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Editorial on the Research Topic

Radiomics and artificial intelligence in radiology and nuclear medicine

Artificial intelligence (AI) and radiomics algorithms in radiology and nuclear medicine

have demonstrated a good performance as diagnostic, predictive or prognostic markers for

several diseases with a high potential to be used as clinical tools. However, these algorithms

should be further validated in clinical practice to spread their routinary use worldwide.

After the successful publication of a previous Research Topic about Radiomics

in Positron Emission Tomography (PET) on Frontiers in Medicine in 2021 (https://

www.frontiersin.org/research-topics/15427/artificial-intelligence-in-positron-emission-

tomography) a wider and more comprehensive Research Topic on the role of AI and

radiomics in radiology and nuclear medicine was launched in 2022. This Research Topic

comprises 12 articles.

For successful employment of AI and deep learning algorithms in the clinical practice,

explainable artificial intelligence (XAI) could be introduced for several imaging modalities

as clearly discussed in the comprehensive review of De Vries et al. including 75 articles (De

Vries et al.). However, the authors demonstrated that there is currently no clear consensus

on how XAI should be used in order to close the gap betweenmedical professionals and deep

learning algorithms for clinical implementation. Furthermore, De Vries et al. also suggested

a systematic technical and clinical quality assessment of XAI methods.

Seven articles included in this Research topic are dedicated to the use of AI in

oncological imaging.

Radiomic features could be very useful for a better prognostic stratification in patients

with glioblastoma. The study of Chiesa et al. including 90 patients with glioblastoma applied

a radiomic analysis focusing on healthy tissue ring around the surgical cavity on post-

operative magnetic resonance imaging. This study provided a preliminary model for a

decision support tool for a customization of the radiation target volume in glioblastoma

patients to achieve a margin reduction strategy (Chiesa et al.).
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Sun et al. assessed the value of radiomics based on computed

tomography (CT) images in the preoperative discrimination

between lung invasive adenocarcinomas and non-invasive

adenocarcinomas among 1,185 pulmonary nodules. The authors

found that radiomics based on CT images showed good predictive

performance in discriminating between these tumoral entities,

especially in part solid nodule group. Furthermore, radiomics

based on contrast enhanced CT images provided no additional

value compared to non-contrast enhanced CT images (Sun et al.).

A brief research report evaluated the performance of fluorine-

18 fluorodeoxyglucose ([18F]FDG) PET/CT radiomic features to

predict overall survival in 50 patients with locally advanced uterine

cervical carcinoma. The authors found that standardized uptake

value peak (SUVpeak) and the textural feature gray-level run-

length matrix (GLRLM) presented the best performance to predict

overall survival in patients with cervical cancer undergoing chemo-

radiotherapy and brachytherapy (Goncalves de Alencar at al.).

A retrospective study assessed the predictive ability of

[18F]FDG PET/CT radiomic features for MYCN, 1p and 11q

abnormalities in 122 pediatric patients with neuroblastoma. The

authors clearly demonstrated that baseline [18F]FDG PET/CT

radiomics is able to predict MYCN amplification and 1p and 11

aberrations in patients with neuroblastoma, thus aiding tumor

staging, risk stratification and disease management (Qian et al.).

Another retrospective study on 131 patients explored the

application of [18F]FDG PET/CT radiomics in the identification

and correct classification of spine multiple myeloma lesions

and bone metastases. The radiomics model constructed based

on [18F]FDG PET/CT images achieved satisfactory diagnostic

performance for the classification of multiple myeloma and bone

metastases. In addition, the radiomics model showed significant

improvement in diagnostic performance compared to human

experts and PET conventional parameters (Jin et al.).

A retrospective study from Morland et al. estimated the

ability of a new index, uptake formula, including healthy organs

standardized uptake values on [18F]FDG PET/CT to predict event

free survival in 163 patients with Hodgkin lymphoma. The Uptake

Formula showed a similar performance to total metabolic tumor

volume in predicting event free survival in Hodgkin lymphoma

(Morland et al.).

Ghezzo et al. tested on a cohort of 85 prostate cancer patients a

recently proposed convolutional neural network for the automatic

segmentation of intraprostatic cancer lesions on prostate specific

membrane antigen PET images. The authors demonstrated that the

AI model could be used to automatically segment intraprostatic

cancer lesions to define the volume of interest for radiomics or deep

learning analysis. However, more robust performance is needed

for the generation of AI-based decision support technologies to be

proposed in clinical practice (Ghezzo et al.).

Beyond oncological indications of imaging methods, AI may

be also applied for other indications. For instance, the review

article of Yan et al. have summarized the application of radiomics

for predicting recurrent pancreatitis, evaluating the clinical

severity of pancreatitis, differentiating pancreatitis from pancreatic

adenocarcinoma, and functional abdominal pain from pancreatitis,

identifying pancreatis, its risk factors and complications (Yan et al.).

Flaus et al. developed a deep learning-based [18F]FDG PET

image enhancement method using simulated brain PET to improve

visualization of epileptogenic lesions. However, the authors

recommended further evaluation to generalize their method and to

assess its clinical performance in a larger cohort (Flaus et al.).

Weakly supervised deep learning models have gained

increasing popularity in medical image segmentation. However,

these models are not suitable for the critical characteristics

presented in chest radiographs: the global symmetry of chest

radiographs and dependencies between lesions and their positions.

In their study, Gu et al. proposed a weakly supervised model,

Chest L-Transformer, to take these characteristics into account.

The authors demonstrated a significant segmentation performance

improvement over the current state-of-the-art while achieving

competitive classification performance (Gu et al.).

Lastly, an original article by Quak et al. including 67 patients

demonstrated that the degradation of image quality on PET due to a

reduction in injected activity at the end of the 68Ge/68Ga generator

lifespan can be effectively counterbalanced by using AI-based PET

denoising (Quak et al.).

Finally, we would like to underline that AI and radiomics tools

are widely used for research purpose in the fields of radiology and

nuclear medicine. Nevertheless, large validation protocols and real-

life experience are needed to allow an increasing use of these tools

in clinical practice, with possible benefit for patients’ treatments

and outcomes.
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Prediction of MYCN Amplification, 1p
and 11q Aberrations in Pediatric
Neuroblastoma via Pre-therapy
18F-FDG PET/CT Radiomics
Luodan Qian 1†, Shen Yang 2†, Shuxin Zhang 1, Hong Qin 2, Wei Wang 1, Ying Kan 1, Lei Liu 3,

Jixia Li 4,5*‡, Hui Zhang 6 and Jigang Yang 1*‡
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School of Medical Science, The University of Auckland, Auckland, New Zealand, 5Department of Laboratory Medicine of
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Purpose: This study aimed to assess the predictive ability of 18F-FDG PET/CT radiomic

features for MYCN, 1p and 11q abnormalities in NB.

Method: One hundred and twenty-two pediatric patients (median age 3. 2 years,

range, 0.2–9.8 years) with NB were retrospectively enrolled. Significant features by

multivariable logistic regression were retained to establish a clinical model (C_model),

which included clinical characteristics. 18F-FDG PET/CT radiomic features were

extracted by Computational Environment for Radiological Research. The least absolute

shrinkage and selection operator (LASSO) regression was used to select radiomic

features and build models (R-model). The predictive performance of models constructed

by clinical characteristic (C_model), radiomic signature (R_model), and their combinations

(CR_model) were compared using receiver operating curves (ROCs). Nomograms based

on the radiomic score (rad-score) and clinical parameters were developed.

Results: The patients were classified into a training set (n = 86) and a test set (n =

36). Accordingly, 6, 8, and 7 radiomic features were selected to establish R_models

for predicting MYCN, 1p and 11q status. The R_models showed a strong power for

identifying these aberrations, with area under ROC curves (AUCs) of 0.96, 0.89, and

0.89 in the training set and 0.92, 0.85, and 0.84 in the test set. When combining clinical

characteristics and radiomic signature, the AUCs increased to 0.98, 0.91, and 0.93 in

the training set and 0.96, 0.88, and 0.89 in the test set. The CR_models had the greatest

performance for MYCN, 1p and 11q predictions (P < 0.05).

Conclusions: The pre-therapy 18F-FDG PET/CT radiomics is able to predict MYCN

amplification and 1p and 11 aberrations in pediatric NB, thus aiding tumor stage, risk

stratification and disease management in the clinical practice.

Keywords: 18F-FDG PET/CT, radiomics, neuroblastoma, MYCN amplification, 1p aberration, 11q aberration
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Qian et al. PET/CT Radiomics Study in Neuroblastoma

INTRODUCTION

Neuroblastoma (NB), the most common extracranial solid
pediatric tumor, accounts for about 8–10% of all childhood
cancer and 12–15% of childhood cancer mortality (1). Using
selected clinical, pathologic, and genetic factors, patients
diagnosed with NB can be classified into different risk groups
for treatment (2). Previous studies have shown that patient
outcomes of NB are highly correlated with risk stratification,
with more than 90% cure in non-high risk patients and <50%
event-free survival rate in high risk patients (3). It is therefore
very important to obtain a better understanding of risk factors
so that treatment strategies for children with NB can be tailored
accordingly. Previous studies have demonstrated the value of
prognostic factors such as patients age, tumor stage using
the International Neuroblastoma Staging System (INSS), tumor
histopathology using the International Neuroblastoma Pathology
Classification (INPC) system, DNA ploidy, cytogenetics such as
MYCN amplification status and chromosome aberrations of 1p
and 11q (1, 4, 5). In addition, CT or MR image-defined risk
factors (IDRFs) were used to distinguish low-risk tumors from
high-risk tumors (6, 7). However, the predictive value of nuclear
medicine functional imaging techniques on tumor biology has
been less studied.

Nuclear medicine functional imaging plays an
important role in the assessment of NB. Currently, 123I-
Metaiodobenzylguanidine (123I-MIBG) scintigraphy is a
standard practice in the diagnosis of NB (6), with ∼90%
of patients having MIBG avid tumors. However, in some
countries, including China, 123I-MIBG has not been approved
for clinical use and cannot be included in the standard clinical
protocols for NB patients. In our practice, we have utilized 18F-
fluorodeoxyglucose positron emission tomography/computer
tomography (18F-FDG PET/CT) in the diagnosis and follow-up
of NB patients. 18F-FDG PET imaging has been reported to be
equal or superior to 123I-MIBG scan for delineating NB disease
extent in the chest, abdomen, and pelvis (8). In case the tumor
is not MIBG avid, 18F-FDG PET is also recommended as a
complementary option to 123I-MIBG scintigraphy (9).

The purpose of this study aims to evaluate whether
diagnostic 18F-FDG PET/CT imaging plays a role in risk
stratification prediction in children with NB. The relationship
between diagnostic 18F-FDG PET/CT image features and
the tumor biology of NB were investigated to answer this
question. Specifically, cytogenetic factors, MYCN amplification
status and chromosome aberrations of 1p and 11q, are
chosen as representative indicators of tumor biology. It was
well-documented that MYCN amplification and chromosome
aberrations of 1p and 11q are powerful prognostic markers
and have a strong association with worse outcome in NB (5).
Amplification of MYCN can be detected in 20% of cases with
NB and is closely linked with high-risk disease and poorer
outcome (10). Loss of heterozygosity on chromosome 1p and
11q are correlated with increased disease severity (2, 11). For
the PET/CT image analysis method, radiomic analysis was
chosen in this study. In contrast to conventional visual image
features, radiomics is expected to provide more comprehensive

description of tissues, with the potential to aid clinical care
in several aspects including diagnosis, prognosis and treatment
selection (12, 13). Currently, a number of studies demonstrated
the value of 18F-FDG PET/CT-based radiomics in predicting
the histological subtypes of lung cancer (14) and distinguishing
breast carcinoma from breast lymphoma (15). So far, there is little
study to investigate the predictive value of 18F-FDG PET/CT on
the status of MYCN, 1p and 11q in pediatric NB. Therefore, this
study was designed to evaluate whether 18F-FDG PET/CT-based
radiomics can predict the status of MYCN, 1p and 11q, which
in turn, can be used in risk stratification prediction in children
with NB.

METHODS

Patients
The records of 139 pediatric patients with newly diagnosed
NB were reviewed retrospectively between March 2018 and
November 2019 in our hospital. The inclusion criteria were as
follows: (1) pathologically confirmed NB; (2) age ≤ 18 years
at diagnosis; (3) complete PET/CT imaging data; (4) complete
clinical information; (5) no cancer therapy before PET/CT
imaging; (6) complete MYCN amplification and 1p and 11q
aberrations data. Subsequently, 17 cases were excluded because
of unavailable MYCN, 1p and 11q information, and 122 patients
were included in this study. These patients were randomly
divided into training set and test set with a ratio of 7:3. This
retrospective study was approved by Institutional Review Board
of our hospital and the requirement of written informed consent
was waived.

Determination of MYCN Amplification and
1p and 11q Aberrations by FISH
MYCN amplification and 1p and 11q aberrations were
determined using FISH from paraffin-embedded tissue
obtained by biopsy or surgery at initial diagnosis according
to the previously published method (16). According to the
recommendations of the European Neuroblastoma Quality
Assessment group (17, 18), MYCN amplification was defined as
a > four-fold increase of signals.

Clinical Data and 18F-FDG PET/CT Imaging
Clinical Characteristics

Patient gender, age, neuron-specific enolase (NSE), serum
ferritin (SF), lactate dehydrogenase (LDH), vanillylmandelic acid
(VMA), homovanillic acid (HVA), maximum tumor diameter
(MTD) in Ultrasound, and MTD in CT and/or MRI.

All patients underwent whole body scan on the PET/CT
scanner (Biograph mCT-64 PET/CT; Siemens, Knoxville,
Tenn) in accordance with EANM guidelines (19, 20) and a
biopsy/surgery for pathological diagnosis of NB was performed
within 3 months. The PET scan was carried out with 3min per
bed position immediately after the whole body CT scan. PET
images were reconstructed using the ordered subsets-expectation
maximization algorithm with time-of-flight. The regions-of-
interest (ROIs) of primary tumor were manually drawn by an
experienced nuclear medicine physician using the longitudinal
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FIGURE 1 | The flow chart shows the process of ROI segment, feature extraction, feature selection, and model construction and prediction.

PET/CT module in 3D Slicer (version 4.10.1). ROIs were
delineated along the edge of NB on CT images, which included
the entire tumor, metastatic lesions and unclear demarcations
between the primary tumor and its surrounding metastasis. In
order to map to the PET image, the ROIs were resampled based
on B-spline interpolation to ensure that it had the same pixel
spacing as the PET image.

Feature Extraction and Selection and
Model Construction
Univariate analysis was performed to compare the differences
in clinical characteristics. Based on the selected characteristics,
a clinical model (C-model) was established.

Radiomic features from CT and PET images were computed
separately using pyradiomics, an open-source python package
for the extraction of radiomic features from medical imaging
(21). First order features (n = 18), shape features (n = 14), gray
level co-occurrence matrix (GLCM) features (n = 24), gray level
run length matrix (GLRLM) features (n = 16), gray level size
zone matrix (GLSZM) features (n = 16), neighboring gray tone
difference matrix (NGTDM) features (n = 5), and gray level
dependence matrix (GLDM) features (n = 14) were extracted
from the original and the pre-processed images. The following
methods were used in the imaging processing: wavelet filtering,
square, square root, logarithm, exponential and gradient filtering
(Figure 1).

Intraclass correlation coefficients (ICC) were obtained to
assess the reliability of variables using the features extracted from
the two sets of ROIs portrayed separately by two different nuclear

medicine physicians in 24 out of the 122 patients with NB after
2 months. Because of imbalanced datasets, synthetic minority
oversampling technique (SMOTE) was used to improve random
oversampling in the training set. Least absolute shrinkage and
selection operator (LASSO) was applied for variable selection and
regularization in the training set. Predictive R_models were built
by logistic regression and the radiomic score (rad-score) for each
patient was computed based on the selected radiomic features.
Additionally, the selected clinical characteristics combined with
radiomics features were used to construct the combinationmodel
(CR_model). All models were built and trained in the training
set, and the prediction performance was evaluated in the training
and test sets. Ten-fold cross-validation was applied to prevent
model overfitting in the training process. Receiver operating
characteristic (ROC) curve and area under curve (AUC) were
employed for the evaluation of the diagnostic performance in the
training and test sets.

Statistical Analysis
Statistical analyses were performed with Python (ver. 3.7.8,
www.python.org) and R (ver. 4.0.3, www.r-project.org). The
Python packages of “sklearn,” “numpy,” and “pandas” were
used for LASSO binary logistic regression and ROC curve; the
“scipy” was for analyzing statistical properties; the “imblearn”
was for SMOTE. The R package “rms” was employed to create
nomograms. The t-test or Mann-Whitney U-test was applied for
univariate analysis, and p < 0.05 with a 95% confidence interval
was considered as statistical significance. AUC-ROC curve was
calculated for evaluating the diagnostic performance of models.
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TABLE 1 | Clinical features of NB patients.

Clinical features Total MYCN 1p 11q

Positive Negative p-value Positive Negative p-value Positive Negative p-value

Number 122 20 102 47 75 48 74

Gender 0.224 0.062 0.345

Male 52 11 41 25 27 23 29

Female 70 9 61 22 48 25 45

Age (year) 3.2 (0.2–9.8) 2.5 3.4 0.1082 3.4 2.8 0.0885 4.0 2.3 0.0002

NSE (ng/ml) 219.1 (14.7–2627.1) 666.5 152.6 0.0046 370.0 129.1 0.0004 336.2 128.8 0.2977

SF (ng/ml) 210.2 (8.1–1807.0) 216.6 202.0 0.0744 220.1 189.5 0.0929 247.8 117.8 0.0019

LDH (U/L) 553 (177–6029) 2261 427 0.0001 936 386 <0.0001 596 411 0.0460

VMA 236.2 (5.2–5975.0) 28.6 364.8 <0.0001 164.2 396.9 0.0055 507.6 98.3 0.0080

HVA 54.7 (1.5–1532.0) 42.5 69.3 0.1169 51.1 61.8 0.0526 108.6 33.4 0.0141

MTD Ultra (cm) 9.1 (2.2–20.0) 11.3 9.0 0.0820 10.5 8.4 0.0161 9.6 8.7 0.0882

MTD CT/MRI (cm) 9.3 (2.1–17.4) 11.4 9.1 0.0382 11.1 9.0 0.0044 10.1 9.1 0.1196

Each feature was expressed as median (minimum–maximum) except for gender.

NSE, neuron-specific enolase; SF, serum ferritin; LDH, lactate dehydrogenase; VMA, Vanillylmandelic Acid; HVA, homovanillic acid; MTD Ultra, maximum tumor diameter (MTD) in

ultrasound; MTD CT/MRI, MTD in CT/MRI.

AUC ranging from 0.5 to 1.0 is commonly used as a measure of
classifier performance. A value of 0.5 is equal to random guessing,
while 1.0 means a perfect classifier.

RESULTS

Clinical Characteristics of Patients
According to the inclusion criteria, 122 out of 139 patients
with NB were enrolled in this study. Eighty six patients were
assigned to the training set and 36 patients were assigned to the
test set. All clinical characteristics are summarized in Table 1,
including gender, age, neuron-specific enolase (NSE), serum
ferritin (SF), lactate dehydrogenase (LDH), vanillylmandelic acid
(VMA), homovanillic acid (HVA), maximum tumor diameter
(MTD) in Ultrasound, and MTD in CT and/or MRI. The
percentages of MYCN-, 1p- and 11q-positive cases were 16.4%
(20/122), 38.5% (47/122), and 39.3% (48/122), respectively.
Among these variables, NSE, LDH, VMA, and MTD in CT/MRI
were significantly different betweenMYCN-positive and negative
groups (All p < 0.05). Between 1p-positive and negative cases,
NSE, LDH, VMA, MTD in Ultrasound and MTD in CT/MRI
were distinct (All p < 0.05). Between 11q-positive and negative
cases, age, SF, LDH, VMA, and HVA were distinct (All p < 0.05)
(Table 1).

Predictive Model Construction
The total of 2,632 radiomic features were extracted from PET/CT
images using pyradiomics. After assessing the robustness,
1,623 out of 2,632 features retained for model building, with
intraclass correlation coefficients (ICC) > 0.75. In respect of
C-model (clinical variables) constructed by logistic regression
and trained in the training set, 4 clinical characteristics (LDH,
NSE, VMA, and SF) were selected for MYCN prediction, with
3 characteristics (LDH, NSE and age) for 1p prediction and

3 characteristics (LDH, SF and HVA) for 11q prediction. As
for R_model (radiomics signature) establishment, 6 radiomic
features were chosen for MYCN prediction, with 8 features for
1p prediction and 7 features for 11q prediction (Table 2 and
Supplementary Table 1).

In regard to CR_model (combinations of clinical and
radiomic features) construction, eight features were chosen
for MYCN prediction, which included 4 clinical characteristics
(NSE, LDH, VMA, and MTD in CT/MRI) and 2 PET, 2
CT features (Tables 1, 3). Eleven features were selected for
1p prediction, which included 5 clinical characteristics (NSE,
LDH, VMA, MTD in Ultrasound and MTD in CT/MRI)
and 5 PET, 1 CT features (Tables 1, 3). Eleven features
were picked up for 11q prediction, which included 5 clinical
characteristics (age, SF, LDH, VMA, and HVA) and 1 PET, 5 CT
features (Tables 1, 3).

Rad-scores were calculated by the following formula:
Rad_score_MYCN=−2.6446
+ 0.17750 × PET_wavelet-LLH_glszm_GrayLevelNonUnifor
mity
+ 0.88251 × PET_wavelet-HHH_glszm_SizeZoneNonUnifor
mity
– 0.00069× CT_exponential_glrlm_LongRunEmphasis
– 0.02217× CT_wavelet-HHL_firstorder_Maximum
Rad_score_1p= 2.9612
– 115.24× PET_squareroot_ngtdm_Contrast
– 0.29673× PET_logarithm_firstorder_Minimum
+ 0.04218× PET_wavelet-LLH_glrlm_LongRunLowGrayLev
elEmphasis
+ 2.1217 × PET_wavelet-HHH_glszm_SmallAreaHighGrayL
evelEmphasis
– 5.5262 × PET_wavelet-HHH_glszm_LowGrayLevelZoneE
mphasis
– 5.1213× CT_exponential_glszm_SmallAreaEmphasis
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TABLE 2 | Comparison of the radiomic features between positive and negative in

training sets of R_model.

Radiomic feature p-value

MYCN

PET_squareroot_gldm_HighGrayLevelEmphasis 0.0234

PET_wavelet-LHL_gldm_DependenceNonUniformity 0.0233

PET_wavelet-HHH_glszm_SizeZoneNonUniformity 0.0361

CT_logarithm_firstorder_Skewness 0.0001

CT_wavelet-LLL_gldm_DependenceVariance 0.0009

CT_wavelet-HLL_glszm_LargeAreaHighGrayLevelEmphasis 0.0156

1p

PET_squareroot_glcm_Idmn 0.0009

PET_logarithm_firstorder_Minimum 0.0940

PET_wavelet-LLL_glcm_InverseVariance 0.0061

PET_wavelet-HHL_gldm_DependenceVariance 0.0436

PET_wavelet-HHH_glszm_SmallAreaHighGrayLevelEmphasis <0.0001

PET_wavelet-HHH_glszm_LowGrayLevelZoneEmphasis 0.0002

CT_exponential_glszm_SmallAreaEmphasis 0.0554

CT_wavelet-HHH_glszm_SizeZoneNonUniformityNormalized 0.0885

11q

PET_original_glszm_GrayLevelNonUniformity 0.0108

PET_wavelet-LHL_gldm_DependenceNonUniformityNormalized 0.0271

CT_original_shape_Flatness 0.0043

CT_wavelet-LLL_glrlm_RunVariance 0.0006

CT_wavelet-LHL_firstorder_Median 0.0613

CT_wavelet-LHL_glcm_Imc1 0.0166

CT_wavelet-HHH_firstorder_Entropy 0.0291

Rad_score_11q=−2217.3
– 147.63 × PET_wavelet-LHL_gldm_DependenceNonUnifor
mityNormalized
– 0.41560× CT_wavelet-LLL_glrlm_RunVariance
– 0.59915× CT_wavelet-LHL_firstorder_Median
+ 58.736× CT_wavelet-LHL_glcm_Imc1
– 14.536 × CT_wavelet-HLL_glrlm_LowGrayLevelRunEmph
asis
+ 2232.9× CT_wavelet-HHH_firstorder_Entropy.

The p-values of radiomic features are shown in Table 3.
Rad-scores presented significant difference between positive
and negative groups in the training and test sets (p <

0.001). NB with MYCN, 1p and 11q positive had higher
Rad-score than those with negative in both the training
and test sets.

Nomogram score (Nomo_score) was calculated by the
following formula (Figure 2):

Nomo_score_MYCN = −0.7569 + 0.0064 × LDH + 2.4857
× Rad_score_MYCN
Nomo_score_1p = −0.5175 + 0.0017 × LDH + 1.0476
× Rad_score_1p
Nomo_score_11q =−0.3897 – 0.0020× LDH+ 0.0088× SF
+ 1.6657× Rad_score_11q

TABLE 3 | Comparison of the radiomic features between positive and negative in

training sets of CR_model.

Radiomic feature p-value

MYCN

PET_wavelet-LLH_glszm_GrayLevelNonUniformity 0.0125

PET_wavelet-HHH_glszm_SizeZoneNonUniformity 0.0361

CT_exponential_glrlm_LongRunEmphasis 0.0224

CT_wavelet-HHL_firstorder_Maximum 0.0832

1p

PET_squareroot_ngtdm_Contrast 0.0286

PET_logarithm_firstorder_Minimum 0.0940

PET_wavelet-LLH_glrlm_LongRunLowGrayLevelEmphasis 0.0105

PET_wavelet-HHH_glszm_SmallAreaHighGrayLevelEmphasis <0.0001

PET_wavelet-HHH_glszm_LowGrayLevelZoneEmphasis 0.0002

CT_exponential_glszm_SmallAreaEmphasis 0.0554

11q

PET_wavelet-LHL_gldm_DependenceNonUniformityNormalized 0.0271

CT_wavelet-LLL_glrlm_RunVariance 0.0006

CT_wavelet-LHL_firstorder_Median 0.0613

CT_wavelet-LHL_glcm_Imc1 0.0166

CT_wavelet-HLL_glrlm_LowGrayLevelRunEmphasis 0.0037

CT_wavelet-HHH_firstorder_Entropy 0.0291

The nomogram was created based on the training set, which
represented individualized prediction and visualized proportion
of each factor (Figure 3).

Model Performance
To evaluate the performance in predicting MYCN, 1p and 11q
status, C_model, R_model and CR_model were compared. The
predictive abilities of models (sensitivity, specificity, and AUC)
were shown in Table 4, and ROC curves were displayed in
Figure 4. Obviously, the CR_models were the best predictive
models for MYCN, 1p and 11q abnormalities, with AUCs of
0.98 (sensitivity, 0.93; specificity, 0.93), 0.91 (sensitivity, 0.85;
specificity, 0.83), and 0.93 (sensitivity, 0.82; specificity, 0.90)
in the training set, respectively. In the test set, their AUCs
were 0.96 (sensitivity, 0.83; specificity, 0.87), 0.88 (sensitivity,
0.79; specificity, 0.77), and 0.89 (sensitivity, 0.86; specificity,
0.72), sequentially. The CR_model for MYCN prediction had the
greatest performance in the training and test sets compared to the
CR_models for 1p and 11q prediction. In addition, the R_models
for predicting 1p and 11q performed better than the C_models in
the test set (AUCs= 0.85 vs. 0.77 for 1p; AUCs= 0.84 vs. 0.74 for
11q). In contrast, the C_model for MYCN prediction was better
than the R_model in the test set (AUCs= 0.94 vs. 0.92).

DISCUSSION

Considering the well-established role of MYCN, 1p and
11q abnormalities in the prognosis of NB, identifying these
events are crucial for risk stratification. This study provided
three distinct forms of predictive models (clinical variables,
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FIGURE 2 | Nomo_score for every patient in each set. The red marks indicate negative samples, while the blue marks indicate the positive samples. (A) Nomo_score

of MYCN status prediction. (B) Nomo_score of 1p status prediction. (C) Nomo_score of 11q status prediction.
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FIGURE 3 | The nomograms. (A) Nomogram based on rad-score and LDH for MYCN status prediction. (B) Nomogram based on rad-score and LDH for 1p status

prediction. (C) Nomogram based on rad-score, LDH and SF for 11q status prediction.

Frontiers in Medicine | www.frontiersin.org 7 March 2022 | Volume 9 | Article 84077713

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Qian et al. PET/CT Radiomics Study in Neuroblastoma

TABLE 4 | The predictive value of the models in MYCN, 1p and 11q.

Model Training set Test set

Sensitivity Specificity Accuracy AUC (95%CI) Sensitivity Specificity Accuracy AUC (95%CI)

MYCN

C_model 1.00 0.88 0.90 0.96 (0.93–0.99) 0.83 0.93 0.92 0.94 (0.85–1.00)

R_model 0.86 0.92 0.91 0.96 (0.93–0.99) 0.83 0.90 0.89 0.92 (0.82–1.00)

CR_model 0.93 0.93 0.93 0.98 (0.96–0.99) 0.83 0.87 0.86 0.96 (0.90–1.00)

1p

C_model 0.64 0.71 0.68 0.79 (0.73–0.85) 0.79 0.59 0.67 0.77 (0.62–0.91)

R_model 0.73 0.75 0.74 0.89 (0.85–0.93) 0.93 0.64 0.75 0.85 (0.73–0.97)

CR_model 0.85 0.83 0.84 0.91 (0.87–0.95) 0.79 0.77 0.78 0.88 (0.78–0.98)

11q

C_model 0.71 0.73 0.72 0.77 (0.71–0.83) 0.64 0.64 0.64 0.74 (0.60–0.88)

R_model 0.76 0.83 0.80 0.89 (0.85–0.93) 0.79 0.68 0.72 0.84 (0.73–0.95)

CR_model 0.82 0.90 0.87 0.93 (0.90–0.96) 0.86 0.72 0.77 0.89 (0.79–0.99)

radiomic signature and their combinations) for identifying
MYCN and chromosomal abnormalities in a non-invasive
way, demonstrating that pre-therapy 18F-FDG PET/CT-based
radiomics had an extremely important role in predicting
MYCN amplification and 1p and 11q aberrations. In particular,
CR_model was suggested to be the best model for the prediction
of MYCN, 1p and 11q status with the largest AUCs in the training
and test sets.

Recently, clinical variables (such as LDH and SF) have been
demonstrated to be prognostic biomarkers in large-scale studies,
which suggested to reconsider utilizing LDH and SF as NB risk
stratification factors (22, 23). In the present study, LDH and SF
were also predictors of MYCN, 1p and 11q abnormalities. The
radiomics models had a power to predict these aberrations, but
models integrating PET and CT features with clinical variables
led to higher predictive performance for training and test cohorts,
in comparison with models with radiomic features or clinical
parameters alone (Table 2). In line with other studies (24), the
integration of radiomic features with clinical parameters has a
complementary and added impact in abnormal genetic and/or
molecular prediction.

In this study, radiomic features were selected to construct
CR_model for predicting MYCN, 1p and 11q abnormalities,
including: PET_wavelet-LLH_glszm_GrayLevelNonUniformity,
PET_wavelet-HHH_glszm_SizeZoneNonUniformity,
CT_exponential_glrlm_LongRunEmphasis, CT_wavelet-
HHL_firstorder_Maximum, PET_squareroot_ngtdm_Contrast,
PET_logarithm_firstorder_Minimum, PET_wavelet-
LLH_glrlm_LongRunLowGrayLevelEmphasis, PET_wavelet-
HHH_glszm_SmallAreaHighGrayLevelEmphasis,
PET_wavelet-HHH_glszm_LowGrayLevelZoneEmphasis,
CT_exponential_glszm_SmallAreaEmphasis, PET_wavelet-
LHL_gldm_DependenceNonUniformityNormalized,
CT_wavelet-LLL_glrlm_RunVariance, CT_wavelet-
LHL_firstorder_Median, CT_wavelet-LHL_glcm_Imc1,
CT_wavelet-HLL_glrlm_LowGrayLevelRunEmphasis, and
CT_wavelet-HHH_firstorder_Entropy. The majority of these

features (12/16) were not derived from the primary image but
from wavelet decomposition images, possibly because wavelet
transformed features contained high-order information that
may be more helpful for MYCN, 1p and 11q prediction. Previous
studies have revealed the potential value of wavelet features
in histologic subtype prediction and prognostic assessment
(25, 26). In agreement with that, our data also indicated that
wavelet features possess remarkable abilities in MYCN, 1p
and 11q prediction models. In addition, approximately half
of the selected features were extracted from GLRLM (4/16)
and GLSZM (5/16). Long run emphasis (LRE) in GLRLM
quantifies the distribution of long run lengths, with a larger
value representing longer run lengths and more coarse structural
textures. Size-zone non-uniformity (SZN) in GLSZM quantifies
the variability of size zone volumes in the image, with a smaller
value representing more homogeneity in size zone volumes.
Our results showed that the greater value of LRE or SZN was
correlated with the higher possibility of MYCN amplification
and 1p and 11q aberrations.

Currently, 123I-MIBG scan is the most frequently used
imaging modality and is regarded as standard of care in patients
with NB. In comparison with 18F-FDG PET/CT, 123I-MIBG scan
is carried out over 2 days and the image quality is less ideal
that could post a challenge to inexperienced physicians (27). At
many centers, planar I-MIBG imaging scans are performed, but
radiomics based on these images was very limited. Moreover,
false- negative MIBG scans were reported as early as 1990,
which may result in incorrect down-staging (9). In about 8% of
NB patients, false-negative scans at diagnosis occurred despite
the solid evidence of disease. 18F-FDG PET/CT describes the
metabolic state of cancer cells and provides information about
malignancy (28). The value of 18F-FDG PET/CT in NB has
been investigated in many studies. For example, Shulkin et al.
demonstrated that 18F-FDG uptake was increased in the most
of lesions, with about 94% of NB showing elevated 18F-FDG
activity (28). Melzer et al. reported that 123I-MIBG SPECT/CT
and 18F-FDG PET/CT had significant differences in their uptake
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FIGURE 4 | The ROC curves of the C_model (green line), R_model (yellow line), and CR_model (blue line) in both training (left) and test (right) set. (A) The ROC curves

of MYCN status prediction. (B) The ROC curves of 1p status prediction. (C) The ROC curves of 11q status prediction.

patterns. In NB patients, 18F-FDG PET/CT had higher sensitivity
and specificity for the detection of lesions (9), and showed
more extensive primary and/or residual lesions in stage 1 and

2 (8). Overall, 18F-FDG PET/CT was superior in depicting
NB, although 123I-MIBG might be needed to exclude higher-
stage (8). Interestingly, the FDG-avid but MIBG-negative and
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MIBG-avid but FDG-negative NB can coexist in the same
tumor (28).

The potential clinical significance of the present study
included: (1) radiomics based on pre-therapy 18F-FDG PET/CT
provides a relatively accurate method in a non-invasive way
for predicting MYCN, 1p and 11q, which can be applicable to
pediatric NB patients; (2) the status of MYCN, 1p and 11q can
be used for risk stratification, therapy selection, therapy response
monitor and prognosis prediction.

This study had limitations. Small size cohort from single
center may influence the generalized ability, sensitivity and
specify of the predictive models. Therefore, prospective larger
cohort from multi-center is necessary to validate the results
and improve the reliability of models for MYCN, 1p and 11q
predictions in NB.

CONCLUSION

The models developed by the pre-therapy 18F-FDG PET/CT
radiomic signature and clinical parameters are able to predict
MYCN amplification and 1p and 11 aberrations in pediatric
NB, thus risk stratification, disease management and guiding
personalized malignancy therapy in the clinical practice.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article/Supplementary Materials, further inquiries can be
directed to the corresponding author/s.

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by Beijing Friendship Hospital, Capital Medical

University. Written informed consent from the participants’
legal guardian/next of kin was not required to participate in
this study in accordance with the national legislation and the
institutional requirements.

AUTHOR CONTRIBUTIONS

LQ, SY, and SZ made substantial contributions to study design,
image acquisition, data analysis and interpretation, and new
software creation in this work. SZ, HQ, WW, YK, LL, JL, and
HZ contributed writing and/or revising the manuscript. JY and
JL approved all versions to be published and were responsible for
all aspects of this study. All authors contributed to the article and
approved the submitted version.

FUNDING

This study was supported by Capital Health Development
Research Project (No. 2020-2-2025), National Natural
Science Foundation of China (Nos. 81971642, 82001861,
and 82102088), and National Key Research and Development
Plan (No. 2020YFC0122000).

ACKNOWLEDGMENTS

We would like to thank Dr Dehui Sun for helping us in imaging
analysis of this research.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fmed.
2022.840777/full#supplementary-material

REFERENCES

1. Dzieran J, Rodriguez Garcia A, Westermark UK, Henley AB, Eyre Sánchez

E, Träger C, et al. MYCN-amplified neuroblastoma maintains an aggressive

and undifferentiated phenotype by deregulation of estrogen and NGF

signaling. Proc Natl Acad Sci USA. (2018) 115:E1229–38. doi: 10.1073/pnas.

1710901115

2. Park JR, Bagatell R, London WB, Maris JM, Cohn SL, Mattay KK, et al.

Children’s Oncology Group’s 2013 blueprint for research: neuroblastoma.

Pediatr Blood Cancer. (2013) 60:985–93. doi: 10.1002/pbc.24433

3. Matthay KK, George RE, Yu AL. Promising therapeutic

targets in neuroblastoma. Clin Cancer Res. (2012) 18:2740–

53. doi: 10.1158/1078-0432.CCR-11-1939

4. Huang M, Weiss WA. Neuroblastoma and MYCN. Cold Spring Harb Perspect

Med. (2013) 3:a014415. doi: 10.1101/cshperspect.a014415

5. Irwin MS, Park JR. Neuroblastoma: paradigm for precision medicine.

Pediatr Clin North Am. (2015) 62:225–56. doi: 10.1016/j.pcl.2014.

09.015

6. Bar-Sever Z, Biassoni L, Shulkin B, Kong G, Hofman MS, Lopci

E, et al. Guidelines on nuclear medicine imaging in neuroblastoma.

Eur J Nucl Med Mol Imaging. (2018) 45:2009–24. doi: 10.1007/s00259-

018-4070-8

7. Phelps HM, Ndolo JM, Van Arendonk KJ, Chen H, Dietrich

HL, Watson KD, et al. Association between image-defined risk

factors and neuroblastoma outcomes. J Pediatr Surg. (2019)

54:1184–91. doi: 10.1016/j.jpedsurg.2019.02.040

8. Sharp SE, Shulkin BL, Gelfand MJ, Salisbury S, Furman WL. 123I-MIBG

scintigraphy and 18F-FDG PET in neuroblastoma. J Nucl Med. (2009)

50:1237–43. doi: 10.2967/jnumed.108.060467

9. Melzer HI, Coppenrath E, Schmid I, Albert MH, von Schweinitz D,

Tudball C, et al.123 I-MIBG scintigraphy/SPECT versus 188F-FDG PET in

paediatric neuroblastoma. Eur J Nucl Med Mol Imaging. (2011) 38:1648–

58. doi: 10.1007/s00259-011-1843-8

10. Maris JM, Hogarty MD, Bagatell R, Cohn SL. Neuroblastoma. Lancet. (2007)

369:2106–20. doi: 10.1016/S0140-6736(07)60983-0

11. Bosse KR, Maris JM. Advances in the translational genomics of

neuroblastoma: from improving risk stratification and revealing novel

biology to identifying actionable genomic alterations. Cancer. (2016)

122:20–33. doi: 10.1002/cncr.29706

12. Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures,

they are data. Radiology. (2016) 278:563–77. doi: 10.1148/radiol.2015151169

13. Ligero M, Garcia-Ruiz A, Viaplana C, Villacampa G, Raciti MV, Landa J,

et al. A CT-based radiomics signature is associated with response to immune

checkpoint inhibitors in advanced solid tumors. Radiology. (2021) 299:109–

19. doi: 10.1148/radiol.2021200928

14. Hyun SH, AhnMS, KohYW, Lee SJ. Amachine-learning approach using PET-

based radiomics to predict the histological subtypes of lung cancer. Clin Nucl

Med. (2019) 44:956–60. doi: 10.1097/RLU.0000000000002810

Frontiers in Medicine | www.frontiersin.org 10 March 2022 | Volume 9 | Article 84077716

https://www.frontiersin.org/articles/10.3389/fmed.2022.840777/full#supplementary-material
https://doi.org/10.1073/pnas.1710901115
https://doi.org/10.1002/pbc.24433
https://doi.org/10.1158/1078-0432.CCR-11-1939
https://doi.org/10.1101/cshperspect.a014415
https://doi.org/10.1016/j.pcl.2014.09.015
https://doi.org/10.1007/s00259-018-4070-8
https://doi.org/10.1016/j.jpedsurg.2019.02.040
https://doi.org/10.2967/jnumed.108.060467
https://doi.org/10.1007/s00259-011-1843-8
https://doi.org/10.1016/S0140-6736(07)60983-0
https://doi.org/10.1002/cncr.29706
https://doi.org/10.1148/radiol.2015151169
https://doi.org/10.1148/radiol.2021200928
https://doi.org/10.1097/RLU.0000000000002810
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Qian et al. PET/CT Radiomics Study in Neuroblastoma

15. Ou X, Zhang J, Wang J, Pang F, Wang Y, Wei X, et al. Radiomics based

on (18)F-FDG PET/CT could differentiate breast carcinoma from breast

lymphoma using machine-learning approach: a preliminary study. Cancer

Med. (2020) 9:496–506. doi: 10.1002/cam4.2711

16. Yue ZX, Huang C, Gao C, Xing TY, Liu SG, Li XJ, et al. MYCN amplification

predicts poor prognosis based on interphase fluorescence in situ hybridization

analysis of bone marrow cells in bone marrow metastases of neuroblastoma.

Cancer Cell Int. (2017) 17:43. doi: 10.1186/s12935-017-0412-z

17. Theissen J, Boensch M, Spitz R, Betts D, Stegmaier S, Christiansen H, et al.

Heterogeneity of the MYCN oncogene in neuroblastoma. Clin Cancer Res.

(2009) 15:2085–90. doi: 10.1158/1078-0432.CCR-08-1648

18. Villamon E, Berbegall AP, Piqueras M, Tadeo I, Castel V, Djos A, et al.

Genetic instability and intratumoral heterogeneity in neuroblastoma

with MYCN amplification plus 11q deletion. PLoS ONE. (2013)

8:e53740. doi: 10.1371/journal.pone.0053740

19. Stauss J, Franzius C, Pfluger T, Juergens KU, Biassoni L, Begent

J, et al. Guidelines for 18F-FDG PET and PET-CT imaging

in paediatric oncology. Eur J Nucl Med Mol Imaging. (2008)

35:1581–8. doi: 10.1007/s00259-008-0826-x

20. Delbeke D, Coleman RE, Guiberteau MJ, Brown ML, Royal HD, Siegel BA,

et al. Procedure guideline for tumor imaging with 18F-FDG PET/CT 1.0. J

Nucl Med. (2006) 47:885–95.

21. van Griethuysen JJM, Fedorov A, Parmar C, Hosny A, Aucoin N, Narayan V,

et al. Computational radiomics system to decode the radiographic phenotype.

Cancer Res. (2017) 77:e104–7. doi: 10.1158/0008-5472.Can-17-0339

22. Morgenstern DA, London WB, Stephens D, Volchenboum SL, Hero B, Di

Cataldo A, et al. Metastatic neuroblastoma confined to distant lymph nodes

(stage 4N) predicts outcome in patients with stage 4 disease: a study from

the International Neuroblastoma Risk Group Database. J Clin Oncol. (2014)

32:1228–35. doi: 10.1200/jco.2013.53.6342

23. Moroz V, Machin D, Hero B, Ladenstein R, Berthold F, Kao P,

et al. The prognostic strength of serum LDH and serum ferritin

in children with neuroblastoma: a report from the International

Neuroblastoma Risk Group (INRG) project. Pediatr Blood Cancer. (2020)

67:e28359. doi: 10.1002/pbc.28359

24. Zhang J, Zhao X, Zhao Y, Zhang J, Zhang Z, Wang J, et al. Value of pre-

therapy (18)F-FDG PET/CT radiomics in predicting EGFRmutation status in

patients with non-small cell lung cancer. Eur J Nucl Med Mol Imaging. (2020)

47:1137–46. doi: 10.1007/s00259-019-04592-1

25. Huynh E, Coroller TP, Narayan V, Agrawal V, Hou Y, Romano

J, et al. CT-based radiomic analysis of stereotactic body radiation

therapy patients with lung cancer. Radiother Oncol. (2016)

120:258–66. doi: 10.1016/j.radonc.2016.05.024

26. Wu W, Parmar C, Grossmann P, Quackenbush J, Lambin P, Bussink

J, et al. Exploratory study to identify radiomics classifiers for lung

cancer histology. Front Oncol. (2016) 6:71. doi: 10.3389/fonc.2016.

00071

27. Wen Z, Zhang L, Zhuang H. Roles of PET/computed

tomography in the evaluation of neuroblastoma.

PET Clin. (2020) 15:321–31. doi: 10.1016/j.cpet.2020.

03.003

28. Shulkin BL, Hutchinson RJ, Castle VP, Yanik GA, Shapiro B, Sisson

JC. Neuroblastoma: positron emission tomography with 2-[fluorine-

18]-fluoro-2-deoxy-D-glucose compared with metaiodobenzylguanidine

scintigraphy. Radiology. (1996) 199:743–50. doi: 10.1148/radiology.199.

3.8637999

Conflict of Interest: LL was employed by the company Sinounion Medical

Technology (Beijing) Co., Ltd.

The remaining authors declare that the research was conducted in the absence of

any commercial or financial relationships that could be construed as a potential

conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Qian, Yang, Zhang, Qin, Wang, Kan, Liu, Li, Zhang and Yang.

This is an open-access article distributed under the terms of the Creative Commons

Attribution License (CC BY). The use, distribution or reproduction in other forums

is permitted, provided the original author(s) and the copyright owner(s) are credited

and that the original publication in this journal is cited, in accordance with accepted

academic practice. No use, distribution or reproduction is permitted which does not

comply with these terms.

Frontiers in Medicine | www.frontiersin.org 11 March 2022 | Volume 9 | Article 84077717

https://doi.org/10.1002/cam4.2711
https://doi.org/10.1186/s12935-017-0412-z
https://doi.org/10.1158/1078-0432.CCR-08-1648
https://doi.org/10.1371/journal.pone.0053740
https://doi.org/10.1007/s00259-008-0826-x
https://doi.org/10.1158/0008-5472.Can-17-0339
https://doi.org/10.1200/jco.2013.53.6342
https://doi.org/10.1002/pbc.28359
https://doi.org/10.1007/s00259-019-04592-1
https://doi.org/10.1016/j.radonc.2016.05.024
https://doi.org/10.3389/fonc.2016.00071
https://doi.org/10.1016/j.cpet.2020.03.003
https://doi.org/10.1148/radiology.199.3.8637999
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


ORIGINAL RESEARCH
published: 18 April 2022

doi: 10.3389/fmed.2022.874847

Frontiers in Medicine | www.frontiersin.org 1 April 2022 | Volume 9 | Article 874847

Edited by:

Giorgio Treglia,

Ente Ospedaliero Cantonale (EOC),

Switzerland

Reviewed by:

Sharjeel Usmani,

Kuwait Cancer Control Center, Kuwait

Salvatore Annunziata,

Fondazione Policlinico Universitario A.

Gemelli (IRCCS), Italy

*Correspondence:

Fang Zhang

m18810016346@163.com

Jing Yu

yujing_2020@dmu.edu.cn

†These authors have contributed

equally to this work and share first

authorship

Specialty section:

This article was submitted to

Frontiers in Medicine,

a section of the journal

Frontiers in Medicine

Received: 13 February 2022

Accepted: 17 March 2022

Published: 18 April 2022

Citation:

Jin Z, Wang Y, Wang Y, Mao Y,

Zhang F and Yu J (2022) Application

of 18F-FDG PET-CT Images Based

Radiomics in Identifying Vertebral

Multiple Myeloma and Bone

Metastases. Front. Med. 9:874847.

doi: 10.3389/fmed.2022.874847

Application of 18F-FDG PET-CT
Images Based Radiomics in
Identifying Vertebral Multiple
Myeloma and Bone Metastases
Zhicheng Jin 1†, Yongqing Wang 2†, Yizhen Wang 1†, Yangting Mao 1, Fang Zhang 1* and

Jing Yu 1*
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Purpose: The purpose of this study was to explore the application of

18F-fluorodeoxyglucose positron emission tomography/computed tomography

(18F-FDG PET/CT) image radiomics in the identification of spine multiple myeloma (MM)

and bone metastasis (BM), and whether this method could improve the classification

diagnosis performance compared with traditional methods.

Methods: This retrospective study collected a total of 184 lesions from 131

patients between January 2017 and January 2021. All images were visually evaluated

independently by two physicians with 20 years of experience through the double-blind

method, while the maximum standardized uptake value (SUVmax) of each lesion

was recorded. A total of 279 radiomics features were extracted from the region of

interest (ROI) of CT and PET images of each lesion separately by manual method.

After the reliability test, the least absolute shrinkage and selection operator (LASSO)

regression and 10-fold cross-validation were used to perform dimensionality reduction

and screening of features. Two classification models of CT and PET were derived from

CT images and PET images, respectively and constructed using the multivariate logistic

regression algorithm. In addition, the ComModel was constructed by combining the

PET model and the conventional parameter SUVmax. The performance of the three

classification diagnostic models, as well as the human experts and SUVmax, were

evaluated and compared, respectively.

Results: A total of 8 and 10 features were selected from CT and PET images

for the construction of radiomics models, respectively. Satisfactory performance of

the three radiomics models was achieved in both the training and the validation

groups (Training: AUC: CT: 0.909, PET: 0.949, ComModel: 0.973; Validation: AUC:

CT: 0.897, PET: 0.929, ComModel: 0.948). Moreover, the PET model and ComModel

showed significant improvement in diagnostic performance between the two groups

compared to the human expert (Training: P = 0.01 and P = 0.001; Validation:

P = 0.018 and P = 0.033), and no statistical difference was observed between

the CT model and human experts (P = 0.187 and P = 0.229, respectively).
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Conclusion: The radiomics model constructed based on 18F-FDG PET/CT images

achieved satisfactory diagnostic performance for the classification of MM and

bone metastases. In addition, the radiomics model showed significant improvement

in diagnostic performance compared to human experts and PET conventional

parameter SUVmax.

Keywords: radiomics, multiple myeloma, bone metastases, 18F-FDG PET-CT, SUVmax

1. INTRODUCTION

Multiple myeloma (MM) was a malignant clonal cell tumor
that originated from bone marrow plasma cells. MM extensively
invades bone marrow, bones, and extramedullary organs, leading
to prime syndromes such as bone pain, anemia, infection,
fractures, and kidney damage (1). Bone metastasis(BM) was a
common event in tumor progression. The common primary
tumors were lung cancer, breast cancer, and prostate cancer
(2). The spine contained a rich blood supply and was also the
most frequent site to be involved. MM and BM had different
pathogenesis, but the site of occurrence, clinical manifestations,
and imaging features were similar, which makes it difficult
to distinguish. Lesions that were difficult to characterize were
often misdiagnosed as other orthopedic diseases, especially
for MM and bone metastases with unknown primary lesions.
Misclassifications will significantly affect the quality of patient
survival and survival rates due to the variability of treatment
options (3, 4). Therefore, it was particularly important to improve
the diagnostic accuracy of MM and BM.

Previous studies had considered serologic markers such
as serum creatinine, serum globulin, and serum alkaline
phosphatase as crucial information for differentiating MM from
BM. However, some patients with light chain secretory, low,
and non-secretory myeloma may have low or normal levels
of these serologic markers, and such examinations were often
used for preliminary screening (5, 6). 18F-fluorodeoxyglucose
positron emission tomography/computed tomography (18F-
FDG PET/CT) images combined anatomical and metabolic
information to provide relatively high sensitivity and specificity
to assess bone damage and detect extramedullary lesions (7,
8). In patients with early MM, up to 40% of patients could
detect additional lesions by PET/CT examination to guide
individualized treatment plans (9). The International Myeloma
Working Group had reached a consensus and recommended
18F-FDG PET/CT as one of the best imaging methods for

the examination of MM and other plasma cell diseases (10).
However, there still exist lesions that were difficult to identify
even for experienced physicians in clinical work, especially

osteolytic lesions (11, 12).
Radiomics converted texture, intensity, density, and other

features extracted from medical images into mineable high-
dimensional data through automated or semi-automated
methods, which could be used as a non-invasive assessment of
spatial heterogeneity of tumors and facilitate personalized patient
treatment (13, 14). The performance of radiomics analysis had
been demonstrated in previous studies to identify cancer types,

predict treatment efficacy, and predict disease progression
(15–17). In addition, radiomics had shown unique advantages in
molecular areas such as prediction of cancer gene expression and
lymph node metastasis (18, 19). However, previous radiomics
mostly focused on CT and MRI, and the diagnostic value of
radiomics combined with 18F-FDG PET/CT for MM and BM
was still unclear (20, 21).

The purpose of this study was to explore the feasibility
of radiomics based on 18F-FDG PET/CT images in
the identification of MM and BM and whether it
could improve the diagnostic performance of these two
diseases.

2. MATERIALS AND METHODS

2.1. Patients
Participants between January 2017 and January 2021 were
enrolled in this study according to the following inclusion
criteria: (1) The diagnosis of MM meets the standards of the
International Myeloma Working Group (22); (2) BM were
confirmed by pathological biopsy, imaging follow-up, and
clinical course; (3) Complete pathology, imaging, and clinical
follow-up results; (4) Abnormal uptake of radioactive tracer in
the spine and the lesion was larger than 1 cm. In addition,
the exclusion criteria included the following: (1) Patients who
have received radiotherapy or chemotherapy; (2) Poor image
quality, difficulty to delineate the edge of the lesion; (3)
Primary bone tumor. The enrolled patients were randomly
divided into training groups and validation groups according
to the ratio of 7:3 for subsequent model construction. This
retrospective study was approved by the hospital’s ethical review,
and the patient’s informed consent requirement was waived. The
enrollment criteria of the patients in this study were shown
in Figure 1.

2.2. Image Protocol
All the image acquisition procedures in this study were
completed in the PET/CT(Philips Ingenuity TF). The radioactive
tracer 18F-FDG was automatically synthesized by the cyclotron
(Sumitomo, Japan) and the 18F-FDG chemical synthesis module
(Sumitomo, Japan), and the radioactive tracer purity was
guaranteed to be >95%. The patient fasted for at least 6 h
before the examination, and the glucose level lower than 11.1
mmol/L was ensured by routine measurement of the blood
samples before the PET/CT examination. Patients were injected
with 18F-FDG(5.55 MBq/kg) intravenously in a quiet state
and were placed in a room with dim light for 40–60 min,
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FIGURE 1 | The enrollment criteria of the patients in this study.

and then underwent PET/CT after emptying the bladder. The
scanning process includes a low-dose CT scan and PET scan
from the top of the skull to the upper thigh. CT acquisition
parameters were as follows: tube current tube voltage was
automatically generated according to the positioning image,
tube rotation time: 0.35 s, output voltage: 70–140 KV, output
current: 20–450 mA, layer thickness: 0.7 mm, reconstruction
time: 40 frames/s, reconstruction matrix: 512×512, number
of detector rows: 64, pitch: 0.15–1.5. After standardizing all
parameters of the patient’s PET/CT images, the window width
and window level of the CT images were set to 350 and
50, respectively, and the PET data were reconstructed by
attenuation correction and iterative method (Ordered Subsets
Expectation Maximization, OSEM), and then transmitted to the
MedEx workstation together with the CT images for fusion
imaging. The maximum standardized uptake value (SUVmax)
was automatically generated by the workstation based on the
information of the subject’s weight, injection dose, and time. The
region of interest (ROI) was outlined along with the extent of
the lesion at the level where the concentration of the radioactive
tracer was most obvious, and the workstation automatically
calculates the SUVmax.

2.3. Confirmation of Lesions and Huamn
Expert’s Qualitative Classification
Considering that detailed pathological examination was not
available in all patients, we determined the diagnosis of the
lesions on the basis of pathological biopsy, imaging follow-up,
and clinical course of the disease. Independent visual analysis of
lesions was evaluated by two physicians (TAJ and JY) with 20
years of diagnostic experience using the double-blind method,
physicians were not informed of the patient’s clinical information
and pathology but were told that the lesion was either MM
or BM. The weighted kappa analysis was used to determine
the interobserver agreement. Kappa coefficients of 0–0.20, 0.21–
0.40, 0.41–0.60, 0.61–0.80, and 0.81–1 were considered to be
slight, fair, moderate, good, and almost perfect agreement,
respectively (23).

2.4. Segmentation and Feature Extraction
Segmentation of the lesions was also performed by double-blind
methods with physicians who had 10 years of experience (CMY
and ZJN) in diagnostic work. All features were extracted in
MaZda software, which has been proven in previous studies

Frontiers in Medicine | www.frontiersin.org 3 April 2022 | Volume 9 | Article 87484720

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Jin et al. PET/CT Radiomics

FIGURE 2 | Clinical cases PET/CT images of multiple myeloma (MM) (A,B) and the delineation of the region of interest (ROI) (C,D).

for radiomics, and all radiomics features extracted were in
accordance with Image Biomarker Standardization Initiative
(IBSI) standards (24, 25). The source images were extracted
from the hospital PACS workstation and saved in BMP format.
The object of this study was the largest cross-sectional area
of the vertebral lesion, and the features were extracted by the
2D mode of Mazda software. Before the image was applied to
MaZda software for feature extraction, uniform and standardized
pre-processing of the image was performed by the method of
µ ± 3σ to make the features more reproducible and verifiable.
The abnormal uptake of radioactive tracer on the image was
used as the initial ROI, and the physician carefully identified
the edges of the lesion and progressively outlined the ROI on
the PET and CT images along the edge of the lesion. Because
of the long examination time, the physician could make minor
adjustments to determine the lesion of interest outlined and
eliminate the effects of patient movement or expiratory motion.
An example of the ROI outline was illustrated in Figure 2.

A total of 279 features were extracted for each ROI, which

were included in the following six common categories: gray-
level histogram (HSLM), gray-level absolute gradient (GRM),

gray-level run-length matrix (GLRLM), gray-level co-occurrence

matrix (GLCM), autoregressive model (ARM), and wavelet. The
interpretation of the features is described in detail in the previous
study (26).

2.5. Reliability Analysis
To ensure the stability and reproducibility of the extracted
features, a reliability test was performed. Another physician with
10 years of diagnostic experience repeated the outlining of the
above ROI by randomly selecting 30 lesions. The reliability of
the ROI outlined by the two physicians was assessed by the
class correlation coefficient. Class correlation coefficients greater
than 0.75 for radiomic features were considered to have good
stability and reproducibility and were used for subsequent feature
screening and model construction.

2.6. Dimensionality Reduction and Model
Establishment
Before the feature screening, the normalization of the features
was performed by the Z-score method, which aims to avoid the
training of the model with too small weights, causing numerical
instability, and to improve the comparability of the data, while
enabling the parameter optimization to converge at a faster
rate. After the reliability test, the training group was subjected
to the least absolute shrinkage and selection operator (LASSO)
regression for further data selection. LASSO regression was
performed by fitting a generalized linear model with variable
selection and complexity adjustment regularization. The filtering
features were validated by 10-fold cross-validation based on
the bias minimization criterion. Finally, for the final selected
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TABLE 1 | Basic information for patients in the training and validation cohorts.

The training cohort The validation cohort

BM MM P BM MM P

Gender 0.171 0.079

Female 22 16 11 8

Male 38 15 15 6

Age 63.58 ± 12.07 58.71 ± 10.08 0.470 60.88 ± 11.15 57.79 ± 13.20 0.521

Range 33–90 43–75 37–86 34–77

Lesion form 0.057 0.101

Osteolytic 52 37 22 18

Osteoblastic 15 2 6 0

Mixed 13 10 6 3

ISS stage

I - 10 - 3

II - 23 - 13

III - 16 - 5

Extramedullary mass 27 19 0.604 11 7 0.778

SUVmax 6.84 ± 3.32 4.06 ± 1.61 <0.001 6.79 ± 3.31 4.38 ± 1.60 0.001

Osteoporosis 0.001 0.007

Postive 17 33 8 13

Negative 63 16 24 8

Confirmation 0.001 0.001

Biopsy 29 49 14 21

Follow-up 51 0 18 0

P < 0.05 was considered to be statistically significant; BM, bone metastases; MM, multiple myeloma; Extramedullary mass, Extramedullary soft tissue mass; ISS stage, International

Staging System classification.

non-zero features, a classificationmodel was built by multivariate
logistic regression. CT models and PET models were constructed
based on the final selected features (features were derived from
CT and PET images, respectively). In order to better evaluate the
performance of radiomics, a combined model (ComModel) was
constructed by adding the PET conventional parameter SUVmax
combined with PET radiomics features.

2.7. Model Comparison
The performance of all classification diagnostic models was
evaluated by comparing the area under the receiver operating
characteristic (ROC) curve (AUC), accuracy, sensitivity,
specificity, negative predictive value (NPV), and positive
predictive value (PPV), while 95% CI of AUC were calculated.
The DeLong test was used to compare the diagnostic effects
between the models, and P < 0.05 was considered to be
statistically different. In addition, calibration curves and Brier
scores were used to evaluate the predictive ability and goodness
of fit of the classification models to observe the agreement
between the actual and predicted probabilities of the models.
Decision curve analysis (DCA) was used to visualize and evaluate
the clinical net benefit and clinical utility of the classification
prediction model by the graphical presentation.

2.8. Statistical Analysis
Independent samples t-test or Mann—Whitney U-test was used
to compare continuous variables with normal or non-normal

distribution in the MM and BM groups. Categorical variables
between the two groups were assessed using the chi-square
test or Fisher test and weighted Kappa statistics were used
to assess interobserver agreement. The processing of features
screen, model construction, and comparison of the diagnostic
performance of the models were performed in R software
(version 4.1.1) and Python (version 3.8.1). IBM SPSS (version
21.0) and MedCalc software (version 20.0) were used for other
clinical data analysis and ROC curve plotting. Probability values
of P < 0.05 were considered statistically significant.

3. RESULTS

3.1. Basic Patient Information
According to the inclusion and exclusion criteria, a total of 131
patients were enrolled, including 86 patients who were diagnosed
with bone metastases (BM), and the remaining 45 patients
were confirmed as MM. The statistics and comparison of basic
information of the patients were shown in Table 1. According
to the diagnostic criteria of the International Myeloma Working
Group, the stages of MM(ISS standard) were as follows: stage I:
n = 10; stage II: n = 19; stage III: n = 16. The primary tumor of
patients diagnosed with BM were as follows: lung cancer: n = 24;
breast cancer: n = 17; prostate cancer: n = 14; pancreatic cancer:
n = 4; kidney cancer: n = 3; ureteral cancer: n = 3; stomach cancer:
n = 3; thyroid cancer: n = 3; liver cancer: n = 2; bladder cancer:
n = 2; colon cancer: n = 2; parotid cancer: n = 2; gallbladder
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FIGURE 3 | (A–D) Demonstrated the specific process of least absolute shrinkage and selection operator (LASSO) regression analysis screening features for CT model

and PET model, respectively. (A,C) Showed process of features selection. The vertical green line was plotted at the optimal λ of 0.030 and 0.023 for CT and PET

model, respectively. Ten and eight features with non-zero coefficients were finally selected for CT and PET model, respectively. (B,D) Showed that features selection

performed by 10-fold cross-validation with the criterion of minimum deviance.

cancer: n = 2: fallopian tube cancer: n = 2; uroepithelial cancer:
n = 1; esophagus cancer: n = 1; cervical cancer: n = 1. A total
of 184 lesions were obtained and randomly divided into training
and validation groups according to the ratio of 7:3 (The training
group: BM: n = 80,MM: n = 49: The validation group: BM: n = 34,
MM: n = 21).

3.2. Feature Selection, Model
Establishment, and Validation
After reliability testing and excluding features with ICC
coefficients less than 0.75, 223 and 234 radiomics features
were extracted from CT and PET in the training group,
respectively. Then, 10 and 8 texture features were obtained
from CT and PET after LASSO regression and 10-fold cross-
validation, respectively. The LASSO regression screening process
was described in detail in Figure 3, and the final filtered
feature information in the training and validation groups of
the MM group and BM group was illustrated in the heat
map in Supplementary Figures S1–S4, which the differences
in feature expression between the MM and BM groups were
clearly seen. Furthermore, the selected features of CT and
PET coefficients were also described in Supplementary Table A.
In the training group, all models achieved very high AUC
values and the classification diagnostic performance of the
ComModel (AUC:0.973; CI95%:0.928–0.993) was significantly

improved compared to the CT (AUC:0.909; CI95%:0.846–0.952)
and PET models (AUC:0.949; CI95%:0.896–0.980) (P = 0.013
and P = 0.024, respectively), while the PET model did not
show a statistical difference in the DeLong test although it had
a higher diagnostic performance compared to the CT model
(P = 0.131). In the validation group, the ComModel (AUC:
0.948; CI95%: 0.853-0.990) and the PET model (AUC:0.929;
CI95%: 0.826–0.981) achieved similar diagnostic performance
and outperformed the CT model (AUC:0.897; CI95%: 0.785–
0.963), and the DeLong test suggested no statistical difference
between the three models (P = 0.309, P = 0.466, and P = 0.496,
respectively).

3.3. Diagnostic Performance Between the
CT Model, PET Model, ComModel, Human
Experts, and SUVmax
Human experts’ classification diagnostic of lesions was estimated
by the kappa coefficient, and in this study, the weighted
k-value for the interobserver agreement was 0.832, which
indicates a relatively reliable agreement. In the training and
validation groups, the AUC values of human experts for
the classification and diagnosis performance of MM and
BM were 0.835 (CI95%:0.760–0.895) and 0.840 (CI95%:0.717–
0.925), respectively. while the AUC values of SUVmax between
the two groups were 0.802 (CI95%:0.723–0.867) and 0.810
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(CI95%:0.681–0.903), respectively. Both the ComModel and the
PET model showed significant differences in the classification
diagnosis of MM and BM compared to human experts in both
the training (P = 0.001 and P = 0.01, respectively) and validation
groups (P = 0.033 and P = 0.018, respectively). The CT model
was not statistically different between the two groups compared
to the human experts (P = 0.187 and P = 0.299, respectively).
The ComModel and the PETmodel also showed great superiority
compared to SUVmax between the two groups (Training group:
P < 0.001 and P = 0.001; Validation group: P = 0.019, P =
0.045). No statistical difference was observed that the human
expert compared to SUVmax between the two groups (P = 0.036
and P = 0.732). The classification diagnostic performance of all
models was described and illustrated in Table 2, and the ROC
curves of all classification models were illustrated in Figure 4,
in addition, the detailed results of the DeLong test were also
recorded in Figure 4.

3.4. Clinical Use and Calibration
According to the calibration curves, all the radiomics models
were closer to the ideal curve, implying a good categorical
diagnostic performance. In addition, the ComModel had a
better fitness compared to the PET and CT models because
of the smaller Brier scores (Brier scores were 0.070, 0.088,
and 0.119, respectively), the calibration curve was shown in
Figure 5. In terms of the net clinical gain of the models, both
the ComModel and the PET model achieved good net clinical
gain and outperformed the other models, the decision curve was
shown in Figure 6.

4. DISCUSSION

Both myeloma and metastases were common malignant lesions
of the spine. When patients only present with lumbar pain and
no previous history of tumor, the clinical symptoms and imaging

manifestations of both were similar. However, the treatment
and prognosis of them were significantly different. Although
bone biopsy was the gold standard for identifying benign and
malignant lesions, there were limitations in clinical diagnosis
due to its invasive examination. Radiomics provided a non-
invasive assessment of the lesion and its microenvironment and
allow quantification of the spatial heterogeneity of the lesion,
which allows identification and evaluates the prognosis. In this
study, we constructed and validated a radiomics model based on
18F-FDG PET-CT images and achieved excellent performance
in classifying and diagnosing BM and MM. Furthermore, the
radiomics model showed unique superiority and clinical utility
compared to human experts as well as PET conventional
parameter SUVmax. This will play a decisive role as a non-
invasive and easy-to-use method in the diagnosis, staging, and
re-staging of diseases and even in the selection of treatment
strategies for diseases.

Previous studies had pointed out that the traditional imaging
features of bone destruction inmyeloma involved a series of small
focal-like, worm-like, and broad bone destruction, especially
for the imaging features such as chisel-like changes in the
skull and broad bone destruction in the ribs were specific
(27, 28). In addition, most patients with MM showed different
degrees of osteoporosis and rarely osteoblastic bone changes. The
imaging of bone metastases was characterized by the tendency
to invade the pedicle rather than the vertebral body and lack
of involvement of extremity bones (29). Mutlu et al. suggest
that features such as more sclerotic margins around BM lesions
and sharper margins around MM lesions may also be used to
differentiate among them (12). Although these studies indicate
that these features may be crucial information to identify them,
there were still exist similar imaging presentations of bone
metastases or atypical lesions in clinical work. Moreover, MM
and BM cannot be discriminated simply from bone destruction.
In this study, physicians successfully identified all osteoblastic

TABLE 2 | The diagnostic ability of each model for discriminating vertebral multiple myeloma (MM) from bone metastasis (BM).

AUC Accuracy Sensitivity Specificity PPV NPV

CT model

training cohort 0.909(0.846–0.952) 0.829 0.875 0.796 0.889 0.735

validation cohort 0.897(0.785–0.963) 0.836 0.882 0.857 0.882 0.762

PET model

training cohort 0.949(0.896–0.980) 0.884 0.937 0.837 0.900 0.857

validation cohort 0.929(0.826–0.981) 0.873 0.824 0.952 0.882 0.857

ComModel

training cohort 0.973(0.928–0.993) 0.915 0.925 0.898 0.925 0.898

validation cohort 0.948(0.853–0.990) 0.891 0.971 0.857 0.912 0.857

Human experts

training cohort 0.835(0.760–0.895) 0.845 0.875 0.796 0.875 0.796

validation cohort 0.840(0.717–0.925) 0.836 0.824 0.857 0.824 0.857

SUVmax

training cohort 0.802(0.723–0.867) 0.729 0.875 0.571 0.775 0.653

validation cohort 0.810(0.681–0.903) 0.745 0.912 0.571 0.794 0.667

AUC, the area under the ROC curve; PPV, postive predictive value; NPV, negative predictive value.
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FIGURE 4 | Comparison of the diagnostic performance of different models; (A,B) Show the ROC curves for each model in detail while also recording the value of

AUC. (C,D) Indicate the results of the DeLong test for the training group and validation group, respectively. AUC, area under the curve; *P< 0.05; **P < 0.01.

lesions in both the training and validation cohort of the BM
group. However, 17.1% (22/129) of the lesions were incorrectly
identified in the classification of osteolytic lesions. Physician
identification of lesions on conventional imaging mainly was
attributed to subjective visual assessment as well as diagnostic
experience. Still, this approach was undoubtedly challenging for
younger physicians with less diagnostic experience. Accurate
classification of BM and MM was crucial as it relates to the
plan of individualized treatment, reduction of complications, and
improvement of prognosis.

Maximum standardized uptake value as the conventional
parameter of PET/CT was used in past studies to determine
the treatment sensitivity and prognostic value of malignant
lymphoma in the early and intermediate stages (30, 31). On the
other hand, the study of Polat et al. confirmed the predictive
value of SUVmax for grading and staging of renal clear cell
carcinoma and the risk of stratification (32, 33). In our study,
SUVmax in the MM group (SUVmax: 4.06 ± 1.61) compared

to the BM (SUVmax: 6.84 ± 3.22) group showed a significant
decrease in both the training and validation groups, and similar
results had been reported several times in the past studies
(34, 35). However, the SUVmax for MM and BM in study Li
et al. was (1.6 ± 0.7 and 5.5 ± 2.7), respectively, and this
variability may be due to the subjects of that study being derived
from 334 patients with 8,896 lesions throughout the body,
whereas our study focused on the spine and maximum of two
lesions per case (5). There are no clear diagnostic thresholds
for SUVmax to identify MM and BM. Furthermore, the AUC
values of SUVmax for discriminating the BM and MM in the
training and validation groups in our study were 0.802 and
0.810, and the accuracy were 0.729 and 0.745, respectively,
which achieved only moderate diagnostic efficacy and were not
sufficient to make accurate predictions for the classification of
lesions. Furthermore, it was difficult for SUVmax to provide
a comprehensive description of the heterogeneity and spatial
consistency of lesions.
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FIGURE 5 | Comparison of the calibration curve and Brier score of different models. All three model’s calibration curves were closed to ideal curves, indicating that the

models had good fitness and predictive ability. The ComModel had better goodness of fit compared to the PET and CT models because of the smaller Brier scores

(Brier scores were 0.070, 0.088, and 0.119, respectively). The following figure shows the distribution of the probability of diagnosis for different models.

Radiomics could transcend subjective visual assessment to
provide an objective evaluation of lesion and tissue heterogeneity,
which served as a new tool to provide valuable information
about the microenvironment of lesions that cannot be observed
by the human eyes. PET/CT radiomics was demonstrated
several times in past studies to play an essential role in the
diagnosis and prognosis of diseases and performing assessment
of therapeutic efficacy. In our research, the radiomics models
constructed based on PET/CT images had high diagnostic
efficacy in discriminating MM and BM not only in the training
group, with AUC values of 0.909, 0.949, and 0.973 for the
CT model, PET model, and ComModel, respectively, but also
in the validation group, with AUC values of 0.897, 0.929,
and 0.948 for the CT model, PET model, and ComModel,
respectively. In addition, the diagnostic performance and clinical
utility of the radiomics model were superior to those of

the human expert and SUVmax, with incremental value for
differential and diagnostic purposes, especially the PET andCOM
models. It should note that a proportion of patients incorrectly
staged by human experts (10.9%) and SUVmax (23.9%) were
correctly diagnosed by our radiomics model, indicating that
the radiomics model could complement the current staging
scheme. More importantly, our findings suggest that the PET
model had a higher value than conventional CT radiomics in
discriminating MM from BM. Although there was no statistical
difference in the Delong test, the AUC, Accuracy, Sensitivity,
and Specificity of the PET model were significantly improved
compared with the CT model. This may be due to the fact that
PET images represent radioactive tracer uptake and metabolic
information of the lesion. At the same time, PET/CT radiomics
reflected the quantification of tumor uptake heterogeneity and
earlier detection of lesions compared to conventional imaging,

Frontiers in Medicine | www.frontiersin.org 9 April 2022 | Volume 9 | Article 87484726

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Jin et al. PET/CT Radiomics

FIGURE 6 | The clinical practicability of the models in this study was evaluated and compared, which indicated that the PET model and the ComModel had better net

clinical benefit than the other models.

which brings additional value for lesion and tissue specificity
identification.

Our results show that Perc.01% and Vertl_RLNonUni were
the most representative features in identifying MM and BM,
as they appeared in both CT and PET models. The radiomics
parameter Perc.01% derived from HSLM reflected the brightness
value of the area where it was located and the number of
pixels, which further confirmed the excellent performance of
the radiomic model since these parameters were closely related
to bone density in CT images and radioactive tracer uptake in
PET images, as well as to the osteoporosis exhibited by patients
with myeloma (36). The radiomics parameter Vertl_RLNonUni
derived from the GLRLM reflects the heterogeneity of the
images in different directions, and the Vertl_RLNonUni had been
demonstrated in previous studies as a reliable indicator that could
be used to predict the grading and staging of clear cell renal
cell carcinoma and to perform risk stratification (37). In our
study, it was hypothesized that this may be due to the different
pathological mechanisms of MM and BM, as well as the fact that
BM was an infiltrative lesion while MM was a diffuse lesion (38).

Our findings were highly reproducible because we applied
rigorous subject screening and reliability testing of lesion
segmentation during the study. The LASSO regression algorithm
has been applied and validated many times in the past to have
good utility in screening the feature parameters. Our radiomics
model has been validated by methods such as the Calibration
curve and DCA curve, and has good fitness and is very close
to the ideal curve. It was worth noting that we performed the

outline of ROI in 2D mode rather than 3D mode, and the
radiomic features generated by different mode outlines may be
different. Still, past studies had demonstrated that the models
constructed in 2D or 3D mode achieved similar classification
diagnostic performance (39). In this study, we compared the
bone metastases of different malignant with MM, it is unclear
whether the characteristic parameters of bone metastases caused
by different malignancies are the same, Xiong et al. have
tried to distinguish the BM characteristics of lung cancer
and other cancers, and their results achieved only moderate
diagnostic results in distinguishing them (20). In addition,
patients with BM and MM may have altered images after
chemotherapy or radiotherapy, such as focal radiotracer uptake
and SUV measurements. Post-treatment lesions exhibiting flare
phenomena and osteogenic-type responses may also introduce
changes to the features extraction. Therefore, we strictly screened
the enrolled patients to eliminate the effect of treatment on
the images and ensure the rigor of this study. Finally, the use
of pre-treatment images to construct radiomic models had the
potential to help clinicians physicians to determine the sensitivity
of patients to radiotherapy or chemotherapy and, thus, better
stratify patients to determine more appropriate individualized
treatment plans.

There were still exist some limitations in our study. First, as a
single-center study, this study may be biased in terms of patient
selection, and thus, the results may hardly represent generalizable
findings. In addition, there was a lack of external validation
data from the multicenter association. Therefore, all aspects still
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need to be adjusted and optimized before applying to the clinic.
Second, retrospective studies may have selection bias related
to study data collection. Third, not all patients enrolled had
pathological findings, and we combined pathological findings
and follow-up results to determine the classification of lesions
under strict adherence to inclusion and exclusion criteria.

5. CONCLUSION

The radiomics model constructed based on 18F-FDG PET/CT
images achieved satisfactory diagnostic performance for the
classification of MM and bone metastases. In addition, the
radiomics model showed a significant improvement in diagnostic
performance compared to human experts and PET conventional
parameter SUVmax. This non-invasive method could be used as
a complement to traditional diagnostic methods. Furthermore,
it had the potential to help clinicians physicians to develop
individualized treatment plans, avoid adverse risks, and improve
treatment outcomes.
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We consider the problem of weakly supervised segmentation on chest radiographs. The

chest radiograph is the most common means of screening and diagnosing thoracic

diseases. Weakly supervised deep learning models have gained increasing popularity

in medical image segmentation. However, these models are not suitable for the critical

characteristics presented in chest radiographs: the global symmetry of chest radiographs

and dependencies between lesions and their positions. These models extract global

features from the whole image to make the image-level decision. The global symmetry

can lead these models to misclassification of symmetrical positions of the lesions.

Thoracic diseases often have special disease prone areas in chest radiographs. There

is a relationship between the lesions and their positions. In this study, we propose a

weakly supervised model, called Chest L-Transformer, to take these characteristics into

account. Chest L-Transformer classifies an image based on local features to avoid the

misclassification caused by the global symmetry. Moreover, associated with Transformer

attention mechanism, Chest L-Transformer models the dependencies between the

lesions and their positions and pays more attention to the disease prone areas. Chest

L-Transformer is only trained with image-level annotations for lesion segmentation. Thus,

Log-Sum-Exp voting and its variant are proposed to unify the pixel-level prediction with

the image-level prediction. We demonstrate a significant segmentation performance

improvement over the current state-of-the-art while achieving competitive classification

performance.

Keywords: weakly supervised, lesion segmentation, transformer, local feature, chest radiograph

1. INTRODUCTION

The chest radiograph is widely applied for the diagnosis of thoracic diseases. Diagnostic
imaging often requires the classification of findings, as well as their geometrical information.
Segmentation of lesions is an indispensable part of clinical diagnosis (1). Deep learning models
have achieved considerable success in chest radiograph segmentation (2–4). Unfortunately,
these supervised models require substantial pixel-level annotated data to locate the
lesions (3–5). The pixel-level annotated medical data are prohibitively expensive to acquire
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with long working hours of expert radiologists. On the contrary,
image-level annotations can be relatively easy to access with
the text analysis techniques on radiological reports (6, 7). Thus,
a good alternative to supervised learning is weakly supervised
learning, which leverages image-level annotations to search the
segmentation prediction (8). Existing deep learning models for
weakly supervised medical segmentation class the images with
features extracted with convolutions (9–12). The pixel-level and
image-level predictions are unified with algorithms based on
Multiple-instance learning (MIL) (9, 10, 13) or class activation
map (CAM) (11, 12, 14). Moreover, the attention mechanism
is adopted to promote their performances (9–12). However,
these weakly supervised models do not consider the critical
characteristics of chest radiographs: the global symmetry of lungs
and dependencies between lesions and their positions.

There is an imperfect symmetry between the left and right
lungs (15), which the existing weakly supervised models don’t
take into account. They extract global features from the whole
image and it is unclear how the latent feature space is related
to the pixel space (9–12). The global symmetry of the lungs can
lead these models to contrast symmetrical positions in the left
and right lungs to classify the lesions (9). As a result, features of
lesions appear at the symmetrical positions of the lesions in the
feature space, and the symmetrical positions are misclassified as
lesions (9).

Convolutional neural networks (CNNs) with restricted
receptive fields have been applied to relate the feature space and
the pixel space exactly (16–18). In these models, the images are
sliced into patches and the features are extracted within local
patches (16–18). The class evidences produced by local features
are averaged across all patches to infer the image-level labels with
the softmax activation (16–18). However, the selection of the
patch size is a hard problem for CNNs with restricted receptive
fields to apply in weakly supervised segmentation. Increasing
the patch size expands the receptive field and leads to better
local features for classification, but coarsens the segmentation
output (16–18). Another problem is the way to aggregate pixel-
level evidences to the image-level decision. Unlike the images
used in (16–18), all of which contact objects, the medical image
datasets contain an extra class: no lesion. Averaging the class
evidences, patches have the same weight to infer the image-
level class. In the abnormal images, the patches with no lesion
are more than those with lesions. To assign the right label
to the images with lesions, many patches with no lesion may
be classed as lesions. The patch with more evidence of lesion
should have larger weights in the aggregation. There is another
common function for aggregation: the max function, which
encourages the model to just consider the most-likely lesion
patch (13). But training with just one patch of the whole image,
the model is hard to converge (19). Moreover, chest radiographs
contain special areas, like the muscle and the black background,
which are unrelated to thoracic diseases. It is necessary to filter
them out in the aggregation of patches. Moreover, the softmax
activation is designed for mutual exclusion. But different diseases
can appear in one chest radiograph and may even have an
overlapping region.

Another characteristic of chest radiographs is the
dependencies between lesions and their positions. Thoracic
diseases often have special disease prone areas in chest
radiographs. This fact implies a relationship between the lesions
and their positions. Weakly supervised deep learning models
highlight salient parts of feature maps and separate redundant
information with CNN attention modules to promote their
performance (9–12). These CNN attention modules treat areas
of the whole image equally, with the same convolution and
pooling operations (9–12). But the salient parts are more likely
located in the disease prone areas and extra attention should be
paid to these areas. These models lack the ability to model the
position information present in chest radiographs.

To tackle the aforementioned problems, we propose a weakly
supervised deep learning model, called Chest L-Transformer,
for lesion segmentation and disease classification on chest
radiographs. Chest L-Transformer completes these two tasks
only using image-level annotations. We present a new restricted
receptive field CNN, called Restricted ResNeXt, as the backbone
of Chest L-Transformer. Restricted ResNeXt extracts local
features with a restricted receptive field and relates the feature
space and the pixel space exactly. Hence, the features of
lesions only appear at nearby positions of themselves, and
the misclassification caused by the symmetry is avoided.
Furthermore, Restricted ResNeXt extracts the local features not
only from image patches but also from a limited nearby area
around them. It can expand the receptive field while maintaining
the fine scale of the segmentation output. A particular voting
function, called Log-Sum-Exp voting, is proposed to aggregate
pixel-level evidences.With this function, patches with differential
evidences will have different weights to infer the image-level
classes. Furthermore, a variant of Log-Sum-Exp voting is
proposed to filter the unrelated areas. To ensure that multiple
diseases can be detected simultaneously, the sigmoid activation
takes place of the softmax one. Finally, Transformer attention
mechanism (20) is introduced into the attention block of Chest
L-Transformer to utilize the dependencies between the lesions
and their positions. The attention block focuses on the disease
prone areas with additional learnable positional embeddings (20,
21). We demonstrate a significant segmentation performance
improvement over the current state of the art with competitive
classification performance.

2. METHODS

With image-level annotated images, we aim to design a
deep learning model that simultaneously produces disease
classification and lesion segmentation. The proposed architecture
is shown in Figure 1. It consists of three components: backbone,
position attention block, and classifier. The backbone extracts the
local features with Restricted ResNeXt. The local feature maps
are downsampled and each pixel of the feature maps represents
a small patch in the original image. The features of the region of
interest are highlighted by the position attention block, which is
mainly realized by two attention layers. The classifier first assigns
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FIGURE 1 | Overview of Chest L-Transformer. A backbone with restricted receptive field CNNs is utilized to extract the local features. The position attention is added

to Chest L-Transformer to highlight the features of the region of interest with positional embeddings. The local features are passed to a classifier for the prediction of

the image labels as well as the lesion segmentation.

each patch a probability of the lesion for the segmentation task
by the fully convolutional network (FCN). Then, Log-Sum-Exp
voting allocating patches with differential evidences differential
weights are used by the classifier in inferring the image-level
classes with the probabilities of patches.

2.1. Backbone
We propose a variant of ResNeXt architecture as the backbone
given its dominant performance in image analysis (22). Our
backbone, Restricted ResNeXt, differs from ResNeXt (22) mainly
in the replacement of many 3 × 3 by 1 × 1 convolutions for
a restricted receptive field (see Figure 2). Restricted ResNeXt
addresses the gradient vanish problem with the residual
learning (23) and reduces the model complexity with the
split-transform-merge strategy (24). After removing the final
classification and pooling layers, an input image with shape h ×

w × c produces a local feature tensor with shape h′ × w′
× c′.

Here, h, w, and c are the height, width, and number of channels
of the input image respectively while h′ = h/16, w′

= w/16,
and c′ = 2, 048. The output of this network encodes the images
into a set of abstracted feature maps. Each pixel of the feature
maps represents a small patch (size 16×16) in chest radiographs.
The receptive field size of the topmost convolutional layer of
Restricted ResNeXt is limited to 39 × 39 pixels. The size of
the receptive field can be increased by reducing the number
of replaced 3 × 3 convolutions, while the scale of the output
remains unchanged.

2.2. Position Attention
The position attention block (see Figure 3) highlights local
features of the region of interest with Transformer attention
mechanism (20). In the position attention block, the local features
x are mapped into a d-dimensional (d = 1, 024) embeddings z0
with position information (Equation 1). The local features x ∈

R
h′×w′

×c′ are reshaped into a sequence of flattened 2D features

xp ∈ R
(h′·w′)×c′ . The flattened features xp are mapped into a

latent d-dimensional embedding space using a trainable linear
projection. To use position information, learnable positional
embeddings (25) are added to the feature embeddings to retain
position information as follows:

z0 = xp × E+ Epos, (1)

where E ∈ R
c′×d denotes the patch embedding projection and

Epos ∈ R
(h′·w′)×d denotes the positional embeddings. Then, d-

dimensional embeddings z0 are put into a stack of L = 2
identical attention layers. Each layer has two sub-layers including
a multi-head self-attention (MSA) mechanism and a small multi-
layer perceptron (MLP) with one hidden layer. The MSA is
an extension of “Scaled Dot-Product Attention” (20). We run
M = 12 “Scaled Dot-Product Attention” operations and project
their concatenated outputs in the MSA. We employ a residual
connection (23) around each of the two sub-layers, followed by
layer normalization (26). Therefore the output features of the l-th
layer can be written as follows:

z
′

l
= MSA

(

LN
(

zl−1

))

+ zl−1, (2)

zl = MLP
(

LN
(

z
′

l

))

+ z
′

l
, (3)

where l ∈ {1, 2} is the layer number, zl denotes the output by
the l-th layer, and LN denotes the layer normalization operator.
At last, the 2D features z2 are reshaped back into 3D features
x
′
∈ R

h′×w′
×d.

2.3. Segmentation and Classification
Our model divides the input image into h′ × w′ patch grid. Each
patch is assigned a probability of the diseases by a small FCN (27)

with features x′ ∈ R
h′×w′

×d as the segmentation result. The small
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FIGURE 2 | The overall structure of Restricted ResNeXt. Restricted ResNeXt is a variant of ResNeXt architecture. The modification is mainly in the replacement of

many 3× 3 by 1× 1 convolutions. Moreover, Restricted ResNeXt addresses the gradient vanish problem with the residual learning and reduces the model complexity

with the split-transform-merge strategy. 7× 7 conv denotes the 7× 7 convolution layer. 1× 1 conv denotes the 1× 1 convolution layer. 3× 3 conv denotes the 3× 3

convolution layer. s and g denote the stride and group number of the convolution layer, respectively. cin and cout in the split-transform-merge block denote the

channel numbers of its convolutions.

FCN consists of two pointwise convolution layers and sigmoid
activation.

Chest L-Transformer is only trained with image-level
annotations. To aggregate the pixel-level evidences to an image-
level decision, a smooth and convex approximation of the max
and average functions (28) is chosen to build Log-Sum-Exp
voting as follows:

pk = 1
r log

1
h′×w′

∑

0<i≤h′

0<j≤w′

exp
(

r × pki,j

)

,
(4)

where pk is the probability of the k-th class for an image and pki,j
is the probability of the k-th class for the patch at location (i, j).
r is a positive hyper-parameter controlling the smoothness. Log-
Sum-Exp voting will be a max function for r → ∞ and be an
average function for r → 0. With r, the voting function assigns
larger weights to the more important patches.

In chest radiographs, not all the areas are related to thoracic
diseases. Although increasing r can decrease the weight of
these unrelated areas in the voting process, the weight of less
important areas of lesions will also be turned to a small value.
The model may just focus on the more related areas of the
lesions and ignore the less related ones. Moreover, a big value
of r may lead to an overflow in the calculation. To ignore
the unrelated areas, we propose adaptive Log-Sum-Exp voting
as follows:

pk = 1
r log







1
h′×w′

∑

0<i≤h′

0<j≤w′

I × exp
(

r × pki,j

)






,

I =

{

1, if pki,j ≥ t ×maxi,j(p
k
i,j)

0, otherwise
, 0 < t ≤ 1.

(5)
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FIGURE 3 | The overall structure of the position attention block. First, the 3D

local features are flattened and mapped into a latent d-dimensional embedding

space. Moreover, learnable positional embeddings are added to the feature

embeddings. Then added embeddings are put into a stack of L = 2 identical

attention layers. The attention layer mainly consists of a MSA mechanism and

a MLP. The MSA consists of M = 12 concatenated “Scaled Dot-Product

Attention”. At last, the flattened features are reshaped back into 3D features.

We filter the unrelated areas with an adaptive threshold
t × maxi,j(p

k
i,j). The patches with similar evidences will have

similar probabilities. With the threshold t ×maxi,j(p
k
i,j), only the

patches similar to the most likely abnormal patch participate in
the voting. Adaptive Log-Sum-Exp voting adapts the range of
voting patches according to their class evidences automatically.
t controls how similar the voting patches should be to the most
likely abnormal patch. Adaptive Log-Sum-Exp voting guarantees
only the patches related to diseases involve in the production of
image-level probability pk. For the images of diseases, the model
will ignore the unrelated areas with this voting function. For the
images of normal persons, the model will take more attention to
assigning the areas, which are easier to misclassify as lesions, a
correct label.

At last, we combine Log-Sum-Exp voting (including adaptive
Log-Sum-Exp voting) with the α-balanced focal loss (29) as the
weakly supervised loss:

L =
∑

k[−αyk(1− pk)γ log
(

pk
)

− (1− α)

(

1− yk
)

(pk)γ log
(

1− pk
)

],

(6)

where yk is the binary label of the k-th class. The focal loss
is initially applied in the object detection task to deal with
the foreground-background imbalance. Here, we introduce it to
the weakly supervised loss of Chest L-Transformer. Parameter
γ is used to down-weight easy cases and focus training on
hard-classified cases. Parameter α balances the importance of
positive/negative cases.

3. EXPERIMENTS

3.1. Datasets
We utilize the SIIM-ACR Pneumothorax Segmentation
dataset (30) to verify the proposed method. The dataset
contains 12,047 frontal-view chest radiographs with pixel-
level annotations, in which 2,669 chest radiographs contain
lung pneumothorax and 9,378 chest radiographs have no
pneumothorax. The chest radiographs were directly extracted
from the DICOM file and resized as 1, 024 × 1, 024 bitmap
images. Six board-certified radiologists participated in the
annotation process. All annotations were then independently
reviewed by 12 thoracic radiologists followed by adjudication by
an additional thoracic radiologist.

3.2. Metrics
To assess the classification performance of Chest L-Transformer,
we compute the area under the receiver operating characteristic
curve (AUC), sensitivity, specificity, and F1 score on the testing
set. Intersection over union (IoU) is computed to assess the
segmentation performance.

Sensitivity and specificity are statistical measures of the
performance of a binary classification test. The F1 score is used
to measure the test accuracy. AUC is equal to the probability that
a classifier will rank a randomly chosen positive instance higher
than a randomly chosen negative one.

sensitivity = TP
TP+FN , (7)

specificity = TN
TN+FP , (8)

F1 =
2TP

2TP+FP+FN , (9)

where true positive, false positive, true negative, and false
negative are denoted as TP, FP, TN, and FN, respectively.

IoU, also known as the Jaccard similarity coefficient, is a
statistic used for gauging the similarity and diversity of sample
sets. IoU can be used to compare the pixel-wise agreement
between a predicted segmentation and its corresponding ground
truth:

J(A,B) = |A∩B|
|A∪B| . (10)

A is the predicted set of pixels and B is the ground truth.
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TABLE 1 | Comparison of Chest L-Transformer with the state-of-the-art models (classification).

Model Main method AUC F1 Sensitivity Specificity

Mask R-CNN Supervised 0.84 0.60 0.63 0.87

U-net Supervised 0.85 0.54 0.43 0.85

ResNeXt Classification 0.84 0.53 0.43 0.95

Chest L-Transformer Weakly Supervised 0.81 0.57 0.67 0.79

3.3. Experimental Settings
The SIIM-ACR Pneumothorax dataset is used to evaluate the
classification and segmentation performance of the proposed
Chest L-Transformer with 7:1:2 training:validation:test set split
with no intersection. We performed an ablation study to show
the effects of different blocks of Chest L-Transformer. First, we
train a model with ResNeXt-50 as the backbone without position
attention. The second model is Restricted ResNeXt without
position attention. The third model is Restricted ResNeXt with
position attention. Adaptive Log-Sum-Exp voting is utilized
for the three models. The models are named as RNX50-LVT,
rRNX50-LVT, and rRNX50-LVT-PA, respectively. Finally, we
perform an ablation study for different versions of voting.
We compare four voting functions: rRNX50-LVT-PA (adaptive
Log-Sum-Exp voting), rRNX50-LV-PA (Log-Sum-Exp voting),
rRNX50-AV-PA (average voting), and rRNX50-MV-PA (max
voting). As shown in (9), we also train Chest L-Transformer with
400 radiographs with pixel-level annotations and the rest of the
dataset with image-level annotations. The binary cross-entropy
loss and Dice loss are used for the pixel-level annotated data (4).

The stochastic gradient descent (SGD) optimizer with
momentum (0.9) (31) is used to train 500 epochs with an
initial learning rate of 0.001. The learning rate is reduced by
0.3 when the training loss stops. We train our model with a
batch size of 8 and resize the original images to 512 × 512
as the input. The parameters r, t, α, and γ are set to 8,
0.6, 0.6, and 2, respectively. In our experiments, we determine
them with a search on 10% of the training and validation set.
Chest L-Transformer is implemented in Python using PyTorch
framework. Referring to the experiment in (3), we initialize the
backbones with pre-trained weights.

4. RESULTS

4.1. Classification
We conduct an experiment to evaluate the performance on
the classification task and compare it to the state-of-the-
art segmentation models on the SIIM-ACR Pneumothorax
dataset. As few weakly supervised segmentation models on chest
radiographs are available, we compare Chest L-Transformer
with some supervised models: Mask R-CNN (2, 32) and U-
net (2, 3, 33). Chest L-Transformer is trained only with
image-level annotations in a weakly supervised manner. The
supervised segmentation methods are trained with pixel-level
annotations in a supervised manner. We used the maximum
probability of lesion areas in a radiograph as the classification
probability of supervised segmentation models (2). Moreover,

FIGURE 4 | ROC curve of Chest L-Transformer on the testing set.

Chest L-Transformer is compared with the classification model
ResNeXt (22). The classification performance of Chest L-
Transformer is shown in Table 1. Chest L-Transformer achieve
an AUC of 0.81, slightly worse than supervised segmentation
models (Mask R-CNN AUC = 0.84, U-net AUC = 0.85)
and classification model (ResNeXt AUC = 0.84). The receiver
operating characteristic (ROC) curve of Chest L-Transformer
is illustrated in Figure 4. The results validate the classification
effectiveness of Chest L-Transformer.

4.2. Segmentation
To evaluate the performance of Chest L-Transformer for
segmentation, we computed IoU on the testing set, compared
withMask R-CNN (2, 32), U-net (2, 3, 33), which are trained with
pixel-level annotations, and Tiramisu with CNN attention (9),
which is trained with image-level annotations, shown in Table 2.
Chest L-Transformer achieves an effective result (IoU of 0.70).
It performs slightly worse than Mask R-CNN (IoU = 0.75)
and U-net (IoU = 0.76) with supervised training. Moreover,
Chest L-Transformer outperforms the state-of-the-art weakly
supervised model (9) (Tiramisu IoU = 0.13). After added pixel-
level annotations, Chest L-Transformer outperforms the state-
of-the-art weakly supervised model (9) with IoU increased by
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10.4%. Figure 5 shows a few examples of the weakly supervised
predictions output by Chest L-Transformer.

4.3. Ablation Study
For the ablation study, we study the effectiveness of our
modified backbone, position attention block, and proposed
voting function.

Table 3 shows the classification results of the ablation
study of the architecture of Chest L-Transformer (backbone
and position attention block) with the AUC, F1 score,
sensitivity, and specificity, while segmentation results of

TABLE 2 | Comparison of Chest L-Transformer with the state-of-the-art

segmentation models (segmentation).

Model Main method IoU

Mask R-CNN Supervised 0.75

U-net Supervised 0.76

Tiramisu Weakly supervised 0.13

Tiramisu Weakly supervised + 400 pixel-level

annotated radiographs

0.67

Chest L-Transformer Weakly supervised 0.70

Chest L-Transformer Weakly supervised + 400 pixel-level

annotated radiographs

0.74

“+ 400 pixel-level annotated radiographs” means that the model is trained with 400

radiographs with pixel-level annotations and the rest of the dataset with image-level

annotations.

IoU are shown in Table 4. Compared with RNX50-LVT
(AUC = 0.80, IoU = 0.62), the classification result of
rRNX50-LVT (AUC = 0.74) is worse, but the segmentation
result is significantly improved (IoU = 0.69). Although
the classification performance decreases, a remarkable
improvement in segmentation is achieved by applying
Restricted ResNeXt to extract the local features. Compared
with rRNX50-LVT, rRNX50-LVT-PA achieves improvements
in both classification (AUC = 0.81) and segmentation
(IoU = 0.70) with the addition of position attention by
9.5% and 1.4%, respectively. Moreover, rRNX50-LVT-
PA outperforms RNX50-LVT in both classification and
segmentation.

Table 5 shows the classification results of the ablation study
of voting functions of Chest L-Transformer with the AUC,
F1 score, sensitivity, and specificity, while segmentation results
of IoU are shown in Table 6. Among the compared models,
rRNX50-MV-PA achieves the worst AUC of 0.66 and IoU of 0.61.
rRNX50-AV-PA achieves an AUC of 0.78 and an IoU of 0.66.
With Log-Sum-Exp voting, rRNX50-LV-PA (AUC = 0.78, IoU
= 0.68) performs better than rRNX50-AV-PA and rRNX50-AV-
PA. rRNX50-LVT-PA achieved the best result (AUC = 0.81, IoU
= 0.70).

5. DISCUSSION

We propose Chest L-Transformer for the weakly chest
radiograph segmentation and classification. Chest L-
Transformer is designed with a restricted receptive field

FIGURE 5 | Examples of segmentation visualization on the testing set. The visualization is generated by rendering the pixel-level outputs as heatmaps and overlapping

on the original images. The left image in each pair is the original chest radiograph with highlighted masks and the right one is the segmentation visualization.
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TABLE 3 | Analyzing different architectures of Chest L-Transformer (classification).

Model AUC F1 Sensitivity Specificity

RNX50-LVT 0.80 0.60 0.62 0.80

rRNX50-LVT 0.74 0.41 0.35 0.90

rRNX50-LVT-PA 0.81 0.57 0.67 0.79

Numbers in bold indicate the best result among the models.

TABLE 4 | Analyzing different architectures of Chest L-Transformer

(segmentation).

Model IoU

RNX50-LVT 0.62

rRNX50-LVT 0.69

rRNX50-LVT-PA 0.70

Numbers in bold indicate the best result among the models.

backbone to analyze the contribution of each patch to the
final image-level decision. Furthermore, Chest L-Transformer
focuses on disease prone areas and highlights salient features
useful for the diagnostic task by adding Transformer
attention mechanism. Log-Sum-Exp voting and its variant
are proposed to aggregate the pixel-level evidences to an
image-level decision. Chest L-Transformer outperforms the
state-of-the-art weakly supervised model and is comparable
to the supervised segmentation and classification models
(Tables 1, 2).

Extracting features from the whole image makes the
pixel assignments difficult (16). The weakly supervised
segmentation accuracy is depressed by the misclassification
of the symmetrical positions of the lesions (9). Thus,
we propose Restricted ResNeXt to extract local features
with a simple modification of ResNeXt. Compared with
RNX50-LVT, although the classification performance of
rRNX50-LVT decreases (Table 3), it achieves remarkable
improvement in segmentation (Table 4). Given the simplicity
modification, the architecture of Restricted ResNeXt can
be easily generalized to other deep learning models to
trade a bit of classification accuracy for better weakly
supervised segmentation.

The attention mechanism is an effective feature learning
technique shown to be helpful in promoting the performances
of image analysis models. The diseases often have special
disease prone areas. But CNN attention modules treat
areas of the whole image equally and fail to model the
relationship between the lesions and their position (9–12).
To make use of the position information, we introduce
Transformer attention mechanism into our model for the
position attention block. Learned positional embeddings
are added to the feature embeddings to make the position
attention block sensitive to certain positions. The prediction
ability of Chest L-Transformer is enhanced with additional
position attention. This is demonstrated in the comparison
of the rRNX50-LVT and rRNX50-LVT-PA (Tables 3, 4).
Moreover, the enhanced prediction of Chest L-Transformer

TABLE 5 | Analyzing different voting functions of Chest L-Transformer

(classification).

Model AUC F1 Sensitivity Specificity

rRNX50-AV-PA 0.78 0.53 0.55 0.85

rRNX50-MV-PA 0.66 0.38 0.40 0.79

rRNX50-LV-PA 0.78 0.51 0.49 0.88

rRNX50-LVT-PA 0.81 0.57 0.67 0.79

Numbers in bold indicate the best result among the models.

TABLE 6 | Analyzing different voting functions of Chest L-Transformer

(segmentation).

Model IoU

rRNX50-AV-PA 0.66

rRNX50-MV-PA 0.61

rRNX50-LV-PA 0.68

rRNX50-LVT-PA 0.70

Numbers in bold indicate the best result among the models.

outperforms the model with global features, RNX50-
LVT (Tables 3, 4). The classification accuracy depressed
by local features is offset by position attention. Chest L-
Transformer can serve physicians in thoracic disease diagnosis
with the effective classification and position information
of findings.

To unify classification and segmentation into the same
underlying prediction model, we proposed Log-Sum-Exp voting
and its variant. In the ablation study, we compare the
performance of different voting functions. The average voting
used by the previous models achieves high accuracy in
classification (Table 5) but low segmentation results (Table 6).
It assigns the same weight to all patches of the image in the
voting. This may lead to the misclassification of no lesion
patches in the abnormal image. The model with the maximum
voting is difficult to converge and achieves disappointing results
in both classification and segmentation (Tables 5, 6). Log-
Sum-Exp voting is proposed to take the place of the two
frequently-used functions. It assigns more important patches
larger weights than the less important ones. The Log-Sum-Exp
voting outperforms these two functions in both classification
and segmentation (Tables 5, 6). Chest radiographs contain some
patches which are unrelated to the disease. To ignore the
unrelated areas, we proposed adaptive Log-Sum-Exp voting,
which adapts the range of voting patches with their class
evidences automatically. With an adaptive threshold, Chest L-
Transformer achieves further improvement in the two prediction
tasks (Tables 5, 6).

Chest L-Transformer predicts rough areas of the lesions
automatically. The mistakes are mainly led by therapeutic
equipment, such as catheters and lines (see Figure 5). Because
most of the radiographs with lesions contain therapeutic
equipment, this kind of mistake can hardly be avoided with
only image-level annotations. Most of the mistakes caused by
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equipment would be checked out by radiologists quickly. Chest
L-Transformer provides good initial areas for the pixel-level
annotation and thus reduces the workload of radiologists on
this work (30). Chest L-Transformer can speed up the progress
of the diagnosis and treatment planning. Moreover, Chest L-
Transformer will contribute to the development ofmedical image
data for segmentation, because it reduces the cost of pixel-
level annotation.

6. CONCLUSIONS

In this study, Chest L-Transformer is proposed for weakly
supervised segmentation and classification on chest radiographs.
The proposed backbone, Restricted ResNeXt, circumvents
the misclassification of the symmetrical positions of the
lesions. The position attention block embedded into Chest L-
Transformer can model the position information and further
provide improvement for predictions. Moreover, the Log-
Sum-Exp voting and its variant aggregate the pixel-level
evidences effectively. We have shown that Chest L-Transformer
obtains accurate segmentation and classification predictions with
image-level annotations. Therefore, Chest L-Transformer can
contribute to the auxiliary diagnosis of thoracic diseases and
the development of chest radiograph segmentation datasets.
Moreover, the architecture of Chest L-Transformer can be
easily generalized to other deep learning models for weakly
supervised segmentation.
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Purpose:Healthy organs uptake, including cerebellar and liver SUVs have been reported

to be inversely correlated to total metabolic tumor volume (TMTV), a controversial

predictor of event-free survival (EFS) in classical Hodgkin’s Lymphoma (cHL). The

objective of this study was to estimate TMTV by using healthy organs SUVmeasurements

and assess the performance of this new index (UF, Uptake Formula) to predict EFS in cHL.

Methods: Patients with cHL were retrospectively included. SUV values and TMTV

derived from baseline 18F-FDG PET/CT were harmonized using ComBat algorithm

across PET/CT systems. UF was estimated using ANOVA analysis. Optimal thresholds

of TMTV and UF were calculated and tested using Cox models.

Results: 163 patients were included. Optimal UF model of TMTV included age,

lymphoma maximum SUVmax, hepatic SUVmean and cerebellar SUVmax (R² 14.0%

- p < 0.001). UF > 236.8 was a significant predictor of EFS (HR: 2.458 [1.201–5.030], p

= 0.01) and was not significantly different from TMTV > 271.0 (HR: 2.761 [1.183–5.140],

p = 0.001). UF > 236.8 remained significant in a bivariate model including IPS score (p

= 0.02) and determined two populations with different EFS (63.7 vs. 84.9%, p = 0.01).

Conclusion: The Uptake Formula, a new index including healthy organ SUV values,

shows similar performance to TMTV in predicting EFS in Hodgkin’s Lymphoma. Validation

cohorts will be needed to confirm this new prognostic parameter.

Keywords: cerebellum, liver, metabolic tumor volume, Hodgkin’s Lymphoma, prognosis, prediction
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INTRODUCTION

Hodgkin’s Lymphoma (HL) affects young adults and represents
about 2.3 cases per 100,000 people per year, with an associated
mortality of 0.4 cases per 100,000 per year (1). Despite
treatment, about 20% of HL patients still relapse (1). 18F-
Fluorodeoxyglucose (18F-FDG) Positron Emission Tomography
(PET) coupled with Computed Tomography (CT) plays a central
role in HL patients management, whether in staging or response
assessment settings (1).

PET-derived parameters, volumetric ones above all, have been
proposed to refine prognosis prediction of HL (2). The role of
TotalMetabolic Tumor Volume (TMTV) is debated inHodgkin’s
Lymphoma. It has been reported as a negative prognostic factor
in early-stage HL treated with ABVD (Adriamycin, Bleomycin,
Vinblastine, Dacarbazine) regimen (3–5) and HIV-associated HL
(6). However, some publications reported no association between
TMTV and Progression-Free Survival (PFS) in advanced-stage
HL when treated with escalated BEACOPP (7). Furthermore,
TMTV threshold varies from one study to another (3–5, 7, 8).

The drawbacks of TMTV calculation (results depending on
the segmentation method (9), time required for delineation (10),
difficulty in evaluating bone involvement) led to ponder other
prognostic markers, such as healthy organ 18F-FDG uptake.
In 2010, Hanaoka et al. (11) reported an inverse correlation
between cerebellar uptake and total lesion glycolysis (TLG)
in a population with aggressive lymphoma. The mechanism
underlying this phenomenon is poorly understood but could
correspond to a metabolic theft of 18F-FDG by the tumor mass.
Because TLG is correlated with TMTV, Godard et al. (12)
speculated that cerebellar metabolism might have a prognostic
value and suggested to normalize cerebellar 18F-FDG uptake
to hepatic 18F-FDG uptake to account for differences between
PET/CT systems. This index has been shown to be a prognostic
parameter for PFS prediction in diffuse large-B-cell lymphoma
(10) and follicular lymphoma (12). Normalization to liver was
not optimal: liver 18F-FDG uptake was also negatively correlated
with TMTV as was cerebellar 18F-FDG uptake (r = −0.34 and r
=−0.42, respectively) (10). These two healthy organs could thus
prove useful in predicting prognosis.

The objective of this study was to model TMTV by integrating
healthy organ uptake data in classical HL (cHL). The resulting
estimate was then tested for EFS prediction.

MATERIALS AND METHODS

Study Population
This study was approved by the Ethical Committee of Fondazione
Policlinico Universitario A. Gemelli IRCCS (study code: 3834).
All included subjects signed an informed consent form. All
procedures performed were in accordance with the ethical
standards defined by the 1964 Helsinki Declaration and its
later amendments.

All patients with HL referred to our Institution for their
baseline 18F-FDG PET/CT between September 2010 and January
2020 were retrospectively screened. Inclusion criteria were as
follows: histologically proven cHL; baseline PET/CT performed

within 4 weeks prior to treatment. Exclusion criteria were:
Recent history of other cancer <1 year; Nodular lymphocyte-
predominant Hodgkin lymphoma histology [slow growing LH
subtype with completely different prognosis (13)]; any factor
interfering with measurement of cerebellar uptake, liver uptake
or TMTV: cerebellum not fully included in field of view,
movement artifacts, extensive surgically resected disease before
staging PET/CT, diffuse lymphomatous involvement of liver or
brain lymphoma; nonobservance of a fasting period of at least 6h
before 18F-FDG administration; glycemia > 2.0 g/l; no follow-up
available after staging PET/CT; nonstandard treatment regimen.

The following clinicobiological data were collected: date of
birth, date of diagnosis, date of last observation, HL subtype,
Eastern Cooperative Oncology Group (ECOG) performance
status, International Prognostic Score (IPS) items (age; sex;
Ann Arbor stage; serum albumin levels, white blood cell
count, lymphocyte count, hemoglobinemia at baseline), first-line
treatment, event-free survival (EFS: time interval between date
of diagnosis and the event of progression, recurrence, change of
therapy or death) and overall survival (OS: time interval between
date of diagnosis and death). Imaging data collected included:
date of staging PET/CT, PET/CT system, administered 18F-FDG
activity, glycemia levels.

18F-FDG PET/CT Acquisition and
Measurements
After verification of patients’ blood glucose levels, baseline 18F-
FDG PET/CT was performed at 60 ± 10min after intravenous
injection of mean 236.34 MBq (range 137–366) of 18F-FDG.
Due to the long-time span of the inclusion period, images were
acquired using 3 different PET/CT integrated systems denoted as
PET1, PET2 and PET3 in chronological order.

PET1 corresponded to a Gemini Dual GS PET/CT scanner
(Philips Healthcare): images were acquired in three-dimensional
mode with an acquisition time of 3min per bed position
and reconstructed on a 128 × 128 matrix using Row-Action
Maximum Likelihood Algorithm (RAMLA, 2 iterations, blob size
of 2.5 pixels, voxel size: 4 × 6 × 20 mm3) without Point Spread
Function (PSF) or Time of Flight (TOF).

PET2 corresponded to a Gemini GXL PET/CT scanner
(Philips Healthcare): images were acquired with a 3min per bed
position acquisition time and reconstructed on a 128 × 128
matrix using 3D-Line Of Response RAMLA (3D-LOR-RAMLA,
3 iterations, 33 subsets, voxel size: 4 × 4 × 4 mm3) without PSF
or TOF.

PET3 corresponded to a Biograph mCT PET/CT scanner
(Siemens Healthineers): images were acquired in 2.5min per
bed position and reconstructed on a 400 × 400 matrix using
3D Ordered Subset Expectation Maximization algorithm (3D-
OSEM, 2 iterations, 21 subsets, voxel size: 3.2 × 3.2 × 5 mm3)
with PSF and TOF. A gaussian filter was also applied (3D
isotropic Gaussian kernel of 2mm full width at half-maximum).

CT acquisition protocol was the same for the three machines:
120 kV, 50 mAs, reconstruction on a 512 × 512 matrix with a
voxel size of 0.97× 0.97× 3mm3. PET/CT images were acquired
at least from skull base to proximal thighs.
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FIGURE 1 | Example of ComBaT harmonization. Cerebellar SUVmax distribution of PET2 before (left) and after ComBaT harmonization (right), PET3 (blue) being

the reference.

FIGURE 2 | Flowchart of patients’ selection.

PET/CT were displayed on dedicated interpretation
consoles (Syngo.via for SUV measurements and version
7.0.5 of MIM Encore Software for volumetric parameters).
The following data were collected: (1) cerebellar
SUVmax, (2) hepatic SUVmean, (3) TMTV, (4) lymphoma
maximal SUVmax (lesion SUVmax, henceforth denoted
as L).

After a first visual check using a rainbow 10 point-color scale,
enclosing region of interest (ROI) were drawn on areas with
highest visual uptake, excluding any voxel of the neighboring
brain hemispheres. The highest SUVmax of all these ROI
corresponded to cerebellar SUVmax. A default spherical ROI
(2-cm diameter) was positioned on the right liver to measure
its SUVmean. The lymphoma maximal SUVmax was determined
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TABLE 1 | Patients’ characteristics.

Included patients (n=163)

Hodgkin’s Lymphoma subtype

Nodular sclerosis 125 (76.7%)

Mixed cellularity 9 (5.5%)

Lymphocyte-rich 2 (1.2 %)

Lymphocyte-depleted 7 (4.3%)

Not specified 23 (14.1%)

ECOG performance status

0 65 (39.9%)

1 41 (25.2%)

2 7 (4.3%)

3 2 (1.2%)

Not available 48 (29.4%)

International Prognosis Score items

Age ≥ 45 years 51 (31.3%)

Male sex 77 (47.2%)

Ann Arbor stage IV 56 (34.4%)

Serum albumin < 4 g/dl 78 (47.9%)

White Cell count ≥ 15,000/mm3 23 (14.1%)

Lymphocyte count < 600/mm3 9 (5.5%)

Hemoglobin < 10.5 g/dl 30 (18.4%)

First-line chemotherapy treatment

ABVD 127 (77.9%)

ABVD + BEACOPP 18 (11.0%)

MBVD 10 (6.1%)

BEACOPP 5 (3.1%)

Not available 3 (1.8%)

Radiotherapy 134 (82.2%)

Number of EFS events 40 (24.5%)

Number of OS events 9 (5.5%)

PET/CT systems

PET1 9 (5.5%)

PET2 70 (42.9%)

PET3 84 (51.5%)

ABVD, Adriamycin, Bleomycin, Vinblastine, Dacarbazine; MBVD, nonpegylated

liposomal doxorubicin (Myocet), Bleomycin, Vinblastine, Dacarbazine; BEACOPP,

Bleomycin, Etoposide, Adriamycin, Cyclophosphamide, vincristine (Oncovin),

Procarbazine, Prednisolone.

manually by an experienced nuclear medicine physician and
was defined as the SUVmax of the hottest nodal lesion. TMTV
was measured using a PET segmentation tool (LesionID,
version 7.0.5 of MIM Encore Software Inc., Cleveland, OH).
As previously described (14), the software proceeds in 4 steps:
first, a PET Response Criteria in Solid Tumors (PERCIST)-based
background threshold (liver) thresholding was applied; second,
a VOI encompassing all detected lesions (above the threshold)
was automatically drawn. The detected lesions could thus include
bone and spleen, depending on their uptake; third, a second
thresholding at 41% of the SUVmax of the detected lesions
was applied to determine lesions’ boundaries; finally, physicians
were required to reject false positive lesions before computation
of TMTV.

TABLE 2 | ANOVA analysis and derived model for TMTV prediction.

Coefficient (95%CI) p-value

Constant 382.150 [181.543, 582.757] <0.001**

Age (A) −2.449 [−4.675, −0.223] 0.031*

Lesion SUVmax (L) 9.145 [4.263–14.026] <0.001**

Cerebellar SUVmax (C) −13.674 [−26.652, −0.695] 0.039*

Hepatic SUVmean (H) −20.008 [−42.541, 2.526] 0.081

Glycemia (G) Rejected Rejected

*p < 0.05; **p < 0.001.

ComBat Harmonization
The “batch effect” introduced by the use of 3 different
PET/CT machines was compensated using a validated statistical
harmonization method (15) implemented on RStudio (16).
ComBat was applied on log transformed data, followed by
exponentiation to improve the algorithm effectiveness (15), and
ensure positive values. TMTV, hepatic SUVmean (H), cerebellar
SUVmax (C) and lesion SUVmax, (L) were harmonized. Reference
batch was set to PET3. An example is presented in Figure 1.

Statistical Analyses
Statistical Software
If not stated otherwise, the following statistical analyses were
performed on Xlstat (2020, Addinsoft, New York, USA). p-value
threshold for significancy was set at 0.05.

TMTV Modelization
An ANOVA analysis was used to model the TMTV from the
following 5 clinicobiological data: age, blood glucose, H, C, L.
The selection of the optimal model was based on the R² value
with a number of allowed parameters ranging from 2 to 5. The
resulting formula is hereafter referred to as the Uptake Formula
(UF). Significance was assessed by F-statistic.

Analysis
Optimal cut-off for TMTV, UF and IPS were calculated using
CutoffFinder (17) with respect to EFS using the survival analysis
method. This method fits Cox proportional hazard models to the
dichotomized variable and the survival variable: optimal cutoff
is defined as the point with the most significant (log-rank test)
split. Missing IPS values were replaced by mean-values. Derived
Hazard Ratios were compared based on their 95% Confidence
Intervals. Bivariate analysis was performed using TMTV+IPS
and UF+IPS. TMTV and UF were not combined for collinearity
issues. Survival curves were drawn for UF and TMTV.

RESULTS

Two-hundred and fifty-four patients were retrieved from the
database (Figure 2). Among them, 4 had a nodular-lymphocyte-
predominant HL (1.6%) and were excluded. Among the
remaining 250 patients, 77 were excluded due to the impossibility
of measuring the needed parameters (cerebellum outside the
field of view, surgically resected disease, corrupted data). Seven
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TABLE 3 | Univariate and bivariate analyses for Event-Free Survival (EFS) based

on Cox model.

Hazard Ratios (95%

CI)

p-value

UF > 236.8 2.458 [1.201–5.030] 0.014*

TMTV > 271.0 2.761 [1.183–5.140] 0.001*

IPS >= 2 2.050 [1.023, 4.106] 0.043*

UF + IPS Model

- UF

2.320 [1.131–4.760] 0.022*

- IPS 1.903 [0.947–3.822] 0.071

TMTV + IPS Model

- TMTV

2.507 [1.333–4.715] 0.004*

- IPS 1.732 [0.854–3.513] 0.128

*p < 0.05.

patients were lost at follow-up just after the baseline PET. Two
patients had a history of recent cancer. Two patients were treated
with non-standard-of-care chemotherapy. Finally, 163 patients
were included in the analysis. Their main characteristics are
presented in Table 1. The median follow-up was 51 months
(range 3–127 months). Overall, 9 patients died during follow-up
(5.5%) and 40 EFS events were recorded (24.5%).

TMTV Modelization
ANOVA analysis selected 1 constant and 4 parameters to model
TMTV (R²: 14.0%—p< 0.001): age, lesion SUVmax (L), cerebellar
SUVmax (C), and hepatic SUVmean (H). Coefficient values are
presented in Table 2. Lesion SUVmax was a positive coefficient
while healthy organs SUV values corresponded to negative
coefficients. Glycemia was excluded.

The resultant UF was: TMTV= 382.150 – 2.449 Age+ 9.145 L
– 13.674 C – 20.008 H.

Event-Free Survival Analysis
Optimal threshold for UF, TMTV and IPS were 236.8, 271.0, and
2.0, respectively (Table 3). The three parameters were significant
predictors of EFS with HR between 2.050 and 2.761. When
pooled with IPS, both UF and TMTV remained significant
predictors of EFS (p= 0.022 and p= 0.004, respectively).

EFS survival curves based on UF are presented in Figure 3.

DISCUSSION

Healthy Organs 18F-FDG Uptake Values
and Derived Formula
No significant differences in hazard ratio were found between
UF and TMTV. UF remained significant at bivariate analysis
when adding IPS score with an HR of 2.3 (derived EFS of 84.9
vs. 63.7%).

The metabolic theft hypothesis for which FDG-avid
tumor masses would deprive healthy organs of 18F-FDG
was investigated in two papers on diffuse large-cell B-cell and
follicular lymphomas (10, 12). Cerebellar and hepatic 18F-FDG
uptake values were reported to be inversely correlated to TMTV.
The optimal model we found to estimate TMTV is coherent

with these findings: both liver and cerebellum coefficients
are negative, meaning an inverse correlation with TMTV
estimate. The addition of these two parameters contributed to
the significance of the model, which, however, solves only part
of the variability in TMTV (R² of 14.0%), explaining the slight
difference between TMTV and UF optimal thresholds.

Besides healthy organ uptake, age and tumoral 18F-FDG
uptake were also selected in the model. Apart from the study
by Angelopoulou et al. (18), who reported that SUVmax was
predictive of PFS in a study of 162 patients with HL, other
studies reported no significance (3). The lack of harmonization
is probably one of the overriding factors for those results.

Both SUVmean and SUVmax were used. SUVmean, which is
less sensitive to noise, was preferred for the measurement of
hepatic uptake to promote reproducibility: as the liver is a
homogeneous organ, variations in the positioning of the ROI
have little impact on SUVmean measurement as already noted
in a previously published study (12). The cerebellum has on
the other hand a heterogeneous uptake mainly concentrated in
the gray matter. The measurement of SUVmean would have
required a precise contouring of this structure that could have
introduced contouring bias (19). SUVmax, which relies on only a
single pixel was then chosen to ensure reproducibility, as already
demonstrated in another study (12).

UF thus had the advantage of speed of calculation, requiring
only 3 measurements of SUV values vs. several minutes for
TMTV [6.2min on average, ranging from 0.4 to 21.6min in the
study by Ilyas et al. (20)].

Metabolic Tumor Volume as Prognostic
Factor
Some studies have already investigated the prognostic value
of TMTV in HL (3–7, 18, 21–24) with conflicting results,
presumably related to the difference in patients’ therapeutic
management and the low number of events encountered in
HL (25). Most studies reported a significant ability of TMTV
to predict PFS (3, 5, 22), with an overall HR calculated by
Frood et al. (25) of 2.13 (CI 95% 1.53–2.96). These results
were however associated with high levels of heterogeneity.
Segmentation methods and cut-offs varied greatly [TMTV cut-
off from 89ml (22) to 225ml (21)] and no test-retest of these
thresholds were performed. Moreover, the cut-off determination
method is another aspect that needs to be addressed. As
pointed out by Schöder and Moskowitz (26), most studies rely
on Receiver Operating Curves to determine variables’ cut-offs,
neglecting censored data and leading to inappropriate results
(27–29). To overcome this issue, a survival-based cut-off method
was used in this study. Even if our TMTV threshold (271 cm3)
was higher than the previously mentioned ones, we found a
similar HR to previously reported ones.

Harmonization
Pooling images from different scanners is not simple, as
many quantitative biomarkers (SUV, TMTV) are sensitive
to a scanner effect (15, 30). Although procedures were
proposed to harmonize image quality (31), a dedicated
reconstruction requiring raw data storage would be needed and
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FIGURE 3 | Event-Free Survival (EFS) curves based on Uptake Formula [UF—(A)] and Total Metabolic Tumor Volume [TMTV—(B)].

would mostly be not feasible in a retrospective setting (15).
To counteract this batch effect, the ComBat harmonization
method, initially introduced in the field of genomics (32),
has been proposed (15) and used (33). ComBat is a data-
driven method that does not require phantom acquisitions
to estimate the scanner effect but requires data from the
different sites with sufficient sample size. It always theoretically
improves the alignment of the mean and standard deviation
of the distributions, given the criterion optimized by the
method (15).

In our study, we chose to harmonize SUV and TMTV values
using PET3 scanner as a reference for several reasons: it is
the most recent machine among the three, corresponding to
currently available technology in PET scanners; furthermore,
the majority of patients was scanned on the PET3, so TMTV
and SUV values were not modified for the majority of patients.
Harmonization allowed us to study cerebellar and hepatic uptake
independently, without having to use a ratio for normalization
purposes. The use of a ratio disturbed the correlation between
healthy organ and TMTV in the article by Morland et al.
(10), but was still necessary to ensure good inter-machine
agreement. The ComBat harmonization allowed us to overcome
this problem.

Limitations
Some limitations of this study can be pointed out. This
exploratory retrospective study, lacks an external and/or
prospective validation cohort which would be desirable to
confirm our findings. Moreover, the cohort is heterogeneous
due to different stages at diagnosis that may have interfered with
the performance of the parameters tested. Nevertheless,
large retrospective studies are commonly designed to
evaluate prognostic parameters in lymphoma, needing

long-term follow-up to register a significant number of
adverse events.

CONCLUSION

The Uptake Formula, a new index including healthy
organ uptake values, shows similar performance to
TMTV in predicting EFS in Hodgkin’s Lymphoma.
Validation cohorts will be needed to confirm this new
prognostic parameter.
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Radiomics involves high-throughput extraction and analysis of quantitative information

from medical images. Since it was proposed in 2012, there are some publications on

the application of radiomics for (1) predicting recurrent acute pancreatitis (RAP), clinical

severity of acute pancreatitis (AP), and extrapancreatic necrosis in AP; (2) differentiating

mass-forming chronic pancreatitis (MFCP) from pancreatic ductal adenocarcinoma

(PDAC), focal autoimmune pancreatitis (AIP) from PDAC, and functional abdominal pain

(functional gastrointestinal diseases) from RAP and chronic pancreatitis (CP); and (3)

identifying CP and normal pancreas, and CP risk factors and complications. In this

review, we aim to systematically summarize the applications and progress of radiomics in

pancreatitis and it associated situations, so as to provide reference for related research.

Keywords: radiomics, acute pancreatitis, chronic pancreatitis, autoimmune pancreatitis, pancreatic ductal

adenocarcinoma, computed tomography, magnetic resonance imaging, positron emission tomography/computed

tomography

INTRODUCTION

Radiomics and Its Process
Inspired by the knowledge systems and research fields of such as genomics, proteomics,
radiogenomics, etc., Lambin et al. first proposed the concept of radiomics in 2012 (1–
6). Radiomics refers to high-throughput extraction and analysis of a large number of
advanced quantitative imaging features from medical images obtained by computed tomography
(CT), magnetic resonance imaging (MRI) or positron emission tomography (PET) (2). The
workflow of radiomics mainly includes the following steps (1–6). (1) Image acquisition is
the first step of radiomics. The images may come from CT, MRI, PET, as well as X-
ray radiography and ultrasonography (US), etc. (7–10). Because the distribution of images
features may be affected by many factors such as equipment vendors, scanning protocols,
imaging parameters, reconstruction algorithms, etc., it is of great importance to establish
standards and consensus imaging protocols. (2) Image segmentation uses dedicated software
to draw two dimensions (2-D) or three dimensions (3-D) of regions of interest (ROIs)
of lesions or organs by means of manual, semi-automatic, or automatic segmentations.

48
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(3) Image preprocessing is to homogenize the data before
extracting radiomics features which mainly includes two
methods: image resampling and gray-level discretization
(4). Features extraction uses dedicated software or software
packages to extract morphological features, first-order
statistical features, second-order statistical features, and
high-order statistical features from 2-D or 3-D ROIs after
segmentation. Morphological features (n = 16) are used to
describe the 3-D shape and size of a ROI including asphericity,
compactness, maximum diameter, sphericity, surface area,
surface to volume ratio, volume, etc. The first-order statistical
feature (n = 18) represents the histogram of voxel intensity
values contained within a ROI to include mean, median,
maximum, minimum, standard deviation, percentile, skewness,
kurtosis, uniformity, energy, entropy, etc. Second order
statistical features are used to describe the spatial distribution
of voxel intensities within a ROI to include gray-level co-
occurrence matrix (GLCM), gray-level run-length matrix
(GLRLM), gray-level size-zone matrix (GLSZM), gray-level
distance-zone matrix (GLDZM), neighborhood gray tone
difference matrix (NGTDM), and neighboring gray level
dependence (NGLDM). After applying filters or mathematical
transformations to the images, the higher-order statistics
features can be obtained (5). Feature selection is the process
of removing redundant features and selecting the most
relevant features according to specific research tasks. Common
methods are univariate analysis, logistic regression analysis,
least absolute shrinkage and selection operator (LASSO),
minimum redundancy maximum relevance (MRMR), etc.
(6). Modelization and validation is after a classification or
prediction model is established, it needs to be tested internally
and externally to evaluate the robustness and repeatability of
the model.

In recent years, due to the progress and rapid developments
of various hardware and software technologies, radiomics
has gradually developed into a relatively mature discipline
or medical image analysis method (1). There are more
and more publications on the application of radiomics for
the diagnosis, differential diagnosis, treatment options, and
prognosis evaluation of many human diseases (11–16). Among
them, Hong et al. (13) extracted 10 radiomics features from
the contrast-enhanced CT (CECT) images of 241 patients
with a bone island or osteoblastic metastasis to establish a
random forest (RF) prediction model. The results showed
that the RF model based on CT was helpful to differentiate
bone islands from osteoblastic metastases, and its diagnostic
performance was higher than that of inexperienced radiologists
but equivalent to that of experienced radiologists. In another
study, Tian et al. (16) reported the diagnostic value of
preoperative evaluation of microvascular invasion of solitary
small hepatocellular carcinoma (HCC) based on nomogram of
gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid
(Gd-EOB-DTPA) enhanced MRI. The results indicated that
the clinical-radiological-radiomics model achieved the highest
diagnostic performance with area under the receiver operating
characteristic curves (AUCs) of 0.934, 0.889 and 0.875 for the
training, internal and external validation sets, respectively.

In this review, we aim to systematically summarize the
applications and progress of radiomics in pancreatitis and
associated situations (Table 1) so as to provide reference for
related research.

CLINICAL APPLICATIONS

Predicting Recurrent Acute Pancreatitis
Acute pancreatitis (AP) is a common disease in clinical practice
and meta-analysis showed that the annual incidence rate of
AP in the world is about 33.74/100 000, along with an annual
mortality rate of about 1.16/100 000 (36). With the increase
in population aging, biliary calculus, hyperlipidemia, obesity,
and many other AP risk factors, the incidence of AP is also
gradually increasing (37–39). Recurrent acute pancreatitis (RAP)
is a special type of pancreatitis, and it is different from AP and
chronic pancreatitis (CP). The definition of RAP is that patients
should experience at least two separate episodes of AP at least
3 months apart, and there are no abnormities in pancreatic
tissue structure or function in remission (40). It is reported that
the recurrence rate of AP is about 10–30% (17). About 10%
of patients with first-episode of AP and 36% of patients with
RAP may progress to CP, and the risk is higher among men,
smokers, and alcoholics (41). Another study also reported that
CP may increase the risk of pancreatic cancer (PC) in patients
(42). After 5 and 9 years of the diagnosis of CP, the risk of
PC in CP patients increased by eight times and three times,
respectively. Therefore, early prediction of RAP and appropriate
management measures can not only decrease the recurrence of
AP, but it also prevents or delays its progression to CP and
even PC.

Chen et al. (17) included 389 first-episode AP patients. On
the CT images of arterial and venous phases, 412 radiomics
features were extracted from the ROIs of the whole pancreatic
parenchyma, and 10 features were finally selected to establish
the prediction model. In the training cohort (n = 271,
including 145 patients with AP and 126 patients with RAP),
the sensitivity, specificity, positive predictive value (PPV),
negative predictive value (NPV), accuracy and AUC of the
radiomics model in predicting patients with RAP were 86.7%,
87.6%, 89.7%, 84.1%, 87.1%, and 0.941%, respectively. In the
validation cohort (n = 118, including 63 patients with AP
and 55 patients with RAP), the same diagnostic indexes of
the radiomics model in predicting patients with RAP were
83.8%, 97.7%, 98.4%, 78.2%, 89.0%, and 0.929%, respectively.
The results in the training and validation cohorts were all
significantly higher than those of the clinical model (all P-
values < 0.05).

Quantitative investigation on predicting RAP is still in a
paucity at present. Previous studies mostly focused on the
risk factors of RAP after the first attack of AP such as
demography (like gender, age, etc.), and clinical characteristics
(like etiology, local complications, etc.) (43–45). Chen et al.
(17) first showed that the radiomics model based on CECT
exhibits promising value in the early prediction of RAP.
In another similar study, Hu et al. (18) constructed a
multivariate logistic regression radiomics model, radiomics,
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TABLE 1 | Characteristics of the included publications on radiomics in pancreatitis.

Study ID Year Country Design Sample

size

Objective (s) Reference standard Imaging modality Imaging phases (slice

thickness)

Segmentation

method

Segmentation

software

Feature

extraction

software

Feature

type

Chen et al.

(17)

2019 China Retrospective 389 Predicting the

recurrence of AP

Follow-up Somatom Definition AS

and Somatom Definition

Flash (Siemens

Healthineers), and

LightSpeed VCT (GE

Healthcare)

Arterial phase and

venous phase images

(5.0mm)

Manual IBEX IBEX S and Q

Hu et al. (18) 2022 China Retrospective 190 Predicting the

recurrence of AP

Follow-up 3.0 T MRI (Discovery

750, GE Healthcare)

T2WI (5.0mm) Manual IBEX IBEX S and Q

Lin et al. (19) 2020 China Retrospective 259 Predicting severity of

AP

2012 revised Atlanta

classification of AP

3.0T MRI (Discovery

750, GE Healthcare)

Portal venous phase

images (5.2mm)

Manual IBEX IBEX S and Q

Zhou et al.

(20)

2021 China Retrospective 135 Predicting EXPN in AP Pathology and

follow-up

3.0 T MRI (Discovery

750, GE Healthcare)

T2WI images of extra

pancreatic collections

and late arterial phase

images of the pancreatic

parenchyma (6.0mm)

Manual IBEX IBEX S and Q

Zhang et al.

(21)

2022 China Retrospective 138 Differentiating MFCP

from PDAC

Pathology and CP

consensus

Brilliance-16P (Philips

Healthcare) and Aquilion

ONE (Canon Medical

Systems)

Portal venous phase

images

Manual 3D Slicer Pyradiomics S and Q

Liu et al. (22) 2022 China Retrospective 102 Distinguishing PC from

MFCP

Pathology and

follow-up

3.0 T MRI (MAGNETOM

Skyra, Siemens

Healthineers)

Axial T1WI, T2WI, DWI

(b=800 s/mm2 ), and

ADC images

Manual ITK-Snap Pyradiomics S and Q

Ma et al. (23) 2022 China Retrospective 175 Differentiating between

PC and CP (AIP and

MFCP)

Including pathology

and follow-up

Discovery CT 750 HD,

Revolution CT, and

Optima CT660 (GE

Healthcare)

Arterial phase and

venous phase images

Manual MITK Pyradiomics S and Q

Deng et al.

(24)

2021 China Retrospective 119 Distinguishing PDAC

from MFCP

Pathology 3.0 T MRI (Discovery

750, GE Healthcare)

Axial T1WI, T2WI, and

the arterial phase and

portal venous phase

images

Manual IBEX IBEX S and Q

Ren et al. (25) 2020 China Retrospective 109 Differentiating MFCP

from PDAC

Pathology Brilliance 64 (Philips

Healthcare) and Optima

670 (GE Healthcare)

Unenhanced CT images

(3.0mm)

Manual ITK-SNAP Analysis Kit Q only

Ren et al. (26) 2019 China Retrospective 109 Differentiating MFCP

from PDAC

Pathology Brilliance 64 (Philips

Healthcare) and Optima

670 (GE Healthcare)

Arterial and portal phase

CT images (3.0mm)

Manual ITK-SNAP Analysis Kit S and Q

Zhang et al.

(27)

2019 China Retrospective 109 Differentiating MFCP

from PDAC

Pathology Brilliance 64 (Philips

Healthcare), Light speed

VCT and Discovery

HD750 (GE Healthcare)

Parenchymal phase

images (5.0mm)

Manual ITK-SNAP Analysis Kit S and Q

Li et al. (28) 2022 China Retrospective 97 Differentiating AIP from

PDAC

Pathology and

follow-up

Brilliance-16P (Philips

Healthcare); Aquilion

ONE (Canon Medical

Systems)

Portal venous phase

images (0.8/1.0mm)

Manual 3D Slicer Pyradiomics S and Q

(Continued)
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TABLE 1 | Continued

Study ID Year Country Design Sample

size

Objective (s) Reference standard Imaging modality Imaging phases (slice

thickness)

Segmentation

method

Segmentation

software

Feature

extraction

software

Feature

type

Liu et al. (29) 2021 China Retrospective 112 Differentiating AIP and

PDAC

Pathology and

follow-up

PET/CT (Biograph64,

Siemens Healthineers)

early and delayed

imaging (3.0mm)

Manual 3D Slicer MATLAB

R2018a

S and Q

Linning et al.

(30)

2020 China Retrospective 96 Differentiating AIP and

PDAC

Pathology and

follow-up

A range of helical

multidetector (16, 64,

128, and 256 slices)

Non-contrast, arterial,

and venous phases

(1.0-5.0mm)

Manual In-house

imaging

platform

In-house

MATLAB 2016b

program

S and Q

Park et al. (31) 2020 USA Retrospective 182 Differentiating AIP from

PDAC

Pathology and

follow-up

Somatom Definition,

Definition Flash, or

Force, and Somatom

Sensation (Siemens

Healthineers)

Arterial phase and

venous phase images

(0.75/3.0mm)

Manual Velocity AI Velocity AI S and Q

Zhang et al.

(32)

2019 China Retrospective 111 Differentiating AIP and

PDAC

Pathology and

follow-up

PET/CT (Biograph64,

Siemens Healthineers)

- (0.98mm) Manual 3D Slicer MATLAB

R2017a

Q only

Zhang et al.

(33)

2019 China Retrospective 111 Differentiating AIP and

PDAC

Pathology and

follow-up

PET/CT (Biograph64,

Siemens Healthineers)

- (0.6mm) Manual 3D Slicer MATLAB

R2017a

S and Q

Mashayekhi

et al. (34)

2020 USA Retrospective 56 Differentiating FAP,

RAP, and CP

Clinical criteria Including Sensation 64

(Siemens Healthineers)

Portal venous phase

images (3mm)

Manual In-house

MATLAB

program

In-house

MATLAB

program

Q only

Frøkjær et al.

(35)

2020 Denmark Retrospective 99 Differentiating CP from

healthy pancreas;

classification of CP

based on two risk

factors and two

complications

Lüneburg criteria 1.5T MRI (Signa HDxt,

GE Healthcare)

DWI (b = 0 s/mm2)

(2.6mm)

Manual 3D Slicer Pyradiomics Q only

Study ID Type of extracted

features

Number of

extracted

features

Number of

statistically

significant features

Feature reduction and

classification method

Modeling method Evaluation index Main conclusions %RQS

(points)

Chen et al. (17) Shape features;

First-order texture

features; Second-order

texture features

412 10 (five from arterial

phase and five from

portal phase)

Independent samples t-test,

Mann-Whitney U test,

LASSO regression, and

Spearman correlation

Multivariable logistic

regression analysis and

SVM

ROC curve analysis for

radiomics and clinical

models

The radiomics model based

on CECT performed well in

predicting AP recurrence

16 (44%)

Hu et al. (18) Shape features;

First-order texture

features; Second-order

texture features

513 4 LASSO Multivariable logistic

regression analysis

ROC curve analysis for

radiomics, clinical, and

combined models

Radiomics features based on

MRI-T2WI could be used as

biomarkers to predict the

recurrence of AP

12 (33%)

Lin et al. (19) Shape features;

First-order texture

features; Second-order

texture features

353 11 Independent sample t-test,

Mann–Whitney U test, and

Boruta algorithm

SVM ROC curve analysis for

radiomics model, and

scoring systems of APACHE

II, BISAP and MRSI

CEMRI based radiomics

model had good performance

in the early prediction of AP

severity

15 (42%)

(Continued)
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TABLE 1 | Continued

Study ID Type of extracted

features

Number of

extracted

features

Number of

statistically

significant features

Feature reduction and

classification method

Modeling method Evaluation index Main conclusions %RQS

(points)

Zhou et al. (20) Shape features;

First-order texture

features; Second-order

texture features

350 22 (12 from the

extrapancreatic

collection images and

10 from the pancreatic

parenchyma images)

Independent sample t-test,

Mann–Whitney U test, and

LASSO

SVM ROC curve analysis for

radiomics models, clinical

model, and scoring systems

of EPIM and MRSI

The MRI-based radiomics

models of both the

extrapancreatic collections

and the pancreatic

parenchyma had excellent

predictive performance for

early EXPN

16 (44%)

Zhang et al. (21) Shape features;

First-order texture

features; Second-order

texture features

1,409 8 Variance analysis,

Spearman’s correlation

analysis, and LASSO

Multivariable logistic

regression analysis

ROC curve analysis for the

CT model and radiomics

models

The CT and radiomics models

both were shown to be

reasonably accurate in their

differentiation of MFCP from

PDAC in patients with CP

15 (42%)

Liu et al. (22) Shape features;

First-order texture

features; Second-order

texture features

960 6 (1 from T1WI, 2 from

T2WI, 1 from DWI, and

2 from ADC maps)

MRMR and LASSO

algorithms

Nomogram of the mixed

model incorporating the

radiomic signature, the

CA19–9 level, and the

CEA level

Individual T1WI, T2WI, DWI,

and ADC models; clinical

model; multiparametric MRI

model; mixed-prediction

model

A comprehensive model

based on multiparametric MRI

and clinically independent risk

factors displayed the best

evaluation performance

16 (44%)

Ma et al. (23) Shape features;

First-order texture

features; Second-order

texture features

1,037 2 (both from venous

phase CT images)

Preserve features with good

consistence, univariate

Wilcoxon rank–sum test,

correlation analysis, LASSO

Multivariable logistic

regression analysis

ROC curve analysis for the

arterial phase, venous

phase, and arterial phase

combined with venous

phase radiomics model;

clinical feature model;

radiomics combined with

clinical feature

comprehensive model

The radiomics combined with

clinical feature model could be

a potential tool to distinguish

PC from CP

16 (44%)

Deng et al. (24) First-order texture

features; Second-order

texture features

410 28 (the number of

included features in the

T1WI, T2WI, arterial

phase and portal

venous phase feature

subsets were 5, 7, 7,

and 9, respectively)

Independent sample t-test,

Mann–Whitney U test,

LASSO

SVM ROC curve analysis for

T1WI, T2WI, and the arterial

phase and portal venous

phase radiomics models,

and a clinical model

Radiomic models based on

multiparametric MRI have the

potential to distinguish PDAC

from MFCP

17 (47%)

Ren et al. (25) Shape features;

First-order texture

features; Second-order

texture features

396 10 Mann–Whitney U test and

MRMR

RF ROC curve analysis for

radiomics model

Unenhanced CT texture

analysis can be a promising

non-invasive method in

discriminating MFCP from

PDAC

10 (28%)

Ren et al. (26) Shape features;

First-order texture

features; Second-order

texture features

396 9 (five were arterial

phase texture

parameters and four

portal phase texture

parameters)

Mann–Whitney U test and

MRMR

Multivariate logistic

regression analysis

ROC curve analysis for

imaging feature-based,

texture feature-based

models in arterial phase,

and portal phase, and the

combined model

CT texture analysis

demonstrates great potential

to differentiate MFCP from

PDAC

10 (28%)

(Continued)
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TABLE 1 | Continued

Study ID Type of extracted

features

Number of

extracted

features

Number of

statistically

significant features

Feature reduction and

classification method

Modeling method Evaluation index Main conclusions %RQS

(points)

Zhang et al. (27) First-order texture

features; Second-order

texture features

160 4 LASSO Multivariate logistic

regression analysis

ROC curve analysis for

imaging feature-based,

texture feature-based

models in parenchymal

phase, and the combined

model

The CECT combined with

texture analysis model has the

best diagnostic efficiency for

differentiating MFCP from

PDAC

10 (28%)

Li et al. (28) Shape features;

First-order texture

features; Second-order

texture features

1,409 4 (from portal venous

phase CT images

Variance analysis,

Spearman’s correlation

analysis, and LASSO

Radiomics score ROC curve analysis for

radiomics score

The portal rad-score can

accurately and non-invasively

differentiate fAIP from PDAC

10 (28%)

Liu et al. (29) Shape features;

First-order texture

features; Second-order

texture features; MIP

features

514 10 (three from CT, four

from PET-early, and

three from PET-delay)

SVM-RFE SVM-LKF ROC curve analysis for

fusion feature based model,

dual-time PET/CT images

radiomics model and clinical

diagnostic indicators based

model

The radiomics model based

on 18F-FDG PET/CT dual-time

images provided promising

performance for

discriminating AIP from PDAC

15 (42%)

Linning et al. (30) Shape features;

First-order texture

features; Second-order

texture features

1,160 18 (six from

non-contrast, arterial,

and venous phases,

respectively)

Unsupervised hierarchical

clustering, MRMR, and IFS

RF ROC curve analysis for the

non-contrast, arterial phase,

venous phase, and hybrid of

three phases radiomics

models

Radiomics is helpful for a

differential diagnosis of AIP in

clinical practice as a

non-invasive and quantitative

method

9 (25%)

Park et al. (31) Shape features;

First-order texture

features; Second-order

texture features; Filtered

image features

431 35 MRMR RF ROC curve analysis for the

arterial phase and venous

phase radiomics features

Radiomic features help

differentiate AIP from PDAC

8 (22%)

Zhang et al. (32) First-order texture

features; Second-order

texture features; Filtered

image features

418 8 Fisher’s criterion >0.01 and

SFS

SVM ROC curve analysis for

different feature selection

and classification methods

The results proved that

texture analysis of lesions

helps to achieve accurate

differentiation of AIP and

PDAC

13 (36%)

Zhang et al. (33) Shape features;

First-order texture

features; Second-order

texture features

251 10 Spearman correlation,

MRMR, and SVM

RF, adaptive boosting,

and SVM

ROC curve analysis for

different feature selection

and classification methods

Radiomics could aid the

non-invasive differentiation of

AIP and PDAC in 18F-FDG

PET/CT images and the

integration of multi-domain

features is beneficial for the

differentiation

15 (42%)

Mashayekhi et al.

(34)

Shape features;

First-order texture

features; Second-order

texture features

54 11 Wilcoxon rank-sum test Isomap and SVM ROC curve analysis for

radiomic features

Certain radiomic features on

CT imaging can differentiate

patients with FAP, RAP, and

CP

10 (28%)

(Continued)
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and clinical characteristics combined model based on MRI-
T2WI, and their results were consistent with those of Chen
et al. (17).

Predicting Clinical Severity of AP
Based on the 2012 revised Atlanta classification and definition
(2012-RACD) by international consensus, AP can be divided
into three categories stratified by its clinical severity: mild
acute pancreatitis (MAP), moderately severe acute pancreatitis
(MSAP), and severe acute pancreatitis (SAP) (46). MAP
is characterized by no organ failure and local or systemic
complications. It can return to normal within 1–2 weeks. Usually,
there is no need for an imaging examination of the pancreas,
and the mortality rate is very low. MSAP is characterized by
transient organ failure (<48 h), or accompanied by local or
systemic complications, while no persistent organ failure (more
than 48 h) exists. MSAP can be cured without intervention or
may require long-term specialist care. The mortality rate of
MSAP is much lower than that of SAP. SAP is characterized
by persistent single or multiple organ failure (more than 48 h).
Patients with persistent organ failure usually have one or more
local complications. In the first few days after AP onset, patients
with persistent organ failure have an increased risk of death,
and the mortality reported in the literature is as high as 36–
50% (46), and the mortality rate of patients with persistent
organ failure complicated with infectious necrosis is very high
(46). Therefore, early prediction of the clinical severity of
AP is of utmost importance, which is not only good for the
early diagnosis and treatment of MSAP and SAP patients, and
also in favor of the early diversion or referral of MSAP and
SAP patients.

Currently, methods of early predicting the clinical severity
of AP mainly depend on clinical characteristics [such as
scoring systems of acute physiology and chronic health
evaluation II (APACHE II, ≥eight points), bedside index for
severity in acute pancreatitis (BISAP, ≥three points), Ranson
(≥three points) and modified Marshall score (≥two points)],
laboratory tests [such as C-reactive protein concentration
(≥150 mg/l), serum procalcitonin (>0.5 ng/ml), interleukin-
6 (>50 pg/l) and neutrophil/lymphocyte ratio (>10)] as well
as findings on imaging examinations [such as computed
tomography severity index (CTSI, ≥four points), modified
computed tomography severity index (mCTSI, ≥four points),
and extrapancreatic inflammation on computed tomography
(EPIC, ≥four points)] (47–50).

Lin et al. (19) first reported a contrast-enhanced MRI
(CEMRI) based radiomics model to predict the clinical severity
of AP (MAP vs. MSAP and SAP). In their study, they included
259 AP patients into the training (n = 180, with 99 MAP and 81
MSAP and SAP patients) and validation cohorts (n = 79, with
43 MAP and 36 MSAP and SAP patients). From the portal vein
phase images, Lin et al. (19) extracted 353 radiomics features
from the ROIs that contained the whole pancreatic parenchyma,
and finally they selected 11 features to establish the support vector
machine (SVM) model. In the training cohort, the sensitivity,
specificity, PPV, NPV, accuracy, and AUC of the radiomics model
to distinguish MAP from MSAP or SAP patients were 77.8%,
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91.9%, 88.7%, 83.5%, 85.6%, and 0.917%, respectively. In the
validation cohort, the corresponding diagnostic indexes of the
radiomics model in distinguishing MAP from MSAP or SAP
patients were 75.0%, 86.0%, 81.8%, 80.4%, 81.0%, and 0.848%,
respectively. The both AUCs were significantly higher than that
of APACHE II, BISAP, and MRSI scoring systems (all P-values
were <0.05). This study showed that when compared with some
existing clinical and radiological scoring systems, the portal phase
MRI radiomics model may be more accurate in early predicting
the clinical severity of AP.

Predicting Extrapancreatic Necrosis in AP
Based on the 2012-RACD (46), AP can be divided into two
categories according to its morphological manifestations on
imaging examination: (1) interstitial edematous pancreatitis
(IEP; about 85%); and (2) necrotizing pancreatitis (NP; about
15%). Based on the distribution and location of necrosis,
NP can be further subdivided into three subtypes (46):
(1) combined pancreatic and peripancreatic necrosis (about
75.0%); (2) peripancreatic necrosis only (about 20.0%); and (3)
pancreatic necrosis only (about 5.0%). The literature indicates
that compared with NP, the mortality rate of IEP is about 3.0%
while the mortality rate of NP is about 17%; and if combined with
infection, the mortality rate of NP can rise to about 30% (46, 51).
Consequently, it is of great clinical significance to distinguish
IEP from NP for predicting the prognosis of AP patients. In
the international structured reporting template of AP based on
CECT published in 2020, experts also highlighted the importance
of radiologists to clarify the morphologic subtypes of AP, the
degree and anatomic area involvement of NP, the type and
location of peripancreatic collections, and some other key points
in the CT reports (51).

Zhou et al. (20) used an MRI based radiomics model to
predict early extrapancreatic necrosis (EXPN) in patients with
AP. They enrolled 135 AP patients who were divided into
the training (n = 94, with 47 EXPN and 47 APFC patients)
and validation cohorts (n = 41, with 20 EXPN and 21 APFC
patients). On the T2WI and late arterial phase images, Zhou
et al. (20) extracted 350 image radiomics features from ROI
of the peripancreatic collections (T2WI) and entire pancreatic
parenchyma (late arterial phase). After dimension reduction and
feature selection, 22 features (12 from the T2WI and 10 from the
late arterial phase images) were selected for establishing SVM
model. In the training cohort, the sensitivity, specificity, PPV,
NPV, accuracy, and AUC of the T2WI peripancreatic collections
and late arterial phase pancreatic parenchyma radiomics models
for predicting EXPN were 97.9% and 87.2%, 85.1% and 87.2%,
86.8% and 87.2%, 97.6% and 87.2%, 91.5% and 87.2%, 0.969% and
0.931%, respectively. In the validation cohort, the corresponding
diagnostic parameters of the T2WI peripancreatic collections and
late arterial phase pancreatic parenchyma radiomics models for
predicting EXPNwere 95.0% and 75.0%, 90.5% and 90.5%, 90.5%
and 88.2%, 95.0% and 79.2%, 92.7% and 82.9%, 0.976 and 0.921%,
respectively. Both of the AUCs were significantly higher than
those of clinical model, EPIM and MRSI scoring systems (all P-
values < 0.05). This investigation showed that when compared
with some existing clinical model and radiological scoring

systems, theMRI radiomicsmodel based on T2WI peripancreatic
collections and late arterial phase pancreatic parenchyma may be
able to accurately predict EXPN in AP patients at an early stage.

Differentiating Mass-Forming Chronic
Pancreatitis From Pancreatic Ductal
Adenocarcinoma
Pancreatic ductal adenocarcinoma (PDAC) is a malignant
tumor that originating from pancreatic ductal epithelial cells,
accounting for about 80–90% of all the pancreatic cancer (PC)
patients with about 60–70% of the PDACs occur in the pancreatic
heads (52, 53). The prognosis of PDAC is very poor (<10%)
and surgery has always been considered the first choice for
the treatment of PDAC (52, 53). The mass-forming chronic
pancreatitis (MFCP) is a special type of CP. Documents reported
that MFCP accounts for about 27–50% of CP, and the vast
majority of MFCP is located in the pancreatic heads (about
71%) (54–56). MFCP and PDAC share significant overlaps in the
clinical manifestations (such as upper abdominal pain, nausea,
weight loss, jaundice, diabetes, etc.), risk factors (such as alcohol,
smoking, etc.), laboratory tests (such as elevated carbohydrate
antigen 199 (CA199) and carcinoembryonic antigen (CEA)
levels), and imaging findings (such as delayed enhancement)
(57, 58). CT and endoscopic ultrasonography guided fine needle
aspiration biopsy (EUS-FNA) can be used to improve the
differential diagnosis accuracy of MFCP and PDAC, but both
modalities are invasive examinations, which not only have
sampling error, and also carry the risks of needle tract tumor
seeding, bleeding, pancreatic juice leakage, etc. (59, 60). As a
result, it is very difficult to accurately distinguish MFCP from
PDAC prior to operation, yet it has very important clinical
significance. Because accurate preoperative diagnosis of early
PADC can prevent it from being resectable to unresectable, and
accurate diagnosis of MFCP can avoid unnecessary surgery.

With the rapid development of medical imaging technologies,
radiomics has begun to be used in the differential diagnosis
of MFCP and PDAC (21–27). For example, Deng et al. (24)
studied 96 patients with PDAC and 23 patients with MFCP. They
extracted four sets of radiomics features from T1WI, T2WI, as
well as arterial and portal phase images of MRI to establish SVM
models.When compared with the clinical model based on clinical
characteristics and the evaluation results of two radiologists, the
results demonstrated that in the primary cohort (n = 64, with
51 PDAC and 13 MFCP patients), the sensitivity, specificity and
AUC of T1WI, T2WI, arterial phase and portal phase radiomics
models, and the clinical model were 0.961, 0.769, and 0.893;
0.941, 0.769, and 0.911; 0.961, 0.923, and 0.958; 0.980, 1.000,
and 0.997; 0.529, 0.692, and 0.516, respectively. In the testing
cohort (n = 55, with 45 PDAC and 10 MFCP patients), the
corresponding diagnostic data were 1.000, 0.733, and 0.882;
0.844, 0.900, and 0.902; 0.956, 0.900, and 0.920; 0.978, 0.900,
and 0.962; 0.422, 0.900, and 0.649, respectively. There were no
significant differences in the diagnostic performances between
the four radiomics models (all P-values > 0.05), but they were
all better than that of the clinical model and the radiologists’
evaluation (all P-values < 0.05). This study demonstrated that
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radiomics may be used to improve the differential diagnosis
accuracy of MFCP and PDAC.

Differentiating Focal Autoimmune
Pancreatitis From PDAC
Autoimmune pancreatitis (AIP) is a special type of CP. Yoshida
et al. first proposed the concept of AIP in 1995; and the
annual incidence rate of AIP is about 3.1/100 000, accounting
for about 1.9%-6.6% of CP (61, 62). Pathologically, AIP is
classified into two subtypes: (1) Type I, lymphoplasmacytic
sclerosing pancreatitis (LPSP); and (2) Type II, idiopathic duct-
centric chronic pancreatitis (IDCP) (61, 63). At present, Type
I AIP has been considered as the pancreatic manifestation
of a systemic disease named IgG4-related disease (IgG4-
RD) and there are now dedicated criteria for IgG4-RD and
some specific organs (like pancreas, biliary tract, kidney,
ophthalmic tissues, and chest) (64–67). On imaging, AIP can
be manifested as diffuse AIP and focal AIP, and about 40%
of Type I AIP and 85% of Type II AIP are localized (64,
65). Focal AIP overlaps obviously with PDAC in clinical
manifestations (such as obstructive jaundice, epigastric pain
or discomfort, weight loss, etc.) and imaging findings (focal
mass in the pancreas), and an accurate differential diagnosis
is very challenging. However, the treatment methods after
the establishment of diagnosis are very different because
AIP responds well to glucocorticoid drugs while PADC
mainly needs comprehensive treatment methods such as
surgery, chemotherapy and radiotherapy. Therefore, the accurate
differential diagnosis of focal AIP and PDAC before the
treatments has very important clinical value. Once focal AIP
is misdiagnosed as PDAC, it will lead to unnecessary surgery,
and once PDAC is misdiagnosed as focal AIP, it may delay the
effective treatments of PDAC.

Radiomics may play a positive role in the differential diagnosis
of focal AIP and PDAC (28–33). Among the studies, Linning
et al. (30) studied 45 patients with focal AIP and 51 patients
with PDAC to evaluate the value of radiomics model based on
multi-phase CECT for the differential diagnosis of focal AIP from
PDAC. The results showed that the sensitivity, specificity, PPV,
NPV and accuracy of unenhanced, arterial phase, portal phase,
and hybrid radiomics models were 71.11%, 86.27%, 77.19%,
82.05%, and 79.17%; 82.22%, 90.20%, 85.19%, 88.10%, and
86.46%; 93.33%, 96.08%, 92.00%, 89.13%, and 90.63%; 93.33%,
96.08%, 94.23%, 95.45%, and 94.80%, respectively. The AUCs
were 0.827, 0.890, 0.953, and 0.977, respectively. The diagnostic
performances were higher than those of the two radiologists (P
< 0.05). In another study, Li et al. (28) used propensity score
matching (PSM) in 45 patients with focal AIP and 51 patients
with PDAC who were matched in gender, age, body mass index
(BMI), and CT characteristics. They evaluated the diagnostic
performance of radiomics model based on portal phase CECT
images in the differential diagnosis of focal AIP and PDAC.
Their results were consistent with the research of Linning et al.
(30) The above two studies have shown that radiomics may
play a positive role in the differential diagnosis of focal AIP
and PDAC.

Differentiating Functional Abdominal Pain,
RAP, and CP
Abdominal pain is a common clinical symptom and one of the
most important reasons for patients to see a doctor. Its etiologies
may come from abdominal solid organs, gastrointestinal tract,
biliary system, urinary system, reproductive system, chest
diseases, or systemic diseases. Because abdominal pain is a
non-specific clinical symptom, early identifying the causes of
abdominal pain helps the clinicians and patients to choose the
appropriate treatment methods. In a study, Mashayekhi et al. (34)
studied 19 patients with functional abdominal pain (functional
gastrointestinal diseases, FGD), 20 patients with RAP, and 17
patients with CP and explored the value of a SVM classifier based
on venous phase images of CECT in distinguishing FGD, RAP,
and CP. The results showed that the overall predictive accuracy
of the SVM classifier was 82.1%. In the one-to-one comparison
of the three groups, the sensitivity, specificity, and AUC of the
FGD group were 79%, 100%, and 0.91%, respectively; the same
diagnostic parameters of the RAP group were 95%, 78%, and
0.88%, respectively; while the sensitivity, specificity and AUC
of the CP group were 71%, 95%, and 0.90%, respectively. The
results suggested that some radiomics featuresmay be an effective
method for radiologists and gastroenterologists to distinguish
FGD, RAP, and CP.

Identifying CP and Normal Pancreas, CP
Risk Factors, and Complications
Frøkjær et al. (35) studied 77 CP patients and 22 healthy controls,
extracted 851 MRI texture features from diffusion-weighted
imaging (DWI) images, and finally constructed five classifier
models to address the potential use of MRI texture analysis
of the pancreas in CP patients. The five radiomics classifiers
were: (1) CP vs. healthy controls (with five selected radiomics
features), (2) alcoholic vs. non-alcoholic etiology of CP (with
nine selected radiomics features), (3) use of tobacco vs. no use
of tobacco (with 10 selected radiomics features), (4) diabetes
vs. no diabetes (with four selected radiomics features), and (5)
pancreatic exocrine insufficiency vs. normal exocrine function
(with three selected radiomics features). The results showed that
the sensitivity, specificity, PPV, and accuracy of the above five
radiomics classifiers were 0.71–0.97, 0.84–1.00, 0.71–1.00, and
0.82–0.98, respectively. These results implied that radiomics may
be a potentially promising tool used to depict early-stage CP and
monitor disease progression.

LIMITATIONS AND SOLUTIONS

Since it was proposed in 2012, due to the progress and rapid
developments of various hardware and software technologies,
radiomics has gradually developed into a relatively mature
research field and knowledge system (1–6, 68). The authors
performed a literature search in the PubMed database with
the strategy of “(Radiomics [Title/Abstract]) OR (Radiomic
[Title/Abstract]).” There were no restrictions on the publication
time, language or research object. As of April 17, 2022,
a total of 5,580 relevant publications were retrieved. This
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search result has proved the degree of attention paid by
researchers and related fields to radiomics in the past 10
years. However, the vast majority of radiomics models reported
in the current literature are still in the stage of developing
research, and their clinical applications have not really been
implemented. The authors believe that this phenomenon is
mainly caused by the limitations of radiomics. The current
radiomics research and clinical applications still have the
following limitations and difficulties (69): (1) the standardization
of medical imaging data is insufficient; (2) the generalization
ability of the models is not good enough; (3) poor biological
interpretability; and (4) the clinical utility of the models needing
to be improved.

Standardization of Medical Image Data
Standardized, homogeneous, and high-quality training data is
an important cornerstone of radiomics research and clinical
applications. Radiomics may refer to the FAIR guiding principles
for scientific data management and stewardship that were
proposed by the international community named Force 11 (The
Future of Research Communications and e-Scholarship 2011)
in 2016 (70). This international community emphasizes that
scientific data management and stewardship should follow the
principles of Findable (F), Accessible (a), Interoperable (I), and
Reusable (R).

Generalization of the Models
The performance of a radiomics model in similar and different
distribution of datasets (such as various times, treatment plans,
geographical locations, etc.) is called the generalization of
a radiomics model. That is to say the reproducibility and
transferability of a radiomics model (71) which is an important
premise for the clinical applications of radiomics. It is also
an important problem that needs to be solved urgently in
radiomics (72, 73). In addition to increasing the data sample
size and data diversity, full-automatic and semi-automatic image
segmentation methods need to be advocated, and reasonable
features selection and dimensionality reduction methods also
need to be adopted (69, 74). Federated machine learning is also
expected to provide effective solutions to the above difficulties
(75, 76).

Biological Interpretability
Radiomics researchers hope to explore the relationships between
certain features and some diseases or clinical endpoints (such
as the diagnosis and differential diagnosis of diseases, options of
treatment schemes, predictions of treatment effects, pathological
classification and grading, gene and protein phenotypes, etc.)
by quantitatively extracting and analyzing image information
(features) that cannot be recognized by human naked eye. This
will provide more help for clinicians and patients for disease
diagnosis and treatments. However, the biological interpretability
of radiomics is still lacking, and the potential biological
significance of each features is still unclear, which seriously

hinders its clinical applications (77–79). Therefore, how can
we improve the biological interpretability of radiomics is an
important problem to be faced in this field.

Clinical Utility
Radiomics models or systems with characteristics of easy to
operate, short learning curve, good user experience, fast running
speed, and broad use scenarios are often more in line with
clinicians’ work habits (80). Applications developed for mobile
phones and internet users may become an effective carrier for the
clinical applications of radiomics models or systems in the future.

CONCLUSIONS AND FUTURE
PERSPECTIVES

Since it was proposed in 2012, radiomics has begun to
demonstrate a promising potential both in scientific research and
in clinical applications, such as predicting RAP, clinical severity
of AP and EXPN of AP, and differentiating MFCP and focal
AIP from PDAC (Table 1). However, most of the published
studies hold the limitations of a single-center, retrospective,
limited sample size, and low radiomics quality score (RQS) (4).
In looking forward to the future, researchers may successively
report some multicenter, prospective, large sample size, and
high RQS studies. In addition to these, predicting AP clinical
outcomes of organ failure, infection, death, hospitalization,
admission to intensive care unit (ICU) and invasive intervention;
quantifying pancreatic exocrine or (and) endocrine insufficiency;
predicting the possibility of AP progress to CP or CP progress
to PC; and effectively combining deep learning or some
other technologies with radiomics may become the potential
directions (81–87).
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Objective: This study aimed to assess the value of radiomics based on non-

contrast computed tomography (NCCT) and contrast-enhanced computed

tomography (CECT) images in the preoperative discrimination between lung

invasive adenocarcinomas (IAC) and non-invasive adenocarcinomas (non-

IAC).

Methods: We enrolled 1,185 pulmonary nodules (478 non-IACs and 707 IACs)

to build and validate radiomics models. An external testing set comprising 63

pulmonary nodules was collected to verify the generalization of the models.

Radiomic features were extracted from both NCCT and CECT images. The

predictive performance of radiomics models in the validation and external

testing sets were evaluated and compared with radiologists’ evaluations.

The predictive performances of the radiomics models were also compared

between three subgroups in the validation set (Group 1: solid nodules, Group

2: part-solid nodules, and Group 3: pure ground-glass nodules).

Results: The NCCT, CECT, and combined models showed good ability to

discriminate between IAC and non-IAC [respective areas under the curve

(AUCs): validation set = 0.91, 0.90, and 0.91; Group 1 = 0.82, 0.79, and 0.81;

Group 2 = 0.93, 0.92, and 0.93; and Group 3 = 0.90, 0.90, and 0.89]. In the

external testing set, the AUC of the three models were 0.89, 0.91, and 0.89,

respectively. The accuracies of these three models were comparable to those

of the senior radiologist and better those that of the junior radiologist.
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Conclusion: Radiomic models based on CT images showed good predictive

performance in discriminating between lung IAC and non-IAC, especially in

part solid nodule group. However, radiomics based on CECT images provided

no additional value compared to NCCT images.

KEYWORDS

adenocarcinoma, lung, radiomics, solitary pulmonary nodule, X-ray computed
tomography

Introduction

Lung cancer is the most commonly diagnosed cancer
and the leading cause of cancer-related deaths worldwide
(1). Despite the recent development of targeted therapies
for selected sub-types of lung adenocarcinoma, the overall
cure and survival rates for this cancer remain relatively low
(2). Adenocarcinoma is the most common form of lung
cancer and has recently been classified into pre-invasive
adenocarcinoma [atypical adenocarcinoma hyperplasia
(AAH), adenocarcinoma in situ (AIS)], minimally invasive
adenocarcinoma (MIA), and invasive adenocarcinoma (IAC)
(3). The 5-year disease-free survival rates in AIS and MIA
are 100% or close to 100%, which are significantly higher
than that in IAC (38–86%, depending on the predominant
histological subtypes) (4, 5). Therefore, the accurate
preoperative diagnosis of lung adenocarcinoma is critical
for clinical decision-making processes and the assessment
of prognoses.

Due to the diversity and overlap of radiographic features
of these lesions, diagnosing and differentiating lung IAC is
challenging for radiologists. Radiomics is an emerging method
that can extract many features to facilitate the precision
medicine (6). Many studies have explored the value of
radiomics in the detection, characterization, and monitoring
of lung nodules, resulting in promising performance (7–9).
However, those studies focused on the radiomic features
extracted from non-contrast CT (NCCT) images. The National
Comprehensive Cancer Network (NCCN) recommends
contrast-enhanced CT (CECT) examinations for some lung
nodules: solid nodules > 15 mm on initial screening, part
solid nodules with solid components > 8 mm in initial
screening, new or increased solid nodules ≥ 8 mm during
the follow-up, new or increased part-solid nodules with
solid components > 1.5 mm during the follow-up) (10).
The CECT images can yield better vascular information
and improve the accuracy of the diagnoses. Several studies
have assessed the value of radiomics based on CECT
images in the diagnosis of pulmonary nodules (9, 11–14),
but their conclusions are inconsistent. Moreover, whether

the radiomics extracted from CECT images can provide
Supplementary information for differentiation of IAC from
non-IAC remains unknown, especially for different types
nodules (i.e., solid nodules, part-solid nodules, and pure
ground-glass nodules).

Therefore, this study assessed the value of radiomics based
on NCCT and CECT images to discriminate between IAC and
non-IAC and compared the performances of models of different
nodule subtypes (solid nodules, part-solid nodules and pure
ground-glass nodules).

Materials and methods

Our institutional review board approved this retrospective
study (No. 2019K134) and waived the requirement of obtaining
informed consent from patients.

Study population

A total of 2,130 patients who underwent CECT
examinations for pulmonary nodules between January 2014
and January 2019 were selected. Their medical records
were reviewed for clinical characteristics, histopathological
results, and serial chest CT scans. The inclusion criteria
were as follows: (1) the presence of a pulmonary
nodule; (2) histopathologically confirmed benign nodules,
AAH, AIS, MIA, or IAC, or confirmed follow-up for
inflammatory lesions; (3) NCCT and CECT scans were
available and acquired sequentially in one examination;
and (4) CT slice thickness ≤ 1.25 mm. The exclusion
criteria were: (1) prior treatment before surgery; (2). poor
quality CT images, and (3). lesions that were difficult to
delineate clearly.

Another 63 lung nodules met the inclusion and exclusion
criteria were collected as external testing set to validate the
stability and generalization of the models. Among the 63
nodules, 22 were selected from the cancer imaging archive
(15) and 41 were collected from the Second Xiangya Hospital
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FIGURE 1

Workflow of the study.

of Central South University. The workflow is described in
Figure 1.

Computed tomography scanning

Chest CT scanning was performed using one of
following the four CT systems: GE Discovery CT750 HD,
64-slice LightSpeed VCT (both from GE Medical Systems),
Somatom Definition Flash, and Somatom Sensation-16 (both
from Siemens Medical Solutions). The detailed scan and
reconstruction parameters are listed in Table 1. All patients
received a bolus of 80–100 mL of intravenous contrast medium
(Optiray; Mallinckrodt Imaging, MO, USA; 350 mg iodine per
mL) at a rate of 3–4 mL/s using a power injector via an 18-
or 20-gauge cannula into the antecubital vein. Enhanced CT
scanning commenced 50–60 s after the administration of the
contrast medium.

Pathological analysis

All resected specimens were formalin-fixed and stained with
hematoxylin–eosin in accordance with the routine regulations
of the hospital. A pathologist (with 10 years of experience in the
pathological diagnosis of lung cancer) reviewed the specimens
and recorded the pathological subtype of each nodule.

Nodule labeling and segmentation

One radiologist with 5 years of experience in chest CT
interpretation used a medical image processing and navigation
software, 3D Slicer (version 4.8; National Institutes of Health)1,
to manually delineate the volumes of interest of the 1,185
nodules at the voxel level in separate NCCT and CECT images.
The volume of interest was confirmed by another radiologist
with 12 years of experience in chest CT interpretation. DICOM
images were imported into the software for delineation, and
the label information was extracted with the nearly raw raster
data format for further analysis. Each segmented nodule was
given a specific label, non-IAC (inflammatory nodule, benign
tumor, AAH, AIS, or MIA) or IAC. To assess the segmentation
variability, a third radiologist with 3 years of experience in chest
CT interpretation independently segmented a random set of 60
nodules to calculate the intra-class correlation coefficient (ICC)
for each radiomic feature.

Observer study

Two radiologists (a junior and a senior radiologist with
more than 3 and 10 years of experience, respectively), who

1 https://www.slicer.org
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TABLE 1 Detailed scan and reconstruction parameters.

Setting Tube
voltage
(kV)

Tube
current
(mA)

Pitch Slice thickness of
reconstruction

(mm)

Slice interval of
reconstruction

(mm)

Reconstruction
algorithm

GE Discovery CT750 HD 120 200 0.984:1 1.25 1.25 STND

Lightspeed VCT 120 200 0.984:1 1.25 1.25 STND

Somatom definition flash 120 110 1 1 1 Medium sharp

Somatom sensation-16 120 110 0.8 1 1 Medium sharp

were blinded to the histopathological results and clinical data,
independently classified and diagnosed all nodules in the
validation set and external testing set. First, the two radiologists
categorized the nodules as IAC or non-IAC based on the NCCT
images, they then accessed to the folder containing the CECT
images and diagnosed the nodules again using both the NCCT
and CECT images.

Extraction of radiomic features

Radiomic features were extracted using PyRadiomics 2.2.02

(16), an open-source Python package for the extraction of
radiomics. The process of extracting radiomic features is
described in Supplementarymaterial. To minimize the effect of
image heterogeneity, we normalized the image spatial resolution
and voxels before radiomic features extraction. A total of
1,218 features were extracted, including shape class, first-order
class, gray level co-occurrence matrix (GLCM) class, gray level
dependence matrix (GLDM) class, gray level size zone matrix
(GLSM) class, and gray level run length matrix (GLRLM)
class. We also used Min-Max scaling to normalize features
before model construction. For feature variability analysis, the
ICC for each radiomic feature was calculated using a two-way
random-effects model under an absolute agreement condition.
The reproducibility of the radiomic features was considered to
be either high (ICC ≥ 0.8), intermediate (0.5 ≤ ICC < 0.8),
or poor (ICC < 0.5). The radiomic features with high
reproducibility were used as the input variables for building the
diagnostic models.

Building and validation of the
diagnostic models

All patients were randomly assigned to a training set
(n = 790) or a validation set (n = 395) at a ratio of 2:1
using the “scikit-learn” software packages for Python (17). The
validation set was further divided into three subgroups, 91
solid nodules (Group 1), 239 part-solid nodules (Group 2), and
65 pure ground-glass nodules (Group 3). The distribution of

2 https://pyradiomics.readthedocs.io/en/latest/index.html

different nodules properties (non-IAC vs. IAC, solid nodules
vs. part-solid nodules vs. pure ground glass nodules) was kept
uniform in both the training set and the validation set. After
assessing the reproducibility based on the re-segmentation data,
the open-source framework LightGBM was used for feature
selection and model building in the training set (15). LightGBM
is a fast, distributed, and efficient gradient boosting framework
based on decision tree algorithms. Finally, the NCCT, CECT,
and combined models differentiating between non-IAC and
IAC were established. The performances of these models were
then tested in the validation set (also in three subgroups) and
external testing set.

Statistical analysis

Differences in variables between the two patient groups
were assessed using the independent-sample t-test or Mann–
Whitney U-test for continuous variables and Fisher’s exact
test or the chi-squared test for categorical variables. To assess
the predictive performance of the study variables, receiver-
operating characteristic (ROC) curves were plotted for the study
variables to assess their predictive performance and compared
using the DeLong test and the area under the curve (AUC)
of the ROC curve was calculated. A two-sided p-value < 0.05
was considered statistically significant. Statistical analysis was
performed using Python (Version 3.7.1) software and SPSS
(Version 22.0, IBM).

Results

Patient profiles

A total of 1,185 nodules from 1,185 patients in our hospital
were enrolled. Among the 1,185 patients, 690 were women
(58.2%) and 495 were men (41.8%). The mean age of the patients
was 58.95 ± 11.45 years (range: 20–81 years); the maximum
diameter of the pulmonary nodules was 18.79 ± 11.32 mm
(range: 5–82 mm). There were 478 (40.3%) nodules were
diagnosed as non-IAC (123 inflammation or benign tumor; 11
AAH; 84 AIS; 260 MIA), and 707 (59.7%) IAC. Among the 1,185
nodules, 273 (23.0%) were solid nodules, 717 (60.5%) were part-
solid nodules, and 195 (16.5%) were pure ground glass nodules.
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The patient information of the training set, validation set and
external set are shown in Table 2. The patient information of
the three subgroups are shown in Supplementary Table 1. Of
the 63 pulmonary nodules in the external testing set, 22 were
non-IAC and 41 were IAC. There were 28 (44.4%) solid nodules,
26 (41.3%) part-solid nodules and 9 (14.3) pure ground-glass
nodules.

Model building and diagnostic
validation

After reproducibility analysis, 534 features on NCCT and
559 features on CECT remained separate (ICCs ≥ 0.8), and
the details are shown in Supplementary Tables 2, 3. The
selected features were inputted into the LightGBM framework to
construct the NCCT, CECT and combined models. LightGBM
ranked the importance of features based on the number of times
they were used in the decision tree.

In the validation set, the AUCs of the NCCT, CECT, and
combined models were 0.91, 0.90 and 0.91 respectively, to
distinguish IAC and non-IAC cases (Figure 2A). The DeLong
test found no statistically significant difference among the
three models (NCCT model vs. CECT model, P = 0.247;
NCCT model vs. combined model, P = 0.320; CECT model

vs. combined model, P = 0.277). In the external testing
set, the AUCs of the NCCT, CECT, and combined models
were 0.89, 0.91, and 0.89, respectively (Figure 2B). Again, no
statistically significant differences among the three models were
identified by the DeLong test (NCCT model vs. CECT model,
P = 0.218; NCCT model vs. combined model, P = 0.436;
and CECT model vs. combined model, P = 0.148). The
accuracies of the radiomics models were close to those of
the senior radiologist and better than those of the junior
radiologist for both the validation set and external testing set
(Table 3).

Performance of the models in the
subgroups

In Group 1, the AUCs of the NCCT, CECT, and combined
models were 0.82, 0.79, and 0.81, respectively, without
significant difference in the DeLong test (NCCT model vs.
CECT model, P = 0.247; NCCT model vs. combined model,
P = 0.320; and CECT model vs. combined model, P = 0.277)
(Figure 3A). The accuracies of the radiomics models were
slightly better than that of the junior radiologist but significantly
lower than that of the senior radiologist (Table 3). In Group
2, the AUCs of the NCCT, CECT, and combined model were

TABLE 2 Patient information of the training set, validation set and external set.

Demographic and
clinical characteristic

Training set
(n = 790)

Validation set
(n = 395)

p External validation set
(n = 63)

Age (years) 58.89± 11.23 59.08± 11.83 0.789 60.05± 10.25

Size (mm) 18.56± 10.75 18.91± 10.53 0.598 22.8± 10.92

Gender 0.708

Female 463 (58.6) 227 (57.5) 31 (49.2)

Male 327 (41.4) 168 (42.5) 32 (50.8)

Pathology 0.933

IAC 474 (60.0) 233 (59.0) 41 (65.1)

Non-IAC

Benign lesions 83 (10.5) 40 (10.1) 5 (7.9)

AAH 9 (1.1) 2 (0.5) 0

AIS 49 (6.2) 35 (8.9) 4 (6.3)

MIA 175 (22.2) 85 (21.5) 13 (20.6)

Type 1.000

Pure ground glass nodule 130 (16.5) 91 (23.0) 9 (14.3)

Part-solid nodule 478 (60.5) 239 (60.5) 26 (41.3)

Solid nodule 182 (23.0) 65 (16.5) 28 (44.4)

Location 0.585

Right upper lobe 274 (34.1) 135 (34.2) 20 (31.7)

Right middle lobe 64 (8.1) 39 (9.9) 3 (4.8)

Right lower lobe 153 (19.4) 78 (19.7) 10 (15.9)

Left lower lobe 191 (24.2) 99 (25.1) 17 (27.0)

Left lower lobe 108 (13.7) 44 (11.5) 13 (20.6)

IAC, invasive adenocarcinoma; AAH, atypical adenocarcinoma hyperplasia; AIS, adenocarcinoma in situ; MIA, minimally invasive adenocarcinoma.
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TABLE 3 Performance of the radiomics models and radiologists for lung IAC.

Radiomics models Junior radiologist Senior radiologist

NCCT CECT NCCT + CECT NCCT NCCT + CECT NCCT NCCT + CECT

Validation set Accuracy 82.74% 81.47% 83.50% 74.90% 76.90% 83.40% 83.90%

F1 0.86 0.95 0.87

AUC 0.91 0.90 0.91

Group 1 Accuracy 74.73% 68.13% 74.73% 66.70% 68.90% 80.00% 84.40%

F1 0.82 0.79 0.82

AUC 0.82 0.79 0.81

Group 2 Accuracy 85.71% 86.55% 86.55% 76.30% 77.50% 83.50% 82.60%

F1 0.90 0.90 0.90

AUC 0.93 0.92 0.93

Group 3 Accuracy 83.08% 81.54% 84.62% 81.50% 82.20% 87.70% 87.70%

F1 0.86 0.84 0.88

AUC 0.90 0.90 0.89

External testing set Accuracy 84.13% 84.13% 84.13% 75.34% 76.12% 84.45% 85.21%

F1 0.88 0.88 0.88

AUC 0.89 0.91 0.89

FIGURE 2

Results of the receiver-operating characteristic (ROC) curve analysis. The ROC curves of the NCCT, CECT, and combined models for
identification of invasive adenocarcinoma (IAC) in the validation set (A) and external testing set (B) are shown.

0.93, 0.92, and 0.93, respectively (Figure 3B). The results of
the DeLong test showed no statistically significant differences
among the three models (NCCT vs. CECT model, P = 0.159;
NCCT vs. combined model, P= 0.402; and CECT vs. combined
model, P = 0.160). In this group, the accuracies of the
radiomics models were better than those of the junior and
senior radiologists (Table 3). In Group 3, the AUCs of the
NCCT, CECT, and combined model in Group 3 were 0.90, 0.90,
and 0.89, respectively (Figure 3C). The DeLong test showed
no statistically significant differences among the three models
(NCCT vs. CECT model, P= 0.402; NCCT vs. combined model,
P = 0.213; and CECT vs. combined model, P = 0.406). The
accuracies of the radiomics models were close to that of the
junior radiologist but lower than that of the senior radiologist
(Table 3).

Top 10 features of the non-contrast
computed tomography,
contrast-enhanced computed
tomography, and combined models

The LightGBM framework ranked the importance of
features according to the number of times they were used in
the decision tree. The top 10 features of the models were listed
in Figure 4. Most of the features were different, and only one
feature (wavelet_gldm_DependenceEntropy) was same between
the top 10 features of the NCCN model and CECT model.
Seven of the combined model’s top 10 features were from NCCT
images and three features were from CECT images. Only six of
the combined model’s top 10 features appeared in the NCCT and
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FIGURE 3

Results of the receiver-operating characteristic (ROC) curve analysis. The ROC curves of the NCCT, CECT, and combined models for
identification of invasive adenocarcinoma (IAC) in solid nodule group (A), partly solid nodule group (B), and pure ground glass nodule group (C)
are shown.

CECT models. Of all three models’ top 10 features, thirteen were
from GLSZM, seven were from GLCM, five were from GLDM,
three were from first-order, one was from shape and one was
from GLRLM separately. Of the thirteen features from GLSZM,
four were in the NCCT model, four were in the NCCT model
and five were in the combined model.

Discussion

This study investigated the value of radiomic features
extracted from NCCT and CECT images in the diagnosis of
IAC/non-IAC. The radiomics models showed good predictive
performance in discriminating between IAC and non-IAC of
the lung, especially those with in part-solid nodules. Generally,
the accuracies of the radiomic models were close to that of the
senior radiologist and better than that of the junior radiologist.
However, the radiomic models based on CECT images provided
no additional value compared to the NCCT models.

To date, several studies have documented that CT-based
radiomics can identify lung IAC with AUCs of 0.77–0.90
(18). Our NCCT model also obtained good performance
(AUC= 0.91 in validation set), verifying the ability of CT based
radiomics for identifying IAC. However, previous radiomics
studies were rarely based on CECT images. Recently, radiomics
extracted from CECT images were investigated, however, the
results were inconsistent. Chen et al. demonstrated that the
radiomics model based on CECT could provide additional
value in the prediction of invasiveness of subcentimeter ground
glass nodules (AUC_CECT: 0.896 vs. AUC_NCCT: 0.851)
(19). In the study of Fan et al., a radiomics model was
constructed using NCCT images for IAC prediction showed
similar performance in NCCT validation set and CECT
validation set (7). This result suggests that contrast injection
did not affect the two features included in their radiomics
model (i.e., GLCM_correlation and GLCM_cluster_tendency).
Other studies also constructed radiomics models separately
based on NCCT and CECT images and compared their
performance for predicting lung IAC. Gao et al. enrolled 34

IACs that appeared as ground glass nodules and constructed
models using multivariate logistic regression analysis (14).
Their results also suggested that CECT did not improve the
performance of the radiomics model. For solid nodules, Yang
et al. (18) constructed radiomics models for differentiating
granulomatous nodules from lung adenocarcinoma; they came
to the same conclusion. Our result showed that the NCCT,
CECT, and combined model achieved similar performance
for identifying lung IAC. In subgroups, the AUCs of the
three models also showed no statistically significant difference.
Our study enrolled pure ground-glass nodules, partly solid
nodules, and solid nodules, built models that merged the
three types of nodules, and validated them in three subgroups.
To minimize interference factors caused by multiple scans
(such as CT scanners and protocols), we excluded nodules
whose NCCT and CECT images were not acquired in one
examination. Our results suggested that CECT did not improve
the radiomics performance for lung IAC prediction either in
solid nodules or ground glass nodules. We considered the
possible reasons were: (1) The existence of contrast agents
within the tumor may reduce the biological heterogeneity that
facilitates the differentiation between benign and malignant
nodules. (2) Calibration before model building might reduce the
image intensity.

In subgroup analysis, although there was no statistically
difference between the AUCs of the radiomics models within
the groups, there was a significant difference between groups.
The performances of the models were significantly lower in
solid nodule group than those in the part-solid nodule group
and pure ground-glass nodule group. This result is with that of
other studies, although they only included one type of nodules.
While Wu et al. (20) showed that a radiomics model for the
prediction of lung IAC (part solid nodules) obtained an AUC
of 0.88., Yang et al. (18) reported that radiomics models for
differentiating solitary granulomatous with solid IAC achieved
low AUCs (AUC_NNCT = 0.78, AUC_CECT = 0.77, and
AUC_combined = 0.80). In another study (21), a radiomics
model achieved an AUC of 0.967 for differentiating solid lung
adenocarcinoma from benign lesions; this is obviously better
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FIGURE 4

Top 10 most-used features of the NCCT model (A), CECT model (B), and combined model (C). The left vertical coordinates indicate the
radiomic features; the horizontal coordinates indicate the number of times the features were used in the models.

than our result. A possible reason for this is that solid nodules
only represented only a small percentage of our training set, and
the model cannot generate diagnostic information. In addition,
we found that the accuracies of the radiomics models were both
superior to those of the junior radiologist and senior radiologist

for the part solid nodule group. The solid components in
nodules, which are crucial for identifying IAC (GGN) with
ground glass nodules, are diverse pathologically and include
mucus, hemorrhage, mucus, granulation tissue, and alveolar
collapse. It is rather difficult for radiologists to differentiate these

Frontiers in Medicine 08 frontiersin.org

68

https://doi.org/10.3389/fmed.2022.939434
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-09-939434 November 2, 2022 Time: 6:17 # 9

Sun et al. 10.3389/fmed.2022.939434

solid components in many cases, but some invisible radiomic
feature may reflect their differences.

Although the performances of the NCCT and CECT models
were similar, the top features they used differed greatly. This
suggests that the contrast agent changed many radiomic features
and affected their predictive power. In the combined model,
more features were from NCCT(7/10)than from CECT (3/10);
this phenomena may explain why CECT did not improve the
model performance. Among the three model’ top 10 features,
13/30 were from GLSZM class (4 in NCCT model, 4 in CECT
model and 5 in combined model). GLSZM quantifies gray
level zones in an image, which is defined as the number of
connected voxels that share the same gray level intensity. This
may indicate that GLSZM features are more stable and critical
for lung IAC prediction.

This study has several limitations. First, it was limited by
its retrospective nature. The heterogeneity of imaging protocols
and image quality may have affected the result. Second, we did
not validate the performance of models in subgroups of external
set due to the limited data; therefore the subgroup results need
to be confirmed. Third, the malignant group comprised only
adenocarcinoma; thus, the results of this study cannot address
the situation in other pulmonary malignant tumors.

In conclusion, the CT image based radiomics models
showed good predictive performance in the diagnosis of
lung invasive adenocarcinoma, especially those with part
solid nodules; however, the radiomic model based on CECT
images provided no additional value. In the diagnosis of
pulmonary nodules, enhanced CT examinations should be
selected cautiously, especially in young patients and patients
with impaired renal function.
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Introduction: [18F]fluorodeoxyglucose ([18F]FDG) brain PET is used clinically

to detect small areas of decreased uptake associated with epileptogenic

lesions, e.g., Focal Cortical Dysplasias (FCD) but its performance is limited due

to spatial resolution and low contrast. We aimed to develop a deep learning-

based PET image enhancement method using simulated PET to improve

lesion visualization.

Methods: We created 210 numerical brain phantoms (MRI segmented into

9 regions) and assigned 10 di�erent plausible activity values (e.g., GM/WM

ratios) resulting in 2100 ground truth high quality (GT-HQ) PET phantoms.

With a validated Monte-Carlo PET simulator, we then created 2100 simulated

standard quality (S-SQ) [18F]FDG scans. We trained a ResNet on 80% of this

dataset (10% used for validation) to learn the mapping between S-SQ and

GT-HQ PET, outputting a predicted HQ (P-HQ) PET. For the remaining 10%,

we assessed Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index

Measure (SSIM), and Root Mean Squared Error (RMSE) against GT-HQ PET.

For GM and WM, we computed recovery coe�cients (RC) and coe�cient of

variation (COV). We also created lesioned GT-HQ phantoms, S-SQ PET and

P-HQ PET with simulated small hypometabolic lesions characteristic of FCDs.

We evaluated lesion detectability on S-SQ and P-HQ PET both visually and

measuring the Relative Lesion Activity (RLA, measured activity in the reduced-

activity ROI over the standard-activity ROI). Lastly, we applied our previously

trained ResNet on 10 clinical epilepsy PETs to predict the corresponding

HQ-PET and assessed image quality and confidence metrics.
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Results: Compared to S-SQ PET, P-HQ PET improved PNSR, SSIM and RMSE;

significatively improved GM RCs (from 0.29 ± 0.03 to 0.79 ± 0.04) and WM

RCs (from 0.49 ± 0.03 to 1 ± 0.05); mean COVs were not statistically di�erent.

Visual lesion detection improved from 38 to 75%, with average RLA decreasing

from 0.83 ± 0.08 to 0.67 ± 0.14. Visual quality of P-HQ clinical PET improved

as well as reader confidence.

Conclusion: P-HQ PET showed improved image quality compared to S-SQ

PET across several objective quantitative metrics and increased detectability of

simulated lesions. In addition, the model generalized to clinical data. Further

evaluation is required to study generalization of our method and to assess

clinical performance in larger cohorts.

KEYWORDS

Monte-Carlo simulation, residual network, brain, focal cortical dysplasia (FCD), clinical

application, deep learning, deblurring, super resolution (SR)

Introduction

In the management of patients with epilepsy, approximately

one third do not respond to medical therapy. For those with

a focal onset, surgery could be their only potentially curative

option (1). Identification of the epileptogenic zone (EZ), the

zone where the seizure starts, is mandatory to allow planification

of brain surgery. The EZ is the minimum brain tissue that

needs to be resected to render the patient seizure-free, aiming

at minimal functional impairment.

The presurgical evaluation workup includes history,

semiology, EEG, video-EEG, and brain imaging (2). High-

resolution brain magnetic resonance imaging (MRI) is the

standard as it can identify structural lesions. However, in

35% of the cases, 3T MRI remains negative (3). In such

cases, [18F]fluorodeoxyglucose ([18F]FDG) positron emission

tomography (PET) can be used to improve EZ detection (4–6).

The EZ appears as glucose hypometabolism (decreased FDG

uptake) on interictal FDG-PET, particularly relevant in focal

cortical dysplasia type 2 (FCD2) (7–9).

However, several degrading factors, including a low signal to

noise ratio (SNR) and an intrinsically limited spatial resolution

of PET scanners compromise PET image quality. The low

resolution of PET images results in the partial volume effect (10)

which leads to the spill-over of estimated activity across different

regions (11). These alterations could falsely normalize or

attenuate the relative hypometabolism of the EZ, notably when

it is small (such as for FCDs), limiting the detection performance

of PET (12, 13). Themost commonly used approaches to address

the noise (denoising) and resolution (deblurring) challenges

are: (1) within-reconstruction methods such as early iteration

termination of the reconstruction algorithm (14) or point

spread function modeling (15, 16) and (2) post-reconstruction

methods, such as gaussian filtering, but as this decreases

the spatial resolution, many edge preserving alternatives were

proposed (17–19). The most popular resolution recovery

approaches in PET are partial volume correction (PVC)

techniques but they rely on a segmented anatomical template

based on MRI (20–23). Deconvolution methods that do not

rely on structural information have also been proposed (24, 25).

These methods partially correct the image but are still limited

by the intrinsic resolution of PET physics and the statistical

counting of the detection since they aim at converging to an

explanatory distribution of the annihilation sites but not the

emission sites of the positrons.

Artificial intelligence (AI)-based image enhancement is a

very active field, but so far most of the publications focused

on PET denoising rather than the deblurring problem (26).

The deblurring problem involves the restoration of high-quality

PET images (HQ) from lower-quality images [“standard quality

(SQ)” PET images in our study] and not to restore a higher-

count image from a low-count (low dose) PET image (denoising

problem). Proof of concept of super-resolution PET has been

validated with a 2D convolution neural network (CNN) in

which the network was trained, using analytically simulated

[18F]FDG PET, to predict their corresponding ground truth

for normal brains (27) and lung tumors (28). This network is

neither a simple deconvolution algorithm nor a partial volume

correction algorithm. The aim of this project was to develop a

deep learning based deblurring method consisting in predicting

the ground truth from the PET image to improve epilepsy lesion

visualization. Originality of themethod was that the training was

performed from simulated data, for which the ground truth is

known. In order to improve clinical translation of suchmethods,

we created a new, realistic set of [18F]FDG PET brain data using

a validated Monte Carlo simulator (29–31) which were then

reconstructed using Siemens e7 reconstruction tools. The 3D

network trained to learn the mapping between the simulated
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SQ PET (S-SQ PET) and the corresponding ground-truth HQ

(GT-HQ) PET did not require anatomical input.We assessed the

quality of the network-predicted HQ (P-HQ) PET. We repeated

the process for simulated lesional brain PET data with cortical

focal hypometabolism to simulate difficult-to-detect small EZ.

Lastly, we used real PET data to illustrate the proof-of-concept

that a model trained on Monte-Carlo simulated PET data is

applicable on real data.

Materials and methods

Medical image data

We used an open, multi-vendor [General Electrics, Philips

and Siemens 3T magnetic resonance imaging (MRI) scanners]

brain MRI database, Calgary-Campinas (32), using 173 T1-

weighted (T1w) 3D volumes (1 mm3 voxels) from subjects with

an average age of 53.4 ± 7.3 years (range 29–80, 50% women).

Additionally, we used the publicly available database CERMEP-

IDB-MRXFDG (33) which includes T1w MRI (Siemens 1.5T

MRI) 3D volumes from 37 subjects (average age 38.11 ± 11.36

years; range 23–65, 54% women). It also includes 37 PET and

computed tomography (CT) images from a Siemens Biograph

mCT64, which we used to estimate a range of realistic FDG

uptake values in brain PET as explained below. FDG PET data

consisted in a static 10-min PET acquisition started 50min

after the injection of 122.3 ± 21.3 MBq of [18F]FDG. PET

sinograms were reconstructed with Siemens’ iterative ordered

subset expectation maximization (OSEM) “High Definition”

reconstruction, incorporating the spatially varying point spread

function, with CT-based attenuation correction. To illustrate

the capability of the developed AI deblurring method on

clinical PET data, we used 10 datasets from epilepsy subjects

with an average age of 23.3 ± 18.1 years (range 9–70, 50%

women) acquired on the Siemens Biograph mMR at the King’s

College London and Guy’s and St Thomas’ PET Center, St

Thomas’ Hospital, London (Ethics Approval: 15/LO/0895). They

consisted in a static 30-min PET acquisition started on average

120± 49min after the injection of an average 120.6± 43.9 MBq

of [18F]FDG.

PET simulation

Generation of numerical brain phantoms

Numerical brain phantoms are 3D labeled volume models

built from segmented T1w 3D volumes. We performed MRI

non-parametric non-uniformity intensity normalization, tissue

class segmentation, and anatomical parcellation of the T1w 3D

volumes with Freesurfer (34). To expand the segmentation to

extracerebral tissues, we also used SPM12 (35). We were then

able to create an anatomical brain model with nine labels: gray

matter (GM), white matter (WM) independently for the brain

and the cerebellum (CEREB-WM, CEREB-GM), cerebrospinal

fluid (CSF), basal ganglia (BG), bone, air, and soft tissue (SOFT).

Generation of ground truth high quality
[18F]FDG PET

We created GT-HQ [18F]FDG PET by assigning activities to

the nine labels of the numerical brain phantoms. Activities were

derived from the distribution of normal [18F]FDG PET values

from the CERMEP-iDB-MRXFDG database (33) after partial

volume correction according to the Geometric Transfer Matrix

(GTM) method (21).

We first simulated a series of normal brain SQ [18F]FDG

PET scans. A total of 10 different brain activity distribution were

generated for each anatomical brain model, resulting in 2100 (10

× 210) GT-HQ PETs. As a first step, WM activity was randomly

chosen according to the observed distribution in (33). Activity

ratios between cerebral GM and WM were then selected as 1.2,

1.8, 2.4, 3.0, 3.6, 4.2, 4.8, 5.4, 6.0, 6.6. Activities assigned to CSF,

soft tissue and basal ganglia were randomly chosen according to

the observed distribution in Mérida et al. (33). Cerebellum GM

activity was set to 80% of the cerebrum.

Secondly, we created lesion GT-HQ PET phantoms

with ROIs in the neocortex where we parametrically

decreased assigned activity to simulate small metabolic

lesions characteristic of FCDs. In 10 anatomical brain models

with a GM/WM ratio of 3.6, we created one lesion each in the

right frontal and in the left temporal region. The ROI for each

lesion was manually defined as the largest component of the

result of the multiplication of the GM mask and a sphere with

volume of 1,008 mm3. In the same locations in the frontal and

temporal lobes, we then repeated the process with two smaller

spheres with volumes of 612 and 319 mm3. The resulting 60

lesion ROIs simulating small FCDs had volumes ranging from

17 to 570 mm3 with a mean of 184± 140 mm3: MRI volumetric

values for FCDs ranged from 128 to 3,093 mm3 with a mean of

1,282± 852 mm3 (36). Activity ratios between cerebral GM and

the lesion were assigned values of 0.6 and 0.3. This resulted in

60 (10 models × 3 sizes × 2 activity ratios) lesion GT-HQ PET

(120 lesions) with various morphologies and activities.

Monte-Carlo simulation of standard-quality
PET

To generate realistic PET acquisitions, we used SORTEO,

a Monte Carlo PET simulator developed by Reilhac et al.

(31) and validated to provide realistic simulations for the

Siemens Biograph mMR scanner (29, 31). The simulated 3D

emission protocol consisted in the collection of data into a

single timeframe for a 30-min period, as in our institution,

starting 40min post-injection, in accordance with international

FDG PET guidelines (37). SORTEO generates the sinogram
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(raw data), by simulating each disintegration occurring in

labels where a constant activity was defined (GM, WM,

CSF, CEREB-WM, CEREB-GM, GN and SOFT) including all

physical phenomenon occurring from positron emission to

detection. As for clinical scans, sinograms were normalized

and corrected for randoms, scatter, attenuation, dead-time, and

radioelement decay.

The simulations were performed at the IN2P3 (CNRS

UAR6402) computing center. For each subject, simulation was

divided into eight sub-processes to take advantage of multi-core

processing and thus reducing the total simulation time.

Tomographic reconstruction

Corrected simulated sinograms were reconstructed with

e7 reconstruction toolTM (Siemens Healthineers) using a 3D

ordinary poisson-ordered subsets expectation maximization

algorithm, incorporating the system point spread function,

using 3 iterations and 21 subsets. Reconstructions were

performed with a matrix size of 172 × 172 × 127 and a

zoom factor of 2, yielding a voxel size of 2.04 × 2.04 × 2.03

mm3. The attenuation correction used a pseudo-CT synthetized

with MaxProb multi-atlas attenuation correction method from

the T1w MRI (38). Gaussian post-reconstruction 3D filtering

(FWHM 4mm isotropic) was applied to all PET images.

In the end, we have a database of 2100 pairs of GT-HQ

and S-SQ PET images, with various anatomies and activity

contrasts between brain structures. In addition, we simulated

120 small metabolic lesions characteristic of FCDs with various

morphologies and activities.

Deep learning

Residual network architecture

Residual CNNs are commonly used algorithms for PET

deblurring and are the main algorithms used for the generator

in generative adversarial networks (26). The proof-of-concept

of super-resolution PET was based on a very deep CNN (20

layers) (27) which was 2D because of computation limitation.

As 3D images proved more successful in denoising tasks (39),

we developed a 3D network for super resolution PET. Initially,

we used a 3D U-Net, the main 3D network implemented

for denoising PET (26). However, 3D U-Net did not achieve

satisfactory results for our task and so we used a 3D sequential

ResNet (40), similarly to recent papers by Spuhler et al. (41)

and Sanaat et al. (42) with dilated kernels (model comparison

shown in Supplementary material). They enlarge the field-of-

view to incorporate multiscale context (43–45) and avoid the

up-sampling layers of U-Net that degrade resolution, as spatial

resolution of the input is maintained throughout the network

(42). We implemented the model shown in Figure 1. Each of the

first 19 modules of the network exclusively uses convolutional

kernels of size 3 × 3 × 3, along with batch normalization and

Rectified Linear Unit (ReLU) activation function. In the first 7

modules, the network uses 16 kernels, the following 6 modules

use 32 kernels, but with a dilation parameter of 2, and the next

6 modules use 64 kernels with dilation 4. The input of the deep

learning model is the S-SQ PET.

Data preprocessing

Trilinear interpolation was used to resample all PET images

to the same voxel size of 1 × 1 × 1mm with a 192 × 256

× 256 grid size. The intensities in the input S-SQ PET images

were standardized by dividing by the average of each individual

image. Each GT-HQ PET was standardized by the average

of the corresponding S-SQ PET image. The standardization

factors were stored and subsequently applied to the network’s

predictions to rescale the resulting images, before performing

any quantitative analysis [the PET unit was Becquerel (Bq) per:

centimetres cubed (cm3)].

Network implementation and optimization

The simulated images were split into training, validation,

and testing datasets, with a ratio of 80/10/10%. Due to

limitations of GPU memory during training, the network was

trained with 32 × 32 × 32 voxel patches. Twenty patches per

volume were randomly chosen for the training and validation

set. Mean absolute error was used as the loss function during

training and the optimizer was AdamW (46). The learning

rate was set to 10−4 and reduced by a factor of 0.1 when the

validation loss stagnated for more than 10 epochs. The batch size

was set to 50 and the maximum number of epochs to 200 using

early stopping (validation loss not improving during more than

60 epochs).

We trained our model on a GPU server on 1 NVIDIA V100

GPU (32GB) running Python 3.9.10, Pytorch 1.10.0 (47), and

TorchIO 0.18.71 (48).

For inference, patch of size 32 × 32 × 32 voxels were

used with 8 × 8 × 8 overlapping tile stride. These patches

were selected in sequence from the whole 192 × 256 × 256

volume, then the P-HQ patches were put together to generate the

entire P-HQ PET. Overlapping patches were combined using a

weighted averaging strategy.

Evaluation

Evaluation of AI-enabled super-resolution PET was carried

out on the P-HQ PET by comparing it to the S-SQ PET and the

GT-HQ PET in brain masked images. We used the following

quantitative evaluation metrics: (1) the Peak Signal-to-Noise

Ratio (PSNR) (49), (2) the structural similarity index measure

(SSIM) (50) which is a well-accepted measure of perceived
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FIGURE 1

Architecture of the ResNet network used in this study. Conv, convolution; ReLU, Rectified Linear Unit; PET, Positron Emission Tomography; SQ,

standard-quality; Norm, normalization; HQ, High-quality.

FIGURE 2

Results from one subject belonging to the test dataset. The first

column depicts the Ground Truth High Quality (HQ) PET, the

second column the corresponding simulated Standard Quality

(SQ) PET and the third column the Predicted HQ PET, i.e., the

output from the proposed network. For each set, from top to

bottom, transverse, coronal, and sagittal slices are shown.

Images are displayed using radiological conventions (subject’s

left on the right). Bq, Becquerel.

image quality s, and (3) the root mean squared error (RMSE)

(Equations 1–3, respectively). An objective improvement in

image quality is reflected by larger values in peak signal to noise

ratio (PSNR) and structural similarity index metrics (SSIM) and

smaller values for the root mean square error (RMSE).

PSNR (X,Y) = 20 × log
( Max(X)
√
MSE(X,Y)

)

10 (1)

SSIM (X,Y) =

(

2µxµy + c1
)

(2σxy + c2)

(µ2
x + µ2

y + c1)(σ
2
x + σ 2

y + c2)
(2)

RMSE (X,Y) =

√

∑L
j=1 (X − Y)2

L
(3)

In Equation (1), given two images X and Y,Max(X) indicates

the maximum intensity value of X, whereas MSE is the mean

squared error. In Equation (2), µx and µy denote the mean

value of X and Y , respectively. σxy indicates the covariance of

σx and σy, which in turn represent the variances of X and Y ,

respectively. The constant parameters c1 and c2 (c1 = 0.01 and

c2 = 0.03) were used to avoid a division by very small numbers.

In Equation (3), L is the total number of voxels in the head

region, X and Y are the two compared images.

For the next evaluations, we used GM andWMROIs, issued

form the GM and WM probability maps resulting from T1w

MRI segmentation using Freesurfer as described in 2.2.1. The

WM ROI was obtained from the WM mask eroded by a radius

of 6 voxels using ITK (51) to give a conservative WM ROI. The

mean GM ROI volumes were 948,106 ± 102,640 mm3 and the

mean eroded WM ROI volumes were 486,509± 63,909 mm3.

Recovery coefficients (RCs) defined as the ratio between the

observed activity and the ground truth activity as shown in

Equation (4), were calculated using µ the mean value in the GM

ROI and the WM ROI for S-SQ PET and P-HQ PET compared

to the GT-HQ PET.

RCmean =
µ measured

µ ground truth
(4)
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We also computed the coefficient of variation

(CoV) defined as the ratio between σ , the standard

deviation, and µ, the mean value in the ROI, as

shown in Equation (5). It is a metric for describing

ensemble noise or statistical noise and it was computed

in the GM ROI and the WM ROI for S-SQ PET and

TABLE 1 Mean and standard deviation of the root mean squared error

(RMSE), peak signal to noise ratio (PSNR), and structural similarity

index measure (SSIM) for simulated standard quality and predicted

high quality (HQ) PET images in the test set.

Root mean

squared

error

Peak

signal-to-

noise ratio

(dB)

Structural

similarity

index

measure

Simulated

Standard-quality PET

2,393± 1,496 16.6± 1.1 0.876± 0.013

Predicted

High-quality PET

1,359± 888 21.8± 1.8 0.929± 0.011

The comparator is the ground-truth HQ PET.

P-HQ PET.

COV =
σmeasured

µmeasured
× 100 (5)

For lesion assessment, we performed first a visual

assessment. The reader evaluated two sets of PET images:

P-HQ PET images and S-SQ images in a random order. The

reader determined whether a hypometabolic lesion was present

(0 = none, 1 = visible lesion), and scored overall diagnostic

confidence (ODC) in interpreting the images on a Likert scale

of 1–5 (1 = none, 2 = poor, 3 = acceptable, 4 = good, 5 =

excellent diagnostic confidence) (52) for each lesion. A second

reader performed a visual assessment of a subset of lesioned

S-SQ PET and G-HQ PET (n= 84 images) to assess inter-reader

concordance. Secondly, to quantify lesion detectability, we

computed a ratio between the measured activity in the ROI

of the lesion over the same ROI in the P-HQ PET image

without the lesion, termed relative lesion activity (RLA). We

also computed the recovery coefficient in the lesion as in

Equation (4).

For clinical data, we performed a visual assessment of the

clinical PET and the P-HQ clinical PET computed with the

trained network (n = 20 images) by two readers. The reader

FIGURE 3

Image quality metrics from the simulated standard-quality (SQ) PET and the predicted high-quality (HQ) PET for the test set. An objective

improvement in image quality is reflected by larger values in peak signal to noise ratio (PSNR) and structural similarity index metrics (SSIM) and

smaller values for the root mean square error (RMSE).
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TABLE 2 Mean, standard deviation (SD) and range of the recovery coe�cient (RC) for the gray matter (GM) and the white matter (WM) for predicted

high-quality (HQ) PET and simulated standard-quality (SQ) PET in the test set.

Simulated SQ PET Predicted HQ PET

GM RC WMRC GMRC WMRC

Mean± SD 0.29± 0.03 0.49± 0.03 0.79± 0.04 1± 0.05

Range 0.22–0.38 0.35–0.56 0.65–0.94 0.8–1.14

FIGURE 4

Results from one subject belonging to the test dataset with a simulated right frontal hypometabolic lesion with a volume of 0.327 cm3. First

column, enlarged view of the lesion in transverse view; second column, transverse view, third column, coronal view, fourth column, sagittal

view. The relative lesion activity was 0.3 in the ground-truth high-quality-PET, 0.75 in the simulated standard-quality PET, and decreased to 0.44

in the predicted HQ-PET. Arrowheads indicate the location of the simulated lesion. Images are displayed using radiological conventions

(subject’s left on the right). Bq, Becquerel cm3
: centimetres cubed.

scored the diagnostic image quality on a 5-point Likert scale

(1 = non-diagnostic, 2 = poor, 3 = standard, 4 = good, 5 =

excellent image quality) (52) and as previously, indicated if a

hypometabolic lesion was present and scored ODC.

We compared the quantitative results through the different

metrics with pairwise t-tests or Wilcoxon rank sum test. Kappa

coefficients were computed to assess inter-reader agreement. For

all comparisons, the threshold of statistical significance was set

at 5%.

Results

Non-lesioned simulated brains

The model was successfully trained to learn the mapping

from the S-SQ PET to the GT-HQPET after 105 epochs. Figure 2

showcases the result for one subject from the test dataset in

transverse, coronal, and sagittal slices for the GT-HQ PET, its

corresponding S-SQ PET, and the P-HQ PET.

The performance metrics computed on the test set for the P-

HQ PET are shown in Table 1 and are plotted in Figure 3. The

values of those metrics on the S-SQ PET were also included

for comparison. P-HQ PET showed improved image quality

compared to the S-SQ PET (p < 0.0001 for all comparisons).

We computed the recovery coefficient of the GM and the

WM in the test set for the S-SQ PET and the P-HQ PET.

Recovery coefficients were significantly improved in the P-HQ

PET for the WM and the GM compared to the S-SQ PET (p

≤ 0.0001). Mean, standard deviation (SD) and range of the

recovery coefficient (RC) for the gray matter and the white

matter for P-HQ-PET and S-SQ PET in the test set are shown

in Table 2.

We further analyzed by GM/WM ratios (Boxplots shown

in Supplementary Figures 2, 3). For all GM/WM ratios, GM

recovery as well as WM recovery were significantly improved

for the P-HQ compared to the S-SQ PET (p < 0.0001). In

the S-SQ PET, across all GM/WM ratio, the mean GM RC

ranged from 0.26 to 0.36 and standard deviation ranged from

0.008 to 0.220; the WM RC ranged from 0.45 to 0.52 and

standard deviation range from 0.008 to 0.044. For the P HQ-

PET, the mean GM RC ranged from 0.77 to 0.86 and standard

deviation range from 0.016 to 0.042 and for the WM RC, it

Frontiers inMedicine 07 frontiersin.org

77

https://doi.org/10.3389/fmed.2022.1042706
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Flaus et al. 10.3389/fmed.2022.1042706

FIGURE 5

Scatter plots of the relative lesion activity in the ground truth high-quality (HQ) PET (blue dot), the simulated standard-quality (SQ) PET (green

dot) and the predicted HQ PET (orange dot) according to the volume of the lesions (mm3). The lesion ground truth activity in (A) was 60% of the

gray matter normal activity and in (B) was 30% of the gray matter normal activity.

TABLE 3 Mean and standard deviation of the lesion relative lesion activity (RLA), the relative RLA error, and the lesion recovery coe�cient (RC) for

simulated standard quality, and predicted high quality (HQ) PET images in the test set.

GT-HQ PET RLA lesion = 0.3 GT-HQ PET RLA lesion = 0.6

Lesion RLA

(Target: 0.3)

Relative

RLA error

(Target: low)

Lesion RC

(Target: 1)

Lesion RLA

(Target: 0.6)

Relative

RLA error

(Target: low)

Lesion RC

(Target: 1)

Simulated standard-quality PET 0.80± 0.08 1.68± 0.26 0.71± 0.10 0.86± 0.08 0.44± 0.17 0.39± 0.05

Predicted high-quality PET 0.57± 0.11 0.89± 0.35 1.44± 0.33 0.77± 0.11 0.28± 0.18 0.98± 0.17

The comparator is the ground-truth (GT) HQ PET. Left panel, lesion RLA was 0.3; right panel, lesion RLA was 0.6.

ranged from 0.99 to 1.04 and standard deviation ranged from

0.024 to 0.047. Post-hoc Anova analysis showed a significative

difference for GM and WM RC, with a better RC for the lowest

ratio (1.2).

The mean COV across all test datasets in the GM ROI was

38.9± 2.0 in the S-SQ PET andminimally higher at 39.3± 2.0 in

the P-HQ PET (difference not significant, p= 0.051). The mean

COV in the WM ROI was very similar at 4.90 ± 0.89 for S-SQ

PET and 4.91± 0.89 for P-HQ PET (p= 0.97).

Lesioned simulated brain

At the group level, the visual detection rate was 38% in the

S-SQ PET increasing to 75% in the P-HQ PET (p < 0.05) with a

similar overall diagnostic confidence score of 3.3± 1.6 vs. 3.5±

1.5 (p > 0.05). Kappa coefficients for inter-reader concordance

were 0.77 for all images, 0.88 for P-HQ PET and 0.72 for S-SQ

PET. Overall mean visual detection rates (44 vs. 42% in the S-SQ

PET and 75 vs. 72% in the P-HQ PET) and diagnostic confidence

scores (3.2 ± 1.7 vs. 3.1 ± 1.5 in the S-SQ PET and 3.4 ± 1.5

vs. 3.5 ± 1.3 in the P-HQ PET) were not statistically different

between readers.

Figure 4 shows an example of one subject with a right frontal

hypometabolic lesion of 327 mm3 from the test dataset for the

GT-HQ PET, the S-SQ PET and the P-HQ PET. Through visual

inspection, the hypometabolic lesion was easier to detect and

with more confidence on the P-HQ PET. The RLA was 0.75 in

the S-SQ PET, decreasing to 0.44 in the P-HQ PET, closer to the

ground truth of 0.3.
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FIGURE 6

Results from one subject belonging to the test dataset with a

simulated right frontal hypometabolic lesion with a volume of

22 mm3. First column, transverse view, second column, coronal

view, third column, sagittal view centered on the lesion. The

relative lesion activity was 0.6 in the ground-truth high-quality

(HQ) PET, 0.95 in the simulated standard-quality (SQ) PET, and

decreased to 0.75 in the predicted HQ PET. Arrowheads indicate

the location of the simulated lesion. Images are displayed using

radiological conventions (subject’s left on the right). Bq,

Becquerel cm3
: centimetres cubed.

FIGURE 7

Brain T1w MRI and clinical [18F]FDG PET as well as predicted

high-quality (HQ) PET (predicted by the network developed in

this work) from one patient with drug-resistant epilepsy. Images

are displayed using radiological conventions (subject’s left on

the right) and white arrows are used to highlight areas of

hypometabolism. The first two rows show images from the

scanner and the third row shows the AI-enhanced high-quality

PET. There was no clear anomaly on the MR but a

hypometabolism in the left temporal lobe as well as in the left

thalamus on both PET images. Bq, Becquerel cm3
: centimetres

cubed.

Among all the lesions (GT-HQ PET RLA 0.3 or 0.6), RLA

was substantially higher at 0.83± 0.08 (0.65–1) in the S-SQ PET

but decreased toward the GT-HQ PET with 0.67 ± 0.14 (0.44–

1.12) (p < 0.0001) in the P-HQ PET. RLA according to lesion

volumes (mm3) are plotted in Figure 5 for both the ground

truths set at 0.3 or 0.6. There is a negative relation between the

size of the lesion and the RLA value. For each subgroup whose

FIGURE 8

Brain T1w MRI and clinical [18F]FDG PET as well as predicted

high-quality (HQ) PET (predicted by the network developed in

this work) from one patient with drug-resistant epilepsy. Images

are displayed using radiological conventions (subject’s left on

the right) and white arrows are used to highlight areas of

hypometabolism. The first two rows show images from the

scanner and the third row shows the AI-enhanced high-quality

PET. MRI depicted a blurred white matter gray matter border in

the right postcentral gyrus. The PET showed a correlated blurred

and mild hypometabolism extending toward the precuneus. The

predicted HQ PET showed a clearer hypometabolism very well

correlated with the lesion that also extended to the precuneus.

Bq, Becquerel cm3
: centimetres cubed.

GT-HQ PET RLA was 0.3 or 0.6, mean RLA, relative RLA error

and RC and their standard deviations are presented in Table 3.

For the subgroupwhose GT-HQPETRLAwas 0.3 (high contrast

between lesion and surrounding GM), the mean RLA value for

S-SQ PET was 0.80 ± 0.08 (0.65–0.97) and decreased to 0.57 ±

0.11 (0.44–0.87) in P-HQ PET. Values were significantly lower in

the P-HQ PET (p < 0.0001) but remained significantly superior

to the GT-HQ PET RLA of 0.3 (p < 0.0001). The mean relative

RLA error in the S-SQ PET was 1.68 ± 0.26 (1.18–2.23) vs. 0.89

± 0.35 (0.47–1.90) in P-HQ PET (0 < 0.0001). The mean RC

in the lesion ROI was 0.71 ± 0.10 (0.55–0.97) for the S-SQ PET

vs. 1.44 ± 0.33 (1.05–2.5) for the P-HQ PET (p < 0.0001). For

the subgroup whose GT-HQ PET RLA was 0.6 (low contrast

between lesion and surrounding GM), the mean RLA value for

the S-SQ PET was 0.86 ± 0.08 (0.65–1) and decreased to 0.77 ±

0.11 (0.60–1.12) in P-HQ-PET. Values were significantly lower in

the P-HQ PET (p < 0.0001) but remained significantly superior

to the GT-HQ PET RLA of 0.6 (p < 0.0001). The mean relative

RLA error for the S-SQ PET was 0.44 ± 0.17 (0.09–0.66) vs.

0.28 ± 0.18 (0.00–0.87) in the P-HQ PET (p < 0.0001). Finally,

the mean RC in the lesion ROI was 0.39 ± 0.05 (0.32–0.51) for

the S-SQ PET vs. 0.98 ± 0.17 (0.69–1.45) for the P-HQ PET (p

< 0.0001). Mean RC in P-HQ PET and GT-HQ PET were not

different (p = 0.32). In Figure 6, we show a small lesion in the

frontal lobe. The RLA was 0.6 in the GT-HQ PET, 0.95 in the

S-SQ PET, and decreased to 0.75 in the P-HQ PET.
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Epilepsy patients

The result of the trained model for clinical data is illustrated

in Figures 7, 8 showing brain T1w MRI, [18F]FDG PET and

the P-HQ PET from two different patients with drug-resistant

epilepsy. Across the cohort of epilepsy patients, the mean

diagnostic image quality ratings for the clinical PETs were 2.9

± 0.3 vs. 3.9 ± 0.5 for the predicted HQ PET (p < 0.01). Inter-

reader mean quality scores were not significantly different. The

mean diagnostic confidence ratings were 3.4± 1.1 for the clinical

PET vs. 4.2 ± 0.8 for the predicted HQ (p = 0.02). Inter-reader

mean confidence rating scores were not significantly different.

Lesion detection rates were identical for both readers (7/10) for

both the clinical PET and the predicted HQ PET.

Discussion

In this work, we trained a network to map Monte-Carlo

S-SQ PET to their GT-HQ PET. In an independent test set,

the P-HQ PET showed improved image quality compared to

S-SQ PET across several objective quantitative metrics. In an

independent dataset with small, simulated epilepsy lesions, the

P-HQ PET significantly improved the relative lesion activity

and visual detectability. Lastly, we have shown that the model

was able to generalize to clinical data, illustrating the proof-of-

concept that a model trained on Monte-Carlo simulated PET

data is applicable on real data.

To train our model we had to overcome the limited

availability of high quality training data, a common challenge for

the deblurring problem (53) and so we chose to use simulation.

We developed a pipeline based on a Monte-Carlo based PET

simulator as it can accurately model the PET acquisition process

including physical effects resulting in realistic sinograms (29)

that have the same data distribution as the real PET. Compared

to the few papers about PET deblurring with AI in image

space, our simulated PET were more realistic: two studies

used physically unrealistic degradation methods for their S-

SQ PET adding Gaussian noise to an inverted T1w MR or

down-sampling the standard PET image (54, 55). The latter

approach also does not allow improvement beyond S-SQ PET.

Two other studies used PET simulated analytically rather than

with a Monte Carlo method (27, 28). While the main drawback

of Monte-Carlo simulation is the computational burden, we

were able to simulate PET acquisitions in a reasonable amount

of time (about 3 h per scan) using PET SORTEO (29) which

has been validated to provide realistic simulation of the Siemens

Biograph mMR PET-MR (31), a system available across both

our institutions. To be as close as possible to the clinical

PET images, we reconstructed the generated sinogram using

e7toolsTM (Siemens Healthineers), which is also used for clinical

data. Next, we used the same pipeline to generate data with

a simulated epileptogenic lesion. This pipeline now enables

creation of a whole range of realistic datasets for training

if needed.

Our model has several particularities. We went beyond

previous published PET deblurring methods with AI which

used 2D models (27, 28, 54–56). We developed a 3D model,

following results in the PET denoising field where 3D models

tend to outperform 2D or 2.5D models (39, 57) because

of additional features in 3D space. To prevent the impact

of regional homogeneity on GT-HQ PET on the model

parameters, we trained using small brain patches (32 × 32

× 32 mm3) from PET data simulated with of large number

of GM/WM ratios. Thus, at the end of the training, the

network weights were defined to respond to a wide range of

voxel values (including hypometabolism) and patterns. The

inference was also computed using the same size of patches

which were then put together to obtain the predicted P-

HQ PET. Compared to many deblurring methods (including

some PVC methods and AI-based approaches) which rely on

anatomical information (26), we provide a model that only

relies on PET data which offers multiples advantages. Firstly,

as the method works in the image space it can be applied

on previously acquired PET even if raw data (sinograms)

are not or no longer available, as will be the case in most

clinical centers. Secondly, with the current development of

dedicated standalone brain PET scanners (58), a PET-only

method offers a unique opportunity to be combined with

novel high-performance, high-resolution hardware to detect

very small lesions. Thirdly, using a PET-only method prevents

potential performance degradation that could stem from inter-

modality alignment errors (59) which can occur even with

simultaneous PET-MR if the MR sequence used for deblurring

has been acquired at a different time to the emission data

under study.

Our model achieved very good performance for relative

lesion activity, which depicts lesion contrast, among all the

lesions, despite different localization or shape. In the S-SQ PET,

RLA was substantially higher at 0.83 ± 0.08 but decreased

toward the GT-HQ PET ground truth (0.45) with 0.67 ± 0.14

in P-HQ PET. There was one outlier in the 0.6 RLA group

with a P-HQ PET RLA value above one for a 37 mm3 lesion

in the lateral temporal lobe. This occurred because in the S-

SQ PET, the lesion had a RLA value (0.997) so close to 1 that

the information about presence of a lesion was lost during the

simulation process. This is a principal limitation of our model

which will only be overcome with higher resolution hardware.

However, these results suggested that the model improved the

RLA formost lesions even largely inferior to the nominal average

1D spatial resolution of 4.3mm in full width at half maximum of

the Siemens Biograph mMR (60), which defined a volumetric

resolution near 80 mm3. The quantitative results correlated well

to the visual analysis of the P-HQ PET images showing increased

visibility of the simulated lesions as well as slight improvement

in the confidence of the reader, suggesting the improvements
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from P-HQ PET are relevant for future clinical application for

epilepsy presurgical PET assessment.

Even if the SORTEO simulator is validated for the PET-MR,

clinical PET images from the PET-MR will be slightly different

requiring normalization, so the clinical P-HQ PET was expected

to be different. Nevertheless, distributions of the simulated data

and real data were close enough to enable use of both data

types with the same network. We therefore consider that the

clinical data application was successful in illustrating proof-of-

concept that a model trained on Monte-Carlo simulated PET

data is applicable on real data. Whereas, generalizability to out-

of-distribution data is a common critical limiting factor for deep

learning-based image processing (53), in our case this limitation

could in principle be overcome by creating more simulations

using the Monte-Carlo pipeline with settings tuned (29, 31) to

simulate different scanners and reconstructions. Nevertheless,

a study of generalization exceeds the scope of this manuscript.

Such a study would need to be carefully planned to include

reconstruction methods, scanner manufacturer, injection dose,

uptake time and acquisition time to quantify the potential of

such methods and their limits.

The realistic Monte-Carlo PET simulations and our training

method allowed us to directly apply the trained network on

clinical data. The P-HQ PET of the patients again showed

an improved visual quality as well as an improved reader

confidence. When we visually compared the GT-HQ PET and

the P-HQ PET, it was apparent that the cortical structures were

similar indicating that P-HQ PET from clinical data should

not mislead physicians. Also, the clinical reading of epilepsy

imaging does not rely on PET only. Indeed, physicians are

trained to read both PET and MRI independently first, and

jointly later, using the additional information to interpret the

metabolism. In addition, and as in clinical practice (for example

with non-attenuation corrected images), the non-enhanced

standard quality image would always be made available to the

reading physician to consult. One limitation of the clinical

application was the small retrospective cohort of unselected

epilepsy patients, but clinical evaluation of our model was not

the main objective of this work. In addition, our ground truth

was the visual assessment from the nuclear medicine physician

using the standard PET which is an inherent limit to show the

potential of the P-HQ PET. It would be interesting to evaluate

our method in patients for which the standard quality PET

was negative, but this is a very restrictive subpopulation where

“ground truth” is often impossible to obtain as patients then

neither undergo depth-electrode investigations nor surgery.

Nevertheless, the patient with a small right post-central

hypometabolism (Figure 8) underlines P-HQ PET’s potential

for clinical application. This work can be put into perspective

with the work of Baete and Goffin (12, 61) that used the

anatomy-based maximum a-posteriori (A-MAP) reconstruction

algorithm to improve detection of small areas of cortical

hypometabolism. Their method showed promise to increase

detectability of hypometabolic areas on interictal [18F]FDG

PET in a cohort of 14 patients with FCD. FCDs are the

most commonly resected epileptogenic lesions in children

and the third most common lesions in adults (8). FCD type

II is a malformation with disrupted cortical lamination and

specific cytological abnormalities (62). Surgery remains the

treatment of choice in drug resistant patients and relies on

lesion localization (63). In Goffin et al. (12) improvement

failed to reach significance due to the small sample size, but

underlined the clinical potential of such methods. For epilepsy

surgery, the outcome of seizures and long-term results, including

discontinuation of antiepileptic drugs, is highly dependent on

the discovery of an epileptogenic lesion in the surgical specimen;

for example, for FCD the chance of being seizure-free increases

to 67% for positive sample (64). Imaging has an important

role to localize FCD (9) in particular [18F]FDG PET (4, 65).

In a study assessing the impact of imaging on FCD surgery

outcome, there was no significant difference between FCDs

detected on [18F]FDG PET, whether MRI had been positive or

negative (66).

We quantitatively and qualitatively validated our model on

simulated data with and without epilepsy-typical lesions. We

also illustrated its potential applicability to clinical data. The

next step is to assess the performance of the P-HQ PET in a

clinical study, ideally in a large cohort of patients with well-

localized lesions (FCDs), such as seizure-free subjects after brain

surgery It will be also important to evaluate performance of

nuclear medicine physicians with different levels of experience:

P-HQ PET should be seen as a diagnostic support to improve

reader detection and confidence, allowing non-expert readers

to perform closer to expert reader performance. Another

interesting perspective would be to assess the improvement of

an AI based anomaly detection model (67) with the P-HQ PET

compared to the standard PET.

Conclusion

In this work, we trained a deep learning model to

map S-SQ PET to their GT-HQ PET using a new large

realistic Monte-Carlo simulated database. In an independent

test set, the P-HQ PET showed improved image quality

compared to S-SQ PET across several quantitative objective

metrics. Moreover, in the context of epilepsy simulated

lesions, the P-HQ PET improved the relative lesion activity

and their visual detection. Following this validation on

simulated lesion data and the successful clinical application

to illustrate the proof-of-concept that a model trained on

Monte-Carlo simulated PET data is applicable on real data,

next steps are to perform a generalization study and to

assess the performance of the P-HQ PET in a cohort of

epilepsy patients with well-characterized lesions and/or normal

standard-quality PET.
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Objective: To evaluate the performance of 18F-fluorodeoxyglucose positron

emission tomography (18F-FDG PET/CT) radiomic features to predict overall

survival (OS) in patients with locally advanced uterine cervical carcinoma.

Methods: Longitudinal and retrospective study that evaluated 50 patients

with cervical epidermoid carcinoma (clinical stage IB2 to IVA according to

FIGO). Segmentation of the 18F-FDG PET/CT tumors was performed using the

LIFEx software, generating the radiomic features. We used the Mann–Whitney

test to select radiomic features associated with the clinical outcome (death),

excluding the features highly correlated with each other with Spearman

correlation. Subsequently, ROC curves and a Kaplan–Meier analysis were

performed. A p-value < 0.05 were considered significant.

Results: The median follow-up was 23.5 months and longer than 24 months

in all surviving patients. Independent predictors for OS were found–SUVpeak

with an AUC of 0.74, sensitivity of 77.8%, and specificity of 72.7% (p = 0.006);

and the textural feature gray-level run-length matrix GLRLM_LRLGE, with AUC

of 0.74, sensitivity of 72.2%, and specificity of 81.8% (p = 0.005). When we

used the derived cut-off points from these ROC curves (12.76 for SUVpeak and

0.001 for GLRLM_LRLGE) in a Kaplan–Meier analysis, we can see two different

groups (one with an overall survival probability of approximately 90% and the

other with 30%). These biomarkers are independent of FIGO staging.
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Conclusion: By radiomic 18F-FDG PET/CT data analysis, SUVpeak and

GLRLM_LRLGE textural feature presented the best performance to predict

OS in patients with cervical cancer undergoing chemo-radiotherapy

and brachytherapy.

KEYWORDS

positron emission tomography, prognosis, uterine cervical neoplasms,
18F-fluorodeoxyglucose, radiomics

Introduction

Cervical uterine cancer is an important cause of death
in women, especially in regions of low socioeconomic
development (1–3). In more advanced stages, fluorine-18-
labeled fluorodeoxyglucose positron emission tomography
associated with computed tomography (18F-FDG PET/CT) is
recommended for the adequate evaluation of lymph nodes and
distant metastases (4–6).

The standardized uptake value (SUV) of 18F-FDG is the
most used semi-quantitative variable in 18F-FDG PET/CT (7).
This value translates the lesion glycolytic metabolism and the
higher the value, the more aggressive the tumor (8). Other
quantitative metrics extracted from the 18F-FDG PET/CT scan
are the metabolic tumor volume (MTV), which translates the
measure of the tumor volume with a higher metabolism, and
the total lesion glycolysis rate (TLG), which is the product of the
mean SUV by the lesion MTV (9). These three variables reflect
the tumor metabolic load and could help to predict the patient’s
prognosis (10, 11).

Radiomic is the extraction of mineable data from medical
imaging that has emerged recently (12). It analyzes the lesion
phenotype using mathematical formulas that dissect the image,
quantifying and characterizing several tumoral features (13–15).
Among the numerous variables of the radiomic analysis of 18F-
FDG PET/CT images, the textural features present a greater
correlation with the heterogeneous biological behavior of the
tumor. They may serve as predictive markers of overall survival
(OS) and therapeutic response (16–18).

Therefore, this paper aims to find radiomic features and
metabolic parameters predictive of OS from 18F-FDG PET/CT
scans of uterine cervical cancer.

Materials and methods

Patients and methods

The present study included 50 consecutive patients
with histologically confirmed diagnoses of uterine cervical
squamous cell carcinoma between 2013 and 2015 (Table 1).

The inclusion criteria were: women over 18 years that
were undergone pretreatment 18F-FDG PET/CT. All patients
received standardized chemotherapy treatment with cisplatin
and gemcitabine, with two cycles of neoadjuvant chemotherapy,
with subsequent radiotherapy and brachytherapy according
to the institutional protocol. The patients were followed up
for at least 24 months. The exclusion criteria included 18F-
FDG PET/CT scans in disagreement with the acquisition,
processing, or reconstruction parameters, according to the
Image Biomarker Standardization Initiative (IBSI) (19). The
selected patients were divided into two groups according to
their progression after 24 months of follow-up: group 1, with
overall survival of at least 24 months and group 2, deceased
due to cancer in the follow-up period. The institutional research
ethics committee approved this study. The demographic data
and clinical information were obtained from the medical records
and included: age, origin, education, smoking status, number
of children, and number of sexual partners, in addition to the
clinical and imaging staging data (FIGO) (4), and information
regarding the treatment.

Protocol of the 18F-FDG PET/CT scan

The scans were performed at the nuclear medicine and
molecular imaging facility of the Instituto de Medicina Integral
Professor Fernando Figueira using PET/CT scanner (Siemens
Biography 16 channels, Germany), according to the guidelines
of the European Society of Nuclear Medicine (20). Patients
fasting for at least 4 h and with glycemic levels ≤ 150 mg/dL
received 0.14 mCi/kg of 18F-FDG intravenously. Approximately
60 min after the administration of 18F-FDG, images were
obtained from the skull to the thigh root. All the patients
received 20 mg of furosemide after the first imaging;
additionally, 120 min after the radiopharmaceutical injection,
they returned to the scanner for late imaging of the pelvis. The
acquisition parameters of the initial images were analyzed, with
a reconstruction diameter of 500 mm, tube voltage of 130 kV,
current of 75–310 mAs, and thickness of 3 mm. The images were
reconstructed with 3D OSEM mode (four iterations and eight
subsets) in a 4.07 × 4.07 × 5.00 mm3 matrix.
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TABLE 1 Clinical and demographic characteristics of the study
patients.

Variable n (%) %

N = 47

Age (mean ± SD) 47 ± 23 years

Origin

Metropolitan area 26 55.4

Inland cities 21 44.6

Education

Illiterate 17 33.1

0 to 8 years 24 51.0

8 to 12 years 06 12.7

Smoking

Non-smoker 23 48.9

<20 pack-year 04 8.5

>20 pack-year 13 27.6

Ex-smoker for > 5 years 08 14.8

Number of children

1 child 6 12.7

2 children 7 14.8

3 or more children 34 72.3

Number of sexual partners

Up to two partners 12 25.6

Three or two partners 35 74.4

Tumor size (cm) (mean ± SD) 5.43 cm (SD 1.49)

FIGO staging

IB2 02 4.20

II 04 8.0

III 21 44.6

IV 20 42.5

FIGO, international federation of gynecology and obstetrics.

Radiomic analysis

Segmentation
We use the free access multiplatform Local Image Features

Extraction (LIFEx) software (V6.30—Inserm, Orsey, France)
(21), as can be seen in Supplementary Figure 1. Initially, a
semi-automatic segmentation of the uterine cervical lesion was
performed (whole-body image only), identified by the 18F-FDG
uptake on the CT fusion image, and manually outlined with
a 3D design tool. Subsequently, the software selected the area
of highest uptake, considering a fixed threshold of 40% of
the standard uptake value (SUV) of the ROI volume (VOI),
a method validated for cervical uterine neoplasms (22, 23).
Notably, the details regarding the computation parameters and
formulas are described at www.lifexsoft.org (21). A radiologist
specialized in the female pelvis and supervised by a nuclear
medicine specialist, both with 20 years of experience, did the
segmentations for all patients.

Extraction
For each selected volume, a massive extraction of numerical

data was performed by LIFEx, using 4 × 4 × 4 resizing,

0.25 fixed number width (FBW) intensity discretization method
and histogram redefinition, obtaining 50 tumor features. These
features were divided into categories, including: first-order
statistics derived from the voxel intensity histogram (shape,
volume, and histogram), and conventional indices (SUVpeak,
SUVmean, SUVmax, MTV, and TLG); second-order statistics,
including features based on the gray-level co-occurrence matrix
(GLCM), gray-level run-length matrix (GLRLM), neighboring
gray-level dependence matrix (NGLDM), and gray-level zone
length matrix (GLZLM) (12, 21, 24).

Selection of radiomic features
Initially, searching for clinically significant markers

associated with OS, we performed an independent sample test
with the Mann–Whitney to assess the distribution for each
feature in the two groups, including those with a p-value < 0.05,
to subsequent analysis.

After that, the data were submitted to dimension reduction
through rank correlation with Spearman’s coefficient, evaluating
each pair of features. Later, we found which markers correlated
with each other, excluding redundant markers using a
correlation matrix and selecting those with a pre-established
hypothetical rho lower than 0.85.

Statistical analysis

The absolute and relative frequency described categorical
variables in percentage. Continuous variables with a normal
distribution were analyzed by the mean and standard deviation;
while non-parametric variables were analyzed by the median,
maximum and minimum values, and interquartile range (IQR).
For comparison between variables, we used the Mann–Whitney
U test. We determined the cut-off points for variables with a p-
value < 0.05 and the distinction between groups by ROC curves
(DeLong methodology).

For prognostic evaluation, we correlated the selected
radiomic features with the OS. Kaplan–Meier survival curves
were constructed, with cut-off points obtained by the ROC
curve for each variable, using the MedCalc software (MedCalc
Software Ltd, Ostend, Belgium; https://www.medcalc.org; 2022).
P-values lower than 0.05 were considered statistically significant.

Results

Clinical and demographic
characteristics

The sample was initially composed of 50 consecutive
patients. Three patients were excluded: one whose pretreatment
baseline scan was unavailable and two other scans with
divergence in the acquisition parameters (disagreement with
IBSI standards).
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FIGURE 1

Receiver operating characteristic curve analyses of SUVpeak (A), GLRLM_LRLGE (B), and both (C) value for predicting overall survival.

Therefore, 47 patients were eligible for this study, with a
mean age of 47 ± 23 years and ranging from 24 to 70 years. The
majority of the patients had a low level of education, with reports
of multiple sexual partners. Approximately 87% of patients
presented with advanced stages of the disease (FIGO III and IV)
(Table 1). Advanced stages of FIGO were correlated with lower
overall survival (Supplementary Figure 2).

The median follow-up was 23.5 months (range: 3.73–
39 months), with all surviving patients being followed up for at
least 24 months. Of a total of 47 patients, 36 (77%) were alive at
the end of 24 months (group 1) and 11 (23%) patients had died
due to the disease (group 2).

Metabolic biomarkers and textural
radiomic features

The data were extracted from 47 VOIs. We selected
the features with discriminatory power for the selected
outcome: three metabolic parameters–SUVmax (p = 0.02),
SUVmean (p = 0.02), and SUVpeak (p = 0.01); and 13 textural
markers–five markers from the GLZLM matrix (GLZLM_SZE,
GLZLM_LGZE, GLZLM_HGZE, GLZLM_SZLGE, and
GLZLM_SZHGE); six markers from the GLRLM matrix
(GLRLM_LGRE, GLRLM_HGRE, GLRLM_SRLGE,
GLRLM_SRHGE, GLRLM_LRLGE, and GLRLM_LRHGE);
and two markers from the GLCM matrix (GLCM_Contrast
variance and GLCM_Dissimilarity).

Among the metabolic parameters, the SUVpeak showed
the best performance to differentiate the groups. The SUVpeak
median in group 1 was 10.89 (IQR 7.60–12.69), while in group
2 was 13.87 (IQR 12.17–14.14), p = 0.01. The best cut-off point
value (ROC curve analysis) was 12.76 with an AUC of 0.74, a
sensitivity of 77.8%, and a specificity of 72.7%, p = 0.006.

The SUVmax median value in group 1 was 12.83 (IQR 9.09–
14.90) vs. 15.98 in group 2 (IQR 13.52–19.09), p = 0.02. The best
cut-off point was 14.32, AUC = 0.68, sensitivity = 72.3%, and
specificity = 72.7% for the cut-off point of 14.32 (p = 0.012). The
SUVmean median value in group 1 was 7.68 (IQR 9.09–14.90)

vs. 9.88 in group 2 (IQR 8.88–10.92), p = 0.02. It presented an
AUC of 0.68, sensitivity of 72.3%, and specificity of 72.7% for a
cut-off point of 8.8 (p = 0.01).

The other conventional metabolic metrics were not
significant. The median MTV in group 1 was 31.9 (IQR: 18.5–
51.0) vs. 37.8 (IQR: 24.6–72.4) in group 2 (p = 0.49). The median
TLG in group 1 was 295.9 (IQR: 100.7–403.7) vs. 320.3 (IQR:
253.2–465.7) in group 2, p = 0.33.

Aiming for the redundancy feature reduction, we used the
Spearman rank correlation for each of these 13 attributes. Three
of them showed a rho value lower than 0.85: GLRLM_LGRE,
GLRLM_SRLGE, and GLRLM_LRLGE. When we compared the
AUC of these three indices, the GLRLM_LRLGE textural feature
presented a little better performance. The GLRLM_LRLGE
median in group 1 was 1.2 × 10−3 (IQR: 8 × 10−4–32 × 10−3)
vs. 7.7 × 10−3 in group 2 (IQR 6 × 10−4–9 × 10−3, p = 0.017).
The best cut-off point value was 1 × 10−3 (AUC: 0.74;
sensitivity: 72.2%; specificity: 81.8%, p = 0.005).

For GLRLM_LGRE, the group 1 median value was
1.2 × 10−3 (IQR: 7 × 10−4–2.4 × 10−3), and in group 2 was
7 × 10−4 (IQR: 5 × 10−4 to 8 × 10−4, p = 0.01). It presented
an AUC of 0.73, sensitivity of 81.8%, and specificity of 72.2% for
a cut-off point of 9 × 10−4 (p = 0.006). For GLRLM_SRLGE,
the group 1 median value was 1.2 × 10−3 (IQR: 7 × 10−4–
2.3 × 10−3), and in group 2 was 7 × 10−4 (IQR: 5 × 10−4–
8 × 10−4, p = 0.01). The AUC was 0.73, sensitivity of 81.8%, and
specificity of 72.2% for a cut-off point of 8 × 10−4 (p = 0.006)
(Figure 1). More information at Table 2.

Correlations between conventional
parameters 18F-FDG PET/CT and
textural features

The SUVpeak showed negative correlations with the
GLRLM matrix. GLRLM_LRLGE (r = −0.890, p < 0.01).
The SUVmax also showed a negative correlation with
GLRLM_LRLGE (r = 0.764, p < 0.01).
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TABLE 2 Results of independent-samples Mann–Whitney test analysis parameters 18F-FDG PET/CT for cervical cancer predicting overall survival.

Group 1 Group 2

Median Range Median Range P

Image-based parameters
SUV mean 7.68 9.09–14.90 9.88 8.88–10.92 0.02

SUV peak 10.89 7.60–12.69 13.87 12.17–14.14 0.01

SUV max 12.83 9.09–14.90 15.98 13.52–19.09 0.02

TLG (mL) 295.9 100.7–403.7 320.3 253.2–465.7 0.33

MTV (mL) 31.9 18.5–51.0 31.9 24.6–72.4 0.49

Texture parameters
GLRLM_LGRE 1.2 × 10−3 7 × 10−4–2.4 × 10−3 7 × 10−4 5 × 10−4–8 × 104 0.01

GLRLM_SRLGE 1.2 × 10−3 7 × 10−4–2.3. 10−3 7 × 10−4 5 × 10−4–8 × 104 0.01

GLRLM_LRLGE 1.2 × 10−3 8 × 10−4–3.2 × 10−3 7.7 × 10−3 6 × 10−4–9 × 104 0.01

18F-FDG PET/CT, 18fluorodeoxyglucose positron emission tomography; Group 1, survivors; Group 2, dieded; SUV, standardized uptake values; SUVmax, maximum standardized uptake
value; SUVmean, mean standardized uptake value; SUVpeak, the peak of SUV in 1 mL; TLG, total lesion glycolysis; MTV, metabolic tumor volume; GLRLM, Gray level run length matrix;
LGRE, low gray-level runs emphasis; SRLGE, short runs low gray-level emphasis; LRLGE, long runs gray-level emphasis.

FIGURE 2

Kaplan–Meier survival curve of overall survival in patients with cervical cancer. (A) High SUVpeak value (>12.76) and low SUVpeak value (<12.76).
(B) High GLRLM_LRLGE value (>1.10-3) and low GLRLM_LRLGE value (<1.10-3).

Both SUVpeak and GLRLM_LRLGE were not correlated
with FIGO staging (Supplementary Table 1).

Kaplan–Meier survival analysis

GLRLM_LRLGE showed a significant correlation with the
OS (p = 0.003). Patients who died presented a GLRLM_LRLGE
value lower than the cut-off point, with a shorter survival time:
median of 708 days (CI: 505.0–734.0). A risk ratio of 10.8 (CI:
3.0–39.1) was observed.

SUVpeak showed a significant correlation with the OS
(p = 0.006). Patients who died presented a higher SUVpeak
value, with a shorter survival time: a median of 706 days (CI:
374.0–734.0). A risk ratio of 10.5 (CI: 2.7–40.3) was observed
(Figure 2).

Discussion

This study demonstrated the prognostic association between
radiomic biomarkers of primary uterine cervical cancer lesions

at 18F-FDG-PET/CT and overall survival. Among the evaluated
metabolic parameters, SUVpeak showed the best discriminatory
power; and among all the selected radiomic textural features,
the GLRLM_LRLGE presented the best predictive performance.
Moreover, SUVpeak and GLRLM_LRLGE demonstrated a
greater correlation with OS compared with clinical and other
more conventional 18F-FDG-PET/CT parameters, including
MTV and TLG. These data reinforce the importance of
metabolic radiomic evaluation in cervical uterine tumor staging.

Cervical cancer accounts for high morbidity and mortality
in patients of productive and reproductive age worldwide,
especially in vulnerable populations (25). The staging of this
neoplasm is based on FIGO classification, which includes
characteristics of the primary lesion, and lymph node or
distant dissemination (4–6). However, FIGO classification
presented a low accuracy in predicting therapy response and
survival, especially among patients with advanced-stage cancer
disease (4).

The search for non-invasive and robust prognostic
biomarkers can improve the predictive power of therapy
response. Radiomic is considered a promising analysis tool in
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precision medicine (26, 27). Some studies have also reported the
use of this technology in cervical tumor cases, based on several
imaging methods, especially magnetic resonance imaging and
18F-FDG-PET/CT (28). Usually, these studies aim to evaluate
several aspects of the tumor, covering most frequently lymph
node invasion (29–31), prognosis (28, 32), and therapeutic
response (33); followed by histological grade (34–36), staging
(37), and lymphovascular space invasion (29).

Standardized uptake value represents a semi-quantitative
metric of 18F-FDG-PET/CT with prognostic ability, including
OS evaluation of patients with uterine cervix tumors (10, 33).
All metrics of SUV are correlated with each other, providing
information on the tumor metabolic activity. SUVpeak is
reported as more robust and reproducible than SUVmax and
SUVmean, although it is not widely disseminated in clinical
practice (7). Studies report better performance of SUVpeak to
demonstrate the aggressiveness of early-stage cervical tumors
compared to SUVmax, maybe because SUVpeak measures
several voxels in a more metabolically active spherical VOI of
the lesion (7, 38).

The SUVpeak in our study presents a cut-off value similar to
those described in other studies. Schernberg et al. (39) analyzed
locally advanced disease treated with definitive chemoradiation
and demonstrated that a high SUVpeak value was superior in
predicting the OS and local recurrence, when compared with
other 18F-FDG-PET/CT parameters, like MTV and TLG. Other
studies also evaluated early-stage cervical cancer, in which a low
SUVpeak was significantly correlated with high progression-free
survival (40).

A systematic review by Piñeiro-Fiel et al. evaluated
the radiomics of 18F-FDG-PET/CT in several neoplasms.
Gynecological cancers were among the four most studied types,
with 19 publications in a total of 741 studies. Of these 19
publications, cervical uterine cancer accounted for the largest
number of publications (74%), followed by endometrial cancer
(16%). As in our study, the textural features were correlated with
the conventional metrics of 18F-FDG-PET/CT, including SUV.
In the analysis of gynecological cancers, the texture matrices
that presented higher significance were GLCM, GLRLM, and
GLZSM (41).

We showed that GLRLM_LRLGE could perform well in
predicting OS in patients with advanced cervical cancer.
The radiomic matrix GLRLM conceptually relates to the
intensity of the gray level of pixels in an image, in a given
direction, and LRLGE represents the distribution of long
stretches with a high or low gray level, being an indicator
of the uniformity of the homogeneous distribution of FDG
uptake (42). GLRLM_LRLGE is a potential biomarker in other
neoplasms too, as it can discriminate benign from malignant
renal tumors (42), and can be used to assess recurrence in rectal
cancer (43).

Additionally, some studies demonstrated a significant
correlation between the GLRLM matrix 18F-FDG-PET/CT

textural markers (LGRE, SRLGE, and LRLGE) and RNA-
level immunological biomarkers of PD-L1 (programmed death
ligand 1) in lung cancer (44). PD-L1 protein expression
is also a predictive biomarker in uterine cervical cancer
(45). Subsequently, we could find a possible intercorrelation
between these textural markers (GLRLM_LRLGE) and PD-L1
expression, representing an important prognostic and selection
factor for immunotherapy. This hypothesis may be evaluated in
future prospective studies.

GLRLM_LRLGE possibly shows a relationship with tumor
necrosis, as it assesses the homogeneity of 18F-FDG uptake, and
its highest value is documented in benign homogeneous lesions
(42). On the other hand, several studies demonstrate a direct
relationship between PD-L1 and tumor necrosis factor (TNF
alpha) in oncologic diseases, including findings in which TNF
alpha produced by adipocytes positively regulates PD-L1 (46).
Based on these findings, we can assume that the textural factor
GLRLM_LRLGE also correlates with TNF alpha.

However, this study has many limitations. It is a single-
center study with a low number of patients and a retrospective
analysis. However, the sample was derived from a clinical trial
(47), with a relatively homogeneous and controlled group of
patients with a good clinical follow-up. Additionally, the 18F-
FDG-PET/CT pretreatment images were reevaluated in order
to collect new data regarding radiomic characteristics in the
primary lesions. Moreover, we analyzed only the scans with a
protocol following the parameters established by the IBSI. We
also do not perform multiple correction tests in our data, mainly
because of the low number of included patients.

In conclusion, in patients with advanced cervical tumors,
this study investigated and identified two biomarkers with better
prognostic performance (SUVpeak and GLRLM_LRLGE).
These features denote metabolism and intratumoral textural
homogeneity, respectively. In the future, the SUVpeak and
GLRLM_LRLGE have the potential to be incorporated
into clinical practice, helping to identify patients with a
higher risk of death.
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MRI-derived radiomics to guide
post-operative management of
glioblastoma: Implication for
personalized radiation treatment
volume delineation
S. Chiesa1, R. Russo2, F. Beghella Bartoli1, I. Palumbo3,4,
G. Sabatino5,6, M. C. Cannatà1*, R. Gigli7, S. Longo1, H. E. Tran1,
L. Boldrini1, N. Dinapoli1, C. Votta1, D. Cusumano7, F. Pignotti5,6,
M. Lupattelli4, F. Camilli3, G. M. Della Pepa6, G. Q. D’Alessandris6,
A. Olivi6, M. Balducci1, C. Colosimo2, M. A. Gambacorta1,
V. Valentini1, C. Aristei3,4 and S. Gaudino2

1Department of Radiology, Radiation Oncology and Hematology, Fondazione Policlinico Universitario “A.
Gemelli” IRCCS, Rome, Italy, 2Department of Diagnostic Imaging, Oncological Radiotherapy and
Hematology, Institute of Radiology, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Rome, Italy,
3Radiation Oncology Section, University of Perugia, Perugia, Italy, 4Perugia General Hospital, Perugia, Italy,
5Department of Neurosurgery, Mater Olbia Hospital, Olbia, Italy, 6Department of Neurosurgery, Agostino
Gemelli University Polyclinic (IRCCS), Rome, Italy, 7Medical Physics, Mater Olbia Hospital, Olbia, Italy

Background: The glioblastoma’s bad prognosis is primarily due to intra-tumor

heterogeneity, demonstrated from several studies that collected molecular biology,

cytogenetic data and more recently radiomic features for a better prognostic

stratification. The GLIFA project (GLIoblastoma Feature Analysis) is a multicentric

project planned to investigate the role of radiomic analysis in GB management, to

verify if radiomic features in the tissue around the resection cavity may guide the

radiation target volume delineation.

Materials and methods: We retrospectively analyze from three centers radiomic

features extracted from 90 patients with total or near total resection, who completed

the standard adjuvant treatment and for whom we had post-operative images

available for features extraction. The Manual segmentation was performed on

post gadolinium T1w MRI sequence by 2 radiation oncologists and reviewed by a

neuroradiologist, both with at least 10 years of experience. The Regions of interest

(ROI) considered for the analysis were: the surgical cavity ± post-surgical residual

mass (CTV_cavity); the CTV a margin of 1.5 cm added to CTV_cavity and the volume

resulting from subtracting the CTV_cavity from the CTV was defined as CTV_Ring.

Radiomic analysis and modeling were conducted in RStudio. Z-score normalization

was applied to each radiomic feature. A radiomic model was generated using features

extracted from the Ring to perform a binary classification and predict the PFS at

6 months. A 3-fold cross-validation repeated five times was implemented for internal

validation of the model.
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Results: Two-hundred and seventy ROIs were contoured. The proposed

radiomic model was given by the best fitting logistic regression model, and

included the following 3 features: F_cm_merged.contrast, F_cm_merged.info.corr.2,

F_rlm_merged.rlnu. A good agreement between model predicted probabilities and

observed outcome probabilities was obtained (p-value of 0.49 by Hosmer and

Lemeshow statistical test). The ROC curve of the model reported an AUC of 0.78

(95% CI: 0.68–0.88).

Conclusion: This is the first hypothesis-generating study which applies a radiomic

analysis focusing on healthy tissue ring around the surgical cavity on post-operative

MRI. This study provides a preliminary model for a decision support tool for a

customization of the radiation target volume in GB patients in order to achieve a

margin reduction strategy.

KEYWORDS

radiomic, glioblastoma, target volume definition, heterogeneity, precision medicine

1. Introduction

Glioblastoma (GB) continues to be the most common and
threatening primary brain tumors in adults and despite a multimodal
treatment (maximum safe surgical resection followed by adjuvant
radio-chemotherapy with Temozolomide) the prognosis remains
poor, with a median overall survival (OS) of 14.6 months and a
median progression free survival (PFS) of 6.9 months (1). In spite of
decades of research, our knowledge of this neoplasm is still limited.
This bad prognosis is primarily due to intra-tumor heterogeneity,
demonstrated also from several studies that collected molecular
biology and cytogenetic data for a better prognostic stratification
of glioblastoma.

The implementation of these markers, however, depends in
routine clinical practice on surgical tissue (2). On the contrary, the
use of medical imaging, as a non-invasive tool to derive prognostic
factors that can predict outcome such as survival, PFS, and response
to therapy, is becoming increasingly popular. The images can be
described not only qualitatively in order to highlight the presence of
necrotic, edemigenous, malignant, suspected or metabolically active
areas, but also quantitatively in order to generate numbers that
become real measurable data (3–5).

Radiomics (6) is the process that involves the high-throughput
extraction of quantitative features by computing local macro and
micro-scale morphologic changes in texture patterns (e.g., roughness,
image homogeneity, regularity, edges) with the intent of creating
mineable databases from radiographic images.

Some experiences with glioblastoma are reported via radiomics
approaches to predict tumor’s histological features (7), progression
(8), grade, treatment response (9), or even overall survival (10–13).

Magnetic resonance imaging (MRI) is the imaging modality for
characterizing GB in these studies and generally has an integral role in
diagnosis, response assessment, surveillance and radiation treatment,
especially for defining the volume of irradiation (14).

Defining the optimal target volume for GB is still a challenge and
represents a balance between minimizing treatment related toxicity,
while ensuring efficacy in terms of tumor control and allowing a
re-irradiation approach. The recent ESTRO-ACROP guidelines in
macroscopically resected GB recommend to add an isotropic margin

of 2 cm, adjusted to anatomical border, to resection cavity plus any
residual enhancing tumor on contrast-enhanced T1 weighted MRI,
without considering the peri-tumoral oedema.

This size of safety margin had traditionally been defined around
2–3 cm based on early anatomic and clinical research. In fact, the
recurrences reported in several studies are mainly central, in field
or marginal (80–90%) with 10–20% of lesions outsides the irradiated
field (15, 16).

Several studies have been conducted to identify look for strategies
of margin reduction, such as peritumoral zone investigation, the
analysis of pattern of recurrence (15) or integration between different
imaging methods (17), but no clear indication of reducing margin is
yet available (18–22).

In light of all these considerations, the GLIFA project
(GLIoblastoma Feature Analysis) is a multicentric project planned
to investigate the role of radiomic features in GB management.
In particular, in this study we aim to verify whether there
are any radiomic features in the tissue around the resection
cavity which may guide the target volume delineation allowing
a margin reduction strategy toward a personalized medicine
approach (23).

TABLE 1 Eligibility criteria for GLI.F.A. Project.

Inclusion criteria Exclusion criteria

– Histological diagnosis of GB > 18 yrs;
– ECOG performance status <4;
– Total or near-total resection;
– Platelet counting > 100 × 109/L;
– Hb > 11 g/L;
– GB > 4000/mm3 ;
– Neutrophils > 1900/mm3 ;
– Total bilirubin and alkaline phosphatase at

less than 1.25 normal concentration;
– Informed consent that documents that the

patient has been informed in a way that is
clear and comprehensible to him and that
fits all aspects of the study.

– Biopsy
– Degenerative neurological

diseases or other
neuropsychiatric disorders;

– Pregnancy status;
– Respiratory failure;
– Immunodepression status;
– Chronic renal failure.

ECOG, Eastern Cooperative Oncology Group.
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FIGURE 1

(A) CTV_cavity: Surgical cavity ± post-surgical residual mass; (B) CTV: CTV_cavity + 1.5 cm; (C) CTV_Ring: CTV–CTV_Cavity.

FIGURE 2

Patients’ selection.

1.1. Patients selection

This is a multicentric retrospective study approved by the
ethics committees of Institutions involved. All procedures
performed were in accordance with the ethical standards of the
institutional and/or national research committee and with the

1964 Helsinki declaration and its later amendments or comparable
ethical standards.

All adult patients, with histologically proven glioblastoma
Isocitrate dehydrogenase (IDH) wild-type underwent total or near-
total resection of the enhancing tumor, followed by standard radio-
chemotherapy and adjuvant chemotherapy (1), who have performed
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MRIs according to a timeline protocol of image acquisition shared
among the project participants, were considered eligible in this study
(Table 1). All MRIs must contain at least the post-contrast T1-
weighted sequences and T2-weighted Fluid Attenuated Inversion
Recovery (FLAIR) and relative images must be available in the
required imaging protocol descriptions from Digital Imaging and
Communication in Medicine, or DICOM format (24).

Patients, clinical data and MRI data of GB were obtained from
three centers (Università degli studi di Perugia e Azienda ospedaliera
di Perugia; Fondazione Policlinico Universitario Policlinico Agostino
Gemelli, IRCSS; Mater Olbia Hospital).

Data were collected from patients treated from 2016 to October
2020, with total or near total resection, who completed the standard
adjuvant treatment, with at least 9 months of follow-up and for whom
we had post-operative images available for features extraction.

The MRIs of these patients were examined and patients whose
diagnostic images were blurred or with some of the required
sequences missing were excluded from the contouring phase.

1.2. Image acquisition and segmentation

Imaging was performed on 1.5 T MRI unit from different
manufactures (Philips Medical Systems, SIEMENS, GE
Medical Systems).

One sequence was included in the current study: gadolinium
(Gd) enhanced T1-weighted FSPGR (T1c). The images were acquired
with the following imaging parameters: slice thickness 4–5 mm, pixel
spacing 0.35–0.90 mm.

The images were loaded in a radiation therapy delineation
console (Eclipse, Varian Medical Systems, Palo Alto, CA, USA) and
in the open-source software 3D Slicer for the definition of regions
of interest (ROI).

Manual segmentation was performed on post gadolinium T1w
MRI sequence by cooperation of 2 radiation oncologists expert in the
management of brain cancer, with at least 10 years of experience (SC,
FB), and all cases were individually reviewed by a neuroradiologist
with at least 10 years of experience (SG, RR).

The ROI considered for the analysis were the following:
the surgical cavity ± post-surgical residual mass clinical target
volume_cavity (CTV_cavity); a margin of 1.5 cm was added to
CTV_cavity to obtain the CTV and the volume resulting from
subtracting the CTV_cavity from the CTV was defined as CTV_Ring
(Figure 1).

1.3. Radiomic feature extraction

Radiomic features were extracted from the CTV_Ring using
MODDICOM, an open-source R library developed for radiomic
feature extraction (25). This software was validated and calibrated
within the Image Biomarker Standardization Initiative, which aimed
to standardize the definition and computation of radiomic features
among different software implementations (26).

In total, 226 radiomic features belonging to different feature
families were extracted for each CTV_Ring. 17 statistical features
provided statistical measures of the gray-level histogram of the
ROI; 14 morphological features provided morphological descriptors
of the ROI; 195 textural features described properties of the local

TABLE 2 Clinical data characteristics of patients with glioblastoma (GB)
(n = 90).

Characteristics n (%)

Gender

Male 62 (68,9%)

Female 28 (31,1%)

Age

Median 61,7 yrs

Min 80 yrs

Max 39 yrs

<50 yrs 12 (13, 3%)

≥50 yrs 78 (86, 7%)

MGMT-gene metylathion

Not 37 (41, 1%)

Yes 48 (53,3%)

NA 5 (5, 6%)

Type of surgery

GTR 23 (25, 6%)

STR 67 (74, 4%)

IDH

IDH wild-type 100 (100%)

PFS

PFS ≤ 6 months 30 (33, 3%)

PFS > 6 months 60 (66, 7%)

GTR, gross total resection; STR, subtotal resection; IDH, Isocitrate dehydrogenase; MGMT,
methylguanine-DNA methyl-transferase; yrs, years.

distribution of the gray levels within the ROI based on co-occurrence
of gray levels, consecutive sequence of pixels or zones with the same
gray level (27).

1.4. Radiomic feature selection and
radiomics modeling

Radiomics analysis and modeling were conducted in RStudio (R
version 3.6.3). Z-score normalization was applied to each radiomic
feature before further analysis.

We generated a radiomic model using the features extracted from
the CTV_Ring to perform a binary classification and predict the PFS
at 6 months. Class 1 represented PFS below or equal to 6 months,
while class 0 represented PFS above 6 months.

Feature selection was implemented to reduce the number
of variables included in the model and prevent overfitting.
A univariate analysis was performed using the Wilcoxon-Mann-
Whitney statistical test, which tested the statistically significant
difference between the two classes for each radiomic feature.
A significance level of 0.05 was set for the univariate analysis.
The collinearity of the statistically significant features was assessed
by computing the Pearson cross-correlation coefficient. We set a
threshold of 0.9 for the Pearson coefficient to exclude collinear (highly
correlated) features.

Different logistic regression models were generated using the
selected features. The best fitting model was determined with a
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FIGURE 3

Boxplots of the radiomic features included in the developed logistic regression model for the two classes of the outcome. Class 1 (cyan) indicates
progression free survival (PFS) below or equal to 6 months, while class 0 (red) indicates PFS above 6 months.

stepwise feature selection according to the Akaike Information
Criteria (28), to compromise between model fitting goodness and
model complexity.

1.5. Radiomic model performance and
validation

The internal calibration of the proposed model was evaluated
by producing the calibration plot, reporting model predicted
probabilities against observed outcome probabilities, and by means
of the Hosmer and Lemeshow goodness-of-fit statistic. A p-
value > 0.05 indicated that there was no statistically significant
difference between model predicted probabilities and observed
outcome probabilities (29).

The discrimination performance of the proposed model was
assessed by calculating the area under the curve (AUC) of the
receiver operating characteristic (ROC) curve, and by computing the
classification evaluation metrics.

The 95% confidence interval (CI) for the AUC was yielded
by performing 2000 stratified bootstrap resampling. Sensitivity,
specificity, positive and negative predictive values (PPV, NPV) were
computed after defining the probability threshold as the best cut-
off according to the Youden’s index method. The 95% CI of these
evaluation classification metrics was obtained by adopting the Jeffreys
method for small sample sizes (30).

A 3-fold cross-validation repeated five times was implemented
for internal validation of the model. Mean and standard deviations
of the evaluation classification metrics were calculated over the five
repetitions (31, 32).

2. Results

2.1. Patient population

From January 2016 to October 2020, we collected consecutive 347
newly pathologically confirmed patients with GB and screened these
cases (Figure 2).

90 patients were considered to retrospectively analyze the pattern
of radiomic features.

Patients’ characteristics are reported in Table 2.

2.2. Development and validation of
radiomic model

Based on the Wilcoxon–Mann–Whitney statistical test, 48 out of
the extracted 226 radiomic features showed a statistically significant
difference between the two classes. Following the correlation analysis
with the Pearson coefficient, 12 out of the 48 remaining features

TABLE 3 Model coefficients and statistically significant p-values.

Estimated model
coefficient

Standard
error

P-value

Intercept −0.92 0.27 <0.001

F_cm_merged.contrast 0.89 0.36 0.013

F_cm_merged.info.corr.2 −1.10 0.34 0.0012

F_rlm_merged.rlnu 0.81 0.33 0.014
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FIGURE 4

Calibration plot reporting the observed probabilities against the model predicted probabilities.

were retained for the model development phase. The proposed
radiomic model was given by the best fitting logistic regression
model, and included the following 3 features: F_cm_merged.contrast,
F_cm_merged.info.corr.2, F_rlm_merged.rlnu.

The boxplots represented in Figure 3 show the distribution
of the selected radiomic features used in the model for the two
classes of outcome. Table 3 reports the estimated model coefficients
and the statistically significant p-values (p-value < 0.05). The
feature F_cm_merged.info.corr.2 which presented no overlap of the
interquartile ranges of the two classes, as shown in Figure 3, was also
associated to the most statistically significant p-value of the model
coefficients.

A good agreement between model predicted probabilities and
observed outcome probabilities was obtained, as showed in the
calibration plot (Figure 4) and as indicated by the p-value of 0.49
resulting from the Hosmer and Lemeshow statistical test. Figure 5
represents the ROC curve of the model with an AUC of 0.78 (95%
CI: 0.68–0.88). The discrimination performances of the model for
the binary classification are reported in Table 4 for model fitting and
internal validation. The cross-validation confirmed the performances

FIGURE 5

Receiver operating characteristic (ROC) curve of the developed
radiomic model. The bars indicate the 95% confidence intervals (CI)
for sensitivity and specificity.

obtained during model fitting with a slight or no decrease of the
metrics, suggesting that no overfitting had occurred. Specifically, the
specificity decreased from 0.80 during model fitting to 0.75 for the
cross-validation, while the NPV remained stable at 0.84.

3. Discussion

The emerging big challenge in the field of medical research is to
identify multimodal predictive/prognostic factors (clinical, imaging
and molecular data) and integrate them in a quantitative manner
to provide prediction models that estimate patient outcomes as
a function of the possible decisions toward an individualized or
personalized medicine.

In the last years, the main effort of radiology research has been
focused on quantifying imaging variations trying to understand their
clinical and biological implications.

Radiomics uses high-throughput radiomic features and
mathematical models to quantify tumor characteristics, allowing
the non-invasive capture of microscale information hidden within
medical imaging features undetectable by the human eye and
add value to clinical visual perception by exposing underlying
pathophysiology, including intra-tumoral heterogeneity (29, 33–35).

To date the application of radiomics in GM setting has shown
considerable progress in demonstrating that it can be a tool capable
of deriving much information, with implications in diagnostics, such
as differentiating tumors based on texture analysis, differentiating
treatment effects (radiation necrosis, pseudo-progression) and tumor
recurrence, in prognosis such as survival stratification (1–4, 34–
38) and applications in the choice of optimal therapy (39–41),
e.g., stratification of response to anti-angiogenic treatment for
recurrent glioblastoma.

Most radiomics studies have focused on analyzing features
extrapolated from pre-operative MRI by studying the macroscopic
site of the tumor, using ROIs such as tumor enhancement (ET),
non-enhancement, tumor/necrosis (NET), and edema (ED).

Few studies (42, 43) have suggested that heterogeneity extends
beyond the tumor margins into the peritumoral brain region (PBR),
suggesting that the interaction of specific cells (i.e., glioma cells,
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TABLE 4 Model discrimination metrics for model fitting and internal validation with cross-validation.

AUC Sensitivity Specificity PPV NPV

Model fitting 0.78 (0.68–0.88) 0.70 (0.52–0.84) 0.80 (0.68–0.89) 0.64 (0.47–0.78) 0.84 (0.73–0.92)

Cross-validation 0.79 (0.04) 0.70 (0.08) 0.75 (0.12) 0.60 (0.15) 0.84 (0.03)

Model fitting presents the 95% confidence interval (CI) of the metrics in brackets. Cross-validation presents mean and standard deviation values (in brackets). PPV, positive predictive value; NPV,
negative predictive value.

vascular endothelial, neuroglial and microglial cells) (44, 45) and
molecular events in the PBR contribute to tumor infiltration, blood-
brain barrier impairment and micro-vascularization and ultimately
affect overall survival in GB.

There has been also an increasing interest in understanding the
role of the PBR in molecular pathogenesis, as the residual cells along
the resection margin and in the surrounding region can represent
resistant and rapidly proliferating clones (43), which can lead to
disease recurrence (46).

On the other hand, as we know, the anatomy of the brain can
be significantly altered after surgery and the characteristics of the
tissue surrounding the surgical cavity can be affected by postoperative
changes such as gliosis, ischemia, blood products and can be the site
of resistant and rapidly proliferating clones. After all, in radiotherapy,
postoperative MRI is the imaging of choice for volume definition:
surgical cavity plus the margin because it may be the site of resistant
and rapidly proliferating clones (43).

Few studies have focused on the radiomic analysis of features
in postoperative MRI. Dasgupta et al. generated probabilistic maps
by developing a radiomic signature using imaging data from low-
grade glioma (LGG) (tumor marker) and brain metastasis (BM) PTR
(edema marker) and applied on 10 cases of GB PTR. They found
that a radiomic signature can demarcate areas of microscopic tumors
from edema in the PTR of GB, which correlates with areas of future
recurrence. The authors finally suggested the potential application of
radiomic features in driving radiotherapy target volumes, as standard
practice includes a wider margin empirically (46).

Our study aimed to develop a predictive model based on radiomic
features analysis extracted from real data to guide the target volume
delineation in radiotherapy, focusing on the open question of the
margins to be given to the surgical cavity, in order to re-evaluate and
to hypothesize a CTV contouring guided and personalized according
to radiomic features.

Considering our homogeneous population of 90 GB IDH wild-
type, the analysis focused on a healthy tissue ring around the surgical
cavity resulting in a radiomic model able to discriminate between
patients with low-risk and high-risk of relapse at 6 months with an
AUC of 78.5%. We decided to considerate the clinical outcome of
PFS at 6 months that could describe the local control after radio-
chemotherapy, excluding the overall survival that could depend on
other clinical and treatment variables. This predictive model with
high NPV of 0.84 could allow us to select a population of patients
with low-risk of relapse at 6 months, in whom it may be possible to
reduce the total CTV by decreasing the margins to 1.5 cm, planning
a dose strategy modulation in the surrounding tissue and potential
reducing the toxicity of healthy tissue and critical structures.

The radiomic features included in the developed radiomic model
were textural features computed from the gray-level co-occurrence
matrix (F_cm_merged.contrast, F_cm_merged.info.corr.2), which is
based on the combinations of the gray-levels of neighboring pixels,
and from the gray level run length matrix (F_rlm_merged.rlnu),

which is based on the sequence of consecutive pixels with the same
gray-level. Furthermore, the radiomic model presented a high NPV
of 0.84 when compared to the null model, which was based on
the prevalence of the majority class 0 (∼67%). This result was
confirmed in the internal validation, which was performed to assess
the generalizability of the model. The limitations of this study include
the lack of independent validation of the proposed radiomic model,
the absence of images for all patients due to unsuitable imaging data,
small sample size and the lack of correlation with other potential
clinical prognostic factors of PFS or with recurrence pattern.

However, this is the first hypothesis-generating study that applies
a radiomic analysis based on the irradiated target volume as
region of interest (ROI) for GB, focusing on healthy tissue ring
around the surgical cavity on post-operative MRI. Future steps
will include performing an external validation of the model and
verifying the applicability of the model in the clinical practice through
clinical trials.

4. Conclusion

This study provides a preliminary model for a decision support
tool employing radiomic features for a customization of the radiation
target volume in GB IDH wild-type in order to achieve a margin
reduction strategy.
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Nuclear Medicine, IRCCS San Raffaele Scientific Institute, Milan, Italy, 3School of Medicine and Surgery,
University of Milano–Bicocca, Monza, Italy, 4Department of Radiology, IRCCS San Raffaele Scientific
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Introduction: State of the art artificial intelligence (AI) models have the potential

to become a “one-stop shop” to improve diagnosis and prognosis in several

oncological settings. The external validation of AI models on independent

cohorts is essential to evaluate their generalization ability, hence their potential

utility in clinical practice. In this study we tested on a large, separate cohort

a recently proposed state-of-the-art convolutional neural network for the

automatic segmentation of intraprostatic cancer lesions on PSMA PET images.

Methods: Eighty-five biopsy proven prostate cancer patients who underwent
68Ga PSMA PET for staging purposes were enrolled in this study. Images were

acquired with either fully hybrid PET/MRI (N = 46) or PET/CT (N = 39); all

participants showed at least one intraprostatic pathological finding on PET

images that was independently segmented by two Nuclear Medicine physicians.

The trained model was available at https://gitlab.com/dejankostyszyn/prostate-

gtv-segmentation and data processing has been done in agreement with the

reference work.

Results: When compared to the manual contouring, the AI model yielded a

median dice score = 0.74, therefore showing a moderately good performance.

Results were robust to the modality used to acquire images (PET/CT or PET/MRI)

and to the ground truth labels (no significant difference between the model’s

performance when compared to reader 1 or reader 2 manual contouring).

Discussion: In conclusion, this AI model could be used to automatically segment

intraprostatic cancer lesions for research purposes, as instance to define the

volume of interest for radiomics or deep learning analysis. However, more
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robust performance is needed for the generation of AI-based decision support

technologies to be proposed in clinical practice.

KEYWORDS

PSMA, convolutional neural network, segmentation, prostate cancer, external validation

1. Introduction

Prostate cancer (PCa) is the second most common cancer in
men, with 1,414,259 new cases in 2020, accounting for 15.1% of
all cancer diagnoses within the male population (1). Although
histopathological examination of prostate biopsy cores is required
for the diagnosis of PCa, imaging is pivotal to characterize the
disease (2). Multiparametric (mp)-MRI has been used for years
in clinical practice to guide biopsy and to drive the clinical
management of PCa patients (2).

PSMA PET has been recently added to the EAU-ESTRO-SIOG
guidelines for staging high-risk PCa (2) in view of its higher
sensitivity compared to mp-MRI (3, 4). Therefore, a possible next
step will be to use PSMA PET to diagnose clinically significant
PCa (5–8) and to perform quantitative analysis that might allow
for a better and more objective characterization of the disease
(9–11).

Accurate contouring of intraprostatic gross tumor volume
(GTV) is mandatory for an accurate assessment of PCa in
several clinical settings, including both biopsy guidance and
radiomic features extraction. However, this procedure is time
consuming and largely affected by the experience of the
contouring physicians, often resulting in non-reproducible
segmentations (12).

Recently, there has been a surge in the development of artificial
intelligence (AI) models in the medical field, with the first tools
being already available for use (13, 14). Convolutional neural
networks (CNN) have been shown to accurately segment medical
images (15–17) and hold the potential to improve intraprostatic
tumor delineation (18–21). The use of CNN in this setting could
improve GTV definition by reducing the inter-reader variability
while saving time by automating this task.

Kostyszyn and colleagues were the first to develop a CNN
for the automatic segmentation of intraprostatic cancer lesions
on PSMA (using both 68Ga- and 18F-PSMA) PET images (18).
They used 152 patients examined at two centers (Germany and
China) to train their model and a cohort composed by 57 patients
to test it. However, only 20 patients in the testing cohort were
studied at an external institution (center 3, Germany) not used
for training, making it difficult to draw conclusions regarding the
model’s generalizability.

External validation of AI models on independent cohorts
is necessary to assess with certainty their robustness and
reproducibility, hence their possible application in clinical practice
(22). Therefore, this study aims to evaluate the performance
of the CNN for the automatic segmentation of intraprostatic
cancer lesions on 68Ga-PSMA PET images that was previously
presented in (18) and that is publicly available at https://gitlab.com/
dejankostyszyn/prostate-gtv-segmentation.

2. Materials and methods

2.1. Patients

All patients with biopsy proven PCa who underwent 68Ga-
PSMA PET at IRCCS San Raffaele Scientific Institute from June
2020 to January 2022 for staging purposes were considered for
inclusion. A total of 124 patients was identified. Eligibility criteria
were: (1) age greater than 18 years at the time of the PET
examination (0 patients excluded), (2) presence of at least one
intraprostatic pathological finding at 68Ga-PSMA PET (30 patients
excluded), (3) absence of neoadjuvant treatments prior to imaging
(9 patients excluded). Eighty-five patients met the inclusion criteria
and were included for analysis. See Figure 1 for a flowchart showing
the patients’ selection process. Prostate specific antigen (PSA)
level and the International Society of Urological Pathology (ISUP)
grade were collected. This retrospective study was approved by the
Institutional Ethics Committee of IRCCS San Raffaele Scientific
Institute, and informed consent was waived due to the retrospective
nature of the study.

2.2. PET imaging

PET scans were acquired using either Signa PET/MRI 3 Tesla
system, GE Healthcare, Waukesha, WI, USA (N = 46) or PET/CT,
Discovery-690, GE Healthcare (N = 39).

Fasting condition was requested on the day of 68Ga-PSMA
PET/MRI and PET/CT scan.

PET scans were acquired from the skull base to mid-thigh (5–6
FOVs, 4 min/FOV), and started approximately 60 min (mean± SD,
63 ± 6 min) after injection of 111–273 MBq (Mean ± SD,
168 ± 33 MBq) of 68Ga-PSMA. PET images, acquired with either
PET/MRI or PET/CT scanner, were reconstructed using fully
3D ordered subset expectation-maximization (OSEM) algorithm,
time-of-flight (TOF) and point-spread-function (PSF).

68Ga PSMA PET image read-out was performed by two
Nuclear Medicine physicians on an Advantage Workstation (AW,
General Electric Healthcare, Waukesha, WI, USA) and the presence
of 68GA-PSMA intraprostatic increased uptake was considered
positive for malignancy.

2.3. Image segmentation

Two Nuclear Medicine physicians manually contoured the
GTV on every slice of 68GA-PSMA PET images using 3D
Slicer (Slicer; version 4.11.2) being aware of all the available
patients’ clinical and imaging information. The first reader (Exp 1)
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FIGURE 1

Flowchart illustrating the patients’ selection process.

delineated the GTV using an inverted gray scale for display,
windowed with SUVmin-max: 0–5, as previously described in
Kostyszyn at al. (18). To ensure that the segmentation approach
used in the reference work was not introducing any bias, a second
reader (Exp 2), instead, contoured images independently without
any fixed thresholding of voxel values, blind to any instruction on
how images were evaluated in the reference work of Kostyszyn et al.

Additionally, two radiologists performed a manual contouring
of the prostatic gland on CT and MRI scans by using 3D Slicer
(Slicer; version 4.11.2). Since it is not always feasible to discriminate
between prostatic tissue and bladder signal in 68Ga-PSMA PET
images, only contouring within the delinated prostatic gland were
used for analyses, as described in Kostyszyn et al.

2.4. Resampling

To ensure that the CNN’s performance in this study was not
affected by discrepancies in the methods used as compared to the
reference work, resampling and preprocessing of the images was
performed exactly as described by Kostyszyn et al. (18).

Specifically, all PET images (nearly raw raster data format,
nrrd) were resampled to standardize the voxel spacing to
2.0 mm × 2.0 mm × 2.0 mm using SimpleITK (version1.2.4)
since the PET images collected with PET/MRI scanner had
original voxel size = 3.125 mm × 3.125 mm × 2.780 mm,
while the original voxel size of images acquired with PET/CT
scanner was 2.734 mm × 2.734 mm × 3.270 mm. Prostate
and GTV segmentations were also resampled to a voxel size of
2.0 mm × 2.0 mm × 2.0 mm. PET volumes were resampled
using both tri-linear interpolation and B-spline interpolation,
whereas Nearest Neighbour interpolation was used to resample
segmentation contours. All data were cropped using the manual
contouring of the prostate gland as guidance to a size of
64 × 64 × 64 voxels, and then normalized with xi’ = xi−x

σ
where

xi is the PET data for patient i, and x and σ are the arithmetic mean

and the standard deviation calculated over the entire cropped PET
training dataset.

2.5. Convolutional neural network

The model consists of 3 down sampling steps performed by
2 × 2 × 2 max-pooling along the contracting path, and 3 up-
sampling steps performed by 2 × 2 × 2 transpose convolutions
with padding of 1 and stride of 2 along the expanding paths. Skip
connections from the contracting path are concatenated with their
corresponding up-sampled feature maps. There are 14 3 × 3 × 3
convolutional layers in total, having stride and padding of 1.
Each convolution is followed by batch normalization and ReLU
activation function. The last layer in the model performs a 1× 1× 1

TABLE 1 Patients’ characteristics.

Statistics

No. of patients 85

Median age, years 68 (range: 45–85)

Median PSA, ng/ml 7.82 (range: 1.72–1263)

ISUP grade, no. (%)

1 3 (3.6%)

2 9 (10.6%)

3 17 (20.0%)

4 20 (23.5%)

5 29 (34.1%)

Unknown 7 (8.2%)

Scanner

PET/MRI 46

PET/CT 39
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FIGURE 2

(Top panel) Exemplar image of a 68Ga-PSMA PET/MRI scan; (A) Transaxial 68Ga-PSMA PET, (B) Axial T2-weighted MRI sequence, (C) 68Ga-PSMA
PET/MRI. (Bottom panel) Exemplar image of a 68Ga-PSMA PET/CT scan; (D) Transaxial 68Ga-PSMA PET, (E) Axial CT image, (F) 68Ga-PSMA PET/CT.

convolution with no padding, followed by batch normalization and
sigmoid activation function. The whole script of the trained CNN
can be freely downloaded at https://gitlab.com/dejankostyszyn/
prostate-gtv-segmentation.

2.6. Statistical analysis

Statistical analyses were performed with R statistical software
(23). Dice score coefficient (DSC) was computed to estimate
the performance of the trained CNN (GTV-CNN) presented in
Kostyszyn et al. (18). Moreover, DSC was also used to quantitatively
assess the agreement between the GTVs manually segmented
by the different experts (GTV-Exp 1, GTV-Exp 2). As PET
volumes in the dataset have been acquired using two different
modalities, PET/MRI and PET/CT, Student’s t-test was carried out
to determine whether the image modality of acquisition possibly
affected the model performance. Student’s t-test was also employed
to determine whether there was a statistically significant difference
in CNN performance across the different GTV-Exp segmentations
and to study whether the volume predicted by the CNN was
different in size as compared to those manually delineated by
experts. Ground truth PCa lesion volumes (GTV-Exp) were
correlated with DSC scores using Pearson correlation. Finally,
to investigate the impact of different interpolation algorithms,
analyses were first conducted on PET images resampled using tri-
linear interpolation and then on PET volumes resampled with
B-spline interpolation. The obtained DSC were compared by means
of Student’s t-test. P values lower than 0.05 were considered
statistically significant.

3. Results

3.1. Patients

Eighty-five patients with biopsy proven PCa were enrolled
in this study. The median age was 68 years (range: 45–85
years), whereas the median PSA level was 7.82 ng/ml. Patients’

characteristics are reported in Table 1. Forty-six out of 85 patients
were examined on a PET/MRI scanner (see an example; Figure 2,
top panel) and 39/85 on a PET/CT scanner (see an example;
Figure 2, bottom panel).

3.2. CNN performance

Analyses were performed on PET volumes resampled with
tri-linear interpolation and then repeated on images resampled
using B-spline interpolation. The results based on tri-linear
interpolation are reported here, while Supplementary Table 1
contains the results using B-spline interpolation for voxel
resampling. The trained CNN, when validated on the lesion
volumes manually contoured by the first reader (GTV-Exp 1),
reached a median DSC = 0.74 (range: 0.07–0.93). When the
ground truth label was drawn without fixed thresholding of
voxel values by the second reader (GTV-Exp 2), the CNN
obtained a median DSC = 0.69 (range: 0.07–0.96). However,
this difference was not statistically significant (P value > 0.05).
Using tri-linear or B-spline interpolation did not affect model’s
performance (P value > 0.05). See Table 2 for a detailed
description of CNN model performance, and Figure 3 for a
representative image. To better show the performance of the

TABLE 2 External validation of the CNN performance.

Mean DSC ± SD Median DSC (range)

GTV-Exp 1
vs.

GTV-CNN

GTV-Exp 2
vs.

GTV-CNN

GTV-Exp 1
vs.

GTV-CNN

GTV-Exp 2
vs.

GTV-CNN

All 0.70± 0.18 0.67± 0.20 0.74 (0.07 –
0.93)

0.69 (0.07 –
0.96)

PET/MRI 0.69± 0.18 0.64± 0.21 0.72 (0.07 –
0.93)

0.68 (0.07 –
0.96)

PET/CT 0.71± 0.19 0.70± 0.19 0.77 (0.10 –
0.90)

0.75 (0.10 –
0.91)

Mean and median performance of the CNN for the automatic segmentation of intraprostatic
cancer lesions considering the contouring made by reader 1 (Exp 1) and reader 2 (Exp 2) as
ground truth.
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FIGURE 3

Axial 68Ga-PSMA PET image (image windowing SUVmin-max: 0–5). (A) GTV-Exp 1 lesion contour (yellow). (B) GTV-Exp 2 lesion contour (green).
The GTV-CNN contour is shown in red and the prostate contour in purple.

CNN, additional segmentation results for sequential 68Ga-PSMA-
PET slices are shown in Figure 4. Moreover, no statistically
significant differences were identified in the volumes of the
intraprostatic tumor lesions defined by the expert Nuclear
Medicine physicians and those predicted by the CNN (P
value > 0.05, Table 3).

The DSC obtained by comparing the PCa lesion contouring
manually defined by the two expert Nuclear Medicine physicians
was 0.73 (range: 0.25–0.92).

No statistically significant differences in CNN performance
between PET/MRI and PET/CT images, regardless of the method
used to visualize and contour PET images (P value > 0.05
for both GTV-Exp 1 and GTV-Exp 2) were observed.
Conversely, a positive correlation was found between DSC
and GTV-Exp (r = 0.43, P value < 0.001 and r = 0.44, P
value < 0.001 for GTV-Exp 1 and GTV-Exp 2, respectively),
meaning that the CNN produced more accurate segmentations
for bigger lesions.

4. Discussion

In the present work, an external validation of a CNN for
the automatic segmentation of intraprostatic cancer lesions on
68Ga-PSMA PET images previously presented by Kostyszyn and
colleagues (18) has been performed. In our cohort, the trained
CNN model reached a median DSC = 0.74 and its performance was
independent from the imaging technique, PET/MRI or PET/CT,
used to acquire PET images.

68Ga-PSMA PET is widely used for the characterization of
PCa in different settings and has been recently included into
the EAU-ESTRO-SIOG guidelines for high-risk PCa staging (2).
Several studies have been reported showing the potential utility
of quantitative features extracted from 68Ga-PSMA PET images

for the characterization of the disease (9–11). Considering the
role of PSMA PET, a possible forthcoming application might be
its use in the diagnosis of clinically significant PCa, including
biopsy guidance in patients with equivocal mp-MRI findings
(6, 24).

FIGURE 4

Predicted vs. actual lesion contours in sequential 68Ga-PSMA PET
slices. (A) Original 68PSMA PET images; (B) ground truth GTV-Exp 1
contours; (C) CNN predicted contours. Prostate contours are
shown in yellow.
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TABLE 3 Gross tumor volume.

GTV-Exp 1 GTV-Exp 2 GTV-CNN

All 12.23± 15.7 ml 12.15± 16.2 ml 16.55± 18.6 ml

PET/MRI 13.75± 18.3 ml 12.45± 18.3 ml 17.70± 20.1 ml

PET/CT 10.45± 12.1 ml 11.80± 13.5 ml 15.20± 17.0 ml

Mean volume, and standard deviation, of the intraprostatic cancer lesion (GTV) defined by
Exp 1, Exp 2 and by the CNN.

Accurate contouring of intraprostatic GTV is required as
the starting point both for biopsy guidance and for radiomic
analysis. However, this procedure is extremely time consuming
and affected by inter-reader heterogeneity, often resulting in non-
replicable segmentations (12). Several CNNs have already been
proposed for GTV segmentation in other oncological settings
(19–21), bearing the potential to become a “one-stop shop” for
improving the diagnostics and prognostics of various tumors,
including PCa (25).

Kostyszyn and colleagues were the first to generate a CNN
for the automatic segmentation of intraprostatic cancer lesions
on PSMA PET images (18). This study was a joint effort of 3
different Institutions, 2 in Germany and 1 in China. The generated
model was trained on 152 patients, employing images acquired with
different tomographs in different centers (1 in Germany and 1 in
China). However, only 20 patients in the testing cohort were studied
at an external institution (center 3, Germany) not used for training,
limiting conclusions regarding the model’s generalizability.

Validation of AI models in external, independent cohorts
is crucial to assess their robustness and, consequently, their
potential utility. In our study, we tested the model generated by
Kostyszyn and colleagues on a cohort of 85 patients examined
with 68Ga-PSMA PET at our Institution. Considering that image
pre-processing can affect the model performance, as previously
described in Kostyszyn et al. (18), all pre-processing steps were
performed in agreement with the reference work. However, in
the present study, images were independently reviewed by two
Nuclear Medicine physicians. The first one (Exp 1) followed the
instruction given in Kostyszyn et al. (18), while the second (Exp
2) was not informed on how images were viewed in the reference
work, thus avoiding the introduction of any bias relative to the
adopted segmentation method.

The trained CNN model achieved a moderately good
performance on our cohort, reaching at best a median DSC = 0.74.
Interestingly, results were independent of the modality used to
acquire the images, despite the model being originally trained only
on PET/CT images, as well as of the windowing of voxel values used
when defining the ground truth labels. These results suggest that
using images acquired with several different PET/CT scanners for
training contributed to increasing model robustness. Moreover, it
has been shown that the thresholding of voxel values SUVmin-max:
0-5 yields relatively stable contouring, as also reported in a previous
work of the same group. (12). However, the CNN performance
was affected by the volume of the ground truth labels (GTV-
Exp 1 and GTV-Exp 2), resulting in more accurate segmentations
for bigger lesions.

The main limitation of this study is its monocentric nature,
as PET images were acquired in a single Institution. However, as
our center was not included in the reference work of Kostyszyn

et al., our population represents a large independent and external
testing cohort. Moreover, we included patients examined both with
PET/CT (N = 39) or PET/MRI (N = 46), this could have potentially
affected the results, but also allowed the comparison of model
performance on images acquired with different modalities. Post-
hoc analyses showed that no statistically significant differences in
CNN performance was observed on images acquired with either
PET/MRI or PET/CT. Nineteen patients studied with 18F-PSMA
were included in the paper presented by Kostyszyn et al. All patients
considered in this work underwent 68Ga-PSMA PET, therefore,
future studies are needed to assess the model’s generalizability to
18F-PSMA PET findings.

In conclusion, the trained and publicly available CNN model
presented by Kostyszyn et al. (18) yields fairly accurate contouring
of intraprostatic cancer lesions on 68Ga-PSMA PET images that
could be used as a starting point for quantitative analysis using
radiomics or deep learning approaches. Nonetheless, more robust
performance is needed for the generation of AI-based decision
support technologies that can be used and exploited in daily
clinical practice.
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Introduction: The yield per elution of a 68Ge/68Ga generator decreases during

its lifespan. This affects the number of patients injected per elution or the

injected dose per patient, thereby negatively affecting the cost of examinations

and the quality of PET images due to increased image noise. We aimed to

investigate whether AI-based PET denoising can offset this decrease in image

quality parameters.

Methods: All patients addressed to our PET unit for a 68Ga-DOTATOC PET/CT

from April 2020 to February 2021 were enrolled. Forty-four patients underwent

their PET scans according to Protocol_FixedDose (150 MBq) and 32 according

to Protocol_WeightDose (1.5 MBq/kg). Protocol_WeightDose examinations

were processed using the Subtle PET software (Protocol_WeightDoseAI). Liver

and vascular SUV mean were recorded as well as SUVmax, SUVmean and

metabolic tumour volume (MTV) of the most intense tumoural lesion and its

background SUVmean. Liver and vascular coefficients of variation (CV), tumour-

to-background and tumour-to-liver ratios were calculated.

Results: The mean injected dose of 2.1 (0.4) MBq/kg per patient was significantly

higher in the Protocol_FixedDose group as compared to 1.5 (0.1) MBq/kg for the

Protocol_WeightDose group. Protocol_WeightDose led to noisier images than

Protocol_FixedDose with higher CVs for liver (15.57% ± 4.32 vs. 13.04% ± 3.51,

p = 0.018) and blood-pool (28.67% ± 8.65 vs. 22.25% ± 10.37, p = 0.0003).

Protocol_WeightDoseAI led to less noisy images than Protocol_WeightDose with

lower liver CVs (11.42% ± 3.05 vs. 15.57% ± 4.32, p < 0.0001) and vascular CVs

(16.62% ± 6.40 vs. 28.67% ± 8.65, p < 0.0001). Tumour-to-background and

tumour-to-liver ratios were lower for protocol_WeightDoseAI: 6.78 ± 3.49 vs.

7.57 ± 4.73 (p = 0.01) and 5.96 ± 5.43 vs. 6.77 ± 6.19 (p < 0.0001), respectively.

MTVs were higher after denoising whereas tumour SUVmax were lower: the

mean% differences in MTV and SUVmax were + 11.14% (95% CI = 4.84–17.43)

and −3.92% (95% CI = −6.25 to −1.59).
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Conclusion: The degradation of PET image quality due to a reduction in

injected dose at the end of the 68Ge/68Ga generator lifespan can be effectively

counterbalanced by using AI-based PET denoising.

KEYWORDS

PET, gallium-68, artificial intelligence, denoising, deep learning

Background

The half-life of the 68Ga isotope is short (68 min) requiring on-
site synthesis of 68Ga-labeled tracers. The advent of commercially
available 68Ge/68Ga generators and labeling kits has facilitated
the synthesis of 68Ga-labeled PET tracers in the hospital’s
radiopharmacy and contributed to its increased use. Frequently
used 68Ga-labeled PET tracers target somatostatin receptors
in neuroendocrine tumours (NETs) (1) and prostate-specific
membrane antigen (PSMA) in prostate cancer (2). The clinical
benefits of 68Ga-labeled PET tracers for imaging and diagnosis
of NETs include improved sensitivity and specificity compared to
other imaging modalities, as well as the ability to detect small
and functional tumours. It is recommended as the first choice for
PET/CT imaging of most NETs by international guidelines (3–
6). Since the half-life of the parent 68Ge isotope is 271 days, the
generator lifespan is about 1 year. At the start of the lifespan,
one generator elution allows the labeling of approximately four
doses based on an injected dose of 3 MBq/kg. However, as the
68Ge parent of the generator decays over time, the number of
doses of tracer obtained per elution decreases. This means that
during the lifespan of the generator, the number of examinations
per elution and/or the activity injected in the patient in MBq/kg
decreases, thereby negatively affecting the cost of the procedure or
the quality of PET images due to increased image noise. Moreover,
due to the short half-life of 68Ga, the increase in image noise
can hardly be counterbalanced by an increase in PET acquisition
time, particularly if several patients injected with the same elution
need to be scanned.

To optimize the use of the 68Ge/68Ga generator while
maintaining PET image quality, innovative approaches based on
artificial intelligence (AI) are opening up new perspectives. By using
AI, the acquisition time per exam and/or the injected activity can
be reduced without compromising image quality. Notably, several
AI-based post-reconstruction PET/CT image enhancements have
been recently developed (7). A post-reconstruction PET denoising
software (SubtlePETTM, Subtle Medical©, Stanford, USA provided
by Incepto©, France) that was recently developed by using a
deep convolutional neural network on a library of millions of
paired images (native and low-dose images) to learn and tune the
optimal parameters to compute an estimate of the native image.
Currently, only a few clinical publications have evaluated its use
in oncology, all of them dealing with 18F-FDG PET images (8–12).

Abbreviations: PET, positron emission tomography; AI, artificial intelligence;
SUV, standardized uptake value; MTV, metabolic tumour volume; NETs,
NeuroEndocrine tumours; VOI, volume of interest; GPF, Gaussian post filter;
CV, coefficient of variation; BMI, body mass index; PSMA, prostate-specific
membrane antigen; FDA, food and drug administration; CE, European
conformity; SD, standard deviation; FDG, fluorodeoxyglucose.

At present, SubtlePETTM is FDA (Food and Drug Administration)-
approved for use with 18F-FDG and 18F-Amyloid tracers and
is now CE (European Conformity)-marked for use with 18F-
FDG, 18F-Amyloid, 18F-Fluciclovine, 18F-DOPA, 18F-Choline,
18F-DCFPyL, Ga-68 Dotatate, and Ga-68 PSMA PET images (13).
However, no clinical study has demonstrated the value of this
software to enhance the quality of low-dose 68Ga PET images,
even though nuclear medicine departments are concerned about
this issue. Various other deep learning-based methods have been
evaluated for low-dose imaging and resolution enhancement, but
none of them are currently validated for clinical use (14). Denoising
techniques for 68Ga-labeled radiotracers in PET imaging have
been explored using both reconstruction-based methods and deep-
learning techniques. It has been shown that both strategies can
significantly improve the image quality by decreasing the noise level
in low-dose 68Ga PET scans (15).

Therefore, the aim of this prospective study was to explore
the performance of this software to enhance the quality of 68Ga-
DOTATOC PET images, and to compare it to a standard Gaussian
post-filtering approach. We hypothesized that to optimize the use
of a 68Ge/68Ga generator throughout its lifetime, AI-based PET
denoising might be a solution to maintain correct image quality.

Materials and methods

Population

All patients were informed about the use of their clinical and
PET data for research purposes. Patients had the right to refuse
the transmission of data covered by medical confidentiality used
and processed in the context of this research. The procedure
was declared to the National Institute for Health Data with the
registration no. F20210720123322. Patients over 18 years old
addressed to our PET unit for a 68Ga-DOTATOC PET from April
2020 to February 2021 were enrolled. Sex, age and body mass index
(BMI) were extracted from electronic patient records.

Positron emission tomography
acquisition and reconstruction

All patients underwent their examinations on a VEREOS
PET/CT system (Phillips). All PET emission acquisitions were
performed 60 min after injection, from the skull to mid-thighs with
1 min 30 per bed position. Images were reconstructed with four
iterations four subsets with point spread function (PSF) and 2-mm
voxel size. All images were acquired and reconstructed according
to the European guidelines (16). In the event of treatment with
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somatostatin analogs, the treatment was stopped at least 21 days
before the PET scan.

Between April and November 2020, corresponding to the
first months of the generator’s lifespan, patients were injected
intravenously with a fixed dose of 150 MBq of 68Ga-DOTATOC.
This protocol is subsequently referred to as protocol_FixedDose.

Between December 2020 and February 2021, i.e., the last
months of the generator’s lifespan, patients were injected
intravenously with 1.5 MBq/kg of 68Ga-DOTATOC. This protocol
is subsequently referred to as protocol_WeightDose. These PET
examinations were then processed using Subtle PETTMsoftware
and was subsequently referred to as protocol_WeightDoseAI.

In addition, NEMA-NU2 image quality phantom acquisitions
were performed and analyzed to find a specific Gaussian post-
filter (GPF). This GPF will allow the protocol_WeightDose
to recover a noise in the image equivalent to the former
protocol_FixedDose (17). Measurements were made with a sphere-
to-background ratio set at six and two background 68Ga solution
concentrations: 2.1 MBq/mL and 1.5 MBq/mL, corresponding
to the average injected activities for protocol_FixedDose and
protocol_WeightDose, respectively. CVs were measured in a VOI
larger than 100 ml for both acquisitions. The width of the fitted
GPF was optimized by dichotomy. This GPF was then applied to all
protocol_WeightDose acquisitions and the resulting images referred
to as protocol_WeightDoseGaussian.

Clinical PET data extraction

Positron emission tomography scans were equally and
randomly assigned to two senior nuclear physicians. PET

images were reviewed on MIM (MIM Software, Cleveland, OH,
USA, version 5.6.5).

The following features were recorded separately for each PET
acquisition:

• Liver SUVmean (mean standard uptake value) and standard
deviation (SD) from a 3 cm diameter spherical volume of
interest (VOI) placed on the right liver lobe.

• Vascular SUVmean and SD from a 2 cm diameter spherical-
VOI placed on the descending aorta.

• Muscular SUVmean and SD from a 2 cm spherical-VOI placed
on the left erector spinae muscle at the height of the adrenals.

• Tumour SUVmax, SUVmean and metabolic tumour volume
(MTV) from a 40% isocontour VOI placed on the most
intense lesion, as well as its location.

• The tumour background SUVmean from a doughnut-shaped
VOI surrounding the most intense lesion VOI.

Physiological noises were evaluated by means of coefficients of
variations (CV) calculated as follows: SD

SUVmean
× 100 (%). Lesion-

to-background ratios were computed as follows: tumor SUVmean
background SUVmean

.

Statistical analysis

Data was presented as mean (SD) unless otherwise specified.
Unmatched data were compared using Mann–Whitney and

Kruskal–Wallis tests for quantitative data as appropriate. Wilcoxon
and Friedman tests, and Bland–Altman analyses were used to
compare paired quantitative data as appropriate.

Statistical analysis and figure design were performed using
XLSTAT software (XLSTAT 2019: Data Analysis and Statistical

TABLE 1 Patients and PET examination characteristics.

Variables Protocol_FixedDose
(n = 44)

Protocol_WeightDose
(n = 32)

P-value*

Patient characteristics

Sex, n (%)

• Female 18 (40.9) 18 (54.5) 0.246

• Male 26 (59.1) 14 (44.5)

Age (yrs.), mean (SD) 65 (10) 63 (12) 0.521

BMI (kg/m2), mean (SD) 25.7 (4.6) 25.4 (7.4) 0.858

PET indications, n (%)

• Staging 7 (15.9) 7 (21.9) 0.545

• Disease monitoring 21 (47.7) 19 (59.4)

• Suspected recurrence 3 (6.8) 2 (6.2)

• Before PRRT 3 (6.8) 1 (3.1)

• Metabolic lesion characterization 10 (22.7) 3 (9.4)

PET examination characteristics

Injected dose per patient (MBq), mean (SD) 151.6 (13.0) 111.8 (27.3) <0.0001

Injected dose per patient (MBq/kg), mean (SD) 2.1 (0.4) 1.5 (0.1) <0.0001

Uptake delay (min), mean (SD) 59 (5) 58 (3) 0.288

*Non-parametric Mann–Whitney tests p-values, except for PET indications and sex for which Fisher exact tests were performed. BMI, body mass index; PRRT, peptide receptor
radionuclide therapy.
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FIGURE 1

Image noise analysis. ∗Paired Wilcoxon tests were used to compare protocol_WeightDose and protocol_Weight doseAI data: Otherwise
Mann–Whitney tests were used.

Solution for Microsoft Excel, Addinsoft). P-values < 0.05 were
considered statistically significant.

Results

Population characteristics

Sixty-seven patients were included. Forty-four patients
underwent their PET scans according to protocol_FixedDose and
32 according to protocol_WeightDose. Of note, nine patients

underwent both protocols to monitor their disease over the
inclusion period. Patients’ characteristics can be found in Table 1.
Age, sex, BMI, PET indications and uptake delay were not different
between protocol_FixedDose and protocol_WeightDose groups.
The mean injected dose of 2.1 (0.4) MBq/kg per patient was
significantly higher in the protocol_FixedDose group as compared
to 1.5 (0.1) MBq/kg for the protocol_WeightDose group. Using the
protocol_FixedDose, 93% of patients were injected with more than
1.5 MBq/kg, with an injected dose ranging from 1.4 MBq/kg in a
severely obese patient (BMI = 41.2 kg/m2) to 3.0 MBq/kg injected
in a normal weight patient (BMI = 19.1 kg/m2) (Supplementary
Figure 1).
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Comparison of protocol_FixedDose and
protocol_WeightDose

Two patients in the protocol_FixedDose group had diffuse
liver metastatic involvement that did not allow their hepatic
CV to be calculated. Overall, protocol_WeightDose led to
noisier images with higher liver, vascular and muscular CVs
(Figure 1). The mean liver CVs were equal to 15.57% ± 4.32 vs.
13.04% ± 3.51 for protocol_WeightDose and protocol_FixedDose,
respectively (p = 0.018). Mean vascular CVs were 28.67% ± 8.65 vs.
22.25% ± 10.37 for protocol_WeightDose and Protocol_FixedDose,
respectively (p = 0.0003). Mean muscular CVs were
35.87% ± 12.46 vs. 26.86% ± 8.63 for protocol_WeightDose
and Protocol_FixedDose, respectively (p = 0.0.005).

Gaussian filter width determination for
the protocol_WeightDoseGaussian

The GPF width to be applied to the protocol_WeightDose
acquisitions was determined from the NEMA-NU2
phantom acquisitions to ensure equivalent noise as
compared to the protocol_FixedDose. A 2.6 mm GPF width
was highlighted by dichotomization, applied and used
thereafter. NEMA-NU2 CVs were equal to 23.15, 27.63 and
23.30% for protocol_FixedDose, protocol_WeightDose, and
Protocol_WeightDoseGaussian, respectively.

Performances of protocol_WeightDoseAI

and protocol_WeightDoseGaussian

Image quality: Noise and contrast
On paired comparison, protocol_WeightDoseAI led to less noisy

images than protocol_WeightDose with lower liver, vascular and
muscular CVs (Figure 1). Mean liver, vascular and muscular
CVs were 11.42% ± 3.05 vs. 15.57% ± 4.32 (p < 0.0001),
16.62% ± 6.40 vs. 28.67% ± 8.65 (p < 0.0001) and 23.88% ± 10.58
vs. 35.87% ± 12.46 (p < 0.0001), respectively. Moreover, mean
liver, vascular and muscular CVs using protocol_WeightDoseAI

were slightly lower from those of protocol_FixedDose (Figure 1).
On paired comparison, protocol_WeightDoseGaussian

also led to less noisy images than protocol_WeightDose
with lower liver, vascular and muscular CVs (Figure 1).
Protocol_WeightDoseGaussian mean liver, vascular and muscular
CVs were 10.92% ± 3.00 (p < 0.0001), 20.50% ± 5.12 (p = 0.002)
and 25.49% ± 7.14 (p = 0.0001), respectively. The mean liver CV
obtained with the protocol_WeightDoseGaussian protocol was also
lower than with the protocol_FixedDose. However, mean vascular
and muscular CVs were not different (Figure 1). There were no
significant differences between mean liver and muscular CVs of the
protocol_WeightDoseAI and the protocol_WeightDoseGaussian. In
contrast, the mean vascular CV of the protocol_WeightDoseGaussian

was higher than that of the protocol_WeightDoseAI, p = 0.018
(Figure 1).

On paired comparison, tumour-to-background ratios
and tumour-to-liver ratios were lower when using

protocol_WeightDoseAI with a mean tumour-to-background
ratio of 6.78 ± 3.49 vs. 7.57 ± 4.73 for the protocol_WeightDose
(p = 0.04) and a mean tumour-to-liver ratio of 5.96 ± 5.43 vs.
6.77 ± 6.19 (p = 0.0001). Using the protocol_WeightDoseGaussian

both these ratios were also lower than those obtained with
the protocol_WeightDose, and even lower than those obtained
with the protocol_WeightDoseAI. The mean tumour-to-
background ratio was equal to 5.60 ± 2.95 (p < 0.0001 as
compared to protocol_WeightDose and p = 0.013 as compared
to protocol_WeightDoseAI) and the mean tumour-to-liver
ratio was equal to 5.22 ± 4.93 (p < 0.0001 as compared
to protocol_WeightDose and p = 0.02 as compared to
protocol_WeightDoseAI).

Lesions quantitative values
Metabolic tumour volumes, SUVmax and SUVmean of the

hottest lesion were different between protocol_WeightDose
and protocol_WeightDoseAI on paired comparison. Similar
findings were observed between protocol_WeightDose and
protocol_WeightDoseGaussian (Figure 2).

Metabolic tumour volumes were significantly higher
when using protocol_WeightDoseAI with a mean MTV of
9.11 ± 20.26 vs. 8.46 ± 18.87 for the protocol_WeightDose
(p = 0.044). Protocol_WeightDoseGaussian led to even higher MTV
values (10.41 ± 21.44) with a p-value < 0.0001 as compared
to protocol_WeightDose and equal to 0.001 as compared to
protocol_WeightDoseAI.

SUVmax and SUVmean were lower for the protocol_WeightDose
AI with a mean SUVmax of 66.65 ± 71.97 vs. 69.76 ± 77.29 for
the protocol_WeightDose (p = 0.09) and a mean SUVmean equal
to 39.67 ± 42.95 vs. 41.72 ± 46.42 for the protocol_WeightDose
(p = 0.044) (Figure 2). Protocol_WeightDoseGaussian led to
even lower SUV values than protocol protocol_WeightDose AI:
54.06 ± 59.11 for SUVmax (p = 0.002) and 32.32 ± 35.76 for
SUVmean (p = 0.001).

The mean % differences in MTV, SUVmax and SUVmean before
and after denoising by application of the protocol_WeightDoseAI

were low, equal to +11.14% (95% CI = 4.84–17.43), −3.92% (95%
CI = −6.25 to −1.59) and −4.32% (95% CI = −6.98 to −1.66),
respectively (Figure 2). These mean % differences were higher by
using the Protocol_WeightDoseGaussian: + 42.69% (95% CI = 25.23–
60.15) for MTV, −24.66% (95% CI = −33.02 to −16.29) for SUVmax
and −25.08 (95% CI = −30.00 to −20.15%) for SUVmean.

Side-by-side representative images of a patient who underwent
all four protocols during the inclusion period are displayed in
Figure 3. Complete data for the nine patients who had all protocols
are reported in Supplementary Table 1.

Discussion

This study shows that the degradation of PET image quality
due to a reduction in injected dose at the end of the 68Ge/68Ga
generator lifetime can be counterbalanced effectively by using AI-
based PET denoising.

The EANM guidelines recommend an administered activity
ranging from 100 to 200 Mbq, meaning that both fixed dose and
ponderal dose strategies can be considered (16). To date, these two
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FIGURE 2

Paired comparison of protocol_WeightDose, protocol_WeightDoseAI, and protocol_WeightDoseGaussian quantitative values.

strategies have not been compared and the use of either one is at the
discretion of each nuclear medicine department.

In our center, at the start of the generator lifetime using
the protocol_FixedDose, almost all patients were injected with
more than 1.5 MBq/kg of 68Ga-DOTATOC. This explains the
better image quality parameters observed with Protocol_FixedDose
than with Protocol_WeightDose. The use of Protocol_WeightDoseAI

or Protocol_WeightDoseGaussian led to an increase in image
quality comparable to that of our former protocol_FixedDose
with regard to image noise. To achieve comparable noise image
quality performances at the end of the generator lifetime as per
Protocol_FixedDose taken as reference in the present study, there
are four possible solutions: (i) increasing the injected dose to
2.0 MBq/kg, which corresponds to the mean injected dose when
using Protocol_FixedDose; (ii) increasing the PET acquisition time
to compensate for the lower injected dose; (iii) adapting the
reconstruction parameters, i.e., applying a Gaussian Filter; or (iv)
exploring external solutions such as AI-based post-reconstruction
PET denoising software.

Increasing the injected dose does not seem feasible as the eluted
dose will inevitably decrease over time. Furthermore, it is always
preferable for the patient’s sake to decrease rather than increase
the injected dose (8, 9). Increasing the acquisition time seems
illusory in busy PET units, especially considering the short and
therefore restrictive half-life of 68Ga. The use of a Gaussian filter
during reconstruction can certainly solve the problem of image
noise but is detrimental to the quantitative values of the lesions.
In the present study, the tumour volumes are overestimated on

average by more than 40% and the SUVs underestimated by more
than 20%, which does not seem tolerable in clinical settings. This
is consistent with previous results obtained with FDG-PET (12).
Thus, applying PET denoising software to a Protocol_WeightDose
would provide good noise quality and quantitatively less altered
68Ga-DOTATOC PET/CT images acquired rapidly and at “low-
dose.” From an economic point of view, the costs of using an
AI-based PET denoising solution should offset the costs related to
the decreasing yield of the generator. As more and more 68Ga-
labeled tracers will probably be commercialized in the future, the
value of AI will increase.

Previous work from our group on AI-based PET denoising
in a large series of FDG PET scans showed the reassuringly high
concordance rate in lesion detection between conventional and
AI-processed PET images in the same patient (11). Therefore,
the primary aim of PET imaging, which is lesion detection with
high sensitivity, does not seem to be jeopardized by AI. Although
FDG- and 68Ga-labeled tracers target different diseases and show
differences in biodistribution, we feel it is safe to extrapolate the
detection rate obtained in AI-processed FDG PET scans to AI-
processed 68Ga PET scans, as the tumour contrast in the latter is
often much higher than in the former. Also, the article by Liu et al.
focusing on a cross-tracer and cross-protocol deep transfer learning
method for noise reduction indicated that the network trained with
FDG datasets can effectively reduce noise in low-dose PET images
from less commonly used tracers (i.e., 68Ga-DOTATATE) while
preserving diagnostic information (18).
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FIGURE 3

Representative images of a patient who underwent all four protocols during the inclusion period. A total of 77-year-old man of normal weight
(BMI = 21.3 kg/m2) with a well-differentiated metastatic pancreatic neuroendocrine tumour (grade 1, Ki 67 < 1%). Injected doses were 158 MBq
(2.4 MBq/kg) for protocol_FixedDose and 86 MBq (1.3 MBq/kg) for protocol_WeightDose, protocol_WeightDoseAI and
protocol_WeightDoseGaussian. All images are scaled to the same SUVmax.

We used two methods to evaluate tumour contrast: The
tumour-to-background ratio using a doughnut-shaped VOI and
the tumour-to-liver ratio. For the doughnut-shaped VOI, the
choice of the tumour-contouring method was crucial to ensure
the reliability of the resulting background noise measurements.
We chose to use a thresholding value set in reference to SUVmax,
which was previously demonstrated in the study by Reddy et al.
(19) to be the most accurate measurement when compared to
morphological volumes. Beyond tumour detectability, one must
also take into account the risk of false positive results which
increases with the noise in the image. In particular, an increase
in liver background noise can easily lead to the overestimation
of hepatic metastatic involvement by taking noise for small
lesions, especially in patients followed for neuroendocrine tumours
with high hepatic metastatic risk. Figure 3 illustrates this issue
nicely.

We acknowledge our study has limitations. First, the use
of semi-quantitative parameters for 68Ga-peptide imaging has
some limitations, although it is the most commonly used method
in practice (20, 21). One of the main limitations is that it is
subject to variations in PET device sensitivity, image acquisition
parameters and patient-specific factors that can lead to inaccuracies
in quantification (22). Another limitation is that it relies on the
assumption that the tracer uptake is proportional to the density
of the target receptor, which may not always be the case (23, 24).

Secondly, this is a single-center study on 68Ga-DOTATOC PET
images only. Although the cohort was small, it covers the lifetime
of one generator, i.e., a period of approximately 1 year, during
which all patients were included. The robustness of our findings
need to be investigated in a multicenter study on different PET
systems. Thirdly, only the protocol_WeightDose PET scans were AI-
processed, leading to a limited number of pairwise comparisons.
However, at the start of the generator lifetime, we did not feel the
need to use AI processing in view of the good image quality of the
protocol_FixedDose PET scans. The need to improve image quality
became evident at the end of generator life. Finally, we could not
properly evaluate the SUVpeak data because the small target lesions
occurring in 57.7% of protocol_FixedDose patients (15/26) and
81.8% of protocol_WeightDose and protocol_WeightDoseAI patients
(18/22) (25) were not sufficiently measurable. This was because
most target lesions were small with a mean MTV around only 9cc
for protocol_WeightDose and protocol_WeightDoseAI.

Conclusion

The degradation of PET image quality due to a reduction
of injected dose at the end of the 68Ge/68Ga generator lifespan
can be counterbalanced effectively by using an AI-based PET
denoising solution.
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Rational: Deep learning (DL) has demonstrated a remarkable performance 
in diagnostic imaging for various diseases and modalities and therefore has 
a high potential to be used as a clinical tool. However, current practice shows 
low deployment of these algorithms in clinical practice, because DL algorithms 
lack transparency and trust due to their underlying black-box mechanism. For 
successful employment, explainable artificial intelligence (XAI) could be introduced 
to close the gap between the medical professionals and the DL algorithms. In this 
literature review, XAI methods available for magnetic resonance (MR), computed 
tomography (CT), and positron emission tomography (PET) imaging are discussed 
and future suggestions are made.

Methods: PubMed, Embase.com and Clarivate Analytics/Web of Science Core 
Collection were screened. Articles were considered eligible for inclusion if XAI 
was used (and well described) to describe the behavior of a DL model used in MR, 
CT and PET imaging.

Results: A total of 75 articles were included of which 54 and 17 articles described 
post and ad hoc XAI methods, respectively, and 4 articles described both XAI 
methods. Major variations in performance is seen between the methods. Overall, 
post hoc XAI lacks the ability to provide class-discriminative and target-specific 
explanation. Ad hoc XAI seems to tackle this because of its intrinsic ability 
to explain. However, quality control of the XAI methods is rarely applied and 
therefore systematic comparison between the methods is difficult.

Conclusion: There is currently no clear consensus on how XAI should be deployed 
in order to close the gap between medical professionals and DL algorithms for 
clinical implementation. We advocate for systematic technical and clinical quality 
assessment of XAI methods. Also, to ensure end-to-end unbiased and safe 
integration of XAI in clinical workflow, (anatomical) data minimization and quality 
control methods should be included.
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deep learning, explainable artificial intelligence, magnetic resonance (MR) imaging, 
computed tomography (CT) imaging, positron emission tomography (PET) imaging
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1. Introduction

Computer-aided diagnostics (CAD) using deep learning (DL) 
have been widely used in diagnostic imaging for various diseases 
and modalities (1–5). It shows almost similar or superior 
performance in comparison to medical professional aided 
diagnostics and therefore has great potential to be introduced in 
clinical workflow (6). However, despite the promising results, DL 
algorithms have not achieved high deployment in clinical practice 
yet. Unlike simpler machine learning (ML) approaches, DL 
algorithms do not require manual extraction of features depending 
on volumes of interest (VOIs) annotation. Instead, DL algorithms 
extract features in an unsupervised way, i.e., extract features without 
a priori defined assumptions and regulations. Ideally, efficient 
learning and explainability, i.e., understanding of the underlying DL 
model, should work together in synergy (Figure 1). Although DL 
algorithms have superior learning capabilities, they lack 
transparency due to this underlying black-box mechanism. 
Therefore, the DL algorithms are difficult to validate, i.e., which 
features trigger model decision, and lack trustworthiness which is 
one of the main causes of its low deployment (7–9).

To close this gap, transparency of these DL algorithms should 
be  improved to provide the medical professional and other 
stakeholders with a pragmatic explanation of the model its decision 
(10). Explainable artificial intelligence (XAI) can mitigate this gap, 
because their attribution (i.e., feature importance) methods provide 

the user with information on why a specific decision is made. This 
way the user can back propagate the models decision to target 
specific attributions present in the image. XAI may, therefore, have 
the potential to be used as a new imaging biomarker (IB) in routine 
management of patients. In other words, XAI may be  able to 
function as an indicator of normal and/or pathogenic biological 
processes, which can complement medical professionals in medical 
decision-making. Also, XAI may provide new insight in disease 
characteristics, which alternatively can be used as an indicator of 
responses to an exposure or (therapeutic) intervention. However, 
XAI should also provide transparency about the quality/legibility of 
its decision, explanation, and (possible) associated errors. So, before 
XAI can be used as an useful and trustworthy IB for either testing 
research hypotheses, or clinical decision-making, it must cross 
“translational gaps,” through performing and reporting technical 
validation, clinical validation and assessment of cost-effectiveness 
(11, 12). Also, the new European Medical Device Regulation (EU 
MDR) endorses strict regulations regarding transparency that need 
to be met before such a tool can be implemented in clinical practice 
(13). XAI may be  one of the keys to more transparent, ethical 
(unbiased) safe and trustworthy deployment of DL algorithms in 
clinical practice, but better understanding of current practice 
is required.

This literature review addresses the XAI methods related to DL 
algorithms in medical imaging. We limit the scope of this review to 
(functional) magnetic resonance (MR), computed tomography (CT), 

FIGURE 1

Conceptual difference between post hoc and ad hoc XAI methods.
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and positron emission tomography (PET) imaging, which are three of 
the major cross-sectional imaging modalities. Also, we will try to 
establish a definition of what high quality explanation means at the 
end of this review.

2. Materials and methods

A systematic search was performed in the databases: PubMed, 
Embase.com and Clarivate Analytics/Web of Science Core Collection. 
The timeframe within the databases was from inception to 3rd 
October 2022 and conducted by GLB and BdV. The search included 
keywords and free text terms for (synonyms of) “explainable” or 
“interpretable” combined with (synonyms of) “artificial intelligence” 
combined with (synonyms of) “medical imaging.” A full overview of 
the search terms per database can be  found in 
Supplementary Tables 2–4. No limitations on date or language were 
applied in the search.

To be included in this literature review, studies had to meet the 
eligibility criteria presented in Table 1. Included studies were classified 
based on post and/or ad hoc analysis (Figure 1):

 - Post hoc methods: These refer to XAI methods that are used after 
DL model development;

 - Ad hoc methods: These refer to XAI methods that are used during 
DL model development.

Additional background literature was included to provide 
(in-depth) information of the XAI methods. This was done through a 
specific search in PubMed.

In the result section, a general taxonomy of the attribution 
methods will be provided. Subsequently, per XAI method a (technical) 
conceptual explanation, its application, its advantages/disadvantages 
and a comparison with other XAI methods will be provided. Also, 
we will address the translation gaps present in the literature and a 
flowchart to a priori determine which XAI method to use in medical 
imaging will be provided. The structure of the flowchart is based on 
the taxonomy of the available XAI methods as present in the result 
section of this manuscript and based on from our perspective XAI 
important disease characteristics identified from the included 
literature. In addition, we will discuss metrics used in literature for 
technical and clinical quality assessment of these XAI models. Finally, 
the current and future direction in this field will be summarized. In 
Supplementary material a more extensive technical explanation is 
provided per XAI method.

3. Results

Searches of the literature databases resulted in the inclusion of a 
total of 117 studies (Figure 2). From the 117 studies, 10 did not have 
full-text available, 31 did not use or did not clearly describe the usage 
of XAI methods, eight did not use (medical) image data and three did 
not use DL, and therefore these were excluded from the review. Of the 
75 studies included in the review, 54 studies reported data from post 
hoc analysis, 17 reported data from ad hoc analysis and four reported 
data from both ad hoc and post hoc analysis. A total of 24 additional 

studies were included to provide background information. 
Supplementary Table 1 presents an overview of the 75 studies included 
in the review.

3.1. Taxonomy of XAI methods

The XAI methods in this study are classified based on the XAI 
taxonomy as shown in Figure 3. Post hoc analysis provides model 
explanation after the classification is made, i.e., an AI model that is 
able to learn, but requires an additional model to provide an 
explanation. On the contrary, ad hoc explanation models are AI 
models, which are designed to be  intrinsically explainable, i.e., a 
model that is both able to learn and to explain. Agnostic models are 
XAI methods that are able to explain multiple (technical) different AI 
models, while other XAI methods only work with one specific AI 
model such as a convolutional neural network (CNN). Global XAI 
methods are models, which are able to capture per-voxel attribution 
and inter-voxel dependencies, while local XAI methods are only able 
to provide per-voxel attribution. High-resolution XAI provides a 
per-voxel attribution value, while low resolution XAI provides a single 
attribution value for multiple voxels.

3.2. Post hoc XAI methods

The majority (~75%) of the DL algorithms in this literature study 
used post hoc XAI methods due to its wide availability and its plug-
and-play deployment. In the following section, the post hoc methods 
will be  divided into gradient-propagation methods, perturbation 
methods and briefly segmentation and radiomic methods will 
be discussed. An overview of the post hoc attribution methods are 
shown in Table  2 (and a more extensive explanation in 
Supplementary material: Appendix A).

3.2.1. Gradient-propagation approaches

3.2.1.1. Vanilla gradient (VG)
VG is a XAI method that create an attribution map by 

calculating gradients over the layers using a single forward and 
backward propagation, i.e., the input image is fed into the AI 

TABLE 1 Eligibility criteria for inclusion/exclusion.

Eligibility criteria

Inclusion criteria Exclusion criteria

XAI used and well describe in the 

method and result section

Either XAI is not used or is not well 

described in the method and/or result 

section

Medical image data available and used 

as input for DL model

 - MRI;

 - CT;

 - PET

Either no medical image data available 

or not used as input for DL model

 - Either not MRI;

 - Or CT;

 - Or PET

DL model used No DL model used
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model and an output score is calculated (forward) and 
subsequently the dependence (gradient) between the neurons/
convolution layers (subunit of the AI network that learns/extracts 
features from the input image) and the output is calculated 
(backward) to create an attribution map. Due to its simplicity, it 
is an intuitive attribution method and it requires low 
computational power. An attribution based framework called 
NeuroXAI compared VG and other attribution based visualization 
methods for MRI analysis of brain tumors (14). These methods 
were both utilized for classification and segmentation feature 

visualization. In comparison to the other attribution methods, VG 
generated noisy attribution maps and suffers from gradient 
saturation, i.e., change in a neuron does not affect the output of 
the network and therefore cannot be  measured. In a different 
study in which the contrast enhancement phase from CT images 
is predicted, similar results were seen using VG for feature 
visualization (15). In addition, VG lacks the ability to differentiate 
between classes (e.g., healthy vs. disease) (16). This illustrates that 
VG lacks ability to generate clear and class discriminative 
attribution maps.

FIGURE 2

PRISMA flow-chart.
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3.2.1.2. DeconvNET
DeconvNET is effectively an equivalent of VG apart from the way 

it calculates the gradient over a Rectified Linear Unit (ReLU) function 
(17), i.e., a linear function that will output only positive input values 
and helps with improving model convergence during model training. 
TorchEsegeta, a framework for interpretable and explainable image-
based DL algorithms, compared multiple attribution methods for 
interlayer CNN visualization in the segmentation of blood vessels in 
the human brain (18). VG and deconvNET provided more human-
interpretable results than the other attribution methods (e.g., 
DeepLIFT and GradCAM++), since they mainly focused on the 
vessels, while other methods also showed non-vessel activation.

3.2.1.3. Guided back propagation (GBP)
GBP both incorporates the VG and the deconvNET (19). This results 

in fewer activated voxels and therefore in less noisy attribution maps than 
by using each method individually. In the NeuroXAI framework, GBP 
showed target specific attribution maps with indeed less noise in 
comparison to VG (14). In a study performed for predicting brain 
abnormalities using MRI, an additional smoothing function to the GBP 
was proposed to suppress the amount of noise and the effect of non-target 
specific attributions even more (20). The attribution maps showed low 
noise and accurate localization of a range of morphological distinct 
abnormalities. However, although GBP may show less noisy attribution 
maps, it may also result in overly sparse attribution maps, which are not 
useful for complete image characterization (21).

All three gradient based methods are very sensitive to understand 
how the neural network layers extract features, but are not class 
discriminative. Also, because of ReLU and pooling layers, local 
gradients may saturate. Therefore, important features may vanish over 
the layers in the network and that may result in incomplete model 
explanation or even focus on irrelevant features.

3.2.1.4. Layer-wise relevance propagation (LRP)
LRP is a XAI method that operates by propagating the class score 

backward over the neural layers to the input image using LRP specific 
rules (22). The concept of LRP is to conserve inter-neuron dependency, 

i.e., what has been received by a neuron layer will be redistributed to 
the following lower layer in equal quantity. The decomposition is 
based on propagating relevance scores between the neurons instead 
of gradients and therefore, we tackle the difficulties of the saturation 
problem. In a study for screening of abdominal aortic aneurysm in CT 
images (23), LRP showed clear class difference based on activation 
difference in the lumen of the aorta. However, high activation for both 
classes was also seen in the vertebra, which indicates that either the 
DL model is biased, the DL model did not converge, the vertebra is a 
confounder, or that LRP also incorporates non-target specific features 
in its attribution map. A similar result was seen for COVID-19 
classification, in which LRP was not able to visualize target-specific 
features (24). However, other studies showed class-discriminative 
regions and precise localization of lesions using LRP (25, 26). This 
difference may be explained by differences in DL model performance, 
biased data and LRP configuration, although there may not be one 
absolute reason.

3.2.1.5. DeepLIFT
DeepLIFT is a XAI method that uses a neutral reference activation 

(e.g., neuron activation of CT scan without pathology/disease) to solve 
the saturation problem (27). This reference activation is used to 
describe the change of a new neuron activation in comparison to the 
reference activation. From these differences, contribution scores are 
calculated for each neuron to compute an attribution map. DeepLIFT 
was compared with LRP and VG for identification of Multiple 
Sclerosis (MS) patients on MRI (26). This was done by perturbation 
of the three attribution maps for three VOIs. From quantitative 
assessment, it can be seen that DeepLIFT performs slightly better than 
LRP and much better than VG in extracting target-specific features. 
Both LRP and DeepLIFT are able to tackle gradient saturation, which 
may be  the reason why it performs better than VG in this 
classification task.

3.2.1.6. Class activation map (CAM)
CAM is one of the most well-known model specific attribution 

methods (28, 29). It uses a Global Average Pooling (GAP) layer 

FIGURE 3

Taxonomy of XAI methods.
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TABLE 2 The different post hoc XAI methods scored [low/no (red), average (orange), and high/yes (green) performance] based on target specificity, 
spatial-resolution and local/global voxel dependency capability, model agnostic, and technical simplicity, respectively.

Post hoc Characteristics

VG
*

DeconvNET 
*

GBP
*

LRP
*

DeepLIFT
*

CAM
*

Grad-CAM
*

Occlusion
* ^ 

LIME
*

SHAP
*

*Depends on DL model convergence. ^Depends on occlusion method.
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instead of multiple dense layers, which introduces linearity after the 
last convolution layer and before the final dense layer. Since CAM 
only uses features from the last convolution layer, low-dimension 
attribution maps are generated. Therefore, the low-dimension CAM 
is able to visualize whether a model is able to roughly focus on 
specific targets, but due to its low specificity, it lacks discriminative 
power to accurately characterize class based features (30, 31). 
Perturbation analysis of multiple attribution methods also showed 
that gradient based methods have higher specificity than CAM (15). 
Yet, CAM can be discriminative in classification tasks in which the 
classes have clear visual differences, e.g., healthy brain vs. 
Alzheimer’s brain (32) or by performing patch based (more 
focused) tumor analysis instead of whole image tumor analysis 
(33, 34).

3.2.1.7. Gradient-CAM (Grad-CAM)
Employment of XAI methods has showed tremendous growth 

due to COVID-19 detection (35). In general you can distinguish these 
methods based on using the whole CT image, or only using a 
segmentation of the lungs for COVID-19 detection. Especially, whole 
image based COVID-19 detection showed major performance 
difference in attribution mapping. Grad-CAM, an extension of CAM, 
was the most used attribution method and showed both very specific 
(36, 37) as also non-specific attributions (24, 38–41), but was overall 
able to roughly locate the potential COVID-19 lesions to make 
accurate predictions. To remove the influence of non-target specific 
features, a priori segmentations of the lungs was proposed (42–47). 
This way both the DL algorithms as the XAI methods can only extract 
features from the lungs. This anatomical based XAI method showed 
higher specificity than by using the whole CT image using Grad-
CAM. This shows that DL and XAI methods benefit from medical 
based data minimization, in other words reducing the amount of 
trainable features and/or removing non-informative features from the 
input image.

Similar non-target specific attribution maps were also seen for the 
automated grading of enlarged perivascular spaces in acute stroke (48) 
and cerebral hemorrhage detection (49) using the whole image 
(without data minimization). Similar as for the COVID-19 studies to 
solve this specificity problem, a priori anatomical segmentation was 
used to classify and visualize mortality risks based on myocardial PET 
(50), Alzheimer’s disease (51) and schizophrenia based on MRI (52). 
However, although data manipulation suppresses the presence of 
non-target specific features, Grad-CAM still suffers from low 
specificity due to its low-dimensional attribution maps (43, 53). In a 
study for classification of lung cancer histology based on CT images, 
the authors suggested that based on the Grad-CAM attribution maps, 
the activated features around the tumor correspond to regions 
harboring occult microscopic disease (2). However, this is more likely 
caused by this low-dimensionality characteristic of Grad-CAM, 
because CT does not have high enough spatial resolution to detect 
these microscopic diseases.

Similar to CAM, Grad-CAM can be class discriminative in case 
of classification tasks with clear radiological difference between the 
classes (5, 54–58). However, in case of tasks with less obvious 
radiological differences, e.g., predicting survival based on tumor 
characteristic, Grad-CAM lacks fine-grained details, complementary 
attribution methods should be used such as VG and GBP (15, 18). 
A study that combined GBP with Grad-CAM, a method called 

guided Grad-CAM (gGrad-CAM), showed better localized 
attribution maps with higher resolution in MRI analysis of brain 
tumors (14). This advocates for combining the advantages of 
attribution methods for human-interpretable and precise 
model visualization.

There have been multiple other improved variation of Grad-CAM, 
such as Grad-CAM++. Grad-CAM++ has been introduced to provide 
better localization of target-specific features than Grad-CAM (59). 
Grad-CAM averages the gradients of the feature maps, which may 
suppress the difference in importance between the different gradients. 
Grad-CAM++ replaces this with a weighted average, which measures 
the importance of every unit of a feature map. It showed more target-
specific attribution maps than Grad-CAM in the prediction of knee 
osteoarthritis using MRI (25).

The advantage of gGrad-CAM is clearly shown in a study where 
they compared different attribution methods for brain glioma 
classification (14). Grad-CAM provided the least noisy attribution 
maps and GBP provided attribution maps with high resolution but not 
class-discriminative. However, gGrad-CAM provided both class-
discriminative as high resolution maps in which the edges of the 
tumor are highlighted instead of the whole tumor. Similar results were 
also seen for classification of frontotemporal dementia (60), although 
the skull was seen important for the classification as well.

However, non-target specific features in attribution maps do not 
only arise because of underperformance in DL algorithms and/or 
attribution methods. Artifacts can also play a major role in tricking 
DL algorithms and attribution methods (61). That is why it is 
important to have high quality data, perform (medical based) data 
minimization and have a priori (DL-based) quality control methods 
to detect bias present in the data (62, 63). In addition, it is also not 
always trivial what convolution layer should be used to compute the 
attribution map (64). Deeper layers may have higher hierarchical 
structures, but may suffer from low specificity and therefore using a 
shallower layer may contain more informative features.

3.2.2. Perturbation XAI methods

3.2.2.1. Occlusion mapping
Occlusion mapping is a simple to perform approach that 

reveals the feature importance of a model using systematic 
perturbation/conditioning over the image (e.g., replacing input 
pixels with zeros). In contrast to previous methods, occlusion 
maps do not take the feature maps into account, but only the 
different patches (grid- or atlas-wise combination of multiple 
pixels) of the input image. Therefore, it is a very intuitive method, 
which can easily be  adapted to specific occlusion analysis. An 
example of this is a study that investigated the use of DL algorithms 
in predicting and visualizing Alzheimer’s disease and Autism 
using MRI. But instead of rectangles, the Harvard-Oxford cortical 
and subcortical structural atlas was used for occlusion mapping 
(65). This provides a method that can easily be compared with 
more traditional atlas based analysis and therefore provides a 
medical based, transparent and intuitive visualization of the 
DL algorithm.

Randomized Input Sampling for Explanation (RISE) is an 
equivalent of occlusion mapping, but instead of systematic 
perturbation of the input image, it generates multiple random 
perturbation maps, which are pointwise multiplied with the input 
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image (66). Another occlusion method is square grid, where 
perturbation is performed using square grid divisions (62). These 
methods produce intuitive results, but are too rigid to follow 
anatomical/pathological structures present in the images, and require 
large computational power due to many forward and 
backward propagations.

3.2.2.2. Local interpretable model-agnostic explanations 
(LIME)

Instead of a predefined or random occlusion function, LIME 
perturbates super-pixels, which are a group of pixels that share 
common pixel/voxel characteristics. For COVID-19 detection using 
CT, super-pixels followed anatomical/pathological structures/
characteristic of the image and therefore gave a better representation 
of the image than the previous occlusion methods (67–69). However, 
since LIME uses super-pixels as a whole, it provides occlusion maps 
with relatively low specificity. Also, from these COVID-19 studies it 
can be seen that non-target specific features (e.g., chest wall) show 
high activation. This suggests that also occlusion mapping suffers from 
non-target specific activation. In addition, LIME requires initialization 
parameters (kernel size, maximum distance, etc.) to compute super-
pixels, which can be difficult to optimize.

3.2.2.3. SHapley additive exPlanations (SHAP)
SHAP is an advanced XAI algorithm that calculates SHAP values, 

which represent the attribution of each voxel to the change of the 
expected model prediction when conditioning on that voxel using 
reference samples (70). DeepSHAP is an extension of SHAP and works 
in an almost similar way as DeepLIFT. It can provide both local as 
global explanation based on individual pixels/voxels, but also whether 
a pixel/voxel is negatively associated or positively associated with the 
predictive class. Because of this, DeepSHAP may be  difficult to 
interpreted as is shown in a study to predict brain tumors using MRI 
(67). However, in a study in which the volumetric breast density on 
MRI was calculated using DeepSHAP, intuitive DeepSHAP maps were 
created (71). This difference may be the result of difference in data size 
and quality between the studies, but may also be impacted by the 
quality of the reference samples to create the attribution maps. Also, 
because of the required reference samples, DeepSHAP may not work 
optimal in classification tasks where there are substantial (non-)rigid 
anatomical/pathological variation present in the images. Feature 
explanation may therefore be  negatively impacted by anatomical 
differences between the reference samples and the input image and 
therefore may show non-specific attributions.

3.2.3. Probability maps, deep feature maps, 
radiomics, and physics/clinical data

Previous described post hoc attribution methods predominantly 
focus on classification models, which are trained using weak labels, 
i.e., one label for the whole image. In contrast, segmentation DL 
algorithms use voxel-level annotations and compute voxel-level 
probability maps. Therefore, these probability maps are less complex 
to understand.

These probability maps were used to detect prostate lesion from 
multi-parametric MR sequences, which were easily interpretable and 
it allowed to perform prostate lesion analysis in new image data (72, 
73). Similar probability maps were also created to detect lumbar spine 
MR intensity changes (74). However, further specific Modic type 

categorization was performed using a non DL-based, but interpretable 
signal-intensity based nearest neighbor algorithm.

These segmentations can also be used to explore radiomic (e.g., 
intensity, morphology, and texture) based differences between classes. 
A joint detection and radiomic based classification algorithm was 
developed to explore the radiological difference between COVID-19 
and community acquired pneumonia and showed clear difference 
between the two classes using understandable radiomic features (75). 
A similar approach was used for detection and classification of lung 
nodule malignancies (76, 77).

Although these methods (partly) tackle the problem of black-
boxes, voxel-level annotation is very cumbersome and radiomic 
analysis depends on accurate VOI annotations, and a priori defined 
assumptions and regulations. This may suppress the full potential of 
DL algorithms and therefore have a possibility to underperform.

Another explainable method, is the use of deep feature maps 
(intermediate attribution maps) of the DL-based models (78). These 
deep feature maps provide the user with attributions maps of the 
intermediate model layers, which visualizes the underlying feature 
extraction mechanism used by the DL-based model. It therefore can 
give the user an understanding of what features are used, but more 
importantly how these features are processed throughout the model.

Physics-based AI models could also aid in higher transparency, as 
these models can explain feature extraction through well-defined 
mathematical formulas/assumptions, i.e., physics-aware AI. These 
models incorporate physics/mathematical knowledge prior to 
training. However, this approach is predominately used for image 
reconstruction and has low application/added-value for classification 
(yet) (79).

Also, clinical data (e.g., patient history) could aid in better 
performance and transparency of The AI algorithms. for detection of 
prostate cancer using MRI, clinical data improved The diagnostic 
performance significantly (73). In a different study, both clinical data 
and radiomics features showed a complementary role in the prediction 
of EGFR and PD-L1 status using CT images (30).

3.3. Ad hoc XAI models

Ad hoc XAI models are intrinsically able to learn and explain, 
which is different to the DL models that predominantly focusses on 
learning to achieve high performance (learning) and require a post hoc 
XAI algorithm to explain model behavior. An overview of the ad hoc 
attribution methods are shown in Table  3 (and a more extensive 
explanation in Supplementary material: Appendix A).

3.3.1. Explainable deep neural network (xDNN)
xDNN is a XAI method that uses a prototype identification layer 

in the network to identify new data samples based on similarity to 
predefined data samples (prototypes) (80). For this, representative 
prototypes need to be selected for each class, which can be a difficult 
task, especially in case of a cohort with a wide variety in disease 
morphology. Also, difference in class morphology is not always trivial 
and therefore obtaining representative prototypes can be difficult. 
However, xDNN can be very powerful in tasks where there is known 
difference between classes, as is the case for COVID-19 screening 
(81–84) and artifact detection (63). In these studies representative 
prototypes were used to assess new images based on their similarity. 
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This provides the user with transparent and intuitive model 
explanation, which in some way mimics the way we humans extract 
features based on previous experience.

3.3.2. Capsule networks
Capsule networks are described to be the new sensation in DL, 

since they are able to eliminate the pose and deformation challenges 
faced by CNNs, require less data and less computational power (85). 
A capsule tries to describe the presence and the instantiation 
parameters (orientation, thickness, skewed, position, etc.) of a 
particular object (e.g., tumor or lung) at a given location as a vector. 
Subsequently, the vectors from a lower capsule layer try to predict the 
output for the higher layer based on the instantiation parameters. 
Lower layer vectors with high agreement are routed to the following 
layer and the other vectors are suppressed, ideally resulting in only 
target specific attribution maps. A study proposed a novel capsule 
network-based mixture of expert (MIXCAPS) for detection and 
visualization of lung cancer nodules in CT images (86). MIXCAPS is 
an extension of the traditional capsule network, where instead of a 
single CNN, a mixture of (expert) CNNs specialized on a subset of the 
data and an ensemble of capsule networks is used. The authors 
compared MIXCAPS with a single capsule network, a single CNN and 
a mixture of CNNs and showed superior performance using 
MIXCAPS. However, its full potential has not been shown yet and 
requires further understanding before it will be used as the standard 
DL algorithm in this field.

3.3.3. Attention mapping
A trainable spatial self-attention mechanism is in contrast to post 

hoc attention mechanisms, trained during model training to support 
(important) feature extraction (87) and replaces traditional 
non-learnable pooling operations (e.g., max-pooling). Spatial 
attention mapping uses attention estimators to compute attention 

mask from a convolution layer as a goal to extract important local 
feature vectors. Attention mapping showed high correspondence 
between attention scores of specific regions and classification score in 
a study that assessed interpretable imaging biomarkers for Alzheimer’s 
disease using MRI (88). In addition, attention mapping for COVID-19 
detection showed better capabilities to extract more complex and 
scattered regions (24, 89). Attention mapping has also showed 
superior target-specific feature extraction in inverted papilloma and 
nasal polyp classification using CT (90), adenocarcinoma screening 
using CT (91) and segmentation of multiple organs from MRI (92).

Attention mapping has also been investigated in combination with 
Multi Instance Learning (MIL). MIL tries to tackle the downsides of 
weak labels and labor intensive per-voxel annotation. Instead MIL 
uses a set of labeled bags, each consisting of multiple instances (slices). 
In case of binary classification, a bag will be annotated negative if all 
the instances in the bag are negative (e.g., no presence of disease) and 
will be positive if there is at least one instance in the bag which is 
positive. Therefore, MIL intrinsically provides a more interpretable 
decision and in combination with attention mapping it gives insight 
into every voxel its contribution to the bag label. This combination 
have been used for the detection of COVID-19 using CT and showed 
more precise and complete detection of the infection areas of 
COVID-19 than weak labeled methods (93, 94). A similar method has 
been used to predict EGFR mutation status using CT and improved 
the interpretability of the model (95). This indicates that attention 
mechanisms (in combination with MIL) provide more spatial resilient 
CNNs, as it mimics the human behavior of focusing on more relevant 
features, while suppressing irrelevant features.

An alternative attention mechanism has been suggested for 
detection of COVID-19 from CT by feature encoding using a gated 
recurrent neural network in the horizontal and vertical direction using 
a feature block grid (96). In contrast to traditional CNNs, this 
mechanism allows to capture the horizontal and vertical dependencies 

TABLE 3 The different ad hoc XAI methods scored [low/no (red), average (orange), and high/yes (green) performance] based on target specificity, 
spatial-resolution and local/global voxel dependency capability, model agnostic, and technical simplicity, respectively.

Ad hoc Characteristics

xDNN
*

Attention 
estimator *

Capsule 
network *

*Depends on DL model convergence.
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of the features present in the image. This attention mechanism helps 
to make the model interpretable. However, it lacks specificity due to 
its grid-wise attention mechanism.

3.4. Explainability quality of attribution 
methods

Performance assessment of DL algorithms is almost always 
expressed in terms of diagnostic performance (e.g., accuracy, 
sensitivity) or overlap (e.g., Dice coefficient) with the gold standard. 
Although CNNs are seen as the current state-of-the-art algorithms in 
this field, there is no clear consensus what XAI method has superior 
performance over the other methods. One of the problems with these 
XAI methods is that the performance of the attribution methods is 
often not expressed in measurable (quantitative) metrics. Most 
comparisons are performed solely on visual inspection, which is 
susceptible to human subjectivity, especially in case of non-trained 
readers. Current literature therefore lacks high-quality and objective 
technical and clinical assessment of the attribution methods, which 
makes objective comparison between the XAI methods difficult.

However, from the studies that used technical and clinical quality 
assessment, in general you can divide measurable metrics into human-
based and computer-based derived metrics. Human-based metrics 
predominantly use correspondence scores to assess overlap between 
decision relevant VOIs and the gold standard VOIs. In a study where 
they assessed the correspondence of the attribution map with the 
aorta, the radiologist used a 5-point Likert scale to determine 
correspondence (23). An equivalent score, the mean alignment index 
(MAI) was used to evaluate the attribution map for COVID-19 
detection (44). Another study measured the effect of diagnostic 
performance with and without attribution maps (spinal Modic maps) 
(74). First, they provided three radiologist with a MRI without the 

attribution maps and after a 4-week washout period, the radiologist 
regraded the same dataset with the attribution maps. Although a 
4-week washout period might not be sufficient, such methods are able 
to validate the effect of attribution methods in complementing 
medical professionals in medical decision making and therefore helps 
improving the trustworthiness of these algorithms in this field.

Computer-based metrics also use metrics to measure overlap 
between the attribution maps and a gold standard. A study calculated 
correspondence between the attribution maps with brain tumor 
segmentations using a localization hit and the intersection over Union 
metric (55). In other studies, correlation analysis was performed to 
compare pneumonia ratio between radiologists and thresholded 
attribution maps for COVID-19 detection (24) and between 
attribution scores of brain regions and classification accuracy in 
Alzheimer’s disease (88). Another method proposed is the use of 
perturbation of the input image based on the attribution maps (26). 
The idea behind this is that important features from the attribution 
map should correspond with important features from the input image, 
which is expressed as the area over the perturbation curve (AOPC). 
So the more the prediction score decreases by perturbation, the better 
an attribution method is capable to identify relevant input features, 
resulting in a high AOPC.

3.5. Disease specific XAI

Utilization of disease-specific XAI is not unambiguous and 
therefore we propose a flowchart (based on taxonomy of the XAI 
methods) to determine what XAI methods present in the literature are 
from our perspective (most) applicable based on disease specific 
characteristics/patterns (Figure 4). In this flowchart we differentiate 
between local and global and low- and high-resolution XAI methods, 
what we think are two (important) taxonomies that can be determined 

FIGURE 4

Flowchart of XAI methods applicable for disease specific characteristics.
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a priori for the development of XAI methodology. Differentiation of 
the XAI methods is based on disease spread, disease volume and effect 
size between the classes. Disease spread is divided into localized (e.g., 
only primary tumor) and diffuse (e.g., diffuse large B-cell 
non-Hodgkin lymphoma), where diffuse spread is again subdivided 
into non-interlesion (e.g., predicting non-Hodgkin vs. Hodgkin 
lymphoma) and interlesion (e.g., prediction of overall survival for 
Hodgkin lymphoma) dependency. Although the difference between 
the two seems small, a non-interlesion dependency can be described 
in terms of a regional (small ROI/VOI) linear relation with the output 
[e.g., (non-)presence of bone metastasis in Hodgkin vs. non-Hodgkin 
patients], while interlesion interaction requires an explanation/
relation for all pixels/voxels (e.g., relationship between primary tumor, 
lymph node and distant metastases). Interlesion (voxel) interaction 
therefore requires both local as global XAI, while localized disease 
only requires a XAI method to extract local features. Disease volume 
is divided into non-bulky (e.g., stage I pancreatic cancer) and bulky 
(e.g., diffuse large B-cell non-Hodgkin lymphoma). The effect size, i.e., 
the magnitude of the difference between classes, may in some cases 
be more difficult to determine a priori. Yet, we divide the effect size in 
small (e.g., predicting progression free survival in stage III colon 
cancer) and large (e.g., predict presence of glioma in brain vs. healthy 
brain). This flowchart can be helpful for researchers to determine a 
priori what XAI methods currently present in literature can aid in 
explaining their DL model. However, in the end researchers should 
determine how the complexity of the AI task compares with the 
complexity of the XAI method and therefore the flowchart should 
only be seen as an additional tool for XAI application.

4. Discussion

There has been growing interest in the deployment of XAI to 
explain DL black-boxes in the field of MR, CT, and PET imaging. 
However, this review demonstrates that there is a variety of XAI 
methods available and that there is currently no clear consensus 
present in literature on how and what XAI should be deployed to 
realize utilization of DL algorithms in clinical practice. Although a 
variety of XAI methods are proposed in literature, technical and 
clinical quality assessment of these methods is rarely performed. Also, 
there is little evidence of the impact of attribution methods to 
complement medical professionals in medical decision making and 
what medical professionals expect and demand of XAI (74). This all 
illustrates that current XAI methods on their own may not be sufficient 
to realize deployment in clinical practice, but requires additional/
tweaked (XAI) methods to improve transparency and trustworthiness. 
Therefore, we advocate for an end-to-end solution, which integrates a 
priori data-quality control, data pre-processing, (self-)explainable 
modules and technical and clinical (X)AI model quality control (26, 
74). In addition, to the best of our knowledge we are the first study 
that provides a guide for current available XAI utilization based on 
disease/AI task specific characteristics (Figure  4). Also, we  have 
provided a hands-on summary of the (dis-)advantages of each XAI 
method (Tables 2, 3). Both can be helpful for researchers to a priori 
determine which XAI method can be useful for their disease-specific 
AI task.

The majority of the studies utilized post hoc attribution methods 
to explain model behavior. For successful employment, these XAI 

methods should be  transparent, explainable and safe for all 
stakeholders. Current post hoc XAI methods are overall able to provide 
transparent and understandable attribution maps, but show low 
specificity, resulting in non-target specific attribution maps. 
Anatomical data minimization seems to suppress the effect of this, but 
due their intrinsic technical characteristics some still lack to provide 
class discriminative performance. In recent years, more advanced post 
hoc methods have been proposed, such as DeepSHAP. DeepSHAP 
uses multiple reference image samples from both classes and is 
therefore able to provide both positive as negative attributions. 
Therefore, DeepSHAP enables reasoning both for and against a 
models decision, which is important to consider for a complete image 
analysis and diagnosis. Although this provides high model 
transparency and greater insights, excessive information may result in 
lower understandability by the medical professional. Also, DeepSHAP 
may be negatively impacted by anatomical (non-)rigid variation in 
images and reference images and therefore may not work optimal in 
medical imaging.

From this perspective it is important to consider what medical 
professionals consider as complementing information for decision 
making. It is therefore critical to focus on addressing the epistemic 
and non-epistemic concerns of this group in specific contexts and 
occasions of these DL algorithms. These algorithms should 
be  designed in the context of its user, which includes flawless 
integration in the user’s clinical workflow, respect the autonomy of the 
user and provide transparent and effective outputs (97). One of the 
overall issues of XAI is the low specificity of the computed attribution 
maps, i.e., non-informative attributions make it overly difficult to 
interpreted the attribution maps. This may be  due to the wide 
non-medical application of these XAI methods, i.e., they are not 
optimized for medical imaging. Therefore, although these methods 
may be useful in more simple (non) medical AI tasks, more difficult 
medical AI tasks may require XAI methods specifically developed for 
medical imaging. In other words, these systems should be designed 
around stakeholders/imaging modalities to ensure both transparent 
and trustworthy outputs.

Although not extensively present in literature, ad hoc XAI models 
do provide intrinsic explanation of their decision and seem to be more 
target-specific than post hoc XAI methods. Self-attention mapping has 
showed great interest, because it is able to intrinsically explain, showed 
higher target specificity than post hoc algorithms and is also relatively 
simple to understand and integrate into current systems. However, 
self-attention mapping is not able to find global feature dependencies, 
which can be  important in disease mapping. Yet, self-attention 
mapping in combination with DeepSHAP enables it to find global 
features, which supports to combine ad hoc and post hoc XAI methods 
in future research. Another promising XAI method is capsule 
networks, which are intrinsically able to handle spatial relationship 
between features and therefore have seen to be more resilient to spatial 
variance than CNNs. Also, agreement by routing provides an intuitive 
explanation of which feature belongs to which object. Therefore, 
capsule networks have been suggested as the new state-of-the-art DL 
model, but more research is required to explore its full potential.

To ensure unbiased and safe end-to-end integration of DL systems, 
also data quality control should be performed. Especially for systems 
with small data exposure, poor data quality can have high impact of the 
models its reliability. For example measuring the signal-to-noise-ratio 
for data quality harmonization, DL-based artifact detection model (62, 
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63) or simple visual inspection can be proposed to provide information 
of the quality of the data before utilization in the diagnostic DL 
systems. Also, quality control of the attribution maps should 
be performed to assess the use of XAI as potential IB. Unfortunately, 
only few studies (26, 55) implemented quality control systems to assess 
whether the attribution maps do present target-specific features. The 
absence of complete and transparent technical and clinical reporting 
limits the usability of finding in studies and in consequence, the 
acceptance of XAI as IB in clinical practice. In response to this, a new 
version of the Transparent Reporting of a multivariable prediction 
model for Individual Prognosis Or Diagnosis (TRIPOD) Statement 
was published (12). The TRIPOD Statements provides a checklist for 
reporting of studies developing, validating, or updating a prediction 
model for diagnostic and/or prognostic purpose. In combination with 
standardized modality and/or disease specific implementation 
guidelines (11), higher transparency and effectivity of XAI as new IB 
can be utilized in future research.

5. Conclusion

High quality explanation is user and task subjective and therefore 
we require pragmatic explanations to address the concerns of DL 
algorithms for each stakeholder/imaging modality. Ad hoc XAI 
methods seem to provide state-of-the-art explanation algorithms, 
which advocates for shifting from post hoc to integrating self-
explainable modules in the DL models. However, there is (still) no 
unambiguous (self-)explainable XAI method addressing all concerns, 
which advocates for combining XAI methods, perform anatomical 
data minimization and implement data quality systems to ensure 
end-to-end unbiased and safe system integration into the context of 
the stakeholder/imaging modality.

Although XAI shows a great potential to be used as IB in clinical 
practice, technical and clinical quality assessment is currently rarely 
reported. We recommend the utilization of developing and reporting 

guidelines, accepted by the AI-community, to ensure a higher 
transparency and quality of future developed XAI algorithms.
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