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Editorial on the Research Topic

Sex differences in immunometabolism, prophylaxis and therapy
The immune system and metabolism are profoundly intertwined on a whole-body and

cellular level, thus affecting homeostatic and pathological processes. Sex differences in

immunometabolism have long been appreciated, yet not fully explored. The aim of this

Research Topic was to reduce the knowledge gap in our understanding of sex differences in

immunometabolism. Premenopausal females typically mount stronger innate and adaptive

immune responses than males, which could lead to better protection against infections but

also increase the risk for autoimmune disorders. As reviewed by Nytrova and Dolezal, sex

bias in multiple sclerosis and neuromyelitis optica spectrum disorders affects the incidence,

disease progression and risk of relapse. Biological sex also greatly affects whole-body

metabolism. Premenopausal females expand subcutaneous fat whereas males, and females

with polycystic ovary syndrome (PCOS), display visceral adiposity which is linked with a

higher risk for metabolic disorders. Visceral adiposity is associated with chronic

inflammation that attenuates immune responses to infection. It is therefore not

surprising that sex differences in immunometabolism can shape responses to vaccines

and therapeutic drugs. Several studies have reported that males have a higher risk for severe

COVID-19 than females. As summarised in a review article by Rehman et al., this could be

due to sex differences in estrogen receptor expression which can affect the HDL to LDL

ratio, the nitric oxide synthesis, and others differently in males and females. Females with

PCOS are also at higher risk for COVID-19 complications than non-PCOS females, further

emphasising the intimate interactions between the immune system and metabolism on the

outcome of infection. In a related study, Parker et al. found that induction of SARS-CoV2

antibody responses are more rapid in females. Earlier induction of an antibody response

could confer faster clearance of the virus from the respiratory tract, thus explaining the sex-

bias in disease severity. Sex-bias could also affect the treatment outcome. For instance, a

study by Harnett et al. explored the impact of ES-62, a parasitic worm product, in a mouse

model of obesity-accelerated aging. The authors found that ES-62 acts protectively in the

male mice, but not in the female mice fed a high-fat diet. Specifically, ES-62 improved
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aging-induced loss of bone structure. This was found to be

primarily through the reduction of age-associated adipogenesis in

bone marrow, thus increasing osteoblast differentiation.

Furthermore, ES-62 increased the level of IL-10 producing

regulatory B-cells in spleen and mesenteric lymph nodes of obese

male, but not female mice. The study from Grabowski et al. brings

important insight into sex-specific differences in behavioural and

immunological responses to antibiotic and bacteriophage

administration in mice. Of note, bacteriophage administration in

tested concentrations seem to be safe for both male and female

mice. Contrary to bacteriophages, Grabowski et al. showed that two

common antibiotics- enrofloxacin and tetracycline, significantly

impaired immune responses and central nervous system activity

in female mice only. Since this effect was seen very early (two weeks

of antibiotic administration), authors discuss the potential effect of

early antibiotic exposure on metabolic disorders. The host

microbiota and their metabolites act as signals regulating systemic

and local immune responses. Meng et al. studied gonadal bacterial

composition in swamp eels and found a significant difference

between testes and ovaries. Even though major phyla were the

same between sexes, their relative abundance showed difference

with e.g., Firmicutes being more abundant in testes than ovaries.

Authors further analysed function prediction of microbial genes

expressed in testes and ovaries. Whereas metabolism of amino

acids, vitamins and cofactors were significantly enriched in ovaries,

testes microbiota genes were enriched for carbohydrate metabolism

and immune system activation. It would be of value to translate

these findings to the PCOS model. In a study by Balan et al., the

authors tested the effect of pregnane neurosteroid interactions with

toll like receptors. While neurosteroids are present in both males

and females, they are specifically elevated during luteal phase of

menstrual cycle and during pregnancy, possibly preventing overt

immune system activation. Balan et al . reported that

allopregnanolone inhibits TLR4 signalling in human marrow

derived macrophages. However, allopregnanolone inhibited TLR7

specifically in female derived macrophages. Together, this

highlights the importance of including both sexes in biological

research of any kind to facilitate differential therapeutic options and

treatment development more precisely. On the cellular level,

immune cell phenotype is intimately connected with metabolic

status. In states of high energy demand immune cells rely on

glycolysis for producing ATP, while oxidative phosphorylation is

the preferred energy source in resting and regulatory states.

Along this line, Alharshawi et al. found that monocyte infiltration

upon alcohol induced liver injury is dependent on interferon alpha

receptor in females only. This study provides a cellular mechanism

that could explain the sex disparity in alcohol induced liver injury

that is more typical for women. On a similar note, Scott et al.

explored the gain of function mutation in STAT1 by generating a

mouse model carrying human STAT1 with the T385M mutation.
Frontiers in Immunology 026
Humans with the T385M mutation in STAT1 are more prone to

autoimmunity, yet the mechanisms are not fully understood.

Authors show that Stat1t385m/+mice, in the absence of infection,

display aberrant an adaptive immune response, with disrupted

homeostasis and enhanced activation of T helper lymphocytes

and atypical B cell activation, collectively leading to

autoimmunity. Interestingly, these processes occurred earlier and

were more robust in females. It would be interesting to assess

cellular metabolism of such T helper and B lymphocytes, since it is

known that STAT1, besides interferon signal transmission,

regulates glycolysis, TCA cycle and oxidative phosphorylation.

Crosstalk of interferon pathways and mitochondria is linked

through mitochondrial NOD-like receptor X1 (NLRX1), as

demonstrated in the study by Snäkä et al. Here the authors used

the model of infection with parasitic worm Leishmania guyanensis,

and showed that NLRX1 attenuated inflammation in females

but not in males. Nlrx1-deficient macrophages from females

were skewed towards a masculine phenotype with higher rates

of glycolysis and OXPHOS, coupled with increased type I

interferon production

In conclusion, we believe that this Research Topic expands our

knowledge of sex-difference in immunometabolism. Understanding

how biological sex can shape immune and metabolic responses will

facilitate development of novel targets in immunometabolic

disorders, targeted lifestyle interventions and modulations of

existing therapies.
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Alcohol Consumption Accumulation
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Khaled Alharshawi†, Holger Fey†, Alyx Vogle, Tori Klenk, Miran Kim and Costica Aloman*
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Monocytes develop in the bone marrow from the hematopoietic stem cells and represent
heterogeneous phagocyte cells in the circulation. In homeostatic and inflammatory
conditions, after recruitment into tissues, monocytes differentiate into macrophages and
dendritic cells. Alcohol use causes about 3.3 million worldwide deaths per year, which is
about 5.9% of all deaths. In the United States and Europe, alcohol use disorders represent
the fifth leading cause of death. Females are more susceptible to alcoholic liver injury in
both humans and mice. Strikingly, we still do not know how much of this difference in
tissue injury is due to the differential effect of alcohol and its toxic metabolites on a)
parenchymal or resident cells and/or b) immune response to alcohol. Therefore, we used a
model of chronic alcohol exposure in mice to investigate the dynamics of monocytes, an
innate immune cell type showed to be critical in alcoholic liver injury, by using
immunophenotypic characterization. Our data reveal a sex-dimorphism of alcohol
response of hepatic monocytes in female mice that is interferon receptor alpha
dependent. This dimorphism could shed light on potential cellular mechanism(s) to
explain the susceptibility of females to alcoholic immunopathogenesis and suggests an
additional targetable pathway for alcoholic liver injury in females.

Keywords: monocytes, alcohol (EtOH), liver injury, mouse, female, male, Meadows-Cook model (MC)
INTRODUCTION

Monocytes originate in the bone marrow (BM) from the hematopoietic stem cells and represent a
heterogeneous population of phagocytes in the circulation (1, 2). In homeostatic and inflammatory
conditions, after recruitment into tissues, monocytes differentiate into macrophages and dendritic
cells (DC) (1, 2). In both humans and mice, monocytes are classified into subsets based on
differential expression of specific markers and function (3–5). In mice, monocytes are classified
org April 2021 | Volume 12 | Article 66354817
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Alharshawi et al. Alcohol Effect on Hepatic Monocytes
based on the expression of lymphocyte antigen 6 complex, locus
C1 (Ly-6C), C-C motif chemokine receptor 2 (CCR2), and C-X3-
C motif chemokine receptor 1 (CX3CR1) (1, 2). Monocytes
expressing high levels of Ly-6C and CCR2 (Ly-6ChiCCR2hi) and
rapidly migrate to sites of inflammation to give rise to pro-
inflammatory macrophages and DCs (1, 2, 4, 5). The locally
patrolling monocytes (pro-repair) express high levels of CX3CR1
but low levels of both Ly-6C and CCR2 and described
phenotypically as Ly-6CloCX3CR1hi (1, 2, 4, 5).

Alcohol use accounts for about 3.3 million worldwide deaths
annually, which is about 5.9% of all deaths (6). In the United
States and Europe, alcohol use disorders represent the fifth
leading cause of death (6). Alcohol consumption induces
damage to multiple organs, including the liver, brain, gut,
pancreas, and lungs (7, 8). Alcohol use induces tissue injury by
a complex interaction between toxic effects of alcohol
metabolites, including acetaldehyde, reactive oxygen, and
nitrogen species and the impact of alcohol on the immune
system (8, 9). The primary metabolism of alcohol occurs in the
liver; hence it suffers the most significant damage due to alcohol
consumption (7, 8).

Evidence in the literature indicates that alcohol induces
increased intestinal permeability that allows the intestinal
bacterial production, i.e. endotoxins or lipopolysaccharide
(LPS), to reach the portal circulation (10–12) and Kupffer cells
(KC), tissue-resident macrophages in the liver. Portal and
systemic bacterial products have a well validated critical role in
alcoholic tissue injury by recruitment and activation of the
immune cells, histologically documented by the accumulation
of inflammatory cells (10, 11). Innate immune cells such as
neutrophils and Ly-6Chi monocytes infiltrate liver tissues, are
well defined participants in alcoholic tissue injury (6, 13, 14).

Mononuclear phagocytes, monocytes and macrophages, play
a critical role in the pathogenesis of alcoholic liver disease (ALD)
(15). KC represent the majority of liver macrophages in the
steady-state (16). However, acute and chronic liver injury
induces the recruitment of circulating monocytes into the liver,
where they differentiate into macrophages and play a critical role
in eliminating pathogens and induce tissue repair (16, 17).

The susceptibility of females to autoimmune diseases is well
documented and was attributed at least partially to Interferon I
signaling (18). Similarly, females are more susceptible to
alcoholic liver injury in both humans and mice (19–21).
Strikingly, we still do not know how much of this difference in
susceptibility to alcohol tissue injury is due to the specific effect of
alcohol and its toxic metabolites on a) parenchymal or resident
Abbreviations: ALD, Alcoholic liver disease; BM, Bone marrow; CCR2, C-C motif
chemokine receptor 2; cMoP, Common monocyte progenitor; CX3CR1, C-X3-C
motif chemokine receptor 1; DC, Dendritic cells; EtOH, Alcohol (ethanol); GMP,
Granulocyte-macrophage progenitor; HE, Hematoxylin and Eosin; IFN-I, Type 1
interferon; IFNRKO, Interferon a/b receptor 1-knockout; KC, Kupffer cells; LD,
Lieber DeCarli model; LPS, Lipopolysaccharide; Ly-6C, Lymphocyte antigen 6
complex, locus C1; MC, Meadows-Cook model; M-CSF, Monocyte/Macrophage
colony-stimulating factor; MDM, Monocyte-derived macrophages; MDP,
Macrophage-dendritic cell progenitor; TNFa, tumor necrosis factor alpha; WT,
Wild type.
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hepatic cells and b) how much is due to sex specific immune
response to alcohol (8, 9).

Therefore, we used a simple model of chronic alcohol exposure
inmice to investigate the dynamics ofmonocytes, the most studied
innate immunecell population, to alcohol exposure.Ourdata reveal
a sex-dimorphismof alcohol response of hepaticmonocyte-derived
macrophages in female mice that is interferon receptor alpha
dependent. This dimorphism sheds light on potential cellular
mechanism(s) to explain the susceptibility of females to alcohol
immunopathogenesis and suggest an additional targetable pathway
for alcoholic liver injury in females.
MATERIALS AND METHODS

Mice
Female and male Wild type (WT) C57BL/6 (stock # 000664) and
Interferon a/b receptor 1-knockout (IFNRKO) (stock # 32045-
JAX) mice were purchased from Jackson Labs, Sacramento, CA.
Six-week-old mice received ethanol (EtOH) (Pharmaco,
Greenfield Global, Brookfield, CT) in water as per Meadows-
Cook model (MC) and normal chow ad libitum for four weeks.
EtOH concentration increased from 0% to 20% (v/v) gradually
(5%, 10% and 15% for 4 days interval between each change then
up to 20% in the 3rd week). Mice were placed on MC diet for 4
weeks. Liver and body weight were measured, and whole blood,
BM, liver, spleen, and lungs were collected for analysis. All mice
were kept in an infection-free environment, and only control
mice had access to alcohol-free water. All experiments were
approved by the Rush University Medical Center, Institutional
Animal Care & Use Committee and performed following the
guidelines of the National Institutes of Health.

Leukocyte Isolation
Whole blood was obtained by cardiac puncture. After clot
formation, samples were centrifuged and sera were obtained and
used for analysis. Hepatic leukocyte isolation was performed as
described previously (22) with minor modifications. Briefly, to
eliminate circulating leukocytes in livers, each mouse was
perfused with 10 mL of cold PBS (Fisher bioreagents, Pittsburgh,
PA) via theportal vein. Lungs and liverswere harvested andcut into
small pieces (about 1 mm2) on ice then pushed through a 70 µm
filter (Biologix group limited, Shandong, China). After washing,
pellets were resuspended in 8 ml of 40% Percoll (GE Healthcare,
Waukesha, WI) and layered on top of 3 ml of 70% Percoll and
centrifuged at 900 x g for 25 minutes at room temperature.
Leukocytes were collected from the interface of 40% and 70%
Percoll for counting and staining. Splenocytes were collected by
mashing the spleen through a 70 µm filter. BM cells were flushed
with 10 mL of cold PBS from the femur and tibia. Red cell lysis of
spleen and BM cells were performed before counting and staining.

Flow Cytometry
Samples were stained with fixable viability dye eFluor 506
eBioscience (Thermo Fisher Scientific, Waltham, MA) and
fluorophore-conjugated antibodies against mouse CD16/32,
CD45, CD45R/B220, CD3, CD19, NK1.1, Ly-6C, Ly-6G,
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PDCA-1, MHC-II, CD11b, CD11c, CD103, CD115, CD117,
CD127, CD135, F4/80, Gr-1, Ki-67, Sca-1, and TER-119
(Supplementary Table 1). Unless stated otherwise, all cell
populations were gated as shown in Supplementary Table 2. Ki-
67 relative mean fluorescent intensity (MFI) was calculated by
dividing the MFI of each sample by the average MFI of the female
control. Samples were acquired using an LSRFortessa flow
cytometer (BD Bioscience, San Jose, CA). FlowJo software version
10.0.8r1 (FlowJo, LLC. Becton, Dickinson and Company, Franklin
Lakes, NJ) was used for the analysis of the acquired flow
cytometry data.

ELISA
Blood was obtained by cardiac puncture at the time of euthanasia
and centrifuged at 6,000 x g for 5 min for serum collection.
Serum macrophage-colony stimulating factor (M-CSF) was
measured by ELISA (MMC00, R&D systems, Minneapolis,
MN). Serum alanine aminotransferase (ALT) and aspartate
aminotransferase (AST) were measured using the ALT and
AST Reagents (7526 and 7561, Pointe Scientific, Canton, MI).
Serum LPS (endotoxins) was measured, according to
manufacturer instruction, by PYROGENT-5000 Kinetic
Turbidimetric LAL Assay (N383, Lonza, Morristown, NJ)

Triglyceride Measurements
Hepatic triglycerides were measured using the triglyceride assay
kit according to the protocol provided by the manufacturer
(ab65336, Abcam, Cambridge, MA).

Histology
Hematoxylin and Eosin (HE) Staining
For assessment of steatosis by histological analysis, the liver
tissue was fixed in 10% formalin for 24 h, paraffin-embedded,
sectioned at 5 mm and stained with hematoxylin and eosin.

Immunofluorescence
Cryo-sectioned 5 mm liver tissue slides were brought to room
temperature and fixed with cold acetone for 8 min and then
washed in PBS containing 0.05% Tween 20 (PBS-T). Nonspecific
reactions were blocked with 5% normal goat serum (ab7481,
Abcam, Cambridge, MA) and 5% TruStain fcX (BioLegend, San
Diego, CA) in PBS-T for 1 h and then incubated with rabbit anti-
mouse F4/80 (1:200, ab111101, Abcam) and rat anti-mouse Ly-6C
(1:200, ab24973, Abcam) at 4°C overnight. Afterwashing in PBS-T,
the specimens were incubated with Alexa Fluor 488 goat anti-rat
IgG (H+L) (1:400, #4416, Cell Signaling, Danvers, MA) and Alexa
Fluor 555 goat anti-rabbit (1:400 #4413, Cell Signaling) for 1 hour at
room temperature, washed again, treated with Vector TrueVIEW
Autofluorescence Quenching Reagent and then counterstained
with VECTASHIELD Mounting Medium with 4’,6-diamino-2-
phenylindole (DAPI) (both: Vector Labs, Burlingame, CA). The
Zeiss Axio Observer Microscope (Carl Zeiss Micro Imaging, Inc.,
Thornwood, NY) equipped with the Zen pro 2.3 software was used
to visualize the immunofluorescence staining for F4/80 and Ly-6C,
and nuclear localization was provided by DAPI. The negative
controls were obtained by incubating sections with non-specific
rat IgG or rabbit IgG as described above.
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qRT-PCR
Total hepatic mRNAwas isolated from flash frozen liver in liquid
nitrogen. The University of Illinois at Chicago (UIC) Genomics
Research Core processed the specimens for total mRNA
extraction, cDNA synthesis. qRT-PCR for cytokines,
chemokines, and adhesion molecules implicated in monocyte
trafficking was done, using primers described in Supplementary
Table 3, on the ViiA 7 Real-Time PCR System (Applied
Biosystems, Foster City, CA). Fold change was calculated using
the comparative Ct method. Housekeeping genes used are beta-
Actin (Actb) and beta-2-microglobulin (B2m).

Statistical Analysis
All figures generated and all statistical analyses were done using
GraphPad Prism version 8.3.0 (GraphPad Software, Inc. San
Diego, CA). Two way ANOVA with multiple comparisons is
used to calculate the p-values. A p-value of ≤ 0.05 was considered
significant. The level of significance indicated by asterisks as
follow: *p<0.05, **p<0.01, ***p<0.001, and ****p<0.0001. Unless
stated otherwise, the data are presented as means ± standard
error of the mean (SEM).
RESULTS

Consumption of Alcohol Resulted in an
Increase in Recruited Monocytes/
Macrophages in the Livers of Female Mice
To investigate the effect of alcohol consumption on monocytes
homeostasis, female and male mice received alcohol in drinking
water per Meadows-Cook (MC) model, a well-accepted mouse
model of chronic alcohol consumption to characterize
immunological effects of alcohol (23, 24). We chose MC, not Lieber
DeCarli (LD), the most common mouse model of chronic alcoholic
liver injury, becausewe are interested in studying the specific effect of
alcohol on immune cells without the interference of the high fat and
liquid diet used in LDmodel.Moreover, previous work published by
ourgroupdemonstrated thatLDmodel sharedwithalcohol exposure
alone only a very restricted number of altered pathways (24).

Four weeks of alcohol consumption caused a significant
reduction in the body weight, but not liver weight, of male mice;
however, normalized liver/bodyweight ratio, surrogate for steatosis
development, showed a significant increase only in female mice
compared to controls (Supplementary Figures 1A–C). Despite no
significant changes in liver triglycerides and liver enzymes,
histological examination showed very mild small droplet steatosis in
only alcohol-fed female mice compared to their controls
(Supplementary Figures 1D, E and Supplementary Figures 2A–C).
Serumlevels ofLPS inalcohol-fed femalemice increasedbut didnot
reach statistical significance when compared with female control
mice (Supplementary Figure 2D). Also, after alcohol
consumption, the serum level of LPS in female mice is higher
than in male mice but without statistical significance
(Supplementary Figure 2D). Hepatic leukocytes did not increase
in alcohol-fed mice in females and males (Supplementary Figure 3).
Interestingly, female mice have more hepatic leukocytes than
males in only alcohol-fed mice (Supplementary Figure 3).
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The presence of small droplet discrete liver steatosis and increased
liver/body weight ratio support early histological evidence of
alcoholic liver injury in female mice, while the increase in number
of hepatic leukocytes in alcohol-fed femalemice compared tomales
may represent a potential modulator for susceptibility to alcoholic
liver injury in females (19–21). We have shown that alcohol has a
sex specific effect on innate immune cells after 3 months of alcohol
exposure (25) sowewanted to further study innate immune cellular
compartments affected during this earlier time points.

Hepatic leukocytes were isolated and stained for flow cytometry
analysis and gated to identify hepatic monocytes, neutrophils, and
DCs (Supplementary Figure 4). Females that consumed alcohol
for four weeks showed a significantly greater increase in hepatic
monocytes than controls and alcohol-fed male mice (Figure 1A).
Since these hepatic monocytes were isolated from perfused livers
we will refer to them from here on as monocyte derived
macrophages (MDM). However, we observed no statistically
significant change in hepatic neutrophils and DCs
(Supplementary Figure 5) between alcohol-fed and control mice
in both female and male groups at this early time point. These data
demonstrated that one of the earliest immunological innate events
induced by alcohol in mice is identified in the liver at the level of
monocytes compartment and present only in females. This sex
dependent immunological effect of alcohol on liver monocytes
combined with the well-known dichotomy in susceptibility of
Frontiers in Immunology | www.frontiersin.org 410
alcoholic immune effects triggered us to explore the mechanism
of alcohol exposure on hepatic monocytes.

Hepatic MDM Increase in Female Mice
Is Due to Increase of Both LY-6Chi and
Ly-6Clo Subsets
Classically in mice, monocytes are divided into two primary
subsets based on the phenotypic expression of Ly-6C, CCR2, and
CX3CR1 (1, 2). Monocytes expressing high levels of Ly-6C and
CCR2 (Ly-6ChiCCR2+) rapidly migrate to sites of inflammation
to give rise to inflammatory macrophages and DCs and are
known as “inflammatory monocytes” (1, 2). The locally
patrolling monocytes express high levels of CX3CR1 but low
levels of both Ly-6C and CCR2 and described phenotypically as
Ly-6CloCX3CR1+ (1, 2). Investigating the expression of Ly-6C on
hepatic monocytes revealed a significant increase only in Ly-6Chi

and Ly-6Clo MDMs in alcohol-fed female mice compared to
controls (Figures 1B, C). Also, in alcohol consumed mice,
females have more Ly-6Chi and Ly-6Clo MDMs than males
(Figures 1B, C). Additionally, histological examination using
immune-fluorescent microscopy showed a reduction in Ly-6C
staining in the liver tissue from female mice consumed alcohol
and controls compared to their male counterparts (Figure 1D).
These data indicate that the hepatic MDMs increase is the result
of the expansion of both Ly-6Chi and Ly-6Clo subset numbers.
A B

DC

FIGURE 1 | Alcohol induced increase in hepatic MDMs in female mice. Female (F) and male (M) From wild type (WT) and interferon a/b receptor 1-knockout
(IFNRKO) mice were provided a regular chow diet and ethanol in drinking water (EtOH) or ethanol-free water (CTL). After 4 weeks, mice were euthanized, and Liver
harvested. (A–C) Hepatic leukocytes were stained and analyzed by flow cytometry. Dot graphs showing the numbers of total monocytes (A), Ly-6Chi monocytes (B),
and Ly-6Clo monocytes (C) per gram of liver weight. Values are showing the mean ± SEM, *p<0.05, **p<0.01, ***p<0.001. n ≥ 5. (D) Images are showing liver tissue
stained with fluorescent-labeled antibodies, anti-F4/80 (AF555/red), anti-Ly-6C (AF488/green), and DAPI (blue).
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Alcohol Consumption Induced a Reduction
in the Serum Level of M-CSF but Did Not
Alter the Numbers nor the Proliferation of
BM Progenitors
Monocyte/Macrophage colony-stimulating factor (M-CSF), a
growth factor shown to be essential for monocyte homeostasis
and differentiation (2, 26). Mice deficient in CD115, the M-CSF
receptor, have deficiencies in monocytes and macrophages (2, 26).
Therefore, we tested the serum level of M-CSF. Alcohol
consumption induced a reduction in the serum level of M-CSF
only in female mice compared to controls (Figure 2A).
Additionally, control female mice showed higher levels of serum
M-CSF compared to theirmale counterparts (Figure 2A). Studying
BM leukocytes did not show a significant increase in alcohol-fed
mice compared to controls (Supplementary Figure 6).
Interestingly, there was a significant decrease in BM leukocytes in
females compared to males in control groups (Supplementary
Figure 6). Considering the increase in hepatic leukocytes in females
compared to males (Supplementary Figure 3), these data might
indicate an organ-specific nature of the potential immune-cellular
mechanism(s) that might explain the higher susceptibility of
females to develop alcoholic tissue injury. We studied the
classically identified BM progenitors gated as shown in
Supplementary Figures 7 and 8. The data did not reveal a
change in granulocyte-macrophage progenitor (GMP) (Figure
2B) and macrophage-dendritic cell progenitor (MDP) (Figure
2C) in alcohol-fed mice compared to controls. Investigating the
expression of Ki-67, a cell proliferation marker (27), in GMP and
MDP did not reveal significant changes after alcohol consumption
(Figures 2D, E). These data suggest that the increase in monocytes
found in female mice is not a result of alcohol interference in the
development of BM classical progenitors.
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Alcohol Consumption in Female Mice
Induced Increase in the Expression of
Hepatic TNFa
Weaskedwhether the increase inhepaticMDMs results in a change
of hepatic cytokine expression and whether this reflects a change in
the hepatic chemokines and adhesion molecules gradient
implicated in the recruitment and migration of monocytes (28).
The cytokine tumor necrosis factor alpha (TNFa) was upregulated
in the livers of female mice fed alcohol compared to their control
counterparts (Figure 3A). The expression of chemokines,
chemokine receptors, and adhesion molecules tested did not
reveal significant changes between alcohol-fed and control female
mice (Figures 3A–C). The increase in TNFa data is consistent with
overwhelming evidence in the literature about the implications of
TNFa in alcohol-induced liver injury inbothhumans andmice and
marks an early event in alcohol immunopathology (29–33).

Alcohol Consumption Did Not Increase
Hepatic MDMs in IFNRKO Mice as It Does
in WT Mice
Our data did not reveal a disturbance in BM progenitors or
recruitment and migration molecules that might explain the
increase in MDMs we found in female mice that consumed alcohol.
Published data showed regulation of emergent monocytopoiesis by
type I interferon (IFN-I) signaling (34). Therefore, we used Interferon
a/b receptor 1-deficient (IFNRKO) mice to study the effect of alcohol
on hepaticmonocytes in the absence of IFN-I signaling. Interestingly,
IFNRKO femalemice consumed alcohol for four weeks failed to show
an increase in their hepatic MDMs compared to control-fed mice, as
did their WT counterparts (Figures 1A–C). In the livers of females,
there are more Ly-6Chi and Ly-6Clo MDMs in WT compared to
IFNRKO, in alcohol-fed mice (Figures 1B, C). This data suggest a
A B

D E

C

FIGURE 2 | Alcohol consumption reduced M-CSF serum level in female mice but did not change the numbers nor the proliferation of classical BM progenitors.
Female (F) and male (M) from wild type (WT) mice were provided a regular chow diet and ethanol in drinking water (EtOH) or ethanol-free water (CTL). After 4 weeks,
mice were euthanized, and blood and BM collected. (A) Dot graphs showing the serum level of M-CSF. n ≥ 4. (B–E) BM cells counted then stained for flow
cytometry analysis. BC) Dot graphs showing the numbers of GMP (B) and MDP (C) per leg. (D, E) Dot graphs showing Ki-67 expression (relative MFI) in GMP
(D) and MDP (E). n ≥ 8. Values are showing the mean ± SEM, *p<0.05, **p<0.01.
April 2021 | Volume 12 | Article 663548

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Alharshawi et al. Alcohol Effect on Hepatic Monocytes
critical role for IFN-I signaling in the increase of MDMs induced by
alcohol in female mice.

IFNRKO Mice Have Fewer BM Monocyte
Progenitors Than WT Mice
We further investigated the BMdevelopment ofmonocytes in both
WT and IFNRKOmice. First, we investigated mature monocytes in
the BM, and in both WT and IFNRKO mice, our data suggest no
change inmonocyte subsets between alcohol-fedmice and controls
(Figures 4A–C). Comparing BM progenitors between alcohol-fed
and control mice did not show significant changes in bothWT and
IFNRKO mice (Figures 4D–F). However, comparing the same
progenitors between WT and IFNRKO mice revealed a significant
reduction in MDP in IFNRKO female control mice (Figure 4E). In
IFNRKO, both control and alcohol-fed female mice, compared to
WT, there is a reduction in commonmonocyteprogenitors (cMoP),
but it did not reach statistical significance (Figure 4F). These data
further demonstrate a potential role of IFN-I signaling in the
increase of Ly-6Chi and Ly-6Clo subsets in female mice early
during alcohol consumption and preceding histological findings
of alcoholic liver injury.

DISCUSSION

Monocytes are innate immune cells recruited in sterile and
pathogen induced inflamed tissues, critical in the clearance of
Frontiers in Immunology | www.frontiersin.org 612
pathogens and cellular debris as well as tissue return to steady-
state condition (16). Multiple lines of evidence suggest the
importance of monocytes in alcoholic tissue injury. Firstly, the
elevation of neopterin and leukocyte-function-associated antigen 3,
markers associated withmonocyte activation, in patients withALD
(16, 35). Additionally, the expression of TNFa receptors and the
spontaneous secretion of TNFa from circulating monocytes
isolated from ALD patients and the association of high serum
TNFawith poorer prognosis of acute alcoholic hepatitis patients all
further suggests the critical role of monocytes in ALD (16).
Furthermore, the migration of monocytes to the liver during
inflammation and their conversion to a macrophage like
phenotype, which play a critical role in eliminating pathogens
and induce tissue repair (16, 17), indirectly further highlights the
important role of monocytes in ALD.

In our experiments only very early and discrete signs of
alcoholic liver injury are observed as increased small droplet
steatosis without changes in liver triglycerides in alcohol-fed
female mice after 4 weeks. This suggests rather early involvement
of hepatocyte lipid transport and changes in non-triglyceride
lipid fraction (sphingolipids, ceramides) by alcohol in female
mice and less quantitative changes in triglycerides.

After alcohol consumption, female mice have higher
leukocyte numbers compared with males and both, acute and
chronic liver injuries, induce the recruitment of circulating
monocytes into the liver (16). In our experiment, alcohol
A

B C

FIGURE 3 | Increase in hepatic TNFa in alcohol-fed female mice. Female wild type mice were provided a regular chow diet and ethanol in drinking water (EtOH) or
ethanol-free water (CTL). After 4 weeks, mice were euthanized, and liver harvested. Hepatic total mRNA extracted followed by qRT-PCR analysis of chemokines (A),
chemokine receptor (B), and adhesion molecules (C) involved in monocyte recruitment. Dot graphs showing fold change in gene expression in alcohol-fed versus
control mice calculated by comparative Ct method. n = 5. Values are showing the mean ± SEM ***p<0.001.
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exposure increased hepatic MDMs in female mice after only four
weeks. No significant changes were found in other recruited
examined phagocytes, DCs and neutrophils. Upon further
investigation, the increase in hepatic MDMs in female mice
after four weeks of alcohol consumption was due to a rise in both
Ly-6Chi and Ly-6Clo subsets. The increase in hepatic MDM
subsets is consistent with upregulation of TNFa mRNA as
macrophages are known to produce it (16). It was reported
that Ly-6Chi monocytes recruited following liver injury then
undergo a phenotype switch to become Ly-6Clo monocytes
within few days (5, 36, 37). Zigmond et al. showed in male
mice, that liver injury induced by N-acetyl-p-aminophenol led to
the recruitment of Ly-6Chi monocytes, which then differentiate
into Ly-6Clo monocyte derived macrophages (36). Dal-Secco et
al. showed that in sterile liver injury, Ly-6Chi (CCR2hi

CX3CR1lo) monocytes migrated to the injured area then
transitioned to Ly-6Clo (CCR2lo CX3CR1hi) monocytes (37).
The data presented by both studies could support the concept
that the increase in hepatic Ly-6Chi and Ly-6Clo in female mice
after four weeks of alcohol consumption may be due to increased
recruitment of Ly-6Chi then their conversion to Ly-6Clo MDMs.
However, at this time, we cannot rule out the alternative
hypothesis that the accumulation of hepatic Ly-6Clo MDMs
may be, at least in part, due to increased hepatic recruitment
or survival of Ly-6Clo MDMs.

To investigate the mechanism responsible for the early
expansion of hepatic MDMs after alcohol exposure in female
mice, we studied monocyte development. M-CSF is an important
growth factor for the homeostasis and differentiation of
monocytes (2, 26) and was found to be suppressed by alcohol.
The reduction in the serum levels of M-CSF in alcohol-fed mice
compared to controls in females is inconsistent with the reports
on the non-alcoholic chronic liver disease where hepatic
inflammation in female and male humans is associated with an
increase in serum M-CSF (38, 39). However, our data is
consistent with the observation that women have higher serum
Frontiers in Immunology | www.frontiersin.org 713
concentrations of M-CSF than men (40). The reduction of serum
M-CSF in alcohol-fed female mice, suggests of a possible negative
feedback effect on monocytopoiesis or direct alcohol effect on M-
CSF sources. Studies on the effect of alcohol on M-CSF are
scarce. Kottstorfer et al. found no significant correlation in
humans between alcohol consumption and the expression of
M-CSF (40). In spite of this suppressive effect of alcohol on
circulating M-CSF levels, M-CSF levels in females are still
significantly higher than males, which could potentially
additionally explain the consistent increase in monocytes
found in female mice after alcohol consumption. Analyzing
classical BM progenitors such as GMP and MDP (2), we did
not reveal significant changes in the bone marrow that could
explain the increase in monocytes. Consistent with that, alcohol
consumption for three months did not alter GMP progenitors in
a Rhesus Monkey study (41).

Monocytes originate in the BM under the control of the
growth factor M-CSF and circulate in the blood, and do not
proliferate during steady state (26, 42). Monocyte development,
monocytopoiesis, is regulated by the expression or suppression
of transcription factors such as Transcription factor PU.1,
Interferon regulatory factor-8, and Kruppel-like factor 4 (2).
Induction of monocytopoiesis by IFN-I signaling during
endotoxemia has been shown in the literature (34). Consistent
with that, our data revealed the failure of IFNRKO mice exposed
to alcohol to increase their hepatic Ly-6Chi and Ly-6Clo MDM
subsets as did their WT counterparts. The data from the IFNRKO

mice, compared to WT mice, also showed a reduction in mature
Ly-6Clo monocytes in both liver and BM. In an acute model of
sterile inflammation using a murine model of pristane-induced
peritonitis the IFN-I signaling was responsible for monocyte
recruitment and maturation during inflammation while mice
deficient in TLR4, TNFa, IL-6, and IL1R failed to accumulate
monocytes in the peritoneal cavity (43). This is consistent with
our data that IFN-I signaling is critical for increasing hepatic
MDMs upon alcohol consumption. However, in our case, the
A B
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C

FIGURE 4 | Reduction in MDP, a monocyte BM progenitor, in female IFNRKO mice. Female (F) and male (M) from wild type (WT) and interferon a/b receptor
knockout (IFNRKO) mice were provided a regular chow diet and ethanol in drinking water (EtOH) or ethanol-free water (CTL). After 4 weeks, mice were euthanized,
and BM collected, cells counted, then stained for flow cytometry analysis. (A–F) Dot graphs showing the numbers per leg of total monocytes (A), Ly-6Chi monocytes
(B), Ly-6Clo monocytes (C), GMP (D), MDP (E), and cMoP (F). n ≥ 5. Values showing the mean ± SEM, *p<0.05, **p<0.01.
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increase was in both Ly-6Chi and Ly-6Clo subsets compared to
the Ly-6Chi subset in the first phase of acute tissue injury model.
In a second phase, the accumulation of Ly-6Chi monocytes was
replaced by Ly-6Clo monocytes within 72 hours from the
challenge, consistent with our finding (43).

MDP precursors and cMoP precursors in the BM are
macrophage/monocyte progenitors (44). Studying MDP and
cMoP progenitors in the BM of IFNRKO mice compared to
WT revealed a reduction in MDP progenitors in female control
mice, suggesting the importance of IFN-I signaling to maintain
MDP progenitors at least during steady state. Lasseaux et al.
reported a reduction in cMoP progenitors in mice 24 hours after
intravenous injection with LPS, the sex of mice used in the
experiments is not indicated (34), which is inconsistent with our
data revealed no change in cMoP after alcohol consumption.
This could be due to the fact that they used LPS compared to
alcohol in our study. Interestingly, IFNRKO mice did not increase
monocyte precursors after the LPS challenge, although the mice
showed the reduction of cMoP progenitors (34), suggesting the
IFN-I dependency of the monocytopoiesis during inflammation
consistent with our data. It is important to state that more
prolonged exposure to alcohol for 3 months in the same model in
female mice expanded hepatic plasmacytoid DCs (25); whether
that is an earlier event represented by bone marrow pDC
expansion and paracrine source of IFNa for stimulation of
monocytopoiesis by alcohol is under ongoing evaluation in
our laboratory.

In summary, our data strongly suggest that alcohol exposure
for four weeks in mice induces an increase of Ly-6Chi and Ly-
6Clo MDMs in an IFN-I signaling-dependent manner only in
female mice. Our data support the need for additional
investigations of the cellular sources of IFNa and functional
relevance of the hepatic MDM subsets expansion in female mice
early upon alcohol exposure as a mechanism for increased
susceptibility to alcoholic immunopathogenesis.
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The current coronavirus disease 2019 (COVID-19), caused by severe acute respiratory
syndrome virus 2 (SARS-CoV-2), has resulted in a major global pandemic, causing
extreme morbidity and mortality. Few studies appear to suggest a significant impact of
gender in morbidity and mortality, where men are reported at a higher risk than women.
The infectivity, transmissibility, and varying degree of disease manifestation (mild, modest,
and severe) in population studies reinforce the importance of a number of genetic and
epigenetic factors, in the context of immune response and gender. The present review
dwells on several contributing factors such as a stronger innate immune response,
estrogen, angiotensin-converting enzyme 2 gene, and microbiota, which impart greater
resistance to the SARS-CoV-2 infection and disease progression in women. In addition,
the underlying importance of associated microbiota and certain environmental factors in
gender-based disparity pertaining to the mortality and morbidity due to COVID-19 in
women has also been addressed.

Keywords: COVID-19, environment, estrogen, immunity, gender, hormones, microbiota
INTRODUCTION

The coronaviruses belong to the subfamily Coronavirinae, which cause respiratory and
gastrointestinal infections (1). First discovered in 1960, the coronaviruses were ascribed to
causing a mild respiratory symptom; these viruses include human CoV 229E (HCoV-229E) and
HCoV-OC43 (2). The present coronavirus disease 2019 (COVID-19) pandemic by severe acute
respiratory syndrome virus 2 (SARS-CoV-2) initially emerged from Wuhan Province, China at the
seafood market (3). Various studies on the innate and adaptive immune responses to coronaviruses
org August 2021 | Volume 12 | Article 680845116
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have been carried out in recent years. The role of the immune
responses is to initiate viral clearance, prevent viral replication,
and help tissue repair. However, such immune responses play a
crucial part in SARS-related pathogenicity. The SARS-CoV-2 is
known to dysregulate cytokine-mediated inflammatory and
immune responses (4). Innate immune humoral factors such
as complement and coagulation-fibrinolysis systems, soluble
proteins/naturally occurring antibodies, and cellular
components (natural killer cells and other innate lymphocytes)
seem to be fully engaged following viral infection. Dysregulation
of these factors leads to viral replication in the lung airways and
escalation of an adaptive immune response. Severity caused by
SARS-CoV-2 infection thus may also be attributed to the degree
of dysregulated immune and inflammatory response (5).

The virus has affected the global population; however, men
seem to manifest more severe form of the disease than women, as
per the onset of symptoms of the disease. The mortality in men is
2.4 times compared to women, although both gender have a
similar susceptibility to transmission (6). One study that involved
425 COVID-19 patients reported 56% men (7), while another
Frontiers in Immunology | www.frontiersin.org 217
study reported 50.7% of 140 patients being men as infected
individuals (8). Another study involving 1,019 COVID-19
patients revealed greater susceptibility of men compared to
women to SARS-CoV-2, indicating that gender is as a risk factor
for morbidity and mortality (6). One of the most noticeable
differences is the mortality rates among men and women in the
Western Europe, where 69% of men have died due to COVID-19.
Even in the United States of America, a lesser percentage of
women have died as compared to men (9). Similar patterns have
been seen in China and other affected countries. According to one
of the reports, the greatest sex disparity was seen in the death rate;
it came to only 36.2% deaths in women as compared to men at the
rate of 51.4%. Additionally, the analysis of COVID-19 cases
documented in China showed a 2.8% case fatality in men as
compared with a 1.7% rate in infected women (10) (Figure 1).

This is not the first time that coronaviruses have been found
to affect women lesser than men. The epidemiological data from
SARS-CoV (2003) and MERS-CoV (2012) epidemics also
highlighted women at a lower risk of death from these deadly
viruses (11). In Hong Kong, men were found to be affected more
FIGURE 1 | Global map showing the confirmed COVID-19 death incidence (male and female ratio) in various countries.
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severely than women by the SARS-CoV (12). Furthermore, men
had a significantly higher fatality rate than women (21.9% versus
13.2%) (13). In 2012, when MERS-CoV hit Saudi Arabia, the
disease occurrence among men (62%) was considerably higher
than in women (38%) of the total confirmed infected cases (14).
Thus, gender seems to play an important role in severity and
fatality in SARS-related diseases.
ESTROGEN ACTS AS AN IMMUNE-
STIMULATING FACTOR

As men are worse affected by SARS-CoV-2, they require longer
hospital stay and have a higher mortality rate when compared to
women (15). The observed resistance to SARS-CoV-2 in women
can be attributed to sex hormones, specifically estrogen, which is
known to enhance the immune activity of both B as well as T-
helper cells (16). Estrogen receptor alpha (ERa) is a steroid
hormone receptor that controls physiological functions,
including immunity. ERa has an effect on the subsets of T
cells that includes Th1, Th2, Th17, and T regulatory cells, as well
as follicular helper T (TFH) cells. It has been established that
induced immunization by NP-conjugated ovalbumin produces
specific antibodies that are elevated in CD4-ERa knock-out
mice, under sufficient estrogen environment (17). Therefore,
estrogen, the primary female sex hormone, stands out as a key
biological factor making women’s immune system more active
against the virus (13).

There is a growing interest in studying the role of sex
hormones in the tissue renin-angiotensin system (RAS). The
expression of ACE2 (angiotensin-converting enzyme) in some
organs, such as uterus, kidney, and heart, is regulated by 17b-
estradiol. This occurs by increasing the locally existing ACE2
effect on the cardiac tissue and suppressing the RAS through
catalytic cleavage of a particular residue of angiotensin II to
increase the release of cardioprotective angiotensin 1–7 and
upregulate anti-oxidative and anti-inflammatory effects (18)
Estrogen level is inversely related with the regulation of cardiac
troponin secreted during ischemic or anoxic condition, leading
to irreversible injury to the cardiac cells (19). In few studies
conducted on COVID-19 patients, it was seen that 51% patients
died due to cardiac injury (20). The death rate in COVID-19
patients was 7.6% having normal cardiac troponin levels and
without any cardiovascular disease. Mortality of 13.3% was seen
in patients with underlying cardiovascular disease and normal
cardiac troponin levels, 37.5% cardiovascular disease but elevated
cardiac troponin levels, and 69.4% patients having both the
conditions. A higher proportion of men (65.4%) had increased
cardiac troponin as compared to women (42.2%) with
COVID-19 (20).

The effect of estrogenic hormones could justify these
observations, as this hormone has been reported to reduce
low-density lipoprotein cholesterol and increase the high-
density lipoprotein (21). 17b-estradiol, an estrogenic hormone,
is also known to mediate the activation of early and late
endothelial nitric oxide synthase via estrogen receptor
Frontiers in Immunology | www.frontiersin.org 318
interaction (22). Cardiomyocytes also carry the functional
estrogen receptors that regulate the expression of nitric oxide
synthase to prevent the cardiovascular system from damage by
some factors such as suppression of the formation of thrombus,
platelet stimulation, and adhesion of leukocyte-endothelial cell.
It has been reported that male mice are more vulnerable to
SARS-CoV compared to females. However, when the ovaries (an
endocrine gland producing and releasing estrogen) from female
mice were removed, their mortality from the SARS-CoV sharply
increased (23).

COVID-19 affects men and women differently likely due to
the difference in genetic nature and influence of sex hormones.
COVID-19 enters the host body via the upper respiratory
system, through contacting droplets. Estrogen has a beneficial
impact on the entire respiratory tract system (16). Estrogen
activates the response of mucosa of the nose by regulating
turbinate hypertrophy and boosting secretion of nasal mucus
containing anti-viral, antibacterial, and immune factors such as
IgA, lysozyme, mucins, lactoferrin, electrolytes, and
oligosaccharides, which are important for restricting upper
airway infections (24). Besides, estrogen stimulates the synthesis
of hyaluronic acid that preserves a suitable tropism of the cilia and
the mucosal membrane (Figure 2). Additionally, estrogen
stimulates the local nasal immune system that acts directly by
stimulating phagocytic cells, antigen-presenting cells, and natural
killer cells (25). Once stimulated, they can kill the virus protecting
the body before its access to its target cells in the part of the
respiratory system, thus reducing the pathological effect of the
virus (26). In a study, it was indicated that G protein-coupled
estrogen receptor (GPER) specifically supports the diminishing
nasal symptoms, serum OVA-specific IgE, and Th2 cell immune
response, but boosts the Treg immune response in mice (27). In
addition to its indigenous impact in the nasal cavity, estrogen
provides the required level of hyaluronic acid secretion needed for
the mouth’s hydration by promoting the function of the lower
respiratory system as it acts directly on the bronchial epithelial
membrane to secrete more mucus. At this stage, the effective role
of estrogen is promoted by the progesterone (PG) physiological
function as it upregulates amphiregulin (epidermal growth factor)
to maintain the histological integrity of the lung tissue if the viral
infection occurs. PG also improves the onset of the symptoms of
respiratory disease, when given to women at menopause phase
(28). Estradiol (E2) and PG support a reduced case of a naive
immune-inflammatory reaction, via increasing the immune
tolerance and synthesis of immunoglobulins. It has been
reported that the combination of E2 and PG could enhance the
anti-viral immunity, but downplay cytokine storms in COVID-
19 (29).

E2 has been found to have a protective activity against the
disease severity, as revealed by higher levels of cytokines such as
IL-6 and IL-8 in severe cases. E2 corresponded to COVID-19
severity, because of the regulation of such cytokines associated
with inflammation (30). Also, regulatory proteins (Cardiac
troponin T and troponin I) play a key role in calcium
regulation (7).

Estrogen has anti-inflammatory and anti-oxidative actions on
the effectors of the renin-angiotensin system-like pro-oxidative
August 2021 | Volume 12 | Article 680845
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LOX-1 and pro-inflammatory ICAM-1. Estrogen alters the
homeostasis of the local RAS and offers protection in the atrial
myocardium (31). Moreover, other studies have indicated the
anti-viral activity of two selective estrogen receptor modulators
against viral infection like Ebola. Primary differentiated human
nasal epithelial cell cultures obtained from healthy men and
women demonstrated the action of estrogenic receptors on the
human cellular response to influenza A virus (IAV) infections.
Nasal epithelial cells are the primary cell type infected with IAV,
and these cultures allowed to investigate IAV infection and
pathogenesis based on the sex and hormonal milieu of the
donor cultures (32).

Menopause is an individual risk factor for COVID-19 as it
causes a sudden reduction in estrogen levels which could
minimize the risk difference between men and women,
although the case studies have revealed that the gender
disparity still exists in elderly people. In postmenopausal
women, the ovaries produce estrone, the inactive form of
estrogen, in high quantities. Additionally, estrogen is no longer
the only endocrine factor in the postmenopausal stage. A
number of extragonadal tissues such as adipose tissue, bone
chondrocytes and osteoblasts, aortic and endothelium, vascular
smooth muscle cells, skin, skeletal muscle, and several brain
regions produce estrogen, to act locally as a paracrine and
intracrine factor (33). Therefore, circulating estrogen levels
explain its effect in menopausal women because estrogen
escapes from local metabolism and gets into the main
circulation (33, 34). It is still unclear if the estrogen circulation
and expression in the local tissue play a part in the reduced
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COVID-19 mortality in menopausal women compared to age-
matched men (35). Therefore, the role of estrogen is fascinating.
DIFFERENCE IN INNATE AND
ADAPTIVE IMMUNITY

Women show reduced susceptibility to viral infections due to
their varying nature of innate immunity, hormones, and other
factors associated with sex chromosomes. Sex-related hormones
regulate the range of the immune responses distinctively in men
and women (36). The estrogen and ER-a influence the activation
and proliferation of T-lymphocytes and initiate elevation of
IFN-g level in Th1 lymphocytes. A gradual IFN reciprocation
by mismatched dsRNA or exogenous IFN-a treatment has been
found to inhibit SARS-CoV multiplication in the lungs of mice
(37). Studies have reported that IFN-b and IFN-g can
significantly suppress the replication of SARS-CoV, and a
symbiotic anti-SARS-CoV action was attained with the
synthesis of the IFN-b and IFN-g (38). As discussed earlier,
treatment with estrogen suppresses the inflammatory response
and reduces SARS-CoV load that leads to an increased survival
in mice (23). Contrary to estrogen, testosterone have a general
inhibitory action on the immune response, specifically to viral
antigens (39). In a study, murine macrophage treatment with
testosterone suppressed the nitrate oxidase synthetase (40).

Studies have shown suppressive effects of testosterone on the
activation of dendritic cells, antigen presentation to T-
lymphocytes, and initiation of immune response (41). Th1 cells
FIGURE 2 | Schematic representation showing the protective effects of estrogen on the upper and lower respiratory tract cells and its benefits on the immune response.
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have a crucial part to play in protection against viral infections by
secreting IFN-g (42). Androgens can influence the thymocyte
response by suppressing the Th1 proliferation and reducing IFN-
g synthesis (43–45).

Among women, in order to reduce the duplication of X-
linked genes, the second X chromosome is silenced via X
chromosome inactivation (XCI), although many genes escape
this inactivation. A location on Xp22.2, which is for the ACE2
gene, also bypasses X-inactivation, resulting in the phenotypic
differences between the genders. The other XCI escaping regions
are IRAK1 (Interleukin-1 receptor-associated kinase 1) and IKKg
(inhibitor of nuclear factor Kappa-B kinase subunit gamma) that
might influence the immune response against the COVID-19
Frontiers in Immunology | www.frontiersin.org 520
infection in women. Numerous genes are involved with the X
chromosome. Mutations occurring in a single gene may lead to
two different alleles with a distinct mechanism of response,
suggesting that women could not only escape the outcome of
deterrent mutations but also help to fight against infectious
challenges such as SARS-CoV-2. Additionally, estrogen and
estrogen receptor signaling confer an important potency to
innate as well as adaptive immunity and the process of tissue
repair during and after the viral infection (7, 36, 39) (Figure 3).

In SARS-CoV-2 infected women, T cells, especially CD8+ T
cells, were found much more activated. When their clinical
trajectory was analyzed, it was revealed that elevated cytokine
levels in women patients were related to the worsening condition
FIGURE 3 | The X chromosome in females has various genes associated with immunity. Natural mutation in one copy of X gene may lead to two different alleles
with distinct regulatory mechanism, which protect the women from implications of deleterious mutations and confers advantage in facing novel immunogens, like
SARS-CoV-2. Illustration presents the genes encoded on the X-chromosome involved in the increased immune response in females during COVID-19. (Abbreviations
used: TLR7, Toll-like receptor 7; DC, dendritic cell; CVS, cardiovascular system; IFN-g, interferon gamma; LDL, low-density lipoprotein; HDL, high-density lipoprotein;
ATIII, antithrombin III; IRAK1, Interleukin-1 receptor-associated kinase 1; MOF, multiorgan failure).
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of COVID-19 disease (36). Most COVID-19 affected patients
have higher plasma levels of pro-inflammatory cytokines/
chemokines (IL-6, IL-2, IL-8, IL-7, CCL2, CCL3, and TNF) (3).
This may lead to tissue damage and subsequent organ failure.
Elevated levels of plasma cytokines are correlated with a decrease
in lymphocytes which leads to the progression of COVID-19
disease. Dysfunction of T cells with age is also associated with
worse COVID-19 disease outcomes (46). However, even though
elderly women develop a strong T-cell immune response,
majority develop anti-Spike IgG at the initial stage of infection
that helps in suppressing proinflammatory cytokines, and hence,
worsening of disease does not occur (47).

It is equally pertinent to mention that women are at no lesser
risk of getting infected with coronavirus, especially during
pregnancy, as women fall at higher risk of severe illness from
other respiratory infections. COVID-19 infection in pregnant
women did not differ much from non-pregnant women (48).
Reports have suggested that pregnancy and childbirth do not
seem to contribute to an increased risk of contracting SARS-
CoV-2 infection; it also does not increase the severity of the
clinical course of COVID-19, compared to non-pregnant women
of the same age (49–51).

COVID-19 infection during pregnancy may have more
unfavorable results in comparison with the non-pregnant
group (52). Additionally, COVID-19 and pregnancy increase
the chance of internal clotting that increases the risk of
thrombosis (53). During the period of pregnancy, a large
variety of immune cells, mostly natural killer (NK) cells,
macrophages, and regulatory T cells (Treg), are activated. The
accumulation of macrophages and NK cells takes place around
trophoblastic cells during the first trimester of pregnancy
protecting miscarriage of the allogeneic fetus (19). Hence, the
maternal immune system shields fetus from the damage by
environmental insults. Likewise, the fetus also modifies the
maternal immune system. During pregnancy, PG has
immunomodulatory effects that influence the Th1 response. In
pregnancy, an enhancement in anti-inflammatory factors like
interleukin-1 receptor antagonist (IL-RA) and TNF-a receptor
(TNF-R) is recorded; conversely, a decrease in IL-1b and TNF-a
is found (20).

Variations in the estrogen and PG levels during pregnancy
may cause respiratory, cardiovascular, reversible degeneration in
the thymus, with a reduction in CD4+ and CD8+ T cells that may
lead to more susceptibility of women to SARS-CoV-2 infection.
The PG on nasal mucosa acts as a facilitator in the attachment of
the virus and prevents its elimination. Additionally, an increase
in oxygen consumption due to vascular congestion and
reduction in the capacity of the lung may increase the risk for
severity of COVID-19 in pregnant women (54). Another risk
factor is the higher ACE2 expression during pregnancy, and
hence increased risk of complications from COVID-19 infection
(55). An increase in ACE2 receptors in the kidneys during
pregnancy may contribute to effective regulation of blood
pressure, although it can favor the attachment and facilitate
the virus entry into the host cells (54).

Androgens might lead to severe COVID-19 disease among
men through raising neutrophil count and increasing
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the production of cytokines (IL-1b, IL-10, IL-2), altering
TGF-b production by immune cells, and decreasing the
antibody production (47). This event is crucial as the patients
with severe COVID-19 exhibit cytokine storm syndrome due to
neutrophils. One of the androgen pathways in COVID-19
infection is the transmembrane protease, serine 2 (TMPRSS2)
gene that is expressed mainly in the adult prostate (56), and in
metastatic prostate cancers; it is also found in tissues like lung,
kidney, pancreas, colon, small intestine, and liver (56). The
TMPRSS2 gene is transcribed and regulated by the androgen
receptor, and the main target of TMPRSS2 expression in
COVID-19 is the lungs, kidneys, and liver (57). In one
retrospective study, increased levels of testosterone in most
women (60%) having COVID-19 disease were recorded; a
positive correlation between the levels of testosterone and pro-
inflammatory cytokines among women with COVID-19 was also
noted (58).

In view of a higher mortality in men from COVID-19
compared to women, it has recently been pointed out that
testosterone may affect disease severity. This notion is
supported by the evidence that the primer protease for SARS-
CoV-2 spike protein, TIMPRSS2, as well as the virus entry
receptor, ACE2, are upregulated by testosterone (59). Although
debated, androgen-deprivation therapy in prostate cancer
patients infected with SARS-CoV-2 has been suggested (60).
However, hypogonadism can also be a risk factor for severe
COVID-19 (61). It is worth noting that women suffering from
polycystic ovarian syndrome (PCOS), which is characterised by
heightened androgen levels (hyperandrogenism), have been
found to be at a significantly higher risk of COVID-19
compared to non-PCOS women (62, 63).
ROLE OF ANGIOTENSIN-CONVERTING
ENZYME 2 (ACE2)

The ACE2 gene that is found on the X chromosome (location:
Xp22.2; nucleotides 15 494 402–15 602 148, GRCh38.hg38
version) has been reported to work differently in men and
women (64). ACE2 carries out its important functions by
dissociating angiotensin I into angiotensin II. Angiotensin II,
being a small peptide, is of huge importance in the case of
vasoconstriction and sodium balance. ACE2 breaks angiotensin I
and II into dissociated peptides that possibly lead to
vasodilatation and, hence, countering angiotensin II (65, 66).
The entry route for SARS-CoV-2 is via ACE2, similar to the
SARS-CoV virus, bearing a spike protein that binds with ACE2
to invade the cells (20, 46, 67). The location of the ACE2 gene on
Xp22.2 is a site of genes that escapes XCI, leading to phenotypic
dissimilarities between genders (68, 69). SARS-CoV-2 possesses
16 residues of receptor binding motif (RBM), and binds to 16 of
the 20 ACE2 residues present in men. In women, the same RBM
of SARS-CoV-2 may be detected by ACE2 on any of the two X
chromosomes. The possibility becomes less for the similar
residue sequences of ACE2 present on the second chromosome
to bind efficiently to the RBM of SARS-CoV-2, leading to the
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breakdown of Ang II to form Ang 1–7 by unbound ACE2, and
therefore might reduce the chance of respiratory edema during
SARS-CoV-2 infection. Men, with only one X chromosome, are
deficient in the alternative mechanisms that could impart cellular
protection during COVID-19 infection (70, 71).

Several significant divergences in the prevalence of ACE2
variants have been reported among diverse races and ethnicity.
Recently, a single-cell RNA sequencing (RNA-seq) study
reported that Asian men could express tissue ACE2 at a higher
level (72). During a study on the northeastern Chinese Han
population, the serum ACE2 activity was found to have a
negative correlation with body mass index, pulse pressure, and
estrogen levels among hypertensive women (6). Such studies
indicate a protective mechanism of circulating ACE2 and the
participation of estrogens in the expression and upregulation of
ACE2 activity levels (73).

ACE2 is present in epithelial cells of the lung, intestine, blood
vessels, and kidney (74). The angiotensin system plays a vital role
in cardiovascular homeostasis, acute inflammation, and
autoimmune disorders (75). The presence of high ACE2
receptors may lead to a higher risk of contracting SARS-CoV2.
It has been reported that men have elevated levels of circulating
ACE2 than women, and also in patients having diabetes and
cardiovascular ailments (76). People with cardiovascular failure
have the plasma ACE2 elevated in men compared to women,
which correlates with increased SARS-CoV infection (65, 77).
Among the hypertensive women, blood pressure and body mass
index inversely correspond to ACE2, whereas there is a direct
correlation of blood sugar and estrogen levels to ACE2 level (65,
78). As mentioned above, estrogen also downregulates the renin-
angiotensin system components acting as an anti-inflammatory
and anti-oxidative agent (67, 78). Significant functional regulation
of ACE2 by estrogen may explain the gender differences in
COVID-19 associated morbidity and mortality (79).

Microbiota
Development of a pronounced innate and adaptive immune
response is greatly influenced by the composition of the human
gut microbiota. The human gut possesses a diverse and complex
microbial consortium that reciprocates by establishing the
persistent host immune homeostasis (80–82). The human gut
harbors complex communities of microorganisms that includes
holobiont (composite organism) and hologenome (collective
genome of all bionts) (83). This complex composition offers a
crucial genomic and metabolic capability that has an important
impact on the initiation, development, and action of the host
immune system, thereby protecting against infections and
safeguarding the ecosystem of gut flora (84). The homeostatic
cascades existing between the immune system and gut microbiota
of the host play a crucial role in modulating the activation of host
cells and tissues involved in response to infectious agents (85).
The interaction of virus and microbiota has been studied in
several viral infections. For example, surfactin, a molecule on a
Bacillus subtilis surface, is known to disintegrate many viruses
including influenza A (85). Thus, the gut microbiota is likely to
influence COVID-19 pathogenicity, and conversely, SARS-CoV-2
may influence the gut microbiota leading to dysbiosis and other
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unpleasant consequences (86). Therefore, the alteration of the
composition of existing microbiota and health conditions during
SARS-CoV-2 infection is likely to have a major role in
establishing the susceptibility and resilience of an individual to
COVID-19. However, most of the COVID-19 severe symptoms
and fatalities occur in individuals having some risk factors such as
aging, preexisting comorbidities, and, to some extent, gender,
which are indirectly characterized by disrupted microbiome
status (87).

Like gastrointestinal system, the respiratory microbiome
constitutes the community of differentiated bacterial phyla like
Bacteroidetes, Firmicutes, and Proteobacteria and has a protective
role in the host immunity (44, 88) (Figure 4A). Han et al. showed
that the COVID-19 infection can alter the lung microbiome (89).
A severe dysbiosis was found among COVID-19 patients, with a
higher prevalence of pathogenic microbes such as Klebsiella
oxytoca, Faecalibacterium prausnitzii, Lactic Acid Bacteria, and
Tobacco mosaic virus (TMV) (Figure 4B). The serious
inflammatory environment in the lungs correlated with Rothia
mucilaginosa, TMV level, and SARS-CoV-2, suggesting a key
role of respiratory microbiota in COVID-19 disease. Other
studies also reported fecal microbial changes in 15 subjects
infected with COVID-19 that correlated with high severity and
abundance of Coprobacillus, Clostridium ramosum, and
Clostridium hathewayi, and reduced levels of Faecalibacterium
prausnitzii and Alistipes onderdonkii (90, 91) (Figures 4A, B).

The microbiota existing outside of the reproductive tract is
significantly mediated by the sex steroid hormones. Many studies
conducted on mice, fish, and humans have analyzed the sex
difference in gut microbiota. This subject of whether the sex
difference in gut microbiome in humans has any involvement in
the disparity of viral infection is an interesting area to study (92).
In a study, gender differences correlated with the overall
composition of gut microbiota. The gut microbiome in women
was found to have a lower occurrence of Bacteroidetes compared
to men (93). An animal study evaluated gender-specific
variations in the composition of gut microbiota (94, 95). The
systemic estrogen levels may be influenced by dietary fiber,
which is the main energy source of gut microbial fermentation
and, hence, formulates the gut microbiota (94, 96).
ENVIRONMENTAL MEDIATORS

In addition to biological differences accounting for a significant
gender disparity of COVID-19, the influence of environmental
factors could also play a part (97).

Lifestyle
Lifestyle choices among the genders possibly makes a huge
difference. Historically, it has been noticed that men are more
habitual of smoking than women. Smokers tend to have
weakened lungs leading to chronic lung and heart diseases
that could be the worst outcome, if infected with COVID-19
(97–100). In China, the smoking prevalence in men is 57.6%
which is nearly 10 times more than the women with 6.7% (101).
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A

B

FIGURE 4 | Illustration showing the impact of healthy and unhealthy microbiota on respiratory tract infection. The complex relationship via gut-lung axis might be
crucial in determining the vulnerability of respiratory tract to COVID-19, as an outcome of potential variation and crosstalk between (A) healthy gut microbiota with
occurrence of fewer Bacteriodetes and (B) respiratory microbiota with prevalence of more Klebsiella and Ruthia sps in virus infected alveolus.
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The lower airways of smokers have shown a higher expression of
ACE2, suggesting a higher risk for COVID-19 (102, 103). Such
findings are an indication of one of the factors behind the
increased mortality in men with COVID-19 which needs
further validation.

Exercise
The decreased incidence rate of COVID-19 symptoms in women
can be also related to the physical activity engaging frommoderate-
to-vigorous one. Women are considered to be physically more
active when compared with men who prefer prolonged and
intensive exercises (1, 104). Prolonged and vigorous exercise may
lead to immunosuppression; on the contrary, mild and moderate
exercise enhances immune response and significantly minimizes
the risk and severity of respiratory viral infection. This is supported
by a number of studies that explain a moderate level of exercise
lowers inflammation and boosts the immune function. Regular
mild physical activity influences the level of hormones related to
stress, which downregulates intense inflammation of the respiratory
tract and helps in activating the anti-viral innate immunity
polarising the immune function towards a Th2 profile, extensive
research is needed to study cellular and molecular cascades through
which exercise regulates immune response (104–106).

Nutrition
A study shows nutritional environment during the post and
prenatal period is associated with a reduced mortality rate
among females in case of HIV, for example, high-fat diet and
the micronutrients like Vitamin B, C, and E supplements have a
reduction of 32% (107). Another study suggests the benefits of
supplementary maternal micronutrients in women compared to
men (108, 109).
Frontiers in Immunology | www.frontiersin.org 924
CONCLUSIONS AND PERSPECTIVE

Immunity, X-chromosome associated genes, and sex hormones
are the main distinguishing factors that are likely to offer greater
resistance against SARS-CoV-2 in women. The evidence
suggesting important decisive factors of gender-related
disparity in immunity may impact on the onset of COVID-19
and vaccination outcomes.
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Prével F, Claudinot S, Isorce N,

Teixeira F, Grasset C, Xenarios I,
Lopez-Mejia IC, Fajas L and Fasel N

(2022) Sex-Biased Control of
Inflammation and Metabolism by a
Mitochondrial Nod-Like Receptor.

Front. Immunol. 13:882867.
doi: 10.3389/fimmu.2022.882867

ORIGINAL RESEARCH
published: 16 May 2022

doi: 10.3389/fimmu.2022.882867
Sex-Biased Control of Inflammation
and Metabolism by a Mitochondrial
Nod-Like Receptor
Tiia Snäkä1, Amel Bekkar1, Chantal Desponds1, Florence Prével1, Stéphanie Claudinot1,
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Mitochondria regulate steroid hormone synthesis, and in turn sex hormones regulate
mitochondrial function for maintaining cellular homeostasis and controlling inflammation.
This crosstalk can explain sex differences observed in several pathologies such as in
metabolic or inflammatory disorders. Nod-like receptor X1 (NLRX1) is a mitochondria-
associated innate receptor that could modulate metabolic functions and attenuates
inflammatory responses. Here, we showed that in an infectious model with the human
protozoan parasite, Leishmania guyanensis, NLRX1 attenuated inflammation in females
but not in male mice. Analysis of infected female and male bone marrow derived
macrophages showed both sex- and genotype-specific differences in both
inflammatory and metabolic profiles with increased type I interferon production,
mitochondrial respiration, and glycolytic rate in Nlrx1-deficient female BMDMs in
comparison to wild-type cells, while no differences were observed between males.
Transcriptomics of female and male BMDMs revealed an altered steroid hormone
signaling in Nlrx1-deficient cells, and a “masculinization” of Nlrx1-deficient female
BMDMs. Thus, our findings suggest that NLRX1 prevents uncontrolled inflammation
and metabolism in females and therefore may contribute to the sex differences observed
in infectious and inflammatory diseases.

Keywords: inflammation, innate immunity, metabolism, sex, nod-like receptor X1
INTRODUCTION

Different factors including XY-encoded genes and sex hormones contribute to sex-dependent
variations in the incidence of different infectious and inflammatory diseases (1). Transcriptional
analysis of unstimulated female and male immune cells has revealed sex-specific gene expression
patterns, with differences mainly in type I interferon (IFN)-response genes that were enriched in
females (2–4). In addition, immune cells express receptors for sex hormones: estrogens (17-b-
estradiol), androgens (testosterone) and progesterone. These hormones are modulators of immune
cells and contribute to differences in cell activation and functionality (5–7). Binding of estrogens to
their nuclear receptors, estrogen receptor alpha and beta (ERa and ERb, respectively) promotes or
org May 2022 | Volume 13 | Article 882867128
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dampens immune signaling in innate immune cells in a dose-
dependent manner. While physiological levels of estrogens tend
to promote type I IFN responses, higher doses are
immunosuppressive (1, 5, 8). Moreover, estrogens play a key
role in the resolution of inflammation and cutaneous repair by
promoting anti-inflammatory macrophage activation (9–11).

To respond to infection and cellular damage, immune cells
are able to adapt their functional profiles not only by activation
of different transcriptional profiles but also by engaging specific
metabolic pathways. Indeed, the regulation of energy metabolism
is crucial for innate immune cell function and for example plays
a major role in macrophage activation and polarization to either
pro-inflammatory M1 or anti-inflammatory M2 macrophage
subtypes allowing adaptation to different environments. While
M1 macrophages are characterized by a high glycolytic rate and
play a role in pathogen clearance, M2 macrophages rely on
mitochondrial oxidative phosphorylation (OXPHOS) and
promote tissue repair (12–14). Mitochondria are key organelles
in energy metabolism and sex- and tissue-specific differences in
mitochondrial function and morphology have been reported
(15–17). Mitochondrial enzymes play a key role in sex
hormone biosynthesis, and in turn sex hormones, mainly
estrogens, regulate mitochondrial function and morphology via
nuclear or mitochondrial ERs to promote mitochondrial
metabolism (18, 19).

Nod-like receptor X1 (NLRX1) is a unique mitochondrial
NOD-like receptor (NLR) implicated in the control of
inflammation and metabolism in both infectious and
inflammatory diseases. It was first described as a traditional
RNA-binding pathogen recognition receptor (PRR) involved in
mitochondrial antiviral immunity mainly by attenuating type I
IFN or nuclear factor-kB (NF-kB) signaling (20–23). However,
recent studies have shown that NLRX1 plays an important role in
the control of inflammation in several models of cancer and
tissue injury, independently of its role in pathogen recognition
(24–27). In addition, due to its localization at the mitochondria,
the central hub of metabolism and immunity, several studies
suggest a role for NLRX1 in the maintenance of mitochondrial
physiology, function, and reactive oxygen species (mtROS)
production following infection or injury (28–31). Interestingly,
sex differences in all these aspects have been described, however,
no studies have reported a potential link to an NLR.

To investigate the role of NLRX1, we used an experimental
murine model based on a protozoan parasite, Leishmania
guyanensis (Lgy), inducing cutaneous lesions at the site of the
infection. This causative agent of human cutaneous leishmaniasis
can induce a more exacerbated hyperinflammatory form of the
disease when carrying in its cytoplasm an endosymbiont virus,
Leishmania RNA Virus 1 (LRV1) with a double-stranded viral
RNA as genome (32–35). Upon phagocytosis of the parasite into
macrophages, the viral double stranded RNA (dsRNA) is
recognized by the macrophage endosomal Toll-like receptor 3
(TLR3) and induces a strong type I IFN mediated antiviral
response and NF-kB mediated pro-inflammatory cytokines
such as interleukin 6 (IL-6) and as tumor-necrosis factor a
(TNFa) leading to an exacerbated disease outcome (36, 37). This
Frontiers in Immunology | www.frontiersin.org 229
experimental model allowed us to investigate not only the
inflammatory response in in vitro infected macrophages but
also the in vivo development of exacerbated lesions in mice.
Here, we showed that NLRX1 controlled viral mediated
inflammation and metabolism in a sex-dependent manner.
MATERIALS AND METHODS

Ethics Statement
All animal experimentation protocols described in this study
were approved by the Swiss Federal Veterinary Office (SFVO),
under authorization numbers VD2113.2 and VD3551. Animal
handling and experimental procedures were undertaken with
strict adherence to the ethical guidelines given by the SFVO and
under inspection by the Department of Security and
Environment of the State of Vaud, Switzerland.

Mice
Wild-type (WT) (C57BL/6JOlaHsd) mice were purchased from
Envigo (Netherlands) and Nlrx1-deficient mice (Nlrx1-/-)
(B6.129-Nlrx1tm1 Tsc) were generated previously by replacing
the first four coding exons with a neomycin cassette, that was
later removed (38). The mice were previously backcrossed onto
the C57BL/6JOlaHsd background for at least 5 generations. Mice
were genotyped by PCR using tissue-isolated genomic DNA
using the KAPA Mouse Genotyping Kit (KAPA Biosystems).
Mice were maintained at the animal facility of the Center for
Immunity and Immunology Lausanne (CIIL) (Switzerland) in a
pathogen-free environment. Males and females (6-9 weeks old)
were used for experiments. In vivo experiments were performed
at a biosafety level 2 (BSL-2) animal facility at the CIIL. Cages
were enriched with one igloo, two carboard tubes, one wood
stick, and tissues. Experiments were performed after one week of
acclimation in the BSL-2 animal facility. Food (SAFE or KLIBA
NAGAF) and water were provided ad libitum. Light cycle was
maintained at 13 hours light and 11 hours darkness, temperature
was set at 21°C ± 2 and humidity was kept at 55% ± 10. The
oligonucleotides used for genotyping of Nlrx1-deficient
mice were:

Nlrx1 “WT For”: 5’-TTA GAC TGG TGT TAC GGG AGA
CTG-3’

Nlrx1 “Common Rev”: 5’-CCC AGG CAC TGT TGT CCT
ACA-3’

Nlrx1 “KO For”: 5’-TAA GGG TTC GCG TAC GGT G-3’

Strains
Two isogenic clones of Leishmania guyanensis (Lgy) were used. A
LRV1-bearing (LRV1+ LgyM4147/SSU : IR2SAT-LUC(b)c3) and
LRV1-cured (LRV1- LgyM4147/SSU : IR2SAT-LUC(b)c3) Lgy
(named LgyLRV1+ and LgyLRV1-, respectively) were obtained
by drug treatment of LRV1+ strain of Lgy M4147 (MHOM/BR/
75/M4147) containing a firefly luciferase (ffLUC) gene as
described previously (39). Lgy parasites were cultured at 26°C
in Schneider’s Drosophila medium (Gibco) supplemented with
20% of Fetal Bovine Serum (FBS, Gibco), 1% penicillin/
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streptomycin (BioConcept), 2% HEPES buffer (BioConcept)
and 0.6 mg/ml 6-Biopterin (Sigma-Aldrich) and 0.2% Hemin
folate (Sigma-Aldrich, Fluka). For infection, parasites were
cultured for 6 days to obtain stationary phase infectious
metacyclic promastigotes.

Bone Marrow Derived Macrophage
(BMDM) Culture, Infection and Stimulation
BMDMs were isolated from tibias and femurs of non-infected
female and male WT and Nlrx1-/- mice. Macrophages were
cultured at 37°C and 5% CO2 in complete Dulbecco’s modified
Eagle Medium (DMEM) supplemented with 10% FBS, 1%
penicillin/streptomycin, 1% HEPES buffer and 50 ng/ml of
murine recombinant mouse macrophage colony stimulating
factor (rmM-CSF, Immunotools) for 6 days. At day 3, fresh
complete DMEM supplemented with rm-MCSF was added. At
day 6, adherent BMDMs were isolated and plated at a
concentration of 1.25 x 106 cells/ml one day prior of infection.
BMDMs were infected at 35°C and 5% CO2 with stationary
phase parasites with a multiplicity of infection (MOI) of 5
parasites per macrophage or stimulated with 2 mg/ml of
polyinosinic-polycytidylic acid (poly I:C) (Immunotools).

Mice Infection and Quantification of
Inflammation and Parasite Burden by
Bioluminescence
Age-matched (6-9 weeks old) female or male mice were injected
in the hind footpads with 3 x 106 stationary phase Lgy
promastigotes in 50 ml of Dulbecco’s Phosphate-Buffered Saline
(dPBS, Gibco). To follow disease progression, footpad swelling
was measured weekly using a Vernier caliper. When required, to
quantify inflammation and parasite burden, mice were injected
intraperitoneally (i.p.) with 200 mg/kg of Luminol sodium salt
(Carbosynth) or 150 mg/kg of VivoGlo Luciferin (Promega)
diluted in dPBS, respectively. Bioluminescence from mouse
footpads was measured by In-vivo Xtreme II (BRUKER) and
quantified using Molecular Imaging (MI) software (BRUKER) as
described previously (40).

Histology and Immunohistochemistry (IHC)
Footpads were collected and fixed overnight at 4°C with 4%
paraformaldehyde (PFA, Fluka). Following fixation, tissue
samples were dehydrated and included in paraffin. 3.5 mm
paraffin sections were generated using a Microm HM355
microtome (Thermo Scientific) and stained with hematoxylin
(J.T Baker) and eosin (Merck) stain. Sections were visualized
using a NanoZoomer S60 (Hamamatsu Photonics K.K.) scanner
with Nikon Plan Apochromat 40x objective using brightfield
contrast and analyzed using NPD.scan3.3 (Hamamatsu
Photonics K.K.). Representative images of the sections
are shown.

RNA Extraction From Footpads and
qRT-PCR
Footpads from infected WT or Nlrx1-/- mice were collected and
snap-frozen in liquid nitrogen and kept at -80°C for storage. For
Frontiers in Immunology | www.frontiersin.org 330
RNA extraction, tissues were lysed in TRI Reagent (Molecular
Research Center, inc) using a TissueLyser system (Qiagen). RNA
was isolated by chloroform/isopropanol/ethanol phase
separation protocol as described previously (41). RNA was
quantified using NanoDrop 2000 (ThermoFisher Scientific)
and 2000 ng/ml of RNA was used for cDNA synthesis.
Alternatively, BMDMs were lysed with PRImeZOL Reagent
(Canvax) and RNA was isolated using Direct-zol-96 RNA
(Zymo Research) according to the manufacturer’s instructions.
cDNA was synthesized using SuperScript II Reverse
Transcriptase (Invitrogen). Real-time quantitative PCR (qRT-
PCR) was performed using the LightCycler 480 (Roche). The
results were analyzed using the threshold cycle (CT) method (2-
DDCt) for relative quantification of gene expression and
normalized to L32 housekeeping gene encoding for 60S
ribosomal protein. The oligonucleotides used were:

L32: 5′-AAG CGA AAC TGG CGG AAA C-3’ and 5′-TAA
CCG ATG TTG GGC ATC AG-3’

Il6: 5’-TCC AGT TGC CTT CTT GGG AC-3’ and 5’-GTC
TAA TTA AGC CTC CGA CT-3’

Tnfa: 5’-CAT CTT CTC AAA ATT CGA GTG ACA A-3’ and
5’- TGG GAG TAG ACA AGG TAC AAC CC-3’

Ifnb: 5’-AAC CTC ACC TAC AGG GC-3’ and 5′-CAT TCT
GGA GCA TCT CTT GG-3’

Nlrx1: 5’-CAT GGA AAC TCG GCA GAC AG-3’ and 5’-
GGC TAA ACC ACT CGG TGA GG-3’

Western Blot Analysis
BMDMs were lysed with 1.5x Laemmli’s Sample Buffer in H2O
and incubated at 95°C for 3 min. Cell lysates were size-fractioned
by 8% SDS-PAGE and wet-transferred to a nitrocellulose
membrane. Membranes were blocked with 5% non-fat dry
milk in Tris buffered saline with 0.1% Tween-20 (TBST) at
room temperature. Western blotting was performed using the
following antibodies: anti-NLRX1 (1/1000, Proteintech, 17215-1-
AP), anti-y-TUBULIN (1/10 000, Sigma-Aldrich, T5326), goat
anti-rabbit IgG (H+L) HRP (1/2500, Promega, W4011) and goat
anti-mouse IgG (H+L) HRP (1/2500, Promega, W4021). ECL
Western Blotting detection reagent (GE Healthcare Life
Sciences) was used for revelation.

Enzyme-Linked Immuno-Sorbent
Assay (ELISA)
The concentrations of IFNb (Thermo Fisher, 424001), IL-6
(Invitrogen, 88-7064-88) and TNF-a (Invitrogen, 88-7324-88)
in collected cell-free supernatants at 24 hours from infected or
stimulated BMDMs were determined by ELISA following the
manufacturer’s instructions. Optical density was read on a
Synergy HT Multi-Mode Plate Reader (BioTek Instruments) at
450/570 nm.

High Throughput Microscopy
BMDMs were seeded in m-Plate 96 Well Black (Ibidi) at a
concentration of 1.25 x 106 cells/ml. Cells were infected or
stimulated for 8 and 24 hours and fixed with 4% PFA (Fluka).
Cells were subsequently stained with 4′,6-diamidino-2-
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phenylindole (DAPI) (Molecular Probes) and Alexa Fluor 488
phalloidin (Molecular probes) to stain the nuclei and cytoplasm,
respectively. Images were acquired using ImageXpress Micro
Confocal (Molecular Devices) with a 40x objective. Parasite and
cell number per well were quantified using MetaExpress custom
Module Editor (Molecular Devices) as described previously (42).

RNA Sequencing of BMDMs and
Bioinformatics Analysis
BMDMs from age-matched WT and Nlrx1-/- mice were infected
with Lgy parasites or stimulated with poly I:C for 8 and 24 hours.
RNA was extracted using a RNeasy Kit (Qiagen) following
manufacturer’s instructions. RNA quality and concentrations
were determined by Fragment Analyzer and Ribogreen QubIT
quantification, respectively, and libraries for sequencing were
then prepared at the Lausanne Genomic Technologies Facility
(GTF). Statistical analysis was performed for genes
independently in R (R version 4.0.3). Genes with low counts
were filtered out according to the rule of 1 count(s) per million
(cpm) in at least 1 sample. Differential expression was computed
with limma by fitting data to a linear model (43). Weighted gene
co-expression network analysis (WGCNA) was performed on
normalized data in R (package WGCNA 1.69). Modules were
identified by dynamic tree cut with a minimum module size=20.
Module eigengenes (MEs) that are the first principal component
of the module were calculated and relationship of module
eigengenes with infection status was assessed with a regression
analysis. Module eigengenes average predictions were plotted as
a heatmap. Gene Ontology (GO) enrichment analysis was
performed for gene co-expression modules against GO
categories using the topGO R package (topGO 2.26.0) and
gene ontology database (07.2019). Only biological processes
(BP) were considered for the analysis. For all modules, genes
were ranked according to their connectivity within a single
module as measured by the kwithin-index.

Metabolism Assessment by
Seahorse Analyzer
Metabolism measurement was performed with a Seahorse XFe96
Extracellular Flux Analyzer (Agilent). BMDMs were plated in a
Seahorse XF96 cell culture microplate (Agilent) overnight. Cells
were then infected with Lgy parasites for 8 hours and then pre-
incubated in assay medium (Seahorse XF DMEM pH 7.4,
Agilent) supplemented with 2 mM L-glutamine (Gibco), 1 mM
pyruvate (Gibco) and 25 mM glucose (Gibco) for 1h at 37°C
without CO2. To measure mitochondrial metabolism and
glycolysis, a Mito Stress Test and a Glycolytic Rate Assay were
performed, respectively, according to manufacturer ’s
instructions. Cells were treated with 1 mM Oligomycin
(Sigma), 2 mM FCCP (Sigma), 0.5 mM/0.5 mM Rotenone/
Antimycin A (Sigma) and 50 mM 2-deoxy-D-glucose (Sigma).
Results were analyzed using Wave Desktop software (Agilent)
and data was normalized to total protein concentration per well.
Briefly, post-assay, cells were lysed with a mixture of RIPA Buffer
IV (Biotech) and a complete protease inhibitor cocktail tablet
(Roche) in H2O. Protein concentration was quantified using
Frontiers in Immunology | www.frontiersin.org 431
Pierce BCA Protein Assay Kit (Thermo Fisher Scientific)
following manufacturer’s instructions. To assess the effect of
estradiol, cells were pre-treated with 200 pg/ml of 17-b estradiol
(Sigma) for 2 hours and estradiol was kept in the assay medium
for the duration of the assay.

Measurement of ROS Production
Intracellular and mitochondrial ROS production were measured
by the superoxide indicator dihydroethidium (DHE) (Thermo
Fisher Scientific) and the mitochondrial superoxide indicator
MitoSOX Red (Thermo Fisher Scientific). Briefly, cells were
infected with Lgy parasites or treated with poly I:C for 8 hours,
after which cells were labelled with 5mMDHE or 5 mMMitoSOX
Red in PBS with 5 mM glucose (Gibco) for 20 min at 37°C. After
incubation, cells were washed, and fluorescence was measured at
518/606 nm (MitoSOX Red) and 510/590 nm (DHE) using the
Spectramax i3 plate reader (Molecular Devices). Measures were
normalized to total protein concentration per well using Pierce
BCA Protein Assay Kit (Thermo Fisher Scientific) following
manufacturer’s instructions.

Electron Microscopy Analysis of
Mitochondria
After 8 hours of infection, cells were fixed in 2.5%
glutaraldehyde solution (Fluka) in PBS for 1 hour at room
temperature (RT), then postfixed with a mixture of 1% osmium
tetroxide (EMS) and 1.5% of potassium ferrocyanide (Sigma) in
PBS for 1 hour at RT. Samples were washed in distilled water,
spin down in low melting 2% agarose (Sigma) in H2O (Sigma),
let to solidify on ice, cut in 1 mm3 cube and dehydrated in
acetone solution (Sigma) at graded concentrations (30%, 40
min; 50%, 40 min; 70%, 40 min; 100%, 2x1 hour). This was
followed by infi l tration in Epon (Sigma) at graded
concentrations (Epon 1/3 acetone, 2 hours; Epon 3/1 acetone,
2 hours; Epon 1/1, 4 hours; Epon 1/1, 12 hours) and finally
polymerized for 48 hours at 60°C. Ultrathin sections of 50 nm
were cut on a Leica Ultracut (Leica Mikrosysteme GmbH) and
picked up on a copper slot grid 2x1 mm (EMS) coated with a
polystyrene film (Sigma). Sections were poststained with 2%
uranyl acetate (Sigma) in H2O for 10 minutes, rinsed several
times with H2O followed by Reynold’s lead citrate in H2O
(Sigma) for 10 minutes and rinsed several times with H2O.
Singles micrographs were taken with a transmission electron
microscope Philips CM100 (Thermo Fisher Scientific) at an
acceleration voltage of 80kV with a TVIPS TemCam-F416
digital camera (TVIPS GmbH). To determine the percentage
of mitochondria volume per cell volume, a grid (500 nm
spacing) was applied on each micrograph and each
intersection was defined as being part of the mitochondria,
nucleus, or cytoplasm. The stereology analysis was performed
using 3dmod and its stereology plugin (44).

Statistical Analysis
All graphs and statistical tests were generated in GraphPad Prism
[version 9.3.1 (350)]. Either unpaired Student’s t-test or two-way
ANOVA with multiple comparisons was used for bar graphs,
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while repeated-measure two-way ANOVA with Bonferroni’s
post-test correction was used for x/y curves. Significance was
reached with p values ≤ 0.05. p values are shown as * for p < 0.05,
** for p < 0.01, *** for p < 0.001 and **** for p < 0.0001.
RESULTS

Loss of NLRX1 Exacerbated Inflammation
and Tissue Damage Following LgyLRV1+
Infection of Female Mice
To investigate whether NLRX1 modulated the pathogenicity of
Lgy and affected disease progression, we first infected female
C57BL/6 wild-type (WT) or NLRX1-deficient (Nlrx1-/-) mice
with Lgy parasites containing the dsRNA LRV1 virus (LgyLRV1
+) and monitored lesion development weekly. In comparison to
WT female mice, Nlrx1-/- infected female mice showed
Frontiers in Immunology | www.frontiersin.org 532
significantly increased footpad swelling (Figure 1A) and signs
of inflammation as measured by in vivo bioluminescence
imaging following luminol injection (Figure 1B). However, no
significant differences were observed in parasite load as measured
by bioluminescence of luciferase expressing parasites
(Figure 1C). Thus, in female mice, NLRX1 seemed to
attenuate LRV1 mediated inflammation independently of the
parasite load.

To further confirm the role of NLRX1 in regulation of
inflammation, we collected non-infected and infected footpads
at the peak of infection. We did not observe any differences or
abnormalities in skin structure of non-infected Nlrx1-deficient
mice compared to WT (Figure 1D, upper panel). However,
correlating to the lesion severity, we observed an important
increase in thickness and in immune cell infiltration in the
dermis (“D”) of LgyLRV1+ infected Nlrx1-/- mice (Figure 1D,
bottom panel) compared to WT mice. In addition, we observed
that at the peak of infection pro-inflammatory markers Ifnb and
A B

D

E F G

C

FIGURE 1 | NLRX1 attenuated inflammation and tissue damage in infected female mice. Wild-type (WT) and Nlrx1-deficient (Nlrx1-/-) C57BL/6 female mice (n=5 mice
per group) were infected in both hind footpads with 3x106 stationary phase LgyLRV1+ parasites containing a luciferase gene. (A) Footpad swelling was measured
weekly as a proxy of disease progression. At the peak of infection [4 weeks post-infection (p.i.)] (B) in vivo inflammation and (C) parasite burden was visualized and
quantified by bioluminescence imaging after luminol and luciferin injection, respectively. Graphs are presented as mean +- SEM and are representative of three
independent experiments. (D) Representative images of hematoxylin and eosin (H&E) staining of footpad sections. Upper panel show normal histological appearance
of the epidermis and dermis of female WT and Nlrx1-/- mouse footpads. Bottom panel: lesions from hind footpads of LgyLRV1+ infected female mice were dissected
at 4 weeks p.i. and cell recruitment to lesion site was visualized. Magnification: 40x, scale bar: 50 mm. Sq, squames. E, epidermis. D, dermis. M, muscle. (n=5 mice
per group). Relative mRNA levels of pro-inflammatory genes (E) Ifnb, (F) Il6 and (G) Tnfa were quantified in the lesions of infected WT and Nlrx1-/- female mice at 4
weeks p.i. using RT-qPCR. Graphs are presented as mean +- SEM (n=8 mice per group). Statistical significance was assessed by two-way ANOVA with multiple
comparisons (A) or unpaired, parametric t-test (B-C, E-G). ns = non-significant, *p ≤ 0.05 **p ≤ 0.01, ***p ≤ 0.001.
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Il6 (Figures 1E, F) were significantly upregulated in lesions of
Nlrx1-/- mice infected with LgyLRV1+ parasites, while no
differences were observed in Tnfa expression as measured by
qRT-PCR (Figure 1G). Thus, taken together these results
supported a role for NLRX1 in controlling inflammation by
limiting immune cell infiltration and tissue damage as well as
type I IFN and IL-6 expression in lesions of female mice, while
not affecting TNFa expression known to be responsible for
parasite killing (36).

In Vitro Analysis of Female BMDMs
Suggested a Role for NLRX1 in the
Regulation of Inflammation, Infection,
Metabolism, and Sex Hormone Signaling
Several studies have reported a downregulation of NLRX1 in
different experimental models such as viral and bacterial
infections and brain injury (27, 45, 46). Therefore, we
investigated whether infection with Lgy regulated Nlrx1
expression. Thus, we infected bone marrow derived
macrophages (BMDMs) isolated from WT female mice with
LgyLRV1+ parasites or stimulated them with polyinosinic-
polycytidylic acid (poly I:C), a known synthetic dsRNA agonist
of TLR3. We observed a downregulation of Nlrx1mRNA in both
infected and poly I:C treated BMDMs at 8 hours post-infection
(p.i.) when infection is established, however with a fold-change
inferior to 2 (Figure 2A). This downregulation was no longer
observed at 24 hours p.i. (Supplementary Figure S1A).
Similarly, we did not observe any significant changes in
NLRX1 protein levels at 8 or 24 hours p.i. (Supplementary
Figure S1B), suggesting a transcriptional regulation of NLRX1
only in the early phase of infection with LgyLRV1+ parasites or
after poly I:C treatment.

To further characterize the increased tissue damage and
inflammation observed in Nlrx1-/- female mice, we next sought
to determine any possible effect of NLRX1-deficiency on
inflammation and Lgy infection in in vitro infected BMDMs.
Thus, we infected WT and Nlrx1-/- female BMDMs with
LgyLRV1+ or stimulated them with poly I:C and measured
pro-inflammatory cytokines in the cell-free supernatant at 24
hours post-infection. As expected, no cytokines were detected in
non-infected cells. In contrast, NLRX1-deficiency resulted in a
significantly increased production of IFNb in LgyLRV1+ infected
or poly I:C treated cells (Figure 2B). We did not observe any
differences in IL-6 or TNFa production (Figures 2C, D)
suggesting that IFNb was produced by infected macrophages
whereas, upon tissue damage, Il6 up-regulation measured in
lesions was likely produced by other sources such as
keratinocytes, dendritic cells and fibroblasts (47).

In infectious models, loss of NLRX1 has been reported to
promote either pathogen survival or clearance depending on the
model (46, 48–52). To investigate whether NLRX1 affected the
number of parasites per BMDM, we infected WT and Nlrx1-/-
female BMDMs with LgyLRV1+ parasites for 8 and 24 hours. We
did not observe differences in parasite burden in the
establishment of infection (8 hours p.i.) (Supplementary
Figure S1C) suggesting that NLRX1 did not affect the
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phagocytic capacity of BMDMs. In contrast, at 24 hours post
infection, the absence of NLRX1 resulted in a decreased number
of parasites per cell (Figure 2E). This decrease was associated to
an increased macrophage survival in absence of NLRX1 that was
observed only at 24 hours p.i. (Supplementary Figures S1D, E)
(27, 53). However, as shown in Figures 1A, C, despite an
increased macrophage survival with a lower number of
parasites per cell in vitro, in vivo Nlrx1-deficient female mice
developed larger lesions independently of the parasite load.

To better define the role of this mitochondrial sensor in
macrophages isolated from female mice, we performed a
transcriptomics analysis of WT and Nlrx1-/- female BMDMs
infected with LgyLRV1+ parasites or stimulated with poly I:C for
8 or 24 hours. We then performed a global weighted correlation
network analysis (WGCNA) to group genes with similar
expression patterns into modules. WGCNA has been used
previously to identify key biological processes and gene
modules associated with the studied disease (54–57). The
underlying hypothesis is that genes involved in the same
function or pathway or that are co-regulated are expected to be
in the same module named by a color. Genes that do not group to
any module form the “grey” module and are discarded from the
analysis. The association of the WGCNA modules with the
different conditions is represented as heatmaps at 8 and 24
hours (Figure 2F, Supplementary Figure S1F). The genes in
each module are listed in Supplementary Tables 1, 2. We
performed a gene ontology (GO) enrichment analysis for each
module to identify the biological processes associated to each
module. For each module GO terms are listed in Supplementary
Tables 3 and 4. Based on the GO analysis, we could group most
of the modules into 2 main categories of GO terms (1):
inflammation and infection and (2) mitochondria and
metabolism (Supplementary Figure S1G). These categories
were based on a selection of several keywords such as
“interleukin” or “biosynthesis”, respectively. Identification of
such biological processes was not surprising because of the
choice of an infectious model and a knock-out gene for a
mitochondrial receptor described to play a role in both
categories. In contrast, both at 8 and 24 hours p.i., more than a
third of the modules (34.8% and 45.5%, respectively) were
enriched in GO terms associated to sex hormone signaling
(Figure 2F, Supplementary Figures S1F, G) such as
“regulation of androgen receptor signaling pathway”
(GO:0060765) or “cellular response to estrogen stimulus”
(GO:0071391). These GO terms were rather unexpected and
suggested a potential sex-bias in the NLRX1 phenotype.

In Male Mice Loss of NLRX1 Did Not
Affect Lesion Severity
Although no association between NLRX1 and sex hormone
signaling has been described to our knowledge, many studies
have shown that sex hormones may play a role in the regulation
of innate immune cell activation, inflammation, and
mitochondrial function (1, 58). Based on the transcriptomics
analysis of female BMDMs, we decided to investigate whether the
Nlrx1-/- phenotype was dependent on sex. Thus, we infected male
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C57BL/6 WT or Nlrx1-/- mice with LgyLRV1+ parasites. In
contrast to female mice, we found no significant differences in
the development of lesions (Figure 3A). Moreover, at the peak of
infection, male mice did not display any differences in
inflammation as measured by in vivo bioluminescence imaging
(Figure 3B). However, we observed a reduced parasite burden in
Nlrx1-/- mice in comparison to WT (Figure 3C) that we did not
observe in female mice (Figure 1C). Consistent with the absence
of difference in inflammation and contrary to female mice, we
observed no significant differences in skin structure, dermal
Frontiers in Immunology | www.frontiersin.org 734
thickness or immune cell infiltration between non-infected
(Figure 3D, upper panel) or LgyLRV1+ infected male mice
(Figure 3D, bottom panel). Finally, we observed a significant
reduction in Ifnb mRNA levels in the lesions of Nlrx1-/- male
mice infected with LgyLRV1+ (Figure 3E) in comparison to WT,
but no differences in Il6 or Tnfa mRNA levels as measured by
qRT-PCR (Figures 3F, G). Taken together, NLRX1 did not
modulate lesion development or inflammation in male mice
contrarily to results obtained with female mice suggesting a
strong sex bias in the function of NLRX1.
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FIGURE 2 | Inflammatory profile and transcriptomics analysis of female BMDMs. Bone marrow derived macrophages (BMDMs) from WT and Nlrx1-/- female mice
were isolated and infected with stationary phase LgyLRV1+ parasites or stimulated with the TLR3 agonist poly I:C (2 mg/ml). Nlrx1 mRNA levels were quantified by
qRT-PCR (A) at 8 hours p.i. (n=3 independent experiments). (B–D) After 24 hours, supernatants were collected and IFNb, IL-6 and TNFa secretion was quantified
by ELISA in LgyLRV1+ or poly I:C stimulated BMDMs. (n=3 independent experiments). (E) At 24 hours p.i., BMDMs were fixed with 4% PFA and stained with DAPI
and phalloidin. Cells were visualized with a high content microscope (40x) and intracellular parasite load was quantified using a MetaXpress software (n=2
independent experiments). (F) Transcriptomics analysis of WT and Nlrx1-/- female BMDMs (n=3 mice per group) infected with LgyLRV1+ parasites or stimulated with
poly I:C (2 mg/ml) for 24 hours. The heatmap represents the global weighted correlation network analysis (WGCNA) and module names are represented by a color. A
gene ontology (GO) enrichment analysis for each module was performed to identify the biological processes associated to each module. represents modules
enriched in GO terms associated with sex hormone signaling. Graphs are presented as mean +- SEM and significance was tested by two-way ANOVA with multiple
comparisons (A-F). ns = non-significant, *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001.
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Female and Male BMDMs Showed
Differences in Inflammation and Infectivity
in Absence of NLRX1
To better understand the sex-bias in NLRX1 function, we
decided to investigate whether isolated macrophages also
displayed a sex-dependent phenotype. First, we infected both
female and male WT BMDMs with Lgy parasites or stimulated
them with poly I:C for 8 and 24 hours to analyze whether NLRX1
expression was affected by sex. At 8 or 24 hours p.i., we did not
observe any significant differences in Nlrx1 mRNA (Figures 4A,
B) and protein levels (Supplementary Figure S2A) between
females and males, suggesting that biological sex did not directly
affect NLRX1 expression in BMDMs. Based on the in vivo data,
the role of NLRX1 in the regulation of inflammation and
infection was highly dependent on sex. Thus, we measured
IFNb, IL-6 and TNFa cytokine production at 24 hours post-
infection in both female and male WT and Nlrx1-/- BMDMs
infected with LgyLRV1+ parasites or stimulated with poly I:C.
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No cytokines were detected in non-infected cells. Consistent
with the lesions, increased IFNb production (Figure 4C;
Supplementary Figure S3A) was specific to female Nlrx1-/-

BMDMs infected with LgyLRV1+ or treated with poly I:C,
whereas we did not observe any differences between male
BMDMs. Interestingly, the Nlrx1-/- female BMDMs showed
a similar IFNb production compared to males. Surprisingly
and in contrast to the lesions, NLRX1-deficiency resulted
in a significantly increased production of both IL-6 and
TNFa levels (Figures 4D, E; Supplementary Figures S2B,
S3B, C) in Nlrx1-/- male BMDMs in comparison to WT
male BMDMs.

Since we observed differences in cytokine profiles of female and
male BMDMs, we investigated whether also parasite burden in
BMDMs was affected by sex. As previously, we infected WT and
Nlrx1-/- female and male BMDMs with LgyLRV1+ parasites for 8
and 24 hours. At 8 hours p.i. female and male BMDMs showed
similar parasite burdens independently of the genotype
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FIGURE 3 | In male mice NLRX1 did not regulate inflammation or tissue damage. Wild-type (WT) and Nlrx1-deficient (Nlrx1-/-) C57BL/6 male mice (n=4 mice per
group) were infected in both hind footpads with 3x106 stationary phase LgyLRV1+ parasites (A) Footpad swelling was measured weekly as a proxy of disease
progression. At the peak of infection (4 weeks p.i.), (B) in vivo inflammation and (C) parasite burden was visualized and quantified by bioluminescence imaging after
luminol and luciferin injection, respectively. Graphs are presented as mean +- SEM and are representative of three independent experiments. (D) Representative
images of hematoxylin and eosin (H&E) staining of footpad sections. Upper panel show normal histological appearance of the epidermis and dermis of male mouse
footpads. Bottom panel: lesions from hind footpads of LgyLRV1+ infected male mice were dissected at 4 weeks p.i. and cell recruitment to lesion site was visualized.
Magnification: 40x, scale bar: 50 mm. Sq, squames. E, epidermis. D, dermis. M, muscle. (n=5 mice per group). Relative mRNA levels of pro-inflammatory genes (E)
Ifnb, (F) Il6 and (G) Tnfa were quantified in the lesions of infected WT and Nlrx1-/- male mice at 4 weeks p.i. using RT-qPCR. Graphs are presented as mean +-
SEM. (n=9-10 mice per group). Statistical significance was assessed by two-way ANOVA with multiple comparisons (A) or unpaired, parametric t-test (B, C, E–G).
ns = non-significant, *p ≤ 0.05.
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(Supplementary Figure S2C). However, at 24 hours p.i. WT female
BMDMs maintained a higher parasite burden, whereas female
Nlrx1-/- BMDMs and both male BMDMs showed a significantly
reduced and similar parasite burden (Figure 4F; Supplementary
Figure S3D). Although we did not observe statistically significant
differences in macrophage survival, at 24 hours but not at 8 hours
p.i., bothmale BMDMs andNlrx1-deficient female BMDMs seemed
to survive better in comparison toWT female cells correlating to the
lower parasite burden observed in these cells (Figure S2D, E).
Taken together, these results supported a strong association between
sex and NLRX1 function.

Both Sex and Genotype Affected
Metabolic Profiles and Mitochondria
of BMDMs
NLRX1 was shown to play a role in the regulation of both
OXPHOS and glycolysis, the two major metabolic pathways for
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energy production (31, 59). In addition, based on the
transcriptomics analysis of female BMDMs, NLRX1 seemed to
have a strong effect on cellular metabolism and mitochondrial
function. Thus, we sought to investigate whether the loss of
NLRX1 resulted in a change in OXPHOS or glycolysis, the two
major energetic pathways of the cell. To examine if NLRX1
affected OXPHOS, we determined the oxygen consumption rate
(OCR) in both female and male WT and Nlrx1-/- BMDMs
infected with LgyLRV1+ parasites for 8 hours. In non-infected
BMDMs, we observed very low OCR levels and no differences
between groups, suggesting a low metabolic activity in
unstimulated cells after 8 hours (Figure 5A). Moreover,
NLRX1-deficient female BMDMs infected with LgyLRV1+
showed a significantly increased basal mitochondrial
respiration compared to WT female, but that was comparable
to basal respiration of male BMDMs. In contrast we did not
observe differences in basal respiration between WT and Nlrx1-
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FIGURE 4 | Sex bias in inflammation and infection in absence of NLRX1. BMDMs from female and male WT and Nlrx1-/- mice were isolated simultaneously and
infected with LgyLRV1+ parasites or stimulated with TLR3 agonist poly I:C (2 mg/ml). After 8 hours (A) and 24 hours p.i. (B), Nlrx1 mRNA levels were quantified by
qRT-PCR (n=3 independent experiments). (C–E) After 24 hours, proinflammatory cytokines IFNb, IL-6 and TNFa were quantified in cell-free supernatants by ELISA in
LgyLRV1+ infected or poly I:C stimulated BMDMs. (n=3-4 independent experiments). (F) At 24 hours p.i., BMDMs were fixed with 4% PFA and stained with DAPI
and phalloidin. Cells were visualized with a high content microscope (40x) and intracellular parasite load was quantified using a MetaXpress software. (n=3
independent experiments). Graphs are presented as mean +- SEM and significance was tested by two-way ANOVA with multiple comparisons (A–F). ns = non-
significant, *p ≤ 0.05, ***p ≤ 0.001.
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deficient male BMDMs infected with LgyLRV1+ (Figure 5A;
Supplementary Figures S4A, S5A). To investigate whether
NLRX1 also affected glycolysis in BMDMs, we measured the
basal glycolytic rate in the same conditions. In non-infected cells,
we observed a very low glycolytic rate, and no differences
between groups (Figure 5B). Similarly to the pattern observed
Frontiers in Immunology | www.frontiersin.org 1037
for mitochondrial respiration, female Nlrx1-/- BMDMs infected
with LgyLRV1+ showed a significantly increased glycolytic rate
compared to WT female, but that was similar to the glycolytic
rate of male BMDMs. As before for mitochondrial
respiration, we did not observe differences in glycolytic rate
between WT and Nlrx1-deficient male BMDMs (Figure 5B;
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FIGURE 5 | In absence of NLRX1 female BMDMs had a male-like metabolic response. BMDMs from female and male WT and Nlrx1-/- mice were isolated
simultaneously and infected with LgyLRV1+ parasites for 8 hours. After 8 hours, (A) basal mitochondrial respiration and (B) basal glycolytic rate were assessed by
Seahorse XFe96 analyzer and adjusted to protein concentration per well (n=3-4 independent experiments). (C) Mitochondrial ROS (mtROS) production was
quantified in female and male BMDMs infected with LgyLRV1+ parasites or treated with poly I:C (2 mg/ml) for 8 hours. Cells were stained with MitoSOX Red (5 mM)
for 20 min at 37°C. Fluorescence was measured using a Spectramax i3 plate reader and adjusted to protein concentration per well. (n=3 independent experiments).
(D) Mitochondria structure and (E) the percentage of mitochondria volume per cell of female and male BMDMs infected with LgyLRV1+ parasites for 8 hours were
analyzed by transmission electron microscopy. Representative images are shown. Red arrows show examples of normal mitochondrial structure. LgyLRV1+
parasites are contoured in red (n=2 independent experiments, total of minimum 60 cells analyzed per group). Magnification: 4800x. Scale bar: 1 mm. (F) BMDMs
from female and male WT and Nlrx1-/- mice were pre-treated with 17b-estradiol (200 pg/ml) for 2 hours and estradiol was kept in the assay medium for the duration
of the assay. Basal mitochondrial respiration was assessed by Seahorse XFe96 analyzer and adjusted to protein concentration per well (n=4 independent
experiments). Graphs are presented as mean +- SEM and significance was assessed by two-way ANOVA with multiple comparisons (A–C) or unpaired, parametric
t-test (E, F). ns = non-significant, *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, ****p ≤ 0.0001.
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Supplementary Figure S5B). Taken together, these results
suggested a global effect of NLRX1 on female, but not on male
macrophage metabolism.

NLRX1 is localized at the mitochondria, and its function in
the control of inflammation has been linked to mitochondria and
in the modulation of mtROS production (21, 23, 24, 50, 60, 61).
This modulation occurs potentially through the interaction with
Ubiquinol-Cytochrome C Reductase Core Protein 2 (UQCRC2),
a subunit of the complex III of the respiratory chain (38, 62). We
measured mtROS and cellular ROS accumulation, by MitoSOX
Red and DHE respectively, in female and male BMDMs infected
with LgyLRV1+ parasites or treated with poly I:C for 8 hours.
Globally mtROS was reduced in Nlrx1-/- BMDMs independently
of sex, whereas no differences were observed in cellular ROS
(Figure 5C; Supplementary Figure S4B, S5C). To verify
whether mitochondrial morphology was affected by NLRX1-
defiency, we performed transmission electron microscopy
(TEM) on non-infected and LgyLRV1+ infected female and
male BMDMs. We did not observe any differences in
mitochondrial morphology between WT and Nlrx1-/- BMDMs
and no mitochondrial defects were observed (Figure 5D). On the
other hand, quantification of TEM images revealed a reduced
mitochondrial density and number in both female and male
Nlrx1-/- BMDMs compared to WT (Figure 5E ; Supplementary
Figure S4C, S5D) potentially explaining the reduced mtROS
production observed in these cells.

Since neither mtROS production nor mitochondrial structure
could explain differences observed in metabolism, we examined
whether sex differences in cellular bioenergetics could be
modified by the female hormone 17-b estradiol. Similarly to
the study done by Gupta et al. (2020) (3), estradiol treatment of
male BMDMs significantly reduced mitochondrial respiration
(Figure 5F). Surprisingly, estradiol treatment increased basal
respiration of WT female BMDMs but reduced basal respiration
ofNlrx1-deficient female BMDMs similarly to males (Figure 5F).
This male-like pattern of Nlrx1-deficient female cells after
estradiol treatment was specific to mitochondrial respiration
since estradiol increased the glycolytic rate only in females but
not in male BMDMs (Supplementary Figure S4D). Taken
together, these results suggested that macrophage metabolism
can be modulated by the female sex hormone and differences in
estradiol response might contribute to the sex bias observed in
the bioenergetics between WT and Nlrx1-deficient BMDMs.

In Female Mice NLRX1 Deficiency
Resulted in a “Masculinization” of the
BMDM Transcriptomic Profile
To better understand the complex interplay between NLRX1
genotype and sex, we decided to perform a second RNA
sequencing and WGCNA analysis including both female and
male BMDMs. To further confirm the role of NLRX1 in the
control of TLR3- and type I IFN-mediated inflammation, we
added a non-inflammatory strain of Lgy that does not carry the
LRV1 virus (LgyLRV1-) to the analysis. Infection with LgyLRV1-
strain does not induce NF-kB mediated pro-inflammatory
cytokines nor a potent type I IFN response thus leading to a
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less severe form of the disease (37, 63). We infected BMDMs with
both Lgy parasites or stimulated them with poly I:C for 8 or 24
hours. The relationship between the different modules and the
experimental conditions was assessed with a regression analysis
and module eigengenes average predictions are shown as
heatmaps at 24 and 8 hours (Figure 6A; Supplementary
Figure S6A, respectively). The genes in each module are listed
in Supplementary Tables 5, 6. In each condition, the heatmap
clusters the groups according to their similarity. Supporting the
male-like behavior of Nlrx1-deficient female cells, we could
observe that at 24 hours post-infection, in all condition except
with poly I:C treatment, the Nlrx1-/- female BMDMs clustered
more closely to the WT and Nlrx1-deficient male BMDMs than
to the WT female (Figure 6A). At 8 hours p.i., this clusterization
pattern was only observed with infection with LgyLRV1+
(Supplementary Figure S6A). As previously, we performed a
gene ontology (GO) enrichment analysis for each module to
identify the biological processes associated to each module. For
each module GO terms are listed in Supplementary Tables 7, 8.
As expected, GO enrichment analysis of the different modules
revealed that most modules were enriched in GO terms
associated to (1) Inflammation and infectivity and (2)
Mitochondria and metabolism. In addition, at 8 hours p.i.
more than half of the modules (60%) were enriched in GO
terms associated to (3) sex hormone signaling, while at 24 hours
p.i. we observed this enrichment in all modules, except the green
module (Figure 6A; Supplementary Figure S6A, S6B).

We next performed pairwise comparisons between the
different groups and plotted the number of significantly
differentially expressed genes both at 8 and 24 hours using a
cut-off of fold-change [-2:2] and an adjusted p-value < 0.05
(Figure 6B–D; Supplementary Figures S6C–G). We identified
only a few sex- or genotype-specific genes except in non-infected
BMDMs in which at 8 hours p.i. we identified a significant
number of genotype-specific genes (Supplementary Figure
S6C). In the last two comparisons, we compared opposite
genotypes with opposite sex. Interestingly, we observed a
common pattern that when we compared Nlrx1-/- female
BMDMs to a WT male, independently of the condition or
time-point, we observed less differences than when Nlrx1-/-

male BMDMs were compared to a WT female, suggesting that
the transcriptomic profile of female Nlrx1-/- cells was closer to a
male, as suggested by the WGCNA analysis.

To investigate whether we would be able to explain why
Nlrx1-/- female BMDMs had a male-like transcriptomics profile,
we wanted to identify genes that in Nlrx1-/- female BMDMs were
expressed at a similar level than in male BMDMs. To do so, we
looked for genes that were differentially expressed only in the
WT female BMDMs, but not between the three other groups,
Nlrx1-/- female, Nlrx1-/- male and WT male BMDMs. We used a
threshold of adjusted p-value inferior to 0.1. The analysis
identified only 3 genes in non-infected BMDMs at 8 hours
timepoint (Figure 6E): the lysophosphatidic acid receptor 1
(Lpar1), the vascular endothelial growth receptor factor 2
(Kdr) and the cyclic AMP-responsive element-binding protein
3-like protein 2 (Creb3l2). These genes play a role in
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inflammation (64–66), angiogenesis (67) and collagen synthesis
(68, 69), respectively, aspects that are hallmarks of Leishmania
infection (70, 71) and where in other experimental models sex
differences have been described (72–74).
DISCUSSION

It is well established that females and males differ in their clinical
manifestations of both infectious and inflammatory diseases due
Frontiers in Immunology | www.frontiersin.org 1239
to differences in the development and strength of the immune
response (75, 76). In this study, we provided evidence that
NLRX1 limited inflammation and tissue damage in female
mice infected with the human protozoan parasite Lgy carrying
an endosymbiotic dsRNA virus, LRV1, activating TLR3. We
showed that in presence of this TLR3 agonist, Nlrx1-deficient
female mice developed a more severe pathology with increased
inflammation and immune cell recruitment to the site of
infection compared to WT mice independently of the parasite
burden measured in the lesions, suggesting a role in the control
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FIGURE 6 | Transcriptomics analysis of female and male BMDMs revealed a male-like phenotype of Nlrx1-/- female BMDMs. (A) Transcriptomics analysis of both
female and male WT and Nlrx1-/- BMDMs (n=3 mice per group) infected with LgyLRV1+ and LgyLRV1- parasites or stimulated with poly I:C (2 mg/ml) for 24 hours.
The heatmap represents the global weighted correlation network analysis (WGCNA) and module names are represented by a color. A gene ontology (GO)
enrichment analysis for each module was performed to identify the biological processes associated to each module. represents modules enriched in GO terms
associated with sex hormone signaling. At 24 hours, the number of differentially expressed genes between groups in (B) non-infected, (C) LgyLRV1+ infected and
(D) poly I:C treated conditions is plotted. On each barplot the number represents the total number of differentially upregulated (in red) and downregulated (in blue)
genes. Pairwise comparisons are done by “sex” (same genotype, different sex, “WT.F._WT.M” and “Nlrx1.F_Nlrx1.M”), by “genotype” (same sex, different genotype
(“Nlrx1.F_WT.F” and “Nlrx1.M_WT.M”), or by combining both “sex and genotype” (“Nlrx1.M_WT.F” and “Nlrx1.F_WT.M”). See Supplementary Tables 9–11 for the
list of significantly differentially expressed genes. (E) Identification of WT female specific genes. Genes that were differentially expressed in only in WT female BMDMs
but not between the other three groups (Nlrx1-/- female, Nlrx1-/- male and WT male BMDMs) were identified in non-infected samples at 8 hours.
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of inflammation. Here, inflammation in the lesion was mediated
by an increased expression of the pro-inflammatory Il6 and Ifnb,
but not Tnfa. Surprisingly, we did not observe any difference in
IL-6 production between in vitro female WT and Nlrx1-deficient
macrophages infected with LgyLRV1+, but only an increased
production of IFNb. Thus, our results suggested that infected
macrophages contributed to increased IFNb, but other cell types
in the skin lesion also contributed to increased IL-6 production
and to the in vivo exacerbated phenotype observed in Nlrx1-
deficient female mice.

In LgyLRV1+ infection, the exact mechanism of type I IFN
regulation by NLRX1 is yet to be further elucidated. Different
mechanisms of anti-viral regulation by NLRX1 have been
proposed, including inhibition of retinoic acid-inducible gene
(RIG)-I-like receptor-mitochondrial antiviral-signaling (RIG-I-
MAVS) protein interaction (20, 22), sequestration of the DNA
sensor stimulator of interferon genes (STING) (77, 78),
competition with the dsRNA activated protein kinase (PKR)
(79), or binding to the autophagy complex formed of
mitochondrial Tu translation elongation factor and autophagy
related proteins 5 and 12 (TUFM/ATG5/ATG12) (52, 80).
Several studies support that NLRX1 is located at the
mitochondrial matrix rather than at the mitochondrial outer
membrane (MOM) as suggested by the first study by Moore et al.
(20, 62). Therefore, it raises the question how interaction with
proteins located on the MOM or in the cytoplasm, such as
MAVS or STING, respectively, would occur within the
mitochondrial matrix unless disruption of the mitochondria
occurs in the experimental model in question. Although we did
not observe any mitochondrial structural damage in vitro in
BMDMs, we cannot exclude that the hypoxic conditions in the
lesions in Lgy infection would lead to a mitochondrial functional
decline as it is often described in injury and ischemia (81–83).
However, in a previous study, we have shown that LRV1 does not
activate the cytoplasmic RNA sensors such as RIG-I-MAVS
signaling and viral RNA recognition occurs only via the TLR3
pathway (37, 63, 84). Thus, in our study NLRX1 controlled IFNb
production downstream of TLR3.

To better understand the role of NLRX1 in our model system
of infection, we first performed a transcriptomics analysis of
infected female BMDMs. Bioinformatic analysis revealed a
significant number of modules enriched in GO terms
associated to sex hormone signaling. Even if still quite
controversial, sex differences in clinical outcome to viral
infections have been reported and differences in susceptibility
may be attributed to both sex hormones and sex chromosome
encoded genes. Although previous reports have not described a
link between sex and NLRX1, oppositely to females, infection of
Nlrx1-deficient male mice did not result in an exacerbated
disease outcome. Indeed, male mice did not exhibit any
significant differences in lesion size or cell recruitment.
Conversely to in vivo where Nlrx1-deficient male mice showed
a slight reduction in Ifnb and Il6 expression, in vitro LgyLRV1+
infected male BMDMs produced higher levels of IL-6 and TNFa,
but not IFNb, in comparison to females, suggesting a role for
other inflammatory cells or mediators in vivo.
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Several PRRs, including TLRs and NLRs, are able to activate
multiple metabolic pathways that lead to a metabolic switch from
OXPHOS to glycolytic ATP production which is often critical for
innate immune cell activation (85, 86). Given its mitochondrial
localization, NLRX1 has been suggested to play a role in the
maintenance of mitochondrial function and metabolism (31, 81).
However, its impact on cellular metabolism seem to depend on
the cell type and to our knowledge no studies have investigated
the role of NLRX1 on macrophage colony stimulating factor (M-
CSF) primed BMDM metabolism (87). Leishmania and other
intracellular pathogens are known to manipulate host
metabolism and Leishmania infection seems to favor a switch
to aerobic glycolysis (88, 89). Here we showed that infection with
Lgy parasites induced glycolysis in infected BMDMs while
maintaining a high OXPHOS activity. Interestingly, WT male
BMDMs showed a higher metabolic activity in comparison to
WT females. This is in line with a previous study showing that
neutrophils, another innate immune cell type, isolated from
males had a higher mitochondrial respiration in comparison to
females (3). However, no sex differences in metabolism were
observed between female and male Nlrx1-deficient BMDMs.
Interestingly, the OXPHOS and glycolytic activity of the
BMDMs, the parasite burden, the in vitro IFNb production
and response to 17b-estradiol all showed a similar pattern:
female Nlrx1-deficient cells had a profile similar to male cells.
Differences in metabolic rates were not linked to mitochondrial
numbers or to impairment of mitochondrial structure since
Nlrx1-deficient cells had less mitochondria and produced less
mtROS than WT cells independently of sex and no structural
defects were observed upon LgyLRV1+ infection.

Since BMDMs were able to respond to 17b-estradiol, the
differences in bioenergetic profiles of male and female BMDMs
may be potentially driven by sex hormones. In neutrophils, a
higher OXPHOS profile observed in males has been linked to
immature state neutrophils (3). How these differences in
metabolic profiles impact the macrophage function, should
however be further studied. Estrogens have been shown to
impact macrophage metabolism directly. Era-mediated
signaling in macrophages have been shown to promote anti-
inflammatory M2-polarization and promote wound healing and
cutaneous repair by enhancing angiogenesis and collagen
synthesis (9, 10, 90–92). Estrogens not only play a role in
mitochondrial biogenesis and in the regulat ion of
mitochondrial function, but several studies have shown that
estrogens may also play a role in glucose metabolism and may
also stimulate glycolysis (93, 94). Reports are still conflicting on
the role of NLRX1 on cell metabolism. Therefore, the effect of sex
hormones on BMDMs metabolism and on NLRX1 would be of
great interest for future studies.

Trying to provide novel insight on the sex-related differences
observed in Nlrx1-deficient cells, we performed a second
transcriptomic analysis of both female and male BMDMs.
Interestingly, at 8 hours post-infection, Nlrx1-deficient cells
clustered together with males with LgyLRV1+ infection, while
at 24 hours this clustering occurred in all conditions except
treatment with poly I:C. Similarly, pairwise comparisons of
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significantly differentially expressed genes between groups
confirmed a male-like transcriptomic profile of Nlrx1-/- female
cells. Our analysis identified three WT female signature genes in
non-infected BMDMs at 8 hours timepoint: Lpar1, Kdr and
Creb3l2. The role and contribution of Lpar1 to the observed sex
differences may be of great interest for future studies. The
synthesis of its ligand, lysophosphatidic acid (LPA), was shown
to be type I IFN dependent in an autocrine and paracrine manner
in response to TLR3 signaling (95). Differential levels of secreted
LPA may contribute to differences in inflammation and
pathology observed in vivo and in vitro, since LPA is produced
by several cell types. Of note, sex differences in response to LPA
have been described in a model of osteoarthritis (96).

NLRX1 is a unique mitochondria-associated innate immune
receptor of the NLR family, and its role extends from the
traditional pathogen recognition to the regulation of different
cellular functions to control inflammation. However, as
highlighted by the diverse effects of NLRX1 that have been
described, the mechanism through which NLRX1 influences
inflammation, the immune response or the metabolism is still
under debate. One might speculate that some of the
discrepancies observed in the function of NLRX1 may be
attributed to the sex of the animal model used in their
research. Interestingly, it was shown that the C-terminal
leucine-rich repeat domain (LRR) of NLRX1 could bind
several polyunsaturated lipids that mediated the anti-
inflammatory effects of NLRX1 (31, 97). In serum LPA is most
often found in its unsaturated forms and polyunsaturated forms
of LPA are synthetized for example in mouse models of allergic
airway inflammation (98, 99). Screening of compounds also
predicted that other lipids including sterol lipids could
modulate NLRX1 activity (97). All sex steroid hormones are
derived from cholesterol, the main sterol synthetized in animal
cells, and although Nlrx1 expression did not differ between males
and females, it remains to be determined whether sex hormones
could bind and modulate NLRX1 function and its
downstream signaling.

In addition to cellular and lipid metabolism, infection with
Leishmania may lead to modifications of the extracellular matrix
(ECM) and collagen composition of the dermis at the site of
infection (70, 100). In addition, cutaneous leishmaniasis is also
characterized by vascular remodeling and lymphangiogenesis
mediated by the vascular endothelial growth factor A (VEGF-A)/
VEGF receptor 2 (VEGFR-2) signaling pathway that is essential for
lesion resolution (71, 101, 102). Interestingly, in addition the Lpar1,
two other gene candidates were identified in our transcriptomic
analysis to be upregulated only inWT females, Creb3l2 andKdr that
play a role in collagen synthesis (68) and angiogenesis (67),
respectively. NLRX1 has been shown to affect both.
Overexpression of NLRX1 human nucleus pulposus cells in the
intervertebral disc resulted in increased collagen synthesis and
decreased ECM decomposing enzymes (103). On the other hand,
Nlrx1-deficiency led to increased expression of wound healing
factors epidermal growth factor (EGF) and TGFb in epithelial
cells in a mouse model of DSS-induced colitis (104). Thus, both
angiogenesis and collagen composition could be further investigated
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in infected footpad sections of both female and male wild-type and
Nlrx1-deficient mice.

Taken together, our study provides novel insight on the
relevance of the first mitochondrial NLR and its connection to
the control of inflammation specifically in females. There is
accumulating evidence that in human diseases innate immune
response, inflammation, and energy metabolism are regulated in a
sex-dependent manner (105, 106). Increasing number of studies
have shown altered expression of NLRX1 in human patients. For
example, high NLRX1 expression positively correlated with HIV-1
viremia in patients (107), or conversely low expression was
associated to low prognosis of hepatocellular carcinoma (108) and
gastric cancer (109). Similarly, expression of NLRX1 was reduced in
aneurysm-induced brain injury (27) and in chronic obstructive
pulmonary disease (COPD) (110). Interestingly, in COPD, disease
prevalence does not seem to differ between men and women,
however the clinical presentation is different and more severe in
women (111). Whether NLRX1 contributes to sex differences
observed in these pathologies remains to be determined. Taken
together, NLRX1 represents a promising therapeutic target as a
regulator of inflammation as already shown in several mice models
(112–114). However, only the research approaches that consider
both sexes will provide a complete understanding of the regulation
of inflammation and metabolism and provide new insights for sex-
specific drug development.
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Inhibition of human
macrophage activation via
pregnane neurosteroid
interactions with toll-like
receptors: Sex differences and
structural requirements

Irina Balan1, Laure Aurelian2, Kimberly S. Williams3†,
Brian Campbell4, Rick B. Meeker3 and A. Leslie Morrow1*

1Department of Psychiatry, Department of Pharmacology, Bowles Center for Alcohol Studies,
University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, United States,
2Stanford University School of Medicine, Stanford, CA, United States, 3Department of Neurology,
University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, United States,
4Translational Sciences, Sage Therapeutics Inc., Cambridge, MA, United States
We recent ly discovered that (3a ,5a )3-hydroxypregnan-20-one
(allopregnanolone) inhibits pro-inflammatory toll-like receptor (TLR)

activation and cytokine/chemokine production in mouse macrophage

RAW264.7 cells. The present studies evaluate neurosteroid actions upon TLR

activation in human macrophages from male and female healthy donors. Buffy

coat leukocytes were obtained from donors at the New York Blood Center

(http://nybloodcenter.org/), and peripheral blood mononuclear cells were

isolated and cultured to achieve macrophage differentiation. TLR4 and TLR7

were activated by lipopolysaccharide (LPS) or imiquimod in the

presence/absence of allopregnanolone or related neurosteroids and pro-

inflammatory markers were detected by ELISA or western blotting. Cultured

human monocyte-derived-macrophages exhibited typical morphology, a

mixed immune profile of both inflammatory and anti-inflammatory markers,

with no sex difference at baseline. Allopregnanolone inhibited TLR4 activation

in male and female donors, preventing LPS-induced elevations of TNF-a, MCP-

1, pCREB and pSTAT1. In contrast, 3a,5a-THDOC and SGE-516 inhibited the

TLR4 pathway activation in female, but not male donors. Allopregnanolone

completely inhibited TLR7 activation by imiquimod, blocking IL-1-b, IL-6,
pSTAT1 and pIRF7 elevations in females only. 3a,5a-THDOC and SGE-516

partially inhibited TLR7 activation, only in female donors. The results indicate

that allopregnanolone inhibits TLR4 and TLR7 activation in cultured human

macrophages resulting in diminished cytokine/chemokine production.

Allopregnanolone inhibition of TLR4 activation was found in males and

females, but inhibition of TLR7 signals exhibited specificity for female donors.

3a,5a-THDOC and SGE-516 inhibited TLR4 and TLR7 pathways only in females.

These studies demonstrate anti-inflammatory effects of allopregnanolone in
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human macrophages for the first time and suggest that inhibition of pro-

inflammatory cytokines/chemokines may contribute to its therapeutic actions.
KEYWORDS

allopregnanolone (3a, 5a-THP), SGE-516, cytokines, chemokine, neurosteroid (3a,
5a)-3 21-dihydroxypregnan-20-one (3a, 5a-THDOC)
1 Introduction

Inflammation is associated with the pathogenesis of

numerous systemic, neurodegenerative and psychiatric diseases

(1–3). Furthermore, inflammation may arise from bacterial and

fungal infections (4–7), leading to long-lasting complications of

infectious disease, such as long COVID-19 or sepsis (8, 9). The

contribution of mononuclear phagocytes (macrophages/

microglia) to inflammatory and neuroinflammatory diseases is

well documented (10–13), but so too are many pro-survival and

repair actions that favor survival and recovery. While strong

immune suppressants have been available for decades (14),

progress in the development of agents that provide control of

specific macrophage functions (specifically inflammation) have

lagged behind. The ability to regulate macrophage functions

with greater precision is necessary to facilitate efforts to suppress

deleterious inflammation while retaining supportive functions.

Toll-like receptors (TLRs) play an important role in various

activities of macrophages (15). TLRs belong to a family of pattern

recognition receptors that can recognize and respond to molecular

signatures referred to as pathogen-associated molecular patterns

(PAMPs) and danger-associated molecular patterns (DAMPs) (16).

At least 10 human TLRs have been identified (17). TLRs share

common structural domains, which define their ability to recruit the

adaptor proteins that regulate signaling. Recognition of PAMPs and

DAMPs by TLRs initiate signaling pathways that involve

phosphorylation (activation) of transcription factors, their

translocation to the nucleus and culminate in the production of

inflammatory cytokines such as tumor necrosis factor alpha (TNF-

a), interleukins 1 and 6 (IL-1; IL-6) and chemokines such as

monocyte chemoattractant protein-1 (MCP-1) (5, 15, 18–21).

Excessive TLR activation contributes to the development of many

inflammatory and neuroinflammatory diseases, such as systemic

lupus erythematosus, infection-associated sepsis, atherosclerosis,

asthma (22), ischemia (23), depression (24, 25), alcohol use

disorders (26, 27), traumatic brain injury (28), neurodegeneration

(29, 30), and epilepsy (31, 32).

There is a growing appreciation for potential interactions

between systemic immune activation and brain TLRs that

facilitate detrimental inflammatory activity. Thus, blocking TLR

signals may be useful to regulate overactive systemic and CNS
02
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responses (22). We recently discovered that endogenous

neurosteroid (3a,5a)3-hydroxypregnan-20-one (allopregnanolone,
3a,5a-THP) inhibits myeloid differentiation primary response 88

(MyD88)-dependent TLR2, TLR4, and TLR7 (but not TIR-

domain-containing adapter-inducing interferon-b dependent

TLR3) pro-inflammatory signal activation and the production of

cytokines/chemokines through its ability to block TLR-MyD88

binding in the mouse macrophage RAW264.7 cell line and the

alcohol-preferring (P) rat brain (33, 34). Since inflammatory

conditions are ubiquitous hallmarks of human disease (vide

infra), it is essential to establish the validity of this work in

human macrophages and to examine sex as a biological variable

in the studies. Here, we examine the effect of allopregnanolone as

well as the endogenous neurosteroid (3a ,5a)-3,21-
dihydroxypregnan-20-one (3a,5a-THDOC) and a synthetic

analog of allopregnanolone, SGE-516, on cultured human

monocyte-derived macrophages (hMDM), obtained from both

male and female healthy donors.

Allopregnanolone and 3a,5a-THDOC display minimal

activity at nuclear genomic receptors (35), but are potent

positive modulators of g-aminobutyric acid type A (GABAA)

receptors (36–38). They have anesthetic, anticonvulsant,

sedative, and anxiolytic effects (39), and modulate the

hypothalamic pituitary adrenal axis to reduce stress activation

(40). Significantly, allopregnanolone and/or its precursors

progesterone and pregnenolone, were shown to be effective in

clinical studies of schizophrenia (41) and cocaine craving (42). A

proprietary formulation of allopregnanolone, Brexanolone i.v., is

a fast-and long-acting antidepressant and the only FDA

specifically approved treatment for post-partum depression

(43–45). Further, allopregnanolone has putative therapeutic

activity in animal models of alcoholism (46–48), traumatic

brain injury (49, 50), multiple sclerosis (51, 52), and

Alzheimer’s disease (53). The synthetic compound SGE-516, a

1,2,5-triazole analog of allopregnanolone, was reported to

display better aqueous solubility while maintaining efficacy as

an allosteric modulator at GABAA receptors (54). SGE-516 has

been reported to exhibit anticonvulsant activity as demonstrated

in experimental seizure and epilepsy animal models (55–57). In

addition, SGE-516 has recently been shown to protect mice from

chronic stress-induced behavioral deficits including restoration
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of theta power ratios indicative of normalized network activity in

brain (58).

Many effects of neurosteroids have been attributed to actions at

GABAA receptors. Here, however, we demonstrate unique

inhibitory effects of allopregnanolone on the modulation of pro-

inflammatory MyD88-dependent TLR4 and TLR7 signaling

pathways in hMDMs resulting in diminished cytokine

production. Inhibition of TLR4 pathways was observed in males

and females, however inhibition of TLR7 pathways was only

observed in hMDM from female subjects. We further observed

the structural specificity of allopregnanolone in the inhibition of

these signals, suggesting that D ring modifications may be

detrimental to the anti-inflammatory efficacy of this class of

compounds in both males and females.
2 Materials and methods

2.1 Culture of hMDMs

Human buffy coat leukocytes were obtained from healthy

donors at the New York Blood Center (http://nybloodcenter.org/),

a non-profit organization for the collection and distribution of

blood for clinical and research purposes. No personal identifiers

were sent with the shipment. The NY Blood Center maintains IRB

approval for their blood collection procedures and UNC School of

Medicine issued an IRB waiver for this work since no personal

identifiers were made available to investigators.

Culture of hMDM was as previously described (59–61) with

minor modifications. Blood was diluted 2:1 with phosphate

buffered saline (PBS), layered on top of Ficoll-Paque (GE

Healthcare 17-1440-03), and centrifuged at 500 X g for 20

min. The peripheral blood mononuclear cells (PBMCs) were

collected from the PBS/Ficoll-Paque interface and transferred to

a tube containing PBS to a total volume of 40 ml. The resulting

PBMCs were incubated in red blood cell lysis buffer (Sigma

R7757, CSH protocols) to remove any red blood cell

contamination. PBS was added to a volume of 40 ml, the

PBMCs were re-suspended and centrifuged at 150 X g for 20

min. The wash step was repeated once and the final pellet was re-

suspended in Dulbecco’s modified Eagle medium (DMEM) with

high glucose, 10% fetal bovine serum (FBS, Gibco 160000-044)

and 20 µg/ml gentamicin (Gibco 15750-60). Cells were counted

and aliquoted into low adhesion 6 well plates (Corning 3471) at a

density of approximately 106 cells/cm2. Media was changed 2-3

times weekly to maintain optimal cell heath. Cells were cultured

for 5-7 days to allow monocyte attachment, then remaining

white blood cells were then washed from the plate, yielding a

pure macrophage culture. To minimize any differentiation bias,

the adherent cells were grown in complete DMEM without

colony stimulating factor (CSF) supplements for one to two

weeks to achieve 70-80% coverage of the plate, indicative of

macrophage differentiation. Previous studies indicated that the
Frontiers in Immunology 03
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macrophages can secrete significant amounts of both M-CSF

and/or GM-CSF to support their own growth (59) although

basal GM-CSF is typically very low.
2.2 Immune protein profile of
macrophage conditioned medium

Basal characteristics of hMDM cultured under the above

conditions were determined in the initial establishment of the

culture protocol. Medium was collected and centrifuged at 1000

X g for 5 min to remove any floating cells or debris in the

medium. The cell free medium was added to a RayBiotech

human antibody array L-507 (RayBiotech Life, Inc., Peachtree,

GA) and processed according to the human antibody array

protocol. Slide arrays were scanned using an Agilent

technologies DNA microarray scanner and the analysis was

carried out using MetaMorph® software. A representative

example of results from the analysis of the hMDM secretome

on the RayBiotech L-507 cytokine array is shown in the

Supplementary Material (Figure S1). Internal negative controls

were used to establish basal fluorescence and variation across the

array. The minimum threshold for a positive fluorescence signal

was set at 2.57 standard deviation units above the average

background to give a probability of 0.005 that a protein signal

would be identified as positive by chance. The linearity of signal

detection was verified from internal positive standards. Since

signal intensity varied between different arrays, protein

expression was normalized to the total fluorescent signal for

all proteins on the array. A relative fluorescence value increase of

6500 represented the p<0.005 cutoff compared to negative

controls, providing a moderately stringent index for proteins

to be considered as actively secreted.
2.3 Flow cytometry

Flow cytometry of hMDM at baseline was performed as

previously described (60, 61). The hMDM were removed from

low adhesion wells in ice cold, calcium-free HBSS and

centrifuged for 5 min at 450 x g. Cellular pellets were re-

suspended and fixed in a Fluorfix solution (Biolegend 420801)

for 20 min at room temperature. Fixed cells were then treated

with permeabilization buffer (EBioscience 020-8333-56) and

centrifuged for 5 min at 450 x g at 4° C. The wash step was

repeated followed by re-suspension in 100 µl of permeabilization

buffer plus 5 ml antibody (CD 206 Biolegend 321114; 5 ml CD16
Biolegend 302008 and 5 ml CD163 Biolegend 333607, CD14,

Biolegend 301817; CD80, Biolegend 305207; CD86 Biolegend

305420; CD192 Biolegend 335303; CD197 Biolegend 353203,

353205) at room temperature for 20 min. The stained cells were

washed three times in cell staining buffer (Biolegend 420201).

Flow cytometry was performed on a FACS Calibur (Becton
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Dickinson, San Jose, CA) using direct immunofluorescence with

at least 10,000 events. All cells were gated to remove debris.

Three color staining analysis was utilized. Cells were analyzed

according to side scatter and receptor bound fluorescence, and

data was collected with logarithmic amplifiers. Fluorescence

spillover compensation was estimated using single-stained and

unstained samples with the Cell Quest software (BD). After

collection, data was further analyzed with FlowJo software

(TreeStar Inc., Ashland, OR).
2.4 Cell treatment

The selective agonists for TLR4 [lipopolysaccharide (LPS); 1

mg/ml] (Cat. #L9641, Lot # 071M4120V, Sigma-Aldrich, Saint

Louis, MO, USA), and TLR7 [imiquimod (IMQ); 30 mg/ml]

(Cat. #tlrl-imqs, In vivoGen, San Diego, CA, USA) were added

to the cultures alone, or together with allopregnanolone

(1.0 mM) or 3a,5a-THDOC (1.0 mM) or SGE-516 (1.0 mM) in

DMEM (without FBS and antibiotics) 24 h before cell collection.

Synthetized allopregnanolone and 3a,5a-THDOC were gifts

from Dr. Purdy (62, 63) and SGE-516 was a gift from Sage

Therapeutics (54). The ligand and neurosteroid concentrations

were selected based on previous findings of maximal effects (33,

34). The effects of the neurosteroids on cells that were not treated

with the TLR agonists were studied in parallel.
2.5 Protein extraction for
immunoblotting and ELISA

Protein extraction and assay were as previously described

(33, 34, 64, 65). Cells were lysed with radioimmunoprecipitation

(RIPA) buffer (Sigma, Cat. # R0278) supplemented with protease

and phosphatase inhibitor cocktails (Sigma, Cat. # P8340 and

P0044, respectively). The lysates were sonicated twice for 30

seconds at 25% output power with a Sonicator ultrasonic

processor (Misonix, Inc., Farmingdale, NY) and centrifuged

(14,000 g; 4°C) for 30 min. Total protein levels were

determined by the bicinchoninic acid assay (BCA, Thermo

Fisher Scientific, Waltham, MA, USA, Cat.# 23228 and

Cat.# 1859078).
2.6 Immunoblotting

The proteins (50 mg/lane) were denatured at 95°C (5 min) in 4x

Laemmli denaturing buffer (Bio-Rad, Cat. # 1610747) with 10% b-
mercaptoethanol and resolved by SDS-polyacrylamide gel (SDS-

PAGE) electrophoresis as previously described (33, 34). Briefly, the

10% separation gels (16x18cm) and 3% stacking gels were freshly

prepared from acrylamide/bisacrylamide (ratio 29:1) stock solution

(Bio-Rad, Cat. # 161-0156) and were polymerized by the addition of
Frontiers in Immunology 04
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0.025% tetramethylethylenediamine (TEMED; BioRad, Cat. #

1610800EDU) and ammonium persulphate (Bio-Rad, Cat. #

7727540). Electrophoresis was carried out with a current of 25

mA per gel for 4-5 hours. Electrophoretically separated samples

were transferred to a polyvinylidene difluoride membrane (PVDF;

Bio-Rad Cat. #1620177). Blots were blocked for 2 hrs at room

temperature (RT) with 5% blotting-grade blocker (Bio-Rad, Cat. #

1706404) or 5% bovine serum albumin (for phosphorylated

primary antibodies) and exposed to primary antibodies overnight

(4°C), followed by horseradish peroxidase-labeled secondary

antibodies (1 hr, RT). Primary and secondary antibodies were

diluted with 5% blotting-grade blocker buffer or 5% BSA (for

phosphorylated primary antibodies). Tris-buffered saline with

0.05% Tween-20 (TNT) was used to wash the blots 3 times (10

min each) after incubation with primary and secondary antibodies.

Immunoreactive bands were visualized with the PlusECL kit

reagents (Perkin Elmer, Waltham, MA, USA, Cat.#

NEL105001EA) followed by detection with enhanced

chemiluminescence (ImageQuant LAS4000, GE Healthcare,

Amersham, UK). Densitometric analysis was conducted using

ImageQuant TL v8.1.0.0. Each densitometric measurement was

divided by the corresponding b-actin densitometric measurement

and the results are expressed as the mean b-actin adjusted

densitometric units ± SEM. The primary antibodies, their

clonality, host species, dilution and supplier are listed in SM

(Table S1). All antibodies were validated by the supplier and by

us, as previously described (33, 34, 64, 65). Specific protein detection

used full length gels (33, 34, 64, 65). Horseradish peroxidase-labeled

secondary antibodies were anti-rabbit (Cat. # 7074, RRID:

AB_2099233, Cell Signaling Technology), anti-mouse (Cat# 7076,

RRID: AB_330924, Cell Signaling Technology) and anti-goat IgG

(Cat# A24452, RRID: AB_2535921, Thermo Fisher Scientific,

Waltham, MA, USA).
2.7 ELISA

Protein extracts were assayed with ELISA kits (Raybiotech,

Norcross, GA, USA) for MCP-1 (Cat. # ELH-MCP1-1), TNF-a
(Cat. # ELH-TNFa-CL-1), IL-6 (Cat. # ELH-IL6-CL-1), IL-1b
(Cat. # ELH-IL1b-1), IFN-g (Cat. # ELH-IFNg-CL-1), IL-

1ra (Cat. # ELH-IL1ra-CL-1), IL-13 (Cat. # ELH-IL13-1), and

TGF-b1 (Cat. # ELH-TGFb1-1) as per the manufacturer’s

instructions. Results are expressed as picograms/milligram

total protein (pg/mg).
2.8 Statistics

Two-way analysis of variance (ANOVA) followed by

Tukey’s post-hoc test (GraphPad Prism 8.3.1.) was used for the

statistical analysis of hMDM cells treated with TLR agonists

with/without the neurosteroids. hMDM cultures (n ≥ 12/group)
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were obtained from 3-5 donors per group. Results are from a

total of 27 donors, 11 females and 16 males. P<0.05 was

considered statistically significant.
3 Results

3.1 Characteristics of hMDM

The hMDM represent a typical macrophage morphology

(Figure 1A) as previously described (66). Based on specific

expression of cellular surface markers and the secretion of

certain cytokines, macrophages can be classified into classically

activated, pro-inflammatory macrophages (67–69), and

alternatively activated, anti-inflammatory macrophages (68–

70). Surface expression of CD14 and CD16 are used to

distinguish classical, intermediate, and nonclassical

macrophage subsets (71, 72). The basal hMDM secretome was

assessed by RayBiotech human antibody array L-507 (Figure 1B)

and illustrates a mixed profile of the pro-inflammatory (TNF-a,
IL-6, IFN-g), and anti-inflammatory (IL-13, TGF-b1, IL-1ra)
mediators (13, 68, 69), in the baseline state. To determine

potential sex differences at baseline, hMDM cell lysates

obtained from female and male donors were analyzed by

ELISA for both pro-inflammatory (TNF-a, IL-6, IL-1b, MCP-

1, IFN-g) and anti-inflammatory (IL-13, TGF-b1, IL-1ra)

mediators, with no evidence of sex differences (Figure 1C).

Surface markers determined by flow cytometry (Figure 1D)

revealed basal expression of CD14 as well as a mix of markers

sensitive to both M1 (CD80, CD86, CD68, CD197) or M2

(CD16, CD163, CD206) polarization and CCL2/MCP-1

chemotaxis (CD192/CCR2). Because previous studies indicate

that rodent macrophages and human peripheral blood

mononuclear cells express RNAs of some GABAA receptor

subunits (73, 74) we examined GABAA receptor subunit a1,
a2, a4, and d protein expression at baseline or after treatments

with lipopolysaccharide (LPS) and/or allopregnanolone in

hMDM. GABAA receptor subunits investigated were

undetectable at baseline or following treatment with LPS and/

or allopregnanolone indicating that responses observed in the

current studies were not related to GABAergic pharmacology

(Figure 1E). Positive controls for GABAA receptor subunit

expression are shown from the amygdala of male and female P

rats intraperitoneally injected with vehicle (45% w/v 2-

hydroxypropyl-b-cyclodextrin; 30 min) or allopregnanolone

(15 mg/kg; 30 min) (33, 34).

The endogenous neurosteroids allopregnanolone and

3a,5a-THDOC are positive allosteric modulators of the

GABAA receptors (36–38, 54) and have similar chemical

structures at A, B, and C rings. 3a,5a-THDOC differs from

the allopregnanolone by a C-21-hydroxyl group at the D-ring.

SGE-516 is a synthetic neuroactive steroid that differs from the

allopregnanolone by a C-3 cis-methyl and cis-hydrogens at C-5
Frontiers in Immunology 05
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and C-19 in the A-ring, and a C-21-1,2,5-triazole group at the D-

ring (Figure 1F).
3.2 Inhibitory effects of allopregnanolone
on the TLR4 signaling pathway in male
and female hMDM

We have previously shown that allopregnanolone inhibits

the activated TLR4 signaling pathway in the mouse macrophage

RAW264.7 cell line and the P rat brain (33, 34). Pathway

inhibition included blocking of the phosphorylation

(activation) of canonical signaling members including cAMP-

response element binding protein (CREB), nuclear factor kappa

B (NF-kB) p65 and the resulting expression of inflammatory

MCP-1, high mobility group box 1 (HMGB1) and TNF-a (33).

hMDM were treated with LPS (1 µg/ml; 24h) in the absence or

presence of allopregnanolone (1.0 µM), 3a,5a-THDOC

(1.0 µM) or SGE-516 (1.0 µM). Cell lysates were assayed for

established members of the activated TLR4 pathway, including

activated (phosphorylated) pCREB, signal transducer and

activator of transcription 1 (pSTAT1), the cytokine TNF-a,
and chemokine MCP-1 (21, 33, 75, 76). The ligand and

neurosteroid concentrations were selected based on previous

findings of maximal effects (33, 34). The effects of

allopregnanolone, 3a,5a-THDOC, and SGE-516 on cells that

were not treated with the TLR4 agonist LPS were

analogously studied.

LPS caused a significant increase in the levels of TNF-a
[~70% in hMDM from both female (F(1,51)=71.40, p<0.0001)

and male (F(1,57)=102.5, p<0.0001) donors] and MCP-1 [~65%

in hMDM from both female donors (F(1,75)=21.17, p<0.0001)

and male donors (F(1,78)=154.8, p<0.0001)], relative to vehicle

control (Figures 2A, B). The increases of TNF-a were partially

inhibited by allopregnanolone [~55% and ~35% inhibition in

hMDM from female donors (F(1,51)=9.064, p=0.0040)

(Figure 2A) and male donors (F(1, 57)=8.004, p=0.0064)

(Figure 2B), respectively]. The LPS-induced elevation of TNF-

a and the inhibitory effect of allopregnanolone on TNF-a were

similar in hMDM derived from both male donors and female

donors (Figure S2A). The increases of MCP-1 were completely

inhibited by allopregnanolone in hMDM from female donors (F

(1,75)=5.039, p=0.0277) (Figure 2A) and by ~40% in hMDM

from male donors (F(1,78)=5.094, p=0.0268) (Figure 2B). The

LPS-induced elevation of MCP-1 is higher and the inhibitory

effect of 3a,5a-THP on MCP-1 is lesser in hMDM from male

donors than female donors (Figure S2B). LPS and/or

allopregnanolone did not affect TLR4 expression in hMDM

from both male and female donors and there are no sex

differences in the expression of TLR4 at baseline, after LPS

and/or allopregnanolone treatments (Figure S3).

LPS activated the TLR4 pathways through increases in pCREB

[~40% and ~60% in hMDM from female (F(1,48)=20.77, p<0.0001)
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and male (F(1,48)=10.62, p=0.0021) donors, respectively] and

pSTAT1 [~60% in hMDM from both female (F(1,51)=81.58,

p<0.0001) and male (F(1,49)=48.79, p<0.0001) donors] (Figure 3).

No effects of LPS (p>0.05) on NF-kB p50 or NF-kB p65 were

detected (Figure S4). The increases in pCREB were completely

inhibited by allopregnanolone in hMDM from both female (F(1,48)

=4.428, p=0.0406) (Figure 3A) and male (F(1,48)=4.665, p=0.0358)

(Figure 3B) donors. The increases of pSTAT1 were partially
Frontiers in Immunology 06
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inhibited by allopregnanolone [~35% and ~45% inhibition in

hMDM from female (F(1,51)=4.193, p=0.0458) (Figure 3A) and

male (F(1,49)=4.530, p=0.0384) (Figure 3B) donors, respectively].

Consistent with our previous studies (33), allopregnanolone did not

change the levels of pCREB, pSTAT1, TNF-a or MCP-1 in hMDM

that were not treated with the TLR4 agonist LPS, indicating that

allopregnanolone specifically targets the activated TLR4 signal

(Figures 2, 3).
B

C D

E

F

A

FIGURE 1

Characteristics of cultured human monocyte-derived macrophages. (A) Example of a monolayer of human monocyte-derived macrophages
(hMDM) grown on ultralow adhesion plastic. (B) Basal hMDM secretome from 5 independent mixed sex cultures detected by RayBiotech human
antibody array L-507 illustrating a mixed inflammatory and anti-inflammatory cytokine profile. (C) hMDM cell lysates analyzed by ELISA express
both inflammatory (TNF-a, IL-6, IL-1b, MCP-1, IFN-g) and anti-inflammatory (IL-13, TGF-b1, IL-1ra) mediators with no evidence of sex
differences at baseline. Each hMDM culture is shown as a single symbol (n ≥ 18), obtained from at least 3 male or 3 female donors. (D) hMDM
surface markers determined by flow cytometry using direct immunofluorescence in 4-7 independent mixed sex cultures. (E) Western blot image
shows that hMDM from both male and female donors (n=9 cultures from 3 donors/sex) lack g-aminobutyric acid type A (GABAA) receptor
subunits a1, a2, a4, and d at baseline (CTL) or after treatments with lipopolysaccharide (LPS) and/or allopregnanolone (3a,5a-THP). As a positive
control, the amygdala from male and female alcohol preferring P rats intraperitoneally injected with vehicle (45% w/v 2-hydroxypropyl-b-
cyclodextrin; 30 min) or allopregnanolone (15 mg/kg; 30 min) was used. (F) Chemical structures of endogenous neurosteroids allopregnanolone
and 3a,5a-THDOC (tetrahydrodeoxycorticosterone) and the synthetic 1,2,5-triazole analog of the allopregnanolone, SGE-516. 3a,5a-THDOC
differs from the allopregnanolone by a C-21-hydroxyl group at the D-ring. SGE-516 differs from the allopregnanolone by a C-3 cis-methyl and
cis-hydrogens at C-5 and C-19, and a C-21-1,2,5-triazole group at the D-ring.
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3.3 3a,5a-THDOC and SGE-516
inhibition of TLR4 pathways in hMDM of
female, but not male donors

LPS caused a significant increase in the levels of TNF-a
[~80% in hMDM from both female (F(1,63)=88.35, p<0.0001

and F(1,47)=132.7, p<0.0001 for experiments with 3a,5a-
THDOC and SGE-516, respectively) and male (F(1,60)=131.3,

p<0.0001 and F(1,40)=25.84, p<0.0001 for experiments with

3a,5a-THDOC and SGE-516, respectively) donors] and MCP-

1 [~65% in hMDM from both female (F(1,86)=5.067, p=0.0269

and F(1,42)=13.20, p=0.0008 for experiments with 3a,5a-
THDOC and SGE-516, respectively) and male (F(1,56)=6.714,

p=0.0122 and F(1,55)=48.02, p<0.0001 for experiments with

3a,5a-THDOC and SGE-516, respectively) donors] relative to
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vehicle control (Figures 4A, B). The increases of TNF-a were

partially inhibited by 3a,5a-THDOC and SGE-516 [~30% and

~35% inhibition, respectively] in hMDM derived from female

donors (F(1,63)=7.132, p=0.0096 and F(1,47)=10.12, p=0.0026

for experiments with 3a ,5a-THDOC and SGE-516,

respectively) (Figure 4A), but not male donors (F(1,60)

=0.6948, p=0.4078 and F(1,40)=0.09574; p=0.7586 for

experiments with 3a,5a-THDOC and SGE-516, respectively)

(Figure 4B). The increases of MCP-1 were completely inhibited

by 3a,5a-THDOC or SGE-516 in hMDM from female donors (F

(1,86)=3.981, p=0.0492 and F(1,42)=15.88, p=0.0003 for

experiments with 3a,5a-THDOC and SGE-516, respectively)

(Figure 4A), but not male donors (F(1,56)=0.9187, p=0.3419 and

F(1,55)=0.02609, p=0.8723 for experiments with 3a,5a-
THDOC and SGE-516, respectively) (Figure 4B).
B

A

FIGURE 2

Allopregnanolone (3a,5a-THP) inhibits LPS-induced increases of inflammatory cytokine TNF-a and chemokine MCP-1 in human monocyte-
derived macrophages (hMDM) from both female and male donors. Each hMDM culture (n ≥12 cultures from 3-5 female (A) or 3-5 male (B)
donors/grp) is shown as a single symbol. Cells were treated with the TLR4 agonist lipopolysaccharide (LPS) (1 µg/ml; 24h) with or without
allopregnanolone (1 µM; 24h). LPS caused a significant increase in the levels of TNF-a (~70% in hMDM from both female and male donors) and
MCP-1 (~65% in hMDM from both female and male donors) relative to vehicle control (CTL). The increases of TNF-a were partially inhibited by
allopregnanolone (~55% and ~35% inhibition in hMDM from female (A) and male (B) donors, respectively) (Two-way ANOVA, Tukey’s post hoc
test: *p < 0.05, ***p < 0.001, ****p < 0.0001). The increases of MCP-1 were completely inhibited by allopregnanolone in hMDM from female (A)
and by ~40% in hMDM from male (B) donors (Two-way ANOVA, Tukey’s post hoc test: **p < 0.01, ****p < 0.0001). Allopregnanolone did not
change the levels of TNF-a and MCP-1 in hMDM that were not treated with the TLR4 agonist LPS (p>0.05).
frontiersin.org

https://doi.org/10.3389/fimmu.2022.940095
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Balan et al. 10.3389/fimmu.2022.940095
B

A

FIGURE 4

3a,5a-THDOC and SGE-516 inhibit LPS-induced increases of TNF-a and MCP-1 in human monocyte-derived macrophages (hMDM) from
female, but not male donors. Each hMDM culture (n≥12 from 3 female (A) or 3 male (B) donors/grp) is shown as a single symbol. Cells were
treated with LPS (1 µg/ml; 24h) with or without 3a,5a-THDOC (1 µM; 24h) or SGE-516 (1 µM; 24h). LPS caused a significant increase in the levels
of TNF-a (~80% in hMDM from both female (A) and male (B) donors) and MCP-1 (~65% in hMDM from both female (A) and male (B) donors)
relative to vehicle control (CTL). The increases of TNF-a were partially inhibited by 3a,5a-THDOC and SGE-516 (~30% and ~35% inhibition,
respectively) in hMDM derived from female (A) but not male (B) donors. The increases of MCP-1 were completely inhibited by 3a,5a-THDOC or
SGE-516 in hMDM from female (A) but not male (B) donors. Two-way ANOVA, Tukey’s post hoc test: *p < 0.05, **p < 0.01, ***p < 0.001,
****p < 0.0001.
BA

FIGURE 3

Allopregnanolone (3a,5a-THP) inhibits LPS-induced activation of MyD88-dependent TLR4 pro-inflammatory signal and does not target non-
activated TLR4 signal in human monocyte-derived macrophages (hMDM) from both female and male donors. hMDM cultures were treated with
LPS (1 µg/ml; 24 h) with or without allopregnanolone (1 µM; 24 h). Representative western blot images and summary data of densitometric
scatter dot plots show the levels of pCREB and pSTAT1 in females (A) and males (B). Each data point represents an individual hMDM culture
(n≥12 cultures from 3 female (A) or 3 male (B) donors/grp). b-Actin was used as protein loading control. LPS caused a significant increase in the
levels of pCREB (~40% and ~60% in MDM from female (A) and male (B) donors, respectively) and pSTAT1 (~60% in hMDM from both female (A)
and male (B) donors) relative to vehicle control (CTL). The increases of pCREB were completely inhibited by allopregnanolone in hMDM from
both female (A) and male (B) donors. The increases of pSTAT1 were partially inhibited by allopregnanolone (~35% and ~45% inhibition in hMDM
from female (A) and male (B) donors, respectively). Allopregnanolone did not change the levels of pCREB and pSTAT1 in hMDM that were not
treated with the TLR4 agonist LPS (A, B), indicating that allopregnanolone specifically targets the activated TLR4 signal. Two-way ANOVA,
Tukey’s post hoc test: *p < 0.05, **p < 0.01, ****p < 0.0001.
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Since both 3a,5a-THDOC and SGE-516 inhibited LPS-

induced increases of TNF-a and MCP-1 in hMDM from

female donors, we examined their effects on LPS activation of

the TLR4 pathway transcription factors. The levels of pCREB

[~35%; F(1,20)=17.13, p=0.0005 and F(1,27)=7.040, p=0.0132

for experiments with 3a ,5a-THDOC and SGE-516,

respectively] and pSTAT1 [~60%; F(1,30)=28.87, p<0.0001 and

F(1,28)=23.92, p<0.0001 for experiments with 3a,5a-THDOC

and SGE-516, respectively] were also significantly increased in

LPS-treated hMDM from female donors (Figure 5). The

increases of pCREB were completely inhibited by 3a,5a-
THDOC (F(1,20)=4.354, p=0.0499) and SGE-516 (F(1,27)

=5.991, p=0.0212). The increases of pSTAT1 were completely

inhibited by 3a,5a-THDOC (F(1,30)=7.172, p=0.0119) and

partially inhibited by SGE-516 [~30%; F(1,28)=4.732,

p=0.0382] (Figure 5). Consistent with the allopregnanolone

effect, neither 3a,5a-THDOC nor SGE-516 changed the levels

of pCREB, pSTAT1, as well as TNF-a or MCP-1 (p>0.05) in

hMDM that were not treated with the TLR4 agonist LPS,

indicating that both 3a,5a-THDOC and SGE-516 specifically

target the activated TLR4 signal (Figures 4, 5).

Collectively, and consistent with our previous studies (33,

34), the data indicate that allopregnanolone inhibits activation of

the TLR4 signal and cytokine/chemokine increases in hMDM

from both female and male donors. In contrast, 3a,5a-THDOC

and SGE-516 inhibit the TLR4 signaling pathway in hMDM

from female, but not male donors, indicating a distinct structural

requirement for neurosteroids in the inhibition of TLR4

pathways in male macrophages that was not observed in

female macrophages.
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3.4 Inhibitory effects of neurosteroids on
the TLR7 signaling pathway are
dependent upon sex in hMDM

We have previously shown that allopregnanolone inhibits

the activated TLR7 signaling pathway in the mouse macrophage

RAW264.7 cell line and the brain of female P rats (34). To

examine whether allopregnanolone as well as 3a,5a-THDOC

and SGE-516 also inhibit activation of TLR7 signal and pathway

members in hMDM, cells were treated with the TLR7 agonist

imiquimod (IMQ) (30 µg/ml; 24 hrs) in the absence or presence

of allopregnanolone (1.0 µM), 3a,5a-THDOC (1.0 µM) or SGE-

516 (1.0 µM). Cell lysates were assayed for established members

of the activated TLR7 pathway, including the TLR7-associated

activated (phosphorylated) transcription factor interferon

regulatory factor 7 (pIRF7), pSTAT1, as well as cytokines IL-6

and IL-1b (19, 34, 77–79). The effect of allopregnanolone,

3a,5a-THDOC or SGE-516 on cells that were not treated with

the TLR7 agonist IMQ was analogously studied.

3.4.1 Allopregnanolone, 3a,5a-THDOC and
SGE-516 inhibition of TLR7 pathways in hMDM
of female, but not male donors

IMQ caused a significant increase in the levels of IL-6 [~45-

90% and 60-80% in hMDM from female donors (F(1,82)=4.648,

p=0.0340; F(1,42)=49.41, p<0.0001 and F(1,38)=56.34, p<0.0001

for experiments with allopregnanolone, 3a,5a-THDOC and

SGE-516, respectively) (Figures 6A, 8A) and male donors (F

(1,88)=15.55, p=0.0002; F(1,32)=21.25, p<0.0001 and F(1,22)

=33.00, p<0.0001 for experiments with allopregnanolone,
FIGURE 5

3a,5a-THDOC and SGE-516 inhibit LPS-induced activation of MyD88-dependent TLR4 pro-inflammatory signal in human monocyte-derived
macrophages (hMDM) from female donors. hMDM cultures were treated with LPS (1 µg/ml; 24 h) with or without 3a,5a-THDOC (1 µM; 24 h) or
SGE-516 (1 µM; 24 h). Representative western blot images and summary data of densitometric scatter dot plots show the levels of pCREB and
pSTAT1 in females. Each data point represents an individual hMDM culture (n≥9 from 3 female donors/grp). b-Actin was used as protein loading
control. LPS caused a significant increase in the levels of pCREB (~35%) and pSTAT1 (~60%) in hMDM from female donors relative to vehicle
control (CTL). The increases of pCREB were completely inhibited by 3a,5a-THDOC and SGE-516. The increases of pSTAT1 were completely
inhibited by 3a,5a-THDOC and partially inhibited by SGE-516 (~30%). Two-way ANOVA, Tukey’s post hoc test: *p < 0.05, **p < 0.01,
****p < 0.0001.
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3a,5a-THDOC and SGE-516, respectively)] (Figures 6B, 8B).

Likewise, IMQ caused a significant increase in the levels of IL-1b
[~95% in hMDM from both female donors (F(1,44)=8.416,

p=0.0058; F(1,58)=127.0, p<0.0001 and F(1,51)=47.46,

p<0.0001 for experiments with allopregnanolone, 3a,5a-
THDOC and SGE-516, respectively) (Figures 6A, 8A) and

male donors (F(1,63)=73.33, p<0.0001; F(1,59)=40.79,

p<0.0001 and F(1,43)=553.6, p<0.0001 for experiments with

allopregnanolone, 3a,5a-THDOC and SGE-516, respectively)]

(Figures 6B, 8B). IMQ activated the TLR7 pathways through

increases in pIRF7 [~35% and ~25% in hMDM from female

donors (F(1,52)=18.15, p<0.0001) (Figure 7A) and male donors

(F(1,24)=18.45, p=0.0002)] (Figure 7B) and pSTAT1 [~35%

and ~40% in hMDM from female donors (F(1,42)=13.64,
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p=0.0006) (Figure 7A) and male donors (F(1,45)=15.61,

p=0.0003)] (Figure 7B).

The increases of IL-6 were completely inhibited by

allopregnanolone in hMDM from female donors (F(1,82)

=12.45, p=0.0007) (Figure 6A), but not male donors (F(1,88)

=0.5031, p=0.4800) (Figure 6B). The increases of IL-1b were

completely inhibited by allopregnanolone in hMDM from

female donors (F(1,44)=4.148, p=0.0477) (Figure 6A), but not

male donors (F(1,63)=0.6435, p=0.4254) (Figure 6B). The

increases of pIRF7 were complete ly inhib i ted by

allopregnanolone in hMDM from female donors (F(1,52)

=6.619, p=0.0130) (Figure 7A), but not male donors (F(1,24)

=0.1615, p=0.6913) (Figure 7B). The increases of pSTAT1 were

completely inhibited by allopregnanolone in hMDM from
B

A

FIGURE 6

Allopregnanolone (3a,5a-THP) inhibits imiquimod-induced increases of inflammatory cytokines IL-6 and IL-1b in human monocyte-derived
macrophages (hMDM) from female but not male donors. Each hMDM culture (n≥12 cultures from 3-5 female (A) or 3-5 male (B) donors/grp) is
shown as a single symbol. Cells were treated with TLR7 agonist imiquimod (IMQ; 30 µg/ml) with or without allopregnanolone (1 µM). Cells were
harvested at 24 h after treatment initiation and examined for the expression of inflammatory cytokines IL-6 and IL-1b. IMQ caused a significant
increase in the levels of IL-6 (~45% and ~60% in hMDM from female (A) and male (B) donors, respectively) and IL-1b (~95% in hMDM from both
female (A) and male (B) donors), relative to vehicle control (CTL) (Two-way ANOVA, Tukey’s post hoc test: *p < 0.05, **p < 0.01, ***p < 0.001,
****p < 0.0001). The increases of IL-6 and IL-1b, were completely inhibited by allopregnanolone in hMDM from female donors (Two-way
ANOVA, Tukey’s post hoc test: *p < 0.05, ***p < 0.001) but not male donors (p > 0.05). Allopregnanolone did not change the levels of IL-6 and
IL-1b (p>0.05) in hMDM that were not treated with the TLR7 agonist IMQ.
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female donors (F(1,42)=4.489, p=0.0401) (Figure 7A), but not

male donors (F(1,45)=0.2987, p=0.5874) (Figure 7B). IMQ and/

or allopregnanolone did not affect TLR7 expression in hMDM

from both male and female donors and there are no sex

differences in the expression of TLR7 at baseline, after IMQ

and/or allopregnanolone treatments (Figure S5).

Consistent with the inhibitory effect of allopregnanolone,

3a,5a-THDOC and SGE-516, albeit to a lesser extent, also

inhibited IMQ-induced cytokine increases in hMDM derived

from female donors, but not male donors (Figures 8A, B). The

increases of IL-1b were partially inhibited by 3a,5a-THDOC

and SGE-516 [~30% and ~35% inhibition, respectively] in

hMDM derived from female donors (F(1,58)=4.702, p=0.0343

and F(1,51)=4.744, p=0.0340, for experiments with 3a,5a-
THDOC and SGE-516, respectively) (Figure 8A), but not male

donors (F(1,59)=0.04079, p=0.8406 and F(1,43)=1.924,

p=0.1725 for experiments with 3a,5a-THDOC and SGE-516,

respectively) (Figure 8B). The increases of IL-6 were partially

inhibited by 3a,5a-THDOC [~30% inhibition] in hMDM

derived from female donors (F(1,42)=4.202, p=0.0467)

(Figure 8A), but not male donors (F(1,32)=0.006, p=0.9396)

(Figure 8B), but were not inhibited by SGE-516 in hMDM from

either female donors (F(1,38)=1.094, p=0.3022) (Figure 8A) or

male donors (F(1,22)=0.011, p=0.9174) (Figure 8B).

Consistent with our previous studies (34), in the absence of

the TLR7 agonist IMQ, allopregnanolone did not change the

levels of pIRF7, pSTAT1, IL-6 or IL-1b and 3a,5a-THDOC and
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SGE-516 did not change the levels of IL-6 or IL-1b in hMDM,

indicating that the neurosteroids specifically target the activated

TLR7 signal (Figures 6–8).

Collectively, these results extend our previous studies in the

mouse RAW264.7 macrophage cell line (34) to primary human

macrophages, indicating that allopregnanolone inhibits

activation of the TLR7 signal and cytokine increases. However,

we show here that its effects are selective for hMDM from female

donors. Correspondingly, although with lesser efficacy, 3a,5a-
THDOC and SGE-516 also inhibit the TLR7 signaling pathway

in hMDM from female, but not male donors, indicating sex

specificity favoring females in the inhibition of TLR7 pathways

by all the neurosteroids tested.
4 Discussion

The current findings indicate that allopregnanolone inhibits

activation of the TLR4 and TLR7 signals and cytokine/

chemokine increases in hMDM. However, we show here that

its effects in hMDM are distinct from RAW264.7 cells (29), as

the inhibition of TLR7 pathways are selective for female donors.

We further observe that two steroids with C-21 structural

modifications, 3a,5a-THDOC and SGE-516 inhibit the TLR4

pathway in hMDM from female, but not male donors, indicating

different structural specificity for neurosteroid inhibition of

TLR4 pathways in male vs. female donors. We also
BA

FIGURE 7

Allopregnanolone (3a,5a-THP) inhibits imiquimod-induced activation of MyD88-dependent TLR7 pro-inflammatory signal in human monocyte-
derived macrophages (hMDM) from female but not male donors. hMDM were treated with TLR7 agonist imiquimod (IMQ; 30 µg/ml) with or
without allopregnanolone (1 µM). Cells were harvested at 24 h after treatment initiation and examined for the expression of MyD88-dependent
activated (phosphorylated) interferon regulatory factor 7 (pIRF7) and transcription factor pSTAT1. Representative western blot images and
summary data of densitometric scatter dot plots show the levels of pIRF7 and pSTAT1 in females (A) and males (B). Each data point represents
an individual hMDM culture (n≥12 cultures from 3 female (A) or 3 male (B) donors/grp). b-Actin was used as protein loading control. IMQ caused
a significant increase in the levels of pIRF7 (~35% and ~25% in hMDM from female (A) and male (B) donors, respectively) and pSTAT1 (~35% and
~40% in hMDM from female (A) and male (B) donors, respectively) relative to vehicle control (CTL) (Two-way ANOVA, Tukey’s post hoc test:
*p < 0.05, ***p < 0.001, ****p < 0.0001). The increases of pIRF7 and pSTAT1 were completely inhibited by allopregnanolone in hMDM from
female donors (Two-way ANOVA, Tukey’s post hoc test: **p < 0.01, ****p < 0.0001) but not male donors (Two-way ANOVA, Tukey’s post hoc
test, p>0.05). Allopregnanolone did not change the levels of pIRF7 and pSTAT1 (p>0.05) in hMDM that were not treated with the TLR7 agonist
IMQ indicating that allopregnanolone specifically targets the activated TLR7 signal.
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demonstrate that allopregnanolone, 3a,5a-THDOC and SGE-

516 inhibit the activated TLR signaling pathways in hMDM, but

they have no effect on the unstimulated pathways.

The TLR4 agonist LPS increased multiple markers of TLR4

activation, including the phosphorylated (activated)

transcription factors CREB, STAT1, as well as TNF-a and

MCP-1, in hMDM. All these effects were inhibited by

allopregnanolone in hMDM from both male and female

donors. In contrast 3a,5a-THDOC and SGE-516 inhibit these

TLR4 pathway members in hMDM from female, but not male

donors, indicating different structural requirements of

neurosteroids for inhibiting TLR4 signaling between sexes. We

previously demonstrated that allopregnanolone inhibits TLR4

binding to both MyD88 and MD2 to prevent TLR4 pathway

activation and the production of MCP-1, HMGB1 and TNF-a in

RAW264.7 cells (33). The present results suggest that TLR4

pathway activation mechanisms may differ in female vs. male

hMDM, such that 3a,5a-THDOC and SGE-516 are unable to

block their activation in males. This might involve sex

differences in TLR4 adaptor protein expression that alter the

structural requirements for inhibition of pathway activation.

Further studies are needed to elucidate the mechanism of this

sex difference.
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The TLR7 agonist IMQ increased markers of TLR7

activation, phosphorylated (activated) transcription factors

STAT1 and IRF7, as well as IL-6 and IL-1b, in hMDM. All

these effects were inhibited by allopregnanolone in hMDM from

female, but not male donors. Correspondingly, 3a,5a-THDOC

inhibits IL-6 and IL-1b and SGE-516 inhibits IL-1b in hMDM

from female, but not male donors. The mechanism of the sex

specificity in TLR7 signal inhibition by neurosteroids in hMDM

is unknown and additional studies will be required for

elucidation. Since allopregnanolone inhibits the TLR7

interaction with MyD88 (34), it is likely that other TLR7

adaptor proteins as well as sex hormone receptors, chaperons,

or proteins that enhance or suppress TLR7 signals may

be involved.

E v en t h ou gh t h e endo g enou s n eu r o s t e r o i d s

allopregnanolone and 3a ,5a-THDOC, and synthetic

compound SGE-516 are all allosteric modulators of GABAA

receptors (36–38, 54), the present data suggests that GABAergic

activity may not be necessary or sufficient for TLR4 inhibition in

hMDM, similar to our previous report in RAW264.7 cells (33).

We previously found that allopregnanolone and pregnenolone

(which lacks GABAergic actions) both completely inhibit TLR4

pathway activation and the production of MCP-1, HMGB1 and
B

A

FIGURE 8

3a,5a-THDOC partially inhibits imiquimod-induced increases of IL-1b and IL-6 and SGE-516 partially inhibits IL-1b in human monocyte-derived
macrophages (hMDM) from female but not male donors. Each hMDM culture (n≥12 from 3 female (A) or 3 male (B) donors/grp) is shown as a
single symbol. Cells were treated with imiquimod (IMQ) (30 µg/ml; 24h) with or without 3a,5a-THDOC (1 µM; 24h) or SGE-516 (1 µM; 24h). IMQ
caused a significant increase in the levels of IL-1b (~95% in hMDM from both female (A) and male (B) donors) and IL-6 (~90% and ~80% in MDM
from female (A) and male (B) donors, respectively) relative to vehicle control (CTL). The increases of IL-1b were partially inhibited by 3a,5a-
THDOC and SGE-516 (~30% and ~35% inhibition, respectively) in hMDM derived from female (A) but not male (B) donors. The increases of IL-6
were partially inhibited by 3a,5a-THDOC in hMDM from female (~30% inhibition) (A) but not male (B) (p>0.05) donors and were not inhibited by
SGE-516 in hMDM from both female (A) and male (B) donors (p>0.05). Two-way ANOVA, Tukey’s post hoc test: *p < 0.05, **p < 0.01,
***p < 0.001, ****p < 0.0001.
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TNF-a in RAW264.7 cells (33). These two steroids have distinct

A ring properties, with identical D ring structure, suggesting

structural specificity at ring D for inhibition of TLR4 signaling in

RAW264.7 cells (33). Since the structures of both 3a,5a-
THDOC and SGE-516 differ from the allopregnanolone by

additional C-21-hydroxyl and C-21-1,2,5-triazole groups,

respectively (54, 62, 80), modifications such as these at the D-

ring could be detrimental for neurosteroid inhibition of TLR

activation in hMDM from male donors as well as RAW264.7

cells. Further additional studies with a greater number of

structural modifications are needed to adequately assess the

structural requirements for TLR inhibition. Moreover, the

effects of these structural modifications on neurosteroid

inhibition of TLRs in the brain also remain unstudied.

Even though these data indicate that there are no sex

differences in the expression of both TLR4 and TLR7 at

baseline, or pathway activation by agonists, we observed

differential inhibitory effects of neurosteroids in female vs.

male macrophages. Numerous sex differences in innate and

adaptive immunity have been identified in various studies (81–

85). Sex differences in immune function can be attributed in

many cases to regulatory effects of gonadal hormones in vivo

(86). Other sex differences include reduced sensitivity to the

effects of LPS, greater phagocytic activity, production of more

anti-inflammatory prostanoids, and more efficient antigen

presentation in female macrophages (86, 87). The present data

indicate that female macrophages had reduced sensitivity to LPS,

as defined by the level of MCP-1, compared to male

macrophages (Figure S1). This factor may explain the greater

inhibit ion of LPS-induced elevat ion of MCP-1 by

allopregnanolone in female macrophages when compared with

male macrophages. Thus, neurosteroid regulation may represent

an additional mechanism for sex dependent immune regulation.

We previously showed that allopregnanolone inhibits TLR4

binding to MD-2 and MyD88, and TLR7 binding to MyD88 in

RAW264.7 cells (33, 34). However, the exact mechanism of

allopregnanolone inhibition remains unclear. Allopregnanolone

and pregnenolone have also been shown to enhance the

degradation of bound adaptor proteins, which promote

ubiquitination and degradation of the toll/interleukin-1

receptor domain-containing adapter protein and TLR2 in

HEK293T cells (88). Further studies are needed to identify the

protein-protein interactions that are inhibited by neurosteroids

and enable kinetic analysis.

Pro-inflammatory signaling through TLRs plays a major role

in the detrimental activities of macrophages (15). The TLR4-

specific ligand LPS, causes receptor oligomerization with

multiple adaptor proteins at the cell membrane, inducing a

cascade of protein-protein interactions that produce

proinflammatory cytokines and chemokines (16, 19, 75, 89–

91). TLR7 is located on the endosome and recognizes single-

s t randed RNA molecu le s ( s sRNAs) (92 , 93 ) and

imidazoquinoline derivatives such as IMQ, which directly bind
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TLR7, induce its dimer formation, MyD88 binding and

subsequent production of proinflammatory cytokines (16, 94,

95). The ability of allopregnanolone to simultaneously inhibit

both TLR4 and TLR7 pathway activation could offer much

needed control of inflammatory signaling and may offer a

unique approach to the treatment of inflammatory conditions.

Thus, the demonstration of TLR4 and TLR7 inhibition by

various neurosteroids in hMDM has clear therapeutic relevance.

Macrophages promote neuroinflammation following

traumatic brain injury (96), in multiple sclerosis (97, 98),

ischemic stroke and intracerebral hemorrhage (98), and

contribute to systemic inflammation in many other disease

states (10). In addition, systemic inflammation is thought to

contribute to the development and progression of

neurodegenerative diseases (99). Moreover, various

proinflammatory cytokines and chemokines derived from

TLR4 and TLR7 activation are now recognized as potential

markers of psychiatric conditions, including depression (24,

25), postpartum depression (100, 101), post-traumatic stress

disorders (102–104) and alcohol use disorders (26, 27, 105).

Thus, it seems plausible that the ability of allopregnanolone to

inhibit both TLR4 and TLR7 interactions with MyD88 and their

pathways contribute to its therapeutic actions in the treatment of

post-partum depression (43) and post-traumatic stress disorders

(106) and may have benefic i a l a c t ions in o the r

inflammatory conditions.

In conclusion, the present results show that endogenous

neuroactive steroids regulate both TLR4 and TLR7 activation in

cultured human macrophages, but with specificity for female

donors. Because these steroids are present in circulation of both

males and females, but are elevated during the luteal phase of the

menstrual cycle as well as during pregnancy in women (39), they

may play an integral role in the modulation of pro-inflammatory

signaling across the lifespan and contribute to protection from

both systemic and neuroinflammatory disease. Further work is

needed to establish the contribution of their anti-inflammatory

effects in the treatment of post-partum depression as well as

other inflammatory conditions.
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Sex bias in multiple sclerosis
and neuromyelitis optica
spectrum disorders: How it
influences clinical course, MRI
parameters and prognosis

Petra Nytrova1* and Ondrej Dolezal2

1Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles
University in Prague and General University Hospital, Prague, Czechia, 2Department of Neurology,
Dumfries and Galloway Royal Infirmary, NHS Scotland, Dumfries, United Kingdom
This review is a condensed summary of representative articles addressing the

sex/gender bias in multiple sclerosis (MS) and neuromyelitis optica spectrum

disorders (NMOSD). The strong effects of sex on the incidence and possibly

also the activity and progression of these disorders should be implemented in

the evaluation of any phase of clinical research and also in treatment choice

consideration in clinical practice and evaluation of MRI parameters. Some

relationships between clinical variables and gender still remain elusive but

with further understanding of sex/gender-related differences, we should be

able to provide appropriate patient-centered care and research.

KEYWORDS

multiple sclerosis, neuromyelitis optica spectrum disorders, sex bias, pregnancy,
magnetic resonance imaging, brain atrophy, disease progression
Introduction

The predominance of females among patients with autoimmune central nervous

system disorders such as multiple sclerosis (MS) and neuromyelitis optica spectrum

disorders (NMOSD) is well recognized. Several sex-specific factors, including sex

hormones themselves and genetics - the presence of two X chromosomes versus one X

and one Y chromosome, and environmental and societal factors including dietetic habits

might play an important role in susceptibility and manifestation of autoimmune

disorders (1–3). Furthermore, these factors can influence each other in the

interconnected functional network. In this review, we discuss current views on sex bias

in MS and NMOSD and their impact on disease course, prognosis, and MRI findings.

Previous research naturally focused on the influence of sex hormones, but it seems

that hormonal variances between sexes explain clinical differences only to some extent as
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female sex bias is frequently observed even in autoimmune

diseases with onset in childhood when estrogen levels do not

differ between sexes, or in postmenopausal women (4). A

possible explanation for these differences could be hidden in

sex chromosomes, which were studied on animal models of

different autoimmune disorders (5, 6). Several X chromosome

genes are known to be involved in immune responses (7), one of

which is Forkhead box p3 (Foxp3) (5). This gene is important for

the development and function of CD4+CD25hi T regulatory

cells (Treg) (8, 9), which might contribute to the relative

resistance to experimental autoimmune encephalomyelitis in

males (10). Foxp3 expression during the induction of Treg

function is controlled by epigenetic mechanisms at the

transcriptional level that involve Foxp3 DNA methylation (11,

12). Furthermore, there are not only X-linked genes that could

influence the sex bias but also X-linked control mechanisms like

non-coding microRNA (miRNA), which is involved in the

regulation of gene expression by suppressing mRNA

translation or triggering mRNA degradation (13–15). The

upregulation of X-linked miR-18 during relapse in patients

with MS was described (16). The reason for the absence of

miRNA in the Y chromosome is unknown (14).
Sex bias in epidemiology and
pathophysiology of MS and NMOSD

MS is an acquired inflammatory demyelinating disorder

predominantly affecting young females in 2-3:1 female to male

(F:M) ratio for relapsing MS in developed countries (17–19).

Furthermore, several studies have shown that multiple sclerosis

F:M ratio of cases increases over time when serial cross-sectional

comparisons were made (17). In contrast, primary progressive

MS affects men and women equally (20, 21). Previously, the

cellular immunology of relapsing multiple sclerosis was

considered to be principally T-cell driven. However, recent

research revealed that autoimmune pathological processes in

MS are more complex and involve multiple cell types and their

functionally distinct subsets. Particularly in relapsing multiple

sclerosis pathological mechanisms involve imbalanced

interactions between T cells, myeloid cells, B cells, and their

effector and regulatory subpopulations (22). There is likely no

qualitative difference in the pathology between relapsing and

progressive MS and to some extent including primary

progressive MS. However, the contribution of the pathological

processes and alterations differs quantitatively. Focal new and

active white matter lesions (representing inflammation) are most

numerous in early (acute and relapsing) MS and lesional volume

changes are of less dominance when patients enter the

progressive stage (23). Diffuse changes in the normal-

appearing white matter are sparse in early MS but very

pronounced in patients with progressive MS (24). These
Frontiers in Immunology 02
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changes eventually lead to localized (e.g. cortical) and global

brain atrophy which can be seen on brain MRI. Therefore, the

most commonly used MRI marker for monitoring inflammatory

activity is the number or volume of MRI hyperintense lesions

(on T2 weighted or FLAIR images). Modern techniques can

successfully detect cortical lesions as well (25). Neuromyelitis

optica spectrum disorders are rare inflammatory disorders of the

central nervous system, manifesting clinically as optic neuritis,

myelitis, and certain brain and brainstem syndromes (26).

NMOSD may include aquaporin 4 (AQP4)-antibody

seropositive autoimmune astrocytopathic disease and AQP4-

antibody seronegative patients as well (27). A part of those

seronegative patients with clinical NMO phenotype have

antibodies to myelin oligodendrocyte glycoprotein (MOG) (28,

29) and represents a relatively new disease entity called myelin

oligodendrocyte glycoprotein-antibody associated disease

(MOGAD) (30, 31). AQP4-antibody seropositive NMOSD has

a high female to male ratio (up to 9:1) with later onset (at the

average age above 40) compared to multiple sclerosis (32, 33).
The effect of sex on the age of
clinical onset and diseases course in
MS and NMOSD

The relationship between age of onset and sex ratio in

different life periods can help to explain the role of sex

hormones in MS and NMOSD disease pathogenesis. Sex

hormones can affect the function of the immune cells directly

via binding to the steroid receptors and have various effects on

cells of both the adaptive and innate immune systems (3, 34–37).

Relapsing MS and NMOSD can sometimes manifest in children

and adolescents as well, although rarely. It can be difficult to

differentiate MS from other inflammatory demyelinating

diseases at an early age. Multiple sclerosis presents with its

typical female predominance from puberty onwards,

corresponding with reproductive maturing, whilst males seem

to be over-represented at very young ages (38). It seems that

within the relapsing MS group there are sex differences in relapse

characteristics and in the extent of recovery where males show

more incomplete recovery from a relapse and more persistent

disability (traditionally represented by the Expanded Disability

Status Scale, EDSS) (39–41). These sex differences in disability

were not observed in late-onset MS or in primary progressive

form (41, 42). Kalincik et al. showed that women tend to present

with visual and sensory relapses more frequently than men, who

are relatively more likely to present with pyramidal (motor),

brainstem, and cerebellar relapses (43). Although several studies

have evaluated the effect of menopause on MS disease course,

including relapse rates, disability progression, and patient-

reported outcomes. Data are inconclusive so far but might

indicate some increase in disability when comparing before
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and after menopause stages (44–46). A systemic hormone

treatment used in postmenopausal MS patients was associated

with the better physical quality of life in postmenopausal women

(47). The effect of hormone therapy (estriol or estroprogestins)

combined with glatiramer acetate or interferon beta was also

analysed in clinical trials in women with relapsing MS (48–50).

Relatively little is also known about transgender (TGD)

issues in patients with multiple sclerosis, who face substantial

challenges stemming from chronic illness in combination with

psychosocial and other health factors related to transgender

issues (51). Gender-affirming exogenous hormone use must be

considered because it can influence the risk of MS. The main

pattern of treatment for TGD female to male (TrM) is lifelong

testosterone (52) and for TGD male to female (TrW), oral or

transdermal estrogens, progesterone, and an antiandrogen

(cyproterone acetate) are used (53). Pakpoor et al. provided

some evidence supporting a potential role for low testosterone

and/or feminising hormones on MS risk in TGD males to

females (54).

The female predominance in NMOSD occurring in children

and adolescents is seen at the ratio of 1.5:1 and 3.25:1

respectively (55). The other study has shown a 5:1 F:M ratio of

AQP4-antibody seropositive patients younger than 12 years

(56). This being said, elderly individuals are also at risk of

developing NMOSD. The proportion of AQP4-antibody

seropositive individuals (detection rate), defined by a decade of

age, increased exponentially in women after the age of 50. This

was not observed in men of the same age (57). How menopause

may affect the age of manifestation of NMOSD and the role of

sex hormones has not been studied in detail. Increasing age was

associated with a decreased risk of relapse in AQP4-antibody

seropositive patients (58). Some patients with typical clinical

manifestations for neuromyelitis optica are consistently

seronegative for AQP4-IgG. The French and German studies

and Mayo group reported almost equal or slightly increased F:M

ratio (1.2:1; 1.9:1; respectively 1:1) in these cohorts when

Wingerchuk criteria for NMO from 2006 were applied (59–

61). The proportion of seropositive MOG-IgG patients with

NMO phenotype varies between different studies based on

applied diagnostic criteria and sensitivity of the cell-based

assay used for the antibody assessment. MOG-antibody

seropositive patients can account for about 40% of AQP4-

antibody seropositive patients who were diagnosed according

to the 2015 International panel on NMOSD diagnosis when the

highly sensitive live cell-based assay was used (62). The clinical

manifestation of MOGAD differs between age groups. The most

common presentation in children is acute disseminated

encephalomyelitis (ADEM) compared to adults, who typically

suffer from optic neuritis at the onset. In the youngest cohort

(age <10 years) of MOGAD, we cannot see much difference

between males and females but there is a slight female

predominance in adolescents and adults (63). Kim et al. have

shown an impact of sex on disease onset age and site of relapse
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when AQP4-antibody seropositive male NMOSD patients had a

higher age at onset than women and were less likely to develop

optic neuritis as the initial symptom (64). Kitley et al. described a

UK-Japanese cohort of patients with disease onset < 30 years of

age in which 61% of patients first presented with optic neuritis

compared with only 18% presenting with longitudinally

extensive transverse myelitis (LETM). In older groups (50

years of age) we see almost the opposite picture as 66%

presented with LETM compared with 28% presenting with

optic neuritis (65). Whether sex hormones might influence

(directly or indirectly) a development or severity of optic

neuritis and protect the spinal cord remains unanswered. On

the other hand, the protective effects of sex hormones on

remyelination after optic neuritis were studied in several works

(66–68).
Radiological aspects of sex
difference in MS and NMOSD

Brain atrophy, including grey matter and white matter

atrophy measurement, is recently becoming a routine marker

to monitor the disease in clinical studies and clinical practice.

Over the last 20 years, different studies reported significant

differences between sexes in variable measures. Generally, it

seems that males are showing more, traditionally associated

with degenerative processes, grey matter pathology, and

atrophy (69). It seems that grey matter atrophy is affecting not

only cortical regions but also deep grey matter represented by

the reduction of neuronal mass in basal ganglia (putamen) and

thalamus resulting in impairment of cognitive functions (70).

Therefore, you can find a very different extent of atrophy in male

and female patients with almost identical clinical histories. The

brain atrophy dominant in males has been reported in groups of

different ethnic origins (71). These sex-specific differences in

atrophy measures are seemingly not as prominent early in the

disease (72), but changes in those variables, however discreet, are

likely pre-dating changes in the clinical picture (73). More

questionable results were obtained while studying lesion

volume/lesion load in MS patients (74, 75). This would not be

surprising as lesion load varies significantly between individuals

irrespective of gender. See schematic diagram (Figure 1)

summarizing theoretical differences of sex bias in lesion

volume, EDSS (clinical scale), and brain atrophy.

Lesions, predominantly present in white matter, would have

an impact on white matter (WM) volume too. This obvious

relationship between white matter lesions and white matter

volume would explain why studies looking at white matter

atrophy are showing more contradictory findings. In some

studies, it seems that males show more prominent white

matter changes associated with axonal loss than females (76).

In other work, WM atrophy was even more prominent in

females (69). Atrophy of all compartments is seen even in the
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FIGURE 1

Steeper progress for males? This schematic diagram shows the differences in different variables between the sexes (females - A, males - B).
Steeper changes are more obvious in males (B) - including atrophy and EDSS. Males also reach a plateau of variables sooner than females (the
scheme is not to scale regarding time and values, reflecting trends only). EDSS, expanded disability status scale.
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early stages of PPMS (77). Artificial intelligence approaches have

been recently tried to evaluate future risks, estimate disability

progression, and most importantly monitor response to

medication (atrophy-led v. lesion-led estimation) (78).

Unfortunately, no representative studies are focusing on MRI

differences between sexes in NMOSD nor the impact of pregnancy

onMRIparameters. In recent decades researchpaid attention to the

role of iron and its metabolism in MS and NMOSD. Brain iron

homeostasis is known to be disturbed inmultiple sclerosis (79–81).

Theprogressionofdisability inMSseems to inversely correlatewith

iron concentration, especially in a deep grey matter on MRI

imaging (quantitative susceptibility mapping), which could have

prognostic and diagnostic value (e.g., helping to differentiate

between relapsing or primary progressive MS and in AQP4-

antibody seropositive NMOSD) (82–84). The relationship

between the clinical stage of MS, disease progression, and amount

of iron differs between brain structures examined (putamen,
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caudate, inflammatory lesions, thalamus, normal-appearing white

matter, etc.) (82–86).Acorrelationwas foundbetween thedisability

(EDSS) andmagnetic susceptibility in the putamen in remittingMS

(84). However, it is unclear if iron concentration changes are

instead related to atrophy and loss of structure with lower

concentrations of iron (e.g. myelin and calcium-rich structures)

(85). Dedicated research looking at iron levels and sex differences is

still to be done as many conducted studies did not analyse

that relationship.
Disease severity during pregnancy
and the postpartum period in MS
and NMOSD

The influence of sex hormones on autoimmune diseases

including the changes in disease severity and activity during or
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after pregnancy has been reported in many autoimmune

disorders such as systemic lupus erythematosus, myasthenia

gravis, etc. (87, 88). Since high levels of hormones during

pregnancy enhance Th2 response, this may suppress MS

which is driven by Th1 response (89). Pregnancy is not

associated with an increased risk of a flare of disease activity

in MS. On the contrary, during the post-partum period lesion

volume and inflammatory activity can increase T1 lesion volume

“black holes” as well as T2 lesion volume in MS. It is usually

followed by the clinical activity of the disease (90). While short-

term consequences of pregnancy in MS are deemed proven it

remains contentious what impact this has on brain atrophy and

disability progression in the long term (91–93). Assisted

reproductive techniques using gonadotropin-releasing

hormone analogues (GnRH; either agonists or antagonists)

might be associated with clinical (increased annualized relapse

rate during the 3 months following in vitro fertilisation) and

MRI visible inflammatory activity in MS (94–96). The

administration of GnRH antagonist over agonist mainly in

females <40 years of age is preferred (97, 98).

Less known is about NMO and pregnancy. NMOSD is

mediated mostly by Th2 lymphocytes therefore a higher risk of

relapse can be expected. Women with NMO also have an elevated

rate of pregnancy complications including preeclampsia, which are

associated with increased Th17 cells and reduction of T-regulatory

cells (99). These in turn can enhance inflammation in NMOSD and

be associated with increased relapse rates and disability in patients

with NMOSD during pregnancy, and especially in the early
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postpartum period (100–102). Increased risk of relapse in those

periods in NMOSD patients is also associated with discontinued or

insufficient immunosuppressive treatment (101). Pregnancy

complications in AQP4-autoantibody seropositive patients might

be also related to other autoimmune comorbidity or the presence of

autoantibodies such as antiphospholipid antibodies, which have

been described in combination (or in absence) of SLE in NMOSD

patients (103–106). Aquaporin-4 is expressed by the human

placenta (107) and it has been demonstrated that AQP4-IgG

could be a causative agent in increased miscarriages in females

with AQP4-antibody seropositive NMOSD (105, 108, 109).

Although pregnancy in MS patients is not associated with

increased disease activity as mentioned above, it is necessary to

consider the disease activity before pregnancy, especially the

type of therapy. One of the aspects that must be considered

during the reproductive age of MS patients is the teratogenicity

of the disease-modifying therapies. Teriflunomide is classified

as a teratogen of category X (for both females and males),

therefore expected benefits from this treatment do not

outweigh drug-associated risks, and its use in pregnant

women is contraindicated (110). There was so far no

evidence of increased rates of spontaneous abortion,

decreased birth weight or congenital malformation in human

trials or retrospective pharmacovigilance observation (111,

112). Teriflunomide plasma levels of less than 0.02 mg/L are

expected to have no teratogenic impact (112), therefore the

rapid elimination procedure of teriflunomide in case of

pregnancy is recommended. Another important aspect of
TABLE 1 Summary of sex bias in relapsing multiple sclerosis (MS) and AQP4-antibody seropositive neuromyelitis optica spectrum disorders
(NMOSD).

Relapsing MS AQP4-IgGposNMOSD Possible explanation/association

Epidemiology
(female to
male ratio)

2-3:1 in adults (17–19)
women show earlier onset (117)

up to 9:1 in adults (32, 33)
up to 5:1 in children younger
< 12 years (56)

sex hormones affect directly or indirectly function of immune cells ; X
dosage compensation and escape from X-inactivation; imprinting of X
chromosome genes; epigenetics; X-linked non-coding microRNA (1–
16);

Clinical
features

visual and sensory relapses more frequent in
women;
motor, brainstem, and cerebellar relapses more
frequent in men (43)

male patients have higher age
at onset and are more likely
to develop myelitis as a first
symptom (64)

unknown

Imaging GM and central atrophy are more advanced in
male patients, whereas lesion load or
gadolinium enhancing lesions are more
advanced in female patients (69, 70, 118)

unknown men develop a lower number of inflammatory lesions in the CNS, but
a higher number of degenerative lesions with extensive axonal loss;
males have a higher incidence of cortical GM lesions compared to
females (120)

Disability
progression

males show more incomplete recovery from a
relapse and more persistent disability (119)

probably not related to sex;
influenced by age of disease
onset and by delay in
diagnosis/treatment (64)

absence of protective effects of females hormones; Y gene presence or
absence;differences in parental X imprinting of X chromosome genes
(1–7) – f.e. a different expression of TLR7 by cortical neurons in
males (121) is also considered in MS

Risk of
relapse

higher in women (119) not studied but the risk of
relapse is more likely to be
associated with younger age
(64)

effects of females hormones on the immune system and other sex-
related factors that can play role in higher susceptibility for MS in
women (1–5)
GM, grey matter; WM, white matter; TLR7, toll-like receptor 7.
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pregnancy planning in MS patients is to consider

discontinuation of highly effective therapies such as

fingolimod or natalizumab. It has been reported that

stopping fingolimod and natalizumab may be a cause of

worsening neurological status (113). Disease reactivation

following fingolimod cessation is more common in younger

patients, those with greater disease activity before cessation,

and those who switch to a low-efficacy therapy (114).

Fingolimod discontinuation could be a cause of life-

threatening relapse, although this is a rare situation (115).

Saying all this we have to bear in mind that fingolimod is

teratogenic in animals, therefore, would not be a suitable

treatment in pregnancy contrary to natalizumab which can

be used until the 34th week of gestation in the case of patients

with high disease activity (116). Neurologists and obstetricians

must be aware of the potential complications of a pregnancy in

a woman who has MS but specifically NMOSD.
Summary

As seen above, sex bias is an extremely important factor

(summarized in Table 1). In many cases it defines the prognosis

and fate of individual patients. Current up-to-date research is

helping us to understand the relationships between the

pathophysiology of MS and NMOSD and gender stands in three

main areas: clinical (experience of treating clinicians); immuno-

chemical (basic and applied research); and radiographic (MRI

studies, volumetry, etc.). The key to understanding is a

multidisciplinary approach covering all these areas. Sex/gender

effect on the incidence, activity, and progression of these

disorders should be implemented in the evaluation of any phase

of clinical research and treatment choice consideration in clinical

practice and evaluation of MRI parameters. Some relationships

between clinical variables and sexes remain elusive but with further

understanding of sex/gender related differences, we should be able

to provide appropriate patient-centered care and research.
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Gonadal bacterial community
composition is associated with
sex-specific differences in
swamp eels (Monopterus albus)

Kaifeng Meng1,2, Xing Lin1,3, Hairong Liu1, Huijie Chen1,2,
Fei Liu1,3, Zhen Xu1,3, Yonghua Sun1,3 and Daji Luo1,2,3*

1State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The
Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Chinese Academy of Sciences,
Wuhan, China, 2College of Fisheries, Huazhong Agricultural University, Wuhan, China, 3College of
Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
Organisms are colonized by microorganism communities and play a pivotal

role in host function by influencing physiology and development. In mammals,

bacterial community may alter gonadal maturation and drive sex-specific

differences in gene expression and metabolism. However, bacterial

microbiota diversity in the gonads of early vertebrates has not been fully

elucidated. Here, we focused on the swamp eel (Monopterus albus), which

naturally undergoes sex reversal, and systematically analyzed the bacterial

microbiota profiles between females and males using 16S rRNA gene

sequences. Specifically, the microbial abundance and community diversity of

gonads in males were higher than in females. Although Proteobacteria,

Firmicutes, Bacteroidetes, and Actinobacteria were characterized as the

dominating phyla in ovary and testis, the relative abundance of Firmicutes

was significantly higher in males than females. Detailed analysis of themicrobial

community revealed that Bacilli were the dominant bacteria in ovaries and

Clostridium in testes of M. albus. More importantly, we proposed that

differences in the microbial composition and distribution between ovaries

and testes may be linked to functional categories in M. albus, especially

metabolism. These findings represent a unique resource of bacterial

community in gonads to facilitate future research about the mechanism of

how microbiota influence sex-specific differences and sex reversal

in vertebrates.

KEYWORDS

bacterial community, sex-specific differences, gonads, swamp eel (monopterus albus),
16S rRNA gene sequences
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Highlights
Fron
1. Microbial abundance and community diversity of

gonads in M. albus are present at higher levels in

males than females;

2. Bacilli may be the dominant bacteria in ovaries and

Clostridium in testes of M. albus;

3. Bacterial community may be linked to gonadal

development and function in M. albus.
Introduction

Vertebrate surfaces are inhabited by dense and complex

microbial populations characterized by remarkable dynamism

and exceptional stability (1, 2). Shaped by millennia of evolution,

beneficial and balanced relationships have developed between

hosts and microbes, where microbes play essential roles in many

biological functions, including development, nutrition, and

immune responses (3–5). Thus, a balanced microbiome helps

maintain normal host physiology, and imbalances may be linked

to physiological disorders (6). Evidence is accumulating about

the microbiome’s roles in various sexual dimorphisms and sex-

specific rhythms in mammals (7). The commensal microbial

community alters testosterone, a gonadal steroid related to the

gonadal transition in species that undergo sex reversal (8, 9).

Besides that, it is bacterial microbiota (Lactobacillus and

Clostridia) that is responsible for semen quality and fertility

status in mammals (10, 11). Changes in the abundance of

multiple bacteria from the Bacteroidetes and Firmicutes phyla

are associated with polycystic ovary syndrome (PCOS) (12).

However, how sex-specific differences influence bacterial

microbiota diversity in early vertebrates has not been

fully elucidated.

Water is a microbial-rich environment that promotes

bacterial growth compare to air. In other words, the vertebrate

transition from water to land likely affected the relationships

between hosts and their microbial community (13). Thus,

studies on bacterial microbiome of fish may provide a broader

understanding of vertebrate microbiomes due to the complexity

and diversity of the microbes in fish habitats. At present, most

studies have focused on the compositions of bacterial

communities on teleost mucosal surfaces and found that

different tissues are inhabited by unique microbial

communities and proportions of specific bacteria (13, 14). In

addition, it was illustrated that gender was one of the factors

influencing the intestinal microbial composition in D. rerio, M.

albus, B. pectinirostris and C. guichenoti (15–18). A recent study

identified that the cloaca of Atlantic salmon (Salmon salar) was

an additional teleost mucosa-associated lymphoid tissue
tiers in Immunology 02
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(MALT), and we hypothesized that gonads connecting the

cloaca also harbor abundant microbial communities as a

matter of course (19, 20). Although preliminary descriptions

of testicular microbiota compositions in zebrafish have shown

that Pseudomonas, Lactobacillus, and Bifidobacterium are the

main genera (21), the gonadal microorganisms driven by sex

differences remain to be elucidated in most teleost species.

The swamp eel (Monopterus albus) is a typical protogynous

hermaphrodite fish that undergoes sexual reversal from female

to male during its lifecycle (22). The sex reversal process involves

coordinated transformations across multiple factors, including

primordial germ cells and neuroendocrine and molecular axes

(23–27). Several studies have reported that the bacterial

community is critical to sex-specific differences in gene

expression and metabolism in mammals (7). These findings

suggest a new mechanism that the bacterial community might

affect host sexual maturation (28). Sexual fate can no longer be

considered an irreversible deterministic process in many fish.

Exploring whether the bacterial community is required for the

underlying biological processes of sex is a worthy scientific

endeavor. In brief, comparing the microbial differences in M.

albus from the perspective of the essential tissues, gonads, will

increase our understanding of sex-specific differences.

In the present study,M. albus of the same age were chosen as

our experimental animal and kept under identical conditions

(e.g., environment, diet). Sex identification showed that male

individuals appeared in the population of M. albus through

artificial propagation. Moreover, dramatic differences of the

bacterial composition and distribution between testis and

ovary in M. albus, suggesting that gonadal microbiota may be

sex-specific differences. In addition, key bacterial community in

ovary and testis were screened, providing favorable practical

significance for the production of M. albus.
Materials and methods

Fish maintenance

The M. albus was originally purchased from Baishazhou

Agricultural Market, Wuhan, China (22). After domestication

under laboratory conditions, healthy and mature M. albus were

selected as parents to generate the F1 sibling generation offspring

using artificial insemination (Figure 1A). After artificial

insemination, embryos were incubated in the incubator of cell

culture room until the mouth-opening stage of larval M. albus.

Hatching occurred 7 dpf (days post fertilization) at 27 ± 1°C.

After the juveniles could eat the bloodworms, they were

randomly divided into 3 groups (Dup1, Dup2 and Dup3 as

parallel experiments) and transferred to the indoor circulating

system involving appropriate temperature (25-28°C), pH value

(7.2-8.0), and dissolved oxygen over 14 months (Figure 1B).
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Frozen bloodworm at a rate of 0.5%-1% body weight was fed

twice a day (9:00 a.m. and 4:00 p.m.) during the whole feeding

process in the indoor recirculating system. Experimental fish (30

individuals per group) were randomly selected from each Dup

group and transferred to plastic boxes one week prior to

sampling (Sam1, Sam2 and Sam3 group as experimental

duplication) (Figure 1C). During this period, fish were

terminated from feeding and half of the culture water was

replaced with ultrapure water every three days. After sex

identification, 30 individuals of similar size including females

and males were screened according to the size of fish for the

subsequent study. All animal procedures were carried out in

accordance with the Guiding Principles for the Care and Use of

Laboratory Animals and approved by the Institute of

Hydrobiology, Chinese Academy of Sciences.
Sample collection

Before sampling, the water of fish living (3 replicate water

samples) was firstly collected for 16S rRNA gene sequencing to

obtain the background composition of bacterial community in

water environment (Supplementary Figure 1). Subsequently, the

M. albus were anesthetized with MS-222 and the length and

weight were measured. After the fish body surface was swabbed
Frontiers in Immunology 03
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with 75% ethanol, the blood then was collected and immediately

transferred to a 2 ml sterile blood collection vessel and

centrifuged at 3000 rpm for 30 min to obtain serum. After

sterile dissection, the gonads were collected, weighed, and

divided into three parts. One of them was fixed immediately at

4% (v/v) neutral buffer paraformaldehyde for sex identification.

The other part was collected in sterile micro-centrifuge tubes

with 1 ml TRIZol for RNA extraction and quantitative real-time

PCR (qRT-PCR). The last part was stored in sterile freezing

tubes for bacteria 16S rRNA gene sequencing. The weight

relationship between gonads and body was represented by GSI

(Wgonad/Wbody×100%). All of these tissues collected for RNA

or DNA analyses were immediately frozen with liquid nitrogen

and stored at -80°C for further study.
Measurement and analysis of
sex hormones

The serum samples were thawed on ice, and separated into

two centrifuge tubes. One of the duplicate samples was used for

estradiol analysis and the other for testosterone. The

concentrations of estradiol and testosterone in serum were

de t e rmined by us ing fi sh- spec ific enzyme- l inked

immunosorbent assay (ELISA) kits (MEIMIAN, China)
A B

C

FIGURE 1

Design and sampling of this study. (A) Generation of sibling population in M. albus and experimental sampling design. (B) Schematic diagram of
the recirculating system. (C) 30 individuals were randomly selected as the sampling group from the unit of the recirculating system.
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according to the manufacturer’s instructions. Briefly, the serum

was incubated in microelisa stripplate at 37°C for 30 min. After

washing five times with wash solution, 50 ml HRP-Conjunction

reagent was added and incubated at 37°C for 30 min. The 50 ml
chromogen solution was added for 10 min followed by 50 ml stop
solution. The OD values of each well were detected at 450 nm

absorbance (MD SpectraMax M5 Microplate Reader, USA) after

adding the stop solution.
Histology and light microscopy studies

After fixed in 4% neutral formalin buffer more than 24

hours, the gonads were dehydrated through a series of ethanol

gradient, washed with xylene, embedded in paraffin, and then

sectioned into 4 mm pieces. The paraffin pieces were stained with

classic hematoxylin and eosin (H&E) as follows: dewaxed in

xylene, rehydrated through a graded ethanol series, stained the

nucleus with hematoxylin solution and cytoplasm with eosin

solution, finally sealed by resin. Subsequently, images were

acquired in a microscope (Nikon, Japan) using the

CaseViewer software.
Micro-CT scanning

To distinguish the anatomical relationships between the

gonads and the gut in M. albus, we performed the CT

investigations. Specifically, M. albus was fixed in 4% neutral

formalin buffer more than 24 hours, then dehydrated through a

series of ethanol gradient for 4 days. After gradient dehydration,

M. albus was immersed in phosphotungstic acid (6 mg/ml)

diluted with ethanol at 37°C for 10 days. Subsequently, M. albus

was subjected to fixed bed and scanned with Skyscan High

Resolution Micro-CT Imaging System (Bruker, Belgium). The

Data Viewer software and CTvox software was used for post-

processing and capture of pictures (Supplementary Figure 2).
RNA extraction and quantitative real-
time PCR analysis

Total RNA was extracted from gonads which were

homogenized in 1 mL TRIZol (Invitrogen, USA) by shaking

(60 HZ for 1 min) with 3 mm beads following the

manufacturer’s instructions. To normalize gene expression

levels for each sample, equivalent amounts of the total RNA

(1000 ng) were used for cDNA synthesis with the SuperScript

first-strand synthesis system for qRT-PCR (Monad, China) in a

20 ml reaction volume. The synthesized cDNA was diluted 5

times and then was used as a template for qRT-PCR analysis.

The qRT-PCR was performed in a Bio-Rad CFX96 Touch

Detection System (BioRad, USA) by using the 2× SYBR qPCR
Frontiers in Immunology 04
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Master mix (Monad, China) as the following conditions: 95°C

for 5 min, followed by 40 cycles at 95°C for 10 s and at 58°C for

30 s. Relative fold changes of genes were calculated by the

methods of -DDCt and the housekeeping gene elongation

factor (EF-1a) was used as control gene for normalization of

expression. Primers used for qRT-PCR are listed in

Supplementary Table S1.
DNA extraction and PCR amplification

Following the manufacturer’s instructions, the total genomic

DNA from twelve gonads (six testis and six ovaries) was

extracted using MagPure Stool DNA KF kit B (Magen, China).

Then the quantity and quality of extracted DNA were measured

with a Qubit Fluorometer by using the Qubit dsDNA BR Assay

kit (Invitrogen, USA) and checked by running aliquot on 1%

agarose gel, respectively.

Variable regions V3–V4 of bacterial 16S rRNA gene was

ampl ified wi th universa l PCR pr imers , 338F (5 ’ -

ACTCCTACGGGAGGCAGCAG-3’) and 806R (5’-GGACTA

CHVGGGTWTCTAAT-3’). Both forward and reverse primers

were tagged with Illumina adapter, pad, and linker sequences.

PCR enrichment was performed in a 50 ml reaction containing

30ng template, fusion PCR primer, and PCR master mix as

following conditions: 94°C for 3 min, followed by 30 cycles of 94°

C for 30 s, 50°C for 45 s, 72°C for 45 s and final extension for 10

min at 72°C. The PCR products were purified with AmpureXP

beads and eluted in Elution buffer. Libraries were qualified by the

Agilent 2100 bioanalyzer (Agilent, USA). The validated libraries

were used for sequencing on the Illumina HiSeq 2500 platform

(BGI, China) following the standard pipelines of Illumina, and

generating 2 × 300 bp pairedend reads.
Illumina MiSeq sequencing and
bioinformatics analysis

Raw reads were filtered to remove adaptors and low-quality

and ambiguous bases, and then paired-end reads were added to

tags by the Fast Length Adjustment of Short reads program

(FLASH) to get the tags. The tags were clustered into OTUs with

a cutoff value of 97% using UPARSE software and chimera

sequences were compared with the Gold database using

UCHIME to detect. Then, OTU representative sequences were

taxonomically classified using Ribosomal Database Project

(RDP) Classifier with a minimum confidence threshold of 0.6,

and trained on the RDP Release16 database by QIIME (29). The

USEARCH global was used to compare all tags back to OTU to

get the OTU abundance statistics table of each sample. Alpha

and beta diversity were estimated by MOTHUR and QIIME at

the OTU level, respectively. Principal component analysis (PCA)

in OTUs was plotted with R package “ade4”. Principal
frontiersin.org

https://doi.org/10.3389/fimmu.2022.938326
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Meng et al. 10.3389/fimmu.2022.938326
Coordinate Analysis (PCoA) was performed by QIIME (v1.8.0).

Nonmetric multidimensional scaling ordination (NMDS) was

performed by R package. UPGMA cluster was performed by

phytools and R package version 3.5.1. Wilcox Test results of

species difference were performed by R/Bioconductor package

DESeq. Significant differences were considered between the two

groups when p-vaule and FDR values were less than 0.05. LEfSe

cluster or LDA analysis was conducted by LEfSe. KEGG

functions were predicted using the PICRUSt software (30).

Barplot and heatmap of different classification levels were

plotted with R package v3.4.1 and R package “gplots”,

respectively. The sequence information for this study has been

uploaded to NCBI with the accession number PRJNA832434.
Identification and analysis of
gonadal bacteria

To verify the key bacteria in the gonadal tissue, we sampled

the gonadal tissue ofM. albus under the same background. After

homogenization by bead beating for 2 min at 60 Hz, 100 ml
homogenate was absorbed onto the plate preparation of Brain

Heart Infusion Agar. Subsequently, single colonies were selected

to culture for further enrichment post nearly 12 hours. Bacterial

universal primers were used for further amplification in a 50 ml
reaction including 25 ml 2× PCR master mix, 2 ml bacteria
template, and 2 ml primers as following conditions: 94°C for 10

min, followed by 35 cycles of 94°C for 30 s, 58°C for 30 s, 72°C

for 1 min and final extension for 10 min at 72°C. After being

analyzed by agarose gel electrophoresis and photographed, PCR

products were purified and sequenced.
Statistical analysis

An unpaired Student’s t-test (Prism version 8.0; GraphPad)

was used for analysis of differences between groups. P values of

0.05 or less were considered statistically significant.
Results

Sex identification of M. albus

Genetic background, nutrition, and environment may affect

the microbial community (3). To explore the difference of

gonadal bacterial community between female and male in M.

albus, the sibling F1 generation was generated for eliminating the

interference of genetic background (Figure 1A). Embryos and

larval M. albus were incubated in the incubator of cell culture

room (Figure 1A), then, the juveniles were feed in the indoor

circulating system over fourteen months (Figure 1B). The

influence of nutrition and living environment on individual
Frontiers in Immunology 05
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microbial community is minimized between female and male

M. albus. To further exclude differences due to individual size,

after sex identification, 30 individuals of similar size including

females and males were selected for the subsequent study

(Figures 1C, 2A).

As a natural female-to-male sex reversal freshwater

economic fish, the sex of M. albus individuals were truly

identified. Unexpectedly, the majority of M. ablus had female

oocytes, but seven individuals had male characteristics, such as

the appearance of genital folds and spermatogenic cells

(Figures 1A, 2A). Given the morphological differences between

gonads, we statistically analyzed the growth parameters of the

identified M. albus. Although no significant differences were

observed in body length or weight, a remarkable difference in

GSI was detected between female groups and male M. albus

(Figure 2B). Changes in gonadal steroid concentrations typically

accompany gonadal transition in species that undergo sex

reversal. In the present study, serum estradiol was

approximately 2-fold higher in females (85.74 ± 24.30 ng/mL)
than in males (45.50 ± 7.59 ng/mL). However, serum testosterone

in males reached 19.58 ± 3.05 nmol/L, which was significantly

higher than measured in females (14.59 ± 2.88 nmol/

L) (Figure 2C).

Several genes were then quantified in testis and ovary

samples via RT-qPCR, including sexual-related genes

(cyp19a1a, foxl-2, sox-9, and dmrt-1), physical barrier-related

genes (occludin, claudin-12, and claudin-15), and immune-

related genes (polymeric immunoglobulin receptor (pIgR),

toll-like receptor (TLR-3, TLR-7 and TLR-8), lysozyme and

hepcidin) (Figure 2D). As expected, the female-related gene

foxl-2 was highly expressed in ovaries, whereas the expression

levels of male-related genes sox-9 and dmrt-1 are significantly

higher in testes than in ovaries. Tight junctions are vital to the

structure of the blood-testicular barrier. We found mRNA level

of occludin was significantly downregulated whereas claudin-12

and claudin-15 were upregulated in testes, suggesting that

structural integrity differed between testis and ovary. Similarly,

higher expression levels of TLR-7, TLR-8, and pIgR transcripts

were observed in testis than in ovary. Importantly, lysozyme, an

antimicrobial peptide, has higher expression in the testes than in

ovaries, hinting that the microbial environment may be unique

between testes and ovaries.
16S rDNA gene sequencing and diversity
analysis in M. albus

To distinguish the anatomical relationships between the

gonads and the gut in M. albus, Micro-CT investigations was

performed and presented the gonad abutted the gut and

sequential ly terminated in the cloaca, respectively

(Supplementary Figure 2). Subsequently, testes and ovaries of

M. albus were collected for 16S rRNA sequencing to verify
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whether gonadal microorganisms are related to sex. After quality

filtering and normalization to remove adaptors and low-quality

or ambiguous bases, a total of 672,573 high-quality sequences

were obtained, equivalent to an average of 56,047 reads per

sample. Valid sequences were then clustered, resulting in 619

OTUs with a cutoff value of 97% identity. Sequences were

classified taxonomically for downstream analysis. Males and

females shared 150 OTUs; males had 240 unique OTUs, and

females had 229 (Figure 3A). A rarefaction curve and coverage

indices were applied to evaluate the depth of sequencing and

species richness. Our result revealed that most of the OTUs were

detected in all samples, and all samples reached saturation

(Figure 3B). Meanwhile, coverage indices among all samples

were as high as 99%, indicating that the sequencing depth was

sufficient (Table 1). OTUs were then used to analyze differences

in the gonadal microbial abundance, and community diversity

was compared between female and male fish. Chaos and Sob

indices were substantially higher in testis than in ovary samples.

Although the difference did not reach significance, the Shannon

index was higher in testis than in ovary samples (Figure 3C,

Table 1). These results suggest that sex influences the microbial

richness and diversity of gonadal flora in the M. albus.
Frontiers in Immunology 06
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Based on the OTU abundance of each sample, non-metric

multidimensional scaling analysis ordination was performed to

define the relationship between the female and male groups. We

found testis samples were similar to each other and could be

distinguished from ovary samples, indicating that significant

differences in community structure exist between male and

female M. albus (Figure 3D). Hierarchical clustering trees and

heat map analysis revealed that samples were clustered into two

distinct groups depending on sex (Figures 3E, F). In addition,

PCA and PCoA yielded similar results, suggesting that

differences between samples were primarily due to sex

(Supplementary Figure 3).
Composition of gonadal microflora in
female and male M. albus

To further analyze the microbial composition differences

between the female and maleM. albus, microbial sequences from

testis and ovary tissues were classified by phylum, class, order,

family, and genus. The results showed that eleven phyla were

predominantly observed in ovary and testis samples, with
A B

DC

FIGURE 2

Sex identification of M. albus. (A) Representative histology graphs (upper) and morphology (lower) from ovary and testis of M. albus under the
same background. Black triangles indicate genital folds. Scale bar, 100 mm. (B) Relationships among body length (mm), weight (g), and GSI (%) of
M. albus. (C) Serum concentrations of estradiol (left) and testosterone (right) in female and male M. albus. (D) Heat map depicting the relative
expression levels of genes in ovary (n=22) and testis (n=5) tissues. **P < 0.01, ***P < 0.001, unpaired Student’s t-test. The data are expressed as
the mean values ± standard deviation (SD).
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Firmicutes, Proteobacteria, Bacteriodetes, and Actinobacteria

being the most dominant phyla among females and males.

Notably, Proteobacteria, Actinobacteria, and Cyanobacteria

were more abundant in the ovarian bacterial community

(35.3%, 6.4%, and 5.8%, respectively) compared with the

bacterial community in testis (24.5%, 3.2%, and 2.4%,

respectively) (Figures 4A, B). In turn, a more abundant

number of Firmicutes were more abundant in testis (51.0%)

than in ovary samples (32.4%). Although the differences between

groups did not reach significance, Bacteroidetes was

predominant and accounted for 12.0% of the diversity in the

ovarian bacterial community and 15.3% in the testis. It is worth

noting that Fusobacteria was detected only in female individuals,

although its abundance was low (2.8%) (Figures 4A, C).
Frontiers in Immunology 07
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At the order level, potentially pathogenic bacteria were

detected in ovary and testis samples, including members of the

orders Burkholderiales (11.4% in ovary versus 8.2% in testis) and

Pseudomonadales (9.3% in ovary versus 7.9% in testis). In

contrast, the orders Erysipelotrichales and Enterobacteriales

were significantly enriched in the testis (6.5% and 4.2%,

respectively) compared to the ovary (1.3% and 3.1%,

respectively) (Figures 4D-F and Supplementary Figure 4). The

testis microbial community was also enriched in potentially

beneficial taxa known to produce short-chain fatty acids

(SCFAs), including Clostridiales (39.3% in testis versus 23.0%

in ovary), Bacteroidales (15.1% in testis versus 9.7% in ovary),

and Lactobacillales (2.1% in testis versus 1.5% in ovary). Other

SCFA-producing bacteria were enriched in ovaries, such as
A B

D E F

C

FIGURE 3

Diversity analysis in M. albus. (A) Venn diagram displays the number of shared and unique OTUs in the gonads of female and male M. albus.
(B) Rarefaction analysis of female and male gonads. (C) Histograms represent alpha diversity analyses in the gonads of male and female gonads
M. albus, including Chao, Sob, and Shannon indices. (D) NMDS shows the relationship between females and males. (E) heat map analysis shows
the relationship among female and male samples. (F) Hierarchical cluster analysis of weighted-unifrac distances generated from ovary and testis
was constructed by UPGMA. *P < 0.05, unpaired Student’s t-test. The data are expressed as the mean values ± standard deviation (SD).
TABLE 1 Alpha diversity of the gonad microbial community in M. albus.

F_ovary M_testis P-vaule

sobs 110.33 ± 28.88 159.67 ± 28.45 0.0215*

chao 130.89 ± 38.80 184.33 ± 35.54 0.0465*

ace 134.02 ± 29.43 178.72 ± 25.84 0.0288*

shannon 3.51 ± 0.30 3.93 ± 0.33 0.0600

simpson 0.06 ± 0.03 0.04 ± 0.02 0.2631

coverage 0.999 ± 0.0001 0.999 ± 0.00001 0.0663
front
The data are expressed as the mean values ± standard deviation (SD). P-values were determined using Student’s t-test (*P < 0.05).
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Bacillales (2.9% in testis versus 7.1% in ovary) (Figures 4D-F and

Supplementary Figure 4). These results indicate that broad, well-

defined ranges of bacteria with beneficial and pathogenic

characteristics exist in M. albus gonads, and notable

differences are related to sex.
Dominant bacterial community analysis
between testis and ovary of M. albus

Differences in the microbial communities at the class and

genus level were displayed with histograms for the top 10
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abundant OTUs from female and male M. albus. The relative

abundances of Clostridia and Erysipelotrichia are significantly

higher in males than females (P < 0.01) at the class level

(Figure 5A and Supplementary Figure 5A). Interestingly, not

only are Clostridium XIVa and Bacteroides significantly different

(confirming former studies), but Escherichia, a more potentially

pathogenic bacterial genus, was identified in testis tissue.

Moreover, the beneficial taxa Romboutsia were detected

significantly in males (Supplementary Figure 5B).

Dominant microbiomes that contribute to bacteria

differences were also investigated by linear discriminant

analysis of effect size (LEfSe). In contrast to male M. albus, we
A B

D E

F

C

FIGURE 4

Composition and distribution of bacterial microbiomes in M. albus gonads. (A) Comparison of the composition and relative abundance of
dominant bacterial taxa between ovary and testis at the phylum level. (B, C) Pie graphs represent the average relative abundance of each
phylum in ovarian (B) or testicle (C) bacterial community. (D) Comparison of the composition and relative abundance of dominant bacterial taxa
between ovary and testis at the order level. (E, F) Pie graphs represent the average relative abundance of each order in ovarian (E) or testicle
(F) bacterial community.
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observed that the genus Flavobacteriaceae , the order

Flavobacteriales , and the class Flavobacteri ia were

predominant in the female M. albus. Meanwhile, the order

Bacillales (a member of the Firmicutes phylum) was also

enriched in the ovary (Figure 5B). However, three other

members of Firmicutes (Clostridiales and Erysipelotrichales)

were more prevalent in the testis. Verrucomicrobiales was

other orders that are more predominant in M. albus testis

(Figure 5B). Gonads of M. albus propagated under identical

conditions were randomly selected for bacterial identification on

coating plates to verify the dominant gonadal bacteria. Sex

identification revealed ovarian characteristics in almost all

gonads, so the tissue homogenates of ovaries were cultured on

Brain Heart Infusion Agar, and bacterial colonies with the

characteristic white, large and flat morphology were detected

on most plates (Figures 5C, D). Subsequently, single colonies

were isolated and sequenced using 16S rRNA universal primers.

The results revealed that the similarity with Bacillus was over

99%, which provided additional support that Bacillusmay be the

dominant bacteria in M. albus ovaries (Figure 5E). These

findings indicate that sex exerts profound and complex effects
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on the microbial community composition and affects dominant

bacteria in gonads of M. albus.
Functional prediction of microbial
communities in M. albus

PICRUSt was carried out to predict the functions of genes

expressed in the microbial communities in M. albus gonads.

Using level 1 KEGG ortholog function predictions, three

functional categories were significantly different (P < 0.05)

between females and males: metabolism, cellular processes,

and organismal systems (Figure 6A and Supplementary

Figure 6). Concretely, metabolism was more abundant in

females, whereas categories involved in cellular processes and

organismal systems were more abundant in males. Additional

differences between males and females were identified when

metabolic pathways were characterized at level 2 KEGG. The

functional categories enriched in female bacterial microbiota

included the metabolic pathways of xenobiotics biodegradation

and metabolism, amino acid metabolism, and metabolism of
A

B D

E

C

FIGURE 5

Bacterial community are significantly different between ovary and testis in M. albus. (A) Differences in microbial communities at the class level.
(B) Cladogram representation of LEfSe analysis shows that bacterial taxa are significantly associated with the ovary (green) or testis (red).
(C) Representative graphs of ovary histology in M. albus. (D) Culture plates from gonads of M. albus. Black triangles indicate single colonies of
Bacillus. (E) Agarose gel electrophoresis of colony PCR samples. PCR products were verified by agarose gel electrophoresis and sequencing.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.938326
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Meng et al. 10.3389/fimmu.2022.938326
cofactors and vitamins, whereas the functional categories

enriched in males were carbohydrate metabolism and

metabolism of terpenoids and polyketides. Interestingly, in

males, functional genes in enzyme families, transcription, and

cell motility categories were more concentrated. Although the

difference between males and females did not reach statistical

significance, genes associated with bacterial community involved

in immune system function were substantially higher in males,

whereas genes involved in immune diseases were enriched in

females (Figures 6B, C).
Discussion

Microbiomes in vertebrates vary in a tissue-specific manner

and play vital roles in many biological functions, including

growth enhancement, nutrition, development, metabolism, and
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immune responses (31, 32). In mammals, bacterial microbiota

could alter gonadal maturation and drive sex-specific differences

in gene expression and metabolism (7, 10–12). Although teleost

bacterial microbiomes have been extensively studied (5, 20), the

diversity present in gonads for most teleost species remains

unexplored. In this study, we compared the microbial

community compositions of female and male M. albus, a

teleost that undergoes sex reversal naturally, and predicted the

corresponding functional differences.

Environmental and host genetic factors shape individual

variations in host-associated microbiota community structures

(33). In this study, M. albus with identical genetic backgrounds

were hatched from embryos and kept under identical conditions

(e.g., environment, diet), to minimize any effects caused by

environment and heredity. It is generally believed that it takes

more than two years for M. albus to undergo sex reversal in

natural environments (22). Unexpectedly, seven individuals with
A B

C

FIGURE 6

Predictive analysis of microbiota function in gonads of the M. albus. (A) Average relative abundances in predicted functional genes of gonadal
bacterial community at KEGG level 1. (B) Average relative abundances in predicted functional genes of gonadal bacterial community at KEGG
level 2. (C) Average relative abundances and differences in predicted functional genes of gonadal bacterial community at KEGG level 2.
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male characteristics (e.g., genital folds and spermatogenic cells)

emerged approximately one-year post-hatching. Previous studies

found that temperature affects sex differentiation in various teleost

species, so one reason for the early reversal in M. albus might be

the suitable indoor temperature (34, 35). In our study,

significantly higher serum testosterone in males than females

provided additional support to the facticity that males had

emerged. However, lower average concentrations of estradiol

and testosterone were detected in our study, a finding that is at

odds with the content of sex hormones reported in a previous

study. On the one hand, the environment may be associated with

the synthesis, secretion, or transport of hormones (36). On the

other hand, differences in the weight and shape of M. albus

individuals can cause differences in serum hormones according

to previous study (37). As assessed in several species, a shared

characteristic among fish species in which temperature can alter

sex ratios is that exposure to heat during early development

upregulates the expression of genes related to testis

differentiation with a concomitant down-regulation of genes

related to ovarian differentiation (38, 39). We also observed

substantially elevated expression of sox-9 and dmrt-1 genes in

male testis, further suggesting temperature may have an effect on

sexual reversal. Meanwhile, consistent with the previous studies

on sex regulated genes, a lower expression of sox-9 and dmrt-1

were also detected in the ovary, which may be caused by the same

genome shared between female and male individuals (40, 41). The

claudin family of membrane proteins play vital roles in tight

junctions structure, an intercellular junction critical for building

the epithelial barrier and maintaining epithelial polarity (42).

Previous studies in fish have found that upregulation of

occludin mRNA levels stabilizes intercellular structural integrity,

whereas upregulation of claudin mRNA levels disrupts the

structural integrity of cells (43). In this study, we observed that

claudin-15 mRNA levels were significantly upregulated and

occludin mRNA levels were downregulated in M. albus testes,

implying that the physical barrier integrity in testis was less than

that in ovaries. In vertebrates, TLRs can distinguish among classes

of pathogens and serve an important role in orchestrating the

appropriate adaptive immune responses. It has been illustrated

that TLR3, TLR7, and TLR8 are primarily located in the

endoplasmic reticulum and in lysosomal-like vesicles and are

thought to have a vital role in anti-viral immunity (44). In the

present study, higher expression levels of these TLRs in testis

suggest the microbial immune environment may be different

between testes and ovaries. Interestingly, pIgR, a gene involved

in teleost mucosal defense, exhibited significantly higher

expression in testis than in ovary, providing additional support

that genes associated with immune responses differ between the

sexes, similar to mammals, and these differences likely contribute

to sex-specific vaccine outcomes (45). Whether there is a

relationship between physical barrier integrity and immune

environments, and the specific mechanism needs additional
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research and development. Lysozyme is an antimicrobial

peptide that is widely distributed in teleost and contributes

greatly to antibacterial defense due to its ability to cleave the

glycosidic bond between N-acetylmuramic acid and N-

acetylglucosamine residues in bacterial cell wall peptidoglycans

(5, 46). Our data showed that the lysozyme expression increased

significantly in testis, indicating that more potential bacterial

microorganisms inhabited in testis.

To further investigate the precise differences of gonadal

microorganisms, the testis and ovaries of M. albus were

collected for 16S rRNA sequencing and analyzed, respectively.

In contrast to results reported for M. albus intestinal flora, this

study found that gonadal tissues exhibited higher Alpha

diversity in males than females (16). It supported that different

tissues are inhabited by uniquely different microbial

communities and proportions of specific bacteria (13, 14).

Therefore, it was the body site that led to the difference of

diversity and richness to a large extent, and it does not rule out

that group differences contribute a small amount to the observed

diversity. Meanwhile, Beta diversity analysis where the male

sample was clustered while the female sample was scattered

indicates that the gonadal flora of M. albus changes at different

developmental stages. The more obvious differences between

male and female M. albus were reflected in the composition of

gonadal microflora (Figure 4). Gonad tissues from humans are

characterized by Proteobacteria, Firmicutes, Bacteroidetes, and

Actinobacteria as the dominating phyla, similar to the microbial

compositions observed in this study on M. albus (11, 47).

However, there are significant differences in the proportion of

these microorganisms between testis and ovary. In our study,

Firmicutes was the most prominent bacterial community in

testis, whereas the relative abundance of Bacteroidetes had no

significant difference between the two groups. Although the

concept that an increment in the relative abundance of

Firmicutes and Bacteroidetes may be associated with obesity

has been consistently supported by numerous studies, a recent

meta-analysis concluded that there were no statistically

significant differences in the Firmicutes/Bacteroidetes ratio

between obese and normal-weight adults (48, 49). Combined

with our previous results on weight and the recently published

meta-analysis, it may further strengthen the deduction that the

Firmicutes/Bacteroidetes ratio may not be a robust marker for

obesity (50). However, an increased prevalence of the bacterial

phylum Proteobacteria is a sensitive marker for an unstable

microbial community (dysbiosis) and a potential diagnostic

criterion for disease (51). Whether females may suffer from

more diseases than males deserves additional study to

understand due to the higher proportion of Proteobacteria in

females than males observed in the present study. In addition to

Proteobacteria, Cyanobacteria also produce a wide variety of

potentially toxic secondary metabolites and various other

cyanobacterial bioactive compounds that could affect fish
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health. Previous studies have shown that Cyanobacteria may be

related to the effect of environmental stress on metabolic

divergences in fish (52). The design of this study eliminated

environmental differences; therefore, the relative abundance of

Cyanobacteria in ovary relative to testis indicates that there may

be intrinsic metabolic differences between M. albus males

and females.

SCFA synthesized from carbohydrates and indigestible

oligosaccharides are rich energy sources for the host metabolism.

Intestinal members of the orders Clostridiales, Bacteroidales, and

Lactobacillales are correlated with the biosynthesis and absorption

of SCFA by enzymes such as glycosyl transferases, glycoside

hydrolases, and polysaccharide lyases (53). Moreover, a

compensatory relationship between testicular and intestinal

microbiota has been reported (21); therefore, we speculate that

gonadal bacterial microbiota are also involved in host metabolism

and homeostasis maintenance. Significant differences in the

metabolism between the ovary and testis are suggested by the

overrepresentation or underrepresentation of the predicted KEGG

pathways associated with different metabolic processes and

biosynthesis in the ovary and testis. For example, higher levels of

microbial functional genes associated with the metabolism of

cofactors and vitamins were detected in ovaries, whereas the level

of carbohydrate, terpenoids and polyketides metabolism was

significantly elevated in testis. Because activated T cells mediate

metabolic reprogramming, promote the production of glycolytic

flux and lactate, and elevate the production of lipids, proteins,

nucleic acids, and other carbohydrates (i.e., induction of biomass),

we surmise that these metabolic differences between male and

female M. albus may be related to their correlative immune

function (54). Evidence is accumulating to support specific roles

for bacterial community in the development and function of T cells

and T regulatory (Treg) cells (53, 55). In the case of distinct

Clostridia clusters, it could be either independent of pattern

recognition receptors (PRRs) or dependent on My-D88

dependent mechanisms (56). In the case of Bacillus, induction of

Treg cells appears to be mediated by polysaccharide A-induced

TLR2 signaling (57). The higher relative abundance of these

immune-related bacteria in testis may indicate that males have a

more active immune response. Moreover, microbial cell wall

peptidoglycans were reported to maintain tight junctions by

TLR2-mediated signaling, suggesting that Bacillus may be

responsible for the integrity of ovary (58). More importantly,

certain SCFAs (e.g., butyrate) have been implicated in the

development and function of Tregs. Whether there is a certain

relationship among microbiota, metabolism, and immunity in male

and female M. albus needs to be further explored. In addition to

Bacillus, Lactobacillus has also been reported as an aquaculture

probiotic, and this study found it to be more abundant inM. albus

testes. Previous studies have reported that Lactobacillus and

Clostridia are associated with semen quality and fertility status
Frontiers in Immunology 12
82
(10, 11). In view of the special characteristic of sexual reversal inM.

albus, additional studies should focus on the relationship between

probiotics and sperm quality in M. albus.

This study is the first comprehensive characterization of the

microbial communities inM. albus gonads to our knowledge. To

summarize, this study found significant differences in the

microbial composition and distribution of M. albus between

testis and ovary, which may be relevant to the difference in the

metabolism, immune modulation, and host-microbe

interactions between female and male groups. These findings

provided unique resources for further explore how gonadal

bacterial community influences sex-specific differences.

Meanwhile, it also provides theoretical support for the

improvement of polycystic ovary syndrome.
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The parasitic worm product
ES-62 protects the
osteoimmunology axis in a
mouse model of obesity-
accelerated ageing

Margaret M. Harnett1*, James Doonan2, Felicity E. Lumb2,
Jenny Crowe1, Roel Olde Damink2, Geraldine Buitrago2,
Josephine Duncombe-Moore1, Debbie I. Wilkinson3,
Colin J. Suckling4, Colin Selman5 and William Harnett2*

1Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom,
2Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United
Kingdom, 3Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom,
4Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, United Kingdom,
5Glasgow Ageing Research Network (GARNER), Institute of Biodiversity, Animal Health and
Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
Despite significant increases in human lifespan over the last century, adoption of

high calorie diets (HCD) has driven global increases in type-2 diabetes, obesity and

cardiovascular disease, disorders precluding corresponding improvements in

healthspan. Reflecting that such conditions are associated with chronic systemic

inflammation, evidence is emerging that infection with parasitic helminths might

protect against obesity-accelerated ageing, by virtue of their evolution of survival-

promoting anti-inflammatory molecules. Indeed, ES-62, an anti-inflammatory

secreted product of the filarial nematode Acanthocheilonema viteae, improves

the healthspan of both male and female C57BL/6J mice undergoing obesity-

accelerated ageing and also extends median lifespan in male animals, by positively

impacting on inflammatory, adiposemetabolic and gutmicrobiome parameters of

ageing. We therefore explored whether ES-62 affects the osteoimmunology axis

that integrates environmental signals, such as diet and the gut microbiome to

homeostatically regulate haematopoiesis and training of immune responses,

which become dysregulated during (obesity-accelerated) ageing. Of note, we

find sexual dimorphisms in the decline in bone health, and associated

dysregulation of haematopoiesis and consequent peripheral immune responses,

during obesity-accelerated ageing, highlighting the importance of developing sex-

specific anti-ageing strategies. Related to this, ES-62 protects trabecular bone

structure, maintaining bone marrow (BM) niches that counter the ageing-

associated decline in haematopoietic stem cell (HSC) functionality highlighted by

a bias towards myeloid lineages, in male but not female, HCD-fed mice. This is

evidenced by the ability of ES-62 to suppress the adipocyte and megakaryocyte

bias and correspondingly promote increases in B lymphocytes in the BM.

Furthermore, the consequent prevention of ageing-associated myeloid/
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lymphoid skewing is associated with reduced accumulation of inflammatory

CD11c+ macrophages and IL-1b in adipose tissue, disrupting the perpetuation of

inflammation-driven dysregulation of haematopoiesis during obesity-accelerated

ageing in male HCD-fed mice. Finally, we report the ability of small drug-like

molecule analogues of ES-62 to mimic some of its key actions, particularly in

strongly protecting trabecular bone structure, highlighting the translational

potential of these studies.
KEYWORDS
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Introduction

The dramatic increase in lifespan, resulting from advances in

medicine, better nutrition and improved sanitation over the last

century, has not been mirrored by a similar increase in late-life

health and well-being (healthspan). This disconnect reflects that

the ageing process appears to have been accelerated by adoption

of the Western life-style, incorporating a high calorie diet (HCD)

and sedentary behaviours, resulting in dysfunction of

immunometabolic networks and promotion of age-associated

co-morbidities such as type 2 diabetes (T2D), stroke,

cardiovascular disease, and cancers (1). Moreover, there is

increasing evidence that HCD-induced obesity (2) acts as a

reciprocal risk factor with autoimmune conditions in

promoting dysbiosis of the microbiome and disruption of gut

barrier integrity, with the resulting inflammation inducing

dysregulation of the key cellular sensor that integrates

metabolism and inflammation, mTOR (3, 4). This triggers

canonical biological ageing processes (1, 5, 6), including the

premature ageing of haematopoietic stem cells (HSC) and

consequent immune system dysfunction (5, 6). Indeed, we

have recently shown that the extended health- and life-span

exhibited by mTOR mutant (S6Kinase1-null) mice is associated

with preservation of HSC function during ageing (7).

The pivotal role of chronic low-grade inflammation in

driving age-associated co-morbidities and (accelerating) ageing

per se also resonates with the Hygiene Hypothesis in which the

evolutionary-rapid eradication of pathogens, including

helminths, has left us with unbalanced hyperactive immune

systems that may have contributed to the recent alarming

increase in prevalence of allergic and autoimmune disorders

(8, 9). Consistent with this, evidence from both epidemiological

studies and animal models of inflammatory disease suggests that

parasitic helminth infection might protect humans from

developing chronic inflammatory conditions and indeed, live

helminths have undergone trials as therapeutics in a range of

immune-mediated diseases (8, 9). Certainly, we have shown that
02
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ES-62, a phosphorylcholine (PC)-containing immunomodulator

secreted by the filarial nematode, Acanthoceilonema viteae,

protects against allergic and autoimmune pathology in various

mouse models by subverting TLR4-signalling to downregulate

aberrant MyD88 responses and restore the regulatory:effector

immune system balance, thereby allowing it to homeostatically

resolve aberrant inflammation irrespective of its phenotype

[reviewed in reference (10)]. Collectively such findings led us

to hypothesise that ES-62 might increase health- and lifespan by

targeting inflamm-ageing.

We therefore embarked on an age- and sex-matched

longitudinal survival study, combined with evaluation of

parallel interventional cross-sectional cohorts at various time-

points across the life-course that allowed us to analyse effects of

ES-62 (when administered at 1 μg/week) on >120 inflammatory

and metabolic parameters in C57BL/6J mice fed a HCD diet

(11). Male and female mice were found to exhibit distinct

pathological responses in this model of obesity-accelerated

ageing, with female mice typically showing more exaggerated

inflammatory responses whilst the male animals exhibited more

pronounced metabolic defects including visceral adipocyte

hypertrophy, insulin resistance and loss of pancreatic b-cell
function (11). This sexual dimorphism extended to ES-62-

responsiveness, with sex-specific improvements in healthspan

apparent and strikingly, increasing median lifespan recorded in

male, but not female, HCD-fed mice (11). Mathematical

modelling identified (as expected) that anti-inflammatory

activities were amongst the signatures most predictive of ES-62

action (11). However, this analysis also highlighted the

importance of additional protective effects targeting intestinal

integrity in male HCD-cohorts. These actions reflected

normalisation of the gut microbiome (11) with, in particular,

profound depletion of proteobacteria species previously

associated with promoting ageing (12, 13). Of note, we have

also shown the protection against joint inflammation and bone

damage afforded by ES-62, in the collagen-induced arthritis

(CIA) mouse model of rheumatoid arthritis, to be associated
frontiersin.org
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with its normalisation of the gut microbiome and intestinal

barrier integrity (14).

Collectively, these findingsmay be pertinent to the ability of ES-

62 to promote healthspan as gut health impacts not only on the

“training” of immune responses and skeletal health

(osteoimmunology) (15–17), but also on inflamm-ageing, age-

associated comorbidities, frailty and the ageing process per se

(18–20). This reflects that the combination of cumulative

exposure to pathogens and Western-style diets causes changes in

the gut microbiota during obesity and ageing that drives the

dysregulation of haematopoiesis. Such dysregulation is typically

characterised by an increase in HSC numbers but a decline in HSC

functionality (HSC exhaustion/senescence) and a bias towards

myeloid lineages (21–23). Generation of the resultant

inflammatory network termed the senescence-associated secretory

phenotype (SASP) impacts on long-term HSC functionality,

perpetuating dysregulation of haematopoiesis (24, 25). The SASP

is thus manifested by anaemia, immunosenescence and

thrombocytosis, as well as elevated systemic levels of cytokines

and chemokines (e.g., IL-1a and b, IL-6 and TNFa; CXCL1 and

CXCL2) (22, 24). The impact of such decline inHSC functionality is

underlined by the evidence that BM Transfer (BMT) from young to

old mice can extend lifespan (26, 27), as well as protect against

obesity and age-associated comorbidities like cardiovascular and

neurodegenerative disease (28, 29). SASP arises due to HSCs

responding both directly to microbiota-derived molecules and

indirectly, via the impairment of the haematopoiesis-supporting

BM microenvironment resulting from the impact of inflammation

andmetabolic stress on mesenchymal lineages (22, 23, 25). As TLR/

MyD88 signalling, which is a key target of ES-62, plays an

important role in these events, we therefore investigated whether,

by modulating bone structure and the BM microenvironment, ES-

62 acted to reduce dysregulation of haematopoiesis to suppress

inflamm-ageing and promote healthspan during HCD-accelerated

ageing of male and female mice.
Methods

Ethics statement

All procedures were performed in accordance with UK Home

Office Project Licences (60/4504 and PDBDC/7568), following the

“principles of laboratory animal care” (NIH Publication No. 86-23,

revised 1985) and approval by the University of Glasgow Animal

Welfare and Ethical Review Board.
The obesity-accelerated mouse model

Male and female C57BL/6J mice (Envigo, UK) were housed

(in same sex groups of 2 to 4, randomly allocated on arrival at 4

weeks of age) in the Central Research Facility (University of
Frontiers in Immunology 03
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Glasgow, UK) and maintained, under specific pathogen-free

conditions, at 22°C under a 12-h light/dark cycle with ad

libitum access to water and Chow (CRM-P) and High Calorie

(Western Diet RD) diets from Special Diet Services, UK as

described previously (11, 30). Briefly, from 4 weeks of age, all

mice were fed normal Chow CRM-P diet (comprising Oil,

3.36%; Protein 18.35%; Fibre, 4.23%: Sugar 3.9%; Atwater fuel

energy from Oil, 9.08%; Protein, 22.03%: Carbohydrate, 68.9%)

plus 150 ppm Fenbendazole. Mice were administered PBS,

purified endotoxin-free ES-62 (1 mg (31);) or a combination of

SMAs 11a plus 12b (both 1 μg (32)) weekly via the subcutaneous

route from 9 weeks of age (30, 31). At 10 weeks of age, the HCD

cohorts received Western Diet RD (Fat, 21.4%; Protein, 17.5%;

Fibre, 3.5%; Sucrose 33%; Atwater fuel energy from Fat, 42%;

Protein, 15%: Carbohydrate, 43%) plus 150 ppm Fenbendazole.

For the ES-62 time-course study, male and female cohorts of

mice were culled at the following ages (days; (d)), d56 (8 weeks);

d160 (22-23 weeks); d340 (48-49 weeks) and d500 (71-72 weeks).

The group sizes were: d56 (Chow + PBS, n=6), d160 (HCD + PBS/

ES-62, n=10/group; Chow + PBS, n=6), d340 (HCD + PBS/ES-62,

n=12/group; Chow + PBS, n=6) and d500 (HCD + PBS/ES-62,

n=6/group; Chow + PBS, n=5). For analysis of the effect of ES-62

on ageing Chow-fed mice, additional male and female cohorts of

mice were culled at 340 days (48-49 weeks) of age (Chow + PBS/

ES-62, n=8; HCD + PBS, n=8) and, in the SMA study, male and

female cohorts of mice were culled at 160 days (22-23 weeks) of

age (Chow + PBS, n=4; HCD + PBS/ES-62, n=6).

Following fasting overnight (~16 h), blood was collected

between 8-10 am from mice after cervical dislocation and rapid

decapitation of the animals from the severed carotid artery. Blood

was either immediately aliquoted into FACS buffer (PBS containing

2.5% BSA and 0.5 mM EDTA) and kept on ice for processing for

flow cytometric analysis or following clotting at room temperature,

centrifuged and the isolated serum stored at-20°C in endotoxin-free

Eppendorf tubes for analysis of IL-1b and TNF-a by ELISA (BD

Biosciences, Oxford UK).
Bone histology and micro computed
tomography (µCT)

Paws and femurs were fixed in 4% paraformaldehyde prior

to decalcification and paraffin wax embedding for H&E staining

(7 mm sections) of joints as described previously (14, 33). Joint

histopathology was determined by semi-quantitative scoring of

cell infiltration/pannus formation, cartilage and bone erosion,

each scored on a 0-3 severity scale (34) and then averaged, with

the mean values representing the histopathology scores for

individual mice. In bone sections, adipocytes were identified

visually in the BM by their spherical, amorphous and white

appearance. BM adipocytes were enumerated in 3 images from

each mouse and the numbers of adipocytes normalised to the

area of the BM, calculated using ImageJ software (pixel to
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micron conversion) for each field of view, with the mean values

calculated as the data point for each individual animal.

Femurs were subjected to μCT analysis at the Microscopy and

Histology Core Facility at the Institute ofMedical Sciences, University

of Aberdeen (https://www.abdn.ac.uk/ims/facilities/ microscopy-

histology/services-and-equipment-1872.php#panel1876), using a

Skyscan1072 x-ray Microtomograph (Skyscan, Aartselaar, Belgium)

and NRecon version 1.4.4. (3D images) and CTan version 1.0.7.2

Skyscan software using protocols described previously (35–37).
Flow cytometry

Flow cytometric analysis was performed as described previously

(11, 14, 30, 33). Briefly, following red cell-lysis (with 0.8% NH4Cl

buffer), BM, blood, spleen, MLN and adipose tissue cells were

suspended in FACS buffer (PBS containing 2.5% BSA and 0.5 mM

EDTA) and phenotyped using the following antibodies:

Tissue Specificity Conjugate Clone Supplier Catalogue #

BM CD3 PE 17A2 BioLegend #100205

B220 PE RA36B2 BioLegend #103207

Ter119 PE TER-119 BioLegend #116207

CD11b FITC M1/70 BioLegend #101206

Sca-1 FITC D7 BioLegend #108116

Ly6C PerCP-
Cy5.5

HK1.4 BioLegend #128011

Ly6G APC 1A8 BioLegend #127613

CD11b APC M1/70 BioLegend #101212

CD45 APC 30-F11 BioLegend #103112

RANKL Biotin IK22/5 BioLegend #510003

CD117 Biotin 2B6 BioLegend #105803

Streptavidin APC-Cy7 BioLegend #405208

CD115 Biotin AFS98 eBioscience #13-1152-
82

CD117 APC 2B8 eBioscience #17-1171-
82

Other
tissues

CD3 FITC 146-
2C11

BioLegend #100305/6

CD3 FITC 17A2 BioLegend #100203

CD3 PE 17A2 ImmunoTools #22150034

CD4 PE GK1.5 BioLegend #100407

CD4 APC-ef780 RM4-5 eBioscience #47-0042-
82

CD8 PE-Cy7 53-6.7 eBioscience #25-0081-
82

CD44 PerCP IM7 BioLegend #103036

CD45RB FITC C363-
16A

BioLegend #103305

CD45RB APC-ef780 30-F11 Invitrogen #47-0451-
82

(Continued)
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Tissue Specificity Conjugate Clone Supplier Catalogue #

CD19 AF700 6D5 BioLegend #115527/8

CD11c FITC N418 BioLegend #117305

CD11c PE-Cy7 N418 BioLegend #117318
fron
HSC analysis involved use of a dump channel (PE-

conjugated lineage cocktail) in combination with FITC anti-

Sca-1 and APC or biotin anti-CD117 antibodies. For surface

marker staining, antibodies were used at 0.2 μg/106 cells (1/100

dilution) except for anti-CD45 (1/200 dilution). Streptavidin was

used at 1/500 dilution. Cell death was assessed by fixed viability

stain (APC-ef780) or 7AAD (BD Bioscience, UK) staining. Data

were acquired using FACS Canto or BD LSRII flow cytometers

and analysed using FlowJo Software (Tree Star In, OR USA,

version 8.8.7) and populations were gated using isotype and

fluorescence minus one (FMO) controls (11, 14, 30, 33).

Exemplar gating strategies are shown in Supplementary Figure 1.
Osteoclast (OC) differentiation in vitro

OC differentiation was determined as we described previously

(14, 33). Briefly, BM was flushed from the tibias and femurs using a

sterile 23-gauge needle and syringe and aspirated to create a single

cell suspension in PBS which, following filtering through a 20 μm

cell strainer, was centrifuged (400 x g), washed in PBS and

resuspended (106/ml) in “complete” aMEM medium (containing

50 U/ml penicillin, 50 mg/ml streptomycin and 10% FCS). Cells

were incubated overnight with M-CSF (30 ng/ml; Peprotech,

London, UK) at 37°C in 5% CO2 and then following removal of

non-adherent cells, re-suspended in fresh complete aMEM

medium supplemented with 30 ng/ml M-CSF and 50 ng/ml

RANKL and OC differentiation initiated by seeding cells (105) in

96-well tissue-culture plates, with the medium refreshed on day 4.

Functional maturation was assessed by TRAP staining (Leukocyte

Acid Phosphatase Kit, Sigma, UK) on day 5, with TRAP+ cells

containing ≥ 3 nuclei counted as OCs. The size of individual OCs

per field of view (FOV) was calculated from images (x4

magnification; scale bars 1000 μm) generated by an EVOS FL

Auto Cell Imaging System using Image J software.
qRT-PCR

As described previously (14, 33), BM cells (106) were lysed in

RNeasy Lysis Buffer prior to mRNA extraction using RNeasy Plus

Mini kit (Qiagen, Germany) and cDNA generated using the High

Capacity cDNA Reverse Transcriptase kit (Applied Biosystems, Life

Technology) and amplified using the StepOne Plus™ real-time PCR

system (Applied Biosystems). KiCqStart® qPCR Ready Mix (Sigma-

Aldrich) was used in conjunction with the following primer pairs:
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Gene Forward Primer Reverse Primer

RANK,
tnfrsf11a

GAAATAAGGAGTCCTCAGGG TAGAATCTCTGACTTCTGCC

RANKL,
tnfsf11

TCTGTTCCTGTACTTTCGAG TTCATGGAGTCTCAGGATTC

OPG,
tnfrsf11b

GAAGATCATCCAAGACATTGAC TCCTCCATAAACTGAGTAGC

IL-1b
il1b

GTGATATTCTCCATGAGCTTTG TCTTCTTTGGGTATTGCTTG

b-actin,
actb

GATGTATG AAGGCTTTGGTC TGTGCACTTTTATTGGTCTC
Frontiers
 in Immunology
Data were normalised to the reference gene b-actin to obtain

the DCT values and expressed as Rq (2^-DCt).
Statistical analysis

All data were analysed by GraphPad Prism 9 software using

unpaired student T-tests, one or two-way ANOVA with Fishers

LSD post-test for parametric data or Kruskal-Wallis test for non-

parametric/ordinal data. The data presented in scatter plots are the

mean values (of triplicate images/assays) or, for flow cytometric

analysis, the % live cells or Mean Fluorescence Intensity (MFI)

values of the individual mice in the group (bar is the mean value for

the group) and analysed by one-way ANOVA. For time-courses,

the data are presented as the mean ± SEM values for the group (n

values presented in legends) derived from the mean values for the

individual mice and analysed by two-way ANOVA. Significant

differences between the cohorts are shown on the figures, where

significance is denoted by *p < 0.05, **p < 0.01, ***p < 0.001 and

****p<0.0001 or #p < 0.05, ##p < 0.01, ###p < 0.001 and ####p<0.0001.
Results

We hypothesised that ES-62 acts to normalise the

osteoimmunology axis in its suppression of inflamm-ageing and

promotion of healthspan during obesity-accelerated ageing. Thus,

we analysed the impact of HCD-feeding on ~70 parameters of

osteoimmunology - ranging through bone structure and pathology

to BM cellularity, differentiation, lineage skewing and consequent

peripheral immune responses – across the lifecourse in male and

female C57BL/6Jmice and determinedwhether ES-62 couldmodulate

any altered responses back towards those exhibited by Chow-fed

controls. The data obtained exhibited, sex-, diet- and age-associated

signatures that displayed sexual dimorphism with respect to ES-62

responsiveness (summarised in Figure 1). The keyfindings are detailed

below (Figures 2–8), with the remainder of the data provided in the

Supplementary Information (Supplementary Figures 2-13).
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ES-62 protects against ageing-induced
loss of bone structure in male
HCD-fed mice

Bone remodelling, balancing the actions of osteoclasts (OCs)

and osteoblasts (OBs) in controlling bone resorption and

synthesis respectively, is a normal and necessary physiological

process during adulthood, but one which becomes dysregulated

during obesity and ageing, resulting in loss of bone mass and

development of osteolytic diseases such as arthritis and

osteoporosis (38–40). In our study, histological analysis of paw

synovial joints indicated a trend for limited damage to develop

between d160 and d340, but there were no statistically significant

differences amongst any of the groups in either sex over this time

period (Figures 2A, B).

Obesity and ageing have also been reported to impact on

trabecular bone architecture with consequent perturbation of the

bone marrow niche supporting stem cell function (25), resulting

in the skewing of immune responses and development of

inflamm-ageing/SASP, with in turn, the further fostering of

osteolytic disease and frailty (38–40). Imaging by micro-

computed tomography (μCT) revealed clear ageing-associated

loss of trabecular bone structure (as indicated by transverse 2D

and deconvolved 3D images), in the femurs of Chow-fed male

and particularly female mice (Figures 2C, D respectively). This

process was substantially accelerated by HCD-feeding in male

mice whereas the female mice showed profound changes by

d160 even when fed a normal Chow diet, confirming the early

onset and profound deterioration in trabecular architecture

previously reported for this sex of C57BL/6 mouse (41). By

contrast, and perhaps consistent with the marginal articular

pathology observed (Figures 2A, B), changes in cortical (as

evidenced by cross-sectional 2D images) bone were much less

pronounced, with no dramatic effects observed amongst the

groups in either sex at least over the 500 days monitored

(Figures 2C, D). Quantitative μCT analysis of key parameters

of bone health (Supplementary Figures 2A-O; Table 1) showed

that those associated with bone integrity, mechanical function

and strength, such as high bone/tissue volume ratios (%BV/TV),

bone density (BS/TV), trabecular number (Tb.N), bone

intersection surface (contact with trabecular nodes) and fractal

dimension, declined during (obesity-accelerated) ageing of the

mice. By contrast, the scores for parameters positively associated

with osteopenia and osteoporosis (42–44) such as Degrees of

Anistropy, Structural Model Index (SMI; plate to rod transition)

and trabecular thickness (Tb.Th), separation (Tb.Spn) and

pattern (Tb.PF; disconnected trabecular lattice) increased.

Noteworthy, loss of bone structure was evident in both sexes

of Chow- and HCD-fed ageing mice: however, female mice

exhibited a significantly more profound decline than their male
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FIGURE 1

Heatmap analysis of the effects of HCD-feeding and exposure to ES-62 on parameters associated with the osteoimmunology axis. Characterisation
of the indicated features of bone structure, bone marrow cellularity, differentiation and myeloid/adipocyte skewing and consequent systemic and
peripheral inflammatory responses was carried out on tissues derived from individual young (d56) and ageing (d340 and d500) male and female
mice fed normal Chow or a HCD (from d70) diet, the HCD groups being administered (s/c) PBS or ES-62 (1 µg) weekly from d63. The mean
responses of the groups were determined and normalised to those of the male d56 group and the data presented in heatmap form in terms of the
log2 fold response for each parameter.
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A B

D

C

FIGURE 2

Impact of HCD-feeding and exposure to ES-62 on trabecular bone structure. Representative sections of H & E staining of paw joint sections
(scale bar 400 µm) are shown for the indicated groups of male (A) and female (B) mice and where tissue damage was not significantly different
across the groups. Scores: for male mice, d56: 0, n=3, Chow: 0.48 ± 0.09, n=11; PBS-HCD: 0.58 ± 0.08, n=4; ES-62: 0.25 ± 0.08, n=4; for
female mice, d56: 0.11 ± 0.11, n=3; Chow: 0.50 ± 0.14, n=10; PBS-HCD: 0.66 ± 0.24, n=4; ES-62: 0.44 ± 0.22, n=3. MicroCT analysis of femurs
from the indicated groups of male (C) and female (D) mice was performed and representative 2D images of transverse sections through femurs
illustrating the reference growth plate and the downstream area (~200 slices of pixel size 5 µm) of analysis of trabecular parameters (upper left
and lower right boxes) are shown. Reconstruction of the image stack provided 3D images of the trabecular structure (red box) whilst cross-
sectional analysis provides a 2D image of the cortical bone (lower left box).
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FIGURE 3

ES-62 protects against the HCD-accelerated changes in parameters of trabecular bone architecture in male mice. The effects of ES-62 on HCD
(PBS)- and ageing-induced decline in bone structure homeostasis as evidenced by changes in (A) % Bone Volume/Tissue Volume (BV/TV) at
d340; (B) Trabecular Number (Tb.N) at d340; (C) Trabecular Separation (Tb.spn) at d160; (D) Trabecular Separation (Tb.spn) at d340;
(E) Intersection Surface at d340 and (F) Structure Model Index (SMI) at d340. The data shown are the values of femurs from individual mice
(symbols) with the mean value for the group represented by the bar and significant differences indicated by blue****=p<0.0001 for male PBS v
male Chow, blue***= p<0.001 for male PBS v male Chow, blue**=p<0.01 for PBS v male Chow, blue*=p<0.05 for male PBS v male Chow and
blue*= p<0.05 for male PBS v male ES-62 (A–F), black****= p<0.0001 for male Chow v female Chow and black**=p<0.01 for male Chow v
female Chow (A–F), black### = p<0.001 for female Chow v female PBS or female ES-62 (D) and black# = p<0.05 for female Chow v female
PBS (E) groups.
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counterparts such that their loss of bone structure was not

accelerated by HCD administration (Supplementary

Figures 2A-O). ES-62 was able to significantly reduce a

number of the obesity-accelerated changes in trabecular
Frontiers in Immunology 09
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architecture (Figures 2C, D; Figures 3A–F; Table 1) in the

male HCD-fed mice, delaying the decline in %BV/TV, Tb.N

and intersection surface (Figures 3A, B, E) and the increase in

trabecular separation and SMI values (Figures 3C, D, F).
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FIGURE 4 (Continued)
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FIGURE 4 (Continued)

Obesity-accelerated ageing is associated with enhanced osteoclastogenic potential and BM adipocyte accumulation. The levels of BM
CD3−B220−Ter119−Ly6G−Ly6Chigh CD11blow OCPs were determined as the frequency of single cells (FoS) expressed as % live BM cells at the
indicated timepoints in (A) male and (B) female mice fed Chow or HCD, the latter cohort treated with either PBS or ES-62. The data are
presented as the mean ± SEM values for the indicated group, where for male mice, at d56: n=6; d340: Chow, n=6; PBS, n=7; ES-62, n=8;
d500, Chow, n=5; PBS, n=5; ES-62, n=5 individual mice and for female mice, at d56: n=6; d340: Chow, n=6; PBS, n=8; ES-62, n=8; d500,
Chow, n= 3; PBS, n=5; ES-62, n=6 individual mice. Significant differences are indicated by *=p<0.05, male Chow v male PBS or ES-62 (A) and
female Chow v female PBS (B) and **=p<0.01, female Chow v female ES-62 (B) groups. (C–F) OC differentiation at day 5 was assessed by
TRAP staining and the size of multinucleated OCs (>3 nuclei) determined by Image J analysis. Representative images (x4 magnification) of OCs
of the indicated groups of male (C) and female (D) mice are shown and the mean group OC size ± SEM determined from the mean values of
triplicate cultures of individual male mice at each time point where for male mice (E), at d56: n=6; d340: Chow, n=6; PBS, n=3; ES-62, n=4;
d500, Chow, n=5; PBS, n=5; ES-62, n=5 individual mice and for female mice (F), at d56: n=6; d340: Chow, n=6; PBS, n=3; ES-62, n=4; d500,
Chow, n=4, PBS, n=5; ES-62, n=5 individual mice. Significant differences are indicated by *=p<0.05, Chow v PBS or ES-62 for male (E) and
female (F) mice. (G–I) BM adipocytes were visualised (x10 magnification, scale bars 400 µm) and quantitated by Image J analysis where the
mean group number/mm2 ± SEM is determined from the mean values of triplicate fields of view (FoV) of the individual mice at each time point.
For male mice (G), d500 data scale expanded in insert), d56: n=6; d340: Chow, n=6; PBS, n=6; ES-62, n=6; d500, Chow, n=3; PBS, n=3; ES-
62, n=3 individual mice and for female mice (H), d56: n=6; d340: Chow, n=5, PBS, n=5; ES-62, n=6; d500, Chow, n=3; PBS, n=3; ES-62, n=3
individual mice. Significant differences are indicated by blue**=p<0.01 for male PBS v male ES-62 (G) and red*=p<0.05, female PBS v female
ES-62 (H) groups. Representative images are shown for each group (I).
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However, perhaps reflecting the deterioration associated with

these parameters noted even in the Chow-fed female group,

there was no evidence that ES-62 exerted such protective actions

in HCD-fed mice of this sex (Figures 3A–F; Table 1).

To determine whether the observed bone damaging changes

were associated with dysregulation of bone remodelling towards

osteoclastogenesis, we first examined the levels of BM osteoclast

progenitors (OCPs; CD3−B220−Ter119−Ly6G−Ly6Chigh

CD11blow BM cells (14, 33). This revealed that although OCP

levels remained relatively constant in Chow-fed mice of both

sexes up to 500 days of age, they were significantly increased in

female, and to a lesser extent in male, HCD-fed mice. However,

this HCD-induced increase was not significantly reduced by

exposure to ES-62 in either case (Figures 4A, B). Rather, we

observed a stronger upregulation of OCP levels driven by ES-62

in the BM of HCD-fed female mice (Figures 4A, B). Whilst the

HCD-induced increase in OCP levels was confirmed in

additional cohorts of female mice (Supplementary Figure 3A,

B), the ES-62 effect was not recapitulated in the “normal” Chow-

fed (cES-62) ageing context (Supplementary Figure 3A, B). Next,

analysis of in vitro differentiation of BM OCPs to large, active

multinucleated OCs (14, 33), showed that OCPs from both sexes

of HCD-fed mice exhibited a greater increase in osteoclastogenic

potential at d340 than their Chow-fed counterparts. Again, these

HCD-induced changes in OCP functionality were not

modulated by in vivo exposure to ES-62, but in all groups,

declined towards or below the levels exhibited by young mice at

d500 (Figures 4C–F; Supplementary Figure 3C, D). Further

evidence that the parasitic worm product was not modulating

osteoclastogenesis was provided by the findings that whilst the

expression of the OC-promoting factor RANKL (cell surface

intensity; MFI) and its receptor, RANK (mRNA) were similarly

increased at d340 in BM cells from both sexes of HCD-fed mice,

relative to their Chow-fed controls, again, these responses were

generally not modulated by ES-62 (Supplementary Figure 3E-J).
Frontiers in Immunology 10
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Collectively these data suggested that the ES-62-mediated

protection against the accelerated decline in bone health

observed in male HCD-fed mice did not reflect modulation of

OCP levels or osteoclastogenesis. Interestingly therefore, and

presumably reflecting the mesenchymal stem cell (MSC)

impairment that results in an ageing-associated BM adipocyte

bias (at the expense of osteoblasts) (45), adipocyte numbers

increased in both male and particularly, female mice as they aged

(Figures 4G–I). Exposure to ES-62 reduced adipocyte numbers

in male HCD-fed mice (Figures 4G, I), suggesting it may support

the osteoblastic niche in mediating its protective effects. Rather

surprisingly however, whilst BM adipocyte numbers peaked at

d340 in the female HCD-fed mice, the highest numbers of BM

adipocytes were found in Chow- and ES-62-HCD-fed female

mice at d500 (Figures 4H, I). Clearly therefore, sexual

dimorphism exists in ageing-associated adipogenesis in the BM.
ES-62 normalises the ageing-associated
myeloid/lymphoid bias of male
HCD-fed mice

As the bone stromal microenvironment impacts on HSC

functionality, we next investigated how HCD-feeding and

exposure to ES-62 impacted on haematopoiesis and

subsequent immune responses. Whilst it has been widely

reported that the levels of Lin-Sca-1+c-Kit+ (LSK) HSCs are

dramatically increased in “old” C57BL/6 mice (6-17x fold for

mice at >730, relative to 60-90, days old), due to exhaustion/

senescence (21, 25, 46, 47), their levels were not elevated in the

BM of Chow-fed mice of either sex by day 500 in our study

(Figures 5A, B). However, and consistent with the ability of

obesity to accelerate ageing, the levels of LSK-HSCs observed in

the BM from ageing male and female HCD-fed mice were

significantly higher than those of their Chow-fed counterparts
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by this time point (Figures 5A, B; males, ~2.5x fold; females, ~3x

fold). Exposure to ES-62 did not significantly modify these

elevated levels of HSCs in either male or female HCD-fed

mice (Figures 5A, B).

Although the d500 Chow-fed mice did not exhibit elevated

levels of LSK-HSCs, BM from the Chow-fed animals showed an

increased myeloid/lymphoid cell ratio that was evident by d340

in both male and female chow-fed mice (Figures 5C, D), findings

indicative of the well-established ageing-associated myeloid

skewing. This myeloid bias was not modulated by HCD in

either male or female animals but interestingly, showed sexual

dimorphism in terms of the impact of exposure to ES-62

(Figures 5C, D). Thus, whilst ES-62 acted to suppress the

myeloid bias in ageing male mice, it perhaps surprisingly

strongly promoted it in female HCD-fed animals at d500

(Figures 5C, D). The protective effect of ES-62 against this

myeloid bias in male mice reflected both a limiting of the

HCD-induced decline in B cells (Figure 5E) and associated

increases of various myeloid lineages (Figures 6A, E, H). By

contrast, and perhaps consistent with the adipocyte skewing

away from the B cell-promoting osteoblastic (or their

mesenchymal progenitors) niche (48–50) observed in female

mice (Figures 4H, I), exposure to ES-62 did not impact on the

profound HCD-accelerated decline in B cells (Figure 5F) and

resulted in enhanced levels of certain myeloid cells in the BM of

d500 HCD-fed female animals (Figures 6B, F). These differential

effects of ES-62 on the ageing-associated myeloid bias in male

and female HCD-fed mice were broadly corroborated in terms of

absolute numbers of the relevant cel l populat ions

(Supplementary Figure 4).

Although ES-62-treated HCD-fed mice also exhibited less

myeloid/lymphoid skewing than their Chow-fed counterparts,

these effects of ES-62 appear generally to be restricted to the

accelerated inflammation-induced pathology associated with

HCD-feeding. Thus, in separate cohorts of Chow-, HCD- and

ES-62-Chow (cES-62)-fed mice (PBS treated, HCD-fed mice

were also included as obesity-accelerated ageing controls), we

found that treatment with the helminth product had no effect on

the BM levels of LSK-HSCs or any myeloid/lymphoid bias

pertaining at the d340 time point in the male Chow-fed

animals (Supplementary Figures 5A-D). By contrast, the d340

female HCD-fed mice exhibited reduced levels of B and T cells,

providing corroboration of the sexual dimorphisms in

haematopoiesis we have identified during ageing of HCD-fed

mice (Supplementary Figures 5E-L).
ES-62 and lymphoid cells

Whilst male Chow- and HCD-fed mice showed a

comparable substantial age-associated decline in BM B cells

that was significantly mitigated in the ES-62-treated HCD

cohort, the reduction observed in female Chow-fed mice was
Frontiers in Immunology 11
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profoundly accelerated in both the PBS- and ES-62-treated HCD

cohorts (Figures 5E, F). By contrast, levels of BM T cells were

relatively stable in all cohorts, although treatment with ES-62

tended to enhance their levels, relative to those exhibited by their

PBS-HCD- and Chow-fed male, but not female, counterparts, at

d500 (Figures 5G, H). Perhaps, given the evidence that RANKL

may provide a crucial autocrine factor for B cell development

(39), the inverse effects of ES-62 on the proportions of B cells

expressing RANKL (Figures 5I, J) provide a potential

mechanism contributing to its prevention of this myeloid bias

in male, but not female HCD-fed mice.

Despite the observed age-associated decline in BM B cells in

Chow and HCD-fed male and female mice (Figures 5E, F), we

found the total levels of splenic and MLN CD19+ B cells to

increase with age, and this was accelerated and exacerbated by

HCD-feeding in male animals, but not modulated by ES-62 in

either sex (Supplementary Figures 6A-D). Rather, ES-62

increased the levels of “regulatory” IL-10 producing B cells

(Bregs) in the spleens (Supplementary Figure 6E) and MLNs

(11) of HCD-fed male, but not female mice. These “regulatory”

actions of ES-62 were again restricted to the HCD-fed animals as

its administration to Chow-fed animals was not associated with

any significant change in the levels of MLN or splenic Bregs or

the levels of CD19+CD21-CD23-CD11c+ ageing-associated B

cells (ABCs) in the spleens of such animals (Supplementary

Figures 6F-H). Likewise, ES-62 had little or no effect on naïve

and memory CD4+ and CD8+ T cell populations in the blood,

spleen or MLNs of Chow- or HCD-fed mice of either sex

(Supplementary Figures 7-9).
ES-62 and myeloid lineages

Neutrophils constitute a major myeloid population in the

BM and it has been proposed that the hyperglycemia and

hyperlipidemia resulting from HCD/obesity induce enhanced

BM production of (primed) neutrophils that contribute to

adipose tissue inflammation and development of diabetes and

cardiovascular conditions (51). Consistent with previous

findings that neutrophil levels are broadly similar in the BM

of young and old healthy mice (52), we found that BM

neutrophil levels in male Chow-fed mice rise only marginally

with age. Whilst this was also true of PBS-HCD-fed male

animals, this ageing effect was somewhat countered in the

ES-62-treated HCD cohort at d500 (Figure 6A). Moreover, in

female mice there was no overall change in the levels of

neutrophils in Chow- and ES-62-HCD-fed animals over the

time course of the experiment, although a significant decrease

in their levels was observed in the BM of PBS-HCD-fed female

mice at d500 (Figure 6B). Likewise, the levels of BM monocytes

showed only limited changes during ageing of male and female

mice, with HCD-feeding both reducing (d340) and enhancing

(d500, albeit not significantly in the case of the female animals)
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the levels of these cells, regardless of exposure to ES-62

(Figures 6C, D). Deeper analysis revealed that the classical,

inflammatory Ly6Chi sub-population of monocytes did not

exhibit the d500 increase in any of the cohorts of HCD-fed

mice (Figures 6E, F), perhaps suggesting the HCD-induced

decrease (in both total and Ly6Chi monocytes) at d340 reflected

the mobilisation of these monocytes associated with obesity-

programming of peripheral inflammation.

ES-62 also impacted on the megakaryocyte component of

the ageing-associated skewing towards the myeloid lineages

that is promoted by the obesity-driven BM adipocyte bias and

contributes to the production of platelets with increased

inflammatory and thrombotic activity recently implicated in

the development of cardiovascular comorbidities (53).

Histological analysis revealed increased numbers of

megakaryocytes evident even in the bones of ageing Chow-

fed mice. Whilst male mice fed a HCD diet displayed

significantly more of these cells at d340 and d500, these were

reduced by exposure to ES-62 towards the levels seen in Chow-

fed animals and a similar modulatory pattern was observed in

female mice, part icular ly at d500 (Figures 6G– I ) .

Megakaryocytes have also recently been implicated in

promoting HSC quiescence during ageing (49, 50) and thus,

together with its enhancement of B and T lymphocytes and

decrease in neutrophils, the ES-62-mediated suppression of the

rise in megakaryocytes likely contributes to its ability to block

the myeloid/lymphoid bias exhibited in the BM of ageing male

HCD-fed mice (Figure 5C).

Although the ageing myeloid bias is associated with chronic

low-grade inflammation in terms of systemic IL-1b and TNFa
levels (22), there was no clear pattern regarding effect of sex,

HCD or ES-62 on the serum levels of these cytokines across our

mouse cohorts. Perhaps of more relevance in the context of

obesity, however, increased levels of inflammatory CD11c+

macrophages were evident at d340 in the gonadal fat of male

PBS-HCD, but not ES-62-HCD-, fed male mice (Figure 6J), with

the protective effect of ES-62 correlating with a reduction in the

mRNA levels of IL-1b and TNFa (Figures 6K, L) in this tissue.

Experiments involving additional d340 cohorts of PBS-Chow-,

ES-62-Chow- and, as an obesity-accelerated ageing control, PBS-

HCD-fed mice, showed that treatment with ES-62 had no effect

on the levels of these adipose CD11c+ macrophages or Bregs in

either male Chow-fed mice (Figures 6M, N). However, they

corroborated the finding that enhanced levels of CD11c+

macrophages are found in the gonadal fat pads of male, but

not female, HCD-fed mice relative to their Chow-fed

counterparts (Figure 6M) and in addition, identified HCD-

induced depletion of Bregs from this adipose tissue in female,

but not male, mice at d340 (Figure 6N).
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Small molecule analogues (SMAs) of ES-
62 target trabecular bone and
the BM niche

Although the findings reported above have potential

translational impact, ES-62 itself is not suitable for drug

development as it is a large, “foreign” and hence immunogenic

glycoprotein. Rather, we have addressed translational potential by

designing a library of SMAs of which at least two (11a, 12b) mimic

ES-62’s primary mechanism of action in downregulating MyD88

and also recapitulate many of its protective effects in mouse models

of chronic inflammatory disease including asthma, arthritis and

SLE (10, 32, 54). Crucially, treating mice with 11a plus 12b

(combined due to subtle but complementary differences in their

immunomodulatory actions), also promotes their healthspan by

improving gut and metabolic homeostasis in the HCD model of

obesity-accelerated ageing (30). We therefore investigated whether

such treatment could recapitulate the impact of ES-62 on the bone

microenvironment, focusing on the d160 time-point when much

of the (obesity-accelerated) loss of trabecular bone structure was

already apparent (Figures 2, 3; Supplementary Figure 2). Again,

although no significant differences in articular joint pathology

(Figure 7A) were determined, the profound loss of trabecular

bone architecture in all cohorts of female mice and the HCD-

acceleration of such pathology in male mice (Figures 2, 3; Table 1;

Supplementary Figure 2) was confirmed. μCT analysis of these

d160 cohorts indicated that treatment with the SMA combination

clearly mimicked the actions of ES-62 in protecting against

trabecular bone loss (Figures 7B, 8), again by preventing the

decline in % BV/TV, Tb.N and intersection surface (Figures 8A,

B, J) and the increase in T.PF and SMI in male, but not female,

HCD-fed mice (Figures 8L, O).

Such trabecular bone loss and/or its protection by exposure

to the SMAs, was again not associated with any substantial

effects on the levels of OCPs or their osteoclastic potential

(Supplementary Figures 10A-G) and consistent with this, there

were no significant differences amongst the cohorts in their BM

expression of RANK, RANKL or OPG. However, the elevated

levels in BM adipocytes generally observed in female, relative to

male, mice at d340 and d500 (Figures 4G–I) were also evident at

the d160 timepoint, although these were not further increased by

HCD-feeding (Figures 7C–E). Moreover, whilst HCD-feeding

increased the levels of BM adipocytes in male mice at this

timepoint, this enhancement was countered by their exposure

to the SMAs (Figures 7C, D). Collectively, these data suggest that

trabecular bone loss at this stage may also predominantly reflect

dysregulation of BM adipocyte homeostasis and that this

regulatory checkpoint exhibits sexual dimorphism in its ES-62/

SMAs responsiveness.
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FIGURE 5

ES-62 protects against myeloid/lymphoid skewing and maintains B cell levels in the BM of male HCD-fed mice. The levels of Lin-Sca-1+c-kit+

(LSK) HSC (A, male; B, female; as % Lin- cells [frequency of precursor (FoP)]) and the ratios of Myeloid/Lymphoid lineages (C, male; D, female)
are shown. The levels of CD19+ B cells (E, F), CD3+ T cells (G, H) and RANKL+ B cells (I, J) were determined as the frequency of single cells
(FoS) expressed as % live BM cells at the indicated timepoints in male (E, G, I) and female (F, H, J) mice fed Chow or HCD, the latter cohort
treated with either PBS or ES-62. The data are presented as the mean ± SEM values for individual mice in each group, where for male mice, at
d56: n=6; d340: Chow, n=6; PBS, n=7; ES-62, n=8; and at d500, Chow, n=5; PBS, n=5; ES-62, n=5 and for female mice, at d56: n=6; d340:
Chow, n=6; PBS, n=8; ES-62, n=8; and at d500, Chow, n= 3; PBS, n=5; ES-62, n=6. Significant differences are indicated by black*=p<0.05 for
Chow v PBS or ES-62 in male (A, C, E) or female (B, D, F, J) mice; black**=p<0.01 for Chow v PBS or ES-62 in male (A) and female (J) mice;
blue*=p<0.05 for male PBS v male ES-62 (C, E) and blue **=p<0.01 for male PBS v male ES-62 (I) groups.
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FIGURE 6 (Continued)
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FIGURE 6 (Continued)

ES-62 modulates levels of BM myeloid lineages in male HCD-fed mice. The levels of Ly6C+Ly6G+ neutrophils (A, B), Ly6C+Ly6G- monocytes
(C, D) and Ly6Chigh monocytes (E, F) were determined as the frequency of single cells (FoS) expressed as % live BM cells at the indicated
timepoints in male (A, C, E) and female (B, D, F) mice fed Chow or HCD, the latter cohort treated with either PBS or ES-62. The data are
presented as the mean ± SEM values for individual mice in each group, where for male mice, at d56: n=6; d340: Chow, n=6; PBS, n=7; ES-62,
n=8 and at d500, Chow, n=5; PBS, n=5; ES-62, n=5 and for female mice, at d56: n=6; d340: Chow, n=6; PBS, n=8; ES-62, n=8 and at d500,
Chow, n= 3, PBS, n=5; ES-62, n=6. Significant differences are indicated by black*=p<0.05 for Chow v PBS or ES-62 in male (A, C) or female (D)
mice; black**=p<0.01 for Chow v PBS or ES-62 in male (C, E) and female (B, D, F) mice and black***=p<0.001 for Chow v PBS in female mice
(F) groups. (G–I) BM megakaryocytes were visualised (x20 magnification, scale bars 200 µm), with representative images shown for the
indicated groups of male mice (G). Quantitation was by Image J analysis where the mean group number/mm2 ± SEM is determined from the
mean values of triplicate field of view (FoV) of individual male (H) and female (I) mice at each time point. For male mice, at d56: n=6; d340:
Chow, n=6; PBS, n=6; ES-62, n=6; and at d500, Chow, n=3; PBS, n=3; ES-62, n=3 and for female mice, at d56: n=6; d340: Chow, n=5; PBS,
n=5; ES-62, n=6 and at d500, Chow, n=3; PBS, n=3; ES-62, n=3. Significant differences are indicated by black**=p<0.01 and black***=p<0.001
for male Chow v male PBS but not male ES-62 (H) and black*=p<0.05 for female Chow v female PBS or female ES-62; black**=p<0.01 for
female Chow v female PBS and red*=p<0.05 for female PBS v female ES-62 (I) groups. Levels of F4/80+CD11c+ macrophages (J, M), IL-1b (K)
and TNFa (L) mRNA and IL-10+CD19+ Bregs (N) were determined in gonadal adipose tissue of each of Chow-, HCD-PBS and HCD-ES-62 male
mice (J–L) and in separate d340 studies investigating the effect of ES-62 in a non-obese setting involving Chow-, Chow-ES-62 (cES-62) and,
as a confirmatory obesity-accelerated ageing control, HCD-PBS male and female mice cohorts (M, N). The data shown are mean values for
individual mice (symbols) and the group means are indicated by the bars. Significant differences are indicated by black*=p < 0.05 for male
Chow v male PBS (J) or ES-62 (K); black**=p<0.01 for male Chow v PBS (L); blue*=p<0.05 for male PBS v male ES-62 (K, L); black**=p<0.01
for male Chow v HCD (M) and red**=p<0.01 for female HCD v female Chow and female cES-62 (N) groups.
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Although there were no significant differences between the

groups in terms of LSK-HSCs, myeloid/lymphoid skewing or

various myeloid lineages in either sex at d160 (Supplementary

Figures 11A, B, E-H), the HCD-induced decrease in B and T cells

in the BM of female mice (Supplementary Figures 11C, D) likely

reflects adipocyte disruption of the osteoblastic/CXCL12

abundant reticular (CAR) niches that support lymphoid

lineages. However, the levels of B and T cells in the blood,

spleen or MLNs were not modulated by SMA treatment in either

sex (Supplementary Figure 12; Supplementary Figures 13A-F).

Interestingly, given the inflammatory (CD11c+ macrophages

and IL-1b) nature of adipose tissue in male HCD-fed mice

that we identified at d160 (11) and d340 (Figures 6J–L), we have

also found significant rises in TNFa (at the mRNA level) in the

gonadal fat pads of male but not female HCD-mice, which were

not reduced by exposure to either ES-62 or SMAs at d160

(Supplementary Figures 13G, H). However, whilst the mRNA

levels of IL-1b likewise appear to be elevated in these fat pads of

male HCD-fed mice at this time point, in this case, ES-62

appears to be able to reduce production of this cytokine in this

adipose tissue. A similar pattern tended to be observed in the

female animals, although this did not reach statistical

significance (Supplementary Figure 13I). Nevertheless,

collectively these data indicate that the SMAs mimic ES-62’s

ability to retrain the BM microenvironment and that their anti-

inflammatory actions are associated with their capacity to

promote healthspan during obesity-accelerated ageing (11, 30).
Discussion

Collectively, our analyses of the impact of HCD-feeding on

the BM microenvironment and consequent skewing of immune

responses across the life-course in male and female C57BL/6J

mice underlines the central role that dysregulation of the
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osteoimmunology axis plays in driving inflamm-ageing and

associated metabolic comorbidities, loss of skeletal health,

frailty and (obesity-induced acceleration of) the ageing process

per se (15–20). Moreover, they have highlighted pronounced

sexual dimorphisms in these processes with female mice

exhibiting more dramatic dysfunction in each of loss of

skeletal health, disruption of the BM niche and consequent

haematopoiesis towards a more pro-inflammatory phenotype,

factors likely contributing to the observed sex differences in the

immune system with ageing, particularly with respect to

development of autoimmunity and in addition, efficacy of

vaccination and cancer immunotherapy (55). Further to this

sexual dimorphism, exposure to ES-62 predominately

ameliorates such dysregulation in male HCD-fed mice, a

differential effect perhaps contributing to our observation that

whilst it can promote healthspan in both sexes of obese mice, it is

only able to extend the median lifespan of male HCD-fed

mice (11).

Such protection in male HCD-fed mice appears to reflect

that ES-62 harnesses its immunomodulatory properties to

counteract the aberrant training of BM progenitors triggered

by the chronic low-grade inflammation associated with obesity,

rather than acting on the ageing processes within these cells, per

se, as it had little effect on the, albeit more limited, dysregulation

of haematopoiesis evidenced by Chow-fed mice at 340 days of

age. Nevertheless, in reducing the myeloid/adipocyte skewing

and loss of BM B cells associated with both “normal” and

obesity-accelerated ageing (17, 21–25) in male mice, ES-62

acts to maintain a BM phenotype more consistent with that of

young mice. Thus, as it is increasingly evident that all ageing

characteristics do not (i) occur synchronously, or indeed

linearly, (ii) exhibit sexual dimorphism and (iii) are impacted

by acute and chronic exposure to environmental factors such as

diet and smoking (56–60), any clear protective effects of ES-62

against dysregulation of the osteoimmunology axis in Chow-fed
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FIGURE 7

ES-62-based SMAs protect against disruption of the BM niche in male HCD-fed mice at d160, a time-point when substantial (obesity-accelerated) loss
of trabecular bone structure is established. (A) Representative sections of H & E staining of paw joint sections (scale bar 1000 µm) are shown for the
indicated groups of d160 male and female mice and where tissue damage was not significantly different across the groups. Scores: for male mice,
Chow: 0.66 ± 0.19, n=4; PBS-HCD: 0.38 ± 0.10, n=6; SMAs-HCD: 0.50 ± 0.17, n=6; for female mice, Chow: 0.58 ± 0.16, n=4; PBS-HCD: 0.53 ± 0.17,
n=5; SMAs-HCD: 0.33 ± 0.15, n=5. (B) MicroCT analysis of femurs from the indicated groups of d160 male and female mice was performed and
representative 2D images of transverse sections through femurs illustrating the reference growth plate and the downstream area (~200 slices of pixel
size 5 µm) of analysis of trabecular parameters (upper left and lower right boxes) are shown. Reconstruction of the image stack provided 3D images of
the trabecular structure (red box) whilst cross-sectional analysis provides a 2D image of the cortical bone (lower left box). (C) Representative images of
BM adipocytes (x10 magnification, scale bars 400 µm) in male and female Chow-, HCD-PBS- and HCD-SMAs-fed mice at d160 are shown.
(D, E) Quantitation is by Image J analysis where the mean group number/mm2 ± SEM is determined from the mean values (of triplicate FoV values) of
the individual mice (symbols) and the group means are indicated by the bars for male (D; insert shows expanded scale) and female (E) mice. Significant
differences are indicated by blue*=p < 0.05 for male HCD-PBS v male Chow or male HCD-SMAs mice (D).
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male mice might not be apparent until a much later age. ES-62

might therefore exhibit protection in much older Chow-fed mice

when the “biological” (rather than chronological) ages of key

functional responses of such animals correspond to those of
Frontiers in Immunology 17
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younger HCD-fed mice and/or the eventual chronic

inflammation resulting from gut dysbiosis and loss of barrier

integrity in Chow-fed animals impacts on the ageing process

(11–13). Hence, whilst our data indicate a dramatic increase in
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FIGURE 8

ES-62-based SMAs protect against the HCD-accelerated decline in trabecular bone structure in male HCD-fed mice. The effects of ES-62-based
SMAs on the HCD (PBS)- accelerated decline in bone structure homeostasis, as evidenced by changes in the indicated parameters of trabecular
architecture in femurs from Chow-, HCD-PBS (PBS)- and HCD-SMAs (SMAs) groups of male and female mice (A–O) at d160. The data shown are
the values of femurs from individual mice (symbols) with the mean value for the group represented by the bar. Significant differences are indicated
by blue***=p<0.001 for male PBS v male Chow, blue**=p<0.01 for male PBS v male Chow or male SMAs, and blue*=p<0.05 for male PBS v male
Chow or male SMAs (A, B, D–F, I–O); black****=p<0.0001, black***=p<0.001 and black**=p<0.01 for male Chow v female Chow (A–J, L–O) and
black##=p<0.01 and black#=p<0.05 for female Chow v female PBS or female SMAs (F, K–M) groups.
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TABLE 1 mct analysis of femur bone structure during HCD accelerated in ageing male and female C57BL/6J mice.

Male Female Male v
Female Chow

Male Chow
v HCD

Female Chow
v HCD

Male v
Female
HCD

Chow Mean
±SEM

HCD Mean
±SEM

HCD-ES-62
Mean±SEM

d56 Age-related change (d56-500)

0†
d56 d340 %

d56*
d340 %

d56*
%

d340†
d340 %

d56*
%

d340†
p‡ p§ p§ p§ p§

7.72 ±
0.65

1.33 ±
0.38

17 1.42 ±
0.26

18 107 1.37 ±
0.70

18 103 <0.0001 <0.0001 0.0004 ns <0.0001

1.63 ±
0.14

0.26 ±
0.09

16 0.23 ±
0.05

14 89 0.21 ±
0.04

13 81 <0.0001 <0.0001 <0.0001 ns <0.0001

4 307 ±
2.42

457 ±
2.28

149 632 ±
4.79

206 138 756 ±
3.80

246 166 0.0008 <0.0001 0.0004 0.0066 <0.0001

0.54 ±
0.03

0.09 ±
0.02

17 0.17 ±
0.02

32 189 0.13 ±
0.01

24 142 0.0008 <0.0001 0.0001 ns <0.0001

2 2.14 ±
0.5

3.07 ±
0.12

144 2.73 ±
0.19

128 88 2.43
0.10

113 79 0.0057 <0.0001 0.0081 ns <0.0001

es.

y ANOVA.
e separation; IS, intersection surface; SMI, structural model index.
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Chow Mean±SEM HCD Mean
±SEM

HCD-ES-62
Mean±SEM

d56 d340 %
d56*

d340 %
d56*

%
d340†

d340 %
d56*

%
d3

BV/TV
(%)

14.48 ±
0.99

9.30 ±
0.30

64 4.91 ±
0.43

34 53 6.15 ±
0.43

42 6

Tb.N
(mm-¹)

2.74 ±
0.13

1.64 ±
0.08

60 0.84 ±
0.07

31 51 1.10 ±
0.07

40 6

Tb.spn
(mm)

202 ±
0.34

322 ±
1.21

159 410 ±
2.94

203 128 366 ±
2.99

181 1

IS 0.77 ±
0.04

0.60 ±
0.05

78 0.31 ±
0.04

40 52 0.42 ±
0.02

54 6

SMI 1.92 ±
0.06

1.72 ±
0.08

90 2.26 ±
0.05

118 132 2.10 ±
0.06

110 1

*Treatment value at d340 as % of day d56 value, calculated by regression of mean val
†Treatment value at d340 as % of d340 Chow control.
‡p value as assessed by Sudent’s t-test.
§p value of sex-by age interaction across time course (d56-500) as determined by 2-w
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the levels of HSCs between d340 and d500 in HCD-fed animals,

previous studies on C57BL/6 mice showed that Chow-fed mice

typically exhibited elevated levels of HSCs displaying loss of

functionality between 18-24 months (d547-730), at which point

such dysregulation was not further enhanced in mice

experiencing a lifelong HCD (61, 62). Interestingly, whilst

calorie restriction reduced these elevated HSC levels, it had no

effect on their functionality in these old mice (61–63). By

contrast, reduced myeloid/lymphoid skewing, improved HSC

quiescence and repopulating capacity (partially reversed by

insulin-like growth factor-1) has been reported in calorie-

restricted “middle age” (9 months old) mice (64). However,

perhaps surprisingly therefore, these “middle-aged” calorie-

restricted mice also demonstrated suppressed lymphoid

differentiation (rescued by provision of IL-6/IL-7), resulting

specifically in decreased B cell immunity (64). Collectively,

these studies emphasise the lack of correlation/synchronicity

amongst various ageing parameters and the disconnect between

biological and chronological age (56–60). It is also worth noting,

given the profound sexual dimorphisms we have uncovered in

the osteoimmunology axis, that these previous studies were

either performed on undefined (61, 64) or mixed male and

female (63) cohorts, potentially confounding the interpretation

of at least some of these functional responses.

Alternatively, and consistent with our wealth of data

suggesting that ES-62 acts to resolve chronic inflammation

rather than suppressing steady-state or “emergency” responses,

it is possible that ES-62 only targets “hyper-responsive” cells, the

cross-talk between signals generated by ES-62 and the

pathogenic microenvironment generating a unique, modulated

phenotype. Supporting this idea, whilst ES-62 similarly has little

or no effect on the functionality of fibroblasts in the synovial

joints of healthy mice, it induces a stable epigenetically rewired,

inflammation-resolving/tissue repair phenotype of synovial

fibroblast in mice undergoing collagen-induced arthritis (CIA;

a model of rheumatoid arthritis), that is distinct from that found

in naïve animals (65). Interestingly, IL-1b signalling, a key factor

in driving the pathogenic transformation of synovial fibroblasts

in CIA and rheumatoid arthritis that is targeted by ES-62 (65), is

crucial to the pro-inflammatory training of both BM and

migratory “surveillance” haemopoietic stem and progenitor

cells (HSCPs) and their resultant accumulation and

differentiation into adipose tissue-resident myeloid cells that

perpetuates the inflammatory osteoimmunology cycle in obesity

(24, 66–68). Pertinent to this, we have now shown the levels of

IL-1b, TNFa and CD11c+ inflammatory macrophages to be

reduced in the gonadal adipose tissue of male, but not female,

HCD-mice by ES-62 at d340. Associated with this, we have

previously reported that the helminth product reduces the levels

of pro-inflammatory CD11c+ macrophages whilst increasing

those of anti-inflammatory CD11c-CD301+ macrophages

found in these fat depots at d160 and in addition, counteracts
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the elevated levels of IL-1b in the liver in male, but not female

HCD-fed animals at d500 (11).

ES-62’s key actions in combating dysregulation of the

osteoimmunology axis in male HCD-fed mice focus on

slowing the ageing-related myeloid/lymphoid bias and

associated loss of B lineage cells, as well as protecting the

BM niche by suppressing the mesenchymal skewing towards

adipocyte accumulation. These actions are likely interconnected

as adipocyte skewing results in the depletion of the osteoblasts

(or progenitors) proposed to be important, via their generation

of IL-7 and CXCL12 (SDF-1), for B cell differentiation (39), as

well as disrupting the BM niche and inducing pathogenic bone

remodelling (25, 69–71). Given the increasing evidence that

LPS-stimulated TLR4/MyD88 signalling is critical in driving

both emergency pro-inflammatory myelopoiesis to fight

infection and the myeloid/lymphoid skewing associated with

(obesity-accelerated) ageing (66), our working model is that ES-

62 harnesses its ability to subvert TLR4 signalling and

downregulate MyD88 in order to counteract such

dysregulation of HSCs, both in the BM and the periphery.

Moreover, the central role of sensing of LPS (66), elevated in

serum as a consequence of microbiota dysbiosis and loss of gut

barrier integrity in each of infection and obesity, conditions

associated with chronic inflammation and ageing per se,

underlines the key contributions of the TLR4/MyD88

signalling cassette and the gut-osteoimmunology axis in the

(dys)regulation of health and well-being over the life-course

(11–14, 17–19, 25, 69–71).

Strikingly, impairment of HSC function has now been

reported to occur prior to the onset of obesity-induced

accumulation of adipose tissue CD11c+ macrophages and the

inflammation associated with the IL-1b- and TNFa-driven
myeloid/lymphoid skewing of BM progenitors (24). This led to

the discovery that LPS impacts directly on the functionality of

(TLR4 expressing) BM HSCs (66), with deeper analysis revealing

MyD88 signalling to be responsible for expansion of granulocyte/

macrophage precursors and contributing to the accumulation of

adipose tissue macrophages (72). LPS-TLR4/MyD88 signalling

likewise similarly impacts on (migratory) Haematopoietic Stem

and Progenitor Cells (HSPCs) (67), mobilised to the periphery in

response to obesity where they also differentiate and accumulate as

adipose tissue macrophages (68) to perpetuate inflammation and,

via IL-1b release, further biasing of differentiation of BM cells (24,

66). HCD-depletion of the Common Lymphoid Progenitor (CLP)

and B cell-differentiation-promoting CXCL12 abundant reticular

(CAR) cells in the BM (25) additionally reinforces the myeloid/

lymphoid bias (66) as does the HCD enhancement of Nestin+

MSCs, which drive the adipocyte bias of the BM niche in obesity

(25). Further to the osteoimmunology axis-targeting actions of

ES-62 in the BM, MSCs also express TLRs and whilst LPS

promotes differentiation of the proinflammatory (IL-6/IL-8-

producing) MSC1 subset, by contrast TLR3 signalling promotes
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differentiation of an immunosuppressive MSC2 subset (73, 74).

Intriguingly therefore, as ES-62 can desensitize TLR4/MyD88 but

not TLR3 signalling (10), by shifting the TLR4/TLR3 and hence

MSC1/MSC2 functional balance it could effectively reset

homeostasis of the osteoimmunology axis to promote

healthspan. Certainly, TLR3 agonists are being explored for

their potential to repair the BM niche and direct MSC2 to

repair cardiac damage and cardiovascular disease in obesity

(75–77).

Interestingly, MyD88 has also proven important in the

regulation of functional responses of B cells in the periphery

as, whilst MyD88-deficient B cells were impaired in upregulation

of CD86 and proliferation, they exhibited increased synthesis of

DNP-specific IgG1 antibodies (78), an isotype consistent with

the modified (regulatory) TH2 immune response to ES-62 (79).

Likewise, B cell depletion of MyD88 results in abrogation of

pathogenic autoantibody responses (80–82) and is associated

with the ES-62-induction of Bregs in mouse models of systemic

lupus erythematosus, asthma and RA (14, 83, 84). Notably,

treatment of HCD-fed male mice with ES-62 results in

increased levels of splenic Bregs, reflecting our previous report

of a similar induction of Bregs in the MLNs of these animals

(11). Interestingly therefore, adoptive transfer of a splenic CD9+

Breg population derived from mice infected with the parasitic

trematode Schistosoma japonicum has recently been shown to

promote metabolic health and suppress inflammation in young

female C57BL/6 mice acutely fed (from 4 weeks of age) a high fat

diet for up to 9 weeks (85). Moreover, whilst ES-62 also results in

the upregulation of ABCs (high PC-reactivity) and anti-PC

antibodies, this is likely to be beneficial in countering the

declining immunity to (PC-containing) pneumococcal

infection in ageing (HCD-fed) males (11, 86). Such natural

antibodies have also been implicated in the induction of Bregs

(87, 88), which by interacting with (dietary, endogeneous and

microbiota-derived) lipid-sensing NKT cells, potentially provide

an additional mechanism to counter the chronic pathogenic

inflammation occurring in autoimmunity (89, 90) and obesity-

accelerated ageing (11).

Nevertheless, despite even our young (d56) female Chow-fed

mice exhibiting profoundly disrupted trabecular bone structure

that presumably predisposes them to potentially irreversible

dysregulation of the BM niche and consequent immune

responses, our TLR4/MyD88-targeting mechanistic model leaves

the key question, of why the osteoimmunology axis of female

HCD-fed mice is relatively unresponsive to ES-62, unanswered.

Indeed, given that our original hypothesis was that ES-62 would

combat the chronic inflammation that causes retraining of BM

progenitors, it might have been predicted that it would be more

effective in female mice as they typically make stronger

inflammatory responses than male animals (55). However, we

found some surprising data with, for example, female HCD-fed
Frontiers in Immunology 20
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mice exhibiting the lowest levels of neutrophils in the BM at d500:

whilst this may simply reflect their mobilisation to the periphery

under the conditions of chronic inflammation associated with

obesity (91), it is also possible that these reduced levels could be

due to the loss of CD62LloCD11bhi neutrophils that are a

subpopulation of myeloid suppressor cells that normally home

to the BM (92). Likewise, the highest numbers of adipocytes

accumulated in the BMwere observed in Chow- and ES-62-HCD-

fed female mice at d500. However, increasing evidence that BM

adipose tissue (MAT) functions as an endocrine organ (and hence

may be differentially responsive to sex hormones) that can

promote metabolic adaptation and bone homeostasis, whilst

generally exerting detrimental effects on haematopoiesis and

osteogenesis (93, 94), makes these findings more complicated to

interpret without deeper characterisation of their functional

phenotype. For example, BM accumulation of adipocytes can be

a stress response acting to protect cells from lipotoxicity and

providing a mobilisable reservoir during energy deficit (95), with

brown MAT driving the energy balance, adaptive thermogenesis

and releasing IGF-1 and leptin, factors that promote osteogenesis

and bone mass (95). By contrast, sensing of obesity-induced

oxidative stress could disrupt the brown/white MAT balance,

leading to further release of cytokines and free fatty acids

perpetuating inflammation (95–97). Intriguingly therefore, a

novel bone-specific, ageing-associated adipogenesis pathway has

recently been identified that, under conditions of metabolic stress,

results in the accumulation of lipid-storing adipocytes within the

haematopoietic niche, particularly in female mice (98).

Turning once again to osteogenesis, in terms of the proposed

roles of leptin and adiponectin in promoting this [by increasing

osteoblastic and suppressing osteoclastic activities (99–101)] and

modulating haematopoiesis and inflammatory responses in

mouse models, we had previously measured the effects of

exposure to ES-62 on serum levels of these adipokines in our

cohorts of ageing male and female mice (11). As obesity induces

bone loss, it was not surprising that we found HCD-feeding to

suppress serum adiponectin levels in both sexes. However, and

perhaps rather unexpectedly from an osteogenic viewpoint,

obesity was found to be associated with enhanced leptin levels.

Nevertheless, this may simply reflect that chronic exposure to

HCD induced a state of leptin resistance in these animals (11).

Moreover, whilst ES-62 did not significantly reduce the HCD-

induced gain in body mass and had no effect on HCD-associated

adiponectin levels, it suppressed serum leptin levels in both sexes

of HCD-fed mice at d500 (11). These data perhaps suggest that

rather than targeting adipokine levels to promote osteogenesis,

ES-62 might be acting to counter the inflammatory metabolic

actions of leptin at this time point. Alternatively, as leptin can act

directly on MSCs to promote BM adipogenesis (102), the

reduction of serum leptin by ES-62 could contribute to the

significant reduction of adipocyte skewing and disruption of the
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bone marrow osteoblastic niche observed in male HCD-fed mice

at d500. However, once again, sexual dimorphism is evident, as

this adipocyte reduction is not found in female animals.

Thus, to further dissect the mechanisms underpinning the

sexual dimorphism in ES-62 -protection of bone health and the

haematopoiesis-supporting BM niche, we suggest that extensive

bone histomorphometry (103) and measurement of more definitive

serum biomarkers (104) of bone resorption (e.g., CTX-1) and

formation (e.g., P1NP) could be employed. These techniques

could help determine how the structural changes in the bones of

our ageing mouse cohorts determined by μCT relate to

dysregulation of the OC/OB balance controlling bone resorption

and formation. Complementing these approaches, we aim to gain a

fuller understanding of the divergent functional rewiring of BM

populations underlying the sexual dimorphisms in dysregulation of

haematopoiesis induced by HCD-accelerated ageing and their

differential ES-62 responsiveness. To achieve this, we are currently

embarked on a program of RNAseq (single cell and bulk) and

adoptive transfer/reconstitution in vivo studies which, in concert

with bioinformatic analyses, aims to identify the key functional and

cellular BM phenotypes involved. Certainly, knowledge of these

ageing BM phenotypes is imperative for exploiting the potential for

ES-62 (and other interventions) to differentially target

inflammatory and stromal cells (and progenitors) in the BM and

periphery, to tailor inflammatory responses appropriate to the

sexual dimorphisms evolved by the immune system to promote

the health and lifespan of male and female individuals.

Finally, in terms of translating these actions of ES-62 to the

clinic, we are encouraged by the ability of the SMAs to mimic not

only its key gut and metabolic effects (30) but also certain of its

impacts on the osteoimmunology axis, most notably in strong

protection of the trabecular bone structure and BM niche. Such

protection augurs well for their potential as starting points in the

identification of novel ES-62-based anti-ageing interventions,

particularly those targeting osteolytic diseases and chronic

inflammatory disorders and comorbidities. Moreover, these

studies once again underline the importance of targeted drug

development in terms of addressing the sexual dimorphisms

associated with ageing and inflammation-based comorbidities.
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SARS-CoV-2 antibody responses
associate with sex, age and
disease severity in previously
uninfected people admitted to
hospital with COVID-19: An
ISARIC4C prospective study

Eleanor Parker1†, Jordan Thomas2†, Kelly J. Roper2†,
Samreen Ijaz3†, Tansy Edwards4†, Federica Marchesin1,
Ksenia Katsanovskaja1, Lauren Lett2, Christopher Jones2,
Hayley E. Hardwick2, Chris Davis5, Elen Vink5,
Sarah E. McDonald5, Shona C. Moore2, Steve Dicks3,6,
Keerthana Jegatheesan3,6, Nicola J. Cook7, Joshua Hope7,
Peter Cherepanov7, Myra O. McClure1,
J. Kenneth Baillie8, Peter J. M. Openshaw9, Lance Turtle2,
Antonia Ho5, Malcolm G. Semple2†, William A. Paxton2†,
Richard S. Tedder1†, Georgios Pollakis2*†

and ISARIC4C Investigators
1Department of Infectious Disease, Imperial College London, London, United Kingdom, 2National
Institute of Health and Care Research (NIHR) Health Protection Research Unit in Emerging and
Zoonotic Infections, Department of Clinical Infection, Microbiology and Immunology, Institute of
Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom,
3Blood Borne Virus Unit, Reference Department, UK Health Security Agency, London, United Kingdom,
4Medical Research Council (MRC) International Statistics and Epidemiology Group, London School of
Hygiene and Tropical Medicine, London, United Kingdom, 5Medical Research Council, University of
Glasgow Centre for Virus Research, Glasgow, United Kingdom, 6National Health Service (NHS) Blood
and Transplant, London, United Kingdom, 7Chromatin Structure and Mobile DNA Laboratory, The
Francis Crick Institute, London, United Kingdom, 8Roslin Institute, University of Edinburgh,
Edinburgh, United Kingdom, 9National Heart & Lung Institute, Imperial College, London, United Kingdom
The SARS-CoV-2 pandemic enables the analysis of immune responses induced

against a novel coronavirus infecting immunologically naïve individuals. This

provides an opportunity for analysis of immune responses and associations with

age, sex and disease severity. Here we measured an array of solid-phase binding

antibody and viral neutralising Ab (nAb) responses in participants (n=337) of the

ISARIC4C cohort and characterised their correlation with peak disease severity

during acute infection and early convalescence. Overall, the responses in a

Double Antigen Binding Assay (DABA) for antibody to the receptor binding

domain (anti-RBD) correlated well with IgM as well as IgG responses against

viral spike, S1 and nucleocapsid protein (NP) antigens. DABA reactivity also

correlated with nAb. As we and others reported previously, there is greater risk

of severe disease and death in older men, whilst the sex ratio was found to be

equal within each severity grouping in younger people. In older males with
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severe disease (mean age 68 years), peak antibody levels were found to be

delayed by one to two weeks compared with women, and nAb responses were

delayed further. Additionally, we demonstrated that solid-phase binding antibody

responses reached higher levels in males as measured via DABA and IgM binding

against Spike, NP and S1 antigens. In contrast, this was not observed for nAb

responses. Whenmeasuring SARS-CoV-2 RNA transcripts (as a surrogate for viral

shedding) in nasal swabs at recruitment, we saw no significant differences by sex

or disease severity status. However, we have shown higher antibody levels

associated with low nasal viral RNA indicating a role of antibody responses in

controlling viral replication and shedding in the upper airway. In this study, we

have shown discernible differences in the humoral immune responses between

males and females and these differences associate with age as well as with

resultant disease severity.
KEYWORDS

SARS-CoV-2, immunology, COVID-19, virus, disease, serology, neutralisation
1 Introduction

Individual risk of COVID-19 severity is heterogenous and

determined by several factors including the host’s clinical

characteristics and genetics (1–4). The most important predictors

of severe disease are advanced age and male sex followed by the

presence of co-morbidities including cardiac disease, metabolic

disorders such as obesity and diabetes, hypertension and

respiratory diseases (2, 5–11). Further, recent studies have

identified several genetic correlates of disease severity (4, 12–14).

Disease outcome may also be determined by the timing and

magnitude of humoral immune responses (15–19). Generally,

antibody responses to acute infection in SARS-CoV-2-naïve

individuals are rapid; the majority of patients seroconvert for

virus-specific IgM and then IgG between 10-19 days post-

symptom onset (20–22). The primary viral targets of humoral

responses to SARS-CoV-2 are the Spike (S) glycoprotein

(including the RBD domain) and the nucleocapsid (N) protein

(23). The majority of virus neutralisation activity is provided by

antibodies directed against the receptor binding domain (RBD) of

the spike protein S1 sub-unit, which blocks the interaction between

S and ACE2 (24–27). Mild cases of COVID-19 have previously been

associated with higher ratios of antibodies directed against RBD as

opposed to N, as well as rapid reduction of respiratory tract viral

RNA concomitant with rises in anti-RBD IgG (16, 24). Faster

production of both total and RBD-specific IgG has been observed

in female patients (28, 29), and early upregulation of specific IgM

responses (24, 30) and neutralising RBD specific responses (31)

have been associated with improved disease outcome. In response

to vaccination, elderly patients generate weaker humoral responses,

characterised by slower induction of antibody production, lower

magnitude Ab titres at peak and quicker Ab decline, when

compared to younger adults (32–35). Whilst several reports have

shown that elderly patients are able to generate robust and
02110
neutralising antibody responses during acute infection (7, 36, 37),

there is less evidence of early antibody kinetics impacting on disease

outcome in elderly patients.

Using serum samples from patients hospitalised during the first

wave of the COVID-19 pandemic in the United Kingdom (UK), we

have performed an extensive analysis of the serological responses

generated to SARS-CoV-2 in an immune-naïve population. Anti-

RBD reactivity, neutralising function and class specific antibodies to S

and N proteins were measured using a hybrid double antigen binding

assay (DABA) (38), a pseudo-virus particle (PVP) neutralisation

assay and Ig capture assays respectively. This portfolio of assay

formats was used previously in the characterisation of the antibody

response kinetics in Ebola virus survivors following the Sierra Leone

outbreak of 2014-2016 (38, 39). By comparing serological responses

in hospitalised patients of different age groups and sexes in the

context of the early UK outbreak when the virus population was

relatively homogenous, we have been able to identify host

characteristics that contribute to the risk of severe disease.

Additionally, repeat sampling starting from early in hospital

admission through to convalescence has provided greater insights

into the influence of sex and age on early antibody kinetics, and their

association with outcome.
2 Materials and methods

2.1 Study cohort patients and samples

This analysis included sera from 337 patients admitted to UK

hospitals with COVID-19 between February and June 2020 before

vaccines were made available and therefore describing a new

infection in a naïve human population. The patients were

enrolled in the International Severe Acute Respiratory and

emerging Infections Consortium (ISARIC) World Health
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Organization (WHO) Clinical Characterisation Protocol UK (CCP-

UK) study. Study participants were confirmed SARS-CoV-2

positive by reverse transcription polymerase chain (PCR) reaction

or were highly suspected cases based on clinical presentation and

providing a serological response in one or more of the described

assays being recorded. Acute infection samples were collected

within 21 days of the onset of symptoms and convalescent

samples were collected when SARS-CoV-2 PCR showed

undetectable viral burden. A number of patients underwent serial

sampling (2/n=129, 3/n=91, 4/n=12, 5/n=1), with not all follow up

specimens tested in every assay implemented. Samples with

repeated measures were included in a mixed effect regression

model to analyse the antibody responses over time (section 3.5).

Patients were stratified into five categories of peak illness

severity based on the World Health Organization (WHO)

COVID-19 ordinal scale (40): 1) no oxygen requirement (WHO

score 3); 2) patient requiring oxygen by face mask or nasal prongs

(WHO score 4); 3) patient requiring high-flow nasal oxygen

(HFNO) or non-invasive ventilation (NIV) (WHO score 5); 4)

patients requiring mechanical ventilation (WHO score 6/7) and 5)

patients who died within 28 days. (WHO score 8).
2.2 Anti-SARS-CoV-2 S1, spike and NP IgM
and IgG capture ELISAs

Three viral antigens all based on the hCoV-19/Australia/VIC01/

202 (Accession MT007544) lineage were tested. The SARS-CoV-2

full length spike glycoprotein (Spike/amino acids 1–1211; His-tag)

and the nucleoprotein (NP) conjugated to Horseradish peroxidase

(HRP) were purchased from The Native Antigen Company

(Kidlington, Oxford, UK). The SARS-CoV-2 S1 antigen (spanning

Wuhan-Hu-1 SARS-CoV-2 Spike residues 1–530, C-terminal twin

Strep tag) (41, 42) was produced and gifted by The Francis Crick

Institute and conjugated to HRP using the Bio-Rad LYNX HRP

conjugation kit, in accordance with the manufacturer’s instructions.

Recombinant NP antigens from seasonal coronavirus NL63, OC43,

HKU1 and 229E were used to block non-specific NP responses as

previously described (43). These proteins were produced in

Escherichia coli with N-terminal hexahistidine-SUMO and C-

terminal Twin Strep tags and purified by tandem immobilised

metal and StrepTactin® affinity chromatography. The IgM and IgG

capture ELISAs for the detection of antibody to S1, Spike and NP

were undertaken as described previously (43).
2.3 SARS-CoV-2 RNA quantitative reverse
transcriptase polymerase chain reaction

SARS-CoV-2 RNA was quantified using a NEB Luna Universal

Probe One-Step RT-qPCR Kit (New England Biolabs, E3006) and

2019-nCoV CDC N1 primers and probes (IDT, 10006713)).

Genome copy numbers were quantified using a standard curve

generated from serial dilutions of a plasmid containing the target N

protein gene fragment. The standard was quantified and quality

controlled using QX600 droplet digital PCR system (Bio-rad, UK).
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2.4 Anti-RBD hybrid DABA immunoassay

Antibodies targeting SARS-CoV-2 were measured using a

hybrid double antigen bridging assay (DABA) that was previously

developed to detect Ebola virus (EBOV) glycoprotein targeting

antibodies (38) and recently adapted and validated to detect

SARS-CoV-2 directed antibodies, using the same methodology for

performance and analysis as described previously (44). Briefly, an

S1 antigen coated onto a solid phase was used to bind all reactive

immunoglobulins present in a sample, after a which an HRP

conjugated RBD antigen was added to detect antibody binding

which was expressed as arbitrary units (AU)/ml (44). Owing to the

use of an antigen as the detector, the DABA detects all classes of

antibody that target a specific antigen, unlike methods which

discriminate between IgM or IgG.
2.5 Generation of SARS-CoV-2 pseudovirus
particle, infectivity and neutralisation assay

2.5.1 Cell culture
HEK293T (ATCC® CRL-3216™) cells were cultivated in

Dulbecco ’s modified eagle medium (Invi trogen) and

supplemented with 10% heat-treated FCS (Sigma), 2mM/ml L-

glutamine (Invitrogen), 100 U/ml penicillin (Invitrogen) and 100

mg/ml streptomycin (Invitrogen), termed complete DMEM

(Thermofisher). HEK293T/ACE-2 cells were used to monitor

PVP infectivity and in performing serum neutralisation assays.

All cells were cultured at 37°C and at 5% CO2.
2.5.2 SARS-CoV-2 PVP production and infection
The ancestral SARS-CoV-2 S glycoprotein (Accession

MN908947) was cloned into the pCDNA3.1 expression plasmid

(produced by GeneArt Gene Synthesis) and was used in generating

PVP stocks via a lentiviral system to generate single-cycle infectious

viral particles as previously described (45, 46). HEK293T cells

(5.0x105 in each well of a 6-well tissue culture flask) (Corning)

were grown in 2.0 ml of complete DMEM overnight. Cells were

transfected with 750 ng of the lentiviral luciferase reporter

construct, pCSFLW, along with 450 ng of the SARS-CoV-2 S

expression plasmid and 500 ng of the lentiviral backbone, p8.91,

using cationic polymer transfection reagent (Polyethylenimine)

(Polysciences) and in the presence of OptiMEM (Invitrogen).

OptiMEM/plasmid mix was removed 16 h post transfection and

2.0 ml complete DMEM added with the single-cycle infectious

SARS-CoV-2 stock harvested 48 h later, passed through a 0.45µM

filter, aliquoted and stored at −80°C. PVP infection was monitored

on HEK293T/ACE-2 cells through measuring luciferase activity

(expressed from the HIV-1 LTR promoter) under control of Tat

expression from the HIV-1 backbone. 100 µl of virus stock was used

to infect 1.5x104 cells/well for 6 h in a white 96 well plate (Corning).

Following infection 100 µl DMEM complete medium was added to

each well. 48 h post infection, media was discarded from the wells

and the cells washed with PBS (Thermofisher), lysed with 30 µl cell

lysis buffer (Promega) and luciferase activity determined utilising
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the commercially available luciferase assay (Promega) and

measured using a BMGLabtech FluoroStar Omega luminometer.
2.5.3 SARS-CoV-2 S PVP neutralisation assay
SARS-CoV-2 enveloped PVP was thawed and pooled and

subsequently diluted 1/20 in complete DMEM. Serum samples

from SARS-CoV-2 individuals were serially diluted 2-fold with

complete DMEM; 28 µl serum dilution was incubated with 420 µl

diluted SARS-CoV-2 PVP for 30 min at RT. 200 µl of virus/serum

dilution mix was used to infect HEK293T/ACE-2 cells. Luciferase

activity readings of neutralised virus were analysed i) by considering

0% inhibition as the infection values of the virus in the absence of

convalescent plasma included in each experiment, ii) by considering

0% inhibition as the infection values of two consecutive high

dilutions not inhibiting virus entry. The neutralisation activity

defined as the serum dilution that reduced viral infectivity by

50%, 70% or 90% (IC50, IC70 or IC90, respectively).
2.6 Statistical analyses

Statistical analyses were performed using GraphPad Prism 6.0

software. Unpaired sample comparisons were conducted for all

data; however, individual figures state the corresponding statistical

test performed. These include parametric and non-parametric t-

tests (student t-test and Mann-Whitney U test) and non-parametric

ANOVA (Kruskal-Wallis test). Significant P values < 0.05 were

depicted by * or a horizontal line above the groups compared.

Repeated measures linear regression was used to model antibody

levels over time, including a random intercept term to account for

within-individual correlation, age and a time-sex interaction to

predict trajectories for males and females separately, adjusted

for age.
3 Results

3.1 Patient demographics

We analysed the patient demograhics of individuals within our

cohort, specifically age and sex, to determine the risk of severe

disease across these groups. A higher proportion of the 337 study

participants were male (63.0%, n=210). Median age was 57 years

(range: 15–94) with no age difference observed between sexes (male

median age = 57.3 years/range: 19–90 and female median age = 57.7

years/range: 15–94). As this was a hospital study, no asymptomatic

individuals were enrolled. Participants were grouped into categories

S1-S5 according to disease severity (Supplementary Figure 1) (40).

The ratio of males to females increased within the higher disease

severity groupings, from 47% of participants in S1, to 66% of

participants in S4, and with only three females (8.1%) in S5

(individuals that died within 28 days of disease onset)

(Figure 1A). There were no age differences between sexes within

severity groupings, and the age range narrowed as disease severity

increased (Figure 1A). The average participant age across severity
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groups was similar with S5 being an exception, where participants

tended to be older.

We next anlysed the time between the onset of symptoms and

hospital presentation to compare the rate of deteriation across

different patient groupings. No difference was found between

males and females in the time between symptom onset and

hospital presentation (Figure 1B). When the cohort was stratified

by 10 yearly age categories, participants between 50 and 70 years old

were recruited later than participants <50 years or >70 years

(Figure 1C), reflecting a delay from disease onset to when

participants presented at the hospital. In this cohort we found

that overall, males developed more severe disease than females

(Figure 1D), which was shown in all age categories above 50

years (Figure 1E).
3.2 Antibody responses by gender and age

When measuring anti-RBD using the hybrid DABA (an

antibody class neutral assay) high antibody levels were measured

within one week following onset of symptoms and were maintained

at high levels for 3 to 4 weeks (Figure 2A). Anti-RBD titres reached

a peak around day 21 following symptom onset for both males and

females, and peak antibody levels were higher in males. Neutralising

antibodies (nAb) (IC50, IC70 or IC90), measured using the PVP

neutralisation assay, revealed a similar serological profile to anti-

RBD with a sharp initial increase reaching the peak at around day

26 post symptom onset (Figure 2B). When comparing anti-RBD

with nAb responses (IC70) a correlation was observed during the

first 21-day period (P<0.0001, rp=0.6476). This correlation

remained but was lower in magnitude after 21 days following

disease onset (P<0.0001, rp=0.3666) (Figure 2C).

At recruitment to the study, corresponding to the time that a

participant was hospitalized, no significant differences were

identified between males and females in anti-RBD (DABA) or

nAb responses (Supplementary Figures 2A, B). However, when

divided into age groups, significant differences were observed in the

antibody responses between age groupings for both males and

females (Supplementary Figures 2C, D). Specifically, individuals

between 51-70 years of age demonstrated higher anti-RBD levels

and nAb responses (IC70) than those aged 20-49 or those >70 years

old. (Supplementary Figures 2C, D).

We further studied responses against the two main

immunogenic viral proteins, the spike and the non-envelope

nucleoprotein (NP). The S1 region of spike that includes the RBD

was was also studied individually considering it is the primary target

of nuetralising antibodies. In samples taken at recruitment, which

represents a range of days between patients since the onset of

symptoms and hospital presentation, IgM and IgG antibody

binding responses to spike, S1 and NP were not significantly

different between males and females for most age groupings,

except for the IgM responses to S1, which were higher in men

aged 60-70 (Supplementary Figures 3A-F). The IgM responses to

the S1, Spike, and NP proteins all demonstrated higher levels in

individuals aged between 41-60 in comparison to the <40 or >70 age

groupings (Supplementary Figures 3A-C, respectively), with a
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similar profile observed for IgG (Supplementary Figures 3D-

F, respectively).

Overall, when comparing antibody responses (DABA,

neutralizing, IgG and IgM) at recruitment no differences were

found between males and females within age categories but

differences were observed between the different age categories.

Individuals in age categories 20-40 and >70 had lower antibody

titres than those in the intermediate age categories.
3.3 Total, neutralizing and class
Ab associations

We next analysed the relationship between the antibody classes

IgM and IgG against different virus antigens, comparing acute

infection with convalescence. During acute infection, IgG

responses against Spike protein correlated with IgM antibody
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levels (P<0.0001), whereas this correlation disappeared during

convalescence (Supplementary Figure 4A). This association was

not observed when comparing IgG versus IgM responses against S1

or NP antigens during acute infection or convalescence

(Supplementary Figures 4B, C, respectively), indicating that

antibody class induction is variable across different antigens.

Strong correlations were found between Spike-IgM and S1-IgM as

well as between Spike-IgG and S1-IgG responses (Supplementary

Figures 4D, E) with again no difference between acute infection and

convalescence. In contrast, weak correlations were observed when

comparing NP with Spike or S1 antibody responses (Supplementary

Figures 4F-I).

There were signficant correlations between total anti-RBD

binding (DABA) and both IgM and IgG to total spike and S1

(Supplementary Figures 5A-D) during the acute infection phase

(<21 days post-symptom onset), which became weaker or not

significant during convalescence (>21 days post-symptom onset)
A B C

FIGURE 2

Association between anti-RBD as well Ab neutralisation responses with days since disease onset. (A) Anti-RBD binding in relation to days since
disease onset and split into females (orange) and males (blue). The lines (females orange and males blue) show the spline/LOWESS curves indicating
the overtime evolutionary trend of the data. (B) Neutralisation antibody responses depict in relation to days since disease onset and curves
representing the spline/LOWESS for the IC50, IC70 and IC90 values indicating the overtime evolution trend. (C) Association between anti-RBD and
neutralisation responses (IC70). Spearman correlation test (P<0.0001/rp=0.6476), in acute infection (under 21 days) and (P<0.0001/rp=0.3666) in
convalescence (over 21 days).
A B

D E

C

FIGURE 1

Sex and age distribution within groups with relation to days since disease onset and severity. (A) Number of individuals, female (F) or male (M), overall
and when broken down into disease severity groupings (S1-S5). (B) Days since symptom onset split into females (orange) and males (orange) for all
individuals. (C) Days since symptom onset split into females and males and relative to age groupings. (D) Disease severity split into females and
males for all individuals. (E) Disease severity split into females and males relative to age groupings. In all panels mean values and confidence intervals
shown (black lines). Lines above or below the groups indicate significant differences between groups as found by implementing a paired t-test or a
non-parametric ANOVA (Kruskal-Wallis test). * indicates statistical significance P < 0.05.
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for IgG, but not IgM. A similar pattern was observed for the

correlation between anti-RBD binding and anti-NP binding,

indicating that the anti-RBD binding correlated to some extent

with the total antibody response, though the magnitude was less for

binding to NP (Supplementary Figures 5E, F).

Next, we compared antibody classes IgG and IgM against Spike,

NP and S1 to nAb responses (IC70) directed against the same

antigens. We observed similar profiles during both acute infection

and convalescence (Supplementary Figures 5G-L). Collectively, these

results suggest that total antibody, as well as class-specific responses

(all measured by solid-phase binding ELISA), correlate with nAb

activity induced in early infection. The most notable associations

between responses were observed when comparing Spike, S1 IgG or

IgM levels with nAb responses (Supplementary Figures 5G-J). This

would indicate that both IgM and IgG induced during acute infection

and convalescence are associated with virus neutralisation with spike,

including the RBD domain as the predominant target.
3.4 Antibody levels and neutralisation
associate with disease severity over time

We next analysed the relationships between anti-RBD and nAb

responses (IC70) with disease severity (Figure 3). In all severity

groups, antibody levels increased over time, but initially relatively

lower levels were observed in groups S1 and S5 in week 1, particularly

for nAb responses, when compared to intermediate severity groups

(Figure 3 and Supplementary Figure 6). By week 3, high levels of anti-

RBD and nAbs were measured in all groups, and maintained for the

duration of the study period (Figure 3). A similar profile was observed

when comparing IgM and IgG responses for Spike, NP and S1

(Supplementary Figure 7). These results indicate that whilst

antibody levels rise with time in all severity groups, individuals in

the most severe and least severe disease groups developed antibody

responses more slowly than those in intermediate groupings.
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3.5 Differing profiles of antibody responses
over time in male and female pariticipants

Sex differences in antibody responses over time were

investigated using a mixed effect regression model comparing

different antibody measurements. Female participants

demonstrated higher initial anti-RBD responses which declined

slowly from day 20, whilst male participants had lower early anti-

RBD responses that sharply increased up until day 30 before falling

to similar levels as females at 50 days post symptom onset

(Figure 4A). However, when comparing nAb (IC70) responses

over the same period (Figure 4B), similar antibody profiles were

found for both males and females, suggesting that the higher anti-

RBD responses measured by the hybrid DABA observed in males

were not associated with higher neutralisation. When comparing

IgM and IgG Ab responses against Spike, S1 or NP antigens over the

50 days period following symptom onset, a very similar profile was

observed to DABA anti-RBD measurements (Figures 4C-H).

However, the most marked differences were observed with IgM

between males and females (Figures 4C-E) and especially for the

Spike and S1 protein (Figures 4C, D, respectively). These results

highlight the differences in antibody response kinetics between male

and female participants and in particular in early IgM responses

targeted to the dominant antigens for neutralisation.
3.6 Upper respiratory tract SARS-CoV-2
viral RNA in relation to demographics,
disease severity and Ab responses

We performed SARS-CoV-2 viral transcript measurements on

upper respiratory tract samples, taken from 174 participants, at a

median of 14 days from date of symptom onset (IQR8-30). There

were no differences in viral RNA levels by sex (Figure 5A), nor by

age or disease severity (Figures 5B, C, respectively). Viral RNA copy
A B D E F
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C

FIGURE 3

Antibody responses by severity groupings and time following disease onset. (A-F) Total anti-RBD titres grouped by severity (S1-S5), measured from
samples taken at (A) week 1, (B) week 2, (C) week 3, (D) week 4, (E) week 5 and (F) past week 5 post-symptom onset. (G-L) Neutralising antibody
(IC50) titres grouped by severity (S1-S5), measured from samples taken at (G) week 1, (H) week 2, (I) week 3, (J) week 4, (K) week 5 and (L) past week
5 post-symptom onset.Statistically significant differences (non-parametric ANOVA (Kruskal-Wallis test) are indicated by horizontal lines above the
groupings.
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number fell over time from symptom onset (Supplementary

Figures 8A, B), but the number of days from symptom onset to

when participants first presented at hospital and were sampled at

study recruitment did not vary according to age or disease severity

(Supplementary Figures 8C, D). We next aimed to identify whether

there were associations between viral RNA load and the array of

antibody responses previously described. Contemporaneously

collected samples showed an inverse correlation between viral

RNA measurements and anti-RBD and nAb titres (IC70),

(Figures 5D, E, respectively). Similar inverse correlations were

observed when comparing Spike, NP and S1 antigen directed IgM

(Figures 5F-H, respectively) and IgG (Figures 5I-K, respectively).

The results indicate that the presence of antibody responses were

associated with a reduction in nasal levels of viral RNA, with no

difference by sex.
4 Discussion

This study of individuals during the early stages of the pandemic

(February-May 2020), using several measurements of host responses

and viral RNA, has enabled the identification of differences in

antibody profiles in an immunologically naïve population. Very

early in the SARS-CoV-2 pandemic it was reported that a number

of factors such as age, sex, co-morbidities, obesity and ethnicity were

associated with the risk of severe disease (2, 5–7). In our cohort,

analysis of patient demographics and disease severity showed that
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males were disproportionately represented in higher severity groups,

especially in the age groupings above 50. Further, we showed that

90% of participants who died (severity group 5) were male with a

median age of 68, supporting previous reports in which older males

were more prone to death (47). Nevertheless, we observed no

differences in the mean age between males and females when

grouped by disease severity, potentially indicating that age is a

stronger determinant of disease severity than sex.

Many other studies have measured antibody responses

following acute infection with SARS-CoV-2 (23, 24, 31, 48–50).

However, most were either cross-sectional, did not measure such

early responses or do not utilise a multitude of comparable antibody

assays. Therefore, a strength of this study was the use of an array of

assays to measure antibody responses against the two main

immunogenic viral proteins S and NP (48). Three different types

of binding assays were performed with one quantifying total

antibodies against RBD (DABA) and the two other measuring

IgM and IgG responses against Spike, S1 and NP. Additionally, a

PVP neutralisation assay was also employed to assess the

functionality of the antibodies generated. Through comparing

these different measurements, we observed an overall robust

correlation between binding antibody titres (measured by DABA

or ELISA), regardless of IgM or IgG class, to neutralising antibodies

which is not affected by age, gender or disease severity. Comparison

of total anti-RBD antibodies, as measured by DABA, with IgG and

IgM Spike and S1 directed antibodies highlighted a strong

correlation between these measurements during the acute
A
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FIGURE 4

Evolution in time of antibody titres following disease onset by sex and subclass. (A) Anti-RBD titres. (B) nAb (IC70) responses. (C-E) IgM binding
responses against spike (C), S1 (D) and NP (E). (F-H) IgG binding responses against spike glycoprotein (F), S1 (G) and NP (H) responses. The thin lines
in background indicate individuals with longitudinal samplings with each dot representing a time point collection. For all panels, best-fit curves with
95% confidence intervals are shown for females (orange) and males (blue).
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infection phase (Supplementary Figures 5A-D). However, this

correlation became significantly weaker when comparing anti-

RBD antibodies to spike and S1 directed IgG antibodies during

the convalescent phase (Supplementary Figures 5A-D), indicating a

strong contribution of IgM to the antibody responses measured by

DABA and suggesting a progressive switch to IgG as the

predominant class of spike directed antibodies. Similarly, we

observed a strong correlation between Spike and S1 directed IgM

and IgG antibody responses with nAbs during both acute infection

and convalescence, suggesting that both early IgG and IgM posess

neutralising activity (Supplementary Figures 5G-J), as has been

previously reported (51–53). Together, these results further

highlight how this multi-faceted analysis can reveal the evolvoing

dynamics serological responses within patients. The associations

between different antibody classes and functions observed in this

study can be used to provide retrospective insights into humoral

immunity in the most vulnerable population during the early stages

of the pandemic. Such associations can facilitate further

understanding of how inital immune responses can evolve over a

pandemic of a novel virus, when population immune responses are

not primed by previous exposures or vaccination.

We sought to identify how the timing of antibody responses

associates with disease severity. Our data supports previous findings

that antibody seroconversion occurs 10-19 days post symptom

onset (20–22, 30, 49, 54) and with higher IgM than IgG antibody
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titres measured during acute infection (Supplementary Figures 4A-

C). Despite some differences in the rate of induction of antibody

response between males and females (discussed below), we showed

that total anti-RBD as well as nAb responses peaked around 3 weeks

post-symptom onset for both sexes and across all age groupings.

Through comparing antibody titres at hospital presentation in

different age groups, we showed that there were higher levels of

IgM targeting spike, S1 and NP in indivudals aged between 41-60

than in other age groups (Supplementary Figure 3). Similarly, we

also showed that both anti-RBD and nAb responses to all antigens

tested were delayed in individuals with lowest disease severity, as

previously reported (50, 54, 55) and in those with the highest

severity (fatal outcome) (Figures 3, 4 and Supplementary Figure 6,

respectively). However, patients in the 51 to 60 age group were

recruited up to 4 days later in disease onset than the other groups

(Figure 1C), which may account for some of the differences

observed. Nevertheless, these data, together with the finding that

older males are more prone to severe disease and death, suggests

that delayed antibody production is associated with severe disease

and death in older patients (>60) but not in younger individuals

(<40). A potential explanation for this disparity is that in younger

individuals, more robust innate immune responses help to limit

virus replication during early infection, reducing the overall viral

burden and subsequently delaying the production of Ab responses.

Conversely, advanced age is associated with blunted innate immune
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FIGURE 5

Association of SARS-CoV-2 upper respiratory tract viral loads in relation to sex, age and Ab responses at time of sampling. (A) Overall viral load
measurements in relation to sex. (B) Viral loads according to age groupings and between females (orange) and males (blue). (C) Viral loads according to
disease severity groupings (S1-S4) and between females (orange) and males (blue). (D) Associations between viral loads and overall DABA anti-RBD
binding responses. (E) Associations between viral loads and neutralisation antibody (IC70) responses. (F-H) Associations between viral loads and IgM
antibody binding responses against spike (F), NP (G) and S1 (H) antigens. (I-K) associations between viral loads and IgG antibody binding responses
against spike (I), NP (J) and S1 (K) antigens. (D-K) Inverse correlations shown (black dotted line) with males shown in blue and females in orange.
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responses, which in combination with delayed Ab production likely

accounts for the higher risk of severe disease. Indeed, delayed and

impaired type 1 IFN responses have been associated with risk of

severe COVID-19 (56) and these responses are known to be

dysregulated in elderly individuals, contributing to the age related

discrepancies in patient outcome (57–59).

When comparing antibody responses between sexes, we

observed a more rapid induction of antibody responses in females

than was observed in male participants and have associated this

with differences in disease severity. Therefore, it is possible that a

contributing factor to sex-associated differences in disease severity

is the timing of antibody responses, whereby a delay in antibody

production may account for increased risk of severe disease

outcome. This association between age, sex and disease outcome

with antibody kinetics has been previously reported, where females

demonstrated more rapid increases in protective IgG responses

than males (29) and that in severe cases, females had higher

concentrations of virus-specific IgG (28). Here, we identify that

the timing of measuring serological responses is important when

correlating to disease status and outcome. This should be taken into

consideration when comparing results to other studies where levels

of IgM have reported contradictory findings between the sexes (60).

Through measuring upper respiratory tract viral RNA

transcripts, indicative of localised viral shedding and therefore a

surrogate measure for viral load, we observed an inverse correlation

between nAb levels which may indicate a critical role of effective

serological responses limiting viral replication and leading to

clearance of the infection. Nevertheless, our samples were

obtained a median of 2 weeks post symptom onset and therefore

viral RNA has been predominantly measured during the decline

phase of infection (61). Additionally, it is possible that this

observation could be a non-causal association with emergence of

effective cellular immunity. It should also be noted that viral load in

the lower respiratory tract, which may play an important role in

defining disease severity, was not measured in this study.

Additionally, a formal analysis of the avidity of the anti-RBD

serological response following recovery has not been undertaken.

Preliminary unpublished data indicate avidity is low after recovery

from infection but greatly increased after vaccine administration.

In this study, immunological linkages with disease outcome

have been deciphered independently in a naïve host population and

with a homogenous viral strain. The analyses of patients early in the

pandemic has been vital in enabling description of the associations

we have identified. Subsequent multiple exposures to different types

of vaccines, natural infections and the emergence of diverse viral

variants makes unravelling further host genetic and immune factors

associated with disease challenging, meaning that the data

presented here are unique, and are unlikely to be obtained as the

pandemic evolves.
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The human Stat1 gain-of-
function T385M mutation causes
expansion of activated T-
follicular helper/T-helper 1-like
CD4 T cells and sex-biased
autoimmunity in specific
pathogen-free mice

Ori Scott1,2,3, Shagana Visuvanathan2, Emily Reddy4,
Deeqa Mahamed4, Bin Gu5,6, Chaim M. Roifman1,7,
Ronald D. Cohn2,3,8†, Cynthia J. Guidos4,9*†

and Evgueni A. Ivakine10*†

1Division of Immunology and Allergy, Department of Paediatrics, Hospital for Sick Children and University
of Toronto, Toronto, ON, Canada, 2Program for Genetics & Genome Biology, Hospital for Sick Children
Research Institute, Toronto, ON, Canada, 3Institute of Medical Science, University of Toronto, Toronto,
ON, Canada, 4Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto,
ON, Canada, 5Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University,
East Lansing, MI, United States, 6Institute for Quantitative Health Science and Engineering, Michigan State
University, East Lansing, MI, United States, 7The Canadian Centre for Primary Immunodeficiency and
The Jeffrey Modell Research Laboratory for the diagnosis of Primary Immunodeficiency, The Hospital for
Sick Children, Toronto, ON, Canada, 8Division of Clinical & Metabolic Genetics, Department of Paediatrics,
Hospital for Sick Children and University of Toronto, Toronto, ON, Canada, 9Department of Immunology,
University of Toronto, Toronto, ON, Canada, 10Department of Physiology, University of Toronto, Toronto,
ON, Canada
Introduction: Humans with gain-of-function (GOF) mutations in STAT1 (Signal

Transducer and Activator of Transcription 1), a potent immune regulator,

experience frequent infections. About one-third, especially those with DNA-

binding domain (DBD) mutations such as T385M, also develop autoimmunity,

sometimes accompanied by increases in T-helper 1 (Th1) and T-follicular helper

(Tfh) CD4 effector T cells, resembling those that differentiate following infection-

induced STAT1 signaling. However, environmental and molecular mechanisms

contributing to autoimmunity in STAT1 GOF patients are not defined.

Methods: We generated Stat1T385M/+ mutant mice to model the immune

impacts of STAT1 DBD GOF under specific-pathogen free (SPF) conditions.

Results: Stat1T385M/+ lymphocytes hadmore total Stat1 at baseline and also higher

amounts of IFNg-induced pStat1. Young mutants exhibited expansion of Tfh-like

cells, while older mutants developed autoimmunity accompanied by increased Tfh-

like cells, B cell activation and germinal center (GC) formation. Mutant females

exhibited these immune changes sooner and more robustly than males, identifying

significant sex effects of Stat1T385M-induced immune dysregulation. Single cell

RNA-Seq (scRNA-Seq) analysis revealed that Stat1T385M activated transcription of

GC-associated programs in both B and T cells. However, it had the strongest
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transcriptional impact on T cells, promoting aberrant CD4 T cell activation and

imparting both Tfh-like and Th1-like effector programs.

Discussion: Collectively, these data demonstrate that in the absence of overt

infection, Stat1T385M disrupted naïve CD4 T cell homeostasis and promoted

expansion and differentiation of abnormal Tfh/Th1-like helper and GC-like B cells,

eventually leading to sex-biased autoimmunity, suggesting a model for STAT1

GOF-induced immune dysregulation and autoimmune sequelae in humans.
KEYWORDS

STAT1, autoimmunity, chronic activation, T helper, immune dysregulation, Specific
pathogen free (SPF), mouse model, gain of function (GOF)
1 Introduction

Humans with gain-of-function (GOF) mutations in Signal

Transducer and Activator of Transcription (STAT)1 exhibit

widespread immune dysregulation. The major function of this STAT

family transcription factor is to mediate the biological effects of pro-

inflammatory cytokines, such as interferons (IFN), and to a lesser

extent interleukin 6 (IL-6), which are produced when certain cells sense

microbial products (1, 2). Although transcriptional complexes

containing unphosphorylated STAT1 can mediate baseline

expression of IFN-stimulated genes (ISG) (3–6), canonical infection-

induced STAT1-mediated ISG expression involves a phosphorylation

cascade following IFN receptor ligation. Type I IFNa/b cytokines

activate Janus kinases (JAK) to phosphorylate STAT1 and STAT2,

promoting their dimerization to induce transcription of genes that limit

viral replication, enhance CD8 T cell cytotoxic effector function, and

induce CD4 T cells to provide B cell help (7). IFNg (Type II IFN)

induces pSTAT1 homodimers to activate macrophage/monocytes and

dendritic cell pro-inflammatory functions, enhance antigen

presentation and secretion of cytokines that promote differentiation

of Th1 cells from naïve CD4 T cells (8). IL6 activates STAT1 and

STAT3 to to promote differentiation of naïve CD4 cells into Tfh cells,

important mediators of humoral immunity (9). In contrast, IL6

stimulation of activated CD4 cells induces only STAT3, driving

differentiation of Th17 cells that orchestrate the immune response to

extra-cellular fungi (10, 11). Interestingly, STAT family members often

cross-inhibit each other, and the hallmark clinical manifestation of

STAT1 GOF is chronic mucocutaneous candidiasis (CMC), resulting

from impaired Th17 differentiation due to partial STAT3 loss of
entially-expressed genes
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function (12). STAT1 GOF patients frequently experience other

severe invasive/opportunistic infections, and one third also develop

autoimmune disease (13, 14). However, the underlying molecular and

cellular mechanisms of autoimmunity in STAT1 GOF patients

are unknown.

STAT1 GOF has been linked to dominant mutations in all

STAT1 domains, but most patients have mutations in the coiled-

coil domain, essential for protein-protein interactions, or in the DBD,

which orchestrates nuclear migration and DNA binding (13, 15, 16).

Cells from STAT1 GOF patients typically show elevated pSTAT1

(Tyr701) levels after stimulation with IFNs (15), suggesting that

autoimmunity could be linked to IFN hyper-responsiveness. In

patients with STAT1 DBD mutations, the most common of which

is T385M (13, 17–19), STAT1 nuclear accumulation can also occur

without IFN stimulation, suggesting a constitutive role for

unphosphorylated STAT1 in the pathogenesis of these mutations

(20). We recently showed that individuals with DBDmutations had a

higher prevalence of autoimmunity compared with other STAT1

GOF patients, including endocrinopathies, autoimmune

gastrointestinal disease (enteropathy or hepatitis), autoimmune

cytopenia’s and interstitial lung disease (21). However, these

patients also had a high rate of invasive and opportunistic

infections that typically preceded autoimmunity. Thus, it is unclear

whether abnormal responses to pathogenic microbes promote

autoimmunity in STAT1 GOF patients with T385M and other

DBD mutations. Many autoimmune disorders are more prevalent

in females due to a variety of IFN-dependent and -independent

mechanisms (22), so sex may also modulate autoimmunity in STAT1

GOF these patients. However, sex effects on autoimmunity have not

been studied in these patients.

In addition to compromising Th17 differentiation, STAT1 GOF

may also promote the differentiation of effector CD4 lineages linked

to autoimmunity. T cell receptor (TCR) signals plus IFNg-induced
pSTAT1 upregulate Tbet, the regulator of Type I cytotoxic

responses (23), driving differentiation of Th1 cells, implicated in

inflammatory bowel disease (24) and rheumatoid arthritis (25). Th1

cells are increased in many (26, 27) yet not all (28, 29) STAT1 GOF

patients. TCR signals plus IL6-induced pSTAT1 and pSTAT3

regulate early differentiation of Tfh cells, implicated in SLE and
frontiersin.org
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Type 1 diabetes (T1D) (30–32). Tfh cell differentiation and function

is regulated by inducible T cell co-stimulator (ICOS), programmed

death 1 (PD1; Pdcd1) and the transcriptional repressor Bcl6 (31).

The transcription factors Tcf1 (Tcf7) and Lef1 also support Tfh

differentiation (33), while restraining expression of co-inhibitory

receptors such as Ctla4 and Lag3 (30, 33–35). Circulating Tfh-like

cells (cTfh) are also increased in some STAT1 GOF patients (27, 28,

36). Foxp3+ T-regulatory (Treg) cells are another key subset in

autoimmunity (37, 38) that range from low-normal in STAT1 GOF

patients (18, 28, 29, 36, 39, 40). Thus, CD4 effector and regulatory

subsets are variably affected in STAT1 GOF patients, however it

remains unclear if this variability reflects specific STAT1 GOF

mutation impacts and/or environmental influences such as

infections or immunosuppressive treatments.

Here, we generated a mouse model to identify potential cellular,

molecular and environmental mechanisms linked to autoimmunity

in STAT1 GOF patients with the DBD T385M mutation. To limit

the environmental impact of infection with pathogens, we studied

Stat1T385M/+ mice raised in a specific-pathogen-free (SPF) facility.

Stat1T385M/+ lymphocytes had more total Stat1 at baseline and also

higher amounts of IFNg-induced pStat1. By 15-20 weeks of age,

Stat1T385M/+ mice exhibited excessive splenic GC formation and

multiple autoimmune manifestations compared to their co-housed

wild-type (WT) littermates. High parameter immune profiling

identified early and sustained expansions of splenic “memory

phenotype” (MP) CD4 cells with Tfh-like features, as well as

increases in activated B cells. scRNA-Seq analysis suggested that

Stat1T385M activated transcription of GC-associated programs in

both B and T cells, promoted aberrant activation of naïve CD4 cells

and induced their differentiation into hybrid Tfh/Th1-like effector

cells. Collectively, these data demonstrate that in the absence of

overt infection, Stat1T385M induced aberrant B cell activation,

disrupted CD4 T cell homeostasis and promoted differentiation of

abnormal T helper cells, eventually leading to autoimmunity, with

both processes occurring sooner and more robustly in females.
2 Materials and Methods

Supplementary Tables 1–3 list key reagents and resources used

in this study, sequences of the oligonucleotides, primers and repair

templates used.

Supplementary Table 2 lists vendors and catalogue numbers for

key reagents and antibodies used.

Supplementary Table 3 lists genes included in the BD

Rhapsody™ Mouse Immune Response Targeted Panel.
2.1 Mouse husbandry

Mice were kept in a specific-pathogen free (SPF) facility

(Toronto Centre for Phenogenomics; TCP) on a 12-hour light/

dark cycle and provided with food and water ad-libitum. CD1 mice
Frontiers in Immunology 03123
from Charles River (strain code: 022) and C57Bl/6J mice from JAX

(strain code 000664) and TCP in-house breeding were used in this

study. Mice of both sexes were used; mutants andWT littermates of

the same sex were co-housed. Mouse procedures were carried out in

compliance with the Animal for Research Act of Ontario and

Guidelines of the Canadian Council on Animal Care. All

procedures were reviewed and approved by the TCP Animal Care

Committee, animal use protocol 25-0379H.
2.2 Generation of stat1t385m/+ mice

A single guide RNA (sgRNA; Synthego) was used to target a

protospacer adjacent motif within mouse Stat1 exon 14. A

homology-directed repair (HDR) construct (Integrated DNA

Technologies) included the human STAT1 exon 14 with

containing the T385M mutation (C>T). The cassette was

amplified using 5’-biotinylated primers to generate a repair

template. Super-ovulated CD1 females were bred to C57Bl/6J

male. Following the two-cell homologous recombination CRISPR

approach (41), two-cell embryos collected at 1.5 days post-coitus

were microinjected with sgRNA (50ng/mL), Cas9 conjugated with

monomeric streptavidin (75ng/mL) and biotinylated repair template

(20ng/mL). One day later, embryos were transferred into the

oviducts of 0.5-post coitus days pseudo-pregnant CD1 females.

Pups were genotyped as described below. After breeding back to

C57Bl6/J, verification of congenic status was performed via 384-

SNP background analysis (Mini Mouse Universal Genotyping

Array, Transnetyx). Supplementary Table 1 lists sequences of the

oligonucleotides, primers and repair templates used.
2.3 Nucleic acid isolation, PCR, Sanger and
whole genome sequencing

Genotyping of founder mice, as well as determination of correct

splicing, were done via a combination of Sanger sequencing,

quantitative real-time PCR (qRT-PCR) and whole genome

sequencing (WSG). Founder mice underwent genomic DNA

isolation followed by PCR amplification and Sanger sequencing.

Samples were sequenced on Applied Biosystems SeqStudio Genetic

Analyzer (Thermo Fisher). Sequencing files were analyzed using

SnapGene version 5.0.8 (Insightful Science; available at

snapgene.com). For splicing evaluation, RNA was extracted and

reverse-transcribed, followed by qRT-PCR evaluating expression of

Stat1 transcript using QuantStudio Real-Time PCR system

(Thermo Fisher). For WGS, DNA samples were extracted as

described above and underwent sequencing using the Illumina

NovaSeq 6000 system performed by The Centre for Applied

Genomics (TCAG) at the Hospital for Sick Children. Analysis

was done using Integrative Genomics Viewer (IGV) version 2.9.4

with GRCm38/mm10 as the reference genome. Routine genotyping

was done via Sanger sequencing as described above.
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2.4 Immunoblotting for Stat1 and pStat1

Single cell suspensions of splenocytes from 6–12 week-old mice

were treated with PBS or murine recombinant IFNg (100ng/mL) for

30 minutes at 37°CC. To assess Stat1 de-phosphorylation kinetics,

splenocytes were IFNg stimulated for 30 minutes, washed in PBS

and transferred to IFNg-free media. They were then lysed

immediately (0 minutes), or cultured for an additional 60 minutes

or 120 minutes in IFNg-free media at 37°C. Cells were lysed in RIPA

buffer supplemented with protease and phosphatase inhibitors.

Protein lysates (10mg protein/sample) were loaded onto and

separated by pre-cast polyacrylamide (4-12% Bis-Tris) gels, and

then transferred to a nitrocellulose membrane using iBlot 2 Dry

Blotting System (Thermo Fisher). Membranes were blocked for 1

hour at room temperature in Tris-Buffered Saline containing 5%

bovine serum albumin prior to incubating overnight with anti-

pSTAT1 (pY701) or anti-STAT1 plus anti-b-actin. The following

day, membranes were incubated AlexaFluor-647-labelled secondary

antibodies. Membranes were imaged using ChemiDoc MP imaging

system (Bio-Rad) and analyzed with Image Lab software version

6.0.1 (Bio-Rad). For assessment of pStat1 phosphorylation and de-

phosphorylation kinetics, pStat1 normalized to b-actin at the time

of IFNg withdrawal (0 minutes) was designated as the baseline

(100%), which was compared to normalized pStat1 levels 60 and

120 minutes after withdrawal of IFNg. Supplementary Table 2 lists

vendors and catalogue numbers for key reagents and

antibodies used.
2.5 Measurement of serum
immunoglobulin isotypes and liver panel

Sera collected from 20 week-old mice were sent to Eve

Technologies (Calgary, AB) for immunoglobulin isotyping, using

the Custom Mouse Immunoglobulin Isotyping 6-Plex Luminex

panel (IgA, IgM, IgG1, IgG2a, IgG2b, IgG3). Liver enzymes and

function, including alanine aminotransferase (ALT), aspartate

aminotransferase (AST), alkaline phosphatase (ALP) and albumin

were assessed in sera from 20 week-old mice by the TCP

pathology core.
2.6 Histology and ANA detection

Pancreata collected from mice at 15-20 weeks and 49-52 weeks

of age were fixed in 10% neutral-buffered formalin, sectioned,

stained with hematoxylin and eosin (H&E) using standard

techniques. To assess splenic architecture, spleen cryosections

from 15–20 week-old mice (6 mice per genotype) were stained

with H&E or with a panel consisting of GL7-FITC, CD21-TRITC,

Cy5-B220 and DAPI as a nuclear counterstain. Slides were scanned

using Olympus VS-120 microscope and images were analyzed using

OlyVIA version 2.4 and ImageJ version 2.1.0/1.53c. These

procedures were performed by the TCP pathology core. Mouse

sera collected at 6-9 weeks and 15-20 weeks were screened at 1/40
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for ANA using via indirect immunofluorescence on Hep-2 cells,

according to the manufacturer’s (Bio-Rad) protocol.
2.7 Flow and mass cytometric
immune profiling

Spleen and mLN were processed into single-cell suspensions.

After washing with 1 mL staining media (SM: PBS+ 1% BSA), 1-

2x106 cells/sample were Fc-receptor blocked in SM at RT for 15’

prior to staining for mass or flow cytometry. For mass cytometry,

cells were then stained with a 50mL cocktail of metal-tagged

antibodies (Supplementary Table 2), washed and stained with 1

mM natural abundance Cisplatin as previously described (42).

Samples were then barcoded using the Cell-ID 20-Plex PD

Barcoding Kit (Fluidigm) following the manufacturer’s

instructions prior to pooling up to 20 samples/tube and staining

of nuclear DNA with 191/193Iridium. Final washes, addition 4-

element EQ normalization beads and Helios acquisition were

then performed as previously described (42). Helios software

(v7.0.8493) was used to generate and normalize FCS 3.0 datafiles

that were uploaded to CytoBank (Beckman Coulter Enterprise

version) to perform sample-specific barcode stringency filtering as

described (43). Additional gating removed debris, dead cells and

doublets, before gating specific populations (Figure S2). For flow

cytometry, cells were stained with 50mL of a T cell or B cell antibody

cocktail (Supplementary Table 2) in SM (RT, 30’). After 2 PBS

washes, T cell panel samples were stained with a fixable viability

dye, fixed, permeabilized, and stained with anti-FoxP3 in 50mL (RT,

30’). Cells were washed, resuspended in SM and run on a 5-laser

LSRFortessa analyzer running FACS-DIVA v8.0.1 (BD

Biosciences). Exported FCS 3.0 files were uploaded to CytoBank,

where data were compensated and pre-gated to remove debris, dead

cells and doublets, prior to population gating (Figure S3).
2.8 Targeted scRNA-Seq analysis of
immune gene expression

Single cell mouse splenocyte suspensions from 15 week-old

female mice (3 per genotype) were stained with multiplexing

antibodies, pooled, and stained with oligonucleotide-barcoded

“AbSeq” antibodies. Single cells were paired with barcoded beads

in a microwell cartridge using the BD Biosciences Rhapsody

Express Single Cell Analysis System and Scanner, which

documented retrieval of 36,059 beads with cells (8.3% multiplets).

In-well single cell lysis allowed capture of RNA and AbSeq reagents

bound to cells by barcoded beads prior to synthesizing cDNA and

removing genomic DNA following the manufacturer’s instructions.

These procedures were performed by SickKids’ Center for

Advanced Single Cell Analysis (CASCA). Preparation of cDNA

and AbSeq libraries followed by paired-end sequencing in an

Illumina SP Nova-Seq flow cell (2x100 bp) was carried out by

The Center for Genomic Analys i s a t the S ickKids ’

Research Institute.
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After uploading the Fastq sequence files and Fasta mRNA+

AbSeq reference files, the SevenBridges BD Targeted Multiplex

Rhapsody Analysis Pipeline (v1.10) was used to filter by read-

quality prior to aligning, annotating and combining R1+R2 reads.

The pipeline annotated molecules, identified putative cells and

originating samples for each molecule, and output files containing

expression matrices and sequencing quality metrics, yielding

6.33x108 aligned mRNA reads assigned to 21,583 cells

(mean=29,343 RSEC-adjusted molecule counts/cell). The

RSEC_MolsperCell.csv file was uploaded to BD’s SeqGeq v1.8

where all additional analyses were performed. Briefly, data were

normalized (counts/10,000 reads) and cells with low gene

expression gated-out (0.4%). Of 397 mouse immune response

genes analyzed (Supplementary Table 3), 378 were expressed at

≥100 molecules/cell in ≥ 10 cells.

Sample de-multiplixing was performed using the Lex_BDSMK

Plugin (v. 0.6.0) to yield 2,810-3,734 cells/sample. Boolean “Or”

gating was then used to combine samples by genotype for gating

specific populations based on surface protein expression detected by

AbSeq (Figure S4). The Seurat v.4.0.4 plugin was also used to

perform unsupervised dimensionality reduction (uniform manifold

approximation and projection, UMAP), multimodal (mRNA and

AbSeq) clustering and identifying clusters with differentially

expressed genes (mRNA) and/or proteins (AbSeq) (44).

Differentially-expressed genes (DEG) between samples grouped

by genotype for each population were identified using Volcano

plots of fold change (FC) difference vs the negative logarithm of

false-discovery rate (FDR)-adjusted q-value. The threshold for

differential expression was ≥40% FC (corresponding to +/- 0.49

Log2 FC) with FDR-adjusted q-value <0.05.

The MyGeneSet tool from the Immunological Genome Project

data-browser (http://rstats.immgen.org/MyGeneSet_New/

index.html (45)) was used to visualize how genes over-expressed

in mutant CD4 T cells were expressed in reference WT CD4 and

CD8 T cell subsets from the microarray V1 dataset. Heatmaps were

median-normalized by row (gene).
2.9 Statistical analysis

Statistical analyses were performed using GraphPad Prism 9

(version 9.3.1). The Shapiro-Wilk method was used to test for

normal distribution of data. For normally-distributed data,

unpaired two-tailed Student’s t‐tests with Welch’s correction were

performed, whereas a Mann-Whitney test was performed for non-

normally-distributed data, to evaluate differences between

genotypes. Two-way ANOVA was used to identify the main

effects of genotype versus sex as well as the interaction between

these independent variables on the measured values. Post-hoc t-tests

were performed via a two-stage linear step-up method of

Benjamini, Krieger and Yekutieli. A false discovery rate (FDR)

adjusted-p value of <0.05 represented discovery. Observed

frequencies of serum ANA positivity were compared using

Fisher ’s exact test. Graphical data were represented as

means ± standard deviation. Statistical significance was

represented as: *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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3 Results

3.1 Stat1T385M/+ in mice recapitulates
biochemical features of human STAT1 GOF

We used CRISPR/Cas9 technology to replace the murine Stat1

exon 14 with the human counterpart, which introduced a C>T

substitution to cause the T385M mutation in the Stat1 DBD

(Figure 1A) (13, 17–19). WT human and murine exon 14 differ

by 11 base-pairs, but encode amino acid sequences which are 100%

conserved between species. Exchanging the human for the mouse

exon was done so that this model may be used in future studies, to

test therapeutic genome-editing strategies specifically targeting the

human exon 14. Splenocytes and thymocytes from Stat1T385M/+

mice showed enhanced induction of pStat1(Y701) in response to

acute IFNg stimulation (Figure 1B). Total Stat1, both at baseline and

following stimulation, was also increased as has been observed in

STAT1 GOF patients (15, 46) and consistent with the known

positive feedback regulation of STAT1 (6). Importantly, de-

phosphorylation in mutants was neither diminished nor delayed

(Figure 1C), in agreement with results from STAT1 GOF patient

lymphocytes (46). These data demonstrate that, similar to patients

with STAT1 GOF, lymphocytes from Stat1T385M/+ mice exhibited

pronounced dysregulation of basal and cytokine-stimulated

Stat1 activation.
3.2 Spontaneous GC formation and
development of age-dependent
autoimmunity in Stat1T385M/+ mice

Previous mouse models of autoimmunity demonstrated splenic

abnormalities including increased spontaneous GC formation (47, 48).

Therefore, we evaluated spleen size and histology in roughly equal

numbers of male and female mutant mice and theirWT littermates at

different ages. At 6-9 weeks of age, female but not male mutants

exhibited significant splenomegaly (Figure S1A). However, by 15-20

weeks of age mutants of both sexes exhibited significant splenomegaly

(Figure 2A). To evaluate architecture of B cell follicles and to assess

GC formation at this age, we performed immunofluorescence using

the B cell marker B220, the mature B cell/follicular dendritic cell

marker CD21, and the GC B cell marker GL7. Both male and female

mutants showed abnormal splenic architecture with loss of clear

follicular borders. Mutant spleens also had increased density

(number/mm2) of GL7+ GC, suggesting ongoing GC reactions and

B cell activation (Figure 2B). In accordance with this notion, mutants

had elevated serum levels of IgM, IgA, and IgG2a, but reduced levels of

IgG1 (Figure 2C). These findings, and in particular the changes noted

to IgG sub-classes, mirror the reported effect of enhanced IFNg/Th1
signaling on immunoglobulin isotypes (49). Thus, by ~4 months of

age, mutants displayed splenomegaly, increased GC formation and

increase serum concentrations of several Ig isotypes, suggesting

immune dysregulation.

To evaluate whether Stat1T385M/+ mice born and raised in a SPF

environment developed autoimmune manifestations, we screened

sera for the presence of anti-nuclear autoantibodies (ANA) that
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bind HEp-2 liver cells, the gold standard method for ANA testing

(50). ANA were undetectable in most mice of both genotypes

between 6-9 weeks of age (Figure S1B). In contrast, by 15-20

weeks of age significantly more mutants were ANA+ compared

with their WT littermates (Figure 2D). Importantly, fluorescence

intensity of ANA+ sera was higher in mutants (Figure 2D),

suggesting higher ANA concentrations.
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We used several approaches to assess organ-specific

autoimmunity. At 20 weeks of age, sera from WT and mutants

had similar levels of liver enzymes (ALT, AST, ALP) and albumin,

suggesting that mutants did not have autoimmune hepatitis (Figure

S1C). In contrast, all mutants at this age displayed leukocytic

infiltration in the pancreas manifesting as either peri-insulitis or

insulitis of b-cell islets, a typical feature of T1D in mouse models (51),
B

C

A

FIGURE 1

Stat1T385M/+ recapitulates key biochemical hallmarks of human STAT1 gain-of-function (GOF). (A) Top: Schematic of CRISPR/Cas9 strategy used to
replace WT murine Stat1 exon 14 with human exon 14 harboring the T385M point mutation in the DBD. Bottom: Sanger sequencing confirmed the
WT mouse exon 14 with the heterozygous mutant exon 14 in Stat1T385M/+ mice. Heterozygous changes between mouse and human exon 14 are
highlighted in yellow (Y: C/T; A/G; K: G/T). The T385M heterozygous point mutation on the negative strand is highlighted in blue (C>T, resulting in a
G>A on the negative strand) (B) Left: Immunoblotting of splenocytes from 6–12 week-old WT and mutant mice (n=3/group) for total Stat1 and
pStat1 (Tyr701) at baseline and after in vitro stimulation with 100 ng/mL IFNg for 30 minutes. Stat1 isoforms a (91kDa) and b (84kDa) were
detected.Densitometric quantification was performed on total Stat1 from unstimulated cells and on pStat1(Tyr701) from IFNg-stimulated cells, each
normalized to the b-actin loading control. Bar graphs show mean +/- SD. Unpaired 2-tailed student’s t-test with Welch’s correction: *p<0.05
(pStat1) and **p<0.01 (Stat1). (C) Top: Immunoblotting of splenocytes from WT and mutant mice (n=3/group) for pStat1 (Tyr701) at 0, 60 and 120
minutes following withdrawal of IFNg stimulation (as above). Bottom: densitometry quantification of pStat1 (normalized to b-actin loading control)
plotted as percent of starting pStat1 at time 0, immediately after IFNg withdrawal. Unpaired 2-tailed student’s t-test with Welch’s correction:
p=0.6077 (60 minutes) and p=0.6183 (120 minutes).
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FIGURE 2

Stat1T385M/+ mice develop spontaneous splenomegaly, increased germinal center formation, abnormal immunoglobulin isotype profiles and
autoimmunity between 15-20 weeks of age. (A) Dot plots (left) show spleen weights in males and females, with means +/- SD indicated. Exemplar
pictures are shown on the bottom. Two-way ANOVA FDR-adjusted p-values: **p<0.01 (females) vs *p<0.05 (males). (B) Left: H&E staining of spleen
sections. Middle: Immunofluorescence staining of spleen sections with DAPI (blue), B220 (violet), CD21 (magenta) and GL7 (green). Panels on the
right show area enlarged view of boxed area shown at lower magnification on the left, scale bar=200mm. Right: Quantification of the number of
GL7+ germinal centers (GC)/mm2 per spleen (6 mice per genotype). Mann-Whitney test: *p<0.05. (C) Dot plots show serum levels of
immunoglobulin isotypes, with means +/- SD indicated. Mann-Whitney p-values: **p<0.01 (IgM), *p<0.05 (IgA, IgG1, IgG2a), p=0.1061 (IgG2b), and
p=0.2020 (IgG3). (D) Bar graphs (left) show the observed number of 20-week-old mice with negative or positive ANA detected by indirect
immunofluorescence using HEp-2 cells at a screening dilution of 1:40. Fischer’s exact test **p<0.01. Exemplar images shown on the left (40X
magnification) demonstrate the spectrum of fluorescence observed for each genotype, and are representative of 12/12 mutants with positive serum
ANA, and 6/10 WT with no detectable serum ANA at this age. (E) Histological assessment of pancreas by hematoxylin and eosin (H&E) staining. Left:
Exemplar images are representative of 4/4 mutant females and 0/4 WT females by 20 weeks of age who developed pancreatic leukocytic infiltration.
Right: Exemplar images are representative of 3/3 mutant males and 0/4 WT males who developed pancreatic leukocytic infiltration by 20 weeks of
age. Panels on the right show enlarged views of boxed area shown at lower magnification on the left (scale bar=200mm).
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compared with none in WT (Figure 2E). Mutant females had higher

insulitis grades at 15–20 weeks of age compared withmales (Figure 2E),

whereas mutant males developed high grade insulitis by 1 year (Figure

S1D). Overall, these data demonstrate age-dependent and female-

biased excessive spontaneous splenic GC formation and autoimmune

manifestations in Stat1T385M/+ mice raised in SPF conditions.
3.3 Expansion of PD1+ “memory
phenotype” CD4 T cells precedes
development of autoimmunity

To identify immune abnormalities that precede development

of frank autoimmunity at 15-20 weeks of age, we used mass

cytometry to profile immune cell lineages and activation states

in spleen and mesenteric lymph nodes (LN) from a 9-week-old

cohort of Stat1T385M/+andWT littermates.WT and mutant spleens

had similar numbers of B, NK, and most myeloid cell populations,

except for a small increase in macrophages in mutants (Figures

S2A–D). Although splenic T cell numbers were similar in mutant

versus WT mice (Figure S2A), the ratios of CD4/CD8 T cell

number were significantly higher in mutant females and males

(Figure 3A), reflecting significantly more CD44+ CD62L- CD4

cells in mutants (Figure 3B). These non-naïve “memory

phenotype” (MP) cells, also known as “natural memory” T cells,

develop in unimmunized mice under SPF conditions in response

to low levels of tonic TCR and cytokine signaling (52).

Interestingly, more mutant MP CD4 cells expressed PD1, a co-

inhibitory receptor that marks the Tfh sub-lineage of CD4 T cells

(Figure 3C), and the activation marker CD69 (Figure 3D),

suggesting that mutant MP CD4 T cells were more activated.

Importantly, numbers of PD1+ CD44+ and CD69+ CD44+ CD4 T

cells were significantly increased only in female mutants

(Figures 3C, D). Mutants also had more PD1+ MP CD4 T cells

in mesenteric LN, but the increase was less pronounced than in

spleen (data not shown). In contrast to these significant impacts of

Stat1T385M on CD4 T cells, PD1 was not elevated in mutant CD8 T

cells and they had similar numbers of MP CD8 T cells (defined as

CD44+ CD122+) as WT (Figure S2E and data not shown). In

addition, 2-way ANOVA showed that sex significantly modified

the impact of genotype on the abundance of MP CD44+ CD62L-

CD4 cells (interaction P=0.009). These data demonstrate that an

early, selective expansion of PD1+ MP CD4 T cells precedes the

development of frank autoimmunity in both sexes, but in a more

variable and robust fashion in females.
3.4 Expansion of ICOS+ Tfh-like
cells and activated B cells in 15-week-old
mutant mice

Since Stat1T385M/+ mice exhibited autoimmune manifestations

by 15-20 weeks of age, we performed immune profiling on another

cohort ofWT and mutant mice aged to 15 weeks, adding additional

markers for Tfh (ICOS) and T regulatory (FoxP3) CD4 cells. The

ratio of CD4/CD8 T cell number was again increased, but the
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number of Foxp3+ CD4 T cells was similar toWT (Figures S3A, B),

revealing no impact of Stat1T385M on abundance of this important

immunosuppressive subset. In contrast, mutants had more non-

naïve CD62L- Foxp3- CD4 T cells (Figure 4A). Within this

population, mutants had significantly more CD44+ ICOS+ cells

(Figure 4B) and more PD1+ ICOS+ cells (Figure 4B), suggesting

expansion of Tfh-like cells. Similar to our findings in 9 week-old

mice, T cell differences in 15 week-old mice were generally more

significant but also more variable in females (Figures 4A, B). T cell

changes in mLN were similar to those identified in spleen, though

slightly less robust (Figure S3C).

Tfh cells also promote differentiation and isotype class-

switching in GC (31), and our histological analysis revealed

increased GC B cells in 15-20 week-old mice (Figure 2B).

Therefore, we profiled B cell differentiation states using CD21,

IgM, IgD, CD95 and GL7. WT and mutant mice had similar

numbers of total B cells, as well as classically defined follicular,

marginal zone and transitional B cells (Figure S3D). However,

mutants had more IgMlo IgDlo class-switched and more activated

CD95+ and CD95+ GL7+ GC B cells in the spleen (Figures 4C, D)

and mLN (Figure S3E). Mutants also had more splenic CD21lo

CD95+ GL7- B cells (Figure 4E), a phenotype associated with Tbet+

B cells found in certain autoimmune conditions in humans (53).

Both CD95+ subsets were greatly enriched among IgMlo IgDlo B

cells, suggesting that in mutants, there were more activated B cells

engaged in class-switching. Interestingly, in contrast to the T cell

data, when the B cell data were dis-aggregated by sex the Stat1T385M

impacts were only significant in females (Figures 4C–E). However,

similar to the T cell data female mutants again showed greater

variability than male mutants. Thus at 15 weeks of age, while both

sexes exhibited significant expansion of Tfh-like MP CD4 cells, only

female Stat1T385M/+ mice exhibited a significant increase in

activated and class-switched B cells.

Collectively, these immune profiling experiments revealed that

Stat1T385M/+ mice raised in SPF conditions exhibit early and

prolonged expansion of Tfh-like MP CD4 in both sexes. These

effects were more robust on average in females but also more

variable and were seen in spleen and mLN. The Stat1T385M

impacts on B cells were not evident until 15 weeks of age and

were restricted to females at this timepoint.
3.5 Stat1T385M enhances CD4 T cell
activation and imparts Tfh-like and Th1-like
effector programs

To elucidate the transcriptional impact of Stat1T385M in T and B

cells, we performed targeted scRNA-seq analysis of splenocytes

from 15 week-old WT and mutant (n=3/group), quantifying

transcripts encoding 397 immune genes as well as surface

expression of 10 proteins detected with oligo-nucleotide tagged

“AbSeq” antibodies. After de-multiplexing, we gated on CD19+

IgD+ B cells, TCRb+ CD4+ and TCRb+ CD4- T cell subsets (Figure

S4A). Importantly, mutants in this small cohort had higher ratios of

CD4/CD8 T cells and of CD62L-/CD62L+ cells within the CD4 T

cell compartment (Figure S4B), similar to flow cytometric profiling
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of the larger cohort reported above. We then merged the individual

samples from each group to identify genes whose expression

differed significantly (≥40% with FDR-adjusted q-value of <0.05)

between WT vs mutant in each of the 3 subsets. Stat1 itself was

among the top DEG and was over-expressed in all mutant

lymphocyte populations (Figure 5A; Figures S4C, D, Tables S1–

S3), in keeping with its known capacity to positively regulate its own

expression (6). There were more over-expressed than under-

expressed genes in mutants relative to WT, suggesting that

Stat1T385M acted primarily as a transcriptional activator in all

lineages. Interestingly, Stat1 was more highly upregulated in

mutant T cells relative to mutant B cells. CD4 T cells had ~3-4

times as many DEG as CD8 T cells or B cells and most were over-

expressed in mutants (n=33; Figure 5A), suggesting that Stat1T385M

had the greatest transcriptional impact on CD4 T cells.
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Among the genes significantly down-regulated in mutant CD4

T cells were several associated with a naïve quiescent state (54, 55),

such as Sell (encoding CD62L), Ccr7, Il6ra, Il7ra, and Bach2

(Figure 5B top), suggesting that they were more activated. This

group also included Lef1 and Tcf7, which restrain induction of co-

inhibitory receptors and promote expression of Tfh genes during

anti-virus responses (33–35); Tcf7 also restrains induction of

cytotoxicity genes in CD8 T cells (55). Conversely, mutant CD4 T

cells significantly over-expressed several genes encoding

immunoregulatory receptors known to be induced during T cell

activation (56) (Figure 5C top), including Tnfrsf4 (encoding Ox40),

Tnfsfr1b (encoding Tnfr2), Pdcd1, Lag3, Cd200, Tigit, Ctla4 and

Nt5e (encoding CD73). Mutant CD4 T cells also over-expressed the

Tfh-associated genes Icos, Cxcr5, Il21 and Ikzf2 (31, 57, 58);

however, Bcl6 , the master Tfh regulator (31), was not
B

C

D

A

FIGURE 3

Expansion of activated splenic CD4 T cells precedes autoimmunity in Stat1T385M/+ mice. Mass cytometric immune profiling of splenic T cells in 9
week-old mice. Unpaired Student’s t-test with Welch’s correction was used for all sex-aggregated genotype comparisons. Two-way ANOVA with
post-hoc t-test was used for all genotype comparisons dis-aggregated by sex. (A) Left: Contour plots show CD4 vs CD8 expression gated on
TCRab+ splenic T cells from exemplar mice of each strain. Right: summary dot plots show ratio of CD4+/CD8+ T cell numbers in all mice by
genotype. Sex-aggregated (***p<0.001) and dis-aggregated [***p<0.001 (mutant vs. WT females), ***p<0.001 (mutant vs. WT males), interaction
*p=0.03] data are shown. (B) Left: CD44 vs CD62L expression gated on CD4+ TCRab+ splenic T cells from exemplar mice of each strain. Right:
summary dot plots show absolute numbers of CD44+ CD62L- (MP) CD4+ T cells in all mice by genotype. Sex-aggregated (**p<0.01) and dis-
aggregated [***p<0.001 (mutant vs. WT females), *p<0.05 (mutant vs. WT males), interaction **p=0.009] data are shown. (C) Left: Contour plots
show CD44 vs PD1 expression gated on CD4+ TCRab+ splenic T cells from exemplar mice of each strain. Right: summary dot plots show absolute
numbers of PD1+ CD44+ CD4+ T cells in all mice by genotype. Sex-aggregated (**p<0.01) and dis-aggregated [***p<0.001 (mutant vs. WT females),
P=0.11 (mutant vs. WT males), interaction **p=0.003] data are shown. (D) Left: Contour plots show CD44 vs CD69 expression gated on CD4+

TCRab+ splenic T cells from exemplar mice of each strain. Right: summary dot plots show absolute numbers of CD69+ CD44+ CD4+ T cells in all
mice by genotype. Sex-aggregated (*p<0.05) and dis-aggregated [***p<0.001 (mutant vs. WT females), P=0.07 (mutant vs. WT males), interaction
*p=0.02] data are shown. For all dot plots, mean +/- SD are presented.
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FIGURE 4

Expansion of ICOS+ PD1+ Tfh-like MP CD4 cells and activated B cells in 15 week-old Stat1T385M/+ mice. Flow cytometric immune profiling of splenic
T cells in 15 week-old mice. Unpaired student’s t-test with Welch’s correction was used for all sex-aggregated genotype comparisons except where
Mann-Whitney tests are indicated below. Two-way ANOVA with post-hoc t-test was used for all genotype comparisons dis-aggregated by sex.
(A) Left: Exemplar contour plots of CD44 vs CD62L expression gated on CD4+ Foxp3- TCRab+ splenic T cells from each strain. Right: Summary dot
plots of CD62L- CD4+ Foxp3- T cell numbers per spleen by genotype. Sex-aggregated (Mann-Whitney **p<0.01) and dis-aggregated [**p<0.01
(females) vs *p<0.05 (males), interaction p=0.42] data are shown. (B) Top left: Exemplar contour plots of CD44 vs ICOS expression gated on CD4+

Foxp3- CD62L- TCRab+ splenic T cells from each strain. Bottom left: Exemplar contour plots of PD1 vs ICOS expression gated on CD4+ Foxp3-

CD62L- TCRab+ splenic T cells from each strain. Top right: Summary dot plots of numbers of ICOS+ CD44+ CD62L- CD4 cells per spleen by
genotype. Sex-aggregated (**p<0.01) and dis-aggregated [***p<0.001 (females) vs *p<0.05 (males), interaction p=0.27] data are shown. Bottom
right: Summary dot plots of numbers of ICOS+ PD1+ CD62L- CD4 cells per spleen by genotype. Sex-aggregated (Mann-Whitey ***p<0.001) and dis-
aggregated [**p<0.01 (females) vs p=0.13 (males), interaction p=0.14] data are shown. (C) Left: Exemplar contour plots of IgM vs IgD gated on
CD19+ splenic B cells from each strain. Right: Summary dot plots of IgMlo IgDlo B cell numbers per spleen by genotype. Sex-aggregated (**p<0.01)
and dis-aggregated [**p<0.01 (females) vs p=0.11 (males), interaction p=0.29] data are shown. (D) Left: Exemplar contour plots of CD95 vs GL7
expression gated on either total (top) or IgMlo IgDlo (bottom) splenic B cells. Right: Summary dot plots of absolute number of activated CD95+ GL7-

(top) or CD95+ GL7+ (bottom) B cells per spleen. For CD95+ GL7- B cells, sex-aggregated (Mann-Whitney ***p<0.001) and dis-aggregated [*p<0.05
(females) vs p=0.08 (males), interaction p=0.55] data are shown. For CD95+ GL7+ B cells, sex-aggregated (Mann-Whitney ***p<0.001) and dis-
aggregated [*p<0.05 (females) vs p=0.2 (males), interaction p=0.3] data are shown. (E) Left: Exemplar histogram of CD21 gated on CD95+ GL7-

splenic B cells. Right: Summary dot plots of CD21lo CD95+ GL7- B cell numbers in all mice by genotype. Sex-aggregated (Mann-Whitney ***p<0.001)
and dis-aggregated [*p<0.05 (females) vs p=0.07 (males), interaction p=0.52] data are shown. For all dot plots, mean +/- SD are presented.
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differentially expressed. Several cytotoxicity/Th1-associated

molecules were also overexpressed: Tbx21 encoding Tbet, Ifng,

Cst7, Nkg7 and Gzmk (Figure 5C top). This signature suggested

that Stat1T385M may enhance CD4 T cell activation while also

imparting both Tfh-like and Th1-like effector programs.

To better understand the unusual differentiation state of CD4 T

cells from Stat1T385M/+ mice, we visualized how the DEG were
Frontiers in Immunology 11131
expressed by reference WT CD4 and CD8 T cell populations

profiled by the Immunological Genome Project (45). Notably, all

genes expressed at lower levels in mutant CD4 cells were more

highly expressed by reference naïve compared to reference MP CD4

cells (Figure 5B, bottom). This finding confirms that Stat1T385M

downregulates genes associated with the naïve state of normal CD4

T cells. We also visualized how genes up-regulated in mutant CD4 T
B C

D

A

FIGURE 5

scRNA-Seq profiling of immune gene expression in WT versus Stat1T385M/+ spleen cells from 15 week-old mice. (A) (Left): Dot plots show CD4 and
TCRb expression on CD19- IgD- cells, defining CD4 T cells (CD4+ TCRb+) and CD8 T cells (CD4- TCRb+ expressing Cd8b1- see Figure S4D). Overlaid
heatmap shows Stat1 expression in CD4 and CD8 T cells. (Right): Volcano plots show DEG between mutant and WT CD4 T cells, plotted according
to Log2fold change [Log2FC (mutant/WT)], against the negative logarithmic value of the false discovery rate (-logFDR). Genes up-regulated or down-
regulated in mutant are denoted in red and blue, respectively. (B, C) Top: Tables show select genes down-regulated (B) or up-regulated (C) in
mutant CD4 T cells by 40% or more. Gene expression tables show Log2FC values and FDR-adjusted q-values <0.05. Bottom: Heatmap visualization
of genes down-regulated (B) or up-regulated (C) in mutant CD4 cells in selected splenic T cell reference populations from the Immunological
Genome Project (45): naïve CD4 or CD8 cells, MP CD4 cells and effector CD8 cells (isolated 12h following infection with Listeria). Upregulated genes
were grouped (1–3) according to their pattern of expression in the reference populations. (D) Left: Dot plots show CD44 vs CD62L expression on
CD4+ TCRb+ cells in mutants and WT, distinguishing naïve CD62L+CD44- from MP CD44+ CD62L- CD4 cells. Expression levels of genes of interest
are overlaid as heatmaps. Right: Table shows genes upregulated in mutant naive CD4 T cells by 40% or more. FC values are presented along with
FDR-adjusted q-values <0.05.
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cells were expressed in reference naïve and MP CD4 subsets. We

added a reference effector CD8 subset, since we had observed

several cytotoxicity-associated genes among those upregulated by

Stat1T385M. Interestingly, the Stat1T385M-upregulated genes fell into

3 groups (Figure 5C, bottom). Group 1 genes were most highly

expressed by reference MP CD4 cells, and included Nrp1, Icos,

Pdcd1 and Cxcr5, suggesting that these Tfh-associated genes are also

up-regulated as part of the natural CD4 memory program. Group 2

genes were highly expressed by reference MP CD4 and effector CD8

cells, and included Ctla4, Lag3, Tigit, Stat1, Tbx21 and Gzmk.

Finally, Group 3 genes were most highly expressed by reference

effector CD8 cells, and included Cst7, Nkg7, Ifng, Cxcl10, Il21, Il15ra

and Cd274 (encoding PD-L1). This analysis confirmed that mutant

CD4 T cells over-express Tfh-associated and other genes that

distinguish WT naïve from MP CD4 cells, but they also expressed

genes associated with cytotoxic differentiation.

To determine which aspects of the Stat1T385M-associated gene

expression program identified above were already present in the

naïve state, we performed DEG analysis comparing WT vs mutant

naïve CD62L+ CD44- as well as MP CD44+ CD62L- CD4 cells

(Figure 5D; Tables S4, S5). Interestingly, Stat1 was the most highly

over-expressed gene in mutant naive CD4 T cells, which also over-

expressed certain activation (Lag3, Tigit, Cd69, Icam1), IFN-

regulated (Cd274, Socs1, Cxcl10), cytokine receptor (Il12rb1 and

Il15ra) and cytotoxicity (Nkg7) genes (Figure 5D; Table S2). Indeed,

several genes belonging to each of the 3 Groups of up-regulated

genes identified in total CD4 cells (Figure 5C) were overexpressed

specifically in mutant naive CD4 cells. As expected, many of the up-

regulated genes in total mutant CD4 cells were also up-regulated

specifically in mutant MP CD4 cells (Table S4). Additionally,

mutant MP CD4 cells had decreased expression of Ccr6 and Rorc

(encoding RORgt), suggesting that Stat1T385M inhibited Stat3

activation and impaired Th17 effector differentiation, as

previously observed in STAT1 GOF patients (15). Other lineage-

defining transcription factors (Gata3, Foxp3) were not differentially

expressed between WT and mutants.

We also used Seurat to perform unsupervised multimodal

(mRNA and AbSeq) dimensionality reduction and clustering to

ask whether mutants contained T or B cell subsets with unique

immune gene profiles. Among the 14 clusters with >100 cells in

merged WT or mutant samples, there were two myeloid

(macrophages and monocytes), seven B cell and five T cell

clusters that were all present in both WT and mutant samples

(Figures 6A, B and Table S6A). Thus, targeted single cell profiling of

immune gene and protein expression by total splenocytes identified

multiple clusters of naïve and activated/effector of T and B cells.

However, mutant-specific T or B cell clusters were not detected,

suggesting that Stat1T385M did not promote differentiation of a

trancriptionally unique T or B cell effector subset.

All mutant B cell clusters expressed more Stat1 than their WT

counterparts (Figure 6C; Table S6C). Five of seven also over-

expressed Tbx21 and/or its target Cxcr3; both are known to

regulate B cell proliferation and migration to the GC dark zone

during malaria infection (59). Indeed, several mutant B cell clusters

over-expressed one or more GC-associated genes such as Fas/CD95

(60), Irf8 (61) and Icam1 (62), as well as Igh isotypes that result from
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class-switching. A similar set of GC-associated genes were also up-

regulated in our comparison of total mutant versus WT B cells

(Table S3). GC B cells are highly proliferative, but high levels of cell

cycle-associated genes such as Pclaf, Mki67 and Pcna, were

restricted to a single small B cell cluster (#14), which was more

abundant in mutants (Figure 6C; Table S6B). This unsupervised

analysis showed that Stat1T385M activated aspects of the GC B cell

program, though not Bcl6, across multiple B cell subsets.

Among the five T cell clusters, Seurat identified Sell+ (encoding

CD62L) naïve and Sell- non-naïve CD4 and CD8 T cell subsets. A

comparison of mutant/WT CD8 clusters yielded a small number of

DEG highly similar to those identified in our analysis of total CD8 T

cells, with the addition of Gzmk in naïve CD8 cells (Figure S4). The

two non-naïve CD4 T cell clusters (6 and 11) expressed high levels

of Il2rb, Tbx21, Cxcr3, together with the Tfh-associated genes

Pdcd1, Icos, Ctal4 and Tigit, suggesting a hybrid Tfh/Th1

program (Figure 6C). Mutant clusters 6 and 11 expressed higher

levels of these genes and/or proteins together with more Stat1,

Gzmk, Cxcl10, Il21, Lag3, Nt5e and Tnfrsf4 to name a few (Table

S6C). Overall, unsupervised and immunophenotype-guided

analysis of single cell immune gene expression identified highly

overlapping sets of DEG which collectively suggested that

Stat1T385M activated transcription of GC-associated programs in

both B and T cells. However, Stat1T385M had the strongest

transcriptional impact on T cells, promoting aberrant activation

of naïve CD4 cells and inducing their differentiation into hybrid

Tfh/Th1-like effector cells.
4 Discussion

We generated and characterized Stat1T385M/+mice to model the

impact of the DBD class of STAT1 GOF mutations on immune

homeostasis under SPF conditions in both males and females.

Similar to patients with STAT1 GOF (46), Stat1T385M/+

lymphocytes had more total Stat1 at baseline and also higher

amounts of IFNg-induced pStat1. By 9 weeks of age, Stat1T385M/+

mice showed expansion of MP CD4 cells expressing Tfh-like

markers, in spleen and in gut-draining mLN, with no observed

autoimmunity. By 15-20 weeks of age mutants also displayed B cell

activation, increased GC formation, abnormal immunoglobulin

isotype profiles and development of autoimmunity. Notably,

females developed these immune abnormalities sooner and more

robustly than males, identifying significant sex effects for this mouse

model of STAT1 DBD GOF. Single cell analysis showed that

although Stat1 was significantly up-regulated in both T and B

cells from Stat1T385M mutants, its most predominant impact was

to promote aberrant activation of naïve CD4 cells and induce their

differentiation into hybrid Tfh/Th1-like effector cells. Collectively,

these data demonstrate that Stat1T385M increased basal and

cytokine-stimulated Stat1 activation in lymphocytes, disrupting

naïve CD4 T cell homeostasis and promoting differentiation of

abnormal T helper cells with cytotoxic features (63) as well as GC-

like B cells, eventually resulting in autoimmunity in the absence of

overt infection. These findings potentially explain how human

STAT1 GOF causes immune dysregulation and autoimmunity.
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The biochemical, immunophenotypic and overt autoimmune

abnormalities we observed in Stat1T385M/+ mice differ from

previously published studies modeling the immune impacts of

STAT1 GOF mutations in the coiled-coil domain. In Stat1R274W/+

(64) mice, total Stat1 was not increased at baseline, and IFN-

induced Stat1 hyper-phosphorylation was noted in T cells;

however T cell numbers were normal (64). Stat1R274Q/+ mice also

showed increased IFN-stimulated pStat1 in gut CD4+ T-cells (65).

However, autoimmunity was not reported in either model, and viral

or fungal infection was required to induce overt immunophenotypic

or transcriptional changes in both. In contrast, splenocytes from our

Stat1T385M/+ mice had more total Stat1 at baseline and in IFNg-
induced pStat1 but normal Stat1 dephosphorylation kinetics, all in

keeping with observations made in patient cells (46). The

immunophenotypic and transcriptional profiles of Stat1T385M/+

mice were also significantly different from WT in our SPF colony.

These findings suggest that there is differential pathogenicity of

STAT1 GOF mutations; the T385M DBD mutation selectively

disrupted immune homeostasis and promoted autoimmunity in

the absence of deliberate stimulation or infection.
Frontiers in Immunology 13133
Here we report significant sex effects for both the kinetics and

magnitude of immune abnormalities in our Stat1T385M/+ GOF

mouse model. Female mutants developed splenomegaly earlier,

and also displayed more robust increases in MP CD4 cells

between 9-15 weeks. These cells also expressed significantly

higher amounts of PD1 and ICOS, suggesting that MP CD4 cells

were more activated than in males. By 15 weeks, activated IgDlo

IgMlo GC B cells were significantly elevated only in females. In

contrast, studies of humans or other mouse models with STAT1

GOF did not report sex effects on development of immune

abnormalities and autoimmunity. Most human autoimmune

diseases preferentially affect females due to a combination of

factors, including increased expression of X-linked innate and

adaptive immune genes, heightened type I IFN secretion

mediated by estrogens, and microbiome differences (22, 66).

Additionally, STAT1 contains an estrogen-response element,

suggesting an IFN-independent role for estrogens in STAT1

activation (67). However, sex effects identified in mice do not

always apply to humans. For instance, while female mice show a

higher predisposition than males to developing T1D, whereas
B

C

A

FIGURE 6

Seurat multi-modal clustering of 15 week-old mouse splenocytes. (A) Plot shows uniform manifold approximation and projection (UMAP)
dimensionality reduction overlayed with Seurat-generated clusters on aggregated WT and mutant cells. Clusters marked with an asterisk (*)
represent IgD+ B cells. (B) Heatmap shows relative expression of Seurat-defined “marker” genes across 20 Seurat-generated clusters. (C) Dot plots
show UMAP of aggregated WT and mutant cells colored by expression levels of informative transcripts. Note that 2810417H13Rik encodes Pclaf
(PCNA clamp associated factor), a cell cycle regulatory gene.
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humans of both sexes develop T1D in nearly equal ratios (22).

Investigation of the possible sex effect of autoimmunity in human

STAT1 DBD GOF is therefore warranted, including assessment of

the types of autoimmune manifestation, age of onset and severity.

Stat1T385M had the greatest immunophenotypic impact on MP

CD4 T cells, which in WT mice, differentiate in response to

homeostatic TCR signaling and cytokine stimulation. MP CD4 T

cells are generated in mice free of all microbes and exogenous food

antigens (52), suggesting that they differentiate cell autonomously

and/or in response to self-antigens. While we cannot rule out the

contribution of commensal microbes to the immune changes

observed in our SPF Stat1T385M/+ mice, these changes were not

more prominent in gut-draining mLN, as would be expected if

commensal gut microbiota drove CD4 T cell activation. Further

studies will be required to determine the role of self- versus foreign-

antigens as well TCR and cytokine signaling in driving aberrant MP

CD4 T cell differentiation in this mouse model of STAT1 DBD GOF.

Stat1T385M had also the greatest transcriptional impact on CD4

T cells, which over-expressed several Tfh-associated genes a well as

immunoregulatory receptors associated with Tfh and also with

chronic T cell activation and exhaustion. Elevated expression of

co-inhibitory activation markers, such as PD-L1 and Fas was

previously reported in STAT1 GOF patient CD4 T cells, and was

suggested as a mechanism potentially leading to T cell exhaustion

over time (39, 68, 69). Although Stat1T385M MP CD4 T cells did not

over-express Bcl6, which encodes the master regulator of Tfh

differentiation (70), they over-expressed several other Tfh-

associated genes such as Icos, Pdcd1, Icam1, Ikzf2, Il21and Cxcr5,

suggesting that Bcl6 up-regulation is not required to induce these

genes when Stat1 is activated. Similar to early Tfh cells, mutant CD4

T cells also expressed Il21 but not Il4; the latter cytokine is made

only by fully differentiated Tfh cells (31). IL21 together with other

signals can drive B cell proliferation and differentiation both within

and outside of the GC. Therefore, it seems likely that, in addition to

a primary impact of Stat1T385M on B cells, the expanded Tfh-like

cells may also have contributed to the increase in activated B cells

and excessive splenic GC formation. Interestingly, T cell-intrinsic

overproduction of IFNg also causes accumulation of Tfh cells, GC B

cell activation and SLE (71), phenomena that are likely linked to

Stat1 activation. Our scRNA-Seq based immune gene profiling

showed that in addition to early Tfh-like features, Stat1T385M CD4

T cells also expressed a cytotoxic CD8/Th1-like effector program.

Although multiple lines of evidence show that Bcl6 and Tbet cross

inhibit each other, infection-induced Tfh cells can transiently

express Tbet and Th1 features (70, 72–75). Thus, STAT1 GOF

mimics some aspects of infection-induced Tfh differentiation.

During acute viral infection, IL6 activates both Stat1 and Stat3,

with the latter being required to limit IL2/Stat5-induced Th1

differentiation (9, 76, 77). However, this break on Th1

differentiation may be impaired in Stat1T385M CD4 T cells since

activated Stat1 inhibits Stat3. Peripheral blood from STAT1 GOF

patients shows variable in Th1 cells, circulating Tfh (cTfh) cells as

well as cTfh with “Th1-like” features (such as increased Tbet and

CXCR3 expression) (26–28, 36, 78). Thus, our Stat1T385M/+ mouse
Frontiers in Immunology 14134
model recapitulates several features of abnormal CD4 T cell

differentiation seen in STAT1 GOF patients, but in the absence

of infection.

Interestingly, naïve CD4 T cells highly over-expressed Stat1 and

also displayed some aspects of the Stat1T385M-driven abnormal

program, which became more prominent in MP CD4 T cells.

However, these phenotypically naïve cells also exhibited unique

transcriptional changes, likely setting the stage for abnormal

differentiation. They overexpressed Il2rb and Il15ra, cytokine

receptors that drive differentiation of MP CD4 cells (52). Notably,

mutant CD4 T cells expressed significantly lower amounts of Tcf7

and Lef1, transcription factors which restrain expression of the

Ctla4 and Lag3 co-inhibitory receptors in Tfh cells (35), providing a

potential mechanism for over-expression of these genes in mutant

CD4 T cells. Tcf7 and Lef1 also restrain expression of cytotoxicity

genes in naïve CD8 cells (55), so their downregulation, together

with Stat1 GOF, could contribute to the up-regulation of a Type I/

cytotoxicity program marked by expression of Tbx21, Gzmk, Nkg7,

Cst7, Cxcr3 and Cxcl10. Tcf7 and Lef1 also critically regulate Tfh

differentiation and Bcl6 induction during infection-induced Tfh

differentiation (33, 35), so their Stat1T385M-induced down-

regulation could contribute to the lack of Bcl6 expression by

mutant Tfh-like CD4 cells. Stat1T385M-induced Tbx21 could also

contribute to the lack of Bcl6 expression. While the precise

molecular mechanisms remain to be elucidated, our findings

suggest that Stat1T338M alters expression of key transcription

factors to aberrantly activate naïve CD4 T and promote their

differentiation into hybrid Tfh/Th1-like CD4 cells under

homeostatic conditions, ultimately promoting autoimmunity in

the absence of infection.
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SUPPLEMENTARY FIGURE 1

Autoimmune manifestations in Stat1T385M/+ mice from 6 weeks to 1 year of
age. (A) Dot plots show spleen weights in 9-week-old males and females,

with means +/- SD indicated. Two-way ANOVA: FDR-adjusted p-values:
*p<0.05 (females) vs p=0.42 (males). (B) Bar graphs show the observed
Frontiers in Immunology 15135
frequency of serum positivity for anti-nuclear antibodies (ANA) as detected in
6-9-week-old mice via indirect immunofluorescence using HEp-2 substrate,

at a screening dilution of 1:40. Fischer’s exact test **p>0.999. (C) Dot plots

show serum values of liver parameters including alanine amino transferase
(ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP) and

albumin in 20 week-old mutants and WT littermates, with means +/- SD
indicated. Mann-Whitney test: p=0.5224 (ALT), p=0.6482 (AST), p=0.6601

(ALP) and p=0.8911 (albumin). (D) Histological assessment of pancreas from
1-year-old males by H&E staining. Data shown are representative of 3/3

mutants and 0/3 WT mice who developed pancreatic insulitis. Panels on the

right show area-enlarged view of boxed area shown at lower magnification
on the left, scale bar= 200µm.

SUPPLEMENTARY FIGURE 2

Mass cytometric immune profiling of splenocytes in 9 week-old mice. (A)
Left: Exemplar contour plots show CD3 vs CD19 expression gated on live

single splenic cells from each strain. Two-way ANOVA with post-hoc t-test

was used for all genotype comparisons dis-aggregated by sex. Right:
summary dot plots show absolute numbers of B, T, and non-T, non-B cells

by sex and genotype. B cells: p=0.06 (females) vs p=0.34 (males). T cells:
p=0.72 (females) vs p=0.72 (males). Non-T, non-B cells: p=0.56 (females) vs

p=0.41 (males). (B) Left: Exemplar contour plots show CD122 vs NK1.1
expression gated on non-T non-B cells from each strain. Right: summary

dot plots show absolute numbers of NK cells by sex and genotype: p=0.79

(females) vs p=0.79 (males). (C) Left: Exemplar contour plots show Sirpa vs
Ly6G expression gated on non-T/B/NK cells from each strain. Right: summary

dot plots show absolute numbers of granulocytes by sex and genotype:
p=0.53 (females) vs p=0.11 (males). (D) Left: Exemplar contour plots show

SiglecF vs CD64 expression gated on Sirpa+ Ly6G- non-dendritic cells from
each strain. Right: summary dot plots show absolute numbers of SiglecF-

CD64+ macrophages by sex and genotype: *p<0.05 (females) vs *p>0.05

(males). (E) Left: Exemplar contour plots show CD44 vs CD122 expression
gated on CD8+ TCRab+ cells from each strain. Right: summary dot plots show

absolute numbers of MP CD44+ CD122+ CD8 T cells by sex and genotype:
p>0.99 (females) vs p=0.85 (males). For all dot plots, mean +/- SD

are presented.

SUPPLEMENTARY FIGURE 3

Flow cytometric immune profiling of splenocytes and mLN in 15 week-old
mice. Two-way ANOVA with post-hoc t-test was used for all genotype

comparisons dis-aggregated by sex. (A) Left: Exemplar contour plots show
CD4 vs CD8a expression gated on live single splenic CD3+ TCRb+ cells from

each strain. Right: summary dot plots show ratios of CD4/CD8 cells by sex
and genotype. *p=0.01 (females) vs *p=0.01 (males). (B) Left: Exemplar

contour plots show CD25 vs Foxp3 expression gated on CD4+ TCRb+ T

cells from each strain. Right: summary dot plots show absolute numbers of
Foxp3+ T regulatory cells (Treg) cells by sex and genotype: p=0.53 (females)

vs p=0.53 (males). (C) Summary dot plots show absolute numbers of CD62L-
Foxp3- CD4 T cells, and ICOS+ CD44+ CD62L- CD4 T cells, from mLN by sex

and genotype. Non-naïve CD4 cells: p=0.11 (females) vs p=0.14 (males).
ICOS+ MP CD4 cells: **p=0.005 (females) vs *p=0.04 (males). (D) Left:

Summary dot plots show absolute numbers of splenic CD19+ B220+ B cells

by sex and genotype: p=0.15 (females) vs p=0.67 (males). Middle: Exemplar
contour plots show CD21 vs CD24 expression gated on B cells from each

strain. Right: summary dot plots show absolute numbers of follicular
(CD21med CD24lo), T1 (CD24hi CD21lo) and T2 plus marginal zone (CD21hi

CD24hi) B cells by sex and genotype. Follicular B cells: p=0.09 (females) vs
p=0.4 (males). T1 B cells: p=0.41 (females) vs p=0.94 (males). T2+marginal

zone B cells: p=0.56 (females) vs p=0.79 (males). (E) Summary dot plots show

absolute numbers of class-switched (IgMlo IgDlo) B cells, activated pre-
germinal center (GC; CD95+ GL7-) and GC (CD95+ GL7+) B cells, from

mesenteric LN by sex and genotype. IgMlo IgDlo B cells: **p=0.002
(females) vs p=0.02 (males). CD95+ GL7- B cells: **p=0.003 (females) vs

p=0.15 (males). CD95+ GL7+ B cells: **p=0.001 (females) vs p=0.1 (males). For
all dot plots, mean +/- SD are presented.

SUPPLEMENTARY FIGURE 4

ScRNA-seq analysis of 15 week-old mouse splenocytes. (A) Pre-gating

strategy for each subset is shown on aggregated WT cells. Left: Dot plots
show CD19 vs IgD protein expression showing gates for B cells (CD19+IgD+)

vs. non-B cells (CD19-IgD-). Overlayed heatmap display Ighm expression
which guided gating. Middle: CD4 vs TCRb protein expression gated on

CD19-IgD- non-B cells with overlayed heatmaps showing Trac expression
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which guided gating decisions for CD4 cells (TCRb+ CD4+) and CD8 (TCRb +

CD4-) cells. Right: CD44 vs CD62L protein expression gated on CD4+ TCRb +

T cells. Gates used for CD62L+CD44- (naïve) and CD44+ CD62L- MP CD4

cells are shown with overlayed heatmap of Sell encoding CD62L. (B) Left:
summary dot plots show ratios of CD4/CD8 cells by genotype. Unpaired

Student’s t-test with Welch’s correction p=0.16. Right: summary dot plots
show ratios of CD62L+CD44- / CD44+ CD62L- CD4 cells by genotype,

unpaired Student’s t-test with Welch’s correction **p<0.01. For all dot
plots, mean +/- SD are presented. (C) Left: IgD vs CD44 protein expression

on B cells from each strain, overlayed with heatmap of Stat1.Middle: Volcano

plots show DEG between mutant and WT B cells, plotted according to Log2
fold change [Log2FC (mutant/WT)], against the negative logarithmic value of
Frontiers in Immunology 16136
the false discovery rate [-log(FDR)]. Genes up- and down-regulated in mutant
are denoted in red and blue, respectively. Right: Tables show genes up- or

down regulated in mutant B cells by 40% or more. Log2FC values are

presented along with FDR-adjusted q-values <0.05. (D) Left: dot plots show
CD4 vs TCRb protein expression gated on CD19-IgD- non-B cells for

aggregated samples from each strain, with overlayed heatmaps showing
Cd8b1 expression. Middle: Volcano plots show DEG between mutant and

WTCD8 T cells, plotted according to Log2FC (mutant/WT)] against -log(FDR).
Genes up- and down-regulated in mutant are denoted in red and blue,

respectively. Right: Tables show genes up- or down regulated in mutant CD8

T cells by 40% ormore. Log2FC values are presented along with FDR-adjusted
q-values <0.05.
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Sex-dependent differences
in behavioral and immunological
responses to antibiotic
and bacteriophage
administration in mice

Łukasz Grabowski1, Karolina Pierzynowska2,
Katarzyna Kosznik-Kwaśnicka1,3, Małgorzata Stasiłojć2,4,
Grażyna Jerzemowska5, Alicja Węgrzyn6, Grzegorz Węgrzyn2

and Magdalena Podlacha2*

1Laboratory of Bacteriophage Therapy, Institute of Biochemistry and Biophysics, Polish Academy of
Sciences, Gdansk, Poland, 2Department of Molecular Biology, Faculty of Biology, University of Gdansk,
Gdansk, Poland, 3Department of Medical Microbiology, Faculty of Medicine, Medical University of
Gdansk, Gdansk, Poland, 4Department of Cell Biology and Immunology, Intercollegiate Faculty of
Biotechnology of University of Gdansk and Medical University of Gdansk, Gdansk, Poland, 5Department
of Animal and Human Physiology, Faculty of Biology, University of Gdansk, Gdansk, Poland, 6Phage
Therapy Center, University Center of Applied and Interdisciplinary Research, Gdansk, Poland
Introduction: The problem of antibiotic resistance is a global one, involving many

industries and entailing huge financial outlays. Therefore, the search for alternative

methods to combat drug-resistant bacteria has a priority status. Great potential is

seen in bacteriophages which have the natural ability to kill bacterial cells.

Bacteriophages also have several advantages over antibiotics. Firstly, they are

considered ecologically safe (harmless to humans, plants and animals). Secondly,

bacteriophages preparations are readily producible and easy to apply. However,

before bacteriophages can be authorized for medical and veterinary use, they

must be accurately characterized in vitro and in vivo to determinate safety.

Methods: Therefore, the aim of this study was to verify for the first time the

behavioral and immunological responses of both male and female mice (C57BL/

6J) to bacteriophage cocktail, composed of two bacteriophages, and to two

commonly used antibiotics, enrofloxacin and tetracycline. Animal behavior,

the percentage of lymphocyte populations and subpopulations, cytokine

concentrations, blood hematological parameters, gastrointestinal microbiome

analysis and the size of internal organs, were evaluated.

Results: Unexpectedly, we observed a sex-dependent, negative effect of

antibiotic therapy, which not only involved the functioning of the immune

system, but could also significantly impaired the activity of the central nervous

system, as manifested by disruption of the behavioral pattern, especially

exacerbated in females. In contrast to antibiotics, complex behavioral and

immunological analyses confirmed the lack of adverse effects during the

bacteriophage cocktail administration.
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Discussion: The mechanism of the differences between males and

females in appearance of adverse effects, related to the behavioral

and immune functions, in the response to antibiotic treatment

remains to be elucidated. One might imagine that differences in

hormones and/or different permeability of the blood-brain barrier

can be important factors, however, extensive studies are required to

find the real reason(s).
KEYWORDS

antibiotics, bacteriophage, males and females, behavior, immune
system, mice
1 Introduction

While the threat of antibiotic resistance is increasing, the

interest in the use of bacteriophages to treat bacterial infections,

known as bacteriophage therapy, has rapidly grown, especially in

the context of veterinary (1), poultry industry (1) and public health

(2). There are 2.8 million infections with antibiotic-resistant

bacteria in the United States each year, with a minimum of

35.000 cases resulting in death (3). It is projected that by 2050,

the annual number of deaths worldwide caused by this type of

infection will be at ten million people (4). It is worth nothing that at

the root of the antibiotic crisis, it is not only their use in medicine,

but also in the treatment of livestock. Indeed, about two-thirds of

the tonnage of global antibiotic use are commonly employed to

combat bacterial infections in food-animal production (5).

Salmonella enterica is one of the most common pathogens

causing gastrointestinal diseases in the European Union. In

United States, based on data obtained from the Center for

Disease Control and Prevention, it is estimated that this

bacterium causes about 1.2 million cases of food product

contamination, which translates into 23.000 hospitalizations and

450 deaths each year (3). Although the level of antibiotic resistance

of different Salmonella serovars varies from country to country (6),

the problem is global and requires the implementation of alternative

methods to control the infection (7).

Bacteriophage therapy uses the natural ability of bacteriophages

to kill bacterial cells. Bacteriophages have also several advantages

over antibiotics, as they are considered ecologically safe (harmless to

humans, plants and animals), and bacteriophage preparations are

readily producible and easy to apply. The concentration of an

antibiotic introduced into the human organism decreases with

time (due to natural drug clearance from the body), whereas

bacteriophages continue to multiply, decreasing as soon as

sensitive bacterial cells are eliminated (8). However, before

bacteriophages can be authorized for medical and veterinary use,

they must be accurately characterized in vitro and then in vivo to

determinate their safety. Despite bacteriophages being specific to

their bacterial hosts, there are a growing number of reports about

interactions of bacteriophages with eukaryotic cells. These impacts

can, to varying degrees, involve not only tissues or organs, but even
02139
entire systems, including the immune system or central nervous

system, as reviewed recently (9). While there are reports on the

characterization and safety of bacteriophages tested in vitro, animal

studies are still in the minority, and systematic comparison of effects

of administration of bacteriophages and antibiotics in vivo is, to our

knowledge, absent in the literature, especially regarding functions of

the brain and the immune system.

Therefore, the aim of this study was to verify the behavioral and

immunological responses to a bacteriophage cocktail, composed of

two bacteriophages, and to two commonly used antibiotics,

enrofloxacin and tetracycline, in female and male C57BL/67 mice.

Animal behavior, the percentage of lymphocyte populations and

subpopulations, cytokine concentrations, blood hematological

parameters, gastrointestinal microbiome analysis and the size of

internal organs, were evaluated.
2 Materials and methods

2.1 Animals

The experiments were conducted with male (n=24) and female

(n=24) C57BL/6J mice. At the start of the experiment, all animals

were 6 months old. The experiments were performed with animals

of both sexes, to assess any differences in responses to

administration of different types of bacteriophages and

antibiotics (Figure 1).

The mice were housed in a ventilated animal room (15 air

changes per hour) in a laboratory setting. Stable conditions were

maintained: artificial lighting (12 hours light/12 hours dark),

ambient temperature (22 ± 2°C), humidity (50 ± 5%) with access

to food and tap water ad libitum. Mice were maintained in approved

laboratory cages 15 cm high and at least 400 cm2 in size. To ensure

the most optimal enrichment of the environment, suitable

attractants and accessories for rodents were used.

The animal house in which the mice were placed meets the

requirements of the Law on the Protection of Animals Used for

Scientific or Educational Purposes, dated on January 15, 2015

(Journal of Laws dated on February 26, 2015), as well as the

recommendations of the European Commission on the welfare of
frontiersin.org
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animals used in scientific experiments. All experiments were

approved by the Local Ethics Committee for Experimental

Animals in Bydgoszcz (permission number 02/2022, dated on

January 19, 2022).
2.2 Preparation and purification of high-
titer bacteriophage lysates

Due to huge diversity of bacteriophages, we aimed to study

bacteriophages representing various types of viruses, which differ in

head morphology and genome size. Therefore, the following

bacteriophages isolated from the environment, were employed:

vB_ Sen-TO17 and vB_SenM-2. Bacteriophage vB_ Sen-TO17 is a

caudate bacteriophage with a virion composed of head and tail

(head diameter: 48 x 46 nm, tail length: 121 nm), bearing dsDNA as

a genetic material (genome size is 41,658 bp), and infecting

Salmonella enterica strains (10, 11). vB_SenM-2 is a S.enterica –

specific, caudate bacteriophage (head diameter: 84 x 79 nm, tail

length: 111 nm) with a dsDNA genome (the genome size is 158,986

bp) (10, 12).

The bacteriophages included in the bacteriophage cocktail were

prepared according to the protocol described previously (13).

Briefly, all bacteriophages were propagated in susceptible bacterial

strains to obtain high titer. To avoid contamination with bacteria-

derived products, including lipopolysaccharide (LPS) which reveals

toxic features to eukaryotic cells, bacteriophages were concentrated

with polyethylene glycol (PEG8000) (BioShop, Burlington, Ontario,

Canada) and purified by ultracentrifugation at 95,000 × g for 2.5

hours, at 4°C (Avanti JXN-26, rotor JLA-8000, Beckman Coulter,

Indianapolis, USA) in a CsCl density gradient (14). Purified

bacteriophages were tested for a lack of toxic contaminants using

Purified Thermo Scientific™ Pierce ™ LAL Chromogenic

Endotoxin Quantitation Kit (catalog number: 12117850; Thermo

Fisher Scientific Inc., Paisley, UK). To remove residual CsCl, 1 ml of

bacteriophages were dialyzed against 300 ml of 3M NaCl, using a
Frontiers in Immunology 03140
dialysis membrane (ZelluTrans, MWCO: 12.000-14.000, serial

number: E674.1; Roth, Germany) for 7 days at 4°C. The NaCl

was replaced every 12 hours (15).

The bacteriophages were characterized in terms of survival

under various physicochemical conditions (stability in pH range

between 1.8 and 12; stability in ethanol, chloroform, DMSO and

acetone; stability in temperature range between -80°C and 95°C),

and their effectiveness in combating various Salmonella enterica

serovars in vitro was verified (10, 16).
2.3 Experimental groups

Experiments were conducted with eight groups for male and

female mice, (i) control (receiving saline (0.9% NaCl), 0.1 ml), (ii)

tetracycline, (iii) enrofloxacin, and (iv) bacteriophage cocktail. Each

group consisted of six mice. The cocktail was administered at 109

PFU/ml (0.1 ml), whereas enrofloxacin (Scanflox, Scanvet, Warsaw,

Poland) at 5 mg/kg body weight and tetracycline (catalog number:

200-481-9; Merck, Darmstadt, Germany) at 20 mg/kg body weight,

orally every day by using an oro-gastric probe, for fourteen days.
2.4 Locomotor activity in actometers

The locomotor activity of animals was measured using

actometers (Opto Varimex Minor, Columbus, USA). The

actometer consists of four plexiglass walls measuring 43 x 43 x 20

cm. At the moment of movement, a photocell is used to record each

interruption of the infrared beam, which is then counted by a digital

counter. The movements analyzed in this test are divided into

horizontal (movements in the horizontal plane), vertical

(movements in the vertical plane), and ambulatory (such as

during body cleaning). The animals’ locomotor activity was

recorded for 10 minutes three times, before the start of

administration, after one week, and after fourteen days of
FIGURE 1

Schematic diagram of the experiment. Created using BioRender software.
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administration of bacteriophage cocktail, antibiotic or saline.

Measurements were taken at a fixed time, between 4 p.m. and 6

p.m., according to the method described previously (17).
2.5 Analysis of anxiety behavior in
the open field test

The open field test allows for the assessment of the severity of

the level of fear towards the stress factor of the open space, and also

determines locomotor activity and the degree of exploration in a

new hostile environment. Rodents are inherently prone to

darkened, enclosed spaces, fear of open spaces and heights, so the

test was conducted in a 100 x 100 x 60 cm box (usually made of

white – colored boards), additionally exposed to a light source

which intensifies the sense of fear. The floor of the box was divided

into equal parts, among which central and peripheral squares were

distinguished. Mice were placed in the test, always in the same

position (e.g. with their head to one of the corners). The

experiments were carried out at a fixed time, between 2 and 3

p.m. The locomotor activity of the exploring animal was measured

by the number of squares crossed. The level of stress was

determined by the number of all entries to the central squares

and the time spent in the central part of the test. A bright, open

space is a strong stressor for mice, so crossing the central fields of

the box and staying there longer was considered as a sign of the

animal’s courage (rodents with higher sensitivity to stress generally

stay in the peripheral fields of the test). All categories of animal

behavior were recorded using a camera and the Ethovision XT 10

software (Noldus, Wagenigen, the Nederlands) for 10 minutes,

three times: before the start of administration, after one week and

after fourteen days of administration of bacteriophage cocktail,

antibiotic or saline.
2.6 Analysis of anxiety behavior and
memory processes in the elevated
plus-maze test

Similar to the above-described open field test, the elevated plus-

maze test allows assessment of the anxiety response, based on the

natural tendency of rodents to actively explore new environment,

which is limited by the aversive properties of the elevated plus open

part of the test. This test can also be used to record memory

processes under anxiety conditions by recording the transfer latency

from the open to the closed arm. In addition, the implementation of

a re-test (repeat measurement) procedure, allows the evaluation of

memory processes. The apparatus used to carry out the test,

consisted of a cross-shaped (plus) platform raised about 50 cm

above the ground. Two of the platform’s arms were shielded by

walls, while two remained open. The dimensions of the arms were 5

x 10 cm, respectively. During the test, the procedure was carried out

three times for each group. During the intervals, the apparatus was

washed with 70% ethanol after each trial and allowed to dry for five

minutes so that the smell of other animals would not affect the

experiment. The first trial was considered as a baseline
Frontiers in Immunology 04141
measurement, allowing to exclude the individuals whose results

deviate from the average value for the group. In further stages of the

experiment, the baseline measurement was also considered as a

reference point. The second trial was performed after seven days of

the administration onset, while the third trial was carried out after

fourteen days of the treatment with the bacteriophage cocktail,

antibiotics or saline. All trials were recorded using an analog camera

and EthoVision XT 10 software (Noldus, Wageningen, the

Netherlands). Reactions considered were: time spent in the open/

closed arms; number of entries into the open/closed arms; as well as

exploration and immobilization.
2.7 Blood collection

Blood was collected from mice at three time points: under

baseline conditions (before the start of administration, but also

before behavioral testing – baseline measurement) and after seven

and then fourteen days from orally administration onset of the

bacteriophage cocktail, antibiotics or saline. This procedure was

performed under short-term ketamine (87.5 mg/kg body weight)

and xylasine (12.5 mg/kg body weight) anesthesia from the venous

plexus inside the orbit behind the eyeball. Blood was collected in a

volume representing 6% of the animal’s body weight into EDTA-

containing tubes using capillaries 2 cm in length, approximately 1

mm in diameter with the interiors coated with the same

anticoagulant. Each blood sample collected was immediately

divided according to the course of further determination: 700 µl

of whole blood was used to obtain the results of flow cytometry and

hematological parameters, while the remaining blood was

centrifuged (10 minutes, 2000 × g, 4°C) to obtain plasma, which

was subjected to deep freezing (-80°C) until further analysis.
2.8 Analysis of selected blood
hematological parameters

The hematological analysis of previously collected whole blood

(200 µl) was performed in a Horiba ABX Micros ES 60 automatic

analyzer (Horiba Medical, Japan). Following parameters were

monitored: number of leukocytes, lymphocytes, monocytes and

granulocytes, as well as the red blood cell system indexes:

erythrocyte count, hemoglobin (HGB) level, hematocrit (HCT)

level, mean red cell volume (MCV), mean corpuscular

hemoglobin (MCH), mean corpuscular hemoglobin concentration

(MCHC), and platelet (PLT) number.
2.9 Determination of the percentage of
lymphocyte population and subpopulations
of T helper (Th, TCD4+) and T cytotoxic
(Tc, TCD8+) in peripheral blood
by flow cytometry

Cytometric analysis of the lymphocyte population was performed

after centrifugation of blood in a Ficoll gradient (1,113 × g, 30 minutes,
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4°C) and uropollin according to the procedure described previously

(18). Peripheral blood mononuclear cells (PBMCs, mainly

lymphocytes and monocytes), isolated by this method, were

suspended at a final concentration of 107 cells/ml. For cytometric

verifications, 25 µl of prepared PBMC cell suspension and 25 µl of

antibodies selected from two kits, AntiMouse CD3-FITC/CD45RA-

PC7/CD161a-APC or CD3-FITC/CD4-PC7/CD8-APC (Beckman

Coulter, California, USA), were employed. The samples were

incubated for 20 minutes in the dark at room temperature. After

incubation, 700 µl of buffered saline (PBS) and 25 µl of fixative solution

(Fixative Solution IOTestO3, BeckmanCoulter, California, USA)were

added. The percentage of lymphocyte population and subpopulations

was determined by flow cytometry using the FACSVerese cytometer

(Becton Dickson) and BD FACSuite software version 1.0.5. The

separation into subpopulations was based on the surface expression

of CD4 (helper T cells, Th, TCD4+) or CD8 (cytotoxic T cells, Tc,

TCD8+). The total number of lymphocytes and their subpopulations

was calculated based on the total number of leukocytes and the

percentage of T, TCD4+ and TCD8+ lymphocytes.
2.10 Determination of pro-inflammatory
(IL-6, TNF-a) and anti-inflammatory (IL-10)
cytokine concentrations in blood plasma

Plasma IL-6, TNF-a and IL-10 concentrations were determined

by enzyme–linked immunoassay (ELISA) using a commercially

available kit (My BioSource Inc., San Diego, USA) according to

the manufacturer’s instructions and using a Multiskan Fc

microplate reader (Thermo Fisher Scientific, Massachusetts,

USA), coupled with Skanlt 6.1.1 RE software, which analyzes

spectrophotometric color intensity, plots a standard curve based

on the standards used, and reads the concentration values of the

particular cytokines in the plasma samples tested. The results

obtained are presented in pg/ml.
2.11 Mice weighing procedure

Mice were weighed three times: at the beginning of the

experiment (before blood collection and behavioral tests

performed under baseline conditions), then after seven and

fourteen days after bacteriophage cocktail, antibiotic or saline

administration onset, depending on the experimental group. After

removal from the home cage, the animal was placed in a plastic

container, 15 cm in diameter and 18 cm high, which was then

placed on the scale (Soehlnc Professional, Nassau, Germany). The

total duration of the activity did not exceed 30 seconds.
2.12 Mice euthanasia

Mice were given a lethal intraperitoneal dose of pentobarbital

anesthesia at 120 mg/kg body weight, and internal organs were

harvested. To minimize the animal’s discomfort during the
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procedure, immediately before the injection, the mouse was

additionally anesthetized with isoflurane inhalation anesthesia

(2.5%, flow rate 0.5 l/minute).
2.13 Weighing internal organs

Briefly, all organs: thymus, spleen, brain, kidney, heart, liver,

intestines and stomach subjected to the weighing procedure were

taken entirely from each animal. They were then purified (removal

of residual fat) by washing in buffered saline solution (PBS). The

intestines were cut off immediately after the stomach, at the level of

the pylorus, and were taken as far as the rectum. Intestines before

weighing were cleaned off any remaining digestive contents.
2.14 Preparation of homogenates

All organs were sliced with a sterile scalpel into smaller pieces,

the size of which dependent on the tissue type. In the case of the

brain and kidney, their fragments were 50 mg, the heart and spleen

5 mg, and the liver 100 mg. In order to remove any external

contamination (blood, vessels, fat), the organs were rinsed three

times in 1 ml PBS. Homogenization was performed using a Bullet

Blender Tissue Homogenizer (Next Advance, NY, USA), according

to protocols, dedicated to the specific tissue type. The appropriate

type of grinding beads was added to the microcentrifuge tubes. In

the case of brain and liver, glass beads (0.5 mm, product number

GB05) were used. For the homogenization of the heart, stainless

steel beads (1.6 mm, product number SSB16) were used. The

zirconium oxide beads (0.5 mm, product number ZROB05) were

used to homogenize the kidney and spleen. The weight of the beads

used had to be equal to the weight of the homogenized organ. The

next step was to add two volumes of homogenization buffer (T-PER

Tissue Protein Extraction Reagent, Thermo Scientific, product

number 78510, Massachusetts, USA), containing protease

inhibitors (Thermo Scientific, product number A32955,

Massachusetts, USA) for every 100 mg of organ. The organ

prepared in this way was centrifuged for 5 minutes at maximum

speed (level 12; 10,000 RPM), then the supernatant was collected

and frozen until further analysis.
2.15 Isolation of total DNA

Homogenates from brains, hearts, livers, spleens and kidneys

were used to isolate total DNA. RNase (final concentration 5 µg/µl;

EURx, Poland) was added to 300 µl of the lysate and incubated at

37°C for 30 minutes. Next, thermal inactivation of RNase was

performed for 10 minutes at 65°C. To samples obtained in this way,

400 µl of Tissue Cell Lysis Solution (Lucigen, USA) and 5 µl of

Proteinase K (concentration 25 mg/ml; EURx, Poland) were added,

and then incubated for 30 minutes at 65°C. Samples were cooled in

ice for 5 minutes, then 300 µl MPC Protein Precipitation Reagent

(Lucigen, USA) was added and centrifuged (8,000 x g, 10 minutes,
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4°C). Five hundred µl of isopropanol (POCH, Poland) were added

to the supernatant and incubated at -20°C for 24 hours. Then, the

samples were centrifuged (9,600 x g, 20 minutes, 4°C), the

supernatant was removed, and 700 µl of 70% ethanol (POCH,

Poland) were added to the resulting colorless pellet. The samples

were centrifuged (9,600 x g, 40 minutes, 4°C), the supernatant was

removed, and 500 µl of 70% ethanol were added to the white pellet.

The supernatant was removed, and the pellet was dried for 20

minutes under vacuum at 30°C. The pellet was suspended in 30 µl of

nuclease free water (Roth, Germany) and incubated for 15 minutes

at 37°C to dissolve. The obtained samples were stored at -20°C.
2.16 Primer design

Specific primers were designed by Primer-BLAST software,

with parameters set to exclude Mus musculus (taxid: 10090),

Caudoviricetes (taxid: 2731619), and Viral (taxid: 10239)

sequences. Forward (5’AGCGTTAGTTCTGTCCACCC3’) and

reverse (5’CGCTGGCACTAATTTCGGTG3’) primers of the

length of 20 nucleotides are complementary to positions flanking

the 37654-38634 nucleotides region of the Salmonella bacteriophage

vB_Sen-TO17 genome, which encodes hypothetical tail and neck

proteins. As for Salmonella bacteriophage vB_SenM-2, primers

(Forward primer: 5’GCGCGACTTGTAAGATGCTG3’, Reverse

primer: 5’CCAATCAAGGGGCTTCTCGT3’) were designed to

target the nucleotide span 157621-157987 within the genome,

encoding a hypothetical neck protein.
2.17 Bacteriophage DNA identification
using PCR

The PCR reaction was performed for the identification of

bacteriophage DNA. The reaction was performed using Color

Taq PCR Master Mix (EURx, Poland), specific primers (listed in

Section 2.15, Genomed, Poland), nuclease free water (Roth,

Germany) and the matrix (isolated according to the section 2.14.).

The reaction was conducted with the following parameters:

denaturation – 15 seconds, 94°C; annealing – 15 seconds, 55°C;

extension – 60 seconds, 72°C; number of cycles: 30.
2.18 Electrophoresis and gel visualization

The obtained PCR reaction products were visualized in a 1.5%

agarose gel (agarose solution in Tris-Octane-EDTA buffer (Bioshop,

Canada) supplemented with SimplySafe™ (EURx, Poland) solution

according to the manufacturer’s instructions). Electrophoresis was

conducted for 30 minutes at 100 V. The gels were then visualized

using a gel documentation system (FastGene FAS-DIGI PRO,

Nippon Genetics Europe, Germany). Parameters of the images

taken: aperture 9 AV, exposure 1/50 TV, ISO 1600.
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2.19 Determination of bacteriophage
numbers in mouse organs

Ten ml of the lysate of the appropriate organ was diluted in 90 ml
of 0.89% NaCl. Serial dilutions (1:9 v/v each) were then prepared in

0.89% NaCl. Then, 100 ml of each dilution were added to 200 ml of
the overnight culture of Salmonella Typhimurium in LB medium

and incubated for 10 min, to adsorb bacteriophages at the bacterial

surface. Then, 4 ml of the Taq medium (0.7% bacteriological agar

(BTL, Poland) in LB medium (Bioshop, Canada) was added and

poured into Petri dishes with LB-agar medium (1% Agar-Agar

(BTL, Poland) in LB medium). The plates were incubated at 37°C

for 24 hours. The bacteriophage titer was then counted on the basis

of number of plaques appearing on plates. The bacteriophage titer

was then counted according to the formula: PFU/g = A × 1000
V × 10n,

where: A - plaque number in a particular plate, V - volume of

bacteriophage stock, 10n - bacteriophage dilution factor.
2.20 Microbiome analysis

Bacterial genomic DNA extracted from the gastrointestinal tract

was purified according to the method described previously (12),

using a commercially available reagent kit (Invitrogen, Carlsbad,

CA, USA). The obtained DNA samples were sent (Genomed S.A.,

Warsaw, Poland) for 16S rRNA gene PCR amplification, library

preparation, illumina MiSeq sequencing, and bioinformatics

taxonomy analysis. The Shannon diversity index, taking into

account the OTU (the abundance of each operational taxonomic

unit) value, was calculated using the PAST software version 4.09.

The Shapiro-Wilk test was used to determine the normality of the

diversity index data, and a comparison of the variability of the

bacterial families in the experimental groups and the control group

was carried out using the paired samples T-test. The final step was

to perform a frequency analysis and the chi square test to determine

the relative contribution of the particular bacterial families in the

microbiome of each experimental group. All the aforementioned

comparisons were performed using IBM SPSS 21.0 software (SPSS

Inc., Amonk, USA).
2.21 Statistical analysis

The results are presented as mean ± standard deviation (SD).

For statistical analyses of the results, SPSS 21.0 (SPSS Inc., Amonk,

USA) software was used. The normality of the distribution of

variables was checked with the Kolmogorov-Smirnov test, and the

homogeneity of the variances with the Levene test. When the

outcome of the Kolmogorov-Smirnov test indicated that the data

were not distributed normally, we used non-parametric Kruskal-

Wallis and Dunn tests for further analysis. For other parameters,

two-way ANOVA and Tukey’s post hoc tests were performed. The p

value lower than 0.05 was considered statistically significant.
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3 Results

3.1 Antibiotic therapy induces hyperactivity
in the actometers which is more
pronounced in females

To test effects of administrations of the bacteriophage cocktail

and antibiotics on functions of the central nervous system (memory

and learning processes, anxiety reactions, locomotor activity),

behavioral assays were performed. Number of horizontal, vertical

and ambulatory movements were determined at various times
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during the treatment (Figure 2). Unexpectedly, we found that

antibiotic therapy led to severe behavioral disturbances, already

after seven days of the administration, which were manifested by

hyperactivity, expressed by an increased number of the three types

of movement. The observed deviation from the natural behavioral

pattern persisted throughout the whole antibiotic treatment period

(fourteen days). Interestingly, this feature was significantly more

severe in females than in males. Such a disturbed behavioral

phenotype may be an indication of a seriously impaired central

nervous system function, following the use of antibiotics,

particularly the enrofloxacin. In contrast, both males and females
FIGURE 2

Changes in the number of three types of movements performed in 10 minutes in actometers: (A) horizontal, (B) vertical and (C) ambulatory in male
and female mice receiving saline, antibiotics or bacteriophage cocktail. Results are presented as mean values ± SD. Statistical analyses were
performed by ANOVA and post-hoc Tukey test for horizontal and vertical movements and by Kruskal-Wallis test and post-hoc Dunn test for
ambulatory movements. The significance of differences between controls and particular treated groups are marked by: asterisks (*) vs. saline control
males or saline control females group; (#) vs. bacteriophage males or bacteriophage females group; (^) vs. enrofloxacin males or enrofloxacin
females group; (&) vs. females; (a) vs. baseline value; (g) vs. 7 days.
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receiving the bacteriophage cocktail did not differ in their

locomotor behavior from animals in the control groups

throughout the supplementation period.
3.2 Antibiotics generate anxiety behaviors
that are more severe in females

The results of anxiety behavior in the open field test are shown

in Figure 3, and in Supplementary Figures S1, S2. Another

indication of antibiotic-mediated central nervous system

dysfunction was an increase in the anxiety behavior. The central
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squares, which are open spaces that are further illuminated by

bright light, are a factor for rodents to induce severe stress and

anxiety. Animals that, despite the aversive nature of this test zone,

stay in it for a longer period of time are characterized by lower levels

of anxiety. High level of stress was mainly manifested by shorter

duration of stay, fewer entrances, and shorter distance travelled in

the central (inner) quadrants by mice. In addition, the

administration of antibiotics, especially enrofloxacin, caused

hyperactivity similar to that observed in actometers. All of these

disturbances were evident after only seven days of administration

and, noteworthy, they were particularly severe in females. In

contrast, the behavior of both males and females receiving the
FIGURE 3

Changes in the anxiety behavior in the open field test (10-minute recording): (A) time spent in the inner squares, (B) time spent in the outer squares,
(C) exploration in male and female mice receiving saline, antibiotics or bacteriophage cocktail. Results are presented as mean values ± SD. Statistical
analyses were performed by ANOVA and post-hoc Tukey test. The significance of differences between controls and particular treated groups are
observed and marked by: asterisks (*) vs. saline control males or saline control females group; (#) vs. bacteriophage males or bacteriophage females
group; (^) vs. enrofloxacin males or enrofloxacin females group; (&) vs. females; (a) vs. baseline value; (g) vs. 1st measurement value.
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bacteriophage cocktail did not differ from that of the control groups

and did not show symptoms of increased anxiety.
3.3 Short-term memory impairment
following antibiotics administration

The results of assessment of the anxiety level and memory

processes in the elevated plus-maze test (EPM) are presented in
Frontiers in Immunology 09146
Figure 4 and Supplementary Figure S3. Analysis of the rate of

movement of mice from the open, aversive arm to the closed (safe)

arm makes it possible to study the course of working (short-term)

memory, which is disrupted not only in the course of

neurodegenerative diseases, but also under the influence of strong

stimuli, such as stress/anxiety. A more complex behavioral analysis,

including not only anxiety levels but also memory processes, carried

out in the EPM test, confirmed previous observations of nervous

system dysfunction after antibiotic therapy. Statistical analysis after
FIGURE 4

Changes in the anxiety behavior and memory processes in the elevated plus-maze test (5 minutes): (A) time spent in the open arms, (B) time spent
in the closed arms, (C) transfer latency in male and female mice receiving saline, antibiotics or bacteriophage cocktail. Results are presented as
mean values ± SD. Statistical analyses were performed by Kruskal-Wallis test and post-hoc Dunn test. The significance of differences between
controls and particular treated groups are observed and marked by: asterisks (*) vs. saline control males or saline control females group; (#) vs.
bacteriophage males or bacteriophage females group; (&) vs. females; (a) vs. baseline value; (g) vs. 1st measurement value.
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just seven days of the administration onset showed significantly

reduced number of entries and shorter time spent in the open arms

of the maze by mice. Furthermore, both antibiotics (though

especially enrofloxacin) interfered with appropriate learning and

memory processes, expressed by a prolongation of the transfer

latency from the aversive (open) to the closed (safe) arms. In

addition, non-natural locomotor activity was noted. All these

abnormalities persisted throughout the supplementation period

and were significantly more severe in females. For the group

receiving the bacteriophage cocktail, both male and female mice

did not differ from the control animals in the analyzed parameters.
3.4 Antibiotic therapy results in
leukocytosis which is more severe in males

The absolute numbers and relative numbers of leukocytes,

lymphocytes, monocytes, as well as red blood cell parameters,

measured in all tested groups, are shown in Supplementary Table

S1 and in the Supplementary Table S2. The absolute number of

leukocytes (especially lymphocytes, but also granulocytes and

monocytes) was elevated after tetracycline and enrofloxacin

supplementation. Elevated lymphocyte levels indicate chronic or

severe bacterial/viral infections, the development of inflammation,

dehydration or neurological injury. In turn, increased granulocyte

production occurs during inflammation. Elevated monocytes often

appear after past infections, at a time when there is an intense

renewal of leukocytes after infection. In contrast to behavioral

studies, the negative effects of the antibiotic therapy on

hematological parameters were more severe in males than in

females. When the bacteriophage cocktail was used, the values

observed did not differ significantly from those noted in the

control groups. The same conclusion applied to the relative

values. As for erythrocyte indices, the statistically significant

reduction was noted in both females and males after

administration of both antibiotics. Such results may indicate the

initial phase of anaemia, but also bone marrow failure.
3.5 Decrease in the percentage of T
lymphocytes and their key subpopulations
(Tc, TCD8+ and Th, TCD4+) after
antibiotic therapy

The results of cytometric analyses are presented in Figure 5.

Interestingly, these analyses showed a statistically significant

reduction in the percentage of T lymphocytes, as well as key

cytotoxic and T helper subpopulations, in antibiotic-treated

animals. This adverse effect of the antibiotic therapy (which was

more severe after enrofloxacin administration) was seen at

comparable levels in animals of both sexes. An insufficient

proportion of T cytotoxic lymphocytes may hinder the

elimination of cells infected by viruses or other intracellular

parasites. In turn, a deficiency of T helper lymphocytes may

reduce the release of cytokines, which are important mediators of
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differentiation and antibody release by B lymphocytes. We noted

the opposite effect after administration of bacteriophages, namely,

such a treatment did not affect the percentage of key immune cells

in mice.
3.6 Antibiotic therapy results in cytokine
imbalance which is more severe in females

The results of measurements of pro-inflammatory (IL-6, TNF-

a) and anti-inflammatory (IL-10) cytokine concentrations in

plasma are presented in Figure 6. Statistical analysis showed a

significant cytokine imbalance induced by the administration of

both antibiotics. As with most other parameters, this negative effect

was especially pronounced during enrofloxacin supplementation,

and showed a greater severity in females. The changes consisted of

not only a decrease in the concentration of both pro-inflammatory

cytokines (TNF-a and IL-6), but also IL-10. One should note that

TNF-a and IL-6 are particularly important for the regulation of

memory processes, and IL-10 exerts an anti-inflammatory effect. In

contrast, the use of bacteriophages did not induce any changes in

levels of investigated cytokines.
3.7 Weight loss following the
antibiotics administration

The average weight of the mice at the start of the experiments

was 29 ± 2 g and 25 ± 2 g for males and females, respectively. After

fourteen days of saline or bacteriophage cocktail supplementation,

there was an increase in the weight of mice by an average of 2 g,

while the antibiotic treatment groups showed a statistically

significant decrease in weight by an average of 2 (tetracycline) or

4 (enrofloxacin) g.
3.8 Antibiotic therapy leads to a
reduction in organ weights which
is more severe in females

The results of the weight of particular internal organs after

fourteen days of antibiotic or bacteriophage administration are

presented in the Supplementary Figure S4. Statistically significant

reduction in weight was seen in the spleen, thymus, kidneys,

intestines and stomach. In all of these organs, the reduction of

weight was evident after the antibiotic therapy, particularly when

the administration of enrofloxacin was performed, and there was

more pronounced in females. Interestingly, the opposite situation

was found for the heart and liver, as after the antibiotic therapy,

there was an increase in heart and liver weight in females and in

mice of both sexes treated with enrofloxacin. Only for the brain, it

was no difference in the organ weight between groups and sexes. In

the groups receiving the bacteriophage cocktail, the organs’ weights

did not differ from those in the control groups.
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3.9 Confirmation of the presence of
bacteriophages in the examined organs

Identification of bacteriophages in organs of mice treated with

the bacteriophage cocktail was performed by PCR. The organs were

homogenized, and then total DNA was isolated.

Specific products of 988 bp (bacteriophage vB_SenM-2) and

736 bp (bacteriophage vB_Sen-TO17) were confirmed in the brains

of female mice, however, no specific product was obtained for
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bacteriophage vB_SenM-2 in the brains of male mice (Figure 7).

Moreover, products specific for both bacteriophages were obtained

in spleens, livers and kidneys of males and females. However,

products specific for bacteriophages vB_SenM-2 and vB_Sen-

TO17 were observed in male hearts, while they were not detected

in hearts of female mice (Supplementary Figure S5).

The number of bacteriophages in the liver, spleen, kidney, heart

and brain was also determined by the titration method. The presence

of bacteriophage vB_Sen-TO17 in the liver, spleen, kidney, heart and
FIGURE 5

Changes in relative T lymphocyte (A), relative Th TCD4+ (B) and relative Tc TCD8+ (C) counts in the blood of male and female mice receiving saline,
antibiotics or bacteriophage cocktail. Results are presented as mean values ± SD. Statistical analyses were performed by ANOVA and post-hoc Tukey
test. The significance of differences between controls and particular treated groups are observed and marked by: asterisks (*) vs. saline control males
or saline control females group; (#) vs. bacteriophage males or bacteriophage females group; (&) vs. females; (a) vs. baseline value.
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brain of females and males was found. Interestingly, the

bacteriophage vB_SenM-2 was present in the livers, spleens,

kidneys and hearts of males. The titer of bacteriophage vB_SenM-2

was 5 times lower than that of bacteriophage vB_Sen-TO17 in the

livers of females and 2.5 times lower in the livers of males. In the

kidneys and spleens, the titer of bacteriophage vB_Sen-TO17 was 10

times higher than that of bacteriophage vB_SenM-2 in females and

males. In addition, the presence of bacteriophages vB_Sen-TO17 and

vB_SenM-2 in the brains of females was noted. However,

bacteriophage vB_SenM-2 was not detected in the brains of males.
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3.10 Microbiome changes
following bacteriophage and
antibiotic administration

As indicated in Figure 8 and Supplementary Figure S6, the most

significant changes in the microbiome were observed after fourteen

days of the antibiotic or bacteriophage supplementation,

respectively. Interestingly, after treatment with enrofloxacin,

Muribaculaceae predominated in males. In contrast, in

bacteriophage-treated females, this bacterial family dominated
FIGURE 6

Changes in the cytokine concentrations: Il-6 (A), TNF-a (B), and IL-10 (C) in the blood plasma of male and female mice receiving saline, antibiotics or
bacteriophage cocktail. Results are presented as mean values ± SD. Statistical analyses were performed by ANOVA and post-hoc Tukey test. The
significance of differences between controls and particular treated groups are observed and marked by: asterisks (*) vs. saline control males or saline
control females group; (#) vs. bacteriophage males or bacteriophage females group; (&) vs. females; (a) vs. baseline value; (g) vs. 1st measurement value.
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after only seven days of supplementation. In turn, enrofloxacin-

treated females had a microbiome dominated by bacteria from the

Lactobacilaceae family. Similar distribution of bacteria was

observed in mice of both sexes from the control groups and those

receiving bacteriophage cocktail.
4 Discussion

In the present study, we compared effects of administration of

antibiotics (enrofloxacin and tetracycline) and bacteriophage

therapy in a mouse model. We demonstrated, for the first time, a

sex-dependent negative effect of antibiotic therapy, which not only

involved the functioning of the immune system, but also

significantly impaired the activity of the central nervous system,

as manifested by a disruption of the behavioral pattern, particularly

exacerbated in females. On the other hand, the complex behavioral

and immunological analyses confirmed the lack of adverse effects

after the bacteriophage cocktail administration.

The issue concerning the differences in the presence of

bacteriophages in the various organs in males and females

undoubtedly requires further research. Nevertheless, it can be
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speculated that, as with the bioavailability of nanomedicines, the

differences between the sexes are on the cellular and molecular

levels. Physiological differences between the sexes are also not

limited to body fat and water content, plasma volume or the

amount of blood reaching particular organs. For example, it has

been confirmed that there are differences between men and women

in the expression of thousands of genes that determine the functions

of the liver, adipose tissue or skeletal muscle. In turn, the kidneys

showed the presence of transporters which expression levels differ

between males and females. Transcriptomic analysis of human

kidneys confirmed the presence of twenty-one genes with male

dominance and two transporter genes with female dominance.

Further differentiating factors which role should not be

overlooked are sex hormones (19). Moreover, analyses carried out

on the heart showed that the profiles of functionally relevant

proteins and their isoforms differed in animals of both sexes.

These differences, included more than twenty-two proteins and

increased significantly with the age of the mice (20). Male-specific

expression of Y-linked genes was observed not only in mouse heart,

but also in the human myocardium (e.g. Ddx3y, Eif2s3y and

Jarid1d). Higher expression levels of X-linked genes were detected

in female mice for Xist, Timp1, Car5b, XIST, EIF2S3X and GPM6B.
B

A

FIGURE 7

Identification of bacteriophages in brains of male (A) and female (B) mice treated with the bacteriophage cocktail. Specific products of 988 bp
(bacteriophage vB_SenM-2) and 736 bp (bacteriophage vB_Sen-TO17) were analyzed by the PCR method. The matrix in the positive control was
DNA isolated from purified bacteriophage lysate (PFU/ml=109). For the negative control, water was added instead of matrix.
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In addition, genes on autosomal chromosomes encoding

cytochromes of the monoxygenase family (e.g. Cyp2b10),

carbonic anhydrases (e.g. Car2 and Car3) and natriuretic peptides

(e.g. Nppb) were identified with sex- and/or age-specific expression

levels (21). Furthermore, only female mice showed differences in the

expression of important genes, including those regulating DNA

metabolism, which showed a strong dependence on tissue/organ

type following exposure to low doses of radiation (22). What is

more, previous studies have shown that DNA isolates obtained

from different types of organs from female mice confirmed

significant differences in the level of damage as a result to

exposure to organic wood preserving waste extracts. Adduct

profiles were tissue-specific and displayed a multitude of non-

polar DNA (23). Interestingly, the response to viral infection is
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strongly dependent on hormonal regulation and differs between

males and females. Experiments with non-gonadectomized rats

have shown that infection with Seoul virus results in the elevated

levels of viral RNA, which was detected in males, but not in females.

In contrast, removal of the gonads in males resulted in comparable

levels of viral RNA to that observed in intact females. The opposite

effect was noticed in females, in which the levels were significantly

higher. Induction of pattern recognition receptors (PRRs, TLR7 and

Rig-1), expression of antiviral genes (Myd88, Visa, Jun, IRF7, IFNb,
Ifnar1, Jak2, Stat3 and Mx2), and production of Mx protein were

elevated in the lungs of intact females compared with intact males.

Hormone cycle activity appears to have a significant impact

primarily on the induction of PRRs than downstream IFNb or

Mx2 expression (24). However, the mechanism underlying the
FIGURE 8

Differences in mice intestinal microbiome in particular groups: (A) males saline control group; (B) males tetracycline group; (C) males enrofloxacin
group; (D) males bacteriophage group; (E) females saline control group; (F) females tetracycline group; (G) females enrofloxacin group; (H) females
bacteriophage group.
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differences in bacteriophage location in particular organs in animals

of both sexes requires additional investigation. Although sex-

dependent, central nervous system-related differences in response

of animals to treatment with antibiotics were not – to our

knowledge - described previously, indications of changed

behaviors after antibiotic therapy were reported recently. Namely,

it was showed that administration of clindamycin and/or

amoxicillin caused severe behavioral disturbances (25). First of all,

a deterioration of cognitive processes in the novel object recognition

test and an increase in the percentage of depressive behavior

episodes were noted in the tail suspension test. In contrast to our

study, those experiments were conducted only with females. It was

proposed that an indirect cause of the observed behavioral

disturbances was a dysbiosis of the gut microbiome induced by

antibiotics (11). One should note that such adverse effects may

increase the risk of neurodegenerative diseases in the long term

(26). Similar conclusions were included in the report describing

investigations of the effects of antibiotic therapy on anxiety behavior

in mice (27). Although the authors of that report also did not take

into account differences between animals of both sexes, they

observed that streptomycin treatment significantly increased

anxiety in mice in the light-dark box test and in the elevated

plus-maze test. Again, they also suggested a dysbiosis of the gut

microbiome as a potential cause of the observed disturbances (27).

The long-term effects of the low-dose penicillin intake by pregnant

mice on these animals and their offspring shortly after the birth

were also studied (28). Gut microbiome, blood-brain barrier

permeability, central (brain) cytokine expression and behavior

were analyzed to demonstrate that the use of antibiotics at an

early stage of development can have negative and long-term side

effects (28). Among other changes, a disruption of cytokine

expression in the frontal cortex, which directly translated into

behavioral disturbances (manifested by increased aggression,

anxiety, and decreased social interaction), was evident. The

behavioral pattern of the antibiotic-treated animals resembled

autism spectrum disorders in children (28). Therefore, one might

speculate that the lack of an adequate diversity of beneficial bacteria

forming a part of the gut microbiome increases the permeability of

the blood-brain barrier, thus negatively affecting the microglia

immune response, myelination, the neurochemical structure of

the brain or the activity of the hypothalamic-pituitary-adrenal

stress axis (28).

In the case of our study, the most pronounced change in the

microbiome was the increase in the percentage of bacteria from the

still poorly understood Muribaculaceae family, both in males after

enrofloxacin treatment and in females receiving the bacteriophage

cocktail. Previous studies have shown that the Muribaculaceae

family is associated with the formation of the inner mucus layer

in the colon and the proper functioning of the intestinal barrier, and

its abundance was strongly correlated with the level of propionate, a

kind of short-chain fatty acid negatively correlating with the

colorectal cancer in mice (29). In addition, these bacteria are

important in adaptation to hypoxia-induced stress and in

response to the inflammatory process (30). Although we did not

analyze the central immune response, the cytokine imbalance we
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demonstrated in the plasma in mice after the antibiotic therapy

might be an indirect indicator of the negative effects of the tested

antibiotics on neuroimmune parameters. We demonstrated that as

short as two-week treatment with antibiotic may result in a severely

disturbed behavioral pattern. Therefore, it is tempting to speculate

that repeated or prolonged administration of antibiotics or their use

early in life might have negative consequences in the form of

metabolic disorders, allergies or neurodegenerative diseases.

Obviously, there are limitations of our studies. The foremost

one is that the central immune response and histological changes

in the brain were not analyzed, and the persistence and severity of

the observed abnormalities were not verified. Only in the case of

the female heart both methods used did not give a conclusive

result. As the plaque counting method allows the detection of

viable bacteriophages and the results indicated a low number of

them in the heart of females, the PCR performed from the deep-

frozen material proved to be an insensitive method with too many

limitations in this experimental scheme. The detection limit of

PCR method is usually in the range of 103- 105 PFU/ml.

Furthermore, for the procedure we carried out, no additional

steps were used to increase the sensitivity, such as magnetic

capture hybridization, which could have contributed to

discrepant results with the titration method. Nevertheless, the

presented results are important indications of the risks that the

antibiotic use may entail. In addition, to our knowledge, this is the

first demonstration that the gender factor can be included in such

a complex analysis as an important determinant, conditioning the

course of the immune and behavioral response to the

administered compounds. The mechanism of the differences

between males and females in appearance of adverse effects,

related to the behavioral and immune functions, in the response

to antibiotic treatment remains to be elucidated. One might

imagine that differences in hormones and/or different

permeability of the blood-brain barrier can be important factors,

however, extensive studies are required to find the real reason(s).

Nevertheless, it is also important to note that this study confirmed

the general safety of the use of bacteriophages in vivo which is a

promising sing in the light of potential approval of bacteriophage

therapy as a therapeutic procedure that might be used in clinical

practice and in veterinary use.
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SUPPLEMENTARY FIGURE 1

Changes in the anxiety behavior in the open field test (10 minutes):
(A) frequency of entries to the inner squares; (B) frequency of entries to

the outer squares; (C) immobility in male and female mice receiving saline,

antibiotics or bacteriophage cocktail. Results are presented as mean
values ± SD. Statistical analyses were performed by ANOVA and post-

hoc Tukey test. The significance of differences between controls and
particular treated groups are observed and marked by: asterisks (*) vs.

saline control males or saline control females group; (#) vs. bacteriophage
males or bacteriophage females group; (^) vs. enrofloxacin males or

enrofloxacin females group; (&) vs. females; (a) vs. baseline value; (g) vs.
1st measurement value.

SUPPLEMENTARY FIGURE 2

Changes in the anxiety behavior in the open field test (10 minutes): (A)
distance in the inner squares; (B) distance in the outer squares in male and
female mice receiving saline, antibiotics or bacteriophage cocktail. Results

are presented as mean values ± SD. Statistical analyses were performed by

ANOVA and post-hoc Tukey test. The significance of differences between
controls and particular treated groups are observed and marked by:

asterisks (*) vs. saline control males or saline control females group; (#)
vs. bacteriophage males or bacteriophage females group; (^) vs.

enrofloxacin males or enrofloxacin females group; (&) vs. females; (a) vs.
baseline value.

SUPPLEMENTARY FIGURE 3

Changes in the anxiety behavior and memory processes in the elevated plus-

maze test (5 minutes): (A) number of entries to open arms, (B) number of
entries to closed arms, (C) exploration in male and female mice receiving

saline, antibiotics or bacteriophage cocktail. Results are presented as mean
values ± SD. Statistical analyses were performed by ANOVA and post-hoc

Tukey test for number of entries to open arms and exploration and by

Kruskal-Wallis test and post-hoc Dunn test for number of entries to closed
arms. The significance of differences between controls and particular treated

groups are observed and marked by: asterisks (*) vs. saline control males or
saline control females group; (#) vs. bacteriophage males or bacteriophage

females group; (&) vs. females; (a) vs. baseline value; (g) vs. 1st

measurement value.

SUPPLEMENTARY FIGURE 4

Changes in the weights of particular internal organs: (A) brain, (B) spleen, (C)
thymus, (D) heart, (E) liver, (F) kidneys, (G) intestines and (H) stomach, after
fourteen days of antibiotic or bacteriophage administration in male and

female mice. Results are presented as mean values ± SD. Statistical
analyses were performed by ANOVA and post-hoc Tukey test. The

significance of differences between controls and particular treated groups

are observed and marked by: asterisks (*) vs. saline control males or saline
control females group; (#) vs. bacteriophage males or bacteriophage females

group; (&) vs. females.

SUPPLEMENTARY FIGURE 5

Identification of bacteriophages in particular organs: (A) livers of male, (B)
livers of female, (C) kidneys of male, (D) kidneys of female, (E) spleens of male,

(F) spleens of female, (G) hearts of male, (H) hearts of female mice treated
with the bacteriophage cocktail. Specific products of 988 bp (bacteriophage

vB_SenM-2) and 736 bp (bacteriophage vB_Sen-TO17) were analyzed by the
PCR method.

SUPPLEMENTARY FIGURE 6

The Shannon diversity index, taking into account the OTU (the abundance of
each operational taxonomic unit) value.

SUPPLEMENTARY TABLE 1

Changes in the absolute (103/µl) counts of leukocytes, lymphocytes,

monocytes and granulocytes and relative (%) values of lymphocytes,
monocytes and granulocytes in blood of male and female mice receiving

saline, antibiotics or bacteriophage cocktail. Results are presented as mean
values ± SD. Statistical analyses were performed by Kruskal-Wallis test and

post-hoc Dunn test. The significance of differences between controls and

particular treated groups are observed and marked by: asterisks (*) vs. saline
control males or saline control females group; (#) vs. bacteriophage males or

bacteriophage females group; (&) vs. females; (a) vs. baseline value.
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SUPPLEMENTARY TABLE 2

Changes in the erythrocyte number (106/mm3), hemoglobin (g/dL) and
hematocrit (%) level as well as erythrocyte indicators: MCV (Mean

Corpuscular Volume, fL), MCH (Mean Corpuscular Hemoglobin, pg), MCHC

(Mean Corpuscular Hemoglobin Concentration, g/L) and platelet number
(103/mm3) in blood of male and female mice receiving saline, antibiotics or
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bacteriophage cocktail. Results are presented as mean values ± SD. Statistical
analyses were performed by Kruskal-Wallis test and post-hoc Dunn test. The

significance of differences between controls and particular treated groups are

observed andmarked by: asterisks (*) vs. saline control males or saline control
females group; (#) vs. bacteriophage males or bacteriophage females group;

(&) vs. females; (a) vs. baseline value.
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et al. Biodiversity of bacteriophages: morphological and biological properties of a large
group of bacteriophages isolated from urban sewage. Sci Rep (2016) 6:1–17.
doi: 10.1038/srep34338

13. Kosznik-Kwas ́nicka K, Podlacha M, Grabowski Ł., Stasiłojć M, Nowak-Zaleska
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