, including late T stage, lymph nodal metastasis, and TNM staging (18, 19). Our results strongly indicate that miRNA-30a-5p can be used as a prognostic biomarker for LUAD. Thus, our study provides new insights into understanding the potential roles of miRNA-30a-5p in LUAD progression and its potential use as cancer prognostic biomarker.

Mechanically, GSEA and KEGG enrichment analysis revealed that miRNA-30a-5p target genes expression was largely enriched in various cell proliferation and immune response-related pathways, such as non-small cell lung cancer, apoptosis, chemokine signaling pathway, cytokine-cytokine receptor interaction, ECM receptor interaction, INFγ mediated phagocytosis, JAK-STAT signaling pathway, MAPK signaling pathway, Natural killer cell-mediated cytotoxicity, NOD-like receptor signaling pathway, T cell receptor signaling pathway, and Toll-like receptor signaling pathway. Above all, these results demonstrated that miRNA-30a-5p expression might be plays an important role in cancer progression and immune response regulation. Therefore, targeting miRNA-30a-5p seems to be an alternative strategy for tumor therapy.

Immunotherapy to boost T cell functionality in tumors is rapidly becoming standard treatment (20). In lung cancer, tumor-infiltrating CD4+ T cells play an essential role in the immune response (21). Here, we first showed that high miRNA-30a-5p expression in LUAD is associated with the increased infiltration of mast cells, DC, IDC, eosinophils, macrophages, neutrophils, NK cells, pDC, T cells, cytotoxic cells, CD8 T cells, NK, CD56bright cells, ADC, Th1 cells, TFH, B cells, Th17 cells, T helper cells, and Tem. These results may explain that high expression of miRNA-30a-5p partly affects the prognosis of LUAD patients through immune infiltration. Therefore, our result demonstrated that miRNA-30a-5p might affect immune cell infiltration and immunotherapy efficacy, which makes them a predictive biomarker for immunotherapy in LUAD patients.

More importantly, miRNA-30a-5p associated with the prognosis of LUAD patients partially through immune cell infiltration. These findings indicate that miRNA-30a-5p could be a novel immune-related therapeutic target in LUAD. Finally, we identified that miRNA-30a-5p can suppress cell proliferation, colony formation, migration, and self-renewal capability in LUAD cells. According to our results, miRNA-30a-5p may be useful as a serum biomarker for the early detection of LUAD patients.

This study improves our understanding of the correlation between miRNA-30a-5p and LUAD, but some limitations still exist. First, although we explored the correlation between miRNA-30a-5p and immune infiltration in LUAD patients, there is a lack of experiments to validation the function of miRNA-30a-5p in the tumor microenvironment regulation of LUAD. Second, we uncover that depletion of miRNA-30a-5p was inhibits cell proliferation and cell migration of LUAD cells. However, the molecular mechanisms of miRNA-30a-5p in tumor growth and metastasis need to be explored in further studies. Third, we did not conduct the in vivo experiments to validation the function of miRNA-30a-5p in the tumor metastasis and tumor microenvironment regulation of LUAD. In the future, we will further study the function of miRNA-30a-5p in tumor metastasis and tumor microenvironment regulation of LUAD.



Conclusions

In summary, we found that miRNA-30a-5p expression was significantly positive with immune cell infiltration. Moreover, miRNA-30a-5p acts as a tumor suppressor gene in LUAD cell growth and migration. We also revealed that miRNA-30a-5p expression can serve as a useful biomarker for lung cancer prognosis.
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A Corrigendum on: 


Identification and Validation Prognostic Impact of miRNA-30a-5p in Lung Adenocarcinoma
 By Jiang X, Yuan Y, Tang L, Wang J, Zhang D, Cho WC and Duan L (2022). Front. Oncol. 12:831997. doi: 10.3389/fonc.2022.831997


Figure 5I. miRNA-30a-5p was down-regulated in the sera of LUAD using qRT-PCR assay, at which it is a reverse of the two groups in the previous Figure 5I. Figure 8B, it seems that the labels of the X-axis being masked in the previous Figure 8B. The corrected Figure 5 and Figure 8 are shown as below.




Figure 5 | miRNA-30a-5p was down-regulated in LUAD. (A) MiRNA-30a-5p was down-regulated in lung cancer based on TCGA-LAUD dataset. (B–G) Correlation between miRNA-30a-5p and clinicpathologic features, including the pathology stage, TNM stage, smoker, and therapy outcome in LUAD. (H) ROC curve analysis of miRNA-30a-5p showed an AUC value of 0.902 in LUAD. (I) miRNA-30a-5p was down-regulated in peripheral blood serum of LUAD analysed using qRT-PCR assay. *P < 0.05, ***P < 0.001. CR, complete response; PR, partial response; SD, stable disease; PD, progressive disease. NS: p >0.05.






Figure 8 | Over-expression of miRNA-30a-5p inhibits the cell proliferation and migration ability of LUAD cells. (A–C) The expression of miRNA-30a-5p in LUAD was examined by GEO datasets. (D) The expression of miRNA-30a-5p in LUAD cell lines was examined by qRT-PCR assay. (E, F) The expression of miRNA-30a-5p in LUAD cells lines after over-expression of miRNA-30a-5p was examined by using the qRT-PCR assay. (G–J) Over-expression of miRNA-30a-5p on cell growth ability examined by clone information and BrdU assays. (K, L) Over-expression of miRNA-30a-5p on cell migration ability examined by transwell and wound healing assay. Quantification data were also indicated. Scale bar=50 mm. ***P < 0.001.



The authors apologize for these errors and state that this does not change the original scientific conclusions of the article. The original article has been updated.
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Background

The crucial roles played by lncRNA-AC068228.1 in primary malignant cancer remain poorly understood. This study aimed at examining the clinical significance and evaluating the biological function of AC068228.1 in lung adenocarcinoma (LUAD).



Methods

We used data obtained from The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx), and the Gene Expression Omnibus (GEO) database to examine the expression of AC068228.1 in LUAD patients, and the prognostic and diagnostic value of those levels. Functional experiments were conducted to determine the function of AC068228.1 on LUAD cells. Signaling pathway enrichment analysis of AC068228.1 was conducted using the clusterProfiler and Gene Set Enrichment Analysis (GSEA) software. We analyzed the correlation between AC068228.1 expression and immune infiltration level in LUAD using the single-sample gene set enrichment analysis (ssGSEA) method by the R package GSVA.



Results

AC068228.1 expression was significantly elevated in LUAD tissues compared with normal tissues. Higher expression of AC068228.1 was strongly correlated with adverse clinical outcomes and was identified as an independent prognostic marker for LUAD patients. GSEA and infiltration analysis confirmed that AC068228.1 expression was significantly correlated with immune cells infiltrating in LUAD. Knockdown of AC068228.1 inhibited the cell proliferation and cell migration of LUAD.



Conclusions

AC068228.1 was upregulated in LUAD and was significantly correlated with adverse clinical outcomes. Meanwhile, it was associated with immune cell infiltration and could be used as a promising diagnostic and prognostic biomarker for LUAD patients.





Keywords: lncRNA, lung adenocarcinoma, immune cell infiltration, prognosis biomarker, malignant phenotypes



Introduction

Lung cancer is the leading cause of cancer-related morbidity and mortality worldwide (1). As the tumor with the highest mortality, lung cancer mainly includes small cell lung cancer and non-small cell lung cancer (NSCLC), the NSCLC is composed of adenocarcinoma (LUAD), squamous cell carcinoma (LUSC), and large-cell carcinoma (LCC) (2). With the progress of science and technology and the diversification of medical means, the prognosis of lung cancer patients has been improved to a certain extent, while most lung cancer patients have a poor overall 5-year survival rate of ~5% (3). Thus, elucidating the complex molecular mechanism underlying lung cancer progression and identifying the key molecules regulating cancer progression is crucial for the treatment of lung cancer.

LncRNAs are a kind of ncRNAs whose transcripts with a length of more than 200 nucleotides do not have a protein coding potential. Mounting evidence has demonstrated that lncRNA abnormal expression and overactivation are usually involved in the cancer initiation and progression (4). LncRNAs can modulate gene expression via influencing the structure of chromatin (5, 6), histone modification (7), and sponging of microRNA (8). Aberrantly expressed lncRNAs have been reported to correlate with the development and progression of lung cancer (9). For example, Gong et al. found that lncRNA JPX was highly expressed in lung cancer and correlated with the tumor size and an advanced stage. Forced expression of JPX facilitated lung cancer cell proliferation in vitro and facilitated lung tumor growth in vivo (10). Lu et al. reported that lnc-IGFBP4-1 was overexpressed in lung cancer tissues and its higher expression is associated with TNM stage and lymph node metastasis. Depletion of lnc-IGFBP4–1 significantly inhibited cell proliferation and induced apoptosis. Further research showed that lnc-IGFBP4-1 via affecting the expression of HK2, PDK1, and LDHA led to enhancement of the ATP production level and involvement in lung cancer progression (11). Furthermore, lncRNA AFAP1-AS1 was found to modulate NSCLC cell proliferation via interacting with EZH2 and recruiting EZH2 to the promoter regions of p21, thus inhibiting p21 expression (12).

In our previous study, we developed a new method called CVAA (Cross-Value Association Analysis), which functions without a normalization and distribution assumption. We applied it to large-scale pan-cancer transcriptome data generated by The Cancer Genome Atlas (TCGA) project and successfully discovered numerous new differentially expressed genes (DEGs), including AC068228.1 (ENSG00000253258), which are mainly located in chromosomes chr8:123153966–123273028 and are 777 nucleotides in length. However, the role played by AC068228.1 in LUAD remains poorly understood. In the present study, we examine the expression level of AC068228.1 in LUAD tissues and LUAD cell lines. Moreover, LUAD expression and clinical data from TCGA were downloaded and utilized to assess the prognostic and diagnostic value of AC068228.1 and the correlation between AC068228.1 expression and diverse clinical features in LUAD patients. GSEA was conducted to determine the AC068228.1-related signaling pathways involved in LUAD. The correlation between AC068228.1 expression and immune cell infiltrate in LUAD was determined using the ssGSEA method. Finally, we determine the biological effects of AC068228.1 on LUAD cell lines by employing various biological function experiments.



Materials and Methods


Data Collection

TCGA-LUAD cohort data and corresponding clinical information of 535 LUAD patients were downloaded from the TCGA website (https://portal.gdc.cancer.gov/repository). LUAD patients were classified into low- and high-AC068228.1 expression groups according to the median AC068228.1 expression value. AC068228.1 expression data from datasets GSE81089 were downloaded from the GEO database and validated for expression analyses. The gene expression profiles were normalized using the scale method provided in the “limma” R package. Data analysis was performed with the R (version 3.6.3) and ggplot2 [3.3.3] packages. The expression data were normalized to transcripts per kilobase million (TPM) values before further analysis. Besides, the receiver operating characteristic (ROC) curve was used to evaluate the diagnostic value of AC068228.1 using the pROC R package and ggplot2 R package.



Nomogram Construction and Evaluation

Based on the multivariate Cox analysis results, we established a nomogram to predict the prognosis of lung adenocarcinoma patients. According to the prognosis model, we calculated each patient’s risk score as the total score of each parameter, which could predict the prognosis of lung adenocarcinoma patients (13).



Gene Set Enrichment Analysis

We utilized the GSEA software to analyze the potential signaling pathway and molecular function in lung adenocarcinoma (14, 15). A customized Perl script was used to perform GSEA between high-AC068228.1 and low-AC068228.1 groups. According to the default statistical methods, an adjusted p-value < 0.05 was considered significant.



Immune Infiltration Analysis by ssGSEA

We used a GSVA R package to examine the lung adenocarcinoma immune infiltration of 24 tumor-infiltrating immune cells in tumor samples through ssGSEA (16, 17). The correlation between AC068228.1 and infiltration levels of immune cells was analyzed by the Spearman’s correlation, and these immune cells with the different expression groups of AC068228.1 were analyzed by the rank-sum test.



Patients and Samples

All primary LUAD samples were obtained from patients at the First People’s Hospital-Calmette Hospital of Kunming, China. All samples were instantly submerged in RNA later upon collection. All samples were collected from patients who provided informed consent under institutional review board-approved protocols and were stored at −80°C until use.



Cell Culture

The BEAS-2B cell line was purchased from the Cell Bank of Kunming Institute of Zoology and cultured in BEGM media (Lonza, CC-3170). Lung cancer cell lines, including A549, HCC827, H1299, and H1975, were purchased from Cobioer, China, with STR documents, and were cultured in RPMI-1640 medium (Corning) supplemented with 10% fetal bovine serum (FBS) and 1% penicillin/streptomycin.



Constructs, Lentiviral Preparation, and Establishment of Different Cell Lines

For shRNA knockdown experiments, independent shRNAs targeting to different regions of AC068228.1 RNA were constructed using a pLKO.1 vector (Addgene, Watertown, MA, USA), and the oligo sequences were provided in the following. Lentiviruses were generated according to the manufacturer’s protocol as previously documented (10) and indicated that cells were infected by viruses twice with 48- and 72-h viral supernatants containing 4 μg/ml polybrene, and stable cell lines were established by appropriate puromycin selection. The two independent AC068228.1 targeting sequences are shRNA, 5′-GGGTGATGGTGCCAAATATAT-3′.



Cell Proliferation Assays

For growth curve assay, 8 × 103 cells were plated onto 12-well plates, and the cell numbers were subsequently counted each day using an automatic cell analyzer Countstar (Shanghai Ruiyu Biotech Co., Shanghai, China). For colony formation assay, a total of 500 cells/well was plated onto 6-well plates and cultured for 2 weeks at 37°C. The medium was changed every 3 days. Two weeks later, the indicated cells were fixed with 4% PFA for 30 min at room temperature and subsequently stained with 0.1% crystal violet for 30 min at room temperature.



Cell Migration Assays

Cell migration assays were performed as previously documented (11). Cell migration assay was performed as previously described (10). Briefly, indicated cells were seeded into 6-well plates (9 × 105/cell) and incubated for 1 day, and then a straight line was scraped with pipette tips. Detached cells were removed. Photographs were taken at the indicated time, and the relative traveled distance was measured. For the transwell migration assay, 2.5 × 104 cells/well in 100 μl serum-free medium were plated in a 24-well plate chamber insert, and the lower chamber was filled with 10% FBS. After incubation for 24 h, cells were fixed with 4% PFA, washed, and then stained with 0.5% crystal violet for further capturing of pictures.



Real-Time RT-PCR Assay

The real-time RT-PCR assay, cells were lysed by RNAiso Plus (Takara Bio, Beijing, China, Cat. 108-95-2). Total RNAs were extracted according to the manufacturer’s protocol and then reverse transcribed by using the RT Reagent Kit (Takara Bio, Beijing). The primers used in this study are as follows: β-actin-F: AAGTGTGACGTGGACATCCGC, β-actin-R: CCGGACTCGTCATACTCCTGCT, AC068228.1-F: TACCGCTGTCCTGAGCAATG, AC068228.1-R: CCTTCCCGTTTCTCTTCCCC. β-Actin RNA was used as internal control, and the 2-ΔΔ Ct method was utilized to calculate the relative expression of AC068228.1.



Statistical Analysis

For the datasets from the TCGA database, statistical analyses were performed using R. The Wilcoxon rank-sum test and chi-square test were used to estimate the association between AC068228.1 and clinical pathologic characteristics. The Kaplan–Meier method was used to calculate LUAD patient survival rates. Univariate and multivariate Cox analyses were performed to assess the correlation between clinical features and overall survival, disease-free survival, and progression-free survival. For the data regarding the function of AC068228.1, GraphPad Prism 7.0 was used for statistical analyses. The Student’s t-test evaluated the statistical significance between groups. The significance of the data between two experimental groups was determined by Student’s t-test, and multiple-group comparisons were analyzed by one-way ANOVA. p < 0.05 (*), p < 0.01 (**), and p < 0.001 (***) were significant.




Results


AC068228.1 Was Overexpressed in Lung Adenocarcinoma

We conducted pan-cancer analyses utilized the Wilcoxon rank-sum test to compare AC068228.1 expression in normal tissues and tumor samples using RNA sequencing data obtained from TCGA and GTEx databases. Results showed that AC068228.1 was highly expressed in 15 tumor types, including adrenocortical carcinoma (ACC), bladder urothelial carcinoma (BLCA), breast invasive carcinoma (BRCA), cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC), colon adenocarcinoma (COAD), head and neck squamous cell carcinoma (HNSC), lung adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC), ovarian serous cystadenocarcinoma (OV), pancreatic adenocarcinoma (PAAD), rectum adenocarcinoma (READ), stomach adenocarcinoma (STAD), thyroid carcinoma (THCA), thymoma (THYM), and uterine corpus endometrial carcinoma (UCEC) (Figure 1A). Furthermore, significantly higher levels of AC068228.1 expression were found in the LUAD tissues when compared with the normal tissues (Figure 1B). AC068228.1 was upregulated in LUAD in GSE81089 datasets, which is consistent with the TCGA database we discovered (Figure 1C). Finally, we found that AC068228.1 was overexpressed in LUAD cell lines than in the normal lung epithelial cell line (Figure 1D).




Figure 1 | Expression level and prognosis of AC068228.1 in human cancer. (A) Expression of AC068228.1 in normal and tumor tissues in TCGA and GTEx datas. (B) Expression of AC068228.1 in LUAD based on the TCGA dataset. (C) Expression levels of AC068228.1 in lung cancer based on the GEO dataset. (D) The relative expression level of AC068228.1 in lung adenocarcinoma cancerous cell lines, including A549, H1975, HCC827, and H1299 examined by real-time RT-PCR, compared to normal human bronchial epithelial cell line: BEAS-2B. *p < 0.05, **p < 0.01, and ***p < 0.001.





Overexpression of AC068228.1 Was Associated With Adverse Clinical Parameters in Lung Adenocarcinoma

To determine the correlation between AC068228.1 expression and diverse clinical parameters in lung adenocarcinoma, we downloaded the expression data and the clinical characteristics of 513 LUAD patients from the TCGA cohort. The LUAD patients were divided into two groups (a high and low expression group AC068228.1, respectively) according to the median value for AC068228.1 expression. We found that the parameters of pathologic stage, TNM stage, age, and smoker were significantly correlated with AC068228.1 expression (Figures 2A–F). We undertook analysis of receiver operating characteristic (ROC) curves of AC068228.1 expression to obtain the area under the ROC curve (AUC) values (0.945) (Figure 2G). To further validate the correlation between AC068228.1 expression and overall survival, we examined the expression and prognostic value of AC068228.1 in LUAD by clinical samples from our Hospital (N = 181). The results also showed that AC068228.1 was highly expressed in LUAD and correlated with adverse clinical outcomes (Figures 2H, I). These results showed that AC068228.1 could be used as a biomarker to diagnose LUAD with high sensitivity and specificity.




Figure 2 | Clinical significance of lncRNA-AC068228.1 in lung adenocarcinoma. (A–F) Correlation between AC068228.1 expression and clinical parameters include pathological, TNM stages, smoker, and age. (G) ROC curves were used to determine the diagnostic value of AC068228.1 in lung adenocarcinoma based on TCGA-LUAD. (H, I) The expression level and prognostic value of AC068228.1 in LUAD validation by our clinical samples NS: P > 0.05, **p < 0.01, ***p < 0.001.





Prognostic Value of AC068228.1 in LUAD

To ascertain the prognostic role of AC068228.1 in LUAD, Kaplan–Meier analysis evaluated the prognostic value of AC068228.1 in the AC068228.1-high and AC068228.1-low groups. The results confirmed that LUAD patients with higher levels of AC068228.1 expression correlated with poor overall survival (OS), disease-specific survival (DSS), and progression-free survival (PFS) (Figures 3A–C).




Figure 3 | Kaplan–Meier survival analyses for prognostic values of AC068228.1 in LUAD. (A–C) Kaplan–Meier survival curves showed that lung adenocarcinoma patients with high AC068228.1 expression exhibited poor overall survival, disease-specific survival, and progression-free survival based on the TCGA-LUAD dataset.



Next, univariate and multivariate Cox regression analyses were conducted to investigate factors that correlated with a patient’s overall survival (OS), disease-specific survival (DSS), and progression-free survival (PFS) (Table 1). The univariate analysis confirmed that pathologic stage, TNM stage, and AC068228.1 expression were significantly associated with the overall survival time of LUAD patients. A multivariate analysis showed that AC068228.1 expression and T stage independently predicted overall survival time (Table 1). Furthermore, the univariate analysis confirmed that pathologic stage, TNM stage, and AC068228.1 expression were significantly associated with the disease-specific survival time of LUAD patients. A multivariate analysis showed that AC068228.1 expression independently predicted disease-specific survival time (Table 2). Finally, the univariate analysis confirmed that pathologic stage, T stage, and AC068228.1 expression were significantly associated with the progression-free survival time of LUAD patients. A multivariate analysis showed that AC068228.1 expression and T stage independently predicted progression-free survival time (Table 3). These results confirmed that AC068228.1 could serve as an independent prognostic factor for LUAD patients.


Table 1 | Univariate and multivariate Cox regression analyses of different parameters on overall survival in lung adenocarcinoma.




Table 2 | Univariate and multivariate Cox regression analyses of different parameters on disease-specific survival in lung adenocarcinoma.




Table 3 | Univariate and multivariate Cox regression analyses of different parameters on progression-free survival in lung adenocarcinoma.





Prognostic Role of AC068228.1 in Subgroup Analyses

To better determine the factors that affect the prognosis of LUAD patients, we performed stratification analyses by creating survival charts. These results confirmed that increased AC068228.1 expression was strongly associated with shorter overall survival among patients with pathologic stage, tumor node metastasis (TNM) stage, race, smoker, and age (Figures 4A, B).




Figure 4 | Kaplan–Meier survival analyses for prognostic values of AC068228.1 in different subgroups stratified by clinical features. (A, B) Kaplan–Meier curves for overall survival of AC068228.1 in subgroups including stage I-II, T1-T2, N0-N1, M0, Race, white, age>65years, and Smoker in TCGA-LUAD cohort.





Construction and Validation of AC068228.1-Based Nomogram

The multivariate analysis result confirmed that AC068228.1 is an independent prognostic factor in LUAD. We then constructed a prediction model for overall survival, disease-free survival, and progression-free survival by integration AC068228.1 expression and pathologic stage. We established a nomogram to integrate AC068228.1 as a LUAD biomarker; higher total points on the nomogram for overall survival, progression-free survival (PFS), and disease-specific survival respectively indicated a worse prognosis (Figures 5A–F). In summary, these results indicated that the nomogram could provide a relatively accurate prediction of LUAD patients’ survival time.




Figure 5 | Construction and performance validation of the AC068228.1-based nomogram for lung adenocarcinoma patients. Nomogram used to predict overall survival, disease-free survival, and progression-free survival of lung cancer patient (A–C). The calibration curve and Hosmer–Lemeshow test of nomograms in the TCGA-lung adenocarcinoma cohort for (D) overall survival, (E) disease-specific survival, and (F) progression-free survival.





KEGG and GO Enrichment Analysis

By using Spearman correlation analysis, we obtained 200 genes that positively correlated with AC068228.1 expression in the TCGA-LUAD cohort (Supplementary Table 1). We utilized the R package clusterProfiler-conducted enrichment analysis of AC068228.1 positively related genes involved in several biological processes (BPs), molecular functions (MFs), cellular components (CCs), and Kyoto Encyclopedia of Genes and Genomes (KEGG). The results confirmed that the genes for MFs were mainly involved in the cell adhesion molecule binding, cadherin binding, protease binding, extracellular matrix structural constituent, metalloendopeptidase activity, structural constituent of cytoskeleton, cell adhesion mediator activity, cell–cell adhesion mediator activity, vascular endothelial growth factor receptor binding, and RAGE receptor binding (Figure 6A). The genes for CCs and BP were mainly involved with cell–substrate junction, cell–substrate adherens junction, intermediate filament cytoskeleton, skin development, epidermis development, extracellular matrix organization, mitotic nuclear division, and keratinocyte differentiation (Figures 6B, C). Moreover, KEGG enrichment analysis revealed that these genes were predominately correlated with the focal adhesion, cell cycle, apoptosis, IL-17 signaling pathway, TNF signaling pathway, extracellular matrix (ECM)–receptor interaction, and p53 signaling pathway (Figures 6D).




Figure 6 | GO and KEGG enrichment analysis for AC068228.1. (A) Top 10 enrichment terms in MF categories in LUAD. (B) Top 10 enrichment terms in CC categories in LUAD. (C) Top 10 enrichment terms in BP categories in LUAD. (D) Top 10 KEGG enrichment pathways in LUAD.





AC068228.1-Related Signaling Pathways Based on Gene Set Enrichment Analysis

We conducted GSEA to explore the potential signaling pathway in the high AC068228.1 expression groups of LUAD patients. We selected the top 12 datasets with a high normalized enrichment score (NES) (Figures 7A–C) . The results revealed that apoptosis, Wnt signaling pathway, VEGF signaling pathway, P53 signaling pathway, cell adhesion molecules (cams), cell cycle, chemokine signaling pathway, cytokine–cytokine receptor interaction, MAPK signaling pathway, JAK-STAT signaling pathway, insulin signaling pathway, and focal signaling pathway were significantly enriched in the KEGG pathway (Figures 7A–C).




Figure 7 | Identification of AC068228.1-related signaling pathways in lung adenocarcinoma. (A–C) Top 12 significant KEGG pathways associated with AC068228.1 examined by GSEA software.





Correlation Between AC068228.1 Expression and Immune Infiltration

SsGSEA with Spearman’s rank correlation was utilized to determine the correlation between AC068228.1 expression and infiltration levels of 24 immune cell types (Figure 8A). The results suggested that AC068228.1 expression was positively correlated with Th2 cell, Tgd, and NK CD56dim cells infiltration but negatively associated with Th1 cells, T helper cells, pDC, T cells, B cells, macrophages, follicular helper T (TFH), NK cells, DC, eosinophils, iDC, and mast cells in LUAD (Figure 8A). Our study indicated that the expression of AC068228.1 was positively or negatively associated with these immune cell types (Figures 8B, C).




Figure 8 | Correlation analysis of AC068228.1 expression and infiltration levels of immune cells in LUAD tissues. (A) Correlation between the relative abundances of 24 immune cells and lncRNA AC068228.1 expression level. (B, C) Box plots of the correlations between AC068228.1 or molecular model expression and infiltration levels of immune cells. *p < 0.05, **p < 0.01, ***p < 0.001.





AC068228.1 Promotes Proliferation, Migration, and Invasion of LUAD Cells

To examine the biological function of AC068228.1 on LUAD cells, we reduced the AC068228.1 levels in LUAD cells by transfection with shRNA for AC068228.1. Knockdown efficiency was determined by RT-qPCR assay (Figure 9A). Cell proliferation and colony formation assays were conducted to determine the effect of AC068228.1 on LUAD cell proliferation. The results confirmed that reduced AC068228.1 levels significantly inhibited the proliferation of LUAD cells (Figures 9B–E). Furthermore, Transwell and wound healing assays were conducted to explore how AC068228.1 affected the metastatic ability of LUAD cells. Knockdown of AC068228.1 levels in the A549 and H292 cell lines notably inhibited the migration of LUAD cells (Figures 9F–I). These results showed that AC068228.1 could promote the cell proliferation and migration of LUAD.




Figure 9 | AC068228.1 promotes LUAD cell proliferation, migration, and invasion in vitro. (A, B) Establishment of AC068228.1 knockdown cell lines in A549 and H1299 cells verified by real-time RT-PCR. (C–E) Knockdown of AC068228.1 significantly inhibits cell proliferation in A549 and H12995 cells as measured by a growth curve and colony formation. (F–I) knockdown of AC068228.1 dramatically inhibits A549 and H1299 cell migration ability examined by transwell and wound healing assays. ***p < 0.001.






Discussion

Lung cancer is the highest mortality and incidence rate in all cancers, resulting in a huge economic burden, and remains a huge threat to public health (2). With the progress of science and technology and the diversification of medical means, the prognosis of lung cancer patients has been improved to a certain extent, while most lung cancer patients have a poor overall 5-year survival rate of ~5% (12). Emerging evidence has demonstrated that lncRNAs exert a crucial effect on multiple physiological processes including cell growth, cell migration, immune response, and lung cancer initiation and progression (18), confirming that lncRNAs could serve as novel biomarkers for diagnosis and predicting the prognosis of lung cancer patients.

In this study, we identify a novel long non-coding RNA (lncRNA, ENSG00000253258), termed AC068228.1. The gene for AC068228.1 is located on chromosomes chr8:123153966–123273028 and are 777 nucleotides in length (Supplementary Table 2). No published study has specifically reported the levels of AC068228.1 expression in human cancer, and this is the first study to examine the expression patterns and biological function of AC068228.1 in LUAD. We initially obtained expression data correlated with LUAD from TCGA and conducted a comprehensive bioinformatics analysis for the clinical features and prognosis values of AC068228.1 in LUAD. We found that AC068228.1 was highly expressed in various human cancers, including LUAD cancer tissues, compared to that in adjacent normal tissues. We further used GEO LUAD dataset validation of the above analysis results, which is consistent with the TCGA database we discovered. In addition, we also found elevated levels of AC068228.1 expression in LUAD cell lines when compared with those levels in the BEAS-2B cell line. Furthermore, we found that the parameters of pathologic stage, TNM stage, age, and smoker were significantly correlated with AC068228.1 expression. In our study, we also found that a high expression of AC068228.1 correlated with poor OS, DSS, and PFS in LUAD patients. Multivariate analysis showed that AC068228.1 expression independently predicted OS, DSS, and PFs in LUAD patients. We established a nomogram to integrate AC068228.1 as a LUAD biomarker; higher total points on the nomogram for overall survival, progression-free survival (PFS), and disease-specific survival respectively indicated a worse prognosis. To this end, we performed a comprehensive Kaplan–Meier analysis of a set of subgroups that showed a lower overall survival in the AC068228.1-high groups versus the AC068228.1-low groups, including pathologic stage, TNM stage, race, smoker, and age.

It is well established that abnormal epigenetic modification promotes tumor initiation and progression by activating a series of oncogenic signaling pathways (6, 19). To further investigate the function of AC068228.1 in detail, we performed functional annotation based on the enrichment analysis. GO and GSEA analyses revealed that AC068228.1-related genes associated with focal adhesion, cell cycle, apoptosis, IL-17 signaling pathway, TNF signaling pathway, ECM–receptor interaction, and 53 signaling pathway were related to functions that could facilitate carcinogenesis. Finally, our in vitro experiments confirmed that AC068228.1 promotes the proliferative and migration abilities of LUAD cells, and all the enrichment results indicated that AC068228.1 was strongly associated with cancer initiation and progression.

The tumor microenvironment plays a central role in many aspects of cellular processes, including cancer progression (20, 21). According to our research, there was a significant negative association between AC068228.1 expression and Th1 cells, T helper cells, pDC, T cells, B cells, macrophages, TFH, NK cells, DC, eosinophils, iDC, and mast cells in LUAD. Therefore, performing a comprehensive analysis of the correlation between AC068228.1 and immune infiltration is warranted.

Although our study has uncovered some new facts, there remain some limitations that should be mentioned. First, our data are only based on public database analysis and lack large clinical samples to validate these analysis results, and further, large-scale samples needed to verify the results would be convincing. Second, the potential molecular mechanism by which AC068228.1 contributes to LUAD carcinogenesis has not been adequately investigated. Finally, we did not conduct the in vivo experiments to validate the function of AC068228.1 in the tumor metastasis and tumor microenvironment regulation of LUAD. In the future, we will pay more attention to the function of AC068228.1 in cancer metastasis and tumor microenvironment regulation of LUAD.



Conclusion

Collectively, our study provides the first evidence that demonstrates the important role played by AC068228.1 in LUAD. We confirmed that an increased level of AC068228.1 expression was significantly correlated with adverse clinical outcomes in LUAD patients. Our multivariate analysis showed that AC068228.1 could serve as an independent diagnostic and prognostic factor. The present study partially illustrates the role played by AC068228.1 in LUAD and suggests its use as a novel diagnostic and prognostic biomarker for LUAD patients.
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Background

Hyaluronan-mediated motility receptor (HMMR) plays a pivotal role in cell proliferation in various cancers, including lung cancer. However, its function and biological mechanism in lung adenocarcinoma (LUAD) remain unclear.



Methods

Data on HMMR expression from several public databases were extensively analyzed, including the prognosis of HMMR in the Gene Expression Profiling Interactive Analysis (GEPIA) database. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were analyzed using DAVID and gene set enrichment analysis (GSEA) software. The correlation between HMMR expression and immune cell infiltration was analyzed in the Tumor Immune Estimation Resource (TIMER) database, and the gene and protein networks were examined using the GeneMANIA and STRING databases. Experimentally, the expression of HMMR in LUAD and lung cancer cell lines was determined using immunohistochemistry and quantitative RT-PCR assays. Besides, the function of HMMR on cancer cell proliferation and migration was examined using cell growth curve and colony formation, Transwell, and wound healing assays.



Results

In this study, we found that HMMR was elevated in LUAD and that its high expression was associated with poor clinicopathological features and adverse outcomes in LUAD patients. Furthermore, our results demonstrated that the expression of HMMR was positively correlated with immune cell infiltration and immune modulation. Interestingly, diverse immune cell infiltration affects the prognosis of LUAD. In the functional assay, depletion of HMMR significantly repressed the cancer cell growth and migration of LUAD. Mechanically, we found that that the DNA methylation/TMPO-AS1/let-7b-5p axis mediated the high expression of HMMR in LUAD. Depletion of TMPO-AS1 and overexpression of let-7b-5p could result in the decreased expression of HMMR in LUAD cells. Furthermore, we found that TMPO-AS1 was positively correlated with HMMR, yet negatively correlated with let-7b-5p expression in LUAD.



Conclusions

Our findings elucidated that the DNA methylation/TMPO-AS1/let-7b-5p axis mediated the high expression of HMMR, which may be considered as a biomarker to predict prognosis in LUAD.
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Introduction

Lung cancer is one of the main causes of cancer death and has brought huge public health burden worldwide (1). Lung cancer mainly consists of non-small cell lung cancer (NSCLC) and small cell lung cancer. NSCLCs include lung adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC), and large cell carcinoma (1, 2). Owing to the lack of effective diagnostic markers, most patients with LUAD are diagnosed in the advanced stage and thus might miss the best treatment opportunities (2–4). Therefore, it is imperative to identify useful biomarkers for the treatment of lung cancer.

In a previous study, we developed a new method called cross-value association analysis (CVAA), which functions without a normalization and distribution assumption. We applied this method to large-scale pan-cancer transcriptome data generated by The Cancer Genome Atlas (TCGA) project and successfully discovered numerous new differentially expressed genes (DEGs). Hyaluronan-mediated motility receptor (HMMR) is one of these DEGs (5). HMMR, also named as RHAMM (receptor for hyaluronan-mediated motility), plays a pivotal role in cell proliferation (6). Studies have shown that HMMR was mainly expressed in the nervous system (7). Mutations in HMMR might cause neurodevelopmental defects (8). Studies also showed that a high HMMR expression has been associated with various cancers, such as breast cancer (9), colorectal cancer (10), stomach cancer (11), endometrial cancer (12), and prostate cancer (13). A previous study indicated that HMMR was essential to maintain the stemness of glioblastoma stem cells (14). He et al. found that HMMR was upregulated in bladder cancer and correlated with poor prognosis. Knockdown of HMMR significantly inhibited bladder cancer growth, invasion, epithelial-to-mesenchymal transition, and inactivation of the Wnt/β-catenin signaling pathway (15). In addition, Fan et al. found that the messenger RNA (mRNA) expression of HMMR was significantly increased in hepatocellular carcinoma (HCC) tissues and also correlated with the histologic grade, pathological stage, and survival status. Univariate and multivariate analyses indicated that HMMR is an independent predictive factor associated with overall survival (OS) in HCC. However, the biological function and potential mechanisms of HMMR in LUAD progression and immune response regulation remain to be elucidated.

In this study, we used Tumor Immune Estimation Resource (TIMER), Gene Expression Profiling Interactive Analysis (GEPIA), the Cancer Cell Line Encyclopedia (CCLE), and the Kaplan–Meier (KM) plotter database to explore the expression level, clinical significance, diagnosis, and prognostic value of HMMR in LUAD. Furthermore, we used the TIMER and GEPIA databases to examine the relationship between HMMR and tumor-infiltrating immune cells in the tumor microenvironment. Moreover, we further explored potential HMMR dysregulation via analysis of the upstream long non-coding RNAs (lncRNAs)/microRNAs (miRNAs). Finally, immunohistochemistry (IHC), Western blot, quantitative real-time PCR (qRT-PCR), growth curve, and colony formation, Transwell, and wound healing assays were used to study HMMR in LUAD progression. Our findings underline the vital role of HMMR in LUAD. Also, we provide an underlying mechanism of HMMR expression in potentially regulating the infiltration of immune cells, partly affecting the prognosis of LUAD.



Materials and Methods


Data Collection

TCGA-LUAD cohort data and the corresponding clinical information of 535 LUAD patients were downloaded from TCGA database (https://portal.gdc.cancer.gov/repository). LUAD patients were classified into low and high HMMR expression groups according to the median HMMR expression value. The gene expression profiles were normalized using the scale method provided in the “limma” R package. Data analysis was performed with R (version 3.6.3) and the ggplot2 (3.3.3) package. The expression data were normalized to transcripts per kilobase million (TPM) values before further analysis. In addition, a receiver operating characteristic (ROC) curve was used to evaluate the diagnostic value of HMMR using the R packages pROC and ggplot2.



Gene Expression Profiling Interactive Analysis

GEPIA (http://gepia.cancer-pku.cn/index.html) is a user-friendly web portal for gene expression analysis based on TCGA and GTEx data (16). In the current study, the CCLE (https://sites.broadinstitute.org/ccle) and GEPIA (http://gepia.cancer-pku.cn/) databases were used to analyze the expression and prognostic value of HMMR in pan-cancer. Furthermore, we used GEPIA to study the correlation between HMMR expression and pathological stage.



Kaplan–Meier Plotter Database Analysis

We used KM plotter (http://kmplot.com), an online database that contains gene expression data and the survival information of 3,452 clinical lung cancer patients, to analyze the prognostic value of HMMR in lung cancer (17). The patient samples were divided into two groups based on the median expression (high expression and low expression) to analyze the OS, with hazard ratios (HRs), 95% confidence intervals (95% CIs), and log-rank p-values.



Immune Infiltration Analysis

TIMER (https://cistrome.shinyapps.io/timer/) is a comprehensive resource for systematic analysis of immune infiltrates across diverse cancer types. In this study, TIMER was used to examine the correlation between the somatic copy number alterations of HMMR and the immune cell infiltration levels of B cells, CD4+ T cells, CD8+ T cells, neutrophils, macrophages, and dendritic cells (DCs). We also used the R package GSVA to quantify the LUAD immune infiltration of 24 tumor-infiltrating immune cells in tumor samples through single-sample gene set enrichment analysis (ssGSEA). According to the 509 gene signatures of 24 tumor-infiltrating lymphocytes (TILs) (18), comprising natural killer (NK) cells, T follicular helper (Tfh) cells, CD56bright NK cells, CD56dim NK cells, central memory CD4+ T cells, macrophages, cytotoxic cells, DCs, CD8+ B cells, effector memory T (Tem) cells, eosinophils, gamma delta T cells, activated DCs (aDCs), immature DCs (iDCs), mast cells, neutrophils, plasmacytoid DCs (pDCs), T helper cells, regulatory T cells (Tregs), type 1 T helper cells (Thp1), Th2, and Th17, the relative enrichment score of every immunocyte was quantified. The correlation between HMMR and the infiltration levels of immune cells was analyzed with Spearman’s correlation, and immune cells with different expression groups of HMMR were analyzed using the Wilcoxon rank-sum test.



Univariate and Multivariate Cox Regression Analyses

Univariate and multivariate Cox regression analyses were performed to examine the prognostic value of HMMR in LUAD.



Function and Pathway Analysis by Gene Set Enrichment Analysis

In the present study, we utilized the LinkedOmics database (http://www.linkedomics.org/login.php) to study the co-expression genes of HMMR in LUAD. The gene set “kegg.v6.2.symbols.gmt,” which served as a reference gene set, was downloaded from the Molecular Signatures Database (MSigDB) (http://software.broadinstitute.org/gsea/msigdb). We utilized the GSEA software and clusterProfiler package to perform the GO and KEGG enrichment analyses of the signaling pathways of HMMR in LUAD (19–21).



Analysis of HMMR Interacting Genes and Proteins

The GeneMANIA database (http://www.genemania.org) was utilized to construct the HMMR interaction network (22), and the STRING online database (https://string-db.org/) was employed to construct the protein–protein interaction (PPI) network of HMMR (23).



Prediction of LncRNA and Construction of Competitive Endogenous RNA Network

We used starBase (http://starbase.sysu.edu.cn/) to predict the potential upstream miRNAs of HMMR and to examine the expression, prognosis, and correlation between let-7b-5p and lncRNA. starBase was also used to predict the binding sites among the miRNAs, mRNAs, and lncRNAs (24). The lncLocator (www.csbio.sjtu.edu.cn/bioinf/lncLocator) is a subcellular localization predictor for long non-coding RNAs based on a stacked ensemble classifier, and CPC2 (http://cpc2.cbi.pku.edu.cn) is a fast and accurate coding potential calculator based on sequence intrinsic features (25, 26). In this study, lncLocator and CPC2 were used to explore the subcellular localization and the protein-coding ability of TMPO-AS1, respectively.



Cancer Cells and Cell Culture Conditions

The human bronchial epithelial cell line (BEAS2B) and the LUAD cell lines were purchased from the Cell Bank of Kunming Institute of Zoology and cultured in bronchial epithelial cell growth medium (BEGM) (CC-3170; Lonza, Basel, Switzerland). The HEK-293T cell line was obtained from the American Type Culture Collection (ATCC). The lung cancer cell lines A549, H1299, and H1975 were purchased from Cobioer (Nanjing, China) with short tandem repeat (STR) document. A549, H1299, and H1975 cells were all cultured in RPMI 1640 medium (Corning, Corning, NY, USA) supplemented with 10% fetal bovine serum (cat. no. 10099141C; Gibco, Waltham, MA, USA) and 1% penicillin/streptomycin. HEK-293T cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM) (Corning). The short hairpin RNA (shRNA) for HMMR was constructed using pLKO.1 vector. The shRNA for the HMMR primer sequences are as follows: HMMR shRNA#1: AAACAGCTGGAAGATGAAGAAGGAA; HMMR shRNA#2: CAGCTGGAAGATGAAGAAGGAAGAA.



Quantitative Real-Time PCR

The qRT-PCR assay was performed as described (27). For real-time reverse transcription PCR (RT-PCR) assay, the indicated cells were lysed with RNAiso Plus (cat. no. 108-95-2; Takara Bio, Beijing, China). Total RNA was extracted according to the manufacturer’s protocol and then reverse transcribed using the RT reagent kit. Real-time PCR was performed with the FastStart Universal SYBR Green Master Mix (cat. no. 04194194001; Roche, Basel, Switzerland; cat. no. FP411-02; TIANGEN Biotech, Beijing, China) using an Applied Biosystems 7500 machine. The primer sequences are as follows: HMMR-F: ATGATGGCTAAGCAAGAAGGC, HMMR-R: TTTTCCCTTGAGACTCTTCGAGA; β-actin-F: CTTCGCGGGCGACGAT, β-actin-R: CCATAGGAATCCTTCTGACC. Expression quantification was calculated with the 2−ΔΔCt method.



Cell Proliferation Assay

The cancer cell migration and invasion abilities were assessed with the Transwell assay (28). For the cell proliferation assay, the indicated cells were plated into 12-well plates at a density of 2 × 104. The cell numbers were subsequently counted each day using the automatic cell analyzer Countstar (IC1000; Shanghai RuiYu Biotech Co., Shanghai, China). For the colony formation assay, 500 cells were seeded in a six-well plate at 500 cells/well supplemented with 2 ml cell culture medium. The cell culture medium was changed every 3 days for 2–3 weeks. Indicated cells were fixed with 4% paraformaldehyde (PFA) and stained with 0.5% crystal violet.



Cell Migration Assay

The migration ability of the indicated cells was evaluated by the wound healing and Transwell assays. For the wound healing assay, cells were plated in six-well plates at 1 × 106 cells/well in 2 ml culture medium. After 24 h, a wound was scratched on the adherent cell monolayer with an Eppendorf tip. Wounds were imaged at 5–10 positions along each well. For the Transwell assay, 2 × 104 cells in serum-free medium were plated on uncoated insets and incubated using 24-well chemotaxis chambers (Corning cell culture inserts, 8-μm pore size). Fetal bovine serum (10%) was added into the bottom wells of the chambers as a chemoattractant. The cells were allowed to migrate through the membrane for an indicated time. Non-migrating cells were removed and cells migrating to the lower face were stained with cresyl violet (Sigma, St. Louis, MO, USA). Stained cells in the entire field were counted under an inverted microscope.



Western Blotting and Immunohistochemistry Staining

Western blotting and the immunohistochemistry staining assay were performed as described (29). Briefly, the cell lysates were collected, Western blot was performed, and the primary antibody (HMMR) was incubated overnight. The secondary antibody was also incubated. Finally, western blot develop using protein developing instrument conducted. The detail information of antibodies employ in our study are as follows: HMMR antibody (CST Group (HMMR, Rabbit mAb #87129, 1:1,000) and β-actin.



Statistical Analysis

For the datasets from TCGA, statistical analyses were performed using R (v.3.6.3). The Wilcoxon rank-sum test and the chi-square test were used to estimate the association between HMMR and the clinicopathological characteristics. The Kaplan–Meier method was used to calculate the survival rates of LUAD patients. Cox univariate and multivariate analyses were performed to assess the correlation between clinical features and OS, disease-specific survival (DSS), and progression-free survival (PFS). GraphPad Prism 7.0 was used for statistical analysis of data regarding the function of HMMR. Student’s t-test evaluated the statistical significance between experimental groups, and multiple group comparisons were analyzed using one-way ANOVA. Values of *p < 0.05, **p < 0.01, and ***p < 0.001 were considered significant.




Results


HMMR Is Upregulated in Human Cancer

TIMER tools were utilized to examine the expression of HMMR in multifarious cancer. The results indicated that HMMR was elevated in pan-cancer, including bladder urothelial carcinoma (BLCA), breast invasive carcinoma (BRCA), cholangiocarcinoma (CHOL), colon adenocarcinoma (COAD), esophageal carcinoma (ESCA), head and neck squamous cell carcinoma (HNSC), kidney renal clear cell carcinoma (KIRC), kidney renal papillary cell carcinoma (KIRP), liver hepatocellular carcinoma (LIHC), LUAD, lung squamous cell carcinoma (LUSC), prostate adenocarcinoma (PRAD), rectum adenocarcinoma (READ), stomach adenocarcinoma (STAD), thyroid carcinoma (THCA), and uterine corpus endometrial carcinoma (UCEC) (Figure 1A). To further verify the results, we used GEPIA database analysis and found that HMMR was significantly overexpressed in adrenocortical carcinoma (ACC), BLCA, BRCA, cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC), COAD, lymphoid neoplasm diffuse large B-cell lymphoma (DLBC), ESCA, glioblastoma multiforme (GBM), HNSC, LIHC, LUAD, LUSC, ovarian serous cystadenocarcinoma (OV), pancreatic adenocarcinoma (PAAD), READ, skin cutaneous melanoma (SKCM), STAD, thymoma (THYM), UCEC, and uveal melanoma (UVM) compared to matched normal tissues. HMMR showed low expression in acute myeloid leukemia (LAML) and TGCT (Figure 1B). Finally, we found that HMMR was highly expressed in diverse cancer cell lines, including LUAD cell lines (Figure 1C). Primarily, these results confirm that HMMR may play a crucial role in human cancer progression.




Figure 1 | HMMR was highly expressed in pan-cancer. (A) The expression of HMMR in pan-cancers examined by TIMER tools. (B) The expression of HMMR in pan-cancers examined by GEPIA tools. (C) The expression of HMMR in pan-cancers cells lines examined by CCLE database. *P < 0.05; ***P < 0.001.





Correlation of HMMR Overexpression With Poor Prognosis and Clinicopathological Features

Given that HMMR was overexpressed in pan-cancer, we further analyzed its prognosis in pan-cancer. The results showed that a high HMMR expression was correlated with poor OS in ACC, COAD, chromophobe renal cell carcinoma (KICH), KIRC, KIRP, LGG, LIHC, LUAD, MESO, PAAD, PCPG, PRAD, THYM, and UVM (Supplementary Figure S1A), related to poor DSS in KIRP, LIHC, MESO, SARC, and THCA (Supplementary Figure S1B), and was associated with poor disease-free survival (DFS) in ACC, KICH, KIRC, KIRP, LGG, LIHC, LUAD, MESO, PRAD, THCA, and UVM (Supplementary Figure S1C). It was also linked to poor PFS in ACC, KICH, KIRC, KIRP, LGG, LIHC, LUAD, MESO, PCPG, and UVM (Supplementary Figure S1D). We also utilized GEPIA tools to examine the correlation between HMMR expression and the pathological stage of diverse cancer. Interestingly, we found that the expression of HMMR was markedly positive with the pathological stage of ACC, BRCA, ESCA, NHCS, KICH, KIRC, KIRP, LAML, LAML, LIHC, LUAD, and LUSC (Figures 2A–L). Taken together, these results suggest that HMMR may serve as an oncogene in human cancers.




Figure 2 | Pathological stage analysis of hyaluronan-mediated motility receptor (HMMR) in various human cancers. (A–K) Pathological stage of HMMR in adrenocortical carcinoma (ACC) (A), breast invasive carcinoma (BRCA) (B), esophageal carcinoma (ESCA) (C), head and neck squamous cell carcinoma (HNSC) (D), chromophobe renal cell carcinoma (KICH) (E), kidney renal clear cell carcinoma (KIRC) (F), kidney renal papillary cell carcinoma (KIRP) (G), acute myeloid leukemia (LAML) (H), liver hepatocellular carcinoma (LIHC) (I), lung adenocarcinoma (LUAD) (J), lung squamous cell carcinoma (LUSC) (K), and ovarian serous cystadenocarcinoma (OV) (L) examined using Gene Expression Profiling Interactive Analysis (GEPIA).





Expression Pattern of HMMR in Immune and Molecular Subtypes of Pan-Cancers

Previous reports have shown that cancer could accord to the molecular characteristics divided into different immune and molecular subtypes. Thus, we utilized the Tumor Immune System Interactions Database (TISIDB) to analyze the expression of HMMR in diverse immune and molecular subtypes of human cancer. Concerning the immune subtypes, the analysis results showed HMMR to have differential expression patterns in cancers (Supplementary Figure S2A). A quintessential example is LUAD, where HMMR was elevated in C1 and C2, while its expression was observed to be low in C3. With regard to the molecular subtypes, HMMR also displayed a distinctive expression pattern (Supplementary Figure S2B), in which it showed a high expression in C1 of LUAD, but decreased in C3. To summarize, our results indicate that the expression pattern of HMMR has tissue-dependent specificity.



HMMR Was Highly Expressed in LUAD

We initially examined the expression of HMMR between tumor and normal tissues in LUAD using TCGA database. In paired samples, we found that HMMR expression was significantly higher in tissues than in adjacent normal groups (Figures 3A, B). This result was validated by the Gene Expression Omnibus (GEO) dataset (Supplementary Figure S3A). A further study found that a higher HMMR expression was correlated with adverse clinicopathological features in LUAD, including pathological stage (p < 0.001), TNM stage (p < 0.001), residual tumor (p < 0.001), primary therapy outcome (p < 0.001), and smoking status (p < 0.001). Additionally, the ROC analysis showed that the expression levels of HMMR in LUAD, LUSC, and LUAD were 0.970, 0.989, and 0.975, respectively (Figures 3C–J and Table 1). The ROC curve results were validated in the GEO dataset (Supplementary Figure S3B). Owing to HMMR overexpression being correlated with poor clinicopathological features, we then explored its prognostic value in LUAD. The results demonstrated that an elevated HMMR expression was associated with poor OS, DSS, and PFS (Figure 3K). This result was validated in the GEO dataset (Supplementary Figure S3C). The different subgroups, including TNM stage, age, pathological stage, primary therapy outcome, residual tumor, and smoking status, also correlated with poor prognosis (Figures 4A–H). Cox univariate and multivariate analyses indicated that TNM stage and HMMR expression were independent risk factors for LUAD patients resulting in adverse outcomes (Table 2).




Figure 3 | HMMR was up-regulated in LUAD. (A, B) The expression of HMMR in LUAD examine by TCGA databases. (C–I) The correlation between HMMR expression and clinical features in LUAD. (J) The ROC curve of HMMR in LUAD. (K) The prognosis of HMMR in LUAD examine by TCGA database.  Overall survival (os), disease specific survival (DSS), progression-free survival (PFS), SD (stable disease), and PD (progressive disease). Ns, P > 0.05; ***P < 0.001.




Table 1 | Correlation between hyaluronan-mediated motility receptor (HMMR) expression and the clinicopathological characteristics in TCGA-LUAD dataset.






Figure 4 | Prognosis of hyaluronan-mediated motility receptor (HMMR) based on different subgroups. (A–H) Prognosis of HMMR based on TNM stage, age, pathologic stage, and smoking status.




Table 2 | Univariate regression and multivariate survival model of the prognostic covariates in patients with lung adenocarcinoma (LUAD).





Analysis of the Gene Mutation of HMME

To explore the gene mutation information of HMMR in LUAD, cBioportal was employed to perform comprehensive analysis of HMMR. The results showed that the mutation rate of HMMR reached 2.9% in LUAD (Supplementary Figure S4A). We also examined the mutation type and base mutation in LUAD and found that missense substitution and base G>A reached the highest mutation rate in LUAD (Supplementary Figures S4B, C). The results also displayed the mutation of HMMR in different LUAD molecular subtypes (Supplementary Figure S4D). At the DNA level, gain and diploid were the main drivers of the high expression of HMMR in LUAD (Supplementary Figure S4E). Overall, these results emphasize that the gene mutation of HMME may contribute to HMMR being elevated in LUAD.



The Gene Mutation of HMMR Analysis

To elucidate the biological functions of HMMR in LUAD, the LinkedOmics database was used to examine positive genes with HMMR. As shown in Figures 5A–C, the most positive gene (r > 0.7) is displayed in a heatmap. Subsequently, we performed GO and KEGG analyses using the top 100 co-expression genes. Biological processes mainly involved DNA replication, chromosome segregation, cell division, and protein localization (Figures 5D). For the KEGG enrichment results, the pathways mainly included cell cycle, P53 signaling pathway, non-small cell lung cancer, and FOXO signal pathways (Figures 5E). In addition, we analyzed the most relevant gene of HMMR using GeneMANIA. The results indicated that 20 genes were most relevant, with gene functions mainly involved in cell cycle (Figure 5F). We also used the STRING database to construct a PPI network. The PPI network of HMMR mainly included PLK4, CD44, AURKA, NEK2, CDK1, and FAM83D (Figure 5G).




Figure 5 | Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways of hyaluronan-mediated motility receptor (HMMR) in lung adenocarcinoma (LUAD). (A) Differentially expressed genes displayed in a volcano plot. (B, C) Positive and negative correlations with HMMR displayed in a heatmap. (D) Analysis of the biological process of HMMR. (E) Analysis of the KEGG pathways of HMMR. (F) Gene interaction network of HMMR constructed using GeneMANIA. (G) Construction of the protein–protein interaction network of HMMR using STRING. (H) Signaling pathways enriched using gene set enrichment analysis (GSEA) software.



To uncover the signaling pathways of HMMR in the progression of LUAD, we utilized the GSEA software to perform KEGG pathway enrichment. The analysis results showed that upregulation of HMMR expression was mainly involved in the IL2/STAT5 signaling pathway, IL6/JAK/STAT3 signaling pathway, interferon-γ response, and TNF-α signaling pathway (Figure 5H). These results suggest that HMMR plays a pivotal role in immune response regulation in LUAD.



Analysis of the Correlation Between HMMR Expression and Immune Cell Infiltration

The TIMER database was utilized to examine the relationship between HMMR expression and immune infiltration in LUAD. The results showed that the gene copy number change of HMMR significantly affects the immune infiltration levels of B cells, CD4+ T cells, CD8+ T cells, macrophage cells, neutrophils, and DCs in LUAD (Figure 6A). Furthermore, the TIMER database was used to examine the relationship between the HMMR level and immune infiltration levels in LUAD. The results showed that HMMR expression was markedly positively associated with B cells (r = 0.47, p = 7.69e−30), CD4+ T cells (r = 0.71, p = 1.71e−78), CD8+ T cells (r = 0.51, p = 1.22e−35), neutrophils (r = 0.77, p = 3.54e−103), macrophage cells (r = 0.44, p = 8.88e−26), and DCs (r = 0.84, p = 5.94e−139) in LUAD (Figure 6B). We also found that the expression of HMMR was markedly positively correlated with immune modulators, including CD274 (r = 0.34, p = 9.3e−15), CTLA4 (r = 0.556, p = 5), HAVCR2 (r = 0.71, p = 0), LAG3 (r = 0.39, p = 0), PDCD1 (r = 0.56, p = 0), TIGIT (r = 0.71, p = 0), and PDCD1LG2 (r = 0.67, p = 0) in LUAD (Figure 6C). These results demonstrate that HMMR plays crucial roles in the regulation of tumor immune infiltration in LUAD.




Figure 6 | HMMR expression was associated with immune infiltration in LUAD. (A) The correlation between HMMR CNV and immune cells in LUAD examined by TIMER database. (B) The correlation between HMMR expression and immune infiltration in LUAD examined by TIMER database. (C) The correlation between HMMR expression and immune checkpoints related gene expression in LUAD. (D) The correlation between HMMR expression level and 24 immune cell types. *P < 0.05; **P < 0.01; *** < 0.001.



Moreover, ssGSEA with Spearman’s rank correlation was employed to measure the correlation between the expression of HMMR and the infiltration levels of 24 immune cell types. The results revealed that the expression of HMMR was markedly positively correlated with the infiltrating level of Th2 cells, gamma delta T cells, T helper cells, NK CD56dim cells, and aDCs and negatively correlated with the infiltrating levels of NK CD56bright cells, Th17 cells, pDCs, CD8 T cells, NK cells, iDCs, Tfh cells, eosinophils, and mast cells (Figure 6D).

Considering the significance of HMMR in immune regulation, we next explored the relationship between HMMR expression and diverse immune modulators, including tumor-infiltrating lymphocytes, immune stimulators, immune inhibitors, chemokines, receptors, and major histocompatibility complexes (MHCs) in LUAD. The analysis revealed that HMMR expression was positively correlated with the 28 tumor-infiltrating lymphocytes (Supplementary Figure S5A), 24 immune inhibitors (Supplementary Figure S5B), 45 immune stimulators (Supplementary Figure S5C), 21 MHCs (Supplementary Figure S5D), 41 chemokines (Supplementary Figure S5E), and 18 receptors (Supplementary Figure S5F) in LUAD. These findings indicate that HMMR plays an indispensable role in the regulation of immune response in LUAD.



The Prognosis of HMMR Based on Different Immune Cells

The KM plotter database was utilized to explore the prognosis of HMMR based on the different immune cells in LUAD. It was found that the cohort with an elevated HMMR expression and decreased B cells, CD4+ T cells, CD8+ T cells, macrophages, NK T cells, and Tregs had poor prognosis (Figures 7A–L). These data indicate that diverse immune cell infiltration could significantly affect the prognosis of HMMR in LUAD.




Figure 7 | Prognostic potential of the expression of hyaluronan-mediated motility receptor (HMMR) in different tumors based on immune cells. (A–L) Relationship between HMMR expression and overall survival (OS) based on the immune cell subgroups examined using the Kaplan–Meier (KM) plotter.





HMMR Functions as a Target Gene for Let-7b-5p

MiRNAs play an important role in the modulation of gene expression. We further examined the upstream miRNAs that regulate HMMR expression in the progression of lung cancer. We utilized starBase and TargetScan to predict the potential miRNAs of HMMR. The results showed four miRNAs that bind with the 3′-UTR of HMMR, namely, let-7b-5p, hsa-miR-18a-5p, hsa-miR-33a-5p, and hsa-miR-369-3p. In the analysis of the correlation between these miRNAs and HMMR, only let-7b-5p was markedly negative with the HMMR expression in LUAD (Figures 8A, C). Subsequently, starBase was used to examine the target sites between HMMR and let-7b-5p (Figure 8B). A further study found that let-7b-5p was downregulated in LUAD (Figure 8D), and a low expression of let-7b-5p was related to poor prognosis and clinicopathological features. The ROC analysis showed that let-7b-5p expression in LUAD was 0.754 (Figures 8E–J). Additionally, the qRT-PCR assay examined the expression of let-7b-5p in LUAD cell lines, with the data indicating that it was decreased in LUAD cells compared to control cells (Figure 8K). To determine whether let-7b-5p affects the expression of HMMR, we overexpressed let-7b-5p in the A549 cell line and found that the mRNA and protein levels of HMMR were significantly reduced after the overexpression of let-7b-5p (Figures 8L, M). Collectively, these data imply that let-7b-5p may participate in the regulation of HMMR expression in LUAD.




Figure 8 | Predicted and analysis the upstream miRNAs of HMMR in LUAD. (A) The correlation between the HMMR expression and miRNA-18a-5p, miR-33a-5p and miR-369-3p analysis by starBase. (B) The target sites between HMMR and hsa-let-7b-5p were predicted by starBase. (C) The correlation between the HMMR expression and hsa-let-7b-5p analysis by starbase. (D) The expression of hsa-let-7b-5p in LUAD analysis by TCGA. (E–G) The correlation between hsa-let-7b-5p expression and clinical features in LUAD. (H) The prognosis of hsa-let-7b-5p in LUAD analysis by kmplot. (I) The ROC curve of hsa-let-7b-5p in LUAD. (J) The expression of hsa-let-7b-5p in LUAD cells analysis by employed qRT-PCR assay. (K) The expression of HMMR after overexpression of hsa-let-7b-5p in LUAD cells analysis by qRT-PCR assay. (L) The expression of HMMR after overexpression of hsa-let-7b-5p in LUAD Cells analysis by western blot assay. NC, Negative control. P > 0.05 (ns), ***P < 0.001, was considered significantly.





TMPO-AS1 Functions as a Competitive Endogenous RNA for Let-7b-5p

It has been shown that lncRNAs play crucial roles in the regulation of the expressions of miRNAs and mRNAs. The above findings showed that let-7b-5p may modulate the expression of HMMR via binding with its 3′-UTR. We next explored the upstream lncRNAs of let-7b-5p. starBase and lncBase were utilized to predict the potential lncRNAs that act as a miRNA sponge and control mRNA expression. By performing the related analysis, we obtained three lncRNAs—SNHG12, LINC02242, and TMPO-AS1—and further analyzed their correlation with hsa-let-7b-5p. The data indicated that SNHG12 and LINC02242 were positively correlated with let-7b-5p. The expression of TMPO-AS1 was not only negative with hsa-let-7b-5p but also positive with HMMR as a target gene of hsa-let-7b-5p (Figures 9A–C). In addition, we found that TMPO-AS1 was highly expressed in LUAD (Figures 9D–G). We performed localization and coding potential analysis using diverse public databases. The subcellular localization of TMPO-AS1 was determined employing lncLocator. The results indicated that TMPO-AS1 was mainly located in the cytoplasm (Figure 9H). We also examined the coding potential of TMPO-AS1 using the coding potential calculator and found that TMPO-AS1 does not possess a protein coding ability (Figure 9I). Finally, it was shown that depletion of TMPO-AS1 markedly reduced the expression of HMMR and upregulated the expression of hsa-let-7b-5p in A549 cells (Figure 9J).




Figure 9 | Predicted and analysis the upstream LncRNAs of let-7b-5p in LUAD. (A) The target sites between the TMPO-AS1 and hsa-let-7b-5p were predicted by starbase. (B) The correlation between hsa-let-7b-5p expression and TMPO-AS1 analysis by starbase. (C) The correlation between the HMMR expression and TMPO-AS1 analysis by starbase. (D) The expression of TMPO-AS1 in LUAD analysis by starbase. (E, F) The prognosis of TMPO-AS1 in LUAD analysis by kmplot. (G) The ROC curve of TMPO-AS1 in LUAD. (H) The subcellular localization of TMPO-AS1 analysis by the lncLocator tools.  (I) The coding potential of TMPO-AS1 analysis by the coding potential calculator. (J) The HMMR and hsa-let-7b-5p expression after depletion of TMPO-AS1 in LUAD cells analysis by qRT-PCR assay. (K) The DNA methylation of TMPO-AS1 in LUAD. (L) The correlation between DNA methylation and expression of TMPO-AS1 in LUAD. (M) The expression of TMPO-AS1 in LUAD cells after treat with 5Aza examined by qRT-PCR assay. P >0.05 (ns), P < 0.001 (***), was considered significantly.



Upon exploration of the potential mechanism of TMPO-AS1 overexpression in LUAD, we further found that the DNA methylation of TMPO-AS1 was decreased and negatively correlated with its expression in LUAD. Treatment with 5-azacytidine, an inhibitor of DNA methyltransferases, resulted in the increased level of TMPO-AS1 in LUAD cells (Figures 9K–M). These results suggest that hypomethylation in the TMPO-AS1 promoter DNA results in the increased expression of this gene in LUAD.



Depletion of HMMR Inhibits the Cell Proliferation and Migration of LUAD Cells

To further determine the function of HMMR in LUAD progression, IHC and qRT-PCR assays were performed to examine the expression of HMMR in different LUAD tissues and cell lines. The results showed that HMMR was significantly elevated in lung cancer and in LUAD cells (Figures 10A, B), especially in A549 and H1299 cells. Subsequently, we knocked down HMMR in A549 and H1299 cells and used qRT-PCR and Western blot to examine the knockdown efficiency (Figures 10C, D). The growth curve and colony formation assay showed that depletion of HMMR inhibited the cell growth of LUAD cells (Figures 10E, F). The Transwell and wound healing assays also demonstrated that the knock down of HMMR inhibited the cell growth of LUAD cells (Figures 10G, H). These findings suggest that HMMR promotes the cell growth and migration of LUAD cells.




Figure 10 | Depletion of HMMR inhibits growth and migration of LUAD cells in vivro. (A) IHC analysis of HMMR in LUAD. (B) The expression of HMMR in LUAD cell lines by qRT-PCR. (C, D) Establishment of HMMR knockdown in A549 and H1299 cell lines and verified by qRT-PCR and Western blot. (E) The growth curve assay was employed detect the proliferation of LUAD cells. (F) The colony formation assay was employed detect the proliferation of LUAD cells. (G) The transwell assay was employed detect the migration of LUAD cells, (H) The wound healing assay was employed detect the migration of LUAD cells.  P < 0.05 (*), P < 0.01 (**) and P < 0.001 (***), P < 0.0001 (***) was considered significantly.






Discussion

It has been reported that HMMR plays a crucial role in the progression of human cancers (14). For example, studies have shown that HMMR was elevated in glioblastoma and that a high expression of HMMR could boost the self-renewal of GBM stem cells (GSCs) (14). In breast cancer, elevated levels of HMMR were related to poor clinical outcomes (29). Presently, important evidence for the significance of HMMR in LUAD is still lacking.

In this study, we employed various databases to conduct a comprehensive analysis of the expression, prognosis, clinical significance, and biological function in LUAD. We found that HMMR was highly expressed in various cancer tissues, including LUAD. The high expression of HMMR was significantly correlated with poor clinicopathological features and adverse outcomes in LUAD. These results indicate that HMMR plays a central role in the progression and metastasis of LAUD. Our results are consistent with previous studies. HMMR was upregulated in some cancer tissues and was correlated with adverse clinicopathological features and poor prognosis (15, 30).

The results of the survival analysis confirmed that a higher HMMR expression was correlated with poor OS, DFS, and PFS in LUAD. Cox univariate and multivariate analyses indicated that the TNM stage and HMMR expression were independent risk factors for LUAD patients resulting in adverse outcomes. Consistent with previous studies, HMMR affects cancer cell proliferation and epithelial-to-mesenchymal transition and results in a poor prognosis (15, 31). Our findings strongly confirmed that HMMR can be used as a prognostic biomarker for LAUD.

Previous studies have shown that HMMR plays crucial roles in tissue homeostasis (7), neural development (7), and cancer progression (32). For example, it has been demonstrated that HMMR is highly expressed in GBM tumors and that its depletion impairs GSC self-renewal and inhibits the expressions of its markers and regulators. Furthermore, HMMR silencing suppresses GSC-derived tumor growth and extends the survival of mice bearing GSC xenografts. In this study, we found that HMMR mainly participated in cell cycle, p53 signaling pathway, non-small cell lung cancer, and FOXO signal pathway. We also utilized the STRING database to construct the PPI network, which mainly included PLK4, CD44, AURKA, NEK2, CDK1, and FAM83D. It has been shown that HMMR was elevated in LUAD and that its high expression was related to the tumor size and lymph node metastasis (33). A recent study has found that CD44 was able to elevate the expression of programmed death-ligand 1 (PD-L1) by regulating CD274 transcription, resulting in inhibition of the tumor-intrinsic function of PD-L1 (34). It has also been reported that alisertib, an inhibitor of AURKA, was able to treat mammary tumors when combined with PD-L1 blockade (35). NEK2 was reported to be elevated in lung cancer, regulated by EGFR mutation. The overexpression of NEK2 significantly promoted cell proliferation and induced cell cycle progression in LUAD cells (36). The above results indicate that HMMR may play a central regulatory role in cancer progression.

The GSEA pathway enrichment analysis found that HMMR may be associated with immune regulation and is involved in the IL2/STAT5 signaling pathway, IL6/JAK/STAT3 signaling pathway, interferon-γ response, and TNF-α signaling pathway. Therefore, we attempted to examine the correlation between the expression of HMMR and immune response. HMMR was previously found to modulate the tumor microenvironment (37, 38). By performing a correlation analysis, it was revealed that the expression of HMMR was associated with the immune infiltration of B cells, CD4+ T cells, CD8+ T cells, neutrophils, macrophages, and DCs. Our results are consistent with previous studies (38). Chong et al. found that HMMR was overexpressed in renal cancer and affected the progression, prognosis, and immune microenvironment of renal cell carcinoma (39).

Kaplan Meier-Plotter analysis showed that up-regulation of HMMR and enriched in a variety of immune cells correlated with poor prognosis in LUAD. DCs can promote tumor metastasis by increasing Tregs and decreasing the cytotoxicity of CD8+ T cells (40). Previous studies have also confirmed that the proportions of CD8+ T cells and Tregs in LUAD patients were associated with adverse clinical outcomes (41). These results may explain the increased HMMR expression partly affecting the prognosis of LUAD patients partially via immune cell infiltration. These findings suggest that HMMR could be an immune-related biomarker in LUAD.

It has been well documented that lncRNAs and miRNAs play crucial roles in controlling gene expression. To elucidate the potential mechanism of HMMR overexpression in LUAD, we predicted and analyzed the upstream miRNAs of HMMR. We found that let-7b-5p, a known tumor suppressor gene, could modulate the expression of HMMR. Wang et al. found that let-7b-5p inhibited the cell proliferation of myeloma by regulating the expression of IGF1R (42). Subsequently, we found that the lncRNA TMPOAS1 acted as a miRNA sponge, inhibiting let-7b-5p and elevating HMMR expressions in LUAD. As a matter of fact, mounting evidence has demonstrated that TMPOAS1 plays an oncogenic role in the progression of cancer. For instance, Zhao et al. found that TMPO-AS1, via negative regulation of the expression of miR-383-5p, promoted lung adenocarcinoma progression (43). Similarly, Chen et al. reported that TMPO-AS1 promoted the proliferation and metastasis of LUAD cells by upregulating ERBB2 via sponging miR-204-3p (44). A previous study reported that the HCG18/miR-34a-5p/HMMR axis promoted the progression of lung adenocarcinoma (45). In this study, the TMPO-AS1/let-7b-5p/HMMR axis was identified as a potential regulatory pathway in LUAD. Finally, we found that the knockdown of HMMR significantly reduced the proliferation and migration ability of LUAD cells. Our results are consistent with previous studies.

This study improves our understanding of the correlation between HMMR and LUAD, but some limitations exist. Firstly, although we explored the correlation between HMMR and immune infiltration in LUAD patients, there is a lack of experiments validating the function of HMMR in the tumor microenvironment regulation of LUAD. Secondly, we uncovered that the depletion of HMMR inhibited the cell proliferation and cell migration of LUAD cells. However, the potential molecular mechanisms of HMMR in tumor growth and metastasis need to be explored in further studies. Thirdly, we did not conduct in vivo experiments to validate the function of HMMR in tumor metastasis and the tumor microenvironment regulation of LUAD. In the future, we will pay more attention to the function of HMMR in tumor metastasis and the tumor microenvironment regulation of LUAD.



Conclusions

In conclusion, our findings uncovered, for the first time, the biological function of HMMR in LUAD. The expression of HMMR in LUAD was correlated with poor prognosis was associated with patient pathological stage, TNM stage, residual tumor, primary therapy outcome, and smoking status. In addition, we also found that HMMR may play a vital role in regulating the immune microenvironment of LUAD and, thus, affect its progression. The upregulation of HMMR may be attributed to the TMPO-AS1/let-7b-5p axis. The knockdown of HMMR significantly reduced the proliferation and migration ability of LUAD cells. Exploring the role of HMMR in LUAD and its immune microenvironment will be helpful to better understand this cancer and could result in the identification of a new gene-targeted immunotherapy for LUAD. Therefore, HMMR can be used as a promising molecular predictor to evaluate the prognosis of LUAD patients and as a therapeutic target in the clinical detection of LUAD.
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Lung adenocarcinoma (LUAD) is one of the most common malignant tumors with high morbidity and mortality in China and worldwide. Long non-coding RNAs (lncRNAs) as the competing endogenous RNA (ceRNA) play an essential role in the occurrence and development of LUAD. However, identifying lncRNA-related biomarkers to improve the accuracy of LUAD prognosis remains to be determined. This study downloaded RNA sequence data from The Cancer Genome Atlas (TCGA) database and identified the differential RNAs by bioinformatics. A total of 214 lncRNA, 198 miRNA and 2989 mRNA were differentially identified between LUAD and adjacent nontumor samples. According to the ceRNA hypothesis, we constructed a lncRNA-miRNA-mRNA network including 95 protein-coding mRNAs, 7 lncRNAs and 15 miRNAs, and found 24 node genes in this network were significantly associated with the overall survival of LUAD patients. Subsequently, through LASSO regression and multivariate Cox regression analyses, a four-gene prognostic signature composed of GPI, IL22RA1, CCT6A and SPOCK1 was developed based on the node genes of the lncRNA-mediated ceRNA network, demonstrating high performance in predicting the survival and chemotherapeutic responses of low- and high-risk LUAD patients. Finally, independent prognostic factors were further analyzed and combined into a well-executed nomogram that showed strong potential for clinical applications. In summary, the data from the current study suggested that the four-gene signature obtained from analysis of lncRNA-mediated ceRNA could serve as a reliable biomarker for LUAD prognosis and evaluation of chemotherapeutic response.
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Introduction

Lung adenocarcinoma (LUAD) is one of the most common malignant tumors with high morbidity and mortality in China and worldwide, accounting for 40% of all lung cancers (1, 2). Although tremendous progress has been achieved in diagnosis and treatment strategies in the past 10 years, the 5-year overall survival rate of patients with LUAD is still meager, less than 20% (3). The prognosis of LUAD is closely related to many factors such as lymph node metastasis, distant metastasis and diagnostic time. At present, the insufficient understanding of the biological characteristics of LUAD limits the further improvement of therapeutic effects. Therefore, it is urgent to clarify the pathogenesis of tumors and identify novel biomarkers and treatment schemes to improve the prognosis.

Long non-coding RNAs (lncRNAs) are a type of transcripts with little or no protein-coding potential, which are more than 200 nucleotides in length (4, 5). In recent years, increasing evidence has demonstrated that lncRNAs can act as the competing endogenous RNA (ceRNA) to indirectly regulate downstream target mRNA expression by competing for shared miRNAs and subsequently participate in the development of complex disease phenotypes and various pathological processes, including cancers (6–8). For example, lncRNA SHHG6-003 could bind with miR-26a/b/TAK1, promote the proliferation of hepatocellular carcinoma (HCC) cells, and shorten the overall survival of HCC patients (9). The lncRNA HOTAIR could regulate the expression of human epithelial growth factor receptor 2 (HER2) by competing for mir-331-3p, thus playing an oncogenic role in gastric pathogenesis (10). Additionally, in 2019, Wang et al. reported that the dysregulated MMP9/ITGB1-miR-29b-3p-HCP5 competing endogenous RNA (ceRNA) network was closely linked to poor prognosis of pancreatic cancer (11). In 2018, another study observed four ceRNA based on lncRNA, which had significant prognostic value in breast cancer (12). Together, these findings demonstrate that the imbalance of the lncRNA-miRNA-mRNA network is involved in the pathogenesis of various cancers. However, the overall biological role and potential molecular mechanism of the lncRNA-mediated ceRNA network in LUAD are still unclear.

In this study, LUAD-related gene expression profiles were downloaded from the TCGA database. Differentially expressed lncRNAs, miRNAs and mRNAs were analyzed using bioinformatics methods. A LUAD-specific lncRNA-miRNA-mRNA regulatory network was constructed following the ceRNA hypothesis. Then, a 4-gene prognostic signature composed of GPI, IL22RA1, CCT6A and SPOCK1 was developed and validated using the node genes of the lncRNA-mediated ceRNA network. Finally, independent prognostic factors were further analyzed and combined into a nomogram, which was confirmed to be highly accurate in predicting the survival of patients with LUAD.



Materials And Methods


Clinical Lung Adenocarcinoma and Adjacent Nontumorous Lung Tissues

Forty paired LUAD and adjacent nontumorous tissues were obtained from patients undergoing surgery at the First Affiliated Hospital of Henan University and Puyang Hospital of traditional Chinese medicine, China, between 2018 and 2020. This study was approved by the Ethics Committee of Medical School of Henan University, China. All methods in this study were performed following the approved guidelines. Written informed consent was obtained from each patient before sample collection.



Cell Culture and Stable Transfection of shRNA

All NSCLC cell lines (HCI-H1299 and A549), immortalized lung epithelial cell line BEAS-2B and HEK293T were obtained from the Cell Bank of Type Culture Collection of the Chinese Academy of Sciences (Shanghai, China). The cells were cultured in DMEM medium (Corning, USA) with 10% fetal bovine serum (Pan biotechnology, Germany) at 37°C and 5% CO2 (all cells were cultured under the same conditions) and were not passaged more than 25 times after thawing. Cells growing at an exponential rate were used for experiments. Cells were periodically evaluated to confirm Mycoplasma-negative status, and cell lines were authenticated by growth characteristics, examination of morphology and short tandem repeat analysis.

CCT6A in H1299 and A549 cells were stably knockdown by transduction with pre-made lentiviral short hairpin RNA (shRNA) (TranSheepBio, Shanghai, China). The shRNA vectors included TRCN0000062514 named as sh1CCT6A (target sequence: 5’- CGTGTCATTAGAGTATGAGAA-3’) and TRCN0000062515 named as sh2CCT6A (target sequence: 5’-CCAGAACATCTCTTCGTACTA-3’). The sequences of scramble control shRNA (shNC) were 5’- TTCTCCGAACGTGTCACGTAAT-3’. According to the manufacturer’s instruction, the recombinant lentiviral vector, envelope plasmid (pMD2.G) and packaging vector (psPAX2) were co-introduced into HEK293T cells through Lipofectamine 2000. After 48 h transduction, the culture supernatant was collected and filtered with 0.45μm filter, and then was used to infect H1299 and A549. The infected cells were screened by puromycin at 9.18 μmol/L. The efficiency of gene silencing was detected by Western blot analysis.



Colony Formation Assay and Wound-Healing Assay

Cell proliferation and migration were assessed by colony formation and wound-healing assay. Details of the relevant contents have been described previously (13)



Immunoblotting

Tissues or cells were lysed on ice in RIPA lysis buffer containing 500 mM NaCl, 50 mM Tris pH 8.0, 1mM EDTA, 1% NP-40 and 1×cocktail of protease inhibitors (Roche, Lewes, UK). Protein concentrations were quantified according to the manufacturer’s instructions (Pierce, Rockford, IL). Protein lysates were separated by SDS-PAGE and transferred to polyvinylidene fluoride membranes. Details of the relevant content have been described previously (13). Information of antibodies used was provided in Supplementary Table 1.



Analysis of Expression Profiles of lncRNAs, miRNAs and mRNAs in LUAD and Adjacent Nontumorous Tissues

Raw sequencing data of LUAD-related RNAs expression and complete clinical data of the corresponding patients were downloaded from the TCGA database (https://portal.gdc.cancer.gov/). After homogenizing the TCGA raw data using the trimmed mean of M-values (TMM) method, the expression level of RNA was converted to a log2 value. Then, the R package of edgeR was used to screen for differentially expressed lncRNAs, miRNAs and mRNAs in LUAD and adjacent nontumorous tissues. Statistical significance was defined as P<0.05 and absolute Log Fold Change ≥1. Heatmaps and volcano plots of differentially expressed RNAs (DERNAs) were drawn using ggplots and heatmap software packages.



Construction of a ceRNA Network in LUAD

The miRcod database (http://www.mircode.org/) was used to predict the interaction between differentially expressed lncRNA and miRNA (14). The mRNA targeted by differentially expressed miRNA were searched from the miRTarBase (http://mirtarbase.mbc.nctu.edu.tw/), miRDB (http://www.mirdb.org/), and TargetScan (http://www.targetscan.org/) databases using the Perl program (version:5.26.1) (15–17). A lncRNA-miRNA-mRNA ceRNA network based on the “ceRNA hypothesis” was established and visualized by Cytoscape software (http://cytoscape.org/).



Establishment and Validation of the Prognostic Signature Based on the ceRNA Network

The survival-related node genes in the ceRNA network were extracted by univariate Cox regression analysis with the threshold of Hazard Ratio ≠1 and P<0.05. To minimize overfitting, the R package “glmnet” was used to further extract prognostic genes for following multivariate Cox regression by a least absolute shrinkage and selection operator (LASSO) regression analysis. Then, the R package “caret” was used to randomly divide TCGA_LUAD patients into training and testing cohorts (18). A prognostic signature based on the ceRNA network was constructed in the training cohort by multivariate Cox regression (19). The prognostic gene signatures were shown as risk score=sum [gene expression×coefficient]. The risk score for each patient was calculated. We divided the LUAD patients into the high-risk and low-risk groups with the median risk scores as our cut-off. To verify the prognostic value of the above ceRNA-related genes signature, survival and ROC curve analyses were performed using the testing cohort and entire cohort as the validation set. Principal components analysis (PCA) was used to explore the distribution patterns of the different risk groups. A prognostic nomogram including risk scores and clinical features for predicting the likelihood of 1-, 3-, and 5-year OS was developed by R “rms” package. The calibration curves and C-index were used to evaluate the predictive accuracy of the nomogram. Finally, the mRNA expression levels of the prognostic signature genes were validated using Oncomine (http://www.oncomine.org/), TCGA and GSE32863 databases. The protein expression of levels was further verified by western blot analysis using 40 pairs of LUAD and adjacent nontumorous tissues.



Gene Set Enrichment Analysis

To investigate the potential biological pathways and processes of the ceRNA network-related genes signature, we conducted the KEGG pathway analysis through Gene Set Enrichment Analysis (GESA) for the training cohort, with FDR<0.05 as a threshold for the significant pathways.



Analysis of 22 Immune Cell Types’ Infiltration Patterns and Correlation Between the ceRNA Network-Associated Genes Signature and Biomarkers for Immunotherapy

The CIBERSORT algorithm was utilized to estimate the fraction of 22 immune cell types in the LUAD samples from gene expression data in the training cohort. Samples with a CIBERPORT output value of P<0.05 were considered to meet the conditions for further analysis. The difference of immune cells in the proportion between the high- and low-risk groups was analyzed by Wilcoxon rank sum test. Additionally, it is worth noting that immune checkpoints are biomarkers for selecting LUAD patients for immunotherapy. Therefore, in this study, we analyzed the correlation between the ceRNA network-associated genes signature and key immune checkpoints (PD-1, PD-L1, CTLA-4, LAG3, TIM-3, TIGIT, CD80, CD276, TNFSF4 and VTCN1) using the R package “lmma”.



Prediction of Chemotherapeutic Response Based on the ceRNA Network-Associated Genes Signature

Chemotherapy is one of the effective methods for treating advanced patients with LUAD. The clinical response of each LUAD patient in high- and low-risk groups to chemotherapy was estimated according to the Genomics of Drug Sensitivity in Cancer (GDSC) data. Nine commonly used chemotherapy drugs, cisplatin, docetaxel, doxorubicin, erlotinib, etoposide, gemcitabine, paclitaxel, vinorelbine and cytarabine, were selected for the chemotherapeutic response prediction through the ridge regression using the “pRRophetic” R package. The half-maximal inhibitory concentration (IC50) predicted of each TCGA_LUAD patient was used to assess differential chemotherapeutic response (20).



Statistical Analysis

SPSS21.0 (SPSS Inc., Chicago, IL, USA) and R software (version 3.6.0) were used for all statistical analyses. The difference between the two groups was assessed using the Student’s t-test. The continuous data are expressed as the mean ± standard deviation (SD). All statistical tests were two-tailed, and statistical significance was set at P<0.05.




Results


Differential Expression Analyses of lncRNAs, miRNAs, and mRNAs in LUAD

We analyzed the differential expression of lncRNA, miRNA, and mRNA in LUAD by R software package using TCGA database containing 497 LUAD and 54 paracancerous samples, with P<0.05 and absolute Log2 Fold Change of 1 as the threshold. A total of 214 lncRNA (51 down- and 163 upregulated), 198 miRNA (87 down- and 111 upregulated) and 2989 mRNA (1344 down- and 1645 upregulated) were identified between LUAD and adjacent nontumorous samples (Supplementary Table 2). The differentially expressed lncRNA, miRNA and mRNA distribution were visualized by volcano plots and heatmaps (Supplementary Figure 1).



Establishment of the ceRNA Network in LUAD

To explore the potential regulatory mechanism of ceRNA in LUAD, we tried to establish the ceRNA network for LUAD based on the ceRNA hypothesis (19). Using miRcode, miRTarBase, and miRDB databases, a total of interactions of 119 miRAN-mRNA pairs and 15 lncRNA-miRNA pairs were identified (Supplementary Table 3). Finally, a LUAD-specific lncRNA-miRNA-mRNA ceRNA network, consisting of 7 lncRNAs, 15 miRNAs, and 95 mRNAs, including 117 nodes and 134 edges, was constructed and visualized (Supplementary Figure 2).



Developing and Validation of the Prognostic Signature Based on the ceRNA Network

Because this ceRNA network constructed above is composed of many genes and their interactions, it isn’t easy to clarify its diagnostic and prognostic significance. Therefore, a univariate Cox regression analysis (Hazard Ratio ≠1, p<0.05) was performed to screen the node genes related to the overall survival (OS) of LUAD patients in the ceRNA network using the TCGA_LUAD database. The results showed that 24 node genes were significantly associated with the OS (Figure 1A and Supplementary Table 4). Subsequently, to reduce the complexity of the risk model, Lasso regression analysis was used to remove genes with relatively lower correlation, and 9 of the 24 prognostic genes were screened out (Figures 1B, C). Then, we randomly divided 462 TCGA_LUAD patients with survival data into training and testing cohorts using the R package “caret”. A prognostic signature model was developed in the training cohort based on multivariate Cox regression analysis (Supplementary Table 5). Then, four candidate signature genes were identified, namely, GPI, IL22RA1, CCT6A, and SPOCK1. Figures 1D, E presented the forest plots and heatmap of the four prognostic genes. Furthermore, a 4-gene signature-based risk score formula was constructed as Risk score=0.314∗GPI+0.127∗ IL22RA1+0.330∗CCT6A+0.104∗SPOCK1. According to the median risk scores, 232 LUAD patients in the training cohort were divided into high-risk and low-risk groups. As depicted in Figures 2A, B, the increase of risk score was related to the poor OS of patients with LUAD. Kaplan-Meier curve showed that OS decreased in patients in the high-risk group (Figure 2C). Time-dependent ROC analysis observed that compared with each of the above genes, the four-gene prognostic signature had larger AUC values (Figure 2D and Supplementary Figure 3). Moreover, principal component analysis (PCA) clearly identified a significantly different distribution between the two risk groups (Figure 2E).




Figure 1 | Identification of four significantly prognostic genes and their expression in LUAD. (A) Forest plot of node genes based on lncRNA-mediated ceRNA network by univariate Cox regression analysis. (B) LASSO coefficient patterns of the 24 node genes in TCGA_LUAD database. (C) LASSO regression with tenfold cross-validation obtained 9 prognostic genes using minimum lambda value. (D) Multivariate Cox regression analysis of 9 prognostic genes from LASSO regression analysis. (E) Heatmap of the prognostic signature genes expression profiles for TCGA_LUAD.






Figure 2 | Prognostic analysis of four-gene signature in the training cohort, testing cohort and entire cohort. (A, B) The distribution of risk score (A) and patient’s survival time (B) in the training cohort. (C, F, I) Kaplan-Meier survival analysis of the four-gene signature in the training cohort (C), testing cohort (F) and entire cohort (I), respectively. (D, G, J) Time-dependent ROC analysis of the four-gene signature in the training cohort (D), testing cohort (G) and entire cohort (J), respectively. (E, H, K) Principal components analysis (PCA) of whole gene expression data between low- and high-risk groups in the training cohort (E), testing cohort (H) and entire cohort (K), respectively. ROC, receive operating characteristic; AUC, area under curve.



Finally, to verify the predictive value of the four-gene signature, we used the testing cohort (n=230) and the entire cohort (n=462) as the validation set to evaluate the findings from the training cohort. Similar to the results of the training cohort, the KM curves of the two validation sets demonstrated that patients in the low-risk group exhibited better OS (Figures 2F, I). The AUC of the four-gene signature was 0.633, 0.635, 0.665, 0.673, 0.672 and 0.668 at the 1-year, 3-year, and 5-year timepoints in the testing cohort and the entire cohort, respectively (Figures 2G, J). In addition, PCA also showed similar results as the training cohort (Figures 2H, K).



Verification of the Expression of Prognostic Signature Genes Between LUAD and Adjacent Nonumorous Lung Tissues

We performed external validation of four prognostic signature genes. The Oncomine database analysis observed that compared to normal lung tissues, the expression levels of GPI, IL22RA1, CCT6A, and SPOCK1 mRNA in LUAD tissues were significantly higher (Figure 3A). Moreover, we further confirmed mRNA expression of these four genes in LUAD from TCGA’ paired samples and GSE32863 databases (Figures 3B, C). Additionally, we investigated the protein expression levels of these four genes in 40 pairs of LUAD tissues and adjacent nontumorous tissues by Western blot analysis. The results showed that GPI, IL22RA1, CCT6A, and SPOCK1 expression in the tumor tissues (T) was markedly higher than in the control tissues (N) (n=40, P<0.05; Figures 3D, E and Supplementary Figure 4).




Figure 3 | Validation of the gene expression contained in prognostic signature. (A) Expression levels of GPI, IL22RA1, CCT6A and SPOCK1 in each study based on the Oncomine database. (B) The mRNA expression levels of GPI, IL22RA1, CCT6A and SPOCK1were evaluated using 52 matched LUAD samples from the TCGA_LUAD database. (C) The mRNA expression levels of GPI, IL22RA1, CCT6A and SPOCK1were estimated using GSE32863 dataset. (D, E) Representative Western blotting analysis of the protein expression levels of GPI, IL22RA1, CCT6A and SPOCK1 in 40 paired LUAD tissues and adjacent nontumor tissues (D). Taking GAPDH as the loading control, the quantitative results of grayscale scanning were displayed (E).





Performance Comparison of the ceRNA Network-Related Genes Signature With Other Reported Gene Signatures in Prognosis Evaluation

To further evaluate the prediction performance of the ceRNA network-related genes signature, we selected four other published gene signatures obtained from Li’s (21), Mo’s (22), Sun’s (23) and Zhang’s (24) for comparison. The risk score of each patient was calculated according to the corresponding genes in these four models using the same method (multivariable Cox regression analysis) in the training cohort and then evaluated the time-dependent ROC. Figure 2D and Figures 4A–D revealed that the AUC of the ceRNA network-related gene signature for 5-year OS was 0.678, which was significantly larger than that of Li’s (0.616), Mo’s (0.576), Sun’s (0.603) and Zhang’s (0.622) gene signatures. The C-index of all prognostic signatures calculated by the restricted mean survival (RMS) package showed that our model had the highest C-index with 0.668 (Figure 4E). Moreover, the RMS time curve of all five prognostic models also demonstrated that our 4-gene signature performed best at a time period greater than 8 years (Figure 4F). These results suggested that the ceRNA network-related genes signature might provide better prognosis evaluation performance for LUAD.




Figure 4 | Comparison of the four-gene prognostic signature risk model with other reported risk models. (A–D) Time-dependent ROC analysis of four other published gene signatures. (E) Concordance index (C-index) of five prognostic risk models. Our prognostic risk model (red histogram) has the highest C-index. (F) Restricted mean survival (RMS) time curve of all five risk models.





Construction and Validation of a Predictive Nomogram Based on the Risk Signature

Univariate Cox regression analysis showed that tumor stage (HR=1.706, 95% CI=1.353-2.150, P<0.001), recurrence (HR=3.133, 95% CI=1.908-5.143, P<0.001), and the risk score (HR=2.144, 95% CI=1.563-2.941, P<0.001) were closely correlated with OS in training cohort (Figure 5A). Multivariate Cox regression analysis further confirmed the above results (Figure 5B). Therefore, these three factors were combined to construct a compound nomogram for predicting the OS of patients with LUAD at 1-, 3- and 5-year (Figure 5C). The calibration plot of the nomogram for predicting 3-year OS of LUAD patients in the training cohort showed great consistency between actual observation and nomogram prediction (Figure 5D), and the nomogram model’s C-index for prediction of OS was 0.778 (95% CI=0.728-0.829, P=1.97e-27). Moreover, the AUC value of the nomogram for predicting 3-year OS was larger than that of the stage, recurrence and risk score, suggesting that using this nomogram to predict OS might bring more net benefit (Figure 5E). Finally, we further assessed the predictive value of the four-gene prognostic nomogram using the testing cohort and the entire cohort. The calibration plots (Figures 5F, H) and the time-dependent ROC curves of risk score (Figures 5G, I) were consistent with the results derived from the training set.




Figure 5 | Correlation between indicated variables and prognosis of LUAD patients. (A, B) Analyses of correlations between the indicated variables and overall survival of LUAD patients by univariate and multivariate Cox regression, respectively. (C) Nomogram for predicting the 1-, 3-, and 5-year overall survival of LUAD patients. (D, F, H) The calibration plots for predicting 3-year survival in the training cohort (D), testing cohort (F) and entire cohort (H), respectively. (E, G, I) The time-dependent ROC curves of the stage, recurrence, risk score and nomogram in 3-year OS prediction in the training cohort (E), testing cohort (G) and entire cohort (I), respectively. OS, overall survival; ROC, receiver operating characteristic.





Functional Annotation of the Risk Signature

To further explore the potential biological pathways and processes related to the four-gene signature, we conducted gene set enrichment on samples within the training cohort by GSEA. We found that critical pathways associated with tumorigenesis, including cell cycle, DNA replication, P53 signaling pathway, proteasome, and spliceosome, were significantly enriched in the high-risk group (Figure 6A and Supplementary Table 6). Additionally, we investigated whether the risk model was related to the tumor immune microenvironment. We plotted the heatmap of 22 tumor-immune cell types, showing the distribution of these immune cells (Figure 6B). Then, Wilcoxon rank-sum test was used and revealed that high-risk LUAD patients had significantly higher proportions of T cells CD4 memory activated, NK cells resting, macrophages M0 and macrophages M1 and lower proportions of T cells CD4 memory resting, monocytes, and Mast cells resting (Figure 6C). Furthermore, we further analyzed the correlation between the risk groups and the expression of immune checkpoint molecules, including programmed death-1 (PD-1), programmed death-ligand 1 (PD-L1), cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), lymphocyte activation gene-3 (LAG3), T-cell immunoglobulin and mucin-domain containing-3 (TIM-3), T cell immunoreceptor with Ig and ITIM domains (TIGIT), CD80, CD276, tumor necrosis factor superfamily member 4 (TNFSF4), and V-set domain-containing T-cell activation inhibitor-1 (VTCN1). The results showed that compared with the low-risk group, the high-risk group had markedly higher expression levels of TNFSF4, CD274, PD-L1, and LAG3 (Figure 6D). Therefore, the heterogeneity of immune cell infiltrations and immune checkpoint molecules expression observed in these results may provide potential prognostic indicators and targets for immunotherapy in patients with LUAD.




Figure 6 | Functional analyses of the high- and low-risk groups. (A) Differences in biological functions by GSEA analysis. (B) Heatmap of the 22 immune cell types in high- and low-risk groups. (C) The fractions of 22 immune cell types estimated with CIBERSORT and the differences between low- and high-risk LUAD patients. (D) Differential expression analysis of immune checkpoint genes. *p < 0.05; **p < 0.01; ***p < 0.001.





Analysis of Chemotherapeutic Responses Between High- and Low-Risk Patients With LUAD

Besides immune checkpoint blockades therapy, chemotherapy is still an effective treatment for advanced LUAD patients. Thus, we attempted to investigate the response to the common chemotherapeutic drugs in low- and high-risk patients with LUAD in the entire cohort. The IC50 values of the high- and low-risk groups were calculated based on the GDSC data. The results demonstrated that high-risk LUAD patients showed increased sensitivity to cisplatin, docetaxel, doxorubicin, erlotinib, etoposide, gemcitabine, paclitaxel and Vinorelbine, while there was no significant difference in IC50 value of cytarabine between the high-risk group and low-risk group, which indicated that the four-gene risk model might act as a potential predictor for chemosensitivity (Figure 7).




Figure 7 | Differential chemotherapeutic responses in low- and high-risk LUAD patients (A–I). The IC50 values of the high- and low-risk groups were calculated based on the GDSC (Genomics of Drug Sensitivity in Cancer) data (https://www.cancerrxgene.org/). IC50, half maximal inhibitory concentration.





GPI, IL22RA1, CCT6A and SPOCK1, Which Constitute the Risk Signature, Affect LUAD Prognosis in Association With Activation of PI3K/AKT Signaling Pathway

Finally, to obtain more mechanistic insights into the impact of GPI, IL22RA1, CCT6A and SPOCK1 on the progression of LUAD, Gene Set Enrichment Analysis (GESA) was performed using TACG_LUAD database to compare the high expression and low expression of GPI, IL22RA1, CCT6A and SPOCK1, respectively. We observed that many important regulatory genes involved in the PI3K-AKT-mTOR signaling pathway, which plays an important role in regulating various oncogenic processes (25), were markedly enriched in cells with high GPI, IL22RA1, CCT6A and SPOCK1 expression (Figure 8A). In view of the highest normalized enrichment score (NES) of CCT6A (NES) (NES=2.21, P= 6.19e-4), we mainly chose CCT6A to explore the relevant mechanism. We first examined the expression level of CCT6A in BEAS-2B, A549 and H1299 cell lines by Western blot (Figure 8B). Due to the high expression level of CCT6A in two non-small cell lung cancer (NSCLC) cell lines, A549 and H1299, we used short hairpin RNA (shRNA) targeting CCT6A to silence CCT6A. The results showed that CCT6A knockdown substantially reduced proliferation and migration of A549 and H1299 (Figures 8C–F). Moreover, Western blot analysis revealed that CCT6A silencing significantly inhibited epithelial-mesenchymal transition (EMT) of A549 and H1299, evidenced by a marked reduction in the protein levels of N-cadherin and marked increase of E-cadherin. Notably, we also observed that CCT6A knockdown markedly decreased the protein levels of p-PI3K and p-AKT (Figure 8G), suggesting that CCT6A may affect the EMT of LUAD cells by activating PI3K/AKT pathway and then affect the malignant of LUAD and prognosis of LUAD patients. In the future, we will continue to focus on the specific mechanism of GPI, IL22RA1 and SPOCK1 in LUAD.




Figure 8 | To explore the potential mechanism of the risk model-related genes GPI, IL22RA1, CCT6A and SPOCK1 on the progression of LUAD. (A) GSEA analysis was conducted using TCGA_LUAD database to compare the high expression and low expression of GPI, IL22RA1, CCT6A and SPOCK1, respectively. (B) Western blotting analysis of the protein expression level of CCT6A in BEAS-2B, A549 and H1299 cells. (C, D) The effect of CCT6A silencing on colony formation in A549 and H1299. (E, F) The effect of CCT6A knockdown on cell migration was analyzed by wound healing assay in A549 and H1299 (scale bar, 100μm). (G) Western blot analysis of indicated protein expression level. GSEA, Gene Set Enrichment Analysis.






Discussion

The ceRNA networks consist of protein-coding mRNAs and non-coding RNAs (ncRNAs), such as miRNAs and lncRNAs (19). After Salmena et al. first proposed the ceRNA hypothesis, increasing investigations regarding ceRNAs have documented that dysregulated ceRNAs play critical roles in cancer initiation and progression. Nevertheless, an extensive analysis of the prognostic value and clinical significance of node genes based on lncRNA-mediated ceRNA network in LUAD samples has not been reported. The present study is the first systematic analysis of the expression levels of 117 node genes of the ceRNA network in LUAD. Then, according to the multi-step selection, a prognostic risk model significantly associated with the survival rate, chemotherapeutic responses and tumor immune microenvironment of LUAD patients was constructed based on four the ceRNA network-related candidate signature genes.

Given the functional interdependence between the different RNA molecules, in recent years, the focus of cancer pathology research has shifted from individual RNAs carrying cancer-related dysregulation to network-based potential mechanisms and clinical significance, such as the lncRNA-mediated ceRNA network hypothesis. In 2018, Fang et al. reported a lncRNA-miRNA-mRNA network, which was demonstrated to be strongly associated with certain clinical characteristics of human head and neck squamous cell carcinoma (26); In addition, Liu et al. comprehensively investigated the gain and loss of ceRNAs in prostate cancer (PC) and proposed its role in identifying potential biomarkers and treatment options for PC (27). In this study, we used bioinformatics analysis to identify the ceRNA networks, which could regulate the survival and prognosis of LUAD patients through 95 protein-coding mRNAs, 7 lncRNAs, and 15 miRNAs. In the ceRNA networks, 24 node genes, such as CPS1, DEPDC1, MYBL2, MYBL2, LOXL2, etc., were significantly associated with overall survival in LUAD. According to the hypergeometric testing and correlation analysis, the results of the ceRNAs network revealed that GPI, IL22RA1, CCT6A, and SPOCK1 were prognostic signature genes used to construct the prognostic risk model. Subsequently, the correlation analysis between the risk model and the survival rate, immune cell infiltration, the expression of immune checkpoint genes and chemotherapeutic responses of LUAD patients discovered that this four-gene signature could provide a new method for evaluating LUAD patients, guiding prognosis prediction and the choice of immunotherapy and chemotherapy.

Prior work has reported these model genes’ biological function and expression patterns. GPI (glucose-6-phosphate isomerase) is a housekeeping cytoplasmic enzyme. The expression of GPI is induced by HIF-1 (28, 29) and c-Myc (30) and is frequently up-regulated in many types of cancer (31). GPI catalyzes the interconversion between glucose-6-phosphate and fructose-6-phosphate and plays a vital role in glycolytic and gluconeogenic pathways. Besides its role as a glycolytic enzyme, mammalian GPI can function as a tumor-secreted cytokine and an angiogenic factor that stimulates endothelial cell motility (32). IL22RA1 (interleukin-22 receptor subunit α-1) is a component of IL20, IL22 and IL24 receptors. The IL22 receptor formed by IL22RA1 and IL10RB realizes IL22 signal to activate Signal Transducers and Activators of Transcription (STATs), nuclear factor kappa B (NF-κB), mitogen-activated protein kinase (MAPK) and phosphatidylinositide 3-kinase-Akt mammalian target of rapamycin (PI3K-Akt-mTOR) pathways (33, 34), modulates a variety of biological properties closely related to tumorigenesis, development and metastasis, such as inflammation, mitosis, proliferation, survival, apoptosis and angiogenesis (35). CCT6A (chaperonin containing TCP1 subunit 6A) is one of eight subunits of the critical molecular chaperone, T-complex protein 1 Ring complex (TRiC). It is estimated that TRiC can directly help fold up to 10% of cytosolic proteins (36, 37) and provide the unique ability to fold certain proteins that simpler chaperone systems cannot fold. This strict requirement of TRiC is essential for folding critical proteins involved in tumorigeneses, such as tumor suppressor Von Hippel-Lindau (VHL) (38), p53 (39) and the pro-oncogenic protein STAT3 (40). Recently, Hallal et al. observed that the expression level of CCT6A was markedly increased in glioblastoma patients, and its expression was associated with EGFR, speculating that CCT6A might be a potential biomarker of glioblastoma with prognostic significance (41). SPOCK1 (SPARC/osteonectin, cwcv and kazal-like domains proteoglycan 1), also referred to as testincan-1, is a crucial regulator of the dynamic balance of extracellular matrix (ECM) and mediates epithelial-to-mesenchymal transition (EMT) in cancer cells. It can activate many molecular signaling pathways, such as Wnt/β-catenin (42), EMT process (43), and mTOR/S6K (44) signaling pathways, leading to ECM remodeling, cancer cell proliferation and invasion, but inhibiting cell apoptosis. Moreover, Miao et al. found that lung cancer patients with high SPOCK1 expression have decreased life expectancy compared to those with low expression (42). Importantly, we verified that GPI, IL22RA1, CCT6A, and SPOCK1 were overexpressed in 40 pairs of LUAD tissues and adjacent normal lung tissues by Western blotting analysis.

The PI3K/AKT signaling pathway, which plays a crucial role in regulating cell growth, differentiation, apoptosis and metastasis, is frequently activated in multiple human cancer, including lung adenocarcinoma (45, 46). Moreover, recent studies have demonstrated that activation of the PI3K/AKT signaling pathway can induce EMT, which is usually considered to be an activator of cancer progression (47, 48). In this study, we found that the high expression of GPI, CCT6A, IL22RA1 and SPOCK1 was closely related to the activation of PI3K/AKT pathway through GSEA analysis, while CCT6A knockdown caused reduced phosphorylation of PI3K/AKT, increased expression of E-cadherin and decreased N-cadherin. We speculated that PI3K/AKT signaling pathway activation might be a critical process involved in the progression of GPI, CCT6A, IL22RA1 and SPOCK1-overexpression tumors. Our findings indicate that these genes may play critical roles in the progression of LUAD. Therefore, it is necessary to further study the biological functions of these four genes in LUAD. Our current research is mainly based on public databases and limited clinical tissue specimens of LUAD. In the future, additional studies employing retrospective design are required to verify the robustness and reproducibility of this four-gene signature.

In conclusion, An LUAD-specific lncRNA-mediated ceRNA network was constructed by bioinformatics methods. Then, a four-gene prognostic signature was developed based on node genes of this network, demonstrating high performance in predicting the survival and chemotherapeutic responses of LUAD patients. Finally, independent prognostic factors were further analyzed and combined into a well-executed nomogram that showed strong potential for clinical applications.
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Background

The prognosis of non-small cell lung cancer (NSCLC) patients with central nervous system (CNS) metastasis is poor. The treatment for CNS metastasis could prolong the overall survival of NSCLC patients. We aimed to investigate the prognostic factors of Chinese NSCLC patients with CNS metastasis and the survival benefits of various treatments for CNS metastasis in NSCLC patients with or without driver genes.



Methods

Based on the CAPTRA-Lung database, NSCLC patients with CNS metastasis admitted at the Peking Union Medical College Hospital between January 2010 and October 2018 were enrolled in the study. The prognostic factors were analyzed using univariate and multivariate Cox regression analyses.



Results

Overall, 418 patients were enrolled in the study. A total of 206 patients (49.3%) had CNS metastasis with positive driver genes, while 97 patients (23.2%) had negative driver genes. The median survival time after CNS metastasis was 20.8 months. In the multivariable analysis, an Eastern Cooperative Oncology Group performance status of ≥2 (hazard ratio [HR]: 1.750, 95% confidence interval [CI]: 1.184-2.588, P=0.005), number of CNS metastases ≥5 (HR: 1.448, 95% CI: 1.084 -1.934, P=0.012), and CNS metastasis developed during treatment (HR: 1.619, 95% CI: 1.232-2.129, P=0.001) were independent risk factors for poor survival. Lung adenocarcinoma (HR: 0.490, 95% CI: 0.279-0.861, P=0.013) and driver gene positivity (HR: 0.464, 95% CI: 0.302-0.715, P=0.001) were independent predictors of prolonged survival. Radiotherapy for CNS metastasis showed a survival benefit in NSCLC patients in the entire groups (HR: 0.472, 95% CI: 0.360-0.619, P <0.001), and in patients with positive driver genes.



Conclusion

Performance status, number of CNS metastases, timing of CNS metastasis, histological subtype, and driver gene status are prognostic factors for NSCLC patients with CNS metastasis. Furthermore, radiotherapy improved the survival in NSCLC patients with CNS metastasis.





Keywords: central nervous system metastasis, non-small-cell lung cancer, cohort study, prognostic factors, treatment outcome



Introduction

Lung cancer is the leading cause of cancer-related deaths worldwide (1). Non-small cell lung cancer (NSCLC) accounts for 85% of all lung cancers. The central nervous system (CNS) is one of the most common sites of distant metastasis from advanced NSCLC (2). Due to the severe clinical symptoms and the serious effects on the quality of life of these patients, CNS metastasis serves as one of the main causes of death in patients with NSCLC, and is drawing increasing clinical and research attention in recent years. CNS metastasis includes brain metastasis (BM), leptomeningeal metastasis (LM), intramedullary spinal cord metastasis (ISCM), etc. (2, 3). BM is the most common type of CNS metastasis in NSCLC patients and is found in up to 40–50% of advanced NSCLC patients during their disease course. LM is defined as one of the most devastating events of advanced NSCLC, with a median overall survival (OS) of 3–11 months (4, 5). ISCM is a rare type of metastasis, with severe disabilities and poor prognosis (6), and should also be considered in clinical practice.

In NSCLC patients with CNS metastasis, the known disease-related prognostic factors include the number of BM, age, Karnofsky performance score (KPS), extracranial metastases (ECM), and driver gene status (7–9). Local and systemic treatments are used for managing NSCLC patients with CNS metastasis. The appropriate treatment for CNS metastasis could relieve neurological symptoms, improve quality of life, and prolong OS (2, 10). Owing to the development of small-molecule targeted drugs and immune checkpoint inhibitors (ICIs), as well as new surgical techniques and radiotherapy techniques, the systemic treatment and local treatment paradigms for CNS metastasis from NSCLC with or without driver genes are different. Therefore, careful evaluation of the specific metastatic sites and the severity of CNS metastasis as well as primary tumors is important for the treatment and prognosis of patients.

In order to investigate the prognostic factors of Chinese NSCLC patients with CNS metastasis and to evaluate the survival benefits of various treatments for CNS metastasis in NSCLC patients with or without driver genes, we summarized a single-center experience based on the CAPTRA-Lung database.



Materials and Methods


Patients

Patients with NSCLC complicated by CNS metastases were enrolled in this study. Patients (1) whose NSCLC was diagnosed by pathological or cytological examination; (2) whose CNS metastases were diagnosed by radiological imaging and/or confirmed by pathological examination; (3) with complete data on the diagnosis and treatment of NSCLC, especially those related to CNS metastasis, were included in the study. Meanwhile, patients (1) who were diagnosed with small cell lung cancer based on the results of pathological examination, (2) whose primary malignancy does not originate from the lungs, (3) who were not clearly diagnosed with CNS metastasis, and (4) with incomplete clinical information, were excluded. The keywords “NSCLC” and “central nervous metastatic cancer” were used to search the electronic medical record system from January 1st, 2010, to October 31st, 2018, in Peking Union Medical College Hospital. A total of 716 patients were retrieved from the electronic medical record system. Seventy-two patients did not meet the inclusion criteria, and 177 patients without detailed information were excluded. The data of 467 patients were collected using the CAPTRA-Lung database. Data integrity analysis, data confirmation, and supplementation were completed. Finally, 49 patients without complete CNS metastasis information were excluded, and 418 patients were enrolled in this study. This study was approved by the Ethics Committee of Peking Union Medical College Hospital.



Methods

Patients’ medical records were reviewed, and the following information were collected: sex, age, past medical history, history of malignancies, family history of malignancies, diagnosis and staging of lung cancer, sites of metastasis, pathology-related information, driver gene mutation status, tumor treatment, and prognosis. The NSCLC driver gene mutation information was obtained from the medical records. The EGFR mutations were determined using ARMS or next-generation sequencing (NGS); ALK rearrangement was determined using immunohistochemistry, fluorescent in situ hybridization (FISH), or NGS method; the ROS-1 rearrangement was determined using FISH or NGS method; and the other genetic alterations were evaluated using the NGS method. Positive driver genes are defined as positive driver genes that can be treated by available targeted therapy, including EGFR mutation, ALK rearrangement, ROS-1 rearrangement, RET rearrangement, c-MET amplification or c-MET exon14 skipping, etc. Patients with positive driver genes were enrolled in positive driver genes group, but patients with KRAS mutations were not included in the positive driver genes group as there was no specific targeted therapy for KRAS mutation at the time of the study. Patients with negative EGFR mutation and negative ALK rearrangement, and without identified positive driver genes, were included in the negative driver genes group. Driver genes status unknown patients were included in the driver genes status unknown group.

Information related to patients with CNS metastasis was collected, including symptoms of CNS metastasis, time of first CNS metastasis diagnosis, site of CNS metastasis, number of CNS metastatic foci, and treatment for CNS metastasis. The time of the first diagnosis of CNS metastasis was defined as the date when CNS metastasis was initially detected by enhanced magnetic resonance imaging (MRI) or computed tomography (CT) imaging. If the patient had LM without BM, the time of the first diagnosis was defined as the data when LM was initially identified by enhanced MRI or cerebrospinal fluid cytology. CNS symptoms were collected at the time of the first diagnosis of CNS metastases. The CNS metastasis type is determined according to the CNS metastasis sites involved (BM, LM, ISCM, etc.) that occurred throughout the course of the disease. The number of CNS metastatic lesions was calculated according to the CNS metastatic lesions shown on imaging at the time of the first diagnosis of CNS metastasis. Since LM was diffusely spread in the subarachnoid space, all patients with LM were documented as having ≥5 lesions. Systemic antitumor therapy for CNS metastasis includes targeted therapy, chemotherapy, antiangiogenesis therapy, and immunotherapy. Patients with EGFR-sensitive mutations received first-line targeted therapy, including gefitinib, erlotinib, and icotinib, while some patients were received osimertinib as a second-line treatment. Patients with ALK rearrangement received targeted therapy, including crizotinib, ceritinib, and alectinib. The antiangiogenesis therapy consisted mainly of bevacizumab. CNS metastasis-related local antitumor therapy includes surgery for BM and radiotherapy. Whole brain radiotherapy (WBRT) and stereotactic radiotherapy (SRT) were all recorded as CNS radiotherapy.



Statistical Analysis

Patient registration and standardized data collection were performed using the CAPTRA-Lung database. Data integrity analysis of the enrolled patients was performed, and the missing data were supplemented by careful follow-up, with the last follow-up conducted on September 20th, 2019. Finally, complete data were exported from the CAPTRA-Lung database for analysis.

OS is defined as the time from the first diagnosis of CNS metastasis until death or the last follow-up. If the patient was alive or lost to follow-up, OS was calculated based on the time of the patient’s last visit and was indicated as censored data. Categorical variables were expressed as numbers and/or percentages. The chi-square test was used to compare the differences between the groups. Continuous variables were expressed as average ± standard error. Survival data were analyzed using the Kaplan–Meier method. The OS of patients from different subgroups was compared using the log-rank test. Multivariate Cox regression analysis was used to analyze the factors influencing the prognosis. SPSS 17.0 statistical software (SPSS Inc., Chicago, USA) was used to perform all statistical analyses and GraphPad Prism (GraphPad Software, La Jolla, CA, USA) was used for statistical graphic drafting. A P value ≤0.05 was considered statistically significant.




Results


Demographic Information

A total of 418 patients were enrolled in this study; their baseline information are listed in Table 1. Fifty-five patients were initially diagnosed with stage I–III NSCLC, of whom 53 underwent surgery and 2 had concurrent radiochemotherapy. A total of 363 patients initially diagnosed with stage IIIB or IV NSCLC were not candidates for resection or were not suitable for radiotherapy. The histopathological distribution was as follows: 362 patients had lung adenocarcinoma (LUAD) (86.6%), 25 had squamous cell lung carcinoma (LUSC) (6.0%), and 31 (7.4%) had other types of malignancy. Of all patients with CNS metastasis, 206 (49.3%) harbored a positive driver gene. EGFR mutations, ALK rearrangement mutations, and ROS-1 rearrange mutations were detected in 179 patients (42.8%), 27 patients (6.5%), and 1 patient, respectively. Among them, one patient had a combination of EGFR and ALK fusion gene mutations, while another patient had RET rearrangement combined with EGFR mutation. A total of 97 patients (23.2%) had negative driver genes. The remaining 115 patients (27.5%) had unknown driver gene status.


Table 1 | Clinical features of NSCLC patients with CNS metastases.





CNS Metastasis and Treatment

A total of 276 (66.0%) patients had CNS metastasis at the time of lung cancer diagnosis. A total of 142 patients (34.0%) were found to have CNS metastasis at treatment follow-up. The median time from the initial diagnosis of lung cancer to the time of CNS metastasis detection was 12.3 months (range: 1.2 months–13.5 years). A total of 222 (53.1%) patients were asymptomatic at time of CNS metastasis detection by routine imaging examination. A total of 196 (46.9%) patients were found to have CNS metastasis due to the presence of neurological symptoms. The most common symptoms included headache (95/196, 48.5%), dizziness (70/196, 35.7%), muscle weakness (38/196, 19.4%), nausea (38/196, 19.4%), projectile vomiting (34/196, 17.3%), unstable walking (25/196, 12.8%), blurred vision (19/196, 9.7%), and sensory disorder (16/196, 8.1%).

Moreover, 394 (94.3%) and 67 (16.0%) patients had BM and LM, respectively. Forty-three (10.3%) patients had concurrent BM and LM. One patient (0.2%) had concurrent BM and ISCM. Most patients (79.1%,53/67) with LM developed definite neurological symptoms, including headache (56.7%, 38/67), dizziness (35.8%, 24/67), ejective vomiting (34.3%, 23/67), blurred vision (14.9%, 10/67), etc.

A total of 262 (62.7%) patients received targeted therapy, 232 (55.5%) received chemotherapy, 4 (1.0%) received immunotherapy, and 31 (7.4%) received antitumor angiogenesis therapy. Local treatment was performed in 197 patients (47.1%), including 44 patients (10.5%) who underwent neurosurgery (14 of whom received CNS radiotherapy) and 167 patients (40.0%) who received CNS radiotherapy. Patients who underwent neurosurgery had more neurological symptoms than those treated with radiotherapy (38/44 [86.4%] vs. 95/167 [56.9%], P<0.001). However, the number of CNS metastases less than 5 in the neurosurgery group was 36 patients (36/44, 81.8%), while that in the CNS radiotherapy group was 58 patients (58/167, 34.7%), with significant difference (P<0.001).



Driver Genes Status and Clinical Characteristics of CNS Metastasis

We further analyzed the clinical characteristics of the three groups of patients with positive driver genes, negative driver genes, and driver genes status unknown (Table 2). Patients with positive driver genes were more likely to have LM (positive driver genes: 24.3% vs. negative driver genes: 9.3%, P=0.002) and had more CNS lesions (the number of CNS metastases ≥5: positive driver gene 58.3% vs. negative driver gene 42.3%, P<0.001). Moreover, patients with positive driver genes had a higher percentage of developing metastasis during treatment (positive driver gene: 38.3% vs. negative driver gene: 20.6%; P=0.002). For patients with different driver gene status, the proportion of patients receiving local treatment, including brain radiation or brain surgery, was comparable. From the systemic treatment aspect, almost all the patients with positive driver genes received targeted therapy (positive driver gene: 98.5% vs. negative driver gene: 24.7%, P<0.001); a lesser proportion of patients with positive driver genes received chemotherapy compared with that of patients with negative driver genes (positive driver gene 44.2% vs. negative driver gene 75.3%, P<0.001).


Table 2 | Clinical characteristics of NSCLC patients with positive driver genes, negative driver genes, and unknown driver genes status.





Survival Outcomes

The median OS of the whole group was 20.8 months (Figure 1A). Univariate analysis was performed based on the patient population (Figures 1B–K). Man (women: 25.6 months vs. men: 14.5 months, p<0.001, Figure 1C), smokers (non-smoker: 23.5 months vs. smoker: 13.4 months vs. unknown: 29.2 months, P<0.001, Figure 1D), those with ECOG score ≥2 (ECOG score 0–1: 22.4 months vs. ECOG≥2: 11.6 months, P=0.003, Figure 1F), and those with ≥5 CNS metastases (<5 CNS metastases: 25.9 months vs. ≥5 CNS metastases: 17.5 months vs. unknown: 25.5 months, P=0.023, Figure 1J) had a shorter OS. LUAD patients had longer survival (LUSC: 9.8 months vs. LUAD: 21.6 months vs. other subtype 17.3 months P=0.026, Figure 1G). Patients with positive driver genes had longer OS (negative driver gene: 11.0 months vs. positive driver gene: 25.9 months vs. driver genes status unknown: 17.9months, P<0.001, Figure 1H). In terms of treatment (Figures 2A–F), patients who received targeted therapy had longer OS (no targeted therapy: 13.1 months vs. targeted therapy: 25.2 months, P<0.001, Figure 2A), and patients receiving radiotherapy had longer OS (no radiotherapy: 15.7 months vs radiotherapy: 25.7 months, P<0.001, Figure 2E). However, the OS of patients with chemotherapy was poor (no chemotherapy: 25.6 months vs. chemotherapy: 16.2 months, P=0.013, Figure 2B). Patients receiving antiangiogenesis therapy showed a tendency to have prolonged OS (no antiangiogenesis therapy: 20.5 month vs. antiangiogenesis therapy: 25.2months, P=0.146, Figure 2C), without significant difference. Multivariate analysis (Figure 3) showed that an EOCG score ≥2 (hazard ratio [HR]: 1.75, 95% confidence interval [CI]: 1.184–2.588, P=0.005), number of CNS metastases ≥5 (HR: 1.448, 95% CI: 1.084 -1.934, P=0.012), and CNS metastasis that developed during treatment (HR: 1.619, 95% CI: 1.232–2.129, P=0.001) were independent risk factors for poor prognosis. Patients with LUAD (HR: 0.490, 95% CI: 0.279–0.861, P=0.013) and driver gene positivity (HR: 0.464, 95% CI: 0.302–0.715, P=0.001) were independent predictors of prolonged survival. Radiotherapy for CNS metastasis showed a survival benefit in patients with NSCLC (HR: 0.472, 95% CI: 0.360–0.619, P<0.001).




Figure 1 | Kaplan–Meier curve showing OS since CNS metastasis developed based on different factors for NSCLC patients. (A) The median OS of NSCLC patients with CNS metastasis. The median OS since CNS metastasis developed (B) in NSCLC patients of age < 70 group vs. age≥70 group, (C) in female patients vs. male patients, (D) in NSCLC patients with different smoking status (non-smoker, smoker, and unknown), (E) in NSCLC patients without neurological symptoms vs. with neurological symptoms, (F) in NSCLC patients of ECOG 0-1 vs. ECOG ≥ 2, (G) in NSCLC patients of different histology subtype (LUSC, LUAD and unknown), (H) in NSCLC patients with different driver gene status (negative driver gene, positive driver gene, and unknown), (I) in NSCLC patients with non-LM vs. with LM, (J) in NSCLC patients with CNS metastasis number <5 vs. CNS metastasis number≥5 vs. unknown, and (K) in NSCLC patients with CNS metastasis developed during treatment vs. treatment naïve. CNS, central nervous system; ECOG, Eastern Cooperative Oncology Group; LM, leptomeningeal metastasis; LUAD, lung adenocarcinoma; LUSC, squamous cell lung carcinoma; NSCLC, non-small cell lung cancer; OS, overall survival.






Figure 2 | Kaplan-Meier curve illustrating OS since CNS metastasis in NSCLC patients with various treatments: (A) with or without target therapy, (B) with or without chemotherapy, (C) with or without antiangiogensis therapy, (D) with or without neurosurgery, (E) with or without radiotherapy in all NSCLC patients with CNS metastasis, and (F) with or without radiotherapy in positive driver genes NSCLC patients with CNS metastasis. OS, overall survival; CNS, central nervous system; NSCLC, non-small cell lung cancer.






Figure 3 | Multivariate analysis Cox proportional hazards for OS in NSCLC patients with CNS metastasis. CNS, central nervous system; ECOG, Eastern Cooperative Oncology Group; LM, leptomeningeal metastasis; LUAD, lung adenocarcinoma; LUSC, squamous cell lung carcinoma.



For patients with positive driver genes (Figure 4), male patients (HR: 1.824, 95% CI: 1.077–3.089, P=0.025), patients with an ECOG score ≥2 (HR: 2.371, 95% CI: 1.375–4.087, P=0.002), and patients with CNS metastasis developed during follow-up had a poor prognosis (HR: 1.646, 95% CI: 1.121–2.418, P=0.011). Meanwhile, patients who received radiotherapy had a good prognosis (HR: 0.490, 95% CI: 0.335–0.715, P<0.001).




Figure 4 | Multivariate analysis Cox proportional hazards for OS in NSCLC patients with CNS metastasis of positive driver genes group. ALK, anaplastic lymphoma kinase; CNS, central nervous system; ECOG, Eastern Cooperative Oncology Group; EGFR, epidermal growth factor receptor; LM, leptomeningeal metastasis; LUAD, lung adenocarcinoma; LUSC, squamous cell lung carcinoma.



Results of the multivariate analysis showed that for patients with negative driver genes (Figure 5), those aged ≥70 years (HR: 2.863, 95% CI: 1.404-5.839], P=0.004) and with an ECOG score ≥2 (HR: 2.378, 95% CI: 1.045-5.412, P=0.039) had a poor prognosis, and patients with CNS metastasis during treatment (HR: 2.647, 95% CI: 1.344–5.215] P=0.005) had a poor prognosis as well. Patients with LUAD (HR: 0.366, 95% CI: 0.122–0.927, P=0.035) were independent predictors of prolonged survival. The effect of the treatment appeared to be insignificant.




Figure 5 | Multivariate analysis Cox proportional hazards for OS in NSCLC patients with CNS metastasis of negative driver genes group. CNS, central nervous system; ECOG, Eastern Cooperative Oncology Group; LM, leptomeningeal metastasis; LUAD, lung adenocarcinoma; LUSC, squamous cell lung carcinoma.






Discussion

This study summarized and analyzed the clinical characteristics of patients with CNS metastasis of NSCLC in a Chinese single-center hospital. Our study indicates that: (1) 49.3% of patients with NSCLC with positive driver genes were more likely to develop multiple CNS metastases and LM; (2) EOCG score ≥2, metastasis ≥5, and CNS metastasis that developed during treatment were independent risk factors for poor prognosis, while lung adenocarcinoma and positive driver genes were independent predictors of long-term survival; and (3) patients who received radiotherapy had longer survival.

Many studies have analyzed the prognostic factors of CNS metastasis in patients with NSCLC. The Diagnosis-Specific Graded Prognostic Assessment (DS-GPA) score (7) was used to assess the disease-specific grading prognosis of tumor patients with BM, and KPS, age, ECM, and number of BM are the key prognostic factors included in the lung cancer GPA scoring criteria. EGFR or ALK gene status is included in the amendment of lung cancer score, lung-molGPA (8, 11). For patients with LM, in Yin et al.’s study (9), KPS, ECM, and gene status were proposed as prognostic factors in lung cancer patients with LM. Steindl et al. (12) believed that the neurological symptom burden of BM was negatively correlated with the prognosis of NSCLC. However, most models do not include CNS symptoms. Moreover, no significant prognostic correlation was observed among all symptoms evaluated in our study. In this study, performance status and number of BM were still considered as significant prognostic factors. In addition, the occurrence of CNS metastasis during treatment was included in the prognostic criteria. Patients who developed CNS metastasis during treatment, whether in the whole population or in the group with positive or negative driver genes, had a poor prognosis. Due to the presence of a blood-brain barrier (BBB), the CNS is considered as the tumor cell havens for drug resistance during antitumor treatment, while the subarachnoid space is considered as the ultimate shelter of tumor cells. For patients who developed CNS metastasis during treatment, drug resistance, few treatment options, poor performance status, and poor treatment tolerability result in poor prognosis.

Driver gene status is an important factor affecting the prognosis of NSCLC patients with CNS metastasis. NSCLC patients with positive or negative driver genes have different characteristics in terms of CNS metastasis. Patients with positive driver genes were more likely to develop CNS metastases. Patients with advanced EGFR mutations were significantly more likely to have BM than those with wild-type EGFR (70.3% vs. 38.1%, P=0.002) (13), and patients with EGFR mutations were more likely to have LM (9.4vs. 1.7%, P <0. 001) (4). In addition, patients with ALK rearrangement and RET rearrangement are at risk of developing BM (14). This study showed that patients with driver genes were at higher risk of developing more CNS metastatic lesions and LM. Meanwhile, in this study, patients with positive driver genes were more likely to develop CNS metastasis during treatment. Benefitting from the target therapy, NSCLC patients with positive driver genes have a long duration of response, and the CNS can become an independent site for progression of drug resistance. Therefore, BM occurring during treatment is often observed, and even LM occurs during treatment. For NSCLC patients with negative driver genes, the probability of NSCLC CNS metastasis during treatment is low due to the poor systemic treatment effects and short survival periods. The prognostic factors are also different in patients with NSCLC CNS metastasis, with or without driver genes. In the study by Yu et al. (15), age, KPS, type of EGFR mutation, brain metastases of >3, and presence of extracranial metastases were prognostic factors for BM in EGFR-mutated NSCLC. For EGFR/ALK-negative patients (16), the number of BM and KPS scores influences the prognosis of patients with wild-type NSCLC. In this study, for NSCLC patients with positive driver genes, male patients, patients with poor ECOG scores, and patients with metastasis during treatment had a poor prognosis. For CNS patients with negative driver genes, older age, poor ECOG scores, and CNS metastasis that developed during treatment were predictors of poor prognosis; meanwhile, LUAD patients had a good prognosis.

The traditional treatment of NSCLC with CNS metastasis involves local and systemic treatment (10). Radiotherapy and neurosurgery are common local treatment approaches (10). For patients with marked neurological mass effect or isolated BM, neurosurgery allows tumor tissue sampling, preserves the neurological function, and improves the patient outcomes. In addition, ventricular peritoneal (VP) shunt was also beneficial to the management of patients with LM (17). Radiotherapy plays an important role in managing NSCLC patients with CNS metastasis, especially stereotactic radiosurgery (SRS), the currently recommended radiation strategy that is regarded as the most accurate method with minimal side effects, helping systems control and prolonging patients’ OS (10). In this study, radiotherapy significantly prolonged the survival of the entire group of patients with CNS metastasis, while neurosurgery tends to prolong the patient’s survival.

Systematic antitumor treatment is also an important strategy in the treatment of NSCLC with CNS metastasis (18). For patients with positive and negative driver genes, the effects of systemic therapy and the combination of systemic therapy and local therapy greatly differ. Small molecular targeting drugs have a potent ability to cross the BBB and significantly improve the CNS-related symptoms and survival in NSCLC patients with driver genes. Benefitting from the efficient research and development of drugs with high BBB penetration targeting NSCLC-related driver genes, NSCLC patients with positive driver genes who developed CNS metastases, including BM and LMs, received effective treatment (19). Furthermore, targeted therapy combined with SRS and/or WBRT was reported to prolong the patient’s OS in several studies (20, 21). The timing of radiotherapy for patients with positive driver genes remains controversial. Several studies (22) believe that SRS combined with targeted therapy should be administered early, which can significantly prolong the prognosis of patients. However, another study by our team (23) and Chen et al. (24) showed that, as long as radiotherapy is administered during the course of targeted therapy, the patients’ OS can be prolonged. The results of this study showed that radiotherapy with target therapy can improve the patient’s outcomes.

For those without driver genes, cytotoxic drugs are less effective in patients with CNS metastasis because of poor BBB penetration. However, previous studies have shown that pemetrexed combined with platinum-based therapy can prolong the survival in patients with a negative driver gene or unknown driver gene status (24). In addition, ICIs have brought about significant survival benefits for NSCLC patients without driver genes in recent years. Among these, the population of NSCLC patients with BM is also reported to benefit from ICI treatment (25, 26). In clinical trials of various stages of NSCLC, the intracerebral objective remission rate of ICIs was similar to the extracranial objective remission rate and had a lasting effect (27, 28). The combination of ICI with radiotherapy for BM has a good safety tolerance, and both local control rate and overall survival of patients are improved, compared with radiotherapy alone (29). Longer progression-free survival was also achieved with the addition of radiotherapy to ICIs (30, 31). Due to the research period of this study, immunotherapy has not been widely used in the Chinese population, and only a few patients were included. In this study, no treatment showed outcomes improvement in NSCLC patients with negative driver genes, demonstrating an urgent unmet clinical need.

In this study, the OS of patients treated with antiangiogenesis therapy was slightly prolonged, but there was no clear statistical difference due to the small sample size. The application of antiangiogenesis therapy for BM has some effect for asymptomatic brain metastases when combined with other treatments. Antiangiogenesis treatment can reduce BM-related brain edema, leading to improvement in neurological symptoms. Bevacizumab has a good symptom improvement effect for pseudo-progression or radioactive brain necrosis caused by radiotherapy. Current small-molecule antivascular agents, such as anlotinib, have been shown to significantly improve the BM-related edema or edema secondary to SRS (32).

This study has some limitations. (1) New treatment strategies that have already been developed, such as immunotherapy, were not included in this study, because of research period. (2) Based on the evaluation of the overall treatment mode, specific medication and radiotherapy modes were not further detailed. (3) The parameters of metastasis during treatment were included, but extracranial metastasis was not evaluated. (4) This single-center study was retrospective performed in real word, which requires further verification through a multi-center study.

In conclusion, by summarizing the characteristics, treatment, and prognosis of patients with single-center metastatic disease, ECOG score ≥2, metastasis number ≥5, and the occurrence of CNS metastasis during treatment were independent risk factors for poor prognosis, while LUAD and positive driver genes were independent predictors of long survival. Patients in the entire group, or in the driver gene-positive group, who received radiotherapy, had longer survival.
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Objective

This study was to explore the difference and significance of parietal pleura invasion and rib invasion in pathological T classification with non-small cell lung cancer.



Methods

A total of 8681 patients after lung resection were selected to perform analyses. Multivariable Cox analysis was used to identify the mortality differences in patients between parietal pleura invasion and rib invasion. Eligible patients with chest wall invasion were re-categorized according to the prognosis. Cancer-specific survival curves for different pathological T (pT) classifications were presented.



Results

There were 466 patients considered parietal pleura invasion, and 237 patients served as rib invasion. Cases with rib invasion had poorer survival than those with the invasion of parietal pleura (adjusted hazard ratio [HR]= 1.627, P =0.004). In the cohort for parietal pleura invasion, patients with tumor size ≤5cm reached more satisfactory survival outcomes than patients with tumor size >5cm (unadjusted HR =1.598, P =0.006). However, there was no predictive difference in the cohort of rib invasion. The results of the multivariable analysis revealed that the mortality with parietal pleura invasion plus tumor size ≤5cm were similar to patients with classification pT3 (P =0.761), and patients for parietal pleura invasion plus tumor size >5cm and pT4 had no stratified survival outcome (P =0.809). Patients identified as rib invasion had a poorer prognosis than patients for pT4 (P =0.037).



Conclusions

Rib invasion has a poorer prognosis than pT4. Patients with parietal pleura invasion and tumor size with 5.1-7.0cm could be appropriately up-classified from pT3 to pT4.





Keywords: parietal pleura invasion, rib invasion, T classification, survival, upstage



Introduction

Lung cancer is the second most common malignancy in the global cancer spectrum of morbidity and is still the leading cause of cancer mortality (1). The prognosis of lung cancer is poor, and the 2-year overall survival rate of patients with non-small cell lung cancer (NSCLC) and small cell lung cancer is approximately 42% and 15%, respectively (2). The eighth edition of the tumor-lymph node-metastasis (TNM) classification system from the American Joint Committee on Cancer was launched in January 2017, the most accurate and newest classification system (3, 4). However, the role played by some uncommon factors that may be related to T classification in prognosis and the issue of ascending T classification are still not annotated in enough detail in National Comprehensive Cancer Network guidelines and clinical practice (4–6). Precise evaluation of T descriptor plays a crucial role in estimating prognosis and deciding on the most appropriate treatment. Nevertheless, the prognostic difference among parietal pleura invasion, rib invasion, and other established T classifications is still unclear (6).

Previous studies suggested that patients with parietal pleura invasion with tumor size ≤7cm had a close survival rate to patients with T3 descriptor (7, 8). Nevertheless, the results from other studies revealed that the patients with parietal pleura invasion or other chest wall invasion reached worse long-term survival outcomes than other patients in the group for classification T3 or T4 (9, 10). Thus, the prognosis of parietal pleura invasion and rib invasion remains unclear because of the unclear T classification. Besides, it is still inconsistent in view on whether there is a prognostic difference between patients with rib invasion and parietal pleural invasion (8, 11). Therefore, it is important to investigate the prognostic difference and significance of parietal pleura invasion and rib invasion in pathological T (pT) classification with NSCLC. This study aimed to elucidate the significance of the above two factors for survival and their risk grade in pT-classification when combined with different-category tumor sizes.



Methods


Patients

Cases were diagnosed as NSCLC in the Surveillance, Epidemiology, and End Results (SEER) database, which provides data that does not identify patients, healthcare providers, or hospitals. This database contains clinicopathological and survival data of cancer patients from 18 registries. All patient records were anonymized before analysis. Institutional review board approval was waived by the Ethics Committee of Shanghai Pulmonary Hospital. Patients who were histologically diagnosed with NSCLC in the lungs as their first primary malignancy from 2004 to 2015 were recruited. The selection criteria of patients are presented in Figure 1. The data for a total of 8681 patients were used to perform the main analysis. Information collected from the SEER database included race/ethnicity, sex, age at diagnosis, the approach of treatment (including surgical treatment, radiotherapy, and chemotherapy), tumor size, tumor differentiation, histological subtype, pathological TNM stage, marital status, tumor location, survival time, and cause on disease.




Figure 1 | The flow chart of this study.





Follow-up

Follow-up duration ranged from 1.0 to 155.0 months, with a median of 44.0 months. Those patients had definitive survival status, death or alive. Cancer-specific survival (CSS), which was the duration from the date of diagnosis to death caused by lung cancer, was regarded as our observational endpoint.



Statistical Analysis

Pearson’s χ 2 (2) statistic method and Fisher exact test were used to estimate the differences in the distribution of each categorical variable between groups. The continuous numerical variable was tested by the Mann-Whitney U test if it did not conform to a normal distribution. Hazard ratios (HRs) and 95% confidence intervals (CIs) were calculated using univariable and multivariable Cox regression analyses, respectively (method was Enter selection). The average value of each covariate was calculated by the multivariable Cox regression model and estimated the adjusted survival curves of different categorical variables. Kaplan-Meier survival analysis was used to draw the survival curves. Statistical tests were considered statistically significant with a two-sided P value <0.05. All statistical analyses were performed using SPSS statistics 25.0 software (IBM SPSS, Inc., Chicago, IL, USA).




Results


Patient Characteristics

In the cohort, ages ranged from 18 years to 96 years old (median was 68 years old). The majority of the patients were Caucasian (N =7296, 84%), and 4517 (52%) were male patients. Four hundred and sixty-six patients were considered as parietal pleura invasion, and 237 patients were considered as rib invasion. Two hundred thirty-seven patients had rib invasion, including 25 patients (10.5%) with tumor size ≤3cm, 73 patients (30.8%) with tumor size 3-5cm, 76 patients (32.1%) with tumor size 5-7cm, and the remaining patients with tumor size >7cm. Among cases with only parietal pleural invasion and no rib invasion, there were 60 patients with tumor size of ≤3cm, 82 patients with tumor size of 3-5cm, 53 patients with tumor size 5-7cm, and 34 patients with tumor size of >7cm. The other detailed information on patient characteristics is shown in Table 1.


Table 1 | The clinicopathological characteristics for patients with different status of parietal pleura invasion and rib invasion.





Prognostic Significance in Chest-Wall Invasion

In this cohort, 5250 death events occurred in the 8681 NSCLCs. For the patients with rib invasion, 200 deaths occurred out of 237 patients. Among 229 cases of only parietal pleural invasion without rib invasion, there were 177 death events. The median survival time for patients without chest wall invasion, or with only parietal pleural invasion, or with rib invasion was 46 months, 21 months, and 19 months, respectively. Patients without chest wall invasion showed better survival than other patients (Table 2, all P <0.05). Besides, the prognosis in patients with rib invasion was poorer than in patients with only parietal pleural invasion and no rib invasion (Figure 2A, adjusted HR=1.627, P =0.004). The 3-year and 5-year CSS rates for patients with different levels of chest wall invasion were 64% vs. 56% (without chest wall invasion), 37% vs. 32% (only parietal pleural invasion and no rib invasion), and 34% vs. 22% (rib invasion), respectively. In addition, sex, tumor differentiation, tumor location for lower lobe, age, other histological subtypes of NSCLCs, other races, lobectomy tumor size, year of diagnosis, radiotherapy, and chest wall invasion (parietal pleura invasion vs. no, adjusted HR= 1.400, 95% CI 1.167-1.678, rib invasion vs. no, adjusted HR =1.620, 95% CI 1.351-1.944) were identified as independent prognostic factors (Table 2).


Table 2 | Univariable and multivariable Cox regression analysis for cancer-specific mortality in patients with different statuses of parietal pleura invasion and rib invasion.






Figure 2 | The adjusted survival curves for different statuses of chest wall invasion (A). The unadjusted survival curves for different classifications of parietal pleura invasion (B, C) and rib invasion (D).





Stratified Effect for Tumor Size

To further investigate the stratified effect of tumor size on patients with different statuses of chest wall invasion, the sub-group analysis of patients with rib invasion or only parietal pleura invasion was performed. The method of sub-group analysis was Kaplan-Meier. In the patients with only parietal pleura invasion, cases with tumor size ≤5cm might reach a better survival trend over those with tumor size >5cm (Figure 2B, overall P =0.037). Thus, we re-categorized groups with tumor sizes ≤5cm and >5cm into one group. According to this classification, sub-groups for tumor size ≤5cm and tumor size >5cm got a meaningful stratification effect (Figure 2C, unadjusted HR =1.598, P =0.006). Given different levels of tumor size did not have a prognostic impact on patients of rib invasion (Figure 2D, overall P =0.4). Therefore, those patients were grouped together.



Survival Analysis of T Classification

The three classifications mentioned above, plus the classifications pT1, pT2, pT3, and pT4 that originally existed were conducted for survival analysis together to determine the prognostic outcomes of chest wall invasion with different tumor sizes in the pT classification. The results of adjusted survival curves confirmed that patients with rib invasion had the worst survival in that cohort (Table 3 and Figure 3A, rib invasion vs. T4, P =0.037). Parietal pleura invasion with tumor size ≤5cm, parietal pleura invasion with tumor size >5cm, and rib invasion with any tumor size were confirmed as independent prognostic risk indictors (Table 3, all P <0.05). Besides, the results of adjusted survival curves also revealed that the cases of parietal pleura invasion with tumor size ≤5cm had close survival outcomes to those with classification pT3 (Figure 3A, P =0.761). However, they reached much better survival benefits than patients of pT4 classification (adjusted HR =0.743, P =0.029). Following adjusting for other confounders, patients for parietal pleura invasion with tumor size >5cm got poorer survival over patients with classification pT3 (adjusted HR =1.532, P =0.012), nevertheless, did not have a significant difference with pT4 classification (P =0.809).


Table 3 | Multivariable Cox regression analysis for cancer-specific mortality in patients with different pathological T classifications.






Figure 3 | The adjusted survival curves of different pathological T classifications and chest wall invasion (A). The unadjusted survival curves for pleura effusion (TxN0M1a) and rib invasion (B).





Prognostic Comparison Between Diseases of Rib Invasion and Pleural Effusion

We analyzed the 96 patients diagnosed with pleura effusion in the SEER database to confirm that the rib invasion was a localized disease as in previous reports. Patients of classification TxN0M1a were included in this study to reduce the effect of lymph node involvement. Only nine patients underwent surgery, and others were diagnosed by other approaches, such as thoracentesis biopsy. The univariable analysis revealed that the patients with pleura effusion had poorer mortality than patients with rib invasion (unadjusted HR =1.983, 95% CI 1.486-2.647, P < 0.001, Figure 3B).




Discussion

In the present study, the data of 8681 patients were used to perform principal analysis. The results revealed that parietal pleura invasion and rib invasion were confirmed as independent prognostic risk indicators after adjusting for other confounders. Then, the prognosis of patients with rib invasion had indeed been shown to be worse than that of patients with parietal pleural invasion. Next, a sub-group analysis was conducted in cases with different statuses of chest wall invasion. According to the results of the sub-group analysis, we further re-classify the patients with only parietal pleura invasion into one group for those with tumor size ≤5cm, and another group for those with tumor size over 5cm and put patients with rib invasion in the same group. Based on those classifications, sub-groups of parietal pleura invasion for tumor size ≤5cm and tumor size >5cm got a meaningful stratification effect. The three classifications mentioned above and the classifications pT1, pT2, pT3, and pT4 were conducted to prognostic analysis together. After adjusting for other factors, parietal pleura invasion with tumor size ≤5cm could be considered classification pT3, and parietal pleura invasion with tumor size >5cm might be served as pT4 classification. In addition, rib invasion had the worst survival in that cohort. Parietal pleura invasion plus tumor size ≤5cm is considered pT3; however, patients for parietal pleura invasion plus tumor size >5cm should be treated as pT4. Rib invasion has a poorer prognosis than pT4. Besides, 96 patients with pleural effusion (TxN0M1a classification) were compared with those with rib invasion, which found that the prognosis of pleural effusion was much worse than that of rib invasion. Therefore, we suggested that parietal pleura invasion plus tumor size ≤5cm was treated as pT3; however, parietal pleura invasion plus tumor size with 5.1-7.0cm should ascend to pT4. Those findings may help the treatment plan before surgery. For example, patients diagnosed with NSCLC by biopsy are regarded as early-stage lung cancer only from the tumor size. However, if chest wall invasion is found on imaging, the clinical combined stage may change from early to locally advanced. For patients with locally advanced stages, neoadjuvant therapy may benefit the patients’ complete resection rates (12). Given the prognosis of M1a classification was poorer than rib invasion; hence, rib invasion should continue to be classified as a local disease rather than a metastatic disease. Thus, surgical resection is still an appropriate therapeutic modality for patients with chest wall invasion.

The prognostic difference between the parietal pleura invasion and rib invasion remains unclear. Previous studies majorly paid attention to the role of resection for chest wall on the prognosis of NSCLC patients who had the disease with chest wall invasion (13, 14). In addition, for patients with chest wall invasion who received surgical resection, the extent of nodal involvement (15, 16), the completeness of resection (15, 16), blood transfusion (17), and forced vital capacity (17) were confirmed to be associated with prognosis. Nevertheless, it was controversial whether the depth of invasion affects the prognosis for patients with chest wall invasion. In the studies by Robert J. Downey et al. and Hidehito Matsuoka et al., patients with only parietal pleura invasion did not have a more significant survival improvement, compared with patients with rib invasion (15, 18). The studies from Francesco Facciolo et al. and Alain Chapelier et al. analyzed the data of patients with chest wall invasion, respectively, and got the contrary results that the depth of chest wall involvement impacted the prognosis of those patients (16, 19). The present study results also revealed that rib invasion had a worse survival over the parietal pleura invasion. The survival analyses of studies by Robert J. Downey et al. and Hidehito Matsuoka et al. were not adjusted for other confounders. Therefore, other factors might affect their results, such as age, gender, and differentiation grade. In the clinical practice and TNM staging system, tumor size and differentiation are still essential indicators to confirm the combined stage and to estimate the prognosis (3, 5, 20). Nevertheless, previous studies had neglected to consider the two abovementioned factors when exploring the effect of depth of chest wall invasion on patients’ prognosis (8, 16, 18). In the present study, differentiation grade and tumor size, which were considered factors affecting prognosis, were recognized and adjusted by us. We conclude that after adjusting for these confounding factors, the prognosis of rib invasion is much worse than that of pleural invasion. These findings might provide information for investigating the difference between parietal pleura invasion and rib invasion to The International Association for the Study of Lung Cancer (6).

The role played by parietal pleural invasion and rib invasion in the T classification still needs to be revealed. Although the eighth edition staging system classified chest wall invasion as descriptor pT3 (4), the effect of depth of chest wall invasion on prognosis had been found (8, 19). As shown in the study by Zhao Mengmeng et al., patients with rib invasion had a worse prognostic trend than other patients, and were finally served as pT4 classification (8). Our study also found that rib invasion might be an independent poor prognostic factor and even had much worse survival than pT4 classification. We also found that the patients with rib invasion prognosis were much better than those with pleural metastasis. Thus, rib invasion could be served as a pT4 descriptor. This also proves that operation is still an important treatment for those patients. In addition, a recent study found that patients with visceral pleura invasion and tumor size of 3.1-4cm should consider re-classification from T2a to T2b (21). The results from the study by Qi M et al. let us note whether patients with parietal pleura invasion will also have a pT-classification ascending performance after combining with the influence of tumor size. Based on this, we performed the sub-group analysis in the cases with parietal pleura invasion. As a result, we revealed that patients with parietal pleura invasion and tumor size with 5.1-7.0cm could be appropriately upstaged from pT3 (stage IIB) to pT4 (modified stage IIIA). Those findings may provide information for accessing prognosis, treatment decisions, and the development of the next new staging system.

This study has several limitations. First, although the data we used were from a large population-based cohort, some important information was not detailed, such as the completeness of resection, the number of resected ribs, and the area where the tumor invaded the chest wall, as we could not obtain it in the SEER database. Second, we did not further categorize the cases of rib invasion because of the small scale of patients. Third, we excluded patients without surgery to ensure that all patients only had localized-invasion disease and did not have pleural metastases. However, this selection criterion caused our study to lose a proportion of patients with chest wall invasion who did not undergo surgery. Of note, it is challenging to identify parietal pleural invasion on imaging. Thus, for patients who do not undergo surgical removal of the tumor, it is not possible to ascertain whether there is pleural involvement or not. Therefore, those shortcomings caused our results to apply only to patients after operation. Finally, given this study belonged to a retrospective study, it was impossible to avoid selection bias. Therefore, more studies are necessary to validate our findings further.



Conclusions

Rib invasion has a poorer prognosis than pT4. Patients with parietal pleura invasion and tumor size of 5.1-7.0cm could be appropriately up-classified from pT3 to pT4.
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Shugoshin-like protein 1 (SGO1) has been characterized in its function in correct cell division and its role in centrosome cohesion in the nucleus. However, the underlying biological function and potential mechanisms of SGO1 driving the progression of lung adenocarcinoma remain unclear. In this study, we found that SGO1 was increased in LUAD tissues and cell lines. Upregulation of SGO1 expression was correlated with poor overall survival (OS), disease-free survival (DSS), and progression-free survival (PFS) in patients with LUAD. ROC curve analysis suggested that the AUC value of SGO1 was 0.983. Correlation analysis showed that SGO1 expression was related to immune infiltration in LUAD. Meanwhile, a potential ceRNA network was constructed to identify the lncRNA-MIR4435-2HG/miR-125a-5p/SGO1 regulatory axis in LUAD. Finally, we determine that SGO1 regulated the cell proliferation and cell apoptosis of lung adenocarcinoma in vitro. In conclusion, our data suggested that SGO1 could be a novel prognostic biomarker for lung adenocarcinoma.
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Introduction

Lung cancer is the leading cause of mortality among all malignancies worldwide. Among all types of lung cancer, lung adenocarcinoma (LUAD) is the most common subtype, accounting for 40%–50%, of lung cancer (1, 2). In the past several decades, considerable progress has been made in surgical treatment, radiotherapy, chemotherapy, molecular targeted therapy, and immunotherapy for lung cancer (3, 4).

However, most NSCLC patients are already in the advanced stage when it is initially diagnosed resulting in a short 5-year overall survival rate of patients (5). Therefore, elucidating the molecular mechanisms of lung oncogenesis and identifying new therapeutic targets or biomarker are essential for effectively preventing the development of lung cancer.

It has been confirmed that shugoshin 1 (SGO1) plays an important role in chromosome segregation maintaining centripetal adhesions during meiosis and mitosis (6). Previous studies have shown that SGO1 plays a crucial role in regulating the stability of microtubules (7). Several studies have shown that the depletion of SGO1 results in a premature dissociation of sister chromatids and mitotic arrest (8). It has been suggested that SGO1 was highly expressed in human prostate cancer tissues and cell lines. An increased SGO1 expression was correlated with preoperative prostate-specific antigen, lymph-node metastasis, advanced clinicopathological characteristics, and poor recurrence-free survival time (9). In our previous study, we developed a new method called CVAA (cross-value association analysis), which functions without a normalization and distribution assumption. We applied it to large-scale pan-cancer transcriptome data generated by The Cancer Genome Atlas (TCGA) project and successfully discovered numerous new differentially expressed genes (DEGs) (10). SGO1 is one of these DEGs. However, the underlying function and mechanisms of SGO1 in LUAD progression remain unclear.

No studies which evaluate the expression level, clinical significance, and prognostic and diagnostic values of SGO1 in LUAD can be retrieved currently. Therefore, the aim of this study was to determine the effect of SGO1 on the development of LUAD. In this study, we used The Cancer Genome Atlas (TCGA), the Genotype-Tissue Expression (GTEx), the Human Protein Atlas (HPA), and the Kaplan–Meier plotter web to determine SGO1 expression and its correlation with the prognosis. Furthermore, we used the single-sample gene set enrichment analysis (ssGSEA) method to analyze the correlation between SGO1 and immune infiltration. Besides, immunohistochemistry (IHC), qPCR, CCK8, colony formation, and flow cytometry assays were used to examine the biological function of SGO1 in LUAD progression.



Materials and Methods


TCGA Datasets

We downloaded the RNA expression data and related clinical contents from TCGA official website (https://portal.gdc.cancer.gov/) (11). We utilized this data analysis of the correlation between SGO1 expression and relevant clinical information, including pathological stage and TNM stage. Because the normal tissue sequencing data included in the TCGA are very limited and many patients lack transcriptome sequencing results for their normal tissues, we obtained data for normal tissues from the Genotype-Tissue Expression (GTEx) database. The above analyses were constructed using the R (v4.0.3) software package ggplot2 (v3.3.3). R software v4.0.3 and ggplot2 (v3.3.3) were used for visualization. R software v4.0.3 was used for statistical analysis.



The Human Protein Atlas

The HPA (https://proteinatlas.org/) included various IHC images of protein of human gene information (12). In this finding, we explored the protein expression of SGO1 in lung cancer tissues.



PrognoScan Database

PrognoScan (http://dna00.bio.kyutech.ac.jp/PrognoScan/index.html) is a new database for meta-analysis of the prognostic value of genes (13). In this study, we used PrognoScan to validation the prognostic values of SGO1 in lung cancer.



LinkedOmics Database

LinkedOmics (http://www.linkedomics.org/login.php) is a publicly available portal that includes multi-omics data from all 32 TCGA cancer types and 10 Clinical Proteomics Tumor Analysis Consortium (CPTAC) cancer cohorts. In this study, LinkedOmics was employed to obtain the genes that were significantly positively correlated with SGO1 expression in TCGA-LAUD



Kyoto Encyclopedia of Genes and Genomes and Gene Set Enrichment Analysis

Kyoto Encyclopedia of Genes and Genomes (KEGG) and gene set enrichment analysis (GSEA) were conducted to examine the biological and molecular functions of SGO1 across different cancer types using a total of 300 genes that were positively correlated with SGO1. All three analyses were performed using the R package Cluster Profiler. GSEA was also used to estimate the enrichment of various biological processes in each sample.



Univariate and Multivariate Cox Regression Analyses and Kaplan–Meier Survival Analysis

Cox regression analysis, including univariate and multivariate analyses, was used to examine the prognostic value of SGO1 in LUAD. The univariate and multivariate Cox regression analyses were using the R package “forest plot” to exhibit the hazard ratio (HR), 95% CI, and P-value. The nomogram was constructed using the R package “rms.” In this research, the Kaplan–Meier method was utilized to examine the prognostic values of SGO1, miRNA, and lncRNA expression, employing R packages of survminer and survival.



starBase Database

starBase v2.0 (http://starbase.sysu.edu.cn/) is a database which includes the RNA–RNA and protein–RNA interaction networks from 108 CLIP-seq data sets generated by 37 independent studies (14). In this study, starBase was used to predict the potential miRNAs and upstream lncRNAs of SGO1 and determine the correlation between miRNAs and SGO1 in LUAD. Furthermore, Pearson’s correlation analysis was used to determine the relationship between lncRNA and SGO1 expression in TCGA-LUAD.



Cell Culture and Transfection

The BEAS-2B cell line was purchased from the Chinese Academy of Sciences Cell Bank (CASCB, Shanghai, China) and cultured in BEGM media (Lonza, Walkersville, MD, USA, CC-3170). Lung cancer cell lines, including SPC-A1, H358, A549, and H1299, were purchased from the Chinese Academy of Sciences Cell Bank (CASCB, China) with STR documents and were cultured in RPMI-1640 medium (Corning, Tewksbury, MA, USA) supplemented with 10% fetal bovine serum (FBS) and 1% penicillin/streptomycin. The siRNA for SGO1 and NC were transfected into cells. Transfection was performed using the Lipofectamine 3000 transfection reagent based on the manufacturer’s protocol. SGO1 siRNA: ACATGCACATACCTGAAAATG.



Cell Proliferation Assay

Cell proliferation assay was performed as previously described (15). The indicated tumor cells were plated onto 12-well plates, and the cell numbers were subsequently counted each day using an automatic cell analyzer Countstar (Shanghai Ruiyu Biotech Co.).



Real-Time RT-PCR Assay

The primer used in this study is as follows: β-actin-F: AAGTGTGACGTGGACATCCGC, β-actin-R: CCGGACTCGTCATACTCCTGCT, SGO1-F: AACTCAGCAGTCACCTCATCT, SGO1-R: TGCACCTACGTTTAGGCAGAG.



Cell Flow Cytometry Assays

Annexin V FITC Apoptosis Detection Kit I (556547, BD, Guangzhou, China) was used to evaluate the cellular apoptosis according to the manufacturer’s instructions. For cell cycle analysis experiments, the indicated cells were digested and washed with PBS twice and then fixed in 75% alcohol overnight at −20°C. The fixed cells were washed three times and then stained with propidium iodide (PI) staining buffer at room temperature for 30 min in the dark, and then the cell cycle was analyzed using the FACSAria SORP machine (BD, USA).



Immunohistochemical Staining

For immunohistochemical staining, the sections were deparaffinized in xylene and rehydrated through graded ethanol. Antigen retrieval was performed for 20 min at 95°C with sodium citrate buffer (pH 6.0). After quenching endogenous peroxidase activity with 3% H2O2 and blocking non-specific binding with 1% bovine serum albumin buffer, sections were incubated overnight at 4°C with the indicated primary antibodies. Following several washes, the sections were treated with an HRP-conjugated secondary antibody for 40 min at room temperature and stained with 3,3-diaminobenzidine tetrahydrochloride (DAB). SGOL1 antibody (Proteintech, Rabbit Polyclonal|: catalog number: 16977-1-AP, 1:200).



Statistical Analyses

All statistical analyses were performed using R software, and ROC curves were used to detect SGO1 cutoff values using pROC packages. For data regarding the function of SGO1, GraphPad Prism 7.0 was used for statistical analyses.




Results


Expression Pattern of SGO1 in Human Cancers

To determine the mRNA expression pattern of SGO1 in various human cancers, we used TCGA and GTEx datasets to conduct analyses. Results suggested that SGO1 was upregulated in 26 of the 33 cancers compared with normal tissue (Figure 1A). We also estimated SGO1 expression in paired cancer tissues and adjacent normal tissues in pan-cancer based on TCGA datasets. Results confirmed that SGO1 expression was significantly higher in 14 of the 18 cancers compared with normal tissue (Figure 1B).




Figure 1 | The expression pattern of SGO1 in pan-cancer. (A, B) The expression of SGO1 in pan-cancer examine by TCGA. NS: P > 0.05, ***P < 0.001. ACC: adrenocortical carcinoma, BLCA: bladder urothelial carcinoma, BRCA: breast invasive carcinoma, CESC: cervical squamous cell carcinoma and endocervical adenocarcinoma, CHOL: cholangiocarcinoma, COAD: colon adenocarcinoma, DLBC: lymphoid neoplasm diffuse large B-cell lymphoma, ESCA: esophageal carcinoma, GBM: glioblastoma multiforme, HNSC: head and neck squamous cell carcinoma, KICH: kidney: chromophobe, KIRC: kidney renal clear cell carcinoma, KIRP: kidney renal papillary cell carcinoma, LAML: acute myeloid leukemia, LUAD: brain lower-grade glioma, LIHC: liver hepatocellular carcinoma, LUAD: lung adenocarcinoma, LUSC: lung squamous cell carcinoma, MESO: mesothelioma, OV: ovarian serous cystadenocarcinoma, PAAD: pancreatic adenocarcinoma, PCPG: pheochromocytoma and paraganglioma, PRAD: prostate adenocarcinoma, READ: rectum adenocarcinoma, SARC: sarcoma, SKCM: skin cutaneous melanoma, STAD: stomach adenocarcinoma, TGCT: testicular germ cell tumors, THCA: thyroid carcinoma, THYM: thymoma, UCEC: uterine corpus endometrial carcinoma, UCS: uterine carcinosarcoma, UVM: uveal melanoma. NS: P > 0.05, *P < 0.05, **P < 0.01, ***P < 0.001.





SGO1 Was Overexpressed in Lung Adenocarcinoma

To examine the SGO1 expression level in LUAD, we analyzed SGO1 expression based on TCGA and HPA databases. We found that SGO1 was highly expressed in LUAD and LUSC (Figures 2A, B). Consistent with the above results, the GEO dataset also suggested that the SGO1 mRNA level was obviously increased in lung cancer tissues (Figure 2C). Furthermore, we showed that the SGO1 protein expression in LUAD was significantly increased in lung cancer tissues (Figure 2D).




Figure 2 | SGO1 was highly expressed in LUAD. (A, B) SGO1 was overexpressed in LUAD and LUSC examined by TCGA. (C) Relative SGO1 expression examined by the GEO dataset. (D) The protein level of SGO1 in lung cancer was determined by the HPA database. ***P < 0.001.





SGO1 Expression and Clinical Parameters of Lung Adenocarcinoma Patients

The correlation between SGO1 expression and clinical parameters in LUAD samples was explored. As shown in Table 1 and Figures 3A–G, SGO1 expression was significantly associated with pathological stage (P = 0.001), T stage (P < 0.001), N stage (P = 0.005), M stage (P = 0.009), gender (P = 0.001), residual tumor gender (P = 0.019), and age (P = 0.006). We also found that upregulation of SGO1 correlated with smoker, OS event, DSS event, and PFS event in LUAD (Figures 3H–J).


Table 1 | Clinical characteristics of the LUAD patients.






Figure 3 | Clinical significance of SGO1 in LUAD. (A–J) Correlation between SGO1 expression and clinical parameters, including the pathological stage, TNM stage, smoking, age, gender, OS event, DSS event, and PFS event. NS: P <0.05, *P < 0.05, **P < 0.01, and ***P < 0.001.



Logistic regression analysis also suggested that increased SGO1 expression was associated with T stage (T2 and T3 and T4 vs. T1) (P < 0.001), N stage (N1 and N2 and N3 vs. N0) (P = 0.006), M stage (M1 vs. M0) (P = 0.008), pathologic stage (stage III and stage IV vs. stage I and stage II) (P < 0.001), gender (male vs. female) (P <0.001), age (>65 vs. ≤65) (P = 0.022), and smoker (yes vs. no) (P = 0.015) (Table 2).


Table 2 | Logistic regression analyzed the correlation between SGO1 expression and clinical pathological characteristics in LUAD.





Analysis of the Diagnostic and Prognostic Values of SGO1 In LUAD

The correlation between SGO1 expression and OS, DSS, and PFS in LUAD patients was examined by the Kaplan–Meier curve. We found that an elevated SGO1 expression was correlated with adverse OS, DSS, and PFS in patients with LUAD (Figures 4A–C). We also used the GEO dataset to validate the above results. We showed that upregulation of SGO1 expression was related to adverse clinical outcomes in patients with lung cancer (Figures 4D, E). We further explored the diagnostic significance of SGO1 in lung cancer, and ROC curve analysis was performed. ROC curve analysis confirmed that the AUC value of SGO1 is 0.983 (Figure 4F). The GEO dataset was also utilized to validate the diagnosis of SGO1 in lung cancer (Figure 4G). These results confirmed that SGO1 may be a promising biomarker for differentiating LUAD tissue from normal lung tissue.




Figure 4 | ROC and Kaplan–Meier curves of SGO1. (A–C) Kaplan–Meier survival curves showed that lung adenocarcinoma patients with high SGO1 expression exhibited poor overall survival, disease-specific survival, and progression-free survival of SGO1 in LUAD determine by TCGA-LUAD dataset. (D–E) Validation of the prognosis of SGO1 in LUAD using the GEO dataset. (F,G) ROC curves were used to determine the diagnostic value of SGO1 in lung adenocarcinoma.





Validation of the Prognostic Value of SGO1 Based on Various Subgroups

Prognostic values of the differential expression of SGO1 in diverse subgroups include pathological stage, TNM stage, gender, age, race, and smoker. Results confirmed that an increased SGO1 level is associated with poor prognosis (Figures 5A–H).




Figure 5 | The overall survival of SGO1 based on diverse subgroups. (A–H) The overall survival of SGO1 based on diverse subgroups, including stage I and II, T1 and T2, N0 and N1, M0, gender, age >65, White, and smoker.





Univariate and Multivariate Cox Regression Analyses of Different Parameters on Overall Survival

We performed univariate Cox regression analysis in TCGA-LAUD cohort to determine whether SGO1 expression level and pathologic stage might be valuable prognostic biomarkers. Univariate Cox regression analysis results show that higher expression of SGO1, pathologic stage, and TNM stage were associated with overall survival, disease-free survival, and progression-free survival in LUAD patients. To ascertain whether SGO1 expression level could be an independent prognostic factor for patients with LUAD, multivariate Cox regression analysis was performed. We confirmed that increased SGO1 expression was a significant independent prognostic factor in TCGA-LAUD cohort which directly correlated with adverse overall survival, disease-free survival, and progression-free survival (Tables 3-5).


Table 3 | Univariate and multivariate Cox regression analyses of different parameters on overall survival in LUAD.




Table 4 | Univariate and multivariate Cox regression analyses of different parameters on disease-free survival in LUAD.




Table 5 | Univariate and multivariate Cox regression analyses of different parameters on progression-free survival in LUAD.





KEGG Enrichment Analysis

As shown in Figures 6A, B, the LinkedOmics database was utilized to obtain the top 100 genes that were significantly positively correlated with SGOL1 expression (Figures 6A, B). The correlation analysis of SGO1 expression and the top 8 co-expressed genes in TCGA LUAD is shown in Figures 6C, D. Notably, in terms of biological process, SGOL1 was enriched in cell-cycle G2/M phase transition, meiotic cell-cycle process, meiotic cell cycle, nuclear DNA replication, cell-cycle DNA replication, mitotic nuclear division, DNA replication, organelle fission, nuclear division, and chromosome segregation (Figure 6E). KEGG enrichment analysis suggested that these genes were involved in proteasome, ubiquitin-mediated proteolysis, nucleotide excision repair, non-small cell lung cancer, 53 signaling pathways, cellular senescence, Fanconi anemia pathway, oocyte meiosis, DNA replication, and cell cycle (Figure 6F). Gene set enrichment analysis (GSEA) also showed that pathways, including the cell cycle, focal adhesion, pathway in cancer, apoptosis, oxidative phosphorylation, Wnt signaling pathway, MAPK signaling pathway, cell adhesion molecules (cams), T-cell receptor signaling pathway, natural killer cell-mediated cytotoxicity, cytokine–cytokine receptor interaction, and chemokine signaling pathway were significantly enriched in the high SGO1 expression group (Figures 7A–C).




Figure 6 | KEGG enrichment analysis of SGO1. (A–D) Genes that were significantly positively correlated with SGO1 expression in LUAD based on our TCGA-LAUD data. (E, F) GO and KEGG enrichment analysis of SGO1 in LUAD.






Figure 7 | GSEA Identification of SGO1-related signaling pathways. (A–C) Identification of SGO1-related signaling pathways by GSEA software.





Correlation Between SGO1 Expression and Immune Infiltration

Given that gene set enrichment analysis (GSEA) mentioned above showed that SGO1 may be correlated with immune response regulation, we therefore examined the association between SGO1 expression levels and immune cell infiltration. We found that SGO1 was positively associated with the infiltration of Th2 cells, Tgd, T helper cells, and NK CD56dim cells but negatively associated with the infiltration of pDC, NK cells, CD8 T cells, DC, TFH, iDC, eosinophils, and mast cells in LUAD (Figures 8A–D).




Figure 8 | Correlation analysis of SGO1 expression and infiltration levels of immune cells in LUAD. (A–D) The correlation between SGO1 expression and the infiltration levels of 24 immune cells in LUAD. (E) Correlation of SGO1 expression with immune infiltration in LUAD.



Our results also discovered that the high expression level of SGO1 was positively correlated with the infiltrating degree of CD8+ T cell and neutrophil and negatively correlated with the infiltrating degree of CD4+ T cell and B cell (Figure 8E).



Construction of a Network of SGO1-Related ceRNA

The above results confirmed that SGO1 may participate in cancer progression in LUAD. To further determine the upstream potential molecular mechanism of SGO1 in LUAD, we therefore constructed an SGO1-related ceRNA network. We utilized the STRBase database to predict the potential miRNAs of SGO1 and identify 55 potential miRNAs (Supplementary Table 1); among these miRNAs, we showed that miR-125a-5p, miR-125b-5p, hsa-miR-514a-5p, hsa-miR-585-3p, and hsa-miR-5691 were significantly negative with the SGO1 expression in LUAD (Figure 9A). Further analysis revealed that only miR-125a-5p was downregulated in LUAD and that LUAD patients have a higher miR-125a-5p expression which was correlated with adverse clinical outcomes (Figures 9B, C). Therefore, we decided to select miR-125a-5p to conduct downstream analysis. We further examined the upstream lncRNA targets to construct the miRNA-125a-5p–lncRNA axis. Based on the ceRNA hypothesis, miRNAs have an opposite co-expression correlation with mRNAs and lncRNAs, whereas lncRNAs have a positive co-expression correlation with mRNA (16). Based on starBase and Pearson’s correlation analysis, we found that 3 three lncRNAs, including MIR4435-2HG, CYTOR, and AL024508.1, were negatively correlated with miR-125a-5p and positively correlated with SGO1 expression in LUAD, respectively (Figures 10A, B). We also found that MIR4435-2HG, CYTOR, and AL024508.1 were increased in LUAD, and a higher MIR4435-2HG expression was associated with poor prognosis in patients with LUAD (Figures 10C, D). ROC curve analysis confirmed that MIR4435-2HG, CYTOR, and AL024508.1 may be promising biomarkers for differentiating LUAD tissue from normal lung tissue (Figure 10E).




Figure 9 | Analysis of the potential miRNAs of SGO1. (A) Correlations between SGO1 expression and miRNAs (miR-125a-5p, miR-125b-5p, miR-514a-5p, miR-585-3p, and miR-5691) in LUAD. (B, C) The expression level and prognosis of miRNAs (miR-125a-5p, miR-125b-5p, miR-514a-5p, miR-585-3p, and miR-5691) in LUAD .NS: P <0.05, *P < 0.05, and ***P < 0.001.






Figure 10 | Analysis of the potential lncRNAs of miR-101-3p. (A) Correlations between miRNA-125a-5p expression and lncRNAs (MIR4435-2HG, CYTOR, and AL024508.1) in LUAD. (B) Correlations between SGO1 expression and lncRNAs (MIR4435-2HG, CYTOR, and AL024508.1) in LUAD. (C–E) The expression levels and prognostic and diagnostic values of lncRNAs (MIR4435-2HG, CYTOR, and AL024508.1) in LUAD ***P < 0.001.





Depletion of SGO1 Significantly Suppressed Proliferation of LUAD Cells

To examine the expression of SGO1, we detected SGO1 expression levels in LUAD tissues and cells lines using IHC and qRT-PCR assay. Results confirmed that SGO1 was significantly upregulated in lung cancer tissues and cell lines, especially in A549 cells (Figures 11A, B). To determine the biological function of SGO1 in lung cancer cells, small interfering RNAs (siRNAs) were used to specifically knock down SGO1 expression (Figure 11C). The growth curve and colony formation assays demonstrated that SGO1 depletion significantly inhibited the cell proliferation ability of LUAD (Figures 11D–F). Furthermore, to validate whether SGO1 is critical for cell apoptosis, we performed flow cytometry analysis and revealed that SGO1 knockdown led to increased apoptosis cells (Figures 11G, H). Collectively, these results demonstrate that SGO1 was highly expressed in LUAD and significantly affected their proliferation and cell apoptosis.




Figure 11 | SGO1 modulates LUAD cell proliferation and migration in vitro. (A) The relative expression level of SGO1 in lung adenocarcinoma cancerous tissues examine by IHC assay. (B) The relative expression level of SGO1 in lung adenocarcinoma cancerous cell lines, including SPC-A1, H358, H1299, and A549 examined by real-time RT-PCR, compared to normal human bronchial epithelial cell line: BEAS-2B. (C) Establishment of SGO1 knockdown cell lines in A549 verified by real-time RT-PCR. (D–F) Knockdown of SGO1 significantly inhibits cell proliferation determined by CCK8 and colony formation assay. (G,H) Knockdown of SGO1 dramatically promotes cell apoptosis. ***P < 0.001. NC = negative control, siRNA = SGO1 siRNA. ***P < 0.001.






Discussion

The centromere-related protein Shugoshin1 (SGO1) has been found to ensure the correct and orderly conduct of mitosis by protecting and maintaining centripetal adhesions during meiosis and mitosis (6). In this study, we analyzed the SGO1 expression, prognostic value, diagnostic values, and correlation with tumor immune cell infiltration in LUAD for the first time.

In this study, we found that SGO1 RNA and protein expressions were overexpressed in LUAD tissues. Increased SGO1 expression was correlated with pathological stage (P = 0.001) and TNM stage. Kaplan–Meier curves and univariate analysis confirmed that SGO1 expression is correlated with overall survival (OS), disease-free survival, and progression-free survival (PFS) in the LUAD patients of TCGA data. ROC curve analysis indicated that SGO1 may be a promising diagnostic biomarker for differentiating LUAD from normal tissues. Our findings are consistent with previous research. SGO1 was increased in human prostate cancer and correlated with the patients’ TNM stage, lymph node metastasis, distant metastasis, and poorer survival (17).

Logistic regression analysis also suggested that increased SGO1 expression was associated with T stage (T2 and T3 and T4 vs. T1) (P < 0.001), N stage (N1 and N2 and N3 vs. N0) (P = 0.006), M stage (M1 vs. M0) (P = 0.008), pathologic stage (stage III and stage IV vs. stage I and stage II) (P < 0.001), gender (male vs. female) (P < 0.001), age (>65 vs. ≤65) (P = 0.022), and smoker (yes vs. no). Next, the univariate and multivariate analysis results suggested that SGO1 expression was an independent prognostic biomarker for LUAD.

Previous studies reported that SGO1 promotes the proliferation and metastasis of prostate cancer via activating the AKT-mediated signaling pathway (17). It has been shown that SGOL1 variant B led to abnormal mitosis and resistance to taxane in NSCLC (18). In this study, we investigated the underlying mechanisms through which SGO1 affected the progression of LUAD. GSEA enrichment confirmed that SGO1 was significantly associated with cell cycle, focal adhesion, pathway in cancer, apoptosis, oxidative phosphorylation, Wnt signaling pathway, cytokine–cytokine receptor interaction, and chemokine signaling pathway.

It has been shown that SGO1 was highly expressed in prostate cancer and associated with adverse prognosis and immune infiltration (9). In this finding, we found that SGO1 expression was positively associated with the infiltration of Th2 cells, Tgd, T helper cells, and NK CD56dim cells but negatively associated with the infiltration of pDC, NK cells, CD8 T cells, DC, TFH, iDC, eosinophils, and mast cells in LUAD.

It has been well documented that ncRNAs, miRNAs, and lncRNAs are involved in the modulation of gene expression by communicating with each other through the ceRNA mechanism. To explore the upstream regulatory miRNAs of SGO1, we used starBase and found that has-miR-125a-5p may be an upstream miRNAs of SGO1. It has been confirmed that miR-125a-5p facilitates osteoclastogenesis via targeting TNFRSF1B (19). In gastric cancer, miR-125a-5p was found to promote gastric cancer cell growth and invasion by activating the Hippo pathway (20). We conducted the correlation analysis, expression analysis, and prognosis analysis. MiR-125a-5p was selected as the most potential upstream tumor-suppressive miRNA of SGO1. Finally, we also constructed the SGO1-related ceRNA network, which identified a lncRNA-MIR4435-2HG/miR-125a-5p/SGO1 regulatory axis. In fact, lncRNA MIR4435-2HG was reported to promote the migration and proliferation of NSCLS by increasing the TGF-β1 expression and activating β-catenin signaling, respectively (21, 22).

GSEA enrichment results show that SGO1 may play a central role in focal adhesion and cell apoptosis. We decide to examine the potential biological function of SGO1 in LUAD. In vitro, we found that SGO1 was upregulated in LUAD tissues and cell lines. Knockdown of SGO1 in A549 cells inhibited cell proliferation and increased apoptosis cells. Based on the above findings, we proposed that SGO1 exerts an essential function in regulating the pathologic progression of LUAD.



Conclusion

This finding demonstrated, for the first time, the clinical significance and biological function of SGO1 in lung adenocarcinoma. In summary, SGO1 may serve as a promising diagnostic and prognostic biomarker for LUAD.
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Purpose

Lung adenocarcinoma (LUAD) is the most common type of cancer and the leading cause of cancer-related death worldwide, resulting in a huge economic and social burden. MiRNA-195-5p plays crucial roles in the initiation and progression of cancer. However, the significance of the miRNA-195-5p/polypyrimidine tract-binding protein 1 (miRNA-195-5p/PTBP1) axis in the progression of lung adenocarcinoma (LUAD) remains unclear.



Methods

Data were collected from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. The starBase database was employed to examine the expression of miRNA-195-5p, while the Kaplan–Meier plotter, UALCAN, and Gene Expression Profiling Interactive Analysis (GEPIA) databases were utilized to analyze the tumor stage and prognostic value of miRNA and PTBP1. Quantitative reverse transcription-polymerase chain reaction assay was conducted to detect the expression levels of miRNA-195-5p in LUAD cell lines and tissues. The effects of miRNA-195-5p on cell proliferation and migration were examined using the cell growth curve, clone information, transwell assays, and wound healing assays.



Results

We found that miRNA-195-5p was down-regulated in LUAD cancer and cell lines. Importantly, its low levels were related to the tumor stage, lymph node metastasis, and poor prognosis in LUAD. Overexpression of miR-195-5p significantly inhibited cell growth and migration promotes cell apoptosis. Further study revealed that PTBP1 is a target gene of miRNA-195-5p, and overexpression of miRNA-195-5p inhibited the progression of LUAD by inhibiting PTBP1 expression. MiRNA-195-5p expression was related to immune infiltration in lung adenocarcinoma. Moreover, PTBP1 was negatively correlated with diverse immune cell infiltration and drug sensitivity.



Conclusion

Our findings uncover a pivotal mechanism that miRNA-195-5p by modulate PTBP1 expression to inhibit the progression of LUAD. MiRNA-195-5p could be a novel diagnostic and prognostic molecular marker for LUAD.
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Introduction

Lung cancer is one of the most common types of cancer and one of the leading causes of cancer-related death worldwide (1). It mainly includes small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC); the latter comprises adenocarcinoma (LUAD), squamous cell carcinoma (LUSC), and large-cell carcinoma (LCLC) (2, 3). In recent years, numerous advances in the diagnosis and treatment of LUAD have been achieved. Nevertheless, the incidence and mortality rates of lung cancer remain very high. Therefore, the development of novel therapeutic strategies to improve patient survival time with lung cancer is urgently warranted.

MicroRNAs (miRNAs) are endogenously expressed ncRNAs with important biological function as a posttranscriptional gene regulator (4). Emerging evidence has demonstrated that miRNAs plays crucial roles in cancer initiation, progression, metastasis, and response to therapy (5). MiR-212-3p, miR-27a-3p and miR-132-5p are significantly upregulated in LUAD adenocarcinoma (6). miR-197-5p, miR-93-5p, miR-378a-3p and miR-98-5p downregulate the expression of FUS1/TUSC2, another tumor suppressor gene located on Chr.3p21.3 (7). It has been reported that miR-195-5p is a key regulator in multiple types of cancer [e.g., gastric (8), colorectal (9), cervical (10), prostate (11), and pancreatic (12)]. For instance, it has been confirmed that miR-195-5p modulates the polarization of M2-like tumor-associated macrophages and inhibits the progression of colorectal cancer (9). By regulating the expression of Yes1-associated transcriptional regulator (YAP1), miR-195-5p inhibits the malignant progression of cervical cancer (10). Moreover, it regulates the multi−drug resistance of gastric cancer cells by modulating the expression of zinc finger protein 139 (ZNF139) (13). A previous study showed that miR-195-5p may act as a prognostic factor of the diagnosis of lung cancer (14). However, the potential roles of the miRNA-195-5p/polypyrimidine tract-binding protein 1 (miR-195-5p/PTBP1) axis in modulating LUAD progression remain unclear.

PTBP1, as a significant RNA-binding protein, plays indispensable roles in RNA metabolism (15). It is well documented that abnormal PTBP1 expression leads to progression in various types of cancer. For example, it has been shown that PTBP1 modulates pyruvate kinase M1/M2 (PKM1/M2) splicing, thereby inhibiting cancer-specific energy metabolism (16). In bladder cancer, splicing factor PTBP1 elevated the expression of oncogenic splice variants, predicting poor prognosis (17). High expression of PTBP1 regulates the alternative splicing of cortactin and promotes the progression of colorectal cancer (18). Furthermore, a study suggested that PTBP1 plays important role in the maintenance of growth and malignant properties of breast cancer cells (18). Another crucial function of PTBP1 is its participation in the internal ribosome entry site-mediated translation (19). Indeed, it has been reported that PTBP1 may play indispensable roles in the initiation of translation (20). However, there are no studies investigating its prognostic and immunological significance in patients with LUAD, and the upstream modulatory molecular mechanism of PTBP1 involved in LUAD progression remains unknown.

The objective of this study was to investigate the clinical significance and immunological role of the miRNA-195-5p/polypyrimidine tract-binding protein 1 (miRNA-195-5p/PTBP1) axis in the progression of LUAD.



Methods


Data Collection

TCGA-LUAD cohort data and corresponding clinical information of 535 LUAD patients were downloaded from the TCGA website (https://portal.gdc.cancer.gov/repository). The gene expression profiles were normalized using the scale method provided in the “limma” R package. Data analysis was performed with the R (version 3.6.3) and ggplot2 [3.3.3] packages.



Correlation Between PTBP1 Expression, Immune Cell Infiltrates, and Drug Sensitivity

The TIMER (https://cistrome.shinyapps.io/timer/) (21) and TISIDB (http://cis.hku.hk/TISIDB/) (22) databases were using to examined the correlation between the PTBP1 expression and diverse immune cell infiltrates. We employed the CTRP databases (http://portals.broadinstitute.org/ctrp/) to analysis the correlation between PTBP1 expression and drug sensitivity (23, 24).



Predicted and Analysis the Target Gene of miRNA-195-5p

We employed the starbase (http://starbase.sysu.edu.cn/), targetscan (http://www.targetscan.org/)and miRDB (http://mirdb.org/) to Predicted and analysis the target gene of miRNA-195-5p (25, 26). Additionally, we using the starbase to examined the correlation and binding site between the PTBP1, miRNA-195-5p.



Gene Set Enrichment Analysis

We used starbase (https://starbase.sysu.edu.cn/) (27) to obtain the target genes of miRNA-195-5p.

The GO and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed for the target gene of miRNA-195-5p using the clusterProfiler package (28).



Univariate and Multivariate Cox Regression Analyses

Cox regression analysis, including univariate, and multivariate analyses, was used to examine the prognostic value of miRNA-195-5p and PTBP1 in LUAD. The forest plot was constructed using the R package “forest plot” to exhibit the hazard ratio (HR), 95% CI, and p-value.



Plasmids Construction and Cell Culture

The BEAS-2B cell line was purchased from cell bank of Kunming Institute of Zoology, and cultured in BEGM media (Lonza, CC-3170). Lung cancer cell lines, including A549, H1650 and H1975 were purchased from Cobioer, China with STR document, A549, H1650 and H1975 cells were all cultured in RPMI1640 medium (Corning) supplemented with 10% fetal bovine serum (FBS) and 1% penicillin/streptomycin.



Quantitative Real-Time PCR

The qRT-PCR assay was performed as documented (29). The primer sequences are list follows: miR-195-5p-F: GAATTCGCCTCAAGAGAACAAAGTGGAG, miR-195-5p R: AGATCTCCCATGGGGGCTCAGCCCCT; U6-F: GGTCGGGCAGGAAAGAGGGC, U6-R: GCTAATCTTCTCTGTATCGTTCC, PTBP1-F: AGCGCGTGAAGATCCTGTTC, PTBP1-R: CAGGGGTGAGTTGCCGTAG, β-actin-F: CTTCGCGGGCGACGAT, β-actin-R: CCATAGGAATCCTTCTGACC. The expression quantification was obtained with the 2−ΔΔCt method.



Cell Proliferation and Migration Assay

For cell proliferation assay, indicated cells were plated into 12-well plates at a density of 1.5×104, the cell numbers were subsequently counted each day using an automatic cell analyzer countstar (Shanghai Ruiyu Biotech Co., China, IC 1000). For colony formation assay, indicated cells were seeded in 6-well plate (China, NEST, Cat. 703001) with 600 cells per well supplemented with 2 mL cell culture medium, and the cell culture medium was changed every 3 days for 2~3 weeks, and then indicated cells were fixed with 4% PFA and stained with 0.5% crystal violet.



Clinical Sample Collection

A total of 15 NSCLC patients tissues and adjacent tissues were collected to perform the qRT-PCR assay to examine the expression of miRNA-195-5p in lung cancer. This study was reviewed and approved by Ethics Committee of The Third Affiliated Hospital of Kunming Medical University. This study complies with the ethics committee regulations and conducted with the informed consent of the patients. Meanwhile, these samples were frozen in liquid nitrogen immediately and stored at −80°C for subsequent experiments. The clinical information in Supplementary Table 5.



Statistical Analysis

Correlation analysis was performed using the Pearson correlation test. The significance of the data between the two experimental groups was determined by Student’s t-test, and multiple group comparisons were analyzed by one-way ANOVA. P < 0.05 (*), P < 0.01 (**) and P < 0.001 (***), were considered significant.




Results


Pan-Cancer Analysis Revealed Low miRNA-195-5p Expression

We employed the TCGA database to examine the expression profile of miRNA-195-5p in various human cancers. The results revealed that miRNA-195-5p was low in bladder urothelial carcinoma (BLCA), breast invasive carcinoma (BRCA), head and neck squamous cell carcinoma, kidney chromophobe, kidney renal clear cell carcinoma (KIRC), kidney renal papillary cell carcinoma, liver hepatocellular carcinoma (LIHC), lung adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC), stomach adenocarcinoma, thyroid carcinoma, and uterine corpus endometrial carcinoma (UCEC) (Figure 1A and Supplementary Table 1). In contrast, high expression of miRNA-195-5p was observed in KIRC and prostate adenocarcinoma (Figure 1A). Collectively, these results demonstrated that the expression of miRNA-195-5p is down-regulated in most human cancers.




Figure 1 | Expression analysis for miRNA-195-5p in human cancers. (A) The expression of miRNA-195-5p in pan-cancer analysis by the starbase. (B–D) The overall survival of miRNA-195-5p in pan-cancer examine by the kmplot database. **P < 0.01; ***P < 0.001; NS, p > 0.05.



Next, to evaluate the prognostic value of miRNA-195-5p, we performed overall survival (OS) analysis in various human cancers. The results showed that low expression of miRNA-195-5p was related to good overall survival (OS) in BLCA, KIRC, and ovarian serous cystadenocarcinoma, and associated with poor overall survival in BRCA, LIHC, LUAD, LUSC, sarcoma, and UCEC (Figures 1B–D). These results confirmed that miRNA-195-5p may play different roles in the progression of an array of cancers.



MiRNA-195-5p Expression Was Correlated With the Tumor Stage in Various Cancers

Considering its low expression in human cancer, we further explored the correlation between miRNA-195-5p expression and pathological stage in cancer. The results suggested that miRNA-195-5p expression was significantly related to the pathological stage in KIRC, LUAD, PRAD, and THYM (Figure 2A). In summary, these findings showed that miRNA-195-5p expression was significantly correlated with the pathological stage of various cancers.




Figure 2 | Analysis of the tumor stage and ROC curve for miRNA-195-5p in human cancers. (A) The tumor stage for miRNA-195-5p in KIRP, LUAD, PRAD, and THYM. (B) ROC curve analyses and AUC values for miRNA-195-5p in diverse human cancer. *P < 0.05; ***P < 0.001; NS, p > 0.05.



Subsequently, we examined whether miRNA-195-5p acts as a detection index for the diagnosis of various cancers. The receiver operating characteristic curve analysis of miRNA-195-5p showed the following area under the curve (AUC) values: 0.910 for BRCA; 0.907 for BLCA; 0.756 for cholangiocarcinoma; 0.985 for colon adenocarcinoma; 0.787 for esophageal carcinoma; 0.930 for head and neck squamous cell carcinoma; 0.954 for kidney chromophobe; 0.607 for KIRC; 0.945 for kidney renal papillary cell carcinoma; 0.920 for LIHC; 0.823 for LUAD; 0.963 for LUSC; 0.879 for LUAD; 0.804 for stomach adenocarcinoma; 0.910 for thyroid carcinoma; and 0.842 for UCEC (Figure 2B). These results indicated that miRNA-195-5p may act as a detection index for the diagnosis of various types of cancer with high sensitivity and specificity.



Analysis of the Function of Target Genes of miRNA-195-5p

Considering that miRNA-195-5p was markedly correlated with the prognosis, tumor stage, and lymph node metastasis, we next investigated the functions of its target genes in various cancers. We utilized the starBase and TargetScan database to identify the potential target genes of miRNA-195-5p. Next, we used these genes to conducted GO and KEGG enrichment analysis. Results confirmed that these genes were mainly involved in signaling pathways, including the mechanistic target of rapamycin kinase (mTOR), autophagy, and insulin signaling pathways. In terms of molecular function, these target genes are mainly involved in small GTPase binding, Ras GTPase binding, cell-substrate junction, and focal adhesion (Figure 3A). The main pathways in which target genes of miRNA-195-5p participate include mTOR signaling, epithelial-mesenchymal transition, and apoptosis (Figure 3B). These findings suggested that the target genes of miRNA-195-5p play pivotal roles in cancer progression.




Figure 3 | Analysis of the biological function for miRNA-195-5p downstream target genes in human cancers. (A)The KEGG signaling pathway of miRNA-195-5p downstream target genes in lung-cancer analysis by the starbase. (B) The hallmark of miRNA-195-5p downstream target genes in lung cancer analysis by the GSEA software.





MiRNA-195-5p Expression Was Down-Regulated in LUAD

The public database revealed that miRNA-195-5p was significantly decreased in LUAD and LUSC (Figures 4A, B); and its low expression correlated with tumor stage and lymph node metastasis (Figures 4C, D). To validate the above results, we analyzed a diverse Gene Expression Omnibus (GEO) dataset and found that miRNA-195-5p was decreased in lung cancer tissue (Figure 4E). To further investigate the expression of miR-195-5p in LUAD, we first detected its levels in 15 pairs of lung cancer samples using quantitative reverse transcription-polymerase chain reaction (qRT-PCR). The results indicated that miR-195-5p expression was markedly lower in lung cancer tissues compared with adjacent normal tissues (Figure 4F). Moreover, we used the qRT-PCR assay to examine the expression of miRNA-195-5p in various LUAD cell lines. The data showed that miRNA-195-5p expression was down-regulated in LUAD cells versus normal BEAS-2B cells (Figure 4G). Finally, we found that low expression of miRNA-195-5 was correlated with poor overall survival and disease-specific survival (DSS) in LUAD patients (Figures 4H, I); To further validate the overall survival of miR-195-5p in LUAD patients, we examined the prognosis of miR-195-5p in lung cancer by clinical samples from Yunnan Cancer Hospital (N=181). The results also confirmed that low miR-195-5p expression had a worse OS than the high miR-195-5p expression group (Figure 4J). These results indicated that miRNA-195-5p may act as a detection index for the diagnosis of LUAD with high sensitivity and specificity.




Figure 4 | miRNA-195-5p was down-regulated in LUAD and cell lines. (A, B)The expression of miRNA-195-5p in lung cancer examine by TCGA datasets. (C) The tumor stage of miRNA-195-5p in TCGA-LUAD examine by the UALCAN. (D) The lymph node metastases of miRNA-195-5p in TCGA-LUAD examined by the UALCAN. (E, F) The expression of miRNA-195-5p in lung cancer determines by GEO datasets. (G) The expression of miRNA-195-5p in LUAD cell lines was determined by qRT-PCR assay. (H–J)The overall survival and disease-specific survival of miRNA-195-5p in LUAD determine by the TCGA-LUAD dataset and clinical samples. (K, L) Univariate and multivariate Cox regression analyses were performed to determine miRNA-195-5p as an independent prognostic factor in the TCGA LUAD dataset. **P < 0.01; ***P < 0.001.





MiRNA-195-5p Is an Independent Prognostic Factor in LUAD

To further examine whether miRNA-195-5p was an independent prognostic factor in LUAD. Univariate Cox regression analysis demonstrated that miRNA-195-5p expression (p = 0.029), pathological stage (p < 0.001), T stage (p < 0.001), M stage (p =0.002), and Residual tumor stage (p < 0.001) were significantly correlated with OS in LUAD (Figure 4K); Multivariate analysis indicated that miRNA-195-5p expression (p = 0.0107), pathological stage (p < 0.001), T stage (p =0.032), and Residual tumor stage (p=0.031) were significantly correlated with OS in LUAD (Figure 4L); These results confirmed that miRNA-195-5p was an independent risk factor for LUAD patients.



Overexpression of miRNA-195-5p Inhibited the Proliferation and Migration of LUAD Cells

Given the low expression of miRNA-195-5p in LUAD tissues, we speculated that it may play a suppressive role in the pathogenesis of this disease. To investigate its functions in LUAD, we transiently overexpressed miRNA-195-5p mimics in A549 cells. The expression levels of miRNA-195-5p after overexpression were detected using qRT-PCR. As expected, the levels of miRNA-195-5p were increased after overexpression of miR-196b-5p (Figure 5A). Furthermore, we conducted the biological function assay to examine the effects of miRNA-195-5p overexpression on the proliferation and migratory ability of NSCLC cells. Results confirmed that overexpression of miRNA-195-5p inhibited the cell growth and cell migration in LUAD, and promoted apoptosis (Figures 5B–E). Collectively, these data imply that miRNA-195-5p plays tumor-suppressive roles in the progression of lung cancer




Figure 5 | Over-expression of miRNA-195-5p inhibits the cell proliferation and migration ability of LUAD cells. (A) The expression of miRNA-195-5p in LUAD cells lines after over-expression of miRNA-195-5p examined by using the qRT-PCR assay. (B) Over-expression of miRNA-195-5p on cell growth ability examined by clone information assay. (C) Over-expression of miRNA-195-5p on cell migration ability examined by transwell assay. (D) Over-expression of miRNA-195-5p on cell migration ability examined by wound healing assay. Quantification data were also indicated. (E) Cell apoptosis of LUAD after over expression of miR-195-5p.Scale bar=50 μm. **P < 0.01; ***P < 0.001.





MiRNA-195-5p Exerted Its Effects by Modulating PTBP1 Expression in LUAD

To decipher the underlying mechanism involved in the function of miRNA-195-5p, we performed bioinformatics analyses for the identification of possible targets. We employed the starBase, TargetScan, and miRDB databases to predict downstream genes. The results indicated that PTBP1, as an important lung cancer stem cell marker gene, may be a target gene of miRNA-195-5p (Figure 6A). The analysis revealed that miRNA-195-5p was negatively correlated with PTBP1 in lung cancer (Figure 6B and Supplementary Table 2). We used the starBase database to examine potential binding sites and analyze the correlation between miRNA-195-5p and PTBP1 (Figure 6C). In addition, we conducted an overexpression analysis to investigate the effects of miRNA-195-5p on the expression of target genes. Forced miRNA-195-5p expression significantly decreased the mRNA levels of PTBP1 in A549 cells (Figure 6D).




Figure 6 | MiR-195-5p modulates the proliferation and migration of LUAD by Targeting PTBP1. (A) Identity the PTBP1 as the target gene of miRNA-195-5p by employed diverse public databases. (B) The correlation between the miRNA-195-5p and PTBP1 in TCGA LAUD data. (C) The target sites between the miRNA-195-5p and PTBP1 were predicted by starBase. (D) The expression of PTBP1 in LUAD cell after over-expression of miRNA-195-5p was examined by the qRT-PCR assay. (E)The luciferase activities of the PTBP1 luciferase reporter vector (WT or MUT) in A549 cells transfected with miRNA-195-5p mimics or mimics NC. (F) The over-expression efficient of PTBP1 in A549 cells examine by qRT-PCR assay. (G) Overexpression of PTBP1 could reverse the repressed cell proliferation induced by miR-195-5p overexpression in A549 cells examined by growth curve assay. (H) Overexpression of PTBP1 could reverse the repressed cell migration induced by miR-195-5p overexpression in A549 cells examined by transwell assay. (I) The expression of PTBP1 in A549 cells after transfection miR-195-5p mimics and over-expression of PTBP1. Quantification data were also indicated. (J) Overexpression of PTBP1 could reverse the repressed cell migration induced by miR-195-5p overexpression in A549 cells examined by wound healing assay. Scale bar=50 μm. ***P < 0.001; NS, p > 0.05.



The luciferase assay showed that transfection with miR-195-5p mimics significantly reduced the relative luciferase activity of PTBP1-3′-UTR-wild-type-treated lung cancer cells; however, it did not affect that of PTBP1-3′-UTR-mutation-treated lung cancer cells (Figure 6E). Based on the above results, we speculated that miR-195-5p might exert its effects by inhibiting PTBP1 expression. We next overexpressed PTBP1 in A549 cell lines and employed qRT-PCR to validate the efficiency (Figure 6F). Growth curve results confirmed that the overexpression of PTBP1 could reverse the repressed cell proliferation induced by miR-195-5p overexpression in A549 cells (Figure 6G). Transwell and wound healing assays indicated that PTBP1 overexpression abolished the miR-195-5p-caused suppression of migration in A549 cells (Figures 6H, I). Overexpression of miR-195-5p reduced the mRNA levels of PTBP1; these levels were restored following overexpression of PTBP1 (Figure 6J). Taken together, these findings confirmed that miR-195-5p acted as a tumor suppressor by modulating PTBP1 in LUAD.



Correlation Analysis Between miRNA-195-5p Expression and Infiltrating Immune Cells

Considering miRNA-195-5p plays crucial roles in the progression of lung cancer. We examined the correlation between miRNA-195-5p expression and immune infiltration in LUAD by using Spearman correlation, the analysis data demonstrated that miRNA-195-5p positively correlated with the immune infiltration of Mast cells, DC, iDC, NK cells, Macrophages, Th1 cells, B cells, pDC, T cells, TFH, Eosinophils, Cytotoxic cells, CD8 T cells and Neutrophils, negatively correlated with the immune infiltration of NK CD56dim cells and Th2 cells in LUAD (Figures 7A–C). These results demonstrated that miRNA-195-5p plays a significant role in the immune response of LUAD.




Figure 7 | Analysis of the correlation between miRNA-195-5p expression and immune infiltration. (A) Correlation between the relative abundances of 24 immune cells and miRNA-195-5p expression level. (B, C) Diverse proportions of immune cell subtype in tumor samples in high and low miRNA-195-5p expression groups. **P < 0.01; ***P < 0.001.





PTBP1 Expression Was Upregulated in LUAD

We employed the public database and found that PTBP1 was significantly up-regulated in numerous human cancers, particularly LUAD (Figure 8A). Moreover, its high expression was correlated with tumor stage and poor prognosis (Figures 8B–E). The analysis of GEO datasets yielded consistent results (Supplementary Table 3). To further validate the correlation between PTBP1 expression and overall survival, we examined the prognosis of PTBP1 in lung cancer by clinical samples from Yunnan Cancer Hospital (N=181). The results also showed that higher PTBP1 expression had a worse OS than low PTBP1 expression group (Figure 8F). The AUC value for LUAD was 0.861 (Figure 8G). In addition, higher expression of PTBP1 was correlated with cancer stage (Supplementary Figure 1) and poor prognosis (Supplementary Figure 2). The receiver operating characteristic curve analysis showed that PTBP1 may act as a detection index for the diagnosis of LUAD with high sensitivity and specificity (Supplementary Figure 3). These results demonstrated that PTBP1 plays an important role in tumorigenesis.




Figure 8 | PTBP1 was highly expressed in LUAD. (A) The expression of PTBP1 in pan-cancer. (B) Analysis of the tumor stage for PTBP1 in TCGA-LUAD analysis by using the GEPIA database. (C–F) Analysis of the overall survival, disease-free survival, and progress-free survival for PTBP1 in TCGA-LUAD and clinical sample. (G) ROC curve analyses and AUC values for miRNA-195-5p in TCGA-LUAD dataset. (H, I) Univariate and multivariate Cox regression analyses were performed to determine PTBP1 as an independent prognostic factor in the TCGA LUAD dataset. *P < 0.05; **P < 0.01; ***P < 0.001; NS, p > 0.05.





PTBP1 is an Independent Prognostic Factor in LUAD

To examine whether PTBP1 was an independent prognostic factor in cancers, Univariate Cox regression analysis demonstrated that PTBP1expression (p < 0.001), pathological stage (p < 0.001), T stage (p < 0.001), N stage (p < 0.001), and M stage (p = 0.006) were significantly correlated with OS in LUAD (Figure 8H); Multivariate analysis indicated that PTBP1 expression (p = 0.011), and T stage (p =0.016) were significantly correlated with OS in LUAD (Figure 8I); These results confirmed that PTBP1 was an independent risk factor for LUAD patients lead to adverse clinical outcomes.



PTBP1 Was Associated With Immune Infiltration in LUAD

We analyzed the expression of PTBP1 in immune subtypes of LUAD. The results demonstrated high expression of PTBP1 mainly in the C4 subtype of LUAD and LUSC (Figure 9A). Next, analysis of the TIMER database revealed that somatic copy number alterations for PTBP1 were significantly correlated with diverse immune cell infiltration levels in LUAD and LUSC (Figures 9B, C). Hence, PTBP1 plays an important role in the immune response, as well as the development and progression of lung cancer. We also explored the correlation between PTBP1 and immune infiltration in LUAD. Results indicated that PTBP1 was positively correlated with the immune infiltration of LUAD tumors by T helper 2 (Th2) cells, natural killer (NK) CD56dim cells, regulatory T NK CD56bright cells, and NK cells. Moreover, it was negatively correlated with immune infiltration by neutrophils, dendritic cells (DC), Th1 cells, Th cells, TcmB cells, T cells, eosinophils, macrophages, interstitial DC, and mast cells (Figure 9D). Our results demonstrated that PTBP1 was positively correlated with the immune infiltration of LUSC tumors by Th2 cells, NK cells, and central memory T cells. Also, it was negatively correlated with immune infiltration by CD8 T cells, Th17 cells, eosinophils, plasmacytoid DC, activated DC, mast cells, cytotoxic cells, T cells, B cells, DC, macrophages, Th1 cells, interstitial DC, and neutrophils (Figure 9E). Collectively, the data indicated that PTBP1 was significantly correlated with immune infiltration in LUAD.




Figure 9 | Analysis of the immunological roles of PTBP1 in LUAD. (A) The expression of PTBP1 in immune subtype of LUAD. (B, C) The correlation between tumor infiltrating levels and somatic copy number alterations of PTBP1 in LUAD. (D, E) The association between PTBP1 expression and immune infiltration level in LUAD. *P < 0.05; **P < 0.01; ***P < 0.001.





Analysis of the Function of PTBP1 in LUAD

We further explored PTBP1-related signaling pathways involved in the progression of LUAD. For this purpose, we employed LinkedOmics to perform a correlation analysis for PTBP1. The heatmap illustrates the genes which were most positively correlated with PTBP1 (Figure 10A). We next performed KEGG pathway enrichment. The results showed that up-regulation of PTBP1 expression is mainly involved in cell cycle regulation, DNA replication, and base excision repair (Figure 10B). It has been reported that these signaling pathways play important roles in the proliferation of cancer cells.




Figure 10 | Analysis of the function of PTBP1 in LUAD. (A)The positive gene of PTBP1 in lung cancer analysis by employed the Linkedomics tools. (B) The KEGG signaling pathway of PTBP1 in lung cancer. (C–E) The involvement of genes co-expressed with PTBP1 in LUAD signaling pathways as examined by GSEA software.



Gene set enrichment analysis (GSEA) also showed that pathways, including the apoptosis, pathway in cancer, gap junction, focal adhesion, cell cycle, B cell receptor signaling pathway, cytokine-cytokine receptor interaction, chemokine signaling pathway, JAK-STAT signaling pathway, WNT signaling pathway, MAPK signaling pathway, and cell adhesion molecules CAMs, were significantly enriched in the high PTBP1 expression group (Figures 10C–E).



Correlation Between PTBP1 Expression and Tumor Mutational Burden, Microsatellite Instability, and Drug Sensitivity

Emerging evidence has demonstrated that TMB and MSI could be potential biomarkers for predicting the efficacy of immunotherapy for lung cancer (30, 31). The above findings indicated that PTBP1 was significantly correlated with the immune infiltration of tumors. We conducted a correlation analysis to clarify the relationship between PTBP1 expression and TMB, MSI, and drug sensitivity. We found that PTBP1 was also positively correlated with the TMB and MSI in LUAD (Figures 11A, B). For the exploration of potential therapeutic targets, it is extremely important to examine the correlation between PTBP1 expression and various drugs in a pan-cancer analysis. In the present study, we employed the Gene Set Context Analysis tools to analyze the relationship between PTBP1 expression and drug sensitivity. The results demonstrated that PTBP1 expression was negatively correlated with sensitivity to GSK-J4, GSK461364, BRD-K30748066, docetaxel, CD-437, teniposide, chemically modified tetracycline-3 (COL-3), cytarabine hydrochloride, BI-2536, tivantinib, triazolothiadiazine, narciclasine, SB-743921, clofarabine GW-843682X, topotecan, BRD-K70511574, bafilomycin A1, vincristine, decitabine, NVP-231, barasertib, necrosulfonamide, indisulam, PHA-793887, MK-1775, and ceranib-2 (r<−0.30) (Figure 11C and Supplementary Table 4). Taken together, these results suggested that PTBP1 was significantly associated with the sensitivity of different cancer cell lines to various drugs




Figure 11 | Analysis of the correlation between PTBP1 expression and TMB, MSI and drug sensitivity. (A) The correlation between the PTBP1 expression and TMB in LUAD. (B) The correlation between the PTBP1expression and MSI in LUAD. (C) The correlation between the PTBP1 expression and drug sensitivity.






Discussion

Despite its high incidence and mortality, the exact cause of the development of LUAD is not fully understood. It is well established that LUAD has diverse pathological features. Accumulating evidence suggests that miRNAs play indispensable roles in cancer progression and drug resistance. However, the molecular mechanisms involved in these processes remain unclear. In this study, we analyzed miR-195-5p expression, prognostic value, target genes, and correlation with tumor immune cell infiltration in LUAD for the first time.

The present findings revealed that miRNA-195-5p expression was significantly decreased in various types of cancer, and its low expression was associated with the tumor stage, lymph node metastasis, and unfavorable prognosis of lung cancer. Indeed, it has been confirmed that miR-195-5p was down-regulated in melanoma (32), oral squamous cell carcinoma (33), colon cancer (34), and hepatocellular carcinoma (35). These studies indicated that miR-195-5p plays a fundamental role in malignant suppression, and our results are consistent with these findings.

The high expression of miR-195 can inhibit tumorigenesis and progression and affect the sensitivity of chemotherapeutic agents for malignant tumors, a property that has been applied to drug development. Therefore, it was considered that propofol might induce miR-195 to inhibit the proliferation, migration, and invasion of gastric cancer cells (36). Zuo et al. investigated miR-195 together with long-chain non-coding 00485 (LINC00485) in cisplatin resistance and found that overexpression of miR-195 or silencing of LINC00485 enhances the sensitivity of lung adenocarcinoma cells to cisplatin (37). In this study, we found that miR-195-5p expression was downregulation in LUAD, compared to normal tissues. Moreover, the miR-195-5p expression has associations with tumor pathological stage, lymph node metastasis in LUAD. Meanwhile, the lower miR-195-5p level was related to lymph node metastasis, high tuimor stage. These results suggest that miR-195-5p plays an important role in the progression decreased in some tumor tissues and is associated with clinicopathological features, including late T stage, lymph nodal metastasis, and TNM staging (38, 39). We also found that miRNA-195-5p by inhibited PTBP1 expression lead to inhibition of the prognosis of LUAD.

Results from survival analysis showed that low miR-195-5p expression was associated with poor os, and DSS in LUAD, consistent with previous findings miR-195-5p affects tumor growth and invasion and leads to a poor prognosis (34). Of note, miRNA-195-5p was found to regulate the expression of oncogenes or tumor suppressors and participated in the development of various types of cancer. By targeting mitofusin 2 (MFN2) and F-box and WD repeat domain-containing 7 (FBXW7), miR-195-5p promotes cardiomyocyte hypertrophy (39, 40). It has been reported that miR-195-5p modulates the expression of forkhead box K1 (FOXK1), thereby inhibiting the proliferation of lung cancer cells (41). Notably, circAGFG1 inhibits the expression of miR-195-5p and promotes the progression of triple-negative breast cancer (42). Although some of these findings lack additional experimental verification, our data indicate that miRNA-195-5p may be a promising target and diagnostic or therapeutic biomarker for LUAD. Collectively, these results demonstrated that miRNA-195-5p can be used as a prognostic biomarker for LUAD.

Cancer progression is a complicated process accompanied by increased proliferation, resistance to cell death, enhanced angiogenesis, escape from immune surveillance, and tumor microenvironment (TME) (43). The TME has attracted wide attention in cancer immunotherapy and has been identified as the main contributor to cancer initiation and development (44). Although immunotherapy has made breakthroughs in cancer treatment, it still faces many challenges, and only a limited proportion of cancer patients respond well to immunotherapy. Therefore, the identification of new targets and biomarkers is the key to further improving the efficacy of immunotherapy. Tumor-infiltrating immune cells, including B cells, T cells, dendritic cells, macrophages, and neutrophils, are the major part of the TME (45). Here, to further estimate the relationships between miRNA-195-5p and the TME, we first examined the correlation of miRNA-195-5p expression and the abundance of different infiltrating immune cells across different cancer types. We found that miRNA-195-5p positively correlated with the immune infiltration of Mast cells, DC, iDC, NK cells, Macrophages, Th1 cells, B cells, pDC, T cells, TFH, Eosinophils, Cytotoxic cells, CD8 T cells, and Neutrophils, negatively correlated with the immune infiltration of NK CD56dim cells and Th2 cells in LUAD. These results demonstrated that miRNA-195-5p plays a significant role in the immune response of LUAD.

PTBP1 or polypyrimidine tract binding protein 1 (hnRNPI), is one of the most investigated RBP in vertebrates involved in almost all steps of mRNA regulation during tumorigenesis, due to its RNA-binding activity. PTBP1 is generally described as a widely expressed factor in adult tissues, and accordingly, it is present in most of the cell lines studied (46). The expression levels of PTBP1 have been found to be elevated in brain tumors (47), and different malignant cell lines (48). Furthermore, high expression of PTBP1 has been demonstrated to be associated with the aggressive behavior of several types of cancer, especially in glioma and ovarian tumors (49).

As an important RNA-binding protein, PTBP1 plays a crucial role in RNA metabolism and the progression of numerous types of cancer. Recent studies suggested that CD154 has anti-tumor activity and growth-inhibitory effects and that PTBP1 plays a crucial role in stabilizing CD154 mRNA (50). PTBP1 can reduce the expression of hypoxia-inducible factor 1α (HIF-1α) by modulating its mRNA stability, thereby inhibiting cell invasion when localized in the cytoplasm (51).

Recently, a study showed that PTBP1 induces the mRNA expression of p19 and promotes the proliferation of LUAD cells (52). Studies focusing on the function of PTBP1 in the modulation of RNA splicing in the nucleus was also found that it may play crucial oncogenic roles in the progression of various cancers. Thus, PTBP1 plays an important role and has different functions in tumorigenesis by regulating the amounts of target genes associated with malignancy.

Our data revealed that PTBP1 was significantly higher in LUAD cancer tissues compared with normal human lung tissue, consistent with previous studies (53). A recent study found that PTBP1 is overexpressed in ovarian tumors and colorectal cancer (54), indicating that PTBP1 is closely associated with the pathogenesis and development of cancer. However, the correlation of PTBP1 with clinical characteristics has not been clarified. Further analysis was performed to investigate the relationship between PTBP1 expression in LUAD tissues and clinicopathological characteristics of cancer. The results revealed that the level of PTBP1 expression in LUAD tissue was positively correlated with pathological stage and adverse clinical outcomes.

Regarding PTBP1, Morrel et al. suggested that PTBP1 might be a target of miR-214, which could reduce the endothelial cell glycolysis by inhibiting PTBP1 (55). Akao et al. found that PTBP1 is a target gene of microRNA-133b in colorectal tumors and that microRNA-133b might reduce the proliferation and invasion ability of COAD by inhibiting PTBP1 (56). In the present study, the PTBP1 expression significantly increased in the LUAD cells with overexpression of miR-195-5p upon and qPCR, while the PTBP1 expression significantly reduced in the A549 cells with inhibited expression of miR-195-5p. Via the dual-luciferase reporter assay, PTBP1 was confirmed to be the direct target gene of miR-195-5p, which could improve the cell proliferation and migration of LUAD cells. Additionally, our results suggested that miR-195-5p could have inhibited the cell proliferation and migration of LUAD cells and induced cell apoptosis. Moreover, it was also confirmed that the overexpression of PTBP1 might have promoted cell proliferation and migration in the A549 cells, while miR-195-5p might have inhibited cell proliferation and migration by reducing the PTBP1expression. We also found that PTBP1 expression was significantly correlated with the TMB and MSI in LUAD. PTBP1 expression was also positively or negatively correlated with diverse immune cell infiltration. Finally, our results showed that PTBP1 expression was negatively correlated with sensitivity to numerous drugs. The above findings offer promise for the diagnosis and treatment of lung cancer in the future.

This study improves our understanding of the correlation between miRNA-195-5p and LUAD, but some limitations still exist. First, although we explored the correlation between miRNA-195-5p and immune infiltration in LUAD patients, there is a lack of experiments to validate the function of miRNA-195-5p in the tumor microenvironment regulation of LUAD. Second, we uncover that depletion of miRNA-195-5p was inhibited cell proliferation and cell migration of LUAD cells.

However, the molecular mechanisms of miRNA-195-5p in tumor growth and metastasis need to be explored in further studies. Third, we did not conduct the in vivo experiments to validate the function of miRNA-195-5p in the tumor metastasis and tumor microenvironment regulation of LUAD. In the future, we will further study the function of miRNA-195-5p in tumor metastasis and tumor microenvironment regulation of LUAD.



Conclusion

In summary, our findings demonstrate that downregulation of miRNA-195-5p was associated with poor survival in patients with LUAD, and miRNA-195-5p inhibits growth and invasion of LUAD cells by regulating PTBP1 may provide a critical diagnostic and prognostic molecular marker for LUAD.
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Lung adenocarcinoma (LUAD) is the most common histological lung cancer, and it is the leading cause of cancer-related deaths worldwide. LncRNA-AL139385.1 (ENSG00000275880) is a novel lncRNA that is abnormally expressed in various cancer types including LUAD. However, the underlying biological function and potential mechanisms of AL139385.1 driving the progression of LUAD remain unclear. In this study, we investigated the role of AL139385.1 in LUAD and found that DNA hypomethylation was positively correlated with AL139385.1 expression in LUAD. Moreover, we uncover that the expression of AL139385.1 in LUAD tissues was significantly higher than that of AL139385.1 expression in adjacent normal tissues. Kaplan–Meier survival analysis showed that patients with higher AL139385.1 expression correlated with adverse overall survival and progression-free survival. Receiver operating characteristic (ROC) curve analysis showed that the area under the curve (AUC) value of AL139385.1 was 0.808. Correlation analysis showed that AL139385.1 expression was associated with immune infiltration in LUAD. We also found that AL139385.1 was upregulated in LUAD cancer tissues and cell lines. Knockdown of AL139385.1 significantly inhibited cell proliferation and migration abilities of LUAD. Finally, we constructed a ceRNA network that includes hsa-miR-532-5p and four mRNAs (GALNT3, CYCS, EIF5A, and ITGB4) specific to AL139385.1 in LUAD. Subsequent Kaplan–Meier survival analysis suggested that polypeptide N-acetylgalactosaminyltransferase 3 (GALNT3), cytochrome c, somatic (CYCS), eukaryotic translation initiation factor 5A (EIF5A), and integrin subunit beta 4 (ITGB4), were potential prognostic biomarkers for patients with LUAD. In conclusion, this finding provides possible mechanisms underlying the abnormal upregulation of AL139385.1 as well as a comprehensive view of the AL139385.1-mediated competing endogenous RNAs (ceRNA) network in LUAD, thereby highlighting its potential role in diagnosis and therapy.




Keywords: AL139385.1, lung adenocarcinoma, prognosis biomarker, DNA methylation, ceRNA, cell proliferation, cell migration



Introduction

Non–small cell lung cancer (NSCLC) is the main histological type of lung cancer (approximately accounts for 85% of newly diagnosed cases), whereas lung adenocarcinoma (LUAD) is a classification of NSCLC with high morbidity and mortality (1). In the past several decades, considerable progress has been made in surgical treatment, radiotherapy, chemotherapy, molecular targeted therapy, and immunotherapy for lung cancer (2). However, most patients with NSCLC are already in the advanced stage when it is initially diagnosed resulting in a short 5-year overall survival (OS) rate of patients (2). To better treat LUAD, discovering new biomarkers, therapeutic targets, and drugs for effectively preventing the development of lung cancer is urgently needed.

Long non-coding RNAs (lncRNAs) have been functionally annotated with the high-throughput sequencing technologies, which were a class of non-coding RNAs with more than 200 nucleotides in length (3). Studies have demonstrated that lncRNAs play a vital role in epigenetic, cell cycle, and cell differentiation regulation (4). Increasing evidence revealed that lncRNAs are aberrantly regulated in various cancer types and may act crucial roles in tumor progression of cell migration, proliferation, genomic stability, and survival in LUAD (5–7). Owing to lncRNAs are involved in the lung adenocarcinoma (LUAD)-related gene expression and also be regulated by transcription factors in diverse human cancer progression (8). It have been confirmed that lncRNAs to compete with microRNAs (miRNAs) as a molecular sponge result in the degradation of target mRNAs (9). Therefore, the molecular regulation mechanism of tumor-related lncRNAs in LUAD has become the focus of scientific research. Many lncRNAs are involved in the progression of LUADs, such as taurine up-regulated 1 (TUG1), HOX transcript antisense RNA (HOTAIR), Wilms tumor 1 associated protein pseudogene 1 (WTAPP1), and prostate cancer associated transcript 1 (PCAT1). (10–13). A recent study also reported several abnormal expressed lncRNAs in lung cancer, such as lncRNA-XIST and JPX (14, 15). In our previous study, we developed a new method called CVAA (Cross-Value Association Analysis), which functions without a normalization and distribution assumption. We applied it to large-scale pan-cancer transcriptome data generated by The Cancer Genome Atlas (TCGA) project and successfully discovered numerous new differentially expressed genes (DEGs) (16). AL139385.1 is one of these DEGs. However, the clinical significance, prognostic value, diagnostic value, immune infiltration, and potential biological function of AL139385.1 in LUAD remain elusive. Nevertheless, the function, potential mechanism, and prognostic significance of lncRNA-AL139385.1 in LUAD remain unclear. 

In the current study, the expression of AL139385.1 in LUAD was measured and confirmed. The abnormal expression of AL139385.1 was correlated with the clinical outcome of patients with LUAD. Moreover, the correlation between AL139385.1 expression and immune infiltration was analyzed to explore the potential mechanisms involved in AL139385.1 modulation in the progression of LUAD. Meanwhile, CCK8, BrdU, wound healing, and transwell assays were utilized to determine the biological function of AL139385.1 in LUAD progression. Finally, we also conducted data mining on TCGA to identify upstream regulation mechanisms and downstream network of AL139385.1. In summary, our findings indicate the potential role of AL139385.1 in regulating tumor progression and its potential application in the diagnosis and prognostic evaluation in LUAD.



Materials and Methods


TCGA Datasets

Download transcription and clinical information of LUAD was downloaded from TCGA (https://portal.gdc.com) (17). RNA-seq gene expression data of workflow type fragments per kilobase of transcript per million fragments mapped (FPKM) were transformed into transcripts per million (TPM) format and log2 transformation for further study. The timeROC analysis was used to compare the predictive accuracy of AL139385.1 gene in LAUD.



The Human Protein Atlas

The Human Protein Atlas (HPA) (https://proteinatlas.org/) including the normal tissue and tumor tissue protein levels of human gene expression profile information (18). In this study, HPA database utilized to analysis the protein expression of GALNT3, CYCS, EIF5A, and ITGB4 in lung cancer tissues.



Cox Regression Analysis and Kaplan–Meier Survival Analysis

We utilized cox regression analysis to examine the correlation between AL139385.1 expression and OS of patients with LUAD. The Kaplan–Meier methods employed to determine the prognosis of patients with high and low AL139385.1 expression.



Gene Set Enrichment Analysis

In the present research, we utilized the linkedomics database (http://www.linkedomics.org/login.php) obtained the co-expression genes of AL139385.1 in LUAD. The gene set kegg.v6.2.symbols.gmt, which served as a reference gene set, was downloaded from the Molecular Signatures Database (MSigDB) (http://software.broadinstitute.org/gsea/msigdb) (19–21).



Tumor Immune Estimation Resource Database

The Tumor Immune Estimation Resource (TIMER) (https://cistrome.shinyapps.io/timer/) is a comprehensive online database, including the diverse cancer types related to immune infiltrating (22). In this finding, TIMER used to examine the correlation between GALNT3, CYCS, EIF5A, and ITGB4 expression and six types of immune infiltrates (B cells, CD4+ T cells, CD8+ T cells, neutrophils, macrophages, and dendritic cells) in LUAD.



Immune Infiltration Analysis by single-sample Gene Set Enrichment Analysis (ssGSEA)

We used a GSVA R package to quantify the LUAD immune infiltration of 24 tumor-infiltrating immune cells in tumor samples through ssGSEA. According to the 509 gene signatures of 24 tumor-infiltrating lymphocytes (TILs), the relative enrichment score of every immunocyte was quantified (23). The correlation between AL139385.1 and infiltration levels of immune cells was analyzed by the Spearman correlation, and these immune cells with the different expression groups of AL139385.1 were analyzed by the Wilcoxon rank sum test.



The Targets Gene of miR-532-5p Predicted by Various Database

In this study, starBase (https://starbase.sysu.edu.cn/), miRDB (http://mirdb.org/), miRWalk (http://zmf.umm.uni-heidelberg.de/apps), and miRGator (http://mirgator.kobic.re.kr/) (9, 12–14) were utilized to predict the potential targets gene of miR-532-5p. StarBase was also used to analyze the correlation between miR-532-5p expression and AL139385.1



Cell Culture Conditions

Lung cancer cells lines including human normal bronchial epithelial cell (BEAS-2B) and three human LUAD cells (H1650, H1299, and A549 cells) were purchased from Chinese Academy of Sciences Cell Bank (China) and cultured in RPMI 1640 medium (Corning) including 10% fetal bovine serum (FBS) and 1% penicillin/streptomycin at 37°C an atmosphere containing 95% air and 5% CO2.



Constructs, Transfection, and Infection

Human AL139385.1 full-length cDNA was synthesized (Shanghai Generay Biotech) and sub-cloned into pCDH-CMV-E2F-eGFP lenti-viral vector. Independent small hairpin RNAs (shRNAs) targeting AL139385.1 were synthesized and cloned into the lentiviral plasmid pLKO.1 (Addgene, Cambridge, USA). The lenti-viruses were generated according to the manufacturer’s protocol. The AL139385.1 shRNAs and control scrambled shRNA were transfected into human embryonic kidney cells (HEK)-293T cells with the psPAX2/pMD2.G plasmids (Addgene) using calcium phosphate. After transfection, the cell supernatants were harvested and used to infect H1299 and A549 cells, and the stably lenti-viral infected cells were selected with puromycin. The primer used in this study is as follows: AL139385.1 shRNA#1: GGCCCCGCGCGCGGGCTGCCC, AL139385.1 shRNA#2: GGTCCCAGCTCTGGCCTAAGA.



Quantitative Real-Time PCR

The qRT-PCR assay was performed as documented (15). The primer sequences are list follows: AL139385.1-F: CGAGAGCAATGCGACAACGAC, AL139385.1-R: CTCCACCTGCCAGCAAAATC; β-actin-F: CTTCGCGGGCGACGAT,β-actin-R: CCATAGGAATCCTTCTGACC. The expression quantification was obtained with the 2−ΔΔCt method.



CCK 8 and BrdU Incorporation

Cell viability and growth was determined using CCK8 assays in 96-well plates. Cells were transfected with the relevant plasmids culturing for 48 h, followed by incubation with 8 μl of CCK8 for 4 h. Absorbance was read at 450 nm using a spectrophotometer. For BrdU incorporation assay, indicated cells were cultured in eight-well chamber slides for 24 h, Subsequently, indicated cells were fixed with 4% paraformaldehyde (PFA) at room temperature for 20 min and then incubated with BrdU primary antibody (Abcam, ab6326) followed by secondary antibody detection.



Cell Migration Assay

To produce a wound, the monolayer cells in six-well plate were scraped in a straight line with pipette tips. Plate was then washed with warm phosphate-buffered saline (PBS) to remove detached cells. Photographs of the scratch were taken at indicated time points using Nikon inverted microscope (Ti-S). Gap width was calculated with GraphPad Prism software. For transwell assay, 1 × 104 to 2 × 104 cells in 100 μl of serum-free medium were plated in an 8.0-μm, 24-well plate chamber insert (Corning Life Sciences, catalog no. 3422), with medium containing 10% FBS at the bottom of the insert. Cells were incubated for 24 h and then fixed with 4% PFA for 20 min. After washing, cells were stained with 0.5% crystal violet blue. The positively stained cells were examined under the microscope.



Statistical Analyses

The significance of the data between two experimental groups was determined by Student’s t-test, and multiple group comparisons were analyzed by one-way ANOVA. P < 0.05 (*), P < 0.01 (**), and P < 0.001 (***) were significant.




Results


AL139385.1 Is Highly Expressed in LUAD Tissues

To examine the RNA expression patterns of AL139385.1 in diverse cancer types, we used TCGA and GTEx datasets conducted analysis. On the basis of the best cutoff score, results show that AL139385.1 was upregulated in 14 of the 33 cancers compared with normal tissue (Figure 1A). To examine AL139385.1 RNA expression in LUAD, we analyzed AL139385.1 expression data in TCGA. We uncover that AL139385.1 was highly expressed in 535 tumor tissues than 59 normal prostate tissues in LUAD (Figure 1B). Furthermore, we found that AL139385.1 was highly expressed in 59 pairs of LUAD cancer samples than matched adjacent normal samples in TCGA data (Figure 1C), and similar results were obtained by using the Gene Expression Omnibus (GEO) dataset (Figure 1D). To further validation of AL139385.1 expression in lung cancer tissues, we conducted qRT-PCR assay to examine AL139385.1 expression in 20 pairs of lung cancer tissues and adjacent non-cancerous tissues and found significantly higher AL139385.1 expression in lung cancer tissues than in adjacent normal tissues (Figure 1E).




Figure 1 | AL139385.1 was overexpressed in LUAD. (A) AL139385.1 was highly expressed in 14 of the 33 cancers compared with normal tissue. (B–D) AL139385.1 was overexpressed in LUAD examine by TCGA and GEO datasets. (E) Relative AL139385.1 expression detected by RT-qPCR in 20 paired lung cancer and noncancerous tissues. ACC, adrenocortical carcinoma; BLCA, bladder urothelial carcinoma; BRCA, breast invasive carcinoma; CESC, cervical squamous cell carcinoma and endocervical adenocarcinoma; CHOL, cholangiocarcinoma; COAD, colon adenocarcinoma; DLBC, lymphoid neoplasm diffuse large B-cell lymphoma; ESCA, esophageal carcinoma; GBM, glioblastoma multiforme; HNSC, head and neck squamous cell carcinoma; KICH, kidney chromophobe; KIRC, kidney renal clear cell carcinoma; KIRP, kidney renal papillary cell carcinoma; LAML, acute myeloid leukemia; LUAD, brain lower grade glioma; LIHC, liver hepatocellular carcinoma; LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma; MESO, mesothelioma; OV, ovarian serous cystadenocarcinoma; PAAD, pancreatic adenocarcinoma; PCPG, pheochromocytoma and paraganglioma; PRAD, prostate adenocarcinoma; READ, rectum adenocarcinoma; SARC, sarcoma; SKCM, skin cutaneous melanoma; STAD, stomach adenocarcinoma; TGCT, testicular germ cell tumors; THCA, thyroid carcinoma; THYM, thymoma; UCEC, uterine corpus endometrial carcinoma; UCS, uterine carcinosarcoma; UVM, uveal melanoma. NS: P > 0.05, **P < 0.01, and ***P < 0.001.





Overexpression of AL139385.1 Was Associated With Adverse Clinical Parameters in Lung Adenocarcinoma

We employed the TCGA LUAD datasets to examine the clinical relevance of AL139385.1 in LUAD. As shown in Figure 2, AL139385.1 expression was significantly associated with advanced pathological stage, TNM stage, and age (Figures 2A–E). A growing body of evidence confirmed that DNA methylation plays a central role in gene expression regulation and cancer progression. Therefore, we decided to investigate the potential association between DNA methylation and AL139385.1 expression. Regression analysis demonstrated a negative correlation between AL139385.1 expression and its diverse DNA methylation sites (Figures 2F, G). To further examine whether hypomethylation can increase AL139385.1 expression, we conducted in vitro experiments by adding 5-azacytidine to A549 cells. We confirmed that 5-azacytidine significantly elevate AL139385.1 expression in a dose-dependent manner (Figure 2H). Together, these results confirmed that DNA methylation may plays a critical role in regulating AL139385.1 expression n LUAD.




Figure 2 | Analysis of the clinical significance and DNA methylation of AL139385.1 in lung adenocarcinoma. Correlation with AL139385.1 expression and clinicopathologic characteristics, including (A) pathological stage, (B–D) TNM stage and (E) smoking. (F, G) AL139385.1 expression negatively correlates with mean AL139385.1 promoter methylation levels in TCGA LUAD cohort. (H) AL139385.1 expression in A549 cells was significantly upregulated in a dose-dependent manner after 5-azacytidine treatment. NS: P > 0.05, *P < 0.05, and ***P < 0.001.





Diagnostic and Prognostic Value

Next, to assess the differences in survival time between low and high AL139385.1 expression in patients with LUAD, the Kaplan–Meier method was performed. Kaplan–Meier analysis showed that patients with higher AL139385.1 expression had markedly adverse OS and progression-free survival (PFS) in patients with LUAD. No correlation between disease-free survival (DSS) and AL139385.1 level was observed (Figures 3A–C). Moreover, we also explore the prognostic value of AL139385.1 in LUAD using various GEO datasets. Results suggested that the OS of high AL139385.1 expression was significantly poorer than low AL139385.1 expression (Figures 3D–H). Meanwhile, the time-dependent ROC curve was also used to assess the predictive power of the AL139385.1 in predicting 1-, 3-, and 5-year OS, and the AUC for 1-, 3-, and 5-year survival rate of patients with LUAD was 0.847, 0.742, and 0.712 in the TCGA cohort, respectively (Figure 3I). It is noteworthy that, compared with the clinical common indicators including T stage, N stage, and M stage, AL139385.1 had a higher predictive power in the TCGA cohort (Figure 3J). We also used GEO dataset to validate the diagnostic value of AL139385.1 in lung cancer. ROC curve results showed that the expression of AL139385.1 in lung cancer was 0.967 (CI 0.952–0.981) and 0.852 (CI 0.812–0.891) (Figures 3K, L). Together, these results suggest that AL139385.1 is a moderately sensitive index for predicting the prognosis of lung cancer patients and can act as an effective prognostic biomarker in lung cancer.




Figure 3 | The prognostic and diagnostic value of AL139385.1 expression in LUAD. (A-C) Kaplan–Meier survival curves showed that lung adenocarcinoma patients with high AL139385.1 expression exhibited poor overall survival, disease-specific survival, and progression-free survival of AL139385.1 in LUAD determine by TCGA-LUAD dataset. (D–H) Survival curves of OS from GEO datasets. (I) ROC curves showed that the AUC of AL139385.1 for predicting 1-, 3-, and 5-year survival of patients is 0.847, 0.742, and 0.712, respectively. (J) The prediction performance of AL139385.1 is higher than TNM stage. (K, L) ROC curves were used to determine the diagnostic value of AL139385.1 in lung adenocarcinoma based on GEO datasets.





Univariate and Multivariate Cox Regression Analyses of Different Parameters on Overall Survival

We performed univariate cox regression analysis in the TCGA-LAUD cohort to determine whether AL139385.1 expression level and pathologic stage might be valuable prognostic biomarkers. Univariate cox regression analysis results show that high expression of AL139385.1, pathologic stage, and TNM stage were associated with OS in patients with LUAD. To ascertain whether AL139385.1 expression level could be an independent prognostic factor for patients with LUAD, multivariate cox regression analysis was performed. We confirmed that upregulation of AL139385.1 was a significant independent prognostic factor in the TCGA-LAUD cohort that directly correlated with adverse clinical outcomes, along with pathological stage and T stage (Table 1).


Table 1 | Univariate and multivariate Cox regression analyses of different parameters on overall survival in lung adenocarcinoma.





Construction and Validation of AL139385.1-Based Nomogram

The multivariate analysis result confirmed that AL139385.1 is an independent prognostic factor in LUAD. We then constructed a prediction model for OS and PFS by integration AL139385.1 expression and T stage. We established a nomogram to integrate AL139385.1 as a LUAD biomarker, and higher total points on the nomogram for OS and PFS, respectively, indicated a worse prognosis (Figures 4A–D). In summary, these results indicated that the nomogram can well predict short- or long-term survival of patients with LUAD.




Figure 4 | Construction and performance validation of the AL139385.1-based nomogram for lung adenocarcinoma patients. (A–D) Nomogram to predict the overall survival and progression-free survival for lung cancer patient, the calibration curve, and Hosmer–Lemeshow test of nomograms in the TCGA lung adenocarcinoma cohort for overall survival and progression-free survival.





AL139385.1-Related Signaling Pathways Enrichment by GSEA

To determine the biological function of AL139385.1, we analyzed the DEGs between the low and high AL139385.1 expression groups according to the median expression value of AL139385.1. GSEA pathway analysis result confirmed that AL139385.1 mainly involved in cell cycle, focal adhesion, Wnt signaling pathway, and ubiquitin-mediated proteolysis (Figures 5A–D).




Figure 5 | GSEA Identification of AL139385.1-related signaling pathways. (A–D) Identification of AL139385.1-related signaling pathways by GSEA software.





Correlation Between AL139385.1 Expression and Immune Infiltration

Infiltration of immune cells has an indispensable role in cancer progression (24), and we then examined the relationship between AL139385.1 expression and the infiltration levels of 24-type immune cells in LUAD using ssGSEA method. We found that AL139385.1 was positively associated with the abundance of Th2, NK CD56DIM, and NK CD56bright cells and negatively correlated with the abundance of Th1 cells, T cells, B cells, Mast cells, macrophages, DC, iDC, and TFH in LUAD (Figures 6A–D).




Figure 6 | Correlation analysis of AL139385.1 expression and infiltration levels of immune cells in LUAD. (A–D)The correlation between AL139385.1 expression and the infiltration levels of 26 immune cells in LUAD. (E) The correlation between AL139385.1 expression and immune checkpoint–related genes in LUAD. *P < 0.05, ***P < 0.001.



Considering that AL139385.1 might be the potential oncogene in LUAD, the relationship of AL139385.1 with PDCD1, CD274, HAVCR2, TIGIT, SIGLEC15, CTLA4, LAG3, and PDCD1LG2 in LUAD was assessed. As a result, we found that the expression levels of AL139385.1 were significant positive correlation with HAVCR2 and CTLA4 in LUAD (Figure 6E). These results indicated that tumor immune escape and antitumor immunity might be involved in AL139385.1-mediated carcinogenic processes of LUAD.



AL139385.1-Related miRNA–mRNA Network in LUAD

To further explore the AL139385.1-mediated downstream regulatory mechanism involved in LUAD progression, we used starBase database to predict the potential miRNAs that bind with AL139385.1; we obtained a total of 27 miRNAs (Supplementary Table 1). Based on the competitive endogenous RNAs theory, lncRNAs are able to upregulate the mRNA level via reducing the expression of miRNAs. Therefore, lncRNA should be positively correlated with mRNA and negatively correlated with miRNA. Among all the 27miRNAs, has-miR-146a-5p, has-miR-146b-5p, and has-miR-532-5p were negatively correlated with AL139385.1 in LUAD (Figure 7A). We also found that only has-miR-532-5p downregulates in LUAD and correlated with poor prognosis in patients with LUAD. No correlation between prognosis and has-miR-146a-5p and has-miR-146b-5p level was observed (Figures 7B–D). Therefore, we choose has-miR-532-5p to conduct downstream analysis. Potential binding site between the has-miR-532-5p and AL139385.1 was predicted by starBase (Figure 8A).




Figure 7 | Analysis of the potential miRNAs of AL139385.1. (A) Analysis of the correlations between AL139385.1 expression and miR-146a-5p, miR-146b-5p, and miR-532-5p in TCGA-LUAD. (B) Analysis of miR-146a-5p, miR-146b-5p, and miR-532-5p expression in lung cancer and adjacent normal tissues in the TCGA database. (C, D) Association between miR-146a-5p, miR-146b-5p, and miR-532-5p expression and outcomes of patients with LUAD. NS: P > 0.05,*P < 0.05, and ***P < 0.001.






Figure 8 | Analysis of the potential mRNAs of AL139385.1/miR-532-5p. (A) Sequence match between miR-532-5p and AL139385.1. (B) Identifying GALNT3, CYCS, EIF5A, and ITGB4 as the downstream target of miRNA-532-5p using various datasets. (C) Correlations between AL139385.1 expression and GALNT3, CYCS, EIF5A, and ITGB4 in LUAD. (D) The expression level of GALNT3, CYCS, EIF5A, and ITGB4 in LUAD. (E, F) The overall survival and disease-free survival of GALNT3, CYCS, EIF5A, and ITGB4 in LUAD. ***P < 0.001.





Identification the Potential Downstream Target of AL139385.1/miR-532-5p in LUAD

We further investigated the target genes of miR-532-5p that play critical roles in the progression of LUAD. First, we predicted the target in StarBase, miRDB, miRWalk, and miRGator (9, 12–14). According to the prediction of target genes, we found four genes (GALNT3, CYCS, EIF5A, and ITGB4) (Figure 8B). Importantly, the expression of GALNT3, CYCS, EIF5A, and ITGB4 were positively correlated with that of AL139385.1 in LUAD (Figure 8C). Furthermore, we employed the TCGA LUAD dataset to explore the expression level and prognosis in LUAD. We found that GALNT3, CYCS, EIF5A, and ITGB4 were significantly upregulated in LUAD and associated with OS and DSS in patients with LUAD (Figures 8D–F). IHC results obtained from HPA database also confirm that GALNT3, CYCS, EIF5A, and ITGB4 were significantly upregulated in LUAD tissues than normal tissues (Figures 9A, B).




Figure 9 | Analysis of the GALNT3, CYCS, EIF5A, and ITGB4 expression and the immune level of correlation. (A, B) The protein expression of GALNT3, CYCS, EIF5A, and ITGB4 in LUAD examined by HPA database. (C–F) The expression of GALNT3, CYCS, EIF5A, and ITGB4 in LUAD was correlated with tumor purity, B cells, CD4+ T cells, CD8+ T cells, macrophages, neutrophils, and dendritic cells.



Finally, we used TIMER database determine the correlations between GALNT3, CYCS, EIF5A, and ITGB4 and six types of tumor-infiltrating immune cells. Results confirmed that GALNT3 expression was negatively correlated with the cell infiltration of B cells, positively associated with the cell infiltration of CD8+ T cells, CD4+ T cells, macrophage, neutrophils, and dendritic cells (Figure 9C). CYCS expression was negatively correlated with the cell infiltration of B cells, CD8+ T cells, CD4+ T cells, macrophage, neutrophils, and dendritic cells (Figure 9D). EIF5A expression was negatively correlated with six types of tumor-infiltrating immune cells (Figure 9E). On the contrary, ITGB4 was positively associated with the cell infiltration of CD4+ T cells, macrophage, neutrophils, and dendritic cells in LUAD (Figure 9F).



AL139385.1 Regulates Proliferation and Migration of LUAD Cells In Vitro

The above studies indicated that AL139385.1 expression was distinctly upregulated in LUAD tissues, and AL139385.1 might influence the progression in LUAD. To further investigate the biological role of AL139385.1 in LUAD, we first confirmed that the expression of AL139385.1 was significantly upregulated in H1650, H1299, and A549 lung cancer cell lines (Figure 10A). Moreover, specific shRNA for AL139385.1 was used to construct A549 and H1299 cells with stable knockdown of AL139385.1 expression. The knockdown efficiencies in transformed cell lines were detected by qRT-PCR analysis (Figures 10B, C). It was confirmed that knockdown of AL139385.1 reduced the proliferative capacity of A549 and H1299 cells (Figures 10D–G) upon CCK8 and BrdU assays. Moreover, we also established overexpression of AL139385.1 cell lines and used qRT-PCR assay to validate the overexpression efficiency (Figure 10H). We found that overexpression of AL139385.1 promotes cell proliferation of LUAD (Figures 10I, J). Moreover, transwell and wound healing assay revealed that the migration abilities of A549 and H1299 cells were significantly inhibited through downregulating AL139385.1 expression level (Figures 11A–D). On the contrary, overexpression of AL139385.1 promotes cell migration of LUAD (Figures 11E, F). Together, our data suggest that AL139385.1 is functionally important in regulating cell proliferation and migration of LUAD cells.




Figure 10 | lncRNA-AL139385.1 regulates LUAD cell proliferation in vitro. (A) The relative expression level of AL139385.1 in lung adenocarcinoma cancerous cell lines, including H1299, H1650, and A549 examined by real-time RT-PCR, compared to normal human bronchial epithelial cell line: BEAS-2B. (B, C) Establishment of AL139385.1 knockdown cell lines in A549 and H1299 verified by real-time RT-PCR assay. (D–G) Knockdown of AL139385.1 significantly inhibits cell proliferation in A549 and H1299 cells, as measured by CCK8 and BrdU incorporation assay. (H) Establishment of AL139385.1 overall cell lines in H1650 verified by real-time RT-PCR assay. (I, J) Overexpression of AL139385.1 significantly promotes cell proliferation in H1650 cells, as measured by CCK8 and BrdU incorporation assay. **P < 0.01 and ***P < 0.001. shRNA#1, AL139385.1 shRNA#1; shRNA#2, AL139385.1 shRNA#2; AL139385.1, PCDH-AL139385.1.






Figure 11 | lncRNA-AL139385.1 regulates LUAD cell migration in vitro. (A, B) Knockdown of lncRNA AL139385.1 dramatically inhibits A549 and H1299 cells migration ability examined by transwell assay. (C, D) Knockdown of AL139385.1 dramatically inhibits A549 and H1299 cell migration ability examined by wound healing assay. (E, F) Overexpression of AL139385.1 significantly promotes cell migration in H1650 cells, as measured by transwell and wound healing assay. **P < 0.01 and ***P < 0.001. shRNA#1, AL139385.1 shRNA#1; shRNA#2, AL139385.1 shRNA#2; AL139385.1, PCDH-AL139385.1.






Discussion

Here, we found that AL139385.1 was upregulated in LUAD tissues, and its high expression was correlated with pathological stage, TNM stage, and poor survival ability. We also constructed a putative ceRNA network of AL139385.1 in LUAD by sponging multiple miRNAs and mRNAs. Although some of these findings lack additional experimental verification, our data indicate that AL139385.1 may be a promising target and diagnostic biomarker for LUAD.

Increasing evidence demonstrated the functional and clinical role of lncRNAs involved in the progression (24, 25). For instance, lincRNA OIN1 could act as a tumor oncogenic lincRNA in ovarian cancer, which will be a potential molecular target for treating ovarian cancer (26). Higher lncRNA ANRIL expression was related to increased metastases rates and reduced OS rate in osteosarcoma (27). These studies displayed the vital role of lncRNAs in regulating tumor progressions. This study disclosed that AL139385.1 was upregulated in LUAD tissues and related to crucial clinical characteristics, such as TNM stage, which implied that AL139385.1 expression may be closely associated with tumor progression.

Previous studies indicated that LncRNAs have clinical predictor value in several tumors (28). In the current study, we found that AL139385.1 was highly expressed in LUAD tissues and cell lines. The data also indicated that higher AL139385.1 expression had markedly adverse OS and PFS in patients with LUAD. In addition, ROC curve analysis confirmed that the AUC value of AL139385.1 is 0.808. Results suggested that AL139385.1 may be a promising biomarker for differentiating LUAD tissue from normal lung tissue. These results revealed that AL139385.1 might be a prognosis and diagnostic biomarker in LUAD. We also verified that increased AL139385.1 expression was a significant independent prognostic factor in the TCGA-LUAD cohort that directly correlated with adverse clinical outcomes. We also established a nomogram to integrate AL139385.1 as a LUAD biomarker, and higher total points on the nomogram for OS, and PFS, respectively, indicated a worse prognosis. Furthermore, hypomethylation of the AL139385.1 promoter was associated with its elevated expression in tumor tissues. In In vitro assay, we found that AL139385.1 upregulation was mediated by DNA demethylation that promotes lung cancer progression.

Previous studies reported that lncRNA is necessary for the genome stability and cell cycle (29, 30). For example, Gong et al. found that lncRNA JPX was highly expressed in lung cancer metastatic tissues and correlated with tumor size and an advanced stage. Further study showed that JPX promotes LUAD progression via activating Wnt/β-catenin signaling (15). In this study, we investigated the underlying mechanisms through which AL139385.1 affected the progression of LUAD. GSEA enrichment confirmed that AL139385.1 was significantly associated with the cell cycle, focal adhesion, Wnt signaling pathway, and ubiquitin-mediated proteolysis.

The lncRNAs could target a series of miRNAs, and the lncRNA-miRNA network reveals a crucial role in tumors (31, 32). For instance, linc00337 expression was increased in LUAD, and linc00337 knockdown could suppress cellular activities via targeting miR-1285-3p (33). In this study, the potential AL139385.1-related miRNAs were probed. Among these miRNAs, miR-532-5p was chosen to verify the interplay with AL139385.1. Several studies demonstrated that miR-650 was downregulated in glioma and could inhibited tumor cell proliferation and invasion, as well as a prognostic factor in glioma (34). Moreover, it has been shown that miR-532-5p via inhibiting CCR4 suppresses migration and invasion of lung cancer cells (35).

The current results displayed that miR-532-5p is a target miRNA for AL139385.1, which suggests that AL139385.1 might act as a miR-532-5p sponge in LUAD. Thus, we hypothesize that AL139385.1 may promote LUAD progression through targeting miR-532-5p. These findings indicate that AL139385.1 may be a new therapeutic target for the treatment of patients with LUAD. We also utilized various databases to identification the potential targets gene of AL139385.1/miRNA-532-5p in LUAD, including the GALNT3, CYCS, EIF5A, and ITGB4. Subsequent Kaplan–Meier survival analysis suggested that GALNT3, CYCS, EIF5A, and ITGB4, were potential prognostic biomarkers for patients with LUAD. IHC results also confirmed that GALNT3, CYCS, EIF5A, and ITGB4 were highly expressed in lung cancer tissues than normal lung tissues. It has been confirmed that EIF5A was highly expressed in NSCLC and promotes NSCLC cell proliferation and migration (36). Liang et al. found that ITGB4 was significantly increased in LUAD and higher expression level of ITGB4 revealed a worse OS in LUAD (37). Our findings are consistent with previous research studies. In conclusion, this finding provides possible mechanisms underlying the abnormal upregulation of AL139385.1 as well as a comprehensive view of the AL139385.1-mediated ceRNA network in LUAD, thereby highlighting its potential role in diagnosis and therapy. Finally, we found that AL139385.1 was significantly unregulated in NSCLC cells lines, and knockdown of AL139385.1 inhibited cell proliferation and cell migration abilities in LUAD.

This study improves our understanding of the correlation between AL139385.1 and LUAD, but some limitations still exist. First, although we explored the correlation between AL139385.1 and immune infiltration in patients with LUAD, there is lack of experiments to validation the function of AL139385.1 in the tumor microenvironment regulation of LUAD. Second, we uncover that knockdown of AL139385.1 inhibits cell proliferation and cell migration of LUAD. However, the potential molecular mechanisms of AL139385.1 in cancer progression need to be explored in further studies.



Conclusion

This finding demonstrated that, for the first time, the clinical significances, immune roles, and biological function of AL139385.1 in LUAD. In summary, AL139385.1 is a promising diagnostic and prognostic biomarker for LUAD patients.
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Lung adenocarcinoma (LUAD) is the most common histological lung cancer, and it is the leading cause of cancer-related deaths worldwide. NCAPG2 (non-SMC condensin II complex subunit G2) has been shown to be upregulated in various human cancers. Nevertheless, the underlying biological function and potential mechanisms of NCAPG2 driving the progression of LUAD remain unclear. In this study, we investigated the role of NCAPG2 in LUAD and found that the expression of NCAPG2 in LUAD tissues was significantly higher than that of NCAPG2 expression in adjacent normal tissues. Kaplan–Meier survival analysis showed that patients with higher NCAPG2 expression correlated with unfavorable clinical outcomes. Receiver operating characteristic (ROC) curve analysis showed that the AUC value of NCAPG2 was 0.914. Correlation analysis showed that NCAPG2 expression was associated with immune infiltration in LUAD. Finally, we found that AL139385.1 was upregulated in LUAD cancer tissues and cell lines. Knockdown of NCAPG2 inhibited cell proliferation, cell migration, and cell invasion of LUAD in vitro. More importantly, we established the AL035458.2/hsa-miR-181a-5p axis as the most likely upstream ncRNA-related pathway of NCAPG2 in LUAD. In conclusion, our data demonstrated that ncRNA-mediated high expression of NCAPG2 was correlated with progression and immune infiltration, and could serve as a prognostic biomarker for LUAD.




Keywords: NCAPG2, non-small cell lung cancer, prognosis biomarker, cell proliferation, cell migration, ceRNA



Introduction

Lung cancer is one of the most predominant cancers in terms of morbidity and mortality worldwide (1). Due to the high rate of under-diagnosis of early-stage lung cancer, the disease is already in a progressive or advanced stage by the time it is diagnosed, and the 5-year survival rate in patients is under 20% (2). Lung cancer can be divided into small cell lung cancer and non-small cell lung cancer (NSCLC) depending on its histopathological features (3). In addition, lung adenocarcinomas (LUADs) are the largest histological subtype of NSCLC and account for approximately 40% of it (4). Recently, great progress has been made in the treatment of lung cancer. However, the easy distant metastasis, poor prognosis, and frequent recurrence still make LUAD a refractory disease. Thus, it is urgent to study the molecular mechanism underlying LUAD progression and seek effective therapeutic targets.

NCAPG2 (non-SMC condensin II complex subunit G2) is well characterized for its roles in cell mitosis. It has been shown that NCAPG2 plays an essential role in chromosome condensation and segregation during mitosis (5). Previous studies have indicated that NCAPG2 was increased in glioblastoma tissues and was correlated with poor clinical outcomes. Knockdown of NCAPG2 inhibited cell proliferation, migration, and invasion and modulated cell cycle in GMB (6). Meanwhile, NCAPG2 overexpression has also been found in hepatocellular carcinoma, and its higher expression was associated with adverse clinical outcomes. Forced NCAPG2 expression promotes cell proliferation, migration, and invasion by activating STAT3 and NF-κB signaling pathways in HCC (7). Recently, it was demonstrated that NCAPG2 may be a new therapeutic target and biomarker for future treatment and prognosis in colon cancer (8). In our previous study, we developed a new method called CVAA (Cross-Value Association Analysis), which functions without a normalization and distribution assumption. We applied it to large-scale pan-cancer transcriptome data generated by The Cancer Genome Atlas (TCGA) project and successfully discovered numerous new differentially expressed genes (DEGs) (9). NCAPG2 is one of these DEGs. However, the expression levels, clinical significance, biological function, and underlying mechanism of NCAPG2 in LUAD have not been reported.

In this study, we utilized TCGA, GTEX, HPA, and UALCAN datasets, and Kaplan–Meier (KM) plotter web to analyze NCAPG2 expression and its association with expression and clinical significance. Meanwhile, the correlation between NCAPG2 expression and immune infiltration was analyzed to explore the potential mechanisms involved in NCAPG2 modulation in the progression of LUAD. Finally, the biological function of NCAPG2 was identified in LUAD. Through a series of correlation, expression, and survival analyses, we assessed noncoding RNAs (ncRNAs) that contribute to higher expression of NCAPG2 in LUAD. We established the AL035458.2/hsa-miR-181a-5p axis as the most likely upstream ncRNA-related pathway of NCAPG2 in LUAD. In summary, our study confirmed the potential role of NCAPG2 in regulating tumor progression and its potential application in the diagnosis and prognostic evaluation of LUAD.



Materials and Methods


Data Processing and Differential Expression, Survival, and Correlation Analysis

We obtained raw counts of RNA-sequencing data and corresponding clinical information of tumor tissues and adjacent tissues from 33 types of cancer via the TCGA dataset and Genotype-Tissue Expression (GTEX) databases. In LUAD, we downloaded data in lung cancer tissues and lung normal tissues. All analytical methods were carried out using R software version v3.6.3. Expression analysis and KM survival curves were drawn with “ggplot2”, “survminer”, and “survival” R packages. Log-rank tests were used to determine significance, and univariate Cox proportional hazards regression was used to estimate p-values and hazard ratio (HR) with 95% confidence interval (CI) in KM curves. Two-gene correlation analysis was drawn with the R package “ggstatsplot”. The correlation between quantitative variables was assessed using Pearson’s correlation or Spearman’s correlation analysis.



UALCAN Database

UALCAN (http://ualcan.path.uab.edu/) is an online resource for analyses of TCGA gene expression data (10). In this finding, we used UALCAN to determine the protein level of NCAPG2 in LUAD.



Kaplan–Meier Plotter Analysis

The KM plotter (http://kmplot.com/analysis/), acting as an online database (11), is used to explore the influence of multiple genes on the prognosis of 21 different types of cancers. We used the KM plotter to explore the prognostic values of miRNAs in LUAD.



PrognoScan Database Analysis

The correlation between NCAPG2 expression and overall survival (OS) in lung cancer was also examined by the PrognoScan database (http://www.abren.net/PrognoScan/) (12).



The Human Protein Atlas

HPA (https://proteinatlas.org/) includes the normal tissue and tumor tissue protein levels of human gene expression profile information (13). In this study, we explored the protein expression of NCAPG2 in lung cancer tissue.



ENCORI Database Analysis

The Encyclopedia of RNA Interactomes (ENCORI) database is a database for discovering the connection between miRNA–ncRNA and miRNA–mRNA (14). We used ENCORI to predict upstream potential miRNAs and lncRNAs that interact with NCAPG2 and hsa-miR-181a-5p. Meanwhile, we utilized ENCORI database to determine the correlation between lncRNA, miRNAs, and NCAPG2 in lung cancer.



Gene Set Enrichment Analysis

In the present research, we utilized the LinkedOmics database (http://www.linkedomics.org/login.php) obtained from the co-expression genes of NCAPG2 in LUAD. We used GSEA software and the ClusterProfiler package to perform KEGG enrichment analysis of the signaling pathway of NCAPG2 in LUAD (15–17). We used the R package “ClusterProfiler” to perform Gene ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses of co-expression genes, visualized by the R package “ggplot2”.



Cell Culture

The BEAS-2B cell line was purchased from the Cell Bank of Kunming Institute of Zoology, and cultured in BEGM media (Lonza, CC-3170). Lung cancer cell lines, including A549, H1299 and H1650, were purchased from Cobioer, China with STR documents, and were cultured in RPMI-1640 medium (Corning) supplemented with 10% fetal bovine serum (FBS) and 1% penicillin/streptomycin.



Cell Proliferation and Cell Migration Assay

Cell proliferation assay was performed as previously described (9). Indicated tumor cells were plated onto 12-well plates, and the cell numbers were subsequently counted each day using an automatic cell analyzer countstar (Shanghai Ruiyu Biotech Co.). For the trans-well migration assay, 2×104 cells/well in 100 μl of serum-free medium were plated in a 24-well plate chamber insert, and the lower chamber was filled with 10% FBS. After incubation for 24 h, cells were fixed with 4% PFA, washed, and then stained with 0.5% crystal violet to further capture pictures.



The Clinical Proteomic Tumor Analysis Consortium Common Data Analysis

The Clinical Proteomic Tumor Analysis Consortium (CPTAC) has produced large proteomics datasets from the mass spectrometric interrogation of tumor samples previously analyzed by the TCGA program (18). In this study, we determined the expression of DTYMK in lung cancer using CPTAC data.



Real-Time RT-PCR Assay

In the real-time RT-PCR assay, cells were lysed by RNAiso Plus (Takara Bio, Beijing, China, Cat. 108-95-2). Total RNAs were extracted according to the manufacturer’s protocol, and then reverse transcribed by using the RT reagent kit (Takara Bio, Beijing). The primers used in this study are as follows: β-actin-F: AAGTGTGACGTGGACATCCGC, β-actin-R: CCGGACTCGTCATACTCCTGCT, NCAPG2-F: TACAAGCCGTGTCTAAGGAGC, NCAPG2-R: TTGAGCCATGTTCGGTTTCCA.



Immunohistochemical Staining

For immunohistochemical staining, the sections were deparaffinized in xylene and rehydrated through graded ethanol. Antigen retrieval was performed for 20 min at 95°C with sodium citrate buffer (pH 6.0). After quenching endogenous peroxidase activity with 3% H2O2 and blocking non-specific binding with 1% bovine serum albumin buffer, sections were incubated overnight at 4°C with the indicated primary antibodies. Following several washes, the sections were treated with HRP-conjugated secondary antibody for 40 min at room temperature, and stained with 3,3-diaminobenzidine tetrahydrochloride (DAB). The photographs were analyzed based on the ratio of the staining with the Image-Pro Plus 7.0 software.



Statistical Analyses

All statistical analyses were performed using R (V 3.6.3), and ROC curves were used to detect NCAPG2 cutoff values using pROC packages. For the data regarding the function of NCAPG2, GraphPad Prism 7.0 was used for statistical analyses. The significance of the data between two experimental groups was determined by Student’s t-test, and multiple group comparisons were analyzed by one-way ANOVA. p < 0.05 (*), p < 0.01 (**), and p < 0.001 (***) were significant.




Results


Assessment of NCAPG2 Expression in Different Cancers and Normal Tissues

We explored the mRNA expression levels of NCAPG2 in tumor tissues and adjacent tissues from 33 types of cancer via the TCGA dataset and GTEX databases. Our research presented that the mRNA expression levels of NCAPG2 were increased in 28 of the 33 cancers compared with normal tissue (Figure 1A). We also examined NCAPG2 expression in paired cancer tissues and adjacent normal tissues in human cancer using the TCGA datasets. We found that NCAPG2 expression was significantly higher in 16 of the 18 cancers compared with normal tissue (Figure 1B). Furthermore, KM survival analysis and log-rank test were performed to assess the relationship between the mRNA expression levels of NCAPG2 and the OS of patients in pan-tumors and adjacent normal tissue types in the TCGA database. The results showed that higher NCAPG2 expression levels had a significant relationship with worse prognosis in ACC (adrenocortical carcinoma), KIRP (kidney renal clear cell carcinoma), LIHC (liver hepatocellular carcinoma), LUAD (lung adenocarcinoma), MESO (mesothelioma), PAAD (pancreatic adenocarcinoma), SKCM (skin cutaneous melanoma), and UCEC (uterine corpus endometrial carcinoma) (Figures 1C, D). Taking into account all the above analyses, and the combination of expression analysis and prognosis analysis, our research demonstrated the expression and prognostic value of NCAPG2 in pan-cancers.




Figure 1 | Expression pattern and prognostic value of NCAPG2 from the perspective of pan-cancer. (A, B) NCAPG2 expression levels in different tumor tissues and adjacent normal tissues from TCGA and GTEx databases. (C, D) Prognostic analysis of NCAPG2 mRNA expression levels in various human cancers. NS, p > 0.05, *p < 0.05, **p < 0.01, ***p < 0.001.





NCAPG2 Was Upregulated in Lung Adenocarcinoma

We found that NCAPG2 expression was highly expressed in LUAD and LUSC (Figures 2A, B). We also confirmed that NCAPG2 expression was significantly higher in LUAD than in paired adjacent normal tissues (Figure 2C). To validate that, we used GEO datasets to assess the NCAPG2 expression in lung cancer. Results confirmed that NCAPG2 was significantly increased in lung cancer tissues compared to normal lung tissues (Figure 2D). UALCAN database results and immunohistochemistry (IHC) staining also suggested that the protein of NCAPG2 was upregulated in lung cancer tissues (Figures 2E, F). Taken together, NCAPG2 was upregulated in LUAD and might act as a pivotal player in the carcinogenesis of lung cancer.




Figure 2 | NCAPG2 RNA and protein expression in LUAD. (A–C) NCAPG2 mRNA expression levels in lung cancer patients and matched adjacent normal samples. (D) The expression level of NCAPG2 in lung cancer was determined by the GEO dataset. (E, F) NCAPG2 protein expression level based on CPTAC and Human Protein Atlas. ***p < 0.001.





Overexpression of NCAPG2 Was Associated With Adverse Clinical Parameters in Lung Adenocarcinoma

We analyzed the relationship between NCAPG2 expression and diverse clinical features, including the pathological stage, TNM stage, primary therapy outcomes, age, gender, smoker, OS event, disease-specific survival (DSS) event, and progression-free survival (PFS) event. As shown in Figures 3A–K, an increase in NCAPG2 expression was significantly correlated with pathological stage, TNM stage, primary therapy outcomes, age, gender, smoker, OS event, DSS event, and PFS event (Figures 3A–K and Table 1). Logistic regression analysis results also suggested that the expression of NCAPG2 was significantly correlated with adverse clinicopathological prognosis, including T stage (T2, T3, and T4 vs. T1), N stage (N1, N2, and N3 vs. N0), M stage (M1 vs. M0), pathologic stage (Stage III and Stage IV vs. Stage I and Stage II), age (>65 vs. ≤65), and gender (male vs. female) (Table 2). These results suggested that a high NCAPG2 expression might positively correlate with the malignant phenotypes of LUAD.




Figure 3 | Clinical significance of NCAPG2 in lung adenocarcinoma. Correlation between NCAPG2 expression and clinical parameters, including (A) pathological stage, (B–D) TNM stage, (E) primary therapy outcomes, (F) age, (G) gender, (H) smoker, (I–K) OS event, DSS event, and PFS event. Primary therapy outcome: PD, progressive disease; SD, stable disease; PR, partial response; CR, complete response. NS, p > 0.05, *p < 0.05, **p < 0.01, ***p < 0.001.




Table 1 | Clinical characteristics of the LUAD patients.




Table 2 | Logistic regression analysis of the correlation between NCAPG2 expression and clinical pathological characteristics.





Diagnostic and Prognostic Value

KM survival analysis and log-rank test were performed to assess the relationship between the mRNA expression levels of NCAPG2 and the prognosis (OS, DSS, and PFS) of patients with LUAD in the TCGA database. The results showed that higher NCAPG2 expression was correlated with adverse OS, DSS, and PFS (Figures 4A–C). According to time-dependent ROC, the NCAPG2 expression level had a relatively good performance in predicting 1-year (C statistics, 0.861), 3-year (C statistics, 0.872), and 5-year OS (C statistics, 0.843) in LUAD patients (Figure 4D); had a better performance in predicting 1-year (C statistics, 0.861), 3-year (C statistics, 0.868), and 5-year disease-free survival (C statistics, 0.864) in LUAD patients (Figure 4E); and had a relatively good performance in predicting 1-year (C statistics, 0.772), 3-year (C statistics, 0.839), and 5-year PFS (C statistics, 0.821) in LUAD patients (Figure 4F). To validate the prognosis of NCAPG2 in lung cancer, we analyzed the GEO dataset and found that upregulation of NCAPG2 was correlated with poor prognosis in patients with lung cancer (Figures 5A–C).




Figure 4 | Prognostic and diagnostic value of NCAPG2 (A–C) Kaplan–Meier survival curves showed that lung adenocarcinoma patients with high NCAPG2 expression exhibited poor overall survival, disease-specific survival, and progression-free survival of NCAPG2 in LUAD determined by the TCGA-LUAD dataset. (D–F) Time-dependent ROC curves were used to determine the diagnostic value of NCAPG2 in lung adenocarcinoma.






Figure 5 | Validation of the prognosis of NCAPG2 in lung cancer. (A–C) Validation of the prognosis of NCAPG2 in lung cancer by GEO dataset.





Predictive Value of the NCAPG2 Level Based on Clinical Subgroups

To validate the prognosis of NCAPG2 in lung cancer, we subsequently determined the relationship between NCAPG2 expression and OS across different subgroups by various clinical features. The results consistently suggested that LUAD patients with higher NCAPG2 expression had a significantly deteriorative OS compared to those with a low NCAPG2 level, including the subgroup of stage I–II, T1–T2, M0, female, age>65, and race: white (Figures 6A–F).




Figure 6 | Associations between NCAPG2 expression level and the overall survival in different clinical subgroups of LUAD in the TCGA database. (A) Stage I–II, (B) T1–T2, (C) M0, (D) female, (E) age > 65, and (F) race, white.





Gene Function Annotation and Pathway Analysis

We used LinkedOmics to obtain the significant positive correlation with the NCAPG2 gene, and the heatmap shows 50 gene sets that were significantly positively or negatively correlated with NCAPG2n (Figures 7A–C). We conducted GO and KEGG analyses to perform functional annotations with NCAPG2. Functional annotations demonstrated that these genes were involved in organelle fission, nuclear division, chromosome segregation, regulation of cell cycle phase transition, DNA replication, and regulation of mitotic cell cycle phase transition (Figure 7D). Changes in the biological process (BP) and molecular function (MF) of NCAPG2 were correlated with chromosomal region, spindle, condensed chromosome, chromosome, centromeric region, microtubulenuclear chromatin, ATPase activity, helicase activity, tubulin binding, catalytic activity, acting on RNA, and ATPase activity (Figures 7E, F). KEGG molecular pathways were cell cycle, RNA transport, DNA replication, cellular senescence, spliceosome, ubiquitin-mediated proteolysis, and mRNA surveillance pathway (Figure 7G).




Figure 7 | Functional enrichment analysis of NCAPG2 in LUAD. (A–C) The correlation analysis of NCAPG2 expression and its top 100 co-expressed gene network. (D–G) GO and KEGG enrichment analysis of co-expressed genes.





NCAPG2-Related Signaling Pathways Based on Gene Set Enrichment Analysis

To determine the biological function of NCAPG2, we analyzed the DEGs between the low and high NCAPG2 expression groups based on the median expression value of NCAPG2. Gene set enrichment analysis (GSEA) pathway analysis results confirmed that NCAPG2 is mainly involved in apoptosis, G2M checkpoint, epithelial–mesenchymal transition (EMT), DNA repair, mTORC1 signaling pathway, p53 signaling pathway, TNFα signaling pathway, PI3K-AKT-MTOR signaling pathway, IL-2 STAT5 signaling pathway, KRAS signaling pathway, hypoxia, glycolysis, oxidative phosphorylation, and IL-6 STAT3 signaling pathway (Figures 8A–D).




Figure 8 | Identification of NCAPG2-related signaling pathways in lung adenocarcinoma. (A–D) Identification of NCAPG2-related signaling pathways by GSEA software.





Correlation Between NCAPG2 Expression and Immune Infiltration

Tumor-infiltrated lymphocyte cells play a key role in cancer progression and affect the prognosis of lung cancer patients. Therefore, we next examine whether NCAPG2 is correlated with the immune infiltration level in LUAD. Our finding suggested that mRNA expression levels of NCAPG2 had a significant positive association with Th2 cells, T helper cells, and Tgd. On the contrary, NCAPG2 expression was negatively correlated with T cells, Th17 cells, B cells, pDC, TFH, eosinophils, DC, CD8 T cells, iDC, and mast cells (Figures 9A–E).




Figure 9 | Correlation analysis of NCAPG2 expression and infiltration levels of immune cells in LUAD. (A–E) The correlation between NCAPG2 expression and infiltration levels of immune cells. (F) Correlation analysis of NCAPG2 expression and immune checkpoint-related genes in LUAD in the TCGA database.





The Relationship Between NCAPG2 and Immune Checkpoints in LUAD

Considering that NCAPG2 might be the potential oncogene in LUAD, the relationship of NCAPG2 with PDCD1, CD274, HAVCR2, TIGIT, SIGLEC15, CTLA4, LAG3, and PDCD1LG2 in LUAD was assessed. As a result, we found that the expression levels of NCAPG2 had a significant positive correlation with PDCD1 (PD-1), CD274 (PD-L1), TIGIT, SIGLEC15, CTLA4, LAG3, and PDCD1LG2 (PD-L2) in LUAD (Figure 9F). These results indicated that tumor immune escape and antitumor immunity might be involved in NCAPG2-mediated carcinogenic processes of LUAD.



Prognostic Potential of NCAPG2 Expressions in LUAD Based on Immune Cells

The above results suggested that NCAPG2 was associated with the immune infiltration of LUAD. Also, increased NCAPG2 had a worse prognosis in LUAD patients. Thus, we proposed a hypothesis that NCAPG2 may affect the prognosis of LUAD patients partly through immune infiltration. Then, we performed KM plotter analysis of NCAPG2 expression in LUAD following CD4+ memory T cells, CD8+ T cells, macrophages, and eosinophilic cells. We found that higher NCAPG2 levels in LUAD in enriched CD4+ memory T cells, CD8+ T cells, macrophages, and eosinophilic cells had a worse prognosis (Figures 10A–H). The above results suggested that immune infiltration may, in part, affect the high NCAPG2 expression prognosis of LUAD patients.




Figure 10 | Kaplan–Meier survival curves according to the high and low expression of NCAPG2 in immune cell subgroups in LUAD. (A–H) Correlations between NCAPG2 expression and overall survival in different immune cell subgroups in LUAD patients were determined by Kaplan–Meier plotter.





Depletion of NCAPG2 Significantly Suppressed Proliferation, Migration, and Invasion of LUAD Cells

To examine the expression of NCAPG2, we detected NCAPG2 expression levels in LUAD tissues and cell lines using IHC and qRT-PCR assay. Results confirmed that NCAPG2 was significantly increased in lung cancer tissues and cell lines, especially in A549 and H1650 cells (Figures 11A–C). The qRT-PCR assay showed that the expression of NCAPG2 mRNA was significantly decreased in A549 cells after treatment with targeted siRNA (Figure 11D). The growth curve and transwell assays demonstrated that NCAPG2 depletion significantly inhibited the cell proliferation, cell migration, and cell invasion abilities of LUAD (Figures 11E–G). Collectively, these results demonstrated that NCAPG2 was highly expressed in LUAD and significantly affected their proliferation, cell migration, and cell invasion.




Figure 11 | NCAPG2 regulates LUAD cell proliferation, cell migration, and cell invasion. (A, B) IHC assay detects the protein of NCAPG2 in lung adenocarcinoma cancerous cell lines. (C) qPCR assay examines the expression level of NCAPG2 in lung adenocarcinoma cancerous cell lines, including A549, H1299, and H1650, compared to the normal human bronchial epithelial cell line: BEAS-2B. (D) Validation the knock down efficiency of NCAPG2 in A549 cells by using qPCR assay. (E–G) Knockdown of NCAPG2 inhibited cell proliferation and migration examined by CCK8 and transwellassay.NC, negative control; siRNA, NCAPG2 siRNA; ***p < 0.001.





Analysis of Upstream miRNAs of NCAPG2

Increasing evidence confirmed that ncRNAs regulate gene expression in various manners at almost every step (19, 20). To unravel whether NCAPG2 was regulated by some ncRNAs, we predicted the upstream miRNAs that might bind to NCAPG2, and finally found 89 miRNAs (Supplementary Table 1). There should be a negative relationship between NCAPG2 and upstream miRNA because of the mechanism by which upstream miRNAs negatively regulated the expression of NCAPG2 at the post-transcriptional level. Thus, the correlation between NCAPG2 and 89 miRNAs was detected in the TCGA-LUAD database. As a result, our study showed that the expression levels of NCAPG2 were significantly negatively associated with hsa-miR-181a-5p, hsa-miR-181b-5p, hsa-miR-200b-3p, and hsa-miR-345, and that there were no statistical expression relationships between NCAPG2 and other miRNAs in LUAD (Figure 12A). Then, we determined the RNA expression levels of hsa-miR-181a-5p, hsa-miR-181b-5p, hsa-miR-200b-3p, and hsa-miR-345 in the TCGA-LUAD database. The results demonstrated that hsa-miR-181a-5p expression levels in LUAD were lower than in adjacent normal tissue control (Figure 12B). We also explored the correlation between the expression levels of hsa-miR-181a-5p, hsa-miR-181b-5p, hsa-miR-200b-3p, and hsa-miR-345 and LUAD patient prognosis in the TCGA database. Our research showed that the higher expression of hsa-miR-181a-5p was significantly associated with good outcomes in LUAD (Figure 12C). With the combination of correlation analysis, expression analysis, and survival analysis, we suggested that hsa-miR-181a-5p might be the most likely regulatory miRNA of NCAPG2 in LUAD.




Figure 12 | LncRNA/hsa-miR-181a-5p/NCAPG2 regulatory network. (A) Analysis of the correlations between NCAPG2 expression and hsa-miR-181a-5p, hsa-miR-181b-5p, hsa-miR-200b-3p, and hsa-miR-345 in TCGA-LUAD. (B) Analysis of hsa-miR-181a-5p, hsa-miR-181b-5p, hsa-miR-200b-3p, and hsa-miR-345 expression in lung cancer and adjacent normal tissues in the TCGA database. (C) Association between hsa-miR-181a-5p, hsa-miR-181b-5p, hsa-miR-200b-3p, and hsa-miR-345 expression and LUAD patients’ outcomes. (D) Correlations between hsa-miR-181a-5p expression and AL035458.2 and LINC01468 in LUAD. (E) Correlations between NCAPG2 expression and AL035458.2 and LINC01468 in LUAD. (F) Analysis of AL035458.2 and LINC01468 expression in lung cancer and adjacent normal tissues in the TCGA database. (G) Association between AL035458.2 and LINC01468 expression and LUAD patients’ outcomes. ***p < 0.001.





Analysis of Upstream Potential lncRNAs of hsa-miR-181a-5p

We used the ENCORI database to predict upstream potential lncRNAs that interact with hsa-miR-181a-5p. Finally, we selected 143 candidate lncRNAs that interact with hsa-miR-181a-5p (Supplementary Table 2). The competitive endogenous RNA (ceRNA) hypothesis suggests that lncRNA competitively binds tumor-suppressive miRNAs to reduce the suppressive miRNA effect on target mRNAs. Thus, there should be a negative correlation between lncRNA and target miRNA, while there is a positive correlation between lncRNA and target mRNA in the ceRNA network. Therefore, we assessed expression correlations of the miR-181a-5p/NCAPG2 and 143 lncRNAs in the TCGA-LUAD database. The results highlighted that only AL035458.2 and LINC01468 (LncAROD) were positively associated with NCAPG2 and negatively associated with hsa-miR-181a-5p (Figures 12D, E). We next performed AL035458.2 and LINC01468 expression analysis in LUAD via the TCGA set. The results showed that AL035458.2 and LINC01468 expression levels were significantly upregulated in LUAD compared with normal controls (Figure 12F). Subsequently, we detected the prognostic values of AL035458.2 and LINC01468 in LUAD by using the TCGA database. The result demonstrated that higher expression levels of AL035458.2 were significantly associated with worse outcome in LUAD. However, we found that the expression levels of LINC01468 had no correlation with prognosis in LUAD patients (Figure 12G). Considering correlation analysis, expression analysis, and survival analysis, we chose AL035458.2 as the most likely upstream lncRNA of the NCAPG2/hsa-miR-181a-5p axis in LUAD.




Discussion

In this study, we examined the mRNA expression levels of NCAPG2 in pan-tumors and corresponding adjacent normal tissues using the TCGA and GTEX databases. Taking our expression analysis and validation analyses together, NCAPG2 was upregulated in various human cancers. Meanwhile, we found that NCAPG2 RNA and protein expression were increased in LUAD tissues and correlated with adverse clinical features, including pathological stage, TNM stage, and OS event. ROC curve analysis indicated that NCAPG2 may be a promising diagnostic biomarker for differentiating LUAD from normal tissues. KM curves suggested that NCAPG2 expression is correlated with OS, disease-free survival, and PFS in LUAD patients of the TCGA and GEO datasets. Our IHC assay also demonstrated that NCAPG2 was overexpressed in lung cancer. These results show that NCAPG2 plays an important role in the progression of lung cancer. Our findings are consistent with previous research. NCAPG2 was elevated in diverse human cancer tissues and correlated with clinicopathological features and poor prognosis (6, 7).

Previous studies reported that NCAPG2 is necessary for kinetochore localization and cell cycle (21). In this study, we investigated the underlying mechanisms through which NCAPG2 affected the progression of LUAD. GSEA enrichment confirmed that NCAPG2 was significantly associated with apoptosis, G2M checkpoint, EMT, DNA repair, mTORC1 signaling pathway, p53 signaling pathway, TNFα signaling pathway, PI3K-AKT-MTOR signaling pathway, IL-2 STAT5 signaling pathway, KRAS signaling pathway, hypoxia, glycolysis, oxidative phosphorylation, and IL-6 STAT3 signaling pathway.

It has been shown that NCAPG was highly expressed in NSCLC and associated with adverse prognosis and immune infiltration (22). In this study, we found that NCAPG2 expression had a significant positive association with Th2 cells, T helper cells, and Tgd. On the contrary, NCAPG2 expression was negatively correlated with T cells, Th17 cells, B cells, pDC, TFH, eosinophils, DC, CD8 T cells, iDC, and mast cells. Moreover, we confirmed that the expression levels of NCAPG2 had a significant positive correlation with PDCD1 (PD-1), CD274 (PD-L1), TIGIT, SIGLEC15, CTLA4, LAG3, and PDCD1LG2 (PD-L2) in LUAD. These results indicated that tumor immune escape and antitumor immunity might be involved in NCAPG2-mediated carcinogenic processes of LUAD. More importantly, we found that NCAPG2 may affect the prognosis of LUAD patients partly through immune infiltration.

Given that GSEA enrichment results show that NCAPG2 may play a central role in cell proliferation and cell migration, we decided to examine the potential biological function of NCAPG2 in LUAD. In vitro, we found that NCAPG2 was upregulated in LUAD tissues and cell lines. Knockdown of NCAPG2 in A549 cells inhibited cell proliferation, migration, and cell invasion in LUAD. Based on the above finding, we proposed that NCAPG2 exerts an essential function in regulating the pathologic progression of LUAD.

To further uncover the potential upregulation of NCAPG2 in LUAD, we conducted a correlation analysis, an expression analysis, and a survival analysis of these miRNAs in LUAD. Our study showed that NCAPG2 was significantly negatively associated with hsa-miR-181a-5p. Hsa-miR-181a-5p expression levels were lower than in adjacent normal tissue control in LUAD. Survival analysis showed that the higher expression of hsa-miR-181a-5p was significantly associated with good outcomes in LUAD. The ceRNA hypothesis suggested that there should be a negative relationship between NCAPG2 and upstream miRNA because of the mechanism by which upstream miRNAs negatively regulated the expression of NCAPG2 at the post-transcriptional level. Combining the ceRNA hypothesis, correlation analysis, expression analysis, and survival analysis, we suggested that hsa-miR-181a-5p might serve as the most likely regulatory miRNA of NCAPG2 in LUAD. Our research demonstrated that hsa-miR-181a-5p might be a negative regulator of pancreatic cancer via target NCAPG2.

We selected 143 upstream potential lncRNAs that interacted with hsa-miR-181a-5p by using the ENCORI database. Based on the ceRNA hypothesis, there should be a positive correlation between potential lncRNA and NCAPG2 and a negative correlation between potential lncRNA and hsa-miR-181a-5p, and it should be oncogenic lncRNA in LUAD. By correlation analysis, survival analysis, and expression analysis, AL035458.2 was selected as the most likely upstream lncRNA of the NCAPG2/hsa-miR-181a-5p axis in LUAD. AL035458.2’s Ensembl ID is ENSG00000250917. AL035458.2 is a novel lncRNA transcript. There are only a few studies on AL035458.2, and thus, it is important to be studied further. Taken together, the AL035458.2/hsa-miR-181a-5p/NCAPG2 axis was well identified as a potential regulatory pathway in LUAD.

This study improves our understanding of the correlation between NCAPG2 and LUAD, but some limitations still exist. First, although we explored the correlation between NCAPG2 and immune infiltration in LUAD patients, there is a lack of experiments to validate the function of NCAPG2 in the tumor microenvironment regulation of LUAD. Second, we reveal that knockdown of NCAPG2 inhibits cell proliferation, cell migration, and cell invasion of LUAD. However, the potential molecular mechanisms of NCAPG2 in cancer progression need to be explored in further studies.



Conclusion

This study describes, for the first time, the clinical relevance, immuno-oncology features, and biological function of NCAPG2 in LUAD. In summary, NCAPG2 is a promising prognostic factor, and its future application may help determine the optimal treatment strategy for lung adenocarcinoma.
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Family with sequence similarity 72B (FAM72B) has been characterized in the regulation of neuronal development. Nevertheless, the prognostic value of FAM72B expression and its function in the immune microenvironment of lung adenocarcinoma (LUAD) currently remains elusive. In this study, by adopting bioinformatics methodology and experimental verification, we found that FAM72B was upregulated in lung cancer tissues and cell lines, and a higher FAM72B level predicted an unfavorable clinical outcome in LUAD patients. The knockdown of FAM72B significantly inhibited cell proliferation, cell migration, and induced cell apoptosis in LUAD. The receiver operating characteristic curve suggested that FAM72B had a high predictive accuracy for the outcomes of LUAD. Kyoto Encyclopedia of Genes and Genomes and Gene Set Enrichment Analyses confirmed that FAM72B-related genes were involved in cell proliferation and immune-response signaling pathway. Moreover, upregulated FAM72B expression was significantly associated with immune cell infiltration in the LUAD tumor microenvironment. Meanwhile, a potential ceRNA network was constructed to identify the lncRNA-AL360270.2/TMPO-AS1/AC125807.2/has-let-7a/7b/7c/7e/7f/FAM72B regulatory axis that regulates FAM72B overexpression in LUAD and is associated with a poor prognosis. We also confirmed that AL360270.2, TMPO-AS1, and AC125807.2 were significantly upregulated in LUAD cell lines than in human bronchial epithelial cells. In conclusion, FAM72B may serve as a novel biomarker in predicting the clinical prognosis and immune status for lung adenocarcinoma.
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Introduction

Lung cancer is the leading cause of cancer-related deaths worldwide, according to Cancer Statistics 2020. The incidence rate of lung cancer ranks second, while the death rate of lung cancer ranks first (1). Lung cancer includes small cell lung carcinoma (SCLC) and non-small cell lung carcinoma (NSCLC). NSCLC includes lung adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC), and large-cell lung carcinoma. The NSCLC cancer accounts for approximately 85% of all cases (2). Although the treatment of LUAD has improved, for the new LUAD pathogenesis, noninvasive diagnostic biomarkers with high sensitivity and specificity are still needed. Therefore, the discovery of potential key prognostic markers with more characteristics and value will help in the early prediction and treatment of LUAD at the molecular level.

Preliminary studies uncover that family with sequence similarity 72B (FAM72B) was upregulated in the nervous system, neuroblastoma, and breast adenocarcinoma (3). FAM72D was reported as a specific proliferation marker in myelomas (4). FAM72 (A–D) was increased during non-small cell and cancer cell proliferation and is present in the G2/M phase of the cell cycle (5). It has been confirmed that the depletion of FAM72A inhibited NSC cell proliferation and promotes cell differentiation (6). However, the prognostic value, diagnostic value, underlying function, and mechanisms of FAM72B in LUAD progression remain unclear.

Therefore, the aim of this study was to determine the effect of FAM72B on the progression of LUAD. In this study, we used The Cancer Genome Atlas (TCGA), Genotype–Tissue Expression (GTEx), and Kaplan–Meier plotter web to examine FAM72B expression and its correlation with prognosis. Furthermore, the association between FAM72B expression and immune infiltration was determined by TIMER database and single-sample Gene Set Enrichment Analyses (ssGSEA) method. The FAM72B–miRNA–lncRNA network was constructed by starBase. Finally, immunohistochemistry (IHC), qPCR, growth curve, transwell assay, wound healing, and cell flow cytometry experiments were performed to examine the biological function of FAM72B in LUAD cell lines. This study may provide evidence for prognostic biomarkers and therapeutic targets for LUAD.



Materials and Methods


TCGA Datasets

We acquired the gene profiles and clinical survival data of the LUAD samples from TCGA database (https://portal.gdc.cancer.gov/) (7). We utilized these data analyses of the correlation between FAM72B expression and relevant clinical information, including pathological stage and TNM stage. Because the sequencing data of normal tissues included in the TCGA are very limited and many patients lack transcriptome sequencing results for their normal tissues, we obtained data for normal tissues from the GTEx database. The above-mentioned analyses were constructed using the R (v4.0.3) software package ggplot2 (v3.3.3). R software v4.0.3 and ggplot2 (v3.3.3) were used for visualization. R software v4.0.3 was used for statistical analysis.



LinkedOmics Database

LinkedOmics (http://www.linkedomics.org/login.php) is a publicly available portal that includes multi-omics data from all 32 TCGA cancer types and 10 Clinical Proteomics Tumor Analysis Consortium cancer cohorts. In this study, LinkedOmics was employed to obtain the genes that were significantly positively correlated with FAM72B expression in TCGA-LUAD.



Kyoto Encyclopedia of Genes and Genomes and Gene Set Enrichment Analysis

The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways and related gene information were acquired from Gene Set Enrichment Analyses (GSEA) database. GSEA were conducted to examine the biological and molecular functions of FAM72B across different cancer types using a total of 300 genes that were positively correlated with FAM72B. All three analyses were performed using the R package Cluster Profiler. GSEA was also used to estimate the enrichment of various biological processes in each sample.



Generation of Prognostic Risk Prediction Model

Univariate and multivariate Cox regression analyses were performed by applying the R3.6.1 package (version 2.41-1); then, the independent prognostic clinical factors of LUAD samples in the TCGA datasets were acquired with the P <0.05. Based on the independent prognostic factors screened in the previous step and the risk information discriminated by the prognostic prediction model, the 1-, 3-, and 5-year prognostic risk prediction models of the nomogram were built by applying R3.6.1 “rms”. In this research, Kaplan–Meier method was utilized to examine the prognostic values of FAM72B, miRNA and lncRNA expression—employing R packages of survminer—and survival.



Immune Infiltration Analysis by TIMER Database and ssGSEA

The TIMER web server is a comprehensive resource for the systematical analysis of immune infiltrates across diverse cancer types (8). In this study, we employed the TIMER database to determine the association between FAM72B expression and the immune infiltrates (B cells, CD4+ T cells, CD8+ T cells, neutrophils, macrophages, and dendritic cells). We also utilized ssGSEA to examine the correlation between FAM72B expression and the LUAD immune infiltration of 24 tumor-infiltrating immune cells in tumor samples (9).



Starbase Database

starBase v2.0 (http://starbase.sysu.edu.cn/) is a database which includes the RNA–RNA and protein–RNA interaction networks from CLIP-Seqdata sets generated by 37 independent studies (10). In this finding, starBase was used to predict the potential non-coding RNAs of FAM72B and determine the correlation between miRNAs and FAM72B in LUAD. Furthermore, Pearson’s correlation analysis was used to determine the relationship between lncRNAs and FAM72B expression in TCGA-LUAD.



Cell Culture and Transfection

The BEAS-2B cell line was purchased from the Chinese Academy of Sciences Cell Bank (CASCB, China) and cultured in Bronchial Epithelial Cell Growth Medium (Lonza, CC-3170). The lung cancer cell lines, including HCC827, H1650, A549, and H1975, were purchased from the CASCB (China) with STR documents and were cultured in RPMI-1640 medium (Corning) supplemented with 10% fetal bovine serum (FBS) and 1% penicillin/streptomycin.



Cell Migration Assay

Cell migration and invasion assays were conducted to explore the biological function of FAM72B on LUAD cells. For the transwell migration assay, 2.5 × 104 cells/well in 100 μl serum-free medium were plated in a 24-well plate chamber insert, and the lower chamber was filled with 10% FBS. After incubation for 24 h, the cells were fixed with 4% paraformaldehyde, washed, and then stained with 0.5% crystal violet for further pictures to be captured.



CCK8 Assay

We seeded the cells in 96-well plates at 2.5 × 103 per well in 100 μl of complete medium and 10 μl of CCK-8 reagent (RiboBio, Guangzhou, China) for 1 h each day after 3 days of culture. We then used a microplate to measure the absorbance of each well at 450 nm. Each sample was evaluated in triplicate.



Immunohistochemical Staining

For immunohistochemical staining, the sections were deparaffinized in xylene and rehydrated through graded ethanol. Antigen retrieval was performed for 20 min at 95°C with sodium citrate buffer (pH 6.0). After quenching the endogenous peroxidase activity with 3% H2O2 and blocking the non-specific binding with 1% bovine serum albumin buffer, the sections were incubated overnight at 4°C with the indicated primary antibodies. Following several washes, the sections were treated with horseradish peroxidase-conjugated secondary antibody for 40 min at room temperature and stained with 3,3-diaminobenzidine tetrahydrochloride. The slides were photographed with a microscope (Olympus BX43F, Japan). The photographs were analyzed based on the ratio of the staining with the Image-Pro Plus 7.0 software (Media Cybernetics, Inc., Silver Spring, MD, USA).



Statistical Analyses

All statistical analyses were performed using R software, and receiver operating characteristic (ROC) curves were used to detect FAM72B cutoff values using pROC packages. For the data regarding the function of FAM72B, Graph Pad Prism 7.0 was used for statistical analyses.




Results


Expression Pattern of FAM72B in Human Cancers

To determine the mRNA expression pattern of FAM72B in diverse cancer types, we used TCGA and GTEx datasets in conducting an analysis. The results indicated that FAM72B was highly expressed in 25 of the 33 cancers compared with normal tissue (Figure 1A). We further determine FAM72B expression in paired cancer tissues and adjacent normal tissues by utilizing the TCGA datasets. We found that FAM72B expression was significantly higher in 15 of the 18 cancers compared with normal tissue (Figure 1B). These results show that FAM72B was highly expressed in various human cancers.




Figure 1 | Expression level of FAM72B in pan-cancer. (A) The Cancer Genome Atlas (TCGA) cohort determined the expression of FAM72B in pan-cancer. (B) TCGA cohort determined the expression of FAM72B in paired cancer tissues and adjacent normal tissues. ACC, adrenocortical carcinoma; BLCA, bladder urothelial carcinoma; BRCA, breast invasive carcinoma; CESC, cervical squamous cell carcinoma and endocervical adenocarcinoma; CHOL, cholangiocarcinoma; COAD, colon adenocarcinoma; DLBC, lymphoid neoplasm diffuse large B-cell lymphoma; ESCA, esophageal carcinoma; GBM, glioblastoma multiforme; HNSC, head and neck squamous cell carcinoma; KICH, kidney: chromophobe; KIRC, kidney renal clear cell carcinoma; KIRP, kidney renal papillary cell carcinoma; LAML, acute myeloid leukemia; LUAD, brain lower-grade glioma; LIHC, liver hepatocellular carcinoma; LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma; MESO, mesothelioma; OV, ovarian serous cystadenocarcinoma; PAAD, pancreatic adenocarcinoma; PCPG, pheochromocytoma and paraganglioma; PRAD, prostate adenocarcinoma; READ, rectum adenocarcinoma; SARC, sarcoma; SKCM, skin cutaneous melanoma; STAD, stomach adenocarcinoma; TGCT, testicular germ cell tumors; THCA, thyroid carcinoma; THYM, thymoma; UCEC, uterine corpus endometrial carcinoma; UCS, uterine carcinosarcoma; UVM, uveal melanoma. NS, P > 0.05, *P < 0.05, **P < 0.01, ***P < 0.001.





FAM72B Was Upregulated in Lung Adenocarcinoma

To examine the FAM72B expression level in LUAD, we analyzed FAM72B expression based on the TCGA and Human Protein Atlas database. We found that FAM72B was upregulated both in LUAD and LUSC than in normal tissues (Figures 2A, B). Consistent with the above-mentioned results, the Gene Expression Omnibus (GEO) dataset also demonstrated that the FAM72B mRNA level was obviously increased in lung cancer tissues (Figure 2C). Furthermore, we showed that the RNA of FAM72B was upregulated in LUAD cells lines, especially in H1975 cells (Figure 2D). Finally, to prove the above-mentioned findings, immunohistochemical staining assay was conducted to examine the protein of FAM72B in lung cancer tissues. The results confirmed the upregulation in lung cancer tissues than in normal lung tissues (Figures 2E, F).




Figure 2 | Knockdown of FAM72B inhibited lung adenocarcinoma (LUAD) progression. (A, B) FAM72B was overexpressed in LUAD and lung squamous cell carcinoma as examined by The Cancer Genome Atlas. (C) Relative FAM72B expression as examined by the Gene Expression Omnibus dataset. (D) mRNA level of FAM72B in the lung cancer cell lines compared to normal human bronchial epithelial cell line: BEAS-2B determined by qPCR assay. (E, F) Protein expression of FAM72B in lung cancer tissues as examined by immunohistochemical staining assay. (G) Establishment of FAM72B knockdown cell lines in H1975 verified by real-time RT-PCR. (H) Knockdown of FAM72B significantly inhibits cell proliferation as determined by CCK8 assay. (I) Knockdown of FAM72B significantly induced cell apoptosis. (J, K) knockdown of FAM72B inhibited LUAD cell migration. NC, negative control; siRNA, FAM72B siRNA. ***P < 0.001.



Given that the biological function of FAM72B in LUAD remains unclear, we further determine the potential function of FAM72B on LUAD cell proliferation and migration. The qRT-PCR assay showed that the expression of FAM72B mRNA was significantly decreased in H1975 cells after treatment with the targeted siRNA (Figure 2G). The growth curve assays demonstrated that FAM72B depletion significantly inhibits the cell proliferation ability of LUAD (Figure 2H). Moreover, we show that the knockdown of FAM72B promotes cell apoptosis (Figure 2I). Furthermore, to validate whether FAM72B is critical for cell migration, we performed transwell and wound healing assays and revealed that FAM72B knock-down significantly inhibited the cell proliferation ability of LUAD (Figures 2J, K).



FAM72B Expression and Clinico-pathological Characteristics of Lung Adenocarcinoma

We also assessed the correlation between FAM72B expression and the clinicopathological characteristics of LUAD samples. As shown in Figures 3A–J, FAM72B expression was significantly associated with pathological stage, TNM stage, primary therapy outcome, gender, age, OS, DSS, and progression-free survival (PFS) in LUAD (Figures 3H–J). The logistic regression analysis also suggested that increased FAM72B expression was associated with T stage (T2 and T3 and T4 vs. T1; P < 0.001), N stage (N1 and N2 and N3 vs. N0; P = 0.040), pathologic stage (stage III and stage IV vs. stage I and stage II; P = 0.025), and gender (male vs. female) (P < 0.001) (Table 1).




Figure 3 | Relationship between FAM72B mRNA expression and clinico-pathological parameters in patients with lung adenocarcinoma. (A–J) Correlation between FAM72B expression and the clinical parameters, including the pathological stage, TNM stage, primary therapy outcome, gender, age, overall survival event, disease-specific survival event, and progression-free event. *P < 0.05, **P < 0.01, and ***P < 0.001.




Table 1 | Logistic regression analyzed the correlation between FAM72B expression and the clinical pathological characteristics in lung adenocarcinoma.





Analysis of the Diagnostic and Prognostic Value of FAM72B in LUAD

The relationship between FAM72B expression and OS, DSS, and PFS in LUAD patients was examined by a Kaplan–Meier curve. We found that increased FAM72B expression was correlated with poor OS, DSS, and PFS in patients with LUAD (Figures 4A–C). According to time-dependent ROC, the FAM72B expression level had a relatively good performance in predicting the 1-year (C statistics, 1.0), 3-year (C statistics, 0.749), and 5-year overall survival (C statistics, 0.8363) in LUAD patients (Figure 4D), had a better performance in predicting the 1-year (C statistics, 1.00), 3-year (C statistics, 0.929), and 5-year disease-free survival (C statistics, 0.965) in LUAD patients (Figure 4E), and had a relatively good performance in predicting the 1-year (C statistics, 0.864), 3-year (C statistics, 0.901), and 5-year progression-free survival (C statistics, 0.900) in LUAD patients (Figure 4F). We also utilized the GEO dataset to validate the above-mentioned results. We showed that the upregulation of FAM72B expression was related to adverse clinical outcomes in patients with lung cancer (Figures 5A–D). We further explore the diagnostic significance of FAM72B in lung cancer; a ROC curve analysis was performed. The ROC curve analysis confirmed that the area under the ROC curve values of FAM72B were 0.914, 0.914, 0.878, and 0.884 in various GEO datasets, respectively (Figures 5E–H). These results confirmed that FAM72B may be a promising biomarker for differentiating LUAD.




Figure 4 | Prognostic and diagnostic values of FAM72B in lung adenocarcinoma (LUAD). (A–C) Kaplan–Meier survival curves suggested that LUAD patients with a higher FAM72B expression exhibited poor overall survival, disease-specific survival, and progression-free survival as determined by The Cancer Genome Atlas-LUAD dataset. (D–F) Receiver operating characteristic curves were used to determine the diagnostic value of FAM72B in lung adenocarcinoma.






Figure 5 | Validation of the prognostic and diagnostic values of FAM72B in lung adenocarcinoma (LUAD). (A–D) Validation of the prognosis of FAM72B in LUAD using the Gene Expression Omnibus (GEO) dataset. (E–H) Validation of the diagnostic values of FAM72B in LUAD using the GEO dataset.





Validation of the Prognostic Value of FAM72B Based on Various Subgroups

We further determine the prognostic values of FAM72B in various clinical subgroups, including the pathological stage, TNM stage, gender, primary therapy outcome, age, residual tumors, race, and smoker. The results suggested that the upregulated FAM72B level is associated with a poor clinical outcome in patients with lung cancer (Figures 6A–C).




Figure 6 | Overall survival of FAM72B based on diverse subgroups. (A–C) Correlations between the FAM72B expression level and the overall survival in different clinical subgroups of lung adenocarcinoma in The Cancer Genome Atlas database, including stages I and II, T1 and T2, N0 and N1, M0, CR, smoker, gender, age >65, residual tumor, and white.





Univariate and Multivariate Cox Regression Analyses of Different Parameters on Overall Survival

We performed univariate Cox regression analysis in the TCGA-LUAD cohort to determine whether the FAM72B expression level and the pathologic stage might be valuable prognostic biomarkers. The univariate COX analysis suggested that a higher expression of FAM72B, pathologic stage, and TNM stage, respectively, were correlated with a poor clinical outcome in LUAD patients. To ascertain whether the FAM72B expression level could be an independent prognostic factor for patients with LUAD, multivariate Cox regression analysis was performed. The multivariate COX analysis shows that a higher FAM72B expression, as well as pathologic stage and TNM stage, was a significant independent prognostic factor in the TCGA-LUAD cohort that directly correlated with poor overall survival (Figures 7A, B).




Figure 7 | Forest plot of univariate and multivariate Cox regression analyses in lung adenocarcinoma (A, B).





Construction and Validation of FAM72B-Based Nomogram

The multivariate analysis result confirmed that FAM72B is an independent prognostic factor in LUAD. We then constructed a prediction model for overall survival and progression-free survival by integration of FAM72B expression. We established a nomogram to integrate FAM72B as a LUAD biomarker. Higher total points on the nomogram for OS, DSS, and PFS, respectively, indicated a worse prognosis (Figures 8A–F).




Figure 8 | Nomogram and calibration curve for predicting the probability of 1-, 3-, and 5-year overall survival, disease-specific survival, and progression-free survival for lung adenocarcinoma (LUAD) patients. (A–C) A nomogram integrates FAM72B and other prognostic factors in LUAD from The Cancer Genome Atlas data. (D–F) Calibration curve of the nomogram.





KEGG Enrichment Analysis

To determine the potential function of FAM72B in LUAD progression, LinkedOmics database was utilized to obtain the top 100 genes that were significantly positively correlated with FAM72B expression (Figures 9A, B). The correlation analysis of FAM72B expression and the top 8 co-expressed genes in TCGA LUAD is shown in Figures 9C, D. For the terms of biological process, FAM72B is mainly involved in nuclear division, chromosome segregation, regulation of cell cycle phase transition, DNA replication, regulation of mitotic cell cycle phase transition, mitotic nuclear division, and cell cycle G2/M phase transition (Figure 9E). The KEGG enrichment analysis suggested that these genes participate in cell cycle, RNA transport, DNA replication, cellular senescence, spliceosome, and 53 signaling pathways (Figure 9F).




Figure 9 | Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of FAM72B. (A–D) Genes that were significantly positively correlated with FAM72B expression in lung adenocarcinoma (LUAD) based on our The Cancer Genome Atlas-LUAD data. (E, F) Gene Ontology and KEGG enrichment analysis of FAM72B in LUAD.



To explore the possible mechanism of FAM72B in LUAD, the GSEA analysis was carried out on the different genes. The GSEA also showed that pathways, including the PI3K AKT MTOR signaling pathway, TNFA signaling pathway, IL2 STAT5 signaling pathway, KRAS signaling pathway, glycolysis, G2M checkpoint, epithelial-to-mesenchymal transition (EMT), and apoptosis, were significantly enriched in the high-FAM72B-expression group (Figures 10A, B).




Figure 10 | Gene Set Enrichment Analyses identification of FAM72B-related signaling pathways (A, B).





Correlation Between FAM72B Expression and Immune Infiltration

Given that the GSEA indicated that FAM72B may be correlated with immune response regulation, we subsequently examined the relationship between FAM72B expression and immune cell infiltration. We found that the somatic copy number alterations of FAM72B significantly affect the infiltration level of B cells, CD4+ T cells, CD8+ T cells, neutrophils, macrophages, and dendritic cells in LUAD (Figure 11A). Furthermore, our results confirmed that most immune cells in the tumor microenvironment, including B cells, CD4+ T cells, CD8+ T cells, neutrophils, macrophages, and dendritic cells, were negatively associated with FAM72B expression in LUAD (Figure 11B).




Figure 11 | Correlation analysis of FAM72B expression and infiltration levels of immune cells in lung adenocarcinoma (LUAD). (A) Correlation between FAM72B CNV and infiltration levels of immune cells in LUAD. (B) FAM72B was significantly associated with tumor purity and negatively correlated with the infiltration of different immune cells using the TIMER database. (C, D) Correlation between FAM72B expression and the infiltration levels of 24 immune cells in LUAD by single-sample Gene Set Enrichment Analysis. *P < 0.05, **P < 0.01, ***P < 0.001.



Additionally, to validate the above-mentioned results, we employed the ssGSEA method to determine the association between FAM72B expression and 24 tumor-infiltrating lymphocytes in LUAD. The results suggested that FAM72B was positively associated with the infiltration of Th2 cells, Tgd, and NK CD56dim cells but negatively associated with the infiltration of mast cells, eosinophils, TFH, iDC, and DC in LUAD (Figures 11C, D).



Prediction and Construction of FAM72B ceRNA Regulatory Network in LUAD

To further determine the upstream potential molecular mechanism of FAM72B in LUAD, we therefore attempted to predict and construct the potential ceRNA regulatory network of FAM72B in LUAD. We utilized starBase to predict the potential miRNAs of FAM72B and identified 41 potential miRNAs (Supplementary Table S1). Furthermore, we analyzed the relationship between these miRNAs and the FAM72B expression levels and showed that has-let-7a-5p, has-let-7b-5p, has-let-7c-5p, has-let-7e-5p, and has-let-7f-5p were significantly negatively associated with FAM72B expression in LUAD (Figure 12A). A further analysis revealed that has-let-7a-5p, has-let-7b-5p, has-let-7c-5p, has-let-7e-5p, and has-let-7f-5p were downregulated in LUAD (Figure 12B). Therefore, we decided to select has-let-7a-5p, has-let-7b-5p, has-let-7c-5p, has-let-7e-5p, and has-let-7f-5p and conducted a downstream analysis. We further predicted, by using starBase tools, that the upstream lncRNAs might bind to has-let-7a-5p, has-let-7b-5p, has-let-7c-5p, has-let-7e-5p, and has-let-7f-5p. Based on the ceRNA hypothesis, miRNAs have an opposite co-expression correlation with mRNAs and lncRNAs, whereas lncRNAs have a positive co-expression correlation with mRNA (11). Based on starBase and Pearson’s correlation analysis, we found three lncRNAs, including AL360270.2, TMPO-AS1, and AC125807.2, to be negatively correlated with miR-125a-5p and positively correlated with FAM72B expression in LUAD, respectively (Figure 12C). We also show that AL360270.2, TMPO-AS1, and AC125807.2 were increased in LUAD, and a higher AL360270.2, TMPO-AS1, and AC125807.2 expression had a poor prognosis compared to the high-expression group (Figures 12D, E). The ROC curve analysis confirmed that AL360270.2, TMPO-AS1, and AC125807.2 may be promising biomarkers in LUAD (Figure 12F). Finally, we used qQT-PCR assay to detect the expression of AL360270.2, TMPO-AS1, and AC125807.2 in LUAD cell lines. The results suggested that AL360270.2, TMPO-AS1, and AC125807.2 were significantly upregulated in LUAD cell lines than in human bronchial epithelial cells (BEAS-2B) (Figure 12G).




Figure 12 | Analysis of the potential miRNAs and lncRNAs of FAM72B. (A) Correlations between FAM72B expression and miRNAs (has-let-7a/7b/7c/7e/7f-5p) in lung adenocarcinoma (LUAD). (B) Expression level of miRNAs (has-let-7a/7b/7c/7e/7f-5p) in LUAD. (C) Correlations between FAM72B expression and lncRNAs (AL360270.2, TMPO-AS1, and AC125807.21) in LUAD. (D–F) Expression levels and prognostic and diagnostic values of lncRNAs (AL360270.2, TMPO-AS1, and AC125807.21) in LUAD. (G) Expression of AL360270.2, TMPO-AS1, and AC125807.21 in LUAD cell lines by qPCR assay. NS, P > 0.05, ***P < 0.001.






Discussion

LUAD is still the most afflicting cancer in the world, and the 5-year survival rate of lung cancer is only 10–15% in many countries (12). Previous studies have confirmed that FAM72B has been found to play a crucial role in maintaining the nervous system development (5). Nevertheless, there are few research studies on the synthesis study of FAM72B in LUAD. In this finding, we analyzed FAM72B expression, prognostic value, diagnostic values, ceRNA network, and correlation with tumor immune cell infiltration in LUAD for the first time.

In this project, we found a high level of FAM72B in various human cancers by analyzing the GTEX and TCGA cohorts. Moreover, we uncover that the mRNA and protein levels of FAM72B in the LUAD samples were remarkably higher than those in the normal control group through in vitro experiments and IHC staining, and the analysis results are the same as the above-mentioned studies. The elevated FAM72B expression was associated with an adverse pathological stage and TNM stage. The Kaplan–Meier curve analysis suggested that FAM72B expression was correlated with OS, disease-free survival, and PFS in the LUAD patients of the TCGA data. We also analyzed the potential of FAM72B expression to predict LUAD by conducting ROC curves and suggested that FAM72B has a high accuracy in predicting the outcomes of normal tissues and LUAD. Our findings are consistent with those of previous research. FAM72B was increased in GBM and correlated with poorer survival of patients (5).

The logistic regression analysis also suggested that increased FAM72B expression was associated with T stage (T2 and T3 and T4 vs. T1) (P < 0.001), N stage (N1 and N2 and N3 vs. N0) (P = 0.040), pathologic stage (stage III and stage IV vs. stage I and stage II) (P = 0.025), and gender (male vs. female) (P < 0.001). Next, the univariate and multivariate analysis results suggested that FAM72B expression was an independent factor associated with the survival of patients.

Given that FAM72B was highly expressed in LUAD tissues and cell lines, we also uncover that the knockdown of FAM72B significantly reduced the proliferation and migration abilities of LUAD cells. Cell apoptosis was found to play a crucial role in maintaining cell growth. In this study, we determine that the depletion of FAM72B significantly promotes cell apoptosis in LUAD.

Previous studies reported that FAM72B was upregulated in the nervous system, neuroblastoma, and breast adenocarcinoma (3). FAM72B was identified as a member of a 7-gene signature in prostate cancer and correlated with poor prognosis in patients with prostate cancer (13). It has been shown that FAM72B promotes NSC and cancer cell proliferation and is present in the G2/M phase of the cell cycle (6). Another study confirmed that the knockdown of FAM72B inhibited the cell proliferation of human fibroblasts (14). In this study, we investigated the underlying mechanisms through which FAM72B was involved in the progression of LUAD. The GSEA enrichment suggested that FAM72B was significantly associated with the PI3K AKT MTOR signaling pathway, TNFA signaling pathway, IL2 STAT5 signaling pathway, KRAS signaling pathway, glycolysis, G2M checkpoint, EMT, and apoptosis.

By the analysis of TIMER database, we discovered that FAM72B expression in LUAD was negatively associated with the expression levels of B cells, CD4+ T cells, CD8+ T cells, neutrophils, macrophages, and dendritic cells but positively associated with tumor purity. Moreover, FAM72B CNV was remarkably correlated with B cells, CD4+ T cells, CD8+ T cells, neutrophils, macrophages, and dendritic cells. These analyses point out that FAM72B may be participating in the immune response to the LUAD tumor microenvironment, particularly to B cells and CD4+ T cells.

It has been well documented that the ceRNA network plays an important role in the progression of lung cancer (15). The main finding of this study was the identification of a prognosis-related ceRNA regulatory network (lncRNA-AL360270.2, TMPO-AS1, and AC125807.2/has-let-7a/7b/7c/7e/7f-5p/FAM72B) in NSCLC. In the ceRNA regulatory network, has-let-7a/7b/7c/7e/7f-5p was significantly negatively correlated with FAM72B expression, and lncRNA-AL360270.2, TMPO-AS1, and AC125807.2 were significantly positively correlated with FAM72B expression. It has been confirmed that has-let-7a/7b/7c/7e/7f-5p inhibited LUAD progression via targeting BCL2L1 and IGF1R (16). We conducted correlation analysis, expression analysis, and prognosis analysis. has-let-7a/7b/7c/7e/7f-5p was selected as the most potential upstream-tumor-suppressive miRNA of FAM72B. Finally, we also constructed a FAM72B-related ceRNA network, which identified lncRNA-AL360270.2, TMPO-AS1, and the AC125807.2/has-let-7a/7b/7c/7e/7f-5p/FAM72B regulatory axis. In fact, lncRNA TMPO-AS1 was reported to promote lung adenocarcinoma progression and is negatively regulated by miR-383-5p (17). These results consistently suggest that lncRNA-AL360270.2, TMPO-AS1, and AC125807.2/has-let-7a/7b/7c/7e/7f-5p/FAM72B are a poor prognosis-associated ceRNA regulatory network in LUAD. In addition, the ceRNA network that we constructed could also elucidate the regulatory mechanism of FAM72B overexpression and poor prognosis in LUAD. However, although the ceRNA network of FAM72B was constructed by database analyses, more biological function assays are needed to further prove our analysis.

This study improves our understanding of the correlation between FAM72B and LUAD, but some limitations still exist. First, although we explored the correlation between FAM72B and immune infiltration in LUAD patients, there is a lack of experiments to validate the function of FAM72B in the tumor microenvironment regulation of LUAD. Second, we uncover that the knockdown of FAM72B inhibits the cell proliferation and cell migration of LUAD. However, the potential molecular mechanisms of FAM72B in cancer progression need to be explored in further studies.



Conclusion

This finding demonstrated, for the first time, the clinical significance and biological function of FAM72B in lung adenocarcinoma. Therefore, the lncRNA-AL360270.2, TMPO-AS1, and AC125807.2/has-let-7a/7b/7c/7e/7f-5p/FAM72B regulatory network may serve as a novel prognostic biomarker and potential therapeutic target for LUAD treatment. In summary, FAM72B may serve as a promising diagnostic and prognostic biomarker for LUAD.
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Objectives

This retrospective study investigated prognostic factors in advanced lung adenocarcinoma (LUAD) with one to five bone-only metastasis (BOM) and developed a nomogram model to estimate patient survival.



Methods

We investigated patients with advanced LUAD with one to five bone-only metastasis at the initial diagnosis and diagnosed between 2013 and 2019 in two hospitals. A formula named Risk-H was constructed using hematological variables screened by LASSO-Cox regression analysis in the internal set and verified by the external set. Two nomogram models were developed by clinical variables selected by LASSO-Cox regression analysis with or without Risk-H in the internal set. The concordance index (C-index), calibration curves, time-dependent receiver operating characteristic (ROC) analysis, area under the curve (AUC), and decision curve analysis (DCA) were formulated to verify nomogram models. The primary endpoint was overall survival.



Results

We finally included 125 and 69 patients, respectively, in the internal and external sets for analysis. The following were significant hematology prognostic factors and were included in the Risk-H formula: alkaline phosphatase and albumin, leukocyte. Four clinical factors, including loss of weight, sensitive mutation status, T and N stage, with or without Risk-H were used to establish nomogram models. C-index, calibration curves, ROC analysis, AUC, and DCA showed the addition of hematological data improved the predictive accuracy of survival.



Conclusions

Pretreatment peripheral blood indexes may be a meaningful serum biomarker for prognosis in LUAD. The addition of Risk-H to the nomogram model could serve as a more economical, powerful, and practical method to predict survival for LUAD patients with one to five BOM.





Keywords: lung adenocarcinoma, bone-only metastasis, prognostic factors, nomogram model, prediction



Introduction

Lung adenocarcinoma (LUAD) is a common malignant tumor, and accounts for 40%-50% of lung cancer cases worldwide (1). The rate of distant metastasis is high, and a common site of metastasis is the skeletal system (2, 3).

In LUAD patients with skeletal metastasis, many factors may impinge on the quality of life and performance status, leading to the duration of survival varying greatly. These include epidemiological history, distribution of metastasis, molecular alteration, histopathological type, and the number of metastases, hematological markers, and so on (4–7). Notably, the prognosis is also affected by the metastatic spread of LUAD to sites other than bone, such as the brain or liver (8). Thus, paying close attention to patients with bone-only metastasis (BOM) is best for studies of survival time in LUAD with skeletal metastasis, although this has rarely been considered.

Considering advanced LUAD, oncologists and radiologists are more likely to focus on patients with oligometastatic disease characterized by reduced metastatic potential with a limited number of metastatic sites (9), which renders it amenable to local treatment (LT). Several clinical trials and multiple retrospectives series have reported favorable outcomes of LT in highly selected oligometastatic non-small cell lung cancer (NSCLC) patients (10–18). So, the National Comprehensive Cancer Network guidelines recommend LT as standard and homogeneous treatment strategy for them. However, fewer attempts have been made to investigate whether clinical variables could contribute to the selection for more superior prognosis of patients.

In the present study, we investigated the hematology data, demographic, and clinical information of LUAD patients with ≤ 5 BOM from two hospitals, recorded at the initial diagnosis. Additionally, to guide physicians in estimating the survival time of these patients, a nomogram model basing on a comprehensive hematological formula was developed.



Materials & Methods


Selection of Study Population

Data were retrospectively collected from the records of consecutive patients who received a diagnosis of advanced NSCLC in two hospitals from 2013 to 2019. Clinical staging of the disease was conducted renewedly with reference to the eighth edition for tumor-node-metastasis (TNM) classification (19), at the time of data collection. The inclusion criteria in this study were: (1) a diagnosis of LUAD confirmed from pathological or cytological specimens, or both; (2) evidences of bone metastasis confirmed by imaging examinations, such as plain radiograph, CT, PET-CT, MRI, and bone scan, or a bone biopsy performed during surgery; (3) the number of bone metastases was ≤ 5; (4) a data of gene mutation status identified via next-generation sequencing; (5) did not receive immunotherapy in the first-line. Patients were excluded if they had second primary tumor; a site of metastasis other than bone; without gene sequence result; or incomplete medical records.



Definition of Special Concept

In this study, positively sensitive mutations (SM+) included: epidermal growth factor receptor (EGFR) exon 19 deletion, EGFR exon 21 Leu858Arg mutation, and anaplastic lymphoma kinase (ALK) mutation. EGFR uncommon mutations, such as exon 18 mutations, exon 20 insertion mutations and so on, no-targeted therapy mutations or without any mutation, were defined as sensitive mutations negative (SM–).



Hematology Markers

Laboratory examinations including routine blood test data, hepatic, and renal function test data of patients were collected before initial treatment. The calculation formulas of neutrophils to lymphocyte ratio (NLR), platelet to lymphocyte ratio (PLR), and systemic inflammatory index (SII) were as follows: NLR = neutrophil number (109/L)/lymphocyte count (109/L); PLR = number of platelets (109/L)/number of lymphocytes (109/L); SII = number of platelets(109/L) × number of neutrophils (109/L)/number of lymphocytes (109/L). Corrected calcemia was computed according to the formula: c-Ca = measured Ca + (40-albumin)/40. The best cutoff values for albumin, alkaline phosphatase (ALP), leukocyte, PLR, NLR, SII, and c-Ca were obtained according to overall survival (OS).



First-Line Systemic Treatment Strategy

All patients with EGFR non-sensitive mutations, no-targeted therapy mutations, or without mutation underwent first-line chemotherapy after confirmation of the initial LUAD diagnosis. The treatment included platinum-based doublet chemotherapy such as pemetrexed or paclitaxel combined with cisplatin, carboplatin, or nedaplatin. Each chemotherapy session was separated by an interval of 3 to 4 weeks.

Patients with EGFR-sensitive mutations (exon 19 deletion, exon 21 Leu858Arg mutations) were administered first-line treatment with EGFR tyrosine kinase inhibitors (TKIs), such as gefitinib, erlotinib, and icotinib; or with chemotherapy mentioned above and then TKIs after disease progression. All patients with ALK mutation were administered first-line treatment with crizotinib, or with chemotherapy as aforesaid and then TKI after disease progression.



Data Analysis and Statistical Considerations

OS was the primary endpoint, defined as the time from the date of diagnosis until death or the last follow-up. The follow-up schedule began from the time of treatment to the final follow-up on November 22, 2021. The data on the date of death or at the final follow-up visit were acquired from hospital records or through direct correspondence with the family of patients. R 4.1.1 software and SPSS 24.0 software were used to perform the statistical analyses. The chi-squared test (or Fisher’s exact test as applicable) and independent-samples T test were used to compare the clinical characteristics between the internal and external groups. OS was estimated using Kaplan-Meier method and between-group difference in OS was assessed using log-rank test. The optimal cutoff values of hematology markers were determined using the package “survminer” based on OS. LASSO-Cox regression analysis was performed to select the optimal prognostic factors using packages “glmnet,” “survival,” and “MASS” and the backward-forward stepwise method. The “predict” function of package “survival” was used to calculate the risk-score of each patient.

Nomograms, including clinical variables alone or clinical variables plus Risk-H, were constructed by using the package “regplot”. The concordance index (C-index) and calibration curves were evaluated to assess the consistency between the predicted and observed probabilities using package “pec”. The time-dependent receiver operating characteristic (ROC) analysis and area under the curves (AUC) were evaluated to assess the discrimination using packages “survivalROC” and “riskRegression”. The decision curve analysis (DCA) was formulated to evaluate the clinical practicality of constructed models using package “ggDCA”. All P-values were two-sided, with P < 0.05 considered statistically significant.




Results


Patient Characteristics

Data were collected for 983 patients and 654 patients with advanced NSCLC, who had been treated in two hospitals from January 2013 to December 2019. The detailed patients selecting process is shown in Figure 1. Eventually, 125 and 69 patients, respectively, were enrolled in the internal set and the external set. The demographic and clinic-pathological features of patients are displayed in Table 1. The median follow-up time, median OS, and 1-, 3-, 5-year survival rates were 35.5 vs. 43.0 months, 28.3 vs. 32.7 months, 87% vs. 88.4%, 43.4% vs. 49.0%, and 17.4% vs. 13.0%, respectively, in the internal set and external set.




Figure 1 | Patient selecting process for the internal set and the external set.




Table 1 | Clinical characteristics of patients.





Risk-H Construction for OS

In the internal set, the optimal cutoff values of hematology markers were determined based on OS and the result showed that high albumin (p=0.020) was a favorable indicator of OS, whereas high ALP (p=0.005), high c-Ca (p=0.015), and high leukocyte (p=0.039) were accompanied by inferior OS. But the NLR (p=0.113), PLR (p=0.219), and SII (p=0.113) level had no significant statistical effects for survival (Table 2).


Table 2 | Cutoff value and univariate Cox analysis of hematology markers in the internal set.



NLR, PLR, and SII had been reported as important prognostic factors for OS, so, these three variables and four other variables with p value < 0.05 were all included in the LASSO-Cox regression model to select the optimal prognostic variables in the internal set. Finally, ALP, albumin, and leukocyte were significantly independent prognostic factors, and were included to formulate the risk scoring system (Figures 2A, B, AIC value=666.31, p=8.176×e-06). A formula named Risk-H was constructed as follows: Risk-H=1 * HR-value (ALP) * HR-value (Albumin) * HR-value (Leukocyte) (Table 3). According to the median value of risk score (2.783129), patients in the internal set were divided into low-risk and high-risk groups and the median OS were 46.0 and 28.3 months, respectively (p<0.001, Figure 3A). Patients in the external set were calculated risk score according to the Risk-H formula and Table 3 and were divided into low- and high-risk groups based on the median score mentioned above. This significant prognostic difference was also observed (p=0.011, Figure 3C). The prognostic accuracy of Risk-H was evaluated using time-dependent ROC analysis, yielding comparable AUC values between the internal and external sets with 2-, 3-, and 4-year AUC values of 0.698 vs. 0.672, 0.747 vs. 0.640, 0.729 vs. 0.690, respectively (Figures 3B, D), which confirmed the excellent prognostic power of Risk-H in another heterogeneous population.




Figure 2 | Construction of the Risk-H by the least absolute shrinkage and selection operator (LASSO) model in the internal set. (A) The LASSO-Cox regression model was used to generate the prognostic scoring system named Risk-H. (B) Ten-fold cross-validation for tuning parameter selection in the LASSO model via minimum criteria and 1-SE criteria.




Table 3 | Factors included in the Risk-H formula.






Figure 3 | Verification of the Risk-H in the internal set and external set. (A, C) Kaplan–Meier survival analyses of Risk-H in the internal set and the external set. (B, D) Risk-H performance in time-dependent receiver operating characteristic (ROC) analysis in the internal set and the external set.





Selecting of the Optimal Factors for Prognosis

In the internal set, Risk-H, and clinical variables, such as gender, age, smoking, karnofsky performance status scores, loss of weight, gene mutation status, T stage, N stage, number of bone metastases, antiresorptive drugs treatment, and weight bearing bone metastasis were included in the LASSO-Cox regression model to select optimal prognostic factors associated with OS and PFS using the backward-forward stepwise method (Figures 4A, B). After adjusting clinical characteristics, Risk-H (p < 0.001) remained as an independent negative prognostic indicator for OS. Beside Risk-H, another four clinical variables, including loss of weight, SM status, T stage, and N stage were added to establish the optimum model with the smallest AIC value (660.98, p=1.117×e-06) (Table 4). However, the significant effect of Risk-H on progression free survival (PFS) was not observed in the univariate analysis in the internal set (p=0.051).




Figure 4 | Selection of the optimal prognostic factors for survival in the internal set by the LASSO model. (A) The LASSO-Cox regression model was used to select the prognostic factors. (B) Ten-fold cross-validation for tuning parameter selection in the LASSO model via minimum criteria and 1-SE criteria.




Table 4 | Factors included in the nomogram models.





Development and Validation of Nomogram Models

In the internal set, nomogram models were established to predict the survival probability of LUAD with ≤ 5 BOM using four clinical variables mentioned above with or without Risk-H (Model 1 vs. Model 2). Figures 5A, B demonstrated an example of using the two nomogram models to predict the survival probability of a given patient which revealed that the addition of Risk-H to nomogram harbored improved predictive accuracy for survival when compared with that of clinical factors alone. The consistency between the predicted and observed probabilities were also improved as demonstrated by time-dependent C-index (Figure 6A) and 3- and 4-year calibration curves (Figures 6B, C).




Figure 5 | Nomogram models established by clinical variables alone (A) and plus Risk-H (B) in the internal set.






Figure 6 | Validation and comparison of two nomogram models in the internal set. The time-dependent concordance index (C-index) (A), 3- and 4-year calibration curves (B, C), 3- and 4-year ROC analysis (D, E), time-dependent area under the curve (AUC) (F), 3- and 4-year decision curve analysis (DCA) (G, H) basing on Model 1 and Model 2.



We generated ROC analysis to assess the discrimination abilities of two nomograms and the result displayed nomogram constructed by clinical variables plus Risk-H had higher AUC value in predicting 3- and 4-year survival probability in the internal set (Figures 6D, E). Furthermore, time-dependent AUC curve also proved the superiority of combined prediction model again (Figure 6F).

Because the calibration curves and ROC analysis are based on the sensitivity and specificity of the predictive model, they cannot recognize false positive and false negative cases. While DCA was widely adopted to assess the clinical utility and net clinical benefits when the predictive model guides clinical practice. So, we performed 3- and 4-year DCA to evaluate the clinical utility and net clinical benefits that two nomograms would bring to patients and the results revealed that the integrated nomogram was significantly superior to the clinical nomogram in the internal set (Figures 6G, H). To sum up, the above results elucidated that the integrated nomogram had better predictive ability for the survival probability of LUAD patients with 1-5 BOM.




Discussion

In the current study, we established a nomogram model using hematological and clinical data to predict the life expectancy of advanced LUAD patients with one to five BOM. A total of 125 and 69 cases, respectively, were included in the internal set and the external set. The following were significant hematology prognostic factors and were included in the Risk-H formula: alkaline phosphatase and albumin, leukocyte. Four clinical factors, including loss of weight, sensitive mutation status, T and N stage, with or without Risk-H were used to establish nomogram models in the internal set. C-index, calibration curves, ROC analysis, AUC, and DCA showed the addition of hematological data improved the predictive accuracy of survival.

Several hematological markers were reported to suggest a poor prognosis for lung cancer after bone metastasis including hypoalbuminemia, increased ALP and tumor-markers, and systemic inflammation, as evidenced by hyperleucemia, neutrophilia or high C-reactive protein (CRP) level (6, 7, 20–23). In the present study, a formula named Risk-H was established using peripheral blood data, and the high risk significantly reduced the survival time.

In year 2018, one prospective clinical trial investigated the bone, muscle, and metabolic parameters in patients with synchronous bone metastasis from lung cancer (7). The decrease of HbA1c, increase of DKK1 and serum calcium were poor prognostic factors for OS independently of common predictors. In the recent study which explored the prognosis factors of NSCLC with BOM, hypoalbuminemia significantly influenced patients’ survival (6). In our study, bone metabolic index ALP and nutritional index albumin were included in the Risk-H formula. Hence, these results indicated that supported treatment, such as anti-bone metabolism and nutritional support, was essential to survival in addition to oncological therapy.

Except for ALP and albumin status, another variable included in the formula was leukocyte on behalf of the systemic inflammation associated with high mortality risk, which was in keeping with previous studies (7). In the setting of bone metastatic lung cancer, systemic inflammation was mainly due to increased tumor-induced bone resorption through the activation of a vicious circle between bone and metastases (24, 25). Tumor cells in the bone disrupt normal bone physiology, resulting in the release of inflammatory cytokines and growth factors, such as interleukin-1, interleurkin-6, fibroblast growth factor, platelet-derived growth factor, transforming growth factor-β, and so on from the bone matrix, which increases tumor cell growth in turn and promotes further bone disruption. This cyclic relationship increases metastatic lesions in the bone and eventually leads to numerous comorbidities including bone fracture, hypercalcemia, and systemic inflammation (23, 25).

Various demographic and clinical variables were reported that show inferior prognosis for LUAD with bone metastasis to include: male gender (21), smoking history (20), cachexia (7), malnutrition (7), poor physical status (21, 26), multiple and/or wearing bone metastases (4, 7, 26), KRAS mutation (7, 22), and without targeted therapy mutations (6, 8). In Meng’s study, which explored the factors affecting the survival of NSCLC patients with BOM, EGFR sensitive/ALK mutations, smoking and loss of weight were good, poor, and bad factors, respectively (6). In our study, which only included the LUAD with one to five BOM, loss of weight and without sensitive targeted-therapy mutations still were inferior prognostic factors; meanwhile, advanced T and N stage were also significantly associated with worsened survival.

The optimal treatment strategy should vary according to patients’ estimated survival time in the real word (27–29). A variety of scoring systems and predictive models had been established and verified for this purpose. For example, Pruksakorn et al. (21) developed a scoring system using gender and Eastern Cooperative Oncology Group score, which were significant prognostic factors, to estimate the survival time of lung cancer patients with bone metastasis. Meng et al. (6) proposed a graded prognostic assessment model for NSCLC patients with BOM that relied on smoking, EGFR sensitive/ALK mutations status, loss of weight, hypoalbuminemia, and primary site treated by surgery or radiotherapy. However, these scoring systems included metastasis of other sites, or many pathological types of lung cancer, or both. So, we recognized a need for a survival prediction model that is specific for LUAD patients with BOM. In addition, oncologists and radiologists were more likely to pay attention to advanced patients with oligometastatic disease, who would benefit from local treatment. So, in this study, we established a nomogram model to predict the 3- and 4-year survival rate of these patients, and the addition of hematological data indeed improved the predictive accuracy and clinical utility.



Limitations

There are several limitations to this analysis. Most importantly, due to its retrospective nature, the bone metastatic status was assessed by non-homogeneous imaging techniques which had the different diagnosis capacity. Secondly, we were lacking in some data, such as C-reactive protein, cachexia, sarcopenia, and KRAS mutation status, which were essential to survival. Thirdly, treatments were also inconsistent, which may influence survival. Finally, the number of patients was limited, and further multi-center studies are needed to confirm this model.



Conclusions

The survival time of LUAD patients with one to five BOM at initial diagnosis was significantly influenced by bone metabolism; nutritional and inflammatory indexes; loss of weight; EGFR-sensitive/ALK mutations; and T and N stage. A nomogram model based on hematological markers was developed in this study to guide physicians when estimating survival time for these patients.
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Background

Lung cancer has the highest death rate among cancers globally. Accumulating evidence has indicated that cancer-related inflammation plays an important role in the initiation and progression of lung cancer. However, the prognosis, immunological role, and associated regulation axis of inflammatory response-related gene (IRRGs) in non-small-cell lung cancer (NSCLC) remains unclear.



Methods

In this study, we perform comprehensive bioinformatics analysis and constructed a prognostic inflammatory response-related gene (IRRGs) and related competing endogenous RNA (ceRNA) network. We also utilized the Pearson’s correlation analysis to determine the correlation between IRRGs expression and tumor mutational burden (TMB), microsatellite instability (MSI), tumor-immune infiltration, and the drug sensitivity in NSCLC. Growth curve and Transwell assay used to verify the function of SNHG17 on NSCLC progression.



Results

First, we found that IRRGs were significantly upregulated in lung cancer, and its high expression was correlated with poor prognosis; high expression of IRRGs was significantly correlated with the tumor stage and poor prognosis in lung cancer patients. Moreover, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment indicated that these IRRGs are mainly involved in the inflammatory and immune response-related signaling pathway in the progression of NSCLC. We utilized 10 prognostic-related genes to construct a prognostic IRRGs model that could predict the overall survival of lung adenocarcinoma (LUAD) patients possessing high specificity and accuracy. Our evidence demonstrated that IRRGs expression was significantly correlated with the TMB, MSI, immune-cell infiltration, and diverse cancer-related drug sensitivity. Finally, we identified the upstream regulatory axis of IRRGs in NSCLC, namely, lncRNA MIR503HG/SNHG17/miR-330-3p/regulatory axis. Finally, knockdown of SNHG17 expression inhibited lung adenocarcinoma (LUAD) cell proliferation and migration. Our findings confirmed that SNHG17 is a novel oncogenic lncRNA and may be a biomarker for the prognosis and diagnosis of LUAD.



Conclusion

DNA hypomethylation/lncRNA MIR503HG/SNHG17/microRNA-330-3p/regulatory axis may be a valuable biomarker for prognosis and is significantly correlated with immune cell infiltration in lung cancer.





Keywords: lung adenocarcinoma, inflammatory response-related gene, DNA methylation, ceRNA, immune cell infiltration, drug sensitivity



Introduction

Cancer seriously affects the survival and life of patients, especially lung cancer (LC), which is the main contributor to global cancer mortality, causing more than 700,000 deaths every year (1). Recent research shows that cancer is closely related to autoimmunity, and immunotherapy as a new treatment method has received extensive attention in the field of cancer therapy (2). Immune infiltration in the tumor microenvironment (TME) is the basis of immunotherapy and plays a key role in tumorigenesis and development and also affects the clinical prognosis of patients (3). Immune-checkpoint inhibitors targeting PD-1 or PD-L1 have already substantially improved the outcomes of patients with many types of cancer, but only 20%–40% of patients benefit from these therapies (4). Therefore, it will be helpful to improve the effect of immunotherapy, find the indicators of immune infiltration, and explore its possible mechanism.

As one of the significant characteristics of cancer, cancer-related inflammation mainly includes local inflammation and systemic inflammation (5). The local inflammatory response means the inflammatory microenvironment, which can facilitate cancer progression via promoting cancer cell angiogenesis and metastasis and altering the sensitivity of tumor cells to chemotherapeutics drugs (6). The systemic inflammatory response, including alteration in neutrophils and lymphocytes numbers and albumin levels, is significantly associated with the response to diverse cancer treatment (7). Emerging evidence has demonstrated that inflammation plays a crucial role in the occurrence and progression of lung cancer. For instance, it has been shown that tobacco smoke could induce the production of chemokine CCL20 and promote lung cancer progression (8). Tumor-derived CXCL1 was reported to boost NSCLC cell proliferation by recruitment of tumor-associated neutrophils (9). LncRNA HULC via upregulation of the expression of sphingosine kinase 1 (SPHK1) leads to facilitation of non-small cell lung cancer cell proliferation and inhibits apoptosis (10). It has been demonstrated that CX3CL1, by activating the Src/focal adhesion kinase signaling pathway, results in facilitating lung cancer cell migration and invasion (11). However, the comprehensive analysis of the prognostic value of inflammatory-response-related genes (IRRGs) and its upstream regulatory axis in LUAD has not yet been elucidated.

In the present research, we employ diverse public databases to explore the expression, gene mutation, prognostic significance, immunological role, and the upstream regulatory axis of inflammation-related gene signature (IRRGs) in LUAD. Our results may provide first evidence for prognostic biomarkers and therapeutic targets for LUAD.



Materials and Methods


TCGA Datasets

We acquired the gene profiles and clinical survival data of the LUAD samples from The Cancer Genome Atlas (TCGA) database (https://portal.gdc.cancer.gov/) (12). We utilized these data analysis of the correlation between IRRGs expression and relevant clinical information, including pathological stage.



Analysis of the Expression and Prognosis of IRRGs in Lung Cancer

We utilized the TIMER (https://cistrome.shinyapps.io/timer/) (13), GSCA tools, and GEPIA databases (http://gepia.cancer-pku.cn/) (14) to analyze the expression and gene mutation, prognosis, and tumor stage of IRRGs in lung cancer; the expression of miRNA-330-3p and lncRNAs were analysis by starBase (15). Kaplan–Meier plotter (http://kmplot.com/analysis/) (16) and GEPIA databases (http://gepia.cancer-pku.cn/) were utilized to examine the prognosis of miRNA-330-3p in lung cancer.



Identification of Differentially Expressed IRRGs

A total of 33 IRRGs were obtained from prior reviews (10, 17), which are shown in Figure 1. The difference in IRRGs expression in TCGA-LUAD and normal tissues was identified using the “limma” and “reshape2” packages. We then constructed a gene–gene interaction network for 33 IRRGs using the GeneMANIA (http://www.genemania.org) (18).




Figure 1 | Analysis of the gene and gene interaction network of IRRGs. The gene–gene interaction network of IRRGs was constructed using GeneMania.





Prediction of lncRNA and ceRNA Network Construction

We utilized the starBase database (http://starbase.sysu.edu.cn/), miRDB (http://mirdb.org) (19), miR walk (http://mirwalk.umm.uni-heidelberg.de) (20), and PITA (http://genie.weizmann) (21) to forecast the potential miRNAs of IRRGs (15). We also used the lncBase (www.microrna.gr/LncBase) (22), lncExpdb (https://bigd.big.ac.cn/lncexpdb) (23), and LncRNASNP (http://bioinfo.life.hust.edu.cn/lncRNASNP2) (24) to predicted the potential lncRNAs that binding with miRNA-330-3p, the starBase was employed to examined the expression, prognosis, and correlation between the miRNA-330-3p and lncRNAs; we also used starBase to predict the binding with between miRNA, mRNA, and lncRNA.



Analysis the Molecular Characteristics of lncRNAs

We employed the lncLocator (www.csbio.sjtu.edu.cn/bioinf/lncLocator.) and CPC2 (http://cpc2.cbi.pku.edu.cn) to examine the subcellular localization and the protein coding ability of lncRNAs (25, 26).



Functional Enrichment Analysis

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were conducted to examine the biological and molecular functions of IRRGs across different cancer types using a total of 300 genes that were positively correlated with IRRGs. All three analyses were performed using the R Package Cluster Profiler.



Drug Sensitivity Analysis

The relationships between IRRGs expression and sensitivity to drugs were assessed using the Genomics of Drug Sensitivity in Cancer (GDSC) and the Cancer Therapeutics Response Portal (CTRP) databases (27, 28).



Cancer cells and Cell Culture Conditions

The human bronchial epithelial (BEAS2B) cell line and LUAD cell lines were purchased from the cell bank of Kunming Institute of Zoology and cultured in bronchial epithelial cell growth media (BEGM) (Lonza, Shanghai, CC-3170). HEK-293T was obtained from the American Type Culture Collection (ATCC). Lung cancer cell lines, including H1650, HCC827, and H1975 were purchased from Cobioer (Shanghai, China) with STR document; H1650, HCC827, and H1975 cells were all cultured in Roswell Park Memorial Institute (RPMI) 1640 medium (Corning, Shanghai) supplemented with 10% fetal bovine serum (Cat. No. 10099141C, Gibco, New York, USA) and 1% penicillin/streptomycin.



SiRNA and Cell Transfection

The siRNA targeting SNHG17 was synthesized (Shanghai Generay Biotech, Shanghai/China). For the transfection of siRNAs and plasmids, cells were transfected using the Lipofectamine 3000 kit according to the manufacturer’s instructions. The sequences for siRNA are as follows: SNHG17 siRNA, GGAGTGTCACATGACTGCCGC.



Quantitative Real-Time PCR

The quantitative real-time PCR (qRT-PCR) assay was performed as documented (29). The primer sequences are list follows: SNHG17-F, GATTGTCAGCTGACCTCTGTC; SNHG17-R, GTGGTAGCCTCACTCTCCATTCTCTGCCCCT; β-actin-F, CTTCGCGGGCGACGAT; and β-actin-R, CCATAGGAATCCTTCTGACC. The expression quantification was obtained with the 2−ΔΔCt method. Cell proliferation and migration assay was performed as previously documented (30).



Cell Migration Assay

For the Transwell migration assay, 2.5×104 cells/well in 100 μl serum-free medium were plated in a 24-well plate chamber insert, and the lower chamber was filled with 10% fetal bovine serum (FBS). After incubation for 24 h, cells were fixed with 4% paraformaldehyde, washed, and then stained with 0.5% crystal violet for further imaging.



CCK8 Assay

We seeded cells in 96-well plates at 2.5 × 103 per well in 100 μl of complete medium and 10 μl of CCK-8 reagent (RiboBio, Guangzhou, China) for 1 h each day after 3 days of culture. We then used a microplate to measure the absorbance of each well at 450 nm. Each sample was evaluated in triplicate.



Statistical Analysis

All statistical analyses were performed using R software, and receiver operator characteristic (ROC) curves were used to detect IRRGs cutoff values using pROC packages. For the data regarding the function of IRRGs, GraphPad Prism 7.0 was used for statistical analyses.




Results


The Expression Pattern and Prognostic Value of IRRG in NSCLC

To comprehensively analyze the prognostic value of IRRGs in lung cancer, we first performed single-factor prognosis analysis. The results demonstrated that 33 genes (ADM, ATP2B1, CCL20, EREG, GNAI3, IRAK2, MMP14, NAMPT, NMI, PCDH7, PLAUR, PVR, RELA, RIPK2, SERPINE1, SPHK1, TAPBP, TPBG, BTG2, CD48, CD69, CXCR6, CYBB, IL7R, IL12B, MEP1A, NMUR1, PDE4B, SLAMF1, SLC1A2, SLC11A2, and STAB1) were significantly related to the prognosis of lung cancer patients. The gene interaction network established by utilized GeneMANIA database (Figure 1). We also analyzed the correlation between diverse IRRGs expression in LUAD; results suggested that IRRGs expression was significantly positively associated with IRRGs expression gene in NSCLC (Supplementary Figure S1).

High expression of genes (ADM, ATP2B1, CCL20, EREG, GNAI3, IRAK2, MMP14, NAMPT, NMI, PCDH7, PLAUR, PVR, RELA, RIPK2, SERPINE1, SPHK1, TAPBP, and TPBG) had shorter survival times in lung cancer; this result was verified by Gene Expression Omnibus (GEO) datasets (Figures 2A–E; Supplementary Table S1). On the contrary, low expression of genes (BTG2, CD48, CD69, CXCR6, CYBB, IL7R, IL12B, MEP1A, NMUR1, PDE4B, SLAMF1, SLC1A2, SLC11A2, and STAB1) had shorter survival times in lung cancer (Supplementary Figure S2). Additionally, we found that these genes (ADM, ATP2B1, EREG, NMI, PCDH7, PLAUR, PVR, RELA, RIPK2, SERPINE1, SPHK1) correlated with poor disease-specific survival (DSS) in lung cancer (Figure 3A), high expression of CCL20, EREG, NAMPT, NMI, PCDH7, PVR, SERPINE1, and SPHK1 correlated with poor progression-free survival in patients with lung cancer and high expression of CCL20, NMI, and PVR associated with poor disease-free survival (DFS) in patients with lung cancer (Figures 3B, C). High expression predicted poor prognosis and shows that these genes may play oncogenic roles in the progression of lung cancer. Therefore, we chose these 18 genes to further analyze the function. Next, we determined the expression of IRRGs in NSCLC by employing the GSCA database that is based on TCGA LUAD datasets. The results verify that 10 genes were upregulated in lung cancer; other genes had no significant difference in lung cancer (Figures 4A, B).




Figure 2 | Analysis of the overall survival of IRRGs in LUAD. (A–E) The overall survival of IRRGs in LUAD by using the TCGA-LUAD dataset.






Figure 3 | Analysis of the DSS and PFS of IRRGs in LUAD. (A) The disease-specific survival of IRRGs in LUAD by using the TCGA-LUAD dataset. (B) The progression-free survival of IRRGs in LUAD by using the TCGA-LUAD dataset. (C) The disease-free survival of IRRGs in LUAD by using the TCGA-LUAD dataset.






Figure 4 | Analysis of the expression and gene mutation of IRRGs in LUAD. (A) The expression of IRRGs in LUAD by GSCA tools. (B) Analysis the prognosis of IRRGs in LUAD by GSCA tools. (C) The correlation between the CNV and IRRGs mRNA expression in LUAD by the GSCA tools. (D, E) The mutation frequency and classification of IRRGs in LUAD by the GSCA tools. (F) The methylation level in LUAD by the GSCA tools. (G) The correlation between the methylation and IRRGs mRNA expression in LUAD by the GSCA tools.





Gene Mutation Analysis of IRRGs in NSCLC

The copy number variation (CNV) of the gene usually leads to its overexpression in diverse cancer. Based on the conclusion, we first analyzed the CNV of IRRGs. The results demonstrated that the genes’ (GNAI3, RELA, PVR, RIPK2, ATP2B1, IRAK2, NAMPT, NMI, PLAUR, and EREG) CNV was significantly associated with the expression of mRNA in LUAD (Figure 4C). We then summarize the incidence of copy number variations and somatic mutations of 18 IRRGs in LUAD. Seventy-two of 83 (86.75%) LUAD samples demonstrated genetic mutations (Figures 4D, E). A missense mutation was the most common variant classification (Figures 4D, E). SNPs were the most common variant type, and C > A and C>G ranked as the top SNV class (Figures 4D, E). Results confirmed PCDH7 as the gene with the highest mutation frequency (Figures 4D, E). Next, we analyzed the DNA methylation information for 18 IRRGs in LUAD. Results demonstrated that the methylation levels of NMI, NAMPT, and CCL20 were decreased in LUAD than in the normal group (Figure 4F). On the contrary, the methylation levels of EREG and PCDH7 were increased in LUAD (Figure 4F); the methylation of IRRGs was significantly negatively correlated with the expression of IRRGs in the progression of LUAD (Figure 4G). Collectively, these results suggested that CNV and DNA methylation significantly affected the expression of IRRGs in lung cancer.



GO and KEGG Enrichment for IRRGs in NSCLC

To explore the potential function of IRRGs in the NSCLC, we conducted the GO and KEGG enrichment analysis. Results indicated that these 18 IRRGs mainly participated in the biological process such as the inflammatory response and regulation of cell population proliferation in GO term (Figure 5A). In molecular functions of GO term, these 18 IRRGs were mainly involved in the signaling receptor activity, cytokine receptor binding, cytokine activity, CXCR3 chemokine receptor binding, and tumor necrosis factor receptor binding in GO term (Figure 5A). We observed that these 18 IRRGs were mainly involved in cytoplasmic vesicle membrane, secretory granule membrane, membrane protein complex, endomembrane system, and interleukin-18 receptor complex in cell component of GO terms (Figure 5A). Furthermore, KEGG pathway enrichment results indicated that 18 IRRGs were mainly involved in the PI3K-Akt signaling pathway, IL-17 signaling pathway, nuclear factor (NF)-kappa B signaling pathway, Th17 cell differentiation, C-type lectin receptor signaling pathway, hypoxia-inducible factor 1 (HIF-1) signaling pathway, cAMP signaling pathway, epithelial cell signaling in Helicobacter pylori infection, Th1 and Th2 cell differentiation, mitogen-activated protein kinase (MAPK) signaling pathway, human immunodeficiency virus 1 infection, FoxO signaling pathway, oxytocin signaling pathway, cGMP-PKG signaling pathway, proteoglycans in cancer, neuroactive ligand–receptor interaction, and hematopoietic cell lineage (Figure 5B). Collectively, these data imply that IRRGs affect the inflammation and immune responses and participated in the progression of NSCLC.




Figure 5 | Analysis of the functions of IRRGs in LUAD. (A) The GO enrichment terms are involved by IRRGs in LUAD. (B) The KEGG pathway is involved by IRRGs in LUAD.





Correlation Between IRRGs Expression and Pathological Stage in NSCLC

Considering that the IRRGs were upregulated in NSCLC, we further examined the correlation between IRRGs expression and pathological stage of NSCLC. Results confirmed that ADM, CCL20, EREG, IRAK2, MMP14, NAMPT, OLAUR, PVR, RIK2, SERPINE1, and SPHK1 expressions were significantly related to the pathological stage in NSCLC (Figures 6A–D).




Figure 6 | Analysis of the tumor stage of IRRGs in LUAD. (A–D) The tumor stage of IRRGs in LUAD by using GEPIA database.





Construction of Inflammatory Response-Related Gene Prognostic Model

To construct a prognostic gene model, we employed the univariate Cox regression analysis to screen those IRRGs with a prognostic value. As is shown in Figures 7A, B, LASSO Cox regression analysis was performed to construct a prognostic gene model based on these 10 prognosis IRRGs (Figures 7A, B). The risk score=(0.1198)*ADM+ (0.0404)*CCL20+ (0.1478)*PVR+ (0.144)*RIPK2+ (0.047)*SPHK1. Based on the risk score, LUAD patients were divided into two groups. The higher risk group had shorter survival times in patients with LUAD (Figures 7C, D), with areas under the curve (AUCs) of 0.692, 0.711, and 0.678 in the 1-, 3-, and 5-year ROC curves, respectively (Figure 7E).




Figure 7 | Construction of a prognostic IRRGs model in LUAD. (A) LASSO coefficient profiles of the 10 IRRGs. (B) Plots of the 10-fold cross-validation error rates. (C) Distribution of risk score, survival status, and the expression of five prognostic IRRGs in LUAD. (D, E) Overall survival curves for LUAD patients in the high-/low-risk group and the ROC curve of measuring the predictive value.





Building a predictive nomogram

Considering that these six prognostic IRRGs were correlated with the tumor stage in LUAD, we next constructed a predictive nomogram to predict the survival state. Univariate and multivariate analyses revealed that CCL20, ADM, or SPHK1 expression and T, N, and M stages were independent factors affecting the prognosis of LUAD patients (Figures 8A, B). The predictive nomogram confirmed that the 1-, 3-, and 5-year overall survival rates could be predicted relatively well compared with an ideal model in the entire cohort (Figures 8C, D). ROC curve analysis results confirmed that ADM, IRAK2, and MMP14 may be biomarkers in NSCLC with high sensitivity and specificity (Supplementary Figure S3).




Figure 8 | Construction of a predictive nomogram in LUAD. (A, B) Hazard ratio and p‐value of the constituents involved in univariate and multivariate Cox regression considering clinical parameters and five prognostic IRRGs in LUAD. (C, D) Nomogram to predict the 1-, 3-, and 5-year overall survival rate of LUAD patients. Calibration curve for the overall survival nomogram model in the discovery group.





Associations Between IRRGs Expression and TMB, MSI, and Drug Sensitivity

Emerging evidence has demonstrated that tumor mutational burden (TMB) and microsatellite instability (MSI) could be a potential biomarker for predicting the efficacy of immunotherapy for lung cancer (29). The above findings indicated that the IRRGs were related to tumor immune infiltration. To determine the relationships between IRRG expression and TMB, MSI, and drug sensitivity in NSCLC, we conducted the related correlation analysis. The analysis revealed that among these IRRGs, ADM, PVR, MMP14, PLAUR, and RIPK2 were positively correlated with the TMB (Figure 9A), while IRAK2 was negatively correlated with the MSI (Figure 9B). To explore the potential therapy target, it is extremely important to examine the correlation between these IRRGs expressions and diverse drugs in lung cancer. In the present study, we employed the GSCA tools to analyze the relationship between the IRRGs expression and drug sensitivity. The results demonstrated that ADM and CCL20 expression was positively correlated with the drug sensitivity of I-BET-762, NPK76-II-72-1, TPCA-1, KIN001-102, AR-42, and PHA-793887 (r>0.34, p<0.001) and negatively associated with the drug sensitivity of Docetaxel, Bleomycin (50 μM), 17-AAG, Dasatinib, and TGX221; CCL20, IRAK2,NAMPT, PVR, SERPINE1, and SPHK1 were correlated with the drug sensitivity of diverse drug (Figure 9C).




Figure 9 | Analysis of the correlation between the IRRGs expression and TMB, MSI, and drug sensitivity. (A) The correlation between the IRRGs expression and TMB in LUAD. (B) The correlation between the IRAK2 expression and MSI in LUAD. (C) The correlation between the IRRGs expression and drug sensitivity in the GDSC database.





IRRGs Were Associated With Tumor Immune Infiltration in LUAD

We used TIMER database analysis and found that the somatic copy number alterations (SCNA) of IRRGs were related to diverse immune cell infiltration levels in LUAD (Supplementary Figure S4). Next, we analyzed the expression of IRRGs (ADM, CCL20, EREG, IRAK2, MMP14, NAMPT, PLAUR, PVR, RIPK2, SERPINE1, and SPHK1) in an immune subtype of LUAD. The results demonstrated that ADM was mainly highly expressed in the C4 subtype, CCL20 was mainly highly expressed in C1 subtype, EREG was mainly high expressed in C2 subtype, IRAK2 was mainly highly expressed in C4 subtype, MMP14 was mainly highly expressed in C6 subtype, NAMPT was mainly highly expressed in C1 subtype, PLAUR was mainly highly expressed in C1 subtype, PCR was mainly highly expressed in C1 subtype, RIK2 was mainly highly expressed in C2 subtype, SERPINE1 was mainly highly expressed in C6 subtype, and SPHK1 was mainly highly expressed in C2 subtype (Supplementary Figure S5).

Considering that inflammation plays crucial roles in the immune response and development and progression of lung cancer (31), we explored the correlation between the expression of IRRGs (ADM, CCL20, EREG, IRAK2, MMP14, NAMPT, PLAUR, PVR, RIPK2, SERPINE1, and SPHK1) and immune infiltration in LUAD by employing the TIMER database. The analysis data demonstrated that IRRGs were positively or negatively correlated with the immune infiltration of Th2 cells, NK, CD56dim cells, neutrophils, Tgda, DC, cytotoxic cells, and TReg, FH, Th17 cells, and mast cells (Figures 10A–D).




Figure 10 | Analysis of the association between IRRGs expression and immune infiltration level in LUAD. (A–D) The association between IRRGs expression and immune infiltration level in LUAD.





Analysis the Upstream Molecular Regulatory Axis of IRRGs

The above results suggested that ADM, CCL20, EREG, IRAK2, MMP14, PVR, RIPK2, and SPHK1 expressions were correlated with the tumor stage in the LUAD, another gene with no significant correlation. This evidence indicated that ADM, CCL20, EREG, IRAK2, MMP14, PVR, RIPK2, and SPHK1 may participate in the cancer progression of LUAD. To further explore the upstream molecular regulatory axis of IRRGs, we employed diverse public databases to construct a network of mRNA–miRNA–lncRNA interactions. These data indicate that miRNA-330-3p is the most potential miRNA that binds with the 3′-untranslated region (3′UTR) of ADM, CCL20, EREG, IRAK2, MMP14, PVR, RIPK2, and SPHK1 (Figure 11A). Further analysis found that miRNA-330-3p was decreased in the lung cancer, and low expression of miRNA-330-3p correlated with the unfavorable prognosis of lung cancer patients (Figures 11B, C). ROC curve analysis of miRNA-330-3p showed an AUC value of 0.958 in lung cancer patients (Figure 11D). Next, we further explored its upstream lncRNA targets to construct the miRNA–lncRNA axis. We employed the starBase, lncBase, lncExpdb, and LncRNASNP for prediction and obtained two lncRNAs, including the MIR503HG and SNHG17 (Figure 11E). Further study demonstrated that MIR503HG and SNHG17 were upregulated in NSCLC, and high expression was correlated with poor prognosis in LUAD. ROC curve analysis of MIR503HG and SNHG17 showed an AUC value of 0.847 and 0.887 in lung cancer patients, respectively (Figures 11F–K). According to the competing endogenous RNA (ceRNA) theory, the lncRNA should be negative and positively correlated with the expression of miRNA and mRNA, respectively. We further study found that MIR503HG and SNHG17 were negatively associated with the expression of miRNA-330-3p (Figures 11L, M). Moreover, we also showed that MIR503HG and SNHG17 primarily localized in the cytoplasm examined by using the lnclocator and annolncRNA tools (Figure 11N) and did not possess the coding potential (Figure 11O). We also uncovered that the methylation levels on the specific methylation sites (cg19003871 and cg04171471) within the MIR503HG and SNHG17 promoter region negatively correlated with its expression in lung cancer (Figure 11P). Collectively, these data indicate that the lncRNA MIR503HG/SNHG17/miR-330-3p/IRRGs regulatory axis may play crucial role in the progression of LUAD.




Figure 11 | Construction of lncRNA/miRNA/IRRGs interaction network. (A) Predict the potential miRNAs of IRRGs in LUAD examined by using starBase. (B) The expression of miRNA-330-3p in LUAD by using starBase.(C) The prognosis of miRNA-330-3p in LUAD by kmplot database. (D) ROC curve analyses and AUC values for miRNA-330-3p in LUAD. (E) Predict the potential lncRNAs of miRNA-330-3p in LUAD by using starBase. (F) The expression of MIR530HG in LUAD by using starBase. (G) The prognosis of MIR530HG in LUAD by kmplot database. (H) ROC curve analyses and AUC values for MIR530HG in LUAD. (I) The expression of SNHG17 in LUAD by using starBase. (J) The prognosis of SNHG17 in LUAD by using kmplot database. (K) ROC curve analyses and AUC values for SNHG17 in LUAD. (L, M) Pearson’s correlation analysis determined the relationship between miRNA-330-3p and MIR530HG1 and SNHG17 expression in LUAD examined by using starBase. (N) The subcellular location of MIR530HG1 and SNHG17 by the lncLocator and Annolnc2 databases. (O) The coding ability of MIR530HG1 and SNHG17 by the coding potential calculator databases. (P) Correlation between DNA methylation and MIR530HG1, SNHG17 expression in LUAD. ***P < 0.001.





SNHG17 Inhibits Cancer Cell Migration and Invasion

Currently, there are still no studies examining whether SNHG17 is correlated with cancer progression. We decided to investigate the functional roles of SNHG17 in LUAD. We found that SNHG17 was increased in the LUAD cell lines (H1650, HCC827, and H1975) compared with that in the normal lung epithelial cell line (BEAS2B) (Figure 12A), which is consistent with the online database that we discovered. Given that SNHG17 was upregulated in LUAD, we then inhibited the SNHG17 expression using siRNA, and the knockdown efficiency of SNHG17 was verified by real-time RT-PCR assay (Figures 12B, C). Then, we evaluated the effects of SNHG17 on LUAD cell proliferation and migration capacities by growth curve, colony formation, and Transwell assays. We showed that downregulation of SNHG17 significantly decreased the proliferation and migratory capabilities of LUAD cells (Figures 12D–F). Collectively, these results confirmed that SNHG17 was highly expressed in LUAD cells and significantly affected their migration and invasion.




Figure 12 | SNHG17 promotes LUAD cell proliferation, migration, and invasion in vitro. (A) The relative expression level of SNHG17 in lung adenocarcinoma cancerous cell lines, including H1650, HCC827, and H1975 examined by real-time RT-PCR, compared to normal human bronchial epithelial cell line: BEAS-2B. (B,C) The establishment of SNHG17 knockdown cell lines in HCC827 and H1975 verified by real-time RT-PCR (D, E) knockdown of SNHG17 significantly inhibits cell proliferation in HCC827 and H1975 cells, as measured by growth curve and colony formation assay; scale bar, 50 μM. (F) Knockdown of SNHG17 dramatically inhibits HCC827 and H1975 cells migration ability examined by Transwell. **P < 0.01, ***P < 0.001.






Discussion

TME plays an important role in the dynamic regulation of tumor progression, and strategies to therapeutically target the TME have emerged as a promising approach for cancer treatment23. Immunotherapy has been approved in clinical or being evaluated in trials and has a wide application prospect (17). Immune cells include T and B lymphocytes, tumor-associated macrophages, dendritic cells (DCs), natural killer cells, neutrophils, and myeloid-derived suppressor cells (MDSCs) (32). A comprehensive analysis of tumor-infiltrating immune cells will help to clarify the mechanism of tumor immune escape and provide opportunities for the development of new therapeutic strategies. It has been well recognized that cancer-related inflammatory plays crucial roles in the initiation and progression of lung cancer. However, the prognosis significance and regulatory mechanism of inflammatory response-related genes in lung cancer remain unclear.

We first determine the expression pattern and prognostic value of IRRGs in LUAD. We found that the expressions of ADM, ATP2B1, CCL20, EREG, GNAI3, IRAK2, MMP14, NAMPT, NMI, PCDH7, PLAUR, PVR, RELA, RIPK2, SERPINE1, SPHK1, TAPBP, and TPBG were increased, while the expressions of BTG2, CD48, CD69, CXCR6, CYBB, IL7R, IL12B, MEP1A, NMUR1, PDE4B, SLAMF1, SLC1A2, SLC11A2, and STAB1 were downregulated in LUAD. Prognosis analysis suggested that high expressions of ADM, ATP2B1, CCL20, EREG, GNAI3, IRAK2, MMP14, NAMPT, NMI, PCDH7, PLAUR, PVR, RELA, RIPK2, SERPINE1, SPHK1, TAPBP, and TPBG were correlated with poor overall survival and tumor stage in LUAD. These data suggested that the expression of IRRGs was associated with the prognosis of LUAD. Additionally, we found that the CNV and DNA methylation level of IRRGs was significantly positively and negatively correlated with the expression of IRRGs in LUAD.

The functional enrichment analysis of IRRGs showed that these 33 IRRGs were mainly involved in the PI3K-Akt signaling pathway, IL-17 signaling pathway, NF-kappa B signaling pathway, Th17 cell differentiation, C-type lectin receptor signaling pathway, and HIF-1 signaling pathway.

LASSO Cox regression analysis was performed to construct a prognostic gene model based on 10 prognostic IRRGs (CCL20, IRAK2, EREG, ADM, MMP14, NAMPT, RIPK2, SPHK1, PLAUR, and PVR), which could predict the overall survival of LUAD patients with medium to high accuracy. In our study, CCL20, IRAK2, EREG, ADM, MMP14, NAMPT, RIPK2, SPHK1, PLAUR, and PVR could be effective gene signatures for predicting the prognosis of LUAD. It has been documented that CCL20 production from lung cancer inflammatory microenvironment, by activation PI3K signaling pathway, led to the boosting of the cell migration and proliferation of NSCLC cell lines (33). Previous studies demonstrated that a genetic variant of IRAK2 may be a promising prognostic biomarker for NSCLC OS (34). Another study demonstrated that SphK1 elevated the expression of STAT3 and facilitated the progression of non−small-cell lung cancer (35). Overexpression of PLAUR confers resistance to gefitinib via activating the EGFR/P-AKT signaling pathway in NSCLC (36). A recent study has shown that PVR has the potential value for predicting the prognosis of these patients (37).

Emerging evidence has demonstrated that the tumor microenvironment plays crucial roles in tumor proliferation, angiogenesis, invasion, and metastasis, and chemotherapeutic resistance. In this study, we found that IRRGs expression had significant correlation with the immune infiltration of diverse immune cells. We also found that ADM, PVR, MMP14, PLAUR, and RIPK2 were positively correlated with the TMB. On the contrary, IRAK2 was negatively correlated with the MSI. These results demonstrate that IRRGs play crucial roles in immune response in lung cancer.

We also use the diverse public databases to construct a new mRNA–miRNA–lncRNA network that modulates the expression of IRRGs via ceRNA manner, that is, lncRNA MIR503HG and SNHG17/miR-330-3p/IRRGs axis. Previous studies reported that MIR503HG was highly expressed in NSCLC tissues than in adjacent tissues. Depletion of lncRNA MIR503HG significantly inhibits the cell proliferation and facilitates cell apoptosis of NSCLC cells via downregulation of the expression of miR-489-3p and miR-625-5p (38). Similarly, it was confirmed that lncRNA SNHG17 modulates the miR-449a/TGIF2 axis and promotes NSCLC cell proliferation, migration, invasion, and epithelial to mesenchymal transition (39). On the contrary, it has been suggested that microRNA-330-3p inhibits the NSCLC progression by inhibiting the expression of GRIA3 (40). In our study, we showed that high expression of MIR503HG/SNHG17 and low expression of microRNA-330-3p were correlated to poor prognosis of LUAD patients. As a crucial epigenetic mechanism, DNA methylation plays major roles in the regulation gene expression. In our finding, we confirm that hypomethylation for the promoter of MIR503HG/SNHG17 results in its overexpression in lung cancer. This evidence indicated that the DNA hypomethylation/lncRNA MIR503HG/SNHG17/microRNA-330-3p/IRRGs regulatory axis may play a crucial role in the progression of LUAD (Figure 13). Currently, there are still no studies examining whether SNHG17 is correlated with cancer progression. We found that downregulation of SNHG17 inhibited tumor cell migration, and cell invasion.




Figure 13 | A working model for lncRNA MIR530HG1/SNHG17/miR-330-3p/IRRGs axis in LUAD.





Conclusion

Together, these findings suggest that DNA hypomethylation/lncRNA MIR503HG/SNHG17/microRNA-330-3p/inflammatory response-related gene (IRRG) signature is a valuable biomarker for prognostic and significantly correlated with immune infiltration in lung cancer.
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Among the several next-generation tyrosine kinase inhibitors (TKIs) tested against uncommon EFGR alterations, poziotinib has been demonstrated to be a powerful agent for metastatic non-small-cell lung cancer (mNSCLC) with aberrations in HER2 exon 20, and FDA approval is being sought in the previously-treated population. Poziotinib has also shown activity in mNSCLC with aberrations in EGFR exon 20. Herein, we report the first published case of a patient affected by mNSCLC harbouring an EGFR exon 20 insertion (EGFRex20ins) mutation who achieved a complete response (CR) under treatment with poziotinib as part of the ZENITH20 trial. In January 2021, a former smoker 62-year-old female patient was diagnosed with relapse, after two surgeries and post-operative chemotherapy of mNSCLC, at liver and retroperitoneal nodes. Given the identification by Next Generation Sequencing (NGS) of EGFRex20ins mutation, she was enrolled in ZENITH20-cohort 5 trial, a phase 2 multicentre study aimed to assess the efficacy and safety of poziotinib in patients with EGFR or HER2 exon 20 insertion mutations. Poziotinib as first-line systemic therapy for metastatic disease was initiated at the end of January 2021 and administrated at the initial dosage of 8 mg orally twice daily (BID). The most common side effects from the beginning of the treatment included alopecia, macular skin rash, diarrhoea, xerostomia, and conjunctivitis. Due to these adverse events, poziotinib was discontinued during the first 3 months and then reduced to 6 mg orally BID in April 2021. After the dose de-escalation, the adverse events ameliorated, and the patient better tolerated the treatment without further interruption. Since the first reevaluation (after 4 weeks of therapy), the treatment with poziotinib resulted to be remarkably effective, with a partial response (PR) subsequently confirmed in May and July 2021. Then, in October 2021, a CT scan confirmed a CR, maintained with good tolerance at the last reevaluation in February 2022. Treatment is still ongoing at the same dosage. In this case, poziotinib has represented a successful and well-tolerated first-line treatment alternative to chemotherapy in this patient with EGFR exon 20 insertion mutated mNSCLC.
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Introduction

EGFR gene activating mutations are detected in approximately 10%-15% of Caucasian patients with metastatic non-small-cell lung cancer (mNSCLC). The most common mutations encompass exon 19 deletions and L858R exon 21, which respond convincingly to first, second, and third generation EGFR tyrosine kinase inhibitors (TKIs) (1).

Amongst the uncommon EGFR mutations, exon 20 insertions (EGFRex20ins) and duplications account for approximately 4%-10% of EGFR driver aberrations and are generally resistant to targeted therapy with TKIs due to inaccessibility of the binding site for this mutation (2). For these patients, the novel targeted therapies amivantimab-vmjw or mobocertinib have been approved only for use as subsequent therapy, and conventional platinum-based chemotherapy with or without bevacizumab remains the standard of care in first line therapy (1, 3).

Several ongoing trials are investigating the efficacy of next-generation TKIs against uncommon EGFR alterations and in particular EGFR ex20ins in first line treatment, including mobocertinib (4, 5), amivantamab with or without lazertinib (6, 7), and poziotinib (8). In particular, poziotinib is a powerful antagonist of the most common EGFR and HER2 exon 20 insertion mutations (9, 10). In the phase 2 ZENITH20 trial (ClinicalTrials.gov Identifier: NCT03318939), manageable safety and clinically meaningful efficacy have been reported for patients with treatment-naïve NSCLC harbouring EGFR (8) and HER2 exon 20 insertion mutations (9). To our knowledge, herein, we present the first published case of a patient affected by mNSCLC harbouring an EGFRex20ins mutation who achieved a complete response (CR) under treatment with poziotinib. This patient was enrolled in Cohort 5 of the ZENITH20 trial.



Case Description

In 2017, a 58-year-old female patient who was a former smoker (25 pack/years) underwent right lobectomy and lymphadenectomy for a stage IB diagnosis of NSCLC (stage pT2aN0, according to the 7th lung cancer TNM classification and staging system).

According to stage, adjuvant chemotherapy was indicated and proposed, but patient refused. Adequate and regular follow-up was initiated after surgery.

In January 2020, a single site cancer relapse at the right adrenal gland was detected by 18-FdG-PET and then removed by robotic surgery: the pulmonary origin was histologically confirmed, and the EGFR exon 20 p.D770_N771insSVD mutation was identified by Next Generation Sequencing (NGS) analysis. Due to the oligometastatic disease, four cycles of post-surgical chemotherapy with cisplatin and pemetrexed were administrated.

One year later, in January 2021, several new metastases in the liver and in retroperitoneal nodes were observed by CT scan. Due to the presence of EGFRex20ins mutation and the compliance with the other eligibility criteria, patient was enrolled in cohort 5 of the ZENITH20 trial. ZENITH20 is a multicentre, multicohort, open-label phase 2 study, aiming to evaluate the efficacy and safety of poziotinib in patients with mNSCLC. In particular, the Cohort 5 (ZENITH20-5) includes patients with mNSCLC harbouring EGFR or HER2 exon 20 insertion mutations with or without prior treatment. Therapy with poziotinib was initiated at the end of January 2021 and administrated at 8 mg orally twice daily (BID) as a starting dose.

Since the beginning of the treatment in February 2021, alopecia, macular skin rash, diarrhoea, xerostomia, and conjunctivitis were reported as the most common drug-related (DR) adverse events.

Treatment course occurred as follows: a first dose interruption of approximately 10 days occurred 16 days after starting poziotinib and was due to unknown origin fever G3, likely DR. When she recovered (G0) after antibiotic-based therapy, patient re-started poziotinib at the original 8 mg BID dose. In March 2021, due to skin rash G3 and worsening conjunctivitis G2, poziotinib was stopped again for approximately 7 days. After topical treatments based on hydrocortisone 2.5% and doxicicline 100 mg once a day, the skin rash toxicity ameliorated from G3 to G1 and the conjunctivitis from G2 to G1. Then, poziotinib was re-initiated at the same dose (8 mg BID).

After 3 weeks, unfortunately patient presented with a recurrence of the skin rash G3. Therefore, as required by protocol, in April 2021 (98 days after first initiating poziotinib treatment) a dose reduction to 6 mg twice daily (12 mg in total/day) was performed. Consequently, the adverse events improved in severity and the patient better tolerated the treatment without further interruption. In Figure 1, the timeline of poziotinib administration with the resulting side effects is reported.




Figure 1 | Here is reported the timeline of poziotinib administration and the related toxicities.



Since the first reevaluation (after 4 weeks), therapy with poziotinib resulted in being clinically effective, with the patient achieving partial response (PR) at the first radiological assessment.

Later, in May and July 2021, a reduction in the overall tumour size of 79% and 84%, respectively, was recorded. Then, in October 2021, CT scan confirmed a CR (reduction on tumour size of 100%) on both the liver and the retroperitoneal nodes (Figure 2).




Figure 2 | CT scans performed on January 2021 [(A), baseline poziotinib] and subsequently on March 2021 (B) and October 2021 (C) demonstrated a PR (B) and a disappearance of the lesion (C).



This radiographic evaluation was then confirmed by an independent review, except for a target lesion (an intra-abdominal lymph node), measuring less than 6 mm and considered as non-pathological by a radiological review opinion (Figures 3, 4).




Figure 3 | This figure demonstrated the exact lesions selected as target lesion for central and local radiological review.






Figure 4 | The graphics showed the local (A) and the central review (B) of the RECIS 1.1 criteria.



To further confirm the CR, a liquid biopsy with NGS Hotspot Panel was performed in January 2022, with negative result. This result supported the fact that no circulating minimal residual disease was present.

At the time of this report (April 2022) poziotinib therapy, at a dosage of 6 mg BID after 15 months is still ongoing. The CR has been maintained with good tolerance and toxicity not exceeding G1 (last CT scan was performed on April 2022).



Discussion

Despite the treatment progress for the most common EGFR alterations in mNSCLC, EGFRex20ins mutations still represent an unmet clinical need, especially in the first line setting. The few novel targeted agents (amivantimab-vmjw, mobocertinib) have been approved only for subsequent therapy and a common well-established therapeutical algorithm is lacking.

Mobocertinib, an oral and irreversible TKI, selectively designed against EGFRex20ins mutations, was evaluated in the phase 1/2 open-label nonrandomized EXCLAIM trial, with interesting results: in the platinum-pretreated patients cohort, with a starting dose of 160 mg once a day, an overall response rate (ORR) of 28% (95% CI, 20%-37%) was reported by the independent review committee (IRC), compared to 35% (95% CI, 26%-45%) observed by investigators. The confirmed disease control rate by IRC assessment was 78% (95% CI, 69%-85%). At data cut-off, median IRC-assessed PFS was of 7.3 months (95% CI, 5.5-9.2), in line with how measured by investigators (7.3 months - 95% CI, 5.6-8.8). Most common drug-related (DR) side effects included diarrhoea, skin rash, and paronychia; in detail, 21% of patients suffered from diarrhoea G3 or worse (4).

However, the role of mobocertinib in the first line setting is still to be confirmed, and is currently under investigation by the phase 3, randomized EXCLAIM-2 trial (ClinicalTrials.gov Identifier: NCT04129502), aiming to compare its efficacy to platinum-based chemotherapy in treatment naïve patients with mNSCLC harbouring EGFRex20ins mutations (5).

While waiting for the results of EXCLAIM-2, in September 2021 the Food and Drug Administration (FDA) granted accelerated approval to mobocertinib as a subsequent treatment option in patients affected by mNSCLC harbouring EGFRex20ins mutations, after having progressed on or after platinum-based chemotherapy (11). This choice has not yet been followed by the European Medicine Agency (EMA), though mobocertinib was recently approved in the UK in March 2022.

On the other hand, FDA and EMA approved in January 2022 amivantamab, an EGFR-MET bispecific antibody with immune cell-directing activity, as a subsequent therapy in EGFRex20ins mutated mNSCLC after platinum-based chemotherapy failure (12). Safety and efficacy of amivantamab is under evaluation in different cohorts in the phase 1, open-label, dose-escalation, and dose-expansion CHRYSALIS trial. Unlike mobocertinib, amivantamab is administrated intravenously, once weekly for the first 4 weeks and then once every 2 weeks starting at week 5. In the post-platinum EGFRex20ins mutated population, an ORR of 40% (95% CI, 29% - 51%) was reported, with a median duration of response of 11.1 months (95% CI, 6.9 - not reached). The median PFS was 8.3 months (95% CI, 6.5 - 10.9). The toxicity profile was considered quite manageable: skin rash, infusion-related reactions, and paronychia were reported as the most common DR adverse events; nonetheless, hypokaliemia, skin rash, pulmonary embolism, diarrhoea, and neutropenia were described as occasional G3 side effects or worse (6).

In the first line setting, amivantamab is currently under investigation in association with lazertinib, a potent, brain-penetrant, 3rd-generation EGFR TKI, capable of targeting both EGFR and resistance T790M mutations: indeed, in the ongoing phase 3, multicentre, randomized MARIPOSA trial (ClinicalTrials.gov Identifier: NCT04487080), their combination efficacy will be compared to Osimertinib as the standard of care treatment for treatment naïve patients with NSCLC caused by mutations in the EGFR (7).

In this lively and still evolving treatment landscape, the oral pan-ErbB inhibitor poziotinib is being tested in both treatment naïve and previously treated patients diagnosed with EGFR or HER2 exon 20 insertion mutations.

Recently, the first results from Cohort 2 in patients with HER2 exon 20 mutations have been published: an objective response rate of 27.8% (95% CI, 18.9% - 38.2%) was described, while the disease control rate resulted to be 70.0% (95% CI, 59.4% - 79.2%). Median progression-free survival was 5.5 months (95% CI, 3.9 - 5.8); interestingly, clinical benefit was seen regardless of lines and types of prior therapy, presence of central nervous system metastasis, and types of HER2 mutations (9)

On the contrary, no data about the EGFRex20ins mutated cohorts of ZENITH20 has been published yet in a peer-reviewed journal. In the results of the Italian Expanded Access Program (EAP) reported by Prelaj et al. in 2021, the ORR in patients affected by EGFRex20ins mutations was 23%, with a median PFS of 5.6 months (95% CI: 3.6 - 6.7) (10); these results seem to be quite satisfactory considering the fact that these patients were heavily pre-treated and were quite similar to real life patients. Despite at first glance the efficacy of poziotinib seems inferior to amivantamab and mobocertinib, the worst general conditions of patients in the EAP and the high rate of interruption or discontinuation of the treatment, due to the burden of DR toxicities, might have affected the results. Moreover, these first EAP patients were all treated with the QD schedule (16 mg/day) meaning that drug-discontinuation was likely more frequent with the previous regimen.

In fact, skin rash, diarrhoea, and stomatitis were observed as the most common adverse events in both studies, leading to 76.7% of patients in cohort 2 of the ZENITH20 trial requiring a dose reduction (9). We have reported the same kind of concern in our clinical case, describing better compliance to the treatment, without any further interruption, once the dosage was diminished to 6 mg twice a day while still maintaining the tumour suppression in the responders.

Soon, it will be interesting to evaluate the outcomes of ZENITH20 trial Cohort 5 and whether, with an appropriate dosage adjustment and greater adherence to therapy, the results of ORR and PFS will be comparable with those of amivantamab and mobocertinib. As additional data becomes available for analysis, there will be an opportunity to better understand poziotinib efficacy in patients with EGFRex20ins mutations.



Conclusion

EGFRex20ins mutations continue to represent an urgent unmet clinical need, especially in the front line setting. In fact, despite new molecules recently approved as subsequent targeted therapies, a consolidated and reliable therapeutic algorithm is still to be confirmed and chemotherapy remains the first line regimen.

This remaining lack of efficacious targeted treatment options and poor prognosis of newly diagnosed patients affected by mNSCLC harbouring EGFRex20ins justifies the endeavour to develop novel tailored drugs and maybe start to think on sequence for these patients looking at their short PFS compared to classical EGFR mutations.

In our case, we reported that in one patient with treatment naïve mNSCLC harbouring an EGFRex20ins mutation, poziotinib has represented a successful and well tolerated alternative compared to chemotherapy achieving a sustained complete response.
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Background

Striatin-interacting protein 2 (STRIP2), also called Fam40b, has been reported to regulate tumor cell growth. But the role of STRIP2 in lung adenocarcinoma (LUAD) has not been discovered clearly. Thus, the aim of our study is to explore the function and underlying mechanism of STRIP2 in LUAD.



Methods

Expression of STRIP2 was determined using the Cancer Genome Atlas (TCGA), GTEx, Ualcan, and the Human Protein Altas databases. The Correlation of STRIP2 and survival was detected by PrognoScan and Kaplan–Meier plotter databases. Besides, the correlation between STRIP2 expression and tumor immune infiltration as well as immune checkpoints were analyzed by the ssGSEA method. The biological function of STRIP2 and its co-expression genes was determined by gene ontology (GO) and Genes and Genomes (KEGG), respectively. Finally, the expression level and biological function of STRIP2 in LUAD were determined by qPCR, CCK8, transwell, and wound healing assays.



Results

This manuscript revealed a significantly increased expression of mRNA and protein of STRIP2 in lung adenocarcinoma compared with the adjacent normal tissues. GEO and Kaplan–Meier plotter databases showed higher STRIP2 expression levels were correlated with poor prognosis survival of LUAD. Moreover, Cox regression analysis suggested that a higher STRIP2 level served as an independent risk factor in predicting deteriorative overall survival (OS) for LUAD patients. SsGSEA results showed STRIP2 expression level was positively correlated with infiltrating levels of Th2 cells in LUAD. Lastly, GO analysis indicated the biological processes were enriched in nuclear division and positive regulation of the cell cycle. KEGG signaling pathway analysis showed STRIP2 was correlated with the MAPK signaling pathway and the TNF signaling pathway. The GSEA database showed that STRIP2 was positively associated with the epithelial–mesenchymal transition, cell cycle, and TNF signaling pathway. The QRT-PCR assay showed that STRIP2 was upregulated in LUAD cell lines. Cell proliferation and migration were inhibited in LUAD by knockdown of STRIP2. Moreover, we confirmed that the TMPO-AS1/let-7c-5p/STRIP2 network regulates STRIP2 overexpression in LUAD and is associated with poor prognosis.



Conclusion

Our findings indicated that STRIP2 acted as a crucial oncogene in LUAD and was correlated with unfavorable survival and tumor infiltration inflation.
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Introduction

Lung cancer is a worldwide epidemic malignancy among both women and men, and terribly causes globally cancer-related deaths (1). In China, the incidence and deaths of lung cancer have increased rapidly in recent years, revealing geographic and gender differences (2). Lung adenocarcinoma (LUAD) accounts for approximately more than 40% of the lung cancer incidence and poses a systemic threat due to more frequently occurring distant metastasis in LUAD (3). LUAD, with an overall survival of less than 5 years, is the most aggressive and rapid metastasis (4). For the past few years, immunotherapy has been highlighted as very effective in lung cancer therapy; however, it also has previously failed in lung cancer (5, 6). Therefore, the terrible therapeutic results of immunotherapy are the new obstacles for clinical application of immune checkpoint inhibitors in LUAD.

STRIP2 is a member of the striatin-interacting phosphatase and kinase (STRIPAK) complex that participates in regulating cell growth and migration (7). Increased STRIP2 has been observed in many cancers and is correlated with poor prognosis and unfavorable clinicopathological characteristics in gastric cancer and breast cancer cells (8, 9). High expression of STRIP2 implicates neoplastic growth, metastasis, chemoresistance, and shorter survival time in various human cancers (9). Increasing evidence has indicated that STRIP2 exerts its role as an oncogene by regulating various signaling pathways to regulate tumorigenesis and progression and counteract the effects of many chemotherapies. For instance, STRIP2 is involved in the P38-AKT-MMP-2 signaling pathway to regulate mouse aortic smooth muscle cell (MOVAS) proliferation and migration (10). There is little but strong evidence to demonstrate the connection between STRIP2 and immune cell infiltration in cancer. Despite STRIP2 serving as an oncogene in LUAD, no evidence demonstrates the association between STRIP2 and immune cell infiltration in LUAD.

Therefore, in this study, we detected the connection between STRIP2 and prognosis and immune infiltration in tumor samples of LUAD patients. Furthermore, GSEA and KEGG enrichment analyses were conducted to examine the potential signaling pathway of STRIP2 in LUAD progression. Finally, we performed a loss of function assay to determine the biological function of STRIP2 in LUAD. Our data highlight the crucial role of STRIP2 in tumor initiation, progression, clinical outcome, and immune infiltration in LUAD.



Materials and Methods


TCGA Datasets

We downloaded the RNA expression data and corresponding clinical information from the TCGA official website (https://portal.gdc.cancer.gov/). We used this data analysis to examine the correlation between STRIP2 expression and relevant clinical information, including pathological stage, andTNM stage.



UALCAN Database

UALCAN (http://ualcan.path.uab.edu/) is an online resource for the analysis of TCGA gene expression data (11). In this finding, we used UALCAN to examine the protein level of STRIP2 in LUAD.



The Human Protein Atlas (HPA)

HPA (https://proteinatlas.org/ contains information on normal tissue and tumor tissue protein levels of human gene expression profiles (12). In this study, we explored the protein expression of STRIP2 in lung cancer tissue.



The Clinical Proteomic Tumor Analysis Consortium (CPTAC) Common Data Analysis

The Clinical Proteomic Tumor Analysis Consortium (CPTAC) has produced large proteomics data sets from the mass spectrometric interrogation of tumor samples previously analyzed by The Cancer Genome Atlas (TCGA) program (13). In this study, we determined the expression of STRIP2 in lung cancer using the Clinical Proteomic Tumor Analysis Consortium (CPTAC) data.



AnnoLnc2 Database

AnnoLnc2 (http://annolnc.gao-lab.org/) is a one-stop portal to systematically annotate novel lncRNAs for humans and mice. lncRNAs with a comprehensive functional spectrum covering sequences, structure, expression, regulation, genetic association, and evolution (14). In this study, we used the AnnoLnc2 database to examine the subcellular localization and molecular coding potential of lncRNAs.



Gene Set Enrichment Analysis

In this study, we used the linkedomics database (http://www.linkedomics.org/login.php) to obtain the co-expression genes of STRIP2 in LUAD. We used the GSEA software and clusterProfiler package to perform KEGG enrichment analysis of the signaling pathway of STRIP2 in LUAD (15–17).



Cell Culture

The BEAS-2B cell line was purchased from the Cell Bank of theKunming Institute of Zoology and was cultured in BEGM media (Lonza, CC-3170). Lung cancer cell lines, namely, h1650, A549, SPC-A1, and H1975, were purchased from Cobioer, China with STR documents, and were cultured in RPMI-1640 medium (Corning) supplemented with 10% fetal bovine serum (FBS) and 1% penicillin/streptomycin.



Cell Proliferation and Cell Migration Assay

The cell proliferation assay was performed as previously described (18). Indicated tumor cells were plated onto 12-well plates. The cell numbers were subsequently counted each day using an automatic cell analyzer countstar (Shanghai Ruiyu Biotech Co.). For the trans-well migration assay, 2 × 104 cells/well in 100 μl serum-free medium were plated in a 24-well plate chamber insert, and the lower chamber was filled with 10% FBS. After incubation for 24 h, cells were fixed with 4% PFA, washed and then stained with 0.5% crystal violet for further pictures to be captured.



Real-Time RT-PCR Assay

Using a real-time RT-PCR assay, cells were lysed by RNAiso Plus (Takara Bio, Beijing, China, Cat. 108-95-2). The primer used in this study is as follows: β-actin-F: AAGTGTGACGTGGACATCCGC, β-actin-R: CCGGACTCGTCATACTCCTGCT, STRIP2-F: AGGTGGTCAGTAGGGAACGG, and STRIP2-R: TGTAGCACATCGACCTCTGAA.



Statistical Analyses

The statistical analyses for Figures 1–4 were performed using R (V 3.6.3) and ROC curves to detect STRIP2 cutoff values using pROC packages. GraphPad Prism 7.0 was used for statistical analyses of the data regarding the biological function of STRIP2 (Figure 9). The significance of the data between two experimental groups was determined by Student’s t-test, and multiple group comparisons were analyzed by one-way ANOVA. P <0.05 (*), P <0.01 (**), and P <0.001 (***) were significant.




Figure 1 | Expression pattern of STRIP2 from the perspective of pan-cancer. (A) STRIP2 was highly expressed in 24 of the 33 cancers compared with normal tissue. (B) The expression of STRIP2 in paired cancer tissues and adjacent normal tissues from the TCGA datasets. Cancer full name in Table 2. NS: P >0.05,*P <0.05, **P <0.01, ***P <0.001.






Figure 2 | STRIP2 RNA and protein expression in LUAD. (A, B) STRIP2 mRNA expression levels in LUAD and LUSC patients and matched adjacent normal samples. (C) Validate the expression of STRIP2 in lung cancer. (D) STRIP2 protein expression level based on CPTAC. (E) STRIP2 protein levels based on Human Protein Atlas. ***P <0.001.






Figure 3 | STRIP2 regulates LUAD cell proliferation and migration. (A) qPCR assay examines the expression level of STRIP2 in lung adenocarcinoma cancerous cell lines, namely, H1975, A549, and SPC-A1, compared to normal human bronchial epithelial cell line: BEAS-2B. (B, C) Establishment of STRIP2 knockdown cell lines in A549 and SPC-A1 verified by Real-time RT-PCR (D-I) Knockdown of STRIP2 significantly inhibits cell proliferation and migration in H1975 cells, as measured by CCK8, transwell, and Wound healing assays. NC, negative control; siRNA, STRIP2 siRNA. ***p <0.001.






Figure 4 | Clinical significance of STRIP2 in lung adenocarcinoma. Correlation between STRIP2 expression and clinical parameters, including, (A) pathological stage, (B–D) TNM stage, (E) gender, (F–H) OS, DSS, and PFS events. NS: P >0.05, *P <0.05, **P <0.01, ***P <0.001.






Results


Expression Level of STRIP2 in Human Cancers

STRIP2 expression was explored across tumor types in the TCGA database and GETx, followed by paired-difference analysis. Results show that STRIP2 was increased in 19 of the 33 cancers compared with normal tissue (Figure 1A). We also found that STRIP2 expression in paired cancer tissues and adjacent normal tissues in pan-cancer employed TCGA datasets. We found that STRIP2 levels were significantly higher in 12 of the 18 cancers compared with normal tissue (Figure 1B).



STRIP2 Was Upregulated in Lung Adenocarcinoma

To further determine STRIP2 mRNA and protein expression in LUAD, we analyzed STRIP2 expression data in TCGA and HPA. We found that STRIP2 was more highly expressed in LUAD and lung squamous cell carcinoma (LUSC) tumor tissues than in normal lung tissue (Figures 2A, B). Consistent with the results from the TCGA data, STRIP2 was significantly increased in lung tissue based on the Gene Expression Omnibus (GEO) dataset (Figure 2C). Moreover, we found that STRIP2 protein expression in LUAD was significantly higher than that in normal tissue (Figure 2D). As shown in Figure 2D, immunohistochemistry (IHC) results also confirmed that the upregulation of STRIP2 protein expression in lung cancer tissue compared to non-cancerous tissue (Figure 2E).



Depletion of STRIP2 Significantly Suppressed Proliferation and Migration of LUAD Cells

To examine the expression of STRIP2, we detected STRIP2 expression levels in LUAD cell lines using a qRT-PCR assay. Results confirmed that STRIP2 was significantly increased in lung cancer cell lines, especially in A549 and H1975 cells (Figure 3A). The qRT-PCR assay showed that the expression of STRIP2 mRNA was significantly decreased in H1975 cells after treatment with targeted siRNA (Figures 3B, C). The cholecystokinin octapeptide (CCK8), transwell, and wound healing assays demonstrated that STRIP2 depletion significantly inhibits the cell proliferation and cell migration ability of LUAD (Figures 3D–I). Collectively, these results demonstrate that STRIP2 was highly expressed in LUAD and significantly affected their proliferation and cell cycle.



Correlation Between STRIP2 Expression and Clinical Parameters

To examine the relationship between STRIP2 expression and clinical–pathological features in a LUAD sample. We found that STRIP2 expression was significantly associated with pathological stage, TN stage, smoking, gender, OS event, DSS event, and PFS event in patients with LUAD (Figures 4A–H). Moreover, logistics analysis results also show that upregulation of STRIP2 correlated with T stage (T2 & T3 & T4 vs. T1), N stage (N2 vs. N1), pathologic stage (Stage III & Stage IV vs. Stage I & Stage II), Gender (Male vs. Female), and smoker (Yes vs. No) (Table 1).


Table 1 | Logistic regression analyzed the correlation between STRIP2 expression and clinical–pathological characteristics in LUAD.




Table 2 | Cancer type and full name in TCGA database.





STRIP2 Was Upregulated in LUAD and Predicts an Unfavorable Prognosis for LUAD Patients

Next, we analyzed the expression and clinical significance of STRIP2 in the TCGA database. We found that colorectal cancer (CRC) patients with higher STRIP2 levels had shorter overall survival, disease-specific survival, and progression survival (Figures 5A–C). We further examined the diagnostic value of STRIP2 in distinguishing LUAD samples from normal lung tissue. Receiver operating characteristic (ROC) curve analysis confirmed that the AUC value of STRIP2 was 0.828, with a 95% CI = 0.793–0.864 (Figure 5D). Then, we determined the prognostic values of STRIP2 in 4 independent GEO cohorts of lung cancer samples. Consistent with the results from the TCGA data, Kaplan–Meier analysis showed that patients with higher STRIP2 expression were associated with reduced overall survival time (Figures 6A–D). Collectively, these results suggest that STRIP2 was upregulated in lung cancer and that high expression levels of STRIP2 were associated with poor outcomes in lung cancer patients.




Figure 5 | ROC and Kaplan–Meier curves of STRIP2. (A–C) Kaplan–Meier survival curves showed that lung adenocarcinoma patients with high STRIP2 expression exhibited poor overall survival, disease-specific survival, and progression-free survival of STRIP2 in LUAD determine by the TCGA-LUAD dataset. (D) ROC curves were used to determine the diagnostic value of STRIP2 in lung adenocarcinoma.






Figure 6 | Validate the prognostic value of STRIP2 in lung cancer. (A–D) Kaplan–Meier survival curves showed that lung adenocarcinoma patients with high STRIP2 expression exhibited poor overall survival determine by the GEO dataset.





Validation of the Prognostic Value of STRIP2 Based on Various Subgroups

We further determined the prognostic values of STRIP2 in various clinical subgroups, namely, the pathological stage, tumor-node-metastasis (TNM) stage, gender, age, race, and smokers. Results suggest that upregulated STRIP2 levels are associated with poor clinical outcomes in patients with lung cancer (Figures 7A–C).




Figure 7 | The overall survival of STRIP2 based on diverse subgroup. (A–C) Correlations between STRIP2 expression level and the overall survival in different clinical subgroups of LUAD in the TCGA database, including, stage I and II, T1 and T2, N0 and N1, M0, CR, Smoker, Gender, Age, and white.





Univariate and Multivariate Cox Regression Analyses of Different Parameters on Overall Survival

We performed Univariate Cox regression analysis in the TCGA-LAUD cohort to determine whether STRIP2 expression level might be a valuable prognostic biomarker. Univariate Cox regression analysis results show that high expression of STRIP2, pathologic stage, and TNM stage were associated with overall survival in LUAD patients (Figure 8A). Multivariate Cox regression analysis was performed to ascertain whether STRIP2 expression level could be an independent prognostic factor for patients with LUAD. We confirmed that increased STRIP2 expression was a significant independent prognostic factor in the TCGA-LAUD cohort that directly correlated with adverse clinical outcomes, along with pathological stage and N stage (Figure 8B).




Figure 8 | Forest plot of univariate and multivariate Cox regression analysis in LUAD. (A, B) The forest plot of univariate and multivariate Cox regression analysis in LUAD.





Construction and Validation of STRIP2 Based Nomogram

The results of the multivariate analysis confirmed that STRIP2 is an independent prognostic factor in LUAD. We then constructed a prediction model for overall survival, disease-free survival, and progression-free survival by integrating STRIP2 expression and pathological stage. We established a nomogram to integrate STRIP2 as a LUAD biomarker. Higher total points on the nomogram for overall survival, progression-free interval (PFI), and disease-specific survival, respectively, indicated a worse prognosis (Figures 9A–F).




Figure 9 | Construction and performance validation of the STRIP2 based nomogram for lung adenocarcinoma patients. (A–F) The calibration curve and Hosmer–Lemeshow test of nomograms in the TCGA-lung adenocarcinoma cohort for overall survival, disease-specific survival and progression-free survival.





KEGG and GSEA Enrichment Analysis

As shown in Figures 10A, B, the Linkedomic database is used to obtain the top 100 co-expressed genes by Pearson’s correlation analysis. In terms of biological processes, STRIP2 is mainly involved in organelle fission, nuclear division, positive regulation of the cell cycle, DNA replication, positive regulation of the cell cycle process, regulation of nuclear division, and positive regulation of the mitotic cell cycle (Figure 10C). KEGG enrichment analysis suggested that these genes participated in the MAPK signaling pathway, cell cycle, TNF signaling pathway, GnRH signaling pathway, and DNA replication (Figure 10D).




Figure 10 | Functional enrichment analysis. (A, B) The correlation analysis of STRIP2 expression and its top 100 co-expressed gene network. (C, D) GO and KEGG enrichment analysis of co-expressed genes.



To explore the possible mechanism of STRIP2 in LUAD, GSEA analysis was performed on the differential genes. Gene set enrichment analysis (GSEA) also showed that pathways, namely, the MTOR signaling pathway, P53 signaling pathway, PI3K AKT MTOR signaling pathway, TNFA signaling pathway, DNA replication, apoptosis, IL2 STAT5 signaling pathway, MYC targets, hypoxia, GLYCOSIS, G2M Checkpoint, and EMT were significantly enriched in the high STRIP2 expression group (Figures 11A–C).




Figure 11 | Identification of STRIP2 related signaling pathways in lung adenocarcinoma. (A–C) Identification of STRIP2 related signaling pathways by GSEA software.





Correlation Between STRIP2 Expression and Immune Infiltration

Given that the gene set enrichment analysis (GSEA) enrichment analysis above showed that STRIP2 may be correlated with the immune response regulation, we therefore examined the association between STRIP2 expression levels and immune cell infiltration, we used the ssGSEA algorithm to quantify the level of immune cell infiltration in the high- and low-expression groups of STRIP2. We determined that increased expression of STRIP2 was positively associated with the abundance of Th2 cells, NK CD56dim cells, Tgd, Tem, and neutrophils, and negatively associated with the abundance of macrophages, B cells, NK cells, DC, eosinophils, iDC, TFH, and mast cells in LUAD (Figures 12A–D).




Figure 12 | Correlation analysis of STRIP2 expression and infiltration levels of immune cells in LUAD. (A–D) The correlation between STRIP2 expression and the infiltration levels of 24 immune cells in LUAD by ssGSEA. (E) Correlation between STRIP2 and immune check points genes in LUAD. NS: P >0.05,*P <0.05, **P <0.01, ***P <0.001.



Given that immune checkpoints play a crucial role in tumor immunosuppression, we analyzed the correlation between STRIP2 expression and that of the immune checkpoint-related genes in LUAD using Pearson’s correlation analysis. The results confirmed that STRIP2 expression was significantly positively correlated with the expression of CD274, CTLA4, LAG3, and PDCD1LG2 in LUAD (Figure 12E). These results confirm that STRIP2 plays a crucial role in immune infiltration in LUAD.



Construction of the lncRNA–miRNA–mRNA Triple Regulatory Networks

To examine the lncRNA–miRNA–mRNA networks that modulate the expression of STRIP2 in LUAD, the Starbase database employed to obtain the potential miRNAs that bind with STRIP2, we obtained the 45 STRIP2-related miRNAs to construct a miRNA–mRNA co-expression network (Supplementary Table 1). In the miRNA–mRNA correlation analysis, we found a correlation between let-7c-5p expression and STRIP2 expression in LUAD (cor<−0.438, P-value <0.001; Figure 13A), and we found that let-7c-5p expression was significantly reduced in LUAD than in normal tissues and correlated with poor clinical outcomes (Figures 13B, C). ROC curve analysis of let-7c-5p showed an AUC value of 0.928 in lung cancer patients (Figure 13D). We also used the Starbase database to identify 62 potential target lncRNAs correlated with let-7c-5p in LUAD (Supplementary Table 2 and Figure 13E). Among them, TMPO-AS1, IER3-AS1, and AL360270.2 met the filtering conditions for correlation analysis with let-7c-5p (cor<−0.1, P-value <0.01), and only TMPO-AS1 was positively correlated with STRIP2 (cor >0.3, P-value <0.001) (Figures 13F, G). We also found that only TMPO-AS1 was significantly up-regulated in LUAD than in normal tissues, and its higher expression was associated with adverse clinical outcomes in patients with LUAD (Figures 13H–J). ROC curve analysis of TMPO-AS1 showed an AUC value of 0.898 in lung cancer patients (Figure 13K). Cellular localization analysis confirmed that TMPO-AS1 had the highest percentage in the cytoplasm and could not be translated into coding-proteins (Figures 13L, M). Since STRIP2 is upregulated in LUAD and associated with a poor prognosis, the TMPO-AS1/let-7c-5p/STRIP2 regulatory network could be used as a biomarker for poor prognosis and a new target for treating LUAD.




Figure 13 | Analysis of the potential miRNAs and lncRNAs of STRIP2. (A) Correlations between STRIP2 expression and has-let-7c-5p in LUAD. (B–D) The expression level and prognostic value of has-let-7c-5p in LUAD. (E) ROC curve analyses and AUC values for has-let-7c-5p in lung cancer patients. (F) Correlations between has-let-7c-5p expression and lncRNAs (TMPO-AS1, IER3-AS1, and AL360270.2) in LUAD. (G) Correlations between STRIP2 expression and lncRNA-TMPO-AS1 in LUAD. (H–K) The expression levels, prognostic and diagnostic values of lncRNA-TMPO-AS1. (L, M) Subcellular localization and coding potential of lncRNA-TMPO-AS1 in LUAD, ***P <0.001.






Discussion

In this study, we found that STRIP2 expression was significantly higher in the LUAD than in the normal tissue at both transcriptional and protein levels. It was also upregulated in LUAD cell lines. The Kaplan–Meier curves and univariate analysis confirmed that STRIP2 expression is correlated with overall survival (OS), disease-specific survival (DSS), and progression-free survival (PFS) in the LUAD patients of the TCGA data. The GEO dataset also confirmed that patients with a high level of STRIP2 correlated with adverse clinical outcomes. Moreover, Cox regression analysis suggested that a higher STRIP2 level served as an independent risk factor in predicting deteriorative OS for LUAD patients. ROC curve analysis indicated that STRIP2 is a promising diagnostic biomarker for differentiating LUAD from normal tissues. We also established a nomogram to integrate STRIP2 as a LUAD biomarker; higher total points on the nomogram for overall survival, progression-free interval (PFS), and disease-specific survival, respectively, indicated a worse prognosis.

Previous studies have reported that STRIP2 is necessary for the onset of embryonic stem cell differentiation (19). Morpholino-mediated knockdown of STRIP2 results in severe abnormalities of the cardiovascular system (20). To further examine the functional role of STRIP2 in LUAD, we conducted an enrichment analysis between high- and low-expression groups based on STRIP2 mRNA expression. KEGG enrichment analysis suggested that these genes participated in the MAPK signaling pathway, cell cycle, TNF signaling pathway, GnRH signaling pathway, and DNA replication. Likewise, results of the GSEA analysis revealed that upregulated STRIP2 expression was associated with MTOR signaling pathway, P53 signaling pathway, PI3K AKT the MTOR signaling pathway, TNFA signaling pathway, DNA replication, apoptosis, IL2 STAT5 signaling pathway, MYC targets, hypoxia, GLYCOSIS, G2M Checkpoint, and EMT.

A previous study found that STRIP2 expression predicts prognosis in gastric cancer (8). In this finding, we found that STRIP2 was positively associated with the abundance of Th2 cells, NK CD56dim cells, Tgd, Tem, and neutrophils, and negatively associated with the abundance of macrophages, B cells, NK cells, DC, eosinophils, iDC, TFH, and mast cells in LUAD. Moreover, STRIP2 expression was significantly positively correlated with the expression of CD274, CTLA4, LAG3, and PDCD1LG2 in LUAD. These results confirm that STRIP2 plays a crucial role in immune infiltration in LUAD.

Given that GSEA enrichment results shown that STRIP2 may plays a central role in cell proliferation and EMT. We decide to examine the potential biological function of STRIP2 in LUAD. In vitro, we found that STRIP2 was increased in LUAD cells lines. Owing to A549 and SPCA1 has higher level of STRIP2. Therefore, we selected A549 and SPCA1 cells conducted assays. We found that depletion of STRIP2 in H1975 cells inhibited cell proliferation and migration. Based on above findings, we proposed that STRIP2 exerts an essential function in regulating pathologic progression of LUAD.

The crucial finding of this manuscript was to identify a prognosis-related ceRNA regulatory network (TMPO-AS1/let-7c-5p/STRIP2) in LUAD. In this ceRNA regulatory network, let-7c-5p was significantly and negatively correlated with STRIP2 expression, and TMPO-AS1 was significantly and negatively correlated with let-7c-5p expression, and significantly and positively correlated with STRIP2 expression. Furthermore, TMPO-AS1 and STRIP2 were significantly increased in LUAD tissues compared to normal tissues, and survival analysis results suggested that the higher expression group had a poorer prognosis compared to the low expression group, whereas let-7c-5p exhibited lower expression in LUAD tissues compared to normal tissues, and survival analysis revealed that the lower expression group had a poorer prognosis compared to the higher expression group. These results consistently indicate that TMPO-AS1/let-7c-5p/STRIP2 is a poor prognosis-associated ceRNA regulatory network in LUAD.

This study improves our understanding of the correlation between STRIP2 and LUAD, but some limitations still exist. First, although we explored the correlation between STRIP2 and immune infiltration in LUAD patients, there is a lack of experiments to validate the function of STRIP2 in the tumor microenvironment regulation of LUAD. Second, we found that knockdown of STRIP2 inhibits cell proliferation and cell migration of LUAD. However, the potential molecular mechanisms of STRIP2 in cancer progression need to be explored in further studies.


Conclusion

This finding describes, for the first time, the clinical relevance, immuno-oncology features and biological function of the TMPO-AS1/let-7c-5p/STRIP2 network, which upregulates STRIP2 expression in LUAD and is associated with adverse clinical outcomes. In summary, STRIP2 is a promising prognostic factor, and its future application may help determine the optimal treatment strategy for lung adenocarcinoma.
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Increasing evidence has implicated the modification of 7-methylguanosine (m7G), a type of RNA modification, in tumor progression. However, no comprehensive analysis to date has summarized the predicted role of m7G-related gene signatures in lung adenocarcinoma (LUAD). Herein, we aimed to develop a novel prognostic model in LUAD based on m7G-related gene signatures. The LUAD transcriptome profiling data and corresponding clinical data were acquired from the Cancer Genome Atlas (TCGA) and two Gene Expression Omnibus datasets. After screening, we first obtained 29 m7G-related genes, most of which were upregulated in tumor tissues and negatively associated with overall survival (OS). According to the expression similarity of m7G-related genes, the combined samples from the TCGA-LUAD and GSE68465 datasets were further classified as two clusters that exhibit distinct OS rates and genetic heterogeneity. Then, we constructed a novel prognostic model involving four genes by using 130 differentially expressed genes among the two clusters. The combined samples were randomly divided into a training cohort and an internal validation cohort in a 1:1 ratio, and the GSE72094 dataset was used as an external validation cohort. The samples were divided into high- and low-risk groups. We demonstrated that a higher risk score was an independent negative prognostic factor and predicted poor OS. A nomogram was further constructed to better predict the survival of LUAD patients. Functional enrichment analyses indicated that cell cycle and DNA replication-related biological processes and pathways were enriched in the high-risk group. More importantly, the low-risk group had greater infiltration and enrichment of most immune cells, as well as higher ESTIMATE, immune, and stromal scores. In addition, the high-risk group had a lower TIDE score and higher expressions of most immune checkpoint-related genes. We finally noticed that patients in the high-risk group were more sensitive to chemotherapeutic agents commonly used in LUAD. In conclusion, we herein summarized for the first time the alterations and prognostic role of m7G-related genes in LUAD and then constructed a prognostic model based on m7G-related gene signatures that could accurately and stably predict survival and guide individualized treatment decision-making in LUAD patients.
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Introduction

Lung cancer, although experiencing a modest reduction in new cases globally, has remained the leading cause of cancer-related deaths for many years according to the latest epidemiologic statistics (1, 2). The 5-year survival rate of lung cancer increased from about 10% in 2000 to nearly 20% in 2014 despite great progress in its screening, diagnosis, and treatment (3). Based on histopathological classifications, lung adenocarcinoma (LUAD) is the most common subtype, affecting approximately 40% of lung cancer cases (4). Recent studies have suggested that LUAD is a highly heterogeneous disease at multiple levels, particularly at the molecular and gene levels (5). Therefore, a novel and more precise prognostic model based on genetic or epigenetic alterations is necessary to guide therapeutic decision-making and predict patient prognosis.

Increasing evidence has suggested that RNA modifications play a vital role among a variety of malignancies (6, 7). So far, >170 types of RNA modifications have been documented. Of these, RNA methylation, encompassing several types [N6-methyladenosine (m6A), 5-methylcytosine (m5C), N6-2′-O-dimethyladenosine (m6Am), N1-methyladenosine (m1A), and N7-methylguanosine (m7G)], is a major epigenetic modification (8). As one positively charged essential modification in messenger RNA (mRNA), m7G is installed at the 5′ cap co-transcriptionally during transcription initiation and can modulate nearly every phase of the mRNA life cycle and stabilize transcripts against exonucleolytic degradation (9–11). Besides functioning as a part of the cap structure, recent studies have further demonstrated the presence of internal mRNA m7G modifications, which could impact mRNA translation, and also confirmed methyltransferase-like 1 (METTL1) as a methyltransferase capable of installing a subset of m7G within mRNA (9, 12). In addition, m7G is one of the most common transfer RNA (tRNA) modifications when installed by METTL1–WDR4 (WD repeat domain 4) at position 46 (m7G46) of tRNAs in humans (13). Concomitantly, m7G also occurs at position 1639 of 18S ribosomal RNA in mammals, having been installed by Williams–Beuren syndrome chromosome region 22 (WBSCR22) (14). These internal m7G modifications can impact RNA function and processing. Pandolfini et al. (15) recently showed that m7G methylation within microRNAs mediated by METTL1 could regulate cell migration. Taken together, these findings highlight the primary and critical role of m7G modification in the fates of mRNA, tRNA, ribosomal RNA, and microRNA in humans.

Recent studies have also implicated m7G in tumor progression and development in lung cancer, intrahepatic cholangiocarcinoma (ICC), hepatocellular carcinoma (HCC), bladder cancer, and colon cancer (16–21). Using bioinformatic analyses, accumulating studies have determined that the RNA modification-related gene signatures, such as m6A, m1A, and m5C, can predict the prognosis and guide therapeutic decisions in most cancers, including LUAD (22–27). However, to the best of our knowledge, there are no studies reporting the predictive role of m7G-related regulatory genes in any malignancies. In this study, by utilizing the expression data of m7G-related genes in LUAD from The Cancer Genome Atlas (TCGA) database and Gene Expression Omnibus (GEO) database, we comprehensively analyzed the genetic characteristics and prognostic value of m7G-related genes in LUAD, constructed a novel prognostic model based on m7G-related gene signatures, and further investigated the impacts on the tumor immune microenvironment (TIM), eventually evaluating drug sensitivity in different risk groups. Our findings contribute to a better understanding of the significant role of m7G-related gene signatures and provide novel insight for improving the clinical response to therapy in LUAD patients in the future.



Materials and Methods


Study Design

The flowchart of our study is depicted in Figure 1A.




Figure 1 | Characteristics and differences of m7G-related genes in The Cancer Genome Atlas-lung adenocarcinoma (TCGA-LUAD) cohort. (A) The flowchart of this study. (B) Heatmap for differences in m7G-related gene expression between LUAD tumor and normal tissues. (C) The PPI network between 24 differentially expressed m7G-related genes (p < 0.05) and the hub genes network. (D) The correlation in m7G-related gene expression. (E) Genetic mutation frequency and types of m7G-related genes. *p < 0.05, **p < 0.01, ***p < 0.001.





Data Acquisition and Preprocessing

The transcriptome profiling data and corresponding clinical data of LUAD were acquired from the TCGA database (https://portal.gdc.cancer.gov) and GEO database (https://www.ncbi.nlm.nih.gov/gds). In the TCGA cohort, the transcriptome data were downloaded as FPKM (fragments per kilobase per million mapped reads) and further converted to TPM (transcripts per million) using the “limma” R package for analysis. Then the “normalizeBetweenArrays” function of the R package “limma” was performed for data standardization. The TCGA-LUAD dataset including 535 tumor samples and 59 tumor-adjacent samples was used to compare the difference in the expression of m7G-related genes between tumor and normal tissues. For the GEO datasets, probe IDs were converted to gene symbols according to platform annotation files. Normalized expression values were log2-transformed and scaled before being used in model validations. Using the “combat” algorithm in the “sva” package of the R software, we correct the batch effect between the TCGA and GEO datasets. Genome mutation data of TCGA-LUAD [including somatic mutation and copy number variation (CNV)] were downloaded from the TCGA database and the UCSC Xena platform (https://gdc.xenahubs.net/). For the analyses involving clinical data, samples with unknown survival times were deleted.



Identification of Differential Expression and Genetic Alterations in m7G-Related Genes

We identified m7G-related genes from published literature (28) and the gene sets named “m7G(5′)pppN diphosphatase activity”, “RNA 7-methylguanosine cap binding”, and “RNA cap binding” from the Molecular Signatures Database (MSigDB, https://www.gsea-msigdb.org/gsea/msigdb/search.jsp) with the keyword “7-methylguanosine.” To screen differentially expressed m7G-related genes (DEMGs) with the threshold of p-value <0.05 between tumor and normal adjacent tissues from the TCGA-LUAD dataset, the “limma” R package was used. After screening, the “heatmap” R package was applied for generating heatmaps. The immunohistochemistry (IHC) results from the Human Protein Atlas (HPA, https://www.proteinatlas.org) were used to validate the protein level of DEMGs in normal and tumor tissues. Meanwhile, we observed genetic mutation frequency and types of m7G-related genes in TCGA-LUAD samples by using the “maftools” R package.



Construction of the Protein–Protein Interaction Network and Correlation Between m7G-Related Genes

Among proteins with co-expression coefficients >0.4, the STRING database (https://string-db.org/) was used to construct the protein–protein interaction (PPI) network. Cytoscape software (version 3.9.1) was used to visualize the network; moreover, the MCC algorithm of the cytoHubba plugin was used to screen the hub genes. The “reshape2” R package was used to identify the correlation between the expression of m7G-related genes.



Identification of the Overall Survival-Associated m7G-Related Genes

Overall survival (OS) was assessed by the Kaplan–Meier method. The datasets of TCGA-LUAD and GSE68465 (29) were merged to explore the overall survival predictive value of each m7G-related gene. R packages “survival” and “survminer” were used.



Hierarchical Clustering

To classify LUAD samples into different subgroups based on the m7G-related gene set, the R package “ConsensusClusterPlus” was used. We combined transcriptome profiling data and corresponding clinical data from the TCGA-LUAD and GSE68465 datasets for this analysis. The maximum number of clusters was nine. We selected 80% item resampling (pItem), 100% gene resampling (pFeature), a maximum evaluated k of 9, 50 resamplings (reps), kmeans (clusterAlg), Euclidean (distance), and a specific random seed (seed = 123456) in the R package “ConsensusClusterPlus” for this analysis. Based on the consensus matrices and the cumulative distribution function (CDF) curves of the consensus index, the optimum number of clusters was determined. The differences of survival and distribution of clinicopathologic characteristics were compared between different clusters and visualized using the R packages “survival”, “survminer”, “limma”, “ggplot2”, and “pheatmap”. “Gene set variation analysis (GSVA)” R packages were further used to explore the difference in biological processes between different clusters. We downloaded the gene set “c2.cp.kegg.v7.4.symbols” from the MSigDB database for this analysis. An adjusted p-value of less than 0.05 was considered statistically significant. A single-sample gene set enrichment analysis (ssGSEA) was used to quantify the enrichment scores and to represent the relative abundance of 23 tumor-infiltrating immune cell types between different clusters. The “maftools” R package was used to present mutational differences of each cluster. The CNV of different clusters was analyzed and visualized using the RCircos package in R.



Construction and Validation of a Prognostic Model

Also, transcriptome profiling data and corresponding clinical data from the TCGA-LUAD and GSE68465 datasets were merged for this analysis. The combined data were randomly divided into a training cohort and an internal validation cohort in a 1:1 ratio. Meanwhile, the 442 LUAD samples from GSE72094 (30) were used as an external validation cohort. Briefly, by using the “limma” R package, the differentially expressed genes (DEGs) with adjusted p-value <0.05 and |log2FC| >0.585 between clusters were detected. Subsequently, univariate Cox analysis was applied to explore the prognosis-related DEGs. Then, we used the LASSO regression with 10-fold cross-validation to narrow down the prognosis-related DEGs applying the R package “glmnet,” and further performed the multivariate Cox regression analysis to establish a signature for evaluating the relationships between the DEGs and the survival of LUAD patients. The IHC results from the HPA were used to validate the protein level of this gene signature in normal and tumor tissues. Finally, we calculated the risk scores of each patient based on the following model formula: risk score = Σi Coefficient (mRNAi) × Expression(mRNAi). According to the median risk scores in the training group, patients were separated into high- and low-risk groups among both training and validation cohorts. The Kaplan–Meier method was performed to compare the OS between the high- and low-risk groups. The predictive value of the prognostic model was assessed through time-related receiver operating characteristic (ROC). The heatmaps were used to compare and visualize the distribution of clinicopathologic characteristics between the risk cohorts. Multivariate Cox regression analysis was applied to test the prognostic independence of risk score. The principal component analysis (PCA) and t-distributed stochastic neighbor embedding (t-SNE) which can get a low-dimensional cluster distribution from high-dimensional gene sets were utilized for validating the classification results. The risk scores of each patient were further combined with clinical characteristics to construct a nomogram through the “rms” R package.



Comparison of the Novel Prognostic Model and Previously Reported Models using ROC Curves and Concordance Index Values

To compare our prognostic model with other models previously reported in LUAD, four studies primarily focusing on m6A-related signatures were selected (22, 31–33). We extracted the genes included in these prognostic models and used ROC curves and concordance index (C-index) values to compare the predictive accuracy between different models. The R packages “survcomp,” “survival,” “ggplot2,” “ggpubr,” “limma,” “survminer,” and “timeROC” were applied.



Functional and Pathway Enrichment Analyses

To explore the potential mechanisms and pathways between the high- and low-risk groups, the Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analysis, and gene set enrichment analysis (GSEA) were conducted among DEGs between the high- and low-risk groups using the R packages “clusterProfiler,” “enrichplot,” “limma,” “ggplot2,” and “org.Hs.eg.db.”



Analyses of Immune Cells, Immune-Related Functions, and the Tumor Microenvironment

Using the ssGSEA through the “GSVA” R package, we compared the enrichment scores, represented the relative abundance of 23 tumor-infiltrating immune cell types between the high- and low-risk groups, and then visualized the results through the R packages “limma,” “ggpubr,” and”reshape2.” The differential analyses of stromal score, immune score, ESTIMATE score, and immune cells were performed based on the results of CIBERSORT and ESTIMATE using the R software packages “CIBERSORT” and “estimate.” Moreover, the mRNA expression-based stemness index (mRNAsi) scores of LUAD were obtained from previous research (34). Spearman’s correlation analyses were used to establish the relationship between risk scores and immune cells as well as between risk scores and mRNAsi scores. The tumor immune dysfunction and exclusion (TIDE) score (35) was calculated online (http://tide.dfci.harvard.edu/) to assess the immune checkpoint inhibitor (ICI) response between the high- and low-risk groups. We also compared the expressions of 47 immune checkpoint-related genes (Supplementary Table 1) between the high- and low-risk groups through the R software packages “limma,” “ggpubr,” and “ggplot2.”



Chemotherapeutic and Small Molecule Drug Screening and Prediction

The public dataset, Genomics of Drug Sensitivity in Cancer (GDSC, https://www.cancerrxgene.org) (36), was chosen to evaluate the response to chemotherapeutic and small molecule drugs between the high- and low-risk groups, which was done by computing the half-maximum inhibitory concentration (IC50). The analyses were conducted through the “pRRophetic” R package.



Statistical Analyses

All analyses were completed by using R language (Version 4.1.2). Student’s t-test, chi-squared test, or Wilcoxon test was applied to compare the differences between groups. Spearman’s correlation test was performed to evaluate the association between variables. A p-value of <0.05 was considered statistically significant.




Results


Screening and Genetic Landscape of m7G-Related Genes

After screening, we found 29 m7G-related genes, namely, AGO2, CYFIP1, DCP2, DCPS, EIF3D, EIF4A1, EIF4E, EIF4E1B, EIF4E2, EIF4E3, EIF4G3, GEMIN5, IFIT5, LARP1, Ls10, METTL1, NCBP1, NCBP2, NCBP2L, NCBP3, NSUN2, NUDT10, NUDT11, NUDT16, NUDT3, NUDT4, NUDT4B, SNUPN, and WDR4. Of these, 12 DEMGs with the threshold of |log2FC| >0.585 and p <0.05 were observed between 535 tumor and 59 normal TCGA-LUAD tissues, which consisted of 2 downregulated (NCBP2L, EIF4E3) and 10 upregulated (DCPS, EIF4E1B, EIF4G3, LARP1, Ls10, METTL1, NCBP1, NCBP2, NSUN2, and WDR4) DEMGs in tumor samples (Figure 1B and Table 1). The protein expressions of DEMGs in normal and tumor tissues were further validated using the IHC results from the HPA platform. As shown in Figure 2, the protein expressions of METTL1, NSUN2, EIF4G3, LARP1, NCBP1, and NCBP2 were higher in tumor tissues than in normal tissues; however, the protein expressions of WDR4, EIF4E1B, and NCBP2L were negative in both tumor and normal tissues. The PPI network between 24 DEMGs with the threshold of p <0.05 is shown in Figure 1C; of these DEMGs, EIF4E, EIF4E1B, EIF4E2, NCBP1, NCBP2, EIF4E3, AGO2, NCBP2L, CYFIP1, and EIF4A1 were the top 10 hub genes. Spearman’s correlation analysis suggested that EIF4E3 was most frequently and negatively correlated with other DEMGs, as shown in Figure 1D. A total of 561 samples in the TCGA-LUAD cohort were used for somatic mutation of m7G-related genes; among them, 80 (14.26%) samples were observed to have experienced mutation events. A missense mutation was the most common type of variant classification, and EIF4G3, LARP1, NSUN2, AGO2, and CYFIP1 were the top 5 most frequently mutated genes (Figure 1E).


Table 1 | Differences in the expression of m7G-related genes in the TCGA-LUAD cohort.






Figure 2 | Protein expressions of 11 differentially expressed m7G-related genes in the tumor and normal tissues from the Human Protein Atlas platform. (A) METTL1 expression. (B) WDR4 expression. (C) DCPS expression. (D) NSUN2 expression. (E) EIF4E1B expression. (F) EIF4G3 expression. (G) NCBP2L expression. (H) LARP1 expression. (I) NCBP1 expression. (J) NCBP2 expression. (K) EIF4E3 expression.





Survival Analysis Based on the Expression of Each m7G-Related Gene

To further verify the predictive role of each m7G-related gene, we conducted survival analyses using the Kaplan–Meier method. As shown in Figure 3, the high expression of most genes (including CYFIP1, DCPS, EIF3D, EIF4E, EIF4E2, EIF4G3, LARP1, METTL1, NCBP1, NCBP2, NUDT4, NUDT11, SNUPN, and WDR4) portended a significantly poor OS. Conversely, a high expression of NUDT3 predicted an improved OS (Figure 3).




Figure 3 | The overall survival analysis based on the expression of each m7G-related gene.





Consensus Clustering Based on the Expression of m7G-Related Genes

Based on the expression similarity of the 29 m7G-related genes, the consensus clustering method was applied to cluster the combined LUAD samples of the TCGA and GSE68465 cohorts. The cluster number k ranged from 2 to 9; when k = 2, a relatively clear-cut boundary was shown in the heatmap of the consensus matrix (Figure 4A, Supplementary Figure S1A), and a flat slope was seen in the CDF curve of the consensus index score (Supplementary Figure S1A). Hence, we selected k = 2 as the appropriate number of clusters and divided 936 LUAD samples into two clusters—namely, cluster 1 (C1, n = 400) and cluster 2 (C2, n = 536). Next, Kaplan–Meier survival analysis was applied to evaluate the prognostic value of this clustering. A significant difference in OS was observed between the two clusters (log-rank p < 0.001). C1 had a worse median OS (Figure 4B). Accordingly, the samples of C1 had higher levels of gene expression compared with C2, as shown in the heatmap (Figure 4D). Also, as seen in the heatmap, however, variations in other clinicopathological characteristics did not show statistical significance between the samples of each cluster. Similarly, C1 had a higher expression of most m7G-related genes compared with C2 (Supplementary Figure S1B). The results of the GSVA enrichment analysis based on the KEGG gene set showed that the process of cell cycle and DNA repair, such as non-homologous end-joining, spliceosome, nucleotide excision repair, mismatch repair, and cell cycle, was enriched in C1; C2 was prominently enriched in metabolism-associated pathways, such as tyrosine metabolism, arachidonic acid metabolism, drug metabolism cytochrome P450, metabolism of xenobiotics by cytochrome P450, sulfur metabolism, and alpha-linolenic acid metabolism (Figure 4E). From the results of the ssGSEA, we found that the scores of some immune cells, such as activated B cells, activated CD8 T cells, activated dendritic cells (aDCs), CD56 dim nature killer cells, myeloid-derived suppressor cells (MDSCs), macrophages, mast cells, monocytes, neutrophils, T follicular helper cells, type 1 T helper cells, and type 17 T helper cells, were significantly enriched in C2 (Figure 4C). In addition, the somatic mutations were more frequent in C1 than in C2 (Figure 4F). The frequencies and locations of the CNVs were also different in C1 and C2 (Figures 4G, H), and the copy number losses were more frequent in C2 than in C1.




Figure 4 | Consensus clustering based on the expression of m7G-related genes. (A) The heatmap of the consensus matrix showing that 2 was the appropriate k value. (B) Kaplan–Meier curves for the OS in patients with different clusters. (C) The differences in the scores of immune cells between the two clusters. (D) Heatmap for the distribution of clinicopathologic characteristics and the difference of the expression of 130 DEGs between the two clusters. (E) Heatmap for the difference of biological process in GSVA enrichment analysis based on the KEGG gene set. (F) The waterfall plot showing the differences in somatic genomic mutation between cluster 1 (C1) and cluster 2 (C2). (G) Histogram reflecting the copy number variation (CNV) of the m7G-related genes in C1 (up) and C2 (down). (H) The location of CNV alteration of m7G-related genes on 23 chromosomes in C1 (left) and C2 (right). **p < 0.01, ***p < 0.001.





Construction and Validation of a Novel Prognostic Model Based on DEGs Between Clusters

Using the “limma” R package, the DEGs were first screened between the two clusters in a combined LUAD dataset of the TCGA and GSE68465 cohorts, and 130 DEGs were finally obtained. Then, we used the univariate Cox analysis to explore 112 prognosis-related DEGs. To prevent model overfitting, LASSO penalized Cox regression modeling was conducted to screen the key DEGs associated with survival. With this method, a novel prognostic gene model with four genes was constructed (Figures 5A, B). Subsequently, risk scores per sample were calculated using the following model formula: risk score = (0.1606739599952 × expression value of KIF20B) + (0.207218473949824 × expression value of HMMR) + (0.157719134596455 × expression value of ARNTL2) + (0.0802509860697548 × expression value of DKK1). The combined LUAD dataset was randomly divided into a training cohort and internal validation cohort in a 1:1 ratio, and the 442 LUAD samples from the GSE72094 dataset were used as an external validation cohort. The samples were divided into high-risk and low-risk groups according to the median threshold of risk scores in the training group (Figures 5J–L). The expressions of most m7G-related genes were significantly higher in the high-risk group than in the low-risk group (Figure 5C). As shown by the Kaplan–Meier analyses, patients in the high-risk group had significantly worse OS than those in the low-risk group (p < 0.001, Figures 5D–F); analogously, as the risk score increased, more patients died (Figures 5J–L). In the training cohort, the AUC values of the present risk model were 0.734, 0.691, and 0.676 for the 1-, 2-, and 3-year prognoses, respectively (Figure 5G), with similar results observed in the internal and external validation groups (Figures 5H, I). The distribution patterns from t-SNE and PCA analyses showed that samples could completely be distinguished into high- and low-risk groups (Figures 5M–O). Taken together, these findings demonstrated the prognostic robustness of the novel prognostic model in patients with LUAD.




Figure 5 | Construction and validation of the prognostic model based on the m7G-related gene signatures in lung adenocarcinoma (LUAD). (A, B) LASSO analysis with minimal lambda value. (C) The difference in the expression of m7G-related genes in the high- and low-risk groups. The Kaplan–Meier survival analysis showing the difference in overall survival (OS) between the high- and low-risk groups in the training (D), internal validation (E), and external validation cohorts (F). Time-dependent ROC curve analysis in the training (G), internal validation (H), and external validation cohorts (I). The distribution of risk score and survival status of LUAD patients with different risk scores in the training (J), internal validation (K), and external validation cohorts (L). PCA and t-SNE analyses in the training (M), internal validation (N), and external validation cohorts (O). **p < 0.01, ***p < 0.001.





Comparison of Our Prognostic Model and Previously Reported Models Using ROC Curves and C-Index Values

To compare our prognostic model with other models previously reported in LUAD, we searched four studies primarily focusing on m6A-related signatures (22, 31–33). The number of genes included in these models varied from 3 to 27. We found that the AUC and C-index values of our model were higher than those of other models except for the model constructed by Ouyang et al. (32) (Figure 6A).




Figure 6 | Model comparison, independent prognostic factor analysis, clinical correlation analysis, nomogram construction, and functional and pathway enrichment analyses in the different risk cohorts. (A) The comparison of our prognostic model and previously reported models using ROC curves and concordance index (C-index) values. (B) The multivariate Cox regression analysis of the risk score and other clinical features in the training cohort. (C) Heatmap for the distribution of clinicopathologic characteristics between the high- and low-risk groups in the combined lung adenocarcinoma (LUAD) dataset of the TCGA and GSE68465 cohorts. (D) A nomogram using risk scores combined with clinical characteristics. GO enrichment analysis (E) and KEGG pathway analysis (F) based on the differentially expressed genes between the high- and low-risk groups in the combined LUAD dataset. (G) Gene set enrichment analysis (GSEA) based on KEGG and GO in the high-risk group in the combined LUAD dataset. ** p<0.01, ***p< 0.001.





Independent Prognostic Factor Analysis, Clinical Correlation Analysis, Nomogram Construction, and Functional and Pathway Enrichment Analyses

Univariate and multivariate Cox regression analyses were performed by introducing age, gender, TNM stage, and risk scores to assess the independence of risk scores in the survival prediction of LUAD patients. Those variables with p <0.1 in the univariate analysis were selected for multivariate analysis. Among the samples in the training cohort, the results showed that age, T stage, N stage, and risk score were identified as independent negative prognostic factors for patients with LUAD (Figure 6B), and similar results were observed in the internal and external validation groups (Supplementary Figures S2A, B). Meanwhile, in the internal validation cohort, risk score was of greater assistance than the other clinical characteristics in predicting prognosis (HR = 1.689, 95% CI: 1.376–2.075, p < 0.001; Supplementary Figure S2A). As shown in Figure 6C, the heatmap presented the distribution of clinicopathological features between the high- and low-risk cohorts. There were significant differences in N stage (p < 0.01), T stage (p < 0.001), and gender (p < 0.01) between the different risk groups. To facilitate the utilization of our risk model, we further constructed a nomogram using risk scores combined with clinical characteristics, as shown in Figure 6D, and calibration curves further verified this nomogram as reliable and accurate in predicting 1-, 3-, and 5-year OS (Supplementary Figure S2G).

By considering the DEGs between the high- and low-risk groups from combined samples of the TCGA and GSE68465 cohorts, we conducted GO enrichment analysis, KEGG pathway analysis, and GSEA to explore the potential biological functions of these genes. As shown in Figure 6E and Supplementary Figure S2D, “nuclear division” and “organelle fission” were the most enriched terms among the biological process categories, and “spindle” and “tubulin binding” were the most enriched terms among the cellular component and molecular function categories, respectively. Cell cycle was identified to be the most enriched among the KEGG pathways of the DEGs (Figure 6F and Supplementary Figure S2C). GSEA was further performed to identify the differential pathways enriched in GO and KEGG between the high- and low-risk subgroups, and the results revealed that cell cycle and DNA replication-related biological processes and pathways were enriched in the high-risk group; however, the biological processes and pathways enriched in the low-risk group were weakly associated with tumor initiation and progression (Figure 6G and Supplementary Figure S2E).



Risk Signature-Based Immune Cell Infiltration, Immune-Related Pathways, Tumor Microenvironment, and Stemness Analyses

ssGSEA was performed to quantify the enrichment scores of 13 immune cell-related functions and 16 immune cells between the two risk groups. Intriguingly, the scores of some immune cells, such as aDCs, immature dendritic cells (iDCs), mast cells, and neutrophils, were significantly enriched in the low-risk group of the training cohort (Figure 7A). However, the scores of some immune functions, such as cytolytic activity, inflammation promoting, major histocompatibility complex (MHC) class I, parainflammation, type-I interferon (IFN) response, and T-cell co-inhibition, were significantly enriched in the high-risk group (Figure 7B). Similar results were observed in the internal testing dataset (Supplementary Figure S2F). We further analyzed the correlations between immune cell infiltration and the expression of genes involved in the construction of the prognostic model, as shown in Figure 7D. The high-risk group had a lower TIDE score (Figure 7C) and higher expressions of most immune checkpoint-related genes (Figure 7E), which suggested that patients in the high-risk group may benefit from immunotherapy. In addition, we observed that patients in the low-risk group had higher ESTIMATE, immune, and stromal scores (Figure 7F). Additionally, by using Spearman’s correlation analysis, a positive and significant correlation was observed between risk score and tumor mutation burden (TMB, R = 0.22, p < 0.001, Figures 7G, H) as well as between risk score and mRNAsi score (RNAss, R = 0.35, p < 0.001, Figure 7I), which demonstrated that LUAD patients with higher risk scores had higher RNAss values and TMBs.




Figure 7 | Risk signature-based immune cell infiltration, immune-related pathways, tumor microenvironment (TME), and stemness analyses. The differences in the scores of immune cells (A) and immune functions (B) in the training cohort. (C) The differences in tumor immune dysfunction and exclusion (TIDE) score in The Cancer Genome Atlas-lung adenocarcinoma cohort. (D) The correlations of immune cell infiltration and the four genes in the risk model in a combined lung adenocarcinoma (LUAD) dataset of the TCGA and GSE68465 cohorts. (E) The differentially expressed immune checkpoint-related genes between the high- and low-risk groups. (F) ESTIMATE, immune, and stromal scores between the high- and low-risk groups in the combined LUAD dataset. (G) The difference in tumor mutation burden (TMB) between the high- and low-risk groups in the combined LUAD dataset. Spearman’s correlation analyses between the risk score and TMB (H), as well as between the risk score and mRNAsi scores (RNAss) (I) in the combined LUAD dataset. *p < 0.05, **p < 0.01, ***p < 0.001.





Drug Screening Based on the m7G-Related Risk Signature

We further evaluated the response to chemotherapeutic and small molecule drugs between the high- and low-risk groups, as described previously. In the high-risk group, a total of 57 drugs with obviously lower IC50 values were observed; concomitantly, a total of 28 drugs were observed in the low-risk group (Table 2). Based on the drugs commonly used to treat LUAD, we noticed that patients in the high-risk group were more sensitive to chemotherapeutic agents such as cisplatin, docetaxel, etoposide, gemcitabine, paclitaxel, and vinorelbine.


Table 2 | The sensitive chemotherapeutic and small molecule drugs in the high- and low-risk groups.






Discussion

With the growing in-depth understanding of RNA modifications, m7G modifications have gradually become a research hotspot in recent years. However, there is still a lack of comprehensive analyses to summarize the role of m7G-related gene signatures in LUAD. In this study, we comprehensively analyzed the genetic characteristics and prognostic value of m7G-related genes in LUAD and then further constructed a novel prognostic model based on m7G-related gene signatures to predict survival and guide treatment decisions.

We first extensively screened the m7G-related genes and finally obtained 29 genes, namely, AGO2, CYFIP1, DCP2, DCPS, EIF3D, EIF4A1, EIF4E, EIF4E1B, EIF4E2, EIF4E3, EIF4G3, GEMIN5, IFIT5, LARP1, Ls10, METTL1, NCBP1, NCBP2, NCBP2L, NCBP3, NSUN2, NUDT10, NUDT11, NUDT16, NUDT3, NUDT4, NUDT4B, SNUPN, and WDR4. Most genes have been reported to modulate some phases of the RNA life cycle, especially in mRNA (28, 37–41). In the TCGA-LUAD dataset, we found that DCPS, EIF4E1B, EIF4G3, LARP1, Ls10, METTL1, NCBP1, NCBP2, NSUN2, and WDR4 were significantly upregulated in tumor tissues than in adjacent normal tissues (|log2FC| > 0.585, p < 0.05), which were further validated in protein levels using the IHC results from the HPA platform; moreover, high expressions of DCPS, EIF4G3, LARP1, METTL1, NCBP1, NCBP2, and WDR4 predicted a significantly poor OS. METTL1, as one of the key tRNA-modifying enzymes, has been extensively reported to promote cancer development by mediating tRNA m7G modifications in lung cancer, ICC, HCC, and bladder cancer (16–20). Consistent with our results, Ma et al. (16) found that METTL1 and WDR4 were upregulated in lung cancer, and METTL1 promoted lung cancer growth and invasion via regulation of m7G tRNA modification in-vitro and in-vivo assays. Also, METTL1 inhibition can improve the sensitivity of HeLa cells to 5-fluorouracil (42). These results suggested that METTL1 may be a target for LUAD therapy. In a study reported by Huang et al. (43), EIF4G3, encoding a eukaryotic translation initiation factor involved in mRNA cap recognition and transport of mRNAs to the ribosome, was found to be a direct target of miR-375 in lung squamous cell carcinoma cells, and silencing of EIF4G3 induced cell apoptosis and suppressed tumor growth. LARP1 is an RNA-binding protein that regulates the 5′-terminal oligopyrimidine tract mRNA (44). Recent studies have revealed that LARP1 drives oncogenesis, and higher levels of LARP1 protein correspond with a poor prognosis in NSCLC, colorectal cancer, prostate cancer, ovarian cancer, HCC, and ICC (45–51). Xu et al. (45) found that LARP1 knockdown inhibited cell proliferation, migration, invasion, and tumorigenic potential in NSCLC cells, which can be regulated by the XIST/miR-374a axis. In another study, LARP1 was established as a target of miR-503 and further regulated by circ-BANP to promote lung cancer progression. LARP1 can also regulate mTOR signaling to contribute to cancer progression (52). These observations, combined with ours, suggest that LARP1 should be acknowledged as an oncogene and could be a promising therapeutic target in LUAD. NCBP1, which can participate in transcriptional and post‐transcriptional processes together with NCBP2 and NCBP3, mediated the proliferation, migration, and invasion of LUAD cells through upregulation of CUL4B (53). Interestingly, we noted that NUDT3, as a Nudix protein possessing mRNA-decapping activity in cells, was upregulated in tumor tissues of LUAD (|log2FC| = 0.4 and p < 0.001), but its high expression predicted significantly better survival. Grudzien-Nogalska et al. (54) reported that a reduction in NUDT3 protein levels in MCF-7 cells promoted cell migration. Unfortunately, there is no evidence to suggest the underlying role of NUDT3 in LUAD, which requires further investigations.

According to the expression similarity of the 29 m7G-related genes, the combined LUAD samples were further classified into two clusters, and C1 had a worse median OS than C2. Consistent with the survival analysis, C1 had a higher level of gene expression than C2. Concomitantly, the biological process from the KEGG gene set, the scores of some immune cells, the somatic mutations, and the frequencies and locations of the CNVs between the two clusters were different. However, differences in clinicopathological characteristics, such as T stage, N stage, gender, and age, did not have statistical significance between the clusters. These findings suggest that the prognostic variations of different clusters might mainly be due to the genetic heterogeneity of LUAD patients. Therefore, we used 130 DEGs between the two clusters to construct a novel prognostic model with four genes (KIF20B, HMMR, ARNTL2, and DKK1). Of these DEGs, KIF20B (also known as MPHOSPH1), a kinesin protein that plays a critical role in cytokinesis, has been found to promote the progression of some cancers such as clear cell renal cell carcinoma (55), pancreatic cancer (56), hepatocellular carcinoma (57, 58), tongue cancer (59), and bladder cancer (60) by stimulating cell proliferation. HMMR (hyaluronan-mediated motility receptor), also called RHAMM/CD168, has been extensively reported to promote the progression of LUAD and can serve as a key prognostic biomarker for patients with LUAD (61–64). Moreover, Brady et al. (65) have found a positive association between the expression of the transcription factor ARNTL2 (aryl hydrocarbon receptor nuclear translocator-like 2) and the outcome of patients with LUAD. ARNTL2 is a paralog of the circadian transcription factor ARNTL and has recently been discovered to also act as a modifier of immune cell infiltration in malignancies (66–68). Meanwhile, the Wnt antagonist DKK1 (Dickkopf-1) has been implicated in the modulation of immune cell activities as well as the immunosuppressive microenvironment in cancers and has become a promising target for cancer immunotherapy (69, 70). Together, these findings confirmed the reliability and precision of our prognostic model. Subsequently, the combined LUAD dataset of the TCGA and GSE68465 cohorts was randomly divided into a training cohort and internal validation cohort in a 1:1 ratio, and the dataset from GSE72094 was further used as an external validation cohort. The samples were divided into high-risk and low-risk groups according to the median threshold of the risk score in the training group. By using survival, time-dependent ROC, PCA, t-SNE, and univariate and multivariate Cox regression analyses, we noticed that a higher risk score was a negative predictive factor for survival and was identified as one of the independent negative prognostic factors for patients with LUAD. These findings further demonstrated the prognostic robustness of the novel prognostic model in patients with LUAD. Some clinicopathological characteristics, such as age, T stage, and N stage, were also identified as independent negative prognostic factors for patients with LUAD. Therefore, we further constructed a nomogram using risk scores combined with clinical characteristics to better predict the survival of LUAD patients.

We also compared our prognostic model with other four models previously reported in LUAD in studies primarily focused on m6A-related signatures. We found that the AUC and C-index values of our models were higher than those of the other models, except for the signature by Ouyang et al. (32). The study reported by Ouyang et al. (32) constructed a novel prognostic model including 27 genes for LUAD based on hypoxia, immunity, and epithelial–mesenchymal transition gene signatures; the overall survival differed significantly between the high-risk and low-risk groups (HR = 4.26), and the AUC values for predicting 1-, 3-, and 5-year survival were 0.763, 0.766, and 0.728, respectively. Despite a better precision, this model was not conducive to clinical translation due to the inclusion of too many genes.

We then conducted GO enrichment analysis, KEGG pathway analysis, and GSEA, considering DEGs between the high- and low-risk groups. The results implied that cell cycle and DNA replication-related biological processes and pathways may contribute to LUAD progression regulation by m7G-related gene signatures. We also found that most immune cells, ESTIMATE scores, immune scores, and stromal scores were enriched in the low-risk group, which suggested that m7G-related gene signatures may affect LUAD survival outcomes by altering the TIM and tumor microenvironment (TME). However, the high-risk group had a lower TIDE score and higher expressions of most immune checkpoint-related genes, which suggested that patients in the high-risk group may benefit from immunotherapy. We finally screened chemotherapeutic and small molecule drugs that were sensitive to different risk groups. We noticed that patients in the high-risk group were more sensitive to commonly used chemotherapeutic agents in LUAD, such as cisplatin, docetaxel, etoposide, gemcitabine, paclitaxel, and vinorelbine. This was presumably due to the enrichment of cell cycle and DNA replication-related biological processes and pathways in the high-risk group, and these drugs may interfere with the cell cycle via different mechanisms.

To the best of our knowledge, this is the first bioinformatics analysis to elucidate the prognostic roles of m7G gene signatures in malignancies. However, some limitations should be considered in the interpretation of our results. First, our study is a retrospective study based on three public datasets, and further large-scale and prospective studies are needed for validation. Second, the biological process of m7G modification has not been illustrated as thoroughly as that of m6A modification until now, so the m7G-related genes in our study may not be able to fully summarize all the processes of m7G modification. Third, further investigations will be required to determine the role of m7G modifications in LUAD development and progression.

In conclusion, we have summarized for the first time the alterations and prognostic role of m7G-related regulatory genes in LUAD and then constructed a prognostic model based on m7G-related gene signatures involving four genes, which can accurately and stably predict survival and guide individualized treatment decisions in LUAD patients. We further found that alterations in immune cell infiltration and TME characteristics may be a potential mechanism of this model to predict the prognosis of LUAD patients.
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Extra spindle pole bodies-like 1 (ESPL1), a cysteine endopeptidase, plays a vital role in chromosome inheritance. However, the association of ESPL1 with prognosis and immune infiltration in lung adenocarcinoma (LUAD) has not yet been explored. Here, we analyzed the expression level, prognostic values, diagnostic value, and immune infiltration level in LUAD using various databases. Immunohistochemistry (IHC) and quantitative real-time PCR (qRT-PCR) assays were used to detect the expression of ESPL1 in LUAD tissues and cell lines. In this study, we found that ESPL1 was upregulated in LUAD and a higher expression of ESPL1 was correlated with unfavorable prognosis in LUAD. Meanwhile, Cox hazard regression analysis results suggested that ESPL1 may be an independent prognostic factor for LUAD. Moreover, we demonstrated that ESPL1 expression was significantly correlated with immune infiltration of Th2 and dendritic cells in LUAD. We also confirmed that DNA copy number amplification and DNA hypo-methylation were positively correlated with ESPL1 expression in LUAD. Additionally, DNA copy number amplification was significantly associated with adverse clinical outcomes in LUAD. Kyoto Encyclopedia of Genes and Genomes (KEGG) and gene set enrichment analysis (GSEA) confirmed that ESPL1 was mainly involved in the DNA replication and glycolysis signaling pathway. Finally, we revealed that ESPL1 was highly expressed in LUAD tissues and cell lines. Knockdown of ESPL1 significantly inhibited cell migration and the invasion abilities of LUAD. Our study comprehensively confirmed that ESPL1 expression may serve as a novel prognostic biomarker for both the clinical outcome and immune cell infiltration in LUAD.




Keywords: extra spindle pole bodies-like 1, lung adenocarcinoma, prognosis biomarker, DNA methylation, immune infiltration



Introduction

Lung cancer is the leading cause of cancer-related death worldwide, according to Cancer Statistics 2022 (1). The incidence rate of lung cancer ranks second, while the death rate of lung cancer ranks first (2). Lung cancer includes small cell lung carcinoma (SCLC) and non-small cell lung carcinoma (NSCLC). NSCLC includes lung adenocarcinoma (ADC), lung squamous cell carcinoma (SCC), and large-cell lung carcinoma. The NSCLC cancer accounts for approximately 85% of all cases (3). With the development of medical technology, a variety of treatment methods have emerged, while the 5-year survival rate and prognosis of LUAD patient remain disappointing (4). Immune checkpoint inhibitors targeting programmed cell death protein 1 (PD1) or programmed death ligand 1 (PD-L1) have already substantially improved the outcomes of patients with many types of cancer, but only 20%–40% of patients benefit from these therapies (5). Therefore, it will be helpful for improving the effect of immunotherapy to find the indicators of immune infiltration and explore its possible mechanism.

ESPL1, a cysteine endopeptidase, plays an important role in modulating the chromosome inheritance (6). It has been confirmed that ESPL1 was overexpressed in glioma and associated with the pathological features and poor prognostics in glioma patients (7). Jiang et al. found that ESPL1 was higher in chronic HBV infection patients and maybe as a biomarker for screening HBV-related hepatocellular carcinoma (HCC) and monitoring recurrence (8). Studies reported that ESPL1 was elevated in endometrial cancer, and its higher expression correlated with late stage and higher tumor grade (9). However, the upstream regulatory mechanisms, the correlation between ESPL1 and clinical outcomes, and immune cell infiltration in LUAD patients remain unclear.

In the present study, we determine the expression pattern, prognostic value, and diagnostic value of ESPL1 by using The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) datasets. Functional gene/protein association network and functional enrichment were analyzed by GeneMANINA and STRING databases. The TIMER and TISIDB databases were used to examine the potential relationship of ESPL1 expression with immune cell infiltration in LUAD, and Spearman’s correlation was used to evaluate samples from the TIMER and GEPIA databases. IHC and qRT-PCR assay were used to detect the expression of ESPL1 in LUAD tissues and cell lines. Transwell and wound healing assays were used to determine the potential function of ESPL1 on LUAD cell migration and invasion abilities.



Materials and Methods


ESPL1 Expression Level and Prognosis Analysis

ESPL1 expression data and patient clinical data were downloaded from the TCGA data portal (website: https://www.cbioportal.org/; dataset: TCGA, LUAD) (10). In this study, we used it to analyze the association between ESPL1 expression and clinical features. Meanwhile, we also explored the diagnostic value and prognostic value of ESPL1 in LUAD. We used the Human Protein Atlas (HPA: https://www.proteinatlas.org/) database to determine the protein level of ESPL1 in lung cancer and normal tissues (11).



PrognoScan Database Analysis

The PrognoScan database (http://www.abren.net/PrognoScan/) (12), including various GEO datasets in this study, was used to determine the overall survival of ESPL1 in different lung cancer-related GEO datasets. The threshold was Cox p-value < 0.05.



LinkedOmics Database

LinkedOmics (http://www.linkedomics.org/login.php) is a publicly available portal that includes the multi-omics data of TCGA pan-cancer. In this study, we used to determine the genes that were correlated with ESPL1 in LUAD.



Gene–Gene and Protein–Protein Interaction Network of ESPL1

We constructed the gene–gene and protein–protein interaction network of ESPL1 by using the STRING database (https://string-db.org/) and GeneMANIA (http://www.genemania.org) (13, 14).



CancerSEA Database

CancerSEA (http://biocc.hrbmu.edu.cn/CancerSEA/) is the first dedicated database that aims to comprehensively explore distinct functional states of cancer cells at the single-cell level. CancerSEA portrays a cancer single-cell functional state atlas, involving 14 functional states (including stemness, invasion, metastasis, proliferation, EMT, angiogenesis, apoptosis, cell cycle, differentiation, DNA damage, DNA repair, hypoxia, inflammation, and quiescence) of 41,900 single cancer cells from 25 cancer types (15). In this study, we used it to determine the distinct functional states of ESPL1 at the single-cell level in LUAD.



DNA Copy Number Variation and DNA Methylation Analysis

Gene Set Cancer Analysis (GSCA) is an integrated platform, including the genomic (expression, SNV, CNV, and methylation) and clinical information (16). In this study, we used it to examine the relationship between ESPL1 expression and CNV and DNA methylation in LUAD. Meanwhile, we used it to determine the prognostic value of ESPL1 CNV in LUAD. UALCAN (http://ualcan.path.uab.edu) is a database that includes the gene expression and survival analyses based on the TCGA dataset (17). In this study, we used it to analyze the DNA methylation level of ESPL1 in LUAD.



Immune Cell Infiltration Analysis

TIMER (https://cistrome.shinyapps.io/timer/) is a database that includes the gene expression and immune cell infiltrations in human cancers (18); in this study, we used to determine the correlation between ESPL1 CNV and immune cell infiltrations in LUAD. We also used the GSVA R package to quantify the LUAD immune infiltration of 24 tumor-infiltrating immune cells in LUAD samples via ssGSEA based on the 509 gene signatures of 24 tumor-infiltrating lymphocytes (TILs) (19).



Cell Culture

The BEAS-2B cell line was purchased from the Chinese Academy of Sciences Cell Bank (CASCB, China), and cultured in BEGM media (Lonza, CC-3170). Lung cancer cell lines, including H358, H1650, A549, and H1299, were purchased from CASCB with STR documents, and were cultured in RPMI-1640 medium (Corning) supplemented with 10% fetal bovine serum (FBS) and 1% penicillin/streptomycin.



Constructs, Transfection, Infection, and qPCR Assay

Independent shRNAs targeting ESPL1 were synthesized and cloned into the lentiviral plasmid pLKO.1. The lentiviruses were generated according to the manufacturer’s protocol. Total RNA was extracted according to the manufacturer’s protocol, and then reverse transcribed using an RT reagent kit. The primers used in this study are as follows: β-actin-F: AAGTGTGACGTGGACATCCGC and β-actin-R: CCGGACTCGTCATACTCCTGCT; and ESPL1-F: CCGCCTTGAAGGAGTTCCTG and ESPL1-R: GGGGTAGACACTAAGTAGCCAT.



Cell Migration and Invasion Assay

Cell migration and invasion assay was performed as previously documented (20). For transwell assay, 2.5×104 cells in 100 μl of serum-free medium were plated in a 24-well plate chamber insert, with medium containing 10% FBS at the bottom of the insert. Cells were incubated for 24 h, and then fixed with 4% paraformaldehyde for 20 min. After washing, cells were stained with 0.5% crystal violet blue. The positively stained cells were examined under the microscope.



Immunohistochemical Staining

For immunohistochemical staining, the sections were deparaffinized in xylene and rehydrated through graded ethanol. Antigen retrieval was performed for 20 min at 95°C with sodium citrate buffer (pH 6.0). After quenching endogenous peroxidase activity with 3% H2O2 and blocking non-specific binding with 1% bovine serum albumin buffer, sections were incubated overnight at 4°C with the indicated primary antibodies. Following several washes, the sections were treated with HRP-conjugated secondary antibody for 40 min at room temperature, and stained with 3,3-diaminobenzidine tetrahydrochloride (DAB).



Statistical Analyses

All statistical analyses were performed using GraphPad Prism 7.0, and ROC curves were used to detect ESPL1 cutoff values using pROC packages. p-values were calculated by either unpaired or paired two-tailed Student’s t-test, *p < 0.05, **p < 0.01, and ***p < 0.001.




Results


Expression Pattern and Prognostic Value of ESPL1 in Pan-Cancers

We first determine ESPL1 expression in TCGA pan-cancer. Results suggested that a higher ESPL1 expression was observed in 13 tumors: BLCA, BRCA, CESC, CHOL, COAD, ESCA, GBM, LIHC, LUAD, LUSC, PRAD, READ, and UCEC (Figure 1A).




Figure 1 | The expression level and prognosis of ESPL1 in pan-cancer. (A) Pan-cancer expression of ESPL1 between tumor tissues from the TCGA database. (B, C) Kaplan–Meier overall survival of ESPL1 in pan-cancers. NS: p > 0.05, **p < 0.01; ***p < 0.001.



Furthermore, we explore the prognostic significance of ESPL1 in various human cancer types. Results show that ESPL1 is a risk factor for ACC, KIRP, LGG, LIHC, MEAO, PAAD, SARC, and SKCM (Figures 1B, C).



ESPL1 Was Upregulated in Lung Adenocarcinoma

We further found that ESPL1 was highly expressed in LUAD and LUSC than adjacent normal tissues based on the TCGA database (Figures 2A, D). Moreover, IHC results confirmed that ESPL1 was upregulated in lung cancer tissues compared with normal lung tissues (Figure 2E). Given the crucial role of ESPL1 in LUAD, we examined the potential correlation between ESPL1 expression and clinical features, including multiple clinicopathological characteristics and survival of LUAD patients. Results suggested that higher expression of ESPL1 was significantly correlated with higher clinical stage, TNM stage, gender, age, residual tumor, smoker, OS event, and DSS event in patients with LUAD (Figures 2F, G and Table 1).




Figure 2 | Correlation between ESPL1 mRNA expression and clinicopathological parameters. (A–D) ESPL1 was upregulated in LUAD and LUSC based on the TCGA database. (E) Protein level of ESPL1 in lung cancer tissue examined by the HPA database. (F, G) Correlation between ESPL1 expression and clinical stage, TNM stage, gender, age, residual tumor, smoker, OS event, and DSS event in patients with LUAD. *p < 0.05; **p < 0.01; ***p < 0.001.




Table 1 | Correlation between ESPL1 expression and clinicopathological features in TCGA-LUAD.





Knockdown of ESPL1 Inhibits Lung Cancer Cell Migration and Invasion

IHC assay confirmed that ESPL1 was upregulated in lung cancer tissues compared with normal lung tissues (Figures 3A, B). We also found that ESPL1 was increased in LUAD cell lines compared with the normal lung epithelial cell line (BEAS2B) (Figure 3C), which is consistent with the online database we discovered. Given that ESPL1 was upregulated in LUAD, we then inhibited the ESPL1 expression using shRNA, and knockdown efficiency of ESPL1 was verified by real-time RT-PCR assay (Figure 3D). Then, we evaluated the effects of ESPL1 on LUAD cell migration and invasion capacities by wound healing and transwell migration assays. We showed that downregulation of ESPL1 significantly decreased the migratory and invasion capabilities of LUAD cells (Figures 3E–H). Collectively, these results confirmed that ESPL1 was highly expressed in LUAD cells and significantly affected their migration and invasion.




Figure 3 | ESPL1 knockdown inhibited cell migration and invasion of LUAD. (A, B) IHC assay used to determine the protein of ESPL1 in clinical lung cancer samples. (C) The relative expression of ESPL1 in LUAD cell lines including H1650, H358, A549, and H1299 examined by real-time RT-PCR and human bronchial epithelial (BEAS2B) cell line was used as control. (D) Establishment of ESPL1 knockdown in A549 and H1299 cells, verified by real-time RT-PCR. (E–H) Downregulation of ESPL1 inhibited A549 and H1299 cell migration and invasion by transwell and wound healing assays, Quantification data were also indicated for each assay. Scale bar = 50 μm. **p < 0.01; ***p < 0.001.





Analysis of the Diagnostic and Prognostic Value of ESPL1 in LUAD

The Kaplan–Meier curve method was conducted to examine the relationship between ESPL1 expression level and overall survival (OS), disease-specific survival (DSS), and progression-free survival (PFS) in patients with LUAD. We found that patients in the higher ESPL1 class had a shorter probability of OS, DSS, and PFS compared to the low ESPL1 group (Figures 4A–C). Then, receiver operating characteristic (ROC) curve analysis suggested that the ESPL1 may be used to differentiate LUAD patients from normal control (AUC = 0.973) (Figure 4D). Moreover, we also investigated the prognostic role of ESPL1 across several independent GEO clinical datasets. Results suggested that upregulated ESPL1 expression was associated with adverse clinical outcomes in patients with lung cancer (Figures 5A–C).




Figure 4 | Prognostic and diagnostic values of ESPL1 in LUAD. (A–C) Correlation between ESPL1 expression and OS, DSS, and PFS in patients with LUAD examined by the TCGA datasets. (D) ROC curve analysis of the diagnostic values of ESPL1 in LUAD.






Figure 5 | Validation of the overall survival of ESPL1 in LUAD. (A–C) Correlation between ESPL1 expression and OS in patients with lung cancer examined by GEO datasets.





Clinical Stratification

We also determine the overall survival of ESPL1 in different clinical subgroups, including stage I–II, T1/T2, T3/T4, N0/N1, M0, R0, age>65, female, and smoker. Results confirmed that lower ESPL1 expression had better survival outcomes than those with highly expressing ESPL1 in patients with LUAD (Figures 6A–C). Logistic regression analysis suggested that T stage (T2 and T3 and T4 vs. T1), N stage (N1 and N2 and N3 vs. N0), M stage (M1 vs. M0), pathologic stage (Stage III and Stage IV vs. Stage I and Stage II), and gender (Male vs. Female) were significantly correlated with ESPL1 expression in LUAD patients (Table 2). To examine the potential prognostic factors for OS and DSS of LUAD patients, univariate regression analysis and a multivariate model have shown significant prognostic significance of ESPL1 expression, pathological stage, and TNM stage for OS and DSS (Tables 3, 4).




Figure 6 | Validation of the overall survival of ESPL1 in diverse clinical subtypes. (A–C) Validation of the overall survival of ESPL1 in diverse clinical subtypes, including stage I–II, T1/T2, T3/T4, N0/N1, M0, R0, age>65, female, and smoker.




Table 2 | Logistic regression analyzed the correlation between ESPL1 expression and clinicopathological characteristics in LUAD.




Table 3 | Univariate regression and multivariate survival model of overall survival in patients with LUAD.




Table 4 | Univariate regression and multivariate survival model of disease-specific survival in patients with LUAD.





CNV and DNA Methylation Analysis

Given that CNV and DNA methylation play crucial roles in modulating gene expression and are involved in cancer progression (21), we used the GSCA database to determine the correlation between CNV and DNA methylation and ESPL1 expression in LUAD. We found that CNV may be the reason for ESPL1 overexpression in LUAD (Figure 7A). We also confirmed a positive correlation between CNV and ESPL1 mRNA expression in LUAD (Figure 7B). Next, we assessed the prognostic value of ESPL1 CNV in terms of LUAD and overall survival. Results confirmed that the ESPL1 copy-number-altered group was associated with poorer OS and PFS in LUAD (Figures 7C, D). Then, we further investigated the potential association between DNA methylation and ESPL1 expression. We utilized the UALCAN database to explore the DNA methylation level of ESPL1 in human cancer. Results showed that in LUAD, ESPL1 DNA methylation level was significantly lower in tumor tissues than in normal tissues (Figure 7E). Meanwhile, we revealed that ESPL1 DNA methylation levels significantly decreased in accordance with the progression of LUAD stage I to stage II (Figure 7F). We also demonstrated a negative correlation between DNA methylation and ESPL1 expression in LUAD (Figure 7G).




Figure 7 | CNV and DNA methylation analysis. (A, B) Correlation between ESPL1 expression and CNV of ESPL1 in LUAD. (C, D) Correlation between prognosis and CNV of ESPL1 in LUAD examined by the TCGA database. (E) DNA methylation level of ESPL1 in LUAD. (F) Correlation between pathological stage and DNA methylation of ESPL1 in LUAD examined by the TCGA database. (G) Correlation between ESPL1 expression and DNA methylation in LUAD examined by the TCGA database.





Identification of ESPL1-Interacting Genes and Proteins and Single-Cell Functional Analysis

We used the GeneMania database to construct the gene–gene interaction network of ESPL1. Results suggested that the 20 most frequently altered genes were closely correlated with ESPL1, including PTTG1, SMC1B, and CCNB1 (Figure 8A). A protein–protein interaction (PPI) network of ESPL1 was generated by using the STRING database. We found that 20 proteins were closely correlated with ESPL1, including CDK1, CDK2, CCNB1, NDC80, SMC3, and BUB1 (Figure 8B). Next, we used CancerSEA, a single-cell database to explore the potential role that ESPL1 might play in single LUAD cells. Results suggested that ESPL1 was found to be mainly involved in cell cycle, DNA damage, EMT, DNA repair, and cell proliferation (Figure 8C).




Figure 8 | Gene–gene and protein–protein interaction network. (A, B) Gene–gene and protein–protein interaction network constructed by the genemania and STRING databases. (C) CancerSEA used to explore the potential role that ESPL1 might play in single LUAD cells.





KEGG and GSEA Enrichment Analysis

We identified genes with positive co-expression with ESPL1 using the TCGA database and obtained the top 300 genes that are positively correlated with ESPL1 in LUAD (Figures 9A–D). To determine the potential molecular function by which ESPL1 modulates LUAD progression, we conducted Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) enrichment using the 300 genes that were positively related to ESPL1 in pan-cancers, respectively. As shown in Figures 9E–H, for the biological process, these genes were mainly enriched in chromosome segregation, DNA replication, and mitotic nuclear division (Figure 9E). For the cellular component, these genes were mainly enriched in chromosomal region, spindle, condensed chromosome, and microtubule (Figure 9F). For the molecular function, these genes were mainly enriched in ATPase activity, tubulin binding, helicase activity, and DNA helicase activity (Figure 9G). Moreover, KEGG pathway analysis suggested that ESPL1 was associated with signaling pathways related to the cell cycle, RNA transport, DNA replication, and cellular senescence (Figure 9H).




Figure 9 | KEGG enrichment analysis of ESPL1. (A–D) Identified genes with positive co-expression with ESPL1 using the TCGA database. (E–H) GO and KEGG enrichment analysis of ESPL1 in LUAD.



Moreover, GSEA was performed to determine the activated signaling pathways correlated with ESPL1 in LUAD. The signaling pathways activated in ESPL1 overexpressed phenotype, including apoptosis, p53 signaling pathway, IL6-JAK-STAT3 signaling pathway, IL3-STAT5 signaling pathway, MYC targets, hypoxia, glycolysis, TNFα signaling pathway, G2/M checkpoint, fatty acid metabolism, PI3K-AKT signaling pathway, EMT, and DNA repair (Figures 10A–D).




Figure 10 | GSEA Identification of ESPL1-related signaling pathways. (A–D) GSEA identification of ESPL1-related signaling pathways in LUAD.





Immune Analysis of ESPL1 in LUAD

Next, the association between ESPL1 expression and tumor immune infiltration was analyzed. Results indicated that ESPL1 expression was significantly upregulated in the C2 subtype of LUAD (Figure 11A). TIMER database analysis results suggested that the copy number of ESPL1 was significantly correlated with the TILs in LUAD (Figure 11B). We used the ssGSEA method to analyze the correlation between ESPL1 expression and immune infiltration. Results indicated that ESPL1 expression was positively correlated with the infiltration levels of Th2 cells, and negatively associated with infiltration levels of mast cells, iDC, DC, and CD8 T cells in LUAD (Figures 11C–E).




Figure 11 | Correlation analysis of ESPL1 expression and infiltration levels of immune cells in LUAD. (A) ESPL1 expression in diverse immune subtypes. (B) Correlation analysis of ESPL1 CNV and infiltration levels of immune cells in LUAD. (C–E) Correlation analysis of ESPL1 expression and infiltration levels of immune cells in LUAD. *p < 0.05; **p < 0.01; ***p < 0.001.



Finally, we examined the relationship between ESPL1 expression, immunostimulators, immunoinhibitors, chemokines, and MHC molecules by using the TISIDB database. Spearman’s correlation analysis results suggested that ESPL1 expression was negatively correlated with immunostimulators (CD40LG, HHLA2, TMEM173, and tnfsf13), immunoinhibitors (KD2 and TGFB1), chemokines (CCL14, CCL17, CCL19, CXCL1, CXCL16, and CXCL17), and MHC molecules (HLA-DMA, HLA-DMB, HLA-DOA, and HLA-DOB) in LUAD (Figures 12A–D).




Figure 12 | Correlation between ESPL1 expression and immune modulator. (A–D) Examine the relationship between ESPL1 expression, immunostimulators, immunoinhibitors, chemokine, and MHC molecule by using the TISIDB database.






Discussion

Tumor microenvironment (TME) plays an important role in the dynamic regulation of tumor progression, and strategies to therapeutically target the TME have emerged as a promising approach for cancer treatment (22). Immunotherapy, which has been approved or is being evaluated in clinical trials, has a wide application prospect (23). A comprehensive analysis of tumor-infiltrating immune cells will help to clarify the mechanism of tumor immune escape and provide opportunities for the development of new therapeutic strategies. ESPL1 is an etiological factor that regulates many biological processes, such as hematopoietic differentiation and cell proliferation (7). Nevertheless, there is still no research examining whether ESPL1 is correlated with LUAD progression or whether it can be a prognostic and diagnostic biomarker for LUAD.

In this study, we first analyzed ESPL1 expression in diverse cancers. We found that ESPL1 expression was significantly higher in BLCA, BRCA, CESC, CHOL, COAD, ESCA, GBM, LIHC, LUAD, LUSC, PRAD, READ, and UCEC. Higher expression of ESPL1 was correlated with adverse OS in ACC, KIRP, LGG, LIHC, MEAO, PAAD, SARC, and SKCM.

It has been confirmed that ESPL1 was highly expressed as a prognostic biomarker in glioma and LIHC (7, 8). In our study, we found that ESPL1 was upregulated in LUAD and LUSC, and clinical feature analysis suggested that higher expression of ESPL1 was significantly correlated with higher clinical stage, TNM stage, gender, age, residual tumor, smoker, OS event, and DSS event in patients with LUAD. The Kaplan–Meier curve shows that patients in the higher ESPL1 class had a lower probability of OS, DSS, and PFS compared to the low ESPL1 group. Then, ROC analysis suggested that the ESPL1 may be used to differentiate LUAD patients from normal control. Univariate regression analysis and a multivariate model have shown significant prognostic significance of ESPL1 expression, pathological stage, and TNM stage for OS and DSS in LUAD.

Studies have shown that higher ESPL1 expression was associated with poor prognosis and advanced stage in luminal B breast cancers, and it as a candidate oncogene for BRCA (24). In our study, we confirmed that ESPL1 was upregulated in lung cancer and cell lines, which is consistent with the online database we discovered. We showed that downregulation of ESPL1 significantly decreased the migratory and invasion capabilities of LUAD cells. Collectively, these results confirmed that ESPL1 was highly expressed in LUAD cells and significantly affected their migration and invasion. In addition, it was reported that c-MYB is a crucial transcriptional regulator that modulates the expression of ESPL1 in chronic myeloid leukemia (25). In this study, we show that DNA copy amplification and DNA hypo-methylation were two vital mechanisms of ESPL1 upregulation and were associated with poor prognosis.

Previously, several studies have reported that ESPL1 mainly enriched in the cell cycle pathway in endometrial cancer (9). In our study, we found that ESPL1 was mainly involved in apoptosis, p53 signaling pathway, IL6-JAK-STAT3 signaling pathway, IL3-STAT5 signaling pathway, MYC targets, hypoxia, glycolysis, TNFα signaling pathway, G2/M checkpoint, fatty acid metabolism, PI3K-AKT signaling pathway, EMT, and DNA repair.

Increasing lines of evidence have shown that TME plays an important role in cancer metastasis, immune escape, and immunotherapy resistance (26, 27). In our findings, we revealed that ESPL1 expression was significantly upregulated in the C2 subtype of LUAD. TIMER database analysis results suggested that the copy number of ESPL1 was significantly correlated with the TILs in LUAD. Upregulated ESPL1 expression was positively correlated with the infiltration levels of Th2 cells, and negatively associated with infiltration levels of mast cells, iDC, DC, and CD8 T cells in LUAD. Finally, we show that ESPL1 expression was negatively correlated with immunostimulators (CD40LG, HHLA2, TMEM173, and tnfsf13), immunoinhibitors (KD2 and TGFB1), chemokines (CCL14, CCL17, CCL19, CXCL1, CXCL16, and CXCL17), and MHC molecules (HLA-DMA, HLA-DMB, HLA-DOA, and HLA-DOB) in LUAD.



Conclusion

Together, these findings suggest that ESPL1 is a valuable biomarker for prognosis and is significantly correlated with immune infiltration in LUAD.
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Objective

To develop and validate a DeepSurv nomogram based on radiomic features extracted from computed tomography images and clinicopathological factors, to predict the overall survival and guide individualized adjuvant chemotherapy in patients with non-small cell lung cancer (NSCLC).



Patients and Methods

This retrospective study involved 976 consecutive patients with NSCLC (training cohort, n=683; validation cohort, n=293). DeepSurv was constructed based on 1,227 radiomic features, and the risk score was calculated for each patient as the output. A clinical multivariate Cox regression model was built with clinicopathological factors to determine the independent risk factors. Finally, a DeepSurv nomogram was constructed by integrating the risk score and independent clinicopathological factors. The discrimination capability, calibration, and clinical usefulness of the nomogram performance were assessed using concordance index evaluation, the Greenwood-Nam-D’Agostino test, and decision curve analysis, respectively. The treatment strategy was analyzed using a Kaplan–Meier curve and log-rank test for the high- and low-risk groups.



Results

The DeepSurv nomogram yielded a significantly better concordance index (training cohort, 0.821; validation cohort 0.768) with goodness-of-fit (P<0.05). The risk score, age, thyroid transcription factor-1, Ki-67, and disease stage were the independent risk factors for NSCLC.The Greenwood-Nam-D’Agostino test showed good calibration performance (P=0.39). Both high- and low-risk patients did not benefit from adjuvant chemotherapy, and chemotherapy in low-risk groups may lead to a poorer prognosis.



Conclusions

The DeepSurv nomogram, which is based on the risk score and independent risk factors, had good predictive performance for survival outcome. Further, it could be used to guide personalized adjuvant chemotherapy in patients with NSCLC.





Keywords: chemotherapy, DeepSurv, non-small cell lung cancer, survival outcome, radiomics



Introduction

Lung cancer is associated with the highest morbidity and mortality rates globally. Approximately 80–85% of lung cancers are non-small cell lung cancers (NSCLCs) (1–3). There are several clinicopathologic factors and systems to predict prognosis; however, each has its limitations. The tumor-node-metastasis (TNM) staging system is an important prognostic method for early lung cancer after surgery (4–6); however, patients with the same TNM stage may have completely different prognoses, indicating that pathological staging alone is not an ideal tool for prognosis (7–9). Some studies believe that traditional clinicopathological factors, including age, sex, pathological type, and tumor grade, are related to the prognosis of NSCLC (10). Owing to developments in biological gene technology, the biological and genetic characteristics related to survival can be included, thus greatly improving the assessment of prognosis. Although some genes related to lung cancer have been successfully used in clinical settings, there are associated ethical and clinical limitations. These invasive methods cannot fully reflect the spatiotemporal heterogeneity of tumors (11–14), which is closely related to cell proliferation, necrosis, hypoxia, and angiogenesis (15, 16). Therefore, a new prognosis evaluation method is required for prognosis, identifying patients with a high-risk of recurrence, and recommending individualized therapy (17).

Artificial intelligence is an emerging field in oncology with promising results for prognosis and monitoring the treatment response (18–20). Radiomics as a method of quantitative machine learning that can quantify the temporal and spatial heterogeneity of tumor tissue, and provide guidance for precise personalized diagnosis and treatment (21). Some studies have attempted to improve the prediction performance of various cancers using computed tomography (CT) or positron emission tomography(PET)/CT radiomic technology. Studies have found that radiomics combined with traditional staging systems and other clinicopathological factors may improve the prediction of tumor prognosis (22–24). However, the prediction of the model is generally inaccurate owing to the small sample size (25–27). DeepSurv (28), proposed in 2018, is a multi-layer feed-forward network with a negative log partial likelihood output parameterized by the weights of the network. DeepSurv is composed of an Artificial Neural Network (ANN) model and Cox proportional hazards (CPH) model. The former is used as the front-end model to select features, while the latter uses the feature variables obtained from the regression of the neural network model as the input to calculate the risk model (29, 30). Hence, we developed a DeepSurv nomogram based on radiomic features to improve risk stratification capability and discrimination with a more accurate prediction of prognosis. However, there is still no feasible unified standard in clinical practice for how to judge the risk of recurrence from an overall perspective to achieve individualized treatment. National Comprehensive Cancer Network guidelines pointed out that adjuvant chemotherapy can be considered for patients with high risk factors of early NSCLC after surgery; however, whether postoperative adjuvant chemotherapy is needed in stages NSCLC IB and IIA remains controversial. Owing to the lack of individualized treatment options, patients who cannot benefit from adjuvant chemotherapy suffer from the toxic damage and economic loss of chemotherapy (31). Therefore, identifying patients who would benefit from adjuvant chemotherapy is key to individualized treatment.

Therefore, this study aimed to construct a DeepSurv nomogram to predict the prognosis of NSCLC based on CT radiomic features and independent risk factors, and to conduct risk stratification to guide individualized adjuvant chemotherapy after early lung cancer surgery.



Materials and Methods


Patients and Clinicopathological Data

The institutional ethics review board of the affiliated Jinling Hospital, Medical School of Nanjing University, approved this retrospective study and waived the need to obtain informed consent. The institutional database was searched for medical records from November 2008 to March 2019 to identify patients with histologically confirmed NSCLC (stages IA, IB, IIA, IIB, and IIIA). The inclusion criteria were as follows: a) patients with NSCLC who underwent CT before treatment between November 2008 and March 2019; b) patients diagnosed with stage IA, IB, IIA, IIB, or IIIA NSCLC, as confirmed by histopathological examination according to the American Joint Committee on Cancer eighth edition TNM classification and staging system; and c) patients with complete imaging and clinicopathological data. The exclusion criteria were as follows: a) patients with censored survival data (n=214); b) patients who had undergone targeted therapy (n=29); and c) patients with partial loss of images (n=4). Finally, 976 patients were included. We randomly divided the patients into: a) training cohort (n=683) and b) validation cohort (n=293) using a 7:3 ratio (Figure 1). For each patient, we collected the baseline clinicopathological characteristics, including age, sex, smoking status, family history, histologic subtype, stage (T stage, N stage, and clinical stage), chemotherapy, C-reactive protein (mg/L), thyroid transcription factor-1 (TTF-1), and Ki-67, from the medical records. The survival information of these patients was obtained through telephone calls. Follow-up data were collected from November 2008 to March 2020. The endpoint of this study was the overall survival (OS), which is defined as the period from the date of CT examination to the date of telephone follow-up or patient’s death.




Figure 1 | Flow diagram of the enrollment of patients with non-small cell lung cancer.





Image Acquisition and Reconstruction Parameters

All patients underwent unenhanced CT imaging of the lungs with one of three multi-detector row CT systems (SOMATOM definition flash, Siemens Healthineers, Erlangen, Germany; SOMATOM Emotion, Siemens AG, Erlangen, Germany; and SOMATOM Perspective). Patients were placed in the supine position with both hands raised, and any metallic foreign bodies were removed from the chest. The scanning range was from the thoracic entrance to the underlying layer of the lung, with a single breath-hold scan at the end of inspiration, using the spiral scanning mode. The CT parameters were as follows: 120 kVp for SOMATOM definition flash or 130 kVp for SOMATOM emotion and perspective; reference mAs, 160 mAs; reconstructed with 1 mm or 1.25 mm slice thickness by a standard lung kernel. These CT images were retrieved from the picture archiving and communication system.



Image Segmentation

A volume of interest(VOI) was drawn semi-automatically around the tumor by a chest radiologist (Y.B., 9 years of experience) and confirmed by another chest radiologist (Z.J., 15 years of experience). Both the radiologists were blinded to the patients’ clinical information. First, we imported the CT images into the radiomics prototype software. Next, the doctor drew a line across the tumor’s boundary, the tool automatically found the neighboring voxels in 3-D space with the same gray-level using an algorithm, a random walker-based lesion segmentation for solid and subsolid lung lesions (32). If the segmentation was not satisfactory, the operators corrected it manually in the 3-D domain using the radiomics prototype. To test intra-class reproducibility, 100 cases were randomly selected and segmented twice by one radiologist (Y.B., 9 years of experience). To test inter-class reproducibility, all 100 cases were segmented by two radiologists (Y.B. and Z.J.). Spearman’s correlation analyses were used to test the reproducibility of the features. Features with Rho>0.8 were selected for further analysis.



Radiomic Feature Extraction and DeepSurv Model Construction

Our study adhered to the Image Biomarker Standardization Initiative (IBSI) guidelines (33). The software syngo via Frontier 1.2.1 (version VB10B, Siemens Healthineers, Germany) was IBSI-compliant. The medical image series were resampled to the 1 mm ×1 mm × 1 mm voxel size before subsequent feature extraction steps. B-spline interpolation was used for resampling. The bin width size was set at 25 when creating a histogram for the discretization of the gray image levels. After preprocessing, the extracted radiomic feature groups based on original images were as follows: 18 first-order features; 17 size and shape features; 75 texture encoding features, including 14 gray-level dependence matrix features, 24 gray-level co-occurrence matrix features, 16 gray-level run-length matrix features, 16 gray-level size zone matrix features, and five neighboring gray-tone difference matrix features. Laplacian of Gaussian filtering, wavelet filtering, nonlinear intensity transformations (including square, square root, logarithm, and exponential operations), and wavelet-transformed images (including three directions [x, y, z]; LLL, LLH, LHL, LHH, HLL, HLH, HHL, and HHH) were also generated. In total, 1,227 radiomic features were extracted from each lesion. A deep learning model based on the radiomic features was composed of ANN and CPH models. ANN was used as a preposition model to filter the features of the samples, and the CPH was used to calculate the risk function by connecting the ANN model with the neural network regression model. ANN was composed of one output and four hidden layers. The activation function used by the hidden layer is the scaled exponential linear unit. The hidden layer also included a dropout layer to improve the generalization of the model, in addition to the fully connected neural network layer. The Adam optimizer used the negative log partial likelihood as the loss function, combined with batch normalization, weight decay regularization, and learning rate scheduling for training (learning rate decay rate, 3.173e-4; dropout ratio, 0.401). The final output of ANN was the covariate in the Cox model to return all the covariate features in the original sample to a feature or θ(x) in the formula. The basic risk model used in the Cox model was obtained by the Nelson–Aalen model, which is a linear univariate risk model that takes the event and time as the input function b_0 (t). A DeepSurv model was established based on the radiomic features. The output was the risk score for each patient (Figure 2).




Figure 2 | Workflow for developing the DeepSurv nomograma. (A) Computed tomography (CT) image segmentation was performed using semiautomatic segmentation on the radiomics prototype software (Radiomics, Frontier, Siemens); (B) The radiomic features from the volumes of interest were then computed with CT images on a prototype, including first-order statistics, shape, size, and texture features; (C) DeepSurv was developed based on the radiomic features. The risk score was calculated for each patient, and the patients were stratified into high- and low- risk groups according to the median risk score; DeepSurv nomogram for 3 and 5-year overall survival (OS) was generated for non-small cell lung cancer (NSCLC) patients. Calibration curves are drawn for the DeepSurv nomogram-predicted and actual survival of patients. The risk stratification could be used to guide individualized adjuvant chemotherapy for high-risk patients.





Clinical Model Development

The clinicopathological factors were analyzed using a univariate CPH regression analysis. The predictors with P<0.05 were included in the multivariate CPH regression analysis to identify the independent risk factors. The final model was selected by backward stepwise elimination, with Akaike information criteria as the stopping rule (34).



Clinical Plus DeepSurv Model Development and DeepSurv Nomogram Construction

The multimodal features and parameters, including the risk score and independent clinicopathological factors, were integrated into a single predictive model based on the multivariate CPH model. Based on the multivariable CPH regression analysis in the training cohort, a DeepSurv nomogram was developed. Thereafter, a DeepSurv nomogram risk score was derived for each patient.



Guide to Individualized Adjuvant Chemotherapy for Patients With NSCLC

The patients were divided into high- and low- risk groups according to the DeepSurv nomogram score. The treatment strategy was explored separately in high- and low-risk cohorts using a Kaplan–Meier analysis and log-rank test to find the cohort that benefited from chemotherapy. According to the lung cancer diagnosis and treatment recommendations, adjuvant chemotherapy was not recommended for NSCLC stages IA, IB (including lung cancer with high-risk factors), and IIA after complete resection, owing to the lack of high-level evidence (35–37). Therefore, we divided patients into low-risk (IA, IB, and IIA) and high-risk groups (IIB and IIIA), and conducted a Kaplan–Meier analysis and log-rank test on the survival rates of patients treated with adjuvant chemotherapy, to evaluate whether patients would benefit from the therapy.



Statistical Analysis

The differences in age, sex, TNM stage, and survival time for the training and validation datasets were assessed using the Mann–Whitney U test for continuous variables and the χ2 test for categorized variables. Model discrimination was measured using the concordance index (C-index) and compared for the two datasets. The proportional hazards assumption of the models was verified by examining the scaled Schoenfeld residual plots. Survival curves were generated using the Kaplan–Meier method and compared by two-sided log-rank tests. Calibration was evaluated for 3 and 5 years using a calibration plot, a graphical representation of the relationship between the observed and predicted survival, and the Greenwood-Nam-D’Agostino (GND) goodness-of-fit test (38). The prediction error of models was assessed using the “Boot632plus” split method with 1,000 iterations, to calculate estimates of prediction error curves. These estimates were summarized as the integrated Brier score, which represents a valid measure of overall model performance. This could range from 0, for a perfect model, to 0.25, for a noninformative model with a 50% incidence of the outcome (39). R software (version 3.4.4, http://www.r-project.org) was used for the statistical analysis. The DeepSurv model was developed using Python (Python package [lifeline 0.24.3, Python version 3.7]). The optimal cutoff point for continuous prognostic markers in the survival analysis was determined using X-tile (version 3.6.1; Yale University School of Medicine, New Haven, Conn) (40). The proportional hazards assumption of the models was verified using scaled Schoenfeld residual plots. The details of the packages used are described in the Appendix. All the codes are available: https://github.com/tomato08217/DeepSurvLungCa. All statistical tests were two-sided, with a significance level of 0.05.




Results


Clinicopathological Characteristics

The patients in our study were divided into two groups: the training cohort with 683 patients (378 males and 305 females; median age, 62 years; range, 54 to 69 years) and the validation cohort with 293 patients (155 males and 138 females; median age, 62 years; range, 56 to 68 years). The clinicopathological characteristics of all patients in the training and validation cohorts are listed in Table 1.


Table 1 | Demographic and clinicopathologic characteristics of patients in the training and validation cohorts.





Analysis of Clinicopathological Factors and Construction of Clinical Model

In the univariate Cox regression, age, sex, smoking, thyroid transcription factor-1(TTF-1), Ki-67, histologic type, and stage showed significant predictive values (P<0.05). After integrating these factors into the multivariate CPH model and using the Akaike information criteria(AIC)as a backward stepwise stopping rule, only the following variables emerged as predictive: age (older than 67 years) (HR, 1.039; 95% CI, 1.021–1.058), TTF-1 (positive) (HR, 0.623; 95% CI, 0.438–0.885), Ki-67 (high expression) (HR, 1.663; 95% CI, 1.191–2.322), stage IB (HR, 2.057; 95% CI, 1.043–4.057), stage IIA (HR, 2.431; 95% CI, 1.038–5.693), stage IIB (HR, 6.875; 95% CI, 4.110–11.503), and stage IIIA (HR, 8.731; 95% CI, 5.474–13.927). A log-rank test was performed, and Kaplan–Meier curves were plotted to test the risk stratification ability. Figures 3A–D shows the survival probability of the patients in the high- and low-risk cohorts. The results of the log-rank test indicated significant discrimination between the groups. The C-index values of the clinical model constructed by age, TTF-1, Ki-67, and disease stage were 0.788 and 0.739 in the training and validation cohorts, respectively. The TNM model in Table 2 was established based on multivariate Cox regression analysis, and the C-index of training and validation cohorts were 0.749 and 0.745, respectively.




Figure 3 | Kaplan-Meier survival analysis for age, TTF-1, Ki-67, and stage. The patients were stratified into high- and low-risk groups based on age (A) (P<0.001, log-rank test), TTF-1 (B) (P<0.008, log-rank test), Ki-67 (C) (P<0.001, log-rank test), and stage (D) (P<0.001, log-rank test).




Table 2 | Multivariate Cox proportional hazards (CPH) model regression analysis of independent risk factors.





Construction and Assessment of the Multimodality Prediction Model

The DeepSurv model, based on radiomics, yielded a C-index of 0.790 and 0.752 in the training and validation cohorts, respectively. Risk scores with independent risk factors were integrated to construct a clinical plus DeepSurv model (DeepSurv nomogram) using a multivariate CPH regression analysis. The C-index values of the clinical plus DeepSurv model were 0.821 and 0.768 in the training and validation cohorts, respectively. This model outperformed both the clinical and TNM models (C-index: 0.749 and 0.745 in the training and validation cohorts, respectively). The C-index of the multimodality prediction model is shown in Table 3. The DeepSurv nomogram for prediction performance of the 3 and 5 year survival was generated based on the risk score, age, TTF-1, Ki-67, and stage (Figure 4). Further, a calibration curve was drawn for these patients. The estimated versus observed values for 3 and 5 year survival probabilities intersected the 45° line, showing that the predicted probability was very close to the actual survival time of patients (Figure 5). In addition, the model showed a good calibration with P=0.39 in the GND test. Both the risk score and DeepSurv nomogram score demonstrated good risk stratification capacity in the Kaplan–Meier analysis of these patients (Figures 6A, B). The integrated Brier scores for the nomogram was 0.106 and 0.128 in the training and validation cohort, respectively, providing a more precise prognosis of OS than other models and systems (Table 3).


Table 3 | Harrell’s concordance index of the different modalities.






Figure 4 | Development of the DeepSurv nomogram by integrating the risk score combined with the clinicopathological factors in the training cohort.






Figure 5 | Predicted probability of the 3- and 5-year survival time. The calibration curve of the DeepSurv nomogram. The diagonal gray line represents an ideal evaluation, and the solid blue and yellow lines represent the performance of the DeepSurv nomogram.






Figure 6 | Predictive capacity of the risk score and the DeepSurv nomogram score. The Kaplan-Meier curve shows that both the risk score and DeepSurv nomogram score could effectively discriminate between patients with better and worse survival (A, B) (P<0.001, log-rank test).





Clinical Use

A decision curve analysis was performed to determine the clinical usefulness of the DeepSurv nomogram by quantifying the net benefits at different threshold probabilities. This showed that the DeepSurv nomogram had a higher overall net benefit as compared to other clinical models across the majority of reasonable threshold probabilities, as shown in Figure 7.




Figure 7 | Decision curve analysis for each model. The y-axis measures the net benefit, which was calculated using true-positive and false-positive results. The clinical plus DeepSurv model had the highest net benefit at a threshold of 0.1 to 0.9 among all positive (line labeled “All”) and negative predictions (line labeled “None”), compared to the three other models (line labeled “clinical model, deep learning model, and TNM model”).





Guide to Individualized Adjuvant Chemotherapy for Patients With NSCLC

The patients were divided into high- and low-risk groups according to the cutoff value of the DeepSurv nomogram score, and the sensitivity of patients to chemotherapy was analyzed. The results showed no statistically significant difference in the survival rate of patients in the high-risk group, irrespective of administration of adjuvant chemotherapy (P=0.720). In contrast, the prognosis of the low-risk group displayed a statistically significant difference, with a poorer prognosis in patients who had received chemotherapy (P<0.001). In addition, a Kaplan–Meier analysis and log-rank test were conducted on the survival rate of the high-risk group (IIB and IIIA), regardless of administration of adjuvant chemotherapy. This showed no statistically significant difference in the survival rate of the high-risk group, irrespective of whether they underwent adjuvant chemotherapy or not (P=0.360). In contrast, the prognosis of the low-risk group(I A、I B and II A) displayed a statistically significant difference, with a poorer prognosis in patients who had received chemotherapy (P<0.001; Figures 8A–D).




Figure 8 | A Kaplan-meier analysis and log-rank test were performed to determine the survival rate of patients at high and low risk who with or without adjuvant chemotherapy. The results showed that there was no significant difference in survival rate among high-risk patients who with or without chemotherapy (A) (P=0.720, log-rank test); Patients in the low-risk group who received chemotherapy had a lower survival rate than those who did not (B) (P<0.001, log-rank test). There was no significant difference in survival rate among high-risk patients (IIB, IIIA) who with or without chemotherapy (C) (P=0.360, log-rank test); Patients in the low-risk group (IA,IB, IIA) who received chemotherapy had a lower survival rate than those who did not (D) (P<0.001, log-rank test).






Discussion

This study constructed and validated a DeepSurv nomogram based on CT radiomic features and independent risk factors. This DeepSurv model exhibited improved OS prediction performance in patients with NSCLC, compared with other models and systems with a C-index of 0.821 and 0.768 in the training and validation cohorts, respectively. It also exhibited good calibration evaluation and risk stratification capability. However, our results show that both high- and low-risk patients did not benefit from chemotherapy.

In recent years, artificial intelligence has been developing rapidly in the field of lung cancer. In our study, we used a new algorithm, DeepSurv, to construct the risk scores. Deep learning is useful for large-scale datasets. DeepSurv is a multi-layer perceptron similar to the Faraggi–Simon network (41, 42). However, it allows a deep architecture (i.e., more than one hidden layer) and applies novel deep learning techniques, such as weight decay regularization, rectified linear units, batch normalization, and dropout (28). Therefore, the DeepSurv model works like the standard linear CPH model, but out performs it in predicting survival data with linear and nonlinear risk functions. We built a DeepSurv nomogram with the highest C-index by combining the risk score and clinicopathological factors. In the clinical model, age (cutoff, 67) (HR, 1.039; 95% CI, 1.021–1.058), TTF-1 (positive) (HR, 0.623; 95% CI, 0.438–0.885), Ki-67 (high expression) (HR, 1.663; 95% CI, 1.191–2.322), and stage IIIA (HR, 8.731; 95% CI, 5.474–13.927) were the independent risk factors. These results were consistent with those of previous studies. TTF-1 is expressed in both the thyroid and lung tissues, and plays an important role in cell differentiation. The impact of TTF-1 on the prognosis of patients is still controversial; however, some studies have reported that TTF-1 positivity is better for the prognosis of patients (43, 44). Ki-67 is an important cell proliferation marker and is related to the prognostic value of some tumors. However, it has a negative effect on the prognosis of NSCLC (45, 46). By integrating these clinical factors and the DeepSurv algorithm’s output, our DeepSurv model demonstrated better performance in predicting the prognosis than that in previous studies. Yang et al. (47) developed a radiomic nomogram by combining the optimized radiomic signatures extracted from 2-D and/or 3-D CT images and clinical predictors, to assess the OS of patients with NSCLC. Their radiomics nomogram showed a significant improvement in patient survival prediction, with a C-index of 0.747, 0.729, and 0.710 in the training, internal validation, and external validation cohorts, respectively. Wang et al. (48) built a model integrating clinical, hematological, and CT radiomic features in predicting the survival of patients with locally advanced NSCLC. They found that the integrative nomogram achieved a C-index of 0.792 and retained 0.743 in the cross-validation analysis; thus, outperforming radiomic, clinical, or hematological models alone. Huang et al. (49) developed a radiomic signature to estimate disease-free survival (DFS) in patients with early-stage (stage I–II) NSCLC. They showed that the radiomic signature was significantly associated with DFS. Incorporating the radiomic signature into the radiomics-based nomogram resulted in better performance in the estimation of DFS (C-index: 0.72) than incorporating the radiomic signature into the clinicopathologic nomogram (C-index: 0.69). The neural network can also serve as a recommender system by including a categorical variable representing a treatment group. This can be used to provide personalized treatment recommendations based on an individual’s calculated risk. Our research shows that risk scores can stratify patients’ risk and provide clinical evidence for additional therapy or intensive follow-up for patients at high-risk or with a poor prognosis.

Furthermore, the calibration curve of the DeepSurv nomogram showed that the predicted survival time was close to the actual survival time. Our prediction model for prognosis displayed good stability and reliability. The decision curve analysis showed that the DeepSurv nomogram had a higher overall net benefit than three other clinical models across the majority of reasonable threshold probabilities. This shows that the risk score and DeepSurv nomogram have more potential in postoperative prognosis assessment. However, we believe that it is still necessary to conduct a large-scale independent prospective multicenter cohort to verify our results.

Finally, we aimed to use DeepSurv to guide individualized adjuvant chemotherapy for patients with NSCLC. No significant difference in the survival rates was observed in the high-risk group, irrespective of the use of adjuvant chemotherapy. In contrast, the prognosis of the low-risk group displayed a significant difference, with a poorer prognosis in patients who had received chemotherapy. This indicates that high-risk patients do not benefit from adjuvant chemotherapy. Additionally adjuvant chemotherapy alone did not improve the survival rate of high-risk patients with an advanced clinical stage, suggesting that the clinical stage may require additional treatment or a close follow-up. In addition, the low-risk groups did not appear to benefit from adjuvant chemotherapy, and it may lead to a poorer prognosis. Our research results are consistent with the extant literature (50). Based on the findings of our study, the prognosis of NSCLC can be predicted to analyze the independent risk factors that affect the prognosis of patients. Further, individualized treatment of patients can be guided.

Like most studies, our study has several limitations (51). First, this is a retrospective study, so there may be selection bias. Second, although the sample size is slightly larger than that in previous studies, it is a single-center study with no external verification. Third, genomic characteristics were not considered. The genetic phenotype of the tumor may explain the individual differences in survival prognosis at a biological level. We will integrate such data in future studies.

In conclusion, the DeepSurv nomogram based on the radiomic features and independent risk factor characteristics displayed a better prognostic and predictive performance for NSCLC. It can be used to guide the individualized treatment of high-risk patients. Therefore, DeepSurv nomogram can provide guidance to physicians in terms of personalized treatment recommendations.
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Background

Lung squamous cell carcinoma (LUSC) represents 30% of all non-small cell lung carcinoma. Targeted therapy is not sufficient for LUSC patients because of the low frequency of targeted-effective mutation in LUSC whereas immunotherapy offers more options for patients with LUSC. We explored a ferroptosis-related prognostic signature that can potentially assess the prognosis and immunotherapy efficacy of LUSC patients.



Methods

A total of 502 LUSC patients were downloaded from The Cancer Genome Atlas (TCGA). The external validation data were obtained from the Gene Expression Omnibus (GEO): GSE73403. Then, we identified the candidate genes and constructed the prognostic signature through the Cox survival regression analyses and least absolute shrinkage and selection operator (LASSO). Risk score plot, Kaplan–Meier curve, and ROC curve were used to assess the prognostic power and performance of the model. The CIBERSORT algorithm estimated the fraction of immune cell types. TIDE was utilized to predict the response to immunotherapy. IMvigor210 was used to explore the association between the risk scores and immunotherapy outcomes. A nomogram combined selected clinical characteristics, and the risk scores were constructed.



Results

We screened 132 differentially expressed ferroptosis-related genes. According to KEGG and GO pathway analyses, these genes were mainly engaged in the positive regulation of cytokine production, cytokine metabolic process, and oxidoreductase activity. We then constructed a prognostic model via LASSO regression. The proportions of CD8+ T cells, CD4+ activated T cells, and follicular helper T cells were significantly different between low-risk and high-risk groups. TIDE algorithm indicated that low-risk LUSC patients might profit more from immune checkpoint inhibitors. The predictive value of the ferroptosis gene model in immunotherapy response was further confirmed in IMvigor210. Finally, we combined the clinical characteristics with a LASSO regression model to construct a nomogram that could be easily applied in clinical practice.



Conclusion

We identified a prognostic model that provides an accurate and objective basis for guiding individualized treatment decisions for LUSC.





Keywords: lung squamous cell carcinoma, ferroptosis, prognostic model, microenvironment, nomogram



Introduction

Lung cancer has the highest morbidity and mortality of all cancers globally (1), and non-small cell lung cancer (NSCLC) comprises approximately 85%. Currently, most lung cancer patients arrived at their first diagnosis with advanced-stage disease, generally because of a lack of typical clinical symptoms. Over the past decade, specific targeted therapy has emerged as the most promising treatment. However, molecular aberrations in specific genes, such as epidermal growth factor receptors, are required for targeted therapies to be effective in lung adenocarcinoma patients (2, 3).

To date, there are no approved targeted therapies for lung squamous cell carcinoma (LUSC). The targeted therapy is not sufficient for LUSC because of the low frequency of targeted-effective mutation in LUSC, whereas immunotherapy offers more options for patients with LUSC. The dramatic development of immune checkpoint inhibitors (ICIs) has marked a revolution in the treatment of LUSC. Early-stage clinical trials have shown that objective response rates to ICIs are approximately 14%–20%. FDA approves pembrolizumab monotherapy as first-line treatment for LUSC patients who has high PD-L1 expression (4, 5). Furthermore, ICIs and chemotherapy have been approved as the first-line treatment (6). However, because of the high tumor heterogeneity of LUSC, the immunotherapy efficacy may differ greatly across LUSC patients (7). Meanwhile, the high price and limited availability of ICIs severely inhibit their clinical use. Thus, the development of new treatment approaches and the exploration of effective prognostic models for screening high-risk patients with LUSC has attracted increasing attention for the past few years.

Ferroptosis is a type of oxidative cell death presented in neurological disorders, blood diseases, and tumors (8). Over the years, it has been proposed that ferroptosis might prove useful as a promising target for killing cancer cells that are resistant to conventional treatment. Many genes validated to be associated with ferroptosis are involved in the regulation of tumorigenesis, such as TP53 (9), SLC7A11 (10), FBXW7 (11), and CISD2 (12). There is an increasing body of literature that recognizes tumor immunity depending on the tumor microenvironment that regulated iron metabolism and hemostasis in vivo (13, 14). Zhang (15) found that oxygen radicals induced lethal ferroptosis of tumor, and the resulting tumor antigens enhanced the immunogenicity. Therefore, immunomodulation and ferroptosis performed synergistically to achieve potent therapeutic effects. Thus, the in-depth exploration of biomarkers associated with tumor immunity and ferroptosis could contribute to a comprehensive picture of cancer immunotherapy.

Currently, several studies have established ferroptosis prognostic signatures of cancer from public databases. Lu (16) discovered a novel risk model composed of ferroptosis gene variants in order to predict esophageal squamous cell carcinoma outcomes. Ye (17) built ferroptosis-related genes (FRGs) that were identified to predict prognoses of ovarian cancer and could potentially be used to target new treatments. However, there has been little discussion about the role of FRGs in LUSC patients.

We used the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases to construct ferroptosis-related prognostic signatures for LUSC patients. Comparing tumor tissues with adjacent normal tissues in LUSC patients, we determined differentially expressed FRGs. Furthermore, we used the training set to identify survival-related signatures and build an FRG prognostic model. The model’s accuracy and reliability were validated by an external GEO cohort. Overall, researchers examined a ferroptosis-related risk model that could be used to promote better clinical strategies for LUSC patients.



Methods and Materials


Data Source

The transcriptomic data of 502 LUSC patients, as well as the corresponding clinical parameters, were downloaded from the TCGA. The external validation data were obtained from GEO: GSE73403 (18). IMvigor210 (19) was used to explore the relation between the risk model and immunotherapy response. The transcriptomic data in each database were normalized to fragments per kilobase of transcript per million mapped reads (FPKMs) and subjected to further log2 transformation using the limma Bioconductor package (20). There were 587 FRGs downloaded from the FerrDb (shown in Supplementary Table 1) as candidate genes. The transcriptomic and corresponding clinical factors of IMvigor210 were downloaded via “IMvigor210CoreBiologies” R packages (21).



Identification of Differentially Expressed FRGs

The limma Bioconductor package was used to detect the differentially expressed genes (DEGs) between tumor and normal tissues in the TCGA dataset. The threshold values were set up as follows: log2-fold change ≥ 1 and p-value <0.05. Pheatmap, a package for generating heatmaps and volcano plots, was used to generate the heatmap and volcano plot. We used Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) enrichment analyses to examine the possible functions of DEGs (22, 23), which provide a complete set of functional annotation methods for understanding the biological significance of a large numbers of genes. To screen out FRGs, we merged all data by taking the interaction of the DEGs and candidate genes.



Construction and Validation of the Ferroptosis-Related Gene Model

Univariate Cox regression analysis was conducted in the TCGA cohort to find FRGs that were linked to overall survival (OS) by employing the “survival” R package. Then, the TCGA cohort was randomly divided into the training and testing cohorts at a 7:3 ratio by the “caret” R package. Through the use of the “glmnet” R package (24), we developed a prognostic signature using the least absolute shrinkage and selection operator (LASSO) in the training cohort. The risk score of each LUSC patient was calculated as follows:

	

The same formula used in the training set was used to determine the risk scores of patients in the testing and external validation cohorts. On the basis of the median risk score, all LUSC patients were divided into low- and high-risk groups. Using Kaplan–Meier plots, we evaluated and compared the OS time between groups. To determine the prognostic model’s sensitivity and specificity, ROC curves were calculated (by employing the “time ROC” R package) (25).



Identification of the Relationship Between the Risk Score and the Immune Landscape

CIBERSORT identified the abundances of different cell types using RNAseq profiles of bulk samples (26). In summary, employing signatures from 500 marker genes, CIBERSORT can simultaneously count 22 immune cell types at once and estimate their relative amounts. We used CIBERSORT to compare the amount of tumor-infiltrating immune cells in different groups of LUSC patients.

We selected 8 transcripts to be immune-checkpoint-relevant, namely, CD274, CTLA4, HAVCR2, LAG3, PDCD1, PDCD1LG2, TIGIT, and SIGLEC15, and extracted their expression levels. The expression of risk score and selected immune-checkpoint-relevant genes was illustrated in a heatmap by “pheatmap” R package. The TIDE algorithm was used to estimate the likelihood of an immunotherapy response (27).



Nomogram Development and Validation

Based on the risk score and clinical parameters, we designed a predictive nomogram to guide clinical decision-making. The survival-related clinical variables were screened at a p-value of less than 0.05 via univariate Cox analysis. An analysis of multivariate survival was next performed to create a nomogram. The nomogram prediction probabilities were plotted against the measured rates using a calibration curve. The nomogram’s clinical value was investigated using decision curve analysis (DCA) (28). The nomogram, calibration curves, and DCAs were all plotted using the R packages “rms” and “rmda.”



Statistical Analyses

R Studio software (version 1.4.1717) was used to conduct all analyses. To compare samples from normal and tumor, we used Student’s t-test. Where appropriate, the χ2 test or Fisher’s test was applied to determine the connection between the risk score and clinical parameters. Kaplan–Meier plots of survival times were analyzed using the log-rank test. All p-values were two-tailed with a significance level of 0.05.




Results


Screening for 12 DEGs Associated With a Poor Prognosis

The study protocol is shown in Figure 1. We obtained 16,164 DEGs between LUSC tissues and normal tissues from the TCGA. Among them, 10,623 were downregulated, and 5,541 were upregulated (shown in Figures 2A, B). We found that the upregulated DEGs were mainly enriched in systemic lupus erythematosus, small cell lung cancer, pyrimidine metabolism, p53 signaling pathway, mismatch repair, and homologous recombination. The downregulated genes were significantly enriched in pathways including cytokine–cytokine receptor interactions, viral myocarditis, and chemokine signaling pathways (Figure 2C). The upregulated DEGs in the GO functional analysis were mainly associated with biological processes involving spindle organization, nuclear division, organelle fission, epidermal cell differentiation, and cell cycle DNA replication. The downregulated DEGs were enriched in regulation of angiogenesis, and regulation of the ERK1 and ERK2 cascades (shown in Figure 2D).




Figure 1 | Flowchart.






Figure 2 | Genes differentially expressed in lung squamous cell carcinoma. (A, B) The heatmap and volcano plot shows differentially expressed genes in lung squamous cell carcinomas based on the TCGA database. Up- and downregulated genes are indicated in red and blue, respectively. (C) Bubble graph for KEGG pathways. (D) Bubble graph for GO pathways.



The experimentally validated FRGs were crossed with the DEGs. In total, the 132 differentially expressed FRGs were further screened in the TCGA cohort. We performed functional enrichment analysis of differentially expressed FRGs in LUSC. The chord plot and bubble plot showed that the FRGs were mainly enriched in the response to oxidative stress, positive regulation of cytokine production, cytokine metabolic process, oxidoreductase activity, and HIF-1 signaling pathway (shown in Figures 3A, B).




Figure 3 | Functional analysis based on the differentially expressed FRGs. (A) Chord plot of molecular function and biological process. (B) Bubble graph of molecular function and biological process.



Excluding samples with incomplete clinical data and OS of less than 30 days, 482 patients from the TCGA were analyzed. As shown in Figures 4A–L, 12 genes associated with ferroptosis were ruled out as prognostic factors.




Figure 4 | Kaplan–Meier curve of the selected FRGs from the TCGA dataset. (A) Kaplan–Meier curve according to ANO6. (B) Kaplan–Meier curve according to CXCL2. (C) Kaplan–Meier curve according to ENPP2. (D) Kaplan–Meier curve according to HELLS. (E) Kaplan–Meier curve according to IL1B. (F) Kaplan–Meier curve according to MUC1. (G) Kaplan–Meier curve according to NNMT. (H) Kaplan–Meier curve according to TP63. (I) Kaplan–Meier curve according to PLIN2. (J) Kaplan–Meier curve according to TFR2. (K) Kaplan–Meier curve according to SMAD7. (L) Kaplan–Meier curve according to DPP4.





Establishment and Validation of a Ferroptosis-Related Prognostic Signature

We randomly divided 482 LUSC patients from the TCGA database into a training set and a testing set at a 7:3 ratio. To validate our prognostic signature based on FRGs, we used GSE73403 as a validation cohort. A LASSO model was built from the TCGA training set to develop a prognostic model. The above 12 FRGs were further narrowed down to 4 genes, namely, CXCL2, SMAD7, HELLs, and IL1B (Figures 5A, B). The risk score was calculated as follows: 0.01967 × CXCL2 + 0.1017 × SMAD7 − 0.0274 × HELLS + 0.069 × IL1B. The risk scores of all patients were calculated. In accordance with the median risk score, patients were separated into two groups. The high-risk patients experienced a worse OS than low-risk patients (shown in Figures 5C, D). We created 3-year and 5-year ROC curves to determine the prognostic efficacy. The area under the curve (AUC) was 0.668 for 3 years and 0.646 for 5 years, suggesting that the model was well established (shown in Figure 5E).




Figure 5 | Construction of prognostic signature for LUSC in the TCGA training set. (A) The selection of optimal predictive variables. (B) LASSO coefficients of the 12 variables. (C, D) Risk plot (C) and overall survival (D) between the high-risk and low-risk groups. (E) The receiver operating curve for overall survival over time.



In both testing and validation sets, the proposed 4-gene prognostic model was further validated. The Kaplan–Meier survival plots of the test set indicated that the prognostic model could classify LUSC patients into high-risk and low-risk groups (Figures 6A, B). The patients with high-risk scores had significantly shorter survival times than low-risk patients (HR 1.74, 95% CI 1.07–2.83, p = 0.027). According to the results from the training and testing cohorts, high-risk LUSC patients in the external validation set had a worse OS (shown in Figure 6C). The AUC values were 0.603, 0.634, and 0.654 for 1, 3, and 5 years in the testing set (Figure 6D). In the external validation set, the 1-, 3-, and 5-year AUC values were 0.800, 0.606, and 0.446, respectively (Figure 6E). The risk plot of external dataset was shown in (Figure 6F), revealing the prognostic model could distinguish LUSC patients with high-risk well.




Figure 6 | Validation of prognostic signature for LUSC. (A, B) Risk plot (A) and overall survival (B) in the TCGA testing set. (C) Overall survival analysis in the GEO validation set. (D, E) The receiver operating curve for overall survival in the TCGA testing set (D) and GEO validation set (E). (F) Risk plot in the GEO validation set.



We performed stratified analyses of the FRG prognostic signature for associations with clinical parameters, including age, sex, and TNM stage. The Kaplan–Meier plot indicated that the prognostic risk model accurately classified LUSC patients into short-term and long-term survival groups among patients older than 65 years (shown in Figure 7A). However, among people younger than 65 years old, the HR for high-risk group patients was 1.22 (95% CI 0.73–2.05) (p = 0.452, shown in Figure 7B). When stratified by sex and N stage, the risk score was significantly associated with survival in both groups (shown in Figures 7C–F). The relationship was not noteworthy among people with late T stage disease. According to the TNM stage, no association between risk scores and survival was observed in LUSC patients with advanced stage, but high-risk patients with early stage had a worse prognosis (shown in Figures 7G, H). The forest plot of the univariate Cox regression is shown in Supplementary Figure 1.




Figure 7 | Kaplan–Meier curve of stratified analyses of the FRG prognostic signature for associations with clinical characteristics. (A) OS curve in patients older than 65 years old. (B) OS curve in patients younger than 65 years old. (C) OS curve in the T1+T2 stage. (D) OS curve in the T1+T2 stage. (E) OS curve in the N0 stage. (F) OS curve in the N+ stage. (G) OS curve in stage I + stage II. (H) OS curve in stage III + stage IV.





Ferroptosis-Related Gene Signature Related to Immune Cell Infiltration

The landscape of immune cell infiltration in the different groups in the TCGA cohort is demonstrated in a heatmap (Figure 8). There were significant differences in the SMAD7, CXCL2, HELLS, and IL1B expression levels among the infiltrating immune cells, including CD8+ T cells, follicular helper T cells, regulatory T cells, macrophages, and so on (shown in Figure 9A).




Figure 8 | Infiltration of immune cells among high-risk groups versus low-risk groups.






Figure 9 | Immune cell infiltration in different high- and low-risk groups in the TCGA cohort. (A) Heatmap of immune cell proportions. (B) The bar graph showing the difference between infiltrated immune cells in the tumor microenvironment.  *p < .05, **p < .01, ***p < .001, and ns means not significant.



We compared the tumor-infiltrating immune cells between the low-risk and high-risk groups. The CIBERSORT was applied to evaluate the proportion of immune cells. The proportions of CD8+ T cells, CD4+ memory activated T cells, and follicular helper T cells were significantly increased in the low-risk LUSC patients (Figure 9B). Additionally, we observed that the relative fractions of regulatory T cells, M0 macrophages, M2 macrophages, and neutrophils were significantly increased in the high-risk group. However, there were no significant differences in gamma delta T cells, resting NK cells, activated NK cells, or dendritic cell infiltration between the two groups.

The expression of risk score and selected immune-checkpoint-relevant genes was illustrated in a heatmap (shown in Figure 10A). The risk score had a notable direct correlation with the expression of all these immune-checkpoint-relevant transcripts, indicating that the risk score represented the state of tumor-induced immunosuppression.




Figure 10 | Immunotherapy response of LUSC. (A) The heatmap of expression of risk score and selected immune-checkpoint-relevant genes. (B) The violin plot for the TIDE scores between the high- and low-risk groups. *p < .05, **p < .01, and ***p < .001.



To predict the clinical outcome of immune checkpoint inhibitors, TIDE was used. TIDE scores differed significantly between high-risk and low-risk groups (shown in Figure 10B). According to TIDE, low-risk patients had a higher exclusion score and a lower dysfunction score than high-risk patients.

The IMvigor210 cohort investigated the molecular biomarkers that could predict the immunotherapy efficacy among muscle invasive bladder cancer patients. We further detected the prognostic signature in predicting immunotherapy response, including survival, therapy response, and immune checkpoints, in the IMvigor210 cohort. The risk scores were significantly different between non-responders and responders to immunotherapy (Figure 11A). Meanwhile, the low-risk patients harbored higher TMB and TNB than high-risk patients (Figures 11B, C). According to the Kaplan–Meier survival plots, patients could be classified into low- and high-risk groups based on the prognostic model (shown in Figure 11D).




Figure 11 | Immunotherapy response in IMvigor210. (A) The violin plot for risk scores between responders and non-responders to immunotherapy. (B) The violin plot for TMB between high- and low-risk groups. (C) The violin plot for TNB between high- and low-risk groups. (D) Survival curves of predicting the OS using risk score. *p < .05, and *** p < .001.





Construction of the Nomogram

A prognostic nomogram was established by integrating the FRG signature and clinical characteristics. According to the univariate Cox regression analyses, the risk score, sex, age, T stage, M stage, and clinical stage were potential independent prognostic factors (shown in Supplementary Table 2). In order to predict the survival rates over a 3- and 5-year period, we incorporated all of these factors into a nomogram. Based on the nomogram, the survival rate was assessed by summing several variables, including risk score, T stage, and clinical stage (Figure 12A). According to the nomogram, the AUCs over 3 and 5 years were 0.719 and 0.708, respectively (Figure 12B). Calibration curves of the nomogram indicated an accordant agreement for the 3-year and 5-year OS (Figure 12C). The DCA showed that if the threshold probability of a patient was >30%, using the nomogram to predict 3-year OS and 5-year OS demonstrated a larger benefit than did the clinical factors (Figures 12D, E). Overall, the prognostic nomogram was superior in predicting the survival outcomes of LUSC patients.




Figure 12 | Assessment of a nomogram based on clinical characteristics and the risk scores. (A) A nomogram based on the risk model and clinical parameters. (B) Time-dependent receiver operating curve for predicting overall survival. (C) Calibration curve of the nomogram in the TCGA dataset at 3-year survival and 5-year survival. (D, E) DCA evaluating the clinical usefulness in the TCGA dataset at 3-year survival (D) and 5-year survival (E).






Discussion

In recent decades, outcome predictions for LUSC patients have primarily relied on clinical characteristics, including age, TNM stage, and some serum tumor biomarkers. However, the predictive efficacy of these factors is limited and they are not able to assist in clinical decision-making. Therefore, the identification of more effective biomarkers could help physicians judge the prognosis and make subsequent individual treatment decisions. With advances in sequencing technology, genomics might be useful to identify predictive biomarkers in malignancies. However, one single gene offers little predictive power for the outcomes of LUSC patients. A number of multigene models have demonstrated much better predictive power than single genes.

Ferroptosis is a recently identified method of regulating cell death involving iron-dependent ROS generation (8). Recent studies have demonstrated that ferroptosis contributes to the progression of various cancers, including adrenocortical carcinoma, pancreatic carcinoma, renal cell carcinoma, and hepatocellular carcinoma (29, 30). According to Wang (31), immunotherapy-activated CD8+ T cells aggravated ferroptosis-specific lipid peroxidation, thereby enhancing immunotherapy’s anti-tumor efficacy. Zhang (15) showed that hydroxyl radicals caused lethal ferroptosis in tumor cells, and the immunogenicity of the microenvironment was enhanced by the exposed tumor antigens as a result. Ferroptosis is likely to play a role in tumor immunity. A previous study (32) showed that the ferroptosis regulators served as a prognostic factor for recurrence and survival in pan-cancer tissue. Furthermore, the ferroptosis score was an independent predictor of response to immunotherapy. Collectively, understanding mechanisms of ferroptosis in the tumor immune microenvironment in LUSC may facilitate biomarker-guided clinical decisions.

Using FRG signatures, we identified high-risk LUSC patients and investigated the relationship between the risk signature and the tumor immune microenvironment. First, we screened FRGs from the FerrDb database and identified 132 DEGs in the TCGA cohort. To investigate the molecular mechanisms and biological functions of these genes, we conducted functional analyses. In the TCGA cohort, twelve FRGs were screened out as prognostic genes by univariate Cox regression analysis. We then constructed a prognostic model of 4 FRGs via LASSO regression. A favorable predictive efficacy was demonstrated in both the TCGA testing set and the external validation set. Finally, we combined the clinical characteristics with a LASSO regression model to construct a nomogram that could be easily applied in clinical practice.

All four genes have been validated as ferroptosis-related. It has recently been proposed that ferroptosis is likely to release several immune modulators that trigger an anti-tumor immune response. Among the 4 FRGs in the prognostic model, CXCL2 is the ligand of the chemokine receptor CXCR2 and is mainly expressed on macrophages and myeloid-derived neutrophils. CXCL2 can recruit myeloid-derived suppressor cells and tumor-associated macrophages and increase immunosuppressive effects, thus enhancing cancer cell proliferation, invasion, and metastasis (33, 34). CXCL2 has been reported to facilitate myeloid cell migration and CD8+ T-cell exhaustion, causing accelerated tumor growth and invasion in glioblastoma (35). In the context of hepatocellular carcinoma, CXCL2 is downregulated in tumor tissues compared to adjacent normal tissues, and upregulation of CXCL2 inhibited angiogenesis and the aggressiveness of hepatocellular carcinoma (36). However, Peng (37) found that CXCL2 was a major chemokine involved in regulating the recruitment of neutrophils into the tumor immune microenvironment and promoting the production of prometastatic factors with positive feedback. At present, there is a relative dearth of studies exploring the role of CXCL2 in the tumor immune microenvironment of LUSC.

Previous studies have revealed that SMAD7 acts as a tumor suppressor in a variety of cancers, including gastric cancer (38), bladder cancer (39), and hepatocellular carcinoma (40). Nevertheless, several studies have pointed out that SMAD7 might promote tumor progression, migration, and invasion. SMAD7 enhanced TGF-β induction of c-Jun and HDAC6 and contributed to tumor aggressiveness in prostate cancer cells (41). In colorectal cancer, SMAD7 expression was associated with poorly differentiated cell morphology, higher cell proliferation, and liver metastases (42). Luo (43) found that overexpression of SMAD7 overexpression increased lung cancer incidence. Zhou (44) reported that overexpression of SMAD7 promoted proliferative and migratory capacities in pancreatic cancer. Taken together, the literature on the involvement of SMAD7 in tumor progression has reported contradictory data about its protumorigenic or antitumorigenic role in different types of cancer. In our study, the expression of SMAD7 was negatively associated with CD8+ T cells and positively associated with regulatory T cells and M0 macrophages. Those with high SMAD7 expression have significantly shorter OS compared to those with low expression. Taken together, we speculated that SMAD7 overexpression might contribute to immunological suppression and a poor prognosis in LUSC. Additional studies are required to clarify the exact mechanism of SMAD7.

HELLS, a member of the SNF2 chromatin remodeling protein family, modifies the nucleosome organization and position by disrupting histone–DNA interactions (45). HELLS has been reported to maintain cancer cell stemness by controlling DNA methylation patterns (46). Overexpression of HELLS enables continuous cell cycle activity and proliferation and is associated with poor outcomes. Hou (47) revealed that HELLS might serve as an oncogene in pancreatic cancer, and downregulating HELLS impaired tumor growth. In hepatocellular carcinoma, HELLS is involved in chromatin remodeling and epigenetic silencing, thus promoting tumor proliferation and metastasis (48). Additionally, Zhu (49) found that high expression of HELLS was related to an improved prognosis in lung cancer patients. Xing (50) reported that HELLS expression levels were correlated with the OS of cervical carcinoma and endocervical adenocarcinoma. Our results suggested that patients with high HELLS expression displayed better OS. In conclusion, these results indicated that HLELS plays different roles in different types of cancers.

IL-1β, a member of the IL-1 cytokine family, plays a critical role in cytokine production, cellular migration, angiogenesis, and the immune response. In pancreatic cancer, IL-1β activated quiescent pancreatic stellate cells and promoted an immunosuppressive microenvironment rich in M2 macrophages, myeloid-derived suppressor cells, regulatory B cells, and Th17 cells (51). Kaplanov (52) found that implanted breast cancer tumors regressed in IL-1β-deficient mice or in wild-type mice treated with anti-IL-1β antibodies. Furthermore, the blockade of IL-1β and PD-1 completely abrogated the tumors.

The regulatory T cells were related with worse prognosis in various solid tumors, including breast cancer, pancreatic cancer, and ovarian cancer (53). Tian (54) reported that the regulatory T cells were correlated with histopathological grade in gliomas, indicating that the regulatory T cells might play a crucial role in carcinogenesis. Cui (55) found that follicular helper T cells were critical for germinal center formation by supporting B cells and correlated with prolonged survival in lung adenocarcinoma patients. However, Eschweiler (56) found that follicular helper T cells were prevalent in multiple tumors, including NSCLC, melanoma, breast cancer, and colorectal cancer. They were located in tertiary lymphoid structures and presented superior immunosuppressive capacity. A previous study revealed that M0 and M2 macrophages were independent prognostic factors and associated with a high risk of relapse in multiple solid tumors, including colorectal cancer (57), breast cancer (58), and glioblastoma (59). Based on our findings, the proportions of anti-tumor immune cells, including CD8+ T cells, CD4+ memory activated T cells, and follicular helper T cells, were significantly increased in the low-risk group compared with the high-risk group. Meanwhile, the immunosuppressive cells, including regulatory T cells, M0 macrophages, and M2 macrophages, were significantly accumulated in the high-risk group.

The risk score exhibited a significantly positive relation with all these immune-checkpoint-relevant transcripts, indicating that the risk score represented the state of tumor-induced immunosuppression. We further estimated the TIDE algorithm to identify patients who might benefit from ICIs. We found that high-risk LUSC patients with a higher dysfunction score and a lower exclusion score might benefit less from ICIs than low-risk LUSC patients. The results of immune-checkpoint-relevant transcripts and TIDE algorithm were consistent with CIBERSORT, indicating that the high-risk LUSC patients more likely exhibited an immunosuppressive tumor microenvironment.

The study has important implications for the prognosis and treatment for LUSC patients. Above all, we provided a new FRG signature to guide clinical practice and risk stratification. The patients with a low risk score were more likely to benefit from ICIs and experienced longer survival time. Secondly, we identified several critical ferroptosis genes that might offer therapeutic targets in LUSC. The previous study (60) searched for FRGs in LUSC patients. They identified 16 genes and built a risk model for OS. Instead, we constructed a 4-gene prognostic model with the desired efficacy. Feng (61) constructed an algorithm based on FRGs and explored the relation of ferroptosis score and immunotherapy response among LUSC patients. Aside from research on immunotherapy response and prognosis among LUSC patients, the present study further explored the prognostic value of the model among other solid tumors.

Our study has some limitations. First, an open-source database was used to download mRNA expression data and related clinical information. These findings have yet to be verified in clinical trials. Additionally, lung squamous cancer is a complex disease regulated by multiple factors, such as the environment, genetics, and epigenetics. Additional molecular biological experiments are required to confirm that the 4 FRGs have roles in the progression of LUSC. Finally, the risk model could not provide the prognostic value compared to several commonly used predictors, including pathological grade and treatment strategy, because of missing TCGA data.

In summary, we identified an FRG signature to predict the OS of LUSC patients. This risk signature has utility as a clinical prognostic tool for guiding clinical practice and risk stratification. Furthermore, the low- and high-risk groups identified by the signature had different degrees of immune cell infiltration and response to immunotherapy. Thus, this prognostic model provides an accurate and objective basis for guiding individualized treatment decisions for LUSC.
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Nowadays, Jin-Fu-Kang oral liquid (JFK), one of Chinese herbal medicines (CHMs) preparations, has been widely used as an adjuvant therapy for primary non-small cell lung cancer (PNSCLC) patients with the syndrome of deficiency of both Qi and Yin (Qi–Yin deficiency pattern) based on Traditional Chinese Medicine (TCM) theory. However, we found insufficient evidence of how long-term CHM treatment influence PNSCLC patients’ progression-free survival (PFS). Thus, using electronic medical records, we established a nomograph-based prognostic model for predicting PNSCLC patients’ PFS involved with JFK supplementary formulas (JFK-SFs) over 6 months, in order to preliminarily investigate potential predictors highly related to adjuvant CHMs therapies in theoretical epidemiology. In our retrospective study, a series of 197 PNSCLC cases from Long Hua Hospital were enrolled by non-probability sampling and divided into 2 datasets at the ratio of 5:4 by Kennard–Stone algorithm, as a result of 109 in training dataset and 88 in validation dataset. Besides, TNM stage, operation history, sIL-2R, and CA724 were considered as 4 highly correlated predictors for modeling based on LASSO-Cox regression. Additionally, we respectively used training dataset and validation dataset for establishment including internal validation and external validation, and the prediction performance of model was measured by concordance index (C-index), integrated discrimination improvement, and net reclassification indices (NRI). Moreover, we found that the model containing clinical characteristics and bio-features presented the best performance by pairwise comparison. Next, the result of sensitivity analysis proved its stability. Then, for preliminarily examination of its discriminative power, all eligible cases were divided into high-risk or low-risk progression by the cut-off value of 57, in the light of predicted nomogram scores. Ultimately, a completed TRIPOD checklist was used for self-assessment of normativity and integrity in modeling. In conclusion, our model might offer crude probability of uncertainly individualized PFS with long-term CHMs therapy in the real-world setting, which could discern the individuals implicated with worse prognosis from the better ones. Nevertheless, our findings were prone to unmeasured bias caused by confounding factors, owing to retrospective cases series.




Keywords: primary non-small cell lung cancer (PNSCLC), Chinese herbal medicines (CHMs), nomogram, progression-free survival (PFS), prognostic model



Introduction

Cancer is the second leading cause of death in non-communicable chronic diseases, and lung cancer still makes the maximum contribution to cancer-related mortality worldwide (1–3). With rapid economic development and population aging, newly diagnosed lung cancer cases in China will grow with a rate of 70% at least in the coming 20 years (2, 4). Behind this increasing trend, there are approximately 85% of all diagnosed patients with non-small cell lung cancer (NSCLC). At present, it is generally acknowledged that radical resection is the standard and potentially curative treatment for early-stage NSCLC, including stage I, II, and III (patients satisfying certain operative indication) (5). However, the recurrence and metastasis of NSCLC are regarded as a considerable challenge for post-operation patients’ prognoses, with a 5-year survival rate below 20% (6). Even though several outstanding progresses have been made in cancer therapy, patients’ prognoses still remain uncertain all around the world.

TCM has been developed with a unique system of theories (7), more than thousands of years in clinical practices. CHMs, acupuncture, Tai Chi, etc. under the guidance of TCM theory are widely used in China and accepted by patients internationally (8). CHMs are universally accepted in China for its long history of sole/complementary treatment in various cancers (9). To date, many evidence-based investigations have revealed that CHMs play an important role in reducing adverse drug reactions of chemotherapy and radiotherapy, improving therapeutic efficacy and decreasing the risk of recurrence and metastasis in recent years (10–12). Furthermore, a randomized controlled trial showed that TCM treatment prolonged median survival duration for 0.7 months and significantly improved the 1-year survival rate compared with chemotherapy in advanced NSCLC population (p = 0.035; 13). But, during the past decades, few quantitative analyses have focused on what are the odds that long-term CHM-treatment can delay PNSCLC patients’ progression for cancer on the basis of conventional treatment, and how they exert synergistic effect on PNSCLC individuals’ survivability. Therefore, for PNSCLC patients treated with integrative therapy, we need a practical model to investigate latent predictors and to apply given predictors to their PFS prediction by calculating the probability, which not only may explain how those latent CHM-related predictors influence their prognoses, but also might infer few individuals with shorter PFS because of probably high-risk metastasis or reoccurrence.

Nomograms, also named alignment diagram, can transform complex regression equations into visual graphs, which makes the results of predictive models more readable and comprehensible. Recently, it has been frequently used for integrating with multiple predictive variables to display their complex correlation based on multivariate regression analysis, by using line segments with the scale of a certain proportion on the horizontal plane. What’s more, investigators can weight every level of each variable predictors according to its coefficient of regression, and then add up the total score, related to probability of events (such as metastasis or recurrence), to calculate the patient’s predicted value. In the recent years, combined with multivariate logistic regression model (LRM) and multivariate Cox regression, some researchers apply nomogram to quantifying the difference between various clinical characteristics on survival in NSCLC patients by visualizing predicted values to show its corresponding clinical events, such as progression-free survival (PFS) and overall survival (OS) (14, 15). Although nomogram has been proved to be more precise for predicting survival rate among patients with PNSCLC than traditional TNM staging systems (16, 17), it is scarcely applied to measurement of their prognoses with long-term CHM treatment.

Depending on our pre-phase study that Qi–Yin deficiency pattern is clinically principal syndrome of PNSCLC in accordance with TCM pattern identification (18). And Qi-Yin deficiency pattern, an abstract condition of human body with both Qi-deficiency and Yin-deficiency, is identified from individualized symptoms, pulse, and tongue conforming to TCM clinicians’ knowledge (19). As we know, JFK (San-Jiu Pharmaceutical Co., Ltd., China) is mainly targeted at Qi-Yin deficiency pattern of PNSCLC, which exerts anti-tumor effect under integration of disease and syndrome. Despite the lack of accurate statistical data on JFK’s domestic and foreign applications, we estimated that JFK’s annual applications exceeded 19,400 boxesat home and abroad, using its worldwide annual sales amount as well as estimated retail price. Hence, we tried to establish a nomogram-based prognostic model for PNSCLC individuals treated with adjuvant long-term JFK-SFs in a bid to quantifying the predicted probability of their own PFS—regarding the integration of TCM and modern medicine—simulating complex intervention in real-world clinical circumstance. Furthermore, in compliance with undesirable predicted value, our model might help relevant clinicians to notice several latent individuals with high-risk progression. Similarly, we could infer potential beneficiaries timely as a result of their own desirable predicted PFS. Additionally, via the nomogram-based modeling, we may investigate latent predictors associated with PNSCLC patients’ prognosis with long-term CHM treatment, which may support our further study that will focus on how individuals’ survivability is affected by adjuvant TCM treatment. Noteworthily, we conducted the study based on real world data from hospital information system (HIS), and aimed to provide a feasibly theoretical epidemiological approach—taking JFK-SFs as an exemplification of long-term CHM treatment—to evaluating PNSCLC patients’ individualized prognosis in the real-world setting.



Patients and Methods


Study Design

Our study protocol was approved by the ethics committee of Long Hua Hospital (2018LCSY022). We performed a retrospective study (between January 2016 and December 2019) of cases series, those who were diagnosed as PNSCLC and accepted long-term adjuvant CHMs decoction, based on HIS from Long Hua Hospital (Class A tertiary hospital), affiliated hospital of Shanghai University of Traditional Chinese Medicine, China. In this investigation, a patient/an individual was seen as a case singly, and the cases matching pre-set inclusion and exclusion criteria were enrolled. In addition, we gained their prognosis information via telephone follow-up until December 31, 2022. And we applied the complete data from above-mentioned cases to establishing and modifying a nomogram-based prognostic model, which involved 6 steps in the study procedures (Figure 1). Firstly, we screened inpatients with PNSCLC in HIS and selected the eligible cases with our inclusion and exclusion criteria. Secondly, we divided them into training dataset and validation dataset with a certain ratio by Kennard–Stone algorithm, to ensure sufficient samples for modeling and adjustment. Thirdly, combined with multivariable Cox regression analysis, we selected a certain number of prognostic variables that were most significant from clinical characteristics and bio-features based on training dataset by using least absolute shrinkage and selection operator (LASSO), including 2 preparatory analyses: univariable Cox regression and rank correlation presented by heat map. Fourthly, with predictors and calculated PFS, we established prognostic model presented by a nomogram and performed its internal validation via bootstrap resampling method. Fifthly, the prognostic model was validated and adjusted based on validation dataset, and we analyzed its prediction performance: discrimination, calibration, and stability (singly examined by sensitivity analysis), with a series of indexes: concordance index (C-index), integrated discrimination improvement (20) and net reclassification indices (NRI). Sixthly, we conducted univariable Cox regression, maximizing Youden’s J statistic, Kaplan–Meier curve and the log-rank test for further examining the discrimination of model with its nomogram scores from all eligible cases. At last, we conducted self-assessment with TRIPOD (Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis) Checklist: Prediction Model Development and Validation.




Figure 1 | Flowchart of study profile.





Inclusion and Exclusion Criteria

All the inpatients over 18 years who were diagnosed with PNSCLC in pathology and a Qi-Yin deficient pattern based on TCM syndrome identification and had an ECOG score of performance status (Eastern Cooperative Oncology Group) less than or equal to 2 were included. And the exclusion criteria were as follows: (1) cases whose survival duration was shorter than 6 months; (2) cases with other types of malignancies or serious nonmalignant diseases; and (3) cases with incomplete follow-up data; and (4) cases with family history of lung cancer and/or exposure to asbestos.



Data Extraction and Processing

Judgment sampling, a non-probability sampling method, was used forscreening the eligible PNSCLC cases from HIS. Subsequently, we extracted the data including clinical characteristics and bio-features according to prior knowledge (21, 22). After telephone follow-up to obtain necessary details for calculation of PFS, we covered patients’ information on personal privacy, for example, name and address, to confirm data-processing on condition of anonymity.



CHMs Therapy

JFK consisting of 12 CHMs can improve PNSCLC patients’ prognoses in some extent, including prolonging survival duration and reducing probability of metastasis, probably viatonifying qi and nourishing yinfor human body, which is consistent with phenomena we observe during clinical practices (23). Notwithstanding its clinically extensive application, under TCM pattern identification—in line with the concept of precision medicine, its supplementary formulas do vary from person to person owing to individual variances in harmony with patients’changing condition on their tongue, pulse diagnoses, other symptoms etc. And detailed information of JFK-SFs with their corresponding TCM syndrome was shown in Table 1.We confirmed that all enrolled patients accepted CHMs therapy for at least 6 months from their outpatient and inpatient information records.


Table 1 | CHM treatment protocol for NSCLC patients with Qi-Yin deficiency pattern.




Outcome Measurement

On account of little feasibility—that we cannot ensure adequate duration of long-term follow-up—in clinicians’ routine work, we chose 1-year and 2-year PFSas the endpoint in our study to make full use of pre-existing data (24). And PFS, being a commonly used surrogate outcome for prognosis in oncology, was defined as the interval from enrollment date to first documented cancer progression or death of any cause. Nevertheless, if a patient’s date of death could not be retrieved, we applied the last follow-up date to approximate process in our study. To reduce assessment biascaused by assessors, the patients’ informatione xcept for date wash ded during calculating PFS.




Statistical Analysis

R software (https://www.r-project.org/) was applied to the whole part of analyses in study. We used glmnet package, survival package, RMS package for analyzing LASSO-Cox’s proportional hazards model (LASSO-COX Regression), PFS, creating and modifying nomogram respectively.


Statistical Description and Inference

Original data were summarized as mean ± standard deviation (25) or median (interquartile range, IQR), where applicable. What needed to be interpreted was that absolute count of immune cells was described by median (IQR), but was standardized by log-transformed before modeling tomeet theproportional hazards assumption (Table S1). We preformed hypothesis testing at the significance level of 0.05 with two-sided test, and p as considered as statistical significance.



Sampling Error

In this exploratory research, we execute one-off sampling without involvement in parameter estimation.In other words, we had no intention of applying sample statistic (included cases in our study) to inferring population parameter (PNSCLC population with Qi-Yin deficiency who accepted JFK-SFs from HIS). And an estimated confidence interval might be invalid because of lacking repeated sampling for estimating standard error. In summary, population’s features can be inferred from our samples qualitatively rather than quantitatively.



Establishment and Validation of Nomogram-Based Prognostic Model

First of all, we divided selected samples into training dataset and validation dataset with the ratio of 5:4 by Kennard–Stone algorithm (25, 26). Besides, we established LASSO-COX regression based on training dataset to select prognostic variables for PFS evaluation with following procedure concretely: (1)optimal value of the penalty parameter corresponding to lambda (λ) in LASSO was chosen by performing leave-one-out cross-validation (LOOCV); (2) the selected lambda (λ) was determined by the smallest LOOCV based on partial-likelihood deviance; (3) those selected variables with non-zero coefficients dependent on their information characteristics by LASSO were used for multivariable Cox regression analysis and the ones with statistical significance (p < 0.05) were entered into the nomogram-based prognostic model as predictors finally, which presented predicted results with nomogram; and (4) we performed a bootstrap resampling method, introduced by Ewout Steyerberg (27), for internal validation as well as a primary assessment of predictive power with C-index, NRI, and IDI. Additionally, we conducted external validation based on validation dataset, and used three of the same parameters, for describing its prediction performance after internal validation and establishment with selected predictors. Simultaneously, we assessed its stability by sensitivity analysis (leave-one-out validation and random sample splitting), and discussed predictors’ contribution to PFS prediction by adjusting model parameters. In this procedure, we modified the model with improvement of modeling power presented by IDI > 0 as well as NRI > 0, and we compared the predicted values with the observed ones for modeling calibration of probability of 1-year PFS (1-PFS) and 2-year PFS (2-PFS), which served as a bias correction.





Results


Data Screening

From January 2016 to December 2019, there were totally 218 patients with PNSCLC in HIS, and 197 cases among them met both inclusion and exclusion criteria of our study. The reasons for excluded cases that included: 8 patients without documented information of TNM stage and 5 patients withdrawing from the follow-up, 7 patients without records of immune cells, 1 death case owing to postoperative serious complications. And a total of 197 eligible cases were enrolled with the result of 109 in training dataset and 88 invalidation dataset, at the ratio of 5:4 by Kennard–Stone algorithm. The data screening process was entirely displayed in Figure S1.


General Information of Variables

As to all-round utilization of our clinical data resources, 33 underlying prognostic variables for initial screening were included, such as age, sex, smoking history, TNM stage, pathological types of PNSCLC, treatment protocol (radical resection for lung cancer, mainly platinum-based chemotherapy, radiotherapy, targeted therapy, CHMs therapy), immune cells, cytokines, tumor makers (Tables S2, S3). And 33 abovementioned variables and PFS between training and validation dataset at baseline were summarized in Table 2. There were 62 male patients (56.92%) with the mean (25) age of 62.30 (8.92) years in training dataset, while 54 male patients (61.40%) with the mean (25) age of 62.68 (8.98) years invalidation dataset. In terms of advanced patients (TNM stages = IIIb–IV), 25 (22.90%) and 16 (18.20%) were respectively found in training dataset and validation dataset. Compared with 75 (85.20%) of adenocarcinoma (ADC), 9 (10.20%) of squamous cell carcinoma (SCC), and 4 (4.55%) of other types of PNSCLC in validation dataset, the corresponding proportion of training dataset respectively were 89 (81.70%), 16 (14.70%), and 4 (3.60%), from patients’ pathological diagnosis. In addition, our finding showed that the median follow-up time in training dataset was 30.47 months (ranging from 22.27 to 33.27 months) and 30.55 months (ranging from 21.15 to 33.37 months) in validation dataset.


Table 2 | Baseline data of general information in two datasets.






Predictors’ Selection of Prognostic Model

We managed to find predictors (a set of prognostic variables chiefly affecting PFS) by using LASSO-Cox regression for analyzing training dataset (n = 109). First, 33 variables from 2 datasets were compared by using univariable Cox regression (Table 3), providing a reference for further selection of independent predictors, and we found statistical significance of TNM stage, operation history, chemotherapy, targeted therapy, M-MDSC, CD3, CD56CD16(NK), IL-6, SIL-2R, CEA, CA153, CA152, CA199, CA724, NSE, and CYFRA211 in both datasets, which suggested that they might be implicated predictors for predicting PFS. Second, we used Spearman’s correlation coefficient (12) for evaluating negative or positive correlation/non-correlation between bio-features and clinical characteristics in pairs (Figure S2). Third, a total of 33 selected variables were entered into the LASSO model. As shown in Figure 2, the optimal log(lambda) was achieved at the value of -2.1895 (lambda = 0.112) by the minimum LOOCV based on partial-likelihood deviance, generating reduction of variables and attaining 7 prognostic variables: TNM stage, operation history, targeted therapy (TT), IL-6, sIL-2R, CA153, and CA724. And according to the result of weighted Schoenfeld residuals test, the 7 variables were qualified for proportional hazards assumption (p > 0.05). Fourth, we gained 4 of 7 variables because of their statistical significance (p < 0.05) by multivariant Cox regression analysis. In brief, TNM stage, operation history, sIL-2R (immune cytokines), and CA724 (tumor marker) were considered as predictors for predicting individuals’ PFS, which would be put into nomogram-based prognostic model (Table S4).


Table 3 | Comparisons between two datasets by the univariable Cox regression analysis.






Figure 2 | Selecting prognostic variables by using LASSO analysis.





Establishment and Internal Validation of Prognostic Model

As it was shown in Figure 3, our nomogram-based prognostic model could graphically display predicted 1-PFS and 2-PFS by incorporating 4 prognostic variables (TNM stage, operation history, sIL-2R, and CA724). Each subtype within category characteristics was assigned a score on the line segment with scale of a certain proportion, where each variable was drawn on, for the purpose of describing integrated correlation of PFS probability with them. Eventually, the precisely estimated 1-PFS and 2-PFS were quantified by the percentage transformed from a total accumulated score.




Figure 3 | Nomogram-based prognostic model for NSCLC patients of Qi-Yin deficiency pattern with long-term CHM treatment (Stage 2, TNM stage; Operation, operation history; 1-year PFS, predicted probability of PFS of 1 year; 2-year PFS, predicted probability of PFS of 2 years).



Internal validation was performed by a bootstrap resampling method, whose procedure was repeated 10,000 times for resampling in training dataset, and the decrease from different performance between bootstrap and original sample (training dataset) became the scale for our preliminary estimation of its power. The result suggested that our model was well-calibrated with C-index of 0.836 and bias-corrected C index of 0.829 (Table S5). In order to assess the 4 prognostic factors’ degree of contribution to modeling, the following 3 models were taken into consideration as a further calibration: model 1 was the final prognostic model based on the 4 predictors as a baseline model; model 2 was simply established based on 2 clinical characteristics (TNM stage and operation history); model 3 was established in terms of 2 bio-features (sIL-2R and CA724). Then pairwise comparison of C-index and NRI and IDI were made in groups: model 2 vs. model 1 and model 3 vs. model 1, whose additional discriminative power caused by additional predictors compared with a baseline model could represent the better prediction performance. As a result, we found acceptable performance in all of the 3 models and model 1 ranked first with the highest C-index of 0.836 (95% CI: 0.765~0.907), compared to model 2 (0.806, 95% CI: 0.734~0.877) and model 3 (0.702, 95% CI: 0.612~0.796). Next, we calibrated 1-PFS and 2-PFS of models in sequence (Figure S3) and also found that model 1 presented the best performance according to the result of pairwise comparison (Table S6), in which model 1 provided more evident improvements (IDI > 0 and NRI > 0) in prediction than model 2 and model 3, implying that clinical characteristics and bio-features jointly contributed to improving prediction performance of our prognostic model.



External Validation and Modification of Prognostic Model

In our study, validation dataset (n = 88) was used as an independent set for external validation, which tested predictive power of model. With the same procedures of treating training dataset (n = 109), 3 models were established: model 1 with 4 predictors, model 2 with 2 predictors, and model 3 with the others. On this situation, the C-index of model 1, model 2, and model 3 was 0.816 (95% CI: 0.743~0.891), 0.756 (95% CI: 0.679~0.836), and 0.730 (95% CI: 0.649~0.824), respectively. We also modified their 1-PFS and 2-PFS one by one (Figure S4), and unobvious distinctions between predicted values and actually observed values in both 1-PFS and 2-PFS were found. In short, model 1 still showed the best performance because all of the 4 predictors met significance level at p < 0.05, with C-index of 0.816 (95% CI: 0.743~0.891) based on validation dataset, close to that of the training dataset (Figure 4). Similarly, we made pairwise comparison of C-index and NRI and IDI among 3 models (Table S5), observing the consistency of that model 1 showed optimal performance.




Figure 4 | Result of external validation based on validation dataset (Stage 2, TNM stage; Operation, operation history).





Sensitivity Analysis of Prognostic Model

Our model was modified by changing the modeling samples from training dataset (n = 109) in a bid to assess its stability. In this part, 2 strategies were applied (28): leave-one-out validation and (1) random sample splitting. For the former (28), as a result of re-modeling based on remaining patients’ data, we left a patient out of the training dataset at a time. Both predicted result and performance of the rest samples were recorded. And we stopped this procedure until every sample from training dataset was excluded once in turn. The distribution of Hazard Ratio (29) values for 4 prognostic factors were shown in Figure S5A and their average HR respectively were:6.757 for TNM Stage, 2.600 for operation history, 1.271 for sIL-2R, and1.422 for CA724, with the average C-index of 0.836 (Figure S5B). For the latter (1), the overall training dataset(n=109) was randomly divided into modified training dataset (n=61) and modified validation dataset (n = 48) based on the same proportion (5:4). And the distribution of HR values and C-index for both modified datasets were shown in Figures S5C, D, while HR mean and C-index mean were described in Table S7 that the average C-index of modified training dataset and validation dataset respectivelywere 0.827 (95%CI:0.782~0.877) and 0.828 (95%CI:0.771~0.886). In a word, all results demonstrated the stability of our prognostic model with 4 predictors, containing 2 bio-features and 2 clinical characteristics.



Discrimination Testof Prognostic Model

To further examine the discrimination of our nomogram-based prognostic model with its nomogram score, univariable Cox Regression was performed again. As a result, our model respectively yielded HR of 1.053 (95% CI: 1.038~1.068; p < 0.001) and 1.037 (95% CI: 1.030~1.062; p < 0.001) for training dataset (n = 109) and validation dataset (n = 88), and a cut-off value of 57 was determined by maximizing Youden’s J statistic. Subsequently, patients in both datasets (n = 197) were divided into 2 groups: high-risk progression (nomogram score >57) and low-risk progression (nomogram score ≤57). In final, we also statistically tested the significant difference between two groups mentioned above by Kaplan–Meier curve and Log-rank test (p < 0.001), which may preliminarily be another feasible application of the model (Figures S6, S7). At the end of this manuscript, we finished and submitted a checklist of TRIPOD in Table S8.




Discussion

As is known to us, the integration of TCM and modern medicine became a comprehensive treatment for PNSCLC in China for decades, especially for advanced patients. And long-term CHM treatment, as a common adjuvant therapy for lung cancer, has proven its strengths for prolonging survival duration, controlling metastasis, and reducing mortality (11, 30). However, it is still difficult to explain how modern medicine incorporating TCM interactively respond to individualized prognosis in oncology, not to mention whether adjuvant long-term CHM treatment can prolong individualized survivability for PNSCLC patients. Consequently, combined with our experience from clinical practice, we established a nomogram-based prognostic model of their PFS prediction, by using HIS data from PNSCLC patients who accepted JFK-SFs over 6 months, to explore potential predictors accounting for multiple-layer and multi-dimensional causal effect of integrative treatment. In this retrospective study, we selected 4 predictors (TNM stage, operation history, CA724, and sIL-2R) of 33 available variables for modeling by using LASSO-Cox regression for the reason that LASSO (a data analysis method) is suitable for limiting the amount of variables selection in high dimensional data from limited samples, for example, biomarker selection, which originally proposed for avoidance of overfitting (31, 32). And Song et al. team applied LASSO to establishing prognostic model for predicting personalized PFS of PNSCLC patients with EGFR tyrosine kinase inhibitors therapy (33). Whereas, a sequence of restrictions hindering LASSO from more frequently precise modeling may not be ignored: (1) with achieving parsimony towards vital variables’ coefficients, the result of LASSO regression is undoubtedly biased estimates due to constraint parameter entered (34, 35); (2) without more prior knowledge about their structural sparsity, it seems reasonable that every variable’s coefficient has equal chance of exact shrinkage of all to zero, but a variable with an accurate zero is unlikely to occur in actually most cases (36); (3) despite achieving parsimony, seriously speaking, LASSO is not good at addressing variables with multi-label classification and multi-collinearity, whose coexisting or unexclusive property of interaction for prediction is outside the scope of its typical features’ selection (37). Interestingly, some researches focused on sIL-2R and CA724 that could provide several clues to our further study: (1) sIL-2R attached relatively significance to the tumor immune network, regarded as a possible biomarker for the early detection and follow-up of Nivolumab-induced pneumonitis (38), and high concentration of sIL-2R contributed to the disorder in human’s internal environment that can promote tumorigenesis (39, 40); (2) CA724, a valuable marker for gastric cancer, could be a biomarker for tumor detection of advanced lung cancer (41), and Chen et al. found it was associated with TNM stage of PNSCLC as well as metastasis of lung adenocarcinoma (42), suggesting that its clinical value in PNSCLC prognosis should be laid greater emphasis on. After establishment of model, we aimed to use nomogram for displaying the predicted probability of PFS because it was more precise than TNM staging systems for prognosis prediction (16, 43). Besides, we performed external validation to avoid modeling overfitting and to determine its generalizability (29). In recent years, Zhang et al. established a nomogram-based model that could predict the probability of 3-year and 5-year brain metastases and identify high-risk resected NSCLC populations (44).

Our study is in need of a serious and an objective interpretation because of a couple of limitations and strengths. On one hand, it is the first study of establishing a nomogram-based prognostic model for PNSCLC patients treated with long-term CHMs, which could detect individuals at risk of metastasis or reoccurrence and possible beneficiaries from CHM treatment to a certain degree. And it considered both bio-features and clinical characteristics as predictors for predicting PNSCLC patients’ PFS with integrative treatment, corresponding to a connection between mechanism researches and clinical experiments—which may reveal an anti-cancer effect of CHMs (45–47). More importantly, in the future, we want to predict individualization prognosis involved in TCM individualized therapy for evidence-based clinical decision, based on this preparatory work. On the other, our model was established and validated based on a relatively small number of sample set, only containing 197 cases from single-center HIS, resulting in our model’s potential uncertainties of large-scale application for external PNSCLC patients with similar therapy. But negligently, our study imposed constrains on familial-hereditary and asbestos-exposed individuals that these omitted rare risk factors also put weight on PNSCLC prognosis. Moreover, there were inadequate cases, as another test dataset, to support external testing in further, since we could obtain finite PNSCLC cases with long-term CHM treatment from the existing database. In spite of uncontrolled bias caused by small sample size based on case series that can demonstrate no causal inferences (48) from this work, we intended to flexibly improve and modify the model with collecting an increasing number of eligible data. In addition, we can only identify patients’ medication from prescription of HIS instead of their actually daily drug use, the same as those numerous retrospective studies suffered. Lastly, our study simply e valuated clinician-reported outcomes (CROs) forPNSCLC prognosis, but health-related quality of life (HRQoL) that can trustworthily and accurately reflect benefit from cancer therapies was absent from prolonging PFS assessment. And we will concern ourselves with applying HRQoL instruments, for example Lung Cancer Symptom Scale (49), for PFS assessment of PNSCLC patients with long-term CHMs therapy in further prospective study with a controlled group of non-CHM treatment, if appropriate, in order to promote shared decision-making of clinicians and patients.



Conclusions

In conclusion, a nomogram-based prognostic model for predicting PFS of PNSCLC patients with long-term CHM treatment was established, which provides references for quantifying PNSCLC patients’ unknown PFS in the comprehensive therapy as well as further verification of TCM-intervened-related predictors. And we can also preliminarily use it for discerning high-risk individuals of PNSCLC progression, from those who accept conventional and TCM treatment in real-world settings. Presumably, individuals with higher nomogram scores (>57) seem to be paid close attention to early screening for metastasis and recurrence. Strictly speaking, confounding as residual factors leading to bias of real-world studies are, we must cautiously interpret our findings in this work.
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Background

Lung adenocarcinoma (LUAD) is the most common type of lung cancer, accounting for around 40%. Despite achievements in the treatment approach, the prognosis is still dismal, with overall survival of fewer than five years. Thus, novel prognostic biomarkers are needed to predict the clinical outcomes of individual patients better. TTN has a high mutation rate in the LUAD, which encodes a large abundant protein of striated muscle. However, the value of TTN in prognosis and the immune environment are poorly understood.



Methods

We investigated the clinicopathological characteristics, transcriptional and protein level, prognostic value, biological function, and its relationship with immune infiltration of TTN gene in LUAD patients through bioinformatics analysis.



Results

TTN expression was significantly lower in LUAD than that in normal lung tissue. Lower TTN expression was associated with worse survival. Besides, TTN is highly expressed in alveolar type 2 cells which were surmised as the origin of LUAD.



Conclusion

Our findings indicated the potential prognostic value of TTN and its role as a biomarker for determining the immune infiltration levels in patients with LUAD.
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Introduction

Lung adenocarcinoma (LUAD) accounts for a majority of cancer-related death worldwide. In the last decade, breakthroughs in immunotherapy research have dramatically improved survival rates for several tumor types (1–4), and revolutionized the management of cancer (5). Immunological checkpoint blockers (ICBs) targeting PD-1, PD-L1, and CTLA-4 have been widely used, showing extensive clinical benefits, rapidly expanding to more than a dozen clinical indications (6, 7).

Several clinical trials showed that the amounts and characteristics of immune cells in the immune microenvironment are key predictors of ICBs response. KEYNOTE-086 revealed a positive correlation between the number of TILs and the response to pembrolizumab (8). In the KEYNOTE-137 study, the level of PD-L1 expression and stromal tumor-infiltrating lymphocyte levels (TIL) had a strong correlation with response rates of pathologic complete response in triple-negative breast cancer (9). An inflamed tumor microenvironment, relatively abundant CD8+ cytotoxic T cells, relatively deficient CD4+ regulatory T cells, and activation of interferon-mediated signaling are required for ICBs therapeutic response. Therefore, deciphering the characteristics of tumor microenvironment and searching for immunotherapy biomarkers can help us predict the efficacy of immunotherapy and improve the outcome of treatment.

Titin is a key component in the assembly and functioning of vertebrate striated muscles. It acts a pivotal role in many diseases, like cardiomyopathy, limb-girdle muscular dystrophy, and multiple types of cancer (10, 11). Previous researches have focused on the function of TTN-AS1 in diverse cancers (12–16). Titin-antisense RNA1 (TTN-AS1) has been regarded as a tumor-promoting lncRNA in numerous cancers, such as LUAD, hepatocellular carcinoma, cervical cancer, papillary thyroid cancer, and gastric cancer (12, 17–21). Besides, TTN missense mutation plays a favorable prognostic role in lung squamous cell carcinoma(LUSC) (22). TTN is a protein-coding gene with a high mutation rate in LUAD. However, to our knowledge, the role of TTN mutation in LUAD is rarely reported.

Although immunotherapies have become the standard of care in patients with advanced LUAD, a fraction of patients still have a poor prognosis. Herein, we conducted comprehensive research to elucidate the prognosis value and function of TTN in LUAD, aiming to provide a new biomarker for predicting prognosis and a new immunotherapy target for advanced LUAD patients.



Methods


Expression Level and Biological Functions of TTN Different Types of Cancers

The expression level of the TTN gene in different types of cancers was analyzed in the Oncomine database (23) (https://www.oncomine.org/resource/login.html) and TIMER (24) (http://timer.cistrome.org/). The threshold was determined according to the following values: P-value of 0.0001, fold change of 2, gene ranking of top 10% and data type of all.



Prognosis Analysis

The overall survival and progress-free survival curves correlated to TTN expression in LUAD were plotted by Kaplan-Meier plotter (25, 26) (http://kmplot.com/analysis/). The correlation between TTN expression and survival in various cancer types was investigated in the PrognoScan database (27) (http://www.abren.net/PrognoScan/). The threshold was adjusted by a log-rank p-value of <0.05. Hazard ratio (HR) with 95% confidence intervals (CI) was also calculated.



Clinicopathological Characteristics Analysis

Clinicopathological characteristics and the mutation information of TTN of LUAD patients were explored in the cBioPortal database (28) (https://www.cbioportal.org). CBioPortal database contains somatic mutation and copy number variation data from the cancer genome atlas (TCGA) database (29) (https://www.cancer.gov/aboutnci/organization/ccg/research/structuralgenomics/tcga). The data of alteration frequency (mutation, fusion, amplification, deep deletion) of TTN was also visualized and downloaded from the official website. Besides, we excluded samples that are not profiled for all queried genes in all queried profiles.



Human Protein Atlas and CancerSEA Database

TTN mRNA expression and other related cell type markers in each cell type cluster of lung tissue were visualized by Uniform Manifold Approximation and Projection (UMAP) in the Human protein atlas (30, 31) (HPA; www.proteinatlas.org). Specificity and distribution classification were performed to determine the number of genes elevated in different cell types. The genes expressed in each of the cell types were explored in interactive UMAP plots and bar charts. Color-coding is based on groups of cells, and each cell type has common functional features. The functional state of TTN in various cancer types was analyzed by CancerSEA (32) (http://biocc.hrbmu.edu.cn/CancerSEA/). Correlations between the gene of interest and functional state in different single-cell datasets were filtered by correlation strength > 0.3 and P-value < 0.05.



Tumor Immune Infiltration Analysis

The relevance of TTN expression to tumor immune infiltration was analyzed via TIMER (http://timer.cistrome.org/). The gene expression level was displayed with log2 RSEM. The significantly correlated genes in TIMER were validated in GEPIA (33) (http://gepia.cancer-pku.cn/index.html). The Spearman method was used to analyze the correlation coefficient. TTN was used for the x-axis, and other genes of interest are represented on the y-axis. The tumor and normal tissue datasets were used for analysis.



GEO Database

One independent cohort (GSE116959) was downloaded from the GEO database. GSE116959 contains transcriptome profiling information of 57 LUAD samples and 11 peritumoral normal lung tissues, with gene expression measured by Agilent-039494 SurePrint G3 Human GE v2 8x60K Microarray 039381 in GPL17077. The TTN expression of each sample was analyzed using an unpaired t-test.



Quantitative Real-Time PCR

Two tumor tissue samples and paired tumor-adjacent tissues, five human lung tumor cell lines and one human pulmonary alveolar epithelial cell line (HPAEpiC) were used to detect transcriptional expression of TTN. A549, HCC827, H3255 and H1975 cell samples belong to lung adenocarcinoma cell lines, H1703 belongs to lung squamous cell line and HPAEpiC belongs to human pulmonary alveolar epithelial cell line. The mRNA expression of TTN was detected by real-time PCR, and GAPDH was the internal control gene. Real‐time PCR was performed with TB Green qPCR Master Mix (RR920A, Takara, Beijing, China) using the QuantStudio 6 Flex Real-Time PCR System (Thermo Fisher Scientific, Waltham, MA, USA). The expression values were analyzed by using 2−ΔΔCt relative quantitative methods. Primer sequences for the real-time PCR were listed as follows:

TTN forward: 5′- ACCCTTCTTTGACATCCGT -3′, reverse: 5′- TACTTTCCGCCACTTCGT -3′;

GAPDH forward: 5′- ACAACTTTGGTATCGTGGAAGG -3′, reverse: 5′- GCCATCACGCCACAGTTTC -3′.



Immunohistochemistry

Clinical samples were obtained from 1 patient with LUAD who was surgically treated at shanghai pulmonary hospital. The LUAD tissue and the paired adjacent tissues were prepared into 5 μm paraffin sections and incubated with mouse polyclonal antibodies of titin (1:150, Sigma, USA) at 4° overnight in a refrigerator. The sections were coupled with the secondary antibody labeled with horseradish peroxidase (1:400, Abcam, USA) at room temperature for 1.5 h, then each section was stained with DAB reagent, and counterstained with hematoxylin. IHC sections were independently reviewed by two pathologists (JC, HS).



Western Blotting

Protein from five lung cancer cell samples and one normal epithelial cell sample were extracted for used in the following western blotting (WB) experiments. WB experiments were performed according to the detailed protocol previously reported (34), with antibody against titin N-terminal (mouse;1:1000; Sigma SAB1400284).



Statistical Analysis

Survival curves were generated by the PrognoScan and Kaplan Meier plots. The results generated in PrognoScan were performed with the hazard ratio (HR), 95% confidence interval (CI), and Cox P-values. The results generated in Oncomine are displayed with P-values, fold changes, and ranks. The results of Kaplan Meier plots and GEPIA are displayed with HR and P or Cox P-values from a log-rank test. The correlation of gene expression was evaluated by Spearman’s correlation and statistical significance, and the strength of the correlation was determined using the following criteria: 0.00–0.19 “very weak,” 0.20–0.39 “weak,” 0.40–0.59 “moderate,” 0.60–0.79 “strong,” 0.80–1.0 “very strong.” P -value<0.05 was considered statistically significant.




Results


Assessment of TTN Expression and Biological Functions in Different Tumors and Normal Tissues

Oncomine database was used to determine the expression of TTN in various types of cancer and normal tissues. mRNA expression of TTN was significantly lower in lung cancer (Figure 1A). The panel shows the numbers of datasets with statistically significant mRNA upregulated expression (red) or downregulated expression (blue) of TTN. The threshold was designed with the following parameters: fold change of 1.5 and P-value of 0.05.




Figure 1 | TTN gene expression level in different cancer and normal tissues. (A) The expression level of TTN in different cancer and normal tissues in the Oncomine database. Cell color was determined by the best gene rank percentile for the analyses within the cell; (B) The expression of TTN between tumor tissues and normal tissues in different cancer types in TIMER database (*P <0.05, **P < 0.01, ***P < 0.001).



Furthermore, we evaluated the expression of TTN in different types of cancer using the RNA-seq data of multiple malignancies in TCGA. The results manifested that tumor tissues had a significantly decreased TTN expression compared with that in normal tissues in LUAD (Figure 1B). In addition, it revealed the same tendency both in the microarray and RNA-seq data.



Prognosis Analysis in LUAD Patients With Different TTN Expression Levels

Since TTN expression was significantly changed in various tumor tissues, especially in LUAD, we investigated the Prognostic value of TTN expression in LUAD patients (Figure 2). Kaplan-Meier analysis revealed that higher expression of TTN predicted better overall survival (OS) and progress-free survival (PFS). (OS HR= 0.7, 95% CI = 0.55 to 0.9, P=0.0044; PFS HR=0.7, 95% CI = 0.51 to 0.97, P=0.032) (OS HR= 0.46, 95% CI = 0.34 to 0.61, P = 9.1e-8; PFS HR = 0.43, 95% CI = 0.28 to 0.68, P = 0.00015) (Figures 2A–D). Therefore, lower expression level of TTN may serve as a poor prognostic factor in LUAD patients.




Figure 2 | Kaplan-Meier survival curves comparing the higher and lower expression of TTN in LUAD Kaplan-Meier plotter database. OS and PFS of LUAD patients in the Kaplan-Meier plotter database (A–D). Red curves represented patients with higher expression of TTN. OS, overall survival; RFS, relapse-free survival. PFS, progress-free survival.





Correlation of TTN Expression With Prognosis Under Different Clinicopathological Factors in LUAD Patients

We investigated the relationship between TTN expression level with several clinicopathological features and prognosis in LUAD patients in the Kaplan-Meier plotter database (Table 1). Besides, the correlation between TTN expression and various characteristics in LUAD patients was visualized by the cBioPortal online tool (Figure 3). TTN mutation frequently occurs in LUAD patients with a rate of 49%. TTN missense mutation was the most common type of mutation which caused decreased mRNA expression (Figure S1). Moreover, high expression of TTN in female patients can benefit in PFS (n = 221, HR = 0.51, 95% CI = 0.32 to 0.83, P = 0.0055) and OS (n = 286, HR = 0.59, 95% CI = 0.4 to 0.89, P = 0.01) while male patients with high TTN expression level can benefit in OS (n = 328, HR = 0.62, 95% CI = 0.44 to 0.86, P = 0.0041). Thus, these results provided a theoretical basis for the poor prognosis of patients with TTN mutations.


Table 1 | Correlation between TTN mRNA expression and clinical prognosis in LUAD with different clinicopathological factors by Kaplan-Meier plotter.






Figure 3 | Correlation of TTN mRNA expression with different clinicopathological features in LUAD in the cBioPortal database. The mutation frequency of TTN was 49% in 511 patients with LUAD. 55 patients were excluded from analysis since they were not profiled for all queried genes in all queried profiles and germline mutations.





TTN Expression Level and Function in Different Single Cell Type Clusters of Lung Tissue

We investigated the transcriptomic expression level in diverse cell clusters of lung tissue (Figure 4). The results showed each value in different cluster, and we found that TTN had a higher expression level in alveolar cells type 2 c-1(n=750, 228.9pTPM), c-6 (n=275, 168.4pTPM) and endothelial cells c-9 (n=182, 154.2pTPM). Consequently, TTN function in tumorigenesis was investigated in nine organs or tissues at a single-cell level, including LUAD and other tumors (Figure 5). The results showed that TTN had a negative correlation with DNA repair function, and it also significantly related to differentiation in LUAD (ρ=0.37, p<0.01).




Figure 4 | TTN mRNA expression and other related cell type markers in different single cell type clusters of lung tissue. Expression of TTN in the single-cell type clusters identified in lung tissue was visualized by a UMAP plot (A) and a bar chart (B) Each dot corresponds to a cell. The heatmap (C) of TTN and specific marker genes in each cell cluster subtype.






Figure 5 | Relevance of TTN across 14 functional states in distinct cancers. Average correlations between TTN and functional states in different cancers. The bar chart showed the number of datasets in which TTN was significantly related to the corresponding state. The red plots indicated that TTN was positively correlated with the functional state while the blue plots indicated that TTN was negatively correlated with the functional state.





TTN Expression Correlated With Immune Cell Infiltration in LUAD

We investigated the association between TTN expression and infiltration level of immune cells in the tumor microenvironment (Figure 6). TTN expression level was positively correlated with the infiltration of CD8+ T cells (Rho = 0.144, P = 1.32e-03), CD4+ T cells (Rho = 0.269, P = 1.31e-09), B cells (Rho = 0.191, P = 1.88e-05), neutrophils (Rho = 0.101, P = 2.54e-02), T cell regulatory (Rho = 0.016, P = 7.23e-01), macrophages (Rho = 0.046, P = 3.13e-01), monocytes (Rho = 0.173, P = 1.12e-04), myeloid dendritic cells (Rho = 0.115, P = 1.09e-02) and mast cell activated (Rho = 0.251, P = 1.54e-08). The results showed that TTN and different tumor-infiltrating immune cell subsets were weakly to moderately correlated. Biomarker sets of immune cells were significantly associated with TTN in LUAD (Table S1). Markers of monocyte and macrophage were significantly correlated with the expression level of TTN in TIMER and GEPIA databases. (Figure 7 and Table 2). Moreover, TTN had the highest correlation with T cells and its markers implicated the potential of TTN to recruit and activate T cells. Above all, these results indicated that TTN played a potentially important role in modulating the immune microenvironment of LUAD.




Figure 6 | Correlations between TTN expression level and tumor-infiltrating immune cells in LUAD. TTN expression displayed significant correlations with tumor purity (A) and infiltration of CD8+T cells (B), CD4+T cells (C), B cells (D), neutrophils (E), monocytes (H), DCs (I), and mast cells (J) activated in LUAD. TTN expression showed a very weak correlation with Treg (F) and macrophages (G) in LUAD






Figure 7 | TTN expression correlated with macrophage polarization in NSCLC. Scatterplots of correlations between TTN expression and gene markers of monocytes (A), TAMs (B) and M1 (C) and M2 macrophages (D) in LUAD(n=515) (A–D). Scatterplots of correlations between TTN expression and gene markers of monocytes (E), TAMs (F) and M1 (G) and M2 macrophages (H) in LUSC(n=501) (E–H).




Table 2 | Correlation analysis between TTN and related genes and markers of monocyte and macrophages in GEPIA.





Verification of TTN Prognostic Value and Expression

We investigated the Prognostic value of TTN Expression in LUAD in the PrognoScan database. The cohort (GSE31210), including 204 samples, showed that a lower TTN expression level was significantly associated with poor prognosis (Figures 8B, D–F). However, the cohort (240793_at and 1557994_at) showed no significant association between TTN expression and OS in LUAD (Figures 8A, C). In an independent (GSE116959), we found that TTN had a lower expression level, comparing to normal tissues (Figure 8G). In order to validate our findings, we also extracted RNA from 4 paired samples from 2 LUAD patients, 6 samples from five lung cancer cell lines and one normal cell line, and a similar result was also observed (Figures 8H, I). Immunohistochemical analysis confirmed that TTN expression was lower in LUAD than in normal lung tissue (Figure 8J). Western blotting analysis demonstrated that five lung cancer cell samples had significantly decreased expression of titin, compared with normal alveolar epithelial cell sample (Figure 8K).




Figure 8 | Validation of TTN expression and prognostic value. OS and RFS of LUAD patients in the cohort (GSE312100, n=204) (A–F); Expression of TTN in cohort (GSE116959, n= 68) (G); TTN expression level in 2 LUAD tissue samples and 2 paired normal tissue samples (H); TTN expression level in 4 LUAD cell samples,1 LUSC cell sample and 1 normal alveolar epithelial cell sample (I); Immunohistochemical analysis of the expression of titin in LUAD (J). Western blotting analysis of expression of titin in 5 different lung cancer cell lines and human pulmonary alveolar epithelial cells (K). (*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001)






Discussion

On the basis of our findings and rigorous validation, we found TTN was strongly correlated with prognosis and tumor-infiltrating lymphocytes. Both Oncomine and TIMER databases showed consistent differences between tumor and normal tissues, which means TTN was a differentially expressed gene and deserved further study. Subsequently, we carried out prognosis analysis in LUAD patients with different TTN expression levels. Results in our findings indicated that lower expression levels in LUAD boded poor outcomes. In addition, we de novo verified our findings through two independent cohorts, qPCR, and immunohistochemistry methods. Thus, it could be a prognostic biomarker for LUAD patients.

Based on previous knowledge, we have learned that Alveolar Type 2 (AT2) cells are precursors of the alveolar epithelium, which can transform into AT1 cells, maintain self-renewal during normal homeostasis and recovery after injury (35–37). Some investigators found that AT2 cells may progress to adenomas and adenocarcinomas (38–40). The pathogenesis of early adenocarcinoma progression indicated that AT2 cells were the most likely cancer cells of origin (41). Recent advances in Single-cell RNA sequencing (scRNA-seq) revealed AT2-like cells were associated with malignant cell populations, and AT2 cells were regarded as the cancer-initiating cells (42, 43). According to our findings, TTN was highly expressed in AT2 cells at single-cell resolution (Figure 4). Meanwhile, a negative correlation between TTN with DNA repair was exclusively observed in the CancerSEA database (Figure 5). As we all know, DNA repair dysfunction could lead to tumorigenesis, which means TTN may be a potential determinant in the development of cancer.

Another important result in our study was the correlation between TTN expression and tumor-infiltrating lymphocytes. TTN expression level was positively correlated with the infiltration levels of CD8+ T cells, CD4+ T cells, and other immune cells (Figure 6). The tumor-infiltrating lymphocyte grade is a key factor in tumor staging and is one of the cogent predictors of cancer recurrence and survival (44, 45). This result may help explain the relationship between the low expression level of TTN and poor survival rate in patients with LUAD. Our study also showed that TTN significantly and specifically correlated with PD-1, CTLA-4, LAG-3, TIM-3. We can infer that TTN may have an influence on the clinical outcome of LUAD patients by means of interacting with immune infiltrating cells. Effective biomarkers which could improve response rates of immunotherapy are the basis of drug development and clinical precision medicine. Our findings also provided a tendency in scientific research and clinical use of immunotherapy in the future.

TTN was frequently detected with a high mutation rate in solid tumors, and was associated with responsiveness to checkpoint blockades in solid tumors (46). Furthermore, the detection of TTN mutations in peripheral blood was pertinent to satisfactory objective response and survival rate of ICBs (47). Recent studies also showed that TTN mutation has great potential as a predictive marker of ICBs for LUAD patients (48).

This study is the first research to explore the transcription level, function states of TTN, and its relationship with the prognosis and immune infiltration in patients with LUAD through bioinformatics analysis and validation in vitro, which may provide a potential biomarker for immunotherapy. Besides, our findings shed valuable insights on the roles of TTN in AT2 cell tumorigenesis. However, our study has several limitations. The precise role of TTN in tumor immune microenvironment is not clear, and the animal model is still needed to elucidate the underlying mechanism that how TTN promotes evolution and dissemination of tumors through mediating tumor-infiltrating immune cells.

In conclusion, our research indicates that the transcription level of TTN is obviously downregulated in LUAD and may play a significant role in the occurrence and development of LUAD. Besides, TTN has the potential as an immune-related therapeutic target.
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Background

Numerous studies have found that infiltrating M2 macrophages play an important role in the tumor progression of lung adenocarcinoma (LUAD). However, the roles of M2 macrophage infiltration and M2 macrophage-related genes in immunotherapy and clinical outcomes remain obscure.



Methods

Sample information was extracted from TCGA and GEO databases. The TIME landscape was revealed using the CIBERSORT algorithm. Weighted gene co-expression network analysis (WGCNA) was used to find M2 macrophage-related gene modules. Through univariate Cox regression, lasso regression analysis, and multivariate Cox regression, the genes strongly associated with the prognosis of LUAD were screened out. Risk score (RS) was calculated, and all samples were divided into high-risk group (HRG) and low-risk group (LRG) according to the median RS. External validation of RS was performed using GSE68571 data information. Prognostic nomogram based on risk signatures and other clinical information were constructed and validated with calibration curves. Potential associations of tumor mutational burden (TMB) and risk signatures were analyzed. Finally, the potential association of risk signatures with chemotherapy efficacy was investigated using the pRRophetic algorithm.



Results

Based on 504 samples extracted from TCGA database, 183 core genes were identified using WGCNA. Through a series of screening, two M2 macrophage-related genes (GRIA1 and CLEC3B) strongly correlated with LUAD prognosis were finally selected. RS was calculated, and prognostic risk nomogram including gender, age, T, N, M stage, clinical stage, and RS were constructed. The calibration curve shows that our constructed model has good performance. HRG patients were suitable for new ICI immunotherapy, while LRG was more suitable for CTLA4-immunosuppressive therapy alone. The half-maximal inhibitory concentrations (IC50) of the four chemotherapeutic drugs (metformin, cisplatin, paclitaxel, and gemcitabine) showed significant differences in HRG/LRG.



Conclusions

In conclusion, a comprehensive analysis of the role of M2 macrophages in tumor progression will help predict prognosis and facilitate the advancement of therapeutic techniques.





Keywords: M2 macrophages, lung adenocarcinoma, WGCNA, risk score, immunotherapy



Introduction

As one of the cancers with the highest incidence in the world, lung cancer has seriously threatened human life and health (1). According to the National Cancer Institute (NCI), lung cancer is already the most common cause of death among all cancers, with about 350 people dying from lung cancer every day in 2022 (2). Lung adenocarcinoma (LUAD), the most common subtype of lung cancer cases worldwide, originates mainly from the bronchial mucosal epithelium, with a few originating from the mucous glands of the large bronchi, and is characterized by highly infiltrative and destructive growth. The clinical manifestations of LUAD patients are not typical and specific, so some patients have reached the middle and advanced stages of the disease when they are diagnosed, resulting in a poor prognosis, and the 5-year survival rate is only 5% (3–5). Therefore, it is important to study the factors affecting the progression of LUAD and to develop reliable indicators for clinical prognosis prediction.

In recent years, increasing researchers have shifted their attention to the interaction between tumors and immune cells in the tumor immune microenvironment to achieve breakthroughs in tumor therapy (6, 7). The immune microenvironment affects the survival, proliferation, and migration of tumor cells in terms of cytokine secretion and immune cell recruitment (8). Among them, infiltrating M2 macrophages play a particularly important role. M2 macrophages evolve from macrophages in an extremely complex tumor microenvironment and play an important role in controlling tumor growth, invasion, and metastasis. Numerous studies have shown that patients with a large infiltration of M2 macrophages within the tumor tissue or around the cancer tend to have a poor prognosis (9–12). However, a comprehensive analysis of the biological role of M2 macrophages in LUAD tumor progression and clinical prognosis is still lacking today. Therefore, it is important to comprehensively assess the association between M2 macrophages and tumor progression and clinical drug therapy, to develop risk profiles based on M2 macrophages that can accurately predict the prognosis of LUAD patients, and to generate individualized therapy to improve outcomes.

Tumor mutational burden (TMB), defined as the total number of somatic genetic coding errors, base substitutions, insertions, or deletions detected per million bases, has been recognized as a key indicator of benefit from immune checkpoint inhibitors (ICIs) in LUAD patients and is an independent and effective prognostic predictor for LUAD patients (13–17). Theoretically, the more somatic mutations in tumor cells, the higher the TMB value will be, and the greater the likelihood of neoantigen formation and recruitment of more immune cells in and around the tumor immune infiltration microenvironment (TIME). Therefore, TMB can influence TIME (18). Thus, it was possible to use TMB to respond to the clinical treatment effect of ICI (13). It has been reported that the combination of TMB levels and immune infiltration can predict immunotherapy outcomes and clinical prognosis in patients with LUAD (19–21). It is of great significance to further explore the biological role of TMB.

In our study, TCGA-LUAD (The Cancer Genome Atlas-lung adenocarcinoma) database was used to investigate the potential role of M2 macrophage-related genes in LUAD tumor progression and clinical prognosis, and data extracted from the GEO (Gene Expression Omnibus) database were used for external validation. We used the CIBERSORT algorithm to find the most LUAD-related gene modules among M2 macrophage-related genes and developed a weighted gene co-expression network analysis (WGCNA). After multiple methods of hierarchical screening, two genes significantly associated with LUAD were finally selected. The risk score (RS) based on the clinical prognostic contribution of these two genes was calculated for each sample, and all samples were divided into two groups based on the median RS. Then, we developed and validated prognostic line plots based on risk signatures and other clinical variables. Finally, we explored the interrelationship between risk signature and TMB and TIME, investigated the differences in signaling pathways between different RS subgroups, and analyzed the impact of risk signature on the treatment effects of immunotherapy and chemotherapy. In summary, we established an RS based on M2 macrophage-related genes for therapeutic management and clinical prognosis prediction of LUAD patients.



Materials and Methods


Data Download and Preprocessing

Our transcriptome data include both TCGA-LUAD and GSE68571 cohorts. The TCGA-LUAD cohort consisted of 595 RNA sequencing samples, including 59 normal samples and 535 tumor samples. We removed samples without clinical follow-up information from TCGA-LUAD cohort, resulting in 504 tumor samples. We also downloaded somatic mutation data from TCGA database for further analysis of copy number variation (CNV). We obtained the GSE68571 cohort from the GEO database as an external validation dataset. Microarray data of GSE68571 were obtained from Affymetrix Human Full Length HuGeneFL Array, and the normalized matrix file was downloaded directly. All cases in the GSE68571 cohort contain survival information. The Human Protein Atlas (http://www.proteinatlas.org) was used to investigate the protein levels of genes.



Landscape of Infiltrating Immune Cells

CIBERSORT is a tool for deconvolution of expression matrices of human immune cell subtypes based on the principle of linear support vector regression (22–24). We used the CIBERSORT algorithm to analyze the microarray expression matrix of TCGA-LUAD patients to obtain the abundance of 22 tumor-infiltrating immune cell (TIC) subtypes.



Weighted Gene Co-Expression Network Analysis

The purpose of WGCNA was to find co-expressed gene modules and explore the association between gene networks and phenotypes of interest, as well as core genes in the network (25–27). We used the expression of 16,816 genes from TCGA-LUAD cohort as data and the CIBERSORT results as phenotypes of concern. The soft threshold power (β) from 1 to 20 was selected as a candidate, and the corresponding power values were calculated using the pick Soft Threshold function, the best power value was selected to build the proximity matrix, and our gene distribution was made to conform to the scale-free network according to the connectivity. Using the TOM matrix obtained from gene expression, the genes were again continued to be clustered, the minimum number of module genes was set, and the gene clustering results were cut to obtain different gene modules. The “dynamic tree cutting” algorithm was used to introduce similar genes into the same candidate module. The correlation analysis between the module feature genes and the phenotype of interest was performed by Pearson correlation test (p < 0.05). Our study targeted “M2 macrophages,” so the most significantly correlated modules with M2 macrophages were extracted. All the above analysis was done based on WGCNA and limma packages.



Cox Regression Analysis and Lasso Regression Analysis

To explore the prognostic role of M2 macrophage-related genes, we used 183 genes from the “greenyellow” module for the next step of the screen. The genes associated with patient survival were first obtained using a univariate regression analysis. Next, to prevent overfitting of the model, lasso regression was performed by generating a penalty function to compress the coefficients of the variables. The results of the lasso regression analysis were incorporated into a multivariate Cox regression analysis to finalize the results for the M2 macrophage-related genes considered to affect the prognosis of LUAD patients.



Validation of the Prognostic M2 Macrophage-Related Signature

TCGA cohort was used as our training set to calculate the risk score (RS) based on the expression of prognosis-related genes and regression analysis coefficient values. the equation is shown below:

	

We classify the cases into high-risk group (HRG) and low-risk group (LRG) according to the median RS. Kaplan–Meier (KM) curves were plotted, and the difference in survival between the two groups of LUAD patients was assessed using the log-rank method. Besides, time-dependent receiver operating characteristic (ROC) curves were analyzed to validate the prognostic values. For external validation, we compared the differences in clinically relevant variables between the HRG and LRG groups of patients by the “pheatmap” R package.



Establishment and Verification of the Nomogram

To more accurately predict patient survival at 1, 3, and 5 years, our nomogram incorporates RS and clinically relevant variables. To more accurately predict patient survival at 1, 3, and 5 years, our nomogram incorporates RS and clinically relevant variables based on the survivor, regplot, and rms software packages. Calibration curves were used to demonstrate the validity of the model.



Gene Set Enrichment Analysis

The c2.cp.kegg.v7.4.symbol and c5.go.v7.4.symbol collection was used to explore the function annotation by Gene Set Enrichment Analysis (GSEA) software. Results with p value <0.05 were considered statistically significant. The first eight results were selected for visualization.



Correlation Between Tumor Mutation Burden and Risk Score

Data on somatic mutations in TCGA-LUAD cohort were obtained from TCGA database. The “maftools” R package was used to plot waterfall plots for both HRG and LRG groups. In addition, according to the median mutation load and RS of LUAD patients, we plotted survival curves between the four subgroups.



Correlation of Risk Score With Tumor Immune Microenvironment Characterization

To explore the correlation between RS and TICs, we used seven methods to assess immune cell infiltration in the tumor microenvironment, including XCELL, TIMER, QUANTISEQ, MCPcounter, EPIC, CIBERSORT, and CIBERSORT-ABS. The ESTIMATE algorithm, which can be based on gene expression data, estimates the stromal score and immune score of a tumor sample for representing the presence of stromal and immune cells. The two scores are summed to obtain the ESTIMATE score, which can be used to estimate tumor purity. Correlation between RS and TICs was performed using Spearman correlation analysis.



Gene Set Variation Analysis

We used the MSigDB database (https://www.gsea-msigdb.org/gsea/msigdb) for pathway analysis (28). To assess relative pathway activity in individual samples, we performed Genome Variation Analysis (GSVA) (29) using the GSVA package to assign pathway activity estimates.



Immunotherapy Prediction

Immune checkpoints have been defined as key targets for the inhibition of immune cell function. In this study, we analyzed the expression levels of 47 immune checkpoint blockage-related genes in HRG and LRG. Immunophenoscore (IPS) determines the immunogenicity of a tumor and predicts the response to immune checkpoint inhibitor therapy. IPS calculates scores for each of the four different immunophenotypes (antigen-presenting, effector, suppressor, and checkpoint), and the IPS z-score is an integration of all four, and the higher the IPS z-score, the more immunogenic the sample.



Prediction of Chemotherapeutic Effect

To investigate the drug sensitivity differences between HRG and LRG, we constructed a ridge regression model based on the Genomics of Drug Sensitivity in Cancer (GDSC) cell lines and TCGA gene expression profiles. Using the pRRophetic algorithm, the half-maximal inhibitory concentrations (IC50) of four chemotherapeutic agents (metformin, cisplatin, paclitaxel, and gemcitabine) were estimated in LUAD patients.



Statistical Analysis

The Wilcoxon test was used to compare two groups, whereas the Kruskal–Wallis test was used to compare more than two groups. Survival analysis was performed by the Kaplan–Meier log-rank test. The chi-square test was used for analysis between RS and TMB, and Spearman analysis was used to calculate the correlation between the coefficients. A two-sided p < 0.05 was considered statistically significant. All statistical calculations were done in R software (version 4.1.1).




Results


Landscape of TIME in LUAD

The characteristics of the cases enrolled in this study after preprocessing are shown in Table 1. In TCGA-LUAD cohort, complete follow-up information was available for 504 samples. Survival data of the patients showed that 36.31% of the patient endpoint events were death. The median follow-up for the two cohorts was 1.34 years. In the GSE68571 cohort, complete follow-up information was available for 86 samples. Survival data of the patients showed that 27.91% of the patient endpoint events were death. The median follow-up for the two cohorts was 2.42 years. The abundance of 22 TIC subtypes in TCGA-LUAD patients was obtained using the CIBERSORT algorithm (Additional File 1: Table S1), as shown in Figure 1A. Each column represents a sample, and different colors represent the corresponding proportion of TICs in each sample. We used the proportion of various immune cells in each sample to represent the TIME in the sample to reveal the landscape of TIME in LUAD. However, a comprehensive heatmap based on TIME patterns and clinical phenotypes (Figure 1B) visually demonstrated differences in immune cell infiltration between normal and immune tissues. Figure 1C illustrates the potential connections among the 22 TICs for a better understanding of TIME.


Table 1 | Clinicopathological characteristics of LUAD patients from TCGA and GSE68571 databases.






Figure 1 | Landscape of immune cell infiltration in the tumor immune environment of LUAD. Subpopulation of 22 immune cell subtypes (A) and proportional heatmap of 22 TICs in each LUAD samples (B). (C) Intrinsic correlation of 22 infiltrating immune cells in LUAD.





Establishment of the WGCNA Network

We developed the WGCNA co-expression network using a sequencing file containing 16,816 genes as well as immune infiltration subpopulations. The scale-free network was constructed by setting the optimal soft threshold power (β = 15) to the first set of power values when the scale-free topology index reached 0.9 (Figure 2A). Genes with the same or similar expression patterns were grouped into the same gene module using a “dynamic tree cutting” algorithm (module size = 60) to form a hierarchical clustering tree. Weighted hierarchical clustering analysis was performed, and then its results were segmented, resulting in eight gene modules (Figure 2B). The Pearson correlation of each TIC with each candidate module is shown in Figure 2C. It was easily observed that the “greenyellow” module (Additional File 1: Table S2) had the strongest correlation with M2 macrophages (r = 0.13, p = 0.003). The full complementary procedure on WGCNA is presented in Figures S1A–D.




Figure 2 | Choosing an appropriate soft threshold (power) and building a hierarchical clustering tree. (A)The choice of the soft threshold enables the scale-free topology to achieve an exponent of 0.90, and the average connectivity for 1–20 soft threshold powers is analyzed. (B) M2 macrophage-related genes with similar expression patterns were merged into the same module using a dynamic tree-cutting algorithm, creating a hierarchical clustering tree. Heatmap of correlations between (C) modules and immune-infiltrating cells (traits).





Development of Risk Signatures

Expression data and follow-up information were extracted from TCGA-LUAD project to analyze the impact of M2 macrophage-related genes on the prognosis of LUAD patients. Univariate Cox regression analysis was performed on 183 genes in the candidate module “greenyellow,” and 33 genes were screened (p < 0.05, Additional File 1: Table S3). To prevent overfitting, we performed lasso regression analysis on the screened genes and determined the optimal value of the penalty parameter by cross-validation (Figures 3A, B). Cox regression analysis was performed on the genes screened by lasso regression analysis, and two M2 macrophage-related genes (GRIA1 and CLEC3B, all HR <1, Table S4) that were beneficial to predict the prognosis of LUAD patients were finally identified. The HPA database was used to explore protein expression levels in LUAD samples. We extracted IHC from the HPA database for four cases. Two of them were normal lung tissues, and two were lung cancer tissues. Of the four patients, only one was older than 65 years. All cases were women. The results showed the difference in protein expression of the hub genes (GRIA1 and CLEC3B) in normal and lung cancer tissues (Additional File: Figures S2A–D).




Figure 3 | (A) Variation curve of the regression coefficient with Log (λ) in Lasso regression. (B) Ten-fold cross-validation for tuning parameter selection in lasso regression. Vertical lines are drawn from the best data according to the minimum criterion and 1 standard error criterion. (C) Kaplan–Meier curve analysis showing the difference in overall survival between high-risk and low-risk groups in TCGA-LUAD cohort. Kaplan–Meier curve analysis showed the difference in overall survival of the CLEC3B (D) gene and GRIA1 (E) gene between the high expression group and low expression group. (F) Univariate Cox regression results for overall survival. (G) Multivariate Cox regression results for overall survival.



Subsequently, two hub genes were incorporated into the risk profile of LUAD patients. The RS was computed:

	

Finally, the LUAD samples were divided into HRG and LRG based on the median value of RS.



Validation of Risk Prognostic Features

The K–M survival curve indicated that LRG had better survival outcomes compared to HRG (Figure 3C). According to the median expression of the CLEC3B gene in the samples, the samples were divided into a high CLEC3B gene expression group and a low CLEC3B gene expression group. The K–M survival curve (Figure 3D) showed that the CLEC3B gene had a significant effect on the prognosis of LUAD patients, and the screening process for M2 macrophage-related genes was very reliable. As with the CLEC3B gene, we also performed the same validation for the GRIA1 gene (Figure 3E). Through univariate cox regression analysis and multivariate Cox regression analysis, we obtained hazard ratios (HR) for the risk signature to be 2.470 (95% CI 1.595−3.823; Figure 3F) and 2.308 (95% CI 1.474−3.613; Figure 3G). These results all consistently indicate that the M2 macrophage-related genes GRIA1 and CLEC3B have good predictive power for clinical outcomes, and the risk signature is an independent prognostic indicator for LUAD.

Figures 4A–C shows the expression patterns of the two genes in TCGA-LUAD cohort, the distribution of sample survival status, and corresponding risk scores. Both internal validation with the TCGA-LUAD cohort and external validation with the GSE68571 cohort (Figures 4D–F) demonstrated a stable and robust prognostic value for this risk prognostic feature.




Figure 4 | (A) Confirmation of prognostic risk scores in the TCGA cohort. (B) Polygenic model risk score distribution in TCGA cohort. (C) Survival status and duration of LUAD patients in TCGA cohort. (D) Confirmation of prognostic risk scores in the GSE68571 cohort. (E) Polygenic model risk score distribution in the GSE68571 cohort. (F) Survival status and duration of LUAD patients in the GSE68571 cohort.





Functional Analysis of M2 Macrophage-Related Genes

According to the median expression of the CLEC3B gene in the samples, the samples were divided into CLEC3B gene high expression group and CLEC3B gene low expression group. Then, GSEA was performed to identify the functional enrichment of high and low CLEC3B gene expression. KEGG enrichment items indicated that high CLEC3B gene expression was related to complement and coagulation cascades, vascular smooth muscle contraction, hematopoietic cell lineage, and lysosome signaling pathways (Figure 5A). GOBP enrichment items indicated that the high expression of the CLEC3B gene was related to the cilium movement signaling pathway (Figure 5C).




Figure 5 | GSEA of samples with high and low expressions of two hub genes. (A) Gene set of samples enriched in CLEC3B expression collected in KEGG. (B) Gene set of samples enriched in GRIA1 expression collected in KEGG. (C) Gene set of samples enriched in CLEC3B expression collected at GOBP. (D) Gene set of samples enriched in GRIA1 expression collected at GOBP.



Similarly, we performed the same functional enrichment process for the GRIA1 gene as the CLEC3B gene. The KEGG enrichment term indicated that the high expression of the GRIA1 gene was related to the olfactory transduction signaling pathway (Figure 5B). The GOBP enrichment term indicated that the high expression of the GRIA1 gene was related to the sensory perception of chemical stimulus and the sensory perception of the smell signaling pathway (Figure 5D).



Correlation of Risk Characteristics With Clinicopathological Variables

Subsequently, to visualize the distribution of clinical variables in the LRG/HRG subgroup, we plotted Figure 6A. Clinical subtype scores between HRG and LRG based on gender, stage T, stage N, stage M, and clinical stage are shown in  Figures 6B–F.




Figure 6 | Clinical significance of prognostic risk characteristics. (A) Heatmap showing the distribution of clinical characteristics and corresponding risk scores in each sample. Incidence of clinical variable subtypes of LRG/HRG. (B) Gender, (C) stage T, (D) stage N, (E) stage M, and (F) clinical stage.





Construction of Prognostic Nomogram

We plotted ROC curves to estimate the predictive value of prognostic features. The AUC values for 1-, 3-, and 5-year overall survival (OS) reached 0.629, 0.645, and 0.644, respectively, indicating high prognostic validity (Figure 7C). Combining risk signature, gender, age, and clinical stage, we performed AUC analysis for 1-year (Figure 7D), 3-year (Figure 7E), and 5-year OS (Figure 7F) and found that risk signatures outperformed across multiple clinicopathological variables. Finally, to more intuitively quantify the effects of risk signature, gender, age, T, N, and M stage, and clinical stage on OS in patients with LUAD, we drew a prognostic nomogram (Figure 7A). Nomogram can quantify the clinical characteristics of a patient to be able to visually predict the probability of survival of an individual. For example, in a 71-year-old female LUAD patient with T3N1M0, stage III, low RS, a total score of 396 can be calculated from the nomogram, with survival rates of 77.9%, 41%, and 15.2% at 1, 3, and 5 years, respectively. We used a calibration curve for validation, and the results demonstrated that the nomogram has good prognostic performance (Figure 7B).




Figure 7 | Validation of prognostic efficiency of risk signatures. (A) The nomogram was used to predict survival in LUAD patients. (B) One-, 3-, and 5-year nomogram calibration curves. (C) ROC analysis was used to estimate the predictive value of prognostic features. The area under the (D–F) curve (AUC) of the risk score for predicting overall survival at 1, 3, and 5 years and other clinical characteristics.





Association of Risk Signature With TMB

To explore the potential link between TMB and risk signatures, we compared the TMB of LRG and HRG samples and found that HRG had higher TMB (p < 0.001, Figure 8A). The RS and TMB of each sample are shown in Figure 8B. To analyze the effect of TMB on OS in LUAD patients, we divided the total sample into high-TMB and low-TMB groups according to the median TMB and plotted a K–M survival curve (p = 0.082, Figure 8D). Figure 8E can visually demonstrate the synergistic effect of RS and TMB in the prognosis of LUAD patients.




Figure 8 | Correlation between risk score and TMB. (A) Differences in TMB between HRG and LRG. (B) Scatterplots depicting the positive correlation between risk scores and TMB. (D) Kaplan–Meier curves of high TMB and low TMB groups. (E) Kaplan–Meier curve stratification of patients according to TMB and risk signature. The oncoPrint was constructed using high risk score (C) and low risk score (F).



In addition, we investigated the type and distribution of somatic gene mutations in different RS subgroups, mapping a comprehensive landscape of HRG and LRG somatic variation (Figures 8C, F). Significantly mutated gene (SMG) mutation profiles indicated that TP53 (56% vs. 30%), TTN (52% vs. 29%), and MUC16 (47% vs. 31%) experienced higher somatic mutations in HRG core subtype rate, while FGFR3 (27% vs. 23%) had a higher rate of somatic mutation in LRG.



Risk Signature in TIME Context

We investigated the potential association between risk signatures based on M2 macrophage-related genes and TIME, using Spearman correlation to analyze the two, and plotted them for easy observation (Figure 9A, Table S5). The results of ESTIMATE analysis showed that immune score, stromal score, and ESTIMATE scores in HRG tended to decrease significantly (p < 0.01, Figure 9B). Validation of the correlations predicted by the four methods CIBERSORT−ABS (Figure 9C), CIBERSORT (Figure 9D), QUANTISEQ (Figure 9E), and XCELL (Figure 9F) showed that our analysis was accurate.




Figure 9 | Estimated abundance of tumor-infiltrating cells. Patients in the (A) high-risk group had a stronger correlation with tumor-infiltrating immune cells, as shown by the Spearman correlation analysis. (B) Association between prognostic risk signatures and central immune checkpoint genes. The asterisks represented the statistical p value (**P < 0.01; ***P < 0.001).The correlations predicted by the four methods CIBERSORT−ABS (C), CIBERSORT (D), QUANTISEQ (E), and XCELL (F) were validated.





Enrichment of Signaling Pathways in Low-/High-Risk Groups

By GSVA analysis (Figure 10A), we could easily find that the expression levels of the CLEC3B gene and GRIA1 gene were negatively correlated with the p53 signaling pathway, while the calcium signaling pathway, KEGG/PPAR signaling pathway, KEGG/GNRH signaling pathway, and FC epsilon RI signaling pathways such as signaling pathway are positively correlated; RS is positively correlated with the p53 signaling pathway and negatively correlated with the calcium signaling pathway, KEGG/PPAR signaling pathway, KEGG/GNRH signaling pathway, FC epsilon RI signaling pathway, and other signaling pathways.




Figure 10 | Enrichment pathways for GSVA. (A) heatmap showing the correlation of representative pathway items with KEGG with risk scores. Predicting immunotherapy response. (B) Association of immune checkpoint blockade gene expression levels with risk scores. (C–F) IPS score distribution map. Estimates of chemotherapy effect risk scores. Sensitivity analysis of (G) cisplatin in patients with high and low risk scores. Sensitivity analysis of (H) gemcitabine in patients with high and low risk scores. (I) Sensitivity analysis of metformin in patients with high and low risk scores. (J) Sensitivity analysis of paclitaxel in patients with high and low risk scores.





Immunotherapy Prediction

Since there is no data information of immunotherapy in TCGA-LUAD dataset, we used the expression levels of genes related to immune checkpoint blockade to represent the effect of immunotherapy. Our study found that most immune checkpoint blockade-related genes (i.e., CD40LG, CD48, TNFRSF14, CD80, CD200, TNFRSF8) were significantly negatively correlated with risk signatures, and a small number of immune checkpoint blockade-related genes (such as TNFSF4 and TNFRSF9) were positively correlated with the risk signature (Figure 10B). HRG had higher IPS scores in this risk scoring system (PD1-negative and CTLA4-negative, Figure 10C). It indicates that high-risk patients are more suitable for novel ICI immunotherapy. LRG was more suitable for CTLA4 immunosuppressive therapy alone (PD1-negative and CTLA4-positive, Figure 10E). These results all confirm a potential association between risk scores and immunotherapy efficacy (Figures 10C–F).



Prediction of Response to Chemotherapy

Through analysis, we found that the IC50 of the four chemotherapeutic drugs (metformin, cisplatin, paclitaxel, and gemcitabine) showed significant differences in HRG/LRG. The drug sensitivities of cisplatin (Figure 10G) and paclitaxel (Figure 10J) were higher in HRG than in LRG, whereas gemcitabine (Figure 10H) and metformin (Figure 10I) had higher drug sensitivities in LRG. These results suggest a potential link between the risk signature and chemotherapeutic drug sensitivity.




Discussion

Lung cancer is a malignant tumor of the respiratory system with a high incidence, and it has the highest mortality rate among both men and women (2). Of these, non-small cell lung cancer (NSCLC) accounts for 80% of all lung cancer pathology types, and half of NSCLC is LUAD. Currently, clinically, the main treatments for LUAD are surgery, systemic chemotherapy, immunotherapy, and targeted therapy. Although these treatment options can significantly change the prognosis of patients with LUAD, the treatment effect is still poor for patients with advanced disease. In recent years, the study of the immune-related tumor microenvironment (TME) has received increasing attention. Moreover, as an important component of TME, M2 macrophages play an important role in antitumor and are promising to be the next target of immunotherapy (30, 31).

Macrophages are an important cellular component of the innate immune system and were once thought to be an important type of cells in the process of antitumor immune regulation. They eliminate tumors by directly killing or presenting tumor-associated antigens to induce immune responses. However, the phenotype of macrophages is very heterogeneous, and at the same time, they can act as negative regulators of the immune system. Under the induction of tumor cells, macrophages can promote the proliferation of tumor cells and inhibit the antitumor activity of T cells and natural killer cells. These cells are called tumor-associated macrophages and express M2-type molecular markers (32). Current studies have found that tumor-associated macrophages are abundantly expressed in LUAD and indicate poor prognosis (33). However, the specific biological role of M2 macrophages in LUAD tumors remains obscure.

In this study, we extracted two cohorts, TCGA-LUAD and GSE68571, from the database, the former for model development and the latter for external validation. Five hundred four tumor samples and 16,816 genes were used to further investigate the potential role of M2 macrophages in LUAD tumor progression and clinical prognosis. The abundance of 22 TIC isoforms was obtained using the CIBERSORT algorithm. WGCNA was used to find gene modules (greenyellow) associated with M2 macrophages. There are 183 genes in this gene module. To verify the favorable prognostic value of these genes for LUAD patients, we combined these genes with clinical information in the samples and finally determined that GRIA1 and CLEC3B genes were significantly associated with prognosis through univariate, LASSO, and multivariate Cox analyses. We used the Cox regression HR of each gene as the coefficient, calculated the RS in each sample according to the gene expression in the sample, and divided all samples into HRG and LRG according to the median RS to facilitate subsequent research. K–M survival curves and ROC curves indicated that the risk model performed well, which was further confirmed in an external dataset (GSE68571 cohort). These results all indicate that the risk model based on the GRIA1 gene and CLEC3B gene can be used as an independent indicator for predicting the clinical prognosis of LUAD patients.

To clearly show the relationship between the risk signature and the clinical prognosis of LUAD, we combined the risk signature with various clinical variables to construct a prognostic nomogram for evaluating the 1-, 3-, and 5-year survival probability of LUAD patients and verified using the calibration curve. Nomogram is a graph that represents the functional relationship between multiple independent variables in a plane rectangular coordinate system with a cluster of disjoint line segments. It is based on multifactor regression analysis, where multiple predictors are integrated and then plotted on the same plane using scaled line segments at a certain scale and thus used to express the interrelationships among the variables in the prediction model. According to the degree of contribution of each influencing factor to the outcome variable in the model, each value level of each influencing factor is given a score, and then the individual scores are summed to obtain the total score, and finally the predictive value of the individual outcome event is calculated through the functional transformation relationship between the total score and the probability of the occurrence of the outcome event. The nomogram has the advantages of visualization and quantification.

In addition, we enriched signaling pathways using two methods (KEGG and GOBP) to analyze the connections between GRIA1 and CLEC3B genes and signaling pathways.

Studies have shown an association between immunotherapy response and genetic alternation (34, 35). To explore the impact of risk signature and TMB on the clinical prognosis of LUAD, we extracted somatic mutation data from TCGA database and divided the total sample into high-TMB and low-TMB groups based on the median TMB. The association between risk signature and TMB was analyzed, and the two were combined in pairs to compare the differences in survival outcomes between the groups. We found that TMB is an independent predictor of risk signature and has important implications in tumor progression and predicting clinical prognosis.

Currently, cisplatin-based chemotherapy is the basic regimen for LUAD chemotherapy and can significantly improve the median survival time (36, 37). In our study, the drug sensitivity of HRG to cisplatin was significantly higher than that of LRG, while gemcitabine and metformin were more suitable for LRG. For this reason, taking the RS into account when administering chemotherapy drugs to patients with LUAD may lead to better outcomes.

Among the M2 macrophage-related genes we finally screened, the biological function of the GRIA1 gene in LUAD tumor progression has not been revealed (38). In the past, researchers have paid more attention to the association between the GRIA1 gene and migraine (39–41), but recently they have begun to turn their attention to the role of the GRIA1 gene in tumor biology. Some scholars have found that the GRIA1 gene affects the prognosis of children with acute lymphoblastic leukemia (42). Compared with the GRIA1 gene, the biological role of the CLEC3B gene in tumor is more prominent. The protein encoded by the CLEC3B gene is a tetraspanin that can bind to the plasminogen kringle-4 and is mainly located in the extracellular matrix and cytoplasm (43, 44). Tetraspanin can induce the activation of plasminogen to hydrolyze proteins extracellularly, and plasminogen is involved in tumor metastasis and invasion (43, 45–48). Zhu and his colleagues found that the CLEC3B gene affects colon cancer tumor progression and is a potential therapeutic factor for colon cancer (44). Dai and his team found that the downregulation of exosomes CLEC3B in hepatocellular carcinoma promotes metastasis and angiogenesis through AMPK and VEGF signaling and is a potential therapeutic target for hepatocellular carcinoma (43). Sun and his partners discovered through research that the CLEC3B gene affects TIME and serves as a potential prognostic biological marker for LUAD (49). This corroborates with our findings. In our study, the effects of the GRIA1 gene and CLEC3B gene on TIME, TMB, and clinical prognosis were elucidated. The study found that the overexpression of the GRIA1 gene and CLEC3B gene is not conducive to the prognosis of LUAD patients. However, the underlying molecular mechanisms of the GRIA1 gene and CLEC3B gene in LUAD have not been elucidated, and further studies are required.

Of course, our study still needs improvement. First, we are still a long way from clinical translation. The next step will be to collect tissue specimens and validate our results at the cellular, animal, and tissue levels, respectively, to make the results more credible.



Conclusions

In conclusion, M2 macrophage-based risk scores have a major role in estimating prognostic outcomes, TIME heterogeneity, TMB, and treatment response evaluation. In addition, the potential roles of the GRIA1 gene and CLEC3B gene in LUAD were also explored. Nonetheless, these findings require further experimental and clinical validation in different centers and larger cohorts.
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Purpose

Tumor related atelectasis(TRA) is an essential factor affecting survival that can cause chest pain, cough, hemoptysis, chest tightness, dyspnea, and even death. In the current study, we explored the possible impact of TRA on survival in cancer patients and the guiding significance of 18F-positron emission tomography/computed(PET/CT) in radiotherapy for patients with atelectasis tumors.



Methods

In this retrospective study, we analyzed the treatment model and survival of patients with centrally located non-small cell lung cancer(NSCLC) treated with radiotherapy at two medical centers between May 2005 and August 2019. We identified 152 eligible patients and used propensity score matching (1:1) to process the data to reduce confounding factors, data bias, and mal-distribution.



Results

We used propensity scores created well-matched groups of 57 patients overall with or without TRA. The one-year survival rate of all patients was 71.9%, and the two-year survival rate was 33.3%. Compared to the atelectasis group, the overall survival (OS) of patients in the non-atelectasis group was significantly prolonged (25 months vs. 17 months, p = 0.004), as well as in the atelectasis recovery group (28 months vs. 14 months, p = 0.008). In multivariate analysis, non-atelectasis was closely correlated with favorable OS (HR, 1.804 (−2.840); 95% CI, 1.145–2.840; p = 0.011).



Conclusion

PET/CT can accurately stage NSCLC and better guide the treatment of NSCLC complicated with atelectasis. Tumor-associated atelectasis in patients with centrally located NSCLC can lead to is a poor prognostic marker.





Keywords: Centrally located NSCLC, Tumor related atelectasis, Prognostic factors, PET/CT, PSM



Introduction

In cases where lung cancer is complicated with atelectasis, it is challenging to distinguish tumors from normal atelectatic lung tissue (NALT) by computed tomography (CT) images, mainly due to morphological changes in anatomy and tissue density. The atelectatic lung tissue has considerable overlap with the imaging of tumor tissue due to exudation, consolidation, and inflammatory reactions. Furthermore, both NALT and tumors tissue show high-density shadows on CT, so they are indistinguisable. However, determining the area of NALT and distinguishing it from the tumor tissue is very important to accurately delineate the radiotherapy target area and the treatment plan formulation (1, 2). The principle of 18F-positron emission tomography (18F-FDG PET) functional imaging is that the glucose metabolism rate of malignant tumor cells is higher than that of normal tissue cells. A previous study showed that FDG uptake in the atelectasis area is generally higher than normal lung parenchyma and lower than that in tumor tissue; since their concentration is different, the tumor tissue can be differentiated from the surrounding lung tissue (3). We previously reported (4) that PET/CT screening for non-small cell lung cancer (NSCLC) with atelectasis has significant advantages over traditional CT screening in guiding clinical treatment. PET/CT can make the clinical staging of NSCLC more accurate to design an appropriate treatment regimen, and improve the accuracy of target area when accompanied by NALT. Compared to CT, PET/CT can detect regional metastases and metastatic lymph nodes more effectively, and distinguish tumors and NALT more accurately, which improves the accuracy of radiotherapy target area (5, 6). Furthermore, according to the PET/CT images, three-dimensional conformal radiotherapy (3D-CRT) target area can be planned for the treatment of NSCLC, and reduce the exposure dose of the esophagus and spinal cord, thus facilitating an increase in radiotherapy dose (7). PET/CT-guided treatment can prolong the overall survival of patients with NSCLC (8).

The current TNM staging system considers TRA an adverse prognostic factor (9, 10), although a previous study has shown that TRA may prolong survival (11). Chen et al. has reported tumor-associated atelectasis had no significant effect on the survival of patients with superficial bronchial lung cancer (12). Moreover, Ou et al. has said that in stage IB NSCLC, tumor size determines hilar atelectasis or obstructive pneumonitis (13). The study by Coen et al. showed that partial or complete TRA might not affect overall survival (14). So far, the effect of TRA on the overall survival rate of radical radiotherapy for NSCLC has not been fully clarified. Therefore, we retrospectively analyzed whether TRA was a predictor for OS after PET/CT-guided definitive radiotherapy. Furthermore, we summarized the published clinical data in this setting and discussed the perspectives of PET/CT in radiation therapy for patients with centrally located NSCLC.



Methods


Study population and sources

We retrospectively reviewed NSCLC patients who underwent PET/CT examination (4, 15) at the Cancer Hospital of China Medical University and the First Hospital of China Medical University from May 2005 to August 2019. We reviewed patients’ electronic medical records and collected information such as age, gender, histological subtype, smoking history, radiographic, treatment, TRA, survival, state these variables. The inclusion criteria were patients with centrally located NSCLC who underwent PET/CT and received definitive radiation therapy. The complete basic information included whether the patients had a history of TRA and a clear re-expansion of the lungs after treatment? Our study used the eighth edition of the TNM staging standard endorsed by the International Association for the Study of Lung Cancer(IASLC) (16). The standard treatment for unresectable locally advanced NSCLC (stage IIB-IIIC) was concurrent radiotherapy and chemotherapy or sequential radiotherapy and chemotherapy. For selected patients with stage IV (oligometastatic: number of metastases ≤5), the standard treatment was systemic chemotherapy combined with local consolidation radiotherapy. We grouped patients according to the presence or absence of TRA. The evaluation of adverse reactions after radiotherapy and chemotherapy is based on the General Adverse Event Terminology Standard (version 4.0).

As this study was a retrospective study, the risk to the subjects was very small, and we obtained the exemption of informed consent.



Propensity score matching (1:1)(PSM)

In the observational study, there are many data deviations and confounding variables due to various reasons. The propensity score matching method can make a more reasonable comparison between the experimental and control groups. We used IBM SPSS 25.0 software is used for propensity score matching, and used 1:1 nearest neighbor matching with 0.02 caliper width. The Chi-square test was used to evaluate the covariate balance before and after PSM in patients with TRA.



Statistical methods

Baseline and clinicopathological characteristics were described in numbers (percentages) and compared by chi-square test and fisher’s exact test. Overall survival was calculated from the date of diagnosis to the date of death or the survivor’s last follow-up. The OS curves were generated by Kaplan-Meier method and comparison was done by log-rank test. We used Cox proportional hazard mode for Univariate and multivariate analysis, and we reported the results using hazard ratios (HRs) with 95% confidence intervals (CIs). All tests were two sided, and the results were considered signifcant at p values<0.05. Subgroup analyses according to the baseline characteristics were performed by drawing forest plots for overall survival using IBM SPSS (version 25.0; IBM Corporation, Armonk, NY) software and Stata MP 14 software (Stata Corp LLC, College Station, TX).




Results


Patients characteristics

Of the 366 patients identified, 214 were excluded due to peripheral location of lung cancer, local surgery, incomplete data, or targeted therapy/immunotherapy; thus, a total of 152 eligible patients were included. The median follow-up period was 17 months. Of all patients, 34 patients are alive (22.4%), and 118 patients are deceased (77.6%). The causes of death included tumor-related complications (113 cases) and non-tumor complications (cerebrovascular events in 3 cases and myocardial infarction in 2 points). We created balanced groups of 57 patients with or without TRA through 1:1 PSM (Figure 1).




Figure 1 | Flowchart depicting selection of the study population.





Patient characteristics

Table 1 shows that the baseline characteristics of the patients with and without TRA. Before PSM, the 152 matched patients (89 with TRA and 63 without TRA) included 120 men (78.9%) and 32 women (21.1%). A total of 15 cases (9.9%) were determined to have stage II, 109 cases (71.7%) stage III, and 28 cases (18.4%) stage IV. The median survival time was 17 months, the 1-year survival rate was 69.7%, and the 2-year survival rate was 30.9%. After PSM, the 114 matched patients (57 with TRA and 57 without TRA) included 88 men (77.2%) and 26 women (22.8%), with adenocarcinoma (25 cases, 21.9%), squamous cell carcinoma (77 cases, 67.5%), and other types (12 cases, 10.5%). In terms of patient stage, 11 cases (9.6%) were stage II, 80 cases (70.2%) were stage III, and 23 cases (20.2%) were stage IV. The median survival was 18.5 months, the 1-year survival rate was71.9%, and the 2-year survival rate was 33.3%.


Table 1 | Baseline characteristics of patients.





Analysis of prognostic factors

Tables 2, 3 show the results of univariate analysis before and after PSM, including the patient’s T stage of disease, whether TRA was present, and whether the lungs were re-expanded (all p < 0.1). Figure 2 shows that in patients with centrally located NSCLC who did not undergo surgery and who underwent radical radiotherapy, patients with TRA had is a poor prognostic marker. For patients with TRA, re-expansion of the lungs represents a better prognosis, while non-TRA was associated with an apparent increase in the median OS (25 months vs. 17 months, p = 0.004). The OS of patients complicated with TRA was significantly improved after pulmonary dilatation (28 months vs. 14 months, p = 0.008) (Figure 3). Multivariate analysis showed that TRA was an independent factor predicting worse OS in patients with centrally located NSCLC receiving radical radiotherapy (p = 0.003) (Tables 4, 5).


Table 2 | Unificatory analyses of association between prognostic factors and overall survival (Before PSM).




Table 3 | Unificatory analyses of association between prognostic factors and overall survival (After PSM).






Figure 2 | Kaplan–Meier curve of overall survival for atelectasis or non-atelectasis patients. (LEFT BEFORE PSM RIGHT AFTER PSM).






Figure 3 | Patients were included in the OS subgroup analysis. (LEFT BEFORE PSM RIGHT AFTER PSM).




Table 4 | Multivariate analysis between prognostic factors and overall survival (Before PSM).




Table 5 | Multivariate analysis between prognostic factors and overall survival (After PSM).






Discussion

As far as we know, this is the most extensive retrospective study to date, aiming to evaluate the predictive value of TRA in patients with centrally located NSCLC treated with radiotherapy guided by PET/CT. We determined that TRA had a significantly negative prognostic indicator of OS in centrally located NSCLC after PET/CT-guided definitive radiotherapy. Moreover, lung re-expansion was a favorable independent prognostic factor in the TRA subgroup. Nonetheless, we found interesting results. There was no statistical difference in overall survival between the lung re-expansion and the no TRA group. The study further proves that TRA is a significant prognostic factor in patients with centrally located NSCLC, and we infer that the disease symptoms are improved after lung re-expansion. TRA is an important factor affecting survival that can cause chest pain, cough, hemoptysis, chest tightness, dyspnea, and even death. In addition, lung re-expansion improves tumor hypoxia and is increases chemoradiotherapy sensitivity; as we know, tumor hypoxia is a significant cause of tumor radiation resistance (6). Another factor related to prolonging survival is the control of infection and the improved immunity in lung re-expansion (6). Our study suggests that patients with atelectasis can be considered for radical radiotherapy under FDG-PET/CT guidance. We assume that mid/post-treatment lung re-expansion analysis is worth exploratory and would require further confirmation in future studies. After multivariate analysis, both clinical stage and TRA were independent prognostic factors.

Two main questions arose from the studies reported: First, is the T-classification in TNM staging applicable to patients with TRA? Based on anatomical image CT, the treatment plan and target area delineation developed for atelectasis patients should be done with functional imaging PET methods that includes multiple confounders. For example, the determination of tumor boundaries, disseminated lesions in unambiguous lung tissue, mediastinal lymph node overlap with TRA, and distant occult metastases. TRA, the most frequent thoracic complication in central lung cancer, has a considerable impact on the quality of life, making lung cancer patients’ treatment more difficult. 18F-FDG PET/CT has good sensitivity to defect metastasis in systemic soft tissue, viscera (lungs, liver, adrenal gland, etc.), distant lymph nodes, and bones, and Several meta-analyses emphasized its role in accurate staging[17, 18]. Furthermore, an accurate depiction of the target volumes can prevent the omission of the radiotherapy target area. The wrong delineation of the gross tumor volume (GTV) (detectable tumor) is a common mistake. The incorrect tracing of target areas will lead to insufficient radiotherapy dose and reduce local control rate. With the development of 3D radiotherapy technology, we can delineate accurate treatment plan based on three-dimensional reconstruction of CT images, evaluate the treatment volume, and overall scheme, further optimize the radiation dose in the tumor area, reach the radical cure standard, and reduce the radiation effect on normal tissues (19). Secondly, When lung cancer is complicated with TRA, it is difficult to determine the tumor area only by anatomical images such as CT, which will inevitably affect the treatment results. In contrast to previous studies (11–14), this study retrospective study included cases treated using functional imaging PET/CT guidance to develop treatment plan, outline target areas, and establish radiotherapy plans. Our previous study (8) showed that radiation treatment guided by PET-CT had a better outcome in the similar stage than radiation treatment without PET-CT guidance.

The standard treatment for unresectable locally advanced NSCLC (stage IIB-IIIC) in our study was concurrent radiotherapy and chemotherapy or sequential radiotherapy and chemotherapy.

In our study, the standard of care for most patients was concurrent radiotherapy and chemotherapy or sequential radiotherapy and chemotherapy. The definitive radiation treatment for unresectable locally advanced NSCLC (stage IIB-IIIC) is an equivalent dose of 60–66 Gy/30f(BED). For patients (in selected cases) with stage IV (oligometastatic), the standard treatment in our study was systematic chemotherapy combined with local consolidation radiotherapy (50-60 Gy). The purpose of consolidation radiation is to improve the control rate of the primary tumor area and prevent distant metastasis. In our previous study, local consolidation treatment for patients with stage IV oligometastatic NSCLC can improve patient outcomes to some extent (20). Local consolidation treatment may cause modest toxicity, but can improve overall survival. Using PET/CT pretreatment characterization of tumors using PET/CT may help patients find the most suitable treatment, accurately customize radiotherapy plans, and select chemotherapeutics. Incorrect GTV depiction may lead to insufficient dose to the tumor, leading to local control failure and/or increased toxicity due to radiation of normal tissue. However, it may be challenging to depict GTV entirely based on planned CT scans and is affected by differences within and between observers (4). When tumors and surrounding tissues with similar densities appear on CT images, their contrast is limited, making it more challenging to determine GTV. Especially in the presence of TRA (lung collapse or closure), mediastinal invasion, and GTV should include mediastinal lymph nodes. The inclusion of FDG-PET images in radiotherapy planning has been shown to reduce intra observer and inter-observer variability and improve the clarity of GTV (21). In addition, there is a good correlation between the tumor size determined by resected pathological specimens and the tumor size in preoperative PET/CT images (22). In the use of FDG-PET/CT images to guide radiation treatment planning, using the 3D-CRT/IMRT radiotherapy technique, we select some stage IV NSCLC high palliative chest consolidation measures. Dose escalation is carried out through integrated enhancement technology and will not exceed the dose limit of normal organs and tissues. Similar strategies were used with both TRA and no TRA, whereby the prescribed dose was increased to residual tumor volumes. In contrast to previous studies, the same approach was used in our patients: Patients underwent FDG-PET/CT-guided 3D-CRT/IMRT radiotherapy, with dose escalation to residual tumor areas after 14–20 fractions of radiotherapy, combined with (concurrent or sequential) chemotherapy or solely radiotherapy. There was no significant difference between the TRA and no TRA groups in terms of toxic side effects after chemoradiotherapy, both of which were below grade 3. Furthermore, our previous results (5) showed that this PET CT guided treatment approach was superior to the outcomes of patients based on CT-guided radiotherapy regimens during the same period at the same institution. This could be related to collapse and hypoxia of lung parenchyma. Atelectasis and obstructive pneumonia caused by bronchial compression or involvement are important causes of death in patients with lung cancer (6). Hypoxia induces increased cellular glucose uptake, and proximal tumors in the airway often lead to atelectasis and bronchial obstruction.

This study is a retrospective study. The sample size is relatively small and there is heterogeneity between cases, which is prone to selection bias and recall bias. In addition, due to the large time span, this study lacks corresponding clinical data on the impact of driver gene positive related targeted therapy and immunotherapy on the overall survival of oligometastatic NSCLC patients in recent years, and does not study the cause of death of patients.

Taken together, our results demonstrate that PET/CT guided radiation treatment plan has distinct advantages in guiding patients with atelectasis to 3D-CRT/IMRT radiotherapy. Moreover, it can accurately stage lung cancer, develop a standardized, accurate, and effective treatment plan based on precise staging, and better complete radiotherapy by mapping the target area. TRA and T stage are strongly correlated with unfavorable prognosis in patients with centrally located NSCLC definitive radiotherapy under the guidance of PET/CT. Active treatment of TRA can prolong the survival of patients, while lung re-expansion can improve the prognosis of atelectasis patients. Since the small number of patients with lung re-expansion after chemoradiotherapy limits its applicability, we caution that post/mid-treatment lung re-expansion analysis should be considered exploratory until further validation in larger cohorts.
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Background

Lung adenocarcinoma (LUAD) is the most common type of Non-small-cell lung cancer (NSCLC). Distant metastasis of lung adenocarcinoma reduces the survival rate. we aim to develop a nomogram in order to predict the survival of patients with metastatic lung adenocarcinoma.



Methods

We retrospectively collected patients who were initially diagnosed as metastatic LUAD from 2010 to 2015 from SEER database. Based on the multivariate and univariate Cox regression analysis of the training cohorts, independent prognostic factors were assessed. The nomogram prediction model was then constructed based on these prognostic factors to predict the overall survival at 12, 24 and 36 months after surgery. Nomogram were identified and calibrated by c-index, time-dependent receiver operating characteristic curve (time-dependent AUC) and calibration curve. Decision curve analysis (DCA) was used to quantify the net benefit of the nomogram at different threshold probabilities, and to better compare with the TNM staging system, we calculated the c-index of this nomogram as well as the net reclassification improvement (NRI) and the integrated discrimination improvement (IDI).



Result

A total of 1102 patients with metastatic LUAD who met the requirements were included for analysis. They were randomly divided into 774 in the training cohorts and 328 in the validation cohorts. As can be seen from the calibration plots, the predicted nomogram and the actual observations in both of the training and validation cohorts were generally consistent. The time dependent AUC values of 12 months, 24 months and 36 months were 0.707, 0.674 and 0.686 in the training cohorts and 0.690, 0.680 and 0.688 in the verification cohorts, respectively. C-indexes for the training and validation cohorts were 0.653 (95%CI 0.626-0.68)and 0.663 (95%CI 0.626-1), respectively. NRI and IDI show that the model is more clinical applicable than the existing staging system. In addition, our risk scoring system based on Kaplan Meier (K-M) survival curve can accurately divide patients into three hierarchy risk groups.



Conclusion

This has led to the development and validation of a prognostic nomogram to assist clinicians in determining the prognosis of patients with metastatic lung adenocarcinoma after primary site surgery.
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Introduction

As one of the most common forms of cancer, lung cancer has a high mortality rate among the 13 regions of the world indicating that lung cancer is a serious threat to human health and life (1). According to recent research, non-small cell lung cancer (NSCLC) accounts for about 85% of all lung cancers among all its subtypes. The prevalence of lung adenocarcinoma (LUAD), the most common subtype of NSCLC, is still on the rise among current, former, and even non-smokers (2).

It is estimated that the 5-year relative survival rate of patients with LUAD is only 5% due to the fact that about 57% of the patients have advanced stage and metastatic disease (3). A lung cancer patient’s prognosis is adversely affected by the presence of distant metastases (4). Lung, bone, brain, adrenal gland, pleura, and liver are the general metastatic sites for LUAD (5). Since the turn of the century, there have been tremendous advances in the treatment of non-small cell lung cancers (NSCLC), with the overall survival rate of patients using immunotherapy and targeted biologic regimens far exceeding that of those treated with conventional cytotoxic chemotherapy in the past (6). While there have been significant developments in surgical techniques and adjuvant therapies in recent years, the overall prognosis of LUAD remains very poor despite the recent advances.

A tumor-node-metastases (TNM) staging system is one of the main indicators used in predicting survival and determining treatment options (7). Although TNM stage is similar in patients with different survival rates. Furthermore, there are other patient-specific factors that are associated with survival in multiple cancers, including age, race, marital status, tumor size, and differentiation (8). The development of an improved staging prediction system that considers the characteristics of the tumor with the patient’s own condition is therefore essential.

In clinical practice, nomograms are widely used in terms of prognosis for cancer as a simple statistical tool (9). By evaluating the weighted prognostic value for each of the factors, the probability of an event can be calculated (10). As an alternative or even as a new standard, nomograms have been proposed for many cancers that compare favorably with the traditional TNM staging system (11).

Consequently, the objective of this study is to identify prognostic factors that are relevant to LUAD after surgery by examining data in the Surveillance, Epidemiology, and End Results (SEER) database of LUAD patients and to develop a prediction model for survival after surgery. An evaluation of the prediction model was assessed using calibration curves, receiver operating characteristic (ROC) curves, and decision curve analyses (DCA) (12).



Materials and methods


Study population and data source

The data for the patients were obtained through the US SEER database using SEER*Stat software(version 8.3.6; National Cancer Institute, USA).Participants should meet the following criteria to be considered for inclusion in the study:(1) diagnosed with pulmonary adenocarcinoma by histology from 2010 to 2015; (2) patients with distant metastasis at the initial diagnosis; (3)received primary site surgery (4) patients with important variable information being fully documented. This study excluded patients diagnosed by autopsy or death certificate. In addition, patients with survival time < 1 month were also excluded. A random sample of patients selected for the study was divided into two groups, a training group (70%) and a testing group (30%).

A human subject or any personally identifiable information was not included in the data. Consequently, informed consent was not required for this portion of the study.



Study variables

In this study, 15 variables were included to identify independent prognostic factors in patients with postoperative patients with metastatic LUAD. The demographic variables include age, race, gender and marital status. The clinicopathological characteristics of the tumor include primary location, laterality, tumor grade(I,II,III,IV), N stage, T stage,liver metastasis, brain metastasis, lung metastasis, bone metastasis and treatment information, including chemotherapy and radiotherapy. Among the primary outcomes of this study was overall survival (OS). It was defined as the interval between the date of diagnosis and the date of death from whatever cause. Using X-tile software, we determined the best age and survival cut-off values (Supplementary Figure 1A).

For age, 54 and 67 years were determined to be the best cut-off values. We categorized the patients into three groups to facilitate data processing (< 54 years old, 54-67 years old, > 67 years old). Additionally, the T stage can be divided into the following stages: T0, T1, T2, T3, and T4. It was discussed that the N stage consisted of N0 (No), N1-N3 (Yes). The M stage was defined as M0 for no metastasis and M1 for positive metastasis. We used the eighth edition of the TNM staging system to define T, N, and M for patients in the clinical stage.



Statistical analysis

The R software randomly divided all patients into training and verification cohorts according to a ratio of 7:3. For the purpose of comparing the variables between the training cohort and the validation cohort, we used Chi-square test. In order to determine the independent prognostic factors of postoperative patients with metastatic LUAD, we first used univariate Cox regression analysis, and the variables with P < 0.05 were included in subsequent multivariate Cox regression analysis. The variables with P < 0.05 were identified as independent prognostic factors. The nomogram prediction model was then constructed based on these prognostic factors to predict the overall survival at 12-, 24- and 36-months after surgery. We explored the differences in survival rates between patients with different subtypes of lung adenocarcinoma based on the analysis of KM survival curves of the invasive subtypes included in the study.

To compare the predicted event and the actual event, calibration plots were drawn for the 12-, 24-, and 36-month OS probability. In order to assess the model’s ability to distinguish between events and nonevents, receiver operating characteristic curves (ROC) and area under curves (AUC) were used. In addition, ROC curves or time-varying ROC curves of all independent variables were generated and compared with the AUC values of the corresponding nomogram. We established a calibration curve with a decision curve analysis (DCA) curve for evaluating the nomogram. A comparison of the nomogram with the conventional TNM staging system was based on calculating the C-index. In addition, we also calculated the net reclassification improvement (NRI) and the integrated discrimination improvement (IDI) of the nomogram. Finally, according to the best cut-off value of risk score, patients in the training cohorts and verification cohorts were divided into high-risk group, medium risk group and low-risk group, and the logarithmic rank test of Kaplan Meier (K-M) survival curve was performed to verify the prognostic value of nomogram. According to the calculated total points of each patient from the nomogram, a risk classification system was created by using X-tile program for Postoperative patients with metastatic lung adenocarcinoma. All statistical analysis was conducted using SPSS 25.0 and R software (version 3.6.1) software. P <0.05 (bilaterally) was regarded as statistically significant in this study.




Results


Patient characteristics

In this study, 1102 postoperative patients with metastatic LUAD were included based on the inclusion and exclusion criteria The overall patient screening and study process is shown in Supplementary Figure 2. The training cohorts consisted of 774 patients while the validation cohorts comprised 328 patients. See Table 1 for details. As can be seen from the Chi square test, the deviation between the training cohorts and verification cohorts was completely random, and the variable difference between the two cohorts wasn’t statistically significant.


Table 1 | Demographics and clinical characteristics of the participants.





Histological subgroup analysis of lung adenocarcinoma

We have updated the histological typing of lung adenocarcinoma in the seer database according to the histological subtype classification system for LUAD proposed by the International Association for the Study of Lung Cancer, the American Thoracic Society and the European Respiratory Society in 2011 (13). The reason for this replacement is that the seer database uses the histological typing published in 2004, which is no longer in use. The study included 1102 patients, but patients with unspecified histologic staging were excluded, and 186 patients who had subtypes or variants of invasive adenocarcinoma were selected, and survival curves were plotted for most type (Table 2). According to a survival analysis conducted for each subgroup type of lung adenocarcinoma, the papillary and solid subtypes showed significantly poor survival rates when compared to the lepidic and acinar subtypes of cancer. Among the included pathological subtypes, the colloid-predominant subtype exhibited the worst survival (Supplementary Figure 3).


Table 2 | Correlation of the Predominant Histologic Subtype or Variant.





Nomogram variables screening

In order to identify independent prognostic factors in LUAD patients, we performed univariate and multivariate Cox proportional hazards regression analysis. On the basis of a Univariate Cox regression analysis, the prognostic factors of patients with metastatic LUAD included age, gender, race, N stage, primary location, differentiation grade, tumor size, bone metastasis, liver metastasis, radiotherapy, and chemotherapy. In a multivariate Cox regression analysis, we found age, gender, primary location, N stage, bone metastasis, liver metastasis, radiotherapy, and chemotherapy significantly correlated with the postoperative prognosis of postoperative LUAD patients (Table 3).


Table 3 | Univariate and Multivariate analysis of variables for OS in patients.





Nomogram construction and validation

We constructed a nomogram for postoperative patients with metastatic LUAD according to the selected independent prognostic factors. In order to construct the model, we used these eight variables. Following this, a nomogram was constructed based on the training cohorts for predicting 12-, 24-, and 36-month OS (Figure 1). A point is assigned to each variable on the nomogram, and the total point can be determined by summing up the scores. In Figure 1, the red lines illustrate how the nomogram may be used to estimate the chance of survival of a given patient. The patient’s total risk score was established using the individual scores calculated using the nomogram; the majority of patients in this study had a total risk score ranging between 200 and 400.




Figure 1 | Based on standard deviations along nomogram scales, each variable was ranked according to its importance. On each variable axis, a specific point (black dot) represents the individual patient. The red lines and points indicate the number of points received by each variable. The total number of these points (346) appears on the Total Points(TP) axis, and a line appears on the survival axes to indicate the probability of 12-months survival 59.7% (1-40.3%), 24-months 37.7% (1-62.3%) and 36-months 24.5% (1-75.5%) overall survival OS:1-pr (fu time<*). * Means that 12months, 24months and 36months can be selected in OS calculation.



C-index values in the training cohorts was 0.653 (95%CI 0.626-0.68) and in the validation cohorts they was 0.663 (95%CI 0.626-1).The time dependent AUC values of 12 months, 24 months and 36 months were 0.707, 0.674 and 0.686 in the training cohorts and 0.690, 0.680 and 0.688 in the verification cohorts, respectively. (Figure 2) Our next step was to compare nomograms and independent prognostic factors. According to our findings, the AUC of the nomogram was significantly higher than that of all independent factors at 12 months, 24 months, and 36 months, both for training and verification cohorts (Figure 3). A good correlation was observed between the predicted and observed survival probabilities around both the training and validation cohorts as determined by the calibrating curves of the nomogram (Figure 4). As a result of DCA, it was demonstrated that the new nomogram is superior to both the all-treatment and all-no-treatment regimens in predicting survival in patients with lung cancer. (Figure 5) Based on DCA curves, nomograms were able to better predict OS at 12, 24, and 36 months from training and validation cohorts, and at most threshold ranges, nomograms remained beneficial over both treating all patients and none treating patients at all.




Figure 2 | Validation of the nomogram model using 12-, 24-, and 36-month ROC curves in training (A) and validation cohorts (B).






Figure 3 | the AUC values of nomograms in the train cohorts (A–C) and validation cohorts (D–F) at 12, 24 and 36 months were compared with the AUC values of all independent factors.






Figure 4 | Diagrams of calibration plots of OS-associated nomograms from training and validation cohorts. Figures showing calibration plots for 12-, 24-, and 36-month OS in the training cohorts (A–C) and calibration plots for 12-, 24-, and 36-month OS in the validation cohorts (D–F).






Figure 5 | DCA of the nomograms for OS in both training and validation cohorts. The DCA of nomogram in training cohorts for both OS; (A–C) the DCA of nomogram in validation cohorts for OS (D–F). DCA, decision curve analysis; OS, overall survival. The y-axis represents the net benefit; the x-axis represents the threshold probability. The blue line represents the net advantage of the column line graph. The black line represents the hypothesis that all patients die at 12 months, 24 months, and 36 months; the green line represents the hypothesis that no patients die at 12 months, 24 months, and 36 months.





Clinical value of the nomogram compared with the TNM staging

Compared to the FIGO criteria-based tumor staging system, the nomogram was found to offer clinical benefits for predicting tumor behavior. The discrimination ability of the nomogram and the eighth version of the TNM staging system was compared in the training and validation cohorts using the IDI and NRI indices (see in Table 4) Compared with the eighth edition of the TNM staging system, the discriminatory power of the nomogram is significantly improved. (IDI for the 24-,36-and 48-month OS were 0.272 (p < 0.001),0.164((p < 0.001) and 0.220 (p < 0.001), respectively) and reclassification ability (continuous NRI for 24-,36-and 48-month OS were 0.272,0.164 and 0.220 respectively (both p < 0.001)) in the training group (Table 4).


Table 4 | NRI and IDI of the prognostic nomogram for LUAD compared with TNM staging system.





The prognostic nomogram in the clinical practice

Using the nomogram we were able to calculate a risk stratification based on the total points. Based on the X-tile analysis, 303 and 372 scores were selected as the optimal cutoff points (Supplementary Figure 1B). Three groups of patients were identified based on their risk scores: low risk (total points < 303), middle risk (303≤ total points < 372), and high risk (total points ≥ 372). Based on Kaplan-Meier OS curves, there is a great deal of discrimination between the three risk groups. If the patient is classified into the low-risk subgroup, there is always a chance that their prognosis will be better. It is evident that the prognosis of patients in the high-risk group is worse than the prognosis of patients in the low-risk group, indicating that the risk classification system based on the nomogram is an effective predictor of patients’ survival after surgery for metastatic lung cancer. A significant difference (P<0.001) was evident in Figure 6 when comparing the survival curves in both training and validation cohorts.




Figure 6 | Based on the total points of the nomogram, survival curves are categorized according to risk scores (low-risk <303; middle-risk 303-372; high-risk ≥372). (A) Training cohorts’ survival curves. (B) validation cohorts’ survival curves.





Development of a web server for accessing the new model

We have developed an online version of this nomogram (Supplementary Figure 4) at https://shubei11.shinyapps.io/webnomogram2/that can assist clinicians in reducing the risk of interventions and predicting survival for patients with metastatic LUAD.




Discussion

LUAD is the most common type of NSCLC and tends to show a poor prognosis after metastasis has occurred. In early-stage patients, standard surgery is usually used to treat localized or early-stage disease, but in advanced cases, conventional therapies are usually used, such as chemotherapy and radiation, to treat the disease, and mortality rates are generally high (14).

In the last few years, the discovery of oncogenic driver mutations and their role in predicting response to targeted therapy has changed the way clinicians treat patients with LUAD (6). EGFR is the most prevalent targeted mutation in lung adenocarcinoma, and four FDA-approved tyrosine kinase inhibitors (TKIs) are currently in use. One of the drugs in first-line therapy is oxitinib, which reduces the risk of progression or death by 54% compared to earlier TKIs (erlotinib, gefitinib), and in the metastatic setting, EGFR inhibitor therapy improves PFS and quality of life for patients compared to chemotherapy (15–18). Although targeted therapies have shown promising results, almost all patients -eventually experience continued disease progression due to acquired resistance, and the induction of cell death and thus acquisition of broad resistance against targeted therapies has become a focus of research.

There have been several immunotherapy regimens used to treat patients with metastatic non-small cell lung cancer (NSCLC), but over the past decade, they have mainly focused on anti-programmed death protein-1 (PD-1) and anti-programmed death ligand 1 (PD-L1) therapies, as well as immune checkpoint blockade therapy (ICB) used to treat these patients (19). The treatment of metastatic NSCLC with two anti-PD-1 molecules and one anti-PD-L1 has been approved by the FDA (20). A new adjuvant therapy, immune checkpoint inhibitors (ICI), which can be administered alone or in combination with chemotherapy, has been developed, along with ongoing research into the level of immunotherapy, which has been shown to significantly reduce systemic recurrences and may improve long-term survival in patients with resectable NSCLC (21).

Individualized treatment is clearly becoming a paradigm for the treatment of patients with metastatic lung adenocarcinoma. To choose the right treatment, you’ve got to analyze histological features, individual genetic characteristics (mutations), antitumor drug resistance, tumor microenvironment, etc. With this personalized information, treatment will be greatly facilitated, and the nomogram we have created is one of the tools to provide information on patient survival. Hence, it is of paramount importance to study the prognosis of postoperative patients with metastatic LUAD.

In a survival analysis of different pathological subgroups of lung adenocarcinoma patients, it was found to be more likely that those patients who had predominantly lepidic and acinar forms of the disease would survive longer than those with predominantly solid and papillary forms. Other previous studies have confirmed these findings, with colloid-predominant or solid-predominant subtypes of lung adenocarcinoma often representing a poorer prognosis, suggesting that different subtypes of lung cancer can also predict survival in any given patient to some extent (22, 23). PD-L1 expression was significantly higher in papillary and solid types of LUAD than in lepidic and acinar types, according to a study assessing its expression in LUAD. A statistically significant correlation has been found between expression of PD-L1 and shorter disease-free survival outcomes and lymph node metastasis in LUAD (24). In one aspect, this also reflects the different degree of PD-L1 expression in different subtypes of lung adenocarcinoma patients, which may lead to the emergence of different survival profiles. This is the direction of research that we need to focus on in the future.

There are limitations to the current TNM staging systems in predicting mortality in cancer patients. As a result, it is essential to identify patients at high risk level after surgical resection (7). The nomogram is a necessary aspect of modern medical decision-making. The use of a nomogram carefully constructed to address a particular question, when interpreted and applied appropriately, can prove extremely useful for patients and clinicians (25). This study represents the first study that has developed and validated a nomogram model for predicting overall survival in a group of patients with metastatic lung adenocarcinoma following surgery. According to the study of 1102 patients with metastatic LUAD treated by surgery from the SEER database, such factors as age, gender, primary site, N stage, bone metastasis, liver metastasis, radiotherapy, and chemotherapy predicted postoperative survival for patients with metastatic LUAD. A survival prediction model was developed using variables that were all relatively easy to identify clinicopathologically. By including these factors in the model, the variability of patient data collection is minimized and the model’s clinical usefulness is greatly increased. The use of an easy-to-use scoring system across a wide range of settings is more likely to improve the performance of clinical assessments (26). By incorporating these independent risk factors, we developed a nomogram that accurately predicts OS in patients with metastatic LUAD at 12, 24 and 36 months. On both the training and validation cohorts, the nomogram model performed well in terms of discrimination and prediction accuracy. Multiple factors, including demographic and clinicopathological characteristics, are integrated into the nomogram to form a quantitative model which has excelled over conventional staging systems, such as the American Joint Committee on Cancer (AJCC) staging system in predicting prognosis and making clinical decisions (27).

Accordingly, the best cutoff value for OS was determined using the X-tile software, in order to divide the patients into three subgroups (low risk, middle risk, and high risk). Results from the Kaplan-Meier and Cox hazard ratio models showed significant differences between the three groups. It has been proven that nomogram can identify patients in the high-risk group more accurately than other staging systems. High-risk groups suffer from poor prognoses compared to patients at lower risk levels. In fact, it is vital to pay more attention to patients with total points≥372 than to those without.

All the patients we included have undergone surgery at the primary site, and there is no similar prognostic study for these patients. NAKAZAWA et al. results suggested that existing liver and bone metastasis adversely affected the outcome of the disease (28). The presence of liver metastases was found to be the worst prognostic factor in patients with metastatic lung adenocarcinoma (29). As stated by RIIHIMÄKI et al, patients with liver and bone metastases had a decreased survival rate when they had metastatic lung cancer (30). Based on the results of a retrospective study (31) of LUAD patients with multiple metastases, AD patients without liver metastases (4 months vs 3 months; OS and LCSS, p < 0.001) and SCLC patients (6 months vs 4 months; OS, p = 0.017; LCSS, p = 0.023) had better outcomes than patients with liver metastases. Our study included bone metastasis as an independent prognostic factor and liver metastasis as an independent prognostic factor. The overall survival of patients with LUAD with liver metastasis were worse than patients with bone metastasis.

Traditional staging of TNM has always included high N as having a poor prognosis, which is also reflected in our prognostic model. The results of a study on 167 patients with non-small cell lung cancer who underwent complete resection showed a 5-year survival rate of 20% for patients classified as N1 and 21% for patients classified as N2, with no significant differences in survival between the two groups of patients (32). It is noteworthy that our model indicated that patients with stage N1 had a better prognosis than patients with stage N2, but the difference between the two was not significant. There might be a difference in this phenomenon due to the sample population included in the study, but it is also possible to attribute it to the pre-operative and post-operative treatment the patients were given and the clinician’s surgical technique. The primary location of the tumor was also included for the first time as an independent prognostic factor in our analyses, which had not been done previously. Patients with cancer of unknown primary site (CUP) are considered to have a poor prognosis compared to patients with metastatic cancers with clear primary sites (27). Our results indicate that patients with other unknown primary sites also have poor outcomes.

Taking these results into account, we suggest that baseline characteristics in patients with metastatic LUAD, such as gender and age, can be considered independent prognostic factors. In previous retrospective studies (33, 34), we observed clearly different outcomes for men and women with NSCLC, in terms of presentation, management, and outcome. The gender of patients has been confirmed to be an independent unfavorable prognostic factor for survival in NSCLC patients. One of the most significant prognostic factors affecting lung cancer survival is the age of the patient, and the mortality rate was higher in elderly patients (35). We also got similar results about the influence of two independent prognostic factors of gender and age on OS in postoperative patients with LUAD. Men and patients older than 67 years old have a poor prognosis. There is a good probability that older patients are more susceptible to chronic diseases and postoperative complications which may severely affect their chances of survival. Second, older patients generally have poorer health, which can make surgeons hesitate to treat them as aggressively and intensively as younger patients, resulting in undertreatment of older patients (36).

All patients in this study underwent surgical treatment at the primary site, so the operation was not included in the nomogram, which does not mean that the surgical treatment has no effect on the survival rate of patients. For stage IV NSCLC patients with one or more synchronous metastases, a surgical strategy combined with systemic therapy, such as radiotherapy or chemotherapy can be effective (5, 37).

Adjuvant chemotherapy and adjuvant radiotherapy are controversial factors. Patients with NSCLC are usually treated with chemotherapy that uses platinum-based drugs. Radiation therapy, if necessary, is often used in conjunction with chemotherapy. The need to improve the long-term survival of patients with locally advanced NSCLC indicates the importance of a combination therapy, in which chemotherapy is a crucial component of controlling distant metastases in order to increase their overall survival rates (38). Cancer patients who have had stage II or stage III NSCLC completely resected survive longer when treated with adjuvant chemotherapy (39). This study also reached a similar conclusion that postoperative patients receiving adjuvant chemotherapy have a better prognosis (40–42).

An analysis of a previous meta-analysis reported that postoperative chest radiotherapy has an overall negative effect on survival, resulting in a 21.3% relative increase in odds of dying [hazard ratio (HR)1.21 (95% CI 1.08-1.34)]; meaning, an absolute reduction of 7% in survival from 55% to 48% at 2 years owing to the decrease in survival rates possible (43, 44). One of the possible reasons for this finding may be the increase in intrinsic and acquired radioresistance among patients suffering from cancers, which has led to a decrease in the success of their treatment (45).LUAD is not particularly sensitive to radiation, and thus, tumor cells are capable of developing a tolerance to radiation, resulting in local recurrences and poor prognoses (46).

There is enough sample size in SEER database to collect large sample data for research, which makes the results of this study very convincing. Even so, there will always be a certain amount of limitations associated with this study. In the first place, since this is a retrospective study, there will always be some effect of bias. Second, we cannot make a quantitative study on the specific chemotherapy and radiotherapy schemes adopted by patients and the relevant data of surgical margins state. Third, the seer database lacks information on specific tumor markers that could improve prognostic accuracy, as well as certain hematological indicators: neutrophils, platelets, and absolute lymphocyte values. Finally, there is a lack of clinical external validation data to evaluate our nomogram. Despite these limitations, our first online version of the nomogram and nomogram for surgically resected metastatic LUAD patients has high clinical applicability and provides individualized and accurate survival predictions for each patient.



Conclusions

The survival rate of patients with metastatic LUAD after primary site surgery was predicted using a nomogram. Compared with other staging systems, the model has good prediction accuracy and clinical utility, and can provide a reference for clinicians to formulate treatment plans.



Data availability statement

Publicly available datasets were analyzed in this study. This data can be found here: https://seer.cancer.gov/.



Author contributions

XT, CM, and SP contributed to conception and design of the study. BZ organized the database. CM performed the statistical analysis. CM wrote the first draft of the manuscript. YG, BZ, SL, and SP wrote sections of the manuscript. All authors contributed to manuscript revision, read, and approved the submitted version.



Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.



Supplementary material

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fonc.2022.916498/full#supplementary-material

Supplementary Figure 1 | X-tile program settings and results.

Supplementary Figure 2 | The flowchart of patient selection.

Supplementary Figure 3 | Survival curve analysis of major histological subtypes and variants of invasive lung adenocarcinoma. Histology (1:Acinar-predominant;2:Colloid predominant;3:Lepidic-predominant;4:Papillary-Predominant;5:Solid predominant with mucin production)

Supplementary Figure 4 | Online web server interface for dynamic prognostic nomograms for patients with metastatic LUAD.



Abbreviations

LUAD, Lung adenocarcinoma; NSCLC, Non-small-cell lung cancer; DCA, Decision curve analysis; ROC, Receiver operating characteristic; DCA, Decision curve analysis; TNM, Tumor-node-metastases; OS, Overall survival; PORT, Postoperative radiation therapy; HR, Hazard Ratio; CI, Confidence Interval; AJCC, American Joint Committee on Cancer; AUC, area under curves; K-M, Kaplan Meier; TKIs, tyrosine kinase inhibitors; PD-1, anti-programmed death protein-1; PD-L1, anti-programmed death ligand 1; ICB, immune checkpoint blockade; ICI, immune checkpoint inhibitors.



References

1. Ferlay, J, Colombet, M, Soerjomataram, I, Parkin, DM, Piñeros, M, Znaor, A, et al. Cancer statistics for the year 2020: An overview. Int J Cancer (2021) 149(4):778–89. doi: 10.1002/ijc.33588

2. Ma, J, Ward, EM, Smith, R, and Jemal, A. Annual number of lung cancer deaths potentially avertable by screening in the united states. Cancer (2013) 119(7):1381–5. doi: 10.1002/cncr.27813

3. Zhao, C, Liu, J, Zhou, H, Qian, X, Sun, H, Chen, X, et al. NEIL3 may act as a potential prognostic biomarker for lung adenocarcinoma. Cancer Cell Int (2021) 21(1):228. doi: 10.1186/s12935-021-01938-4

4. Klikovits, T, Lohinai, Z, Fábián, K, Gyulai, M, Szilasi, M, Varga, J, et al. New insights into the impact of primary lung adenocarcinoma location on metastatic sites and sequence: A multicenter cohort study. Lung Cancer (2018) 126:139–48. doi: 10.1016/j.lungcan.2018.11.004

5. Zhu, S, Ge, T, Hu, J, Jiang, G, and Zhang, P. Prognostic value of surgical intervention in advanced lung adenocarcinoma: a population-based study. J Thorac Dis (2021) 13(10):5942–53. doi: 10.21037/jtd-21-997

6. Halliday, PR, Blakely, CM, and Bivona, TG. Emerging targeted therapies for the treatment of non-small cell lung cancer. Curr Oncol Rep (2019) 21(3):21. doi: 10.1007/s11912-019-0770-x

7. Gao, Z, Ni, J, Ding, H, Yan, C, Ren, C, Li, G, et al. A nomogram for prediction of stage III/IV gastric cancer outcome after surgery: A multicenter population-based study. Cancer Med (2020) 9(15):5490–9. doi: 10.1002/cam4.3215

8. Song, W, Miao, DL, and Chen, L. Nomogram for predicting survival in patients with pancreatic cancer. OncoTargets Ther (2018) 11:539–45. doi: 10.2147/OTT.S154599

9. Song, W, Zhu, Zg, Wu, Q, Lv, Cg, Wang, Yg, Chen, L, et al. A nomogram to predict overall survival for biliary tract cancer. Cancer Manag Res (2018) 10:1535–41. doi: 10.2147/CMAR.S163291

10. Pan, Z, You, H, Bu, Q, Feng, X, Zhao, F, Li, Y, et al. Development and validation of a nomogram for predicting cancer-specific survival in patients with wilms’ tumor. J Cancer (2019) 10(21):5299–305. doi: 10.7150/jca.32741

11. Iasonos, A, Schrag, D, Raj, GV, and Panageas, KS. How to build and interpret a nomogram for cancer prognosis. J Clin Oncol (2008) 26(8):1364–70. doi: 10.1200/JCO.2007.12.9791

12. Huang, Z, Tong, Y, Tian, H, and Zhao, C. Establishment of a prognostic nomogram for lung adenocarcinoma with brain metastases. World Neurosurg (2020), 141::e700–9. doi: 10.1016/j.wneu.2020.05.273

13. Travis, W, Brambilla, E, Noguchi, M, Nicholson, A, Geisinger, K, Yatabe, Y, et al. International association for the study of lung cancer/american thoracic society/european respiratory society international multidisciplinary classification of lung adenocarcinoma. (2011) 199:244–85. doi: 10.1513/pats.201107-042ST

14. Spella, M, and Stathopoulos, GT. Immune resistance in lung adenocarcinoma. Cancers (2021) 13(3):384. doi: 10.3390/cancers13030384

15. Denisenko, TV, Budkevich, IN, and Zhivotovsky, B. Cell death-based treatment of lung adenocarcinoma. Cell Death Dis (2018) 9(2):117. doi: 10.1038/s41419-017-0063-y

16. Rosell, R, Carcereny, E, Gervais, R, Vergnenegre, A, Massuti, B, Felip, E, et al. Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): a multicentre, open-label, randomised phase 3 trial. Lancet Oncol (2012) 13(3):239–46. doi: 10.1016/S1470-2045(11)70393-X

17. Mok, TS, Wu, YL, Thongprasert, S, Yang, CH, Chu, DT, Saijo, N, et al. Gefitinib or carboplatin–paclitaxel in pulmonary adenocarcinoma. N Engl J Med (2009) 361(10):947–57. doi: 10.1056/NEJMoa0810699

18. Sequist, LV, Yang, JCH, Yamamoto, N, O’Byrne, K, Hirsh, V, Mok, T, et al. Phase III study of afatinib or cisplatin plus pemetrexed in patients with metastatic lung adenocarcinoma with EGFR mutations. J Clin Oncol (2013) 31(27):3327–34. doi: 10.1200/JCO.2012.44.2806

19. Sharma, P, and Allison, JP. Immune checkpoint targeting in cancer therapy: Toward combination strategies with curative potential. Cell (2015) 161(2):205–14. doi: 10.1016/j.cell.2015.03.030

20. Brahmer, JR, Govindan, R, Anders, RA, Antonia, SJ, Sagorsky, S, Davies, MJ, et al. The society for immunotherapy of cancer consensus statement on immunotherapy for the treatment of non-small cell lung cancer (NSCLC). J Immunother Cancer (2018) 6(1):75. doi: 10.1186/s40425-018-0382-2

21. Kang, J, Zhang, C, and Zhong, W. Neoadjuvant immunotherapy for non–small cell lung cancer: State of the art. Cancer Commun (2021) 41(4):287–302. doi: 10.1002/cac2.12153

22. Russell, PA, Wainer, Z, Wright, GM, Daniels, M, Conron, M, and Williams, RA. Does lung adenocarcinoma subtype predict patient survival?: a clinicopathologic study based on the new international association for the study of lung Cancer/American thoracic Society/European respiratory society international multidisciplinary lung adenocarcinoma classification. J Thorac Oncol (2011) 6(9):1496–504. doi: 10.1097/JTO.0b013e318221f701

23. Hung, JJ, Yeh, YC, Jeng, WJ, Wu, KJ, Huang, BS, Wu, YC, et al. Predictive value of the international association for the study of lung Cancer/American thoracic Society/European respiratory society classification of lung adenocarcinoma in tumor recurrence and patient survival. J Clin Oncol (2014) 32(22):2357–64. doi: 10.1200/JCO.2013.50.1049

24. Yeo, MK, Choi, SY, Seong, IO, Suh, KS, Kim, JM, and Kim, KH. Association of PD-L1 expression and PD-L1 gene polymorphism with poor prognosis in lung adenocarcinoma and squamous cell carcinoma. Hum Pathol (2017) 68:103–11. doi: 10.1016/j.humpath.2017.08.016

25. Balachandran, VP, Gonen, M, Smith, JJ, and DeMatteo, RP. Nomograms in oncology: more than meets the eye. Lancet Oncol (2015) 16(4):e173–80. doi: 10.1016/S1470-2045(14)71116-7

26. Zhang, G, Wang, X, Jia, J, Zuo, Z, Wang, L, Gao, S, et al. Development and validation of a nomogram for predicting survival in patients with surgically resected lung invasive mucinous adenocarcinoma. Transl Lung Cancer Res (2021) 10(12):4445–58. doi: 10.21037/tlcr-21-562

27. Wu, J, Zhang, H, Li, L, Hu, M, Chen, L, Xu, B, et al. A nomogram for predicting overall survival in patients with low-grade endometrial stromal sarcoma: A population-based analysis. Cancer Commun (2020) 40(7):301–12. doi: 10.1002/cac2.12067

28. Nakazawa, K, Kurishima, K, Tamura, T, Kagohashi, K, Ishikawa, H, Satoh, H, et al. Specific organ metastases and survival in small cell lung cancer. Oncol Lett (2012) 4(4):617–20. doi: 10.3892/ol.2012.792

29. Balea, BC, de Castro Carpeño, J, Massuti, B, Vicente-Baz, D, Parente, DP, Gracia, PR, et al. 1384P prognostic factors for survival in patients with metastatic lung adenocarcinoma: Analysis of the SEER database. Ann Oncol (2020) 31:S880. doi: 10.1016/j.annonc.2020.08.1698

30. Riihimäki, M, Hemminki, A, Fallah, M, Thomsen, H, Sundquist, K, Sundquist, J, et al. Metastatic sites and survival in lung cancer. Lung Cancer (2014) 86(1):78–84. doi: 10.1016/j.lungcan.2014.07.020

31. Ren, Y, Dai, C, Zheng, H, Zhou, F, She, Y, Jiang, G, et al. Prognostic effect of liver metastasis in lung cancer patients with distant metastasis. Oncotarget (2016) 7(33):53245–53. doi: 10.18632/oncotarget.10644

32. Magdeleinat, P, Alifano, M, Benbrahem, C, Spaggiari, L, Porrello, C, Puyo, P, et al. Surgical treatment of lung cancer invading the chest wall: results and prognostic factors. Ann Thorac Surg (2001) 71(4):1094–9. doi: 10.1016/S0003-4975(00)02666-7

33. Visbal, AL, Williams, BA, Nichols, FC, Marks, RS, Jett, JR, Aubry, MC, et al. Gender differences in non–small-cell lung cancer survival: an analysis of 4,618 patients diagnosed between 1997 and 2002. Ann Thorac Surg (2004) 78(1):209–15. doi: 10.1016/j.athoracsur.2003.11.021

34. de Perrot, M, Licker, M, Bouchardy, C, Usel, M, Robert, J, and Spiliopoulos, A. Sex differences in presentation, management, and prognosis of patients with non–small cell lung carcinoma. J Thorac Cardiovasc Surg (2000) 119(1):21–6. doi: 10.1016/S0022-5223(00)70213-3

35. Tas, F, Ciftci, R, Kilic, L, and Karabulut, S. Age is a prognostic factor affecting survival in lung cancer patients. Oncol Lett (2013) 6(5):1507–13. doi: 10.3892/ol.2013.1566

36. Yang, F, Xie, H, and Wang, Y. Prognostic nomogram and a risk classification system for predicting overall survival of elderly patients with fibrosarcoma: A population-based study. Miwa S editor J Oncol (2021) 2021:1–9. doi: 10.1155/2021/9984217

37. David, EA, Clark, JM, Cooke, DT, Melnikow, J, Kelly, K, and Canter, RJ. The role of thoracic surgery in the therapeutic management of metastatic non–small cell lung cancer. J Thorac Oncol (2017) 12(11):1636–45. doi: 10.1016/j.jtho.2017.08.008

38. Rinaldi, M, and Crinò, L. Induction chemotherapy with gemcitabine and cisplatin in stage III non-small cell lung cancer. Lung Cancer (2001) 34:25–30. doi: 10.1016/S0169-5002(01)00388-9

39. Morgensztern, D, Du, L, Waqar, SN, Patel, A, Samson, P, Devarakonda, S, et al. Adjuvant chemotherapy for patients with T2N0M0 NSCLC. J Thorac Oncol (2016) 11(10):1729–35. doi: 10.1016/j.jtho.2016.05.022

40. Trodella, L, Granone, P, Valente, S, Valentini, V, Balducci, M, Mantini, G, et al. Adjuvant radiotherapy in non-small cell lung cancer with pathological stage I: definitive results of a phase III randomized trial. Radiother Oncol (2002) 62(1):11–9. doi: 10.1016/S1278-3218(02)00169-5

41. Van Houtte, P, Rocmans, P, Smets, P, Goffin, JC, Lustman-maréchal, J, Vanderhoeft, P, et al. Postoperative radiation therapy in lung cancer: A controlled trial after resection of curative design. Int J Radiat Oncol (1980) 6(8):983–6. doi: 10.1016/0360-3016(80)90105-4

42. Mayer, R, Smolle-Juettner, FM, Szolar, D, Stuecklschweiger, GF, Quehenberger, F, Friehs, G, et al. Postoperative radiotherapy in radically resected non-small cell lung cancer. Chest (1997) 112(4):954–9. doi: 10.1378/chest.112.4.954

43. Tiseo, M, Franciosi, V, Grossi, F, and Ardizzoni, A. Adjuvant chemotherapy for non-small cell lung cancer: Ready for clinical practice? Eur J Cancer (2006) 42(1):8–16. doi: 10.1016/j.ejca.2005.08.031

44. PORT Meta-analysis Trialists GroupPostoperative radiotherapy in non-small-cell lung cancer: systematic review and meta-analysis of individual patient data from nine randomised controlled trials. Lancet (1998) 352(9124):257–63. doi: 10.1016/S0140-6736(98)06341-7

45. Li, Y, Li, H, Peng, W, He, XY, Huang, M, Qiu, D, et al. DNA-Dependent protein kinase catalytic subunit inhibitor reverses acquired radioresistance in lung adenocarcinoma by suppressing DNA repair. Mol Med Rep (2015) 12(1):1328–34. doi: 10.3892/mmr.2015.3505

46. Niu, H, Huang, Y, Yan, L, Zhang, L, Zhao, M, Lu, T, et al. Knockdown of SMAD3 inhibits the growth and enhances the radiosensitivity of lung adenocarcinoma via p21 in vitro and in vivo. Int J Biol Sci (2020) 16(6):1010–22. doi: 10.7150/ijbs.40173



Publisher’s note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2022 Ma, Peng, Zhu, Li, Tan and Gu. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.




ORIGINAL RESEARCH

published: 16 August 2022

doi: 10.3389/fonc.2022.905958

[image: image2]


Adjuvant chemotherapy can benefit the survival of stage I lung adenocarcinoma patients with tumour spread through air spaces after resection: Propensity-score matched analysis


Shaonan Xie 1, Qingyi Liu 1*, Yaqing Han 1, Shize Wang 1, Huiyan Deng 2 and Guangjie Liu 1


1 Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China, 2 Department of Pathology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China




Edited by: 

Jun Zhang, University of Kansas Medical Center, United States

Reviewed by: 

Paul Emile Van Schil, Antwerp University Hospital, Belgium

Lanwei Guo, Henan Provincial Cancer Hospital, China

Lingbin Du, Zhejiang Cancer Hospital, China

*Correspondence: 

Qingyi Liu
 zhongmeijian-lqy@163.com

Specialty section: 
 This article was submitted to Thoracic Oncology, a section of the journal Frontiers in Oncology


Received: 28 March 2022

Accepted: 25 July 2022

Published: 16 August 2022

Citation:
Xie S, Liu Q, Han Y, Wang S, Deng H and Liu G (2022) Adjuvant chemotherapy can benefit the survival of stage I lung adenocarcinoma patients with tumour spread through air spaces after resection: Propensity-score matched analysis. Front. Oncol. 12:905958. doi: 10.3389/fonc.2022.905958




Background

It is still unclear whether stage I lung adenocarcinoma patients with tumour spread through air spaces (STAS) can benefit from postoperative adjuvant chemotherapy (ACT) after lobectomy. This study investigated the effect of ACT on the postoperative survival of patients with stage I (STAS+) lung adenocarcinoma.



Methods

We retrospectively analysed the clinical data of stage I (STAS+) invasive lung adenocarcinoma patients who underwent lobectomy in the Department of Thoracic Surgery of our hospital from January 1, 2013 to January 1, 2016. Propensity score matching (PSM) was performed to group patients to investigate whether ACT could lead to better prognosis of patients.



Results

A total of 593 patients with stage I (STAS+) lung adenocarcinoma were enrolled. The study after PSM included 406 patients. Kaplan–Meier survival analysis showed the experimental group had a better 3-year recurrence-free survival (RFS) rate (p = 0.037) and the 5-year RFS rate (p = 0.022) than the control group. It also had higher 5-year overall survival (p = 0.017). The multivariate analysis by Cox proportional hazard regression model showed that stage I STAS+ lung adenocarcinoma patients with lymphatic vessel invasion (HR: 1.711, 95% CI: 1.052-2.784; p = 0.045), vascular invasion (HR: 5.014, 95% CI: 3.154-7.969; p < 0.001), and visceral pleural invasion (HR: 2.086, 95% CI: 1.162-3.743; p = 0.014), and without ACT (HR: 1.675, 95% CI: 1.043-2.689; p = 0.033) had a significant survival disadvantage.



Conclusion

ACT can boost the postoperative survival of patients with stage I (STAS+) lung adenocarcinoma.





Keywords: lung adenocarcinoma, stage I, spread through air spaces(STAS), adjuvant chemotherapy, prognosis



Introduction

Lung cancer is still the leading cause of death of cancer patients worldwide (1). Surgical resection is still the preferred treatment for patients with stage I, stage II, and in some cases stage III non-small-cell lung cancer (NSCLC). For stage II and III patients, postoperative adjuvant chemotherapy (ACT) can improve their survival (2), but for stage I patients, whether survival is boosted by ACT is still inconclusive. The National Comprehensive Cancer Network (NCCN) recommends that ACT be given to stage I patients with high-risk factors, including tumours ≥ 4 cm, lymphatic vascular invasion, visceral pleural invasion, poorly differentiated cancer, incomplete lymph node sampling, and wedge resection (3).

Lung adenocarcinoma is the most common histological type of NSCLC, accounting for approximately 50% of all NSCLC (4). In 2011, the International Association for the Study of Lung Cancer, American Thoracic Society and European Respiratory Society (IASLC/ATS/ERS) classified adenocarcinomas into lepidic, acinar, papillary, micropapillary, solid, and mucinous types based on the growth pattern of invasive lung adenocarcinoma (5). Micropapillary and solid lung adenocarcinoma have worse prognoses than the lepidic, acinar, and papillary types. In addition, this stage IB micropapillary/solid invasive adenocarcinoma obtains survival benefit from ACT (6, 7). In recent years, tumour spread through air spaces (STAS) has come to be considered a new invasion method for stage I invasive lung adenocarcinoma. STAS has been associated with a high recurrence and metastasis rate and a poor survival rate (8–10). There is growing evidence of a correlation between the surgical resection method and the survival rate of STAS-positive lung adenocarcinoma patients (11, 12). Lobectomy has a better prognosis than segmentectomy (12, 13). In our clinical work, we have observed that STAS+ stage IA2-IA3 patients have worse survival than STAS– patients, which has been confirmed by others (14). There is no consensus on whether patients with stage I (STAS+) lung adenocarcinoma who undergo lobectomy, especially stage IA lung adenocarcinoma, can benefit from ACT.

In this study, we retrospectively analysed the clinical data of patients with stage I (STAS+) who underwent lobectomy. We grouped all patients according to propensity score matching (PSM) to study the survival benefit of ACT after lobectomy in patients with stage I (STAS+) lung adenocarcinoma.



Materials and methods


Patient selection

The medical ethics committee of the Fourth Hospital of Hebei Medical University, China, approved this study (ethics number:2021ky103), and the ethics committee waived the requirement of informed consent from patients. We retrospectively analysed the clinical data of stage I (STAS+) invasive lung adenocarcinoma patients who underwent lobectomy and systematic nodal dissection in the Department of Thoracic Surgery of our hospital from January 1, 2013 to January 1, 2016. Routine preoperative examination was performed to exclude metastasis. Patients who met the following conditions were excluded from the study: 1. mucinous invasive adenocarcinoma; 2. preoperative induction therapy; 3. the second primary tumor; 4. Multiple nodules; 5. Non-lung cancer related deaths;and 6. Incomplete clinical data. The flow chat show in Figure 1.




Figure 1 | The follow chart. ADC, adenocarcinoma; STAS, spread through air space; ACT, adjuvat chemotherapy.





Histopathological evaluation of STAS

All specimens were immediately fixed in formalin after surgical resection and stained with haematoxylin and eosin. The sections were independently evaluated by two experts in the Department of Pathology, and the specimens were classified according to the IASLC/ATS/ERS histological classification of lung invasive adenocarcinoma (5). The growth pattern that accounted for the largest proportion (even if <50%) was used to classify the lung invasive adenocarcinoma into the lepidic, acinar, micropapillary, papillary, or solid type. STAS lesions are composed of tumour cells, which manifest morphologically as scattered single cancer cells, micropapillary clusters, and solid nests located in the normal alveolar space (15). To avoid artificial cell dissemination during tumour dissection, each pathologist individually observed at least three tumour specimen sections. The dissemination of invasive adenocarcinoma through the airway cavity is shown in Figures 2A–C.




Figure 2 | (A) STAS manifest morphologically as scattered single cancer cells in the triangular area and solid nests in the rectangular area. (B) STAS manifest morphologically as micropapillary clusters in the elliptical area. (C) STAS manifest morphologically as scattered single cancer cells in the triangular area, micropapillary clusters in the elliptical area and solid nests in the rectangular area. STAS, spread through air space.





Postoperative follow-up

Follow-up was conducted at the 3rd month after surgery and every 6 months thereafter. The follow-up data came mainly from the patient’s re-examination in the thoracic surgery clinic of our hospital and the follow-up centre of our hospital. For patients who were re-examined in local medical and health institutions, their follow-up data and examination data were collected through e-mail and telephone. Recurrence-free survival (RFS) was defined as the time from surgery to the first event(tumour recurrence or death from any cause) or the last follow-up. Overall survival (OS) was defined as the time from surgery to death or last follow-up. All recurrences were confirmed by clinical, radiologic, and pathologic assessment and were classified as local recurrence and distant recurrence. Local recurrence was defined as recurrence in the staple line,the ipsilateral hilar or mediastinal lymph node, ipsilateral pleura and ipsilateral lobes. Distant recurrence was defined as recurrence in the the contralateral hilar or mediastinal lymph node, contralateral lobes,contralateral pleura and other organs.



Statistical methods

SPSS v26.0 (IBM, Armonk, NY, USA) was used for statistical analysis. Based on general clinical data, a multivariate logistic regression model built used to perform 1:1 matching between the experimental group and the control group according to the principle of nearest matching (matching tolerance: 0.02), the matching factors include Age, Sex, Smoking history, Histologic pattern, Vascular invasion, Pleural invasion, Lymphatic invasion, Pathologic stage, Lymph nodes resected. Pre-PSM clinical data were compared between groups by the χ2-test, and PSM clinical data were compared by the paired-sample t-test. Kaplan–Meier was used to assess DFS and OS. The Cox proportional-hazards regression model was used to evaluate the independent influencing factors of DFS and OS. All p-values are base on two-tailed statistical analysis, and p < 0.05 was statistically significant.




Results


Baseline characteristics of patients

A total of 3198 patients with Stage I lung adenocarcinoma underwent lobectomy between January 1, 2013, and January 1, 2016. STAS was observed in 992(31.0%) of all the patient.593 patients were enrolled in the study. The median age of onset was 62.0 (range 27.0-79.0) years, and the median follow-up time was 75.0 (range 11.0-99.0) months. The selection of adjuvant chemotherapy patients is determined jointly by the thoracic surgeon and oncologist who are treating the patient at the time. A total of 233 patients received postoperative ACT; they had a median age of onset of 61.0 (range 27.0-78.0) years and a median follow-up time of 75.0 (28.0-99.0) months. A total of 360 patients did not receive postoperative ACT; they had a median age of onset of 62.0 (30.0-79.0) years and a median follow-up time of 77.0 (11.0-99.0) months. Patients in the ACT group received 2-4 cycles of platinum-containing dual-drug chemotherapy after surgery, and there were no chemotherapy-related deaths.

In the whole sample, the ACT group and the non-ACT group had significant differences in vascular invasion (p = 0.047), visceral pleural invasion (p < 0.001, and clinical stage (p <0.001). After we grouped all patients by PSM (matching tolerance: 0.02), we obtained a total of 406 patients (203 cases in the ACT group, defined as the experimental group; 203 cases in the non-ACT group, defined as the control group). The baseline characteristics of the two groups were well matched, with no significant differences (Table 1).


Table 1 | Variables of the two groups of the patients before PSM and afer PSM.





RFS rates of the PSM groups

The median RFS time of the whole after PSM groups was 74.0 (11.0-99.0) months, the 3-year RFS rate was 87.4% (95%CI, 84.3% to 90.7%), and the 5-year RFS was 77.1% (95%CI, 73.1% to 81.3%). The median RFS of the experimental group was 75.0 (14.0-99.0) months, its 3-year RFS rate was 92.1% (95%CI, 88.5% to 95.9%), and its 5-year RFS rate was 83.3% (95%CI, 78.3% to 88.5%). The median RFS of the control group was 72.0 (11.0-99.0) months, its 3-year RFS rate was 82.8% (95%CI, 77.7% to 88.1%), and its 5-year RFS rate was 70.9% (95%CI, 65.0% to 77.5%).

Kaplan–Meier survival analysis showed that the difference in 3-year RFS between the experimental group and the control group was statistically significant (p = 0.037). The 5-year RFS difference between the experimental group and the control group was statistically significant (p = 0.022). The 3-year and 5-year RFS rates of the experimental group were both better than those of the control group (Figures 3A, B). A total of 34 patients relapsed within 5 years in the experimental group, 14 with local recurrence (1 in the staple line,6 in the ipsilateral hilar or mediastinal lymph node, 3 in the ipsilateral pleura and 3 in the ipsilateral lobes). and 20 with distant recurrence (10 in the the contralateral hilar or mediastinal lymph node, 6 in the contralateral lobes, 1 in the contralateral pleura and 3 in the other organs); a total of 59 patients relapsed within 5 years in the control group, 20 with local recurrence (1 in the staple line, 9 in the ipsilateral hilar or mediastinal lymph node, 2 in the ipsilateral pleura and 8 in the ipsilateral lobes) and 29 with distant recurrence (12 in the the contralateral hilar or mediastinal lymph node, 13 in the contralateral lobes, 1 in the contralateral pleura and 3 in the other organs).




Figure 3 | (A) 3 years-RFS and (B) 5 years-RFS of stage I (STAS+) patient with/without ACT after PSM. RFS, recurrence free survival; STAS, spread through air space; ACT, adjuvat chemotherapy; PSM, propensity-score matching.



The result of univariate analysis is showed in Table 2. Multivariate analysis removed two variables. Multivariate analysis by the Cox proportional-hazards regression model showed that vascular invasion (hazard ratio (HR): 4.399, 95% confidence interval (CI): 2.907-6.659; p < 0.001), visceral pleural invasion (HR: 2.056, 95% CI: 1.213-3.484; p = 0.007), and not receiving ACT (HR: 1.810, 95% CI: 1.184-2.766; p = 0.006) were independent influencing factors of RFS. Stage I STAS-positive adenocarcinoma patients who had vascular invasion or visceral pleural invasion or who did not receive postoperative ACT were more likely to relapse (Table 3).


Table 2 | Cox proportional-hazards regression model for univariate analysis in the PSM.




Table 3 | Cox proportional-hazards regression model for multivariate analysis in the PSM.





OS rates of the PSM groups

The median OS time of the whole after PSM group was 74.8 (20.0-99.0) months, the 3-year OS rate was 97.3% (95%CI,95.4% to 98.7%), and the 5-year OS rate was 81.8% (95%CI,78.1% to 85.6%). The median OS of the experimental group was 75.0 (21.0-99.0) months, its 3-year OS was 98.5% (95%CI,96.9% to 100.0%), and its 5-year OS was 86.2% (95%CI,81.6% to 91.1%). The median OS in the control group was 74.0 (20.0-99.0) months, its 3-year OS rate was 96.1% (95%CI,92.8% to 98.4%), and its 5-year 0S rate was 77.3% (95%CI,71.8% to 83.3%).

Kaplan–Meier survival analysis showed that there was no significant difference in 3-year OS between the experimental group and the control group (p = 0.13), so the experimental group did not have a survival advantage. However, the difference in 5-year OS between the experimental group and the control group was statistically significant (p = 0.017), so the 5-year survival rate of the experimental group was better than that of the control group (Figures 4A, B).




Figure 4 | (A) 3 years-OS and (B) 5 years-OS of stage I (STAS+) patient with/without ACT after PSM. OS, over survival; STAS, spread through air space; ACT, adjuvat chemotherapy; PSM, propensity-score matching.



The result of univariate analysis is showed in Table 2. Multivariate analysis showed that stage I STAS-positive adenocarcinoma patients with lymphatic vessel invasion (HR: 1.711, 95% CI: 1.052-2.784; p = 0.045), vascular invasion (HR: 5.014, 95% CI: 3.154-7.969; p < 0.001), visceral pleural invasion (HR: 2.086, 95% CI: 1.162-3.743; p = 0.014), and not receiving ACT (HR: 1.675, 95% CI: 1.043-2.689; p = 0.033) brought significant survival disadvantages (Table 3).



IA3 subgroup analysis

We performed PSM on all 141 enrolled stage IA3 patients. The matched study group included 44 patients in the experimental group and 44 patients in the control group. The 5-year RFS of the experimental group was better than that of the control group (p = 0.040), but the 5-year OS did not show a significant difference (p = 0.21) (Figures 5A, B).




Figure 5 | (A) 5 years-RFS and (B) 5 years-OS of stage IA3(STAS+) patient with/without ACT after PSM. OS, over survival; STAS, spread through air space; ACT, adjuvat chemotherapy; PSM, propensity-score matching.






Discussion

A growing number of studies have shown that lung adenocarcinoma with STAS is associated with a higher risk of postoperative recurrence and a lower survival rate in patients with lung adenocarcinoma (9, 16–19). Related studies have also reported a better prognosis of stage I lung adenocarcinoma patients with STAS who underwent lobectomy than those who underwent segmentectomy (11, 20). However, there are few reports on whether stage I lung adenocarcinoma patients with STAS can benefit from ACT after lobectomy. To our knowledge, this is the first PSM study on the whether patients with stage I lung adenocarcinoma (STAS+) can benefit from postoperative ACT.

Chen (20) confirmed that STAS is a clear prognostic factor for patients with stage IA and IB lung adenocarcinoma and proposed that the patients with stage IA STAS+ lung adenocarcinoma had similar RFS and OS as patients with stage IB STAS– lung adenocarcinoma. Here, we further confirmed that ACT was an independent factor affecting the long-term survival of patients with stage I (STAS+) lung adenocarcinoma who underwent lobectomy, and more specifically, stage I (STAS+) lung adenocarcinoma patients who did not receive ACT after lobectomy had a higher risk of recurrence (HR: 1.810, 95% CI: 1.184-2.766; p = 0.006) and death (HR: 1.675, 95% CI: 1.043-2.689; p = 0.033).

The need of patients with stage I lung adenocarcinoma to undergo ACT, especially those with stage IA lung adenocarcinoma who have undergone lobectomy, has been continuously questioned. In our study, due to the small number of stage IA1 and IA2 patients included in the total sample of 593, we only analysed a subgroup of 141 stage IA3 patients. We separately matched these 141 patients with PSM and obtained a post-PSM study that included 44 pairs of patients. In this study groups, the 5-year RFS of patients who received ACT was significantly better than that of patients who did not receive ACT (p = 0.040). Although the 5-year OS survival curve showed a certain differentiation trend, the difference was not statistically significant (p = 0.21). This may have been due to the small number of stage IA3 patients enrolled in the study and the small number of deaths within 5 years. The 5-year RFS of the patients already showed a difference, so with a longer follow-up time, the OS of the patients might also show differences.

In recent years, a growing number of studies have explored the predictors of postoperative benefit from ACT in patients with stage I lung cancer (21–24). A multicentre study by Japanese scholars confirmed that ACT after lobectomy in stage I lung adenocarcinoma patients with visceral pleural invasion, lymphatic vessel invasion, and vascular invasion could not only prolong the RFS of the patients but also increase the OS. In our study, lymphatic vessel invasion (HR: 1.711, 95% CI: 1.052-2.784; p = 0.045), vascular invasion (HR: 5.014, 95% CI: 3.154-7.969; p < 0.001), and visceral pleural invasion (HR: 2.086, 95% CI: 1.162-3.743; p = 0.014) were independent influencing factors of long-term survival after lobectomy for stage I STAS+ lung adenocarcinoma. STAS is another invasion method besides the above three. Wang et al. (24) confirmed that ACT can benefit the postoperative survival of stage I lung adenocarcinoma with micropapillae as the main component. the presence of STAS is positively correlated with adenocarcinoma subtypes with a predominantly micropapillary or solid component (25, 26). Although 59.5%(353/593) of the patients in our study with acinar as main component,but 82.6%(490/593)of the patients had micropapillae or/and solid components,this ratio is similar to that in Lee’s study (26). Therefore, our study further confirmed that ACT could benefit the survival of patients with stage I (STAS+) regardless of the presence of micropapillary/solid components.

Our study has certain limitations. First, although we performed PSM on the study subjects in this retrospective study, there may still be a certain selection bias. Second, our limited follow-up time may be the reason why stage IA3 patients who received ACT did not show any survival benefit. Third, it is controversial whether any part of the free-floating tumour cell clusters identified by pathologists as STAS was artificially created in vitro. Most notably, tumour cell clusters may be spread by the knife surface during processing of the specimen, known as “spread through a knife surface (STAKS)” (27). Although we observed at least three tumour sections of each specimen under a microscope, we still inevitably included some STAKS patients rather than real STAS patients in the study. Due to the small number of cases, we did not perform subgroup analysis of the morphology of STAS or the prognosis of ACT. In addition, the decision-making about ACT and the choice of chemotherapy regimen were based on the subjective preference of the attending physician rather than a randomized choice.

In summary, ACT is a favourable prognostic factor for patients with stage IB(STAS+) lung adenocarcinoma. For stage IA3 patients, ACT improves the RFS, but it brings no advantage to OS. A larger, longer-term clinical observational study is needed to explore the role of ACT in the treatment of patients with STAS+ IA3 lung adenocarcinoma.
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Background

Mucoepidermoid carcinoma is dominant in salivary glands and rarely occurs in the lung. Primary pulmonary mucoepidermoid carcinoma is a type of non-small-cell lung cancer, but the prognostic factors in Chinese patients remain controversial. This investigation aimed to review cases of pulmonary mucoepidermoid carcinoma, analyse the prognosis of this disease.



Methods

Patients with pathologically proven pulmonary mucoepidermoid carcinoma were screened at the Department of Respiratory and Critical Care Medicine at the Peking University Third Hospital, Beijing Friendship Hospital Affiliated to Capital Medical University, and Peking University Cancer Hospital for inclusion in this retrospective study. Demographic data, including age, sex, clinical symptoms, smoking, alcohol consumption, allergies, family history, imaging findings, fibrobronchoscopy findings, surgical procedures, tumour location and pathologic stage, were collected. Telephone follow-up was conducted for all patients not lost to follow-up. The associations of sex, age, smoking, tumour differentiation, tumour size, lymph node metastasis, pathologic stage, and patient survival were retrospectively analysed. Kaplan–Meier, univariate and multivariate analysis curves were used to analyse patient prognosis and prognostic factors.



Results

Thirty-one patients, comprising 23 males and 8 females, were enrolled in the analysis. The mean age was 60.77 ± 11.44 years. The first symptom was nonspecific, with cough being the most common (21/31, 67.77%); smokers accounted for 16 of the 31 patients, and ten patients had a history of alcohol consumption. Overall, the tumours could occur in either lobe of the lungs; tumours occurred in the right lung in 19/31 patients, and tumours occurred in the left lung in 12/31 patients. Regarding TNM stage, 10 patients had stage I (5 with stage 1a, 5 with stage 1b), 5 had stage II (1 with stage 2a, 4 with stage 2b), 3 had stage III (1 with stage 3a, 2 with stage 3b), and 13 had stage IV (10 with stage 4a, 3 with stage 4b). In our Cox univariate survival analysis of patients with pulmonary mucoepidermoid carcinoma, we found that TNM stage IV, degree of differentiation and lymph node metastasis were risk factors for pulmonary mucoepidermoid carcinoma and that degree of differentiation was an independent risk factor.



Conclusion

The clinical, radiographical and pathological features of pulmonary mucoepidermoid carcinoma were systemically analysed and summarized, and the degree of differentiation and lymph node metastasis, as well as prognostic factors in addition to clinical stage, were confirmed.





Keywords: pulmonary mucoepidermoid carcinoma, clinical features, chinese population, prognosis, pathological features



Introduction

Mucoepidermoid carcinoma (MEC) of the lung is one of the rarer lung malignancies, has no specific clinical manifestations and presents mostly as irritant symptoms of the bronchi, including cough, expectoration, haemoptysis, chest pain, chest tightness, and fever (1). Patients with tumours obstructing the trachea present mostly with atelectasis and inflammation. However, tumours that are small or grow around the lungs do not cause symptoms (2). The literature reports no clear association between smoking and this condition (3). Pathological diagnosis is the gold standard for the diagnosis of the disease, and in today’s era of precision medical treatment in particular, accurate pathological diagnosis is the top priority. The general appearance of MEC of the lung is mostly round or irregular. The size of the tumour is generally 3–5 cm, and the section is grey and white with brittle matter. Pulmonary MEC (PMEC) can be divided into two types, low-level and high-level, according to morphology and the cell score (4). Low-grade tumours have a predominantly cystic component with inconspicuous cellular atypia, and the tumours are mostly nonnecrotic with areas of calcification. High-grade tumours are less common and present with heteromorphic cells, karyorrhexis, necrosis and regional lymph node metastasis. The literature on the common pathological grade of PMEC is mixed. In one study, 49 of 69 MECs were low grade (5), whereas in another study involving 11 patients, 8 had high-grade disease and 3 had low-grade disease (6). The development of immunohistochemical techniques plays an irreplaceable role in pathological classification and differential diagnosis because of the complex composition of the disease; sometimes the biopsy results, the results of intraoperative frozen section and even those of postoperative paraffin pathology cannot accurately report the case classification, and immunohistochemistry is necessary to assist the diagnosis. TNM stage and tissue grade are independent risk factors for PMEC prognosis (7, 8). Turnbull et al. (9) showed that PMECs are generally considered low-grade tumours and have a significantly better long-term prognosis than non-small-cell lung cancer (NSCLC), which was supported by other studies (10). Studies have shown that the more advanced the stage is, the lower the patient survival time and the more aggressive the high-grade tumour histology will be. Patients with PMEC without any lymph node metastasis who undergo complete resection are expected to be cured (11). It has also been documented that age ≥50 years, a peribronchial growth pattern, tumour size ≥3 cm, and Ki-67 labelling index ≥ 10% are all poor prognostic factors for PMEC (12). Because of the relatively low incidence of this disease clinically, there have been few investigations on its prognosis. This investigation aimed to review cases of PMEC, analyse the prognosis of this disease.



Methods


Study population and design

This observational cross-sectional study was conducted in the Department of Respiratory and Critical Care Medicine at the Peking University Third Hospital, Beijing Friendship Hospital Affiliated to Capital Medical University, and Peking University Cancer Hospital. We enrolled all inpatients admitted to these hospitals from March 2016 to March 2022.

The inclusion criteria were as follows: (I) pathological diagnosis of PMEC and (II) age ≥18 years. The exclusion criteria were as follows: 1) length of hospitalization <1 day or 2) refusal to participate in this study.

The study protocol was approved by the Ethics Committee of Peking University Third Hospital, Beijing Friendship Hospital Affiliated with Capital Medical University, and Peking University Cancer Hospital (No. IRB00006761-M2022102, 2022-P2-137-01, 2020KT103). If a patient was admitted to the Department of Respiratory and Critical Care Medicine more than once, data were collected from only the first hospitalization.



Data collection

Patient data, including age, sex, clinical symptoms, smoking, alcohol consumption, allergies, family history, imaging findings, fibrobronchoscopy findings, surgical procedures, tumour location and pathologic stage, were collected from medical records.

Telephone follow-up was conducted for all patients not lost to follow-up. The associations between sex, age, smoking, tumour differentiation, tumour size, lymph node metastasis, and pathologic stage and patient survival were analysed. The patients were followed up every three months after discharge to evaluate survival, recurrence, treatment changes, and treatment-related complications.



Histologic review and grading

Diagnostic H&E slides were reviewed by two pathologists, and each carcinoma was graded according to the World Health Organization (WHO) classification of tumours of the lung, pleura, thymus and heart (13). MEC is divided into high-grade and low-grade carcinomas. The criteria for distinguishing high-grade and low-grade tumours are as follows: low-grade malignant tumours are mainly cystic components, have no obvious cell abnormity, have no necrotic areas in most cases, and have observable calcification. Heteromorphic cells, mitotic-phase cells, necrosis and regional lymph node metastasis are found in highly malignant tumours.



Survival analysis

A Cox regression model was used to analyse the predictors of all-cause death and infection. Since the follow-up data may be affected by the baseline data, the baseline data and follow-up data were modelled. First, Kaplan–Meier analysis (for classified variables) or a univariate Cox regression model (for continuous variables) were used to screen the variables that may be independent predictors. Only variables with P values less than 0.1 in the Kaplan–Meier analysis or univariate Cox regression were included in the final multivariate Cox regression model. The potential predictors of all-cause death included age, sex, pathological grade, lymph node metastasis and tumour stage. The corresponding segmental time-related variables were established according to whether the patient died during the specific follow-up time. The results were expressed as the relative risk (HR) and 95% confidence intervals (CI). A p value less than 0.05 was considered to indicate a significant difference. SPSS 10.0 was used for statistical analysis.



Statistical analysis

Data were analysed using SPSS 23.0 software (IBM, New York, USA). Continuous variables are expressed as the means ± standard deviations. Categorical variables are expressed as frequencies and proportions. One-way ANOVA was used to evaluate differences among means across categories of nutritional risk. The chi-squared test or Fisher’s exact test was used for categorical variables.




Results


Demographic and clinical characteristics of the participants

During the study period, 40 patients with pathologically proven PMEC were admitted to the participating hospitals (including 7 patients admitted to Peking University Third Hospital, 16 patients admitted to Peking University Cancer Hospital, and 8 patients admitted to Beijing Friendship Hospital Affiliated to Capital Medical University). Nine patients were excluded due to missing data. Ultimately, 31 patients were enrolled in the analysis, consisting of 23 males and 8 females. The mean age was 60.77 ± 11.44 years, and the patients’ ages ranged from 31 to 77 years.

For these patients, the first symptom was nonspecific, with cough being the most common (21/31, 67.77%). None of the patients had a previous history of neoplasia; 4/31 of the patients had a family history of tumours, and 1/31 had a family history of lung cancer. There were more male patients, with a male-to-female ratio of 2.875:1 (23/8). Smokers accounted for 16/31 of the total population. Ten patients had a history of alcohol consumption, and all of them were male. Only one male patient had a previous history of allergies. The clinical data of all patients are detailed in Table 1.


Table 1 | Clinical and follow-up data of 31 patients with pulmonary mucoepidermoid carcinoma.





PMEC tumour characteristics

Regarding the sites of PMEC, the tumour occurred in either lobe of the lungs; 19/31 patients had tumours in the right lung (including the upper lobe of the right lung, the middle lobe of the right lung, and the lower lobe of the right lung), 12/31 patients had tumours in the left lung (including the upper lobe of the left lung and the lower lobe of the left lung), and 1 patient had tumours that occurred simultaneously in the middle lobe of the right lung and the lower lobe of the right lung. Bronchial obstruction or atelectasis was seen in 10/31 patients. The imaging data of all patients are detailed in Table 1.



TNM staging

According to the above imaging features and tumour involvement range, staging was performed. Based on the eighth edition of the Union for International Cancer Control (UICC) criteria for TNM staging of lung cancer in 2009, of the 31 included patients, 10 had stage I disease (5 with stage 1a and 5 with stage 1b), 5 had stage II disease (1 with stage 2a and 4 with stage 2b), 3 had stage III disease (1 with stage 3a and 2 with stage 3b), and 13 had stage IV disease (10 with stage 4a and 3 with stage 4b). The pathological stage and prognosis data of all patients are detailed in Table 2.


Table 2 | Univariate survival analysis of patients with pulmonary mucoepidermoid carcinoma.





Pathological examination


Gross examination

Among the 31 samples submitted for examination, there were 3 biopsies and 28 completely resected specimens. The maximum diameter of the tumour was 1~4 cm, with an average of 2.03 cm. The tumours were located in the larger bronchus above the segment or near the hilar bronchus. Most of them had no capsule, and the shape was irregular. They infiltrated the bronchial wall or surrounding lung tissue. The section was greyish yellow or greyish white, hard, and mainly solid, and a small amount of mucus could be seen. Intrabronchial polypoid protrusions could be seen when the tumour was located in the bronchus.



Microscopic examination

The tumour had no capsule and showed invasive growth. The tumour was composed mainly of three kinds of cells, namely, epidermoid cells, intermediate cells and mucus cells. The three kinds of cells were mixed to form solid and glandular cystic structures. By observing the pathological morphology under a light microscope, 31 tumours were divided into 25 low-grade tumours (Figure 1) and 6 high-grade tumours (Figure 2).




Figure 1 | Pathology image of low-grade mucoepidermoid carcinoma (A) The nests of tumour cells were evident in the bronchial lumen (H&E stain, magnification × 20). (B) Mucus-rich columnar cells form adenoid structures with a lumen filled with mucus surrounded by nonkeratinized squamous cells and ovoid intermediate cells with eosinophilic cytoplasm (H&E stain, magnification ×200). (C) Immunohistochemistry showed CK5/6 squamous cell positivity, intermediate cells and columnar cell negativity (magnification × 100). (D) Immunohistochemical staining for CK7 was positive (magnification × 100).






Figure 2 | Pathological image of high-grade mucoepidermoid carcinoma (A) Squamous epithelium and mucus-rich columnar epithelium can be seen at low magnification (H&E stain, magnification × 40). (B) Squamous cells distributed in patches, columnar cells with mucus inside and outside the cells, and intermediate cells with eosinophilic cytoplasm (H&E stain, magnification × 400). (C) Immunohistochemical staining for CK5/6 was positive (magnification × 100). (D) Immunohistochemical staining was partially positive for P40 (magnification × 100).






Imaging characteristics

Among the 31 patients with a pathological diagnosis of PMEC, 14 underwent fibreoptic bronchoscopy, of whom 10 showed intrabronchial space occupation (Figure 3). All patients underwent CT, and there were 28 cases of pulmonary space occupation and 11 cases of pulmonary space occupation with obstructive pneumonia (Figure 4).




Figure 3 | Mucoepidermoid carcinoma seen under fibreoptic bronchoscopy. Rigid bronchoscopy + electronic tracheoscopy: irregular new organisms can be seen at the opening of the right middle lobe, bad and dead objects and purplish red blood vessel attachment can be seen on the surface, which easily bleeds and blocks the orifice, and the distal end cannot be penetrated. More than 10 new bioelectric trap biopsies and frozen biopsies in the right middle lobe were sent for pathological biopsy. After the operation, the original right middle lobe was blocked, and the opening was partially unobstructed. The volume of intraoperative local bleeding was approximately 50 ml. No active bleeding was found after endoscopic haemostasis.






Figure 4 | Chest CT enhancement scan: Soft tissue nodule is seen at the right hilum, measuring approximately 2.0 × 1.7 cm, and mild enhancement is seen on the right lung middle lobe atelectasis, with a patchy hyperdense shadow and right lung middle lobe bronchus occlusion. A ground-glass nodule shadow is seen in the dorsal segment of the lower lobe of the right lung, measuring 7 × 5 mm, approximately anteriorly. An enlarged lymph node shadow is seen in the right hilum, approximately 1.0 cm in diameter.





Subgroup analyses

Next, we performed subgroup analyses to further compare outcomes between MEC patients without lymph node metastasis and those with lymph node metastasis, with and without stage IV disease, and with low-grade and high-grade MEC. None of the patients without lymph node metastasis died, whereas nine of the sixteen patients with lymph node metastasis reached the endpoint (P<0.001, Figure 5). In the survival analysis based on the presence of stage IV disease, the stage IV group had a significantly worse outcome than the nonstage IV group (𝑃= 0.019, Figure 6), in which 7 of 13 patients with stage IV disease and 2 of 18 patients without stage IV disease reached the endpoint. Moreover, five of six patients in the high-grade group and 4 of 25 patients in the low-grade group reached the endpoint (P<0.001, Figure 7).




Figure 5 | Comparison of primary outcomes between mucoepidermoid carcinoma patients with and without lymph node metastasis.






Figure 6 | Comparison of primary outcomes between mucoepidermoid carcinoma patients with and without stage IV disease.






Figure 7 | Comparison of primary outcomes between mucoepidermoid carcinoma patients with low-grade and high-grade tumours.





Risk factors associated with survival

Univariate Cox survival analysis of patients with PMEC showed that TNM stage IV, degree of differentiation and lymph node metastasis were risk factors for PMEC and that degree of differentiation was an independent risk factor affecting poor prognosis (P=0.031, HR 4.638 95% CI 0.001-0.711) (see Table 3 for details).


Table 3 | Multivariate Cox regression analysis of patients with pulmonary mucoepidermoid carcinoma.






Discussion

MEC is dominant in salivary glands and rarely occurs in the lung. Primary PMEC is a type of NSCLC, but the prognostic factors remain controversial. This investigation aimed to review cases of PMEC, analyse the prognostic factor of this disease.

The age at onset ranges from 3 to 78 years, and this disease is more often seen in adults (14). PMEC was first reported in 1952 by Smetana et al (15) and is considered less aggressive than other types of lung adenocarcinoma. In this study, after summarizing the clinical features of 31 patients with PMEC, we found that the chief complaints and imaging findings of patients with PMEC were nonspecific, which was similar to the results reported in a previous study (16). The preoperative diagnosis rate of fibrobronchoscopic biopsy was low, and the diagnosis of the patients was determined mainly by pathologic diagnosis after surgery.

In this study, 31 patients had positive findings on preoperative CT, mostly in lung space-occupying areas, partly with atelectasis or obstructive pneumonia. This result was similar to the results reported in a previous study. In Yousem’s analysis of eight cases of PMEC, in which all patients underwent CT, a single nodule or mass was found in 71% of the patients, 28% had lung consolidation, and 1% had no significant abnormality (13). In Kim’s study (17), 33% of patients had obstructive pneumonia or atelectasis on imaging. In our patients, the tumour was centrally located with smooth margins, was ovoid or lobulated in shape, was homogeneous in density and was partly calcified or mildly enhancing. Ishizumi et al (18) analysed high-resolution CT images of five PMEC and found that the lesions showed round, ovoid, or lobulated occupying spaces with smooth margins. Heterogeneous enhancement in the occupied space was demonstrated on contrast-enhanced CT, and the vascular rich sites of enhancement were confirmed by immunohistochemistry as mucus-secreting areas. Although the vast majority of PMECs have positive findings on CT imaging, CT has a limited ability to visualize the bronchial lumen, as most tumours with intraluminal lesions can have the above manifestations. A sufficiently reliable diagnosis cannot be made based on imaging data alone. Most PMECs grow into the bronchial lumen, and a fibroscopic examination allows the surgeon to make a more reliable judgement of the condition.

In this study, airway space occupation was visible in 32.3% (10/31) of patients under a fibreoptic scope, but the positive rate of pathological diagnosis was only 42.9% (6/14). Pandya et al. considered that PMEC is mostly polypoid and that the surface covers normal respiratory epithelium; thus, the positive rate of the lavage and brush test was very low, and the diseased tissue may not have been obtained if there was too little biopsy tissue captured by a bronchoscope (19). Additionally, some scholars believe that preoperative biopsy should not be performed because of the more brittle tumour texture and tendency to bleed. Therefore, the decision on whether or not to perform fibroscopy should be made according to the patient’s basic condition, tumour location, and hospital technical conditions, among other factors.

The biological behaviour of PMEC is thought to be related to the degree of differentiation, with well-differentiated tumours showing benign behaviour and vice versa. Another study compared the postoperative survival of patients with poorly differentiated NSCLC to that of patients with intermediate/well-differentiated NSCLC and found that the two were not significantly different (HR = 1.15, 95% CI: 0.81-1.64, P = 0.42). In this study, according to the Kaplan–Meier survival curves and Cox regression analysis, patients with low-grade bronchial MEC had better overall survival and progression-free survival times than those with high-grade PMEC. Yousem (20) suggested that advanced age and hilar lymph node metastasis predicted a worse prognosis. Vadasz’s (2) case series reported that only patients with high-grade tumours had lymph node metastasis. Univariate Cox regression analysis of the present study confirmed that age and lymph node metastasis were indeed associated with overall survival time, while it was found that TNM stage was also associated with survival. However, in the multivariate Cox regression analysis, only lymph node metastasis was an independent prognostic factor. We suggest that lymph node metastasis is the most important prognostic factor for bronchial MEC. To date, surgery remains the treatment of choice for PMEC, and the surgical approach is determined mainly by the tumour location. Twenty-one of the thirty-one patients had tumours located in the lobar bronchus, and lobectomy was the most common surgical approach and was performed in 61.9% (13/21) of all patients. If the main bronchus is invaded, then sleeve lobectomy should be considered; if it is not curative, total lung resection should be considered.

In Zheng et al’s study (7), the five-year survival rate was 100%, and all patients who died were those with stage III or IV disease. They reported five-year survival rates of only 28.6% among patients with high-grade tumours and 81.25% among patients with low-grade tumours. Kang et al (21) reported a 31% five-year survival rate for high-grade PMECs, an 80% five-year survival rate for low-grade PMECs, and an up to 80% recurrence rate for high-grade PMECs.

Some scholars believe that chemotherapy or radiotherapy is not effective for the treatment of PMEC (3, 22). Although there are reports that paclitaxel-based chemotherapeutics are considered to be effective for MEC of the salivary gland (23), reports on the efficacy of paclitaxel for the treatment of PMEC are still lacking. Therefore, some doctors do not maintain postoperative adjuvant chemotherapy or radiotherapy IV. This study shows that lymph node metastasis is an important prognostic factor, and patients with PMEC without lymph node metastasis can be treated with surgery alone. However, for patients with PMEC with lymph node metastasis, there is a certain problem with surgical treatment alone: bronchial MEC is a subtype of NSCLC, and according to the code of diagnosis and treatment for NSCLC, patients with lymph node metastasis should receive postoperative adjuvant chemotherapy. Although patients with PMEC with lymph node metastasis have a very poor prognosis and require adjuvant therapy, none of the current follow-up therapies have been indicated to be effective.

The limitations of this study are as follows. First, the patients came from the northern area of the Chinese Plain. Different geographical environments and altitudes may have disease characteristics and nutritional gene statuses that affect the mortality rate of this study. Second, the limitations of retrospective research may lead to missing or incomplete data records and offsets. Third, not all patients had characteristic MECT1 and MAML2 fusion gene detection results.

Overall, this study confirmed that for PMEC, a rare neoplasm, the clinical presentation and imaging findings are nonspecific, making it difficult to obtain an accurate preoperative diagnosis. However, we found that lymph node metastasis is an independent prognostic factor for PMEC, which can both help diagnose such patients and predict their prognosis.



Conclusion

The preoperative diagnosis of PMEC relies on CT and bronchoscopic examination. Because the clinical manifestations are atypical, it is difficult to obtain a definite diagnosis before surgery. The survival of patients with low-grade tumours is better than that of patients with high-grade tumours. Age, grade, lymph node metastasis and TNM stage are associated with survival, and lymph node metastasis is a prognostic factor.
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Background

Endoplasmic reticulum (ER) stress had a crucial impact on cell survival, proliferation, and metastasis in various cancers. However, the role of ER stress in lung adenocarcinoma remains unclear.



Method

Gene expression and clinical data of lung adenocarcinoma (LUAD) samples were extracted from The Cancer Genome Atlas (TCGA) and three Gene Expression Omnibus (GEO) datasets. ER stress score (ERSS) was constructed based on hub genes selected from 799 ER stress-related genes by least absolute shrinkage and selection operator (LASSO) regression. A Cox regression model, integrating ERSS and the TNM stage, was developed to predict overall survival (OS) in TCGA cohort and was validated in GEO cohorts. Gene set enrichment analysis (GSEA), single-sample GSEA (ssGSEA), and gene mutation analyses were performed to further understand the molecular features of ERSS. The tumor immune infiltration was evaluated by ESTIMATE, CIBERSORT, and xCell algorithms. The receiver operating characteristic (ROC) curves were used to evaluate the predictive value of the risk model. p< 0.05 was considered statistically significant.



Results

One hundred fifty-seven differentially expressed genes (DEGs) were identified between tumor and para-carcinoma tissues, and 45 of them significantly correlated with OS. Next, we identified 18 hub genes and constructed ERSS by LASSO regression. Multivariate analysis demonstrated that higher ERSS (p< 0.0001, hazard ratio (HR) = 3.8, 95%CI: 2.8–5.2) and TNM stage (p< 0.0001, HR = 1.55, 95%CI: 1.34–1.8) were independent predictors for worse OS. The prediction model integrating ERSS and TNM stage performed well in TCGA cohort (area under the curve (AUC) at five years = 0.748) and three GEO cohorts (AUC at 5 years = 0.658, 0.717, and 0.739). Pathway enrichment analysis showed that ERSS significantly correlated with unfolded protein response. Meanwhile, pathways associated with the cell cycle, growth, and metabolism were significantly enriched in the high ERSS group. Patients with SMARCA4, TP53, and EGFR mutations showed significantly higher ERSS (p = 4e−04, 0.0027, and 0.035, respectively). Tissues with high ERSS exhibited significantly higher infiltration of M1 macrophages, activated dendritic cells, and lower infiltration of CD8+ T cells and B cells, which indicate an activated tumor antigen-presenting but suppressive immune response status.



Conclusion

We developed and validated an ER stress-related risk model that exhibited great predictive value for OS in patients with LUAD. Our work also expanded the understanding of the role of ER stress in LUAD.





Keywords: prediction model, endoplasmic reticulum stress, lung adenocarcinoma, TCGA, GEO



Introduction

Lung cancer is the most lethal malignant tumor worldwide (1) and contributes to the highest morbidity and mortality in China (2). Lung cancer consists of small cell carcinoma, adenocarcinoma, squamous cell carcinoma, and large cell carcinoma. Lung adenocarcinoma (LUAD) accounts for more than 40% of lung cancer, the most numerous histological type of lung cancer (3).

Under the condition of proteostasis in normal cells, the sensors of endoplasmic reticulum (ER) stress, including activating transcription factors 6 (ATF6), inositol-requiring enzyme 1α (IRE1α), and PRKR-like ER kinase (PERK), are in an inactivated state, while in the tumor microenvironment, multiple factors, such as hypoxia (4), abnormal nutrient supply (5), intracellular accumulation of reactive oxygen species (ROS) (6), and low pH (7), can disturb protein folding in ER. Accumulation of misfolded protein breaks proteostasis, activates sensors, and consequently drives robust ER stress in cancer cells. The activation of sensors promotes unfolded protein response (UPR), which restores ER homeostasis and promotes cell adaptation to stress and survival (8). Interestingly, ER stress acts as an oncogenic factor only when it is moderate, while extreme UPR caused by uncontrolled ER stress will induce cell death (9).

The role of ER stress in LUAD remains controversial. A study reported that ER stress was upregulated by the overexpression of POU4F3 and therefore inhibits tumor progression in LUAD (10). ROS-mediated ER stress suppresses tumors in lung cancer cells (11). ER stress pathway can be upregulated by neutrophil arginase-1, released from activated human neutrophils or dead cells, and induces apoptosis of cancer cells (12). Besides, ER stress is also reportedly involved in cisplatin resistance in lung cells (13). In contrast, Yamashita et al. demonstrated that ER stress promotes epithelial–mesenchymal transition (EMT) and cell invasion in LUAD (14). Collectively, these findings indicate that ER stress might be a promising therapeutic target in LUAD, and comprehensive exploration of the relationship between ERSS stress and LUAD is necessary.



Methods


Datasets and data collection

Gene expression and clinical data of LUAD patients from The Cancer Genome Atlas (TCGA) database were obtained via the UCSC Xena repository (https://xenabrowser.net/) (15). The GSE30219, GSE31210, and GSE720924 datasets were procured from the Gene Expression Omnibus (GEO) database (http://www.ncbi.nlm.nih.gov/geo/). Table 1 shows the clinical characteristics of patients from four cohorts. ER stress-related genes were downloaded from GeneCards websites (https://www.genecards.org/), which provides comprehensive information on all annotated human genes.


Table 1 | Clinical characteristics of LUAD patients from TCGA and GEO databases.





Construction and evaluation of a prediction model

We developed a prediction model in TCGA cohort and externally validated the model in GEO cohorts. Differentially expressed genes (DEGs) between tumor and para-carcinoma tissues were identified by the limma R package in TCGA cohort. Univariate Cox regression analyses were conducted by survival R package to select overall survival (OS) related genes. Intersecting genes were identified and visualized by the VennDiagram R package. The intersecting genes were further analyzed by least absolute shrinkage and selection operator (LASSO) regression to seek OS-related genes further, using the glmnet R package. Expression heatmap of 18 hub DEGs was realized by ComplexHeatmap R package. The ER stress score (ERSS) was computed as follows:

	

Expk is the expression value of the ERSS genes in the equation and Coefk is the coefficient of each gene calculated by LASSO regression. The Kaplan–Meier survival plot and the Cox proportional-hazards regression were performed by the survival R package to clarify the predictive value of ERSS for OS. Our prediction model was constructed based on ERSS and Tumor-Node-Metastasis (TNM) stage using Cox proportional-hazards regression, as follows:

	

In this equation, CoefERSS means the coefficient of ERSS. Coefstage is the coefficient of the TNM stage, including 1, 2, 3, and 4 (representing stages I, II, III, and IV, respectively). Nomogram was created by the rms R package to visualize the prediction model. Time-dependent receiver operating characteristic (ROC) analysis was performed by timeROC and survival R package to compare the predictive value of ERSS alone, TNM stage alone, and prediction model. For external validation, univariate survival, multivariate survival, and time-dependent ROC analyses were used to test the model’s performance in three GEO cohorts.



Clinical and molecular feature analyses of endoplasmic reticulum stress score

To further explore the biological significance of ERSS, we analyzed the relationship between clinical, molecular, genetic, and immunological features and ERSS in patients with LUAD from TCGA cohort. The correlations between ERSS and clinical characteristics were analyzed in the ggpubr R package. Univariate Cox regression analyses were performed to calculate the hazard ratio (HR) and p-value of ERSS in different subgroups of patients. The results of subgroup survival analyses were visualized via forest plot by the forestplot R package. Patients were divided into ERSS high and low groups according to their median value for functional enrichment analysis. Then pathways of the hallmark, Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) were analyzed by the GSVA R package. The randomForest R package provided a random forest algorithm to screen gene mutations most related to ERSS. Estimation of STromal and Immune cells in MAlignant Tumours using Expression data (ESTIMATE) (16), cell type identification by estimating relative subsets of RNA transcripts (CIBERSORT) (17), and xCell (18) algorithms were performed to evaluate tumor infiltration of the immune cell by estimate, CIBERSORT, and xCell R packages, respectively.



Statistical analyses

All statistical analyses and plots were accomplished in R software (4.1.0). DEGs were defined as p< 0.05 and fold change >2. The log-rank t-test was used to compare two survival curves in the Kaplan–Meier plot. The Wilcoxon test was applied to compare the statistical differences between the two groups with continuity values. The Kruskal–Wallis H test was employed to compare multiple groups with continuity values. p< 0.05 was considered statistically significant.




Results


Development of endoplasmic reticulum stress score based on 18 endoplasmic reticulum stress-associated genes

We selected 799 ER stress-associated genes with a relevance score of >7 from the GeneCards database. Seven hundred sixty-four genes were detected in tumor tissue from LUAD patients in TCGA cohort (Table S1). One hundred fifty-seven DEGs were identified, comparing tumor and para-carcinoma tissues (Figure 1). In univariate Cox regression, 153 genes significantly correlated with OS. Forty-five intersecting genes were identified between DEGs and OS-related genes (Figure 1). Based on these intersecting genes, we performed LASSO regression and identified 18 OS-related hub genes (Figures 1D). The heatmap shows the relative gene expression of the 18 hub genes in tumor and para-carcinoma tissues (Figure 1). Integrating these 18 genes, we developed ERSS, which included 11 protective factors (DMD, NR3C2, CFTR, CYP1A2, MAPT, SYT2, CYP2D6, SCN4A, NUPR1, PIK3CG, and DERL3) and seven risk factors (SERPINH1, DSG2, GPR37, PCSK9, TRPA1, F2, and CDKN3) for LUAD survival (Figure 1). The equation of ERSS was as follows: ERSS = 0.13882291 * SERPINH1 + 0.09216343 * DSG2 + 0.07294183 * GPR37 + 0.06978185 * PCSK9 + 0.06473978 * TRPA1 + 0.03490076 * F2 + 0.02606376 * CDKN3 − 0.01049731 * DMD − 0.01071941 * NR3C2 − 0.01443196 * CFTR − 0.01872414 * CYP1A2 − 0.01915136 * MAPT − 0.03551274 * SYT2 − 0.03613574 * CYP2D6 − 0.0400695 * SCN4A − 0.0432351 * NUPR1 − 0.07008271 * PIK3CG − 0.0722234 * DERL3.




Figure 1 | Identification of key ER stress-related genes correlated with tumorigenesis and survival in LUAD patients from TCGA cohort. (A) Among 764 ER stress-associated genes, 157 were DEGs between tumor and normal lung tissues. (B) One hundred fifty-three genes significantly correlated with OS in univariate Cox regression, 45 of which were DEGs. (C, D) LASSO regression and cross-validation identified 18 hub genes that correlated with OS. (E) Heatmap shows the expression of 18 hub genes. (F) Different hub genes had different coefficients. Among the 18 hub genes, seven correlated with a worse prognosis, and 11 correlated with a better prognosis. ER, endoplasmic reticulum; LUAD, lung adenocarcinoma; TCGA, The Cancer Genome Atlas; DEGs, differentially expressed genes; OS, overall survival; LASSO, least absolute shrinkage and selection operator.





Construction and evaluation of a prediction model by integrating endoplasmic reticulum stress score and TNM stage in patients with lung adenocarcinoma from The Cancer Genome Atlas cohort

Compared with the low ERSS group, the high ERSS group showed significantly shorter OS (p< 0.0001; Figure 2). Cox proportional-hazards regression demonstrated that higher ERSS (p< 0.0001; HR = 3.8, 95%CI: 2.8–5.2) and TNM stage (p< 0.0001; HR = 1.55, 95%CI: 1.34–1.8) were independent predictors for worse OS (Figure 2). Integrating ERSS and TNM stage, we constructed a prediction model and visualized the model by nomogram (Figure 2). The equation of the prediction model was as follows:




Figure 2 | Constructing ERSS to predict OS in LUAD patients from TCGA cohort. (A) Patients with high ERSS showed significantly shorter OS (p< 0.0001). (B) Cox regression analysis showed that higher TNM stage (p< 0.001, HR = 1.55, 95%CI: 1.34–1.8) and higher ERSS (p< 0.001, HR = 3.83, 95%CI: 2.8–5.2) were independent predictors for shorter OS. (C) We constructed a prediction model consisting of the TNM stage and ERSS by Cox regression. Nomogram was used to visualize the Cox model. (D) AUC at 1, 3, and 5 years of ERSS for OS. (E) AUC at 1, 3, and 5 years of TNM stage for OS. (F) AUC at 1, 3, and 5 years of the prediction model for OS. ERSS, endoplasmic reticulum stress score; LUAD, lung adenocarcinoma; TCGA, The Cancer Genome Atlas; OS, overall survival; ROC, receiver operating characteristic; AUC, the area under curve. ***p <0.0001.



	

ROC curve analysis showed that ERSS alone had a great predictive value for OS (area under the curve (AUC) at 5 years = 0.703; Figure 2), while the TNM stage showed a lower predictive value (AUC at 5 years = 0.685; Figure 2). Interestingly, our prediction model showed a significantly higher predictive value for OS (AUC at 5 years = 0.748) than for ERSS or TNM stage alone (Figure 2).



External validation of the prediction model in Gene Expression Omnibus datasets

To further validate the predictive value of the prediction model, we used three cohorts from GEO datasets for external validation. In the GSE30219 cohort, 73 patients were diagnosed with LUAD, more than 90% of whom were stage I. Patients with high ERSS had significantly shorter OS in univariate analysis and multivariate analysis (p = 0.005 and p< 0.001, respectively; Figures 3B). AUC values at 1, 3, and 5 years of the prediction model were 0.775, 0.675, and 0.658, respectively (Figure 3). Interestingly, the TNM stage showed no significant contribution to OS in multivariate analysis. In GSE31210 datasets, 204 patients were LUAD. Although the statistical difference was insignificant in the Kaplan–Meier survival analysis (p = 0.059; Figure 3), high ERSS was a substantial risk factor for worse OS in Cox regression analysis (p = 0.015; Figure 3). The prediction model had an excellent predictive value for predicting 1-year survival (AUC = 0.919; Figure 3) in this cohort. In another cohort, GSE72094, which had the most significant number of LUAD patients (n = 389), ERSS still played as an independent predictor (p = 0.0035 for univariate analysis and p< 0.001 for multivariate analysis; Figures 3H). Our prediction model also performed well in this cohort (AUC at 1, 3, and 5 years = 0.695, 0.710, and 0.739, respectively; Figure 3).




Figure 3 | External validation of ERSS in GEO cohorts. (A, B) Validation in GSE30219 cohort showed that high ERSS significantly correlated with shorter OS (p = 0.005) and independently predicted shorter OS (p< 0.001). (C) The AUC values of ERSS for 1-, 3-, and 5-year OS were 0.775, 0.675, and 0.658, respectively. (D) In the GSE31210 cohort, patients with high ERSS showed shorter OS (p = 0.059). (E) Higher ERSS was an independent predictor for worse OS (p = 0.015). (F) The AUC values of ERSS for 1, 3, and 5 years OS were 0.919, 0.799, and 0.717, respectively. (G, H) Similarly, univariate and multivariate analyses showed that high ERSS predicts worse OS in the GSE72094 cohort. (F) The AUC values of ERSS for 1, 3, and 5 years OS were 0.695, 0.710, and 0.739, respectively. ERSS, endoplasmic reticulum stress score; OS, overall survival; AUC, the area under curve. *p <0.05, **p <0.01, ***p <0.0001.





The correlation between clinical characteristics and endoplasmic reticulum stress score

Next, we analyzed the correlation between clinical characteristics with ERSS and the predictive value of ERSS in different subgroups in TCGA cohort. ERSS had no correlation with age or smoking history (p = 0.5 and 0.16, respectively; Figures 4B). Women had significantly lower ERSS as compared with men (p = 0.0033; Figure 4). Besides, higher ERSS also correlated with the higher TNM stage (Figure 4). For subgroup analysis, higher ERSS still predicts worse OS in most of the subgroups (Figure 4). It should be noted that ERSS had a significant association with OS in all stages, whether in the early stage or advanced stage.




Figure 4 | The correlation between clinical features and ERSS in TCGA cohort. (A) ERSS had no correlation with age. (B) Men had higher ERSS compared with women. (C) Smoking history had no association with ERSS. (D) Patients with advanced stage showed significantly higher ERSS than patients with early stage. (E) High ERSS significantly correlated with worse OS in different subgroups. ERSS, endoplasmic reticulum stress score; TCGA, The Cancer Genome Atlas; OS, overall survival. *p <0.05, **p <0.01, ns means p >0.05.





The molecular features of endoplasmic reticulum stress score

We next sought to determine the molecular features of ERSS. Unfolded protein response pathway is closely related to the degree of ER stress. Thus, we first calculated the UPR by single single-sample gene set enrichment analysis (ssGSEA) and analyzed the correlation between UPR and ERSS, and we found that ERSS positively correlated with UPR (R = 0.38, p< 2.2e−16; Figure 5). Compared with the low ERSS group, 643 DEGs were found in the high ERSS group (Figure 5). Hallmark pathway enrichment showed that the top five gene ratio pathways were Myc targets V1, E2F targets, Myc targets V2, mTORC1 signaling, and MARK G2M Checkpoint (Figure 5). The top five significant KEGG terms enriched were Proteasome, DNA replication, spliceosome, asthma, and nucleotide excision repair (Figure 5). The top five important GO BP terms were cell cycle DNA replication, B-cell receptor signaling pathway, axoneme assembly, calcium-mediated signaling, and cilium or flagellum-dependent cell motility (Figure 5). The top five significant GO MF terms were glycerophospholipid flippase activity, DNA replication origin binding, single-stranded DNA helicase activity, DNA secondary structure binding, and immune receptor activity (Figure 5). The top five significant GO CC terms were MHC class II protein complex, 9PLUS2 motile cilium, ciliary plasm, external side of the plasma membrane, and condensed chromosome centromeric region (Figure 5).




Figure 5 | The pathway enrichment analysis explored molecular features of ERSS in TCGA cohort. (A) Single-sample GSEA showed that ERSS significantly and positively correlated with unfolded protein response pathway. (B) Differentially expressed genes were analyzed between patients with high ERSS and low ERSS. (C) The hallmark pathways significantly activated or suppressed in high ERSS group. The top 20 significant KEGG (D), GO BP (E), MF (F), and CC (G) terms enriched in high ERSS group. ERSS, endoplasmic reticulum stress score; GSEA, gene set enrichment analysis; KEGG, Kyoto Encyclopedia of Genes and Genomes; GO, Gene Ontology; BP, biological process; MF, molecular function; CC, cell component.





Endoplasmic reticulum stress score was associated with driver gene mutations

Using a random forest algorithm, we selected gene mutations closely correlated with ERSS and listed genes with top 30 importance (Figure 6). SMARCA4 mutation had the highest importance, and patients with SMARCA4 mutation showed significantly higher ERSS (p = 4e−04; Figure 6). Meanwhile, we found driver gene mutations were also associated with ERSS. TP53 mutation group had substantially higher ERSS (p = 0.0027; Figure 6). In contrast, patients with EGFR mutation had lower ERSS (p = 0.035; Figure 6), which aroused our interest in exploring the prognostic significance of ERSS in patients with different EGFR mutation statuses. The results showed that high ERSS predicted worse OS, whether in patients with EGFR mutation or wild-type (both p< 0.0001; Figures 6F).




Figure 6 | ERSS correlated with driver gene mutations. (A) Random forest selected the top 30 important mutant genes that associated with ERSS. (B, C) Patients with SMARCA4 and TP53 mutations showed significantly higher ERSS (p = 4e−04 and 0.0027, respectively). (D) Patients with EGFR mutation showed lower ERSS (p = 0.035). (E, F) Patients with high ERSS had significantly longer OS neither in EGFR mutant nor in wild-type group (both p< 0.0001). ERSS, endoplasmic reticulum stress score; TCGA, The Cancer Genome Atlas; OS, overall survival.





Endoplasmic reticulum stress score was associated with tumor infiltration of lymphocytes

To understand the association between ERSS and tumor immune microenvironment, we performed ESTIMATE, CIBERSORT, and xCell algorithms in patients with lung adenocarcinoma from TCGA database and analyzed the relationship between ERSS and immune checkpoints. The immune score was calculated by ESTIMATE algorithms and represents the abundance of tumor infiltration of immune cell negatively correlated with ERSS (p = 3.1e−06, R = −0.2; Figure 7), which suggested that higher ERSS was accomplished with less immune cell infiltration. CIBERSORT algorithms showed that M2 macrophages accounted for the highest proportion of all immune cells, followed by resting CD4+ memory T cells (Figure 7). Compared with the low ERSS groups, the high ERSS group had significantly higher infiltration of antigen-presenting cells, such as M1 macrophages and activated dendritic cells, but lower memory B cells (Figure 7). The xCell algorithms showed that Th1 cells (p = 2.8e−08, R = 0.24) and Th2 cells (p< 2.2e−16, R = 0.48) were positively associated and regulatory T cells (p = 0.033, R = −0.094) were negatively associated with ERSS (Figures 7–F). Meanwhile, xCell algorithms showed that ERSS negatively correlated with infiltration of B cells (p = 1e−09, R = −0.26), CD8+ T cells (p = 5.1e−05, R = −0.18), and central memory CD8+ T cells (p = 0.00098, R = −0.14) (Figures 7–I). Gene expression association analyses suggested that higher ERSS was significantly associated with lower expression of CTLA-4 (p = 5e−05, R = −0.18) and PD-1 (p = 0.0067, R = −0.12) and higher expression of PD-L1 (p = 0.022, R = 0.1) (Figures 7–L).




Figure 7 | High ERSS correlated with a suppressive tumor immune microenvironment. (A) ESTIMATE algorithms showed that ERSS negatively correlated with immune score (p = 3.1e−06, R = −0.2), suggesting that higher ERSS was accomplished with less immune cell infiltration. (B) Twenty-two types of immune cells were evaluated by CIBERSORT algorithms. M2 macrophages accounted for the highest proportion of all immune cells, followed by resting CD4+ memory T cells. (C) The level of infiltrating immune cells was well compared by a multi-group box diagram between high and low ERSS groups (median value of ERSS was used to distinguish high and low groups). Compared with the low ERSS groups, the high ERSS group had significantly higher infiltration of M0 macrophages, M1 macrophages, resting NK cells, activated dendritic cells, and activated CD4+ memory T cells and lower infiltration of resting CD4+ memory T cells, resting mast cells, plasma cells, monocytes, memory B cells, and resting dendritic cells. (D–F) We performed xCell algorithms to further clarify the changes in different subtypes of CD4+T cells. Th1 cells (p = 2.8e−08, R = 0.24) and Th2 cells (p< 2.2e-16, R = 0.48) were positively with ERSS. Regulatory T cells were negatively associated with ERSS (p = 0.033, R = −0.094). (G–I) Meanwhile, xCell algorithms showed that ERSS negatively correlated with infiltration of B cells (p = 1e−09, R = −0.26), CD8+ T cells (p = 5.1e−05, R = −0.18), and central memory CD8+ T cells (p = 0.00098, R = −0.14). (J–L) Higher ERSS was significantly associated with lower expression of CTLA-4 (p = 5e−05, R = −0.18) and PD-1 (p = 0.0067, R = −0.12) and higher expression of PD-L1 (p = 0.022, R = 0.1). ERSS, endoplasmic reticulum stress score; TCGA, The Cancer Genome Atlas; LUAD, lung adenocarcinoma. *p <0.05, **p <0.01, ***p <0.0001, and ns means p >0.05.






Discussion

Machine learning has many advantages in analyzing datasets with large samples and features compared with traditional biostatistical methods, which makes it deployable to build prediction models for survival and treatment efficacy in cancer patients (19, 20). LASSO and Cox regression analyses are commonly employed as machine learning methods to develop risk models (21). In this study, we identified 18 hub genes among 799 ER stress-related genes in 563 patients with LUAD by LASSO regression. Cox regression analysis demonstrated that higher ERSS and TNM stage can independently predict worse OS. Integrating both, we constructed a simple and efficient prediction model. To promote the clinical application of the model, we also developed a nomogram only combing ERSS and TNM stages. Previous studies have reported risk models for LUAD (22–26). The following differences distinguish our study from other prediction models. First, external validation is one of the most important parts of model destruction. Some studies used one or two external cohorts (25, 26), while some only used internal validation (22–24). We used three independent external cohorts, and the model performed well in all cohorts. Second, our model consists of ER stress-related hub genes. Thus, the model also expanded our understanding of ER stress in LUAD.

Of the 18 hub genes, 11 were protective factors (DMD, NR3C2, CFTR, CYP1A2, MAPT, SYT2, CYP2D6, SCN4A, NUPR1, PIK3CG, and DERL3), and seven were risk factors (SERPINH1, DSG2, GPR37, PCSK9, TRPA1, F2, and CDKN3). DMD, the Duchenne muscular dystrophy gene, encodes dystrophin protein and is known for its role in the disease of the same name (27). Multiple studies reported that DMD suppresses tumor progression in human cancer (28). NR3C2 (nuclear receptor subfamily 3, group C, member 2) is a transcription factor and encodes mineralocorticoid receptor protein, which inhibits cancer angiogenesis (29). A recent study demonstrated that NR3C2 suppresses colon cancer progression by inhibiting the AKT/ERK pathway (30). CFTR (cystic fibrosis transmembrane conductance regulator), which belongs to the ATP-binding cassette transporter superfamily, regulates several fundamental cellular processes, including development and epithelial differentiation (31). Studies reported that CFTR acts as a tumor suppressor and is downregulated in lung cancer (32), and dysfunctional CFTR is associated with cancer progression (33). CYP1A2 (cytochrome P450 1A2) and CYP2D6 (cytochrome P450 2D6) both belong to the cytochrome P450 superfamily, which regulates the metabolism of commonly used drugs and is predominantly distributed in the liver (34). In hepatocellular carcinoma, CYP1A2 inhibits cancer progression through antagonizing HGF/MET signaling (35). CYP2D6 is necessary for the activation of tamoxifen, and higher expression of CYP2D6 is associated with better survival in patients with breast cancer (36). MAPT, encoding microtubule-associated protein tau, plays an important role in nervous system disease (37). Low expression of MAPT has been linked to poor prognosis in prostate and clear cell renal cell cancer (38, 39). NUPR1 (nuclear protein 1) reduces ER stress by interacting with eIF2α (40) and plays a tumor promoter role in lung cancer (41, 42). However, the influence of NUPR1 on cancer behavior is still unclear (43). PIK3CG is a candidate suppressor for myeloid tumors (44). Silencing the PIK3CG inhibits the PI3K-Akt/PKB pathway, resulting in tumorigenesis and progression of colorectal cancer (45). However, recent studies demonstrated that PIK3CG promotes tumor progression in prostate cancer and breast cancer (46, 47). DERL3 encodes a derlin-3 protein that belongs to the Derlin family and functions in the endoplasmic reticulum. During the UPR, DERL3 is upregulated by ATF6 and enhances the degradation of misfolded proteins (48). Several studies reported the role of DERL3 as a tumor suppressor in colorectal (49), gastric (50), and lung cancers (51). SERPINH1 (serpin peptidase inhibitor, clade H, member 1) is a kind of serine proteinase inhibitor. A pan-cancer analysis reported that SERPINH1 strongly correlated with worse survival in various cancers (52). DEG2 (desmoglein2) is a component of the desmosome-mediated intercellular adhesion complex. High expression of DEG2 correlated with poor survival in patients with colon (53), cervical (54), and lung cancers (55). A recent study demonstrated that DEG2 mediated hypoxia-derived tumor metastasis in breast cancer (56). PCSK9 (proprotein convertase subtilisin/kexin type-9), a critical protein that regulates cholesterol metabolism, promotes the incidence and progression of several cancers (57). A recent study reported that PCSK9 inhibits the expression of MHC-I on tumor cells and consequently decreases tumor infiltration of cytotoxic T cells. Meanwhile, inhibiting PCSK9 effectively enhances PD-1 inhibitor therapy for cancers (58). TRPA1 belongs to the transient receptor potential family and regulates the transportation of Ca(2+). TRPA1 decreases ROS accumulation in cancer cells and thus promotes cell survival (59). CDKN3 (cyclin-dependent kinase inhibitor 3) plays a vital role in cell cycle regulation. Deletion, mutation, and overexpression of CDKN3 were associated with tumor progression in several cancers (60, 61). The role of SYT2, SCN4A, GPR37, and F2 in cancers has not been well studied.

To expand our understanding of the role of ERSS in LUAD, we further exploited the molecular features of ERSS. Enrichment analysis showed that besides UPR, pathways related to cell cycle, growth, and metabolism were significantly enriched in the high ERSS group, suggesting that ER stress was closely correlated with tumorigenesis and progression. The status of gene mutation and tumor immune microenvironment (TIME) play crucial roles in the treatment strategies for patients with LUAD. This study found that SMARCA4 mutation is the most relevant mutation to ERSS, and patients with SMARCA4 mutation showed significantly higher ERSS. SMARCA4, which encodes a fundamental unit of SWI/SNF (switch/sucrose non-fermentable) chromatin remodeling complex, acts as a tumor suppressor but is frequently inactivated by mutations in non-small cell lung cancer (NSCLC) (62). In patients with metastatic NSCLC, SMARCA4 mutation significantly correlated with shorter OS (63). Currently, no researchers have reported the relationship between SMARCA4 mutation and ER stress. EGFR mutations account for nearly 50% of Asian patients with advanced NSCLC. Tyrosine kinase inhibitors (TKIs) that targeted EGFR mutation were the standard first-line treatment for these patients (64, 65). However, EGFR-targeted therapy usually develops drug resistance after 10–14 months (66). An in vivo study reported that ROS-mediated ERSS might affect the efficacy of EGFR inhibitors in EGFR wild-type cells (67). We found that patients with EGFR mutation had significantly higher ERSS, and ERSS was a powerful predictor for prognosis in patients with EGFR mutation, which indicates that ERSS might help overcome EGFR-TKI resistance by screening high-risk population in EGFR mutant patients. The immune phenotype analysis demonstrated that the high ERSS group had a distinct tumor immune microenvironment as compared with a low ERSS group. Tumors from patients with high ERSS had higher infiltration of antigen-presenting cells, such as M1 macrophages and activated dendritic cells. However, ERSS negatively correlated with the infiltration of CD8+ T cells and B cells and positively correlated with the expression of PD-L1. These results indicated that the antigen presentation in tumor tissue with higher ERSS might be more activated, but the anti-tumor function was more suppressive because of other regulatory factors, such as the increased expression of PD-L1. Considering the close correlation between ERSS and the immune status of TIME, it is worthwhile to further explore the role of ER stress in immune therapy.

This study has several limitations. First, we did not validate the predicted value of the 18 hub genes by experiments in vitro or in vivo. More functional experiments are necessary to specify the biological roles of every hub gene. Second, although the ERSS showed independent predictive value for OS in external cohorts from GEO datasets, further research remains necessary to confirm the performance of ERSS in expanded cohorts. In addition, our study indicated that ERSS correlated with the efficacy of targeted therapy and immune therapy; however, the correlation needs to be validated in other patients under treatment.
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Peripheral immune-checkpoint blockade with mAbs to programmed cell death receptor-1 (PD-1) (either nivolumab or pembrolizumab) or PD-Ligand-1 (PD-L1) (atezolizumab, durvalumab, or avelumab) alone or in combination with doublet chemotherapy represents an expanding treatment strategy for metastatic non-small cell lung cancer (mNSCLC) patients. This strategy lays on the capability of these mAbs to rescue tumor-specific cytotoxic T lymphocytes (CTLs) inactivated throughout PD-1 binding to PD-L1/2 in the tumor sites. This inhibitory interactive pathway is a physiological mechanism of prevention against dangerous overreactions and autoimmunity in case of prolonged and/or repeated CTL response to the same antigen peptides. Therefore, we have carried out a retrospective bioinformatics analysis by single-cell flow cytometry to evaluate if PD-1/PD-L1-blocking mAbs modulate the expression of specific peripheral immune cell subsets, potentially correlated with autoimmunity triggering in 28 mNSCLC patients. We recorded a treatment-related decline in CD4+ T-cell and B-cell subsets and in the neutrophil-to-lymphocyte ratio coupled with an increase in natural killer T (NKT), CD8+PD1+ T cells, and eosinophils. Treatment-related increase in autoantibodies [mainly antinuclear antibodies (ANAs) and extractable nuclear antigen (ENA) antibodies] as well as the frequency of immune-related adverse events were associated with the deregulation of specific immune subpopulations (e.g., NKT cells). Correlative biological/clinical studies with deep immune monitoring are badly needed for a better characterization of the effects produced by PD-1/PD-L1 immune-checkpoint blockade.




Keywords: immune checkpoint inhibitors, NSCL, flow cytometry, bioinformatics, NKT



Introduction

Non-small cell lung cancer (NSCLC) is the most frequent malignancy worldwide and the leading cause of cancer death (1). In the last few years, mAbs blocking programmed cell death receptor-1 (PD-1) (nivolumab and pembrolizumab) and PD-ligand-1 (PD-L1) (atezolizumab, avelumab, and durvalumab), alone or in combination with chemotherapy, radiotherapy, or bevacizumab, has grown as an established treatment for these patients with remarkable results in term of clinical benefit, progression-free survival (PFS), and overall survival (OS) (2–5). PD-1/PD-L1 immune-checkpoint-blocking mAbs do not exert direct antitumor activity but restore tumor-specific cytotoxic T cell (CTL) function through the inhibition of the immune-suppressive PD-1/PD-L1/2 axis within the tumor microenvironment (6, 7). However, the caveat to this strategy is the risk of unpredictable immune priming with consequent neo-antigen cascade, new clonal T-cell expansion, and functional T-cell immuno-phenotype switch that in turn may lead to worrisome clinical immuno-related adverse events (irAEs) and even death (8, 9).

Therefore, the search for reliable biomarkers to drive the treatment is eagerly encouraged by the scientific community (10, 11). We previously showed that the frequency of mild irAEs and autoantibody [AAb; mainly represented by the extractable nuclear antigen (ENA) antibodies, antinuclear antibodies (ANAs), anti-smooth cell antibodies (ASMAs), and c/p- antineutrophil cytoplasmic antibodies (ANCAs)] increase predict positive outcome in patients with metastatic NSCLC (mNSCLC) and metastatic colorectal cancer receiving immune-checkpoint blockade and chemo-immunotherapy, respectively (9, 12–14). We subsequently, demonstrated that high baseline levels of inflammatory markers (15) and procalcitonin (16) are correlated to a very poor outcome in NSCLC patients on nivolumab or atezolizumab. In the same group of patients, we identified specific class I/II human leucocyte antigen (HLA) alleles involved in CTL-mediated immune reaction and inflammatory response that were statistically predictive of good response to the treatment (17) or predictive of autoimmune pneumonitis (18). In the present study, we have carried out a retrospective immunobiological analysis in a population of mNSCLC patients who have received PD-1/PD-1-blocking mAbs aimed at the identification of specific changes in the peripheral immune-cell population. The changes were subsequently correlated to either an AAb increase or the occurrence of clinically evident irAEs.



Material and methods


Patients sample, treatment, and monitoring

This study is part of a retrospective real-world evidence (RWE) multi-institutional study including a total of 119 pretreated mNSCLC patients who had received therapy with nivolumab or atezolizumab, according to the standard international guidelines at the Medical Oncology Unit of The Hospital of Reggio Calabria (OM-RC) and at the Radiotherapy Unit of the University Hospital of Siena (RT-SI), Italy, between September 2015 and April 2020 (16). The current study was focused on 28 of the abovementioned patients who consented to get their blood drawn and anonymously stored for scientific purposes. All procedures were undertaken in compliance with the ethical statements of the Declaration of Helsinki (1964, amended most recently in 2008) of the World Medical Association and respect of their privacy. All patients received PD-1/PD-L1 blockade in a real-world setting as recommended by the international guidelines and regulative agencies following the standard procedures of administration for each drug. All patients had received at least a previous line of platinum-based doublet ± bevacizumab prior to PD-1/PD-L1 blockade. All of them presented with Eastern Cooperative Oncology Group (ECOG) performance status ≤1 and had complete physical examination reports; histological samples; blood cell count; biochemical, immunobiological, and radiological screening; and imaging at the baseline. All patients received the immunological treatment with nivolumab (intravenous infusion of 3 mg/kg every 2 weeks) (16 patients) or atezolizumab (intravenous infusion of 1,200 mg every 3 weeks) (12 patients) until disease progression or occurrence of severe adverse events. Clinical history, physical examination, blood tests, and record of adverse events were evaluated prior to each drug infusion. A computed tomography scan (CT scan) was performed every 3 months or in any case of suspected progressive disease (PD) and evaluated according to the immune Response Evaluation Criteria in Solid Tumors (iRECIST 1.1) (19). All patients were monitored for blood cell count, and biochemistry prior to each treatment course and for their adrenal hormone profile, adrenocorticotropic hormone (ACTH), thyroid-stimulating hormone (TSH), thyroid hormones, anti-thyroid AAbs, ENA antibodies, ANAs, ASMAs, and c/p- ANCAs each month from the beginning of the treatment as reported in previous studies (9, 12).



Immunophenotyping

Blood was collected into tubes containing ethylenediamine tetra-acetic acid (EDTA) at two time points, baseline and after three treatment cycles. Peripheral blood mononuclear cells (PBMCs) were isolated from blood samples by Ficoll-Hypaque density centrifugation and immediately frozen and stored in nitrogen liquid. Samples were then stained with two different approaches: panel 1 tube, which included markers cluster of differentiation (CD)3 (V450), CD4 (FITC), CD8 [labeled with peridinin chlorophyll protein complex (PerCP)-Cy5.5], CD16 (conjugated with allophycocyanin (APC)-H7], CD19 [conjugated with phycoerythrin (PE)-Cy7], CD56 (conjugated with PE), HLA-Dr (conjugated with PE), and CD45 (conjugated with PE), and panel 2, which included CD3 (conjugated with V450), CD4 [conjugated with fluorescein iso-thiocyanate (FITC)], CD8 (conjugated with PerCP-Cy5.5), CD16 (conjugated with APC-H7), CD19 (conjugated with PE-Cy7), CD56 (conjugated with PE), CCR7 (conjugated with PE-Cy7), FoxP3 (conjugated with FITC), and PD-1 (conjugated with PE), all from BD Biosciences. Samples were acquired on a fluorescence-activated cell sorting (FACS) Canto II flow cytometer (BD Biosciences). This study was not designed to investigate specific myeloid derivative PBMC subsets; however, the presence of monocytes was formally detected in the blood samples by means of forward scatter (FSC), side scatter (SSC), and CD45.



Data pre-processing and downstream analysis

The data were analyzed with FlowJo (panel 2) or FlowCT (panel 1) (20) (R-based package) for an in-depth study of the cell subpopulation. Specifically, a semi-automated clustering and predictive modeling tool were used for synchronously analyzing 30 FCS files. After pre-processing and quality control of previously FCS files, data were normalized and clustered using self-organized maps (FlowSOM). Cell clusters were represented with uniform manifold approximation and projection (UMAP) dimensionality reduction technique. Cell clusters were annotated based on heatmap clustering, using median values for each FCS. This methodology works better on homogeneous data; thus, we limited this approach to 15 patients from the OM-RC and then manually analyzed the remaining patients from the RT-SI center.

Paired Student’s t-test was used for the analysis of each cluster in the different treatment conditions.



Human leucocyte antigen genotyping

Samples were processed by the Microbiology Unit Laboratory at the University of Siena and by the laboratory of flow cytometry at the Grand Metropolitan Hospital, Reggio Calabria, Italy. HLA genotyping of the loci A, B, C, and DRB1 was centralized and carried out in the Tissue Typing Unit at the Grand Metropolitan Hospital in Reggio Calabria as previously described by our group (21).



Statistical analysis

Hazard ratios (HRs) and their 95% confidence intervals were estimated through the Cox regression proportional model; in the multivariate approach, a forward stepwise procedure was used, and the enter and remove limits were set to 0.05 and 0.10, respectively. The association of irAE frequency with biological parameters with clinical outcomes in the two patient cohorts was assessed by the chi-square test. Statistics were performed by the SPSS software 23.0 (International Business Machines Corp., New York, NY, USA) and R statistical software.




Results


Study design and patient population

We retrospectively conducted a retrospective bioinformatics analysis on 28 mNSCLC patients (20 men and eight women, four with squamous and 24 with non-squamous histology) who volunteered to provide blood samples for non-profit non-interventional immunobiological analysis. These patients belonged to a larger series of individuals with mNSCLC who received immune-checkpoint blockade at OM-RC and RT-SI according to the standard guidelines for their specific disease. All of them were fit for treatment (ECOG performance status ≤1) and presented no druggable tumor driver mutation/rearrangement (Table 1). All 28 patients presented received at least one chemotherapy line with platinum-based doublet ± bevacizumab prior to PD-1 blockade. In this specific series, 16 patients had received salvage therapy with nivolumab or pembrolizumab and 12 with atezolizumab between November 2015 and April 2020 at OM-RC and RT-SI units. During the treatment, after four or five treatment cycles, we recorded one or more irAEs in 14 patients. These adverse events were moderate (G1–G2) in nine patients (skin rash, poly-arthralgia, and thyroiditis) and severe (G3–G4) in further five cases [autoimmune pneumonitis (four cases), myasthenia-like syndrome (one case), hypophysitis (one case), and uveitis (one case)]. The present retrospective study was not empowered to evaluate differences in PFS or OS among patients receiving anti-PD-1 or anti-PD-L1-blocking mAbs. All the patients underwent class I HLA ABC and DRB-1 genotyping and were also monitored for serum levels of inflammatory markers [lactate dehydrogenase (LDH), C-reactive protein (CRP), and erythrocyte sedimentation rate (ESR)], AAbs (ENA, ANAs, and ANCAs) and inflammatory cell counts and neutrophil-to-lymphocyte ratio (NLR) at baseline and after three treatment cycles.


Table 1 | Patient characteristics at baseline.





Effect of therapy on peripheral blood mononuclear cell composition

FACS analysis was performed on the PBMCs collected at baseline and after three treatment cycles. We evaluated potential treatment-related changes in different immune populations identified through a multidimensional single-cell bioinformatics approach on 15 patients from the OM-RC center (training dataset). Overall, 435,318 cells were analyzed (Figure 1A; interestingly, more cells were recovered after three treatment courses), and, after an automatic clustering approach, we unbiasedly identified 19 sub-clusters of mononuclear cells based on markers profile (Figure 1B), namely, B cells, CD16p+ monocytes (non-classical monocytes), CD3+DN (double negative), CD4+, CD4+HLADR+, CD8+, CD8+HLADr+, Debris, Eosinophils, intermediate (int) monocytes, monocytes (classical), NK, NK_CD16−, NK_CD8+, NK_CD8+HLADR+, NKT, NKT_CD4+, NKT_CD4+CD8+, and NKT_CD8+ (Supplementary Figure 1 represents a heatmap reporting the expression of each marker in each identified cell population, and most populations have been identified thanks to their unique combination of marker expression, e.g., neutrophils were FSC/SSC high, CD45mid, CD16dim, and negative for all other markers).




Figure 1 | Cell clustering and phenotype identification of PBMCs of mNSCLC patients. Previously compensated flow cytometry standard (FCS) files have been used for large-scale immune monitoring using FlowCT. (A) Cell number per time point (basal (BAS) vs. post-treatment (POST) after pre-processing, quality control, and normalization. (B) Uniform manifold approximation and projection (UMAP) dimensionality reduction techniques for full visualization of 19 independent clusters. PBMC, Peripheral blood mononuclear cells; mNSCLC, metastatic non-small cell lung cancer.



After three treatment courses, we observed a significant decline in CD4+ T cells, B cells, and neutrophils [absolute mean difference (MD) = −4.46%, p-value = 0.0035; MD = −2.5%, p-value = 0.027; and MD = −13.03%, p-value = 0.04, respectively) and a decreasing trend for monocytes (MD = −3.88%, p-value = 0.1). Additionally, we recorded an increase in NKT_CD8+ cells (MD = 1.31%, p-value = 0.046) (Figure 2A and Supplementary Figure 2). Likely due to the small sample size, only CD4+ T-cell decrease was validated in the dataset of patients from the RT-SI center (Supplementary Figure 3). As shown in Figure 1B, all the cell populations were additionally clustered separately from neutrophils. Interestingly, a significant decrease in NLR (calculated by FACS analysis) was observed after three treatment cycles with a p-value = 0.015 (Figure 2A), perfectly overlapping the changes in the peripheral blood cell count analysis (Figure 2B). Again, this aspect was not validated in patients from the RT-SI center (Supplementary Figure 3).




Figure 2 | Correlation of different cell clustering and mNSCLC patient survival. Post-treatment fold change of previously identified cells is calculated and used for downstream analyses. (A) Values of seven fundamental cell clusters before and after therapy are shown as grouped dot plot, paired Student’s t-test is used for the analysis of each cluster in the different treatment conditions, and clusters with p-value < 0.05 were considered as significant. y-Axis represents % of cells on total lymphocytes for B/T/NKT cells, total cellularity for monocytes and neutrophils, and an absolute number for NLR. (B) NLR calculation in two different study centers to demonstrate baseline differences. (C) Survival analysis based on population fold changes; p-value < 0.1 considered as trend, and p-value < 0.05 considered as statistically significant. mNSCLC, metastatic non-small cell lung cancer; NLR, neutrophil-to-lymphocyte ratio. *= pvalue<0.05.



Additionally, we found a significant difference in the baseline values of NLR between patients from the two centers (mean 4.87 vs. 2.72 for OM-RC vs. RT-SI, p = 0.019) (Figure 2B). Interestingly, this difference disappeared after three treatment courses of anti-PD1/PD-L1 mAbs, thus ruling out the hypothesis of a laboratory-related batch effector or other possible confounding factors (sex, age, previous radiation therapy, and histology). Another plausible hypothesis may be formulated on the fact that OM-RC and RT-SI centers adopted different frontline treatments prior to immunotherapy. In fact, all of the patients enrolled in RT-SI had received frontline chemotherapy with fractioned cisplatin and oral metronomic etoposide ± bevacizumab (mPE/mPEBev), a very active regimen with powerful immunomodulating activity (22–26). On the contrary, the majority of patients enrolled at OM-RC had received more conventional frontline chemotherapy doublets (either carboplatin and taxol or carboplatin and pemetrexed). Therefore, all of the patients in the validation group derived from RT-SI had received a frontline systemic treatment with the potential ability to impair the myeloid and inflammatory components due to the long-term sequestering activity of vascular endothelial growth factor (VEGF) exerted by bevacizumab together with the immunobiological effects of metronomic chemotherapy as reported in previous studies (22, 23, 27). Considering the prognostic value of blood cell subsets in patients with NSCLC, we attempted to build a risk model to deeply evaluate their impact on NSCLC patient outcomes. Thus we conducted a statistical analysis based on fold-change modifications after three treatment cycles. Our multidimensional analysis of PBMCs showed no significant post-treatment changes in CD8+ T cell abundance but significant changes in CD4+ and B cells (p < 0.05) according to Student’s t-test (Supplementary Figure 3). Interestingly, we found a significant correlation between pretreatment atypical monocytes (negative correlation), CD3+CD4−CD8− (positive correlation), and CD8+HLADR+ (positive correlation) NKT cells (positive correlation) and survival (Supplementary Figure 4 and Supplementary Table 1). In line with what was previously observed, we found that patients with significant post-treatment increases of CD4+, CD8+, and monocytes showed a significant improvement in survival according to the log-rank (Mantel–Cox) test (p < 0.05). Similarly, an increase in NKT also showed a clear-cut trend to improve the outcome (Figure 2C and Supplementary Figure 5) of these patients. None of the other cell subset treatment-related changes was correlated with patient survival (Supplementary Figure 5 and Supplementary Table 1).

For a small group of 12 patients who received treatment at RT-SI, we had sufficient material to evaluate possible changes in peripheral central memory (TCM; CD3+CD8+CD45RO+CCR7+) and effector memory (TEM, CD3+CD8+CD45RO+CCR7−) T cells, Tregs (CD4+/CD25+/Foxp3+ T cells), and PD1+ CTLs. In this very small cohort of patients, we recorded no change in TCM and TEM subsets, a significant decline in Tregs, and a paradoxical increase in CD8+PD1+ T lymphocytes after three treatment courses of nivolumab (Figure 3A).




Figure 3 | CD8+ T cells and NKT cell frequency changes in response to treatment in groups with different inflammatory and autoimmunity markers. (A) Boxplot representing changes on peripheral blood Tregs and PD-1+CD8+ T lymphocytes as effect of treatment. (B) Total percentage of different cell subsets before and after therapy is reported for patients positive and negative for antinuclear antibodies (ANA, AAbs); only significant results are indicated. (C) Abundance of different cell subsets before and after therapy is reported for patients experiencing or not irAEs. Cell subsets with p-value < 0.1 only are represented. NKT, natural killer T; irAEs, immuno-related adverse events. *= pvalue<0.05. , **= p value<0.01 ns, not significant.





Inflammatory profile, autoimmunity markers, and immuno-related adverse events

In the present set of mNSCLC patients, we recorded a significant treatment-related appearance and/or increase of serum ANA (baseline vs. the third cycle = 28% vs. 64%, p < 0.0005), while no statistically changes were observed in terms of inflammatory markers (CRP, ESR, or LDH) (p > 0.5). This finding was in line with what was reported in previous studies, sustaining the good quality of the results (9). Overall, in our small set of 28 patients, there was no change in white blood cell counts with the exception of eosinophil cell counts, which were significantly increased in the post-treatment setting [140 ± 130 vs. 240 ± 180 cells/µl; p = 0.0022]. Also, these results were once again consistent with what was shown in previous studies (24).

Our analysis revealed a much lower frequency of CD8+ and NKT cells in patients who were positive for ANA screening (Figure 3B) compared with those who remained negative for the expression of these AAbs along the immunological treatment. On the contrary, we were unable to find any other immunological difference between the two cohorts of patients (Supplementary Figure 6).

We also evaluated the occurrence of possible changes in specific immune populations in patients who had or did not have irAEs in the course of the treatment. Interestingly, we found an increase in neutrophils, CD16+ monocytes, and NKTCD4+CD8+ cells only in those patients who presented irAE signs (p < 0.1) (Figure 3C and Supplementary Figure 7).

Finally, we were unable to find any correlation neither between survival and specific HLA haplotypes nor with HLA and specific immune cell changes (Supplementary Figures 8 and 9) due to the small available dataset that was unable to fulfill the statistical analysis requirements.




Discussion

We previously showed that PD-1/PD-L1 immune-checkpoint blockade with nivolumab or atezolizumab is often associated with an increase in AAbs (ENA, ANAs, and ASMAs) and clinical irAEs in mNSCLC patients (9). We showed that these events are predictive of positive outcomes and prolonged survival (9). Our findings were in line with the literature regarding the general use of immunotherapy and immune-checkpoint inhibitors in cancer patients (9, 12, 24). In the present series of 28 patients who volunteered for deeper immunobiological monitoring, we found that the treatment with anti-PD-1 (nivolumab) or anti-PD-L1 (atezolizumab) mAbs produced similar effects in the peripheral blood and was similarly associated with a significant decrease in neutrophils, CD4+, and B cells coupled with an increase in NKT-CD8+ cells and eosinophil cell counts. Further T-cell subset analysis showed a significant decline in immune-suppressive Tregs in the 12 patients who received nivolumab at the RT-SI center. In the latter patients, we also recorded a treatment-related increase in the percentage and the absolute number of peripheral CD8+PD-1+ T cells [baseline vs. post-treatment: 4.40% vs. 6.02%, p = 0.04). Also, the latter finding was perfectly in line with what was reported by other authors (25). We believe that the increase in PD-1+ T cells could be a potential mechanism of resistance to PD-1 blockers in the long term and should be investigated in more extensive perspective studies. However, in the present investigation, we also found that treatment with PD-1/PD-L1 immune-checkpoint inhibitors significantly reduces the NLR in these patients. This finding suggests the additional ability of this new class of drugs in modulating the systemic inflammatory asset as reported in other studies (16). It has been in fact hypothesized that PD-1/PD-L1 blockade induces enforcement in the effector CTL compartment, which is counteracted by a consequential decline in neutrophil and Treg counts. The latter event might theoretically be considered a natural negative feedback response to an enhanced activity of CTLs rescued by the PD-1/PD-L1 blockade (26, 28). It is noteworthy that our results provide the first evidence in NSCLC that a previous antiangiogenic/immunomodulatory treatment (bevacizumab and metronomic therapy in our case) could significantly affect the response to the next immunotherapy. This is consistent with our previous data and hypotheses and once again evidences a very strong VEGF and immune-checkpoint axis, which warrants further investigation (22, 23, 27).

Furthermore, the effect of PD-1 blockade on the innate immunity of our patients unraveled a significant treatment-related impact on the NKT compartment. NKT cells are cells at the “bridge” between innate and adaptive immune response, whose activation depends upon the engagement of their T-cell receptor (TCR) by the major histocompatibility complex (MHC)-like CD1d loaded with lipids, given that, once activated, these cells could produce various cytokines, such as interferon (IFN)γ, interleukin (IL)4, IL2, IL10, and IL21, and reprogram dendritic cells to produce IL12. It is conceivable that (as reported in multiple preclinical and clinical models of cancer immunotherapy, including melanoma) the treatment with immune-checkpoint inhibitors could activate NKT cells, which in turn rescue tumor-specific CTLs from exhaustion (29, 30). These data are consistent with our results showing that NKT increase was associated with a trend to improved survival, further supporting the idea of a broader microenvironmental immune re-modeling impacting patient outcomes. Finally, we investigated the possible immunobiological changes occurring in the presence of treatment-related autoimmunity/irAEs in these patients. We confirmed the lack of a specific treatment-related peripheral blood immune profile able to predict the occurrence of either AAb increase or irAEs. Nevertheless, we found that the risk of irAEs in the course of the immunological treatment is associated with a reduced percentage of myeloid and NKT subpopulation (atypical monocytes and double CD4CD8-positive NKT) in the peripheral blood. The results of other authors also suggested a positive correlation among CD4CD8-double negative T cells, CD8+HLADR+ T cells, and NKT-like cells and survival, thus proposing that cell lineages have a role as potential biomarkers. In particular, a similar pattern associated with thyroid gland infiltration has been described in patients developing thyroiditis in the course of the treatment with PD-1 or PD-L1 inhibitors. This finding pictures possible immunobiological changes associated with treatment-related autoimmunity/irAEs occurring in patients receiving immune-checkpoint-blocking mAbs and also hypothesizes a potential link between the occurrence of irAEs (specifically thyroid gland-specific autoimmunity) and improved outcome (31).

Overall, the findings from this proof-of-concept study led us to consider that the AAbs as well as the immune monitoring of specific peripheral lymphocyte subsets should be investigated as potential biomarkers of autoimmunity and (potentially) treatment response in patients with NSCLC receiving PD-1/PD-L1 immune-checkpoint blockade. Furthermore, to identify a possible mechanistic scenario, correlative biological/clinical studies including inflammatory and angiogenesis studies coupled with deep immunological characterization should be performed to characterize the effects produced by PD-1/PD-L1 immune-checkpoint blockade.
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Background

Cuproptosis is a novel form of programmed cell death termed as Cu-dependent cytotoxicity. However, the roles of cuproptosis-associated genes (CAGs) in lung adenocarcinoma (LUAD) have not been explored comprehensively.



Methods

We obtained CAGs and utilized consensus molecular clustering by “non-negative matrix factorization (NMF)” to stratify LUAD patients in TCGA (N = 511), GSE13213 (N = 117), and GSE31210 (N = 226) cohorts. The ssGSEA and CIBERSORT algorithms were used to evaluate the relative infiltration levels of immune cell types in tumor microenvironment (TME). The risk score based on CAGs was calculated to predict patients’ survival outcomes.



Results

We identified three cuproptosis-associated clusters with different clinicopathological characteristics. We found that the cuproptosis-associated cluster with the worst survival rates exhibited a high enrichment of activated CD4/8+ T cells. In addition, we found that the cuproptosis-associated risk score could be used for patients’ prognosis prediction and provide new insights in immunotherapy of LUAD patients. Eventually, we constructed a nomogram-integrated cuproptosis-associated risk score with clinicopathological factors to predict overall survival in LUAD patients, with 1-, 3-, and 5-year area under curves (AUCs) being 0.771, 0.754, and 0.722, respectively, all of which were higher than those of the TNM stage.



Conclusions

In this study, we uncovered the biological function of CAGs in the TME and its correlations with clinicopathological parameters and patients’ prognosis in LUAD. These findings could provide new angles for immunotherapy of LUAD patients.





Keywords: lung adenocarcinoma, cuproptosis, tumor microenvironment, immunotherapy, immune infiltrates



Introduction

Lung cancer is still one of the most common malignant tumors and the main cause of cancer-related deaths worldwide (1, 2). Non-small cell lung cancer (NSCLC) accounts for 85% of lung cancer cases, which can be further divided into three subtypes: lung adenocarcinoma (LUAD), squamous cell carcinoma, and large cell carcinoma (3, 4). LUAD is presently the most common histological type of NSCLC (5), which is related to factors such as smoking, drinking, and metabolic disorder (3, 6, 7). Although considerable progress has been made in the comprehensive treatment of LUAD (surgery, chemotherapy, radiotherapy, targeted therapy, and immunotherapy), the survival rate of LUAD patients is still relatively low (8, 9). Accumulating studies have shown that the traditional histological classification of LUAD has limitations for treatment due to its high heterogeneity and tumor complexity (10–12). Therefore, increasing molecular subtypes are being studied to guide treatment (13–15). A better understanding of the relationship between tumor microenvironment disturbance caused by gene changes and the prognosis of LUAD patients is very important for the development of new therapeutic targets.

There are many predetermined and accurately controlled programmed cell deaths during the development of multicellular organisms, such as apoptosis (16), necroptosis (17), pyroptosis (18), and ferroptosis (19). Copper is a trace element in the human body (20). The concentration of copper ion in cells is maintained at a very low level through active homeostasis mechanisms (21). Once it exceeds the threshold, copper will become toxic and lead to cell death (22). However, the mechanism of copper-induced cytotoxicity is still unclear. Recently, researchers have confirmed that the copper-dependent controlled cell death mode is a new cell death mode different from the known cell death mechanism, which is named cuproptosis (23, 24). More importantly, the study further identified which cells are more vulnerable to cuproptosis, which developed new potential treatments for cancer.

The homeostasis and evolution of the tumor microenvironment (TME) are controlled by cross talk within and between all cell compartments, including malignant cells, endothelial cells, stromal cells, and immune cells (25). This complex interaction usually involves the regulation of programmed cell death mode and extracellular metabolites. Research evidence supports that the TME plays a key role in treatment response and patient outcome, which reflects the tumor immune response and predicts the therapeutic benefit (26). In addition to the impact on immunotherapy, the TME also affects the efficiency of chemotherapy and radiotherapy through the original characteristics of the TME and the treatment-induced response in the TME (27). The number of infiltrated T cells, macrophages, and cancer-related fibroblasts in the TME is related to the prognosis of patients with various cancers, including lung cancer, urothelial cancer, and esophageal cancer. Therefore, the characterization of the TME is helpful to develop prognostic and predictive biomarkers and identify new therapeutic targets.

In this study, we will comprehensively explore the important role of cuproptosis in LUAD, so as to clarify the significance of cuproptosis as an important biomarker for the prognosis, molecular subtypes, and infiltration cell characteristics of the TME in LUAD patients.



Methods


RNA expression datasets

TCGA-LUAD datasets were curated from UCSC Xena (https://xenabrowser.net/datapages/GDC TCGA Lung Adenocarcinoma (LUAD)) (N = 511). Somatic mutation data were downloaded from https://portal.gdc.cancer.gov/repository. The gene expression profiles of the GSE13213 (N = 117) (28) and GSE31210 (N = 226) (29) datasets were downloaded from the GEO database (http://www.ncbi.nlm.nih.gov/geo/).



Cuproptosis-related genes included for analysis

Ten cuproptosis-related genes were retrieved from a previous study. The description of cuproptosis-related genes is shown in Table S1.



Principal component analysis and consensus molecular clustering by “non-negative matrix factorization”

Principal component analysis (PCA) was performed using highly variable genes identified by the SEURAT function “FindVariableGenes()”. NMF is widely used for clustering high-dimensional data sets in computational biology (30). Cuproptosis-related molecular clusters were identified by consensus clustering the “NMF” function in TCGA-LUAD cohort. The description of clusters of LUAD patients is shown in Table S2.



Immune analysis

We performed the CIBERSORT deconvolution approach to evaluate the relative abundance of 22 tumor-infiltrating immune cells (TIICs). Next, gene signatures of immune cells from the research of Charoentong were used for calculating the immune infiltration-related score by single-sample gene set enrichment analysis (ssGSEA).



Somatic mutation analyses

Somatic mutations presented in VarScan file format were downloaded from https://portal.gdc.cancer.gov/repository. Copy number variation files were curated from UCSC Xena online.



DLD gene expression level by RT-PCR and immunohistochemistry

We obtained normal and cancer frozen tissues and formalin-fixed paraffin-embedding (FFPE) samples from 20 LUAD patients in our center and detected the DLD gene transcriptome expression level by RT-PCR and the DLD protein level by immunohistochemistry (IHC) [anti-DLD antibody (A13296, ABclonal)].

DLD sense 5′-CTCATGGCCTACAGGGACTTT-3′;

anti-sense 5′-GCATGTTCCACCAAGTGTTTCAT-3′;

β-actin sense 5′-CGCGAGAAGATGACCCAGAT-3′;

anti-sense 5′-GGGCATACCCCTCGTAGATG-3′



Construction of the cuproptosis-related prognostic risk score

We first performed differentially expressed gene (DEG) analyses in each NMF cluster and obtained 499 genes referred to as cuproptosis phenotype-related genes. After combination of the 10 cuproptosis-related genes, univariate Cox regression analysis was performed to identify those linked to overall survival. Then, we totally performed 1,000 iterations and included five gene groups for further screening, as previously described. A gene model with 16 genes showed the highest frequencies of 459 compared to other four-gene models. Finally, 16 genes were used to generate the gene signature for calculating risk score, which was calculated as follows:

	

By setting the median value of risk_score as the threshold, patients in different cohorts could be divided into high- and low-risk groups. The subsequent receiver operating characteristic (ROC) and Kaplan–Meier (K–M) survival curves were plotted according to high- and low-risk groups. The values of coefficient of 16 genes are shown in Table S3.



Prognostic nomogram for LUAD and area under the curve

The influence of variables on overall survival (OS) of LUAD patients was determined by univariate and multivariate Cox regression analyses. Based on multivariate Cox regression analysis, a nomogram was developed to integrate tumor stage and risk score to predict the prognosis of LUAD patients. The prediction ability of the nomogram is evaluated by the AUC.



Statistical analyses

Statistical analysis was performed using R (version 4.0.0) and GraphPad Prism (version 7.04). The Wilcox test, log-rank test, and Kruskal–Wallis H test were performed in this study. Detailed descriptions of statistical tests are specified in the figure legends.




Results


Genetic variation of cuproptosis-associated genes in LUAD

A total of 10 genes associated with cuproptosis were obtained according to previous research (23), which were named as cuproptosis-associated genes (CAGs) in this study. PCA indicated that CAGs could discriminate tumor tissues from normal samples in TCGA-LUAD cohort (Figure 1A). Somatic mutations of CAGs were observed in 54 of 561 samples (Figure 1B). Copy number variation (CNV) analyses are shown in Figures 1C, D. According to the expression level of CAGs in LUAD samples, we found that LIAS was highly expressed in the tumor, consistent with its CNV amplification. FDX1 was downregulated in the tumor, in line with its CNV depletion (Figure 1E). In order to analyze the translational levels of CAGs, the Human Protein Atlas (HPA) database was used (Figure S1). We found that the expression intensity and quantity of DLD, DLAT, PDHB, MTF1, and CDKN2A in LUAD tissue were higher than that in normal lung tissue.




Figure 1 | Genetic variation of cuproptosis-associated genes in lung adenocarcinoma. (A) Principal component analysis of normal and tumor samples. (B) Mutation of 10 cuproptosis-associated genes in lung adenocarcinoma. (C) Locations of copy number variation alterations in 10 cuproptosis-associated genes on 23 chromosomes. (D) Copy number variation frequency of 10 cuproptosis-associated genes in TCGA-LUAD samples. (E) The boxplot shows the expression of 10 cuproptosis-associated genes between normal and tumor tissues. *P < 0.05; ***P < 0.001; NA, no difference in statistics.





Cuproptosis-associated classifications in LUAD

We first displayed the connections and prognostic values of 10 CAGs in Figure 2A. To clearly understand the correlation between CAGs and clinical prognosis, we utilized the COX and Kaplan–Meier (K–M) survival analyses. The results indicated that only DLD had significant prognostic values in both of the two analyses (Figure S2). RT-PCR and IHC results showed that the expression level of the DLD gene in LUAD patients was higher than that in normal tissues (Figure S3). Then, based on the expression of CAGs, tumor samples in TCGA-LUAD and GSE13213 cohorts were classified into three clusters (Figures 2B; S4A, S5A) with different survival rates (Figures 2C; S5B). We observed that cluster 1 exhibited the worst survival rates, of which 4.17% samples were clustered into stage IV diseases (Figures 2D; S5C). PCA showed that CAGs could divide tumor samples into these three clusters (Figure 2E). To delineate the biological function between different clusters, we performed pathway analysis and found that cancer-related pathways such as cell cycle and immune-related pathways such as BIOCARTA_IFNG_PATHWAY and BIOCARTA_TH1TH2_PATHWAY were mainly enriched in cluster 1 (Figures 2F; S4B, S5D).




Figure 2 | Cuproptosis-associated classifications in lung adenocarcinoma. (A) A network describes the connection and prognostic values of 10 cuproptosis-associated genes. (B) The non-negative matrix factorization (NMF) rank survey was shown. The optimal number of clusters: rank = 3. (C) K–M survival plots according to NMF clusters. The P value was determined by the log-rank test. (D) The distribution plot shows the composition of clinicopathological features of three NMF clusters. (E) Principal component analysis shows the distribution of three NMF clusters. (F) Corresponding pathway activities of three NMF clusters.





Analyses of tumor microenvironment of cuproptosis-associated clusters

To understand the heterogenicity of the tumor microenvironment of three cuproptosis-associated clusters, we performed immune-related analyses including ssGSEA and CIBERSORT. Here, we demonstrated that MDSCs and regulatory T cells (Tregs), both of which were correlated with the suppressive microenvironment, were mainly enriched in cluster 1 (Figures 3A; S6B). Interestingly, we observed that antitumor-related immune cells such as activated CD4/8+ T cells (Figures 3A; S6A) and CD8+ T cells (Figures 3B; S6A) were predominantly enriched in cluster 1.




Figure 3 | Analyses of the tumor microenvironment of cuproptosis-associated clusters. (A) ssGSEA of immune cells in three clusters. The statistical difference of three clusters was compared by the Kruskal–Wallis H test. *P < 0.05; **P < 0.01; ***P < 0.001; NA, no difference in statistics. (B) Boxplot shows the proportion of immune cells calculated by CIBERSORT analysis. The statistical difference of three clusters was compared by the Kruskal–Wallis H test. *P < 0.05; **P < 0.01; ***P < 0.001; NA, no difference in statistics.





Development of cuproptosis-associated risk score

The above analyses were mainly based on 10 CAGs; it seems to be few genes about cuproptosis. To further explore whether there are more genes related to cuproptosis, we performed DEG analysis as previously reported and obtained 499 genes (Figure 4A). Analyses of biological function showed that 499 genes were related to protein catabolic process and glycosylation (Figure 4B). We finally recognized 499 genes as cuproptosis phenotype-related genes. Then, we would like to investigate the correlation between cuproptosis phenotype-related genes and clinical prognosis. Three datasets were curated for further analyses, namely, TCGA-LUAD, GSE13213, and GSE31210 cohorts. We found that 406 of 499 genes could be detected in three datasets (Figure 4C) and combined them with 10 CAGs for construction of the risk score model. By 1,000 iterations, we observed that a cluster of 16 genes presented the highest frequency (459 times; Figure 4D), and they were chosen for calculating the risk score. The c-indexes of risk score in each dataset were 0.6925, 0.6667, and 0.7220 (Figure 4E). Afterward, we found that high risk score was positively correlated with cluster 1, in line with the fact that cluster 1 had the worst survival rates (Figures 4F, G).




Figure 4 | Development of cuproptosis-associated risk score. (A) Venn plot shows the differentially expressed genes called as cuproptosis phenotype-related genes. (B) GO function of differentially expressed genes. (C) Venn plot shows the overlapped genes of GSE13213, GSE31210, and 499 differentially expressed genes detected in TCGA-LUAD cohort. (D) Frequency models calculating the gene models. (E) Bar plot shows the c-index of two datasets. (F) Boxplot shows the risk_score of three clusters. (G) The distribution of three clusters in the high- and low-risk groups. *P < 0.05; **P < 0.01; ***P < 0.001.





Predictive ability of cuproptosis-associated risk score for prognosis

To validate the accuracy of our cuproptosis-associated risk score for predicting patients’ prognosis, we performed K–M survival analysis and found that in the training (TCGA-LUAD), validation (GSE13213), and external datasets (GSE31210), the high-risk group exhibited a worse survival rate (Figures 5A, B; S7A). The AUC values of survival rates at 1, 2, 3, and 5 years in three cohorts were over 0.6 (Figures 5C, D; S7B), suggesting that our cuproptosis-associated risk score could predict prognosis precisely. The distribution plot also indicated that the cuproptosis-associated risk score was increasing with the rate of death (Figures 5E–H; S7C, D). Finally, the expression of 16 genes used for the cuproptosis-associated risk score model in high- and low-risk groups is shown in Figures 5I, J; S7E.




Figure 5 | Predictive ability of cuproptosis-associated risk score for prognosis. (A, B) K–M survival curves. P value was determined by the log-rank test. (C, D) ROC curves show AUC values of risk_score. (E, F) Distribution plot shows risk_score. (G, H) Distribution plot shows the correlation between risk_score and patients’ survival status. (I, J) The heatmap plot shows the expression of 36 genes in high- and low-risk groups.





Analyses of TME in high- and low-risk groups

We next utilized ssGSEA and CIBERSORT to understand the TME infiltration in high- and low-risk groups. The results showed that activated CD4+ T cells (Figure 6A) and CD8+ T cells (Figure 6B) were mainly enriched in the high-risk group. In previous analyses, the high-risk group was predominantly clustered into NMF cluster 1 (Figure 4G). Therefore, combined with the similar immune infiltration (CD4/8+ T cells) of cluster 1, we postulated that activated CD4/8+ T cells could be targeted immune cells to improve anticancer immunotherapy.




Figure 6 | Immune characteristics between the high- and low-risk groups. (A) ssGSEA of immune cells in high- and low-risk groups. The statistical difference of three clusters was compared by the Kruskal–Wallis H test. *P < 0.05; **P < 0.01; ***P < 0.001. (B) Boxplot shows the proportion of immune cells calculated by CIBERSORT analysis. The statistical difference of three clusters was compared by the Kruskal–Wallis H test. *P < 0.05; **P < 0.01; ***P < 0.001; NA, no difference in statistics.





A nomogram constructed for predicting patients’ prognosis

We next constructed a nomogram to predict overall survival in LUAD patients (Figure 7A). Here, we observed that AUC values of nomogram at 1, 3, and 5 years of the training set were 0.771, 0.754, and 0.722, respectively (Figure 7B), all of which were higher than the AUC values of the TNM stage at 1, 3, and 5 years (Figure S8D). Similarly, the AUC values of nomogram in validation (Figure 7C) and external sets (Figure 7D) were also higher than those of the disease stage (Figures S8E, F) at 1, 3, and 5 years. The calibration plots of the nomogram are displayed in Figures S8A–C. All these findings indicated that our nomogram showed an advantage in predicting LUAD patients’ prognosis.




Figure 7 | A nomogram constructed for predicting patients’ prognosis. (A) Nomogram for predicting the 1-, 3-, and 5-year OS of lung adenocarcinoma patients in the training set. (B–D) ROC curves for predicting the 1-, 3-, and 5-year ROC curves in the training (TCGA), validation (GSE13213) cohort, and external cohort (GSE31210).






Discussion

Due to the tumor heterogeneity of LUAD, the overall survival rate of LUAD patients is limited (1). In recent years, significant progress has been made in the treatment of LUAD, but owing to the limitations of traditional histological classification in guiding tumor treatment, accurately identifying LUAD molecular subtypes is increasingly important. Previous studies have been carried out in this field, such as immunophenotyping (31) and metabolic phenotype (32), but there are still considerable limitations in each study. Therefore, a more in-depth exploration of LUAD is urgently needed to improve the survival rate of patients.

In our study, we found the genetic variation of cuproptosis-associated genes in LUAD. The 10 CAGs can divide LUAD patients into three different molecular subtypes, which are significantly related to the patient prognosis. Further pathway analysis showed that different cuproptosis-associated clusters were closely related to different tumor-related pathways and immune pathways. Therefore, we developed a cuproptosis-associated risk score and validated it in different data sets to evaluate its prognostic ability. Meanwhile, by analyzing the TME in high- and low-risk groups, we found that activated CD4+ T cells and CD8+ T cells were mainly enriched in high-risk groups. Therefore, we hypothesized that activated CD4+/8+ T cells could be used as targeted immune cells to improve anticancer immunotherapy. Finally, we combined the cuproptosis-associated risk score with the clinicopathological factors to construct a nomogram to predict the overall survival rate of LUAD patients. This nomogram showed unique advantages in predicting the prognosis of LUAD patients. Admittedly, the nomogram needs to be validated in large sample size prospective clinical trials before routinely clinical application.

Cuproptosis is a hot topic in modern medicine (33). Cuproptosis is different from other programmed cell deaths. It does not depend on the apoptosis pathway. The accumulation of copper destroys mitochondrial function, and the destruction of lipoacylase inhibits copper toxicity. The role of cuproptosis-related genes in LUAD has not been studied. In our study, we constructed a gene prognostic model related to cuproptosis in LUAD. This is the first prognostic nomogram related to cuproptosis to evaluate the prognosis of LUAD patients, which has objective clinical value. Meanwhile, we found the characteristics of the TME between high- and low-risk LUAD patients according to cuproptosis-associated risk scores, especially the infiltration of immune cells, which provides potential value for immunotherapy of high-risk patients and also confirms the important role of cuproptosis in the immune microenvironment. Further studies on relevant molecular mechanisms between cuproptosis and the TME are urgently needed.

Most of the 10 genes associated with cuproptosis are closely related to cancers. DLAT is one of three mitochondrial proteins found to be upregulated in eight of 11 gastric cancer cell lines (34). It exists in the inner membrane of the mitochondria and plays a role in the decomposition of pyruvate into acetyl CoA. It is found that DLAT protein may be one of the potential drug targets in mitochondria, which provides a theoretical basis for drug therapy designed for mitochondria (35). CDKN2A has been proved to play an important function in various cancers. A meta-analysis suggests that CDKN2A hypermethylation may be a predictor of poor prognosis in patients with colorectal cancer (36). It was found that the frequent deletion of CDKN2A was related to the downregulation of CDKN2A in lung cancer. Knockout of CDKN2A significantly stimulated cell proliferation, invasion, and migration (37). Zhang et al. (38) found that FDX1 can affect the prognosis of LUAD patients. Further studies found that knockout of FDX1 neither inhibited the growth of tumor cells nor induced apoptosis or abnormal cell cycle distribution. However, FDX1 can promote the production of ATP. In addition, FDX1 is closely related to glucose metabolism, fatty acid oxidation, and amino acid metabolism (38). Metal regulatory transcription factor 1 (MTF1) is a conserved metal binding transcription factor that binds to conserved DNA sequence motifs in eukaryotes, which is called metal response element (39). MTF1 binds to chromatin in the promoter region of the myoblast gene, which is stimulated by the addition of copper. These findings revealed an unexpected mechanism by which copper and MTF1 regulate gene expression during myoblast differentiation (39). GLS also plays an important role in various tumors. Tong et al. (40) demonstrated that GLS was highly expressed in human pancreatic ductal adenocarcinoma (PDAC) specimens and correspondingly upregulated the glutamine dependence on PDAC cell proliferation. The results of Mukha et al. (41) showed that GLS-driven glutamine lysis is a prognostic biomarker and therapeutic target of radiation sensitization of prostate cancer.

There are some limitations. First, a large number of LUAD samples are needed to verify the stability of this new molecular typing and nomogram. Second, the molecular function of cuproptosis-related genes needs further basic experiments. The relationship between cuproptosis and immunity needs further experimental verification.



Conclusion

In conclusion, we comprehensively explored the cuproptosis-associated molecular subtypes and identified their correlations with TME cell-infiltrating characteristics. These integrated analyses will contribute to understanding the TME infiltration based on cuproptosis and provide an interesting insight into immunotherapeutic efficacy.
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Characteristics Total (N) Univariate analysis Multivariate analysis

Hazard ratio (95% ClI) p value Hazard ratio (95% CI) p value
T stage 488
T1 and T2 430
T3 and T4 58 1.974 (1.190-3.275) 0.008 1.516 (0.772-2.974) 0.227
N stage 475
NO and N1 410
N3 and N2 65 1.971 (1.247-3.115) 0.004 1.295 (0.433-3.879) 0.644
Pathologic stage 483
Stage Il and stage | 389
Stage IV and stage Il 94 2.436 (1.645-3.605) <0.001 1.489 (0.466-4.752) 0.502
M stage 344
MO 323
M1 21 2.455 (1.269-4.749) 0.008 1.785 (0.540-5.905) 0.343

AC068228.1 491 1.663 (1.311-2.110) <0.001 1.493 (1.116-1.997) 0.007
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Characteristics

T stage

T1 and T2

T3 and T4

N stage

NO and N1

N3 and N2
Pathologic stage
Stage Il and stage |
Stage IV and stage il
M stage

MO

M1

AC068228.1

Total (N)

523
457
66
510
437
73
518
411
107
377
352
25
526

Univariate analysis

Hazard ratio (95% CI)

1.811 (1.249-2.628)

1.325 (0.914-1.919)

1.513 (1.105-2.071)

1.513 (0.855-2.676)
1.500 (1.262-1.804)

p value

0.002

0.137

0.010

0.155
< 0.001

Multivariate analysis

Hazard ratio (95% CI) p value
1.656 (1.102-2.487) 0.015
1.164 (0.817-1.656) 0.400
1.495 (1.242-1.800) <0.001
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Characteristics Total (N) Univariate analysis Multivariate analysis

Hazard ratio (95% CI) p value Hazard ratio (95% CI) p value
T stage 523
T1 and T2 457
T3 and T4 66 2.317 (1.691-3.375) <0.001 1.713 (1.066-2.753) 0.026
N stage 510
NO and N1 437
N3 and N2 73 2.321 (1.631-3.303) <0.001 1.273 (0.608-2.664) 0.522
Pathologic stage 518
Stage Il and stage | 411
Stage IV and stage Ill 107 2.664 (1.960-3.621) <0.001 1.774 (0.815-3.862) 0.149
M stage 377
MO 352
M1 25 2.136 (1.248-3.653) 0.006 1.173 (0.523-2.632) 0.699
AC068228.1 526 1.619 (1.339-1.957) <0.001 1.414 (1.126-1.775) 0.003
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Characteristics The internal The external ~ P-value
set (n=125) No. set (n=69) No.
of patients (%) of patients (%)

Gender (female/male) 55/70 (44.0/66.0) 32/37(46.4/53.6) 0.750
Age (<65/>65) 92/33 (73.6/26.4)  40/29 (68.0/42.0)  0.025*

Mean + SD 58.1 + 9.60 62.1 +8.83 0.005*
KPS (<80/>80) 11/114 (8.8/91.2) 11/58 (15.9/84.1)  0.133
Smoking history 46 (36.8) 32 (46.4) 0.193
N stage 0.360

NO-1 39(31.2) 26 (37.7)

N2-3 86 (68.8) 43 (62.3)
T stage 0.748

T1-2 86 (68.8) 54 (78.3)

T3-4 39 (31.2) 15 (21.7)
Number of bone metastasis 0.543

1 49 (39.2) 24 (34.8)

2-5 76 (60.8) 45 (65.2)
Gene alternation status 0.051

EGFR-sensitive mutations 64 (51.2) 25 (36.2)

ALK mutation 8 (6.4) 1(1.5)

EGFR unsensitive mutations 10 (8.0) 6(8.7)

Other mutations 7 (5.6) 4 (5.8

No 36 (28.8) 33 (47.8)
Antiresorptive drugs 104 (83.2) 48 (69.6) 0.027*
ALP (U/L) 117.5 + 55.55 95.4 + 35.81 0.001*
Albumin (g/L) 419 +4.73 402+ 4.72 0.017*
c-Ca 23+0.14 2.3+0.10 0.340
Leukocyte (10%/L) 7.5+ 250 7.1+229 0.294
NLR 3.5+3.03 3.7+239 0.614
PLR 185.1 + 89.53 204.5+129.39 0.271
Sli 966.0 + 714.59  1050.3 +943.18  0.485

*P < 0.05; KPS, karnofsky performance status scores; EGFR, epidermal growth factor
receptor; ALK, anaplastic lymphoma kinase; PLR, platelet to lymphocyte ratio; NLR,
neutrophils to lymphocyte ratio; Sll, systemic inflammatory index; ALP, alkaline phosphatase.
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Characteristics

Total (N)

0Odds ratio (95% CI) p-value
T stage (T2 and T3 and T4 vs. T1) 532 1.847 (1.282-2.674) 0.001
N stage (N1 and N2 and N3 vs. NO) 519 2.245 (1.544-3.288) <0.001
Pathologic stage (stage Ill and stage IV vs. stage | and stage Il) 527 1.898 (1.238-2.940) 0.004
M stage (M1 vs. MO) 386 2.882 (1.187-8.064) 0.027
Primary therapy outcome (PD vs. SD) 108 3.267 (1.445-7.605) 0.005
Residual tumor (R1 and R2 vs. R0) 372 2.281 (0.828-7.293) 0.129
Smoker (yes vs. no) 521 1.597 (0.975-2.649) 0.065

PD, progressive disease; SD, stable disease
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Characteristics

T stage
T1and T2
T3 and T4
N stage
NO and N1
N3 and N2
Pathologic stage
Stage Il and stage |
Stage IV and stage Il
M stage
MO
M1
Primary therapy outcome
SD
PD
Race
Black or African American
White
Age (years)
<65
>65
Residual tumor
RO
R2 and R1
Gender
Female
Male
Anatomic neoplasm subdivision
Left
Right
Smoker
No
Yes
HMMR

Total (N)

523
457
66
510
437
73
518
411
107
377
362
25
108
37
7]
461
55
406
516
255
261
363
347
16
526
280
246
512
200
312
512
72
440
526

Univariate analysis

Multivariate analysis

Hazard ratio (95% CI)

2.317 (1.591-3.375)

2.321 (1.631-3.303)

2.664 (1.960-3.621)

2.136 (1.248-3.653)

3.174 (1.549-6.505)

1.443 (0.871-2.389)

1.223 (0.916-1.635)

3.879 (2.169-6.936)

1.070 (0.803-1.426)

1.037 (0.770-1.397)

0.894 (0.592-1.348)
1.345 (1.186-1.526)

p-value

<0.001

<0.001

<0.001

0.006

0.002

0.155

0.172

<0.001

0.642

0.810

0.591
<0.001

Hazard ratio (95% CI)

26.642 (5.247-135.266)

10.834 (1.436-81.750)

0.773 (0.112-5.308)

3.550 (0.402-31.362)

6.661 (1,579-28.108)

0.179 (0.028-1.156)

0.683 (0.451-1.034)

p-value

<0.001

0.021

0.793

0.254

0.010

0.071

0.042

PD, progressive disease; SD, stable disease; HMMR, hyaluronan-mediated motility receptor.
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N2
N3
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MO
M1
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Low expression of hsa-miR-30a-5p
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T stage (T2&T38&T4 vs. T1) 996 0.530 (0.399-0.701) <0.001
N stage (N1&N2&N3 vs. NO) 979 0.639 (0.490-0.832) <0.001
M stage (M1 vs. MO) 770 1.398 (0.663-3.038) 0.383
Primary therapy outcome (PD&PR vs. SD&CR) 782 0.683 (0.450-1.027) 0.069
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Age (>65 vs. <=65) 972 1.448 (1.123-1.871) 0.004
Residual tumor (R18R2 vs. R0) 752 0.633 (0.295-1.309) 0.225
Smoker (Yes vs. No) 974 0.652 (0.418-1.005) 0.050
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11.2 Asia
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Zhao 2017 069 029 24%  199[1.13,352
Subtotal (95% CI) 85%  209[154,283]
Heterogeneity: Tau* = 0.00; Chi* = 0.44, df = 4 (P = 0%

Test for overall effect: Z = 4.75 (P < 0.00001)

1.3 non-Asia

Costantini 2018 142 095 02%  4.14[0.64,26.63)
Mazzaschi 2020 111 028 26% 303175525
Tiako 2020 099 04 13%  269[1.23,589]
Subtotal (95% CI) 41%  297[192,460]
Heterogeneity: Tau? = 0.00; Chi* = 0.19, df = 2 (P = 0.91); ' = 0%

Test for overall effect:

89 (P <0.00001)

1.4 Up 0 2019

Costantini 2018 142 095 4.14(0.64, 26.63]
Okuma 2018 069 029 199[1.13,352]
2Zhao 2017 069 029 1.99[1.13, 3.52]
Subtotal (95% CI) 2.06[1.39, 3.05]
Heterogeneity: Tau? = 0.00; Chi* = 0.56, df = 2 (P "=0%

Test for overall effect: Z = 3.60 (P = 0.0003)

1.1.5 From 2019 on

He 2020 099 042 12%  269[1.18,643]
Mazzaschi 2020 141 028 26%  303[1.75,525]
Murakami 2020 073 034 18%  208[1.07,404]
Tiako 2020 099 04 13%  269[1.23,589]
Yang 2021 065 052 08%  1.92(069,531]
Subtotal (95% C1) 75%  255[1.85,3.52]
Heterogeneity: Tau® = 0.00; Chi* = 1.09, df = 4 (P = 0.90); ' = 0%

Test for overall effect: Z = 5.70 (P < 0.00001)

1.1.6 Serum

Murakami 2020 073 034 18%  208[1.07,4.04]
Subtotal (95% CI) 18%  208[1.07,4.04]
Heterogeneity: Not applicable

Test for overall effect: Z = 2.15 (P = 0.03)

1.7 Plasma

Costantini 2018 142 095 02%  4.14[0.64,26.63)
He 2020 099 042 12%  269[1.18,613]
Mazzaschi 2020 111 028 26%  3.03[1.75,5.25
Okuma 2018 069 029 24%  199(1.13,352)
Tiako 2020 099 04 13%  269[1.23,589)
Yang 2021 065 052 08%  192[069,531]
Zhao 2017 069 029 24%  199(1.13,352]
Subtotal (95% C1) 108%  239[1.82,342]
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1.1.8 Sample sizes >100
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Subtotal (95% C1) 68%  237[1.68,332]
Heterogeneity: Tau? = 0.00; Chi* = 1.29, df = 2 (P = 0.53); I'= 0%
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1.4.9 Sample size<100

Costantini 2018 142 095 02%  4.14(0.64,2669]
He 2020 099 042 12%  269[1.18,643]
Okuma 2018 069 029 24%  199[1.13,352
Tiako 2020 099 04 13%  269[1.23,589)
Yang 2021 065 052 08%  192(0.69,531]
Subtotal (95% CI) 58%  231[1.60,333]
Heterogeneity: Tau* = 0.00; Chi* = 1.04, df = 4 (P 0%

Test for overall effect: Z = 4.48 (P < 0.00001)

1.1.10 Prospective study

Costantini 2018 142 095 02%  4.14[0.64,26.63)
Mazzaschi 2020 111 028 26%  3.03[1.75,525
Okuma 2018 069 029 24%  199[1.13,352)
Yang 2021 065 052 08%  192(0.69,531]
Zhao 2017 069 029 24%  199[1.13,352)
Subtotal (95% CI) 84%  231[170,343]

Heterogeneity: Tau® = 0.00; Chi* = 1.97, df = 4 (P = 0.74); I' = 0%
Test for overall effect: Z = 5.37 (P < 0.00001)

1.1.11 Retrospective study

He 2020 099 042 12%  269[1.18,6.13]
Murakami 2020 073 034 18%  208[1.07,4.04]
Tiako 2020 099 04 13%  269(1.23,589
Subtotal (95% C1) 42%  241[157,372]
Heterogeneity: Tau? = 0.00; Chi* = 0.34, df = 2 (P = 0.84); ' = 0%
Test for overall effect: Z = 3.99 (P < 0.0001)

1.1.12 Quality scores >8

Costantini 2018 142 095 02%  4.14[064,2663]
He 2020 099 042 12%  269[1.18,6.13]
Mazzaschi 2020 111 028 26% 303175525
Okuma 2018 069 020 24%  199[1.13,352)
Tiako 2020 099 04 13%  269[1.23,589
Subtotal (95% CI) 77%  258[1.88,3.55]
Heterogeneity: Tau® = 0.00; Chi* = 1.39, df = 4 (P = 0.85); I' = 0%

Test for overall effect: Z = 5.82 (P < 0.00001)

1.1.13 Qualtly scores<8

Murakami 2020 073 034 18%  208[1.07,4.04]
Yang 2021 065 052 08%  192(0.69,531)
Zhao 2017 069 029 24%  199[1.13,352]
Subtotal (95% CI) 49%  201[1.35,299]
Heterogeneity: Tau? = 0.00; Chi? = 0,02, df =2 (P = 0.99); = 0%

Testfor overall effect: Z = 3.4 (P = 0.0006)
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He 2020 099 042 12%  269[1.18,643]
Okuma 2018 069 029 24%  199[1.13,352
Subtotal (95% CI) 36%  220[1.38,351]
Heterogeneity: Tau? = 0.00; Chi* = 0.35, df = 1 (P = 0.56); I'= 0%

Test for overall effect: Z = 3.30 (P = 0.0010)

1.4.15 Cut-off value<ing/ml

Costantini 2018 142 095 02%  4.14[0.64,26.63)
Mazzaschi 2020 111 028 26% 303175525
Murakami 2020 073 034 18%  208[1.07,4.04]
Tiako 2020 099 04 13%  269[1.23,589
Zhao 2017 069 029 24%  199[1.13,352
Subtotal (95% CI) 83%  245[180,3.33]
Heterogeneity: Tau? = 0.00; Chi* = 1.69, df = 4 (P = 0.79); ' = 0%

Testfor overall effect: Z = 5.71 (P < 0.00001)
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Test for overall effect: Z = 18.89 (P < 0.00001)
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Study Country Study type Sample sizes Treatment Outcomes Follow-up time (M) Quality assessment

Costantini et al. (41) France P 43 ICI 0S, PFS 16.3 (11.7-21.1) 8
He et al. (42) China R 88 Surgery 0s 67 (3-78) 8
Mazzaschi et al. (43) Italy P 109 ICl+C 0S, PFS 17.3 8
Murakami et al. (44) Japan R 233 ICI 0OS, PFS NA 7
Okuma et al. (20) Japan P 39 ICI 0s NA 8
Tiako et al. (45) France R 51 ICl+C 0OS, PFS NA 8
Yang et al. (46) China P 21 icl 08, PFS NA 7
Zhao et al. (47) China P 126 CRT os NA 7

P, prospective; R, retrospective; ICI, immune checkpoint inhibitors; C, chemotherapy; CRT, chemoradiotherapy.
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Study Ages Male/ ECOG PS0-1/ Stage Source of Detection time Cut-off value
female over 2 blood (ng/ml)

Costantini et al. 68 (62- 29/14 25/18 -V Plasma Baseline or before ICI treatment 0.03

(1) 71.5)

He et al. (42) 59 (36-83) 72/16 NA la-lllb Plasma 1-2 days before surgery 3.4

Mazzaschi et al. 72 (41-85) 73/36 95/14 nB-v Plasma baseline 0.11

(43)

Murakami et al. 63 (30-84) 162/81 211/22 Advanced or Serum Before treatment 0.09

(44) recurrent

Okuma et al. (20) 69 (50-88) 29/10 156/24 \% Plasma Baseline 3.36

Tiako et al. (45) 66 (60-69) 29/22 30/21 metastatic Plasma Baseline 0.16

Yang et al. (46) NA NA NA Advanced Plasma Baseline and 2 month after ICl Fold change 0.95

Zhao et al. (47) NA 95/31 105/21 [111=} Plasma Baseline, 2 and 4 weeks after 0.097

treatment
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ltems Number of studies Cases HR (95% CI) P-value Heterogeneity

P (%) P
All 8 710 2.34 (1.82, 3.00) <0.001 0 0.94
Country
Asia 5 507 2.09 (1.54, 2.83) <0.001 0 0.98
Non-Asia 3 203 2.97 (1.92, 4.60) <0.001 0 0.91
Publication year
From 2019 onward 5 269 2.55(1.85, 3.52) <0.001 0 0.90
Up to 2019 3 441 2.06 (1.39, 3.05) 0.0003 0 0.75
Sample sizes
>100 3 468 2.37 (1.68, 3.32) <0.001 0 0.50
<100 5 242 2.31(1.60, 3.33) <0.001 0 0.90
Quality scores
>8 5 330 2.58 (1.88, 3.55) <0.001 0 0.85
<8 3 380 2.01(1.35, 2.99) <0.001 0 0.99
Study type
Prospective 5 338 2.31(1.70, 8.13) <0.001 0 0.74
Retrospective 3 372 2.41(1.57,8,72) <0.001 0 0.84
Source of blood
Plasma 7 477 2.39(1.82,8.12) <0.001 0 0.90
Serum 1 233 2.08 (1.07, 4.04) 0.03 = =
Cutoff value
>1 ng/ml 2 127 1.64 (1.31, 2.05) <0.001 3 0.38

<1 ng/ml 5 562 2.45(1.80, 3.33) <0.001 0 0.79
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Parameter

Gender

M

F

Age

Smoking

Non-smoking

Histologic type
Squamous cell carcinoma
Adenocarcinoma

Stage

|

A

B

A

ns

Tumor size

Ti2

Taa

Grade

1

2

3

Nodal status

Positive

Negative

Recurrence

Yes

No

NAC

Yes

No

IORT

Yes

No

NAGC effect

Partial regression
Stabilization

AC

Yes

No

AC regimen
Vinorelbine/carboplatin
Paclitaxel/carboplatin
Gemcitabine/carboplatin
Irinotecan/carboplatin
Etoposide/cisplatin

Fisher's exact test was used.

MTS, distant metastasis; NSCLC, non-small cell lung cancer: NAC, neoadjuvant chemotherapy; IORT, intraoperative radiotherapy; AC, adjuvant chemotherapy.

Number of patients, n (%)

MTS+

55/60 (91.7)
5/60 (8.3)
57142

49/60 (81.7)

11/60 (18.3)

41/60 (68.3)
19/60 (31.7)

2/60 (3.3)

2/60 (3.3)

5/60 (8.3)
40/60 (66.7)
11/60 (18.4)

9/60 (16.0)
51/60 (85.0)

2/60 (3.3)
48/60 (80.0)
10/60 (16.7)

31/60 (51.7)
29/60 (48.3)

3/60 (5.0)
57/60 (95.0)

27/60 (45.0)
33/60 (55.0)

9/60 (16.0)
51/60 (55.0)

8/27 (29.6)
19/27 (70.4)

31/60 (51.7)
29/60 (48.3)

9/60 (15.0)

12/60 (20.0)
6/60 (10.0)
2/60 (3.3)
2/60 (3.3)

MTS-

88/111 (79.9)
23/111 (20.7)
583+ 86
79111 (71.2)
32/111 (28.8)

66/111 (59.5)
45/111 (40.5)

12/111 (10.8)
7111 (6.3)
29/111 (26.1)
44/111 (39.6)
19/111 (17.2)

42/111 37.8)
69/111 (62.2)

8111 (7.2)
56/111 (50.5)
47/111 (42.9)

51/111 (46.9)
60/111 (54.1)

20/111 (18.0)
91/111 (82.0)

63/111 (56.8)
48/111 (43.2)

28/111 (25.2)
83/111 (74.8)

26/63 (41.3)
37/63 (58.7)

50/111 (45.05)
61/111 (54.95)

21/111 (18.9)
14/111 (12.6)
13111 (
(
(

11.7)
2/111(1.8)
0/111 (0.0)

0.05

0.51

0.14

0.32

0.07
0.38
0.005
0.0009
0.83

0.002

0.27
0.0003
0.0011

0.45

0.48
0.02

0.152

0172

0.34
0.29

0.426

0.51
0.23
0.69
0.61
0.07
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Univariate logistic regression

analysis

OR (95% Cl)
Risk group 12.94 (4.81-34.78)
Low vs. high
Histologic type 0.62 (0.32-1.18)
Squamous cell carcinoma vs. adenocarcinoma
Recurrence 2.89 (0.93-8.93)
No vs. yes
NAC 1.54 (0.82-2.90)
No vs. yes
IORT 1.60 (0.74-3.43)
No vs. yes
Gender 0.36 (0.13-1.01)
Male vs. female
Tumor size 3.44 (1.54-7.72)
1-2vs. 3-4
Nodal status 0.79 (0.42-1.49)
Negative vs. positive
AC 1.53 (0.81-2.88)
No vs. yes
Smoking status 0.55 (0.25-1.19)
No vs. yes
Grade 3.67 (1.68-7.98)
1-2vs. 3
Stage group 5.13 (2.23-11.82)

Hllvs. Il

p-Value
0.0000
0.1473
0.0651
0.1761
0.2259
0.0537
0.0025
0.4751
0.1873
0.1341
0.0010

0.0001

Multivariate logistic regression analysis
of variables significant after univariate
analysis

OR (95% CI)

15.63 (5.38-45.41)

6.05 (2.29-15.96)

7.38 (2.90-18.73)

11.89 (4.23-33.39)

p-Value

0.0000

0.0000

0.0000

NSCLC, non-small cell lung cancer: NAC, neoadjuvant chemotherapy; IORT, intraoperative radiotherapy: AC, adjuvant chemotherapy.

Multivariate logistic regression
analysis with all variables

OR (95% CI)
34.88 (7.87-154.60)
0.76 (0.25-2.28)
0.37 (0.04-2.87)
1.04 (0.30-3.58)
1.38 (0.50-3.80)
0.34 (0.04-2.56)
11,65 (3.43-39.47)
0.63 (0.21-1.86)
1.76 (0.65-4.75)
0.84 (0.27-2.56)
15.52 (4.57-52.65)

8.23 (2.87-22.59)

p-Value

0.0000
0.6370
0.3470
0.9489
0.5288
0.2966
0.0001
0.4069
0.2623
0.7650
0.0000

0.0001
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Variable

Gender
Male
Female

Age

AJCC pathologic stage
Stage |
Stage Il
Stage Il

AJCC T stage
T
T2
T3
T4

AJCC N stage
NO
>N1

Survival status
Alive
Dead

TCCA (N = 970)

Training cohort (N = 717)

414 (57.7)
303 (42.3)

68.0 (33.0-99.0)

383 (53.4)
215 (30.0)
119 (16.6)

205 (28.6)
402 (56.0)
85(11.9)
25(3.5)

463 (64.6)
254 (35.4)

428 (59.7)
289 (40.3)

Testing cohort (N = 253)

159 (62.8)
94 (37.2)
67.0 (40.0-85.0)

140 (55.3)
65 (25.7)
48 (19.0)

75 (29.6)

139 (54.9)

30 (11.9)
9(3.6)

165 (65.2)
88 (34.8)

159 (62.8)
94(37.2)

p value

0.1586

0.4507

0.9050

0.8260

0.924

0.4108

GSE31210 (N = 226)

105 (46.5)
121 (63.5)
61.0 (30.0-76.0)

168 (74.3)
58 (25.7)
0(0.0)

188 (83.2)
38 (16.8)

GSE30219 (N = 161)

137 (85.1)
24 (14.9)
62.0 (40.0-84.0)

135 (83.8)
9(5.6)
17 (10.6)

101 (62.7)
60 (37.3)
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Variable

Age
Gender

T stage
T

T2

T3

T4

N stage
NO

N1

N2

N3

NX

Tumor stage
Stage |
Stage Il
Stage Il
Purity
Risk score

Univariate
HR (95% CI)

1.25 (0.98-1.58)
1.29 (1.04-1.59)

:
1.55 (1.20-2.00)
1.95 (1.38-2.74)
2.48 (1.51-4.09)

1
1.54 (1.12-1.95)
1.91 (1.43-2.56)
0.87 (0.21-3.35)
0.71 (0.23-2.23)

1
1.44 (1.14-1.82)
2.04 (1.58-2.63)
1.89 (0.98-3.63)
2.40 (2.01-2.85)

p value

0.06
0.02
<0.001

<0.001
<0.001
<0.001
<0.001

<0.001

<0.001
0.85
0.56

<0.001

<0.001

<0.001
0.06

<0.001

Multivariate

HR (95% CI)

1.07 (0.86-1.32)

|
1.31 (1.00-1.70)
1.63 (1.00-2.64)
1.79 (0.92-3.50)

4
1.40 (0.92-2.11)
1.38 (0.69-2.78)
0.79 (0.17-3.71)
0.91 (0.29-2.85)

1
0.88 (0.57-1.34)
1.07 (0.50-2.30)

2.22 (1.85-2.66)

p value

0.53

0.047
0.048
0.088

0.12
0.36
0.77
0.87

0.55
0.85

<0.001
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Stage

IA
B
A
s

p-Value

The frequency of distant metastases, n (%)

Low-risk group High-risk group
0/7 (0) 2/7 (28.57)
p=04615
0/4 (0) 2/6 (33.33)
p = 0.4667
0/15 (0) 4/18 (22.22)
p=0.1081
2/24 (8.33) 41/59 (69.49)
p = 0.0000
3/15 (20.00) 6/16 (37.50)
p=0.4331
Pabo.de = 0.0777 Pabo-de = 0.0028

Fisher's exact test was used.
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Features

Risk group

Type of bronchial lesions

Histologic type
Recurrence

Type of therapy

Gender

Tumor size
Nodal status
AC

Smoking status

Grade

Level

Low
High
BCH-SM-D-
BCH+SM-D-
BCH+SM+D-
BCH-SM+D+
Squamous cell carcinoma
Adenocarcinoma
No
Yes
NAC-IORT-
NAC+ORT-
NAC+IORT+
Male
Female
T1-2
T34
Negative
Positive
No
Yes
Smoking
Non-smoking
1-2
3

Metastasis-free survival

Univariate

Multivariate

Hazard ratio (95% CI)

Ref
0.83 (0.58-1.19)
Ref
1.02 (0.563-1.99)
0.98 (0.57-1.71)
0.85 (0.38-1.89)
Ref
1,04 (0.71-1.52)
Ref
0.63 (0.39-1.01)
Ref
1.10 (0.76-1.59)
1.08 (0.69-1.54)
Ref
1.27 (0.79-2.04)
Ref
1.07 (0.73-1.57)
Ref
0.90 (0.63-1.30)
Ref
0.91 (0.64-1.31)
Ref
1.03 (0.69-1.53)
Ref
1.14 (0.78-1.64)

p-Value

0.3195
0.9364
0.7452
0.6993
0.8051
0.0529

0.6491
0.9368

0.3120

0.7145

0.5956

0.6479

0.8750

0.4839

Hazard ratio (95% CI)

Ref
0.88 (0.54-1.29)
Ref
1.00 (0.50-1.98)
0.96 (0.49-1.88)
0.85 (0.36-2.01)
Ref
0.99 (0.65-1.50)
Ref
0.97 (0.52-1.80)
Ref
1.04 (0.64-1.68)
1,12 (0.75-1.66)
Ref
1,06 (0.62-1.85)
Ref
0.99 (0.67-1.47)
Ref
1.01 (0.66-1.55)
Ref
1.05 (0.71-1.55)
Ref
0.99 (0.66-1.46)
Ref
0.88 (0.60-1.29)

p-Value

0.5845
0.9149
0.8730
0.7606
0.9855
0.9312

0.9407
0.6087

0.8186

0.9956

0.9328

0.7795

0.9629

0.5350

NSCLC, non-small cell lung cancer; BCH, basal cell hyperplasia; SM, squamous cell metaplasia; D, dysplasia; NAC, neoadjuvant chemotherapy; IORT, intraoperative radiotherapy; AC,

adjuvant chemotherapy.
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Features Level Metastasis-free survival
Univariate Multivariate
Hazard ratio (95% CI) p-Value Hazard ratio (95% CI) p-Value
Risk group Low Ref Ref
High 0.78 (0.50-1.21) 0.2745 0.67 (0.46-1.14) 0.1543
Type of bronchial lesions BCH-SM-D- Ref Ref
BCH+SM-D- 156 (1.09-2.72) 0.0442 2.20 (1.05-4.58) 0.0209
BCH+SM+D- 1.18 (0.568-2.38) 0.7125 1.50 (0.69-3.25) 0.6981
BCH-SM+D+ 1.11 (0.50-2.48) 0.8219 1.03 (0.43-2.47) 0.4496
Histologic type Squamous cell carcinoma Ref Ref
Adenocarcinoma 0.85 (0.53-1.38) 0.5343 0.92 (0.56-1.49) 0.7372
Recurrence No Ref Ref
Yes 0.72 (0.42-1.26) 0.2606 1.06 (0.565-2.03) 0.8506
Type of therapy NAC-IORT- Ref Ref
NAC+IORT- 0.78 (0.51-1.19) 0.8574 0.52 (0.28-1.01) 0.0704
NAC+IORT+ 0.65 (0.41-1.03) 0.1710 0.72 (0.45-1.51) 0.9939
Gender Male Ref Ref
Female 1.50 (0.81-2.79) 0.1948 1.40 (0.75-2.61) 0.2871
Tumor size T1-2 Ref Ref
734 0.89 (0.57-1.38) 0.6138 0.98 (0.62-1.56) 0.9638
Nodal status Negative Ref Ref
Positive 1.02 (0.64-1.62) 0.9134 0.86 (0.52-1.43) 0.5821
AC No Ref Ref
Yes 0.94 (0.61-1.45) 0.7930 0.98 (0.63-1.55) 0.9638
Smoking status Smoking Ref Ref
Non-smoking 0.97 (0.62-1.51) 0.9052 1.02 (0.66-1.58) 0.9183
Grade 1-2 Ref Ref
3 1.24 (0.79-1.94) 0.3300 0.95 (0.59-1.51) 0.8390

NSCLC, non-small cell lung cancer; BCH, basal cell hyperplasia; SM, squamous cell metaplasia; D, dysplasia; NAC, neoadjuvant chemotherapy; IORT, intraoperative radiotherapy; AC,

adjuvant chemotherapy.
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The rate of distant metastases, n (%)

Low-risk group High-risk group
1 2

Ti2 1/24 (4.16) 8/27 (29.6)
Pab = 0.026

Taa 4/41 (9.75) 47/79 (59.4)
Pa-b = 0.6438 p1-2 = 0.0000
Pap = 0.0132

Grade 1-2 0123 (0) 10/34 (29.4)
p1-2 = 0.0037

Grade 3 5/42 (11.9) 45/72 (62.5)
Poq = 0.1521 P12 = 0.0000
Poa = 0.0018

Fisher's exact test was used.
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Description

Monocyte

TAM

M1 Macrophage

M2 macrophage

Gene markers

CD86
CSF1R
CcCL2
CD68
iL10
IRF5
NOSs2
PTGS2
CD163
MS4A4A
VSIG4

R

0.22
0.29
0.12
021
0.25
0.25
0.15
0.059
0.23
0.21
0.16

Tumor

LUAD

R

-0.044
0.1
-0.038
-0.18
-0.097
-0.011
0.12
0.23
-0.074
-0.16
-0.11

Normal

P

0.74
0.43
0.78
0.33
0.47
0.93
0.35
0.075
0.58
0.22
0.4

R

0.11
0.19
0.083
0.02
0.073
0.11
0.15
0.11
0.14
0.074
0.032

Tumor

0.1
0.48

Lusc

R

0.089
0.013
-0.081
0.069
-0.24
0.1
0.1
0.038
-0.094
-0.067
0.26

Normal

P

0.54
0.93
0.58
0.63
0.091
0.49
0.47
0.79
0.52
0.64
0.071

LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma; TAM, Tumor-associated macrophages; Tumor, correlation analysis in tumor tissue of TCGA; Normal, correlation
analysis in normal tissue of TCGA. (*P < 0.05; **P < 0.01; **P < 0.001).
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Clinicopathological characteristics

Gender

Stage

AJCC stage T
AJCC stage N

AJCC stage M
Smoking history

Male
Female

oS ON=WwN =

328
286
346
18
21
15
93
174
37
21
140
231

Overall survival (n =672)

Hazard ratio

0.62(0.44-0.86)
0.59(0.4-0.89)

0.56(0.37-0.83)
0.6(0.34-1.05)

0.17(0.04-0.77)
0.42(0.22-0.83)
1.41(0.77-2.57)
0.52(0.31-0.88)
0.59(0.24-1.48)
0.59(0.38-0.93)
0.29(0.13-0.66)
0.66(0.4-1.06)

P-value

0.0041
0.01
0.0035
0.07
0.0093
0.0095
0.27
0.014
0.26
0.02
0.0017
0.086

222
221

274
98

4
81
92
32
124
140
229

Hazard ratio

1.44(
0.51
0.58
0.69(

0.91-2.28)
0.32-0.83)
0.34-0.97)
0.34-1.38)

0.2(0.02-1.82)
0.5(0.24-1.02)
0.46(0.2-1.06)
3.84(0.85-17.33)
0.63(0.32-1.26)
0.41(0.22-0.78)
1.35(0.85-2.12)

Progression-free survival (n =443)

P-value

0.1
0.0055
0.035

0.29

0.11
0.053
0.061
0.061

0.19

0.0045
0.2
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characteristics

Gender
Male
Famale
Smoking
No
Yes
Pathological pattern
squamous carcinoma
adenocarcinoma
else
Weight loss
<5%
25%
KPS
>80
<80
T classification
T1-2
T3-4
N classification
NO-1
N2-3
Stages
1Ib
JUIEY
1IIb
1llc
v
Chemotherapy
No
Yes

"aThe PSM was performed using age, sex, which were subdivided according to the median values.

BEFORE PSM™

No TRA (N=63)(%)

36 (57.1)
27 (42.9)

44 (69.8)
19 (30.2)

33 (52.4)
30 (47.6)

35 (55.6)
18 (28.6)
10 (15.9)

39 (61.9)
24 (38.1)

58 (92.1)
5(7.9)

19 (30.2)
44 (69.8)

13 (20.6)
50 (79.4)

6(9.5)
14 (22.2)
23 (36.5)
13 (20.6)
7 (11.1)

28 (44.4)
35 (55.6)

TRA (N=89)(%)

5

6 (62.9)
3 (37.1)

76 (85.4)

1

3(14.7)

62 (69.7)

27

(30.3)

71 (79.8)

3(147)
5(5.6)

67 (75.3)
22 (247)

84 (94.4)

5(5.6)

8(20.2)

71 (79.8)

23 (25.8)
66 (74.2)

9 (10.1)

1

5(23.8)
5 (55.6)

9 (14.3)
21 (23.6)

28

(31.5)

61 (68.5)

P

0473

0.021

0.03

0.005

0.077

0.57

0.16

0.457

0.159

0.102

® Fourfold table: sample size > 40, 1 < at least 2 theoretical frequencies < 5, using Fisher’s exact test;

n, number of cases/controls; PSM, propensity score matching.

AFTER PSM™

No TRA (N=57)(%)

35(61.4)
22 (38.6)

44 (77.1)
13 (22.9)

29 (50.9)
28 (49.1)

34 (59.6)
15 (26.3)
8 (14.1)

37 (64.9)
20 (35.1)

53 (93)
4(7)

17 (29.8)
40 (70.2)

12 (21.1)
45 (78.9)

5(8.8)
13 (22.8)
21 (36.8)
11 (19.3)
7 (12.3)

26 (45.6)
31 (54.4)

TRA (N=57)(%)

35 (61.4)
22 (38.6)

44 (77.1)
13 (22.9)

38 (66.7)
19 (33.3)

43 (75.4)
10 (17.5)
4(7.1)

46 (80.7)
11 (19.3)

53 (93)
4(7)

14 (24.6)
43 (75.4)

15 (26.3)
42 (73.7)

6 (10.5)
10 (17.5)
19 (33.3)
6 (10.5)
16 (28.1)

18 (31.6)
39 (38.4)

P

0.087

0.184

0.058

0.528

0.509

0.233

0.124
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Characteristics Coefficient HR-value P-value
Risk-H (high vs. low) 1.0202 27738 1.6xe-05"
Loss of weight (yes vs. no) 0.6201 1.8591 0.0359*
SM status (- vs. +) 0.5402 1.7163 0.0211*
T stage (T3-4 vs. T1-2) 0.3701 1.4479 0.1280
N stage (N2-3 vs. NO-1) 0.3535 1.4240 0.1432

*P < 0.05: SM. sensitive mutations.
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Characteristics TCGA-LUAD cohort N=504 GSE68571 N=86

Age

<=65 238 (47.22%) 50 (58.14%)
>65 256 (50.79%) 36 (41.86%)
Unknow 10 (1.99%) 0(0.00%)
Gender

Female 270 (563.57%) 51 (59.30%)
Male 234 (46.43%) 35 (40.70%)
Stage

-l 389 (77.17%) NA
-1V 107 (21.24%) NA
Unknow 8 (1.59%) NA

T

TO-T2 437 (86.70%) NA
T3-T4 64 (12.70%) NA
Unknow 3 (0.60%) NA

M

MO 335 (66.47%) NA

M1 25 (4.96%) NA
Unknow 144 (28.57%) NA

N

NO-N1 419 (83.13%) NA
N2-N3 73 (14.49%) NA
Unknow 12 (2.38%) NA
Survival status

Alive 321 (63.69%) 62 (72.09%)
Dead 183 (36.31%) 24 (27.91%)
The median follow-up time 1.84 242

(vear)
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Characteristics Level Coefficient HR-value P-value

ALP 1=low 0.7154 1 0.00521*
2=high 2.0450

Albumin 1=low -0.7557 1 0.00121*
2=high 0.4697

Leukocyte 1=low 1.0236 1 0.01724*
2=high 2.7831

*P < 0.05; ALP, alkaline phosphatase. Risk-H = 1*HR-value (ALP) *HR-value (Albumin)

*HR-value (Leukocyte).
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Characteristics Cutoff Categories P-value

ALP 88.00  High (> 88.00) vs. Low (< 88.00) 0.005*
Alburmin 4280 High (> 42.80) vs. Low (< 42.80) 0.020*
c-Ca 239 High (= 2.39) vs. Low (< 2.39) 0.015*
Leukocyte 5.31 High (> 5.31) vs. Low (< 5.31) 0.039*
NLR 234 High (> 2.34) vs. Low (< 2.34) 0.113
PLR 24969 High (>249.69) vs. Low (<249.69) 0.219
sl 398.35  High (> 398.35) vs. Low (< 398.35)  0.113

*P < 0.05; PLR, platelet to lymphocyte ratio; NLR, neutrophils to lymphocyte ratio; S,
systemic inflammatory index; ALP, alkaline phosphatase.
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Characteristics Training cohorts N (%) Validation cohorts N (%) Total N (%) P-Value

Age(year) 0.893
<54 130 (16.80) 47 (14.33) 177 (16.06)
54-67 354 (45.73) 157 (47.87) 511 (46.37)
>67 290 (37.47) 124 (37.80) 414 (37.57)
Gender 0.218
Male 338 (43.67) 162 (49.39) 500 (45.37)
Female 436 (56.33) 166 (50.61) 602 (54.63)
Chemotherapy 0.980
Yes 493 (63.70) 211 (64.33) 704 (63.88)
No/unknown 281 (36.30) 117 (35.67) 398 (36.12)
Grade 0.997
1 98 (12.65) 42 (12.80) 140 (12.70)
i 318 (41.09) 135 (41.16) 453 (41.11)
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N stage 0.967
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N1 94 (12.14) 44 (13.41) 138 (12.52)
N2 229 (29.59) 92 (28.05) 321 (29.13)
N3 45 (5.81) 24 (7.32) 69 (6.26)
Race 0.648
Black 89 (11.50) 29 (8.84) 118 (10.71)
White 603 (77.91) 259 (78.96) 862 (78.22)
Other 82 (10.59) 40 (12.20) 112 (11.07)
Radiotherapy 0.517
No/unknown 477 (61.63) 190 (57.93) 667 (60.53)
Yes 297 (38.37) 138(42.07) 435 (39.47)
Primary location 0.956
Upper lobe, lung 439 (56.71) 183 (55.79) 622 (56.45)
Middle lobe, lung 40 (5.17) 19 (5.79) 59 (5.35)
Lower lobe, lung 216 (27.91) 99 (30.18) 315 (28.58)
Other 79 (10.21) 27 (8.24) 106 (9.62)
T stage 0.979
T1 125 (16.15) 60 (18.29) 185 (16.79)
T2 225 (29.07) 97 (29.57) 322 (29.22)
T3 192 (24.81) 81 (24.70) 273 (24.77)
T4 232 (29.97) 90 (27.44) 322 (29.22)
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METTL1 3.53626 10.15226 1.5621504 9.60E-30
WDR4 2.104496 4.390468 1.0609 2.74E-25
NSUN2 8.98576 20.20226 1.168804 1.40E-29
DCPS 3.496315 6.175647 0.820755 1.79E-24
NUDT10 0.17005 0.199114 0.227639 0.000217
NUDT16 9.429715 8.582916 -0.13575 0.000331
NUDT3 2.28048 3.011322 0.401059 1.81E-09
AGO2 3.348328 4.644651 0.472129 0.002944
CYFIP1 16.10077 14.09259 -0.09968 0.001197
EIF4E 2.014382 2.535048 0.331676 9.25E-06
EIF4E1B 0.001917 0.188505 6.619734 0.000329
EIF4E2 9.342995 10.33663 0.14581 0.026165
EIF4E3 5.466021 2.852976 -0.93802 4.09E-26
GEMINS 4.074254 5.318471 0.384475 2.69E-07
LARP1 17.49505 27.5081 0.65291 5.73E-17
NCBP1 5.233116 7.854471 0.585844 1.28E-15
NCBP2 11.49588 17.48301 0.604837 1.21E-20
EIF3D 37.79962 47.5054 0.32972 5.80E-09
EIF4A1 1.539406 2.132041 0.469863 0.001368
EIF4G3 6.026233 9.566647 0.666757 1.91E-16
IFITS 10.44892 8.593445 -0.28205 4.65E-08
LSM1 8.176932 12.76115 0.642126 1.82E-12
NCBP2L 0.154783 0.060228 -1.36175 6.79E-06
SNUPN 3.814629 4.839386 0.343281 2.41E-07

m’G, 7-methylguanosine; TCGA-LUAD, The Cancer Genome Atlas-lung
adenocarcinoma; FC, fold change.
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Influencing factor

Age

Sex

Tissue differentiation level
Lymph node metastasis

[TI+IV stage

Index (B)

-0.055
-1.754
-3.797
12,633
1.732

Standard error (SE)

0.031
1.163
1.763
171.795
141

Wald chi-squared value

325
2274
4.638
0.005

1.51

P value

0.071
0.132
0.031
0.941
0.219

95% CI
0.891 1.005
0.018 1.692
0.001 0711

0 5234
0.357 89.52
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Multivariable analysis

Variables HR 95% CI P-Value
Pathological T classification

T 1 reference

T2 1.693 1.442-1.759  <0.001
T3 2159 1.876-2.484  <0.001
T4 3.141 2761-3.573  <0.001
Parietal pleura invasion with tumor size <5cm  2.102 1.664-2.656  <0.001
Parietal pleura invasion with tumor size >5cm  2.992  2.269-3.946  <0.001
Rib invasion with any tumor size 3.317 2.718-4.048  <0.001

HR, hazard ratio; Cl, confidence interval; NSCLC, non-small cell lung carcinoma.

Cox regression’s method was Enter selection.

Adjust for other confounders, such as sex, age, and the approaches of treatment.
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Sex (male/female)
Location
upper left lung
lower left lung
upper right lung
lower right lung
middle right lung
Symptoms
cough
bloody sputum
haemoptysis
chest tightness
chest pain
Smoking history
History of alcoholism

TNM stage

P value

0.981

0.879
0.388
0.078
0.281
0.0798

0.661
0.783
0.647
0.624
0.569
0.407
0.022
0.035

Red text means the value is significant.

HR

0.983

0.897
0.035
3.572
0.318
1.329

0.731
1.215
1.445
1.484
1.583
1.771
5.707
5477

95% CI
0.241 4.014
0.222 3.62

0 70.149
0.868 14.703
0.04 2.548
0.149 11.828
0.18 2.965
0.303 4.871
0.3 6.969
0.306 7.207
0.326 7.673
0459 6.84
1.281 25.412
1.125 26.664





OPS/images/fonc.2022.876360/fonc-12-876360-g002.jpg
Tumor B

WDR4

Antibody HPA020914 HPA020914 Antibody HPA017381 HPA017381 Antibody HPA039632 HPA039632

Staining Not detected Medium Staining Not detected Not detected Staining High High
D Normal Tumor E Normal F Normal Tumor
= .
ﬁ G VY /}.&;
NSUN2 / EIF4E1B EIF4G3
PR
Pt
Antibody HPAQ37896 Antibody HPAQ45045 HPAQ45045 Antibody HPA025039 HPA025039
Staining Low-Medium High Staining Not detected Not detected Staining Not detected Low
H Normal Tumor 1 Tumor

2y

ey SRS K
Antibody HPA010664 HPA010664 Antibody HPA051397 51, Antibody HPA049031 HPAD49031
Staining Not detected Not detected Staining Not detected High Staining Low Medium

J Normal Tumor K Normal Tumor

NCBP2

Antibody HPA044850 HPAD44850 Antibody HPA07_6455
Staining Medium High Staining Medium





OPS/images/fonc.2022.916906/table1.jpg
Number Total (n=31) Low grade (n=25) High grade (n=6) P value

Sex (male/female) 23/8 20/5 3/3 0.132
Age 60.77 + 11.44 60.280 + 12.337 62.833 + 6.998 0.632
Location
upper left lung 9 (29%) 7 (28%) 2 (33.3%) 0.382
lower left lung 3 (9.6%) 3 (12%) 0 (0%)
right-sided pleura 1 (3.2%) 1 (4%) 0 (0%)
upper right lung 7 (22.6%) 4 (16%) 3 (50%)
lower right lung 7 (22.6%) 7 (28%) 0 (0%)
middle right lung 5(16.1%) 4 (16%) 1 (16.7%)
Symptoms
cough 21 (67.7%) 18 (72%) 3 (50%) 0.301
bloody sputum 9 (29%) 6 (66.7%) 3 (50%) 0.208
haemoptysis 5 (16.1%) 4 (16%) 1 (16.7%) 0.968
chest tightness 5(16.1) 5 (20%) 0 (0%) 0.232
fever 1(3.2%) 1 (4%) 0 (0%) 0.618
chest pain 6 (19.4%) 4 (16%) 2 (33.3%) 0.335
hoarseness 2 (6.5%) 2 (8%) 0 (0%) 0.474
Smoking history 16 (51/6%) 14 (56%) 3 (50%) 0.791
History of alcoholism 10 (32.3%) 8 (32%) 2 (33.3%) 0.95
Family history of tumours 4 (12.9%) 3 (12%) 1 (16.7%) 0.759
History of allergy 1(3.2%) 1 (4%) 0 (0%) 0.618
TNM stage
I 10 (32.3%) 9 (36%) 1 (16.7%) 0.359
1T 5(16.1) 5 (20%) 0 (0%)
1 3(9.6%) 2 (8%) 1 (16.7%)
v 13 (41.9%) 9 (36%) 4 (66.7%)
Imaging characteristics
Intratubular type 11 (35.5%) 9 (36%) 2 (33.3%) 0.902
Space-occupying lesions 28 (90.3%) 22 (88%) 6 (100%) 0.372
Obstructive atelectasis 11 (35.5%) 10 (40%) 1 (16.7%) 0.283
Prognostic information
Recurrence 4 (222%) (n=18) 2 (8%) (n=16) 2 (100%) (n=2) 0.005
Metastasis 12 (100%) (n=12) 10 (32.3%) (n=16) 2 (100%) (n=2) 0.383
Death 9 (29%) 4 (16%) 5 (83.3%) 0.001

Red text means the value is significant.
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Univariable analysis

Multivariable analysis

Variables HR 95% ClI P-Value HR 95% ClI P-Value
Sex

Male 1 reference 1 reference

Female 0.682 0.637-0.731 <0.001 0.786 0.732-0.844 <0.001
Tumor differentiation

Grade | 1 reference 1 reference

Grade Il 1.827 1.611-2.071 <0.001 1.749 1.5638-1.988 <0.001
Grade IIl 2.828 2.498-3.200 <0.001 2.336 2.051-2.660 <0.001
Grade IV 2.991 2.373-3.770 <0.001 1.855 1.459-2.360 <0.001
Unknown 2313 1.931-2.770 <0.001 1.888 1.5670-2.269 <0.001
Tumor location

Upper lobe 1 reference 1 reference

Middle lobe 0.888 0.751-1.050 0.164 1.087 0.918-1.286 0.335
Lower lobe 1.108 1.029-1.193 0.007 1.168 1.073-1.250 <0.001
Other location 1.810 1.495-2.193 <0.001 1.308 1.071-1.598 0.009
Unknown 1.413 1.041-1.918 0.027 1.381 1.015-1.880 0.040
Age (median, year)

<68 1 reference 1 reference

>68 1.310 1.223-1.403 <0.001 1.451 1.349-1.560 <0.001
Histological subtypes

Adenocarcinoma 1 reference 1 reference

Squamous cell carcinoma 1.498 1.386-1.619 <0.001 0.997 0.899-1.061 0.574
Other NSCLCs 1.653 1.496-1.827 <0.001 1.311 1.183-1.453 <0.001
Unknown NSCLC 1.702 1.425-2.032 <0.001 0.983 0.817-1.181 0.851
Chemotherapy

No 1 reference 1 reference

Yes 1.646 1.621-1.781 <0.001 0.920 0.835-1.013 0.091
Radiotherapy

No 1 reference 1 reference

Before surgery 2.136 1.754-2.600 <0.001 1.489 1.198-1.852 <0.001
After surgery 2.369 2.123-2.643 <0.001 1.660 1.470-1.875 <0.001
Unknown 1.917 1.260-2.916 0.002 1.199 0.783-1.838 0.404
Marital status

Non-married 1 reference

Married 0.933 0.869-1.001 0.052

Unknown 0.838 0.685-1.025 0.085

Race/ethnicity

Caucasians 1 reference 1 reference

Black 1.047 0.933-1.176 0.434 1.057 0.941-1.188 0.352
Other 0.811 0.701-0.938 0.005 0.870 0.752-1.007 0.062
Unknown 0.490 0.184-1.306 0.154 0.677 0.254-1.806 0.436
Surgical treatment

Limited resection 1 reference 1 reference

Lobectomy 0.864 0.791-0.943 0.001 0.708 0.645-0.777 <0.001
Pneumonectomy 1.547 1.321-1.811 <0.001 0.752 0.631-0.896 0.001
Tumor size

<3cm 1 reference 1 reference

3-5cm 1.763 1.611-1.930 <0.001 1.594 1.449-1.758 <0.001
5-7cm 2.441 2.168-2.748 <0.001 2.091 1.836-2.381 <0.001
>7cm 2.894 2.655-3.155 <0.001 3.000 2.650-3.397 <0.001
Chest wall invasion

No 1 reference 1 reference

Parietal pleura invasion 2.144 1.805-2.546 <0.001 1.400 1.167-1.678 <0.001
Rib invasion 2432 2.070-2.856 <0.001 1.620 1.351-1.944 <0.001
Year of diagnosis

2004-2009 1 reference 1 reference

2010-2015 0.529 0.483-0.580 <0.001 1.310 1.165-1.487 <0.001

HR, hazard ratio; Cl, confidence interval: NSCLC, non-small cell lung carcinoma.
Cox regression’s method was Enter selection.
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Al Parietal pleura invasion Rib invasion

(N = 8,681) No (N = 8,215) Yes (N =466) No (N = 8,444) Yes (N = 237)
Variables No. of patients (%)/Mean + SD P value No. of patients (%)/Mean = SD P value
Sex <0.001* <0.001*
Male 4,517 (52.0) 4,234 (51.5) 283 (60.7) 4,367 (61.7) 150 (63.3)
Female 4,164 (48.0) 3,981 (48.5) 183 (39.3) 4,077 (48.3) 87 (36.7)
Race/ethnicity 0.640™ 0.539"*
Caucasians 7,296 (84.0) 6,903 (84.0) 393 (84.3) 7,095 (84.0) 201 (84.8)
Black 792 (9.2) 745(9.1) 47 (10.1) 767 (9.1) 25 (10.5)
Other 575 (6.6) 549 (6.7) 26 (5.6) 564 (6.7) 14.7)
Unknown 18(0.2) 18(0.2) 0(0.0) 18(0.2) 0(0.0
Age (year) 67.8+10.1 67.8 £10.6 65.7 £ 9.9 <0.001*** 67.9 £10.1 64.7 £ 101 <0.001***
Tumor size (cm) <0.001* <0.001*
<3 4,965 (57.2) 4,880 (59.4) 85(18.2) 4,940 (58.5) 25 (10.5)
35 1,671 (19.2) 1,516 (18.5) 155 (33.3) 1,598 (18.9) 73 (30.8)
57 666 (7.7) 537 (6.5) 129 (27.7) 590 (7.0) 76 (32.1)
7 1,379 (15.9) 1,282 (15.6) 97 (20.8) 1,316 (15.6) 63 (26.6)
Differentiation grade <0.001* <0.001**
Grade | 1,374 (156.8) 1,363 (16.6) 11(2.4) 1,370 (16.2) 4(1.7)
Grade Il 3,679 (41.2) 3,424 (41.7) 155 (33.3) 3,618 (41.7) 61 (25.7)
Grade Il 3,077 (35.5) 2,833 (34.5) 244 (52.3) 2,941 (34.8) 136 (57.4)
Grade IV 194 (2.2) 164 (2.0) 30 (6.4) 174 2.1) 20 (8.4)
Unknown 457 (5.3) 431(6.2) 26 (5.6) 441 (5.2) 16 (6.8)
Histological type <0.001* <0.001*
Adenocarcinoma 4,633 (63.4) 4,486 (54.6) 147 (31.5) 4,671 (64.1) 62 (26.2)
Squamous cell 2,668 (30.7) 2,440 (29.7) 228 (48.9) 2,548 (30.2) 120 (50.5)
Other 1,112 (12.8) 1,042 (12.7) 70 (15.1) 1,078 (12.7) 39 (16.5)
Unknown NSCLC 268 (3.1) 247 (3.0) 21(4.5) 252 (3.0) 16 (6.8)
Surgical type 0.001* <0.001*
Limited resection 1,561 (18.0) 1,508 (18.4) 53 (11.4) 1,544 (18.3) 17(7.2)
Lobectomy 6,724 (77.5) 6,335 (77.1) 389 (83.5) 6,513 (77.1) 211 (89.0)
Pneumonectomy 396 (4.5) 372 (4.5) 24 (5.1) 387 (4.6) 9(3.8)
Chemotherapy <0.001* <0.001*
No 7,159 (82.5) 6,930 (84.4) 229 (49.1) 7,057 (83.6) 102 (43.0)
Yes 1,522 (17.5) 1,285 (15.6) 237 (50.9) 1,387 (16.4) 135 (57.0)
Radiotherapy <0.001* <0.001*
No 7,931 (91.4) 7,672 (93.4) 259 (55.6) 7,815 (92.5) 116 (48.9)
Before surgery 162 (1.9 110(1.3) 52 (11.2) 119 (1.4) 43 (18.1)
After surgery 550 (6.3) 407 (5.0) 143 (30.7) 479 (6.7) 71 (30.0)
Other 8 (0.4) 26 (0.3 12 (2.5) 31(0.4) 7 (3.0)
Tumor Location <0.001** <0.001**
Upper 5,145 (59.3) 4,775 (68.1) 370 (79.4) 4,948 (58.6) 197 (83.1)
Middle 431 (5.0) 427 (5.2) 4(0.9 428 (5.1) 3(1.3)
Lower 2,805 (32.3) 2,735 (33.3) 70 (15.0) 2,780 (32.9) 25 (10.5)
Other 203 (2.3) 187 (2.3) 16 (3.4) 195 (2.3) 8(3.4)
Unknown 97 (1.1) 91 (1.1) 6(1.3) 93 (1.1) 4(1.7)
Marital status 0.02* 0.146™
Unmarried 3,483 (40.1) 3,300 (40.2) 183 (39.3) 3,384 (40.1) 99 (41.8)
Married 4,893 (56.4) 4,616 (56.2) 277 (59.4) 4,758 (56.3) 135 (57.0)
Unknown 305 (3.5) 299 (3.6) 6(1.3) 302 (3.6) 3(1.3)
Year of diagnosis <0.001* <0.001*
2004-2009 968 (11.2) 826 (10.1) 142 (30.5) 826 (9.8) 142 (59.9)
2010-2015 7,713 (88.8) 7,389 (89.9) 324 (69.5) 7,618 (90.2) 95 (40.1)

SD, standard deviation; NSCLC, non-small-cell lung cancer.
*Pearson’s 7 (2) statistic method was performed in those variables.

**These variables were calculated by Fisher exact test.

**Age as a continuous numerical variable was used Mann-Whitney U test, because it did not conform to a normal distribution.
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Full name

Adrenocortical carcinoma

Bladder Urothelial Carcinoma

Breast invasive carcinoma
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Cholangiocarcinoma
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Lymphoid Neoplasm Diffuse Large B-cell Lymphoma
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Liver hepatocellular carcinoma

Lung adenocarcinoma
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Pancreatic adenocarcinoma
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Prostate adenocarcinoma
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Characteristics

T stage (T2 & T3 & T4 vs. T1)

N stage (N2 vs. N1)

Pathologic stage (Stage Ill & Stage IV vs. Stage | & Stage Il)
Gender (Male vs. Female)

Smoker (Yes vs. No)

Total (N)

532
169
527
535
521

Odds Ratio (OR)

1.606 (1.117-2.319)
1.265 (0.685-2.350)
1.723 (1.127-2.659)
1.635 (1.162-2.305)
2,248 (1.356-3.811)

P-value

0.011
0.453
0.013
0.005
0.002
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Positive driver genes Negative driver gene Driver genes status p-value# p-value*
group (N=206) group (N=97) unknown (N=115)
Age 575123 59.7 £ 10.6 60.5 + 109 0.060 0.124
Gender (M:F) 81(39.3):125 (60.7) 71(73.2): 26 (26.8) 69 (60.0): 46 (40.0) <0.001 <0.001
Smoking status <0.001 <0.001
Never smoker 140 (68.0) 33 (34.0) 60 (52.2)
Smoker 55 (26.7) 62 (63.9) 51 (44.3)
Unknown 1 (6.3) 2 (2.1) 4(3.5)
Neurological symptoms
No 113 (54.9) 54 (85.7) 60 (52.2) 0.857 0.894
Yes 93 (45.1) 43 (44.3) 55 (47.8)
ECOG
0-1 184 (89.3) 86 (88.7) 101 (87.8) 0.920 0.863
>2 22 (10.7) 11 (113 14 (12.2)
Histology subtype
LUSD 0 7(7.2) 18 (15.7) <0.001 <0.001
LUAD 199 (96.6) 80 (82.5) 83 (72.2)
Others 7 (3.4) 10 (10.3) 14 (12.2)
CNS metastasis type
No LM group 156 (75.7) (90.7) 107 (93.0) <0.001 0.0021
LM group 50 (24.3) 9.3 8(7.0)
Number of CNS metastasis
<5 78 (37.9) 46 (47.4) 66 (57.4) 0.010 <0.001
>5 120 (58.3) (42.3) 39 (33.9)
Unknown 8(3.9) 10 (10.3) 10 (8.7)
Timing of Metastasis
Treatment naive 127 (61.7) 77 (79.4) 72 (62.6) 0.007 0.002
During treatment 79 (38.3) 20 (20.6) 43 (37.4)
Treatment
Neurosurgery 13 (6.3 1(11.3) 20 (17.4) 0.008 0.130
Radiotherapy 93 (45.1) 36 (37.1) 38 (33.0) 0.085 0.187
Chemotherapy 91 (44.2) 73 (75.3) 68 (59.1) <0.001 <0.001
Target therapy 203 (98.5) 24 (24.7) 35 (30.4) <0.001 <0.001
Immunotherapy 0 3(3.1) 1(0.9 - -
Antiangiogenesis therapy 20(9.7) 10 (10.3) 1(0.9) <0.001 0.870

Values are mean + SD, n (%).
*Among three groups.

*Positive driver gene group vs. negative driver gene group.
BM, brain metastasis; CNS, central nervous system; ECOG, Eastemn Cooperative Oncology Group; F, female; LM, leptomeningeal metastasis; LUAD, lung adenocarcinoma; LUSC,

squamous cell lung carcinoma; M, male; NSCLC, non-small cell lung cancer.
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Characteristic

Age
Gender (M vs.F)
Smoking status (no vs. yes vs. unknown)

History of malignancy, n (%)
Family history of malignancies, n (%)
Neurological symptoms at first diagnosis, n (%)
No
Yes
ECOG, n (%)
0-1
>2
Histology subtype, n (%)
LUSD
LUAD
Others
Driver genes status, n (%)
EGFR positive, n (%)
EGFR Ex18
EGFR Ex19
EGFR Ex20
EGFR Ex21
EGFR Unknow
ALK rearrangement, n (%)
ROS-1 rearrangement, n (%)
RET rearrangement, n (%)
Driver gene negative, n (%)
Driver gene unknown, n (%)
Site of metastasis, n (%)
BM
LM
BM and LM
BM and ISCM
Number of CNS metastasis, n (%)
<5
>5
Others/unknown
Timing of CNS metastasis occurrence, n (%)
Treatment naive
During treatment follow-up

Values are mean + SD, n (%).

588+ 11.6
221 (52.9) vs.197 (47.1)
233 (55.7) vs. 168 (40.2) vs.17
@)
67 (16.0)
102 (24.4)

222 (53.1)
196 (46.9)

371 (88.9)
47 (112)

25 (6.0)
362 (86.6)
31(7.4)

179 (42.8)
5(12)
68 (16.3)
5(12)
84 (20.1)
17 (4.1)
27 (6.5)
1(02)
1(0.2)
97 (23.2)
115 (27.5)

394 (94.3)

67 (16.0)

43(10.3)
1(0.2)

190 (45.5)
200 (47.8)
28(6.7)

276 (66.0)
142 (34.0)

ALK, anaplastic lymphoma kinase; BM, brain metastasis; CNS, central nervous system;
ECOG, Eastern Cooperative Oncology Group; EGFR, epidermal growth factor receptor; F,
female; ISCM, intramedullary spinal cord metastasis; LM, leptomeningeal metastasis;
LUAD, lung adenocarcinoma; LUSC, squamous cell lung carcinoma; M, male; NSCLC,

non-small cell lung cancer.
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Adjusted Hazard Ratio from Multivariate Analysis

3 : Hazardratio

Subgroup No. of patients (%) osecp  Prile
Age

<T0years 8297 55)

270years 1597015) 2863(14045839)  0.004
Gender

Female 26977)

Male 7097(73) 12600.4403610) 0667
Smoking status

Non-smoker 339749

Smoker 6297 64) 0674 0228,1997) 0477

Unkmown 297Q) 03960.079,197) 0259
Neurological symptoms

No 54197 (56)

Yes 59749 09090520,1589) 0737
ECOG

o1 $6/97 (59)

2 1097311 2378(1045541) 0039
Histology subtype

LUSC 797()

LUAD $097(82) 0336(0.1220927) 0035

Other 1097 (10) 0243(0.069.0863)  0.029
NS metastasis type

NonLM $397001)

M 997©9) 094603822346 0505
Metastasis number

<5 4697 (47)

25 4097(22) 16209092895 0102

Uninown 1097 (10) 190507274994 019
Timing of metastasis

Treatment naive 77197 (19)
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Characteristics Total (N) Univariate analysis Multivariate analysis

Hazard ratio (95% CI) p-value Hazard ratio (95% CI) p-value

Pathologic stage 483

Stage | and Stage Il 389

Stage Il and Stage IV 94 2.436 (1.645-3.605) <0.001 1.319 (0.700-2.484) 0.392
T stage 473

T 168

T2 and T3 305 1.815 (1.169-2.819) 0.008 1.652 (0.936-2.914) 0.083
N stage 473

NO 327

N1 and N2 146 2.755 (1.909-3.975) <0.001 2.059 (1.230-3.446) 0.006
M stage 344

MO 323

M1 21 2.455 (1.269-4.749) 0.008 1.782 (0.734-4.327) 0.202
Gender 491

Female 262

Male 229 0.989 (0.687-1.424) 0.954

ESPL1 491 1.285 (1.097-1.504) 0.002 1.219 (1.006-1.478) 0.044





OPS/images/fonc.2022.935672/fonc-12-935672-g004.jpg
A

cluster2 vs clusterl

cluster3 vs cluster2

C
GSE13213

499genes
F .
.
.
40 .
35
%
0
P
-5 30
"4
25
.
o & >
& J &

cluster3vs clusterl

GSE31210

proteasome-mediated ubiquitin-dependent protein catabolic process:

proteasomal protein catabolic process

negative regulation of ERK1 and ERK2 cascade-

DNA geometric change

DNA duplex unwinding

regulation of Fc receptor mediated stimulatory signaling pathway

protein glycosylation

macromolecule glycosylation

glycosylation

response to endoplasmic reticulum stress-

protein folding

positive regulation of protein catabolic process
DNA-dependent DNA replication

positive regulation of proteasomal protein catabolic process.
endoplasmic reticulum organization

0 5 10 15 20 25
Gene count
—~logyo(P.value)
375
350
325
3.00
c-index
Frequency of models 10
5001 459
0.8
400-
3
£ 3004 "
)
=1 °
g 3
L 200+
100+
o x
A9 T O 08,
» ¢ a
2888828888
556550500 2 2 g
LA we s B8 EA
~ - Y ) o
NP TN T og 0 3 3 8
o
e
201
cluster1
Clusters 15 High
B3 clustert ) =
BS custer2 Risk_groug
o o -
M custers £ 101 = e High
cluster2 . oW
05 Low
cluster3
0.01






OPS/images/fonc.2022.862564/fonc-12-862564-g004.jpg
A B C D Expression of hsa-mir-195 in LUAD based on Nodal
metastatis status

Expression of hsa-mir-195 in LUAD based on individual

& cancer stages
& 5 &
b =
2 ! ’ T
x E- T fod |
EC © gt 5 R
g 28 H 5wl
2o 5L 5 5 :
5L 4 = & ¥
c N o5 3 & T - —
g 2 H | |
2- o 4 -
[ [=3 -
s 2 3
x o N
s £ 3 - o1
< = TCGA samples
- 0 T T
TCGA samples
Normal Tumor
Normal Tumor
E F 3 G 1.5
104 GSE74190 p<0.0001 c
p<0.0001 c . o8
o )
c = %]
o 8 »n Q 1o
20 w Do 2 P (N O 10
88 £e g
g+ 6 o 3< Hkk
X & < Z
o2 o= [0)
2F 4 S oo 2%os
B E g E T E
Qs [ D =
o 2 (s} Q
4 o x ©
0.0
Normal Tumor Normal tissue Lung cancer BEAS-2B H1650 H1975 A549
H | J
1.0 hsa-miR-195-5p 1.0 hsa-miR-195-5p 1.0 == Low
—— Low —— Low —— High
—— High —— High 2 08
081 - 08 5 e (N=181)
s s o
5 0.6 4 8 0.6 T 04
= = =
S 044 S o4 & 0.2
e = HR = 0.58 (0.37-0.93)
D A 0.0 P=0022
024 0.2 T T T T
Overall Survival Disease Specific Survival 0 3 6 9 12
HR =0.77 (0.63-0.94) HR = 0.74 (0.56-0.99) Time(months)
0.0 P=0012 0.0 P=0039
Low |90 55 17 1 0
0 50 100 150 200 250 o 50 100 150 200 250 ’
High
Time (months) Time (months) s G i i i T 1
K Univariate Cox L Multivariate Cox
Characteristics Total(N) HR(95% CI) P value Characteristics Total(N) HR(95% Cl) P value
Pathologic stage 505 : Pathologic stage 505 :
Stage 1&Stage Il 400 : Stage 1&Stage Il 400 :
Stage IlI&Stage IV 105  2.766(2.030-3.768) | +8—i <0.001 Stage Ill&Stage IV 105 2320 (1.405-3.828) | —8—i <0.001
T stage 509 : T stage 509 :
1
T1&T2 413 i T1&T2 443 |
1 1
T3&T4 66 2.385 (1.634-3.481) |- <0.001 T3&T4 66 1.814 (1.052-3.127) —— 0.032
1 1
N stage 165 : N stage 165 :
N1 94 : N1 94 :
N2 7 1.341 (0.886-2.029) D“O—t 0.165 N2 7 :
M stage 365 ! M stage 365 .
MO 342 : Mo 342 .
M1 23 2.330 (1.360-3.991) : —— 0.002 M1 23 0.831 (0.384-1.796) l-q—' 0.637
Smoker 498 : Smoker 498 i
No 73 i No 73 !
1 1
Yes 425 0.917 (0.607-1.384) 1 0.679 Yes 425 1
' !
Residual tumor 347 1 Residual tumor 347 1
' 1
RO 334 : RO 334 :
R1 13 3.383 (1.757-6.511) : —— <0.001 R1 13 2.540 (1.091-5.914) I'—O—' 0.031
hsa-miR-195-5p 512 0.832(0.705-0.981) @ 0.029 hsa-miR-195-5p 512 0.837 (0.675-1.039) ® 0.0107
—‘—r—r—r—





OPS/images/fonc.2022.930647/table3.jpg
Characteristics Total (N) Univariate analysis Multivariate analysis

Hazard ratio (95% CI) p-value Hazard ratio (95% Cl) p-value

Pathologic stage 518

Stage | and Stage Il 411

Stage Il and Stage IV 107 2.664 (1.960-3.621) <0.001 1.927 (1.177-3.155) 0.009
T stage 504

T 175

T2 and T3 329 1.658 (1.175-2.341) 0.004 1.643 (1.050-2.570) 0.080
N stage 508

NO 343

N1 and N2 165 2.645 (1.977-3.539) <0.001 1.728 (1.136-2.627) 0.011
M stage 377

MO 352

M1 25 2.136 (1.248-3.653) 0.006 1.004 (0.460-2.191) 0.992
Gender 526

Female 280

Male 246 1.070 (0.803-1.426) 0.642

ESPL1 526 1.233 (1.090-1.395) <0.001 1.162 (1.125-1.354) 0.0453
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Characteristics

T stage (T2 and T3 and T4 vs. T1)

N stage (N1 and N2 and N3 vs. NO)

M stage (M1 vs. M0)

Pathologic stage (Stage Ill and Stage IV vs. Stage | and Stage Il)
Gender (Male vs. Female)

Age (>65 vs. <=65)

Total (N)

532
519
386
527
535
516

0Odds Ratio (OR)

1.959 (1.358-2.842)
1.803 (1.245-2.624)
3.292 (1.357-9.211)
2.290 (1.484-3.584)
1.965 (1.394-2.779)
0.733 (0.518-1.036)

p-value

<0.001
0.002
0.013
<0.001
<0.001
0.079
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Characteristic

n
T stage, n (%)
T
T2
T3
T4
N stage, n (%)
NO
N1
N2
N3
M stage, n (%)
MO
M1
Pathologic stage, n (%)
Stage |
Stage Il
Stage lll
Stage IV
Gender, n (%)
Female
Male

Low expression of ESPL1
267

107 (20.1%)
128 (24.1%)
24 (4.5%)
7(1.3%)

187 (36%)

43 (8.3%)

24 (4.6%)
0 (0%)

184 (47.7%)
6 (1.6%)

168 (31.9%)

56 (10.6%)
30 (5.7%)
7(13%)

165 (30.8%)
102 (19.1%)

High expression of ESPL1
268

68 (12.8%)
161 (30.3%)
25 (4.7%)
12 (2.3%)

161 (31%)
52 (10%)
50 (9.6%)
2 (0.4%)

177 (45.9%)
9 (4.9%)

126 (23.9%)
67 (12.7%)
54 (10.2%)
19 (3.6%)

121 (22.6%)
147 (27.5%)

0.003

0.002

0.016

<0.001

<0.001
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Characteristics Numbers Percentage

Sex
Male 20 71.4%
Female 8 28.6%
Histology
Squamous 4 14.3%
Non-squamous 24 85.7%
Age
<50 years 3 10.7%
51-65 years 10 35.7%
>65 years 15 53.6%
Immunotherapy
Anti-PD-1 16 57.1%
Anti-PD-L1 12 42.9%
HLA haplotype
A*01 or A*02 16 57.1%
Others 5 17.9%
Not determined 7 25.0%

Adverse events

GO 14 50%
GI-G2 9 32.1%
G3-G4 5 17.9%

AAb (ENA/ANA/ANCA)
ENA/ANA/ANCA baseline

Negative 14 50%
Positive 14 50%

ENA/ANA/ANCA post-treatment

Negative 11 39.3%
Positive 17 60.7%

Inflammatory markers

LDH median value + SD 341 + 265
CRP median value + SD 79 +123
ESR median value + SD 41 £32.8

HLA, human leucocyte antigen; AAb, autoantibody; ENA, extractable nuclear antigen;
ANA, antinuclear antibody; ANCA, antineutrophil cytoplasmic antibody; LDH, lactate
dehydrogenase; CRP, C-reactive protein; ESR, erythrocyte sedimentation rate.





OPS/images/fonc.2022.862564/fonc-12-862564-g001.jpg
2 wxx LT3
| ” e I~ —
[t} 8 ns A ' ax ns I L *xx
2 [ B ) —
- e axx
| o | —
x ns
ET 6 5
('vé ® Normal
2& ® Tumor
'5\; 44
c
og
3_’
2 24
=%
X
o
2
= 01
T T T T T T T T T T T T T T T T T
F F QP FF S L LYY E W & &
¥ & & & ¢ & & & &Y ST E &L
= | e J e
= HR = 0.61 (0.42 - 0.88) < HR =1.49 (1.1 - 2.02) ez HR = 0.63 (0.44 - 0.9)
logrank P = 0.0083 logrank P = 0.0089 logrank P = 0.0097
® 4 ® 4 )
S S =
224 | €
£o £ 0o = o
3 3 3
@ 3 3
3 3 3
S < S <« S <«
o o e o o oo
N4 Nd o
S 7 Expression S 7 Expression S 7 Expression
— low — low — low
o ] — high o | — high o | — high
7y T T T T T Sl T T T Sy T T T T T T
0 50 100 150 200 250 o 50 100 150 o 20 40 60 80 100 120
Time (months) Time (months) Time (months)
Number at risk Number at rsk Number at risk
low 776 202 55 10 6 2 low 275 8 9 2 low 121 54 25 18 2 0 0
high 300 s 38 7 4 3 high 133 19 3 1 hgh 250 131 &0 2 7 6 1
o o o
- HR = 1.44 (1.06 - 1.96) - HR =0.69 (0.52 - 0.93) - HR =0.71(0.51 - 0.99)
logrank P = 0.02 logrank P = 0.014 logrank P = 0.042
o o o
=} o o
2@ 29 29
£o £ o £
3 3 3
& 8 8
3 3 3
e < e = e <«
o o a o a c
& o o
© | Expression © | Expression © | Expression
— low — low — low
S g { — high o | — high
0 50 100 150 0 50 100 150 200 250 o 50 100 150
Time (months) Time (months) Time (months)
Number at sk Number at sk Number at risk
low 243 91 23 1 low 203 2 4 2 2 0 low 352 15 3
hgh 273 oV 7 0 high 301 51 SARC' i 0 hgh 120 “  UCEC 2
2 3
2 HR = 1.26 (1 - 1.58) 2 HR = 0.6 (0.4 - 0.89) HR = 0.49 (0.32 - 0.75)
logrank P = 0.052 logrank P =0.011 logrank P = 0.00075
o o
<o o
2 o4 2@ 2
= o £ o =z
3 3 3
a a a
S 3 3
S < S < 2
T o oo o
o J o o
S 7 Expression © 7 Expression S 7 Expression
— low — low — low
o | — high o ] — high o | — high
e T T T ° b T T T b T T T T
0 50 100 150 0 50 100 150 0 50 100 150 200
Time (months) Time (months) Time (months)
Number at rsk Number at sk Number at risk
low 195 63 16 2 low 91 i 4 1 low 157 31 9 3 1
high 290 83 13 1 high 168 56 12 4 high 380 114 1 o 0





OPS/images/fonc.2022.862564/crossmark.jpg
©

2

i

|





OPS/images/fonc.2022.930647/fonc-12-930647-g011.jpg





OPS/images/fonc.2022.898920/table5.jpg
Characteristics Total (N) Univariate analysis Multivariate analysis
Hazard ratio (95% CI) P value Hazard ratio (95% Cl) P value
Pathologic stage 518
Stage | and stage Il 411
Stage Ill and stage IV 107 1.513 (1.105-2.071) 0.010 1.501 (1.070-2.106) 0.019
T stage 504
T 175
T2 and T3 329 1.923 (1.407-2.629) <0.001 1.751 (1.272-2.409) <0.001
N stage 510
NO and N1 437
N2 and N3 73 1.325 (0.914-1.919) 0.137
M stage 377
MO 352
M1 25 1.513 (0.855-2.676) 0.155
Smoker 512
No 72
Yes 440 0.968 (0.658-1.426) 0.870
Gender 526
Female 280
Male 246 1.172 (0.901-1.526) 0.236
Age 516
<65 255
>65 261 1.023 (0.784-1.335) 0.867
SGO1 526 1.276 (1.114-1.463) <0.001 1.198 (1.035-1.388) 0.016
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Characteristics

Pathologic stage
Stage | and stage Il
Stage Ill and stage IV
T stage

T

T2 and T3

N stage

NO and N1

N2 and N3

M stage

MO

M1

Smoker

No

Yes

Gender

Female

Male

Total (N)

483
389
94
473
168
305
475
410
65
344
323
21
477
69
408
491
262
229
481
243
238
491

Univariate analysis

Hazard ratio (95% CI)

2.436 (1.645-3.605)

1.815 (1.169-2.819)

1.971 (1.247-3.115)

2.455 (1.269-4.749)

1.040 (0.602-1.796)

0.989 (0.687-1.424)

1.013 (0.701-1.464)
1.402 (1.169-1.683)

P value

<0.001

0.008

0.004

0.008

0.889

0.954

0.944
<0.001

Multivariate analysis

Hazard ratio (95% Cl) P value
2.235 (0.457-10.931) 0.321
1.659 (0.935-2.944) 0.083
0.980 (0.205-4.683) 0.980
1.044 (0.220-4.956) 0.957
1.300 (1.028-1.643) 0.028





OPS/images/fonc.2022.930647/fonc-12-930647-g009.jpg





OPS/images/fonc.2022.911579/fonc-12-911579-g002.jpg
B cells

NKT CD8+

0.027 0.0035 0.51 6 *
- R . .o ! oo
1. . e
Condition
. + .
3 ' Basline
»
N - Post g
3
& & # & 2
0.046 0.1 0.04 0.015
r 1 L T 1 1
gt 20 * !
£ = /
€ s [
H H x
= = =
e . * ? il * 5 e
- < . <
— 7 e N . o 3 [ . S— [
& & @ & & & s & p=0020 | | I
Discovery Validation

1rC
JFC

*

P-value : 00813

NKTCD8+

Percentage of Survival

P-value : 05811

@ @ 0 E) @ £






OPS/images/fonc.2022.898920/table3.jpg
Characteristics Total (N) Univariate analysis Multivariate analysis
Hazard ratio (95% CI) P value Hazard ratio (95% CI) P value
Pathologic stage 518
Stage | and stage Il 411
Stage Ill and stage IV 107 2.664 (1.960-3.621) <0.001 5.960 (2.140-16.597) <0.001
T stage 504
T 175
T2 and T3 329 1.658 (1.175-2.341) 0.004 1.620 (1.029-2.553) 0.037
N stage 510
NO and N1 437
N2 and N3 73 2.321 (1.631-3.303) <0.001 0.452 (0.159-1.284) 0.136
M stage 377
MO 352
M1 25 2.136 (1.248-3.653) 0.006 0.347 (0.110-1.095) 0.071
Smoker 512
No 72
Yes 440 0.894 (0.592-1.348) 0.591
Gender 526
Female 280
Male 246 1.070 (0.803-1.426) 0.642
Age 516
<65 255
>65 261 1.223 (0.916-1.635) 0.172
SGO1 526 1.292 (1.120-1.490) <0.001 1.200 (1.003-1.436) 0.047
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Characteristics

T stage (T2 and T3 and T4 vs. T1)

N stage (N1 and N2 and N3 vs. NO)

M stage (M1 vs. MO)

Pathologic stage (stage Ill and stage IV vs. stage | and stage Il)
Gender (male vs. female)

Age (>65 vs. <65)

Smoker (yes vs. no)

Total (N)

532
519
386
527
535
516
521

0Odds ratio (OR)

2.180 (1.508-3.171)
1.676 (1.159-2.434)
3.891 (1.537-11.893)
2.312 (1.498-3.619)
1.792 (1.272-2.530)
0.668 (0.471-0.944)
1.869 (1.137-3.124)

P value

<0.001
0.006
0.008
<0.001
<0.001
0.022
0.015
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Characteristic

n
T stage, n (%)
T
T2
T3
T4
N stage, n (%)
NO
N1
N2
N3
M stage, n (%)
MO
M1
Pathologic stage, n (%)
Stage |
Stage Il
Stage Ill
Stage IV
Gender, n (%)
Female
Male
Primary therapy
outcome, n (%)
PD
SD
PR
CR
Race, n (%)
Asian
Black or African
.American
White
Age, n (%)
<65
>65
Residual tumor, n (%)
RO
R1
R2
Smoker, n (%)
No
Yes
Age, median (IQR)

Low expression of
SGO1

267

110 (20.7%)
127 (23.9%)
22 (4.1%)
7(1.3%)

187 (36%)

45 (8.7%)

25 (4.8%)
0 (0%)

178 (46.1%)
5(1.3%)

166 (31.5%)
59 (11.2%)
31 (5.9%)
6(1.1%)

162 (30.3%)
105 (19.6%)

27 (6.1%)

20 (4.5%)

3(0.7%)
179 (40.1%)

3(0.6%)
28 (6%)

210 (44.9%)

116 (22.5%)
145 (28.1%)

178 (47.8%)
5 (1.3%)
0 (0%)

47 (9%)
211 (40.5%)
67 (60, 74)

High expression of P
SGO1

268
<0.001
65 (12.2%)
162 (30.5%)
27 (5.1%)
12 (2.3%)
0.005
161 (31%)
50 (9.6%)
49 (9.4%)
2 (0.4%)
0.009
183 (47.4%)
20 (5.2%)
<0.001
128 (24.3%)
64 (12.1%)
53 (10.1%)
20 (3.8%)
0.001
124 (23.2%)
144 (26.9%)
0.106

44 (9.9%)
17 (3.8%)
3(0.7%)
153 (34.3%)
0.936
4(0.9%)
27 (5.8%)

196 (41.9%)
0.028
139 (26.9%)
116 (22.5%)
0.122
177 (47.6%)
8 (2.2%)
4(1.1%)
0.019
28 (5.4%)
235 (45.1%)

64 (58, 71) 0.006
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Total number
Age (years)
<65

265
Unknown
Gender

Male

Female
Smoking history
Yes

No
Unknown
TNM stage

Unknown

LUAD, lung adenocarcinoma; TCGA, The Cancer Genome Atlas; GEO, Gene Expression Omnibus.

TCGA (n, %)
517 (100)

221 (42.7)
277 (53.6)
19 (3.7)

240 (46.4)
277 (53.6)

427 (82.6)
76 (14.7)
14 (27)

277 (53.6)
122 (23.6)
84 (16.2)
26 (5.0)
8 (1.6)

GSE30219 (n, %)
73 (100)

51 (69.9)
22 (30.1)
0(0)

56 (76.7)
17 (333)

69 (94.5)
3(4.0)
1(1.4)
0(0)
0(0)

GSE31210 (n, %)
204 (100)

145 (71.1)
59 (28.9)
0(0)

95 (46.6)
109 (53.4)

105 (51.5)
99 (48.5)
0(0)

162 (79.4)
42 (20.6)
0(0)
0(0)
0(0)

GSE72094 (n, %)
389 (100)

105 (27.0)
284 (73.0)
0(0)

172 (44.2)
217 (55.8)

297 (76.3)
29 (7.5)
63 (16.2)

252 (64.8)
65 (16.7)
57 (14.7)
15 (3.8)
0(0)





OPS/images/fonc.2022.898920/fonc-12-898920-g011.jpg
FITC

L) i 0 o
— o o o o
N e
" uoissaldxe LOOS slaqunn |10
A'ﬂm.\ UFWP ——
*
*
*
(o} o [te] o
= b=
(%)sli92 anojodody
T
2 X H
8 a 2 8 of 2
o
&
[ <
- 1,_0
=
%) o 0 E -
it 2 2 {3
o uoissaidxa LOOS i 58 soF °
- o g
3 ey * N — = s ®
= J [te}
2
< §2
"
© T
o
<
> N
ox
Z'®n F
- g
+ + 53
=
o 5w

L o ©vw o ;v o
S 3d

Avo: slaquinu |92





OPS/images/fonc.2022.930647/fonc-12-930647-g005.jpg
Probabliiy
04 08

00

overall survival -4 overall survival 2 overall survival
GsE1R213 | jar GSE8894
2° £°
23| ocemzit :pd
& a
= gn ne17
s e e
T —r— ———— T
0 2040 60 80100 O 1000 2000 30004000 O % 4 & B

Months Davs Years






OPS/images/fonc.2022.902353/M3.jpg
PIOgROSTC index
=1563 « TNM Stage + 3709 « ERSS





OPS/images/fonc.2022.898920/fonc-12-898920-g010.jpg
= -0.187 p<0.001

MIR4435-2HG expression
CYTOR expression

- -
o o
Q (L]
D D
‘5x Bx
== ==
onQ oo
s D=
8 - 8w
a2 ® o a2
<9 o © 29
@ o By @
2 'Y Spearman D
= e, r=0418 =
P <0.001
2 3 4 5
The expression of MIR4435-2HG
Log, (TPM+1)

The expression of MIR4435-2HG
Log, (TPM+1)

Normal Tumor

0 MIR4435-2HG
S —+ Low
=08 — High
5
]
S 06
S
§ 0.4
e
@ 0.2 overall suvival

HR =1.58 (1.18-2.11)
P =0.002

0.0
0 50 100 150 200 250
Time (months)
Low pe3 43 9 3 1 0
High P63 30 7 3 2 0
1.0
08
o
a
E 06
=
=
2 04
(o3
7]
02
0.0
00 02 04 06 08 1.0

1-Specificity (FPR)

The expression of CYTOR
Log, (TPM+1)

Sensitivity (TPR)

-0.174 p<0.001 -0.127 p<0.001

AL024508.1 expression

The expression of SGO1
Log, (TPM+1)

f=0.369
P <0.001

2 3 4 5 6 0 1 2 3 4

The expression of CYTOR The expression of AL024508.1
Log, (TPM+1) Log, (TPM+1)

The expression of AL024508.1
Log, (TPM+1)

Normal Tumor Normal Tumor

1.0 10 AL024508.1

—+ Low

208 208 —+ High

2 2

g 06 g o6

Q Q.

g 04 g 04

2 2

@ 0.2 overall survival @ 0.2 overall suvival

HR = 1.31(0.98-1.74) HR =1.21(0.91-1.61)

P=0.071 P=0.194

0.0 0.0
0 50 100 150 200 250 0 50 100 150 200 250
Time (months) Time (months)
Low P63 37 6 2 0 0 Low P62 38 ¥ 1 0 0

1.0
0.8
B

0.6 =
0.4 z |

CYTOR 1]
o2 S8 P854 Leetor

1 i Cl: 0.792-0.864

oo 0.0 0.2 04 0.6 0.8 1.0 0.0 0.2 04 0.6 0.8 1.0

1-Specificity (FPR) 1-Specificity (FPR)





OPS/images/fonc.2022.930647/fonc-12-930647-g004.jpg
T ronre)

PP B






OPS/images/fonc.2022.902353/M2.jpg
PTOgoStic index
=Coefypss + ERSS+Coefye + TNM stage





OPS/images/fonc.2022.898920/fonc-12-898920-g009.jpg
miR-125a-5p

The expression of hsa-miR-125a-5p

Probability

0.0 0.2 04 06 0.8 1.0

Log, (RPM+1)

miR-125b-5p

R=-0.202 p<0.001

miR-514a-5p

R=-0.175 p<0.001

‘l&::; e ’
M
y ..i — a,.. :

The expression of hsa-miR-125b-5p
Log, (RPM+1)

Normal Tumor

hsa-mir-125a-5p
HR=0.7 (0.52 - 0.94)
logrank P = 0.018

Probability

0 50_100 150 200 250

Time (months)

The expression of hsa-miR-514a-5p

Tumor

Normal

hsa-mir-125b-5p

HR =1.26 (0.95 - 1.68)
logrank P = 0.11

Probability

0 50
Time (months)

100 150

Log, (RPM+1)

o
- HR =1.23 (0.9 - 1.66)
o) logrank P =0.19
o
«
o
<
o
g Expression
— low
o] — high
o

0 50 100 150
Time (months)

The expression of hsa-miR-585-3p
Log, (RPM+1)

Probability

0 50

=-0.161p<0.001

o
o

HR =0.75 (0.56 - 1.01)
logrank P = 0.058

51 Expression

— low

Time (months)

100 150 200 250 0

R=-0.133 p<0.001

miR-5691

ns

The expression of hsa-miR-5691
Log, (RPM+1)

Normal Tumor

hsa-mir-5691

HR =0.84 (0.62 - 1.13)
logrank P = 0.25

Probability

50

100 150 200 250
Time (months)





OPS/images/fonc.2022.930647/fonc-12-930647-g003.jpg
£ 38 ¢ &
Ja ssais 113






OPS/images/fonc.2022.902353/M1.jpg





OPS/images/fonc.2022.930647/fonc-12-930647-g002.jpg





OPS/images/fonc.2022.902353/fonc-12-902353-g007.jpg
ImmuneScore

cTLA4

Estimated Proportion

08

04

Re-02,p=3.1e-06

Colltype B Macrophages.0

B8 Macrophages 1

Teells.CD4.memory.rosting|

Teells follicular.helper

B3 Plasma.colls

B3 Bcellnaive

Tells.regulatory.(Tregs)

Dendritic.cells.activatos

B3 Monocytes
K.colls.activated
B3 Neutrophis

B8 Eosinophits
Mastcel

activated

Dendriic.colrosing B Tcols gamma dts

ES Teli CD8 momory actvated

ns

ns.

ns ons

P T T |

nsons

ns.

ERSS

Re0.48,p<2.20-16

CDB8+ T cells

R=-0.18,p=5.1e-05

ERSS.

Central memory CD8+ T cells






OPS/images/fonc.2022.902353/fonc-12-902353-g006.jpg
Top 30 - variable importance

SMARCA4| o| SMARCA4| ° Wilcoxon, p = 4e-04

i I e

| B oif: :

&l . vl

A sl

LAMB4[ o DILT ° w2 SMARCA4
KIAA1S49L( o GRM5 ° " Wild
o3 s

il o i M i

ERSS

Wilcoxon, p = 0.035

Mut

Wild

E

Strata 4 ERSS=high = ERSS=low

Wilcoxon, p = 0.0027

P53
Mut
wild

Mut Wild

EGFR wild-type group  Strata =« ERSS:

EGFR mutant group
1.00. 90
EH
H
s
2
0.50. K 0.50.
§
8
0.25. 0.254
P <0.0001
1
0.00. 0.00- !
1] 00 1000 1500 2000 2500 3000 ] 1500~ 2000~ 3000 400~ 5000~ 6000 7000
Time.days Time.days
Number at risk Number at risk
Serss=high{ 29 17 9 0 0 ] 0 gerss=high{ 14180 25 11 6 4 3 0 0 0 0 0 0 0 0
BERSS=low { 36 2 10 7 3 1 1 @ERSS=low { 290206 99 54 35 22 11 9 5 5 3 3 3 3 2
13 00 7000 1500 2000 2500 3000 T 1000 " 2000 3000 400~ 5000 6000 " 7000
msidie Toia davs






OPS/images/fonc.2022.910437/fonc-12-910437-g006.jpg
1.04

Pathologic stage: Stage 1&Stage Il

NCAPG2
—+ Low
—— High

Overall Survival
HR = 1.52 (1.06-2.17)

P=0021
004 ! . i . .
0 50 100 150 200 250
Time (months)
Low P06 37 7 2 1 0
High pos 27 7 4 2 0
D Gender: Female
1.0
084 NCAPG2
: —— Low
064 —+— High
0.4 4
0.2 o Overall Survival
HR = 1.60 (1.07-2.40)
0.0 P=0023
T T T T T
0 50 100 150 200
Time (months)
Low [142 22 4 0 0
High 138 12 3 2 1

B T stage: T1&T2
1.0
NCAPG2
E 0.8 —+ Low
2 —— High
8
=] 0.6
Q
3 o
c
> 0.2 o Overall Survival
@ HR = 159 (1.15-2.19) 3
0.04 P=0005
T T T T T
0 50 100 150 200 250
Time (months)
Low P30 46 10 3 2 0
High p27 25 5 3 1 0
E Age: >65
NCAPG2
—+ Low

—+ High

0.2 - Overall Survival
HR =2.01 (1.33-3.02)
0.04 P=0001

T T T T
(o] 40 80 120 160

Time (months)
Low 1130 31 6 2 1

High [131 16 4 0 0

C M stage: MO
1.0
e NCAPG2
= 08 —+ Low
2 —+— High
8
=] 0.6
(=%
g 0.4
2
> 0.2 o Overall Survival
@ HR =1.65 (1.17-2.33)
0.0 P=0004
T T T T T
0 50 100 150 200 250
Time (months)
Low 177 34 8 H 1 0
High [175 20 4 2 1 0
F Race: White
NCAPG2
—— Low

—+— High

0.2 4| Overall Survival
HR = 1.43 (1.04-1.98)
0.0 P=003

T T T T T
0 50 100 150 200 250

Time (months)
Low po3 32 7 1 1 0
High po3 17 1 1 0 0






OPS/images/fonc.2022.910437/fonc-12-910437-g005.jpg
Probability

GSE50081 B GSE13213 C GSE31210

i p——— <
: — High n=38
........... P — Low n=66 o |
o o
p<0.001 — High Tt
> z — Low n=66 S
3 3
© < i © <
834 — High n=65 - 254
©°| — Low n=52 &
a
: | p=0.003 |
Overall Survival Overall Survival - Overall Survival
o q
o o o
o s S A T T T T ] i m— ) 7
0 50 100 150 200 0 500 1000 2000 3000 1000 2000 3000 4000

Months Days Days





OPS/images/fonc.2022.933925/fonc-12-933925-g012.jpg
2
3
Z
2

2

o

Points

Risk score

Stage

Total Points

Lincar Predictor

3-year Survival Probability

5-year Survival Probability

TCGA-LUSC

0 20 40 60 80 100
[ STS S ST TS EEPS B S ST SN S

0.3 0.5 0.7 0.9 1.1
T2 T4
—_—
Tl T3
Stage I
r i T - 1
Stage | Stage I Stage IV

e
0 40 80 120 160

TCGA-LUSC

T T
02 04

Nomogram predicted

T
0.6

Sensitivity (TPR)

1CGA-LUSC

0.8 0.7 0.6 05 04 03 0.2
e a2
0.7 0.6 05 04 03 0.2 0.1
0.0
D
TCGA-LUSC ~ — mser
T
034 ~ Al positive
— Allnegative
& 024
5
3
2
@
3
r4
014
—— 3-Year
—— 5-Year 004
Ideal line
v T T T LI T T
0.8 1.0 0.00 0.25 0.50 0.75 1.00

Threshold Probability

0.2

Net Benefit

0.5

0.4

—— 3-Year (AUC=0.719)
— 5-Year (AUC =0.708)

04 0.6 0.8 1.0
1-Specificity (FPR)
TCGA-LUSC ~ — ==
— Stage
All negative

0.00

0.50
Threshold Probability

075





OPS/images/fonc.2022.910437/fonc-12-910437-g004.jpg
0.2+

Overall Survival
HR =1.49 (1.12-1.99)

NCAPG2
— Low
—+ High

0.0 P=0007

T T T T T T
0 50 100 150 200 250
Time (months)
Low pe4 47 11 3 2 0
High pe2 26 5 3 1 0
1.0
NCAPG2
JF
—— 1-Year (AUC = 0.861)
0.2 — 3-Year (AUC = 0.972)
— 5-Year (AUC = 0.843)
0.0 T ] T T T T
00 02 04 06 08 10

1-Specificity (FPR)

1.0 NCAPG2
— Low
0.8 —— High
06
0.4 4
0.2 4 Disease Specific Survival
HR = 1.65 (1.14-2.39)
0.0 4 P=0007
-L| T T T T T
0 50 100 150 200 250
Time (months)
tow pas 44 10 3 2
High pa7 22 3 2 1 0
E
1.0
0.8 4
E J
o
= 06
=
=
2 047 NCAPG2
3 i
%)
—— 1-Year (AUC = 0.861)
0.2 —— 3-Year (AUC = 0.868)
J_ — 5-Year (AUC = 0.864)
0.0 r T T T T T
00 02 04 06 08 10

1-Specificity (FPR)

Sensitivity (TPR)

Low
High

0 50

NCAPG2
—+ Low
—— High

Progress Free Inte
HR = 1.39 (1.07-1.81)
P=0014

T

T T
100 150
Time (months)

T T
200 250

1.0

o
®
1

=3
=)
1

14
~
L

o
N}
L

0.0 -

NCAPG2

— 1-Year (AUC = 0.772)
— 3-Year (AUC = 0.839)
— 5-Year (AUC = 0.821)

0.0

T T
0.2 04 0i6 0.8
1-Specificity (FPR)

1.0





OPS/images/fonc.2022.933925/fonc-12-933925-g011.jpg
Risk score

TNB

IMvigor210

ICI response

IMvigor210
]2 Aok

Low risk High risk
Risk group

TMB

Survival probability

IMvigor210
3
Low risk High risk
Risk group
IMvigor210
1.0 —— Low risk
—+— Highrisk
0.8
0.6
0.4
0.2
HR = 1.68 (1.26-2.25)
0.0 P<0.001
0 5 10 15 20 25
Time





OPS/images/fonc.2022.910437/fonc-12-910437-g003.jpg
(a]

o

Smoker

L e o o+ o & - [ S S S
(1-+ndL) 260 (1+NdL) %60
Z9dVON Jo Uoissaidxe ayL T 29dvON jo udissaidxa ayL,
5§
le .
=
o =
2
° o
l- & 8
zZ % S
z o
i 2
3
2
— - — ——
K e w o+ o o« L e o v oo oa - T o e v oo o«
(1+nd1) 260 (1+NdL) 6o L+INdL) 260
29dVON JO Uidissaidxe ayL, (D Z9dVON Jo oissaidxa oy 4 an&z .so.m%mwe ixe 8y
3
°
)
8
@
b
®
FE
s s
2
T T T r - — ——
® © < M N 6 o+ o « - N e o v o o«
+Nd L) 260 +Wd1) 260 (L+NdL) 260
Non‘&r 1 bssaide ou w Nom&w_ ,&mwwﬁe xo oy =  ZOdVON Jo oissaidxe ayL
7] Xo
E 5
4 2<
. 58 §3
85 §
mm £
] & «§
] SE
IS &
7 |2
—_—
® © < M [P S N e ow o+ oo o«
(1+ndL) 260 (L+NdL) %60 (1+nd) 260
Z9dVON 1O Uoissaidxa ay | W Z9dVON Jo uoissaidxe ay | — Z94YON J0 Uoissaidxa ay]

<

Dead

Dead

Dead

PF| event

DSS event

0OS event





OPS/images/fonc.2022.933925/fonc-12-933925-g010.jpg
ICGA-LUSC
cp274 TR

CTLAd4 [ = A% Rk Tp<00S

**p<o0l
HAVCRZ | ax ks wr ok
Correlation

LAG3  sx - o
0s

PDCDI % %% *
00
PDCDILG2  ## el s+ 05
i

TIGIT %% % *

score

. s
TCGA-LUSC

High grosp

Low group

N —
Dysiunction Exclusion






OPS/images/fonc.2022.910437/fonc-12-910437-g002.jpg
Tumor

GSE19188
Normal

2
o
o)
g
=

® N - O w o ®

0O  uoissaidxe ZOdVYON

© 0 - o M

(L+NdD)
o 2Z9dVON Jo Udissaidxe oy

© w 9w ©® o ~ o

(1+Wd ) 260
m Z9dVON Jo Uoissaidxa UL

Tumor(111)

Normal(111)

(L+d) &
< 2Z9dVON Jo Udissaidxe ay

<

© R
W uoissaidxs ugloid ZO4YON





OPS/images/fonc.2022.933925/fonc-12-933925-g009.jpg
TCGA-LUSC

*p<0.05
#*p<0.01

ek

Ak

ek

ok sk

sk

£

SMAD7

Correlation
ok I

%k

1.0
0.5

e

kk

wk

%

Hk

CXCL2

ek

£

ok

ok

ok

HELLS

0.0

0.5

*

Ak

%k

A%k

sk

B

%k

%

EEd

ILIB

TCGA-LUSC

*ok

Low risk
High risk

spiydonnan

Fkk

siydoutsog
PAIBALIOL S[[30 JSBIA|

Sunsai oo 1sey

o - DTy PaIEATIOR §[[00 ONLIpUA]
nho e oo lln

S 0 000 oo

C o, |
oo omee

.

Bunsai s[jeo anupuaq

TN saSeydooey

1A soSeydooepy

O saSeydosoey
$3)K90UOAT

PAIBANIOE S[[20 N

Sunsau s[190 N

e)[op ewiwes s[j9o |,

(s8a1) K1orenSar sypeo |,
1adjoy Te[NOIY[OJ S[[99 I
pajeAndE K1owow $q) S[[99 I
Sunsar Krowaw gD S[[99 L
AAlRU $(D S[[90 L

8D SI1?1 L

$[]00 ewse[d

Kiowau s[[22 g

JAIRU S[[90





OPS/images/fonc.2022.910437/fonc-12-910437-g001.jpg
EdNormal B Tumor

TCGA+GTEX

A
o
0] B T e - T
%
O~ 6
Z3
>
Sk *1
a
28
83 24
3
H ¢
0 [
= T T T T T 2 T T E T T T T T T T T T T l T T T
O XL O X O o 0 & © o & \t~ PN
07 000" O 9N DL S O % o) ey <3 Q/ ¥ 4
VW@‘*&&Q"&@"’@*}*}P VS o’@ &L ‘*ygqf‘ye‘? EARCINN
B
o © Normal e Tumor
& 5 e
O~ Lo NPT S P
z5 = - Lo .
“6% ity . e L Sl —_
e 44 ~a e
ok ns —~
2q
0
82 =
ad 21
8
o
°
2
F oo T T T T T T T T T T T T T T T T —
F F O P FEFE LY E P ® © F &L
¥ & & F e E &Y EE Y
104 NEﬁ:SZ 104 NCAPG2 10 10 NCAPG2
Zoed =i High Zoe = Hh Zos Zos
£ i 2 KIRP g ]
SDB- @O.G- 50.8 505
g g g g
g 044 g 044 Tg 04 g 04
H H e H
& 02 ovesumar & 024 ownsunar & 02 ovrotsunnar & 02 overassumer
=085 3 65-1609 V237 (21440 FReTS 092-245) R 1a00-1on
004 Peoon P 004 Proo 004 Proor
1 - - - — - - - —
H % w0 1o T % o o zo B e % 1o T % 1o 1o 2w 2%
Time (months) Time (months) Time (months) Time (months)
Low [ 2 s P T wwfer e 2 7 o v o @ oms 2
Hion |40 . 3 Wonfas s 1 1 o onfes s 182 1 won oz 2 s 3 1
D
104 NCAPG2 104 NCAPG2 10 NCAPG2 10 NCALPG2
“ Low — Low
Zosq — High Zos --h\?w Zos — Low Zos — High
2 MESO 3 - H =+ High 3 UCEC
8 064 B o6 PAAD ERYY SKCM £ 06
g g g g
5 044 5 04q Sos 5 os
& 024 owrsuth \_._._.1_\ & 02 ovenmsuven LY pe— ’%_'_‘_‘_‘ & 024 owmsme
s TR 76 18269 Fen 2 10818 R 015269
004 Peods 00 Peoon 004 Peoon 00 Peots
~ - - — . - .
T % s I I T W @ o T % w0 1w a0
Time (months) Time (months) Time (months) Time (months)
tow [ 73 o P P whs & ® 3 o v e w2 1
Hon |+ o o o e e R T T T Honfrs e 7 1 o






OPS/images/fonc.2022.933925/fonc-12-933925-g008.jpg
H’|I |\ m” ‘Ikl ' Wﬂ ’IHII\ m “ 'W M( Jl ,H mn w 'H w S e
(Nl “ | y 'l H\ I \ I |’| i I “ !m |ﬂ| H \;:;:;Z;;;;;WW it
il HHMM i um’u \ kmm m(uu il unhl i ! i || Mm Nm Ui Bt

HHII |||u|}r|u|| |\“| ‘ It ||||||\ |||/|u| il ||| IIII‘IIIH I,::t.::,aiir,(ms) 3 Dot

M | ‘| '||'“|'r\”“‘ \h'm (" ') \ ﬁ” Il\ \ul" ! |||"|'| ‘ - Jos
' W"' M"'? ] ‘hu'l” J'ﬁ'" '\ '1’| ”'f' ”' ") I |}'H||rf \J I ”|'m"'r'\‘r'u” ||'|‘1 ’MI ]'r'u“ ”{ !i

||| | | | Monocytes ’

R ' k ‘ || il \ i
|M I MMM'“! L =
s R T e






OPS/images/fonc.2022.910437/crossmark.jpg
©

2

i

|





OPS/images/fonc.2022.933925/fonc-12-933925-g007.jpg
>

Survival probability

Survival probability

104

084
0.6
044

024

0.0

0.84

0.6 4

044

024

0.0

—+— Low_risk
—— High_risk

TCGA-LUSC

HR=1.71(123-237)
P=0.001

0 1000 2000 3000 4000 5000
Time

—— Low_risk
—— High_risk

TCGA-LUSC

HR = 1.65 (1.17-2.33)
Log-rank P=0.004

0 1000 2000

3000 4000 5000
Time

B
1.0 —— Low_risk
—— High_risk
0.8 TCGA-LUSC
fol
%
=06
2
o
£ 04
2
3
172]
0.2
HR = 1.22 (0.73-2.05)
0.0 p=04s2
0 1000 2000 3000 4000 5000
Time
F
1.0 —— Low_risk
—— High_risk
0.8 TCGA-LUSC
2
E
E 06
2
a
S04
3
=3
1]
02
HR = 1.66 (1.05-2.63)
0.0 Log-rank P =0.022

0 1000 2000 3000 4000 5000
Time

—— Low_risk
—— High_risk

0.8 TCGA-LUSC

o
o

Survival probability
o
=

£
o

HR = 1.81 (1.32-2.47)

0.0 P<0001

0 1000 2000

3000 4000 5000
Time

—— Low_risk
—— High_risk

0.8 TCGA-LUSC

4
Y

Survival probability
o
=

=
o

HR = 1.71 (1.25-2.34)
P=0.001

2
=S

0 1000 2000
Time

3000 4000 5000

O
=
il

—— Low_risk
—— High_risk

=
3
L

TCGA-LUSC

e
o
1

Survival probability
o
=
L

=
o
L

HR =099 (0.56-1.76)
0.0 P=0.969

0 1000 2000 3000 4000
Time

—— Low_risk
—— High_risk

0.8

TCGA-LUSC

e
Y

Survival probability
°
b

0.2

HR =1.29(0.73-2.28)

0.0 P=0375

0 1000 2000 3000 4000
Time





OPS/images/fonc.2022.905871/table1.jpg
Characteristics

Pathologic stage
Stage | and Stage Il
Stage Ill and Stage IV
T stage

T

T2 and T3

N stage

NO and N1

N2 and N3

M stage

MO

M1

Smoker

No

Yes

AL139385 1

Total (N)

518
411
107
504
175
329
510
437
73
377
352
25
512
72
440
526

Univariate analysis

Hazard ratio (95% CI)

2,664 (1.960-3.621)

1.658 (1.175-2.341)

2.321 (1.631-3.308)

2.136 (1.248-3.653)

0.894 (0.592-1.348)
1.317 (1.087-1.596)

Multivariate analysis

P value Hazard ratio (95% Cl)

<0.001

0.004

<0.001

0.006

0.591
0.005

5.702 (2.080-15.637)

1.684 (1.075-2.640)

0.483 (0.173-1.347)

0.352 (0.114-1.087)

1.254 (1.004-1.565)

P value

<0.001

0.023

0.164

0.069

0.046






OPS/images/fonc.2022.933925/fonc-12-933925-g006.jpg
o 02

TCGA-testing set
i TCGA tesing set
03 i . 10 - S Lowrisk L0
! == lighris
! &
07 i = 30
I N 08 08
: 3 z
06 , ]
2 ' Risk group. z 0.6 = 0.6 P Riski
H H 5 z ] 528 %L
s . Low % g H e
% i * High - ] = * High
Z i Z o4 Zos 3
| z H
: @ L 26
' 02 02
!
' IR- 178007289 TR vosvam)
' 004 togenie- 00 roos 24
! T - - - -
1 . 0 1000 2000 3000 4000 o 1000 2000 3000
: ' Time Time
I
090, ' Lowrisk 67 2 9 4 ' ° Lowrisk 39 16 | 0
: i
e High risk 21 4 1 0 0 Highrisk 30 n 1 0 2000
5 !
2 3000 & ¥ St _E Status
£ i . P = D E GSET3403 = .o
B LB & e 10 104 E .1
Z . . z
£ 2000 « 4 e . €
3 [ E
! 1000
! .
1 084 084
5 o
oo ]H‘ H “H ‘ ‘ H| o
s
SMAD7 I - SMAD7 I 2
!

HELLS o

— 1-Year (AUC = 0300)
— 3-¥ear (AUC = 0606)

|
| 4
AN 1

HELLS ‘ ’ I ‘ H ‘ 1Yo (AUC- 0.603)

! I — Yer(AUC-0634)
— Ve (AUC=064) ; — Ve (AUC=0.46)
s L L T T v T s
00 02 0.4 06 03 10 00 02 04 06 03 10

1-Specificity (FPR) 1-Specificity (FPR)






OPS/images/fonc.2022.905871/fonc-12-905871-g011.jpg
A , Ctrl ShBQA ShRNA#1

A549
Cell no./HPF

50

C?trl ShRNAshRNA#1 shRNA#2

15

-
o

Cell no./HPF
[6)]

trl ShRNAShRNA#1shRNA#2

Ctrl shRNA shRNA#1 ShRNA#2

Ctrl ShRNA  shRNA#1 ShRNA#2

@
>
53
b
©

3

migration width
o o - -

%,

%,
T

)

%,

A
S

o,%

migration width

o

s
K
4,
Ai‘re

%,
%,
%,

%,
N
%,

%,

m
m

PCDH-vec

migration width

PCDH-vec

ey
o

AL139385.1
AL139385.1

PCDH-Vec AL139385.1





OPS/images/fonc.2022.933925/fonc-12-933925-g005.jpg
Partial Likelihood Deviance

1.00

0.75

Risk score

0.50

5000

4000

3000

Survival time

2000

1000

CXCL2

SMAD7

HELLS

IL1B

g

i VH .

1T11111111111110 99999998888887666665554443332220

Log(A)

TCGA-training set

Risk group
© Low
 High

/ LR )

Coefficients

0.0 0.2 0.4 0.6 0.8 1.0
L1 Norm
D
1.0 s = Lowrisk
TCGA-training set == Highrisk
0.8
2
g 06
2
2
8,
=
Z 04
Z
=1
7]
0.2
HR = 1.67 (1.19-2.33)
0.0 Log-rank P=0.002
0 1000 2000 3000 4000 5000
Time
Lowrisk 171 82 36 13 4 0
High risk 174 40 17 8 3 1
TCGA-training set
E
~
-4
o
e
=
2
=
2
=
5}
%}

~— 1-Year (AUC = 0.578)
— 3-Year (AUC - 0.668)
—  5-Year (AUC = 0.639)

0.0 0.2 0.4 0.6 0.8 1.0
1-Specificity (FPR)





OPS/images/fonc.2022.905871/fonc-12-905871-g010.jpg
B (]
10 15 1.5
‘0‘3 8 *okk ‘u—) A549 g H1299
152} e} *
3 3 210
2 rk 1.0 1.
- : iy
?_: wkk <C <
o4 5 k]
2 q>)05 Fkk g 0.5 k.
E 2 -g Fekk -‘(_-“' sk
[} © Ko
4 i e &
BEAS-2B H1650 H1299 A549 0.0GH1 ShRNA ShRNA#T ShRNA#Z °"CCtrl ShRNA shRNA#TShRNA#Z
2.0 E 15
-o- Ctrl shRNA -o- Ctrl shRNA
E15 shRNA#1 € shRNA#1
c e
2 -o- shRNA#2 2 1.01 -e- shRNA#2
= 1% A549 *k b H1299
o o
N 205 2
3 0.5 9 g
0.0 s
hour 0 24 48 72 96 hour 0 24 48 72 96
DAPI BrdU Merge < 59 a DAPI| Brd Merge
: ¥ <
£ & &
@ T @
E = =
O & O
0 prs
= Ctrl shRNA  shRNA#1 shRNA#2 é
H*
&c 40 H1299 <
G 30
&
o
g2 §
8 3 P4
< 5 10 =
[ & 7]
=
[
| J
c15 H1650 *hk 2
o P -8~ PCDH-Vec
%10 g 2 § 50 H1650,,,
5 b= AL139385.1 + <40
s © H1650 x| 8 g
S = x| Q a 30
15 = & 3
w0 O o
2 1 1. o) T 20
o 1. © . 2
5] 4 0 2
= 0. « & 10:
0. o 2
< (&) 2] o
0. 0. 2 S
PCDH-Vec ~AL139385.1 < S






OPS/images/fonc.2022.933925/fonc-12-933925-g004.jpg
ANO6
—— Low
—— High

TCGA-LUSC

08
=
2
= 06
2
=%
£ o4
Z
3
w

e
[

Overall Survival
HR =133 (1.02-1.75)

0.0 P=o03s
0 50 100 150
Time (months)
Lo TCGA-LUSC  "'°
—— Low
—— High
038
2
E
06
2
=%
S 04
Z
=
wn

e
o

Overall Survival
HR = 1.36 (1.03-1.78)
P=0.028

0.0

0 50 100 150

Time (months)

PLIN2
—— Low
—— High

TCGA-LUSC

.
EN

Survival probability
o
=

e
o

Overall Survival
HR = 1.34 (1.02-1.76)
P=0.034

14
o

0 50 100 150
Time (months)

B
10 TcGaLusc X
== Low
—— High
0.8
2
;Z
£ 06
2
=%
£ o4
5
=
w
02
Overall Survival
HR = 1.37 (1.04-1.79)
0.0 P-002
0 50 100 150
Time (months)
F
1.0 TCGA-LUSC ~ MV¢!
== Low
—— High
0.8
2
.-(.'_';
£ 06
[
o,
S o4
z
3
1]
0.2
Overall Survival
HR = 1.41 (1.08-1.85)
0.0 p-oo13
0 50 100 150
Time (months)
J
1.0 TFR2
TCGALUSC  _ | o
—— High
0.8
z
z
£ 06
2
o
ExY
&
=
"
0.2
Overall Survival
HR =0.75 (0.57-0.98)
0.0 4 Logrank P=0032

0 50 100 150
Time (months)

(]
Lo TcGaLusc N2
= Low
—— High
0.8
z
Z
06
2
=
£ 04
Z
3
w
0.2
Overall Survival
HR = 1.32 (1.01-1.74)
0.0 P=o0s3
0 50 100 150
Time (months)
G
10 TCGA-LUSC ~ “™MT
—— Low
—— High
0.8
2
E
£ 06
2
o
S o4
Z
3
"
0.2
Overall Survival
HR = 1.33 (1.02-1.75)
0.0 p=003s
0 50 100 150
Time (months)
K
1.0 SMAD7
TCGALUSC o row
—— High
0.8
z
2
£ 06
2
=N
£ 04
Z
3
w
0.2
Overall Survival
HR = 1.47 (1.12-1.¢
0.0 P=0.006

0 50 100 150
Time (months)

D
1.0 TcGa-Lusc 'FHS
—— Low
—— High
08
z
=
g 06
2
o
S04
Z
3
w
02
Overall Survival
HR =0.71 (0.54-0.93)
0.0 P=0.012
0 50 100 150
Time (months)
H
Lo TCGA-LUSC P63
—— Low
—— High
0.8
2
i
206
2
=%
Ex)
z
=
172l
02
Overall Survival
HR = 0.71 (0.54-0.93)
0.0 P=0013
0 50 100 150
Time (months)
L
1o Tceatuse T
—— Low
—— High
0.8
z
-
£ 06
2
=
£ 04
z
=
17}
02
Overall Survival
HR = 1.32(1.01-1.73)
0.0 P=0.044

0 50 100 150
Time (months)





OPS/images/fonc.2022.933925/fonc-12-933925-g003.jpg
response to oxidative stress

reactive oxygen species metabolic process

positive regulation of cytokine production

positive regulation of cytokine biosynthetic process
'cytokinc metabolic process
: ONADPH oxidase complex

apical plasma membrane

idoreductase activity

Ccc:mral carbon metabolism in cancer

HIF-1 signaling pathway

B
GO:0006979  response to oxidative stress
15 GO:0072593  reactive oxygen species metabolic
process
On tology GO:0001819  positive regulation of cytokine
production
O BP GO:0042108  positive regulation of cytokine
P @ cc biosynthetic process
% 10 © MF GO:0042107  cytokine metabolic process
=3 GO:a@6651 GO:0043020  NADPH oxidase complex
\%’ @ KEGG  GO:0016324 apical plasma membrane
< 001(‘6.701 GO:0016651  oxidoreductase activity, acting on
= GO:00243020 NADP)H
%D ~ hsa.Z16 Counts GO:0016701  oxidoreductase activity, acting on
»—I] 5 . 10 single donors with incorporation
OGO:Q?’Z“ .? hsa.230 . 20 hsa04216 ;f‘“"l‘:c;‘_la’ e
s erroptosis
hsa05230 Central carbon metabolism in
19 ® O @ ® ¢ cancer
hsa@066 o
O %) ® e} hsa04066 HIF-1 signaling pathway

- T T T T T T T T T T
32-1012 2-101 32-10 -2-101

Z-Score





OPS/images/fonc.2022.933925/M1.jpg
Score = 2 incocfficient X expression of
Ciarokal b i





OPS/images/fonc.2022.905871/fonc-12-905871-g009.jpg
GALNT3

‘partial.cor = 0.148] ‘partial.cor = 0.119)

Partiagor = ~0.129)
o] ® e P§
.

Neutrophil

partal cor =0 162
59¢

Dendritic Cell

GALNTS3 Expression Level (log2 TPM)

pactalicor 0,087 pctalon =015
=1.43 =4778

CYCS Expression Level (log2 TPM)

Neutrophil

Dendritic Cell

artial mr’—0129
o =417,

partial.cor = -0.249|

Co8+ T Cal
*  partial 153) =
A 5 & = 3,666 =2.67e

Dendritic Cell

partial.cor = -0.35)
p = 1.59e-15]

EIF5A Expression Level (log2 TPM)

02

-.. "pama

ITGB4 Expression Level (log2 TPM)

Neutrophil

Boor =0.122

‘pargal.cor = 0.165]
e et





OPS/images/fonc.2022.905871/fonc-12-905871-g008.jpg
The expression of GALNT3
Log, (TPM+1)

ression of GALNT3
g, (TPM+1)

The exf
o

Alignment

Target: 5' gaGGCCCAAACCCCUGGAAGGCAUu 3'

miRNA : 3" ugCCAGGAU--GUGA-GUUCCGUAC 5'

The expression of CYCS
Log, (TPM+1)

Spearman
r=0291
P <0.001
0 2 4 6
The expression of AL139385.1 The expression of AL139385.1
Log, (TPM+1) Log, (TPM+1)
73
o
>
O
‘Bx
o=
oo
s
=
]
23
o
<
=

Normal Tumor

miRDB

The expression of EIF5A
Log, (TPM+1)

The expression of EIF5A
Log, (TPM+1)

miRWalk

&
O~
ET
=
o=
e
2,
7
&g
83
3
Spearman | o
r=0322| £
P <0.001
0 2 4 6
The expression of AL139385.1
Log, (TPM+1)
10.0 q

The expression of ITGB4
Log, (TPM+1)

miRGator

starBase

10

8
4 Spearman
r=0.252
P <0.001

2
0 2 4 6

The expression of AL139385.1
Log, (TPM+1)

Normal Tumor Normal Tumor
104 1.0 1.0 104
GALNT3
2 08 —+ Low Zos8 Zos 208
2 -+ High 5 ) 2
£ 06 2 06 2 06 £ 06
a = S a
T 044 T 04 T 04 T 0.4
e e 2 H
@ 0.2 overall sunvival @ 0.2 overall Survival @ 0.2 overall survival @ 0.2 overall Sunvival
HR =167 (125-2.24) HR =162 (121-2.17) HR =191 (141-257) HR =169 (1.26-2.25)
0.0 P<0.001 0.04 P=0001 0.0 P<o0001 0.04 P<0001
L T T T T r T T T T T T T T T T T T T T T r
0 50 100 150 200 250 0 50 100 150 200 250 0 50 100 150 200 250 0 50 100 150 200 250
Time (months) Time (months) Time (months) Time (months)
Low pe2 42 11 4 2 0 41 T 2 Low 35——F- 4 45 9 3 2
High pe4 31 2 0 32 9 4 High 38 9 3 High pe4 28 7 3 0
4
W GALNT3 o
> —+ LOW
£ 081 + High Zos E
3 3
© © © ©
S 064 S 06 8 S
5 S s s
L Tos ] 3
2 e 2 e
@ 0.2 Disease Specific Survival @ 0.2 Disease Specific Survival @ 0.2 Disease Specific Survival @ 0.2 Disease Specific Survival
HR = 163 (1.13-2.35) HR =162 (1.12-2.35) HR=191(131-2.79) HR =179 (124-2.58)
0.0 P=0009 0.04 P=0011 0.0 P=0001 0.0 P=0002
T T T T T T T T T T T T T T T T T T T T T T T
0 50 100 150 200 250 0 50 100 150 200 250 0 50 100 150 200 250 0 50 100 150 200 250
Time (months) Time (months) Time (months) Time (months)
Low Low
High

High






OPS/images/fonc.2022.933925/fonc-12-933925-g002.jpg
TCGA-LUSC

Systemic lupus erythematosus
Small cell lung cancer

Pyrimidine metabolism{

Mismatch repair «

Human papillomavirus infection
Homologous recombination {
Glycolysis / Gluconeogenesis |
Glutathione metabolism

Fanconi anemia pathway
ECM-receptor interaction

Drug metabolism — other enzymes {
DNA replication

Cysteine and methionine metabolism
Cell cycle

Carbon metabolism

Biosynthesis of cofactors
Biosynthesis of amino acids

Base excision repair

Alcoholism

KEGG pathway (Up)
p33 signaling pathwayJ °
°

o0 0000

002 004
Enrichment Ratio

KEGG pathway (Down)

0.06

Viral protein interaction with

cytokine and v,lo ine receptor
iral myocarditis

Vascular smooth muscle contraction
Type I diabetes mellitus
Staphylococcus aureus infection
Rheumatoid arthritis{

Rap]1 signaling pathway

Platelet activation

Phagosome

Pertussis

Osteoclast differentiation {

.

Malaria{®

Leishmaniasis

Hematopoietic cell lineage
Graft—versus—host disease{*
Cytokine—cytokine receptor interaction{
Complement and coagulation cascades
Chemokine signaling pathway

Cell adhesion molecules |

Allograft rejectionq

0.02

°

004 0.06
Enrichment Ratio

0.08

d |

~log10(p.adjust)

Count
® 20
@ 30
@
@

~log10(p.adjust)

Count
20
®
@
@ 0

3 group

LUSC
Nomal

TCGA-LUSC

© Down-regulation
None

200

©  Up-regulation

100

~Logo P-value

i
i
i
i
i
i
i
i
i
1
i
i
i
i
i
i
i
i
14

.
-1

Log: (fold change)

spindle organization

skin development

sister chromatid segregation
organelle fission

nuclear division

nuclear chromosome segregation
nuclear DNA replication

mitotic sister chromatid segregation
mitotic nuclear division
keratinocyte differentiation
keratinization

epidermis development

epidermal cell differentiation
cornification

chromosome segregation

cell cycle DNA replication
DNA-dependent DNA replication
DNA replication

DNA recombination

DNA conformation change

second—messenger—mediated signaling
regulation of vasculature development
regulation of cell—-cell adhesion
regulation of angiogenesis

regulation of ERK1 and ERK2 cascade

positive regulation of vasculature development

positive regulation of cell adhesion

positive regulation of ERK1 and ERK2 cascade

neutrophil degranulation

neutrophil activation involved in immune response

negative regulation of immune system process

myeloid leukocyte migration
leukocyte chemotaxis

hemostasis

extracellular structure organization
extracellular matrix organization
coagulation

cell chemotaxis

blood coagulation

ERK1 and ERK2 cascade

GO (Up)

002 003 004 005 006 007
Enrichment Ratio

GO (Down)

004 005 006
Enrichment Ratio

0.03 0.07

—logl0(p.adjust)
160

155
150
145

Count
® 50
® s
@ 100
@ 5

Count
® 80
® 10
@ 120
@ 10

~log10(p.adjust)
160

155
150
145
140





OPS/images/fonc.2022.905871/fonc-12-905871-g007.jpg
o

Survival probability

R=-0.185, p<0.001

Expression of AL139385.1

The expression of miR-146a-5p

5
% 12
1%}
o
o
31
Q.
0
3
g 8
14
E 6
Normal  Tumor
1. hsa-miR-146a-5p
—+ Low
0. -+ High
0 Qverall Survival
: P =0.138
0.
0.
0.
0 50 100 150 200 250
Time (months)
Lowp58 33 5 0 0 0
Highps4—-414-—11-1—6 3 0

hsa-miR-146a-5p
—+ Low
—+ High

© 0o o o =

.24 Disease Specific Survival

0 100 150 200 250

Time (months)

Lowp40 31 4 0 0 0
Highp37 36 9 5 3 0

R=-0.222, p<0.001

Expression of AL139385.1

Expression of AL139385.1

The expression of miR-146b-5p

1

5

S 1

]

5 8

3

a 6

w0

8 4

I

4 2

= 0

Normal  Tumor

1 hsa-miR-146b-5p
= —+ Low
5 0. —+ High
S0 Overall Survival
= & P=0.173
§ 0.
0.
%)

0.

0 50 _ 100 150 200 250
Time (months)

Low[p255-32-—8—3—2——0
Highp57 42 8 3 i 0

hsa-miR-146b -5p
—+ Low
—+ High

0 100 150 200 250

Time (months)

Lowp39 30 7 3 2 0
High38 37 6 2 1 0

R=-0.179, p<0.001

The expression of miR-532-5p

*kk

L]
5 12 »
2] ®
o 11
[oX
3
Q. 1 ®
[te) 0
N
3o .
x
E 8
Normal  Tumor
>10 hsa-miR-532-5p
= —+ Low
S o8 —~ High
82 06 Overall Survival
g, =0.009
T 04
UE:; 0.2
0.0

0 100 150 200250

Time (months)
Low[254-33-—5——2 1 0
Highp58 41 11 4 2 0
1.04
0.84

0.64
0.4

hsa-miR-532-5p

0.24 Disease Specific Survival
P =0.027

0.0
0 50 100 150 200 250

Time (months)
Lowp31 30 4 1 1 0
Highp46 37 9 4 2 0






OPS/images/fonc.2022.933925/fonc-12-933925-g001.jpg
Lung squamous cell cancer data obtamed

from TCGA database

Ferroptosis-related genes obtained from
the FerrDb database

132 differentially expressed ferroptosis-related
genes

12 prognostic differentially expressed ferroptosis-
related genes

Lasso Cox regression analysis

validation n TCGA-testing set and GEO-validation
sct

Investigation of the roles of ferroptosis-related
genes in the tumor immune microenvironment

Differential analysis (|logFC|>1, p<0.05)

Functional analysis

K-M curve
analysis
Univariate Cox
regression analysis

— K-M curve analysis

Risk plot

ROC curve analysis

Stratificd analysis





OPS/images/fonc.2022.905871/fonc-12-905871-g006.jpg
A

Th2 cells
NK CD56dim cells

NK CD56bright cells

Enrichment of T cells

Enrichment of DC

S|

PD

Tgd
Neutrophils
T helper cells
Tem, P value
NK cells 075
Th17 cells 050
Tem 55
aDC
TReg Correlation
pDC Q o1
CD8 T cells Qo2
Cytotoxic cells
Eosinophils
Th1 cells
T cells
B cells
Mast cells
Macrophages
DC
iDC
TFH
-03 -0.2 -0.1 0.0 0.1 0.2
Correlation
2
8
o
S
H
[
£
=
S
olE
Spearman | Spearman
r=-0.179 r=-0.181
P <0.001 P <0.001
0 2 4 6
The expression of AL139385.1 The expression of AL139385.1
Logy (TPM+1) Log, (TPM+1)
o
S
=
ﬂ)
£
=
o
=3
c
L
Spearman ° Spearmal
r=-0.250 r=-0.282
P <0.001 i P <0.001
The expression of AL139385.1 The expression of AL139385.1
Log, (TPM+1) Log, (TPM+1)
=6
st S
=
ST 4 W Low
aE 3 M High
-2
S 1
<S g
PDCD1 | |
co2r4 | | i1 \
HAVCR2 [l VI | i~
TIGIT | |
GLEC15 | | [
ctad [ | | | ‘ [l ~
LAG3
cD1LG2 | | |
E .

Z-scol
score -

Enrichment of Mast cells Enrichment of NK CD56bright cells Enrichment of Th2 cells

Enrichment of Eosinophils

0.45

0.40

0.35

0.30

Spearman
r=0.233
P < 0.001

2 4

The expression of AL139385.1
Log, (TPM+1)

6

Spearman
r=0.130
P =0.002

The expression of AL139385.1
Log, (TPM+1)

Spearman
r=-0.192
P <0.001

The expression of AL139385.1
Log, (TPM+1)

Spearman
r=-0.129
P =0.003

6

2 4

The expression of AL139385.1
Log, (TPM+1)

Enrichment of Th1 cells Enrichment of NK CD56dim cells

Enrichment of Macrophages

Enrichment of TFH

The expression of AL139385.1
Log, (TPM+1)

The expression of AL139385.1
Log, (TPM+1)

Spearman
r=-0.218
P <0.001

The expression of AL139385.1
Log, (TPM+1)

P <0.001

The expression of AL139385.1
Log, (TPM+1)





OPS/images/fonc.2022.933925/crossmark.jpg
©

2

i

|





OPS/images/fonc.2022.905871/fonc-12-905871-g005.jpg
Enrichment plot: KEGG_CELL_CYCLE

NES=0.59
<0.001

|||M_|MHLI,|_UUH Il LH_|L

Enrichment plot: KEGG_FOCAL_ADHESION
3

NES=0.28
<0.001

WMMMMMMW Il I!IIIUIIULI|||

vk e T o0
Ran Dansat
[Errrcmtptic — v Raning o7 teoe

C

Enrichment plot: KEGG_WNT_SIGNALING_PATHWAY

NES=0.33
<0.001

L

Enrichment score (E5)
g tezcece

Rankad 58t maic (SGraldNoise)
Sieire

000 »om e
Rank 1 Ordeced Dasal

[ Erscvmant protie — it Ranking ma¥ic scones)

Enrichi
KEGG UBIQUITIN_MEDIATED_PROTEOLYSIS

NES=0.39
<0.001

wmww_mnm ||m|||wu||

Ty s






OPS/images/fonc.2022.895014/table3.jpg
Modalities Training cohort (n = 542) Validation cohort (n = 231) p-value*

C-index 95%Cl Brier Score C-index 95%Cl Brier Score
DeepSurv model 0.790 (0.757,0.823) 0.115 0.752 (0.671,0.832) 0.129 <0.001
Clinical model 0.788 (0.739,0.838) 0.119 0.739 (0.658,0.820) 0.137 <0.001
DeepSurv nomogram model 0.821(0.772,0.870) 0.106 0.768 (0.686,0.849) 0.128
TNM model 0.749 (0.705,0.794) 0.128 0.745 (0.672,0.818) 0.116 0.002

*Compared to DeepSurv nomogram model.
C-index, Harrell's concordance index.
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Independent risk factors Clinical model DeepSurv model

HR P value 95% Cl HR P value 95% CI

Lower Upper Lower Upper
Risk score 2.382 <0.001 1.799 3.155
Age 1.039 <0.001 1.021 1.058 1.080 0.001 1.011 1.048
Ki-67 1.663 0.002 1.191 2.322 1.280 0.165 0.911 1.800
TTF-1 0.623 0.008 0.438 0.885 0.782 0.177 0.546 1.118
IB stage 2.057 0.040 1.043 4.057 1.168 0.600 0.582 2.346
IA stage 2.431 0.060 1.038 5.693 1.294 0.500 0.543 3.082
IB stage 6.875 <0.001 4.110 11.503 3.039 <0.001 1.730 5.335
A stage 8.731 <0.001 5.474 13.927 3.578 <0.001 2.107 6.076

HR, hazard ratio; TTF-1, thyroid transcription factor-1.
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Demographic or clinicopathologic characteristics
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Characteristics

T stage (T2 and T3 and T4 vs. T1)

N stage (N1 and N2 and N3 vs. NO)

M stage (M1 vs. MO)

Pathologic stage (stage IIl and stage IV vs. stage | and stage Il
Gender (male vs. female)

Age (>65 vs. <65)

Smoker (yes vs. no)

Total (N)

532
519
386
527
535
516
521

Odds ratio

1.847 (1.282-2.674)
1.472 (1.019-2.133)
2.044 (0.885-6.120)
1.628 (1.065-2.507)
1.905 (1.352-2.693)
0.711 (0.502-1.004)
1,626 (0.993-2.697)

P-value

0.001
0.040
0.105
0.025
<0.001
0.053
0.056
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Characteristics

T stage (T2, T3, and T4 vs. T1)

N stage (N1, N2, and N3 vs. NO)

M stage (M1 vs. MO)

Pathologic stage (Stage Il and Stage IV vs. Stage | and Stage Il
Age (>65 vs. <65)

Gender (Male vs. Female)

Smoker (Yes vs. No)

Total (N)

532
519
386
527
516
535
521

0Odds Ratio (OR)

1.763 (1.224-2.5651)
1.717 (1.187-2.495)
4299 (1.699-13.141)
2.312 (1.498-3.619)
0.607 (0.428-0.859)
1.738 (1.234-2.453)
1.553 (0.949-2.567)

p-value

0.002
0.004
0.004
<0.001
0.005
0.002
0.082
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Classification

Clinical characteristics

Bio-features

Variables

Sex

Female (28)
Male (1)

Age

Smoking

Yes

No

TNM stage
Stage 1 (1-3a)
Stage 2 (3b—4)
Pathological diagnosis
ADC

SCC

Others
Treatment
Operation

Yes

No
Chemotherapy
Yes

No
Radiotherapy
Yes

No

Targeted therapy
Yes

No

Tregs
M-MDSC
PMN-MDSC
CD3

CD4

Ccb8
CD4/CD8
CD56/CD16(NK)
CD19

LogCD3
LogCD4
LogCD8
LogCD56CD16NK
LogCD19

IFN

TGF2

TNF1

VEGF

IL-6

IL-8

IL-2

siL-2R

CEA

AFP

SCC

CA153

CA125

CA199

CA724

NSE
CYFRA211

oF

Training dataset

Validation dataset

HR

Reference
0.582
1.018

Reference
0.537

Reference
13.257

Reference
1.163
1717

Reference
8.22

Reference
0.201

Reference
0.657

Reference
0.127
1.049
1.223
1.012
0.964
0.982
0.968
1.086

1.04
0.953
0.122
0.152
0.122
1.552
0.268
0.986
1.002
1.004
1.001
1.103
1.027
0.999
1.003
1.004
1.045
1.199
1.069
1.006
1.002
1.047
1.161
1.023
1.002

95% CI

0.305~1.112
0.982~1.057

0.273~1.055

6.582~26.701

0.483~2.801
0.409~7.200

4.223~16.004

0.088~0.459

0.274~1.578

0.063~0.256
0.969~1.136
1.050~1.424
0.975~1.052
0.935~0.994
0.949~1.016
0.923~1.015
0.778~1.514
1.011~1.069
0.886~1.025
0.048~0.310
0.035~0.662
0.028~0.528
0.451~5.344
0.089~0.805
0.928~1.047
0.999~1.004
0.982~1.026
0.998~1.004
1.067~1.1562
0.998~1.056
0.995~1.003
1.002~1.004
1.002~1.005
0.822~1.328
0.944~1.524
1.036~1.103
1.003~1.008
1.001~1.004
1.024~1.071
1.070~1.260
1.010~1.037
1.001~1.003

p value

0.101
0.331

0.071
0.000

0.737
0.460

0.000
0.000
0.348

0.000
0.237
0.010
0.528
0.018
0.303
0.181
0.628
0.006
0.199
0.000
0.012
0.005
0.486
0.019
0.642
0.221
0.745
0.411
0.000
0.068
0.559
0.000
0.000
0.722
0.137
0.000
0.000
0.009
0.000
0.000
0.001
0.002

HR

0.345
1.070

0.420

9.313

2.694
3.872

6.137

0.244

0.493

0.126
1.023
1.388
1.026
0.953
0.952
0.985
0.885
1.058
0.975
0.035
0.059
0.115
1.196
0.206
0.966
1.002
1.007
1.000
1.101
1.043
1.000
1.005
1.007
1.040
1.226
1.028
1.006
1.003
1.040
1.116
1.046
1.000

95% Cl

0.166~0.719
1.027~1.115

0.192~0.921

4.476~19.376

1.018~7.128
1.151~13.019

2.806~13.422

0.108~0.548

0.188~1.292

0.057~0.282
0.922~1.136
1.162~1.657
0.983~1.07
0.918~0.989
0.914~0.99
0.938~1.035
0.588~1.33
1.019~1.088
0.914~1.04
0.005~0.234
0.012~0.3
0.022~0.608
0.232~6.16
0.066~0.643
0.894~1.044
0.999~1.005
0.972~1.043
0.994~1.005
1.044~1.161
0.978~1.112
0.997~1.004
1.003~1.007
1.002~1.012
0.856~1.264
1.034~1.455
1.009~1.047
1.003~1.009
1.001~1.006
0.993~1.09
1.008~1.237
1.024~1.069
0.999~1.002

p value

0.000
0.000

0.030

0.000

0.050
0.030

0.000

0.000

0.150

0.000
0.670
0.000
0.240
0.010
0.010
0.550
0.560
0.000
0.440
0.000
0.000
0.010
0.830
0.010
0.390
0.210
0.710
0.870
0.000
0.200
0.920
0.000
0.010
0.690
0.020
0.000
0.000
0.020
0.100
0.040
0.000
0610
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Characteristic Low expression of NCAPG2 High expression of NCAPG2 P

n 267 268

T stage, n (%) 0.003
T 104 (19.5%) 71 (13.3%)

T2 125 (23.5%) 164 (30.8%)

T3 29 (5.5%) 20 (3.8%)

T4 8 (1.5%) 11 (2.1%)

N stage, n (%) 0.003
NO 187 (36%) 161 (31%)

N1 45 (8.7%) 50 (9.6%)

N2 24 (4.6%) 50 (9.6%)

N3 0(0%) 2 (0.4%)

M stage, n (%) 0.004
MO 187 (48.4%) 174 (45.1%)

M1 5(1.3%) 20 (5.2%)

Pathologic stage, n (%) <0.001
Stage | 166 (31.5%) 128 (24.3%)

Stage Il 59 (11.2%) 64 (12.1%)

Stage Il 31 (5.9%) 53 (10.1%)

Stage IV 6 (1.1%) 20 (3.8%)

Gender, n (%) 0.002
Female 161 (30.1%) 125 (23.4%)

Male 106 (19.8%) 143 (26.7%)

Age, n (%) 0.006
<65 112 (21.7%) 143 (27.7%)

>65 147 (28.5%) 114 (22.1%)

Smoker, n (%) 0.104
No 44 (8.4%) 31 (6%)

Yes 213 (40.9%) 233 (44.7%)

Age, median (IQR) 67 (60, 74) 63 (58, 71) 0.003






OPS/images/fonc.2022.882278/table2.jpg
ltems

Training dataset

Validation dataset

No. of patients
Sex = 2(male) (%)

Age (mean (SD))

PFS (median [IQR])

TNM Stage 2 = 3b—4 (%)
Pathological diagnosis (%)
ADC=1

SCC=2

Others=3

Smoking = no (%)
Treatment

Operation = no (%)
Chemotherapy = no (%)
Radiotherapy = no (%)

TT = no (%)

State, PD = 1 (%)

PFS (median [IQR])

Tregs (median [IQR])
M-MDSC (median [IQR])
PMN-MDSC (median [IQR])
CD3 (median [IQR])

CD4 (median [IQR])

CD8 (median [IQR])
CD4/CD8 (median [IQRY])
CD56 (median [IQR])

CD19 (median [IQR])

IFN-y (median [IQR])
TGF-B (median [IQR])
TNF-o. (median [IQR])
VEGF (median [IQR))
IL_6 (median [IQRY])
IL_8 (median [IQR])
IL_2 (median [IQR])
sIL_2R (median [IQR])
CEA (median [IQR])
AFP (median [IQR])
SCC (median [IQR])
CA153 (median [IQR]
CA125 (median [IQR]
CA199 (median [IQR]
CA724 (median [IQR]
NSE (median [IQR])
CYFRA211 (median [IQR])
SF (median [IQRY])

109
62 (56.90)
62.30 (8.92)
30.47 [22.27~33.27]
25 (22.90)

89 (81.70)
6(14.70)
4(3.60)
82 (75.2)

25 (22.9)

51 (46.8)

96 (88.1)

95 (87.2)

37 (339)
3047 [22.27~33.27)
4.10[2.64~6.05]
3.47 [2.64~4.73]
18.95 [14.40~25.97]
69.50 [65.40~75.10]
44.10 [38.30~48.70]
23.00 [18.10~26.50]
2.00 [1.48~2.64
14.80[11.00~22.50]
12.10[9.20~15.60]
3.00[1.90~4.90]
208.80 [118.50~284.80]
4.70 [3.20~6.10]
77.90 [44.30-120.60]
2.60 [2.00~4.10
7.10 [5.00~12.80]

36.80 [20.30~72.80]
356.00 [281.00~470.00]
2.20 [1.40~5.50
2.89[2.19~3.69
0.90[0.70~1.30]
11.00 [8.00~16.50]
15.50 [10.90~24.40]
10.98 [7.77-15.74]
263 [1.33~6.06
12.14 [10.86~13.82]

2.44[1.88-3.57]

198.50 [103.50~295.10]

8
54 (61.40)
62.68 (8.98)
30.55 [21.15-33.37]
16 (18.20)

75 (85.22)
9(10.29)
4(4.55)

72 (81.9)

12 (13.6)
47 (653.4)
78 (88.6)
79 (89.8)
30 (34.1)
30.55 [21.15~33.37)
3.64[2.57~6.46
3.80 [2.80~4.90
19.11 [13.61~24.60]
68.65 [62.22~75.35
43.00 [38.45~47.90
20.95 [17.00-26.88
210 [1.44~2.62
13.50 [10.07~17.98
14.45 [9.75~18.32)
4.05 [2.58~7.00]
185.30[119.30~279.92)
4.45 [3.20~5.80]
74.75[46.08-117.53
270 [2.00~3.90
8.25[5.83-12.17
41.90[22.98~68.80]
361.50 [271.75~498.00]
2.45 [1.58~4.50
3.05[2.09-4.12
1.00[0.70~1.22)
10.25(7.38~17.10]
14.75(9.80~24.10]
11.80 [7.38-18.32)
2.19[1.21~6.12)
12,17 [10.72~13.81]
2.45[1.87~4.05
183.50[102.93~305.88]
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Chinese name Latin name Dosage (g/per day)
Basic formula Huang-Qi Radix Astragali 30
Bei-Sha-Shen  Radix Glehniae 30
Tian-Men-Dong  Asparagus cochinchinensis 15
Nv-Zhen-Zi Fructus Ligustri lucidi 10
Shi-Shang-Bai  Herba Selaginellae Doederfeinii 30
Chong-Lou Rhizoma Paridis 15
Yin-Yang-Huo Herba epimedii 10
Jiao-Gu-Lan Gynostemma pentaphyllum 10
Shan-Zhu-Yu Cornus officinalis 10
Shi-Jian-Chuan  Salvia chinensis 30
Mai-Dong Ophiopogon japonicus 15
Hu-Lu-Ba Trigonella foenum graescum 10
Supplementary CHMs for resolving phlegm due to spleen deficiency Bai-Zhu Atractylodes macrocephala 15
Ban-Xia Rhizoma Pinelliae 12
Supplementary CHMs for clearing endogenous heat due to disturbance of blood circulation ~ Dan-Shen Radix Salviae Miltiorrhizae 15
Dang-Gui Radix Angelicae Sinensis 12
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