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Wnt5a Signaling in Gastric Cancer
Pablo Astudillo*

Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile

Gastric cancer remains an important health challenge, accounting for a significant
number of cancer-related deaths worldwide. Therefore, a deeper understanding of
the molecular mechanisms involved in gastric cancer establishment and progression
is highly desirable. The Wnt pathway plays a fundamental role in development,
homeostasis, and disease, and abnormal Wnt signaling is commonly observed in several
cancer types. Wnt5a, a ligand that activates the non-canonical branch of the Wnt
pathway, can play a role as a tumor suppressor or by promoting cancer cell invasion
and migration, although the molecular mechanisms explaining these roles have not been
fully elucidated. Wnt5a is increased in gastric cancer samples; however, most gastric
cancer cell lines seem to exhibit little expression of this ligand, thus raising the question
about the source of this ligand in vivo. This review summarizes available research
about Wnt5a expression and signaling in gastric cancer. In gastric cancer, Wnt5a
promotes invasion and migration by modulating integrin adhesion turnover. Disheveled,
a scaffolding protein with crucial roles in Wnt signaling, mediates the adhesion-related
effects of Wnt5a in gastric cancer cells, and several studies provide growing support for
a model whereby Disheveled-interacting proteins mediates Wnt5a signaling to modulate
cytoskeleton dynamics. However, Wnt5a might induce other effects in gastric cancer
cells, such as cell survival and induction of gene expression. On the other hand,
the available evidence suggests that Wnt5a might be expressed by cells residing in
the tumor microenvironment, where feedback mechanisms sustaining Wnt5a secretion
and signaling might be established. This review analyzes the possible functions of
Wnt5a in this pathological context and discusses potential links to mechanosensing
and YAP/TAZ signaling.

Keywords: Wnt5a, gastric cancer, Disheveled, adhesion, invasion, metastasis, mechanosensing

THE WNT SIGNALING PATHWAY: AN OVERVIEW

The Wnt signaling pathway plays fundamental roles in the context of embryonic development and
adult homeostasis (Logan and Nusse, 2004). This pathway is composed of a family of secreted
Wnt ligands, Frizzled receptors, and several co-receptors, intracellular adaptors, and scaffolding
proteins, and is commonly divided into two main branches.

The “canonical” (or “Wnt/β-catenin”) pathway depends on the stabilization of β-catenin, a
protein that acts both at cell-cell interactions and as a transcription factor (Valenta et al., 2012).
In the absence of a canonical Wnt signal, the pathway is inactivated through a negative feedback
mechanism, which includes both a β-catenin destruction complex, which targets β-catenin for
proteasomal degradation, and the plasma membrane ZNRF3/RNF43 ubiquitin ligases. Upon
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binding of a canonical Wnt ligand to a Frizzled receptor,
several processes are triggered at the plasma membrane. First,
binding of canonical Wnt ligands to Frizzled receptors leads
to phosphorylation of the cytoplasmic domain of LRP5/6.
Subsequently, intracellular components translocate to the
cytosolic side of the membrane, followed by clustering and
formation of a so-called “signalosome” (Davidson et al., 2005;
Zeng et al., 2005; Gammons and Bienz, 2018). These events
lead to direct inhibition of GSK-3β and internalization of
the signalosome (Taelman et al., 2010). Consequently, the
β-catenin degradation complex becomes inhibited, and newly
synthesized β-catenin can translocate to the nucleus to exert
its transcriptional role (Li et al., 2012). Other ligands and
proteins also modulate this pathway. For instance, secreted
R-spondin proteins have been shown to cooperate with Wnt
ligands, potentiating the activation of the pathway (Binnerts
et al., 2007; Wei et al., 2007; Kim et al., 2008). R-spondins
bind to LGR4/5/6 receptors (de Lau et al., 2011; Glinka et al.,
2011), leading to inactivation of the ZNRF3/RNF43 ubiquitin
ligases and stabilization of Frizzled receptors (Hao et al., 2012;
Koo et al., 2012).

On the other hand, there is a collection of “non-canonical”
Wnt signaling pathways, which are independent of β-catenin
stabilization. These non-canonical pathways also depend
on the activation of intracellular proteins, including small
GTPases RhoA, Rac1, and Cdc42, which activate downstream
effectors such as DAAM1 and JNK (Schlessinger et al., 2009).
Non-canonical Wnt signaling also depends on Wnt ligands,
Frizzled receptors, and several co-receptors. These co-receptors
include Ror1/2, Strabismus, Ryk, Vangl2, and heparan sulfate
proteoglycans, among others (Niehrs, 2012). Depending on
the available receptors, co-receptors, and intracellular effectors,
several non-canonical pathways are defined (Semenov et al.,
2007). Among these, two well-studied pathways are the planar
cell polarity (Wnt/PCP) pathway and the Wnt/Ca2+ pathway
(Veeman et al., 2003). Collectively, non-canonical Wnt pathways
modulate different aspects of cell behavior, such as cell shape and
migration. Of note, Disheveled acts as an intracellular scaffolding
protein with roles in both canonical and non-canonical pathways
(reviewed by Sharma et al., 2018).

Wnt ligands are typically classified as either canonical or non-
canonical. This classification initially stemmed from the ability
of ligands to induce the transformation of the C57MG cell line
(Shimizu et al., 1997; Chien et al., 2009). For instance, Wnt3a
and Wnt1 are classified as canonical ligands, whereas and Wnt5a
and Wnt11 are considered non-canonical ligands. However, the
specific pathway activated by a given Wnt ligand depends on
the cellular context, such as the availability of co-receptors.
Wnt5a provides an outstanding example of this complexity:
besides activating non-canonical Wnt signaling, Wnt5a can both
activate and repress Wnt/β-catenin signaling (Torres et al., 1996;
Mikels and Nusse, 2006).

Given the multiple processes that follow Wnt stimulation,
signaling levels must be tightly regulated, and proper termination
mechanisms must be employed to dampen the signal when
needed. In the case of the Wnt/β-catenin pathway, it is well
known that several Wnt target genes (such as AXIN2, NAKED1,
and DKK1) encode for proteins that inhibit the pathway,

thus providing a negative feedback loop (Filipovich et al.,
2011). Therefore, activating mutations in Wnt components,
as well as persistently high levels of Wnt ligands, might
lead to the establishment of diseases, including cancer
(Logan and Nusse, 2004).

In this regard, the relationship of the Wnt/β-catenin pathway
with cancer is well established, and several excellent reviews have
been published recently (Anastas and Moon, 2013; Zhan et al.,
2017). However, the role of the non-canonical Wnt pathway and
its ligands in cancer is somewhat less understood. Once again, a
remarkable example is Wnt5a. This ligand has been detected in
several cancer types, and it is believed to play an essential role
in both cancer cell migration and tumor suppression. However,
the precise molecular role of Wnt5a in cancer has not been
fully clarified. Therefore, a deeper understanding of the biological
functions of Wnt5a in cancer is highly desirable. Comprehensive
overviews of Wnt5a in cancer have been published elsewhere
(Kikuchi et al., 2012; Endo et al., 2015; Asem et al., 2016). Instead,
this review focuses on the specific role of Wnt5a in gastric cancer.

WNT5A EXPRESSION IN GASTRIC
CANCER

Gastric cancer (GC) is typically diagnosed at advanced stages,
impairing adequate treatment, and leading to elevated mortality
rates (Van Cutsem et al., 2016). An estimated more than
780,000 people died from stomach cancer in 2018, accounting
for 8% of total cancer-related deaths, according to the Global
Cancer Observatory (Bray et al., 2018). Therefore, GC remains
a significant public health issue. Approximately 90% of all
GC correspond to adenocarcinomas, which in turn can be
classified as either diffuse- of intestinal-type, following the Lauren
classification (Lauren, 1965; reviewed in Correa et al., 2009).
Molecular criteria can be employed for identifying different
subgroups, and some genetic abnormalities have been associated
to GC (reviewed in detail by Van Cutsem et al., 2016; Ajani
et al., 2017). Overall, gastric adenocarcinoma is conceived as a
multistep process, sometimes referred to as the “Correa cascade”
(Correa, 1988), where intestinal-type gastric cancers are preceded
by a series of precancerous lesions, starting from gastritis, leading
to metaplasia and invasive carcinoma (reviewed in Correa et al.,
2009). In this regard, Helicobacter pylori infection constitutes
a risk factor, due to induction of inflammation in the gastric
mucosa. At later stages, epithelial gastric adenocarcinomas evolve
to invasive lesions, where cancerous cells invade through the
basement membrane and penetrate the mucosa and submucosa.
Diffuse-type GC is also characterized by the stiffening of the
gastric wall, or “linitis plastica” (Carneiro and Lauwers, 2012).
Of note, other classifications for gastric adenocarcinomas have
been proposed (reviewed in Carneiro and Lauwers, 2012),
and other non-epithelial gastric tumors can also be identified
(Wall and Nickl, 2019).

Given the role of Wnt signaling in cancer, several studies
have analyzed the expression of Wnt ligands in GC. WNT5A
mRNA was first shown to be up-regulated in samples of
primary GC, compared to normal samples (Saitoh et al., 2002),
and subsequent reports confirmed this observation. Kurayoshi
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and coworkers used GC tissue samples and matched non-
neoplastic mucosa, reporting a 2.6-fold up-regulation of WNT5A
expression by using semi-quantitative PCR (Kurayoshi et al.,
2006). More recently, a bioinformatic meta-analysis of published
transcriptomic data reported WNT5A expression in 617 out
of 1,034 GC patients (Nam et al., 2014). At the protein
level, Kurayoshi and coworkers reported Wnt5a expression in
30% of GC cases analyzed by immunohistochemical staining
(Kurayoshi et al., 2006).

At the histological level, WNT5A is up-regulated in both
intestinal-type (IGC) and diffuse-type (DGC) GC samples
(Kurayoshi et al., 2006). Another study, performed with samples
from Australian and Chinese patients, also showed significant
up-regulation of WNT5A in both IGC and DGC (Boussioutas
et al., 2003). More recently, Li and coworkers detected significant
up-regulation of WNT5A in 21 out of 36 GC samples analyzed
(Li et al., 2014). Of note, six out of the 36 samples showed
down-regulation of WNT5A in this study. Therefore, it remains
possible that GC might proceed following not only Wnt5a
overexpression but also impaired or unbalanced Wnt ligand
availability. Finally, high Wnt5a expression is correlated with
poor prognosis (Kurayoshi et al., 2006), and there is a statistically
significant correlation between Wnt5a expression and several
clinical parameters, such as lymph node metastasis and tumor
depth (Nam et al., 2017).

Collectively, these reports indicate that Wnt5a is highly
abundant in GC, and likely plays a role in GC establishment and
progression. However, the precise source of Wnt5a is unclear.
While most reports cited previously employed GC samples for
mRNA expression analysis or histological staining, the analysis
of GC cell lines shows mixed results. Several GC cell lines have
been used and characterized for in vitro studies. Although most
of these cell lines share the same ethnicity, they differ in origin
and histological type, in their expression profile for growth factors
and cell cycle regulators, and their profile for common oncogenes
(Yokozaki, 2000). Although genetic alterations for β-catenin and
APC have not been reported in some of these cell lines, mutations
in these genes have been described in AGS, MKN-28, and MKN-
74 cells (Ikenoue et al., 2002; Ebert et al., 2003).

The expression of Wnt5a in GC cell lines is variable. For
instance, Saitoh et al. (2002) reported undetectable levels of
WNT5A in MNK-7 cells and low levels in MKN-45 cells; in
contrast, Kurayoshi et al. (2006) reported an opposite expression
profile. Both studies report undetectable levels of WNT5A in
several GC cell lines, such as TMK-1, MKN-28, MKN-74, and
KATO-III. On the other hand, Kanzawa and coworkers also
observed Wnt5a protein expression in several GC cell lines,
including MKN-7 cells (Kanzawa et al., 2013), while Zhao and
coworkers analyzed Wnt5a expression in five GC cell lines,
detecting it only in the MKN-45 cell line (Zhao et al., 2013).
Miwa and coworkers also reported variable expression levels of
WNT5A across a panel of GC cell lines (Miwa et al., 2017). Finally,
Nam and coworkers observed variable Wnt5a protein expression
in several GC cell lines, including the commonly used MKN-1,
MKN-45, AGS, and NCI-N87 (Nam et al., 2014). Of note, the
same report shows that Wnt3a, a prototypical canonical ligand,
only has limited expression in a few GC cell lines.

Therefore, the evidence suggests that WNT5A might be
poorly expressed in GC cell lines, thus raising the question
about the source of this ligand in GC. One possibility is that
Wnt5a might be expressed by cells residing in the tumor
stroma. For instance, cancer-associated myofibroblasts (CAMs,
also known as cancer-associated fibroblasts, or CAFs) from
GC consistently displayed increased expression of Wnt5a,
compared to adjacent tissue myofibroblasts (ATMs) (Wang
et al., 2016). More recently, a study comparing the methylation
and trimethylation (H3K23me3) patterns between CAFs and
non-CAFs also identified WNT5A as a target for H3K23me3
predominantly in CAFs and corroborated that CAFs secreted
more WNT5A than GC cell lines (Maeda et al., 2019).
More importantly, this report showed that, in histological
samples, WNT5A had higher expression in fibroblasts (which
were identified by α-SMA staining), compared to cancer cells
(Maeda et al., 2019).

Wnt5a might also be secreted by tumor-associated
macrophages (TAMs), which are observed in GC and
correlate with poor prognosis (Räihä and Puolakkainen,
2018). Macrophages secrete Wnt5a in response to LPS treatment
and H. pylori infection (Zhao et al., 2013). In turn, Wnt5a
might induce the recruitment of immune cells, sustaining an
environment favorable for non-canonical Wnt signaling. One
report showed that Wnt5a induces the expression of MCP-1
(monocyte chemotactic protein 1, also known as C-C Motif
Chemokine Ligand 2, CCL2), a protein involved in macrophage
recruitment (reviewed by Yoshimura, 2017), in two GC cell lines
(BGC-803 and HGC-27) (Li et al., 2014). This report also showed
that conditioned medium from Wnt5a-treated GC cells induced
macrophage migration in Transwell assays, and this effect was
lost after a neutralizing MCP-1 antibody was added to the
medium, providing further support to a functional relationship
between Wnt5a and MCP-1 in GC. In addition, WNT5A is
correlated with IL1B and CCL2 expression in GC tissues (Li
et al., 2014). In this same line, it has been reported that Wnt5a is
expressed by Cxcr4+ intraepithelial gastric innate lymphoid cells
(ILCs) located in the isthmus, where the authors describe the
existence of Mist1+ stem cells (Hayakawa et al., 2015). Wnt5a
enhances the colony formation ability of these Mist1+ cells and,
more importantly, cancer progression is impaired when Wnt5a
expression is eliminated in the ILCs in a transgenic mouse model
that develops diffuse-type GC following E-Cadherin depletion
(Hayakawa et al., 2015).

Alternatively, Wnt5a might be specifically expressed in
response to certain signals, such as environmental conditions
or the interaction with stromal cells. In the first case, H. pylori
infection has been linked to Wnt5a expression since H. pylori
eradication leads to lower Wnt5a levels (Matsuo et al., 2012). Li
et al. (2014) also reported significant upregulation of WNT5A in
samples from H. pylori-positive patients compared to H. pylori-
negative cases. On the other hand, MKN-7 cells (which, as
mentioned above, exhibit low to moderate expression of Wnt5a)
co-cultured with bone marrow mesenchymal stem cells show
increased levels of WNT5A (Nishimura et al., 2012).

In conclusion, the discrepancy between high Wnt5a
expression in GC biopsies or tissue arrays and modest or
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low expression observed in some GC cell lines can be explained
by the presence of stromal cells or other inflammatory and
environmental signals. Moreover, the evidence analyzed above
suggests that GC cells have diverse sources of Wnt5a in the
tumor microenvironment. In consequence, Wnt5a might be a
suitable clinical target, at least in a subset of GC cases, fostering
interest for studies addressing the molecular roles of Wnt5a in
GC, which remain to be fully understood, as discussed below.

WNT5A IN GASTRIC CANCER:
MOLECULAR MECHANISMS

The role of Wnt5a has been studied in several cancer types,
providing valuable insights into the possible mechanisms by
which Wnt5a might influence cancer cell behavior. Wnt5a can
function either as a regulator of cell migration and invasion or
as a tumor suppressor (for two extensive reviews, see Kikuchi
et al., 2012; Endo et al., 2015), leading to the notion of complex
and opposing roles of this ligand in cancer (Pukrop and Binder,
2008; McDonald and Silver, 2009). Regarding the role of Wnt5a
specifically in GC, it must be noted that overexpression of Wnt5a
during adulthood failed to induce tumor initiation (Bakker et al.,
2012), thus suggesting that Wnt5a alone is not sufficient for
gastric cancer establishment. In addition, induction of Wnt5a
overexpression from E13.5 during mouse development affected
the intestinal tract; however, the stomach was not reported to be
altered (van Amerongen et al., 2012). On the other hand, the
tumor suppressor role of Wnt5a is commonly associated with
low expression of this ligand (McDonald and Silver, 2009). The
high expression of Wnt5a in GC, the lack of tumor initiation after
overexpression in mice, and the evidence that will be reviewed in
this section, collectively suggest that the predominant function of
Wnt5a in GC is the regulation of cell migration and invasion.

Cell adhesion to the extracellular matrix (ECM) depends
on integrin receptors and a complex set of intracellular
proteins, which collectively form integrin-adhesion complexes
(IACs) (Horton et al., 2016). In turn, cell migration and
mechanotransduction depend on proper modulation of integrins
and IAC proteins; therefore, signals able to modulate IAC
dynamics are likely to be involved in cell migration and invasion,
particularly in the context of cancer (Hamidi and Ivaska, 2018).
Wnt5a stimulates cell migration in GC cell lines, whereas Wnt5a
knockdown suppresses cell migration and invasion in Matrigel
(Kurayoshi et al., 2006). Importantly, the relative migration of
GC cell lines correlated with their relative levels of WNT5A,
while the effect of Wnt5a was reduced by the negative Wnt
regulator sFRP2 and by an anti-Wnt5a antibody, thus confirming
the specificity of Wnt5a. This report also showed that Wnt5a
increased MKN-45 cell adhesion, suggesting the involvement
of IACs. In agreement with this observation, the abrogation of
Wnt5a expression decreased the rate of assembly and disassembly
of GFP-paxillin positive adhesions in MKN-1 cells. Of note,
Wnt5a induced FAK Tyr397 phosphorylation and Rac activation
in an Src- and PKC-dependent manner (Kurayoshi et al., 2006).

By promoting IAC dynamics, Wnt5a might lead to enhanced
cell invasion. Supporting this idea, the injection of GC cell lines

(KKLS and TMK-1) with reduced Wnt5A expression has less
metastatic activity in vivo (Yamamoto et al., 2009). Furthermore,
the treatment of GC cells with a polyclonal Wnt5a antibody
(pAb5a-5) decreased cell adhesion, migration, and invasion of
GC cell lines in vitro, and reduced the metastatic activity of the
GC cell line KKLS in vivo (Hanaki et al., 2012).

Mechanistically, the Wnt5a antibody blocked Wnt5a- and
clathrin-dependent internalization of Frizzled-2 and Ror2
receptors (Hanaki et al., 2012). A subsequent report from this
group corroborated these observations using a second antibody
targeting Wnt5a (mAb5A16), which reduced endocytosis of
Ror-2 and Frizzled-2 and decreased the metastatic activity of
the GC cell line KKLS in vivo (Shojima et al., 2015). On the
other hand, a recent report unveiled the involvement of Ryk,
another non-canonical Wnt receptor, in GC (Fu et al., 2019).
The authors showed that Ryk is expressed in GC cell lines and
samples from GC patients, correlating with clinical parameters
such as wall invasion and liver metastasis. In addition, Ryk was
shown to be required for migration and invasion in scratch
and transwell assays (Fu et al., 2019). Of note, Ryk interacts
with Vangl2, another non-canonical Wnt receptor, and Ryk
knockdown impaired cell attachment. Collectively, these results
suggest that non-canonical Wnt receptors are required for Wnt5a
to modulate GC cell migration and invasion.

In order to modulate cell adhesion, Wnt5a must be able to
functionally interact with intracellular effectors. The scaffolding
protein Disheveled (Dvl) is a crucial effector in signaling
through both canonical and non-canonical Wnt pathways. Dvl
is required for HeLa S3 cells to remodel their focal adhesions,
while Dvl knockdown impaired FAK Tyr397 phosphorylation
and adhesion to fibronectin and collagen (Matsumoto et al.,
2010). Mechanistically, Dvl localized to the cell periphery
upon stimulation with Wnt5a, forming a complex with
Frizzled-2 and APC, and interacting with FAK (Matsumoto
et al., 2010). More importantly, Wnt5a required the Dvl-
APC interaction to promote adhesion dynamics. The authors
proposed a model whereby Wnt5a, Frizzled-2, and Disheveled
form a complex proximal to integrins, FAK, and Paxillin,
promoting adhesion dynamics through microtubule stabilization
(Matsumoto et al., 2010).

A crucial aspect of Wnt signaling is the ability of Dvl to
interact with other proteins (Sharma et al., 2018). A Dvl-
interacting protein that is involved in Wnt5a-mediated adhesion
dynamics is Daple (Dvl-associating protein with a high frequency
of leucine residues). Daple promotes the interaction between
Dvl and the PKCλ isoform of aPKC (Ishida-Takagishi et al.,
2012), thus linking Dvl with the induction of FAK Tyr397
phosphorylation by Wnt5a (Kurayoshi et al., 2006). Daple was
required for Dvl and PKCλ localization at the leading edge
in migrating cells, whereas the Dvl-Daple interaction was also
shown to be required for Rac1 activation and modulation of cell
migration by Wnt5a. However, the precise molecular mechanism
was not completely elucidated in this report (Ishida-Takagishi
et al., 2012). The authors proposed a model whereby Daple allows
the formation of a Dvl-PKCλ complex at the leading edge of
Wnt5a-induced migrating cells, thus promoting Rac activation
and actin reorganization.
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Although Ishida-Takagishi et al. (2012) mainly used Vero
and HEK293T cells in their study, evidence from a subsequent
report provided further support for a role of Daple in GC. Daple
was shown to be highly expressed in GC tumors, correlating
with pathological characteristics (depth of gastric wall invasion,
frequency of lymph node metastasis, and clinical stage), Wnt5a/b
expression, and metastasis in xenograft tumor assays (Ara
et al., 2016). More importantly, Daple knockdown impaired
Wnt5a-induced Rac1 and JNK activation, decreased laminin γ2
expression in MKN-45 cells and attenuated MKN-45 and KKLS
cell invasion in Matrigel assays, as well as the metastatic potential
of KKLS cells in vivo (Ara et al., 2016). In consequence, Daple is
likely to play a significant role in Wnt5a signaling in GC.

Another example of a Dvl-interacting protein is given by
the microtubule (MT)-associated proteins Map7/7D1. Map7/7D1
binds to Dvl and modulates MT remodeling in HeLa cells,
whereas Map7/7D1 knockdown impaired MT plus-end cortical
targeting and focal adhesion turnover. Furthermore, Map7/7D1
promotes the cortical targeting of Dvl in response to Wnt5a,
providing further support to the role of Dvl in cell migration
dynamics during Wnt5a signaling (Kikuchi et al., 2018).
However, it must be stressed that the specific relevance of these
findings for gastric cancer remains to be fully explored.

Two additional Dvl-interacting proteins that have been
associated with GC are Dapper homologs 1 (DACT1) and 2
(DACT2). DACT1 interacts with Dvl and induces its degradation
and antagonizes canonical Wnt signaling (Zhang et al., 2006).
DACT1 is also required for non-canonical Wnt/PCP signaling
(Wen et al., 2010). Of note, DACT1 levels are abrogated in several
GC cell lines by hypermethylation, whereas DACT1 protein
abundance is reduced in GC tissues compared to adjacent non-
tumor tissue (Wang et al., 2012). Relevantly, DACT1 promoter
methylation was correlated with tumor size and metastasis
(Wang et al., 2012). On the other hand, DACT2 is also methylated
in several GC cell lines, while protein levels are lower in GC
tissue relative to normal mucosa (Yu et al., 2014). Of note,
restoring DACT2 expression abrogated migration and invasion
of the GC cell line SGC-7901 and tumor growth in a xenograft
assay (Yu et al., 2014). Although the precise relationship of
DACT1/2 with Wnt5a signaling was not addressed in these
reports, Wnt5a might also influence GC by modulating these
proteins. It remains possible that fine-tuned levels of these
proteins might be required for proper Wnt5a signaling, and
either gain or loss of expression might lead to imbalances and
abnormal signaling.

The involvement of Dvl in Wnt5a-mediated adhesion
dynamics is highly significant since this protein is at the
crossroads of the canonical and non-canonical Wnt signaling
pathways. The proper role of Dvl likely differs across tissues,
depending on the balance between canonical and non-canonical
Wnt signals, the availability of specific receptors and co-
receptors, and the expression of Dvl-interacting proteins.
Nevertheless, lessons from studies about Disheveled and Wnt5a
in GC might shed light on the mechanisms of Wnt signaling
in other cancer types. On the other hand, considering the high
number of Dvl-interacting proteins (reviewed in Sharma et al.,
2018), there is still much to be learned from Dvl in GC.

In addition to Dvl-mediated mechanisms, Wnt5a might also
promote other intracellular responses, such as the expression of
secreted proteins. For instance, Wnt5a was shown to promote
the expression of laminin γ2, a component of the basement
membrane protein laminin-5 (Yamamoto et al., 2009). This effect
of Wnt5a is exerted through an AP-1 responsive element found
in the LAMC2 promoter and requires JNK and PKC activation, as
well as the Frizzled-2 receptor. Knockdown of LAMC2 decreased
the invasive activity of TMK-1 and MKN-1 cells (the two cell
lines in the study where WNT5A abundance best correlated with
that of LAMC2), whereas Wnt5a showed a tendency to correlate
with laminin γ2 expression in scirrhous GC biopsies (Yamamoto
et al., 2009). Further research showed that the treatment of GC
cells with the pAb5a-5 antibody impaired laminin γ2 expression
and confirmed that TMK-1 cells with reduced expression of
laminin γ2 exhibited decreased metastatic potential (Hanaki
et al., 2012). Hence, Wnt5a might modulate the deposition
of basement membrane proteins and other components of
the extracellular matrix, including laminin γ2, thus promoting
tumorigenesis by providing a favorable environment for GC
progression and responsiveness to other secreted ligands. Finally,
Wnt5a might also activate other signaling effectors. For instance,
Liu and coworkers have reported that Wnt5a activates PI3K/Akt
signaling in the GC cell line SGC-7901, resulting in GSK-3β

phosphorylation and RhoA activation, promoting cell migration
(Liu et al., 2013).

Other studies report additional effects that Wnt5a might
play during GC establishment. For instance, Hayakawa et al.
(2015) showed that Wnt5a activates RhoA in AGS and KATO-
III cells, and increased the survival of E-Cadherin-deficient
Mist1+ cells in vitro, in a mechanism involving RhoA. Wnt5a
might also influence the interaction between GC cells and their
tumor microenvironment (TME), contributing to a supportive
environment for migration and invasion of transformed GC
cells. In agreement with this idea, it has been reported that
Wnt5a/Ror2 signaling in MSCs promotes the secretion of
CXCL16, which requires the CXCR6 receptor on MKN-45 cells
to induce proliferation (Takiguchi et al., 2016). Of note, MSCs
express high levels of ROR2 and WNT5A compared to MKN-45
cells, and abrogation of ROR2 or WNT5A expression in MSCs
impaired MSC-induced MKN-45 cell proliferation. Therefore,
this report adds a new role for Wnt5a, namely the induction of
cell proliferation via the CXCR6/CXCL16 axis. Considering the
known role of CXCL16 in other cancers (Deng et al., 2010), the
abovementioned data highlight the multiple functions that might
be exerted by Wnt5a during GC.

Inflammation is another context where Wnt5a likely plays an
important role. As mentioned above, WNT5A correlates with
IL1B and CCL2 (MCP-1) expression in GC tissues (Li et al., 2014).
Mechanistically, Wnt5a promotes IL-1β and TNF-α expression in
the GC cell line BGC-803, as well as CCL2 expression in GC cell
lines and increased macrophage migration in Transwell assays
(Li et al., 2014). The link between Wnt5a and inflammation is
well established (reviewed by Pashirzad et al., 2017). Therefore, a
feedback mechanism might ensue in the event of inflammation,
whereby early inflammatory cues induce Wnt5a expression,
which in turn leads to the secretion of inflammatory chemokines,
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sustaining continued expression of these signals and leading to
increased tumorigenicity.

Collectively, these reports suggest a model for Wnt5a signaling
in GC. Kikuchi and coworkers (Kikuchi et al., 2012) have
proposed a model where initial epithelial cell transformation
might be followed by the acquisition of mesenchymal traits due
to epithelial-to-mesenchymal transition, likely due to pathways
other than the non-canonical Wnt branch. In turn, transformed
cells gain the ability to invade the underlying stroma. In this
scenario, Wnt5a likely plays a role in promoting IAC turnover
and the invasive capacity of GC cells. It is possible to expand this
model to include other roles of Wnt5a, such as those related to
gene expression and inflammation. An expanded overview for
Wnt5a signaling, including possible roles described in this review,
is depicted in Figure 1.

This model strongly supports the notion of Wnt5a expression
as a negative prognosis factor in GC. However, limited evidence
also suggests the opposite role for Wnt5a. Zhang et al. (2015)
reported that the downregulation of Wnt5a is required for EGF-
induced EMT in the GC cell line SGC-7901. In this report,
the knockdown of Wnt5a increased cell migration, while the
overexpression of Wnt5a impaired EGF-induced N-Cadherin
and Vimentin expression. Mechanistically, Arf6 was required for
EGF-induced EMT and downregulation of Wnt5a expression. In
turn, the downregulation of Wnt5a expression required nuclear
translocation of phosphorylated ERK and its binding to the
WNT5A promoter (Zhang et al., 2015). In a subsequent report,
it was shown that knockdown of Arf6 abrogated cell migration
and invasion in the SGC-7901 cell line in vitro, strengthening
a negative role of Wnt5a in this cell line (Qiu et al., 2018). On
the contrary, Wnt5a induces EMT in the MKN-7 GC cell line
(Kanzawa et al., 2013).

How can these contradictory findings be reconciled? Several
explanations might be proposed. Interestingly, when Zhang et al.
(2015) analyzed the effect of Wnt5a on EMT marker expression,
the overexpression of Wnt5a seemed to have little or no effect. Of
note, the report shows that the SGC-7901 cell line already express
high levels of Wnt5a. On the other hand, Kanzawa and coworkers
used MKN-7 cells, which showed the lowest expression of Wnt5a
among a panel of five GC cell lines (Kanzawa et al., 2013).
Therefore, the observed discrepancy might be explained by the
relative expression of Wnt5a among GC cell lines. The SGC-
7901 cell line also differs from other GC cell lines in terms of
the expression of Wnt-related proteins, such as soluble Frizzled
receptor protein 1 (SFRP1; Zhao et al., 2007) and Wls (Zhang
et al., 2017). Therefore, different GC cell lines may exhibit
different responses to Wnt proteins, depending on specific Wnt
signaling contexts.

Finally, it remains possible that the role of Wnt5a in restricting
EMT might be a specific feature of the SGC-7901 cell line. Zheng
and colleagues did not corroborate their findings in other GC cell
lines; meanwhile, several reports have shown the promotion of
cell invasion by Wnt5a in many GC cell lines, as described in
this review. Furthermore, Zheng and colleagues failed to assess
the effects of EGF treatments on cell invasion in the context of
Wnt5a, and most experiments were limited to morphological
changes and EMT marker expression. Another interesting

possibility is that Wnt5a expression must be abolished in earlier
phases of EMT, but its expression might be required in later stages
to promote cell migration and invasion. Notwithstanding, these
findings posit a caution note when selecting cell lines for studies
addressing the role of Wnt ligands in GC.

In summary, it is possible to distinguish between Dvl-
mediated mechanisms, leading to IAC turnover, and other
mechanisms that might be less dependent on Dvl, which
might lead to modulation of the GC environment. The former
likely requires the known receptor machinery for Wnt5a,
including Frizzled-2 and Ror2; however, the latter might require
alternative or additional receptors and intracellular effectors.
Wnt5a signaling mechanisms might be also classified as those
modulating the cytoskeleton (Figure 1, left half) or those
modulating other cellular processes (Figure 1, right half). In
addition, these roles for Wnt5a might either overlap or represent
a multi-step process, with Wnt5a playing different roles during
EMT (Figure 2).

FUTURE DIRECTIONS AND
CONCLUSION

Although the evidence discussed above strongly supports a role
for Wnt5a in gastric cancer development, further research is
still needed to fully understand the proper function of this Wnt
ligand in the context of GC in vivo. Current evidence suggests
that the mechanical properties of the extracellular matrix can
play a significant role in cancer establishment and progression
(reviewed by Pickup et al., 2014). Increased stiffness of the
extracellular matrix (ECM) surrounding the tumor (usually
referred to as the tumor microenvironment, or TME) can
influence critical aspects of cancer cell biology, such as gene
expression, invasion, and chemoresistance (Northey et al., 2017).
Therefore, it would be interesting to study the mechanical
changes in gastric tissues in GC and to elucidate the precise role
of Wnt5a in conditions mimicking the elasticity of gastric tissue
in vivo.

In this regard, gastric adenocarcinomas are usually preceded
by mucosal atrophy and dysplasia (Lauwers and Srivastava,
2007). In addition, peritoneal dissemination (PD) is a common
manifestation of GC and is associated with poor prognosis
(Kanda and Kodera, 2016). PD is usually described as a multi-step
process, where GC cells must invade the gastric wall and reach
the peritoneal cavity (Kanda and Kodera, 2016). Carneiro and
Lauwers have noted that stiffening of the gastric wall is observed
during invasive adenocarcinoma, due to the desmoplasia
following tumor cell invasion (Carneiro and Lauwers, 2012).

Stiffening of the ECM is partly explained by collagen cross-
linking due to the action of lysyl oxidase (LOX) enzymes
(Barker et al., 2012), and existing evidence suggests that LOX
proteins might also play a role in GC progression (reviewed by
Añazco et al., 2016). In line with these observations, Yashiro
and coworkers reported that conditioned medium from the
GC cell line OCUM-2MD3 induced peritoneal fibrosis in mice
(Yashiro et al., 1996). Moreover, OCUM-2MD3 cells showed
enhanced tumorigenicity in mice with peritoneal fibrosis induced
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FIGURE 1 | Wnt5a signaling in gastric cancer (GC). Wnt5a interacts with APC and Daple to modulate integrin adhesion complex (IAC) turnover (1); this effect
involves microtubule (MT) stabilization (2) and actin reorganization (3). Disheveled (Dvl) plays a central role in this signaling axis. In addition, other signals, such as
CXCL16, can cooperate with Wnt5a. Wnt5a also correlates with increased expression of pro-inflammatory cytokines (4). Wnt5a might also induce changes in gene
expression (5). For instance, LAMC2 is induced by Wnt5a, but other target genes might be also modulated. Finally, other signaling pathways might cooperate with
Wnt5a signaling. Considering the evidence summarized here, YAP/TAZ signaling likely interacts with Wnt5a. This interaction might include direct modulation of actin
remodeling (6a), as well as direct induction of WNT5A expression after YAP dephosphorylation (6b). Please note that Wnt5a might activate only some of these routes
during specific stages along GC cell transformation. In addition, Dvl might be involved in all the signaling routes induced by Wnt5a. Physical interactions between Dvl
and other proteins are indicated with blue arrows; biological effects are indicated by red lines. PM, plasma membrane. Frizzled-2 (Fzd2) and Ror2 are shown;
however, other co-receptors and Frizzled members are likely involved. Some players and interactions are omitted for simplicity. See the main text for more details.

by conditioned medium, illustrating the relevance of fibrosis for
GC dissemination.

Therefore, mechanical cues from a more rigid TME might
influence early steps of GC initiation, as well as later stages
during PD and metastasis. The response of cancer cell lines
from several tissues to mechanical cues has been characterized.
However, GC cell lines have been somewhat less studied in
this context, and most reports addressing the role of Wnt5a
at the cellular level have been performed using GC cell lines
cultured in a rigid context. Nevertheless, some limited evidence
is available for GC cells. For instance, Jabbari et al. (2015)
studied the behavior of AGS cells encapsulated in PEG diacrylate
(PEGDA) gels, reporting that these cells are indeed sensitive to
the stiffness of the PEGDA. Moreover, Branco da Cunha et al.
(2016) reported a sensitivity of GC cell lines to RGD-coupled
alginate hydrogels with varying stiffness. Consequently, GC cells
might be responsive to mechanical cues from the TME, thus
suggesting the need to evaluate such responses.

On the other hand, proteomic studies have addressed
the composition of IACs in response to mechanical tension,

highlighting changes in the variety and abundance of adhesome
components (Humphries et al., 2009; Kuo et al., 2011; Schiller
et al., 2011; Horton et al., 2015). In this regard, and given the role
of Wnt5a in the turnover of focal adhesions in GC cells, it will be
of interest to analyze the composition of IACs in GC cells cultured
on substrates with elasticities like those found in vivo in gastric
cancer, and to confirm if Wnt5a does modulate IAC turnover in
these mechanical contexts. Tunable three-dimensional cultures
of stomach organoids (McCracken et al., 2014) might be greatly
useful to confirm this point.

In addition, recent evidence highlights the role of specific
signaling pathways and proteins, such as YAP/TAZ (Dupont
et al., 2011), in mediating cellular responses to mechanical cues.
YAP and TAZ are especially interesting in this context since
both proteins have been related to Wnt signaling. Initial studies
focused on the role of YAP/TAZ in the context of β-catenin
and Disheveled (Varelas et al., 2010; Azzolin et al., 2012, 2014;
Imajo et al., 2012; Park et al., 2015). Studies have also related
YAP and TAZ to cancer (reviewed by Moroishi et al., 2015;
Zanconato et al., 2016), including in the gastrointestinal tract (for
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FIGURE 2 | A general overview of Wnt5a signaling during GC. (1) Gastric epithelial cells might undergo epithelial-to-mesenchymal transition (EMT) in response to
specific signals, such as loss of E-Cadherin expression (indicated as Mist1+ Cdh–/–). Transformed cells lose their epithelial characteristics, such as cell-cell
interactions (dashed box). (2) Low levels of Wnt5a might be expressed by gastric epithelial cells. This source of Wnt5a might induce cell survival. (3) After the
breakage of the basement membrane, transformed gastric cancer cells might find additional sources of Wnt5a, particularly from cancer-associated fibroblasts (CAFs)
or tumor-associated macrophages (TAMs). In turn, increased levels of Wnt5a might signal through Frizzled (Fzd) receptors and co-receptors, such as Ror1/2 (Ror), to
induce gene expression, integrin adhesion turnover, and other biological effects. (4) Integrins bind collagen in the tumor microenvironment (TME), forming integrin
adhesion complexes (IACs). Increased turnover of IACs induced by Dvl-dependent Wnt5a signaling might promote migration and invasion of GC cells. In addition,
the tumor microenvironment might provide mechanical cues, such as extracellular matrix stiffening. (5) Laminin γ2, which is expressed after Wnt5a stimulation, might
also cooperate to promote enhanced invasiveness. Wnt5a can also induce the expression of pro-inflammatory molecules, leading to a sustained inflammatory
environment, further stimulating Wnt5a secretion. Helicobacter pylori infection can also contribute to this environment, by promoting Wnt5a secretion.

an updated review, see Li et al., 2019), although most articles
focus on intestinal cancer (for instance, see Llado et al., 2015;
Oudhoff et al., 2016; Diamantopoulou et al., 2017). However, a
growing body of evidence indicates that YAP and TAZ also play
a role in gastric cancer. YAP expression is commonly observed
in GC samples and GC cell lines, and its expression and nuclear
localization correlate with poor prognosis (Kang et al., 2011; Song
et al., 2012; Zhang et al., 2012). Relevantly, YAP expression in the
GC cell line MKN-28 modulates actin remodeling and promotes
cell migration, while the loss of YAP induces cell stiffening
and impaired migration (Qiao et al., 2017). Mechanistically,
YAP directly modulates the expression of ARHGAP29, a Rho-
GAP that suppresses the RhoA/LIMK/Cofilin axis. Therefore,
YAP signaling via this axis results in the destabilization of
actin, leading to increased cell migration (Figure 1). On the
other hand, high expression of TAZ has also been detected in
GC (Yue et al., 2014; Melucci et al., 2018; Wei et al., 2019).

Interestingly, Melucci and coworkers evaluated the association
between YAP/TAZ expression and localization, and the presence
of mutations in three Wnt pathway genes (CTNNB1, APC, and
FBXW7) in 86 patients with advanced GC. The authors reported
a significant association between nuclear TAZ and mutations
in the studied Wnt genes, a signature that the authors linked
to increased risk of progression and reduced overall survival
(Melucci et al., 2018).

Considering the role of Dvl in the context of adhesion
dynamics in GC, it is of great interest to study a possible link
between Wnt5a, Dvl, and YAP/TAZ in GC. Some evidence
suggests potential cooperativity between these proteins in
the context of tumorigenesis. Dvl physically interacts with
phosphorylated YAP, promoting YAP nuclear export, and
suppressing its transcriptional activity, while treatment with
Wnt1 or Wnt3a induces YAP dephosphorylation, reducing its
binding to Dvl and thus promoting its nuclear translocation
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(Lee et al., 2018). Given that Wnt5a also induces YAP
dephosphorylation (Park et al., 2015), Wnt5a might also
activate YAP by abrogating its binding to Dvl, thus promoting
YAP nuclear translocation. In addition, TAZ also interacts
with Dvl (Varelas et al., 2010). Since WNT5A is also a
YAP/TAZ-TEAD target gene (Park et al., 2015), YAP/TAZ
activation might induce Wnt5a expression, leading to positive
feedback (Figure 1, bottom right). Therefore, YAP and Wnt5a
might promote cell migration by two parallel mechanisms: by
activating the RhoA/ROCK/LIMK/Cofilin axis to promote stress
fiber dynamics, and by promoting IAC turnover, respectively.
Collectively, these data suggest that YAP/TAZ and Wnt
signaling components can cooperate in the establishment of
GC, thus highlighting the need for further studies focused on
YAP/TAZ/Wnt5a signaling in GC.

Finally, the findings reviewed in this article raise interest in
possible pharmacological approaches. Several drugs have been
tested in clinical trials to modulate the Wnt pathway, but most
abrogate either general Wnt ligand secretion or β-catenin activity
(Harb et al., 2019). Therefore, molecules specifically targeting
Wnt5a signaling are needed. However, and given the multiple
roles of Wnt5a, clinical approaches must be carefully designed. In
this regard, a better understanding of the mechanisms of Wnt5a
signaling in GC might allow the development of drugs targeting

specific biological interactions triggered by this ligand, and which
might also be employed in other cancers where the non-canonical
pathway plays a relevant role in tumor progression and metastasis
(Kikuchi et al., 2012; Endo et al., 2015; Asem et al., 2016).

In summary, the evidence analyzed in this review suggests that
Wnt5a plays a significant role in gastric cancer. However, whether
this role is centered on transformed cells or in cells from the TME,
or whether this role is predominantly focused on IAC turnover,
gene expression or inflammation, are outstanding questions.
Therefore, future studies should be aimed to understand these
processes in the context of mechanically pertinent environments.
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GJB2 gene (that encodes Cx26) mutations are causal of hearing loss highlighting the
importance of Cx26-based channel signaling amongst the supporting cells in the organ
of Corti. While the majority of these GJB2 mutations are inherited in an autosomal
recessive manner, others are inherited in an autosomal dominant manner and lead to
syndromic hearing loss as well as skin diseases. To assess if common or divergent
mechanisms are at the root of GJB2-linked hearing loss, we expressed several mutants
in cochlear-relevant HEI-OC1 cells derived from the developing organ of Corti. Since
supporting cells of the mature mammalian organ of Corti have negligible Cx43, but
HEI-OC1 cells are rich in Cx43, we first used CRISPR-Cas9 to ablate endogenous
Cx43, thus establishing a connexin-deficient platform for controlled reintroduction of
hearing-relevant connexins and Cx26 mutants. We found three distinct outcomes
and cellular phenotypes when hearing loss-linked Cx26 mutants were expressed in
cochlear-relevant cells. The dominant syndromic Cx26 mutant N54K had trafficking
defects and did not fully prevent wild-type Cx26 gap junction plaque formation but
surprisingly formed gap junctions when co-expressed with Cx30. In contrast, the
dominant syndromic S183F mutant formed gap junctions incapable of transferring dye
and, as expected, co-localized in the same gap junctions as wild-type Cx26 and Cx30,
but also gained the capacity to intermix with Cx43 within gap junctions. Both recessive
non-syndromic Cx26 mutants (R32H and R184P) were retained in intracellular vesicles
including early endosomes and did not co-localize with Cx30. As might be predicted,
none of the Cx26 mutants prevented Cx43 gap junction plaque formation in Cx43-rich
HEI-OC1 cells while Cx43-ablation had little effect on the expression of reference genes
linked to auditory cell differentiation. We conclude from our studies in cochlear-relevant
cells that the selected Cx26 mutants likely evoke hearing loss via three unique connexin
defects that are independent of Cx43 status.
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INTRODUCTION

Nearly half of all inherited sensorineural hearing loss is attributed
to mutations in one of four members of the 21 connexin gene
family (Chan and Chang, 2014), although GJB2 gene (encoding
Cx26) mutations linked to hereditary deafness are by far the
most common (Duman and Tekin, 2012; Mammano, 2019).
Connexins (Cxs) oligomerize into hexameric arrangements called
connexons or hemichannels. At the cell surface, hemichannels
may function as highly regulated communication conduits to
the extracellular milieu but more often proceed to dock with
hemichannels from a contacting cell to form gap junction
channels (Laird, 2006). These channels facilitate the direct
intercellular exchange of metabolites, ions, and small molecules
(<1 kDa) in a process known as gap junctional intercellular
communication (GJIC) (Alexander and Goldberg, 2003). The
principal connexin isoforms implicated in hearing loss are Cx26
and Cx30, which are abundantly expressed in two independent
gap junction networks in the cochlea: the epithelial and
connective tissue networks (Kikuchi et al., 2000b; Ahmad et al.,
2003; Forge et al., 2003; Liu et al., 2009). The connective tissue
network exists amongst the cells of the cochlear lateral wall while
the epithelial gap junction network is found amongst supporting
cells that are precisely configured around the mechanosensory
hair cells in the organ of Corti (Jagger and Forge, 2015). Cx26
and Cx30 also have the capacity to co-oligomerize and form
heteromeric and/or heterotypic (mixed) channels within these
networks enhancing the scope of GJIC and possibly hemichannel
function (Yum et al., 2007; Martinez et al., 2009). Hair cells
are completely devoid of connexins even though hair cell loss
is a consequential outcome of connexin-based sensorineural
hearing loss (Jagger and Forge, 2006; Forge et al., 2013). The
exact role of connexins in supporting cell signal propagation has
been extensively debated (Zhao, 2017). Hearing initiates through
an influx of potassium ions into hair cells that drives their
depolarization and subsequent propagation of electrical signals
along the auditory nerve, ultimately relaying sensory information
into the central auditory system (Wangemann, 2006). After hair
cell stimulation, gap junction networks have been proposed to be
important in buffering and recycling potassium ions back into
the potassium-rich endolymph fluid that bathes the hair cells,
and is crucial for hair cell depolarization (Kikuchi et al., 2000a;
Jagger and Forge, 2015). Furthermore, gap junction networks
have been demonstrated to be vital in cochlear development,
homeostasis, and nutrient transfer (Zhao et al., 2006; Chang et al.,
2008; Liang et al., 2012).

Approximately 135 different hearing loss mutations in the
GJB2 gene have been identified (Laird, 2008; Laird et al., 2017)
that span the entire amino acid polypeptide sequence of Cx26
(Martinez et al., 2009). In an attempt to correlate genotype
changes to phenotype outcomes, some of these mutants have
been expressed and examined in tumor cells and other cells
unrelated to hearing. Based on these studies, connexin mutants
can be categorized as exhibiting either loss-of-function or gain-
of-function properties (Kelly et al., 2014; Verselis, 2019). Loss-
of-function mutants can result in defective trafficking of the
Cx26 mutant through the endoplasmic reticulum (ER) and Golgi

apparatus, misfolding and aberrant oligomerization, and non-
functional hemichannels and/or gap junction formation (Laird,
2008; Kelly et al., 2015). In contrast, abnormal oligomerization
of a Cx26 mutant with other connexin isoforms, formation
of leaky hemichannels, formation of hyperactive hemichannels
and/or gap junctions are all characteristics of gain-of-function
mutants (Press et al., 2017; Srinivas et al., 2018). Loss-of-function
Cx26 mutants typically produce hearing loss as the pathological
outcome and are characterized as non-syndromic mutations,
where hearing loss is the only phenotype (Kenneson et al., 2002).
Gain-of-function Cx26 mutants frequently result in syndromic
disease, where hearing loss is also accompanied with other
co-morbidities, as these mutants often induce a skin disorder
(Srinivas et al., 2018). Evidence suggests that gain-of-function
Cx26 mutants induce skin disorders because of their inhibitory
trans-dominant effects on other connexin isoforms expressed in
the epidermis (Press et al., 2017). In all cases, Cx26 mutants
drive moderate to profound hearing loss raising questions as to
whether this is rooted in how the Cx26 mutants are trafficked,
assembled, and functionally dysregulated (D’Andrea et al., 2002;
Snoeckx et al., 2005; Xiao et al., 2011). Because of the diversity
and extent of hearing loss that occurs when Cx26 mutants are
expressed in the organ of Corti, the mechanisms of hearing loss
need to be investigated in a tissue-relevant setting.

Hair cells and supporting cells develop from common
progenitor cells within the prosensory domain of the developing
cochlea. At an early stage of development, specification of
cell fate depends on the crucial coordination and timing of
gene expression (Basch et al., 2016). The expression of Cx26
within the epithelial gap junction network begins to occur
around embryonic day 16 in mice (Frenz and Van De Water,
2000) and continues for approximately two weeks after birth as
mouse hearing matures. As revealed in mouse studies, improper
cochlear development is a pathological outcome of Cx26 mutant
expression or Cx26 ablation as noted by the deformation of
hair cells and disrupted formation of the tunnel of Corti, which
is formed by supporting cells (Wang et al., 2009; Mese et al.,
2011; Schutz et al., 2011; Inoshita et al., 2014; Anzai et al.,
2015; Lee et al., 2015; Zhu et al., 2015; Chen et al., 2018b).
A few rare mutations in GJC3 (Cx30.2/Cx29) and GJB3 (Cx31)
have also been linked to hearing loss but it is unclear what
role these connexins play and even where these connexins are
localized in the auditory tract (Wingard and Zhao, 2015). Cx43
is expressed early on in cochlear development, however Cx43
expression is negligible in the mature organ of Corti (Cohen-
Salmon et al., 2004) although mice expressing a loss-of-function
G60S Cx43 mutant were found to have severe hearing loss
(Abitbol et al., 2018).

Since GJB2 is the primary connexin gene linked to
sensorineural hearing loss (Johnson et al., 2017) and its
mechanism of action in the cochlea remains uncertain, it is the
connexin of focus in the present study. Cx26 has been shown
to facilitate the passage of miRNAs necessary for coordinated
development and differentiation of the organ of Corti (Zhao,
2017). Thus, Cx26 status may impact the expression of key factors
necessary for proper organ of Corti formation. These factors
include the Sox2 transcription factor, which is necessary for
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the designation of the prosensory domain containing progenitor
cells (Atkinson et al., 2018). Increased expression of the
transcription factor Atoh1 is essential for the initiation of hair
cell differentiation (Chonko et al., 2013). Many other proteins
are exclusively expressed in mature hair cells such as the motor
protein prestin, unconventional myosin proteins, and calcium
binding proteins (Hasson et al., 1995; Zheng et al., 2000; Keller
et al., 2014). Nevertheless, the mechanisms underpinning how
Cx26 mutations and aberrant Cx26 channel function influences
gene expression as well as differentiation and maintenance of hair
cells within the organ of Corti remains unclear.

In order to examine Cx26 mutants in a more hearing-relevant
cellular context, we employed HEI-OC1 cells derived from the
progenitor region of P7 mouse cochlear explants, associated with
the epithelium of the organ of Corti. These cochlear-relevant cells
have been shown to differentiate into both supporting cells and
hair cell-like cells that express hair cell specific genes (Kalinec
et al., 2003; Kalinec G. M. et al., 2016; So et al., 2005; Park et al.,
2016). HEI-OC1 cells have been utilized as a model to study
cell fate and differentiation, and the onset of hearing loss that
occurs after therapeutic drug usage (Youn et al., 2015; Kalinec
G. M. et al., 2016; Kim et al., 2016; Pang et al., 2018; Choi
et al., 2019; Lim et al., 2019). Surprisingly, HEI-OC1 cells lack
the protein expression of Cx26 and Cx30 found in the organ
of Corti, but abundantly express Cx43. In the current study, we
selected four different missense GJB2 mutations, which result
in either syndromic or non-syndromic hearing loss, in order to
compare and contrast their cellular localization and function in
auditory cells before and after Cx43 ablation. Collectively, we
identified that the selected Cx26 mutants acquired three cellular
phenotypes that underpin how they cause either syndromic or
non-syndromic hearing loss.

MATERIALS AND METHODS

Cell Culture and Reagents
House Ear Institute-Organ of Corti 1 (HEI-OC1) cells were
generously provided by Dr. Kalinec (House Ear Institute, Los
Angeles, CA) (Kalinec et al., 2003; Kalinec G. et al., 2016; Kalinec
G. M. et al., 2016; Kelly et al., 2019). HEI-OC1 cells were grown as
we recently described (Abitbol et al., 2020). To induce hair cell-
like cell differentiation, HEI-OC1 cells that were∼80% confluent
were transferred into non-permissive conditions (39◦C and 5%
CO2) for ten days and regular media was replenished every other
day to remove dead cells.

Cell Engineering
The Gja1 gene encoding Cx43 was ablated from mouse HEI-OC1
cells using a CRISPR-Cas9 strategy as we described (Abitbol et al.,
2020). These Cx43-null cells are referred to as Cx43 knockout
(KO) cells. Constructs encoding wild type (WT) Cx26, Cx30,
and Cx26 mutants (N54K, S183F, R32H, and R184P) were sub-
cloned into moxGFP vectors (Addgene). Sequences were verified
by NorClone Biotech Laboratories. Cx26-RFP and Cx30-RFP
were generated as previously described (Berger et al., 2014). HEI-
OC1 cells at ∼60% confluency in six well dishes were transiently

transfected with 1 µg of the desired cDNA construct using Mirus
TransIT-LT1 Transfection Reagent (Cat# MIR2304, Mirus Bio).
Co-transfection of Cx26-RFP and Cx30-RFP with Cx26 mutant
constructs were done at a 1:1 ratio consisting of 0.75 µg of each
cDNA vector to approximate equal protein expression. Cells were
then fixed ∼30 h after a successful transfection. In some cases
where cells were prepared for imaging, HEI-OC1 cells that lacked
Cx43, were grown on 35 mm glass bottom dishes coated with
sterile filtered type I rat tail collagen (Cat# 354236, Corning Life
Sciences) diluted in 0.02 M acetic acid for one hour. Once cells
were ∼60% confluent they were transfected with 1 µg of either
Cx26-GFP or S183F-GFP cDNA constructs using Mirus TransIT-
LT1 Transfection Reagent. For all experiments involving Cx43
KO cells, two independent CRISPR clones were used and pooled
together for analysis.

Western Blotting and
Immunofluorescence
Western blotting for Cx43, Cx30, Cx26, and GAPDH was
performed on HEI-OC1 cell lysates using immunoblotting
procedures as we described (Abitbol et al., 2020). Primary
antibodies included: mouse anti-GAPDH (1:5000, Cat# MAB374,
EMD Millipore), rabbit anti-GAPDH (1:5000, Cat# G9545,
Sigma), rabbit anti-Cx43 (1:5000, Cat# C6219, Sigma), mouse
anti-Cx26 (1:1000, Cat# 138100, Life Technologies), and
rabbit anti-Cx30 (1:1000, Cat# 712200, Life Technologies). For
immunofluorescence, HEI-OC1 cells grown on glass coverslips
were fixed with 4% paraformaldehyde for 10 minutes prior
to being washed with phosphate-buffered saline (PBS). HEI-
OC1 cells treated with 0.1% Triton X-100 + 3% bovine serum
albumin (BSA) for one hour were incubated with primary
antibodies diluted in 0.1% Triton X-100 + 3% BSA overnight
at 4◦C. Primary antibodies included: rabbit anti-Cx43 (1:750,
Cat# C6219, Sigma), mouse anti-Cx26 (1:200, Cat# 138100,
Life Technologies), rabbit anti-Cx30 (1:200, Cat# 712200, Life
Technologies), mouse anti-GM130 (1:500, Cat# 610822, BD
Biosciences), rabbit anti-EEA1 (1:500, Cat# ab2900, Abcam),
rabbit anti-prestin (1:200, Cat# AV447176, Sigma), and mouse
anti-Sox2 (1:50, Cat# sc-365823, Santa Cruz). Coverslips were
washed with PBS and incubated with secondary antibodies
diluted in 0.1% Triton X-100 + 3% BSA for one hour at
room temperature. Secondary antibodies included: goat anti-
mouse 633 (Cat# A21052, Invitrogen), goat anti-rabbit 568 (Cat#
A11036, Invitrogen), and goat anti-mouse 555 (Cat# A21422,
Invitrogen). Cells were stained with Hoechst (1:1000 diluted in
distilled H2O, Cat# H3570, Molecular Probes) for 10 minutes
to visualize the nuclei and coverslips were mounted using
Airvol. C57BL/6 mouse cochleae were dissected and used in a
cell lysate or cryosectioned, and immunolabeled as previously
described (Kelly et al., 2019). Mouse usage for this purpose
was approved by the Animal Care Committee at the University
of Western Ontario. Cell images were captured using a Zeiss
LSM800 confocal microscope equipped with airyscan and a
63x oil immersion objective. Representative images of wild-type
connexins and Cx26 mutants were selected from a minimum
of three independent transfections involving four coverslips
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per treatment and after interrogation of dozens of transfected
cells per coverslip.

Scrape Loading Dye Transfer
Wild type and Cx43-ablated HEI-OC1 cells were seeded onto
culture dishes coated with sterile filtered type I rat tail collagen
diluted in 0.02 M acetic acid. Once cells were ∼80% confluent
they were washed twice with Hank’s balanced salt solution
(HBSS) and a scrape line was made in the presence of the
gap junction permeable molecule, neurobiotin (2 mg/ml, Cat#
SP-1120, Vector), and the gap junction impermeable molecule,
dextran rhodamine (0.5 mg/ml, Cat# D1824, Invitrogen). After
five minutes at 33◦C and 10% CO2, the cells were washed
with HBSS and fixed for 10 min in 4% paraformaldehyde. Cells
were permeabilized in 0.1% Triton X-100 for 30 min, before
incubating for one hour in the presence of Alexa Fluor 488-
conjugated streptavidin (1:1000, Cat# S11223, Invitrogen) to label
the trapped neurobiotin. Samples were imaged using a Zeiss LSM
800 confocal microscope equipped with a 10x objective. In three
independent experiments, a minimum of six images were taken
per experiment and four measurements per image were collected
for a total of at least 72 individual measurements. ImageJ was used
to measure the distance of neurobiotin spread (µm) beyond the
first row of damaged cells along the scrape line and an unpaired
t-test was performed.

Fluorescence Recovery After
Photobleaching (FRAP)
Cell cultures expressing Cx26-GFP or S183F-GFP were incubated
in HBSS containing 2 mM calcein-AM for five minutes at
room temperature. Cell cultures were washed with HBSS and
replenished with warm media at 33oC prior to imaging selected
regions where adjacent cells expressed fluorescent protein-tagged
Cx26 or S183F. A region of interest (ROI) was photobleached
to ∼30% of initial fluorescence intensity. FRAP images were
captured every 10 seconds for five minutes and dye recovery
within the ROI was determined using the Time Series Analyzer
V3 plugin on ImageJ. For each ROI, fluorescence recovery
was measured using Recovery (%) = (Ft − F0/Fb) × 100
(Ft fluorescence at each time point after photobleaching, F0:
fluorescence at 0 s after photobleaching, Fb: fluorescence before
photobleaching) (Simek et al., 2009). Fluorescence recovery was
plotted as an average of three replicates each consisting of
a minimum of four pairs of connexin or mutant expressing
cells. The mean area under the curve was then calculated and
compared using an unpaired t-test. Negative controls consisted
of FRAP imaging of Cx43-ablated HEI-OC1 cells.

Quantitative Real Time Polymerase
Chain Reaction
Total RNA was collected from permissive and non-permissive
HEI-OC1 cells after differentiation using RNeasy Mini Protocol
for Isolation of Total RNA from Animal Cells (Cat# 74106,
Qiagen) and was converted to cDNA using the High Capacity
cDNA Reverse Transcription Kit (Cat# 4368814, Applied
Biosystems). qRT-PCR was conducted using PowerUp SYBR

Green Master Mix (Cat# A25742, Life Technologies) and
the cycle conditions for each primer consisted of: 50◦C
for 2 min, 95◦C for 2 min, 95◦C for 5 s, and 60◦C for
15 s for 40 cycles, followed by a melt curve. The following
primers were used: 18s rRNA, the house keeping gene
(forward, 5′-GTAACCCGTTGAACCCCATT; reverse, 5′-
CCATCCAATCGGTAGTAGCG), Atoh1 (forward, 5′- GAGTG
GGCTGAGGTAAAAGAGT; reverse, 5′- GGTCGGTGCTA
TCCAGGAG), calsequestrin (forward, 5′- CGAGACTTGGG
AGGATGACC; reverse, 5′- TCGGGGTTCTCAGTGTTGTC),
myosin VIIa (forward, 5′- TGGTACACTTGACACTGAAG;
reverse, 5′- CCATCGTTCAGCCTCTTGGT), and nestin
(forward, 5′- GCTGGAACAGAGATTGGAAGG; reverse,
5′- CCAGGATCTGAGCGATCTGAC). mRNA levels were
normalized to 18S rRNA levels and measured using the
2−11CT method.

Statistical Analysis
A two-way ANOVA and a Tukey’s post hoc test was used to
determine statistical significance between mRNA expression of
permissive and non-permissive WT and Cx43-ablated cells. An
unpaired t-test was used to compare mRNA expression before
and after differentiation.

All statistical analysis was conducted using Graph Pad Prism
6 and results were indicated as statistically significant when
P < 0.05. Outliers were removed using the ROUT method with
Q set to 1%. Results are presented as mean ± SEM unless
stated otherwise.

RESULTS

HEI-OC1 Cells Express Cx43 but Become
GJIC-Deficient Upon Its Ablation
Previous studies have used cells unrelated to the organ of Corti
to characterize the etiology of several hearing loss-linked Cx26
mutants. Here we employed HEI-OC1 cells (Kalinec et al., 2003;
Kalinec G. M. et al., 2016) that were derived from the progenitor
epithelium of the organ of Corti from P7 mice as a tissue-
relevant cell model to assess several Cx26 mutants that have
been associated with non-syndromic and syndromic hearing loss.
Since western blotting and immunofluorescence revealed that
these cells were rich in Cx43 (Figure 1A), we used CRISPR-
Cas9 to genetically ablate the Gja1 gene and all subsequent Cx43
expression from these cells (Figures 1A, B). Cx43 is not an
endogenous connexin typically expressed in the mature organ of
Corti (Forge et al., 2003), but is often upregulated in cultured
cells. Not surprisingly since the expression of most connexin
gene isoforms are silenced in cultured cells, neither Cx26 or
Cx30 were expressed in WT cells or found in cells lacking
Cx43 (Figures 1A,B).

To investigate the consequence of Cx43 ablation on GJIC,
confluent cultures of WT HEI-OC1 cells and cells lacking Cx43
were scraped and incubated with a gap junction permeable
positively charged small molecule, neurobiotin (287 Da).
Neurobiotin was found to spread beyond the first row of damaged
cells to an average distance of 122.3 µm in WT cells, but in
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FIGURE 1 | Characterization of connexin expression and Cx43 ablation in HEI-OC1 cells. (A) Western blots for Cx43, Cx26, and Cx30 protein in wild type (WT) and
three independent clones of CRISPR-Cas9 Cx43-knockout (Cx43-KO) HEI-OC1 cells where adult mouse cochlear lysate was used as a positive control. Molecular
weight standards are denoted in kDa. (B) Immunolabeling revealed Cx43 gap junctions only in WT cells denoted by white arrows. Note Cx26 and Cx30 were not
detected in WT or Cx43 KO cells (A,B). Red = Cx43, Cx26, and Cx30, green = phalloidin staining of actin filaments, blue = Hoechst stained nuclei. Bars = 10 µm.

Cx43 KO cells neurobiotin travelled only an average distance
of 13.4 µm (Figure 2A). FRAP was also completed to further
determine the level of GJIC in HEI-OC1 cells using a negatively
charged gap junction permeable dye calcein-AM (623 Da). FRAP
revealed that the Cx43-rich WT cells were significantly more

capable of passing calcein through gap junctions than Cx43
KO cells (Figure 2B). These findings demonstrate that WT
HEI-OC1 cells have abundant gap junction function, while the
lack of Cx43 greatly reduced GJIC. Thus, Cx43 KO cells were
utilized as GJIC-deficient in subsequent experiments, where Cx26

Frontiers in Cell and Developmental Biology | www.frontiersin.org 5 April 2020 | Volume 8 | Article 21520

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-08-00215 March 31, 2020 Time: 18:10 # 6

Beach et al. GJB2 Mutations and Hearing Loss

FIGURE 2 | Ablation of Cx43 greatly reduces dye transfer. (A) Representative micrographs of a scrape loading dye transfer assay performed on WT and Cx43 KO
HEI-OC1 cells. Cells were scraped and incubated with the gap junction permeable tracer neurobiotin (green) and impermeable dextran rhodamine dye (red) that
typically gets washed out during the sample preparation. Cx43 KO cells exhibited significantly less neurobiotin transfer from the first row of damaged cells than
WT cells. (B) Representative micrographs of WT and Cx43 KO cells loaded with calcein-AM and subjected to fluorescence recovery after photobleaching of a
selected cell (outlined in white). Dye recovery and area under the curve (AUC) was measured over 170 s. Cx43 KO cells had significantly less dye recovery after
photobleaching compared to WT cells. Data represent mean ± SEM from three independent experiments and were analyzed using an unpaired t-test. ***p < 0.001,
**p < 0.01. Bars in (A) = 100 µm and (B) = 10 µm.

mutants could be expressed in a connexin-deficient cochlear-
relevant cell system.

Differential Distribution of Cx26 Mutants
in Cx43 KO Cells
To assess the localization of various hearing loss-linked Cx26
mutants, WT Cx26 and N54K, S183F, R32H, and R184P Cx26

mutants were expressed in Cx43 KO cells. Cx26 successfully
trafficked to the plasma membrane and gap junction plaques
were readily found (Figure 3A). In comparison to WT
Cx26, the syndromic N54K mutant was retained within an
intracellular compartment, but did not colocalize well with the
GM130 resident protein of the Golgi apparatus (Figure 3A).
In contrast, the syndromic S183F mutant was able to traffic
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to the plasma membrane and form gap junction plaques
(Figure 3A), although some intracellular reservoirs of the
mutant were found. Both recessive non-syndromic R32H
and R184P mutants did not form clearly identifiable gap
junction plaques but appeared to be partially localized within
intracellular vesicles (Figure 3A). Some of these intracellular
vesicles containing R32H and R184P immunolabeled for EEA1,
an early endosomal marker (Figure 3B). Overall, the S183F
mutation found within the 2nd extracellular loop (Figure 3C),
was the mutant most capable of forming gap junction plaques
in Cx43 KO cells.

The S183F Mutant Forms Gap Junction
Channels Incapable of Dye Transfer
FRAP was conducted using calcein-AM dye to analyze whether
the S183F mutant formed gap junction channels capable of
dye transfer. Cx43 KO cell pairs or cell clusters expressing
Cx26 or the S183F mutant were subjected to FRAP as
a surrogate to measure GJIC. S183F-GFP expressing cells,
similar to Cx43 KO cells, exhibited essentially no fluorescence
dye recovery after photobleaching compared to Cx26-GFP
expressing cells, quantified by measuring the area under the
curve (Figures 4A–C).

Cx30, but Not Cx26, Can Rescue the
Assembly of the N54K Mutant Into Gap
Junctions
Since autosomal dominant inherited Cx26 mutants are
co-expressed with WT Cx26, we examined whether GFP-
tagged N54K and S183F mutants might alter the intracellular
localization of RFP-tagged WT Cx26. While both the S183F
mutant and WT Cx26 could be found within the same gap
junctions at the cell surface and within intracellular structures,
the N54K mutant colocalized with WT Cx26 within intracellular
stores but not typically with Cx26-RFP gap junction plaques
(Figure 5). This suggests that WT Cx26 could not intermix
with the N54K mutant and rescue its assembly into gap
junction plaques but rather the N54K mutant impeded the
trafficking of Cx26.

Cx30 is also highly expressed in the organ of Corti
and co-oligomerizes with Cx26 to form mixed gap junction
plaques in vivo (Ahmad et al., 2003). As might be expected,
we found that Cx30-RFP could form gap junctions in
Cx43 KO cells (Figure 6A). We next tested if this Cx30
tissue-relevant connexin could interact with the Cx26 N54K
mutant and potentially rescue its assembly into cell surface
gap junctions. As also observed for the S183F mutant,
the N54K mutant extensively co-localized with Cx30-RFP
including within many gap junctions at sites of cell-cell
apposition. However, the autosomal recessive inherited R32H
and R184P mutants showed very little co-localization with Cx30
(Figure 6B). These results suggest that both the syndromic
mutants (N54K and S183F) have transdominant properties and
intermix with Cx30 while the non-syndromic mutants (R32H
and R184P) do not.

The S183F Mutant Intermixes With
Endogenous Cx43 Gap Junctions
The expression of Cx43 in the mature organ of Corti
appears negligible, however Cx43 is temporally expressed during
development of the human and mouse inner ear (Cohen-Salmon
et al., 2004; Locher et al., 2015). Hearing loss-linked Cx26
mutants may therefore be co-expressed with Cx43 during the
development of the inner ear. To assess whether Cx26 mutants
have gain-of-function properties and intermix with Cx43 within
the same gap junctions, the Cx26 mutants were expressed in
WT HEI-OC1 cells that contain endogenous Cx43. Previous
studies have shown that Cx26 and Cx43 do not intermix to form
heteromeric gap junctions under physiological conditions, but
are able to partition to separate domains within the same gap
junction plaques (Falk, 2000; Gemel et al., 2004). Both Cx26 and
Cx43 formed gap junction plaques in HEI-OC1 cells, however,
they appeared to segregate within different regions of the gap
junction plaques (Figures 7A, B). Similarly, the N54K, R32H,
and R184P mutants all localized to distinct locations from Cx43
(Figure 7A). However, the S183F mutant not only colocalized
with Cx43 into the same gap junctions, but high magnification
enface images revealed that the Cx26 S183F mutant and Cx43
were evenly distributed throughout the gap junction plaque
suggesting that they intermixed indicative of a gain-of-function
channel characteristic (Figure 7B).

Cx43 and GJIC Are Not Necessary for the
Partial Differentiation of HEI-OC1 Cells
HEI-OC1 cells have previously been shown to differentiate
into hair cell-like cells under non-permissive conditions by
upregulating hair cell specific molecular markers (Kalinec G. M.
et al., 2016). Here we show that after ten days in non-permissive
conditions designed to promote cell differentiation, both WT
and Cx43 KO cell cultures contained heterogeneous clusters of
cells that increased in size (arrows) while others continued to
proliferate or undergo apoptosis (Figure 8A). Immunolabeling
for the hair cell marker protein, prestin, revealed its detection in
outer hair cells of the mouse cochlea, but no prestin was detected
in HEI-OC1 cells grown in permissive or non-permissive
temperatures (Figure 8B). Consistently, we did not observe the
expected decrease in Sox2 labeling, a progenitor cochlear cell
marker, in Cx43-negative or WT HEI-OC1 cells which would be
expected if these progenitor cells had successfully differentiated
into hair cell-like cells. This premise was supported by the
fact that the mRNA expression of Atoh1, a transcription factor
expressed during the initiation of hair cell development, was not
altered under non-permissive conditions in either WT or Cx43
KO cells (Figure 9A). However, we suspected that the HEI-OC1
cells may have partially differentiated but failed to progress to a
mature hair cell-like state. In support of this notion, qPCR results
provided evidence that mature hair cell markers calsequestrin
and myosin VIIa both significantly increased in Cx43 KO cells in
non-permissive conditions, whereas calsequestrin also increased
in WT cells (Figures 9B, C), suggesting that both the Cx43-
rich and null HEI-OC1 cells exhibit some capacity to reprogram
genes necessary for cell differentiation. Yet, the mRNA expression
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FIGURE 3 | Intracellular localization of syndromic and non-syndromic hearing loss-linked Cx26 mutants (A) Representative micrographs of Cx26-GFP and various
GFP-tagged hearing loss-linked Cx26 mutants transiently expressed in Cx43 KO cells. Cells were co-immunolabeled with GM130 (red) to visualize the location
of the Golgi apparatus and Hoechst (blue) to visualize the nuclei. The N54K, R32H, and R184P mutants failed to form gap junctions. Arrows denote gap junction
plaques. (B) A sub-population of the R32H and R184P mutants co-localized with EEA1, an early endosomal marker, denoted by arrows. (C) Topological model
of Cx26 depicting the approximate locations of the syndromic (red) and non-syndromic (yellow) mutations. Bars = 10 µm.
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FIGURE 4 | The S183F mutant does not form dye-permeable gap junction channels. (A) Negative (Cx43 KO cells) or Cx43 KO cells expressing Cx26-GFP or
S183F-GFP were loaded with gap junction permeable dye calcein-AM (green) and subjected to FRAP. (B) A selected cell within a pair or cluster of Cx26 or S183F
mutant expressing cells was photobleached and dye recovery over 300 s was measured. (C) Area under the curve (AUC) of fluorescence recovery was measured.
Cx43 KO cells and cells expressing the S183F mutant had negligible dye recovery while WT Cx26 expressing cells exhibited significant dye recovery. Data
represents mean ± SEM of three independent experiments and were analyzed using an unpaired t-test, **p < 0.01. Bars = 10 µm.

of the intermediate filament protein nestin, a stem-cell like
marker found in cochlear progenitor cells and downregulated
as cochlear development proceeds, was not altered in non-
permissive conditions (Figure 9D). Overall, both WT and Cx43

KO cells may have initiated some gene regulation to promote
cell differentiation but this was insufficient to drive major cellular
changes in the majority of the cells and appeared independent of
the presence of Cx43 and overall GJIC.

Frontiers in Cell and Developmental Biology | www.frontiersin.org 9 April 2020 | Volume 8 | Article 21524

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-08-00215 March 31, 2020 Time: 18:10 # 10

Beach et al. GJB2 Mutations and Hearing Loss

FIGURE 5 | The expression of Cx26-RFP did not alter the distribution of the
N54K or S183F mutant. Representative micrographs of Cx43 KO HEI-OC1
cells co-expressing Cx26-RFP and N54K-GFP or S183F-GFP. Cells were
immunolabeled with GM130 (white) to visualize the location of the Golgi
apparatus and counterstained with Hoechst (blue) to demarcate the nuclei.
Bars = 10 µm.

DISCUSSION

Understanding the etiology of connexin gene mutations linked to
hearing loss remains an essential step for connexin therapeutics
and in the emerging therapeutic era of strategic gene editing
(Laird and Lampe, 2018). In the past, many non-tissue relevant
and often cancerous cell lines have been used to express
Cx26 mutants to uncover that GJB2 gene mutations linked to
hearing loss fall into either loss-of-function or gain-of-function
mutations (White, 2000; Zhao et al., 2006; Sanchez and Verselis,
2014). However, conclusions from these less than ideal cell
culture models must be extrapolated to a cochlear-relevant
context and further translated to the in vivo setting with the
ultimate hope that they inform on the human condition. In the
current study we move one step closer to understanding how
various GJB2 gene mutations cause hearing loss by exploring

their characteristics in cochlear-relevant cells obtained from
the developing organ of Corti. Using this novel strategy we
uncovered that autosomal recessive non-syndromic mutants
(R32H and R184P) largely traffic and assemble into gap junctions
independent of co-expressed cochlear connexins while autosomal
dominant syndromic mutants (N54K and S183F) selectively
intermixed with Cx26, Cx30, and Cx43. Our findings in HEI-
OC1 cells inform on how strategies to up-regulate compensatory
connexins may potentially rescue autosomal recessive hearing
loss while such strategies may have limited benefit in autosomal
dominant disease due to potential connexin isoform intermixing
and inactivation.

HEI-OC1 cells that resemble a common progenitor to
supporting cells and hair cells were derived from the epithelial
region of the organ of Corti in mouse cochlear explants (Kalinec
et al., 2003; Kalinec G. et al., 2016; Kalinec G. M. et al., 2016; Kelly
et al., 2019). In keeping with most cell lines grown in culture,
we observed that Cx43 was abundantly expressed in HEI-OC1
cells. To circumvent the fact that Cx43 is not the predominant
connexin isoform found in the mature organ of Corti, we used
CRISPR-Cas9 to ablate Cx43 from HEI-OC1 cells and established
a Cx43 KO cell platform for the controlled reintroduction of
cochlear-relevant connexins and hearing loss-linked mutants.
In excess of 135 mutations in the GJB2 gene encoding Cx26 have
been linked to inherited sensorineural hearing loss ranging from
moderate to profound severities (Laird et al., 2017) but none of
these Cx26 mutants have been investigated in a cochlear-relevant
cell line that has retained some capacity for differentiation.

Hearing loss-linked single amino acid substitutions have been
identified in each of the five major Cx26 polypeptide domains
signifying the importance of each domain (Martinez et al.,
2009; Xu and Nicholson, 2013). Here, we chose to examine two
mutations linked to syndromic hearing loss (N54K and S183F)
(Richard et al., 2004; de Zwart-Storm et al., 2008; Shuja et al.,
2016; Press et al., 2017) and two mutations linked to non-
syndromic hearing loss (R32H and R184P) (Rabionet et al., 2000;
Santos et al., 2005; Mani et al., 2009; Xiao et al., 2011). Our
strategy was to use two mutations found within or near each of
the 1st and 2nd extracellular loop regions of Cx26. Interestingly,
only one of the mutants in each domain caused syndromic
disease suggesting that the defect caused by each amino acid
substitution can have profoundly different functional outcomes
and disease burden.

Both dominant syndromic mutations (N54K and S183F) are
found in extracellular loop domains of Cx26 thought to be critical
in hydrogen bond-mediated hemichannel docking to form a fully
functional gap junction channel (Bruzzone et al., 1996; Maeda
et al., 2009). The substitution of asparagine to a lysine (the
N54K mutant) results in Cx26 being retained in an intracellular
compartment manifesting as the skin pathology Bart-Pumphrey
syndrome with accompanying hearing loss (Richard et al., 2004).
The intracellular retention of the N54K mutant and its inability to
form gap junctions was further supported by our previous studies
in HeLa cells and rat epidermal keratinocytes (Press et al., 2017).
In the current study, we show that the N54K mutant is indeed
retained in an intracellular compartment when expressed alone
in GJIC-deficient cochlear-relevant cells. However, when this
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FIGURE 6 | Cx30 expression partially rescued the aberrant localization of the N54K mutant. (A) Cx30-RFP assembled into gap junctions (arrows) when expressed in
Cx43 KO cells that were immunostained for GM130 (white) and counterstained with Hoechst (blue) to demarcate the nuclei. (B) Cx30 and co-expressed Cx26
or the S183F and N54K mutants localized within the same gap junction plaques, denoted by the thin white arrows. Both recessive mutants, R32H and R184P,
remained intracellularly and failed to co-localize with Cx30 (thick arrows). Bars = 10 µm.
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FIGURE 7 | The S183F mutant intermixes with endogenous Cx43 within the same gap junctions. (A) Representative micrographs of wild type HEI-OC1 cells
expressing Cx26-GFP or Cx26 mutants, and co-immunolabeled for Cx43 (red) and GM130 (white) prior to counterstaining with Hoechst (blue). The N54K, R32H,
and R184P mutants typically localize to sites that do not contain Cx43 while WT Cx26 and the S183F mutant appear to closely associate with the position of Cx43
(arrows). (B) High magnification of dashed boxed image areas in (A) revealed that WT Cx26 segregates to gap junction domains that are part of a Cx43 gap junction
(note the separation of red and green signals). However, en face imaging of S183F expressing cells revealed that Cx43 and the S183F mutant fully intermixed as
revealed by the yellow color. Bars = 10 µm.
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FIGURE 8 | HEI-OC1 cells enlarged but failed to exhibit characteristics of hair cell-like cells when induced to differentiate. (A) Light microscope images of WT and
Cx43 KO HEI-OC1 cells grown in permissive and non-permissive conditions for 10 days. Arrows denote large cells that appear to have undergone some level of
differentiation. (B) The motor protein prestin (red) was successfully detected in outer hair cells of a postnatal mouse cochlea cross section (dashed oval) but was not
detected in WT HEI-OC1 cells grown in permissive or non-permissive conditions. (C) The progenitor cell marker Sox2 (red) expression was detected in HEI-OC1
cells cultured under all conditions. Green = xphalloidin staining, blue = Hoechst stained nuclei. Bars = (A) HEI-OC1 cells = 100 µm, (B,C) HEI-OC1 cells = 10 µm,
(B) cochlea = 20 µm.
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FIGURE 9 | Partial differentiation of HEI-OC1 cells in non-permissive cultures was independent of Cx43 status. (A) Real-time qPCR normalized to 18SrRNA revealed
that Atoh1 mRNA levels were unchanged when wild type (WT) or Cx43 KO cells were grown for 10 days in non-permissive conditions. (B) WT and Cx43 KO cells
exhibited increased calsequestrin mRNA levels when cultured in non-permissive conditions, and (C) Cx43 KO cells had higher myosin VIIa mRNA levels. (D) The
progenitor cell marker nestin mRNA expression was unaltered under any conditions tested. Data represent mean ± SEM of four independent experiments
comprised of two independent Cx43 KO clones. (*p < 0.05, **p < 0.01 two-way ANOVA and Tukey’s post hoc, Hp < 0.05 unpaired t-test).

mutant was co-expressed with Cx30, but not typically with Cx26
or Cx43, it was abundantly found in gap junctions suggesting that
Cx30 not only intermixed with the N54K mutant but rescued its
delivery to the cell surface and assembly into gap junctions. It is
notable that the original patients identified to harbor the N54K
mutant exhibited a compensatory upregulation of Cx30 (Richard
et al., 2004). Collectively, all lines of evidence point to N54K being
a loss-of-function trafficking defective mutant that can be rescued
by the co-expression of Cx30, which is typically co-expressed with
Cx26 in the organ of Corti and may serve to reduce the severity
of hearing loss that might otherwise occur.

The second syndromic mutant (S183F) investigated in HEI-
OC1 cells exhibited characteristics of being able to form gap
junctions. This serine to phenylalanine substitution linked to
palmoplantar keratoderma and hearing loss (de Zwart-Storm
et al., 2008) was previously shown to form non-functional
gap junctions in HeLa cells (Shuja et al., 2016; Press et al.,
2017) suggesting that the hydrogen bonding generated by
the 2nd extracellular loop is sufficiently retained to ensure
hemichannel docking in the assembly of functionally dead gap
junctions. In keeping with Shuja et al. (2016) who provided
evidence that the S183F mutant may have exhibited the gain-of-
function characteristic of being able to intermix with Cx43 into
heteromeric and heterotypic channels (Shuja et al., 2016), we also
found that the S183F mutant fully intermixed with Cx43 within
gap junctions formed in cochlear-relevant cells. These findings
are unexpected as normally Cx26 and Cx43 are unable to co-
oligomerize and remained segregated to different subdomains

of the gap junctions (Falk, 2000), although other Cx26 mutants
linked to skin diseases have been shown to intermix with Cx43
(Garcia et al., 2015). Furthermore, the connexin motifs that
have been reported to govern oligomerization are believed to be
localized between the amino terminal and 3rd transmembrane
domain (Martinez et al., 2011) which are distant sites from
the location of the S183F mutation. Collectively, these studies
point to a new role for the 2nd extracellular loop in governing
connexin oligomerization properties. Interestingly, the S183F
mutant also retained the properties of being able to reside in
both Cx26 and Cx30 gap junctions suggesting that its gain-of-
function characteristics of being able to intermix with Cx43 did
not come with a concomitant loss of the ability to intermix with
these critical cochlear connexins.

Intriguingly, even though Arg184 resides next to Ser183
within the second extracellular loop, homozygous GJB2 allelic
mutations resulting in an arginine to proline (R184P) change only
causes hearing loss while heterozygous carriers of this mutation
are unaffected (Mani et al., 2009). This arginine residue is thought
to be important for inter-protomer interactions between the
second extracellular loop and the adjacent connexon (Maeda
et al., 2009). The R184P mutant has been reported in reference
cells to exhibit some trafficking deficits with an inability to form
gap junctions (Bruzzone et al., 2003; Mani et al., 2009; Xiao
et al., 2011) and may be prematurely degraded (Thonnissen et al.,
2002; Mani et al., 2009). When expressed in cochlear-relevant
cells, we found that gap junctions were rarely assembled and this
mutant frequently localized to early endosomes suggesting it may

Frontiers in Cell and Developmental Biology | www.frontiersin.org 14 April 2020 | Volume 8 | Article 21529

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-08-00215 March 31, 2020 Time: 18:10 # 15

Beach et al. GJB2 Mutations and Hearing Loss

have reached the cell surface before being retrieved for imminent
degradation in lysosomes.

The R32H mutation resides within the 1st transmembrane
domain near the 1st extracellular domain; a polypeptide motif
that likely has multiple roles in the formation of intra-protomer
interactions, connexin folding, oligomerization, and channel
pore formation (Maeda et al., 2009). Little is known about the
fate of the autosomal recessive mutation that encodes the R32H
mutant (Mustapha et al., 2001), although one study showed that
it localized to the endoplasmic reticulum when expressed in
HeLa cells (Xiao et al., 2011). This did not seem to be the case
when this R32H mutant was expressed in HEI-OC1 cells as it
partially localized to early endosomes with no clear evidence
that it was trapped in the endoplasmic reticulum. Thus, this
mutant appears to be following a similar fate as the R184P
mutant and maybe destined for premature degradation. This
finding highlights the importance of examining hearing loss
linked mutants in a cochlear-relevant system as their expression
within different tissue types may lead to distinctly different
outcomes. Our results support the notion that non-syndromic
mutants do not acquire gain-of-function properties but cause
hearing loss via their loss-of-function and premature targeting to
the degradation pathway.

Finally, we wanted to determine if the state of GJIC altered
the ability of HEI-OC1 cells to differentiate toward supporting
cell and/or hair cell fates. Since Cx43 is endogenously expressed
in these cochlear-relevant cells and Cx43 channels typically
allows for permissive small molecule exchanges that exceeds
the scope of gap junction exchange that can occur through
Cx26 channels (Harris, 2008; Lopez et al., 2014), we used these
cells as a surrogate for GJIC that occurs in vivo and assessed
cell differentiation before and after Cx43 ablation. We also
knew that GJIC is critically important in the organ of Corti
as hair cells are deformed and the tunnel of Corti formed by
supporting cells is absent in conditional Cx26 null mouse models
(Inoshita et al., 2008; Chang et al., 2015; Zhu et al., 2015; Chen
et al., 2018a). Further, transgenic mice expressing the dominant
Cx26 mutant R75W displayed delayed apoptosis during cochlear
development and the organ of Corti was malformed (Inoshita
et al., 2014). In our studies, we found HEI-OC1 cells were not
able to fully differentiate into hair cell-like cells expressing protein
markers and genes of in vivo hair cells, including prestin, even
though prestin has previously been reported to be expressed
in differentiated HEI-OC1 cells (Kalinec G. M. et al., 2016;
Park et al., 2016). We suspect that the HEI-OC1 cells we
used are somewhat heterogeneous and may have lost their full
potential to differentiate into hair cell-like cells in non-permissive
conditions since their original isolation nearly 20 years ago
(Kalinec et al., 2003). Nevertheless, we found that there were
pockets of cells within the cultures that appeared to differentiate
amongst unchanged cells supporting the notion that the cultures
had mixed cell phenotypes. Others have noted this heterogeneity
amongst different batches of HEI-OC1 cells (Cederroth, 2012).
In our studies, we did find that the ablation of Cx43 drove a
higher expression of myosin V11a and calsequestrin suggesting
that Cx43 mediated GJIC may be acting as a negative regulator
of some genes important in cell differentiation. Calsequestrin

was also elevated in wild type cells and Sox2 was abundantly
found in both Cx43 positive and negative cultures. These findings
are all consistent with a small subpopulation of HEI-OC1 cells
retaining the capacity to differentiate with the majority of the cells
remaining in a progenitor state. Nevertheless, these cells remain
the best cochlear-relevant cell line to interrogate the functional
status of hearing loss-linked Cx26 mutants.

In summary, sensorineural hearing loss linked to GJB2 gene
mutations is one of the most common inherited conditions
found worldwide affecting as many as 1/2000 live births (Chan
and Chang, 2014). Our understanding of how these mutations
induce hearing loss is still emerging and must be fully understood
to establish a platform for tactical drug design and rational
treatment strategies. Here, we used a cochlear-relevant cell line
to further investigate two syndromic and two non-syndromic
Cx26 mutants that are found within or near the extracellular
loop regions of the connexin polypeptide. Collectively, we found
that each of the syndromic mutations exhibited unique gain-
of-function properties while the two non-syndromic mutants
exhibited common loss-of-function characteristics.
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The social demand for dental implantation is growing at a rapid rate, while dentists
are faced with the dilemma of implantation failures associated with unfavorable
osseointegration. Clinical-friendly osteogenesis, angiogenesis and osteoimmunology
around dental implants play a pivotal role in a desirable osseointegration and it’s
increasingly appreciated that Hippo-YAP signaling pathway is implicated in those
biological processes both in vitro and in vivo in a variety of study. In this article we
review the multiple effects of Hippo-YAP signaling in osseointegration of dental implants
by regulating osteogenesis, angiogenesis and osteoimmunology in peri-implant tissue,
as well as highlight prospective future directions of relevant investigation.

Keywords: osseointegration, Hippo-YAP, osteogenesis, angiogenesis, osteoimmunology, bone remodeling,
implants

INTRODUCTION

With the increasing social burden of growing elderly population, some age-implicated diseases are
changing people’s demand for medical services including tooth loss. American Association of Oral
and Maxillofacial Surgeons illustrates that 70% adults between 35 and 44 years old have at least
one permanent tooth lost and 26% adults lose all by 74 years old, which has significant impacts
on general health physically and mentally through direct and indirect mechanisms (Barboza-Solís
et al., 2019; Bollman et al., 2020). Therefore, high-quality and efficient treatment to restore the
function and esthetics for the cases of tooth loss is in increasing demand right now and facing
great challenges. In the past, removable dentures and bridges were used in patients to replace
missing teeth. However, over the last few decades dental implant has become very popular and
a mainstream treatment for the advantages of high predictability and success rate as well as fewer
complications during and after implantation (Shemtov-Yona and Rittel, 2015; Zohrabian et al.,
2015). In addition, Howe et al. conducted a meta-analysis of 10-year dental implant survival and
it turned out that the survival rate was 96.4% (Howe et al., 2019). However, while the demand for
dental implants is growing at a very rapid rate, dentists are faced with the dilemma of dental implant
failure associated with peri-implant mucositis, peri-implantitis, esthetic failures, and complete loss
of osseointegration in clinical cases (Hickin et al., 2017).
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Brånemark originally proposed the concept of
osseointegration to describe the direct and stable connection
between bone tissue and titanium implants. Zarb proposed a
clinical description that it was a clinically asymptomatic fixation
of functional-loaded implants (Zarb and Albrektsson, 1991).
A desirable osseointegration is the key to a success implantation,
which has been an ultimate goal for dentists to achieve. Bai
et al. (2018a) attributed most implant failures to insufficient
osseointegration between host bone and the surface of implants.
In recent years, research on improving osseointegration to
gain a higher survival rate of dental implant has become a hot
topic in dentistry.

A favorable osseointegration of bone-implant interface
is attributed to peri-implant osteogenesis, angiogenesis and
osteoimmunology properties. On the one hand, these three
factors play their respective important roles in regulating the
process of osseointegration. Peri-implant bone osteogenesis is
indispensable for stability and function of dental implants,
which is regulated by the dynamic balance of osteoblasts,
osteoclasts, osteocytes, etc. (Insua et al., 2017; Bai et al.,
2018a). Angiogenesis is also an important component of
accelerating bone repair since newborn blood vessels provide
oxygen and nutrients for bone tissue and create routines for
cell migration (Hankenson et al., 2011). As foreign bodies in
bone tissue, successful dental implant is strongly dependent
on a promising local immune microenvironment and proper
osteoimmunomodulation to reach a favorable osseointegration
which is dominated by the variety of peri-implant immune
cells (Bai et al., 2018b; Wang J. et al., 2018.) On the other
hand, the three factors are highly related and interact on
each other. Numerous compelling evidences have showed that
osteogenesis and angiogenesis are coupled to promote bone
regeneration by wild cross-talk via various mediators and
signals and both accelerated by favorable osteoimmunology
properties to reach a clinical-friendly osseointegration, therefore
the concept of osteoimmunology and osteo/angio-genesis overlap
to a certain degree (Dohle et al., 2014; Shi et al., 2016,
2017; Okamoto et al., 2017; Bai et al., 2018a; Ma et al.,
2018; Trindade et al., 2018; Tsukasaki and Takayanagi, 2019;
Brunetti et al., 2020; Gao et al., 2020; Guder et al., 2020).
Nevertheless, the specific regulation mechanisms on these three
independent but wildly interrelated biological processes remain
to be further clarified.

Hippo-YAP, a highly implicated pathway, is known to be
involved in regulating organ size, tissue regeneration and
cancer development. Hippo signaling senses and responds
to upstream cell biomechanical cues including cell contacts,
cell polarity and other biomechanical signals. MST1/2
and SAV1 are phosphorylated and activate the complex
of LATS1/2 and MOB1A/B, thus activating downstream
reaction (Xiang et al., 2018). Negatively modulated by
Hippo signaling, Yes-associated protein (YAP) is a key
downstream effector and regulates various cell properties
such as controlling cell proliferation and fate by influencing gene
expression with transcriptional enhancer associated domain
transcription factors (TEADs), the main transcriptional factors
interact with YAP.

OSTEOGENESIS, ANGIOGENESIS AND
OSTEOIMMUNOLOGY AND THEIR
EFFECTS ON OSSEOINTEGRATION
(FIGURE 1)

Osteoimmunology
The concept of osteoimmunology was first established by
Arror et al., emphasizing the interaction between skeletal
and immune system (Arron and Choi, 2000; Tsukasaki and
Takayanagi, 2019). On the one hand, cells of skeletal system
are involved in immune regulation by secreting key cytokines
in bone marrow microenvironment, where immune cells and
their progenitors are harbored and nourished initially (Walsh
et al., 2018; Tsukasaki and Takayanagi, 2019). On the other
hand, the abnormal activation of immune cells may affect
osteogenesis and angiogenesis, contributing to the development
of pathological bone damage diseases, such as periodontitis and
rheumatoid arthritis, as well as slow bone repair. As the bridge
between skeletal and immune system, osteoimmunology plays
a significant regulatory role in a variety of essential biological
processes, including the osseointegration procedure of implants.

Inflammatory response around dental implants is usually
considered a pathological process. In fact, as a process of
direct connection between foreign body and bone tissue,
osseointegration would initially raise the foreign-body reaction to
implants. The foreign-body reaction starts with layer of proteins
that come from blood and interstitium immediately forming on
the surface of biomaterial after implantation, which activates
inflammatory reaction of related cells as a result (Wilson et al.,
2005; Singhatanadgit et al., 2019). Researches on enhancing
the biocompatibility of implant material have been a hot topic
in dentistry, for instance, surface modification (Hamlet and
Ivanovski, 2011; Hamlet et al., 2012; Palmquist et al., 2013;
Fukuda et al., 2019). as well as changing the design and
composition of implants (Cooper et al., 2016; Wang Y. et al.,
2019) are generally proposed as available strategies. Additionally,
biofilm consisted of various subgingival bacteria may form
upon the material at once after implantation, which stimulates
excessive inflammatory response provided that microbiome
dysbiosis occurs, leading peri-implant mucositis or even peri-
implantitis that threatens the stability and survival of dental
implants (Wisdom et al., 2019).

But our current knowledge of the effects of inflammatory
response is that osseointegration is a complicated process relying
on a dynamically balanced early inflammatory response of
immune cells to implant, especially the response performed by
macrophages, the main participants in reacting to biomaterials
(Brown et al., 2017; Gibon et al., 2017; Lee and Bance, 2019).
According to the activation pathway, secretion and function,
macrophages are classified into classically activated macrophages
(M1) and alternatively activated macrophages (M2). M1/M2
macrophages lead to opposite reacting process in response
to different microenvironment. M1 is described as pro-
inflammatory cell type that induces osseointegration failure with
a layer of fibrous tissue surrounding the implants. While M2 is
the anti-inflammatory/regulatory one (Brown et al., 2017) that
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FIGURE 1 | Procedure of osseointegration. The histological change of dental implants in bone can be divided into three phases in general. In phase one, as soon as
the implantation, the implant surface is surrounded by blood and immediately biomolecules including proteins, lipids and glycoproteins are absorbed to the surface,
forming a temporary bioactive layer, with bone marrow cells scattering around. In phase two, about 1 month after the operation, some parts of bone tissue become
absorbed due to the excessive pressure exerted on them, which is driven by osteoclasts. Simultaneously, the temporary bioactive layer is absorbed by macrophages
and osteogenic cells such as mesenchymal stem cells (MSCs) and osteoblasts are stimulated to migrate to osteogenic area on the surface of implants and start to
proliferate and differentiate thus mineralization procedure is initiated. In phase three, about 3 months after the implantation, the implant surface is surrounded by
osteoblasts and osteocytes which get mature gradually, thus osseointegration is done progressively over time.

attracts cells, proteins and other bioactive substances around
implants and hence plays a dominant role in osseointegration.
However, in vivo the two extreme polarization states hardly
exist since in most cases macrophages display both M1 and
M2 characteristics phenotypes and exist as an intermediate
state along the polarization spectrum (Brown et al., 2017).
Although there are more subtypes and advanced classification
pattern discussed nowadays, Wang et al. propose that regulating
macrophage polarizing along M1 and M2 direction leads
to influencing microenvironment of inflammation and
regeneration thus coordinating osseointegration (Wang J.
et al., 2018). The classic M1/M2 dichotomy is still popular in
the latest study (Gao et al., 2020; Figure 2). Moreover, besides
macrophages, there are other immune cells being discussed
to play their respective promising roles in osteoimmunology-
mediated osseointegration as well, such as T lymphocytes
(Singhatanadgit et al., 2019) and mast cells (Zizzi et al., 2011;
Marcatti Amarú Maximiano et al., 2017).

Osteogenesis
Dental implant is most widely contacted with bone tissue.
Osseointegration, the fundamental theory of modern oral
implantology, is the process of establishing a direct connection
between ordered bone tissue and surface of a loaded-implant
without soft tissue involvement. Osseointegration starts with

inserting implant into the drilled hole and obtains passive
and mechanical primary stability between interfacial bone and
biomaterial surface (Lee and Bance, 2019). The biological
responses are activated afterward. As soon as the dental
implant is implanted into bone tissue, the peri-implant area
becomes congested and immediately some biomolecules from
surrounding blood and interstitial fluid are absorbed to the
implant surface to form a temporary bioactive layer for
preparation of cell reaction, with bone marrow cells scattering
around. MSCs and osteoblasts are stimulated and facilitated to
migrate to osteogenic area on the surface of dental implants
and start to proliferate and differentiate thus mineralization
procedure is initiated. Simultaneously, osteoclasts are activated
to drive bone resorption process after the formation of woven
bone to replace it by lamellar bone with a higher degree
of mineralization and load intensity (Lee and Bance, 2019).
During the terminal stage of osteogenesis process, osteocytes
and the surface of implant are directly contiguous with
or without the dendritic structures of osteocytes, building
a bioactive network in bone-implant area, which probably
suggest the structural basis of osseoperception (Du et al.,
2016). To harmonize the whole dynamic process of bone
formation as well as bone resorption, bone remodeling cell
populations including bone marrow mesenchymal stem cells
(BMSCs), osteoblasts, osteoclasts and osteocytes etc. detect
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FIGURE 2 | M1/M2 polarization spectrum in osteoimmunology mediated osseointegration. As the key participants in peri-implant osteoimmunology, macrophages
can be subdivided into M1 and M2 according to the activation pathway, secretion and function. M1 is the pro-inflammatory type activated by M1 activating factors
such as LPS and IFN-γ, inducing excessive fibrosis and osseointegration failure by secreting pro-inflammatory cytokines, while M2 is activated by M2 activating
factors such as IL-4 and IL-13, which promote osseointegration through anti-inflammatory and regulatory cytokines. Although in vivo macrophages actually display
an intermediate state along the polarization spectrum, tipping the polarizing “scale” of macrophage from M1 to M2 leads to influencing microenvironment of
inflammation and regeneration around implants and promoting osseointegration.

and translate biological signals in microenvironment then
react to the given cues. The tight communication and
multiple crosstalk among different cell populations are involved
as well (Lotz et al., 2018; Shen et al., 2019; Sims and
Martin, 2020; Tilkin et al., 2020; Wang H. et al., 2020).
Therefore, it is of great significance to study the biochemistry
and physiology phenomenon and, more importantly, the
regulation mechanism on bone-implant interface to reach a
clinical-friendly osseointegration.

Angiogenesis
Bone tissue is well known as a high vascularization tissue.
A normal vascular structure and a favorable microcirculation
contribute to the health of peri-implant bone tissue and a
clinical-friendly osseointegration, since the microvasculature
transports nutrients and metabolites and provides a
pivotal microenvironment for migration, proliferation and
differentiation of osteogenesis-related cells. Saghiri et al. (2016)
reviewed researches on effects of titanium alloys and surface
characteristics and treatments of dental implants on angiogenesis
process and highlighted that pro-angiogenic surface played a
pivotal role in facilitating osseointegration.

A healthy and functional microvascular network attributes
to promising vessel sprouting and vascular tube extension,
respectively, under specification of tip cells and stalk cells, the
two main populations of vascular endothelial cells (ECs), which
are equally necessary in angiogenesis and vessel remodeling.
Moreover, the process of angiogenesis involves several signals
and pathways, mainly including growth factors (VEGF, FGF,
PDGF, TGF-β, et al.), Notch signaling, MMPs and so on
(Potente et al., 2011).

ROLE OF HIPPO-YAP SIGNALING IN
OSTEOGENESIS, ANGIOGENESIS AND
OSTEOIMMUNOLOGY

Hippo-YAP Upstream Signals and
Downstream Responses
Hippo-YAP responds to a variety of upstream signals in both
intracellular and extracellular microenvironment. Hippo-YAP
takes part in cell biomechanical respond mechanism to ECM,
specifically, low ECM resistance leads to inhibiting activation
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of YAP/TAZ while high ECM resistance stimulates YAP/TAZ
nuclear translocation (Totaro et al., 2017, 2018b; Moya and
Halder, 2019). What’s more, some extracellular lipids or hormone
signals can bond to G-protein-coupled receptors (GPCRs) and
regulates Hippo-YAP signaling mediated by F-actin signaling
(Moya and Halder, 2019). Based on a series of researches on
the crosstalk between lysophosphatidic acid (LPA) and Hippo-
YAP signaling, it is suggested that LPA is an upstream signal of
Hippo pathway, binding to GPCRs and regulating the activity
of the downstream effector YAP, which further mediates gene
expression and cell behaviors (Yu et al., 2012; Moroishi et al.,
2015; Park et al., 2016; Wang X. et al., 2018). In addition,
Wnt signaling, cell polarity and metabolic property also enrich
the transduction mechanism of Hippo-YAP signaling pathway
(Totaro et al., 2018b; Xiang et al., 2018; Moya and Halder, 2019).

After dephosphorylation and nucleus translocation, YAP
bonds on the enhancer of the target gene with TEAD1-4 to
regulate gene transcription. It has been revealed by ChIP-seq
data that AP-1 is also widely recruited to transcription regulatory
sequences with YAP/TAZ-TEAD complex (Totaro et al., 2018b).
By regulating expression of key genes, Hippo-YAP signaling
pathway plays a versatile and significant regulatory role in organ
development and regeneration in mammal, indicating their
potential impacts on osseointegration induced by osteogenesis,
angiogenesis and osteoimmunology.

The Influence of Hippo-YAP Signaling on
Osteogenesis
There is strong evidence indicates that BMSCs are regulated
by some biological signals on differentiation into bone tissue
via Hippo-YAP pathway. The knockout of GNAS activates
Hippo signaling pathway and eventually suppresses osteogenic
differentiation of BMSCs (An et al., 2019), consistently, through
the regulation of Hippo-YAP signaling pathway RAMP1 can
promote the osteogenesis process of BMSCs that induced by
CGRP (Zhang et al., 2019). Tang and Weiss (2017) revealed
an interaction of Snail/Slug and YAP/TAZ, which regulates the
differentiation ability of BMSCs in a cooperative way, suggesting
a potential impact on the properties of osteogenesis. In addition,
it is lately identified that Hippo pathway plays an important
role in the competing adipo-osteogenic differentiation of MSCs
and it turns out that YAP promotes osteogenic differentiation
and in contrast it antagonizes adipogenic differentiation
(Lorthongpanich et al., 2019). However, Seo et al. (2013) reported
that SOX2-YAP1 axis significantly contributed to maintained
stemness and inhibited osteoblastic differentiation of BMSCs,
which may be attributed to Dkk1-mediated repression of Wnt
signaling induced by YAP1/β-catenin.

Hippo-YAP signaling pathway is also involved in osteoblast
differentiation through multiple biological mechanisms. The
suppression of YAP may induce lowering ligand bmp2a in
MSCs, leading to a severe damage of Bmp signals in osteoblasts
nearby, which downregulates osteoblast differentiation through
a cell non-autonomous way (Brandão et al., 2019). In a recent
vivo study it is demonstrated that suppression of OLFML1, a
missense mutant gene in patients with congenital scoliosis, leads

to the nuclear translocation of YAP thus promoting expression of
target genes and results in an accelerated mineralization process
of osteoblasts, suggesting OLFML1 inhibits bone development
through a biomechanical mechanism dependent on Hippo-YAP
signaling pathway in osteoblasts (Murakami et al., 2018). Despite
a certain amount of evidence has been shown to support its
pivotal functions in bone metabolism and osteogenesis process,
the multiple effects of Hippo-YAP signaling pathway in osteoblast
differentiation are still controversial and ambiguous and need
to be further clarified. It is lately indicated that Ti ions toxicity
impair surrounding bone tissue by inducing dephosphorylation
of YAP and its expression in nuclear to suppress osteogenic
differentiation of osteoblasts, likewise knockdown of YAP
expression leads to rescuing the harm of toxic Ti ions from
implants, though Hippo-YAP is definitely not the only underlying
biological cue responded by osteoblasts (Zhu et al., 2018).

The dynamic balance between bone formation and resorption
plays a pivotal role in a favorable osteogenesis and mounting
evidence has indicated regulatory effects of Hippo-YAP
on osteoclastogenesis and resorption activity to influence
bone homeostasis. Deficiency of MST2 in bone marrow-
derived macrophages (BMMs) exhibits increased osteoclast
differentiation and conversely MST2 overexpression inhibits
it (Lee et al., 2015). Zhao et al. confirm that inhibition of
YAP1 and its association with the main transcriptional factor
TEADs weakens formation and osteoclastic resorption of
osteoclasts, as well as NF-κB signaling induced by RANKL, a
mainly investigated signaling pathway that regulates osteoclast
differentiation in previous study (Yang et al., 2018; Zhao
et al., 2018). Moreover, Limd1 is considered as an important
negative regulator of Hippo pathway (Thakur et al., 2010;
Jagannathan et al., 2016). It has been concluded recently in vitro
that Polygonatum sibiricum polysaccharide (PSP) suppresses
Hippo-YAP pathway to inhibit differentiation of osteoclasts
from BMMs through downregulating expression of miRNA-
1224, of which the target gene is Limd1 (Li B. et al., 2019).
Additionally, the further mechanism of Hippo-YAP signaling
regulating osteoclastogenesis is probably implicated to the
transcriptional regulation by TEAD1 that binds to an upstream
enhancer element of osteoprotegerin (OPG) and promotes its
expression, which was revealed in human periodontal ligament
cells (PDLCs) (Li Q. et al., 2019). Although PDLCs are supposed
to be the absent cell population in bone-implant interface tissue,
however, there’s an increasing number of researches that uncover
the significance of retaining PDL in the socket after tooth
extraction and the promising contribution of PDLCs to implant
osseointegration and bone repair (Pei et al., 2017; Washio et al.,
2018; Karimi Dastgerdi et al., 2020). Osteoclastogenesis may also
be partially dependent on potential YAP-GDF15 mechanism
since in a recent study GDF-15 has been demonstrated to induce
NF-κB activation in monocytic macrophages which contributes
to further formation of osteoclasts and YAP has been indicated as
an upstream signal of GDF15 in human PDLCs (Li et al., 2020).

Crosstalk between osteoblasts and osteoclasts can influence
bone remodeling in a cell non-autonomous way. It is uncovered
in a recent study that mechanical sensing protein PIEZO1 in
osteoblastic cells promotes nuclear translocation of YAP and
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increases type II and IX collagens expression through PIEZO1-
YAP axis mechanistically, causing inhibition of osteoclast
resorption activity (Wang L. et al., 2020).

Hippo-YAP signaling in osteocytes seems to be poorly
understood in relevant fields. While osteocytes interconnect and
communicate with each other on the basis of lacunar/canalicular
system, playing a pivotal role in bone metabolism and
remodeling. Besides, during the terminal stage of osteogenesis
process in osseointegration, osteocytes contribute to
compensating the microenvironment of periodontal ligament
around nature teeth, at least partially, providing a cushion
for masticatory forces and inducing osseoperception (Du
et al., 2016). Therefore, it is of great value to uncover the
molecular mechanisms that control osteocytes-induced
osseointegration thus improving the survival rate and long-
term stability of implants. Kegelman et al. clarified that
deficiency of YAP/TAZ in osteocytes impaired bone accrual,
matrix collagen and mechanical intensity in vivo, which was
mediated by perilacunar/canalicular weakened remodeling,
indicating a perspective target for future study (Kegelman et al.,
2020). However, the specific role that Hippo-YAP signaling
plays and other involved signals and pathways remain to be
further clarified.

Hippo-YAP Impacts on Angiogenesis
Vessel Sprouting
YAP/TAZ promote sprouting angiogenesis by contributing to
activity and function of vascular tip cells. Mechanistically,
YAP/TAZ promotes migration of tip cells by activating CDC42
and facilitates the formation and junction of filopodia, an
essential dynamic structure of tip cell that dominates its sprouting
function, by promoting the remodeling of actin cytoskeleton
(Kim et al., 2017; Sakabe et al., 2017). Likewise, the identity
of tip cells are induced by CCN1, through interaction with
integrin αvβ3/VEGFR and activation of downstream Hippo
pathway thus promoting nucleus translocation of YAP/TAZ,
which coordinates CCN1 in turn as a positive feedback (Park
et al., 2019). While overactivating YAP/TAZ leads to pathologic
sprouting pattern (Astone et al., 2018). Therefore, a proper
regulatory effect of Hippo-YAP signaling plays a significant role
in sprouting angiogenesis.

It’s also worth noticing the crosstalk between Hippo-YAP
pathway and Notch signaling in regulating angiogenesis. Notch
signaling plays a significant role in vessel sprouting (Pitulescu
et al., 2017; Fournier et al., 2020). There are two interaction
patterns that are mainly investigated between YAP/TAZ and
Notch pathways: first, YAP/TAZ regulate Notch pathways by
controlling gene expression level of Notch receptors and/or
ligands through nuclear translocation of YAP/TAZ, inducing
Notch signaling turning on in surrounding cells; second,
YAP/TAZ and Notch intracellular domain (NICD) are co-
activated to translocate to nuclear and co-regulate their common
targets genes (Totaro et al., 2018a). Notch signaling has also been
reported to interact with LPA, an upstream signaling of Hippo
pathway, which is suggested to play a role in a series of cell
functions including angiogenesis through Hippo-YAP signaling.

Yasuda et al. figured out that endothelial LPA4 and LPA6,
receptors that coupled with Gα12/Gα13, regulate expression
of Notch ligand Dll4 via YAP/TAZ and play a crucial role in
sprouting angiogenesis (Yasuda et al., 2019). In addition, Ren
et al. (2019) identified that Notch1, one of the single-stranded
transmembrane receptors of Notch pathway, may interact with
LPA2 and mediate cell biological performances.

Extension of the Vascular Tube
The favorable proliferation capability of EC promotes extension
of vascular tubes, mostly dependent on the proliferation of stalk
cells (Potente et al., 2011). Hippo-YAP has also been discovered
to regulate metabolism and proliferation activity in ECs.

As a major growth factor of vascular development, interaction
mechanism of VEGF with Hippo-YAP pathway has been
investigated in recent years. Mechanistically, the pro-angiogenic
effect of VEGF is mediated by actin cytoskeleton activity,
which triggers Hippo-YAP axis and transcriptional regulatory
activity of YAP, targeting cell viability-related genes (Wang
et al., 2017). Also, VEGF may activate Hippo-YAP pathway
mediated by PI3K/MAPK signaling (Azad et al., 2018). Moreover,
YAP/TAZ regulates metabolism and proliferation activity of
ECs by promoting MYC signaling (Kim et al., 2017). However,
Hippo-YAP shows opposing regulatory manner in hypoxic
microenvironment. The viability and migration ability of ECs
are promoted in myocardial infarction by miR-93, through
suppressing LATS2 to inhibit Hippo-YAP pathway (Ma et al.,
2020), which may be attributed to YAP/TAZ inactivating
hypoxia-inducible factor 1α (HIF1α) signaling in ECs (Sivaraj
et al., 2020). Therefore, more attention should be paid to the
different regulatory roles of Hippo-YAP in different organs,
especially the property in angiogenic osseointegration.

Hippo-YAP Pathway Regulates
Osteoimmunology
As major participants in osteoimmunology response,
macrophages react to diverse biological signalings to adapt
to different microenvironment, including Hippo-YAP signaling.
Based on recent publications, it remains controversial on what
kind of character YAP plays in macrophage polarization to
M1/M2 phenotypes. It was reported that TGFβ1-mediated
M2 polarization was facilitated by Wnt5a via stimulating
YAP/TAZ (Feng et al., 2018). Consistently, Li C. et al. (2019)
demonstrated in vivo that the expression profile of M1
phenotypic proinflammatory factors TNF-α and IL-1β were
augmented while M2 characteristic anti-inflammatory factors
IL-10 and TGF-β were weakened in myeloid-specific YAP
knockout mice. Similar results can be found in tumor-associated
macrophages (TAMs) as well (Huang et al., 2017; Jia et al., 2020;
Zhao et al., 2020). However, some contrary results with regard to
the regulatory effect of YAP in macrophages have been described.
Zhou et al. pointed out that YAP promoted M1 but decreased
M2 polarization based on the experimental results that specific
knockout of myeloid YAP activated M2 polarization with IL-10
increase and IL-1β decrease but without any effect on production
of TNF-α1, which is in conflict with the precious studies (Zhou
et al., 2019). Additionally, Song et al. (2020) revealed the
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mechanism of YAP aggravating M1 phenotype in Kupffer cells
that LPS-stimulated YAP upregulated expression of the classic
proinflammatory cytokines including IL-6, TNF-α, and MCP-1
by binding to their promoter regions through association with
its transcriptional factor TEADs.

Besides macrophages, there are other immune cells
should be involved in this discussion, since they dominate
early inflammatory response in the primary stage of
osseointegration. While mostly relevant investigations rarely
involve osseointegration procedure of foreign implants. Further
study may uncover the role of Hippo-YAP in early peri-implant
inflammatory response.

DISCUSSION AND FUTURE OUTLOOK

Potential Roles of LPA
LPA is a bioactive small ubiquitous lipid which naturally exists
in the body and it contributes to a various of biological effects
in nervous system, cardiovascular, cancer, immune system etc.
(Choi et al., 2010; Yung et al., 2014). LPA’s unique physiological
and pathological roles are revealed to be driven by extracellular
signals through particular GPCRs which are called LPA1-6
(Choi et al., 2010). Specifically, the regulation effects of LPA
on bone metabolism are mainly mediated by LPA1, LPA3, and
LPA4 (Liu et al., 2010; Chen et al., 2019; Wu et al., 2019;
Alioli et al., 2020); LPA4 and LPA6 play a facilitating role in
developmental angiogenesis and LPA1 and LPA3 are found to
mediate LPA/PKD-1-CD36 axis regulating proangiogenic and
proarteriogenic reprogramming and de novo arteriogenesis (Ren
et al., 2016; Dong et al., 2017; Yasuda et al., 2019); it is also worth
noticing that LPA contributes to the formation of macrophages
from monocytes in both mice and humans (Ray and Rai, 2017)
and promotes LPA1 and LPA3 mediated conversion to foam cells
(Chen et al., 2017). Numerous LPA-induced biological effects
have been described and those cooperative and antagonistic
signaling regulates cell activity in a highly complex manner.
The investigations around LPA also suggest the potential role of
LPA on osteogenesis, angiogenesis and osteoimmunology which
may facilitate osseointegration procedure of implants, while its
specific mechanism remains to be further clarified.

The previous study has showed the evidence on the
downstream signaling pathway and cellular functions of LPA,
whereby we further suppose that LPA may act as an upstream
signal of Hippo pathway and promote LPA-Hippo axis
mediated osteogenesis, angiogenesis and osteoimmunology, thus
facilitating osseointegration process of implants or bone defect
repair effectively (Figure 3). The potential mechanism around
the series of molecular events remains controversial, which may
suggest a prospective future research direction in involved fields.

Friend or Foe? The Discrepancy Around
Hippo-YAP Regulatory Effects on
Osteogenesis-Related Cells
As mentioned above, the existing researches have
revealed some inconsistent results on role of YAP that it

represses osteogenic behaviors of MSCs and osteoblasts
according to some reports. Friend or foe? The osteogenic
potential of Hippo-YAP signaling still remains as a highly
controversial and ambiguous issue. Here, we analyze the
possible influencing factors that raise the discrepancy and
suppose the potential regulatory pattern of Hippo-YAP in
osteogenesis-related cells.

First of all, Hippo-YAP pathway may play an inconsistent
role in osteogenic cells of different maturity stage and the
osteogenic impact of YAP is maturity-dependent, which
kind of explain the negative results in osteogenic cells
of early maturity stages. Xiong et al. (2018) observed
that in mesenchymal progenitors and osteoblasts of early
stage YAP/TAZ suppressed their differentiation to mature
osteoblasts and led to decreased bone mass, whereas, osteoblast
popularity and bone formation were promoted by YAP/TAZ
expression in mature osteoblasts and osteocytes. Seo et al.
(2013) and Xiong et al. (2018) suggested that the negative
osteogenic effects were attributed to the impaired Wnt
signaling by YAP.

What’s more, the discrepancy around Hippo-YAP
regulatory impacts may be caused by different properties
of microenvironment. Yang et al. mimicked inflammatory
microenvironment in vitro with TNF-α, the classic pro-
inflammatory cytokine, then discovered an upregulated
expression of pro-inflammatory IL-6 and RANKL and a reduced
expression of anti-inflammatory OPG after knockdown of YAP1
in MC3T3-E1 cells (Yang et al., 2020). However, during the
natural development procedure of mice, YAP knockdown in
mature osteoblasts and osteocytes did not lead to changes on the
expression of OPG or RANKL (Xiong et al., 2018). In a word,
these discoveries suggest that the opposing regulatory role of YAP
may due to the discrepancy between healthy and inflammatory
local bone microenvironment, while further evidences should be
shown to prove this inference.

In addition, Hippo-YAP is definitely not the only signaling
pathway that plays pivotal roles in bone metabolism and
regeneration (Ramasamy et al., 2016; Chen et al., 2018; Aslani
et al., 2019; Luo et al., 2019; Maeda et al., 2019; Wang P.
et al., 2019). In fact, osteogenesis is a complex and but orderly
procedure induced and regulated by multiple synergistic and
antagonistic effects.

Last but not least, it’s worth noticing that Hippo-YAP regulates
cellular osteogenic function in not only cell autonomous mode
but also non-autonomous mode (Brandão et al., 2019; Wang L.
et al., 2020), which further contributes to the complexity of the
working manner of Hippo-YAP pathway.

Taking all these factors into consideration, it’s hard to reach a
consensus on the main reasons that cause the discrepancy around
Hippo-YAP regulatory effect on osteogenesis-related cells.
A compelling explanation will provide a deeper understanding
of Hippo-YAP and indicate promising future research directions.
We also suggest that researchers focus more on the conditions
of Hippo-YAP promoting osteogenesis in future study, which
is of great significance for further clarifying the multiple
effects of Hippo-YAP pathway as well as exploring the
potential clinical value.
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FIGURE 3 | Potential role of LPA on Hippo-YAP mediated osteogenesis, angiogenesis and osteoimmunology. LPA may act as an upstream extracellular signal of
Hippo pathway via GPCRs (LPA1-6). Provided that Hippo pathway is activated, MST1/2 and SAV1 are phosphorylated and activate the complex of LATS1/2 and
MOB1A/B. As a result, the phosphorylated YAP/TAZ is sequestrated in the cytoplasm by interacting with 14-3-3 proteins or degraded. Conversely, in the context of
Hippo off, YAP/TAZ is dephosphorylated and translocate into nucleus, regulating a variety of cell properties by influencing gene expression with its main
transcriptional factor TEAD, including genes that dominate osteogenesis, angiogenesis and osteoimmunology. Therefore, we propose that LPA-Hippo axis may
perform regulatory effects on osseointegration procedure by influencing osteogenesis, angiogenesis and osteoimmunology.

The Controversial Issues on Roles of
YAP in Macrophages Polarization
YAP was proved to play controversial roles in macrophages
polarization in mainstream studies as mentioned before and
these inconsistent and ambiguous results raise our great interests
in the dynamic regularity of macrophages YAP expression
in inflammatory tissues as well as its deeper and further
significances. Here, we analyze possible influencing factors and
highlight potential future study directions.

Firstly, there is high heterogeneity among macrophages
from distinct origins including M1 and M2 characteristics,
indicating potential effects on the accuracy of experimental
results. Macrophages widely exist in organs and tissues of the
body, with high heterogeneity among specific subpopulations.
Bone marrow derived macrophages (BMMs) are differentiated
from monocytes with hematopoietic system origin, while as
tissue−resident macrophages, peritoneal macrophages (PEMs)
are indicated to be independent of hematopoietic progenitors
and originated from yolk sac in recent works (Cain et al., 2013;

Davies and Taylor, 2015). However, we notice that BMMs and
PEMs were used asynchronously to conclude the deficiency
of YAP in macrophages induced macrophage polarization to
M2 while the activation of M1 macrophages was suppressed,
whereby suggesting therapeutic impact on inflammatory
microenvironment (Zhou et al., 2019). In fact, the sources
macrophages derived from may have an impact on polarizing
signatures, since the different expression levels of M1/M2-related
genes in BMMs and PEMs have been proved, including both
surface markers and soluble mediators, which, respectively,
indicate discrepancies in phenotype and cellular function
(Bisgaard et al., 2016). Besides, properties of aging-related
phagocytosis and immigration in 3D microenvironment were
compared between BMMs and PEMs and the two subpopulations
presented inconsistent results (Cougoule et al., 2012; Linehan
et al., 2014). Therefore, it is of value to reevaluate the inherent
differences between distinct original macrophages to promote
convincingness and applicability of involved researches,
especially the ones with regard to polarization tendency into
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M1 or M2. Nevertheless, the proper cell model to simulate
macrophage polarization and figure out its role in implicated
diseases still needs to be further clarified.

Additionally, the classic M1/M2 dichotomy has been enriched
in study on macrophage. As major participants in inflammatory
response, macrophages show diverse phenotypic and functional
differences reacting to different microenvironment. Based on
the stimuli, macrophages are divided into classically activated
macrophages (M1) and alternatively activated macrophages
(M2) according to the existing classification model, with
specific cytokine profile and biologic functions, respectively.
In fact, as two extreme activated states, M1 and M2 rarely
exist in microenvironment since macrophages are actually
polarizing along the polarization spectrum and present
some transitional state signatures with both M1 and M2
hallmarks (Davies and Taylor, 2015; Brown et al., 2017). In
recent years, based on M1/M2 dichotomy, researchers have
identified more subtypes of macrophages and expanded the
definition of macrophage category, since as two extremes
of a continuum and there are strong biochemistry and
physiology differences between M1 and M2. For instance,
M2 macrophages are further categorized into M2a, M2b, and
M2c, the subtypes, respectively, activated by IL-4 and IL-13,
immune complexes and LPS, and IL-10, presenting different
biologic characteristics and effects, respectively (Mantovani
et al., 2004). Additionally, there are more classifying patterns
to describe a specific macrophage population that have
been proposed to obtain more precise descriptions, such
as CD169+ and TCR+ macrophages (Chávez-Galán et al.,
2015). In conclusion, the previous studies have showed an
enrichment of the classic M1/M2 dichotomy and choosing a
suitable classifying pattern can be taken in to consideration in
future researches.

CONCLUSION

In this review we suggest that a clinical-friendly osseointegration
is essentially determined by favorable osteogenesis, angiogenesis
and osteoimmunology, with a complex series of peri-
implant cellular and molecular events happening during those
procedures. Moreover, Hippo-YAP signaling pathway plays
pivotal multiple regulatory roles in osteogenesis, angiogenesis
and osteoimmunology. In short, the potential effects of Hippo-
YAP on promoting osseointegration will contribute to the
discovery of prospective clinical therapy.
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α2-Adrenergic Disruption of β Cell
BDNF-TrkB Receptor Tyrosine
Kinase Signaling
Michael A. Kalwat* , Zhimin Huang†, Derk D. Binns, Kathleen McGlynn and
Melanie H. Cobb

Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, United States

Adrenergic signaling is a well-known input into pancreatic islet function. Specifically,
the insulin-secreting islet β cell expresses the Gi/o-linked α2-adrenergic receptor,
which upon activation suppresses insulin secretion. The use of the adrenergic agonist
epinephrine at micromolar doses may have supraphysiological effects. We found
that pretreating β cells with micromolar concentrations of epinephrine differentially
inhibited activation of receptor tyrosine kinases. We chose TrkB as an example
because of its relative sensitivity to the effects of epinephrine and due to its potential
regulatory role in the β cell. Our characterization of brain-derived neurotrophic factor
(BDNF)-TrkB signaling in MIN6 β cells showed that TrkB is activated by BDNF as
expected, leading to canonical TrkB autophosphorylation and subsequent downstream
signaling, as well as chronic effects on β cell growth. Micromolar, but not nanomolar,
concentrations of epinephrine blocked BDNF-induced TrkB autophosphorylation and
downstream mitogen-activated protein kinase pathway activation, suggesting an
inhibitory phenomenon at the receptor level. We determined epinephrine-mediated
inhibition of TrkB activation to be Gi/o-dependent using pertussis toxin, arguing against
an off-target effect of high-dose epinephrine. Published data suggested that inhibition of
potassium channels or phosphoinositide-3-kinase signaling may abrogate the negative
effects of epinephrine; however, these did not rescue TrkB signaling in our experiments.
Taken together, these results show that (1) TrkB kinase signaling occurs in β cells
and (2) use of epinephrine in studies of insulin secretion requires careful consideration
of concentration-dependent effects. BDNF-TrkB signaling in β cells may underlie
pro-survival or growth signaling and warrants further study.

Keywords: cell signaling, pancreatic islet, extracellular-signal-regulated kinase, brain-derived neurotrophic
factor, BDNF/NT-3 growth factors receptor, epinephrine, adrenergic receptor, diabetes

INTRODUCTION

Glucose homeostasis is largely controlled by the metered secretion of insulin from pancreatic islet
β cells. β cells respond to elevated circulating glucose via coupling its metabolism to membrane
depolarization, calcium (Ca2+) influx, and insulin exocytosis (Kalwat and Cobb, 2017). Secreted
insulin suppresses liver gluconeogenesis and stimulates peripheral glucose uptake. Diabetes is a
disease of hyperglycemia caused by deficient insulin production and action. In diabetes, β cells are
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either destroyed by the immune system (type 1 diabetes) or
unable to secrete sufficient insulin in response to stimulation
(type 2 diabetes). In order to function properly, pancreatic β

cells integrate a diverse array of inputs, including nutrients
and hormones. To accomplish this, β cells utilize a variety
of signaling mechanisms such as G-protein-coupled receptors
(GPCRs) (Holst, 2007; Straub and Sharp, 2012) and receptor
tyrosine kinases (RTKs) (Kulkarni et al., 1999, 2002; Song et al.,
2016). Reported cross talk between GLP1R and EGFR in islet
β cells lends support to the idea of more general GPCR-RTK
signaling interactions in β cells (Fusco et al., 2017).

Extracellular regulated kinase 1/2 (ERK1/2) is activated by
insulin secretagogues (e.g., glucose, amino acids) and blunted
by inhibitors of secretion (e.g., epinephrine) and is therefore
frequently used as a proxy for β cell responsiveness (Longuet
et al., 2005; Jaques et al., 2008; Goehring et al., 2011). ERK1/2
activation has long been recognized for its role in β cell growth
and insulin gene expression (Hugl et al., 1998; Briaud et al., 2003;
Khoo et al., 2003; Lawrence et al., 2008). Recently, acute ERK2
activity was demonstrated to be critical for the first phase of
insulin secretion (Leduc et al., 2017). Our interest in the pathways
leading to ERK1/2 activation and the inhibitory functions of
epinephrine in β cells led us to test the impact of epinephrine on
RTK signaling to ERK1/2. Epinephrine has different effects on the
ERK1/2 pathway depending on cell type and receptors expressed.
In β cells, epinephrine activates α2-adrenergic receptors and
inhibits insulin secretion as well as glucose-stimulated ERK1/2
activation (Peterhoff et al., 2003; Gibson et al., 2006).

We discovered that epinephrine suppressed RTK signaling in
a concentration-dependent manner and with varying potency
depending on the RTK. Activation of α2-adrenergic receptors
in pancreatic islet β cells has been extensively studied and is
well-known to suppress or completely inhibit insulin secretion
through Gαi/o-dependent signaling (Sharp, 1996; Straub and
Sharp, 2012). While physiological circulating concentrations of
catechols (epinephrine, norepinephrine) range from picomolar
to low nanomolar (Clutter et al., 1980; Dodt et al., 1997;
Kienbaum et al., 1998), often micromolar concentrations are used
to investigate pancreatic islet function (Sieg et al., 2004; Gibson
et al., 2006; Iwanir and Reuveny, 2008; Zhao et al., 2008; Zhang
et al., 2009; Slucca et al., 2010; Tian et al., 2011). Among the
RTKs we tested in β cells, we chose TrkB for its sensitivity to
stimulation with ligand, inhibition by epinephrine, and relative
lack of knowledge of its role in β cells. Our characterization
and analysis of BDNF-TrkB signaling to ERK1/2 in MIN6 β

cells revealed effects on growth and interactions with insulin
secretagogues and that epinephrine blocks TrkB signaling at the
receptor level in a Gi-dependent manner. We conclude from our
findings that the doses of epinephrine used in β cell experiments
should be carefully considered.

MATERIALS AND METHODS

Antibodies, Plasmids, and Reagents
All chemicals were purchased through Fisher Scientific unless
otherwise indicated and listed in Supplementary Table 1.

All relevant reagents used in this study are listed in
Supplementary Table 1. Concentrations of compounds
and ligands were chosen based either on the literature or on
empirical testing in MIN6 cells with dose–response curves. For
BDNF, the 10-ng/mL dose was chosen based on dose–response
curve stimulations of ERK1/2 activation in MIN6 cells. Above
that dose, no substantial increase in pERK1/2 was observed. As
the dose of epinephrine is a major point of this work, we used
commonly used micromolar doses found in the literature, as well
as less frequently used nanomolar doses in our experiments.

Immunoblotting
Cleared cell lysates (40–50 µg) were separated on 10% gels by
SDS-PAGE and transferred to nitrocellulose for immunoblotting.
All membranes were blocked in Odyssey blocking buffer (Licor)
for 1 h before overnight incubation with primary antibodies
diluted in blocking buffer. After three 10-min washes in
20 mM Tris–HCl pH 7.6, 150 mM NaCl, 0.1% Tween-20
(TBS-T), membranes were incubated with fluorescent secondary
antibodies for 1 h at room temperature. After three 10-
min washes in TBS-T, membranes were imaged on a Licor
Odyssey scanner.

MIN6 Cell Culture and Transfections
MIN6 β cells were cultured in Dulbecco’s modified Eagle’s
medium (D6429), supplemented with 15% fetal bovine serum,
100 units/ml penicillin, 100 µg/ml streptomycin, 292 µg/ml L-
glutamine, and 50 µM β-mercaptoethanol (Kalwat et al., 2016).
MIN6 cells in 12-well dishes were untreated or transfected with
Lipofectamine 2000 according to the manufacturer’s instructions
and cultured 48 h before use in experiments. For chronic
BDNF treatment, cells were incubated with 100 ng/ml BDNF
in complete culture media. Prior to stimulation, MIN6 cells
were washed twice with and incubated for 2 h in freshly
prepared glucose-free modified Krebs–Ringer bicarbonate buffer
(MKRBB: 5 mM KCl, 120 mM NaCl, 15 mM HEPES, pH 7.4,
24 mM NaHCO3, 1 mM MgCl2, 2 mM CaCl2, and 1 mg/ml
radioimmunoassay-grade BSA). Cells were lysed in 25 mM
HEPES, pH 7.4, 1% Non-idet P-40, 10% glycerol, 50 mM sodium
fluoride, 10 mM sodium pyrophosphate, 137 mM NaCl, 1 mM
sodium vanadate, 1 mM phenylmethylsulfonyl fluoride, 10 µg/ml
aprotinin, 1 µg/ml pepstatin, and 5 µg/ml leupeptin and cleared
of insoluble material by centrifugation at 10,000 × g for 10 min
at 4◦C for subsequent use.

Human Pancreatic Tissue Microscopy
Paraffin-embedded formalin-fixed 5-µm sections of de-identified
human pancreas tissue on glass slides were obtained through
the Simmons Comprehensive Cancer Center at UT Southwestern
Medical. Slides were deparaffinized with the assistance of the
UTSW Molecular Pathology Core using an automated system
for xylene and ethanol washes. Antigen retrieval was performed
by heating in citrate buffer1. After three 10-min washes in PBS-
T (137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 1.8 mM
KH2PO4, pH 7.4, 0.05% Tween-20), slides were blocked for

1http://www.ihcworld.com/_protocols/epitope_retrieval/citrate_buffer.htm
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1 h at room temperature in normal donkey serum (NDS) block
solution (2% donkey serum, 1% bovine serum albumin, 0.1%
cold fish skin gelatin, 0.1% Triton X-100, 0.05% sodium azide,
PBS-T). Sections were outlined with a barrier pen and incubated
overnight at 4◦C with primary antibodies. Primary antibodies
were diluted in NDS blocking solution at the indicated dilutions
(Supplementary Table 1). After three 10-min washes in PBS-T,
slides were incubated in secondary antibodies in NDS block for
1 h at room temperature. The washed slides were mounted with
Dapi Fluoromount-G (SouthernBiotech #0100-20) and imaged
on either an LSM700 Zeiss AxioObserver confocal microscope
equipped with a Plan-Apochromat 20x/0.8 M27 objective and a
MBS 405/488/555/639 beam splitter. Laser lines were 639 nm (for
TrkB), 555 nm (for Insulin), 488 nm (for Glucagon), and 405 nm
(for DAPI) each at 2% power. Images were processed in Zeiss’
Zen software to add scale bars, set coloration for channels, and
generate merged images. Scale bars indicate 50 µm.

Statistical Analysis
Quantitated data are expressed as mean ± SD. Data were
evaluated using Student’s t test or ANOVA with multiple
comparisons test as appropriate and considered significant if
P < 0.05. Graphs were made in GraphPad Prism 8.

RESULTS

Epinephrine Differentially Blocks
Activation of RTK Signaling in MIN6 β

Cells
In our studies of β cell ERK1/2 activation, we noted an interaction
between signaling downstream of RTKs and α2-adrenergic
receptor stimulation. To expand upon these observations,
we stimulated MIN6 β cells with different RTK ligands to
examine the effects of epinephrine. EGF, BDNF, and FGF1
stimulated ERK1/2 phosphorylation within 5 min (Figure 1A).
Pretreatment with epinephrine for 15 min blocked downstream
phosphorylation of ERK1/2 to varying degrees depending
on the RTK in question (Figure 1A). We found that EGF
signaling to ERK1/2 was partially inhibited by epinephrine
(Figure 1A); however, BDNF- and FGF1-induced signaling
appeared more sensitive. We chose BDNF-TrkB for our
experiments because of its sensitivity to epinephrine and because
it is relatively underexplored compared to other RTK signaling
pathways in β cells.

To confirm the involvement of that α2-adrenergic receptor
activation, we tested the isoform-selective adrenergic agonist
UK14304, which also suppressed BDNF-TrkB signaling to
ERK1/2 in MIN6 cells (Figure 1B). We also found that
epinephrine’s effects on BDNF-TrkB signaling were prevented by
the α2-adrenergic receptor antagonist yohimbine (Figure 1C).

TrkB Is Expressed in Human Islets and
Promotes Cell Growth in MIN6 β Cells
TrkB was reported to be expressed only in α cells (Shibayama
and Koizumi, 1996; Hanyu et al., 2003); however, given our

FIGURE 1 | Continued
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FIGURE 1 | α2-adrenergic stimulation suppresses receptor tyrosine kinase
signaling in MIN6 β cells. (A) To determine the effects of epinephrine
pretreatment on receptor tyrosine kinase signaling in β cells, MIN6 cells were
preincubated in KRBH with 2 mM glucose for 1 h 45 min before addition of
epinephrine (10 µM) for 15 min. Cells were stimulated with the indicated
ligand for 5 min (EGF 10 ng/ml; BDNF 10 ng/ml; FGF1 10 ng/ml).
Immunoblots are shown for phospho-ERK1/2 (pERK1/2) and total ERK1/2,
and data are the mean ± SD for three independent experiments. *P < 0.05 vs
Ctrl by two-way ANOVA with Dunnett’s multiple-comparison test. (B) To
confirm that α2-adrenergic stimulation prevents BDNF-stimulated signaling,
MIN6 cells were preincubated in KRBH for 1 h 45 min before treatment with
0.1% DMSO, 10 µM epinephrine (Epi), or 10 µM UK14304 for 15 min. Cells
were then stimulated with BDNF (10 ng/ml) for 5 min. Immunoblots are shown
for phospho-ERK1/2 (pERK1/2) and total ERK1/2, and data are the
mean ± SD of three independent experiments. *P < 0.05 for Control vs BDNF
and †P < 0.05 for DMSO vs drug by 2-way ANOVA with Tukey’s
multiple-comparison test. (C) To determine if epinephrine-mediated inhibition
of BDNF-TrkB signaling is due to its action on the α2-adrenergic receptor,
MIN6 cells were preincubated in glucose-free KRBH for 1 h and 40 min and
then treated with or without the α2-adrenergic receptor antagonist yohimbine
(10 µM). After 5 min, epinephrine (5 µM) was added as indicated. After
15 min, cells were stimulated with BDNF (10 ng/ml) for 5 min. Immunoblots for
pERK1/2 and total ERK1/2 are shown with bar graph quantitation being the
mean ± SD of three independent experiments.

β cell line data, we sought to confirm expression in human
islets with multiple antibodies. TrkB was detected in both β

and α cells in human (Figure 2A) and mouse (Supplementary
Figure 1A) pancreatic islets by immunocytochemistry with
independently validated anti-TrkB antibodies (Supplementary
Figure 1B). The NTRK2 gene encodes multiple isoforms
of TrkB. The major forms are full-length kinase domain-
containing TrkB (TrkB.FL) and a truncated form, TrkB.T1,
which is missing in the kinase domain (Fenner, 2012).
A TrkB antibody against a C-terminal epitope only found
in TrkB.FL showed primarily α cell labeling (Figure 2A;
SCBT), in agreement with previous work (Shibayama and
Koizumi, 1996; Hanyu et al., 2003). However, antibodies
with extracellular N-terminal epitopes labeled both α and β

cells (Figure 2A; Millipore, Abcam). We found that clonal
rodent β cell lines responded to as little as 2.5 ng/ml BDNF,
leading to activation of ERK1/2 within 5 min of stimulation
(Supplementary Figures 1C–E). BDNF had a negligible effect on
the phosphorylation of Akt but increased S6 phosphorylation at
30 min (Supplementary Figure 1F).

BDNF-stimulated activation of ERK1/2 was blocked by
small-molecule TrkB inhibitors (GNF-5837 and lestaurtinib)
(Supplementary Figures 1G,H) as well as by CRISPR/Cas9-
mediated knockout of TrkB (TrkB-KO) (Figure 2B).
Multiple clonal lines of TrkB knockout MIN6 cells were
confirmed to lack TrkB by immunoblotting and verified to
retain glucose-induced ERK1/2 activation (Supplementary
Figure 1I). BDNF-stimulated ERK1/2 signaling was rescued
upon transient re-expression of TrkB.FL but not TrkB.T1
(Figure 2B). Additionally, we observed that 48 h of BDNF
treatment increased viability (Figure 2C). We did not
observe any effects of chronic BDNF treatment on glucose-
stimulated insulin secretion under similar conditions
(Supplementary Figure 1J).

Epinephrine Inhibits TrkB Signaling at
the Receptor Level and Only at
Micromolar Concentrations
To determine how α2-adrenergic stimulation could prevent
BDNF-TrkB signaling to ERK1/2, we probed the upstream
phosphorylation state of TrkB itself. Typically, BDNF stimulates
autophosphorylation of the TrkB receptor at several tyrosine
residues (Huang and Reichardt, 2003). We found that BDNF-
induced tyrosine autophosphorylation of TrkB was blocked
by epinephrine in MIN6 β cells (Figure 3A), raising the
possibility of direct effects on the TrkB receptor tyrosine kinase.
Because nanomolar concentrations of epinephrine are sufficient
to inhibit glucose-stimulated insulin secretion in our InsGLuc-
MIN6 reporter cells (Figure 3B), we tested the ability of both
5 nM and 5 µM epinephrine to affect MIN6 responses to
BDNF or EGF. 5 nM epinephrine suppressed neither BDNF or
EGF signaling to ERK nor TrkB tyrosine phosphorylation, while
5 µM epinephrine blocked BDNF signaling, yet EGF retained its
significant ability to activate ERK1/2 (Figure 3C).

Epinephrine-Mediated Inhibition of
BDNF-TrkB Signaling Depends on Gi but
Does Not Involve Calcium Influx or cAMP
Generation
Epinephrine inhibits insulin secretion in β cells through α2-
adrenergic receptors linked to Gαi (Straub and Sharp, 2012).
To delve further into the mechanism of epinephrine-mediated
blockade of BDNF-TrkB signaling, we treated cells with pertussis
toxin (PTX) which inactivates Gαi. INS1 β cells were used
because in our experience they exhibited a more robust
response to PTX than MIN6 cells, and INS1 cells responded
well to BDNF (Supplementary Figure 1C). PTX prevented
the effects of epinephrine on BDNF- and glucose-mediated
activation of ERK1/2 (Figure 4A), indicating a requirement for
Gαi/o signaling.

Cross talk between receptor tyrosine kinases and GPCRs has
been found (Marty and Ye, 2010), although little is known
about these pathway interactions in β cells. One mechanism
Gαi/o uses to suppress β cell function is through inhibition
of adenylyl cyclase (Straub and Sharp, 2012). Therefore, we
performed a series of experiments to determine the cross talk
between BDNF-TrkB and pathways that generate cAMP. We
tested whether BDNF exhibited cross talk with epinephrine,
glucagon-like peptide 1 receptor (GLP-1R) agonism, cAMP
analogs, and glucose. Pretreatment with GLP-1R agonists GLP-
1 or exendin-4, or with the cAMP analog Sp-8Br-cAMPS,
enhanced ERK1/2 phosphorylation in response to BDNF in the
presence of glucose (Supplementary Figures 2A,B), suggesting
interactions among TrkB, the GLP-1 receptor/cAMP, and glucose
metabolic pathways. Epinephrine pretreatment dramatically
inhibited ERK1/2 activation in response to either glucose, BDNF
or their combination.

We also tested whether BDNF on its own can induce
cAMP generation in MIN6 cells expressing a bioluminescence-
resonance energy transfer-based cAMP reporter (cAMP sensor
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FIGURE 2 | TrkB is expressed in pancreatic islets and chronic BDNF signaling promotes insulin secretion and β cell growth. (A) Human pancreas tissue sections
were immunostained with antibodies against TrkB (shown in green), insulin to stain β cells (shown in red), glucagon to stain α cells (shown in red), and DAPI to stain
nuclei (shown in blue). For the example shown of Millipore and Santa Cruz anti-TrkB antibody staining, serial sections from the same tissue block were stained with
different TrkB antibodies and the same islet was located for imaging. Separate panels are shown to illustrate the overlap of TrkB with β cells (insulin) and TrkB with α

cells (glucagon). Overlapping regions of green TrkB staining and red insulin/glucagon staining show up yellow. Data are representative of imaging from 2 human
pancreas tissue donors. Scale bar, 50 µm. (B) To confirm that TrkB-FL is indeed the BDNF receptor signaling to ERK1/2 in β cells, TrkB KO MIN6 cells were
transfected with plasmids expressing full-length TrkB (TrkB-FL), TrkB-T1, both, or empty vector (pIRES-3xFlag-dsRed). After 48 h cells were preincubated in KRBH
with 4.5 mM glucose for 2 h and stimulated with 10 ng/ml BDNF for 5 and 30 min. Data are the mean ± SD of three independent experiments. *P < 0.05 for 0 vs
5 min of BDNF stimulation by two-way ANOVA using Dunnett’s multiple-comparison test. (C) To assess pro-growth effects of chronic BDNF stimulation, MIN6 cells
plated in 96-well dishes were incubated for 48 h with BDNF (100 ng/ml) followed by Cell Titer Blue assay for viability. Bar graph is the mean ± SD from three
independent passages of cells. *P < 0.05 Control vs. BDNF by Student’s t-test.
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FIGURE 3 | Epinephrine suppresses BDNF signaling to ERK by blocking TrkB activation. (A) To determine if epinephrine affected the upstream activation of TrkB
itself, MIN6 cells were preincubated in KRBH containing 2 mM glucose for 1 h 45 min before addition of epinephrine (10 µM) for 15 min. Cells were then stimulated
with BDNF (10 ng/ml) or glucose (20 mM) for 5 min. Western blot analysis shows phosphorylated TrkB (pY516) and ERK1/2 (pERK1/2) normalized to total ERK1/2
(N = 3). Vertical white lines indicate that intervening lanes have been spliced out. *P < 0.05 vs. respective basal. †P < 0.05 Control vs. Epinephrine by Student’s
t-test. (B) InsGLuc-MIN6 cells were preincubated in glucose-free KRBH for 1 h followed by stimulation with glucose (20 mM) in the presence or absence of
epinephrine (0.5 nM, 5 nM, or 5 µM) for 1 h. Supernatant was collected for Gaussia luciferase assays and the data are reported as the fold change with respect to
basal unstimulated cells (N = 6). All graphs are the mean ± SD. *P < 0.05 Basal vs. Glucose by two-way ANOVA using Dunnett’s multiple-comparison test. (C) MIN6
cells were treated as in panel (A); however, the cells were pretreated with either 5 nM or 5 µM epinephrine prior to stimulation with EGF or BDNF for 5 min. Western
blot analysis shows only 5 µM epinephrine suppressed pTrkB (N = 2) and pERK1/2 (N = 3) signaling by BDNF. Bar graph is the mean ± SD. *P < 0.05 vs. respective
Basal by two-way ANOVA using Dunnett’s multiple-comparison test.

using YFP-Epac-RLuc or CAMYEL) (Jiang et al., 2007; Guerra
et al., 2017). While the known Gs activator GLP-1 increased
cAMP (Holst, 2007), BDNF had no effect, either alone
or in combination with glucose or GLP-1 (Supplementary
Figure 2C). However, through inhibition of adenylyl cyclase,
Gαi/o suppresses cAMP generation, and basal levels of cAMP
may play a role in supporting BDNF-TrkB signaling (Ji et al.,
2005). Therefore, we tested whether adenylyl cyclase inhibitors

dideoxyadenosine (ddAd) and SQ22536 had the same effect as
epinephrine. These compounds did not impact BDNF-stimulated
ERK1/2 activation (Supplementary Figure 2D). Therefore, while
BDNF-TrkB signaling can synergize with cAMP to enhance
ERK1/2 activation, these data suggest against a requirement for
cAMP production for BDNF-TrkB signaling in MIN6 β cells.

We also examined the involvement of calcium influx, which
regulates ERK1/2 activation in β cells and is inhibited by
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FIGURE 4 | Epinephrine blockade of BDNF signaling depends on Gαi/o but is unaffected by Ca2+ influx, PI3K/PDK1 inhibition, or treatment with KCl or BaCl2. (A) To
determine the dependence of epinephrine on Gi/o activation, INS1 β cells were treated with 200 ng/ml pertussis toxin (PTX) for 18 h in the culture medium. Cells
were then incubated in KRBH with 2 mM glucose in the continued presence or absence of PTX for 2 h. Prior to stimulation, cells were treated with or without 10 µM
epinephrine for 15 min. Cells were stimulated with or without 10 ng/ml BDNF or 20 mM glucose for the indicated time. Data are the mean ± SD of three independent
experiments. *P < 0.05 vs respective basal by two-way ANOVA using Dunnett’s multiple-comparison test. (B) To determine the requirement of Ca2+ influx for
BDNF-TrkB signaling, MIN6 cells were preincubated in normal (Ca2+-containing) or Ca2+-free KRBH (compensated with additional 2 mM MgCl2) without glucose for
2 h. 15 min prior to stimulation, 10 µM epinephrine was added where indicated. Cells were stimulated with 10 ng/ml BDNF or 50 mM KCl for 5 min. Data are the
mean ± SD. *P < 0.05 compared to respective basal; a, P < 0.05 by one-way ANOVA using Tukey’s multiple-comparison test. (C) To determine if PI3K/PDK1
inhibition prevents the effects of epinephrine on BDNF signaling, MIN6 cells were preincubated for 1.5 h in glucose-free KRBH and then treated with DMSO (0.1%),
GDC-0941 (250 nM), or GSK2334470 (250 nM) for 15 min. Cells were then treated or not with 5 µM epinephrine for 15 min before stimulation with BDNF (10 ng/ml)
for 5 min. Bar graph represents the mean ± SE for four independent experiments. *P < 0.05 vs. Basal by two-way ANOVA with Dunnett’s multiple-comparison test.
(D) To block potassium channels potentially involved in membrane hyperpolarization, MIN6 cells were preincubated in glucose-free KRBH for 1 h and 40 min at
which point KCl or BaCl2 were added. At 1 h and 45 min, epinephrine (5 µM) was added. At 2 h cells were stimulated with BDNF for 5 min and then harvested for
Western blot analysis. All data are the mean ± SD of N = 3 experiments. *P < 0.05 by two-way ANOVA using Dunnett’s multiple comparisons test.

epinephrine (Straub and Sharp, 2012). Eliminating calcium influx
by removal of calcium from the incubation buffer had no impact
on BDNF signaling to ERK1/2, nor did it prevent the inhibiting
effect of epinephrine on BDNF-induced ERK1/2 activation.

KCl-mediated depolarization no longer activated ERK1/2 in the
absence of calcium (Figure 4B), demonstrating the mechanistic
dichotomy between growth factor and depolarization-stimulated
ERK1/2 activation.
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Epinephrine Inhibition of RTKs Is Not
Prevented by PI3K/PDK1 Inhibition or by
Blockade of Potassium Channels With
KCl or BaCl2
Inhibition of the phosphoinositide-3-kinase signaling pathway is
reported to abrogate the hyperpolarizing effects of micromolar
epinephrine (Zhang et al., 2009). We pretreated MIN6 β cells
with well-characterized inhibitors for PI3K (GDC-0941) and
PDK1 (GSK2334470) followed by epinephrine and analyzed the
response to BDNF. These inhibitors did not rescue BDNF-
induced ERK1/2 activation (Figure 4C), suggesting that the
PI3K/PDK1 pathway is not required for the Gi-dependent
blockade of TrkB activation.

Sieg et al. (2004) found that epinephrine hyperpolarizes cells
in a PTX-sensitive manner through unidentified K+ channels
that can be blocked by low-dose (20 mM) KCl or 0.5–1 mM
BaCl2. We tested these conditions and found that treating with
KCl or BaCl2 prior to addition of micromolar epinephrine
did not rescue BDNF-TrkB signaling to ERK1/2 (Figure 4D).
Another possible explanation is that epinephrine induces
TrkB receptor internalization. However, surface biotinylation
experiments did not show a significant effect of epinephrine
on the amount of surface TrkB (Supplementary Figure 3),
suggesting alternative mechanisms.

DISCUSSION

How Does α2-Adrenergic Stimulation
Block Activation of RTKs Like TrkB?
In addition to the events that distinguish signaling by BDNF and
glucose, the unexpected sensitivity of BDNF to inhibition by α2-
adrenergic agonism suggests a connection between signaling by
BDNF and insulin secretagogues. RTKs share certain signaling
pathways; the Ras-ERK1/2, PI3K-Akt and PLCγ pathways are
the most recognized (Minichiello, 2009). Depending on the
context, different ligand–receptor family members may signal
independently within the same cell to different pathways or
exhibit inter-pathway cross talk (Coster et al., 2017), but the exact
molecular mechanisms are not always clear. Other inputs such as
glucose-stimulated metabolic pathways can act on some of the
same signaling pathways seemingly by independent mechanisms
(Khoo and Cobb, 1997; Khoo et al., 2004; Kalwat et al., 2013).
α2-Adrenergic signaling is well-known to antagonize insulin
secretion in β cells, largely through heterotrimeric Gi/o proteins
(Gibson et al., 2006; Zhao et al., 2010; Straub and Sharp, 2012;
Ito et al., 2017). In tandem with this effect, α2-adrenergic
signaling blocks glucose-stimulated ERK1/2 phosphorylation
(Gibson et al., 2006), by mechanisms including inhibition of
adenylyl cyclase and blockade of calcium influx. We found that
BDNF signaling through the ERK1/2 pathway is also blocked
in β cells by epinephrine through a Gi-dependent mechanism
at the level of TrkB activation, indicating that essential β

cell regulatory inputs are shared between RTKs and glucose-
stimulated signaling pathways.

Gi-dependent cross talk between α2-adrenergic receptors and
RTKs is a relatively unexplored aspect of β cell signaling. GPCR-
RTK cross talk has been observed to activate RTK pathways, but
reports of G protein inhibition of RTKs are uncommon (Marty
and Ye, 2010). Endogenous plasma epinephrine concentrations
in humans normally range from 10 to 100 pg/ml (54.5–545 pM)
(Dodt et al., 1997; Kienbaum et al., 1998) but can increase to
1,000 pg/ml (5.4 nM) (Clutter et al., 1980) during infusions
of drugs or epinephrine itself. Micromolar and nanomolar
concentrations of epinephrine have been proposed to inhibit
insulin secretion through different mechanisms (Ito et al., 2017).
In the case of nanomolar concentrations of epinephrine, cAMP-
TRPM2 channel activity is suppressed, blunting glucose-induced
insulin secretion, although sulfonylurea-induced secretion is
unaffected (Ito et al., 2017). At ≥1 µM epinephrine, secretion
under nearly all conditions is inhibited and the plasma
membrane is hyperpolarized. In work from Peterhoff et al.,
1 µM epinephrine was shown to inhibit adenylyl cyclase and
hyperpolarize the plasma membrane in wild-type but not in
α2A/C-adrenergic receptor knockout β cells, suggesting that
the actions of micromolar concentrations of epinephrine occur
specifically through its receptor (Peterhoff et al., 2003). It is
worth noting recent findings showing that even relatively low
concentrations of ligand in the aqueous phase above cells can
become concentrated at the cell membrane due to interactions
with the phospholipid bilayer or receptors (Gherbi et al.,
2018), and GPCRs may also be activated by ultralow ligand
concentrations (Civciristov et al., 2018).

Because activation of RTK signaling by BDNF in MIN6 β cells
appears unaffected by changes in intracellular calcium and did
not induce cAMP on its own, suppression of these mechanisms is
unlikely to account for the effect of epinephrine on BDNF-TrkB
signaling. However, we found that micromolar concentrations
of epinephrine were required for its inhibitory activity on
TrkB. Why nanomolar epinephrine fails to block BDNF-TrkB
signaling when it is also known to activate Gi/o under those
conditions is an open question. Possible mechanisms may include
membrane hyperpolarization or activation of G protein-gated
inward rectifier potassium channels (Iwanir and Reuveny, 2008),
although it is unclear how membrane hyperpolarization could
affect TrkB. One possibility is that Gi/o binds directly to TrkB to
inhibit its activation, as was shown for Gi/o binding to insulin
receptor in β cells (Kim et al., 2012); however, mechanisms for
the concentration-dependent effects of epinephrine in such a
process are unclear.

What Is the Role for BDNF-TrkB
Signaling in β Cells?
BDNF and its receptor TrkB mediate aspects of neuronal
development and differentiation and are involved in whole-body
energy homeostasis (Hutchison, 2012, 2013) and diabetes (Verge
et al., 2014). BDNF can indirectly regulate islet hormones, like
glucagon, through actions in the hypothalamus and innervation
of the islet (Gotoh et al., 2013) and was suggested to have direct
effects on α cells (Hanyu et al., 2003). However, TrkB is expressed
in both rodent and human β and α cells, as supported by our data
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and others (Shibayama and Koizumi, 1996; Hanyu et al., 2003;
Uhlen et al., 2015; DiGruccio et al., 2016; Segerstolpe et al., 2016;
Fulgenzi et al., 2020). TrkB is expressed as two splice isoforms,
full-length TrkB (TrkB.FL) and TrkB.T1 which is missing the
cytosolic kinase domain, instead containing a short distinct
cytosolic tail (Fenner, 2012). Recent work from Fulgenzi et al.
(2020) has demonstrated that the TrkB splice isoform, TrkB.T1,
is involved in BDNF-induced insulin secretion and that BDNF
can induce insulin secretion from human islets at low glucose
concentrations. The relative amounts of TrkB.FL and TrkB.T1
in islet β and α cells has not been defined and could potentially
explain the different staining patterns we observe with antibodies
to different epitopes. While TrkB.T1 mRNA expression is much
greater than full-length TrkB in β cells, TrkB.FL is indeed
expressed and even a relatively low amount of RTK at the protein
level is sufficient for signaling. We have observed that even>90%
knockdown of TrkB protein by siRNA was insufficient to blunt
BDNF-stimulated ERK1/2 activation. Not until TrkB protein was
eliminated completely by CRISPR/Cas9 did we prevent BDNF-
ERK1/2 signaling (Figure 2B).

There are multiple studies linking circulating BDNF
concentration to type 2 diabetes in humans and mice (Krabbe
et al., 2007; Sha et al., 2007; Li et al., 2016; Murillo Ortiz et al.,
2016) as well as in type 1 diabetic patients (Tonoli et al., 2015).
Treating db/db mice with BDNF lowered blood glucose, and
increased pancreatic insulin content (Tonra et al., 1999) and
β cell area and staining intensity were increased (Yamanaka
et al., 2006). BDNF may also have a cytoprotective role in the
islet because treatment with BDNF prevented RIN5F β cell
death in response to alloxan, streptozotocin, doxorubicin, and
benzo(a)pyrene (Bathina et al., 2016). Additionally, we observed
that the stimulatory concentration of BDNF is well within the
range of the circulating hormone (Krabbe et al., 2007; Dell’Osso
et al., 2009; Matthews et al., 2009; Karczewska-Kupczewska et al.,
2012; Kurita et al., 2012; Pillai et al., 2012). These studies indicate
the need for further analysis of the effects and mechanisms of
action of BDNF-TrkB signaling in pancreatic islets.

TrkB is known to exhibit cross talk with other kinases,
including Src-family kinases (Huang and McNamara, 2010), Ret
(Esposito et al., 2008), and the EGF receptor (Puehringer et al.,
2013). Oligomerization between receptor kinases TrkA and TrkB
could potentially be a contributor to the actions of NGF and may
also contribute to BDNF-TrkB signaling not reflected by ERK1/2
activity. Another factor that may complicate interpretation of
BDNF function is the expression of isoforms lacking the kinase
domain. In our knockout-rescue experiments, TrkB.T1 seemed
to suppress the activity of the full-length receptor, as has been
suggested in other systems (Eide et al., 1996; Fryer et al., 1997; De
Wit et al., 2006). In the future, specific deletion of TrkB.FL from
different islet cell types in mice from early in development or in
the adult phase may deconvolute roles for TrkB.FL and TrkB.T1
in islet development and function.

Future Directions
Whether epinephrine or Gi/o activation impacts RTK signaling
in other cell types is an open question. Adrenergic stimulation
of β cells has been suggested to impair β cell growth at near
micromolar concentrations (Zhao et al., 2014), and while cAMP

is potentially involved, other mechanisms including suppression
of RTK signaling may be at work in such conditions.

Future studies are required to place these actions of BDNF in
an in vivo context to assess their metabolic impact, as well as to
elucidate the mechanism underlying the unanticipated finding
that epinephrine prevents activation of TrkB itself by BDNF.
If any components of that mechanism are pharmacologically
targetable, it may be possible to modulate TrkB or other RTK
signaling in islets in vivo for therapeutic benefit. Notably, single-
nucleotide polymorphisms in and near the ADRA2A gene
(encoding α2A-adrenergic receptor) have been correlated with
increased fasting glycemia and type 2 diabetes risk (Liggett,
2009; Dupuis et al., 2010; Talmud et al., 2011; Langberg et al.,
2013); impaired glucose-stimulated insulin secretion is a factor
in this increased risk. Our findings suggest there is potential
for contribution of altered adrenergic cross talk with RTK
signaling in disease. In addition, these results have implications
for other systems in which adrenergic and receptor tyrosine
kinase signaling may converge, such as cancer (Hui et al., 2008;
Powe et al., 2011; Stock et al., 2013).
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Tracheal cartilage provides architectural integrity to the respiratory airway, and defects

in this structure during embryonic development cause severe congenital anomalies.

Previous genetic studies have revealed genes that are critical for the development of

tracheal cartilage. However, it is still unclear how crosstalk between these proteins

regulates tracheal cartilage formation. Here we show a core regulatory network

underlying murine tracheal chondrogenesis from embryonic day (E) 12.5 to E15.5,

by combining volumetric imaging of fluorescence reporters, inhibitor assays, and

mathematical modeling. We focused on SRY-box transcription factor 9 (Sox9) and

extracellular signal-regulated kinase (ERK) in the tracheal mesenchyme, and observed

a synchronous, inverted U-shaped temporal change in both Sox9 expression and ERK

activity with a peak at E14.5, whereas the expression level of downstream cartilage

matrix genes, such as collagen II alpha 1 (Col2a1) and aggrecan (Agc1), monotonically

increased. Inhibitor assays revealed that the ERK signaling pathway functions as an

inhibitory regulator of tracheal cartilage differentiation during this period. These results

suggest that expression of the cartilage matrix genes is controlled by an incoherent

feedforward loop via Sox9 and ERK, which is supported by a mathematical model.

Furthermore, the modeling analysis suggests that a Sox9-ERK incoherent feedforward

regulation augments the robustness against the variation of upstream factors. The

present study provides a better understanding of the regulatory network underlying the

tracheal development and will be helpful for efficient induction of tracheal organoids.

Keywords: chondrogenesis, FRET imaging, incoherent feedforward loop, mathematical model, MAP kinase/ERK,

SOX9, trachea

INTRODUCTION

The mammalian trachea is a tubular organ of the respiratory system and is composed of
several tissues from different origins, such as endoderm-derived epithelium and mesoderm-
derived cartilage (Cardoso and Lü, 2006). The tracheal cartilage, also known as the tracheal ring,
exhibits a C-shaped semi-ring architecture that surrounds the epithelial airway on the ventral
side and provides structural support. Abnormal formation of the tracheal rings can collapse the
airways and obstruct breathing, which leads to congenital defects, including tracheomalacia and
tracheal stenosis (Arooj Sher and Liu, 2016). Thus, a fundamental understanding of the processes
underpinning tracheal ring development is essential, yet it is still incomplete.
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The development of tracheal rings has been investigated using
mouse genetics, which has revealed the importance of multiple
transcription factors and signaling pathways. Among these, SRY-
box transcription factor 9 (Sox9) is known to be a master
regulator that plays a critical role in cartilage differentiation
by inducing gene expression of key cartilage matrix molecules,
such as collagen II alpha 1 (Col2a1), and aggrecan (Agc1) (Bi
et al., 1999; Han and Lefebvre, 2008). It has been demonstrated
that SOX9 functions in each successive step of the cartilage
differentiation processes, including mesenchymal condensation,
commitment to the chondroprogenitor, and maintenance of
proliferating chondrocytes (Bi et al., 1999; Akiyama et al., 2002).
The importance of Sox9 in tracheal development was revealed
by reports which described a complete absence of the tracheal
rings in mesenchymal Sox9 knockout mice (Hines et al., 2013;
Turcatel et al., 2013). In addition, the haploinsufficiency of Sox9
caused hypoplastic cartilage formation, indicating that SOX9
dosage is critical to tracheal ring formation (Bi et al., 2001). In
sonic hedgehog (Shh) knockout mice, Sox9 mRNA expression
was lost in the developing tracheae at a later stage of tracheal ring
development, leading to the failure of tracheal ring formation,
suggesting that Shh plays an important role in controlling Sox9
expression (Park et al., 2010).

Another important signaling pathway is the fibroblast
growth factor (Fgf)—extracellular signal-regulated kinase
(ERK) signaling axis. Previous studies showed that severe
malformations of the tracheal rings were observed when Fgf10 or
its main receptor Fgfr2b were either ubiquitously knocked out or
overexpressed in the tracheal mesenchyme (Tiozzo et al., 2009;
Sala et al., 2011). Abnormal tracheal cartilage formation was also
reported in the FGF18 overexpressing mice (Elluru et al., 2009).
These results suggest that FGF signaling level must be within a
specific range to ensure correct formation of the tracheal rings.
The most downstream kinase of the signaling cascade, ERK, is
considered to be essential for tracheal development because the
genetic deletion of both Mek1 and Mek2 (upstream kinase of
ERK) in the mesenchyme resulted in defective tracheal rings
(Boucherat et al., 2014). These studies make a strong case for the
necessity of Fgf-ERK signaling in the normal development of
the tracheal rings; however, the mechanisms through which ERK
activation regulates cartilage differentiation are still unknown. It
is noteworthy that there are several studies which have presented
conflicting results; on one hand, the ERK signaling enhances the
expression of cartilage matrix molecules, shown using mouse
primary chondrocytes (Murakami et al., 2000), while on the
other, the ERK signaling suppresses it, demonstrated using
chicken embryonic limb buds (Oh et al., 2000; Bobick and Kulyk,
2004; Zákány et al., 2005).

In this study, we explore the crosstalk between the Shh-
Sox9 and Fgf-ERK signaling pathways and the regulatory
network that contributes to tracheal ring development. We
first show a synchronized temporal profile of Sox9 expression
and ERK activity using volumetric imaging of fluorescence
reporters. Combined with inhibitor assays, we then show
that cartilage matrix genes are positively regulated by Sox9,
and in parallel, negatively regulated by ERK activity, in an
incoherent feedforward manner. Finally, a mathematical model

demonstrates that an incoherent feedforward loop via Sox9 and
ERK can explain the dynamics of cartilagematrix gene expression
during tracheal cartilage formation.

RESULTS

Mesenchymal Condensation Begins
Between E12.5 and E13.5
To morphologically characterize the developing murine trachea,
we dissected tracheae from the embryos and processed the
tissues using whole mount immunohistochemistry to examine
the staining of the nuclei and cell membrane of the tracheal
epithelium. We focused on the ventral region of the tracheal
mesenchyme, where the tracheal cartilage rings are formed, and
we show the frontal and sagittal planes of the ventral region
(Figure 1A). We also show the flattening of nuclei, which were
used to evaluate how flat the best fitting ellipse should be in
comparison to a circle for nuclei evaluations (Figure 1B).

At E12.5, the mesenchymal nuclei were almost round
and homogeneously distributed, in both the frontal and the
sagittal planes (Figure 1A). At E13.5, some mesenchymal
nuclei were more elongated and surrounded the cells close
to the epithelium, forming a template of the chondrogenic
nodule (Figures 1A,C). This process is known as mesenchymal
condensation, the initial step of chondrogenesis in general
(Goldring et al., 2006). These condensations were observed
between the ridges of wavy tracheal epithelium (Figure 1A’). At
E14.5, the peripheral nuclei of the mesenchymal condensations
were further elongated and the azimuthal polarization pattern
was observed (Figure 1A–C). This phenomenon is consistent
with the formation of the perichondrium, the next step of
mesenchymal condensation during chondrogenesis (Goldring
et al., 2006). These observations indicate that mesenchymal cell
differentiation into chondrocytes of the tracheal cartilage begins
between E12.5 and E13.5.

Sox9 Expression Increases up to E14.5,
and Decreases Thereafter
We next examined the expression of Sox9, the early
differentiation marker of chondrocytes, in the developing
murine tracheae from E12.5 to E15.5. For this purpose, we
employed Sox9-EGFP knock-in mice, in which the expression
level of EGFP has been shown to correlate with the endogenous
expression of Sox9 (Nel-Themaat et al., 2009; Nakamura et al.,
2011). EGFP fluorescence in the ventral side of the epithelium
was observed using two-photon microscopy.

Observation by 3D imaging showed the appearance of
distinct cell clusters, defined by EGFP intensity, from E13.5
onward (Figure 2A). These high-EGFP clusters are located
between epithelial ridges, corresponding to the mesenchymal
condensations (Figure 1A and Supplementary Figure 1A). The
condensed mesenchymal cells with high EGFP intensity also
exhibited a C-shaped semi-ring structure, indicating formation
of the chondrogenic nodule (Supplementary Figure 1B). We
then quantified the EGFP intensity in each mesenchymal cell.
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FIGURE 1 | Nuclear distribution in the developing trachea. (A) Immunofluorescence section images of anti-E-cadherin (magenta) with DAPI nuclear counterstaining

(white) in developing murine tracheae from E12.5 to E14.5 (upper: frontal plane, lower: sagittal plane). The data for E15.5 are not included since there is no significant

qualitative change of the nuclear configuration from E14.5. In the pictographic transcriptions in the top right corner, color denotes the flattening of nuclei seen in the

dotted windows. Cyan arrowheads indicate the point visualized in the orthogonal views. Scale bar, 50µm. (A’) Magnified images corresponding to the dotted

windows in the lower row of (A) (upper) and the flattening of nuclei. Gray indicates epithelium. Scale bar, 20µm. L, left; R, right; A, anterior; P, posterior; V, ventral; D,

dorsal. (B) Schematics of the flattened nuclei. (C) Flattening of nucleus from E12.5 to E14.5 in the sagittal plane. Each point represents the mean value within the

sample. Welch’s two-sample t-test, E12.5–E13.5: p < 0.001. E13.5–E14.5: p = 0.152. n = 6 from different trachea.

Although EGFP expression was uniform along the antero-
posterior axis in the median line at E12.5, the periodic pattern
of EGFP intensity was confirmed at E13.5 and the amplitude
of this periodic intensity became larger at E14.5 (Figure 2B).
The median EGFP intensity in the mesenchymal condensations
increased 1.18-fold from E12.5 to E13.5, and 1.65-fold from
E13.5 to E14.5 (Figure 2C), which linearly correlates with
Sox9 protein levels (Supplementary Figures 1C,D). However,
the EGFP intensity in the mesenchymal condensations decreased
0.56-fold from E14.5 to E15.5 (Figures 2A–C), indicating that
Sox9 expression is suppressed at E14.5.

We also quantified the expression levels of various cartilage
matrix genes (the major determinants of chondrogenesis),
including Col2a1 and Agc1, as well as Sox9, by RT-qPCR analysis.
Sox9 expression in the whole trachea showed an increasing profile
from E12.5 to E14.5 and a slight decreasing profile from E14.5
to E15.5 (Figure 2D). Note that the RT-qPCR measures cell-
ensemble of gene expressions in the whole trachea. Because the

growth of the chondrogenic nodule was evident from E14.5
to E15.5 (Figures 2A,B), the value obtained by RT-qPCR at
E15.5 was most likely to be larger than the net expression
level in the chondrogenic nodule. Thus, Sox9 expression would
exhibit a non-monotonic profile with a peak at E14.5, similar
to that obtained from our imaging analyses of Sox9-EGFP
(Figure 2D). However, Col2a1 and Agc1 exhibited monotonic
increases during progression through the developmental stages
(Figure 2D). These results suggest that other signaling inputs,
together with Sox9, primarily regulate the expression of the
cartilage matrix genes.

ERK Activity Increases up to E14.5 and
Decreases Thereafter, Alongside Sox9
Expression
Next, to examine the contribution of the Fgf-ERK axis, we
quantified the spatiotemporal ERK activity in the developing
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FIGURE 2 | Sox9 expression profile in the developing trachea. (A) Section view of EGFP in the frontal (upper) and sagittal (bottom) planes from E12.5 to E15.5. Color

denotes the normalized EGFP intensity. Cyan arrowheads in each plane represent the position of orthogonal sections. Scale bar, 50µm. L, left; R, right; A, anterior; P,

posterior; V, ventral; D, dorsal. (B) EGFP intensity in each mesenchymal cell along the antero-posterior axis. Dots represent mean intensity in each cell and solid lines

represent fitted line with a one-term Fourier function. n > 200 from 3 different tracheae in each stage. (C) EGFP intensity in the entire mesenchyme for E12.5 and

within the cluster from E13.5 onward. Welch’s two-sample t-test, E12.5–E13.5: p < 0.001, E13.5–E14.5: p < 0.001, E14.5–E15.5: p < 0.001. n > 100 from 3

different tracheae in each stage. (D) Relative expression level of Sox9, Col2a1, and Agc1 from E12.5 to E15.5. One-sample t-test, Sox9, E13.5: p = 0.464, Col2a1,

E13.5: p = 0.171, Agc1, E13.5: p = 0.158. Welch’s two-sample t-test, Sox9, E13.5–E14.5: p < 0.001, E14.5–15.5: p = 0.344. Col2a1, E13.5–E14.5: p = 0.011,

E14.5–15.5: p = 0.048. Agc1, E13.5–E14.5: p = 0.063, E14–E15: p = 0.035. n = 3 from independent experiments.

trachea. For this purpose, we used a reporter mouse line
that expresses a Förster resonance energy transfer (FRET)-
based biosensor for ERK activity, which is localized in
the nucleus (Harvey et al., 2008; Komatsu et al., 2011,
2018). Despite being designed for ubiquitous expression,
the fluorescence signal of non-chondrogenic nodules was
so dim that ERK activity could be quantified only in the
chondrogenic nodules.

FRET imaging by two-photon microscopy revealed
that ERK activity in the mesenchymal condensations
increased 1.05-fold from E12.5 to E13.5, and 1.26-
fold from E13.5 to E14.5, but decreased 0.89-fold from
E14.5 to E15.5, (Figures 3A,B). It is worth noting that
this activity profile is similar to the expression profile

of Sox9 (Figure 2D). Treatment with PD0325901, an
inhibitor for MEK (the kinase upstream of ERK), led to a
significant decrease in ERK activity at all stages (Figure 3B),
meaning that the ERK is activated. This suggests that the
level of ERK activity would have a potential role in the
developmental process.

We also performed time-lapse imaging of the dissected
tracheae using the FRET biosensor-expressing mice to
continuously monitor the dynamics of the mesenchymal
cells and the changes in ERK activity. In tracheae cultured
from E12.5 embryos, the mesenchymal cells in the ventral
epithelium formed some condensations and ERK activity
gradually increased during this process (Figures 3C,C’).
Single cell quantification indicated that averaged ERK activity
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FIGURE 3 | ERK activity profile in the developing trachea. (A) ERK activity map in the trachea on the frontal plane of the ventral side of the epithelium. Color denotes

levels of ERK activity. Scale bar, 50µm. L, left; R, right; A, anterior; P, posterior. (B) ERK activity in the condensed region before and after 120min of treatment with the

MEK inhibitor (500 nM). Welch’s two-sample t-test, p < 0.001 in all groups. n > 480 for each category from 3 independent experiments. (C,C’) Time-lapse snapshots

of ERK activity in the mesenchyme of an explant trachea cultured from E12.5. The far right panel in (C) corresponds to the dotted window in (C’). Magenta arrows

indicate the mesenchymal condensations. Scale bars, 20µm for (C) and 100µm for (C’). (D) Time-series of ERK activity in nodule mesenchyme. Color denotes the

different starting stages of the explant cultures. Explant tracheae were cultured from E12.5. Mean and s.d. n > 70 from 2 independent experiments. (E,E’) Time-lapse

snapshots of ERK activity in the mesenchyme of an explant trachea cultured from E14.5. The far right panel in (E) corresponds to the dotted window in (E’). Scale

bars, 40µm for (E) and 100µm for (E’).

increased to a maximum of 1.31-fold when cultured from
E12.5 for 40 h (Figure 3D). The increase in averaged ERK
activity was also observed when E13.5 tracheae were cultured
for 24 h (1.17-fold, Figure 3D). In contrast, ERK activity
in the chondrogenic nodules decreased 0.78-fold when
cultured from E14.5 (Figures 3D,E,E’). These observations
confirmed that the gradual activation of ERK switches at E14.5
to inactivation.

ERK Activation Is Dispensable for
Mesenchymal Condensation
We then explored the role of ERK activation in the development
of tracheal cartilage. For these experiments, we treated tracheae
dissected from E12.5 embryos with a MEK inhibitor under
ex vivo culture conditions for 1 day. Since how the nuclei
change shape in a way that is characteristic of mesenchymal
condensation in the initial differentiation step occurring between
E12.5 and E13.5 (Figures 1A–C), we focused on assessing the

shape and distribution of the mesenchymal nuclei, as well
as Sox9 levels in the condensations. We observed elongated
mesenchymal nuclei, that were distributed concentrically in
tracheae treated with the MEK inhibitor, similar to the
control samples (Figures 4A,B,D) and to the E13.5 samples
(Figure 1A,A′). Furthermore, the increase in Sox9 levels during
mesenchymal condensation was confirmed in PD0325901-
treated tracheae as well as in the control explants (Figures 4A,B).
These results indicate that the activation of ERK between E12.5
and E13.5 is dispensable for mesenchymal condensation, which
is consistent with a previous report (Oh et al., 2000).

We also examined the effect of mesenchymal condensation
on the suppression of cell-generated contractile forces, since
it has been shown that cell contraction drives mesenchymal
condensation in the development of other organs (Mammoto
et al., 2011; Shyer et al., 2017). Tracheae dissected at E12.5 were
treated with blebbistatin, an inhibitor of non-muscle myosin
II, and cultured for 1 day. Most mesenchymal nuclei remained
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FIGURE 4 | ERK activation in mesenchymal condensation. (A–C) Immunohistochemistry images of anti-E-cadherin (magenta) and anti-SOX9 (“fire” pseudocolor) with

DAPI nuclear counterstaining (white) at the frontal section of the trachea, cultured ex vivo from E12.5 for 1 day with drug treatment [(A): DMSO, (B): PD0325901 at

500 nM, (C): Blebbistatin at 30µM). (1st and 2nd columns) Magnified images from the dotted windows in the 1st column show concentric mesenchymal

condensation in the DMSO control and PD0325901-treated (A,B) but not in the blebbistatin-treated (C) tracheae. (3rd and 4th columns) Color denotes the flattening

of nuclei and Sox9 intensity, respectively, corresponding to the images from the 2nd column. Marked increases in Sox9 levels were observed in the DMSO control and

PD0325901-treated (A,B) but not in the blebbistatin-treated (C) tracheae. Scale bars, 40µm (1st column) and 20µm (2nd-4th columns). L, left; R, right; A, anterior; P,

posterior. (D) Flattening of nuclei in response to different treatments. Each point represents the mean value within a sample. Welch’s two-sample t-test, Ctrl-PD:

p = 0.885. Ctrl-Bleb: p = 0.007, PD-Bleb: p = 0.001. n = 5 from different tracheae.

FIGURE 5 | ERK inactivation in cartilage matrix gene expression. (A) Relative gene expression in tracheae cultured ex vivo for 2 days from E13.5 with the PD0325901,

compared to DMSO control, obtained by qPCR. Welch’s one-sample t-test. Spry2: p = 0.006, Sox9: p = 0.255, Col2a1: p = 0.013, Agc1: p = 0.012. n = 3 from

independent experiments. (B) Morphological change in tracheal cartilage treated with PD0325901. Cartilage rings were stained with Alcian blue and photographed on

a dissecting microscope. Scale bars, 200µm (left) and 100µm (right). (C) Schematics showing the antero-posterior (AP) length and left-right (LR) length of the

tracheal cartilage rings. The 3rd to 6th tracheal rings below the cricoid ring were measured. (D) AP length of cartilage rings exposed to the DMSO control or

PD0325901 in the anterior region of trachea. Welch’s two-sample t-test. p < 0.001. n = 18 different tracheae from 3 independent experiments. (E) LR length of

cartilage rings exposed to the DMSO control or PD0325901 in the anterior region of trachea. Welch’s two-sample t-test. p = 0.281. n = 18 different tracheae from 3

independent experiments. L, left; R, right; A, anterior; P, posterior.

round, and the tissue did not exhibit clear condensations or
increased Sox9 expression near the epithelium (Figures 4C,D),
suggesting that cell-generated contractile forces are required for

mesenchymal condensations in tracheal development, but that
ERK activation is dispensable for the regulation of contractile
forces in this process.
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FIGURE 6 | Model of incoherent feedforward loop exploring the regulation of cartilage matrix genes by Sox9/ERK. (A) Possible network for cartilage matrix gene

expression. (B) Input-output response of IFFL showing biphasic response. (C) Hypothetical single pathway. (D) Robust index of IFFL with regards to X and K′
S.

ERK Inactivation Promotes Expression of
Cartilage Matrix Genes
To investigate the role of ERK activation in tracheal cartilage
formation from E13.5 onwards, we measured the expression
levels of Sox9 and several cartilage matrix genes, which show
a marked elevation in expression at this stage, in response to
treatment with the MEK inhibitor (Figure 2D). The tracheae
were dissected at E13.5 and cultured for 2 days in the presence of
PD0325901 under ex vivo conditions. The expression of Spry2, an
indicator of Ras–ERK cascade activity (Mason et al., 2006), was
decreased by PD0325901 treatment, confirming the inhibition of
ERK activation in this assay (Figure 5A). The expression of Sox9
was unaffected, as anticipated from the data shown in Figure 4.
We also confirmed that ERK inactivation did not affect Sox9
expression using imaging measurements of Sox9-EGFP tracheae
(Supplementary Figure 2). These data regarding ERK signaling
are similar to those from a previous study which reported that
inactivation of Fgf10 did not affect Sox9 expression (Sala et al.,
2011). Interestingly, ERK inhibition significantly upregulated
the expression of Col2a1 and Agc1 (Figure 5A). These findings
suggest that ERK inactivation promotes gene expression of

these cartilage matrix proteins in a manner independent of
Sox9 expression.

We next examined the impact of ERK inactivation on the
tracheal cartilage phenotype. To this end, PD0325901 was
administered to pregnant mice from E13.5 periodically for 2
days by oral gavage. The morphology of tracheal cartilage rings
from dissected embryos was assessed by Alcian blue staining
(Figure 5B), and the tracheae were evaluated in terms of antero-
posterior (AP) and left-right (LR) lengths (Figure 5C). In the
anterior region of trachea, close to larynx, ERK inactivation
significantly increased the AP length (1.33-fold in median,
Figure 5D), while it did not affect the LR length (0.98-
fold in median, Figure 5E), indicating that cartilage matrix
accumulation was enhanced due to ERK inactivation. Relative
variance in each sample was <5% in either treatment (averaged
in-sample coefficient of variance: 0.023 in the DMSO and
0.042 in the PD0325901). In the posterior region of trachea,
close to the carina, the AP length was slightly increased by
the ERK inactivation (1.07-fold in median) with large variance
(Supplementary Figure 3). Together, our results suggest that
active ERK represses the transcriptional activity of the cartilage
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matrix genes, thereby influencing the AP length of the cartilage
rings, especially in the anterior region.

Incoherent Feedforward Loop Can Explain
the Regulation of Sox9-ERK-Cartilage
Matrix Genes
Our results so far present two pathways which have antagonistic
effects on the transcriptional regulation of the cartilage matrix
genes, namely activation via Sox9 and repression via ERK.
Furthermore, since Sox9 expression and ERK activity exhibited
similar non-monotonic temporal profiles (Figures 2C, 3B), it
suggests that there may be a common upstream regulator
X (Figure 6A, left) or positive regulation of ERK by Sox9
(Figure 6A, right). These network topologies are examples
of a so-called incoherent feedforward loop (IFFL), known
as a network motif, which represent recurrent patterns in
transcriptional regulations (Shen-Orr et al., 2002; Mangan and
Alon, 2003). We therefore considered the question of how these
regulatory networks might function in tracheal development.

We modeled the possible core regulatory networks
(Figure 6A) with a linear relation between X, Sox9, and
ERK (see Mathematical analysis in Materials and Methods)
because of the similar temporal variations, and found that, in
either case, the expression level of the cartilage matrix genes in
the steady state Ĉ converged to the following form:

Ĉ = XhS

XhS+K′hS
S

K′hE
E

K′hE
E +XhE

. (1)

The first term represents the activation by Sox9 with the
coefficient K ′

S, and the second term represents the repression
via ERK with the coefficient K ′

E, each of which is modeled
by the Hill function with coefficient hS or hE, respectively,
with input level X as the simplest form. The function of
Equation 1 shows a biphasic inverse U-shape response, in which
the output level Ĉ increases to a high level, and then decreases,
as input level X increases, meaning that the output level reaches
at its maximum at an intermediate input level (Figure 6B
and Supplementary Figure 4). From Equation 1, the biphasic
response modeled by the IFFL can explain the mapping of the
non-monotonic temporal profiles of both Sox9 and ERK to the
monotonic increases of the cartilage matrix genes (Figure 2E).

We next considered the role of ERK as a negative regulator
of the pathways involved in chondrogenesis and queried the
benefit of an IFFL involving ERK as a core regulatory design,
compared with a single pathway regulated only by Sox9. To
answer these questions, we analyzed the robustness of the steady
state level of cartilage matrix gene expression Ĉ with respect to
the input level X in the IFFL compared to the hypothetical single
pathway (Figures 6A,C). To do this, we calculated the parameter
sensitivity coefficient (Goldbeter and Koshland, 1981) of Ĉ with
respect to X in both the IFFL (S1) and in the single pathway (S0),
and obtained a condition of parameters which satisfies S1 > S0.
That is, IFFL is more robust than the single pathway for input
variations in the following inequality:

2 hSK
′
S
hS

K′
S
hS+XhS

> hEX
hE

K′
E
hE+XhE

. (2)

Here we introduced a fraction of parameter sets that satisfy
Eq. 2, designated Robust index of IFFL. When this value is
more than 0.5, the IFFL is a more robust design compared
with the single pathway, and vice versa. We then numerically
investigated the dependency of the parameters X and K ′

S, both
of which are common to the IFFL and the single pathway,
without fixing other parameters, and found that the parameter
space where the index is more than 0.5 was larger than the area
representing an index below 0.5 (Figure 6D). Collectively, our
model analyses show that adopting ERK as a negative regulator
of the regulatory chondrogenic pathways makes the system more
robust against variations of the upstream regulator of Sox9
during chondrogenesis.

DISCUSSION

In this study, we demonstrate that there is an inverted U-shaped
temporal change in Sox9 expression and ERK activity, while
the expression of target cartilage matrix genes monotonically
increases, during murine tracheal development. Using assays
with a MEK inhibitor, we found that inhibiting ERK activity
significantly promotes the expression of cartilage matrix genes.
The role played by ERK during cartilage differentiation has been
controversial in several in vitro studies (Murakami et al., 2000;
Oh et al., 2000; Bobick and Kulyk, 2004; Zákány et al., 2005).
Our results show that the ERK signaling pathway functions as
an inhibitory regulator of tracheal cartilage differentiation, which
has also been demonstrated in embryonic chicken limb buds (Oh
et al., 2000; Bobick and Kulyk, 2004; Zákány et al., 2005).

Our findings led us to propose a model in which cartilage
differentiation is controlled by an IFFL via positive and negative
contributions of Sox9 and ERK activity, respectively. To delineate
the core regulatory pathways, we tested two networks, one
of which included a common upstream regulator without
interactions between Sox9 and ERK, while the other network
included a positive regulation of ERK by Sox9 (Figure 6A),
although both of them resulted in the same class of output in the
steady state (Equation 1). It has previously been demonstrated
that the expression level of Fgf10 does not change significantly
even in Sox9 knockout mice (Turcatel et al., 2013). Furthermore,
there is evidence to imply that SHH, an upstream regulator
of Sox9, could be a potential activator of Fgf10 in tracheal
development (Sala et al., 2011), and it raises the possibility that
SHH could also be the common upstream regulator of Sox9 and
ERK. It is therefore likely that the former regulatory network is
adopted during tracheal ring formation.

The proposed core regulatory networks would be controlled
by different types of stimulus, such as mechanical loading
(O’Conor et al., 2013), oxidative stress (Zuscik et al., 2008), and
electrical signals (Atsuta et al., 2019), through complex signaling
pathways (Kozhemyakina et al., 2015). In chondroprogenitor
cells derived from chicken limb buds, uniaxial cyclic compression
increased the expression level of the cartilage matrix genes and
elevated the activity of cyclic AMP-dependent protein kinase
A (PKA) (O’Conor et al., 2013; Juhász et al., 2014), known
to phosphorylate SOX9 (Huang et al., 2000). In addition, the
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mechanical loading stimuli activated the pituitary adenylate
cyclase activating polypeptide (PACAP) pathway, of which the
classical downstream targets include PKA and MAPK signaling
cascades (Juhász et al., 2015a,b), suggesting the common input to
the Sox9 and the ERK activity. PACAP activation also inhibited
the hedgehog signaling activity in the chondroprogenitor cell
cultures. Thus, there would be an another IFFL at the upstream
of Sox9-ERK signaling layer. Speaking of oxidative stress, it
was shown that the hydrogen peroxide (H2O2) inhibited the
chondrogenesis using the chicken limb bud cell cultures; H2O2
led to a concentration-dependent decrease of Sox9 expression
and an increase of ERK activity in a calcineurin-dependent
manner (Zákány et al., 2005). This result suggests that the H2O2
would be a common input regulator to the Sox9 and the ERK
activity, which brings a complex signaling crosstalk in the system.

In this study, we primarily focused on the expression of
the cartilage matrix genes as an output, but the spatiotemporal
dynamics of Sox9 expression and ERK activity are likely to play
roles in other aspects of cartilage differentiation. From E14.5 to
E15.5, we observed a decrease in Sox9 expression (Figure 2C).
This may reflect the fact that the downregulation of SOX9 has
multiple roles in the progression of cartilage differentiation,
such as the transition of proliferating chondrocytes to a
hypertrophic state, and cartilage vascularization (Akiyama et al.,
2002; Hattori et al., 2010; Lefebvre et al., 2019). We also
observed that endogenous ERK activation was maintained at a
relatively low level from E12.5 to E13.5 (Figure 3B) and did
not affect mesenchymal condensation, an initial step in tracheal
ring patterning (Figure 4B). Since Fgf10 overexpression in the
mesenchyme between E11.5 and E13.5 was shown to cause
disruption of the tracheal ring patterns (Sala et al., 2011), it
is possible that ERK activity at below-moderate levels may be
a key factor in normal tracheal development. Future studies
should clarify the physiological importance of temporal ERK
activity dynamics in this process. In addition, further systematic
investigations of other signaling pathways, such asWnt and bone
morphogenetic protein (Bmp) signaling (Snowball et al., 2015;
Kishimoto et al., 2018), as well as physical interactions with
epithelia and smooth muscles (Hines et al., 2013; Yin et al., 2018),
would improve our understanding of tracheal development and
in vitro organoid systems (Conway et al., 2020; Kishimoto et al.,
2020).

MATERIALS AND METHODS

Experiments and Quantification
Animals
For FRET imaging, we used transgenic mice that ubiquitously
express an ERK biosensor with a long flexible linker, which has
been described elsewhere (Harvey et al., 2008; Komatsu et al.,
2011, 2018). Sox9-EGFP mice were provided from RIKEN BRC
through the National BioResource Project of the MEXT/AMED,
Japan (RBRC05651). Otherwise, we used ICR mice purchased
from Japan SLC, Inc. The midnight preceding observation of a
plug was designated as embryonic day 0.0 (E0.0), and all mice
were sacrificed by cervical dislocation to minimize suffering.
All the animal experiments were approved by the local ethical

committee for animal experimentation (MedKyo 19090 and
20081) and were performed in compliance with the guide for the
care and use of laboratory animals at Kyoto University.

Antibodies
The following primary and secondary antibodies were used
for immunofluorescence: anti-E-cadherin rat antibody (#13-
1900, 1:50 dilution, Thermo Fischer Scientific), anti-SOX9 rabbit
antibody (#AB5535-25UG, 1:200 dilution, Merck Millipore),
Alexa Fluor 546-conjugated goat anti-rat IgG (H+L) antibody
(#A11081, 1:1000 dilution), Alexa Fluor 647-conjugated goat
anti-rat IgG (H+L) antibody (#A21247, 1:1000 dilution), Alexa
Fluor 647-conjugated goat anti-rabbit IgG (H+L) antibody
(#A32733, 1:1000 dilution)(all Thermo Fisher Scientific).

Whole-Tissue Fluorescence Staining and Imaging
Staining and optical clearing of dissected tracheae were
performed as described in a previous study (Hirashima and
Adachi, 2015). Briefly, the samples were fixed with 4% PFA in
PBS overnight at 4◦C. For anti-SOX9 staining, the samples were
incubated in 25 mg/mL hyaluronidase (Nacalai Tesque, #18240-
36) for 1 h at 37◦C, to digest hyaluronic acid. The samples were
then blocked in 10% normal goat serum (Abcam, #ab156046)
diluted in 0.1% Triton X-100/PBS (PBT) for 3 h at 37◦C. The
samples were treated with primary antibodies overnight at 4◦C,
washed in 0.1% PBT, and subsequently incubated in secondary
antibodies conjugated to either Alexa Fluor 546 or Alexa Fluor
647 overnight at 4◦C. DAPI was used for nuclear counterstaining
(Dojindo Molecular Technologies, #D523-10, 1:200 dilution).
The samples were mounted with 10 µL of 1% agarose gel onto a
glass dish (Greiner Bio-One, #627871) for stable imaging. Then,
the samples were immersed in CUBIC-R+ (Tokyo Chemical
Industry Co., # T3741) solution for optical clearing. Images were
acquired using the confocal laser scanning platform Leica TCS
SP8 equipped with the hybrid detector Leica HyD, using a ×40
objective lens (NA= 1.3,WD= 240µm,HCPLAPOCS2, Leica)
and the Olympus FluoView FV1000 with a ×30 objective lens
(NA= 1.05, WD= 0.8mm, UPLSAPO30XS, Olympus).

Alcian Blue Staining
The dissected tracheae were fixed in 4% PFA in PBS overnight at
4◦C, and stained in Alcian Blue Solution (FUJIFILMWako Pure
Chemical Corporation, # 013-13801) for 60min at 23◦C. The
samples were then washed with 20% acetic acid in PBS overnight
at 23◦C, and finally clarified in 50% glycerol in PBS for 2 hours
at 37◦C. The samples were visualized by the stereo microscopy
(SZX16, Olympus).

Explant Cultures
The dissected tracheae were mounted on a 35mm glass dish
(Greiner, #627871) with 30µL of growth factor-reducedMatrigel
(Corning, #356231), and filled with 500 µL of DMEM culture
medium including FluoroBrite (Thermo Fischer Scientific,
#A1896701) with 1% GlutaMAX (Thermo Fischer Scientific,
#35050061). The samples were incubated at 37◦C under 5% CO2.
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Drug Administration
For the drug administration under ex vivo culture conditions,
(-)-Blebbistatin (FUJIFILM Wako Pure Chemical Corporation,
#021-17041) and PD0325901 (FUJIFILM Wako Pure Chemical
Corporation, #162-25291) were mixed in the culture medium.
Equivalent amounts of DMSO were used as a vehicle control
for each drug. For administration by oral gavage, PD0325901
(ChemieTek, #CT-PD03) in 30% PEG400, 0.5% Tween 80 in PBS
was administered to pregnant mice at a dose of 25 mg/kg body
weight twice a day (at 8:00 a.m and 6:00 p.m) for 2 days from
E13.5, i.e., 4 times in total.

Live Imaging for Explants
The samples were prepared for explant culture as described
above and placed into an incubator-integrated multiphoton
fluorescence microscope system (LCV-MPE, Olympus)
with a ×25 water-immersion lens (NA=1.05, WD=2mm,
XLPLN25XWMP2, Olympus) and an inverted microscope
(FV1200MPE-IX83, Olympus) with a ×30 silicone-immersion
lens (NA=1.05, WD=0.8mm, UPLSAPO30XS, Olympus).
The excitation wavelengths were set to 840 or 930 nm, for
the CFP of the ERK FRET biosensor and EGFP, respectively
(InSight DeepSee, Spectra-Physics). The filter sets used were
as follows; IR cut filter: RDM690 (Olympus), dichroic mirrors:
DM505 and DM570 (Olympus), and emission filters: BA460-
500 for CFP, BA520-560 for FRET, and BA495-540 for EGFP
detection (Olympus).

Quantitative RT-PCR
Total RNA was extracted using the RNeasy Mini Kit (Qiagen,
#74104), and cDNA was reverse transcribed using the High-
Capacity cDNA Reverse Transcription Kit (Thermo Fisher
Scientific, #4368814), according to the manufacturer’s
instructions. qPCR was performed using the StepOne real-
time PCR system (Applied Biosystems) with PowerUp SYBR
Green Master Mix (Thermo Fisher Scientific, #A25742). Primer
sequences were as follows: Agc1 forward 5′-GGTCACTG
TTACCGCCACTT-3′ and reverse 5′-CCCCTTCGATAGTCC
TGTCA-3′; Col2a1 forward 5′-CTACGGTGTCAGGGCCAG-3’
and reverse GCAAGATGAGGGCTTCCATA-3′; Hprt1 forward
5′-TCAGTCAACGGGGGACATAAA-3′ and reverse GGGGCT
GTACTGCTTAACCAG-3′;

Sox9 forward 5′-AGGAAGCTGGCAGACCAGTA-3′ and
reverse TCCACGAAGGGTCTCTTCTC-3′; Spry2 forward
5′-AGAGGATTCAAGGGAGAGGG-3′ and reverse 5′-CATC
AGGTCTTGGCAGTGTG-3′. Relative expression levels were
calculated using the 11CTmethod withHprt1 expression as the
internal control.

Target Region for Analysis
As the mesenchymal condensation simultaneously occurs in
the whole trachea, we especially focused on anterior-ventral
region, where the future 3rd to 7th tracheal cartilages below the
cricoid ring are formed, for analysis. These regions were also
convenient for imaging because the frontal plane is parallel to the
optical plane.

FRET Image Analysis
The median filter of a 3×3 window was processed to remove
shot noises, and the background signal was subtracted each in
FRET and CFP channel. Then, the ratio of FRET intensity to the
CFP intensity was calculated using a custom-designed MATLAB
(MathWorks) script.

Quantification of Nuclear Shape
Since the nuclear configuration exhibited no significant
differences throughout the trachea, we randomly chose one
representative mesenchymal condensation from the ventral
region where the future 3rd to 7th tracheal cartilages below
the cricoid ring are formed. The DAPI staining images were
smoothened using the median and gaussian filters, and the nuclei
were then manually extracted. Flattening or ellipticity is defined
as 1-b/a, where a and b are the major and the minor axis length
of the best fitting ellipse, respectively. The value is 0 for a circle,
and it approaches 1 as it is compressed. All processing was done
using ImageJ.

Single Cell Measurement
For the EGFP and FRET measurement at single cell resolution,
we first manually extracted each cell or nucleus and measured
the average intensity within the extracted region. Then, the
background signal was subtracted from averaged signal. For
the EGFP signal, the obtained intensity was normalized by the
maximum value of the bit depth. All image processing was done
using ImageJ.

Statistical Hypothesis Testing
Statistical tests, sample sizes, test statistics, and P-values are
described in the main text. P < 0.05 were considered to be
statistically significant in two-tailed tests, and were classified into
4 categories; ∗ (P < 0.05), ∗∗ (P < 0.01), ∗∗∗ (P < 0.001), and n.s.
(not significant, i.e., P ≥ 0.05).

Software
For digital image processing,MATLAB (MathWorks) and ImageJ
(National Institute of Health) were used. For graphics, MATLAB
(MathWorks), Imaris (Bitplane) and ImageJ (National Institute
of Health) were used. MATLAB (MathWorks) was used for
statistical analysis and Mathematica (Wolfram Research) for
mathematical analysis.

Graph
For the boxplot, the central mark indicates the median, and
the bottom and top edges of the box indicate the 25th and
75th percentiles, respectively. The whiskers extend to the most
extreme data points not considered outliers, and the outliers are
plotted individually using the “+” symbol. All of the graphs were
prepared in MATLAB.

Mathematical Analysis
Modeling
For model construction, we let X, S, E, C be input level,
Sox9 concentration, ERK activity, and the expression level of
cartilage matrix genes, respectively. Since Sox9 expression and
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ERK activity showed similar temporal profiles, they would be
regulated linearly by input level X. Thus,

Ṡ = αSX − γSS, (S1)

and

Ė = αEX − γEE, (S2)

where α and γ denote production rate and decay rate,
respectively. Regarding the alternative regulation, i.e., X
indirectly, but not directly, regulates ERK activity through Sox9,
the regulation of ERK activity can be represented, instead of
Equation S2, as

Ė = αES− γEE. (S3)

As Sox9 and active ERK antagonistically regulate the expression
level of cartilage matrix genes, the dynamics of C can be
represented in the simplest form as follows:

Ċ = αC
ShS

ShS+K
hS
S

K
hE
E

K
hE
E +EhE

− γCC, (S4)

where KS is the activation coefficient via Sox9, KE is the
repression coefficient via ERK, and h denotes the Hill coefficient.
Both combinations of Equations S1, S2, and S4, and Equations S1,
S3, and S4 led to the following function of C in the steady state:

Ĉ = α′
C

XhS

XhS+K′hS
S

K′hE
E

K′hE
E +XhE

, (S5)

where parameters with prime represent integrated parameters,
and the case with α′

C =1 is shown as the Equation 1 in the
main text.

Parameter Ranges in Numerical Investigation
Owing to the importance of relativity for X, K ′

S, and K ′
E, we set

those ranges as 0.01 to 1.0. For hS and hE, we set the range from 1
to 5 to consider non-linearity of reactions. α′

C was arbitrarily set
to 1.

Parameter Dependence in the Steady State
Assuming hS = hE = 1 for simplicity and feasibility of
analysis, we found that the input value at the output peak X∗ was
determined by the two parameters K ′

S and K ′
E as follows

X∗ =
{

X
∣

∣

∣

∂Ĉ
∂X = 0

}

=
√
K ′

SK ′
E, (S6)

which corresponded to the numerical results
(Supplementary Figure 4B’). Also, the function of Ĉ was
convex upward at the peak as

∂2Ĉ
∂X2

∣

∣

∣

X=X∗
= − 2α′

C
√
K′

E√
K′

S
(√

K′
S+

√
K′

E
)4 < 0. (S7)

Moreover, the maximum level of Ĉ is represented as

Ĉmax = α′
C
√
K′

E
(√

K′
S+

√
K′

E
)2 . (S8)

This clearly indicates that the output peak level
decreases with increases in K ′

S and it increases with
increasing K ′

E, corresponding to the numerical results
(Supplementary Figure S4B’).

Sensitivity Analysis for Robustness
The parameter sensitivity coefficient with respect to the input
value X, denoted S(Ĉ,X), is defined as the relative change in Ĉ
for a given small relative change in X:

S
(

Ĉ,X
)

=
∣

∣

∣

1Ĉ

Ĉ
/1X

X

∣

∣

∣
. (S9)

From Equations S5 and S9, we obtained the explicit form S in the
IFFL regulation.

S
(

Ĉ,X
)

=
∣

∣

∣

hSK
′
S
hS

K′
S
hS+XhS

− hEX
hE

K′
E
hE+XhE

∣

∣

∣
. (S10)

As an alternative regulation, we assumed a hypothetical single
pathway regulation, instead of Equation S4

Ċ0 = αC
ShS

ShS+K
hS
S

− γCC0, (S11)

and from Equations S9 and S11, we obtained the parameter
sensitivity coefficient for a single pathway as follows:

S
(

Ĉ0,X
)

=
∣

∣

∣

hSK
′
S
hS

K′
S
hS+XhS

∣

∣

∣
. (S12)

We then evaluated the robustness of the IFFL compared to the
single pathway by the inequality of the sensitivity coefficients:

S
(

Ĉ0,X
)

> S
(

Ĉ,X
)

. (S13)

With Equations S10 and S12, Equation S13 reached the inequality
condition shown in Eq. 2 in the main text.
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Supplementary Figure 1 | Sox9-EGFP profile in the developing murine trachea.

(A) A 3D-rendered image of Sox9-EGFP at E14.5, showing the C-shaped tracheal

rings on the ventral side. L, left; R, right; A, anterior; P, posterior; V, ventral; D,

dorsal. (B) Simultaneous visualization of EGFP (“fire” pseudocolor) and

anti-E-cadherin (white) at E14.0. High EGFP expression cell clusters located

between the ridges of wavy tracheal epithelium. Scale bar, 50µm. (C)

Simultaneous visualization of EGFP (green) and anti-SOX9 (red) at E14.5. Scale

bar, 50µm. (D) Relationship between EGFP and anti-SOX9 intensity from E12.5

to E14.5. Pearson’s linear correlation coefficient: ρ = 0.81.

Supplementary Figure 2 | Effect of ERK inactivation on Sox9 expression. (A)

Tracheae dissected at E12.5 from Sox9-EGFP mice were cultured for 1 day,

together with PD0325901 (500 nM). EGFP intensity was measured by two-photon

microscopy. (B) EGFP intensity with DMSO and PD0325901. Welch’s two-sample

t-test, p = 0.012. n = 60 different cells from the single experiment.

Supplementary Figure 3 | Morphological change of cartilages to the ERK

inactivation in the posterior region of trachea. (A) AP length of cartilage rings

exposed to the DMSO control or PD0325901 in the lower region of trachea.

Welch’s two-sample t-test. p = 0.326. n = 12 different tracheae from 3

independent experiments. (B) LR length of cartilage rings exposed to the DMSO

control or PD0325901 in the lower region of trachea. Welch’s two-sample t-test.

p = 0.413. n = 12 different trachea from 3 independent experiments.

Supplementary Figure 4 | Parameter dependence of the model. (A) Schematics

showing the input-output relationship. (B,B’) Parameter dependence of (1) the

output peak level and (2) the input level at the output peak. Axes are shown in (B).
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Phosphoinositides, which are membrane-bound phospholipids, are critical signaling
molecules located at the interface between the extracellular matrix, cell membrane,
and cytoskeleton. Phosphoinositides are essential regulators of many biological and
cellular processes, including but not limited to cell migration, proliferation, survival, and
differentiation, as well as cytoskeletal rearrangements and actin dynamics. Over the
years, a multitude of studies have uniquely implicated phosphoinositide signaling as
being crucial in cardiovascular biology and a dominant force in the development of
cardiovascular disease and its progression. Independently, the cellular transduction of
mechanical forces or mechanotransduction in cardiovascular cells is widely accepted
to be critical to their homeostasis and can drive aberrant cellular phenotypes and
resultant cardiovascular disease. Given the versatility and diversity of phosphoinositide
signaling in the cardiovascular system and the dominant regulation of cardiovascular
cell functions by mechanotransduction, the molecular mechanistic overlap and extent
to which these two major signaling modalities converge in cardiovascular cells remain
unclear. In this review, we discuss and synthesize recent findings that rightfully
connect phosphoinositide signaling to cellular mechanotransduction in the context of
cardiovascular biology and disease, and we specifically focus on phosphatidylinositol-
4,5-phosphate, phosphatidylinositol-4-phosphate 5-kinase, phosphatidylinositol-3,4,5-
phosphate, and phosphatidylinositol 3-kinase. Throughout the review, we discuss how
specific phosphoinositide subspecies have been shown to mediate biomechanically
sensitive cytoskeletal remodeling in cardiovascular cells. Additionally, we discuss the
direct interaction of phosphoinositides with mechanically sensitive membrane-bound
ion channels in response to mechanical stimuli. Furthermore, we explore the role
of phosphoinositide subspecies in association with critical downstream effectors of
mechanical signaling in cardiovascular biology and disease.

Keywords: phosphoinositides, cardiovascular mechanotransduction, actin cytoskeleton, ion channel, focal
adhesion, PIP2, PIP3, PI3K
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INTRODUCTION

Phosphoinositides (PPIs) constitute less than five percent of all
cell membrane phospholipids (Hammond and Hong, 2018) but
are essential to the integrity of all living cells (Dickson and Hille,
2019). Numerous studies have shown that PPIs are critical to
cellular functions, including but not limited to cell proliferation,
survival, motility, differentiation, and cytoskeletal dynamics (Di
Paolo et al., 2004; Huang et al., 2004; Tsujita and Itoh, 2015;
De Craene et al., 2017; Senju et al., 2017; Hao et al., 2018;
Ramos et al., 2018; Bilanges et al., 2019; Li H. et al., 2019;
Hirsch et al., 2020). The generation of PPIs is mediated by
phosphorylation and dephosphorylation of phosphatidylinositol,
the membrane lipid precursor (De Craene et al., 2017). More
specifically, the inositol head of phosphatidylinositol can be
phosphorylated at the 3-, 4-, and 5-hydroxyl positions of the
inositol ring. The attachment of phosphate(s) can occur at any
of these positions singularly or in combination to generate
seven biologically active PPI subspecies: PI(3)P, PI(4)P, PI(5)P,
PI(3,4)P2, PI(4,5)P2, PI(3,5)P2, and PI(3,4,5)P3 (Di Paolo and
De Camilli, 2006; De Craene et al., 2017). All seven PPI
subspecies naturally occur in the cell membrane of eukaryotes to
varying degrees and are chemically interconverted by cell-specific
kinases (purple-colored text in Figure 1) and phosphatases
(red-colored text in Figure 1). PPI subspecies are shown
as the black-colored text in Figure 1. Once biochemically
active, PPIs modulate a tremendous breadth of horizontal and
vertical cell signaling crosstalk spanning the cell membrane
and cytoplasm, respectively, in which high-affinity interactions
occur among various pleckstrin homology (PH) domain-
containing membrane-based and cytosolic effector proteins,
including protein kinase B (PKB)/Akt, protein kinase C (PKC),
phosphoinositide phospholipase C (PLC), 3-phosphoinositide-
dependent protein kinase-1 (PDK1), and small G proteins
(Prestwich, 2004; Ghigo and Li, 2015; Manna and Jain, 2015; De
Craene et al., 2017). In the cardiovascular system, activated PPI
signaling mediates enzymatic organic modification of secondary
messenger proteins because PPIs are crucial scaffolding proteins
to complex signalosomes of cardiac and vascular cellular
functions, and their aberration is a prominent driving force in
cardiovascular pathology (Falkenburger et al., 2010; Ghigo and
Li, 2015; Schink et al., 2016).

Mechanotransduction describes the physiological process
by which cells perceive and respond to mechanical stimuli,
including tensile stretch and compression, shear stress, and
extracellular matrix (ECM) stiffness. Moreover, mechanical cues
are converted into intracellular biochemical signals in which the
resultant cytoskeletal and nuclear remodeling modulates cellular
functions (Tschumperlin, 2011; Maurer and Lammerding,
2019). Mechanotransduction is vital to cardiovascular tissue
development, growth, and homeostasis because cells are
continuously under mechanical stress (Garoffolo and Pesce,
2019). Dysregulation of the mechanical harmony between the
cell and ECM can drive the development and progression
of pathology, including but not limited to cardiac ischemia
and fibrosis, hypertension, and atherosclerosis (Gimbrone and
Garcia-Cardena, 2013; Yue et al., 2015; Schafer et al., 2017;

Ochoa et al., 2018; Russo et al., 2018). Only recently have we
begun to understand the cellular mechanisms that mediate the
signal transduction of mechanical stimuli, which greatly overlap
with canonical biochemical cellular signaling pathways.

Today, cardiovascular disease (CVD) remains the leading
cause of death and morbidity worldwide. A great majority
of biomedical research in CVD centers around the known
mechanisms of biochemical and molecular biology modalities.
With the recent emergence of novel biomechanical and cell
biological technologies and techniques, there has been a new
integrative movement toward understanding the mechanical
regulation of cellular biochemistry and molecular biology inside
the cell. This review will span the most recent findings in
phosphoinositide biology as it relates to mechanically sensitive
cellular processes in cardiovascular cells in both homeostasis and
disease. We will discuss how specific PPI subspecies mediate
cytoskeletal remodeling processes known to be dominantly
regulated by mechanotransduction and the direct interaction of
PPIs with membrane-bound channels in response to mechanical
stress in cardiovascular cells. Furthermore, we will explore the
role of PPI subspecies in association with the essential effectors
of mechanical signaling in cardiovascular biology and disease.

PHOSPHATIDYLINOSITOL-4,5-
BISPHOSPHATE (PIP2)

PIP2 Association With Actin
Cytoskeleton Dynamics
The actin cytoskeleton is a complex and dynamic intracellular
structure that gives mechanical rigor to the cell while
simultaneously mediating the transduction of mechanical
stress into biochemical signals. Given the unique contractile
properties of cardiac and vascular cells, the actin cytoskeleton is
most essential to their integrity (Allahverdian et al., 2018; Zhang
et al., 2018). Alteration of cytoskeletal organization, specifically
actin filament dynamics, can result in gene expression and
cell proliferation modification with the subsequent adaptation
of and changes to intracellular biochemical responses and
cellular functions, respectively. Thus, cytoskeletal remodeling
can mediate mechanical stress-induced gene expression, cell
proliferation, and pathological processes (Ohashi et al., 2017;
Martino et al., 2018). Recent studies have shown that PIPs
regulate cytoskeletal arrangement and signaling dynamics
(Di Paolo and De Camilli, 2006; Saarikangas et al., 2010;
Senju and Lappalainen, 2019). Specifically, PIP2 is involved in
cytoskeletal reorganizational events, including vesicle trafficking,
cell migration, phagocytosis, and membrane cytoskeletal
adhesion (Saarikangas et al., 2010; Shewan et al., 2011; Dickson
and Hille, 2019; Phan et al., 2019). PIP2 binds to and affects
actin-binding proteins, such as myristoylated alanine-rich
C kinase substrate (MARCKS), cofilin, gelsolin, α-actinin,
Wiskott-Aldrich syndrome protein (WASP), and the Rho
family of small GTPases (Janmey et al., 2018; Figure 2).
MARCKS is an actin-binding protein found in mammalian
tissues and, upon phosphorylation, it binds reversibly to
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FIGURE 1 | Overview of phosphoinositide (PPI) signaling. The diagram represents an overview of PPI subspecies and their biochemical interconversion. The seven
biologically active PPI subspecies are highlighted in gray circles. PPI phosphatases are labeled red, and their associated reactions are represented by red arrows,
indicating the direction of the reaction. Similarly, kinase reactions are represented by purple arrows with kinase enzymes labeled purple. Question marks along the
dotted arrows represent areas that have yet to be explored.

structural and regulatory molecules in the cell in which
there is an associated decrease in PIP2 binding (Nairn and
Aderem, 1992; Sheetz et al., 2006). Additionally, in vascular
endothelial cells (ECs), MARCKS directly modulates PIP2-
mediated insulin signaling. The treatment of vascular ECs
with insulin increases the levels of PIP2, which is also released
into lipid rafts (caveolar and non-caveolar fractions) to bind
to the cytoskeletal protein, N-WASP. Subsequently, N-WASP
phosphorylation and interaction with actin-related proteins
2/3 (Arp2/3) cause cytoskeletal remodeling to induce cell
migration (Kalwa and Michel, 2011). Furthermore, MARCKS
mediates a PIP2-dependent actin rearrangement process. In
this process, when low levels of MARCKS are present, actin
filaments form an actin gel. Conversely, actin filaments aggregate
upon increased levels of MARCKS. In the plasma membrane,
the overall PIP2 levels are relatively constant; however, changes
in PIP2 levels can be observed locally in the membrane
directly overlying actin protrusions and membrane ruffles
(Sheetz et al., 2006).

Rac, a downstream small GTPase effector, is a regulator of
membrane ruffles (Ridley, 1994). In addition, Rac is instrumental
to the transduction of external mechanical stimuli (Labouesse,
2011; Lawson and Burridge, 2014; McGowan and McCoy, 2017),
including the mechanotransduction of the FAK-Cas-Rac axis,
which transmits ECM stiffness into intracellular stiffness and
mechanosensitive cell cycling (Bae et al., 2014). Moreover,
PIP2 levels fluctuate in membrane ruffles in a Rac-dependent
manner. Although the immediate relationship of PIP2 and
Rac has not been explored in the context of cardiovascular
biology and disease specifically, acknowledging their possible

connection could better aid the understanding of their effects
in different cellular pathways and help implicate PIP2 as a Rac-
mediated effector in vascular pathology (Polacheck et al., 2017;
Narumiya and Thumkeo, 2018).

PIP2 Association With CapZ and
Mechanical Stiffness
In striated muscle, capping protein Z (CapZ), an actin-capping
protein, regulates cytoskeletal remodeling (Edwards et al., 2014).
CapZ’s relationship with PIP2 (Figure 3) has been recently
observed in relation to mechanical stiffness and cytoskeletal
remodeling, and the PIP2-mediated interaction with CapZ
has been shown to regulate cardiac myocyte hypertrophy (Li
et al., 2016) and actin dynamics (Li and Russell, 2013). More
specifically, ECM stiffening induces cardiac myocyte hypertrophy
by increased PIP2 localization at the sarcomere Z-discs in
cardiac myocytes (Li et al., 2016). The Z-disc is a critical
site for mechanotransduction and the location of the β1-
isoform of CapZ (CapZβ1) (Russell et al., 2010). Moreover,
the localization of PIP2 to the sarcomere Z-disc is crucial to
ventricular cardiac myocyte mechanotransduction and associated
with pathological hypertrophic remodeling. Dysregulation of
PIP2 signaling alters sarcomere integrity by modulating the
function of CapZβ1 and actin dynamics. Taken together,
PIP2 is vital to cardiac cell physiology, where it regulates
CapZβ1 and actin dynamics in response to mechanical stimuli.
Additionally, mechanical stimulation causes the production
of PIP2, specifically through the RhoA/Rho-associated kinase
(ROCK) pathway (Li and Russell, 2013). Solís et al. explored
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FIGURE 2 | Model for PIP2 association with the actin cytoskeleton. (A) An overview of PIP2’s role in actin cytoskeletal remodeling. The red arrow represents PIP2

intracellular association with actin-binding proteins. The blue arrow represents the various PIP2-associated actin-binding proteins, including MARCKS, cofilin, WASP,
gelsolin, and α-actinin. Upon interaction with PIP2, these proteins collectively mediate cellular cytoskeletal rearrangement (indicated by the black arrow). More
specifically, actin cytoskeletal remodeling, cytoskeletal adhesion, vesicle trafficking, and cell migration are associated with cytoskeletal rearrangements that are
mediated by PIP2 interaction with actin-binding proteins and are indicated by the purple arrows. (B) This figure depicts how PIP2 regulates cytoskeletal
rearrangement through N-WASP and Arp2/3 with MARCKS phosphorylation. Once the insulin receptor is activated, insulin increases intracellularly and subsequently
mediates the dissociation of MARCKS from PIP2 (as indicated by the dotted arrow) in which MARCKS is subsequently phosphorylated and activated. In addition,
PIP2 separately binds to and activates both N-WASP and Arp2/3, which drives actin cytoskeletal rearrangement. Together, these findings highlight the role of PIP2 in
mechanosensitive actin cytoskeletal rearrangement and remodeling.

PIP2 signaling effects on CapZ through neomycin, a PIP2
sequestering agent, in neonatal ventricular cardiomyocytes
cultured on varying substrate stiffnesses. Further studies
have assessed the molecular mechanisms by which different
mechanotransduction signaling pathways mediate the capping
and uncapping of CapZ from actin filaments via PIP2. The
results showed that interactions between PIP2 and the β-tentacle
of CapZ after molecular stimulation become considerably
modified by phosphorylation. Moreover, CapZ is bound tightly
to actin when inactive; however, upon phosphorylation and
activation in growth states of hypertrophy, the binding is
loosened. This is triggered by external stimuli, including
mechanical flexing, loading, a stiffer substrate, angiotensin II,
and phenylephrine. CapZ is modified by the stimuli’s signaling
pathways through phosphorylation, acetylation or PIP2 binding.
Thus, an actin assembly mechanism can be presented where
phosphorylation, acetylation or PIP2 anchorage causes CapZ
to act as a nodal terminus for the integration of various
signaling pathways (Solis and Russell, 2019). This mechanism
implicates PIP2 as a critical mediator of mechanotransduction

in cardiac myocytes by directly affecting CapZ in response to
mechanical stiffness.

PIP2, PLC, and PKC Association With
Store-Operated Channels TRPC1/3/6
and Orai 1
Phospholipase C (PLC) is a critical membrane-associated
enzyme that, when stimulated by Gαq/11 subtype protein-
coupled receptors (GαqPCRs), catalyzes the hydrolysis of PIP2
phosphodiester bonds to generate inositol 1,4,5-triphosphate
(IP3) and diacylglycerol (DAG), which further activates PKC.
These secondary messengers and downstream effector proteins
are important for cardiovascular cell functions because they
orchestrate the regulation of intracellular calcium mobilization,
which is critical not only to the contractile apparatus but also to
cell survival, proliferation, and differentiation. Plasma membrane
store-operated channels (SOCs), particularly transient receptor
potential canonical channels 1, 3, and 6 (TRPC1/3/6) and calcium
release-activated calcium (CRAC), also called Orai 1, 2, and 3,
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FIGURE 3 | Proposed model of PIP2 and CapZ mechanotransduction in cardiac myocytes. Diagram of the proposed model for the mechanism of PIP2 association
with CapZ because of mechanical stimuli. Mechanical strain activates the ROCK pathway when there is an increase in mechanosensitive FAK activation, which
results in PIP5K phosphorylating PI4P into PIP2. PIP2 phosphorylates CapZ, which mediates its uncapping from α-actin. This results in pathological actin filament
remodeling and cardiac hypertrophy. PIP2 is highlighted in and colored red. CapZα1 and CapZβ1 are colored blue to represent their association with PIP2 as well as
their intricacy with biomechanically sensitive actin filament remodeling and pathological cardiac hypertrophy.

are activated as a consequence of PLC activation (Abdullaev
et al., 2008; Baudel et al., 2020; Wang et al., 2020). Vascular
smooth muscle cell (VSMC) contraction, proliferation, and
migration are regulated by the stimulation of SOCs at the plasma
membrane and their associated Ca2+ influx pathways (Baudel
et al., 2020). Moreover, these cellular behaviors are associated
with the development of diseases of the vasculature, such as
hypertension and atherosclerosis (Baudel et al., 2020). In VSMCs,
PKC activity and PIP2 are important in the activation pathway of
SOCs, particularly transient receptor potential canonical channel
1 (TRPC1) (Saleh et al., 2009b; Shi et al., 2012; Baudel et al., 2020).
Upon Ca2+ store depletion, TRPC1 is phosphorylated by PKC,
which itself is stimulated by the PLC-PIP2-DAG pathway (Saleh
et al., 2009a), thus establishing a potentially direct link between
TRPC1 and PIP2. Additionally, TRPC1 is known to be an
essential component of various mechanotransduction pathways,
specifically in cells where TRPC1 is crucial for mechanosensitive
cell migration (Formigli et al., 2009; Garrison et al., 2012; Canales
et al., 2019; Li et al., 2019). Interestingly, TRPC1 is upregulated in
pathological neointima remodeling in vessels induced by vascular
injury, further suggesting that the induction of these channels
is mechanosensitive (Kumar et al., 2006). Recent findings by
Nikolaev et al. have suggested that the TRP ion channel
superfamily is involved in a wide variety of mechanosensory
processes, yet it has been shown that such channels are
insensitive to tension induced by cell membrane stretching. Thus,
although several TRP channels, including TRPC1, are essential

components of mammalian stretch-activated mechanosensitive
calcium-permeable cation channel heterologous systems, their
true role in mechanotransduction remains unclear (Gottlieb et al.,
2008). It is quite plausible that these ion channels are more
likely to be activated by upstream components and consequently
act as amplifiers of cellular mechanosensory signaling cascades,
including PLC and PKC (Nikolaev et al., 2019). In addition to
TRPC, the Orai channel, or CRAC, is another class of Ca2+-
selective SOC activated as a consequence of PLC activation
and subsequent PIP2 depletion (Abdullaev et al., 2008; Baudel
et al., 2020; Wang et al., 2020). This channel is expressed in
VSMCs and upregulated in such cells in vascular pathologies,
including vascular injury and restenosis, which are known to be
mechanically mediated (Wang et al., 2008; Spinelli and Trebak,
2016). Previous reports have shown that Orai interacts with
TRPC channel subtypes, including TRPC3 and TRPC6 (Liao
et al., 2007); however, TRPC 1 is independent of Orai function
(DeHaven et al., 2009; Shi et al., 2017). Although these two
proteins share great similarity in their functionality, it has yet
to be explored how they may be coupled mechanically. Previous
studies have assessed the mechanosensitivity of the Orai channel;
however, it remains to be empirically determined (Dong et al.,
2019). Furthermore, Piezo1 is a recently characterized putative
mechanically activated calcium permeable cation channel that
is ubiquitously expressed through the cardiovascular system
(Beech and Kalli, 2019). It has been uniquely shown that Piezo1’s
mechanosensitivity to membrane tension is regulated by PIP2
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levels. Upon activation of TRPV1, PLC is activated and depletes
the local levels of PIP2, which subsequently inhibits Piezo1’s
mechanosensitive activity (Borbiro et al., 2015).

PIP2 in Mechanotransduction of
Capillary Signaling
The capillary endothelial cell (cEC) inward rectifier K+ channel
Kir2.1 is critical to sensing and translating neural activity and
neurovascular coupling in brain cECs (Longden and Nelson,
2015). This process of capillary-to-arteriole signaling in cECs
is regulated by PIP2. Moreover, PIP2 levels are required for
sustained Kir2.1 activity, and such regulation of Kir2.1 channels
mediates electrical signaling during neurovascular coupling
(Harraz et al., 2018a). More specifically, GαqPCRs stimulate PLC
to rapidly either deplete or decrease PIP2 levels and subsequently
suppresses Kir2.1 channel signaling (Harraz et al., 2018a). This
depletion of PIP2 also promotes the activation of transient
receptor potential vanilloid 4 (TRPV4), a channel found in cECs
that is inhibited by PIP2 under basal conditions and because
of GαqPCR activation (Harraz et al., 2018b). Furthermore,
PIP2 levels govern capillary-to-arteriole electrical signaling by
modulating the activity of TRPV4 and Kir2.1, which regulate
the cellular states of depolarization and hyperpolarization. Thus,
the levels of PIP2 considerably modulate the magnitude of
electrical signaling across cerebral capillaries, which ultimately
affects cerebral microcirculatory blood flow in cECs (Harraz
et al., 2018a,b). The relationship of TRPV4 to PIP2 is important
given TRPV4’s involvement in shear stress mechanotransduction
in endothelial cells and mesenchymal cells and its ability to
act mechanosensitively (Kohler and Hoyer, 2007; Yin and
Kuebler, 2010; Corrigan et al., 2018). Therefore, the role of
PIP2 in this signaling pathway and its interaction with a known
mechanotransducer, TRPV4, suggests that PIP2 itself acts in the
mechanotransduction of capillary electrical signaling.

PHOSPHATIDYLINOSITOL-4-
PHOSPHATE
5-KINASE (PIP5K)

PIP5K Association in Focal Adhesion and
the Cytoskeleton
Phosphatidylinositol-4-phosphate 5-kinase (PIP5K)
phosphorylates the fifth position of the inositol head of
phosphatidylinositol-4-phosphate. The type 1 PIP5K subfamily
comprises three isoforms, Iα, Iβ, and Iγ, and is critical to
many cytoskeletal processes. It has been reported that the
overexpression of these isoforms induces the formation of stress
fibers, membrane ruffles, and microvilli and regulates actin
cytoskeletal dynamics, suggesting that this enzyme and its PIP2
products are mechanosensitive (Chatah and Abrams, 2001).
Weernink et al. reported that RhoA and its kinase, ROCK,
which are both dominant effectors of mechanotransduction,
are essential regulators of PIP5K in HEK-293 cells. The
overexpression of ROCK enhances the PIP5K activity and
subsequently elevates PIP2 formation. Conversely, the chemical

inhibition of ROCK decreases PIP5K activity and PIP2 formation
(Oude Weernink et al., 2000). Furthermore, Weernink et al.
examined Type 1 PIP5K through other Rho family small
GTPases, including Rac1 and Cdc42. Rho GTPases, RhoA, Rac1,
and Cdc42 all mediate the PIP5K levels and lead to an increase
in PIP2 levels (Weernink et al., 2004). Therefore, PIP5K activity
is RhoA-dependent in which signals from RhoA to the actin
cytoskeleton are mediated, and synthesis of PIP2 is enhanced
(Oude Weernink et al., 2000).

The PIP2 synthesis pathway in platelets through the isoform
PIP5K Iα was more closely studied by Chatah and Abrams (2001)
and Trepat et al. (2005). Thrombin, a known mediator of actin
cytoskeleton remodeling (Chatah and Abrams, 2001; Trepat et al.,
2005), promotes PIP2 synthesis by PIP5K from PI4P in response
to G protein-coupled receptor stimulation. PIP5K Iα localizes
in the Golgi under basal conditions. Following stimulation of
PAR1, a thrombin receptor, or overexpression of the active
variant of Gαq, PIP5K Iα relocates to the plasma membrane. This
translocation of PIP5K Iα is dependent on Rac1 and RhoA. Rac1
has been suggested to affect PIP5K indirectly, and activation is
required by Rho (Chatah and Abrams, 2001).

Although these studies independently identified Rho GTPases
in mediating PIP5K activity, the mechanisms by which Rho
GTPase is suggested to activate PIP5K are separate. Taken
together, these findings indicate that members of the Rho GTPase
family, RhoA, Rac, and Cdc42, are vital in mediating PIP5K
activation and, consequently, PIP2 synthesis, regardless of their
interconversional crosstalk (Oude Weernink et al., 2000; Chatah
and Abrams, 2001; Weernink et al., 2004). Furthermore, these
GTPases act as a dynamic molecular switch between various cells,
which play a key role in vascular pathology (Cai et al., 2015;
Karoor et al., 2018; Barlow and Cleaver, 2019) and are involved
in mechanosensing and mechanotransduction pathways (Verma
et al., 2011; Chaterji et al., 2014; Zegers and Friedl, 2014; Ohashi
et al., 2017). The relationship of PIP5K with small downstream
GTPases in vascular pathology and mechanotransduction has
not yet been explored. Due to the relevance of the small
GTPases Rho, Rac, and Cdc42 for PIP5K activity and PIP2
synthesis, this pathway may be vitally important for better
understanding vascular disease and may be potentially significant
in the overall study of mechanotransduction in the context of
vascular pathology. Therefore, the relationship of these PIP5Ks
and these downstream GTPases should be explored in relation to
mechanotransduction and vascular disease.

PHOSPHOINOSITIDE 3-KINASE (PI3K)
AND PHOSPHATIDYLINOSITOL-3,4,5-
TRIPHOSPHATE (PIP3)

Akt/PI3K Signaling in the
Mechanotransduction of Ventricular
Cardiomyocytes
Phosphoinositide 3-kinase (PI3K) is a family of evolutionarily
conserved lipid kinases that mediate many cellular responses to
physiological and pathophysiological stimuli. The PI3K family
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is divided into three subgroups (classes I, II, and III), which
together include eight isoforms. The class I isoforms, PI3Kα,
PI3Kβ, PI3Kγ, and PI3Kδ, convert PIP2 to phosphatidylinositol-
3,4,5-triphosphate (PIP3) (Vanhaesebroeck et al., 2010; Miller
et al., 2019). Activated PI3K produces PIP3, which further
recruits 3-phosphoinositide-dependent kinase 1 (PDK1) to the
plasma membrane (Hagiwara et al., 2012). PIP3 activates PDK1
through its PH domain. PDK1 subsequently phosphorylates
and activates Akt at threonine residue 308 (T308) (Ghigo and
Li, 2015; Manning and Toker, 2017). More importantly, the
phosphorylation of serine residue 473 (S473) by the mechanistic
target of the mammalian target of rapamycin complex 2
(mTORC2) stabilizes not only T308 phosphorylation but also
AKT in its active state (Manning and Toker, 2017). Together,
Akt and PI3K create a unique signaling pathway (Akt/PI3K)
that is instrumental in cardiomyocyte mechanotransduction (Li
C.J. et al., 2019). Moreover, the Akt/PI3K signaling pathway
regulates intracellular and extracellular activities in response
to mechanical stress and molecular effectors, leading to a
robust cellular mechanotransduction signaling cascade in cardiac
myocytes. These cellular responses include modulation of cell
metabolism, growth, proliferation, angiogenesis, and cardiac
adaptation (Aoyagi and Matsui, 2011; Markowska et al., 2014;
Yang et al., 2018). In a disease model, chronic activation of the
Akt/PI3K pathway dysregulates cell contractility, which induces
compensatory cardiac hypertrophy with preserved contractility
and ultimately advances to chronic dilated cardiomyopathy
(Shiojima et al., 2005; Li C.J. et al., 2019). Furthermore,
alterations in the function and structure of titin, a giant
sarcomeric filament protein, have been observed in similar
cardiomyopathies, including cardiac remodeling, hypertrophy,
and heart failure (Linke, 2008; Kruger and Linke, 2009; Lyon
et al., 2015). In cardiac sarcomeres, titin isoforms exhibit varying
properties of mechanical elasticity and are differentially expressed
throughout cardiac development and during disease in which
isoform switching is dynamically regulated by the Akt/PI3K
signaling pathway (Kruger and Linke, 2009). Moreover, it is
believed that these properties of titin are uniquely positioned
to serve as a molecular sensor of mechanical stress in cardiac
myocytes, including oscillatory changes in cell stretching known
to induce PI3K activation through molecular mechanisms that
remain unclear (Miller et al., 2004; Linke, 2008; Leychenko et al.,
2011; Voelkel and Linke, 2011).

PIP3, PI3Kα, and PI3Kγ Association With
Mechanotransduction Through Gelsolin
and Cyclic Adenosine
Monophosphate (cAMP)
In cardiac myocytes, mechanotransduction critically mediates
remodeling of the cytoskeleton, and dysregulation of this
process can drive heart disease in response to aberrant
biomechanical stress. Biomedical research on patients
with hypertension has revealed how critical cardiac
mechanotransduction plays in this response (Patel et al.,
2013). One study by Patel et al. demonstrated that PI3Kα,
a major PI3K isoform in the heart, negatively regulates

gelsolin activity and suppresses pathological cytoskeletal
remodeling in response to biomechanical stress-induced
cardiac mechanotransduction and the resulting dilated
cardiomyopathy (Guo et al., 2010). Similarly, a separate
study showed that loss of PTEN in ventricular cardiac myocytes
increases PI3Kα activity, which attenuates pressure overload-
induced heart failure but loss of myocardial contractility
(Oudit et al., 2008). Conversely, however, other studies
have shown that constitutively activated PI3K drives the
growth and hypertrophy of such cells, greatly increasing the
heart size in mice, while knocking down PI3Kα results in
mice with smaller hearts (Shioi et al., 2000). In response
to mechanical stress, PI3Kα translocates to the plasma
membrane to convert PIP2 to PIP3, which subsequently
recruits gelsolin to the plasma membrane (Patel et al.,
2018). A resulting spatial colocalization occurs between
p110α, the catalytic subunit of PI3Kα, and gelsolin in which
p110α-catalyzed PIP3 negatively regulates gelsolin activity
and thus diminishes unfavorable remodeling of the actin
cytoskeleton while conserving the cytoskeletal integrity.
Consequently, PI3Kα-generated PIP3 plays a critical role in
the mechanotransduction of cardiomyocytes by negatively
regulating gelsolin, which subsequently inhibits actin remodeling
(Patel et al., 2018).

In cardiac myocytes, GPCRs activate PI3Kγ in response to
pressure overload or biomechanical stress, which mediates the
adaptive role in cardiac mechanotransduction by negatively
regulating cyclic adenosine monophosphate (cAMP) levels (Guo
et al., 2010). It was first shown that complete deletion of
PI3Kγ in cardiac myocytes alters heart function by inducing cell
hypercontractility as a result of cAMP accumulation but does
not alter the cell structure or growth (Crackower et al., 2002;
Patrucco et al., 2004); however, a separate study has shown that
deletion of PI3Kγ accelerates the development of pathological
hypertrophy (Guo et al., 2010). Intriguingly, the regulation of
cell contractility by PI3Kγ in response to mechanical stress is
independent of its activity or functional kinase domain (Patrucco
et al., 2004). More specifically, cardiac myocytes lacking PI3Kγ

activity with preserved expression exhibit normal levels of cAMP
that are believed to be the result of phosphodiesterase 3B
positive regulation by a PI3Kγ-associated multifunctional protein
complex (Patrucco et al., 2004). Critical to this complex is
the anchoring of PKA to PI3Kγ and downstream activation of
phosphodiesterases, type 3 and 4 (PDE3/4), and subsequently
reducing the cAMP levels; upon its anchoring, PKA also
phosphorylates and inhibits PI3Kγ lipid kinase activity, resulting
in a reduction in PIP3 (Perino et al., 2011; Ghigo et al.,
2017). In pressure overload-mediated sympathetic overdrive of
cardiac myocytes, the beta2 adrenergic receptor is desensitized
and internalized as a result of PKA-escaped PI3Kγ kinase
activity and ultimately induces hypokinetic dilated heart failure
(Prasad et al., 2005; Perino et al., 2011; Ghigo and Li, 2015;
Ghigo et al., 2017). Despite enhanced calcium dynamics and
contractility upon the loss of PI3Kγ in cardiac myocytes,
decompensation ensues because of dysregulated cellular-ECM
interactions (Guo et al., 2010). Furthermore, a more direct
relationship between PI3Kγ and cardiac mechanotransduction
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TABLE 1 | Overview of phosphoinositide signaling and mechanotransduction in cardiovascular biology and pathology.

PPIs Associated protein(s) Cell type(s) Known related function(s) Proposed mediation in
mechanotransduction

PIP2 MARCKS vECs
(Kalwa and Michel, 2011)

Cytoskeletal rearrangement: - PIP2 and
MARCKS interaction observed in
membrane ruffles of which Rac is a
regulator. - PIP2 levels fluctuate in
membrane ruffles in a Rac-dependent
manner-indicating a possible
relationship between Rac and PIP2

(Kalwa and Michel, 2011)

Rac involved in numerous
mechanotransduction pathways (i.e.,
FAK-Cas-Rac axis) (Labouesse, 2011;
Lawson and Burridge, 2014; McGowan
and McCoy, 2017)

PIP2 CapZ Ventricular CMs
(Solis and Russell, 2019)

PIP2 acts as a mechanical sensor at
sarcomere Z-disc in response to
mechanical stimuli (Solis and Russell,
2019)

Sarcomere Z-disc located on CapZβ1
is a site for mechanotransduction
(Russell et al., 2010)

PIP2 and
PKC

TRPC1 VSMCs
(Saleh et al., 2009b;
Shi et al., 2012; Baudel et al., 2020)

Functions are associated with the
development of vascular diseases
(Saleh et al., 2009b; Shi et al., 2012;
Baudel et al., 2020)

TRPC1 is implicated in
mechanotransduction (Formigli et al.,
2009; Garrison et al., 2012; Canales
et al., 2019; Li N. et al., 2019)

PIP2 Kir2.1 and
TRPV4

Cerebral capillary ECs
(Harraz et al., 2018a,b)

PIP2 controls the capillary-to-arteriole
electrical signaling through
depolarization or hyperpolarization of
TRPV4 and Kir2.1 (Harraz et al.,
2018a,b)

TRPV4 has been observed in shear
stress-mediated mechanotransduction
in ECs and mesenchymal cells (Kohler
and Hoyer, 2007; Yin and Kuebler,
2010; Corrigan et al., 2018)

PI3K Akt Ventricular CMs
(Aoyagi and Matsui, 2011;
Markowska et al., 2014;
Yang et al., 2018)

Akt/PI3K signaling pathway regulates
cellular functions in response to
mechanical stress, including cell
metabolism, growth, proliferation,
angiogenesis, and cardiac adaptation
(Aoyagi and Matsui, 2011; Markowska
et al., 2014; Yang et al., 2018)

The Akt/PI3K signaling is a known
mediator of mechanotransduction in
ventricular CMs (Li et al., 2019)

PI3Kα Gelsolin Ventricular CMs
(Guo et al., 2010)

PI3Kα regulates gelsolin activity (Guo
et al., 2010)

PI3Kα plays a role in biomechanical
stress-induced ventricular CM
mechanotransduction (Guo et al., 2010)

PI3Kγ cAMP Ventricular CMs
(Guo et al., 2010)

In response to biomechanical stress, G
protein-coupled receptors activate
PI3Kγ, and thus negatively regulate
cAMP (Guo et al., 2010)

PI3Kγ plays a role in ventricular CM
mechanotransduction (Guo et al., 2010)

PI3K PTEN Ventricular CMs
(Shioi et al., 2000;
Luo et al., 2005)

Overexpression of PTEN reduces the
levels of PI3K and influences the growth
and the hypertrophy of ventricular
cardiomyocytes (Shioi et al., 2000; Luo
et al., 2005)

PI3Kα Gelsolin and p110α Ventricular CMs
(Patel et al., 2018)

PI3Kα translocates and induces the
spatial colocalization between p110α

and gelsolin, resulting in the attenuation
of actin cytoskeleton remodeling (Patel
et al., 2018)

PI3Kα-generated PIP3 plays a critical
role in the mechanotransduction
through gelsolin (Patel et al., 2018)

PI3K Hippo pathway through
YAP/TAZ

Epithelial cells
(Borreguero-Munoz et al., 2019)

Inhibition of the Hippo signaling
pathway promotes tissue growth via
PI3K-PDK1-Akt axis
(Borreguero-Munoz et al., 2019)

YAP and TAZ are essential effectors of
mechanotransduction and effectors of
mechanical cues (Halder et al., 2012;
Codelia et al., 2014; Meng et al., 2016)

PI3Kγ cAMP, N-cadherin and
gelsolin

Ventricular CMs
(Guo et al., 2010)

- Reduction of N-cadherin and an
increase in cAMP levels result in the
loss of p110γ function, which can lead
to heart failure. - Actin polymerization is
promoted through gelsolin in response
to biomechanical stress
(Guo et al., 2010)

PI3Kγ plays a role in ventricular CM
mechanotransduction (Chan et al.,
2004)

(Continued)
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TABLE 1 | Continued

PPIs Associated protein(s) Cell type(s) Known related function(s) Proposed mediation in
mechanotransduction

PI3K Hippo pathway through
YAP/TAZ

Human umbilical arterial SMCs
(Wang et al., 2018)

Mechanical cell stretching regulates
YAP/TAZ activity via
PI3K/PDK1-mediated pathway (Wang
et al., 2018)

YAP and TAZ are essential effectors of
mechanotransduction and effectors of
mechanical cues (Halder et al., 2012;
Codelia et al., 2014; Meng et al., 2016)

PI3Kβ RGS (Regulator of G
protein signaling 5)

Pericytes
(Figueiredo et al., 2020)

Accurate PI3K signaling is necessary for
pericyte maturation and correct vessel
formation (Figueiredo et al., 2020)

Mechanotransduction induces
physiological vascular remodeling (Qi
et al., 2018)

PI3Kα Receptor tyrosine kinase VSMCs
(Vantler et al., 2015)

Catalytic subunit of PI3Kα, p110α, is
essential to pathological neointima
formation (Vantler et al., 2015)

Mechanotransduction induces
pathological vascular remodeling in
atherosclerosis (Yu et al., 2018)

PI3Kγ Elastin-derived peptides
and GPCR kinase-2

Leukocytes and CMs
(Fougerat et al., 2008)

- PI3Kγ is involved in Neu-1 signaling
which governs atherosclerosis
development (Gayral et al., 2014) -
Genetic and chemical inhibition of
PI3Kγ reduces atherosclerosis in vivo
(Fougerat et al., 2008) - PI3Kγ directly
interacts with GPCR kinase-2 which is
observed in cardiac failure (Ghigo and
Li, 2015)

Mechanotransduction induces
pathological vascular remodeling in
atherosclerosis (Yu et al., 2018)

PIP5K* RhoA and ROCK HEK-293
(Weernink et al., 2004)

- RhoA, Rac1, and Cdc42 regulate
cellular PIP5K levels. - PIP5K activity is
RhoA-dependent in which signals from
RhoA to the actin cytoskeletal mediate
enhanced PIP2 synthesis (Weernink
et al., 2004)

RhoA, Rac, and Cdc42 are mediators
of mechanotransduction (Verma et al.,
2011; Chaterji et al., 2014; Zegers and
Friedl, 2014; Ohashi et al., 2017)

PIP5K* Thrombin, Rac, and Rho HEK 293 and Cos-7
(Chatah and Abrams, 2001; Trepat
et al., 2005)

- Thrombin promotes PIP2 synthesis
and separately relocates PIP5K Iα to
the plasma membrane. - Translocation
of PIP5K Iα is dependent on Rac1 and
RhoA; Rac1 is suggested to effect
PIP5K indirectly and activation is
required by RhoA (Chatah and Abrams,
2001; Trepat et al., 2005)

Rho GTPase family, RhoA, Rac, and
Cdc42 are known mechanosensors
(Verma et al., 2011; Chaterji et al.,
2014; Zegers and Friedl, 2014; Ohashi
et al., 2017)

This table summarizes all the main phosphoinositide (PPI) subspecies, in the context of cardiovascular pathology and biology, which are assessed in our review with their
main associations and the cellular target(s) of these interactions. The main function from these associations and how the PPIs are connected to mechanotransduction or
as mechanosensors are further highlighted in this table. *These studies express interconversional crosstalk. Although regardless of their crosstalk these results indicate
RhoA, Rac, and Cdc42 are essential in mediating PIP5K activation. vECs, Vascular endothelial cells; VSMCs, Vascular smooth muscle cells; CMs, Cardiomyocytes.

is observed upon the loss of PI3Kγ, in which elevated cAMP
levels mediate extracellular matrix remodeling and interactions
(Guo et al., 2010). In this particular instance, inhibiting the beta2
adrenergic receptor protects N-cadherin adhesion complexes
from degradation (Guo et al., 2010), whereas the loss of p110γ

function, the catalytic subunit of PI3Kγ, leads to heart failure by
the deterioration of N-cadherin and an increase in cAMP levels
(Patel et al., 2018). Furthermore, N-cadherin complexes actively
perceive biomechanical stress, and through the regulation of
gelsolin, actin polymerization is promoted, therefore expressing
a collaborative relationship between PI3Kγ and PI3Kα in cardiac
mechanotransduction (Chan et al., 2004).

PI3K Mechanotransduction Association
With the Hippo Pathway Through
YAP/TAZ
The Hippo signaling pathway, which was originally observed in
Drosophila, mediates the VSMC stretch response that inhibits
cell proliferation and participates in mechanotransduction

pathways (Huang et al., 2005; Ota and Sasaki, 2008;
Yu et al., 2015; Chakraborty et al., 2017; Fletcher et al.,
2018). Inhibition of the Hippo pathway promotes tissue
growth in epithelial cells through the PI3K-PDK1-Akt axis
upon mechanical stimulation and growth factor signaling
(Borreguero-Munoz et al., 2019). Yes-associated protein 1
(YAP) and transcriptional coactivator with the PDZ-binding
motif (TAZ) are downstream transcriptional activators of
the Hippo pathway (Halder et al., 2012). These effectors are
regulated by mechanical cues, specifically, matrix stiffness,
stretch, and cell density, which influence cell proliferation
and differentiation (Halder et al., 2012; Codelia et al., 2014;
Meng et al., 2016). Thus, YAP and TAZ function as essential
effectors of mechanotransduction (Meng et al., 2018). YAP/TAZ-
dependent glutaminolysis and anaplerosis are mechanoactivated
by vascular stiffness to drive cell proliferation in pulmonary
hypertension (Bertero et al., 2016). Additionally, mechanical
stretching regulates YAP/TAZ activity via the PI3K-PDK1-
mediated pathway in human umbilical arterial VSMCs
(Wang et al., 2018). Furthermore, the PDK1 interaction
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with the Hippo complex is mediated through Sav1, where
PDK1 directly controls the Hippo pathway (Wang et al.,
2018). The consequential association of PI3K with the Hippo
signaling pathway effectors YAP and TAZ in vascular cells
further implicates PI3K in the mechanotransduction of the
cardiovascular system.

PI3K Implication in
Mechanotransduction of Vascular
Remodeling
Mechanical forces of a hemodynamic nature are uniquely
fundamental for vascular homeostasis as well as pathological
vascular remodeling that are commonly observed in CVD
(Cahill and Redmond, 2016; Russo et al., 2018). In cells of
the vasculature, harmony in cell proliferation, apoptosis,
migration, and differentiation is integral to vascular wall
homeostasis. Mechanical forces perceived by ECs and VSMCs
generate a biological response, i.e., mechanotransduction to
induce physiological vascular remodeling (Qi et al., 2018).
Consequently, vascular remodeling involves a variety of cellular
components to mediate these biophysical and biochemical
events, including PI3K, which has previously been connected
to the vascular remodeling pathway. During angiogenesis,
vessel remodeling can help with cell proliferation and
maturation (Wang and Khalil, 2018). Vascular remodeling
in pericytes is regulated by PI3Kβ. Mature pericytes, which
are mostly found in vessels undergoing remodeling, are
quiescent and express low activation of the PI3K signaling.
Inactivation of PI3Kβ in these cells generates early pericyte
maturation, with an increase in PI3K signaling that obstructs
pericyte maturation. Thus, pericytes in a sustained immature
state will result in vascular hyperplasia and block vascular
remodeling, whereas accurate PI3K signaling is necessary
for pericyte maturation and correct vessel formation
(Figueiredo et al., 2020).

One of the most prevalent cardiovascular diseases involving
vascular remodeling is atherosclerosis. During atherosclerosis,
vascular injury occurs, causing abnormal proliferation of
VSMCs, which leads to neointima formation and vessel
lumen narrowing and ultimately limits blood flow and
oxygen supply (Yu et al., 2018). PI3K has been directly
associated with the molecular pathways that mediate vascular
remodeling and atherosclerosis. The catalytic subunit of
PI3Kα, p110α, is important for receptor tyrosine kinase
(RTK) signaling, which is upstream of class 1A PI3K
isoforms, in VSMCs. Furthermore, p110α is critical to
neointima formation after balloon angioplasty by mediating
VSMC proliferation and migration, while the PI3Kα

isoforms p100β and p110δ do not play a significant role
(Vantler et al., 2015).

PI3Kγ functions in both leukocytes and cardiomyocytes
and plays a role in atherosclerosis and heart disease. PI3Kγ

controls leukocyte infiltration in the myocardium and arteries.
PI3Kγ is involved in neuraminidase-1 (Neu-1) signaling,
which governs atherosclerosis development (Gayral et al.,
2014). Genetic and pharmacological inhibitory targeting of

PI3Kγ in leukocytes reduces atherosclerosis in mouse models
(Fougerat et al., 2008). Ghigo et al. (2017) recently reviewed
PI3K and calcium signaling in cardiovascular disease. The
PI3K pathway has recently been interconnected with Ca2+

signaling. PI3Kγ appears to be preferentially linked to Ca2+

signaling in smooth muscle cells (Lupieri et al., 2020), where
Class I PI3Ks are highly expressed. This interconnection
between the PI3Kγ pathway and Ca2+ signaling has been
involved in smooth muscle cell proliferation and migration,
atherosclerosis and arterial injury. The development of arterial
lesions through various immune functions requires PI3Kγ

activity with PI3Kγ playing an important role in arterial
injury in T cells. For example, it has been found that
PI3Kγ regulates T-cell function, and it has been proposed
that PI3Kγ interacts with Ca2+ signaling, leading to Ca2+

influx downstream of T-cell receptor activation; thus, PI3Kγ

interconnects with Ca2+, playing an important role in arterial
injury (Smirnova et al., 2014; Lupieri et al., 2015; Ghigo
et al., 2017). Taken together, PI3Kβ and PI3Kγ are paramount
pathways that drive cardiovascular remodeling seen in heart
failure as well as in atherosclerosis, and this strongly suggests that
PI3K is critically involved in mechanotransduction-mediated
cardiovascular disease.

CONCLUSION

This review summarizes the relationship between PPIs and
mechanotransduction in regard to cardiovascular biology
and disease (Table 1). PPIs are central mediators in multiple
biological processes, although understanding the specific
contribution of PPIs to cellular dynamics can be difficult,
especially regarding mechanotransduction in cardiovascular
disease. PIP2, PIP3, PI3K, and PIP5K all play important roles in
different mechanotransduction pathways of the cardiovascular
system. These PPI functions include cytoskeletal arrangements,
association with actin-binding proteins and ion channels,
and response to mechanical stimuli. Indeed, PPIs are critical
modulators of mechanotransduction. Complete knowledge
of these pathways is not yet fully known and should be
further explored to address how these pathways influence
cellular mechanotransduction in cardiovascular cells in both
homeostasis and disease.
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Trans-differentiation of quiescent hepatic stellate cells (HSC) into myofibroblast cells is
considered the linchpin of liver fibrosis. A myriad of signaling pathways contribute to
HSC activation and consequently liver fibrosis. Epidermal growth factor (EGF) family
of cytokines signal through the cognate receptor EGFR to promote HSC activation. In
the present study we investigated the transcription regulation of epiregulin (EREG), an
EGFR ligand, during HSC activation. We report that EREG expression was significantly
up-regulated in activated HSCs compared to quiescent HSCs isolated from mice. In
addition, there was an elevation of EREG expression in HSCs undergoing activation
in vitro. Of interest, deficiency of myocardin-related transcription factor A (MRTF-A),
a well-documented regulator of HSC trans-differentiation, attenuated up-regulation of
EREG expression both in vivo and in vitro. Further analysis revealed that MRTF-A
interacted with serum response factor (SRF) to bind directly to the EREG promoter
and activate EREG transcription. EREG treatment promoted HSC activation in vitro,
which was blocked by MRTF-A depletion or inhibition. Mechanistically, EREG stimulated
nuclear trans-location of MRTF-A in HSCs. Together, our data portray an EREG-MRTF-
A feedforward loop that contributes to HSC activation and suggest that targeting the
EREG-MRTF-A axis may yield therapeutic solutions against liver fibrosis.

Keywords: transcription regulation, hepatic stellate cell, liver fibrosis, epiregulin, MRTF-A, SRF

INTRODUCTION

Liver fibrosis is a key pathophysiological process taking place in response to various acute and
chronic hepatic injuries (Lee et al., 2015). Whereas spatiotemporally controlled liver fibrosis
is instrumental to the amelioration of liver injury and restoration of liver function, excessive
and/or prolonged liver fibrosis leads to architectural and functional damages to the liver and
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precipitates the development of such end-stage liver diseases
as cirrhosis and hepatocellular carcinoma (Barry et al., 2020).
Liver fibrosis can occur following the challenge of a myriad
of injurious stimuli including pathogens, toxins, corrosive
chemicals, and metabolites. Regardless of the specific triggering
factor, myofibroblasts are considered the major effector cell
type for liver fibrosis (Kisseleva, 2017). Myofibroblasts possess
the characteristics of both muscle cells and fibroblast cells
being able to contract and cover the wound and produce
and lay down extracellular matrix proteins. The origins from
which myofibroblasts arise during liver fibrosis have been
a subject matter receiving extensive investigations. Recently
lineage fate-mapping experiments have been determined that an
overwhelming majority (>90%) of myofibroblasts in the liver are
derived from hepatic stellate cells (HSC) that express lecithin
retinol acyltransferase (Lrat), a supposedly HSC lineage-specific
marker gene (Mederacke et al., 2013). Under physiological
settings, quiescent HSCs primarily function as a deposit site
for lipids and vitamin A; upon exposure to a pro-fibrogenic
microenvironment, HSCs undergo trans-differentiation and
become myofibroblasts. In vitro cultured HSCs can also be
educated to switch to a myofibroblast-like phenotype by a host
of growth factors including transforming growth factor (TGF-β)
and platelet-derived growth factor (PDGF) (Hou and Syn, 2018).

Signaling through epidermal growth factor receptor (EGFR)
has been shown to contribute to HSC activation and liver
fibrosis. Scheving et al. have demonstrated that genetic
deletion of EGFR attenuates CCl4 induced liver fibrosis in
mice (Scheving et al., 2016). Consistently, pharmaceutical
inhibition of EGFR is associated with amelioration of liver
fibrosis in different murine models (Fuchs et al., 2014; Liang
et al., 2018). Previously, Perugorria et al. have shown the
amphiregulin (AR), a ligand for EGFR, plays critical roles
in HSC activation and liver fibrosis: AR treatment robustly
promotes HSC activation in vitro whereas AR deletion protects
the mice from CCl4-induced liver fibrosis (Perugorria et al.,
2008). Epiregulin, encoded by EREG, is an EGFR ligand that
shares significant homology with amphiregulin (Riese and
Cullum, 2014). Whether EREG can contribute to HSC activation
remains undetermined.

Mounting evidence suggests that myocardin-related
transcription factor A (MRTF-A) plays a pivotal role promoting
the differentiation of myofibroblasts in multiple organs (Small,
2012). MRTF-A was initially characterized as a co-factor for
serum response factor (SRF) to activate the transcription of
muscle-lineage specific genes (Wang et al., 2002). MRTF-A can
shuttle between the cytoplasm and the nucleus depending on
cytoskeletal reshuffling (Olson and Nordheim, 2010). Previously
we have reported that MRTF-A regulates liver fibrosis by
transcriptionally programming HSC activation (Fan et al., 2015;
Tian et al., 2015, 2016). Here we report that EREG expression
is up-regulated during HSC activation both in vivo and in vitro.
MRTF-A interacts with SRF to directly bind to the EREG
promoter and activate EREG transcription. Reciprocally, EREG
contributes to HSC activation by promoting nuclear trans-
location of MRTF-A. Therefore, targeting the EREG-MRTF-A
axis may yield therapeutic solutions against liver fibrosis.

MATERIALS AND METHODS

Animals
All animal protocols were reviewed and approved the intramural
Ethics Committee on Humane Treatment of Laboratory Animals
of Nanjing Medical University. MRTF-A knockout (KO) mice
were originally obtained from Steve Morris at St Jude Hospital
(Sun et al., 2006). To induce liver fibrosis, MRTF-A KO mice and
wild type (WT) littermates were injected with CCl4 (1.0 mL/kg as
50% vol/vol), or injected with thioacetamide (TAA, 100 mg/kg),
or subjected to bile duct ligation (BDL) as previously described
(Li et al., 2019a,c; Lu et al., 2019).

Cell Culture, Plasmids, and Transient
Transfection
Immortalized human HSC (LX-2) were maintained in DMEM
supplemented with 10% FBS as previously described (Kong
et al., 2019a,b). Primary HSC were isolated and maintained
as previously described (Li et al., 2019b). Briefly, the animals
were anesthetized by intraperitoneal injection with ketamine-
xylazine. A laparotomy was performed and the portal vein was
cut to allow retrograde perfusion with pronase (Sigma Aldrich,
St. Louis, MO, United States) and collagenase (Roche, Germany)
containing solutions. HSCs were isolated from the non-
parenchymal fraction by 9.7% Nycodenz gradient centrifugation.
Isolated HSCs were seeded in plastic culture dishes and
allowed to undergo spontaneous activation. RNA targeting
SRF (GAUGGAGUUCAUCGACAACAA) was purchased from
Dharmacon. Recombinant TGF-β (100-21) was purchased from
Peprotech. Recombinant EREG (1195-EP-025) was purchased
from R&D. CCG-1423 (S7719) was purchased from Selleck. Full-
length EREG promoter-luciferase construct (−1345/+118) and
MRTF-A expression construct have been previously described
(Kyotani et al., 2018; Mao et al., 2020b). Truncated and mutated
EREG promoter-luciferase constructs were prepared with the
QuikChange mutagenesis kit (Agilent). Conditioned media were
harvested as previously described (Li et al., 2020a,b). Briefly,
the cells were switched to and incubated with serum-free media
overnight. The next day, the media were collected, centrifuged
at 4,000 × g for 30 min at 4◦C using 3-kDa MW cut-off
filter units (Millipore) and sterilized through a 0.4-µm filter.
Transient transfections were performed with Lipofectamine
2000. Luciferase activities were assayed 24–48 h after transfection
using a luciferase reporter assay system (Promega) as previously
described (Yang et al., 2019a,b).

Enzyme-Linked Immunosorbent Assay
(ELISA)
Secreted epiregulin levels were measured using a commercially
available ELISA (LS-F5753, Lifespan Biosciences) per vendor’s
recommendations.

Protein Extraction and Western Blot
Whole cell lysates were obtained by re-suspending cell pellets
in RIPA buffer (50 mM Tris pH7.4, 150 mMNaCl, 1%
Triton X-100) with freshly added protease inhibitor (Roche) as
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previously described (Fan et al., 2020). Nuclear proteins were
extracted using the NE-PER Kit (Pierce) following manufacturer’s
recommendation (Mao et al., 2020a). Western blot analyses
were performed with anti-MRTF-A (Santa Cruz, sc-32909),
anti-SRF (Cell Signaling Technology, 5147), anti-α-tubulin
(Sigma, T6074), anti-Lamin A/C (Proteintech, 10298-1), anti-
α-SMA (Abcam, ab5694), and anti-β-actin (Sigma, A1978). For
densitometrical quantification, densities of target proteins were
normalized to those of β-actin as previously described (Lv et al.,
2020; Wu et al., 2020). Data are expressed as relative protein levels
compared to the control group which is arbitrarily set as 1.

RNA Isolation and Real-Time PCR
RNA was extracted with the RNeasy RNA isolation kit (Qiagen).
Reverse transcriptase reactions were performed using a
SuperScript First-strand Synthesis System (Invitrogen) as
previously described (Zhao et al., 2019; Dong et al., 2020).
Real-time PCR reactions were performed on an ABI Prism
7,500 system with the following primers: human EREG, 5′-
ACGTGTGGCTCAAGTGTCAA-3′ and 5′-CACTTCACACC
TGCAGTAGTTT-3′; mouse Ereg, 5′-TGCTTTGTCTAGGTT
CCCACC-3′ and 5′-GGCGGTACAGTTATCCTCGG-3′; human
COL1A2, 5′-GTGGCAGTGATGGAAGTGTG-3′ and 5′-AGGA
CCAGCGTTACCAACAG-3′; human ACTA2, 5′-CTATGCC
TCTGGACGCACAACT-3′ and 5′-CAGATCCAGACGCAT
GATGGCA-3′.Ct values of target genes were normalized
to the Ct values of housekeekping control gene (18s,
5′-CGCGGTTCTATTTTGTTGGT-3′ and 5′-TCGTCTTCG
AAACTCCGACT-3′ for both human and mouse genes) using
the 11Ct method and expressed as relative mRNA expression
levels compared to the control group which is arbitrarily set as 1.

Chromatin Immunoprecipitation
Chromatin Immunoprecipitation (ChIP) assays were performed
essentially as described before (Sun et al., 2020). In brief,
chromatin in control and treated cells were cross-linked with 1%
formaldehyde. Cells were incubated in lysis buffer (150 mMNaCl,
25 mM Tris pH 7.5, 1% Triton X-100, 0.1% SDS, 0.5%
deoxycholate) supplemented with protease inhibitor tablet and
PMSF. DNA was fragmented into ∼200 bp pieces using a
Branson 250 sonicator. Aliquots of lysates containing 200 µg of
protein were used for each immunoprecipitation reaction with
anti-MRTF-A (Santa Cruz, sc-32909), anti-SRF (Cell Signaling
Technology, 5147), or pre-immune IgG. For re-ChIP, immune
complexes were eluted with the elution buffer (1% SDS, 100 mM
NaCO3), diluted with the re-ChIP buffer (1% Triton X-100, 2 mM
EDTA, 150 mMNaCl, 20 mM Tris pH 8.1), and subjected to
immunoprecipitation with a second antibody of interest.

Immunofluorescence Microscopy
Immunofluorescence staining was performed as previously
described. The cells were fixed with 4% formaldehyde,
permeabilized with TBST (0.25% Triton X-100, 150 mM
NaCl, 50 mM Tris pH7.4), blocked with 5% BSA, and incubated
with indicated primary antibodies overnight. After several
washes with PBS, cells were incubated with FITC-labeled
secondary antibodies (Jackson) for 30 min. DAPI (Sigma) was

added and incubated with cells for 5 min prior to observation.
Immunofluorescence was visualized on a co-focal microscope
(LSM 710, Zeiss). For each group, at least 10 fields were counted.

Statistical Analysis
One-way ANOVA with post hoc Scheff’e analyses were performed
by SPSS software (IBM SPSS v18.0, Chicago, IL, United States).
Unless otherwise specified, values of p < 0.05 were considered
statistically significant.

RESULTS

EREG Expression Is Up-Regulated in
Activated HSCs
Previously it has been shown that amphiregulin (AR), an
EGFR ligand closely related to epiregulin (EREG), is activated
during HSC trans-differentiation and contributes to liver fibrosis
(Perugorria et al., 2008). We asked whether EREG expression
levels might be altered during HSC activation. To this end,
C57/BL6 mice were injected with CCl4 to induce liver fibrosis
(Figure 1A). Picrosirius red staining showed significant liver
fibrosis in the CCl4-injected mice compared to the vehicle-
injected mice (Figure 1B). Primary HSCs were isolated from
the mice with liver fibrosis and from the control mice receiving
injection with corn oil. As shown in Figure 1C, expression
of α-SMA (Acta2), a myofibroblast marker, was significantly
up-regulated, as measured by qPCR, in the activated HSCs
compared to the quiescent HSCs; a similar up-regulation of Ereg
expression was detected in the HSCs isolated from the fibrotic
livers compared to those isolated from the control livers. ELISA
measurements confirmed that EREG protein levels were also
up-regulated in the activated HSCs compared to the quiescent
HSCs (Figure 1D). Next, liver fibrosis was induced in mice by
injection with thioacetamide (TAA, Figure 1E). Picrosirius red
staining showed significant liver fibrosis in the TAA-injected
mice compared to the vehicle-injected mice (Figure 1F). Again,
primary HSCs isolated from the fibrotic livers displayed higher
levels of Acta2 and Ereg than those isolated from the control
livers (Figure 1G). A similar increase in EREG protein levels
was detected by ELISA (Figure 1H). Finally, in a third model
of liver fibrosis in which the mice were subjected to the BDL
surgery (Figure 1I), picrosirius red staining showed significant
liver fibrosis in the BDL mice compared to the sham-operated
mice (Figure 1J). qPCR (Figure 1K) and ELISA (Figure 1L)
assays showed that EREG expression levels were up-regulated
during HSC activation in vivo.

We then evaluated the changes in epiregulin expression in cell
models of liver fibrosis. In the first model, primary HSCs were
isolated from C57/BL mice and allowed to undergo spontaneous
activation in vitro. When the cells were harvested at different
time points following their isolation, it was observed that Ereg
expression was progressively up-regulated mirroring the changes
in Acta2 expression (Figures 2A,B). In the second model,
LX-2 cells were treated with TGF-β, a well-documented pro-
fibrogenic growth factor. Epiregulin expression was significantly
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FIGURE 1 | EREG expression is up-regulated in activated HSCs in vivo. (A–D) C57/BL6 mice were injected with CCl4 or corn oil for 7 days. Scheme of protocol (A).
Representative images of picrosirius red staining (B). Primary HSCs were isolated from the mice and EREG expression levels were examined by qPCR (C) and
ELISA (D). N = 5 mice for each group. (E–H) C57/BL6 mice were injected with TAA or saline for 2 weeks. Scheme of protocol (E). Representative images of
picrosirius red staining (F). Primary HSCs were isolated from the mice and EREG expression levels were examined by qPCR (G) and ELISA (H). N = 5 mice for each
group. (I–L) C57/BL6 mice were subjected to the BDL procedure or the sham surgery. The mice were sacrificed 2 weeks after the surgery and primary HSCs were
isolated. Scheme of protocol (I). Representative images of picrosirius red staining (J). EREG expression levels were examined by qPCR (K) and ELISA (L). N = 5
mice for each group.
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FIGURE 2 | EREG expression is up-regulated in activated HSCs in vitro. (A,B) Primary HSCs were isolated from C57/BL6 mice and underwent spontaneous
activation by in vitro culture. The cells were harvested at indicated time points and EREG expression levels were examined by qPCR and ELISA. (C,D) LX-2 cells
were treated with or without TGF-β (5 ng/ml) and harvested at indicated time points. EREG expression levels were examined by qPCR and ELISA.

up-regulated by TGF-β treatment mirroring the increase in α-
SMA expression (Figures 2C,D). Taken together, these data
suggest a positive correlation between epiregulin and hepatic
stellate cell activation in vivo and in vitro.

EREG Stimulates Pro-fibrogenic Gene
Expression in Hepatic Stellate Cells
Next, we evaluated the effect of epiregulin on pro-fibrogenic gene
expression in hepatic stellatecells. Treatment with epiregulin
led to a small but appreciable increase in pro-fibrogenic gene
expression in LX-2 cells as early as 6 h after the treatment.
Induction of pro-fibrogenic genes by epiregulin treatment were
detected at 12 and 24 h by qPCR (Figure 3A) and Western
blotting (Figure 3B). We also examined the effect of epiregulin
treatment on pro-fibrogenic gene expression in spontaneously
activated primary HSCs. As shown in Figures 3C,D, the addition
of epiregulin augmented the up-regulation of pro-fibrogenic
genes as primary HSCs transition from a quiescent state to
an activated state. To make a broad point that HSCs can
produce and release factors to promote/sustain activation in a
feedforward fashion, conditioned media (CM) were harvested
from spontaneously activated HSCs to treat quiescent HSCs.
Indeed, quiescent HSCs treated with the CM transitioned into
an activated state faster than the HSCs cultured in regular
media (Supplementary Figure 1). Therefore, it appears that

epiregulin may promote the activation of HSCs via an autocrine
pathway in vitro.

MRTF-A Deficiency Results in
Down-Regulation of EREG Expression in
Hepatic Stellate Cells
MRTF-A is key determinant of myofibroblast maturation
(Small, 2012). We have previously shown that MRTF-A deletion
in mice attenuated liver fibrosis induced by TAA injection
(Tian et al., 2016), by CCl4 injection (Tian et al., 2015), or by
the BDL procedure (Fan et al., 2015). Consistently, primary
HSCs isolated from the MRTF-A KO mice exhibited reduced
expression of Acta2 compared to the WT mice following
TAA injection (Figure 4A), CCl4 injection (Figure 4C)
or the BDL procedure (Figure 4E). Of interest, MRTF-A
deficiency comparably decreased epiregulin expression in all
three models as measured by qPCR (Figures 4A,C,E) and
ELISA (Figures 4B,D,F). In keeping with these observations,
induction of epiregulin expression was much more tepid
during spontaneous activation of primary HSCs isolated from
MRTF-A KO mice than from WT mice (Figures 4G,H).
Finally, knockdown of MRTF-A by siRNAs repressed
induction of epiregulin expression by TGF-β treatment
in LX-2 cells (Figures 4I,J). In contrast, knockdown of
MRTF-B, a closely related MRTF-A sibling, did not alter
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FIGURE 3 | EREG treatment stimulates the expression of fibrogenic genes in HSCs. (A,B) LX-2 cells were treated with or without EREG (5 ng/ml) and harvested at
indicated time points. Gene expression levels were examined by qPCR and Western blotting. Quantification was performed with Image Pro based on three
independent experiments. (C,D) Primary HSCs were isolated from C57/BL6 mice and underwent spontaneous activation by in vitro culture in the presence or
absence of EREG. Gene expression levels were examined by qPCR and Western blotting. Quantification was performed with Image Pro based on three independent
experiments.
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FIGURE 4 | MRTF-A deficiency attenuates EREG activation in HSCs. (A,B) WT and MRTF-A KO mice were injected with CCl4 for 7 days. Primary HSCs were
isolated from the mice and EREG expression levels were examined by qPCR and ELISA. N = 5 mice for each group. (C,D) WT and MRTF-A KO mice were injected
with TAA for 2 weeks. Primary HSCs were isolated from the mice and EREG expression levels were examined by qPCR and ELISA. N = 5 mice for each group. (E,F)
WT and MRTF-A KO mice were subjected to the BDL procedure. The mice were sacrificed 2 weeks after the surgery and primary HSCs were isolated. EREG
expression levels were examined by qPCR and ELISA. N = 5 mice for each group. (G,H) Primary HSCs were isolated from WT and MRTF-A KO mice and underwent
spontaneous activation for 7 days. EREG expression levels were examined by qPCR and ELISA. (I,J) LX-2 cells were transfected with siRNAs targeting MRTF-A or
scrambled siRNAs (SCR) followed by treatment with TGF-β (5 ng/ml) for 24 h. EREG expression levels were examined by qPCR and ELISA.
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epiregulin expression in either LX-2 cells or primary HSCs
(Supplementary Figure 2).

MRTF-A Activates EREG Transcription by
Interacting With SRF
We asked whether MRTF-A might regulate epiregulin expression
at the transcriptional level. To test this hypothesis, an EREG
promoter-luciferase fusion construct (−1345/ + 118) was
transfected into LX-2 cells. Over-expression of MRTF-
A dose-dependently up-regulated the EREG promoter
activity (Figure 5A). A string of CArG box elements were
identified within the EREG promoter (Figure 5A). Inward
deletions introduced to the EREG promoter progressively
removed the CArG box elements; the removal of the four
more distal CArG boxes retained the responsiveness of
the EREG promoter to MRTF-A over-expression whereas
the removal of the most proximal CArG box rendered
the EREG promoter inactive (Figure 5B). Several lines
of additional evidence suggest that MRTF-A relies on
the proximal CArG box to activate EREG transcription.
ChIP assay showed that TGF-β treatment enhanced the
association of MRTF-A with the proximal EREG promoter
surrounding the innermost CArG box, but not with
the intronic region, in LX-2 cells (Figure 5C). Similarly,
association of MRTF-A with the Ereg promoter was stronger
in activated primary HSCs compared to quiescent primary
HSCs (Supplementary Figure 3). Re-ChIP assay confirmed
that TGF-β treatment promoted the formation of an
SRF-MRTF-A complex on the proximal EREG promoter
(Figure 5D). Depletion of SRF with siRNA completely
disrupted the binding of MRTF-A to the EREG promoter
(Figure 5E). Finally, mutation of the most proximal CArG
box abrogated the induction of the EREG promoter by
MRTF-A (Figure 5F).

EREG Regulates HSC Activation by
Promoting Nuclear Trans-Location of
MRTF-A
Finally, we asked whether epiregulin could reciprocally influence
MRTF-A activity. MRTF-A typically shuttles between the
cytoplasm and the nucleus (Olson and Nordheim, 2010).
Immunofluorescence staining showed that a large fraction of
MRTF-A resides in the cytoplasm with only ∼10% located
to the nucleus in LX-2 cells under normal conditions. When
exposed to epiregulin treatment, MRTF-A started migrating into
the nucleus: at 6 h following epiregulin treatment ∼35% of
all MRTF-A proteins whereas at 24 h over 75% of all MRTF-
A proteins were detected in the nucleus (Figure 6A). Similar
discoveries were made by cell fractionation/Western blotting
(Figure 6B). Conversely, induction of pro-fibrogenic genes by
epiregulin treatment in LX-2 cells was markedly suppressed by
MRTF-A knockdown at both mRNA (Figure 6C) and protein
(Figure 6D) levels. Finally, inhibition of MRTF-A activity by
CCG-1423 also dampened the up-regulation of pro-fibrogenic
genes by epiregulin treatment (Figures 6E,F).

DISCUSSION

Activation of HSCs, a hallmark event in liver fibrosis, is
programmed by a complex web of signaling cascades that relay
the pro-fibrogenic cues to the nucleus, where profound changes
in gene expression contribute to the transition of quiescent
HSCs to mature myofibroblasts. In the present report, we
provide data to show that epiregulin (EREG), belonging to
the EGF family of growth factors, is a key regulator of HSC
activation. Our data indicate that exposure of cultured HSCs
to recombinant epiregulin accelerated the production of pro-
fibrogenic genes (Figure 3). This is consistent with previously
reported observations that other members of the EGF family
including EGF (Lin and Chen, 2008), heparin-bound EGF
(HB-EGF) (Takemura et al., 2013), FGF (Wang et al., 2020),
and amphiregulin (Perugorria et al., 2008) all contribute to
HSC trans-differentiation and liver fibrosis. Of note, all four
EGF ligands signal through the same receptor (EGFR) (Riese
and Cullum, 2014). Although existing evidence supports the
argument that treatment with individual EGF growth factors is
sufficient to promote HSC activation at least in vitro, the in vivo
requirement/redundancy for each one of these proteins in the
development of liver fibrosis is not clear. Deletion of either
amphiregulin (AREG) or HB-EGF in mice leads to attenuation
of liver fibrosis, suggesting that these growth factors may elicit
different signaling cascades and downstream events to promote
HSC maturation and fibrogenesis so that the loss of one EGF
ligand cannot be fully compensated by other family members.
Global EREG-null mice are viable and display no overt gross
or liver abnormalities under physiological conditions (Lee et al.,
2004). It remains to be ascertained whether these epiregulin
deficient mice would phenocopy the AREG−/− mice and the
HB-EGF−/− mice in models of liver fibrosis.

We show here that up-regulation of EREG expression
during HSC activation in vivo and in vitro is mediated at
the transcriptional level by MRTF-A, a well-established pro-
fibrogenic molecule (Small, 2012). MRTF-A appears to activate
EREG transcription by interacting with SRF and binding to one
of the CArG boxes located on the proximal EREG promoter.
Of interest, expression of other EGF family members has
been shown to be regulated by SRF. For instance, differential
regulation of neuregulin 1 (NRG1) in schizophrenia is controlled
by several 5′ SNPs that create/abolish binding sites for a string
of transcription factors including SRF (Law et al., 2006). On
the other hand, SRF can be placed downstream of the EGFR
signaling pathway. Augmented SRF activity by EGFR signaling
is considered a paradigm in the pathogenesis of multiple cancers
(Wee and Wang, 2017). More recently, Stern and colleagues
have found that muscular conditional deletion of EGFR, which
presumably blocks the signal transduction initiated by EGF,
AREG, and EREG, protects the mice from diabetic complications,
which is accompanied by changes in gene expression patterns
reminiscent of suppressed SRF activity suggesting that EGFR
likely regulates muscle cell behavior through stimulating SRF
activity (Stern et al., 2020). It would be of great interest to
delineate whether a reciprocal regulatory relationship exists
between SRF and EREG in the process of HSC activation.
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FIGURE 5 | MRTF-A directly activates EREG transcription. (A) A human EREG promoter-luciferase constructs (–1345/ + 118) were transfected into LX-2 cells with
or without MRTF-A. Luciferase activities were normalized by protein concentration and GFP fluorescence. (B) Wild type or truncated EREG promoter-luciferase
constructs were transfected transfected into LX-2 cells with or without MRTF-A. Luciferase activities were normalized by protein concentration and GFP
fluorescence. (C) LX-2 cells were treated with or without TGF-β (5 ng/ml) and harvested at indicated time points. ChIP assays were performed with anti-MRTF-A or
IgG. (D) LX-2 cells were treated with or without TGF-β (5 ng/ml) for 24 h. Re-ChIP assay was performed with indicated antibodies. (E) LX-2 cells were transfected
with siRNA targeting SRF or scrambled siRNAs (SCR) followed by treatment with TGF-β (5 ng/ml) for 24 h. ChIP assays were performed with anti-MRTF-A. (F) Wild
type or CArG mutated EREG promoter-luciferase construct were transfected into LX-2 cells with or without MRTF-A. Luciferase activities were normalized by protein
concentration and GFP fluorescence.
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FIGURE 6 | EREG regulates HSC activation through MRTF-A. (A) LX-2 cells were treated with EREG (10 ng/ml) and harvested at indicated time points. MRTF-A
localization was examined by immunofluorescence staining. (B) LX-2 cells were treated with EREG (10 ng/ml) and harvested at indicated time points. MRTF-A
localization was examined by cell fractionation followed by Western blotting. Quantification was performed with Image Pro based on three independent experiments.
(C,D) LX-2 cells were transfected with siRNAs targeting MRTF-A or scrambled siRNA (SCR) treated with recombinant EREG (10 ng/ml) for 24 h. Gene expression
was examined by qPCR and Western. Quantification was performed with Image Pro based on three independent experiments. (E,F) LX-2 cells were treated with
recombinant EREG (10 ng/ml) in the presence or absence of CCG for 24 h. Gene expression was examined by qPCR and Western. Quantification was performed
with Image Pro based on three independent experiments.

Our data suggest that EREG promotes HSC activation
at least in part by inducing MRTF-A nuclear translocation
(Figure 6). Sub-cellular localization of MRTF-A is known to
be regulated by its post-translational modifications. One of the
best characterized modifications of MRTF-A is serine/threonine
phosphorylation. The Treisman laboratory has systemically

profiled the dynamic alteration of MRTF-A phosphorylation
status in response to serum withdrawal/re-addition in fibroblasts
uncovering a total of 26 putative S/T residues subjected to
phosphorylation (Panayiotou et al., 2016). It is noteworthy that
three out of the 26 sites, including S98, T545, and S549, are
regulated by EGF stimulation in Hela cells (Olsen et al., 2006).
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Whereas mutation of T545/S549 that renders the two sites un-
phosphorylatable did not impact the cytoplasm-nucleus shuttling
of MRTF-A, S98 phosphorylation is critically required for its
nuclear accumulation upon serum stimulation (Panayiotou et al.,
2016). Thus, it is possible that EREG might promote MRTF-
A nuclear translocation by inducing S98 phosphorylation. This
hypothesis certainly deserves further investigation.

In summary, we report an epiregulin-MRTF-A feedforward
loop that contributes to HSC activation. At least two issues
need to be addressed in future studies. First, whether this
feedforward loop is relevant in vivo needs to be verified in
animal models of liver fibrosis. Second, the mechanism by which
epiregulin regulates MRTF-A activity needs to explored in depth.
The current data, however, do provide sufficient rationale for
designing small-molecule compounds that can blockade this
EREG-MRTF-A loop in the intervention of liver fibrosis.
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Molecularly tailored therapies have opened a new era, chronic myeloid leukemia being
the ideal example, in the treatment of cancer. However, available therapeutic options
are still unsatisfactory in many types of cancer, and often fail due to the occurrence
of resistance mechanisms. With regard to small-molecule compounds targeting the
components of the Mitogen-Activated Protein Kinase (MAPK) cascade RAF-MEK1/2-
ERK1/2, these drugs may result ineffective as a consequence of the activation of
compensatory pro-survival/proliferative signals, including receptor tyrosine kinases,
PI3K, as well as other components of the MAPK family such as TPL2/COT. The MAPK
ERK5 has been identified as a key signaling molecule in the biology of several types
of cancer. In this review, we report pieces of evidence regarding the activation of the
MEK5-ERK5 pathway as a resistance mechanism to RAF-MEK1/2-ERK1/2 inhibitors.
We also highlight the known and possible mechanisms underlying the cross-talks
between the ERK1/2 and the ERK5 pathways, the characterization of which is of great
importance to maximize, in the future, the impact of RAF-MEK1/2-ERK1/2 targeting.
Finally, we emphasize the need of developing additional therapeutically relevant MEK5-
ERK5 inhibitors to be used for combined treatments, thus preventing the onset of
resistance to cancer therapies relying on RAF-MEK1/2-ERK1/2 inhibitors.

Keywords: MAPK, ERK1/2/5, resistance mechanisms, combined therapy, targeted therapy, cancer

INTRODUCTION

The Mitogen-Activated Protein Kinase (MAPK) cascades are involved in a number of physiological
processes and are activated by a large variety of stimuli. Conventional MAPKs include the four
subfamilies of extracellular signal-regulated kinase 1 and 2 (ERK1/2), c-Jun N-terminal kinases 1–
3, p38 α, β, γ, and δ, as well as ERK5. Atypical MAPKs have also been identified: ERK3, ERK4, ERK8
(also known as ERK7) and Nemo-like kinase (Cargnello and Roux, 2011).

Regarding the MAPK cascade culminating in ERK1/2 activation, a variety of mitogens activate
receptor tyrosine kinases (RTKs) or G-protein-coupled receptors that, in turn, activate the small
GTPase RAS proteins (K-RAS, H-RAS, or N-RAS) that are responsible for the recruitment of RAF
kinases. Once activated, RAF-1 (also named c-RAF), ARAF or BRAF (Johnson and Lapadat, 2002;
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Roux and Blenis, 2004; Kolch, 2005) phosphorylate at S/T
residues and thus activate MEK1 and 2, that in turn,
phosphorylate T and Y residues at the TEY sequence of ERK1/2,
leading to its activation. Activated ERK1/2 phosphorylates
many substrates, including transcription factors and protein
kinases (Yoon and Seger, 2006). Subsequently, immediate
early genes controlling cell proliferation are rapidly induced
(Lewis et al., 1998). The RAS-RAF-MEK1/2-ERK1/2 pathway
regulates multiple critical cellular functions including survival,
proliferation and differentiation (Cargnello and Roux, 2011).
The alteration of this pathway has been frequently reported
in several types of cancer as a result of abnormal activation
of RTKs or gain-of-function mutations mainly in the RAS or
RAF genes. Accordingly, RAF-MEK1/2-ERK1/2 inhibitors are
among the therapeutic options for the treatment of many types
of cancers (Sebolt-Leopold and Herrera, 2004; Roberts and Der,
2007; Montagut and Settleman, 2009; Holderfield et al., 2014;
Roskoski, 2018). Unfortunately, several resistance events have
been reported, so that combined treatments are often needed and
actively sought after (Little et al., 2013; Samatar and Poulikakos,
2014; Liu et al., 2018; Lee et al., 2020).

ERK5, the most recently identified MAPK, is the effector
kinase of a typical three-tiered MAPK cascade (Lee et al.,
1995; Zhou et al., 1995; Nithianandarajah-Jones et al., 2012).
In response to several stimuli, the S/T kinases MEKK2 or
MEKK3 activate MEK5, a dual specificity protein kinase active
on ERK5. Once activated, MEK5 phosphorylates two residues
at the TEY sequence of ERK5 and induces ERK5 nuclear
translocation. Besides sharing high homology with ERK2 in
the kinase domain and exhibiting in the activation loop a
TEY motif identical to that of ERK1/2/8, ERK5 has a long
C-terminal tail that is unique among all MAPK. The C-terminal
tail includes a nuclear localization sequence (NLS) important
for ERK5 nuclear targeting, two proline-rich (PR) domains
(PR1 and PR2), which are considered potential binding sites for
Src-homology 3 (SH3)-domain-containing proteins, a nuclear
export sequence (NES) and a myocyte enhancer factor 2
(MEF2)-interacting region (Yan et al., 2001). The C-terminus
of ERK5 also possesses a transcriptional activation domain
(TAD) (Kasler et al., 2000) that undergoes autophosphorylation,
thereby enabling ERK5 to directly regulate gene transcription
(Morimoto et al., 2007). Known ERK5 substrates include the
transcription factors Sap-1a, c-Fos, c-MYC, and MEF2 family
members (A, C and D), as well as kinases such as the ribosomal s6
kinase and the serum/glucocorticoid-regulated kinase (Wang and
Tournier, 2006; Nithianandarajah-Jones et al., 2012; Hoang et al.,
2017). Despite mediating proliferation and differentiation signals
similarly to ERK1/2, ERK5 emerged since its very discovery to
have distinct roles with respect to ERK1/2, and to mediate signals
which cannot be compensated for by other MAPKs (Cavanaugh
et al., 2001; Nishimoto and Nishida, 2006). Accordingly, ERK5
null mice die early in their development (E9.5-10.5) because of
severe defects in vasculature and cardiac development, pointing
to a critical role of ERK5 in controlling angiogenesis, at least
in mice (Hayashi and Lee, 2004). In normal cells, the MEK5-
ERK5 pathway plays a central role in supporting cell survival,
proliferation, differentiation, and motility, as well as in repressing

apoptosis. Along this line, it is not surprising that there is
increasing evidence regarding the involvement of this pathway in
tumor development and progression (Stecca and Rovida, 2019).
Based on that, targeting the MEK5-ERK5 pathway has clearly
emerged among the possible strategies to reduce cancer growth
(Simões et al., 2016; Hoang et al., 2017).

In this paper, we describe the accumulating lines of
evidence pointing to ERK5 activation as a compensatory
mechanism occurring upon RAF-MEK1/2-ERK1/2 inhibition,
and determining de facto the resistance to therapeutic strategies
based on this inhibition. ERK5 targeting should therefore be
exploited to become part of new combination treatments capable
of enhanced effectiveness against several types of cancer.

EVIDENCE FOR ERK5 ACTIVATION AS A
RESISTANCE MECHANISM IN
RAS-DRIVEN CANCERS

Because effective RAS-directed therapies are still lacking,
targeting RAS-downstream signals such as MEK1/2 and/or
ERK1/2 using small-molecule compounds is among the strategies
used in RAS-driven cancer. However, MAPK inhibitors (MAPKi)
are not very effective when used as single agents, due to intrinsic
and/or acquired resistance toward ERK1/2i and/or MEK1/2i
(Little et al., 2013; Samatar and Poulikakos, 2014; Dummer et al.,
2017). In this respect, a number of papers have described the
relevant role of MEK5-ERK5 pathway in the lack of effectiveness
of MAPKi in RAS-driven cancer.

The first report shedding light on this important issue
showed that the activation of the MEK5-ERK5 cascade
conferred insensitivity to MEKi in intestinal epithelial cells
(IEC) and in K-RAS-mutated colo-rectal carcinoma (CRC)
cells (de Jong et al., 2016). ERK1/2 pathway appeared to
be dispensable for IEC proliferation, and either ERK1/2
genetic deletion in primary IEC or treatment of human
CRC cell lines with the MEK1/2 inhibitor PD0325901 led
to compensatory activation of ERK5. The authors proposed
a model in which, when the ERK1/2 module is intact,
RAS-dependent signaling preferentially activates the RAF-
MEK1/2-ERK1/2 cascade. In this context, ERK1/2-dependent
negative feedback mechanisms stimulate dual specificity
phosphatases (DUSPs) (Lake et al., 2016) that restrain the
ERK5 pathway. On the other hand, upon MEK1/2 inhibition
or genetic knockout of ERK1/2, this feedback is blocked,
resulting in the upregulation of the RAS-RAF-MEK5-ERK5
module, which maintains IEC and CRC cell proliferation.
Consistently, targeting both pathways caused a more effective
suppression of cell proliferation in both murine intestinal
organoids (genetic ERK1/2 inhibition plus ERK5 inhibitor
XMD8-92) and human CRC cell lines (PD0325901 + XMD8-92)
(de Jong et al., 2016).

Other evidences of the central role of MEK5-ERK5 in
the resistance to MAPKi in RAS-driven cancers emerged in
pancreatic ductal adenocarcinoma (PDAC), where K-RAS
is mutated in 95% of cases (Waters and Der, 2018). Vaseva
et al. (2018) found that the treatment of human PDAC cell
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lines with the ERK1/2i SCH772984 led to compensatory
phosphorylation/activation of the MEK5-ERK5 cascade. This
activation promoted MYC protein stability as a consequence
of phosphorylation at S62 by ERK5. Additionally, ERK1/2
inhibition caused a delayed increase in the phosphorylation of
EGFR, HER2 and SRC, so that combined SCH772984/EGFRi
(Poziotinib, Erlotinib) or SCH772984/SRCi (Saracatinib)
prevented ERK5 phosphorylation. Based on all above, the
authors proposed a model where ERK1/2 inhibition induces a
EGFR/HER2/SRC-dependent feedforward activation of MEK5-
ERK5, that prevents MYC degradation. Finally, concurrent
inhibition of ERK5 (XMD8-92) and ERK1/2 (SCH772984)
synergistically suppressed the growth of patient-derived PDAC
xenografts. These results are of particular interest, as both RAS
and MYC are very difficult to target directly (Dang et al., 2017).

K-RAS is the most commonly mutated member of the RAS
family in non-small cell lung cancer (NSCLC) (Suzuki et al.,
1990). MAPKi have proven ineffective in the treatment of NSCLC
as much as in the other types of RAS-driven cancers (Carter et al.,
2016; Jänne et al., 2017). Along this line, Dompe et al. (2018)
found that the treatment of K-RAS-mutated NSCLC cell lines
with the MEK1/2i Cobimetinib, that results in delayed activation
of ERK1/2, increased ERK5 phosphorylation. Interestingly, ERK5
inhibition (XMD17-109) attenuated the re-activation of ERK1/2
signaling occurring upon MEK1/2 inhibition, pointing to a
prominent role of ERK5 in mediating ERK1/2 reactivation upon
MEK1/2 targeting. Finally, the combination of Cobimetinib
(MEK1/2i) with the genetic knockdown of MAPK7, the gene
encoding for ERK5, resulted more effective than single treatments
in reducing the growth of K-RAS-mutated NSCLC xenografts
(Dompe et al., 2018).

Advanced stage cutaneous melanoma is a highly malignant
tumor characterized by somatic mutations of a number
of oncogenes involved in the RAS-RAF-MEK1/2-ERK1/2
pathway, including N-RAS or BRAF, that lead to uncontrolled
proliferation. MAPK pathway-targeting regimens are a valuable
treatment option for BRAF-mutated melanoma (Luke et al.,
2017; Ugurel et al., 2017). Unfortunately, patients with
N-RAS mutation (around 20% of cases, e.g., N-RAS-Q61K/L)
(Schadendorf et al., 2015) do not benefit from such therapies,
owing to the lack of targetable BRAF mutations and a high
degree of intrinsic and acquired resistance to MEK1/2 inhibition
(Dummer et al., 2017). In keeping with a possible involvement
of ERK5 in MAPKi resistance in N-RAS-mutated melanomas,
a recent report showed that the treatment with MEK1/2i
(Trametinib, Binimetinib, Selumetinib, or Cobimetinib) or
ERK1/2i (GDC-0994; Robarge et al., 2014) determined a delayed
activation of ERK5 through a PDGFRi-sensitive pathway
(Adam et al., 2020). Combined MEK5-ERK5 co-targeting using
Trametinib + XMD8-92 or Trametinib + ERK5 genetic inhibition
(shRNA) prevented long-term growth in vitro, thus supporting
the relevance of ERK5 in the proliferation and survival of
N-RAS-mutated melanoma cells upon MEK1/2-ERK1/2
inhibition. More importantly, Trametinib + XMD8-92 effectively
repressed the growth of N-RAS-mutated melanoma xenografts.
Therefore, these data demonstrated that MEK1/2i + ERK5i
co-treatment could improve the effectiveness of available

MEK1/2i therapies in N-RAS-mutated melanoma patients
(Adam et al., 2020).

EVIDENCE FOR ERK5 ACTIVATION AS A
RESISTANCE MECHANISM IN
BRAF-DRIVEN CANCERS

Mutated BRAF is responsible for ERK1/2 pathway activation in
above 50% of patients with advanced melanoma (Davies et al.,
2002; Flaherty et al., 2012). Unfortunately, BRAFi monotherapy
(i.e., using the BRAFV600Ei Vemurafenib) frequently fails as
a consequence of a resistance mechanism which leads to
ERK1/2 pathway reactivation (Hauschild et al., 2012; Shi et al.,
2014; Van Allen et al., 2014). To overcome this resistance,
combined inhibition of BRAF and MEK1/2 (CIBM) is among
the current approaches used in melanoma patients harboring
BRAF-activating mutations (Larkin et al., 2014; Long et al.,
2014). However, resistance to CIBM can be also developed, and
represents a major obstacle to the long-term clinical benefit
of therapy (Samatar and Poulikakos, 2014). A recent report
showed that ERK5 phosphorylation is enhanced in BRAF-
mutated melanoma cells resistant to CIBM (Song et al., 2017).
The demonstration that ERK5 activation is associated with this
resistance was achieved showing that either genetic (shRNA)
or pharmacological (XMD8-92) ERK5 inhibition impaired the
acquisition of resistance to CIBM and sensitized resistant cancer
cells to Vemurafenib and/or Trametinib, restoring the anti-
proliferative effect of the latter. The activating phosphorylation
of ERK5 in response to CIBM therapy seemed to be sustained
by a SRC/MEK5 cascade. Consistently, either CIBM + XMD8-
92 or CIBM + SRCi (Dasatinib) were more effective than CIBM
alone in reducing the growth of BRAF-mutated melanoma
xenografts, and showed the same effects as CIBM + XMD8-
92 + Dasatinib. In the same paper, the authors proposed
that BRAF could be responsible for SRC activation, thus
positioning BRAF upstream of ERK5 in CIBM-resistant cells
(Song et al., 2017). A later work further supported the key
role of ERK5 in MAPKi resistance in BRAF-mutated melanoma
(Benito-Jardón et al., 2019). Indeed, besides confirming the
activation of ERK5 upon CIBM, it was shown that melanoma
cells double-resistant to either Vemurafenib and Trametinib
or to Vemurafenib and SCH772984 (Morris et al., 2013)
displayed enhanced IGF-1R expression and kinase activity, as
well as increased IGF-1R-dependent MEK5-ERK5 activation.
Consistently, inhibition of IGF-1R with Linsitinib reduced the
proliferation of SCH772984-resistant cells, and prevented the
activation of ERK5 in CIBM- or Vemurafenib/SCH772984-
resistant cells. In the latter, Linsitinib decreased the growth
of spheroids in 3D cultures as well as in xenografts in
NOD/SCIDgamma mice (Benito-Jardón et al., 2019). Finally, a
recent work identified an additional mechanism linking ERK5
to MAPKi resistance in BRAFV600E-mutated melanoma cells
(Lee et al., 2020). In the study, the authors showed that
the treatment of BRAFV600E-mutated melanoma cell lines
with Cobimetinib or Vemurafenib resulted in the increase of
ERK5 phosphorylation, and demonstrated that this effect was
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mediated by Mir-211. In particular, the increased expression
of Mir-211 upon Cobimetinib or Vemurafenib treatment was
responsible for the inhibition of the expression of DUSP6,
that resulted in ERK5 increased phosphorylation. Interestingly,
DUSP6 overexpression prevented the increase in tumor growth
occurring upon overexpression of Mir-211 in BRAFV600E-
mutated melanoma xenografts. Consistent with a role for ERK5
in Mir-211 overexpressing cells, treatment with XMD8-92 or
the MEK5 inhibitor BIX02189 reduced the proliferation of
melanoma cells overexpressing Mir-211 (Lee et al., 2020). All
above led to definitely include the ERK5 pathway among

those involved in resistance to MAPKi in BRAFV600E-
mutated melanoma cells.

EVIDENCE FOR ERK5 ACTIVATION AS A
RESISTANCE MECHANISM IN
ALK-DRIVEN CANCERS

The compensatory activation of ERK5 upon MEK1/2 targeting
has also been reported in anaplastic lymphoma kinase (ALK)-
addicted neuroblastoma cells (Umapathy et al., 2017). In this

FIGURE 1 | Overview of the effects elicited by RAF-MEK1/2-ERK1/2 inhibitors on the MEK5-ERK5 pathway. Black arrows indicate direct activation mechanisms.
Dashed arrows indicate demonstrated but not direct mechanisms. Red lines indicate inhibiting treatments. Green arrows indicate resistance mechanisms occurring
upon genetic or pharmacological inhibition of the ERK1/2 pathway (created with Biorender.com).
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study, the authors found that the growth of N-RAS-mutated
neuroblastoma cell lines and xenografts is sensitive to MEK1/2-
targeting therapy, while that of ALK-addicted neuroblastoma
cells and xenografts is not. Interestingly, ALK-addicted
neuroblastoma cells treated with the MEK1/2i Trametinib
showed an increased phosphorylation/activation of the AKT and
ERK5 kinases, that the authors proposed to be responsible for a
compensatory mechanism supporting cell proliferation. On the
basis of a previous report from the same group, the activation
of ERK5 in ALK-addicted neuroblastoma cells was proposed
to be due to the PI3K-AKT-MEKK3-MEK5 axis (Umapathy
et al., 2014). Overall, these studies suggest that ERK5 pathway
inhibition in combination with MEKi might be regarded as a
potential therapeutic strategy in ALK-addicted neuroblastoma
(Umapathy et al., 2017).

DEMONSTRATED AND POSSIBLE
MECHANISMS OF ERK5 ACTIVATION
UPON RAF-MEK1/2-ERK1/2 TARGETING

The above studies demonstrated the existence of a number of
mechanisms responsible for MEK5-ERK5 activation following

BRAF-MEK1/2-ERK1/2 inhibition (Figure 1). One of these
mechanisms involved the increased expression of RTKs
(Umapathy et al., 2017; Vaseva et al., 2018; Benito-Jardón
et al., 2019; Adam et al., 2020). Additionally, as ERK1/2
activation may trigger a negative feedback directed to prevent
an excessive level of activation of upstream activators, the
pharmacological inhibition of ERK1/2 lead to loss of this
feedback, resulting in a feedforward activation of RTKs (Lake
et al., 2016) such as EGFR (Duncan et al., 2012; Lito et al.,
2012). Both increased expression and activation of RTK resulted
to be sufficient to activate MEK5-ERK5. Furthermore, the
suppression of the above negative feedback elicited the activation
of PI3K-AKT, leading to the subsequent increase of ERK5
signaling (Umapathy et al., 2014, 2017). Interestingly, even
stronger evidence has been obtained that ERK5 activation
itself leads to the activation of AKT (Lennartsson et al.,
2010; Roberts et al., 2010; Bin et al., 2016), which in turn
could strengthen the pro-survival role of ERK5 signaling
in a context of resistance to treatment (Bera et al., 2014).
Additional negative feedback mechanisms elicited by ERK1/2
involved DUSPs activation (Sarkozi et al., 2007). DUSPs
prevented ERK5 phosphorylation, so that when MEK1/2-
ERK1/2 is inhibited DUSPs inactivation resulted in enhanced

TABLE 1 | Cancer specific ERK5-activating resistance mechanisms following RAF-MEK1/2-ERK1/2 targeting.

Cancer type Genomic alteration
supporting ERK1/2
pathway activation

Ineffective targeting
(pharmacological/
genetic inhibition)

ERK5-activating
resistance
mechanism

Effective combined
targeting strategies

References

Colorectal
cancer

K-RAS mutation MEK1/2 (PD0325901)
or ERK1/2 (KO)

Increased
phosphorylation/activation
of ERK5 likely due to
DUSP deregulation

MEK1/2i + ERK5i
(in vitro)

de Jong et al., 2016

Neuroblastoma ALK
mutation/amplification

MEK1/2 (Trametinib) Increased activation of
AKT-ERK5 signaling

MEK1/2i + ERK5i or
AKTi (proposed)

Umapathy et al., 2017

Pancreatic
ductal
adenocarcinoma

K-RAS mutation MEK1/2 (Selumetinib,
Trametinib); ERK1/2
(SCH772984)

Upregulation of
EGFR-SRC-ERK5
pathway

ERK1/2i + ERK5i
(in vivo)

Vaseva et al., 2018

Non-small-cell
lung carcinoma

K-RAS mutation MEK1/2 (Cobimetinib) Increased
phosphorylation/activation
of ERK5 likely
dependent on RTKs

MEK1/2i + ERK5i or
ERK5-KO (in vitro) or
ERK5-KD (in vitro and
in vivo)

Dompe et al., 2018

Melanoma N-RAS mutation MEK1/2 (Trametinib);
ERK1/2 (GDC-0994)

Increased
phosphorylation/activation
of ERK5 likely
dependent on PDGFRβ

ERK1/2i + ERK5i
(in vitro);
MEK1/2i + ERK5i
(in vitro and in vivo)

Adam et al., 2020

Melanoma BRAF mutation BRAF + MEK1/2
(Vemurafenib + Trametinib)

Increased
phosphorylation/activation
of ERK5 mediated by
SRC-MEK5 cascade

BRAFi/MEK1/2ì + ERK5-
KD (in vitro) or ERK5i
(in vitro and in vivo)

Song et al., 2017

Melanoma BRAF mutation BRAF + MEK1/2
(Vemurafenib + Trametinib);
BRAF + ERK1/2
(Vemurafenib +
SCH772984)

Upregulation of
IGF1R-MEK5-ERK5
pathway

ERK1/2i + IGF1Ri
(in vivo)

Benito-Jardón et al.,
2019

Melanoma BRAF mutation BRAF (Vemurafenib);
MEK1/2 (PD0325901)

Increased
phosphorylation/activation
of ERK5 mediated by
miR-211

Lee et al., 2020

KO, knock-out; KD, knock-down (shRNA).
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ERK5 phosphorylation (de Jong et al., 2016). Along this line,
DUSP6/MKP-3, initially reported to inactivate ERK1/2 but not
ERK5 (Arkell et al., 2008), has been recently shown to participate
in ERK5 activation following ERK1/2 pathway inhibition
(Lee et al., 2020).

Besides the already elucidated mechanisms listed above,
other compensatory processes underlying treatment resistance
may occur upon RAF-MEK1/2-ERK1/2 targeting (Samatar and
Poulikakos, 2014) and be mediated by upstream ERK5 activators
(Stecca and Rovida, 2019). Among the latter, the MAP3K
TPL2/COT (Chiariello et al., 2000) has been associated with
de novo resistance to MEK1/2i or BRAFV600Ei in BRAF-
mutated melanomas (Johannessen et al., 2010). Another possible
mechanism may involve RAF-1, an additional possible ERK5
activator (English et al., 1999), the overexpression of which
has been linked to acquired resistance to MAPKi (Samatar and
Poulikakos, 2014). Additionally, BRAF, that may be amplified
as a resistance mechanism to RAF-MEK1/2-ERK1/2 targeting
(Samatar and Poulikakos, 2014), as well as BRAFV600E, has
been recently demonstrated to activate ERK5 (Tusa et al.,
2018). In support to the appropriateness of the dual targeting
of the ERK5 and ERK1/2 pathways, in the same paper
we showed that the combination Vemurafenib + XMD8-92
was more effective than either drug alone in reducing the
growth of BRAF-mutated melanoma xenografts. Furthermore,
Vemurafenib + XMD8-92 was necessary to reduce the amount
of nuclear ERK5 (Tusa et al., 2018), which is critical for the
support of cell proliferation (Raviv et al., 2004; Buschbeck
and Ullrich, 2005; Iñesta-Vaquera et al., 2010; Gomez et al.,
2016). Finally, CDK5, that plays a relevant role in tumorigenesis
(Goodyear and Sharma, 2007; Eggers et al., 2011; Pozo et al.,
2013), has been recently demonstrated to activate ERK5
(Zhuang et al., 2016). Because several reports have shown
that CDK5 and ERK1/2 regulate each other, so that their
activities may be inversely correlated (Sharma et al., 2002;
Zheng et al., 2007; Banks et al., 2015), we may speculate
that CDK5 may determine ERK5 activation upon ERK1/2
pathway inhibition.

CONCLUDING REMARKS

Members of conventional MAPK pathways are among the
most sought-after oncogenic effectors for the development
of novel strategies to treat cancer (Kim and Choi, 2010;
Braicu et al., 2019). Despite the fact that the MEK5-ERK5
pathway has been the less-studied of MAPK cascades, several
lines of evidence pinpointed its relevance in cancer biology
(Simões et al., 2016; Stecca and Rovida, 2019; Tubita et al.,
2020). Furthermore, the literature summarized in this paper
highlights the involvement of MEK5-ERK5 activation as a
compensatory/resistance mechanism to RAF-MEK1/2-ERK1/2
targeting (Table 1). However, the mechanisms underlying the
cross-talk between the ERK1/2 and the ERK5 pathways have
not been fully elucidated, so that they should be further
explored in the future in order to reinforce the rationale for a
combined targeting of ERK1/2 and ERK5 pathways in order to

achieve a more effective response in RAS-RAF-MEK1/2-ERK1/2-
addicted cancer.

Many small-molecule compounds targeting ERK5 (including
XMD8-92, XMD17-109, JWG-071, AX15836, BAY-885) or
MEK5 (BIX02188, BIX02189) have been developed (Tatake
et al., 2008; Yang et al., 2010; Deng et al., 2013; Lin et al.,
2016; Wang et al., 2018; Nguyen et al., 2019) and exhibited
remarkable effects in reducing the growth of human tumor
xenografts in mice. Recently, an orally bioactive ERK5 inhibitor
(Compound 46) was developed (Myers et al., 2016). However,
it is worth point out that the off-target effects of XMD8-
92 and derivatives (Deng et al., 2013; Wang et al., 2018)
on BRD4 (Lin et al., 2016; Williams et al., 2016) certainly
hampered the interpretation of the results obtained with
these compounds, unless a genetic approach was provided
to support the data obtained via drug treatment. On the
other hand, some ERK5i (i.e., XMD17-109 and AX15836)
cause a conformational change in the ERK5 kinase domain
which leads to the exposure of the C-terminal NLS and
to a paradoxical activation of the ERK5 TAD (Lochhead
et al., 2020), enabling ERK5 to regulate its downstream
targets. None of these inhibitors, however, has been tested
in humans so far. TG02, a dual ERK5/CDK inhibitor, has
been tested in clinical trials for hematological malignancies
following the promising results obtained in preclinical studies
(Alvarez-Fernandez et al., 2013; Ortiz-Ruiz et al., 2014).
Based on all above, concerted efforts should be pursued to
develop therapeutically suitable MEK5-ERK5 inhibitors. Indeed,
besides representing a promising strategy for cancer treatment
per se, ERK5 pathway inhibition should be exploited to
prevent acquired resistance in cancers where inhibition of
the RAS-RAF-MEK1/2-ERK1/2 cascade represents a valuable
therapeutic option.
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The evolutionarily conserved NOTCH signaling displays pleotropic functions in almost
every organ system with a simple signaling axis. Different from many other signaling
pathways that can be amplified via kinase cascades, NOTCH signaling does not contain
any intermediate to amplify signal. Thus, NOTCH signaling can be activated at distinct
signaling strength levels, disruption of which leads to various developmental disorders.
Here, we reviewed mechanisms establishing different NOTCH signaling strengths,
developmental processes sensitive to NOTCH signaling strength perturbation, and
transcriptional regulations influenced by NOTCH signaling strength changes. We hope
this could add a new layer of diversity to explain the pleotropic functions of NOTCH
signaling pathway.

Keywords: Notch signaling, NICD, signaling strength, cell fate specification, development

INTRODUCTION

Since the observation of notched wing in Drosophila and subsequent discovery of notch gene
one century ago (Morgan, 1917), NOTCH signaling has been extensively studied. On/off switch
of NOTCH signaling is found to play fundamental roles in cell differentiation, proliferation,
and apoptosis across all species (Artavanis-Tsakonas et al., 1999; Harper et al., 2003; Lai, 2004;
Lasky and Wu, 2005; Bolós et al., 2007; Penton et al., 2012). Surprisingly, the signaling axis
of NOTCH is relatively simple despite its pleiotropic functions. Canonically, cell membrane-
tethered NOTCH ligand binds to NOTCH receptor on the neighboring cell, which induces
enzymatic cleavages of NOTCH receptor. The released notch intracellular domain (NICD)
subsequently migrates into cell nucleus, where it binds with transcriptional factor CSL (CBF-
1/RBP-J in mammal, Su(H) in Drosophila, and Lag-1 in Caenorhabditis elegans) together with
other transcription co-factors to activate gene transcription (Kopan and Ilagan, 2009). Different
from many other signaling pathways that contain kinase cascade-mediated signaling amplification
processes, NOTCH signaling does not contain signaling intermediate to amplify the signal. In
addition, NICD-CSL binding also triggers NICD ubiquitination that leads to its subsequent
degradation (Fryer et al., 2004). Therefore, the scale and duration of gene transcription is sensitive
to the dosage of NICD presented in cell nucleus.

Previous studies reviewed that protein level reduction caused by heterozygous mutation of
NOTCH signaling components can lead to multiple developmental defects (Eldadah et al., 2001;
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McCright et al., 2002; Saito et al., 2003; Gale et al., 2004;
Hozumi et al., 2004; McDaniell et al., 2006; Warthen et al., 2006;
McKellar et al., 2007; Wu et al., 2007; Rubio-Aliaga et al., 2009;
Hassed et al., 2012; Sargin et al., 2013; Meester et al., 2015;
Southgate et al., 2015; Fischer-Zirnsak et al., 2019; Blackwood
et al., 2020), suggesting developmental processes are sensitive
to NOTCH signaling dosage. In addition, certain binary cell
fate specifications are dependent on high/low regulation of
NOTCH signaling strength instead of on/off switch of NOTCH
signaling (Van de Walle et al., 2009, 2013; Gama-Norton et al.,
2015), further highlighting the importance of NOTCH signaling
strength regulation during development. Here, we reviewed the
mechanisms of NOTCH signaling strength regulation; NOTCH
components exhibiting haploinsufficiency and cell differentiation
processes rely on precise NOTCH signaling strength. We hope
this can add an extra layer of diversity to NOTCH signaling that
plays pleotropic functions in almost every organ system with a
simple signaling axis.

NOTCH SIGNALING AND ITS STRENGTH
REGULATION

NOTCH Signaling Can Be Activated at
Different Strength Levels Resulting in
Distinct Transcriptional Responses
The mechanism of NOTCH signaling activation is highly
conserved during evolution except for slight difference in terms
of the number of NOTCH ligands and receptors across different
species. In mammals, there are five NOTCH ligands (Dll-1, Dll-
4, Jag-1, and Jag-2 are activators, and Dll-3 is an inhibitor)
and four NOTCH receptors (Notch-1, Notch-2, Notch-3, and
Notch-4), all of which contain extracellular epidermal growth
factor (EGF)-like domains executing ligand–receptor binding.
Subsequently after binding, NOTCH receptor undergoes two
successive enzymatic cleavages mediated by ADAM10 and
γ-secretase, releasing the NICD into cell nucleus where it binds
with NOTCH signaling transcription factor CSL together with
other co-factors to activate gene transcription (Figure 1). The
most conserved direct targets of NOTCH signaling are basic
helix-loop-helix (bHLH) transcription factors of hairy/enhancer
of split (Hes) family and hairy/enhancer of split related with
YRPW motif (Hey) family (Iso et al., 2003; Borggrefe and Oswald,
2009).

Unlike many other signaling pathways, NOTCH signaling
can be activated at distinct strength levels due to following
three reasons: (1) one NOTCH receptor can only release one
NICD after ligand–receptor binding, (2) no signal intermediate
or kinase cascade is involved to amplify the initial signal, and
(3) NICD is subjected to proteasome-mediated degradation
after transcriptional activation (Fryer et al., 2004). Since CSL
and other transcriptional co-factors are always readily present
in cell nucleus, the level of NICD generated determines the
strength and duration of NOTCH signaling. A recent study by
Nandagopal et al. (2018) showed that ligand intracellular domain
(ICD) determined distinct membrane distribution pattern of

Dll-4 (which is dispersed over membrane) and Dll-1 (which
is clustered in puncta), which triggered sustained and pulsatile
release of NICD, respectively. Interestingly, the two patterns of
NICD release resulted in distinct downstream gene expression
and consequently a different cell fate choice during embryonic
myogenesis (Nandagopal et al., 2018). This confirmed gene
transcription and cell fate specification can be influenced by
NOTCH signaling strength perturbations.

Mechanisms of NOTCH Signaling
Strength Regulation
The frequency of NOTCH ligand and receptor binding
determines the amount of NICD generated. In order to achieve
a successful binding-induced NOTCH receptor cleavage, both
ligand and receptor need to be presented on cell membrane in
close proximity. Since all active NOTCH ligands and receptors
are trans-membrane proteins that are subjected to consistent
endocytosis, recycling, and degradation, the amount of NICD
that could be potentially generated is affected by endocytic
regulations of the ligands and receptors (Fortini and Bilder, 2009;
Kandachar and Roegiers, 2012; Shen and Sun, 2020). Meanwhile,
the four active NOTCH ligands (Jag-1, Jag-2, Dll-1, and Dll-4)
in mammals exhibit different binding affinities (Benedito et al.,
2009; Groot et al., 2014; Gama-Norton et al., 2015; Nandagopal
et al., 2018), which further diversified the levels of NOTCH
signaling strength in different cell contexts. The discovery of
fringe glycosyltransferase also brought up the importance of
EGF domain glycosylation, which can change ligand–receptor
binding affinity and facilitate NOTCH receptor cleavage (Stanley
and Okajima, 2010; Takeuchi and Haltiwanger, 2010; Kakuda
and Haltiwanger, 2017). Thus, NOTCH signaling strength can
be influenced by glycosylation of EGF domain in receptors. In
addition to glycosylation, lipid composition of cell membrane
can also influence NOTCH ligand–receptor binding via lipid–
ligand interactions (Suckling et al., 2017). Underlying the binding
affinity differences for different ligands, catch-bond that exhibited
prolonged bond lifetimes upon tensile force application is
shown to play important roles on modulating ligand–receptor
binding (Luca et al., 2017). Collectively, the amount of ligand
and receptor presented on cell membrane, the type of ligand
binding to receptor, glycosylation of EGF domain, and lipid–
ligand interaction all influence ligand–receptor binding and
consequently the amount of NICD released.

The stability of NICD affects the duration of NOTCH
signaling. NICD is generated following ligand–receptor binding
and shuttles into cell nucleus, where it binds to transcription
factor CSL together with co-factor of mastermind-like protein
(MamL) and other chromatin modifiers to activate gene
transcription. In addition to transcriptional regulations, CSL
and MamL also recruit kinase CDK8 to phosphorylate NICD,
which triggers protein ubiquitination on PEST (proline, glutamic
acid, serine, and threonine-enriched) domain of NICD and
proteasome-mediated NICD degradation (Fryer et al., 2004).
Thus, NOTCH signaling is quickly turned down without re-
supply of new NICD, which is a critical step to maintain
proper levels of NOTCH signaling strength. Sustained NOTCH
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FIGURE 1 | Cartoon illustrating NOTCH signaling and its strength regulations. Binding of NOTCH ligand (Jag-1, Jag-2, Dll-1, and Dll-4) to NOTCH receptor (Notch1,
Notch-2, Notch-3, and Notch-4), a process that can be influenced by glycosylation of epidermal growth factor (EGF) domain (yellow stripes), triggers
γ-secretase-mediated NOTCH receptor cleavage. Notch intracellular domain (NICD) is then freed and migrates into cell nucleus where it binds with transcriptional
factor CSL, increases CSL dwell time on DNA, and recruits co-factor MamL to initiate the gene transcription. The ultimate transcription profile is affected by the
dosage of NICD, which is also regulated by lysosome-mediated NICD degradation.

activation due to mutations in PEST domain can disrupt cell
homeostasis and lead to various diseases, such as chronic
lymphocytic leukemia (CCL; Ianni et al., 2009; Puente et al.,
2011), marginal zone lymphoma (Trøen et al., 2008; Kiel et al.,
2012), and increased proliferation of B-cell lymphoma cell
(Zhang et al., 2014). Therefore, maintaining a proper level of
NOTCH signaling strength is important.

DEVELOPMENTAL PROCESSES
SENSITIVE TO NOTCH SIGNALING
STRENGTH PERTURBATION

Haploinsufficiency of NOTCH Signaling
Leads to Various Developmental
Disorders and Diseases
Haploinsufficiency of NOTCH signaling components, a
condition caused by heterozygous mutation producing only half
amount of proteins, is related to the development of Adams–
Oliver syndrome (AOS) characterized by congenital defects of

limbs and scalp. Notch-1 haploinsufficiency has been discovered
in AOS patients with variable levels of cardiovascular anomalies,
such as ventricular septal defects, aortic stenosis, regurgitation,
and coarctation (Southgate et al., 2015). In line with the Notch-1
haploinsufficiency discovered in AOS patients, another NOTCH
signaling component RBP-J (coding the mammalian form of
CSL) is also found to be haploinsufficient in AOS patients
(Hassed et al., 2012), implying a causative role of reduced
NOTCH signaling strength during the development of AOS.
In addition, Dll-4 is likely the NOTCH ligand responsible for
generating the proper level of NOTCH signaling in this case,
as AOS patients are also reported to carry Dll-4 heterozygous
mutation (Meester et al., 2015). Collectively, Dll-4, Notch-1, and
RBP-J haploinsufficiencies are associated with AOS.

Haploinsufficiency of NOTCH signaling components also
leads to the development of Alagille syndrome (AGS) that affects
multiple organs including the liver, heart, eye, kidney, and
bone. AGS patients are reported to carry heterozygous mutation
of Jag-1 (Warthen et al., 2006) or Notch-2 (McDaniell et al.,
2006) or both (Brennan and Kesavan, 2017). Mice models with
heterozygous mutations of Jag-1 and Notch-2 also successfully
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recapitulated certain symptoms of AGS (McCright et al., 2002),
suggesting that reduction of NOTCH signaling leads to the
development of AGS. Interestingly, some AGS-related defects
can also be associated with NOTCH signaling components’
haploinsufficiency independent of AGS. For example, tetralogy
of Fallot, a congenital heart disease frequently observed in AGS
patients, can be found patients carrying Jag-1 heterozygous
mutation without diagnosis of AGS (Eldadah et al., 2001;
Bauer et al., 2010). Another congenital heart disease named
bicuspid aortic valve, a condition lacking one valve between
the left ventricle and main artery, is associated with Notch-1
haploinsufficiency and also independent of AGS (McKellar et al.,
2007). Therefore, NOTCH signaling haploinsufficiency can lead
to the development of AGS and multiple cardiovascular defects.

Beyond above diseases, systematic examination of mice
models also showed that NOTCH signaling haploinsufficiency
can disrupt the development of many organs and tissues where
NOTCH signaling plays essential functions. In addition to
the reported AGS symptoms (Huppert, 2016), Jag-1± mice
also showed degeneration of ganglionic eminence caused by
suppressed neuronal progenitor cell proliferation (Blackwood
et al., 2020) and spatial memory impairment (Sargin et al.,
2013). Dll-4± mice displayed various artery defects including
failed remodeling of yolk sac vasculature, artery regression,
artery stenosis, atresia aorta, and defected arterial branching
(Gale et al., 2004), consistent with the essential function of Dll-
4 during artery development (Shutter et al., 2000; Cristofaro
et al., 2013). Dll-1± mice on the other hand displayed smaller
bodies, reduced cholesterol and triglyceride levels, suppressed
immune system, bradycardia (Rubio-Aliaga et al., 2009), and
brain disorders (Fischer-Zirnsak et al., 2019). Collectively,
haploinsufficiency of NOTCH signaling components can lead to
various developmental disorders.

NOTCH Signaling Strength in Arterial
Endothelial Cells
The change of NOTCH signaling strength influences artery
endothelial cell fate (vs. hematopoietic stem cell fate)
specification and artery branching (vs. elongation). During
early embryonic development, progenitor cells resident in
aorta-gonad-mesonephros (AGM) region can give rise to
either arterial endothelial cell or hematopoietic stem cell (HSC)
depending on NOTCH signaling strength. In vivo study found
that Dll-4 activated high NOTCH signaling while Jag-1 activated
low NOTCH signaling in AGM region, where high NOTCH
signaling specifies endothelial cell fates while low NOTCH
signaling specifies HSC fates. Neutralization of Dll-4 via antibody
blockage lowered NOTCH activity and forced AGM cells
to differentiate into HSCs, suggesting a NOTCH-strength-
dependent cell fate specification (Gama-Norton et al., 2015). In
addition, NOTCH signaling strength also influences branching
of the artery during the generation of vascular network. New
tip cell specification, a requirement for artery branching, is
inhibited by Dll-4-activated high NOTCH signaling while
requires Jag-1-activated low NOTCH signaling. Jag-1 mutated
mice, in which Dll-4 dominated in the artery and activated

high NOTCH signaling, exhibited significantly reduced vascular
branching. In contrast, overexpression of Jag-1 outcompeted
Dll-4 and significantly promoted vascular branching. During
the establishment of this signaling strength difference, fringe-
mediated glycosylation of NOTCH played a critical role on
potentiating Dll-4-activated high NOTCH signaling and
suppressing Jag-1-mediated low NOTCH signaling. Removing
fringe suppressed Dll-4-activated high NOTCH signaling and
permitted Jag-1-activated low NOTCH signaling, resulting in
enhanced vascular branching (Benedito et al., 2009).

Further study showed that the developmental difference
resulting from Dll-4- and Jag-1-activated NOTCH signaling
during vascular branching was purely due to the strength
difference of NOTCH signaling. Administration of γ-secretase
inhibitor (DAPT) into Jag-1-mutated mice lowered Dll-4-
activated NOTCH signaling and rescued vascular branching
defects (Benedito et al., 2009). Therefore, it is the strength of
NOTCH signaling that determines the artery branching. Utilizing
hybrid proteins created by swapping the ICD of Jag-1 and Dll-4
found that ICDs of NOTCH ligands determine the potential of
NOTCH signaling strength that could be activated by Jag-1 or
Dll-4. Cytoskeletal filament vimentin specifically binds to Jag-1
ICD and determines the pulling force critical for binding-induced
NOTCH receptor cleavage. Hybrid protein fused by Jag1 ICD and
Dll-4 extracellular domain (ECD) generated NOTCH signaling
resembling ligand Jag-1 (Antfolk et al., 2017). Collectively,
different NOTCH ligands hold distinct capacities to activate
NOTCH signaling, and ligand ICDs play fundamental roles on
influencing the activation potential.

NOTCH Signaling Strength in Vascular
Smooth Muscle Cell
NOTCH signaling is required for vascular smooth muscle
cell (VSMC) differentiation. VSMCs are recruited to vascular
endothelial cells during vasculogenesis and play crucial roles on
maintaining normal vascular tone in response to hemodynamic
changes, especially in arteries where multiple layers of VSMCs
are attached to endothelial cells (Zhuge et al., 2020). During
vasculogenesis, VSMC progenitors are recruited to vascular
bed where endothelial cell expresses Jag-1-activated NOTCH
signaling in VSMC progenitor cells, resulting in expression
of smooth cell markers of α-SMA and SM-22α and the final
specification of VSMC fate (Noseda et al., 2006; High et al.,
2008). Meanwhile, the activated NOTCH signaling in VSMCs
also directly activated Jag-1 expression in the newly formed
VSMCs, allowing further propagation of NOTCH signaling in the
outer layers of VSMCs (Hoglund and Majesky, 2012; Manderfield
et al., 2012; van Engeland et al., 2019). Therefore, Jag-1-activated
NOTCH signaling is essential to maintain VSMC fate and form a
multiple-layer structure of VSMCs in the artery.

Elevated NOTCH signaling strength triggered the
proliferation of VSMCs. Unlike skeletal muscle cells or
cardiomyocytes, both of which are terminally differentiated and
quiescent, VSMCs holds the ability to proliferate, dedifferentiate,
and even transdifferentiate into macrophage-like cells in
response to vascular injury or environmental stimulus
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(Bennett et al., 2016; Basatemur et al., 2019; Zhuge et al.,
2020). The elevated NOTCH signaling has been observed in
arterial injury (Wang et al., 2002) and atherosclerotic lesions
(Davis-Knowlton et al., 2019), both of which involve VSMC
proliferation. An in vitro study also showed that over-expression
of NICD in VSMCs can increase cell proliferation (Sweeney
et al., 2004), which seems contradictory to the fact that NOTCH
signaling promotes the quiescent status of VSMCs characterized
by the expression of α-SMA. However, NICD over-expression
generally resulted in sustained high NOTCH signaling, and
detailed in vitro studies clarified that NOTCH downstream
targets of Hey are promoted under this condition and are
responsible for increased VSMC proliferation and suppressed
α-SMA expression via negative feedback loops. Specifically, the
increased Hey, a transcriptional repressor, can in term prevent
the transcription of α-SMA through directly binding to α-SMA
promoter (Tang et al., 2008). Meanwhile, Hey also inhibits
the expression of cyclin-dependent kinase inhibitor P27kip1,
allowing re-entering into the cell cycle (Havrda et al., 2006).
Conclusively, NOTCH signaling is required for expression of
VSMC markers to maintain VSMC fate, while elevated NOTCH
signaling can suppress VSMC marker expression and promote
VSMC proliferation.

NOTCH Signaling Strength in T-Cell
Lineage
NOTCH signaling strength determines αβ T-cell (vs. γδ T-cell)
specification in T-cell lineage. Postnatal development of T
immune cell in the thymus requires activation of NOTCH
signaling in the hematopoietic progenitor cells (HPCs) that
migrated from the bone marrow. NOTCH signaling activation
inhibits non-T-cell cells including myeloid lineage during early
stages and B-cell during late stages (Wilson et al., 2001). However,
after T-cell fate is committed, the strength of NOTCH in T-cell
lineage determines T-cell sub-lineage specifications between αβ

T-cell and γδ T-cell. An in vitro study showed that human OP9-
Dll1/4 that served as NOTCH signal-sending cell can stimulate
the differentiation of human HPCs into T-cells populated with
both αβ T-cell and γδ T-cell. Interestingly, lowering NOTCH
signaling strength via adding a series of γ-secretase inhibitor
(DAPT) with increasing concentrations gradually switched γδ

T-cell into αβ T-cell (Van de Walle et al., 2009), documenting
NOTCH-strength-dependent cell fate determination between the
two T-cell subtypes.

The strength changes of NOTCH signaling in T-cell lineage
is caused by binding with different NOTCH ligands that hold
distinct receptor binding affinities. Still in human HPCs, Jag-2
exhibited strong NOTCH activation potential and directed HPCs
predominantly into γδ T-cell (Van de Walle et al., 2011, 2013);
Dll-4 instead induced a relatively weak NOTCH signaling and
generated both γδ T-cell and αβ T-cell, while Jag-1 induced the
weakest NOTCH signaling and generated mainly αβ T-cell (Van
de Walle et al., 2013). Collectively, the diverted expression of
NOTCH ligands maintained a diverse range of NOTCH signaling
strength, which balanced the population of αβ T-cell and γδ

T-cell. Surprisingly, mice HPCs also utilize the strength difference
of NOTCH signaling to determine the αβ T-cell fate and γδ T-cell

fate but in an opposite way that low NOTCH signaling favors γδ

T-cell (Washburn et al., 1997). It is intriguing how this difference
between human and mouse is generated, while the NOTCH-
strength-dependent cell fate determination is indeed conserved
during evolution.

NOTCH Signaling Strength in Marginal
Zone B Cell
Differentiation of marginal zone B (MZB) cell, an immune cell
developed in marginal zone of the spleen, relies on NOTCH
signaling dosage. Notch-2 is preferentially expressed in B-cell and
is prominent in splenic marginal zone, suggesting its potential
function on MZB cell differentiation. Homozygous mutation
of Notch-2 completely eliminated MZB cells. Interestingly,
heterozygous mutation of Notch-2, in which 50% of Notch-2
mRNA still expressed, resulted in partial reduction of MZB cells
(Saito et al., 2003). Consistent with Notch-2 mutant, mutational
study of MamL-1 (transcriptional co-factor of CSL) showed a
similar dose-dependent regulation of MZB cell differentiation.
Wild-type, heterozygous mutation of MamL-1 and homozygous
mutation of MamL-1 showed sequential reduction of MZB cell
number (Wu et al., 2007), suggesting all these defects are due to
reduction of NOTCH signaling strength.

Other studies on NOTCH ligands found that it is the ligand
of Dll-1 that activates Notch-2 for MZB cell differentiation in the
spleen. Mutational study of Dll-1 similarly showed a sequential
reduction of MZB cell among wild-type, heterozygous mutation
of Dll-1 and homozygous mutation of Dll-1 (Hozumi et al., 2004).
A later study in splenic stromal cells further confirmed that Dll-
1 expressed by these cells are responsible for activating NOTCH
signaling required for MZB cell differentiation (Fasnacht et al.,
2014). Collectively, these comparison studies on heterozygous
mutation of Notch-2, MamL-1, and Dll-1 suggest that MZB
cell differentiation is dependent on NOTCH dosage. MZB cell
differentiation likely requires NOTCH signaling to be above
certain threshold. Haploinsufficiency of these NOTCH signaling
components made many cells fail to reach this threshold and
resulted in big reduction of mature MZB cells.

NOTCH Signaling Strength in Pancreatic
Progenitor Cells
Stepwise downregulation of NOTCH signaling strength in
pancreatic endocrine progenitor cells drives the transition
from quiescence to proliferation and from proliferation
to differentiation. NOTCH signaling is well-known for its
function on maintaining pancreatic progenitor cells, and
suppressing NOTCH signaling triggered the progenitor cells
to differentiate into pancreatic secreting cells (Apelqvist
et al., 1999). Interestingly, lineage tracing observation of
pancreas development in zebrafish discovered a stepwise
downregulation of NOTCH signaling strength in quiescent
endocrine progenitor cells, proliferating endocrine progenitor
cells and differentiated mature endocrine cells. Lowering
NOTCH signaling strength via applying low concentration
of γ-secretase inhibitor (DAPT) to the developing pancreas
promoted progenitor cell proliferation and consequently
expanded pancreatic endocrine progenitor pool. However,
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saturated DAPT led to differentiation of pancreatic secreting
cells accompanied by drastically reduced progenitor pool
(Ninov et al., 2012), confirming moderate NOTCH signaling
strength is required for the proliferation of pancreatic endocrine
progenitor cells.

Conclusively, high NOTCH signaling strength maintains
quiescent state of pancreatic endocrine progenitor cell,
moderate NOTCH signaling strength triggers its proliferation,
and low NOTCH signaling strength leads to its final
differentiation. Combining NOTCH haploinsufficiency-
related disorders, precise strength requirements in artery
endothelial cell, VSMC, T-cell, and MZB cell, developmental
processes can be sensitive to NOTCH signaling strength
perturbations (summarized in Table 1). Therefore, re-examining
NOTCH-regulated processes with consideration of signaling

strength would likely offer new insights to explain the pleotropic
functions of NOTCH.

MECHANISMS UNDERLYING DISTINCT
TRANSCRIPTIONAL ACTIVATION BY
DIFFERENT STRENGTHS OF NOTCH
SIGNALING

Different duration and dynamics of NOTCH signaling strengths
yield distinct transcriptional responses, which resulted in
distinct developmental consequences. A new study reported by
Nandagopal et al. (2018) showed that the conserved NOTCH
direct target genes of Hes1 and Hey1/L responded differently to

TABLE 1 | Developmental processes sensitive to NOTCH signaling strength.

NOTCH changes Phenotypic changes Study species Reference paper

Jag-1 haploinsufficiency Alagille syndrome Human Warthen et al., 2006; Brennan
and Kesavan, 2017

Alagille syndrome Mouse McCright et al., 2002; Huppert,
2016

Tetralogy of Fallot Human Eldadah et al., 2001; Bauer
et al., 2010

Brain malfunctions Mouse Sargin et al., 2013

Neuron stem cell reduction Mouse Blackwood et al., 2020

Dll-1 haploinsufficiency Brain malfunctions Mouse Fischer-Zirnsak et al., 2019

Growth retardation and metabolic disorder Mouse Rubio-Aliaga et al., 2009

Dll-4 haploinsufficiency Adams–Oliver syndrome Human Meester et al., 2015

Broad artery defects Mouse Gale et al., 2004

Notch-1 haploinsufficiency Adams–Oliver syndrome Human Southgate et al., 2015

Bicuspid aortic valve Human McKellar et al., 2007

Notch-2 haploinsufficiency Alagille syndrome Human McDaniell et al., 2006; Brennan
and Kesavan, 2017

Alagille syndrome Mouse McCright et al., 2002

RBP-J haploinsufficiency Adams–Oliver syndrome Human Hassed et al., 2012

High NOTCH signal AGM cell differentiates to endothelial cell Mouse Gama-Norton et al., 2015

Low NOTCH signal AGM cell differentiates to hematopoietic stem cell

High NOTCH signal Inhibit artery tip cell specification and artery branching Mouse Benedito et al., 2009; Antfolk
et al., 2017

Low NOTCH signal Promote artery tip cell specification and artery branching

High NOTCH signal VSMC in proliferative state Human, rat, mouse Havrda et al., 2006; Tang et al.,
2008

Moderate NOTCH signal VSMC in contractile and quiescent state Noseda et al., 2006; High et al.,
2008

High NOTCH signal Human HPC differentiates into γδ T-cell Human Van de Walle et al., 2013

Low NOTCH signal Human HPC differentiates into αβ T-cell

High NOTCH signal Mouse HPC differentiates into αβ T-cell Mouse Washburn et al., 1997

Low NOTCH signal Mouse HPC differentiates into γδ T-cell

High NOTCH signal Normal MZB cell differentiation Mouse Saito et al., 2003; Hozumi
et al., 2004; Wu et al., 2007;
Fasnacht et al., 2014

Moderate NOTCH signal Reduced MZB cell differentiation

No NOTCH signal No MZB cell differentiation

High NOTCH signal Pancreatic progenitor in quiescent Zebrafish Ninov et al., 2012

Moderate NOTCH signal Pancreatic progenitor in proliferation

Low NOTCH signal Pancreatic progenitor in differentiation
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the level changes of NICD, the active component of NOTCH
signaling. Interestingly, Hes1 and Hey1/L did not simply
adjust their expression levels in proportion to the amount
of NICD generated. High and sustained NOTCH activation
induced by Dll-4 initiated Hey1/L transcription compared
to pulsatile NOTCH activation induced by Dll-1, instead of
proportionally increasing Hes1 that was already transcribed
under pulsatile NOTCH activation (Nandagopal et al.,
2018). Considering NICD pattern change alone can initiate
new gene expression, and it is likely that level changes
of NICD would mediate chromatin modifications for gene
transcription.

Dosage change of NICD can influence CSL-DNA binding
kinetics, NICD dimerization, and chromatin opening. A recent
study using live cell imaging changed the classical model that
CSL stays on chromatin to repress gene transcription until
the arrival of NICD that switches CSL into a transcriptional
activator (Morel et al., 2001; Borggrefe and Oswald, 2009).
Instead, CSL consistently binds to and detaches from DNA,
and NICD along or together with co-factor of MamL can
change the binding dynamics of CSL onto DNA by increasing
its chromatin dwell time and potentially the binding loci
(Gomez-Lamarca et al., 2018). NICD dimerization, utilizing
two NICDs for gene transcription, is essential for certain
NOTCH downstream gene expression. Suppressing of NICD
dimerization leads to various developmental disorders including
heart anomalies and defective MZB cell differentiation; therefore,
shifted balance between dimerized NICD and monomer
NICD that can be influenced by NICD dosage is going
to affect transcriptional profile as well (Hass et al., 2015;
Kobia et al., 2020). The changing of gene transcription
under different NICD dosages can be further proven by
the observation that NICD can change chromatin structure
(Gomez-Lamarca et al., 2018), opening of which permits more
gene transcription. Collectively, NICD not only switches CSL
into transcription activator but also modulates the dynamics
of CSL-DNA binding, NICD dimerization, and chromatin
structure, thus affecting gene transcription both qualitatively
and quantitatively.

CONCLUSION

The on/off switch of NOTCH signaling is well-recognized for
its function on regulating cell differentiation, proliferation, and
apoptosis. The pleotropic function of NOTCH signaling seems
contradictory to the simple setting of NOTCH signaling axis.
Genetic studies discovered heterozygous mutations of NOTCH
signaling components in various developmental disorders and
diseases, suggesting that organ development is also sensitive to
NOTCH signaling dosage. More importantly, simple changes
of NOTCH signaling strength influences the binary cell fate
determinations and cell proliferation and differentiation during
artery, postnatal T-cell, MZB cell, and pancreas development,
suggesting that NOTCH signaling strength changes can be
as important as on/off switch of the signaling. Underlying
NOTCH signaling strength changes and NICD–CSL complex-
mediated gene transcriptions are changed both quantitatively
and qualitatively to direct distinct cellular responses. Therefore,
NOTCH signaling strength can add a new layer of diversity to
explain the pleotropic functions of NOTCH.
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Colorectal cancer (CRC) is one of the most common malignant tumors, and previous
metabolomics work has demonstrated great promise in identifying specific small
molecules of tumor phenotype. In the present study, we analyzed the metabolites of
resected tissues through gas chromatography-mass spectrometry (GC-MS), and found
that the concentration of taurine in CRC tissues diminished whereas the concentration
of hypotaurine increased. The results in vitro demonstrated that taurine significantly
suppressed cellular proliferation, metastasis, and colony formation whereas it induced
apoptosis in CRC cells. Furthermore, taurine regulated the expression levels of epithelial
mesenchymal transition (EMT)-associated genes in a dose-dependent manner. Taurine
also alleviated hypotaurine-induced CRC progression, which was linked to the inhibition
of the ERK/RSK-signaling pathway and diminution in intracellular hypotaurine. Taurine
additionally attenuated hypotaurine-induced tumor growth and metastasis in vivo.
Patients with CRC exhibited lower levels of serum taurine, suggesting that taurine might
be a promising biomarker reflecting a poor prognosis in CRC. Collectively, our results
demonstrated that taurine-attenuated, hypotaurine-induced CRC progression provides
a potential target for CRC therapy.

Keywords: taurine, hypotaurine, tumor progression, ERK, colorectal cancer, prognosis

INTRODUCTION

Colorectal cancer (CRC) is the third most common malignant disease worldwide, with an estimated
1.8 million new cases and 881,000 cancer deaths globally in 2018 (Bray et al., 2018; Siegel et al.,
2019). The revised World Cancer Research Fund/American Institute for Cancer Research report
points out that there is solid evidence that processed meat, alcohol, and obesity increase the risk
of CRC. Although patients with early CRC can be cured by surgery (Shelton, 2002; Lieberman
et al., 2012), patients with advanced CRC should not undergo surgery and chemotherapy (Imai
et al., 2015). Therefore, more in-depth studies are needed regarding the underlying molecular
mechanisms and drivers of CRC progression in order to find additional potential therapeutic
targets and strategies.

Metabolomics can illuminate abnormal metabolic pathways associated with various tumor
types. Taurine (2-aminoethanesulfonic acid) is a natural amino acid that is widely expressed in
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mammalian tissues, and is critical for maintaining the
functioning of the central nervous system, retinal neurons,
cardiac, and skeletal muscle (Schaffer et al., 2010; Gaucher
et al., 2012; Kilb and Fukuda, 2017; Khalil et al., 2018). As an
antipyretic and anti-inflammatory drug, taurine has been used in
the treatment of diabetes, cataracts, and cardiovascular disease
(Song et al., 2003; Son et al., 2007; Megaraj et al., 2010; Das et al.,
2012; El Zahraa et al., 2012; Yin et al., 2012). Recent evidence
also shows that taurine possesses anti-tumor properties in cancer
(Zhang et al., 2014, 2015). For example, previous studies have
shown that taurine, with diethylnitrosamine as carcinogen and
phenobarbital as cancer promoter, exerts a protective effect on
chemically induced hepatomas in male F344 rats (Okamoto
et al., 1996). After taurine treatment of S180 transplanted tumors
in nude mice, apoptosis was significantly increased (Wang,
2008). Taurine can also upregulate the expression of N-acetyl
galactosaminyl transferase 2 and downregulate the expression of
matrix metalloproteinase-2, thus inhibiting potential invasion
and metastasis by glioma cells (Neary et al., 2010). However,
studies of the effects on CRC of taurine and its metabolic
precursor hypotaurine remain limited.

In the present study, we first performed gas chromatography-
mass spectrometry (GC-MS) to analyze the metabolites in
CRC tissues. This investigation revealed that taurine was
downregulated, whereas hypotaurine was upregulated in CRC.
Next, we determined the functions of taurine in the regulation
of hypotaurine-induced tumor progression. Finally, we explored
the detailed molecular mechanisms responsible for taurine’s
function in CRC. Our data may provide new insights into the
metabolic underpinnings of CRC progression, and offer key clues
for developing new diagnostic and therapeutic targets for this
devastating disease.

MATERIALS AND METHODS

Patients and Clinical Samples
Forty-two CRC patients underwent radical surgery without
preoperative anti-cancer therapy at Renji Hospital, Shanghai
Jiao Tong University School of Medicine, were enrolled in
this study. Our study was authorized by the Renji Hospital
Ethics Committee, and all patients were required to sign
written informed consent. Serum samples were obtained prior
to treatment, and fresh tissue specimens were collected after
surgery. All clinical samples were stored immediately after
collection at−80◦C.

Cell Lines and Reagents
All human CRC cell lines were from the American Type
Culture Collection (ATCC, Manassas, VA, United States) and
authenticated by DNA profiling. All cells were cultured in DMEM
supplemented with 10% FBS and 1% penicillin-streptomycin,
in an incubator (Thermo Fisher Scientific, Waltham, MA,
United States) at 37◦C and 5% CO2 in air. A MycoSEQ Detection
kit was used to detect mycoplasma every 6 months (4460626;
Thermo Fisher Scientific). Cell lines were utilized for less than
6 months after receipt or resuscitation from cryopreservation.

We purchased taurine (HY-B0351) and hypotaurine (HY-
100803) from MedChemExpress (Monmouth Junction, NJ,
United States). SCH772984 (S7101), Ro 318220 (S7207), and
Stattic (S7024) were used to inhibit different ERK-signaling
pathways (Selleck Chemicals, Houston, TX, United States).

GC-MS and Liquid
Chromatography-Tandem Mass
Spectrometry (LC-MS/MS) in
Metabolomics Analysis
Samples were prepared according to the manufacturer’s protocols
(Human Metabolome Technologies, HMT, Tokyo, Japan). GC-
MS was conducted using an Agilent 7890A gas chromatography
system combined with an Agilent 5975C inert MSD system
(Agilent Technologies, Santa Clara, CA, United States). We
performed LC-MS/MS using an Agilent 6460 Triple Quad LC/MS
system (Agilent Technologies) with an electrospray ionization
(ESI) source and using positive multiple reaction monitoring
(MRM), and applied Agilent Mass Hunter Ver.B.04.00 software
(Agilent Technologies) to collect the MS data. Peak picking
and metabolite determination were conducted according to
the manufacturer’s protocol (HMT). Zero values were removed
from the data based upon the 80%-rule as previously proposed
(Bijlsma et al., 2006).

In vitro Cell Viability Assay
Prior to the application of different reagents at the indicated final
concentrations, 5,000 cells/well were plated in triplicate in 96-well
plates. We determined viability through Alamar Blue analysis
as described after 5–7 days of culture (Zhang et al., 2017). All
samples were tested in triplicate.

Soft-Agar Assay
Cells (5,000–10,000) were suspended in 0.3% agar containing
DMEM and 10% FBS, and plated in triplicate in 24-
well plates. After 3–4 weeks, the number of colonies per
well was manually counted under an anatomical microscope
(Olympus, Tokyo, Japan).

Caspase 3/7 Reporter Assay
All cells were seeded in triplicate in 96-well plates, and
treated with different reagents for 24 h. The data were
analyzed using a Synergy H4 Hybrid Multimode Microplate
Reader (BioTek, Winooski, VT, United States). We purchased
a caspase 3/7 reporter kit (G8091) from Promega (Madison,
WI, United States).

Wound-Healing Assay
A total of approximately 2× 105 cells were plated in 6-well plates.
After starving overnight in the medium supplemented with 1%
FBS, a confluent monolayer of >90% was scraped with a 200 µl
pipette tip to form a linear wound. The plates were washed with
PBS and incubated in complete medium with or without reagents
for 24 h. A phase-contrast optical microscope (Olympus) was
used to capture the wound images, and the horizontal distances
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between the edges of the wounds were measured. All sampling
was conducted in triplicate.

Transwell Invasion Assay
A total of approximately 5 × 104 cells were suspended in 200 µl
of DMEM without serum and plated on the upper chamber of
transwell filters in 24-well plates coated with Matrigel (354234;
BD Biosciences, Franklin Lakes, NJ, United States), and filled with
500 µl of DMEM and 10% FBS with or without experimental
agents. The lower chamber was fixed with 600 µl of DMEM.
After 36 h of culture at 37◦C, the non-invasive cells on the
upper side of the membrane were removed, and the cells on
the lower side of the membrane were fixed with 100% methanol
for 20 min and stained with 1% crystal violet for 15 min at
37◦C. The cell images were collected and five random fields were
counted under an anatomical microscope. The sampling was
conducted in triplicate.

Quantitative Real-Time Reverse
Transcription Polymerase Chain
Reaction Analysis
Trizol reagent (15596018; Thermo Fisher Scientific) was used
to isolate total RNA from cells or tissues, and a One-
Step RT-PCR kit (Qiagen, Dusseldorf, Germany) was used
to synthesize cDNA. The ABI 7500 Real-time PCR system
(Thermo Fisher Scientific) was used to evaluate the expression
of CDH1, Snail, and FMO1. The primers were as follows: CDH1,
5′- AAGTGCTGCAGCCAAAGACAGA-3′ (forward) and 5′-AA
ATTGCCAGGCTCAATGACAAG-3′ (reverse); Snail, 5′-GGA
AGCCTAACTACAGCGAGC-3′ (forward) and 5′-AGGACAGA
GTCCCAGATGAGC-3′ (reverse); FMO1, 5′-GAGCGAAAGA
TAAACAACTGGCT-3′ (forward) and 5′-TGCTTGGCCTGAT
GAACACTT-3′ (reverse); GAPDH, 5′-GCACCGTCAAGGCT
GAGAAC-3′ (forward); and 5′-ATGGTGGTGAAGACGCCA
GT-3′ (reverse). GAPDH was used as a reference and the 2−11Ct

methods were applied to quantify the relative expression levels.

Western Blotting Analysis
After treatment, RIPA lysis buffer [25 mmol/L Tris (pH7.4),
150 mmol/L NaCl, 5 mmol/L EDTA, and 1% Triton-X] plus
phosphatase and protease inhibitors were used to harvest
cells. A total of 30–50 µg of lysate was dissolved in the
SDS-PAGE gels and then transferred to PVDF membranes
(1620177; Bio-Rad, Hercules, CA, United States) that were
blocked. The identification of target proteins was conducted
with unique antibodies, followed by secondary antibodies. The
commercial antibodies were purchased from Cell Signaling
Technology (CST, Boston, MA, United States) as follows:
rabbit monoclonal antibody to ERK1/2 (1:1000, 4695), rabbit
monoclonal antibody to RSK (1:1000, 9355), phospho-ERK1/2
(T202/204) antibody (1:1000, 4370), phospho-RSK (S380)
antibody (1:1000, 11989), and mouse monoclonal antibody
to β-actin (1:1000, 3700). The secondary antibodies used
in the experiments were IRDye 680RD donkey anti-mouse
IgG (1:10000, 925-68072; LI-COR Biosciences, Lincoln,
NE, United States) and IRDye 800CW goat anti-rabbit

IgG (1:10000, 926-32211; LI-COR Biosciences). The blots
were scanned using an Odyssey infrared imaging system
(LI-COR Biosciences).

Xenograft Tumor Model
Our protocol was approved by the Ethics Committee of Renji
Hospital. A total of 5 × 106 CRC cells were subcutaneously
injected into the athymic flanks of 4-week-old BALB/c nude
mice (Shanghai Laboratory Animal Center, Shanghai, China).
Treatment was initiated when tumors approached a volume
of approximately 100 mm3, and tumor volume was calculated
once per week using the formula V = 1/2 (L × W2)
(where L = length and W = width). The mice were
then allocated to four groups according to the 4-week
treatments as follows: (a) saline (vehicle), (b) taurine at
200 mg/kg/day, (c) hypotaurine at 200 mg/kg/day, and (d)
taurine at 200 mg/kg/day plus hypotaurine at 200 mg/kg/day.
At the end of the study, mice were euthanized, tumor weights
were recorded, and the tumor tissues were collected for
further analysis.

Orthotopic Model
Six-week-old NOD SCIDγ (NSG) mice were purchased
from the Shanghai Laboratory Animal Center. The median
incision in the abdominal wall was 1 cm, and the cecum
was externalized. The mucous membrane was weakened
in advance by mild rubbing against the wall to promote
implantation, which was necessary to prevent tumor cells
from infiltrating the cecal or peritoneal cavities. A 100 µl
suspension containing 5 × 106 CT26 cells was then injected
into the cecal wall. Mice were divided into four groups
(six mice per group) seven days after implantation. We
measured bioluminescence imaging (BLI) signals using the
PhotonIMAGER Optima System (Biospace Lab, Nesles la Vallée,
France), which can detect the presence of cecal, hepatic, and
pulmonary tumors or micrometastases. Twenty-five days after
implantation, the cecums, livers, and lungs were collected
from treated mice and controls, and organs were fixed in
4% paraformaldehyde for 4 h for subsequent histologic and
immunohistochemical analyses.

Histologic, Immunohistochemical, and
Immunofluorescence Analyses
Tissues were stained with H&E after resection, fixed, and
paraffin-embedded. Tumor nodules in livers and lungs
were selected to evaluate the level of metastasis. For
immunohistochemistry, 4 µm sections of tissue were incubated
with cytokeratin 19 (1:200, 4,558; CST) antibody, and for
immunofluorescence, fixed sections were incubated with
primary antibodies to Ki67 (1:50, 9,449; CST), pan-keratin
(1:50, 4,545; CST), or cleaved-caspase 3 (1:200, 9,664; CST).
We quantified the number of Ki67-positive cells and apoptotic
areas from two independent tumors of each group; this
entailed 10 sections/tumor and 1 field/section, using a 20×
objective, NIS-Elements software (Nikon, Tokyo, Japan), and a
C2 + fluorescence confocal microscope.
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Statistical Analysis
The data are presented as means ± standard error of the mean
(SEM). We used an unpaired Student’s t test to compare two
groups, and one-way ANOVA followed by Tukey’s post hoc test
for multiple comparisons. The Prism 6 software program was
used to analyze the data. All tests were two-tailed, and P < 0.05
was considered significant.

RESULTS

GC-MS of Metabolic Changes in CRC
Tissues
We used GC-MS to examine the alterations of metabolites
in CRC. We included World Health Organization (WHO)
grade IV (n = 3) CRC specimens, and the normal colonic
tissue around the tumor obtained during the operation
was used as the control sample (n = 3). The analysis of
raw GC-MS data has been described in previous protocols
(Gao et al., 2010). The peak table file was imported into
SIMCA (Version 11.0, Umetrics, Umea, Sweden), including
principal component analysis (PCA), partial least squares-
discriminant analysis (PLS-DA), and orthogonal partial least
squares-discriminant analysis (OPLS-DA). Two PCs were each
measured for tissue extracts explained by t1 and t2. The
score curve showed that each group was scattered in different
areas that represented a significant separation of cancer and
non-cancer samples, indicating that colon cancer tissue had a
specific metabolic spectrum that was different from that of the
controls (Figure 1).

Taurine and Hypotaurine in CRC Tissues
In the OPLS-DA model, the variable importance in the
project (VIP) was employed to express the importance of
different features to sample discrimination. Characteristics
with VIP values greater than one were chosen for further
consideration, including the development of discriminatory
models and the recognition of chemical structures. We analyzed
and queried the parameters of each feature in the following
databases: Kyoto Encyclopedia of Genes and Genomes (KEGG 1),
Human Metabolome Database (HMDB2), and Mass Bank3.
The fold-change was measured as the binary logarithm of
the mean normalized peak-intensity ratio between the cancer
and normal groups, and a positive value indicated that
the mean quality response of the cancer group was greater
than that of the normal group. We ultimately identified the
structures of 28 metabolites, and observed that the content
of taurine in the cancer group was lower than that in the
normal group, and that the content of hypotaurine in the
cancer group was reciprocally higher than in the normal
group (Figure 2).

1http://www.genome.jp/kegg/
2http://www.hmdb.ca/
3http://www.massbank.jp/

Taurine Attenuates Hypotaurine-Induced
Tumor Progression in CRC Cells
We first examined the effect of taurine as a single agent in
nine conventional monolayer-cultured CRC cell lines. After
five days of culture in a 2D condition, the cell viability of
all CRC cell lines was inhibited in a concentration-dependent
manner. HT-29 and LoVo were two representative CRC cell
lines that showed a significant difference in taurine sensitivity,
and were therefore chosen for subsequent studies (Figure 3A).
A variety of in vitro assays were employed to assess the effects of
taurine on cellular functions, including proliferation, apoptosis,
migration, and invasion, in order to identify whether taurine
was functionally involved in CRC cells. Figure 3B illustrates
that upregulation of taurine inhibited the proliferation of HT-
29 and LoVo cells through Alamar Blue assays (Figure 3B),
and colony formation assays verified that taurine exerted an
inhibitory action on cellular proliferation (Figure 3C). Caspase-
3/7 activity was measured to investigate the apoptotic action
of taurine on both cell lines, and it significantly increased
after treatment with taurine for 24 h (Figure 3D). In the
wound-healing migration assay, taurine-treated cells displayed a
suspension of wound healing (Figures 3E,F); and transwell assays
showed that taurine significantly impaired cellular invasion in
both cell lines (Figures 3G,H). To determine whether elevated
taurine played an important role in hypotaurine induced-CRC
progression, we treated CRC cells with a combination of taurine
and hypotaurine, and the results revealed that taurine rescued the
suppression of apoptosis, and enhanced proliferation, migration,
and invasion of hypotaurine-treated CRC cells (Figures 3A–H).

Taurine Attenuates the
Hypotaurine-Induced Epithelial
Mesenchymal Transition in CRC Cells
The epithelial mesenchymal transition (EMT) is one of the
critical factors in cellular proliferation, apoptosis, and metastasis.
We determined the change in EMT markers in CRC cells
with quantitative real-time reverse transcription polymerase
chain reaction (qRT-PCR) analysis, and showed upregulation
of CDH1 expression and downregulation of Snail in HT-29
and LoVo cells with taurine treatment. Compared with the
control group, these effects persisted with increasing dose and
duration of taurine treatment (Figures 4A–D), and thus taurine
affected CDH1 and Snail expression levels in a dose- and time-
dependent manner. Our data also showed that taurine reversed
hypotaurine-mediated expression of EMT markers in CRC cells
(Figures 4E,F).

Taurine Attenuates Hypotaurine-Induced
Tumor Progression and the EMT via the
Extracellular-Signal Regulated Kinase
(ERK)/Ribosomal S6 Kinase (RSK)
Pathway, and Decreases Hypotaurine
Level in CRC Cells
To investigate the possible mechanism underlying taurine
inhibition of hypotaurine-induced progression and EMT in CRC
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FIGURE 1 | Serummetabolic profiles derived from CRC tissues are different from those of healthy subjects (N = 3/group). Red circles, cancer samples; green
squares, normal samples.

cells, we analyzed taurine and/or hypotaurine effects on the ERK
pathway through western blotting analysis. Taurine significantly
suppressed the levels of p-ERK and p-RSK in CRC cells, while
hypotaurine induced ERK activation (Figures 5A,B). These data
suggested that the ERK/RSK pathway may participate in taurine
regulation of hypotaurine-induced progression and the EMT of
CRC. Hypotaurine concentrations decreased significantly in a
dose- dependent manner over a 24-h taurine exposure, while
taurine levels did not increase during prolonged incubation
of cells with these precursors (Figures 5C,D). This suggested
that the enzymatic conversion of hypotaurine to taurine was
either lacking or strictly regulated in these cell lines. The
investigators recently demonstrated that the flavin-containing
monooxygenase 1 (FMO1) oxygenated hypotaurine to produce
taurine both in vivo and in vitro (Veeravalli et al., 2020).
We thus executed qRT-PCR analysis using colonic tissues, and
found the level of FMO1 mRNA to be significantly decreased
in CRC compared to normal colonic tissues (Figure 5E). It
has been reported that the phosphorylation-activated ERK1/2
translocates to the nucleus where it phosphorylates and activates
mitogen- and stress-activated protein kinase (MSK), RSK, and
signal transducer and activator of transcription 3 (STAT3) to
stimulate cellular growth and proliferation (Zhang and Liu,
2002). To explore the possible downstream effectors of ERK1/2
signaling (besides RSK) in CRC cells, we analyzed the effects of

three different ERK inhibitors on hypotaurine levels by LC-MS
analysis. The results suggested that only the ERK/RSK inhibitor
could regulate intracellular hypotaurine levels (Figures 5F–
H). Collectively, our results strongly support our contention
that the ERK/RSK pathway and decreased hypotaurine levels
play important roles in taurine-mediated inhibition of tumor
progression and the EMT.

The Inhibition of ERK/RSK Signaling
Mimics the Counteracting Effects of
Taurine on Hypotaurine
Previous research has established that RSKs are important
regulators of migration and invasion in response to activation
of the ERK/MAPK-signaling pathway (Sulzmaier and Ramos,
2013). To further verify whether ERK/RSK signaling contributed
to hypotaurine-induced CRC progression and the EMT, we
treated CRC cells with a combination of the ERK/RSK
inhibitor and hypotaurine, and showed that SCH772984
rescued suppressed apoptosis and enhanced proliferation,
migration, and invasion of hypotaurine-treated CRC cells
(Figures 6A–F and Supplementary Figures 7, 8). Furthermore,
our data showed that SCH772984 reversed hypotaurine-mediated
expression of EMT markers in CRC cells (Figures 6G,H). Taken
together, our results strongly support our hypothesis that the
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FIGURE 2 | The concentration of taurine is diminished whereas the concentration of hypotaurine is augmented in CRC tissues (N = 3/group). (A) Values for the VIP
of 28 characteristics are depicted. Each column displays one feature of the PLS-DA model (Figure 1). Error bars represent the SEM. (B) Different levels of
compounds between cancer and normal groups (2-tailed t test, P < 0.05). The y-axis represents the various compounds, and the x-axis represents fold-change in
metabolite levels.

inhibition of ERK/RSK signaling mimics the preventive effects of
taurine on hypotaurine.

Taurine Attenuates Hypotaurine-Induced
Tumor Growth in vivo
Our research has shown that taurine participates in hypotaurine-
induced CRC growth in vitro, and that taurine reverses
tumor growth in hypotaurine-treated xenograft mouse
models. HT-29 and LoVo cells readily form tumors in
immunocompromised mice, with a short latency period
(∼14 days), and these were established in our nude mice
(∼100 mm3). Hypotaurine alone promoted tumor growth,
but combination-treated tumors were lower in tumor volume
and weight in both models (Figures 7A,B,E,F). Compared
with hypotaurine treatment, the combination-treated tumors

displayed increased apoptosis (as assessed by cleaved-caspase-
3+ area) and decreased proliferation (Ki-67+) of neoplastic
cells (dual pan-CK+Ki-67+cells) (Figures 7C,D,G,H).
Our collective results strongly support taurine as reversing
hypotaurine-induced tumor growth.

Taurine Attenuates
Hypotaurine-Mediated Tumor Metastasis
in vivo
As taurine was shown to attenuate the migration and invasion
of hypotaurine-treated CRC cells, its effects in vivo were
further examined. We thereby established an orthotopic colonic
tumor model using spontaneous lung and liver metastasis
xenografts in BALB/c mice. We initiated treatment once tumor
establishment was confirmed by a positive bioluminescence
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FIGURE 3 | Taurine reverses the promoting effects of hypotaurine on CRC progression. (A) The viability of CRC cell lines cultured for five days in serial concentrations
of taurine, and each IC50 value were shown by Alamar Blue assay (means ± SEM). (B) The proliferative rate of CRC cell lines after treatment with taurine (10 mM)
and/or hypotaurine (10 mM) (means ± SEM) (one-way ANOVA followed by Tukey’s post hoc test, *P < 0.05, ***P < 0.001). (C) Quantification of clones formed by
the indicated CRC lines after treatment with taurine (5 mM) and/or hypotaurine (5 mM) for 3 weeks (means ± SEM) (one-way ANOVA followed by Tukey’s post hoc
test, *P < 0.05, ***P < 0.001). (D) The proapoptotic effects of taurine (10 mM) and/or hypotaurine (10 mM) on CRC cells were detected by caspase 3/7 reporter
assay (means ± SEM) (one-way ANOVA followed by Tukey’s post hoc test, *P < 0.05, **P < 0.01, ***P < 0.001). (E,F) The cellular migratory effects of taurine
(10 mM) and/or hypotaurine (10 mM) in CRC cells were evaluated by wound-healing assay and quantified. (means ± SEM) (one-way ANOVA followed by Tukey’s
post- hoc test, *P < 0.05, ***P < 0.001). (G,H) The cellular invasive effects of taurine (10 mM) and/or hypotaurine (10 mM) in CRC cells were assessed using the
transwell invasion assay and quantified (means ± SEM) (one-way ANOVA followed by Tukey’s post hoc test, *P < 0.05, **P < 0.01, ***P < 0.001).
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FIGURE 4 | Taurine reverses the promoting effect of hypotaurine on the EMT in CRC cells. (A,B) The dose-effect curve for taurine on EMT related-gene expression in
CRC cells was determined by qRT-PCR (means ± SEM) (one-way ANOVA followed by Tukey’s post hoc test, ***P < 0.001). (C,D) The time-effect curve for taurine
on EMT related-gene expression in CRC cells was developed using qRT-PCR (means ± SEM) (one-way ANOVA followed by Tukey’s post hoc test, **P < 0.01,
***P < 0.001). (E,F) The effects of taurine and/or hypotaurine on EMT markers in CRC cells were measured by qRT-PCR (means ± SEM) (one-way ANOVA followed
by Tukey’s post hoc test, *P < 0.05, **P < 0.01, ***P < 0.001).

signal. On day 25 (the day of sacrifice), macroscopic pulmonary
and hepatic metastases were determined by bioluminescence
signals and spots of tissue necrosis on the organs. H&E
and cytokeratin 19 staining of lung and liver tissues were
performed to assess tumor cell metastasis. Our representative

photomicrographs depict the metastases of tumor cells to liver
and lung, and the formation of tumor nodules (Figures 8A,B).
Although the number of metastatic nodules in livers and lungs
decreased with taurine treatment, hypotaurine promoted CRC
cell metastasis (Figures 8C,D) indicating that taurine could
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FIGURE 5 | Taurine reverses the promoting effects of hypotaurine on tumor progression and EMT through the ERK/RSK pathway, and decreases intracellular
hypotaurine levels in CRC cells. (A,B) The effects of taurine and/or hypotaurine on the phosphorylation (denoted p-) status of ERK and RSK were assessed with
western blotting analysis. (C,D) CRC cells were incubated for 24 h in medium with the indicated concentrations of taurine or hypotaurine, and intracellular
hypotaurine or taurine concentrations were identified by LC-MS analysis (means ± SEM) (one-way ANOVA followed by Tukey’s post hoc test, *P < 0.05, **P < 0.01,
***P < 0.001). (E) FMO1 mRNA expression in normal colon, normal colonic tissues adjacent to cancer, and colon cancer were determined by qRT-PCR
(means ± SEM) (N = 3/group; one-way ANOVA followed by Tukey’s post- hoc test, ***P < 0.001). (F–H) CRC cells were incubated for 24 h in medium with the
indicated concentrations of different ERK inhibitors (SCH772984, Ro 318220, and Stattic), and intracellular hypotaurine concentrations were identified by LC-MS
analysis (means ± SEM) (one-way ANOVA followed by Tukey’s post hoc test, **P < 0.01, ***P < 0.001).

Frontiers in Cell and Developmental Biology | www.frontiersin.org 9 April 2021 | Volume 9 | Article 631163123

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-631163 April 11, 2021 Time: 10:52 # 10

Hou et al. Taurine Attenuates CRC Progression

FIGURE 6 | An ERK/RSK inhibitor reverses the promoting effects of hypotaurine on tumor progression and EMT in CRC cells. (A) The effects of ERK/RSK inhibitor
(SCH772984) on the phosphorylation (denoted p-) status of ERK and RSK were detected with western blotting analysis. (B) The proliferative rates of CRC cell lines
after treatment with SCH772984 (2 µM) and/or hypotaurine (10 mM) (means ± SEM) (one-way ANOVA followed by Tukey’s post hoc test, *P < 0.05, **P < 0.01,
***P < 0.001). (C) Quantification of clones formed by the indicated CRC lines after treatment with SCH772984 (1 µM) and/or hypotaurine (5 mM) for 3 weeks
(means ± SEM) (one-way ANOVA followed by Tukey’s post hoc test, *P < 0.05, **P < 0.01, ***P < 0.001). (D) The proapoptotic effects of SCH772984 (2 µM)
and/or hypotaurine (10 mM) on CRC cells were observed with caspase 3/7 reporter assay (means ± SEM) (one-way ANOVA followed by Tukey’s post hoc test,
*P < 0.05, **P < 0.01, ***P < 0.001). (E) The cellular migratory effects of SCH772984 (2 µM) and/or hypotaurine (10 mM) on CRC cells were determined by
wound-healing assay and quantified. (means ± SEM) (one-way ANOVA followed by Tukey’s post hoc test, *P < 0.05, **P < 0.01, ***P < 0.001). (F) The cellular
invasive effects of SCH772984 (2 µM) and/or hypotaurine (10 mM) on CRC cells were ascertained by transwell invasion assay and quantified (means ± SEM)
(one-way ANOVA followed by Tukey’s post hoc test, *P < 0.05, **P < 0.01, ***P < 0.001). (G,H) The effects of SCH772984 and/or hypotaurine on EMT markers in
CRC cells were discerned using qRT-PCR (means ± SEM) (one-way ANOVA followed by Tukey’s post hoc test, *P < 0.05, **P < 0.01, ***P < 0.001).
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FIGURE 7 | Taurine reverses the promoting effects of hypotaurine on tumor growth in vivo. (A,B) Serial measurements of tumor volume and final weights of HT-29
tumors grown subcutaneously in nude mice treated as indicated (means ± SEM) (N = 10/group; one-way ANOVA followed by Tukey’s post hoc test, *P < 0.05,
**P < 0.01, ***P < 0.001). (C,D) Representative photomicrographs (C) and quantification of cleaved caspase-3+ area per × 200 field and dual CK+ and Ki-67+

cells per × 400 field (D) of HT-29 tumors treated as indicated using immunofluorescence. Ten random photographs were taken from each of 10 tumors per group
(mean ± SEM) (one-way ANOVA followed by Tukey’s post hoc test, **P < 0.01, ***P < 0.001; scale bars, 50 µm). (E,F) Serial measurements of tumor volume and
final weights of LoVo tumors grown subcutaneously in nude mice treated as indicated (means ± SEM) (N = 10/group; one-way ANOVA followed by Tukey’s post-
hoc test, **P < 0.01, ***P < 0.001). (G,H) Representative photomicrographs (G) and quantification of cleaved caspase-3+ area/200 field, and dual CK+ and Ki-67+

cells/400 field (H) of LoVo tumors treated as indicated and determined by immunofluorescence. Ten photomicrographic images were captured randomly from each
of 10 tumors per group (mean ± SEM) (one-way ANOVA followed by Tukey’s post hoc test, *P < 0.05, **P < 0.01, ***P < 0.001; scale bars, 50 µm).
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FIGURE 8 | Taurine reverses the promoting effects of hypotaurine on tumor metastasis in vivo. (A) Representative images of total mouse luciferase signal were
shown, manifesting the presence of tumor formation, liver, and lung metastases. (B) The cecum, liver, and lung of mice were stained with H&E and cytokeratin 19.
The arrows represented macroscopic cecal tumor and metastatic spots (magnification 200×; scale bars, 50 µm). (C,D) Quantitative results of metastatic area as
liver/lung (mean ± SEM) (N = 6/group; one-way ANOVA followed by Tukey’s post hoc test, *P < 0.05, **P < 0.01, ***P < 0.001).

suppress the metastasis of hypotaurine-induced colonic cancer
to liver and lung.

Low Levels of Taurine in Serum Are
Associated With a Poor Prognosis in
CRC Patients
To investigate whether taurine might serve as a potential
prognostic biomarker for CRC patients, we measured serum
taurine levels in healthy donors and CRC patients by LC-
MS. It is worth noting that when other clinicopathologic
factors were controlled (Supplementary Table 1), we found
that patients with metastatic CRC exhibited significantly
lower serum concentrations of taurine relative to patients
with primary CRC (Figure 9). These results thus showed

that low serum taurine was correlated with poor prognosis
in CRC patients.

DISCUSSION

The purpose of our study was to identify the abnormal metabolic
pathways in CRC and their effects on tumor progression. Using
GC-MS, we identified 28 metabolites, and also noted lower
taurine and higher hypotaurine levels in the cancer group
compared to the normal group. However, the biologic roles
of taurine and hypotaurine remain elusive. The biosynthesis
of taurine includes the oxidation of cysteine to cysteinesulfinic
acid as catalyzed by cysteine dioxygenase, decarboxylation
catalyzed by cysteine sulfite decarboxylase, and the oxidation of

Frontiers in Cell and Developmental Biology | www.frontiersin.org 12 April 2021 | Volume 9 | Article 631163126

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-631163 April 11, 2021 Time: 10:52 # 13

Hou et al. Taurine Attenuates CRC Progression

FIGURE 9 | Downregulated taurine levels in serum are correlated with a poor
prognosis in CRC patients (mean ± SEM) (N = 20 normal and 42 patients;
one-way ANOVA followed by Tukey’s post hoc test, ***P < 0.001).

hypotaurine to taurine by hypotaurine dehydrogenase (Vitvitsky
et al., 2011). In our study, taurine and hypotaurine might
therefore play a critical role in the mechanisms underlying
CRC. Although promising progress has been made in early
diagnosis, surgical techniques, and chemotherapy, the prognosis
of patients with CRC remains disappointing. Because abnormal
metabolomic profiles have been reported to be linked to tumor
progression (Chinnaiyan et al., 2012; Hadi et al., 2017), the
elucidation of novel CRC-associated metabolomic biomarkers is
critical for early diagnosis and to provide an effective strategy
for advanced CRC.

A number of investigators have demonstrated that the
antitumor effects of taurine contribute to its ability of promoting
apoptosis and reducing proliferation (He et al., 2018; Tu et al.,
2018). Gao et al. (2016) reported an enhancement of glioma
cell proliferation and invasiveness by hypotaurine. In our study,
taurine was examined as a single agent using a panel of CRC
cell lines, and we observed a concentration-dependent inhibition
of cellular viability in all the lines with a five day culture in
2D condition. HT-29 and LoVo were selected for subsequent
investigation of the differences in their sensitivities to taurine,
and a series of experiments was conducted to determine the
effects of taurine on the development of CRC. Taurine induced
apoptosis, inhibited cellular proliferation, migratory and invasive
capabilities. We then evaluated CDH1 and Snail proteins as
crucial markers of the EMT, as the EMT is principally involved
in cellular proliferation, apoptosis, and metastasis. We found that
taurine treatment promoted CDH1 levels while it inhibited Snail
levels, indicating that taurine influences CRC cell metastasis,

apoptosis, and proliferation involved in the EMT. We postulate
that our results will engender a better understanding of the
effects of taurine as a mediator of CRC pathophysiology, and the
results indicate that taurine attenuates the malignant phenotype
evoked by hypotaurine. The inhibitory effect of taurine on CRC
thus suggests that taurine treatment may constitute a promising
solution to halting the progression of CRC.

The mechanisms associated with taurine-mediated inhibition
of the EMT in CRC are currently arcane. The proteins in the
ERK-signaling pathway appear hyperactive and overexpressed in
various forms of cancer, including CRC (Lok et al., 2011; Blaj
et al., 2017), and the ERK pathway is known to regulate the
EMT, tumor cell migration, invasion, and cell-cycle progression
(Olea-Flores et al., 2019). Because of the specific structural
properties of ERK, its mechanism of action, feedback mediation,
and the various substrates catalyzed, ERK1/2 is a potential
candidate for the development of strategies that could be used to
inhibit tumor progression. However, the development of ERK-
pathway molecules as therapeutic targets remains challenging
because the potential for off-targeting and toxicity of these new
compounds has also increased. It should be noted, however,
that taurine as a natural amino acid can overcome these
problems. Our in vitro results showed that phosphorylated
ERK1/2 and RSK expression were reduced with taurine treatment
in a dose-dependent manner, and with increasing hypotaurine
concentration, ERK1/2 and RSK phosphorylation also increased
commensurately. This dose-dependent activity may represent the
primary mechanism by which taurine and hypotaurine exert
opposing effects on CRC cells.

Additionally, our experiments showed an aberrant metabolic
pathway involved in taurine-inhibited tumor progression in
CRC cells. Taurine reduced intracellular hypotaurine levels,
indicating that the availability of extracellular taurine may
diminish synthesis of de novo hypotaurine. Previous evidence
has shown decreased taurine levels in glioma tissue, and we
found that alterations in taurine levels changed intracellular
hypotaurine levels (Gao et al., 2016). In these cell lines, either
the enzymatic conversion of subtaurine to taurine was lacking,
or the transformation was strictly regulated; this inhibition
might then be involved in the mechanism subserving reduced
hypotaurine levels. We hypothesized that the changes in
intracellular hypotaurine levels would be reflected in the effects
on tumor metabolites, and this was supported by our results
of hypotaurine’s contribution to cellular invasion, proliferation,
and apoptosis. We also conjecture that the inhibitory effects of
taurine are mediated by the ERK/RSK cascade via the EMT and
by taurine’s competitive inhibition of hypotaurine.

Consistent with our in vitro results of taurine-attenuated,
hypotaurine-induced tumor growth, taurine significantly
decreased the growth of HT-29 and LoVo xenograft tumors,
laying the foundation for further rational treatment of this
kind in CRCs. In addition, the use of taurine can increase
apoptosis and decrease proliferation in vivo. We herein also
demonstrated that taurine inhibited cellular migration, invasion,
and metastasis in vitro and in vivo. Orthotopic transplantation
of CT26 cells into taurine-treated mice did not produce liver
or lung metastasis, and this was supported by the number
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of metastatic nodules and the expression of bioluminescent
signals. Therefore, taurine treatment can prevent the EMT
and inhibit CRC cell dissemination. Metabonomics has
been widely used in uncovering biomarkers due to its
close relationship with phenotype and sensitivity to many
factors. As a “downstream” type of genomics, transcriptomics,
and proteomics, metabonomics has been used to detect
a variety of subtle modifications that reflect changes in
biologic state, even if there are no measurable changes in
corresponding genes and proteins. Therefore, candidates for
potential biomarkers are more likely to be made available
through metabonomics (Monteiro et al., 2013). By comparison,
endogenous metabolites number fewer than genes, transcripts,
and proteins, have the same basic chemical structures,
and are extremely conserved, making it simpler to analyze
metabolic results. Furthermore, metabonomics can be used
for non-invasive assessments of biologic samples, and can
be more easily translated into clinical practice. These
metabolic abnormalities driven by cancer may represent
the inherent characteristics of the tumor, and may even
predict the pathogenesis of cancer, providing changes in
serum metabolites related to systematic phenotypic biology
(Tian et al., 2018). Therefore, changes in serum metabolites
may reveal unique pathologic conditions, and provide early
detection and prognosis. Our results showed that serum
taurine could be used to differentiate CRC patients from
healthy controls, and that the low taurine levels observed
in CRC were correlated with metastases to lung and liver.
Our multivariate analyses also indicated that a low level
of taurine might be an independent risk factor in the
progression of CRC.

In conclusion, we herein demonstrated that hypotaurine
is involved in CRC progression, and that taurine attenuates
this tendency. The inhibitory effects of taurine on CRC
progression are likely mediated by the ERK/RSK cascade
via the EMT, and by taurine’s competitive inhibition of
hypotaurine. Our results indicated that taurine may constitute
a promising agent in the treatment of CRC. Our results also
provided evidence of the interaction among metabolism, signal
transduction, and tumor pathophysiology. Taurine attenuated
hypotaurine-induced tumor invasion and proliferation, and this
aspect provides a promising target for early diagnosis and
therapy. It is, however, necessary to further study the role
of taurine in order to provide a potential translational tool
for CRC treatments.
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Activation of the epidermal growth factor receptor (EGFR) is crucial for development,
tissue homeostasis, and immunity. Dysregulation of EGFR signaling is associated with
numerous diseases. EGFR ubiquitination and endosomal trafficking are key events
that regulate the termination of EGFR signaling, but their underlying mechanisms
remain obscure. Here, we reveal that ZNRF1, an E3 ubiquitin ligase, controls ligand-
induced EGFR signaling via mediating receptor ubiquitination. Deletion of ZNRF1 inhibits
endosome-to-lysosome sorting of EGFR, resulting in delayed receptor degradation
and prolonged downstream signaling. We further demonstrate that ZNRF1 and
Casitas B-lineage lymphoma (CBL), another E3 ubiquitin ligase responsible for EGFR
ubiquitination, mediate ubiquitination at distinct lysine residues on EGFR. Furthermore,
loss of ZNRF1 results in increased susceptibility to herpes simplex virus 1 (HSV-1)
infection due to enhanced EGFR-dependent viral entry. Our findings identify ZNRF1 as
a novel regulator of EGFR signaling, which together with CBL controls ligand-induced
EGFR ubiquitination and lysosomal trafficking.

Keywords: ZNRF1, epidermal growth factor receptor (EGFR), ubiquitination, lysosomal trafficking, herpes simplex
virus 1 (HSV-1)

INTRODUCTION

The epidermal growth factor receptor (EGFR) plays crucial roles in numerous cellular
functions required for development and tissues homeostasis, including cell growth, proliferation,
differentiation, and migration (Schlessinger, 2002). Binding of growth factors, such as epidermal
growth factor (EGF), to the extracellular region of EGFR induces receptor dimerization and
tyrosine kinase activation, resulting in its autophosphorylation. The phosphorylated tyrosine
residues on the carboxy-terminus of EGFR serve as docking sites that recruit various adaptor
proteins containing Src Homology 2 (SH2) or phosphotyrosine binding (PTB) domains, which
further induces the activation of multiple downstream signaling pathways involved in distinct
cellular functions (Lemmon et al., 2014). These signaling pathways include the phosphatidylinositol
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3-kinase (PI3K)/AKT (Soltoff and Cantley, 1996), Ras/mitogen-
activated kinase (MAPK) (Hallberg et al., 1994), mammalian
target of rapamycin complex 1/p70 S6 kinase (mTORC1-S6K)
(Fan et al., 2009), and phospholipase C-γ pathways (Wahl et al.,
1990). EGFR signaling has recently been shown to participate
in innate immune signaling including Toll-like receptors (TLRs)
to promote host defense against pathogenic infection (Yamashita
et al., 2012; Chattopadhyay et al., 2015). In contrast, viruses such
as HSV-1 and vaccinia virus subvert EGFR signaling to facilitate
their infection (Zheng et al., 2014; Beerli et al., 2019). Thus, EGFR
expression and signaling must be tightly regulated. Aberrant
EGFR activation often leads to the progression of various diseases
and cancers (Du and Lovly, 2018).

Endocytic trafficking of EGFR is a key mechanism for
regulating EGFR signaling (Madshus and Stang, 2009; Tomas
et al., 2014). Upon EGF stimulation, activated EGFR is
immediately internalized into the early endosomes, where it
continues to transmit signals (Vieira et al., 1996; Brankatschk
et al., 2012; Sousa et al., 2012). Endosomal EGFR is either
recycled back to the cell surface (Sorkin et al., 1991), translocated
to the nucleus (Demory et al., 2009; Wang et al., 2010),
or trafficked to multivesicular bodies (MVBs)/lysosomes for
degradation. Thereby, the sorting and lysosomal degradation
of activated EGFR are important mechanisms for terminating
EGFR signaling. EGFR mutants found in tumor patients are not
internalized or transported to the MVBs/lysosomes, resulting in
enhanced and prolonged activation of EGFR and its downstream
MAPK signaling that is essential for tumor cell proliferation and
invasion (Huang et al., 2006; Goh et al., 2010).

Accumulating evidence revealed that ubiquitination serves as
a critical sorting signal for endocytic trafficking of EGFR (Clague
et al., 2012). EGF engagement induces rapid ubiquitination of
EGFR on lysine residues within its tyrosine kinase domain
(TKD) (Stang et al., 2000; Huang et al., 2006). The endosomal
complex required for transport (ESCRT) machinery then
recognizes the ubiquitinated EGFR and sort the receptor into
intraluminal vesicles of the MVBs for subsequent lysosomal
degradation (Raiborg and Stenmark, 2009; Henne et al., 2011).
Hepatocyte growth factor-regulated tyrosine kinase substrate
(HRS), a component of the ESCRT-0 complex, first recognizes
ubiquitinated EGFR via its ubiquitin-interacting motifs, and then
recruits downstream ESCRT complexes (ESCRT-1, -II, and -III)
to mediate EGFR intraluminal vesicle sorting (Raiborg et al.,
2002). It was previously reported that the mutation of 15 lysine
residues to arginine in the TKD (15KR mutant) diminished
EGFR ubiquitination to a negligible level, and significantly
blocked EGFR lysosomal sorting and degradation, suggesting
that ubiquitination on some or all of these lysine residues is
critical for EGFR lysosomal sorting and degradation (Huang
et al., 2007). In addition, EGFR fused to associated molecule
with the Src homology 3 domain of signal transducing adaptor
molecule (AMSH), a deubiquitinating enzyme that specifically
targets lysine 63-linked polyubiquitin chains, cannot be efficiently
transported to the MVBs/lysosomes upon EGF engagement,
resulting in prolonged EGFR signaling (Huang et al., 2013).
Together, these findings demonstrate the essential role of EGFR
ubiquitination in its lysosomal sorting and degradation. Casitas

B-lineage lymphoma (CBL) is a well-known E3 ubiquitin ligase
that mediates EGFR ubiquitination and trafficking (Levkowitz
et al., 1998; Grovdal et al., 2004; Stang et al., 2004). Following EGF
binding, CBL is recruited to the activated EGFR at the plasma
membrane and remains associated with EGFR after receptor
internalization to catalyze EGFR ubiquitination for subsequent
lysosomal degradation (de Melker et al., 2001; Umebayashi
et al., 2008). Despite the important role of CBL in regulating
EGFR ubiquitination and lysosomal degradation, the specific
CBL-mediated ubiquitin-conjugated lysine residues on EGFR
remain unknown. Recently, two other E3 ubiquitin ligases,
RNF126 and Rabring7, were shown to associate with EGFR
and promote EGFR ubiquitination and degradation upon ligand
engagement; but their functions require CBL activation (Smith
et al., 2013). Nevertheless, the EGFRY1045F mutant, which is
unable to directly recruit CBL, is still modified by ubiquitination,
but to a lesser extent, after EGF stimulation (Levkowitz et al.,
1999), which means other E3 ubiquitin ligases also participate
in the ubiquitination of EGFR. Therefore, we were interested in
investigating if there were additional E3 ubiquitin ligases involved
in EGFR ubiquitination and lysosomal degradation.

The zinc and ring finger 1 (ZNRF1) protein, a ring-type
E3 ubiquitin ligase, was initially identified as a nerve injury-
induced gene (Araki et al., 2001). We previously found that
ZNRF1 regulates the Toll-like receptor 4 (TLR4) signaling
pathway during inflammation and promotes caveolin-1 (CAV1)
ubiquitination and degradation (Lee et al., 2017). CAV1 has
been reported to play a role in regulating EGFR trafficking
from early to late endosomes (Schmidt-Glenewinkel et al.,
2012). Therefore, we hypothesized that ZNRF1 may modulate
endosomal trafficking of EGFR and its downstream signaling.

In the present study, we surprisingly found that ZNRF1
regulates EGFR endocytic trafficking and promotes its
degradation via receptor ubiquitination. We show that ZNRF1
associates with and ubiquitinates EGFR. Depletion of ZNRF1 in
lung or cervical cancer cells results in decreased EGF-induced
EGFR ubiquitination and increased accumulation of EGFR
in the early endosomes, which eventually impedes EGFR
degradation and leads to prolonged activation of AKT and
extracellular signal-regulated kinase (ERK) signaling. Our results
identify ZNRF1 as a novel regulator of EGFR signaling through
regulation of EGFR ubiquitination, sorting, and degradation.

RESULTS

ZNRF1 Controls Ligand-Induced EGFR
Degradation and Signaling
To investigate the role of ZNRF1 in EGFR signaling, we
depleted expression of the ZNRF1 gene in A549 non-small
cell lung cancer cells by lentivirus-mediated small hairpin
RNA (shRNA) transduction. Four shRNAs against different
regions of the human ZNRF1 gene reduced endogenous ZNRF1
protein expression by >70% as examined by immunoblot
analysis (Supplementary Figure 1A). Silencing ZNRF1 in
the A549 cells delayed EGFR degradation in response to
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EGF stimulation, suggesting that ZNRF1 is involved in EGF-
induced EGFR degradation (Figure 1A). Loss of ZNRF1 did
not affect EGFR mRNA expression after EGF stimulation
(Supplementary Figure 1B), confirming that its effect on EGFR
is at the protein level. Our previous findings (Lee et al., 2017)
had suggested that ZNRF1 may modulate EGFR endosomal
trafficking through regulation of CAV1 stability. Surprisingly,
exogenous overexpression of CAV1 to the level as that in ZNRF1-
depeleted cells did not alter ligand-induced EGFR degradation
(Supplementary Figure 2), indicating that overexpression of
CAV1 is not sufficient to affect EGFR degradation triggered by
its ligand. In addition to A549 cells that express endogenous
wild type EGFR, similar results were observed in H3255
cells that express a constitutively active mutant EGFRL858R

(Janne et al., 2005), indicating that ZNRF1-controlled EGFR
degradation is independent of the EGFR mutation status
(Figure 1B). Moreover, ZNRF1-mediated EGFR degradation
was also observed in HeLa cervical cancer cells (Figure 1C),
indicating that ZNRF1 involvement in EGFR degradation is not
limited to lung cancer cells.

To exclude the possibility of an off-target effect by shRNAs,
we generated ZNRF1−/− A549 cells by the CRISPR/Cas9
genomic editing technique. Two ZNRF1−/− A549 clones were
generated using two different sgRNAs and indel mutations were
confirmed by DNA sequencing (Supplementary Figure 1C).
Consistent with the results in ZNRF1-silenced cells, EGF-
triggered EGFR degradation was delayed in ZNRF1−/− A549
cells compared to wild type cells (Figure 1D and Supplementary
Figure 1D). To examine whether the E3 ubiquitin ligase activity
of ZNRF1 was required for the regulation of EGFR degradation,
we examined EGF-induced EGFR degradation in ZNRF1−/−

A549 cells reconstituted with wild type ZNRF1 or an E3
ligase activity inactive mutant of ZNRF1 (C184A) (Araki and
Milbrandt, 2003; Lee et al., 2017). As shown in Figure 1E,
EGF-induced EGFR degradation was promoted in ZNRF1−/−

cells reconstituted with wild type ZNRF1 but not in cells
reconstituted with the ZNRF1 C184A mutant, confirming that
the E3 ligase activity of ZNRF1 is required for its modulation of
EGFR degradation.

Both the ubiquitin/proteasomal and lysosomal pathways are
known to participate in EGFR degradation in response to ligand
stimulation (Alexander, 1998; Alwan et al., 2003). To determine
the pathway involved in ZNRF1-regulated EGFR degradation,
we treated cells with EGF in the presence or absence of the
lysosome inhibitor chloroquine or the proteasome inhibitor
MG132. Chloroquine treatment significantly attenuated EGFR
degradation in control cells, but only had a minor inhibitory
effect in ZNRF1-silenced cells (Figure 1F). Conversely, MG132
treatment did not inhibit EGF-induced EGFR degradation in
either control or ZNRF1-deleted cells (Figure 1G). These results
suggest that ZNRF1-mediated EGFR degradation is dependent
on the lysosomal pathway. In line with this notion, deletion
of ZNRF1 did not impact protein expression of transferrin
receptor (TfR), which is not destined for lysosomal degradation
(Figure 1H). We then investigated the impact of ZNRF1
depletion on EGFR signaling and found that loss of ZNRF1
resulted in enhanced and prolonged autophosphorylation of

EGFR, and activation of the downstream kinases AKT and ERK
in response to EGF stimulation (Figure 2). Taken together,
these results indicate that ZNRF1 promotes ligand-triggered
EGFR degradation and termination of EGFR signaling via the
lysosomal pathway.

ZNRF1 Promotes EGFR Lysosomal
Sorting
Endocytic trafficking is one of mechanisms that controls
EGFR signaling and degradation (Kirisits et al., 2007; Tomas
et al., 2014). To investigate whether ZNRF1 is involved in
EGFR trafficking, we first assessed EGFR internalization by
tracking the uptake of Alexa Fluor 488-labeled EGF. The
amount of internalized EGF was observed to be comparable
between control and ZNRF1-depleted cells (Supplementary
Figure 3A), indicating that ZNRF1 does not participate in
EGFR internalization. We next examined whether ZNRF1
controls EGFR endosomal trafficking, by co-staining EGFR
with either the early endosome marker, early endosomal
antigen 1 (EEA1), or the late endosome/lysosome marker,
lysosomal-associated membrane protein 1 (LAMP1), under
EGF stimulation. Co-localization of EGFR and EEA1 was
observed in both control and ZNRF1-depleted cells 10 min
after EGF stimulation, suggesting that ZNRF1 is not required
for EGFR trafficking from the cell surface to the early
endosome (Figures 3A,B). However, EGFR-EEA1 co-localization
in ZNRF1-depleted cells was significantly higher than in control
cells 60 min after EGF stimulation (Figures 3A,B), indicating
that loss of ZNRF1 blocked EGFR transport beyond the
early endosome. Furthermore, co-localization of EGFR and
LAMP1 was significantly reduced in ZNRF1-depleted cells
(Figures 3C,D). It was reported that internalized EGFR is
recycled back to the cell surface after EGF stimulation (Sorkin
et al., 1991). However, we observed no difference in EGFR
recycling to the plasma membrane between control and ZNRF1
knockdown cells (Supplementary Figures 3B–D). These data
indicate that ZNRF1 regulates EGFR trafficking from early
endosomes to late endosomes/lysosomes.

ZNRF1 Associates With EGFR
It is well established that EGF stimulation induces EGFR
ubiquitination, which is crucial for receptor sorting to the
lysosome for degradation (Huang et al., 2006, 2013). ZNRF1
has been shown to mediate ubiquitination and degradation
of AKT and CAV1 (Araki and Milbrandt, 2003; Wakatsuki
et al., 2011; Lee et al., 2017), which prompted us to speculate
that ZNRF1 might control EGFR trafficking by modulating
EGFR ubiquitination. To address this possibility, we first
examined whether ZNRF1 associates with EGFR. Reciprocal co-
immunoprecipitations revealed an interaction between EGFR
and ZNRF1 in A549 cells that transiently overexpressed ZNRF1
(Figure 4A). In addition, an association between endogenous
EGFR and ZNRF1 was observed in A549 cells with and
without EGF stimulation (Figure 4B). To identify the domains
of ZNRF1 and EGFR required for their interaction, we
constructed three ZNRF1 domain deletion mutants (Figure 4C)
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FIGURE 1 | ZNRF1 controls EGFR degradation. (A–E) A549 (A), H3255 (B), and HeLa (C) cells infected with lentivirus expressing shRNA against luciferase (shLuc)
or ZNRF1 (shZNRF1), wild type or ZNRF1−/− A549 cells (D), and ZNRF1−/− A549 cells transduced with lentiviruses encoding empty vector, Flag-ZNRF1 (WT), or
Flag-ZNRF1 (C184A) (E) were serum-starved overnight and treated with 100 ng/mL EGF for the indicated times. (F,G) Wild type and ZNRF1−/− A549 cells were
serum-starved overnight. Cells were then pre-treated with or without 100 µM Chloroquine (F) or 10 µM MG132 (G) for 1 h and stimulated with 100 ng/mL EGF for
the indicated times. Cell lysates were prepared, and the levels of EGFR, ZNRF1 were analyzed by immunoblotting. Quantification of immunoblotting analysis data of
three independent experiments are shown in the lower panels. (H) Cell lysates from wild type or ZNRF1−/− A549 cells were collected and the protein levels of EGFR
and TfR were examined by immunoblotting. The intensities of the bands are expressed as fold increases compared to those of control cells (WT) after normalization
to tubulin. Results are presented as averages ± SEM. n.s., no significant; *P < 0.05, **P < 0.01 (Student’s t-test).

and four truncated forms of EGFR (Figure 4D) for co-
immunoprecipitation experiments. In 293T cells, deletion of the
ZNRF1 zinc finger domain strongly impeded ZNRF1 binding

to EGFR (Figure 4E), indicating that the zinc finger domain
mediates the ZNRF1-EGFR interaction. Two truncated forms of
EGFR, TKD and TKD plus C-terminal domain, exhibited binding
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FIGURE 2 | ZNRF1 modulates EGFR signaling. A549 (A) and HeLa (B) cells infected with lentivirus expressing shRNA against luciferase (shLuc) or ZNRF1
(shZNRF1) were serum-starved overnight, and then stimulated with 100 ng/mL EGF for the indicated times. Cell lysates were prepared, and the levels of EGFR,
ZNRF1, activation of EGFR, AKT, and ERK were analyzed by immunoblotting. Quantification of immunoblotting analysis data of three independent experiments are
shown in the lower panels. Results are presented as averages ± SEM. n.s., no significant; *P < 0.05, **P < 0.01 (Student’s t-test).

to ZNRF1 that was similar to full-length EGFR, whereas the
N-terminal and C-terminal domains lost their association with
ZNRF1 (Figure 4F), indicating that the TKD of EGFR is required
for its interaction with ZNRF1. These results suggest that the zinc
finger domain of ZNRF1 binds to the TKD of EGFR.

We further examined co-localization of ZNRF1 and EGFR
in A549 cells by immunofluorescence staining. EGF stimulation
rapidly induced EGFR internalization and accumulation in
endosomes observed as large puncta in the cytosol. Co-
immunofluorescence staining of ZNRF1 and EGFR revealed that
ZNRF1 co-localized with these puncta (Figure 4G), consistent
with their association revealed by co-immunoprecipitation. To
confirm the interaction of ZNRF1 and EGFR in situ, we
conducted a proximity ligation assay (PLA). Compared to the
technical controls that lacked at least one essential component
of the system, clear cytosolic fluorescence signals were detected
in A549 cells (Figure 4H), demonstrating in situ interaction of

ZNRF1 and EGFR. Taken together, these results confirm that
ZNRF1 associates with EGFR.

ZNRF1 Mediates EGF-Induced EGFR
Ubiquitination for Receptor Recruitment
of the ESCRT Machinery
To determine if ZNRF1 modulates EGFR ubiquitination, we
first examined endogenous EGFR ubiquitination following EGF
stimulation. EGF induced EGFR ubiquitination within 5–10 min
in wild type cells. However, EGF-induced EGFR ubiquitination
was markedly diminished in ZNRF1−/− cells (Figure 5A) and
ZNRF1-knockdown A549 cells (Figure 5B). We next performed
an in vitro ubiquitination assay to investigate whether ZNRF1
directly catalyzes EGFR ubiquitination. A recombinant human
EGFR peptide (a.a. 668–1210) containing the cytosolic region
of EGFR was incubated with a recombinant ZNRF1 protein
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FIGURE 3 | ZNRF1 regulates EGFR trafficking. (A) A549 cells expressing shLuc or shZNRF1 shRNA were serum-starved overnight and then stimulated with
100 ng/mL EGF for the indicated times. Cells were co-stained with antibodies against EGFR (red) and EEA1 (green). (B) Quantification of the fraction of EGFR
co-localized with EEA1 at the indicated times. (C) Control and shZNRF1-expressing A549 cells pretreated with 100 µM Chloroquine for 1 h and stimulated with
100 ng/mL EGF for 60 min. Cells were stained with antibodies against EGFR (red) and LAMP1 (green). (D) Quantification of the fraction of EGFR co-localized with
LAMP1 in (C). Data are presented as mean ± SEM, n > 500 puncta from 20 cells for each group. Scale bar, 10 µm; n.s., no significant; **P < 0.01, ***P < 0.001. All
experiments were repeated two times with similar results.

and other essential components for ubiquitination. Our results
show strong poly-ubiquitination of EGFR only in the presence
of wild type ZNRF1, but not the ligase inactive C184A mutant

(Figure 5C). These data indicate that ZNRF1 directly mediates
EGFR ubiquitination in response to EGF stimulation. Given
that CBL is a well-known E3 ubiquitin ligase involved in EGFR
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FIGURE 4 | ZNRF1 zinc domain interacts with EGFR TKD. (A,B) A549 cells expressing empty vector or Flag-ZNRF1 (A) and A549 cells (B) were serum-starved
overnight and stimulated with 100 ng/mL EGF for the indicated times. EGFR was immunoprecipitated with the indicated antibodies. The immunocomplexes as well
as whole cell lysates (WCL) were subjected to immunoblotting with the indicated antibodies. (C) Schematic diagram of full-length ZNRF1 and various deletion
mutants of ZNRF1 with a C-terminal Flag tag. (D) Schematic diagram of full-length and truncated mutants of EGFR with a C-terminal Myc tag. TM, transmembrane
domain; TKD, tyrosine kinase domain. (E) HEK293T cells were co-transfected with Myc-tagged EGFR and Flag-tagged full-length or truncated forms of ZNRF1 for
48 h, and interactions between EGFR and ZNRF1 were assessed by immunoprecipitation and immunoblotting with the indicated antibodies. (F) Flag-tagged ZNRF1
and Myc-tagged full-length or truncated mutants of EGFR were co-expressed in HEK293T cells, and the interactions between EGFR and ZNRF1 were determined
by immunoprecipitation and immunoblotting with the indicated antibodies. Quantification of immunoblotting analysis data of three independent experiments are
shown in the right panels. Results are presented as averages ± SEM. (G) A549 cells were serum-starved overnight and stimulated with 100 ng/mL EGF for the
indicated times. Cells were fixed and co-stained with antibodies against ZNRF1 (red) and EGFR (green), and with DAPI (blue), followed by confocal microscopy.
(H) A549 cells were transfected with Myc-tagged ZNRF1 for 48 h and then subjected to PLA using antibodies against EGFR and Myc. The detected interaction
between ZNRF1 and EGFR is represented by red dots, and DAPI-stained cell nuclei are in blue. Scale bar, 10 µm. The experiment was repeated two times with
similar results. n.s., no significant; *P < 0.05, **P < 0.01, ***P < 0.001 (Student’s t-test).
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FIGURE 5 | ZNRF1 mediates EGF-induced EGFR ubiquitination. (A) Wild type (WT) and ZNRF1−/− (B) shLuc and shZNRF1-expressing A549 cells were
serum-starved overnight and stimulated with 100 ng/mL EGF for the indicated times. EGFR was immunoprecipitated with anti-EGFR antibody, followed by
immunoblotting with anti-ubiquitin and anti-EGFR antibodies. (C) In vitro ubiquitination assays were conducted with bacterially expressed Flag-tagged WT ZNRF1 or
ZNRF1(C184A) mutant together with recombinant ubiquitin, E1, E2 (UbcH5c), and GST-tagged EGFR (a.a. 668–1210) as indicated. The reaction mixtures were
subjected to immunoblotting using antibodies against ubiquitin, GST, and Flag antibodies. (D,E) Wild type, ZNRF1−/−, shCBL, or shCBL-expressing ZNRF1−/−

A549 cells (D), or A549 cells expressing shLuc or shCBL shRNA (E) were serum-starved overnight and stimulated with 100 ng/mL EGF for the indicated times.
EGFR was immunoprecipitated and the immunocomplexes as well as WCL were subjected to immunoblotting with the indicated antibodies. Quantification of
immunoblotting analysis data of three independent experiments are shown in the lower panels. Results are presented as averages ± SEM. n.s., no significant;
*P < 0.05, **P < 0.01, ***P < 0.001 (Student’s t-test).
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ubiquitination, endocytic trafficking, and degradation (Levkowitz
et al., 1998; de Melker et al., 2001; Duan et al., 2003; Ravid et al.,
2004; Umebayashi et al., 2008), we then investigated whether
both ZNRF1 and CBL were required for EGFR ubiquitination.
We knocked down CBL expression by shRNA in wild type
or ZNRF1−/− A549 cells and examined EGFR ubiquitination
after EGF stimulation. Loss of either CBL or ZNRF1 reduced
EGFR ubiquitination, however EGFR ubiquitination was further
decreased to a negligible level in ZNRF1/CBL double deficient
cells (Figure 5D). Notably, the interaction of EGFR and ZNRF1
was comparable between control and CBL-knockdown cells
(Figure 5E). Similarly, depletion of ZNRF1 did not affect the
association of EGFR and CBL (Supplementary Figure 4). These
data indicate that ZNRF1 may function together with CBL to
mediate EGFR ubiquitination and degradation.

Multiple studies show that during receptor endocytosis,
ubiquitinated EGFR is recognized by ubiquitin binding domain-
containing proteins including HRS and tumor susceptibility gene
101 (TSG101), which are essential components of the ESCRT
machinery (Raiborg and Stenmark, 2009; Eden et al., 2012),
eventually leading to receptor lysosomal targeting. Therefore,
we speculated that reduced EGFR ubiquitination due to ZNRF1
deficiency may decrease its recognition by HRS resulting in
decreased receptor lysosomal sorting. To test this hypothesis,
we examined the co-localization of EGFR with HRS and
TSG101. After ligand stimulation, EGFR showed significantly
decreased co-localization with HRS (Figures 6A,B) and TSG101
(Figures 6C,D) in ZNRF1−/− cells in comparison with wild type
cells. Loss of ZNRF1 did not reduce the protein levels of HRS and
TSG101, indicating that the decreased EGFR-HRS and EGFR-
TSG101 co-localizations in ZNRF1−/− cells was not the result
of protein instability (Figure 6E). In addition, the size of the
EGFR puncta was increased under ZNRF1 deficiency, reflecting
the accumulation of internalized EGFR in early endosomes
(Figure 6F). These results indicate that ZNRF1 modulates EGFR
ubiquitination for recruitment of the ESCRT machinery, thereby
contributing to receptor lysosomal sorting and degradation.

ZNRF1 and CBL Catalyze EGFR
Ubiquitination on Distinct Lysine
Residues Within the TKD of EGFR
Previously, analysis of EGF-induced EGFR ubiquitination
by mass spectrometry revealed that ubiquitinated lysine
residues were located in the TKD of EGFR (Huang et al.,
2006). Interestingly, the specific lysine residues for the CBL-
mediated polyubiquitination have not been identified. To
investigate the differences in EGFR ubiquitination by ZNRF1
and CBL, we sought to identify the acceptor residues for
polyubiquitin chains mediated by these two E3 ubiquitin
ligases. We co-transfected HEK293T cells with EGFR and
ZNRF1 or CBL, and immunoprecipitated EGFR for liquid
chromatography-tandem mass spectrometry analysis. In two
independent analyses, Lys716, Lys757, and Lys860 of EGFR were
identified as acceptor sites for ZNRF1-mediated ubiquitination,
whereas Lys737 was found to be an acceptor site for CBL-
mediated ubiquitination (Supplementary Figure 5 and Table 1).

Due to the fact that the combined lysine residues of EGFR
identified by mass spectrometry as targets of ZNRF1- and
CBL-mediated ubiquitination are fewer than in previous
reports (Huang et al., 2007; Tong et al., 2014), an alternative
approach was used to systematically assess which EGFR lysine
residues were acceptors for the polyubiquitination mediated
by ZNRF1 and CBL, respectively. We first constructed an
EGFR mutant (15KR), in which all 15 lysine residues in
the TKD previously shown to be responsible for ligand-
induced ubiquitination (Huang et al., 2007) were replaced by
arginine (Figure 7A). We then generated a series of EGFR
mutants by reintroducing individual lysine residues into the
EGFR (15KR) mutant, and co-expressed these mutants with
ZNRF1 or CBL in HeLa cells for immunoprecipitation and
ubiquitination analyses. In vivo ubiquitination data revealed
that ZNRF1 promoted polyubiquitination of wild type EGFR
as well as the EGFR mutants K737, K860, K867, and K960
(Figure 7B and Table 1). CBL promoted polyubiquitination
of wild type EGFR as well as the EGFR mutants K713, K716,
K737, and K754 (Figure 7C and Table 1). To further confirm
that these lysine residues were indeed acceptor sites for
ZNRF1- and CBL-mediated ubiquitination, we generated two
EGFR mutants, EGFR (K737R/K860R/K867R/K960R) and
EGFR (K713R/K716R/K737R/K754R), by substituting the
indicated lysine residues with arginine. ZNRF1 did not promote
ubiquitination of EGFR (K737R/K860R/K867R/K960R), whereas
CBL still facilitated its ubiquitination similar to wild type
EGFR (Figure 7D). On the other hand, ubiquitination of EGFR
(K713R/K716R/K737R/K754R) by CBL was attenuated, while
its ubiquitination was still promoted by ZNRF1 as in wild type
EGFR (Figure 7E). Together, these results demonstrate that
ZNRF1 and CBL catalyze ubiquitination of EGFR at distinct
lysine residues.

ZNRF1 Deficiency Increases
Susceptibility to HSV-1 Infection
HSV-1, a highly prevalent pathogen in the human population,
has developed numerous strategies to boost its capability to infect
a broad range of host cells, including multiple entry modes
and alternative receptors (Karasneh and Shukla, 2011). One of
its entry strategies is to induce actin cytoskeleton remodeling
via activation of EGFR signaling in host cells to facilitate viral
entry (Zheng et al., 2014). We assessed whether dysregulated
EGFR signaling caused by ZNRF1 deficiency enhances HSV-1
entry during early infection. HSV-1 infection induced a rapid
activation of AKT and ERK in A549 cells, and the activity
of both kinases was enhanced and prolonged in ZNRF1−/−

cells compared to wild type cells (Figure 8A). Not surprisingly,
EGFR degradation in response to HSV-1 infection was delayed
in ZNRF1-deficient cells (Figure 8B). Next, we examined the
expression of infected cell polypeptide 4 (ICP4), a viral immediate
early gene required for transcription of early and late viral genes
in HSV-1 infected cells (Smith et al., 1993; Lester and DeLuca,
2011). At 8 h post infection, ICP4 signals were significantly
increased in ZNRF1−/− cells, indicating that loss of ZNRF1
increased HSV-1 infectivity (Figures 9A,B). Furthermore, a
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FIGURE 6 | ZNRF1 mediates the recruitment of ESCRT machinery to internalized EGFR. (A–D) Wild type or ZNRF1−/− A549 cells were serum-starved overnight
and stimulated with 100 ng/mL EGF for 0, 5, 10, and 20 min. (A) Cells were co-stained with EGFR (Green) and HRS (Red) antibodies. (B) Quantification of the
fraction of EGFR co-localized with HRS in (A). (C) Cells were co-stained with EGFR (Green) and TSG101 (Red) antibodies. (D) Quantification of the fraction of EGFR
co-localized with TSG101 in (C). (E) Cell lysates from wild type and ZNRF1−/− A549 cells were prepared and the levels of HRS and TSG101 were analyzed by
immunoblotting. (F) Quantification of the size distribution of EGFR puncta in (A). White arrows indicate non-colocalized signals. Scale bar, 10 µm. Data are
presented as mean ± SEM. n > 1000 puncta from at least 50 cells for each group; *P < 0.05; **P < 0.01; ***P < 0.001. All experiments were repeated two to three
times with similar results.

higher viral load was detected in ZNRF1−/− cells infected with
HSV-1 expressing GFP at 48 h post infection in comparison to
wild type cells (Figures 9C–E). Consistent with prolonged EGFR
activation, actin cytoskeleton rearrangement was promoted in
HSV-1-infected ZNRF1−/− cells (Figure 9F). Inhibition of EGFR
kinase activity by EGFR inhibitor Afatinib reduced HSV-1-GFP
signals in ZNRF1−/− cells to the level that is similar to WT
cells (Figure 9G), confirming that increased HSV-1 infectivity
in ZNRF1−/− cells required EGFR activation. Taken together,
these results suggest that ZNRF1 controls EGFR degradation and
activation of its downstream signaling upon HSV-1 infection,
which may contribute to host defense by constraining HSV-
1 infection.

DISCUSSION

Epidermal growth factor receptor signaling is essential for
numerous cellular functions, including cell proliferation,

survival, differentiation, and the immune response (Schlessinger,
2002; Yamashita et al., 2012; Chattopadhyay et al., 2015).
Although EGFR signaling is activated primarily at the
plasma membrane, activated EGFR continues to deliver
downstream signals from the early endosomes (Wang
et al., 2002; Brankatschk et al., 2012; Sousa et al., 2012).
Trafficking of EGFR to MVBs/lysosomes for the degradative
pathway is critical for termination of EGFR signaling.
Ubiquitination of EGFR is essential for EGFR sorting
from the endosomes to MVBs/lysosomes. In this study,
in addition to CBL, we identified an E3 ubiquitin ligase
ZNRF1 that modulates EGFR ubiquitination, leading to
EGFR trafficking to the MVBs/lysosomes for degradation.
ZNRF1 deficiency resulted in decreased ligand-induced
EGFR ubiquitination, thereby increasing endosomal
accumulation of EGFR, leading to prolonged activation of
the downstream pathways and enhanced HSV-1 infectivity.
Our findings reveal ZNRF1 as a novel regulator of the
EGFR signaling pathway that functions together with CBL
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FIGURE 7 | Identification of ubiquitin-modified lysine residues on EGFR mediated by ZNRF1 and CBL in response to EGF. (A) Schematic diagram of EGFR TKD
sequence and its 15 lysine residues. (B–E) HeLa cells were co-transfected with wild type or various EGFR mutants in combination with an empty vector or the E3
ubiquitin ligase ZNRF1 or CBL as indicated for 48 h. Cells were serum-starved and stimulated with 100 ng/mL EGF for 5 min. Ubiquitination of EGFR was examined
by immunoprecipitation with Myc-conjugated agarose, followed by immunoblotting with anti-ubiquitin and anti-Myc antibodies. The experiments in (B,C) were
repeated two times with similar results. Quantification of immunoblotting analysis data of three independent experiments are shown in the left panels of (D,E).
Results are presented as averages ± SEM. n.s., no significant; *P < 0.05, **P < 0.01 (Student’s t-test).

by controlling EGFR ubiquitination, endosomal trafficking,
and degradation.

ZNRF1 was originally identified in injured neurons (Araki
et al., 2001) and later shown to exhibit E3 ubiquitin ligase activity
(Araki and Milbrandt, 2003). Previous studies have demonstrated
that ZNRF1 plays a critical role in Schwann cell differentiation
and Wallerian degeneration by controlling the degradation of
glutamine synthetase and AKT via the ubiquitin–proteasome
pathway, respectively (Saitoh and Araki, 2010; Wakatsuki et al.,
2011). Recently, we found that ZNRF1 modulates the Toll-
like receptor 4-triggered immune response by targeting CAV1
ubiquitination and degradation (Lee et al., 2017). The expression
of CAV1 protein was also elevated in ZNRF1-depleted A549
cells, but increased CAV1 was not sufficient to influence EGFR

degradation triggered by its ligand. Nevertheless, we cannot
rule out the possibility that defective CAV1 ubiquitination and
degradation contributes to ligand-induced EGFR trafficking and
degradation in ZNRF1 deficient cells. Our current findings
unveil a novel function of ZNRF1 by modulating ligand-induced
EGFR ubiquitination and degradation through the lysosomal
degradation system.

Ubiquitination of EGFR is rapidly induced upon EGF
stimulation. Accumulating data show that while EGFR
ubiquitination is dispensable for its internalization, it is crucial
for receptor sorting (Huang et al., 2007, 2013). Prior to this
study, CBL was an key E3 ubiquitin ligase involved in mediating
ligand-induced EGFR ubiquitination and lysosomal degradation,
although two other E3 ubiquitin ligases were recently reported
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TABLE 1 | Summary of ubiquitin-modified lysine residues on EGFR mediated by
ZNRF1 and CBL in response to EGF.

Lysine no. Residues identified by mass
spectrometry

Residues identified by
In vivo ubiquitination assay

708

713 CBL

714

716 ZNRF1 CBL

737 CBL ZNRF1/CBL

739

754 CBL

757 ZNRF1

846

860 ZNRF1 ZNRF1

867 ZNRF1

913

929

960 ZNRF1

970

HEK293T cells were transfected with Myc-tagged EGFR with empty vector, ZNRF1,
or CBL for 48 h. Cell lysates were prepared and subjected to immunoprecipitation
with Myc-conjugated agarose, followed by mass spectrometry to identify the
ubiquitinated residues on EGFR. The table summarizes the lysine residues identified
by mass spectrometry and the in vivo ubiquitination assay described in Figure 7.
The original contributions presented in the study are publicly available. This data
can be found here: [DOI: 10.6019/PXD024279/accession number: PXD024279].

to participate in this events and act downstream of CBL (Smith
et al., 2013). In addition, despite the discovery of CBL decades
ago, its ubiquitin acceptor residues on EGFR have not been
identified. Our findings indicate that ZNRF1 in combination
with CBL regulate EGFR ubiquitination and lysosomal sorting.
Deletion of both CBL and ZNRF1 diminished EGF-induced
EGFR ubiquitination to a negligible level.

To identify the ubiquitination sites on EGFR mediated by
ZNRF1 and CBL, we first immunoprecipitated receptors from
HEK293T cells co-expressing EGFR and CBL or ZNRF1 for
LC-MS analysis, which can assess EGFR ubiquitination on a
proteome-wide level. We only mapped four ubiquitinated lysine
residues on EGFR; Lys716, Lys757, and Lys 860 modulated
by ZNRF1, and Lys737 modulated by CBL. This number is
fewer than previous reported number of ubiquitinated lysine
residues on EGFR (Huang et al., 2007; Tong et al., 2014). It
is possible that low-abundance ubiquitinated EGFR peptides
were missing during LC-MS analysis. We therefore performed
an alternative approach, which was used systematic lysine-to-
arginine mutagenesis in combination with in vivo ubiquitination
assay. This approach allowed us to systematically assess which
lysine residues in EGFR kinase domain were acceptors for
the polyubiquitination mediated by ZNRF1 or CBL. By using
this approach, we identified seven EGF-activated ubiquitin-
conjugated lysine residues on EGFR: Lys737, Lys860, Lys867,
and Lys960 mediated by ZNRF1, and Lys713, Lys716, Lys737,
and Lys754 mediated by CBL. Our results indicate that
ZNRF1 and CBL conjugate ubiquitin moieties to distinct lysine
residues on EGFR. Interestingly, Lys716, Lys737, Lys754, and
Lys867 were previously identified as ubiquitin acceptor sites

FIGURE 8 | ZNRF1 depletion enhances EGFR signaling after HSV-1 infection.
(A) Wild type (WT) and ZNRF1−/− A549 cells were infected with HSV-1
(MOI = 10) for the indicated times. Activation of AKT and ERK was detected
by immunoblotting. Quantification of immunoblotting analysis data of three
independent experiments are shown in the lower panel. *P < 0.05 (Student’s
t-test). (B) Wild type and ZNRF1−/− A549 cells were serum-starved overnight
and infected with HSV-1 (MOI = 15) for the indicated times. The protein levels
of EGFR were detected by immunoblotting, quantified, and compared to
untreated cells after normalization to GAPDH level. Quantification of EGFR
level is shown in the lower panel. The data are representative of three
independent experiments.

on ligand-activated EGFR by mass spectrometry (Huang et al.,
2006). Our findings are in agreement with the idea that the
extent of ubiquitination in the EGFR kinase domain is correlated
with the efficiency of EGFR lysosomal sorting and degradation
(Huang et al., 2007). Nevertheless, based on a previous study
(Huang et al., 2007), we only assessed the possible acceptor sites
within the 15 lysine residues in the EGFR TKD for ZNRF1-
and CBL-mediated ubiquitination in this study. Therefore, we
cannot rule out the possibility that ZNRF1 and CBL may
catalyze ubiquitination on additional lysine residues that are not
located in TKD of EGFR. Moreover, it remains to be determined
whether additional E3 ubiquitin ligases besides ZNRF1 and
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FIGURE 9 | ZNRF1 depletion enhances the entry of HSV-1 into A549 cells. (A) Wild type and ZNRF1−/− A549 cells were infected with HSV-1 (MOI = 8) for 8 h.
Cells were fixed and stained with anti-ICP4 antibody (red) and DAPI (blue). (B) HSV-1 infectivity in (A) was quantified by the percentage of ICP4-positive cells in five
random microscopic fields. Scale bar, 200 µm. ***P < 0.001. (C–E) Wild type and ZNRF1−/− A549 cells were infected with GFP-expressing HSV-1 (MOI = 0.5, 0.8,
or 1.0) for 48 h. (C) Cells were collected and analyzed by fluorescence microscopy. (D) Cell lysates were collected and subjected to immunoblotting using anti-GFP
antibody. Quantification of immunoblotting analysis data of three independent experiments are shown in the lower panel. (E) The titers of HSV-1 in culture medium
from (C) were determined by a plaque assay using Vero cells. (F) Wild type and ZNRF1−/− A549 cells were infected with HSV-1 (MOI = 2) for 2 h. Cells were
co-stained with ICP4 antibody (green) and filamentous actin (F-actin) (red). (G) WT and ZNRF1−/− A549 cells were pretreated with 1 µM Afatinib for 1 h and then
infected with GFP-expressing HSV-1 (MOI = 0.5) for 48 h. Cells were collected and analyzed by fluorescence microscopy. Scale bar, 200 µm. Results are presented
as averages ± SEM. ***P < 0.001 (Student’s t-test). The data are representative of three independent experiments.
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CBL participate in ligand-activated EGFR ubiquitination and
subsequent lysosomal degradation.

Following receptor internalization into the early endosomes,
the ubiquitinated receptor is recognized by the ESCRT
machinery, allowing the cargo receptor to be destined for
lysosomal degradation (Henne et al., 2011). The ESCRT-0
complex contains two ubiquitin-binding proteins, HRS and
signal transducing adaptor molecule, which interact with the
ubiquitinated receptor and initiate its intraluminal sorting.
HRS is recruited to the endosome membrane through its
binding to ubiquitinated proteins via its ubiquitin-interacting
motif (Raiborg et al., 2002; Hirano et al., 2006). Our data
show that a lack of ZNRF1-mediated EGFR ubiquitination
decreased activated EGFR co-localization with HRS, suggesting
reduced recruitment of HRS to ubiquitinated EGFR in the early
endosomes. In addition, perturbations of the interaction between
HRS and TSG101, a component of the ESCRT-I complex, block
lysosomal trafficking of EGFR, leading to an accumulation
of EGFR in the early endosomes (Lu et al., 2003). Moreover,
our findings are consistent with the suggestion that multiple
ubiquitin moieties on EGFR are required for efficient binding
to the ESCRT machinery (Huang et al., 2006; Umebayashi
et al., 2008; Raiborg and Stenmark, 2009). Many studies have
demonstrated that when EGFR fails to bind to HRS, the receptor
becomes trapped in the lining membrane of the endosomes,
reflected by enlarged endosomes without intraluminal vesicles.
In agreement with published data, we observed enlargement
of EGFR-positive endosomes following ligand stimulation in
ZNRF1-depleted cells. Taken together these results suggest that
ZNRF1 mediates ligand-induced EGFR ubiquitination, which is
required for a sufficient sorting signal for the recruitment of HRS.

Casitas B-lineage lymphoma is known to be recruited
to activated EGFR at the plasma membrane upon ligand
stimulation, and the carboxy-terminal domain of EGFR is critical
for this interaction (Levkowitz et al., 1999; Waterman et al.,
2002). We showed that ZNRF1 associates with the TKD of
EGFR, indicating that ZNRF1 and CBL bind different regions
of EGFR. Notably, when and how the ligase activity of ZNRF1
is induced upon EGF treatment remains unclear. A recent study
in neuronal cells showed that under oxidative stress, ZNRF1 is
phosphorylated at its Tyr103 residue by EGFR, which is critical for
its E3 ligase activity (Wakatsuki et al., 2015). Hence, it is possible
that ZNRF1 is phosphorylated by activated EGFR upon EGF
stimulation, thereby allowing it to mediate EGFR ubiquitination,
trafficking, and degradation. Further studies are required to verify
this possibility.

Uncontrolled EGFR signaling is associated with numerous
diseases, including cancer (Roepstorff et al., 2008; Tomas
et al., 2014). In addition, EGFR activation is crucial for
viral entry during HSV-1 infection, which causes a wide
range of symptoms from skin lesions to deadly encephalitis.
Considering the key role of EGFR ubiquitination and endosomal
trafficking in terminating EGFR signaling, ZNRF1 likely acts in
concert with CBL to regulate EGFR-mediated cellular functions.
Further investigations of ZNRF1 function in the spatiotemporal
regulation of EGFR trafficking and signaling may help in the
design of novel therapeutic interventions for the treatment of

diseases caused by uncontrolled EGFR signaling. Furthermore,
HSV-1 has emerged as a promising oncolytic virus for the
killing of cancer (Sokolowski et al., 2015), but infectivity
efficiency of modified oncolytic HSV-1 is the major limiting
factor in the application of oncolytic virus therapy for cancer
treatment (Sanchala et al., 2017). In combination with ZNRF1
interference, which significant increases the infectivity of HSV-
1, it may increase the efficacy of oncolytic virus therapy for the
elimination of cancer.

MATERIALS AND METHODS

Generation of ZNRF1 Knockdown and
Knockout Cells
ZNRF1 knockdown and knockout cells were generated
using lentiviruses-mediated shRNAs transduction and
CRISPR/Cas9/sgRNA system, respectively. Lentivirus production
and transduction were performed following the instructions
provided by the National RNAi Core Facility Platform at the
Institute of Molecular Biology/Genomic Research Center,
Academia Sinica, Taiwan.

Cell Culture and Plasmids
Non-small cell lung cancer A549 and H3255 cells were
maintained in RPMI-1640 (Gibco, Carlsbad, CA, United States)
supplemented with 10% (vol/vol) heat-inactivated fetal bovine
serum (FBS) (Gibco) at 37◦C with 5% CO2. Human embryonic
kidney 293T (HEK293T) and HeLa cells were cultured in
high glucose DMEM (Gibco) containing 10% FBS. Chinese
hamster ovary (CHO) cells were maintained in Ham’s F-12K
(Kaighn’s Modification) (Gibco) containing 10% FBS. Plasmids
encoding full-length ZNRF1 cDNA and deletion mutants were
described previously (Lee et al., 2017). Flag-tagged ZNRF1 was
cloned into the pcDNA3-myc vector (Addgene, Cambridge, MA,
United States). The Myc-tagged EGFR expression construct was
kindly provided by Dr. Ming-Shiue Lee (Institute of Biochemistry
and Molecular Biology, National Taiwan University, Taiwan).
The truncated forms of EGFR, including N-terminal, TKD, TKD
plus C-terminal, and C-terminal, were generated by PCR using
full-length EGFR cDNA as a template and cloned into the
pcDNA3-myc vector (Addgene). The EGFR lysine-to-arginine
substitution mutants were generated by PCR using the Q5 R© site-
directed mutagenesis Kit (New England Biolabs, Ipswich, MA,
United States) following the manufacturer’s instructions.

Reagents and Antibodies
The recombinant human EGF protein and Alexa Fluor 488-
conjugated EGF protein were purchased from Thermo Fisher
Scientific (Boston, MA, United States). Antibodies against
pEGFR Ser1068 (#3777), EGFR (#4267), pAKT Ser473 (#4060),
AKT (#4691), pERK1/2Thr202/Tyr204 (#9101), ERK1/2 (#9102),
CBL (#8447), HRS (#15087), V5-tag (#13202), and Myc-
tag (#2278) were obtained from Cell Signaling Technology
(Danvers, MA, United States). GAPDH (GTX627408) and
TSG101 (GTX70255) antibodies were purchased from GeneTex

Frontiers in Cell and Developmental Biology | www.frontiersin.org 14 April 2021 | Volume 9 | Article 642625143

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-642625 April 24, 2021 Time: 18:17 # 15

Shen et al. ZNRF1 Mediates EGFR Ubiquitination

(Irvine, CA, United States). Antibodies against Ubiquitin (P4D1)
(sc-8017), GFP (sc-8334), and LAMP1 (sc-20011) were obtained
from Santa Cruz Biotechnology (Santa Cruz, CA, United States).
The anti-FLAG M2 affinity gel (A2220) and anti-c-Myc (A7470)
agarose beads were purchased from Sigma-Aldrich (St Louis,
MO, United States). EEA1 (#610456) and GST (#554805)
antibodies was purchased from BD Bioscience (San Jose, CA,
United States). ICP4 (ab6514) antibody was obtained from
Abcam (Cambridge, United Kingdom). Rhodamine phalloidin
(against F-actin) was purchased from Thermo Fisher Scientific
(Boston, MA, United States). The anti-transferrin receptor
monoclonal antibody (H68.4) was a kind gift from Dr. Ya-
Wen Liu (Institute of Molecular Medicine, National Taiwan
University, Taiwan). Antibodies against Flag were generated by
Dr. Sheng-Chung Lee as described previously (Yang et al., 2013).
The generation of the ZNRF1 antibody was described previously
(Lee et al., 2017). EGFR kinase inhibitor Afatinib (ab142018) was
purchased from Abcam (Cambridge, United Kingdom).

shRNA-Mediated Gene Silencing and
Lentiviral Infection
Generation of replication-defective lentiviruses encoding
shRNAs and lentiviral transduction were performed following
the instructions provided by the National RNAi Core Facility
Platform at the Institute of Molecular Biology/Genomic
Research Center, Academia Sinica, Taiwan. In brief, pLKO-
shRNA constructs and the packaging plasmids pMD.G and
pCMVR8.91 were transfected into HEK293T cells using
Turbofect (Fermentas, Schwerte, Germany) according to
the manufacturer’s instructions. The lentivirus-containing
culture medium was collected 48 and 72 h after transfection.
A549 or H3255 cells were infected with lentiviruses in the
presence of 8 µg/mL polybrene (Sigma-Aldrich, St. Louis,
MO, United States) for 24 h, and then selected in medium
containing 2 µg/mL puromycin (Gold Biotechnology,
St Louis, MO, United States) until uninfected cells were
completely killed. The shRNA target sequences were 5′-
CCTCCCTGAGGACACCAAATT-3′ for shZNRF1-298, 5′-TAT
GCCCATGGCAATGGTTAC-3′ for shZNRF1-362, 5′-CAGCT
CGCATAGTGGTTTCAA-3′ for shZNRF1-784, 5′-ACAACGAT
GATGTGCTGACTA-3′ for shZNRF1-875, 5′-GCCGATGTG
AAATTAAAGGTA-3′ for shCBL-694, and 5′-CCAGTGA
GTTGGGAGTTATTA-3′ for shCBL-695.

Generation of ZNRF1 Knockout Cells
Using the CRISPR/Cas9 System
HEK293T cells were transfected with lentiviral packaging
plasmids pMD.G and pCMVR8.91, and CRISPR/sgRNA/puro
expression plasmids encoding sgRNA sequence targeting exon
1 of human ZNRF1. Then the culture medium containing
lentiviruses was collected and used to infect A549 cells for
24 h followed by puromycin selection. The sgRNA target
sequences were 5′-GATTTCGGGCACTACCGGAC-3′ for
sgRNA #1 and 5′-GCATTTCGGGCACTACCGGA-3′ for
sgRNA #2. To verify gene editing in single cell clones,
genomic DNA was purified and subjected to PCR and

DNA sequencing. The primers used for PCR were: forward
primer 5′-TTGACTCCCTCCCCCTTTATGCTCG-3′ and
reverse primer 5′-ATAGGTGGAGTCGGACGCAGACCCT-3′
for clones from sgRNA #1, and forward primer 5′-
TTGACTCCCTCCCCCTTTATGCTCG-3′ and reverse
primer 5′-ATAGGTGGAGTCGGACGCAGACCCT-3′ for
clones from sgRNA #2.

RNA Isolation and Quantitative RT-PCR
(RT-qPCR)
Total cellular RNA was purified using TRIzol RNA Isolation
Reagent (Thermo Fisher Scientific) according to the
manufacturer’s instructions. One µg of total RNA was then
reverse transcribed to cDNA using the ReverAid H Minus
First Strand cDNA Synthesis kit (Thermo Fisher Scientific)
following the manufacturer’s instructions. 1/20th volume of
the cDNA was mixed with SYBR Green PCR Master Mix
(Thermo Fisher Scientific) to analyze the amount of specific
mRNA. The primer sequences used for RT-qPCR were:
Cyclophilin A (forward 5′-AGGTCCCAAAGACAGCAGA-3′
and reverse 5′-TGTGAAGTCACCACCCTGA-3′), and EGFR
(forward 5′-ACTCATGCTCTACAACCC-3′ and reverse 5′-
CCAATACCTATTCCGTTACAC-3′). The relative EGFR mRNA
expression was obtained by normalizing its qPCR value to the
level of Cyclophilin A mRNA.

Immunoblotting
Cells were lysed in ice-cold lysis buffer containing 50 mM
Tris-HCl pH 7.5, 150 mM NaCl, 2 mM EDTA, 1% Triton
X-100, 0.5% NP-40, 10% Glycerol, protease inhibitors Aprotinin,
Benzamidine, Pepstatin A, and Leupeptin (Sigma-Aldrich)
and phosphatase inhibitors, sodium orthovanadate and
p-nitrophenyl phosphate (pNPP) (Sigma-Aldrich). Cell extracts
were collected and protein concentrations quantified using the
Bio-Rad Protein Assay (Bio-Rad, Hercules, CA, United States).
Cell lysates were resolved by SDS-PAGE and transferred
to polyvinylidene fluoride (PVDF) membranes (Millipore,
Billerica, MA, United States). The membranes were blocked
with 10% non-fat milk in TBST (50 mM Tris-HCl pH 7.6,
150 mM NaCl, 0.05% Tween-20), Blocking One (Nacalai Trsque,
Nakagyo-ku Kyoto, Japan), or 5% BSA (for phosphorylated
protein) for 30 min at 25◦C, and then incubated with the
indicated primary antibody overnight at 4◦C, followed by a
horseradish peroxidase-conjugated secondary antibody (Jackson
ImmunoResearch, West Grove, PA, United States) for 1 h at
25◦C. Immunoreactive signals were detected using Luminata
Western Chemiluminescent HRP substrates (Millipore)
according to the manufacturer’s instructions.

Immunoprecipitation
Cells were lysed in ice-cold lysis buffer containing 150 mM
NaCl, 50 mM Tris-HCl pH 7.5, 2 mM EDTA, 1% Triton
X-100, 0.5% NP-40, 10% Glycerol, protease inhibitors and
phosphatase inhibitors. For immunoprecipitation of ubiquitin-
modified proteins, 20 mM N-ethylmaleimide (Sigma-Aldrich)
was added to the lysis buffer. Cell extracts were incubated
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with anti-FLAG or c-Myc antibody-conjugated agarose beads
at 4◦C for 1.5 h or the indicated primary antibody overnight
at 4◦C followed by a 2 h incubation with Protein A Sepharose
CL-4B (GE Healthcare, Piscataway, NJ, United States). The
immunocomplexes were then subjected to SDS-PAGE followed
by immunoblotting.

Immunofluorescence
Cells were seeded on coverslips and cultured overnight before
treatment. Cells were then fixed with 4% paraformaldehyde
(PFA) (Electron Microscopy Sciences, Hatfield, PA,
United States) in phosphate-buffered saline (PBS) (Gibco)
pH 7.4 at 37◦C for 15 min and permeabilized with 0.25%
Triton X-100 in PBS at room temperature for 15 min,
followed by blocking with 1% BSA in PBST (0.25% Triton
X-100 in PBS) at 25◦C for 30 min. The coverslips were then
incubated with primary antibody overnight at 4◦C, washed
with PBS, and stained with a fluorescent-conjugated secondary
antibody (Jackson ImmunoResearch) at 25◦C for 1 h. After
extensive washings with PBS, the coverslips were mounted
with DAPI Fluoromount-G (SouthernBiotech, Birmingham,
AL, United States) to counterstain cell nuclei. Images were
captured using a Zeiss LSM 700 Confocal microscope and the
co-localization of EGFR with EEA1 and LAMP1 was analyzed
using the ZEN imaging software (Zeiss, Oberkochen, Germany).
The co-localization of EGFR with ESCRT complex protein (HRS
and TSG101) was analyzed using Volocity 3D imaging software
(PerkinElmer, Waltham, MA, United States). Briefly, the images
were subtracted from background and then segmented using the
minimal intensity of each individual organelle marker-labeled
vesicles as the low threshold. The integrated voxel intensity of
EGFR in the segmented image was considered as co-localization
of EGFR with each individual organelle marker-labeled vesicles.
The extent of co-localization was determined as the percentage
of integrated EGFR fluorescence of the segmented image to the
total fluorescence of the same fluorochromes. To quantify the
size of EGFR puncta, the intensities and areas of EGFR signals
were acquired and analyzed by Metamorph software (Molecular
Devices, San Jose, CA, United States).

Proximity Ligation Assay (PLA)
Proximity ligation assays were performed by Duolink In Situ-
Fluorescence Detection Reagent Red (Sigma-Aldrich) according
to the manufacturer’s instructions. In brief, cells were seeded
on coverslips and cultured overnight followed by transfection
of Myc-EGFR expression plasmid for 48 h. Cells were then
fixed, permeabilized, and incubated with the primary antibody
overnight at 4◦C. On the following day, the cells were washed
with PBS and incubated with PLA probes for 1 h at 37◦C.
The cells were then washed twice with buffer A (Sigma-
Aldrich), incubated with ligation mixture for 1 h at 37◦C,
washed twice with buffer A, and incubated in amplification
mixture (Sigma-Aldrich) for 100 min at 37◦C. After three washes
with buffer B (Sigma-Aldrich), the coverslips were mounted
with DAPI Fluoromount-G (SouthernBiotech). Images were
captured using a Zeiss LSM 700 Confocal microscope (Zeiss,
Oberkochen, Germany).

EGFR Internalization and EGFR
Recycling Assays
For the EGFR internalization assay, cells were serum starved
overnight, stimulated with 2 µg/mL Alex Fluor 488-conjugated
EGF (Thermo Fisher Scientific) for the indicated times at 37◦C,
and placed on ice to stop internalization. After three washings
with ice-cold PBS, cells were subjected to an acid wash (0.2 M
acetic and 0.5 M NaCl, pH 2.8) for 5 min at 4◦C. Cells were
then detached from the culture dishes, washed with PBS, and re-
suspended in PBS containing 2% FBS and 0.01% sodium azide,
followed by fixation with 4% PFA in PBS for 20 min. Fixed cells
were analyzed by a BD LSR II flow cytometer (BD Biosciences,
San Jose, CA, United States). For the EGFR recycling assay, cells
were serum starved overnight, and pretreated with 10 µg/mL
cycloheximide for 1 h. All the following steps were performed in
the presence of cycloheximide to inhibit new synthesis of EGFR.
To obtain the total amount of initial internalized EGFR, cells were
stimulated with 2 µg/mL of AF488-conjugated EGF for 15 min at
37◦C, and then washed and fixed with 4% PFA in PBS. To obtain
the amount of recycled EGFR, cells were first stimulated with
1 ng/mL or 100 ng/mL of non-labeled EGF (Peprotech, Rocky
Hill, NJ, United States) for 15 min at 37◦C, rinsed three times with
PBS, and chased for 1 or 2 h to allow EGFR recycling. Cells were
then treated with AF488-conjugated EGF for 15 min, washed,
fixed, and analyzed by flow cytometry to quantify the internalized
EGF uptake by recycled EGFR. The ratio of recycled EGFR was
determined by the total amount of recycled EGFR relative to the
total amount of initial internalized EGFR.

Identification of Ubiquitination Sites by
Liquid Chromatography
(Nanoflow-LC-MS/MS)
To identify the ubiquitination sites of EGFR mediated by ZNRF1
and CBL, EGFR was isolated by SDS-PAGE followed by in-gel
enzymatic digestion with a mixture of trypsin and chymotrypsin.
The digested peptides were analyzed by nanoflow LC-MS/MS on
an LTQ-FT hybrid mass spectrometer (Thermo Fisher Scientific)
equipped with a nano-electrospray ion source (New Objective,
Inc., Woburn, MA, United States) in positive ion mode. The
liquid chromatography system used was the Agilent 1100
HPLC with the Famos Autosampler (LC Packings, Amsterdam,
Netherlands). The digested peptide samples were subjected to
nanoflow-LC-MS/MS as described previously (Chang et al.,
2019). All experimental RAW files were converted to MGF
format by MSConvert (ProteoWizard ver. 3.0.9134) (Chambers
et al., 2012) and then submitted for MS/MS ion search on
Mascot (ver. 2.3) (MatrixScience, Boston, MA, United States).
The protein sequences of Homo sapiens from UniprotKB1 were
used for MS/MS data analysis. The search parameters of error
tolerance of precursor ions and the MS/MS fragment ions in
spectra were 10 ppm and 0.6 Da, respectively. The variable
post-translational modifications of search parameters in Mascot
include ubiquitination of lysine (GlyGly), carbamidomethylation

1https://www.uniprot.org
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of cysteine, the oxidation of methionine, and phosphorylation of
serine/threonine/tyrosine.

Quantification of HSV-1 Infectivity
For determination of HSV-1 entry, cells were seeded on coverslips
and cultured in RPMI-1640 containing 10% FBS overnight. Cells
were infected with HSV-1 at 4◦C for 1 h, and then washed
three times with PBS. After a 8-h incubation at 37◦C, cells were
fixed and subjected to immunofluorescence with the anti-ICP4
antibody. To detect HSV-1 infection, cells were incubated with
GFP-expressing HSV-1 (Elliott and O’Hare, 1999) at 4◦C for 1 h
to allow adsorption, washed three times with PBS, and incubated
at 37◦C for 48 h. Infected cells were imaged by fluorescence
microscopy, and viral titers in culture medium were determined
by a plaque assay on Vero cells. Cell lysates were prepared and
subjected to immunoblotting using anti-GFP antibody.

Statistical Analysis
Results were presented as mean ± SEM. Significant differences
between two groups were assessed by the Student’s t-test.
P-values < 0.05 were considered statistically significant.
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Cardiovascular disease (CVD) is the main cause of death worldwide. Atherosclerosis
is the underlying pathological basis of CVD. Mitochondrial homeostasis is maintained
through the dynamic processes of fusion and fission. Mitochondria are involved in
many cellular processes, such as steroid biosynthesis, calcium homeostasis, immune
cell activation, redox signaling, apoptosis, and inflammation, among others. Under
stress conditions, mitochondrial dynamics, mitochondrial cristae remodeling, and
mitochondrial ROS (mitoROS) production increase, mitochondrial membrane potential
(MMP) decreases, calcium homeostasis is imbalanced, and mitochondrial permeability
transition pore open (mPTP) and release of mitochondrial DNA (mtDNA) are activated.
mtDNA recognized by TLR9 can lead to NF-κB pathway activation and pro-inflammatory
factor expression. At the same time, TLR9 can also activate NLRP3 inflammasomes and
release interleukin, an event that eventually leads to tissue damage and inflammatory
responses. In addition, mitochondrial dysfunction may amplify the activation of NLRP3
through the production of mitochondrial ROS, which together aggravate accumulating
mitochondrial damage. In addition, mtDNA defects or gene mutation can lead to
mitochondrial oxidative stress. Finally, obesity, diabetes, hypertension and aging are
risk factors for the progression of CVD, which are closely related to mitochondrial
dynamics. Mitochondrial dynamics may represent a new target in the treatment of
atherosclerosis. Antioxidants, mitochondrial inhibitors, and various new therapies to
correct mitochondrial dysfunction represent a few directions for future research on
therapeutic intervention and amelioration of atherosclerosis.

Keywords: mitochondria, morphology, fission, fusion, cytoskeleton, transport

INTRODUCTION

Atherosclerosis is a chronic inflammatory condition caused by abnormal lipid metabolism,
oxidative stress, endothelial injury and other factors and can involve large and medium-
sized arteries throughout the body (Gisterå and Ketelhuth, 2018). Atherosclerotic
cardiovascular disease (ASCVD) is a major cause of mortality in many industrialized societies
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(Commodore-Mensah et al., 2021). Lipid accumulation, local
inflammatory responses, and endothelial injury are important
factors in the development of atherosclerosis (Pham et al., 2021).

Over the past 20 years, studies have shown that mitochondrial
dysfunction can lead to the occurrence and development
of many diseases such as atherosclerosis (Sobenin et al.,
2013a). Mitochondria are highly dynamic organelles that
constantly produce adenosine triphosphate (ATP). Events, such
as mitochondrial DNA (mtDNA) mutation, imbalance in calcium
homeostasis, accumulation of oxidative stress products, and
metabolic dysfunction are hallmarks of mitochondrial damage
(Forte et al., 2019). When mitochondria are damaged or
dysfunctional, energy production is limited and large quantities
of reactive oxygen species (ROS) are produced. At the same
time, mitochondria are vulnerable to damage from ROS. Cardiac
cells, which are oxygen-hungry and mitochondria-rich, are also
vulnerable to ROS damage. Studies have shown that ROS-
mediated energy damage can induce systolic dysfunction of the
heart (Luptak et al., 2019). In addition, ROS promote mutations
and deletions in mtDNA (Li et al., 2021). Mitochondrial
fusion can serve as a strategy to repair irreversibly damaged
mitochondria, and at the same time, limit the accumulation
of mtDNA mutations during aging. Irreversibly damaged
mitochondria can also be repaired through fission (Yapa et al.,
2021). Here we discuss the role of mitochondrial dynamics and
its potential as a therapeutic target in this review.

MITOCHONDRIAL DYNAMICS AND
DYSFUNCTION IN ATHEROSCLEROSIS

Mitochondria are organelles with a double-membrane structure
and are the main components involved in aerobic respiration
in most eukaryotic cells (Navaratnarajah et al., 2021). The
mitochondrial membrane comprises three layers. The outer layer
is known as the outer mitochondrial membrane (OMM). The
mitochondrial intima contains enzymes responsible for oxidative
phosphorylation (OXPHOS), which are components of a multi-
protein complex of five large electron-transport (respiratory)
chains (Song et al., 2019; Figure 1A). Increased ROS levels
result in mitochondrial dysfunction in vascular cells, aggravated
endothelial injury and smooth muscle cell proliferation,
and are responsible for inducing vascular atherosclerosis
development and other pathological changes (Hughes et al.,
2020). Furthermore, in the mitochondria, the activity of ion
channels—which modulate Ca2+ signal transduction—is
regulated by the free radicals generated through the respiratory
chain functions, and these phenomenon subsequently affect
biosynthesis and degradation reactions in various organisms
(Gherardi et al., 2020). In addition, mitochondria are directly
and closely related to other organelles such as the endoplasmic
reticulum (Lackner, 2019). For example, mitochondria-
associated endoplasmic reticulum membranes (MAMs) play an
important role in atherosclerosis development, heart failure,
and other diseases by participating in lipid and calcium (Ca2+)
homeostasis, mitochondrial dynamics, inflammation, and
apoptosis (Gao et al., 2020).

Studies have shown that the continuous fission and fusion
of mitochondria are important for maintaining mitochondrial
morphology and function (Kyriakoudi et al., 2021). Mammals
contain two mitofusins, namely mitofusin (Mfn)-1 and Mfn2.
These proteins contain two hydrophobic heptapeptide repeats,
i.e., HR1 and HR2 at their N- and C-termini (located on
both sides of the transmembrane domain) (Xin et al., 2021)
(Figure 1B). In mammalian cells, mitochondrial fusion is
mainly mediated by members of the of the GTPase protein
family, i.e., Mfn1, Mfn2, and optic atropy-1 (OPA1) (Wolf
et al., 2020). OPA1 and Mfn1 cooperate to enable organelle
fusion. Transcript variants of OPA1 encode two OPA1 protein
isomers with different lengths, namely L-OPA1 and S-OPA1.
As L-OPA1 has a better fusion efficiency than S-OPA1, its
abnormal functioning can lead to reduced fusion activity, and
thereby mitochondrial rupture and apoptosis (Wang et al., 2021a;
Figure 1C). The collar structure comprising Drp1 polymer plays
a central role in mitochondrial fission, and post-translational
modification of Drp1 plays a major role in the formation of collar
structures during mitochondrial fission (Breitzig et al., 2018;
Figure 1D). Soluble substances can enter the mitochondria when
the mPTP—located in the inner mitochondrial membrane—
opens or closes, thereby affecting the MMP and inducing
apoptosis (Du et al., 2021).

The expression of mitochondrial dynamin plays an important
role in the development of atherosclerosis (Sharp and Archer,
2015). Chiong et al. (2014) found that the expression of Mfn2
is significantly reduced in the background of atherosclerosis
in ApoE−/− mice and is also involved in the pathogenesis of
atherosclerosis. Heterozygous deletion of OPA1 in mice also
results in abnormal mitochondrial morphology, such as cleavage
of the mitochondrial cristae (Hu et al., 2020). In some cases,
inhibition of Drp1 expression can increase the depolarization of
mitochondria in heart cells (Ikeda et al., 2015). Drp1-induced
disturbances in mitochondrial homeostasis can cause a variety
of complex vascular diseases through mechanisms, such as
myocardial ischemia-reperfusion (I/R) injury, heart failure, and
endothelial dysfunction (Morales et al., 2020).

NOVEL MECHANISTIC INSIGHTS: FROM
MITOCHONDRIAL DYNAMICS TO
ATHEROSCLEROSIS

Mitochondrial ROS-Induced Oxidative
Stress in Atherosclerosis
The fusion and fission of mitochondria are closely related to
mitochondrial function. ROS are a byproduct produced during
mitochondrial respiration; when mitochondrial ROS (mitoROS)
levels are disturbed, interactions involving the structure and
function of mitochondria may eventuate (Forrester et al., 2018)
and play important roles in the development of inflammatory
and metabolic disorders (such as atherosclerosis and diabetes)
(Hu et al., 2020). Drp1 can affect mitochondrial fission by
regulating the levels of mitoROS and subsequent oxidative
stress (Cid-Castro and Morán, 2021). In addition, ROS also

Frontiers in Cell and Developmental Biology | www.frontiersin.org 2 July 2021 | Volume 9 | Article 673839150

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-673839 July 1, 2021 Time: 16:7 # 3

Li et al. Mitochondrial Dynamics in Atherosclerosis

FIGURE 1 | Structure of mitochondria and mitochondrial dynamics. (A) The mitochondrion is mainly composed of OMM, mitochondrial membrane gap, IMM, and the
mitochondrial matrix. The intima folds inward to form mitochondrial cristae perpendicular to the mitochondrial long axis. Mitochondria produce reduced nicotinamide
adenine dinucleotide (NADH) through the Krebs cycle, which is then oxidized and phosphorylated to release ATP. (B,C) Mitochondrial fusion involves three types of
dyneins, namely MFN (Mfn1 and Mfn2), OPA1, and MSTO1. First, the transmembrane GTPases on the mitochondrial outer membrane, namely Mfn1 and Mfn2, fuse
through the HR structure. Subsequently, OPA1-mediated IMM fusion occurs in the mitochondrial inner membrane. OPA1 also includes L-OPA1 and the S-OPA1
formed after the removal of L-OPA1 via action of proteolytic enzymes OMA1 and YME1L1. Mitochondrial mitosis is mediated mainly by Drp1. Drp1 is recruited into
mitochondria by several ligand proteins (MFF, MIEF1/Mid51, and MIEF2/Mid49) that assemble into spiral fragments around the OMM, induce mitochondrial fission,
and complete division by the transport of microtubules and actin. (D) The fusion and fission of mitochondria is a cyclic process. IMM, inner mitochondrial membrane;
OMM, outer mitochondrial membrane; OPA1, optic atrophy protein-1; Drp1, dynamin-related protein; NADH, nicotinamide adenine dinucleotide.

regulate mitochondrial fusion. When ROMO1 (ROS regulatory
protein 1) is inactivated, OPA1 expression is reduced, resulting
in the remodeling of mitochondrial cristae and fragmented
mitochondria (Norton et al., 2014). Studies have shown that
high glucose levels can increase the activity of Drp1 in the
mitochondria of endothelial cells, leading to mitochondrial
fission and production of mitoROS. Mdivi-1 can reduce high
glucose induced oxidative stress and injury to aortic cells
(Wang et al., 2017b).

Lipid accumulation is an important link in the formation of
plaque during the early stages of atherosclerosis (Chistiakov et al.,
2018), and increased ROS levels induce endothelial dysfunction,
vascular inflammation, and accelerated accumulation of oxidized
low density lipoprotein (ox-LDL) in the arterial wall, a
phenomenon that promotes atherosclerosis (Naik and Dixit,
2011; Yu et al., 2017). As an activator of NLRP3, ox-LDL
can induce alterations in MMP, which leads to the generation
of mitoROS and activation of Ca2+ signals, calcium influx,
and mitochondrial damage (Triantafilou et al., 2013). In vitro
experiments have shown that lectin-type oxidized LDL receptor 1
(LOX-1), the main receptor for ox-LDL, expressed in response to
lipopolysaccharide (LPS) induction, can lead to ROS production,
mtDNA damage (Figure 2B), and the production of NLRP3
inflammasomes and play an important role in inflammatory

diseases such as atherosclerosis (Ding et al., 2014). Studies
have reported that ox-LDL and ROS can damage mitochondria,
release mitoROS, induce the activation of NLRP3, elevate levels
of IL-1β and IL-18, and cause inflammation (Huang et al.,
2020; Markin et al., 2021). At the same time, ROS leads
to endothelial nitric oxide synthase (eNOS) degradation by
increasing the activity of mitochondrial arginase II (Suárez-
Rivero et al., 2021). In vivo studies have found that Mfn2
inhibits ox-LDL-induced rabbit smooth muscle cell proliferation
and reduces atherosclerotic plaques by regulating Akt and ERK
phosphorylation (Guo et al., 2007b).

In addition to mitoROS produced by activity of the
mitochondrial electron transport chain (ETC), NADPH oxidase
(NOX), xanthine oxidase and cyclooxygenase can also release
large amounts of ROS (Yeh et al., 2018). Various sources
of ROS play an important role in angiogenesis (Fukai and
Ushio-Fukai, 2020). Angiogenesis has a significant impact
on the treatment of ischemic cardiovascular disease (CVD).
Restoring intravascular perfusion by enhancing or inhibiting
angiogenesis is an important means of treating peripheral arterial
disease (PAD) caused by atherosclerosis (Simons et al., 2016).
Mitochondria play a key role in angiogenic responses induced
by growth factors such as VEGF (Guo et al., 2017) by regulating
mitoROS-related activities (Wang et al., 2011). In vivo studies
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have shown that in presence of high glucose, the consumption
of PDIA1 in endothelial cells can induce Drp1 sulfenylation at
Cys644, promote mitochondrial fission, and increase ROS levels.
Therefore, PDIA1 or the Cys oxidation-defective mutant Drp1
can promote angiogenesis in diabetic mice (Kim et al., 2018).
Inhibition of Drp1 can result in the dysfunction of mitochondrial
respiratory function (Ota et al., 2020).

mtDNA Damage in Atherosclerosis
The mitochondrial genome comprises naked, independently
encoded, double-stranded DNA molecules that exist mainly
as small loops (in yeast and mammals) or linear molecules
(protozoa) (Suzuki et al., 2011). mtDNA is the only DNA
molecule that exists in the human cytoplasm. It is 16,569-
basepair long and includes the heavy chain of the outer ring
(high molecular weight) and the light chain of the inner ring
(low molecular weight). mtDNA encodes 37 genes, among them,
13 protein-coding regions have been identified to play a role
in maintaining normal cellular OXPHOS (Tang et al., 2020).
High levels of mitochondrial mutation represent an important

factor that leads to dysfunction of oxidative phosphorylation and
energy metabolism and endothelial injury (Ueda et al., 2015). As
opposed to genomic DNA, mtDNA in the mitochondrial matrix
or inner membrane does not contain any histones and is free
of structural protection; this DNA is in a state of continuous
synthesis throughout the cell cycle, with poor stability and is in
close proximity to the site where the electron transport system—
that continuously produces ROS—is located. Therefore, mtDNA
is more easily and extensively damaged (Ahmed et al., 2015).

In humans, mtDNA damage has been confirmed in
atherosclerotic diseases, and may be attributed to the damage
of this DNA by ROS produced by the adjacent respiratory
chains (Muñoz-Carvajal and Sanhueza, 2020; Figure 2A). As
such, mitochondria are the site of activation of the NRLP3
inflammasome. When mitochondria are dysfunctional, changes
in the production of ROS, mtDNA release, cardiolipin, and
NAD/NADH can activate NLRP3. mtDNA damage may
therefore result in mitochondrial dysfunction and increased IL-
1β levels through the aforementioned mechanisms of promoting
atherosclerosis (Freigang et al., 2013). Furthermore, mtDNA

FIGURE 2 | The mechanism of atherosclerosis formation caused via dysfunction of mitochondrial function and dynamics. (A) ROS produced in the respiratory
chains of mitochondria can cause damage to mtDNA. (B) Ox-LDL induced the change of MMP, lead to Ca2+ influx, ROS production and mitochondrial damage. In
addition, the decrease of MFN and OPA1 levels can also lead to the change of MMP and damage of mitochondria. (C) PPAR deletion decreases Mfn2 expression
and PGC-1 expression, and leading to mitochondrial dysfunction; AMPK activates endothelial cells through the phosphatidyl inositol 3 kinase protein kinase B
(PI3Kb) pathway, stimulates eNOS activation, and generates NO to protect endothelial cells; Mfn2 can inhibit the PI3K/Akt pathway by activating the mitochondrial
apoptotic pathway, resulting in VSMC apoptosis. (D) DAMP promotes inflammation by activating PRRs. mtDNA can activate NF-κB and trigger TLR9 signaling
pathway to mediate p38 pathway. Mitochondrial damage induces NLRP3 activation, and NLRP3 amplify the production of ROS. (E) Silencing Drp1 can inhibit
mitochondrion fission, decrease ROS levels and inhibits smooth muscle cell migration. (F) Mfn2 deficiency leads to the increase of Ca2+ expression in
cardiomyocytes, mitochondrial swelling, and eventually leads to cardiac hypertrophy. (G) Diabetes mellitus, insulin resistance, dyslipidemia, obesity, hypertension and
aging may damage mitochondrial function, and lead to the development of atherosclerosis. mtDNA, mitochondrial DNA; Drp1, dynamin-related protein; Mfn1,
mitofusin 1; Mfn2, mitofusin 2; OPA1, optic atropy-1; Fis1, mitochondrial fission protein 1; MMP (1ψm), mitochondrial membrane potential; mPTP, mitochondrial
permeability transition pore open; Cyt c, cytochrome C; ROS, reactive oxygen species; LOX-1, lectin-type oxidized LDL receptor 1; ox-LDL, oxidized low density
lipoprotein; DAMP, damage-associated molecular pattern; PI3K, phosphatidyl inositol 3; NF-κB, nuclear factor-κB; TyrRS-PARP1, tyrosyl transfer- RNA synthetase
(TyrRS) and poly (ADP-ribose) polymerase 1 (PARP1).
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damage leads to mitochondrial dysfunction, resulting in the
removal of abnormal mitochondria, which may be detrimental
to cell function under conditions of oxidative stress. Altered
membrane potential in cells lacking MFN or OPA1 may cause
mitochondrial damage, which can be compensated by the
dynamic cycle of mitochondrial fusion and fission (Chen
et al., 2007; Weaver et al., 2014). Studies have reported that
mitochondrial fusion possesses a dual function, and that it not
only protects the integrity of mtDNA, but also maintains the
mtDNA function under conditions of mutational pressure.
Therefore, mitochondrial fusion may have some compensatory
effects on mtDNA mutation (Chen et al., 2010). Liu et al.
(2020) found that overexpression of Mfn2 can increase MMP,
enhance mitochondrial fusion, reduce mitoROS accumulation,
activate the AMPK/SIRT3 signaling pathway, and prevent
cardio-cerebrovascular ischemia/reperfusion (I/R) damage.

Furthermore, somatic mutations in the human mitochondrial
genome may play a role in the development of atherosclerosis
(Sazonova et al., 2017; Volobueva et al., 2019). Investigations
on 12 aorta samples from male have revealed that compared
with non-atherosclerotic intima, lipofibrous plaques have
a high frequency of MT-RNR1 A1555G, MT-TL1 C3256T,
MT-CYB G12315A, and MT-TL2 G15059A (Sobenin et al.,
2013b). In addition, compared with healthy vascular tissue,
atherosclerotic plaques exhibit significant differences in the
frequency of C3256T, T3336C, G12315A, and G14459A
mutations (Sazonova et al., 2009). The C5178A mutation is
more common in normal vascular tissues than in atherosclerotic
plaques (Matsunaga et al., 2001).

Pathways Related to Mitochondria in
Atherosclerosis
Peroxisomal proliferator-activated receptor (PPAR) is a
transcription factor activated by nuclear receptor superfamily
ligands; it activates target genes and affects lipid metabolism,
glucose homeostasis, cell proliferation, differentiation,
apoptosis, and inflammatory responses (Teixeira et al.,
2021). Previous studies have confirmed that PPARs are
expressed in atherosclerotic plaques, suggesting that PPARs
are closely related to atherosclerosis-related mechanisms such
as transcriptional regulation of pro-inflammatory genes, e.g.,
cytokines, chemokines, vascular endothelial cell adhesion
factors, and metallostromal proteases (Corona et al., 2014).
Studies have shown that cardiac defects involving PPARs can
also lead to abnormal mitochondrial morphology, excessive
lipid deposition, and other phenotypic changes (Cheng
et al., 2004). PPARα induces the downregulation of Mfn2
expression in high-fat or high-glucose treated cardiomyocytes
by promoting mitochondrial fusion. Exogenous supply of Mfn2
in this background can restore MMP, inhibit mitochondrial
oxidative stress, and improve mitochondrial function (Hu et al.,
2019). Additionally, studies have revealed that PPAR deletion
significantly decreases PGC-1 expression in C57BL/6J mice,
thereby leading to mitochondrial dysfunction at the structural
and functional levels (Zhou et al., 2016b). Yang et al. found
that resveratrol could inhibit palmitic acid-induced damage to

human umbilical vein endothelial cells (HUVECs), increase the
expression of Mfn1, Mfn2, and OPA1, inhibit mitochondrial
fragmentation, and reduce oxidative damage in endothelial cells
by regulating mitochondrial fusion through the TyPRS-PARP1
signaling pathway (Yang et al., 2019; Figure 2C).

AMPK is a cellular energy receptor activated by AMP that
affects sugar, fatty acid, and protein metabolism (Dehnavi et al.,
2021). Importantly, AMPK activation can lead to inhibition
of cell proliferation when cardiomyocytes and vascular smooth
muscle cells (VSMCs) are in a state of ischemia and hypoxia,
thus playing an important role in the regulation of cardiovascular
diseases and in the prevention and treatment of atherosclerosis
(Yan et al., 2018). Moreover, AMPK activates endothelial cells
through the phosphatidyl inositol 3 kinase protein kinase B
(PI3Kb) pathway, stimulates eNOS activation, and generates NO
to further protect endothelial cells; these phenomenons play
important roles in the prevention of atherosclerosis (Tousoulis
et al., 2012; Xing et al., 2015; Figure 2C). Studies have
shown that the AMPK-SIRT3 pathway also affects mitochondrial
function (Karnewar et al., 2016). In addition to affecting cell
function and metabolism, AMPK can also affect mitochondrial
homeostasis by promoting mitochondrial fission. Antimycin
A (complex I inhibitor) and antiretroviral drug antimycin A
(complex III inhibitor) were discovered based on the theory
that AMPK could induce mitochondrial fission (Toyama et al.,
2016). Previous studies have shown that MFF is a new substrate
of AMPK and plays an important role in AMPK-mediated
regulation of mitochondrial morphology (Ducommun et al.,
2015). Phosphorylation of AMPK-induced MFF by SAMP155
at Ser172, for example, is a potential mechanism used to
explain mitochondrial fission due to diminished mitochondrial
respiration. Additionally, MFF in human osteosarcoma cells
has been shown to induce mitochondrial fission (Toyama
et al., 2016). Notably, AMPK regulates mitochondrial fission
through an autophagy-dependent Drp1 degradation mechanism.
Observation of the aorta of PRKAA2/AMPKa2-deficient mice
revealed that the number of autophagosomes in the aorta
of PRKAA2/AMPKa2-deficient mice is significantly reduced,
suggesting abnormal mitochondrial mitosis (Wang et al., 2017a).

The phosphoinositide 3-kinase/protein kinase B (PI3K/Akt)
signaling pathway is known to regulate cell growth,
differentiation, and proliferation (Shao et al., 2021). Studies
have shown that knockout of a PI3Kγ subunit, i.e., P110γ can
reduce the size of atherosclerotic plaques in ApoE−/− and
LDLr−/− mice. Moreover, the Class IA PI3K signaling pathway
can significantly reduce the levels of serum free fatty acids
(FFA), cholesterol, and triglycerides in mice and inhibit the
production of intracellular ROS (Wang et al., 2021b). Akt also
plays an important role in glucose metabolism, apoptosis, cell
proliferation, and other aspects of cell growth (Linton et al.,
2019). Furthermore, Mfn2 can inhibit the PI3K/Akt pathway
by activating the mitochondrial apoptotic pathway, resulting
in increased mitochondrial outer membrane permeability and
ultimately VSMC apoptosis (Guo et al., 2007a; Figure 2C). Fang
et al. found that decreased Mfn2 expression might be related to
pulmonary arterial smooth muscle cell (PASMC) proliferation
under hypoxic conditions (Fang et al., 2016).
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Role of Mitochondria in Inflammation
and Immunity Related in Atherosclerosis
Inflammation and immunity are inseparable in atherosclerosis,
as the two influence each other to accelerate the progression
of atherosclerosis (Saigusa et al., 2020). Atherosclerosis is not
only an inflammatory disease, but it is also an autoimmune
disorder. Additionally, atheromatous plaques and phenotypic
changes in vascular cells are the main manifestations of
atherosclerosis, and most of these immune responses are can be
attributed to Th-1 cells (Kuznetsova et al., 2019). Furthermore,
ox-LDL, ROS, and advanced glycation end products (AGEs)
further aggravate the occurrence of inflammatory reactions and
vulnerable plaque rupture events.

Inflammation is related to innate defense and tissue damage.
Pattern recognition receptors (PRRs) are located on the
surface of cell membranes or inside cells. They recognize and
bind to pathogen-associated molecular patterns (PAMPs) and
damage-associated molecular patterns (DAMPs) to trigger the
inflammatory cascade in innate immunity (Zhang et al., 2010).
PRRs, LPS receptors, Toll-like receptors (TLRs), and Nod like
receptors (NLRs) play important roles in the pathogenesis of
atherosclerosis (Shimada et al., 2012). In contrast, mtDNA that
functions as a DAMP plays an important role in the inflammatory
response. DAMPs can accumulate when mtDNA is damaged
or degraded, and these promote inflammation by binding to—
and activating—PRRs (Mathew et al., 2012; Picca et al., 2017).
Studies have shown that cytokines produced by mitochondrial
DAMPs play a key role in the inflammatory signaling pathway in
atherosclerosis (Goossens et al., 2010; Yu et al., 2013; Tumurkhuu
et al., 2016). NLRs are scaffold proteins that play key roles
in regulating innate immune responses by triggering the NF-
κB and mitogen-activated protein kinase (MAPK) signaling
pathways, and by controlling caspase activation (Zhang et al.,
2014). Mitochondrial antiviral signaling protein (MAVS) is a
key signaling protein activated by viral RNA sensors RIG-1 and
MDA5, which can promote gene expression by activating the NF-
κB pathways (Loo and Gale, 2011). In addition, MAVS associates
with NLRP3 and promotes its oligomerization, which leads to
the activation of caspase-1 (Mohanty et al., 2019). It has recently
been demonstrated that the activation of NLRP3 caused by the
synthetic TLR7 ligand imiquimod is the result of the production
of mitoROS induced by complex I of the respiratory redox chain
and the quinone oxidoreductase NQO2 (Groß et al., 2016).

In recent years, increasing numbers of studies have
demonstrated that mtDNA regulates the development of
inflammation in disease states by activating the immune system
(West and Shadel, 2017). In mice, inflammatory arthritis was
induced upon the intra-articular injection of mtDNA, which
induced the secretion of TNF by spleen cells; this was the first
report on the immunological potential of mtDNA (Kepp et al.,
2011). mtDNA can induce the activation of the NF-κB pathway
and the release of TNF-α and IL-6 after being sensed by TLR9
(Zhong et al., 2016). mtDNA accumulation also results in the
activation of caspase-1 and promotes the secretion of IL-1β

and IL-18 in macrophages, thereby participating in a series of
inflammatory responses (Mottis et al., 2019). Further, mtDNA

activates the p38 and p42-44 MAPK pathways and chemotaxis
of neutrophils to endothelial injury sites by triggering TLR9
signaling (Zhang et al., 2010). This induces the development of a
range of inflammatory diseases, including rheumatoid arthritis,
atherosclerosis, and non-alcoholic steatohepatitis. NLRP3
inflammasome, whose formation is triggered by mitochondrial
damage and IRF3-signaling-induced endothelial inflammation
also contributes to the progression of atherosclerosis (Mao
et al., 2017). In addition, mitochondrial dysfunction may also
amplify the activation of NLRP3 through the production of
mitoROS (Figure 2D).

Mitochondrial Associated Endothelial
Injury and Smooth Muscle Proliferation
in Atherosclerosis
Endothelial dysfunction leads to the development of
atherosclerosis in patients with diabetes, and induces many
changes in terms of mitochondrial dynamics and mitochondrial
fission, and increases ROS production (Ago et al., 2010).
Mitochondrial NOX4 promotes the production of ROS by
mitochondria, which in turn can induce mitochondrial damage
(Vendrov et al., 2015) and endothelial injury (Kim et al.,
2016). Metformin can inhibit the expression of NOX4, reduce
the production of ROS, and improve endothelial function
(Cheng and Lanza-Jacoby, 2015; Victor et al., 2015). D-chiro
inositol can inhibit the expression of Drp1, reduce the levels
of NOX4, and enhance the production of NO in mouse aortic
endothelial cells to protect against endothelial injury (Zhang
et al., 2017). After hypoxia/reoxygenation (H/R) injury, ROS
levels increase significantly, and ROS promote mitochondrial
fission in myocardial endothelial cells through JNK-mediated
phosphorylation of Drp1 (Chen et al., 2021b).

Epigenetic modifications induced in response to mtDNA
damage have become a research hotspot in the domains of aging
and atherosclerotic diseases (Schiano et al., 2015). In vivo studies
have shown that even if ROS levels do not increase significantly,
mtDNA damage can reduce mitochondrial respiration and ATP
content in smooth muscle cells, promote apoptosis of VSMCs
and aggravate atherosclerosis (Yu et al., 2014). After endothelial
injury, proliferation, migration, and vascular remodeling of
VSMCs are important for the rupture of atherosclerotic plaques,
wherein the fission of mitochondria and deregulated secondary
morphological functions play an important role (Wang et al.,
2015; Hong et al., 2017). Once mitochondrion fission is inhibited
by silencing Drp1, the protons leak across the mitochondrial
inner membrane, resulting in decreased ROS levels in primary
mouse smooth muscle cells, a phenomenon that inhibits smooth
muscle cell migration (Wang et al., 2015; Figure 2E).

Mitochondria-Related Fibrosis and
Hypertrophy in Atherosclerosis
Mitochondrial damage is involved in myocardial cell loss and
myocardial fibrosis, both of which eventually manifest as cardiac
ischemia (Bonnans et al., 2014; Humeres and Frangogiannis,
2019; Nielsen et al., 2019). Atherosclerosis is the pathological
basis for a variety of cardiovascular and cerebrovascular diseases,
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eventually leading to cardiac dysfunction (Jonsson and Bäckhed,
2017). Compared with cardiomyocytes, cardiac fibroblasts have
lower mitochondrial respiratory function and expression of
mitochondrial complexes I, II, III, IV, and V, and this is the
main cause of cardiac fibrosis (Zhao et al., 2019). In vivo
studies have found that mitochondrial respiratory chain complex
dysfunction, mtDNA damage, increased ROS abundance, and
secondary oxidative stress in myocardial infarction models lead
to the activation of many protein kinases and transcription
factors involved in hypertrophy signals (Rababa’h et al., 2018;
Bugger and Pfeil, 2020).

STAT3 plays an important role in maintaining the
physiological balance in the heart and protecting the heart
from harm (Heusch et al., 2011; Gent et al., 2017; Kleinbongard
et al., 2018). If myocardial cells are stimulated by H2O2 or
treated with rotenone, mitochondrial function is impaired, and
STAT3 signaling is inhibited. Cardiac fibroblasts also express
STAT3. In cardiac fibroblasts, STAT3 activation promotes cardiac
fibroblast proliferation (Haghikia et al., 2014) and hyaluronic
acid accumulation during wound healing after acute myocardial
infarction (Müller et al., 2014).

Mitochondrial dynamics play an important role in the
development of cardiac hypertrophy (Jong et al., 2019). The
MMP of cardiomyocytes in mice lacking Mfn2 is decreased and
cells exhibit a certain degree of cardiac hypertrophy. The reason
may be that the level of Ca2+ in mitochondria deficient in
Mfn2 increases and the mitochondria swell. In addition, reduced
cell death in cardiomyocytes lacking Mfn2 is related to the
inhibition of mPTP (Qiu et al., 2020; Figure 2F). It has been
reported that Drp1 expression is related to the pathogenesis of
cardiac hypertrophy (Pennanen et al., 2014). In cardiomyocytes
of hypertensive rats, high levels of ROS—associated with
overexpression of Drp1—can activate calcineurin and CaMKII,
and lead to aggravation of cardiac hypertrophy. Mdivi-1 can
reduce the production of ROS and inhibit the expression of
Drp1 (Hasan et al., 2018). L-2286 induced the translocation
of mitochondrial Drp1, reduced Drp1 expression, inhibited
mitochondrial fission, and reduced the number of mitochondrial
cristae. At the same time, it increased the expression of OPA1 and
Mfn2 to prevent the development of spontaneous left ventricular
hypertrophy in rats (Ordog et al., 2021).

Mitochondrial Dynamics and Risk
Factors for Atherosclerosis
Diabetes Mellitus, Insulin Resistance, and
Mitochondrial Dynamics
Atherosclerosis is the most common macrovascular complication
of diabetes. Imbalance between oxidative and antioxidant systems
in vivo leads to increased levels of ROS, a phenomenon that
results in linear DNA strand breaks, an important factor
in progression of atherosclerosis and functional damage to
endothelial cells (Fetterman et al., 2016). Hyperglycemia can
trigger this mechanism through the ETC, leading to endothelial
cell injury and dysfunction (Forrester et al., 2018). Patients
with diabetes exhibit altered mitochondrial dynamics and
endothelial cell morphology; for example, the mitochondria of

the immortalized endothelial cell line Eahy926 will rupture in
the presence of high glucose (Paltauf-Doburzynska et al., 2004).
In vivo studies showed that mitochondrial debris and ROS
production increased in endothelial cells isolated from coronary
arteries of diabetic mice (Makino et al., 2010). Furthermore, the
expression of Drp1 and Fis1 is increased and the production
of ROS augmented in HUVECs under high glucose conditions;
Silencing of Drp1 can prevent the damage caused by insulin,
calcium ionophores, and eNOS phosphorylation (Shenouda et al.,
2011; Figure 2G).

Studies have shown that activation of various pro-
inflammatory factors and signaling pathways during the
development of atherosclerosis is closely related to insulin
resistance (Boudina et al., 2009; Watanabe et al., 2014). The
increase in ROS levels after endothelial injury can lead to the
activation of the AMPK pathway, increase the level of eNOS,
trigger insulin resistance, and promote the development of
atherosclerosis (Förstermann et al., 2017). Insulin resistance
also alters lipid and protein metabolism. Increased ROS and
pro-inflammatory cytokine levels impair insulin signaling,
activate the NF-κB pathway, perpetuate the inflammatory
and oxidative environment, prolong insulin resistance, and to
some extent prolong atherosclerosis. Changes in mitochondrial
activity caused by mitochondrial number and functional
abnormalities induced by abnormal Mfn2 expression are some
of the characteristic features associated with insulin resistance
(Peyravi et al., 2020).

Dyslipidemia, Obesity, and Mitochondrial Dynamics
Inappropriate changes in lifestyle and dietary habits and
alterations to metabolism are responsible for the globally
increasing incidence of obesity, even in developed countries
(Blüher, 2019). As an important mechanism associated with
obesity development, deregulated lipid metabolism also results
in the development of atherosclerosis and other diseases (Laslett
et al., 2012). When various factors lead to substantial LDL
deposition, enhanced HDL transport capacity and increased
macrophage-mediated lipid phagocytosis occur, and finally, foam
cell deposition occurs in damaged areas of blood vessels, thereby
leading to the subcutaneous formation of atherosclerotic plaques
(Everts et al., 2014; Cader et al., 2016). Excessive LDL deposition
can induce vascular cell apoptosis through a mitochondria-
dependent pathway after oxidative modification (Nazzal et al.,
2006). Ox-LDL mediates the opening of mPTP through the
activation of cysteine proteases, and then the mitochondria
release cytochrome C and activated caspase-3, thereby releasing
interleukins and other inflammatory factors (Vindis et al., 2005;
Figure 2G).

Aortic mtDNA damage and protein nitrification are
significantly increased in ApoE−/− mice exposed to secondhand
smoke, suggesting that mtDNA damage caused by high
cholesterol is one of the important mechanisms for the
development of atherosclerosis. Additionally, Mfn2 is expressed
at relatively low levels in the muscle tissues of obese people
compared to those of lean individuals (Knight-Lozano et al.,
2002). In some patients with extrahepatic cholestasis, Mfn2
expression in the liver is decreased, suggesting that Mfn2 plays an
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important role in regulating lipid metabolism and mitochondrial
function (Chen et al., 2013).

Hypertension and Mitochondrial Dynamics
Mitochondria play an important role in maintaining the
stability of arterial blood pressure by regulating the superoxide
content and energy metabolism (Vaka et al., 2018). Energy
metabolism disorders involving myocardial mitochondria may
be an important mechanism in hypertension (Marshall et al.,
2018). For example, the arterial blood pressure of SOD2-deficient
mice is significantly increased with age under conditions of
a high-salt diet, and oxidative stress in SOD2-deficient mice
might explain this increase; this leads to inflammatory cell
infiltration and promotes sodium retention (Rodriguez-Iturbe
et al., 2007). Additionally, studies have found that cholesterol
and blood pressure are elevated in patients aged approximately
30 years, and that the degree of elevation is related to age; further,
mitochondrial tRNA mutation and decline in mitochondrial
function may be important factors leading to the onset of the
disorder in these patients (Wilson et al., 2004; Bernal-Mizrachi
et al., 2005). In pulmonary arterial hypertension, mdivi-1 inhibits
the mitochondrial fragmentation of PASMCs isolated under
hypoxic conditions and improves the function of these cells, while
overexpression of Drp1 increases mitochondrial fragmentation
(Zhuan et al., 2020). Dikalova et al. (2020) studied an animal
hypertension model involving SIRT3−/− mice and found
that decreased expression of mitochondrial deacetylase SIRT3
resulted in SOD2 inactivation and mitochondrial oxidative stress
injury. Subsequently, mtDNA release activates inflammasomes
and other inflammatory cells to stimulate accumulation of
inflammatory cells, thereby damaging vascular endothelial cells
and promoting the development of hypertension and vascular
aging (Dikalova et al., 2020). Studies have shown that excessive
ROS levels induced in response to altered mitochondrial
morphology and apoptosis via dynein-mediated cytochrome C
release are important mechanisms leading to the development
of hypertension-associated left ventricular hypertrophy (López
Farré and Casado, 2001; van Empel and De Windt, 2004;
Figure 2G).

Abnormal mitochondrial function and changes in mtDNA
are important factors affecting vasoconstriction (Zhou et al.,
2016a). Liu et al. (2016) found that mitochondrial dynamics are
closely related to the functional state of blood vessels. They also
found that changes in arterial vascular state caused by changes in
mitochondrial dynamics of smooth muscle cells caused changes
in arterial blood pressure (Liu et al., 2016). Additionally, studies
have shown that the mitochondria of pulmonary VSMCs affect
respiratory function and oxidative metabolism by regulating
intracellular calcium homeostasis and also affect pulmonary
vascular contraction, which is a key factor in the pathogenesis of
pulmonary hypertension (Tuder et al., 2012).

Aging and Mitochondrial Dynamics
A considerable number of studies have shown that the
mechanisms involved in age-related cardiovascular dysfunction,
such as mitochondrial fusion and fission disorder, mtDNA
mutation, excessive ROS production, mitochondrial respiratory

chain function, and metabolic dysfunction are closely related
to mitochondrial functional homeostasis (Ames, 2004; Koltover,
2017). During cardiac aging, mitochondrial structures are
destroyed and mitochondrial size increases (Duicu et al., 2013).
Mitochondria promote fusion or inhibit fission to promote
cell aging (Picca et al., 2018). MFN-1/2 and OPA1 modulate
mitochondrial morphology in adult cardiomyocytes (Faelber
et al., 2019). Sebastián et al. (2016) found that Mfn2 expression
decreased with skeletal muscle aging and triggered increased
numbers of damaged mitochondria. D’Amico et al. (2019)
showed that MFF expression of RNA-binding protein Pumilio2
(PUM2) decreases with age, which further leads to reduced
mitotic division and dysfunction.

The decline of mitochondrial energy metabolism in the heart
is associated with aging, and aging leads to mtDNA damage,
and ROS (Elorza and Soffia, 2021). Studies have shown that
with age, mitochondrial volume increases, and a considerable
amount of ROS is produced during oxidative phosphorylation
(Figure 2G). mtDNA mutations are found in disease states in
patients with age-related diseases, including chronic coronary
artery disease (Phillips et al., 2014). Strutynska et al. (2016)
found that the concentration of nitric oxide (NO) and hydrogen
sulfide in the mitochondria of aged rats is decreased, while the
level of ROS is increased, resulting in increased sensitivity of
mPTP to calcium. Foote et al. (2018) observed aorta and carotid
arteries in mice and found that at 44 weeks if age, carotid
artery wall elasticity decreased, aortic collagen content and
elastin fragmentation increased, arterial mtDNA copy number
decreased, mitochondrial respiration decreased, and blood vessel
aging accelerated.

ANTI-ATHEROSCLEROTIC TREATMENT
TARGETING THROUGH MITOCHONDRIA

Mitochondria are considered to be one of the main targets for the
design and development of new drugs in CVD and other diseases
(including cancer and neurological diseases), and represent a
promising strategy to treat atherosclerosis by modulating the
mitochondria (Zielonka et al., 2017).

Diet and Lifestyle
Diet
Studies have shown that controlling cardiovascular risk factors
by adjusting diet, correcting obesity and properly controlling
blood sugar levels, can prevent mitochondrial stress and reduce
mitochondrial damage (Stanzione et al., 2021). The increase
in FFAs contributes to the activation of oxidative stress,
mitochondrial stress and pro-inflammatory signals (Kaludercic
and Di Lisa, 2020). Trans-fatty acids (TFAs), which are found
in many fast foods and meats, are unsaturated fats. TFAs
increase TG, LDL, and decrease LDL particle size and HDL
levels. TFAs also increase pro-inflammatory cytokine abundance,
inducing endothelial dysfunction and insulin resistance (Micha
and Mozaffarian, 2009). Artificial TFAs are associated with an
increased risk of atherosclerosis and CV events (Valenzuela et al.,
2019). The level of plasma FFA was increased with carotid

Frontiers in Cell and Developmental Biology | www.frontiersin.org 8 July 2021 | Volume 9 | Article 673839156

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-673839 July 1, 2021 Time: 16:7 # 9

Li et al. Mitochondrial Dynamics in Atherosclerosis

atherosclerotic plaque in 320 patients with type 2 diabetes
mellitus (T2DM) through carotid artery ultrasound examination
and reporting, so reducing plasma FFA levels may be an effective
way to reduce T2DM (Tibaut et al., 2019). Previous studies have
reported that FFA can increase NO production, damage mtDNA
and induce apoptosis (Li et al., 2015a).

Lifestyle
In addition, sedentary time is an independent risk factor for
atherosclerosis and CVD, and at least one-third of deaths from
coronary heart disease or T2DM are associated with sedentary
time (Thijssen et al., 2010; Fletcher et al., 2018). In turn, exercise
enhances endothelial function, protects against oxidative stress
and inflammation, reduces the levels of TG, ApoB, and LDL,
and increases HDL (Cai et al., 2018). Studies have shown that
long-term aerobic exercise can reduce the formation of ROS
and mitochondrial swelling in aortic endothelial cells of aged
rats, increase the content of mtDNA, and reduce the vascular
sclerosis and endothelial dysfunction caused by aging (Gu et al.,
2014). However, it should be noted that excessive and overloaded
exercise can also induce mitochondrial disorders, cause heart
abnormalities, chronic fatigue syndrome and other diseases
(Ostojic, 2016). Studies have confirmed that strenuous exercise
can cause muscle dysfunction and increase mitochondrion fission
(Pataky and Nair, 2021).

Anti-atherosclerotic Drugs Targeting
Mitochondria
Antioxidants
Selective mitochondrial-targeting drugs such as mitochondrial
antioxidants are being tested in preclinical and clinical trials
(Kiyuna et al., 2018). Some natural Chinese medicine ingredients
with antioxidant effects have also been gradually discovered
(Table 1). For example, luteolin exhibits antioxidant properties
in HUVECs that significantly reverse the symptoms of oxidative
stress in atherosclerosis (Wu et al., 2018). Resveratrol has
been shown to promote mitochondrial fusion and can improve
endothelial cells by maintaining mitochondrial membrane
proteins and reducing ROS, and may be used in the prevention of
atherosclerosis (Yu et al., 2019). Studies have found that Ilexgenin
A inhibits palmitate-induced Drp1 expression and mitochondrial
fission by regulating proteases, reduces the production of ROS
and inflammatory factors, improves endothelial dysfunction,
and reduces atherosclerosis (Zhu et al., 2019). Salidroside is
considered to be an antioxidant with anti-cardiovascular and
vascular protective effects. It can inhibit VSMC proliferation,
Drp1 expression and oxidative stress, and up-regulate Mfn2
expression, which may improve the proliferation of VSMCs
induced by high glucose (Zhuang et al., 2017). Corylin, a
flavonoid compound, inhibits the proliferation of VSMCs
induced by platelet-derived growth factor-BB (PDGF-BB) by
regulating mTOR/Drp1, and reduces atherosclerotic lesions in
ApoE−/− mice (Chen et al., 2020).

Mitochondrial Homeostasis Regulator
Therapeutic strategies for maintaining mitochondrial
homeostasis are already under study. MitoTEMPO, a

mitochondrial-targeted SOD mimic, can reduce mitochondrial
superoxide anions in high-fat diet mice, reduce the production of
mitoROS, and prevent cardiomyocyte hypertrophy in the hearts
of diabetic mice (Ni et al., 2016). Currently, specific inhibitors of
mitochondrial fusion (M-hydrazone) and fission (MDIVI-1 and
P110) are under investigation (Cassidy-Stone et al., 2008; Qi et al.,
2013). mtDNA is an important cause of ROS production and
mitochondrial damage. Mitochondrial miRNA is involved in the
post-transcriptional regulation and metabolism of mitochondrial
gene expression, ROS production and lipid metabolism, and
can lead to abnormal mitochondrial function and increased
oxidative stress, such as miR-484 inhibition of Fis1 expression. In
addition, related research regarding mtDNA and mitochondrial
miRNA may be a future direction for diagnosis and treatment of
mitochondrial-related diseases (Song et al., 2019).

AMPK Regulator
Some drugs are aimed at regulating the levels of mitochondrial
fusion and fission proteins by activating AMPK kinase, inhibiting
ROS and inflammation and thereby improving endothelium,
and prevent and treat atherosclerosis (Apostolova et al.,
2020). For example, Coenzyme Q10 (CoQ10) is one of the
components of the mitochondrial respiratory chain, which
performs electron transfer, reduces oxidative stress damage and
improves mitochondrial function. In vivo studies have shown
that CoQ10 may negatively regulate YAP by activating AMPK
and promote the expression of OPA1 to improve mitochondrial
function, inhibit ROS production, and improve atherosclerosis
(Xie et al., 2020). Thiazolidinediones such as pioglitazone as
PPARγ inhibitors can activate AMPK and increase the expression
of genes related to mitochondrial function. Studies have shown
that AMPK activation regulates Drp1 phosphorylation to help
inhibit the activation of mitochondrial ROS and TXNIP/NLRP3,
thereby improving endothelial dysfunction (Li et al., 2015b).

NLRP3 Regulator
In atherosclerosis, oxidative stress and mitochondrial
dysfunction are important mechanisms leading to NLRP3
activation. NLRP3 activation is closely related to mitochondrial
damage (Ding et al., 2014). Fatty acid-mediated mitochondrial
cartilage uncoupling promotes the release of NLRP3-dependent
interleukin-1α (IL-1α) and aggravates the progression of
atherosclerosis (Freigang et al., 2013). Both in vivo and
in vitro studies have shown that Drp1-mediated mitochondrial
fission is the cause of the activation of NADPH and NLRP3
inflammasomes in endothelial cells (Li et al., 2016). Statins
mainly act by inhibiting 3-hydroxymethyl-3-glutaryl CoA
(HMG-COA) reductase to reduce intracellular cholesterol
biosynthesis. Approximately 40% of patients who fail to achieve
their target levels after high doses of statins are treated with a
combination of statins and other drugs (Boekholdt et al., 2014).
In addition to lowering cholesterol, statins can also improve
the endothelium through antioxidant activity to play an anti-
atherosclerotic effect (Oesterle et al., 2017). In vivo studies found
that mitochondrial ROS levels in mice treated with rosuvastatin
are decreased, NLRP3, caspase-1 and IL-β levels decreased,
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TABLE 1 | Natural compounds target mitochondrial to ameliorate atherosclerosis.

Natural
compounds

Sources Cell types Changes to
mitochondrial

Effects on mitochondria and
atherosclerosis

References

Resveratrol Polygonum
cuspidatum

HUVECs Mfn1, Mfn2 and OPA1↑,
fission↓, ROS↓

Attenuated endothelial oxidative injury
by regulating mitochondrial fusion,
inhibiting mitochondrial fission via
TyrRS-PARP1 signaling pathway.

Yang et al.,
2019

Salidroside Component of
Rhodiola rosea

VSMCs isolated from
aorta of male

Sprague Dawley (SD)
rats

Drp1↓,Mfn2↑, fission↓,
ROS and NADPH↓

Inhibits high glucose induced
proliferation of VSMCs by inhibiting
mitochondrial fission and regulating
oxidative stress

Zhuang et al.,
2017

Corylin Psoralea
corylifolia L.
(Fabaceae)

HUVECs A7r5 VSMC
and RAW264.7 cells

Drp1 and Drp1
phosphorylation↓, fission↓,

ROS↓

Inhibited the proliferation and migration
of mammalian VSMC, in which
rapamycin target protein
(mTOR)/Dynamin-1 like protein 1
(Drp1) played an important role.

Chen et al.,
2020

Ilexgenin A Ilex hainanensis
Merr.

RAECs and HUVECs Drp1↓, fission↓ ROS↓,
NO↑

Promote the expression of PSMB5,
inhibit ROS production and Drp1 in a
Nrf2 dependent manner, thereby
inhibiting mitochondrial fission and
improving endothelial dysfunction.

Zhu et al., 2019

Berberine Coptis
chinensis
Franch

mouse podocytes Drp1↓, MFF↓, Fis1,
fission↓, ROS↓

Improve the mitochondrial damage of
glomerular podocytes in DKD mice by
inhibiting Drp1, Fis1 and mitochondrial
fission.

Qin et al., 2019

Quercetin Component of
hawthorn

Calcifying VSMCs Drp1↓, fission↓, ROS↓ Improve mitochondrial cristae rupture,
inhibit mitochondrial fission, reduce
ROS production, reduce apoptosis of
VSMCs, thus alleviate adenine induced
aortic calcification in rats.

Cui et al., 2017

Vitexin Component of
hawthorn

H9c2 cells Mfn2↑, Drp1↓, fission↓,
ROS↓, inhibited the release

of Cyt-c, MMP(1ψm)↑,
ATP↑

Protects H9c2 cells from I/R-induced
mitochondrial dysfunction and
significantly reduces ROS level by
alleviating myocardial I/R injury in rats.

Xue et al., 2020

Crocin Ingredient of
saffron

Cells from muscle
tissue of rats

Mfn2↑, Drp1↓ Change insulin resistance index and
glucose homeostasis in diabetes by
improving mitochondrial fusion and
fission indices.

Peyravi et al.,
2020

Baicalin Baikal Skullcap Rat
pheochromocytoma

PC12 cells

Drp1↓, fission↓, Mfn2↑,
Drp-1 Ser637

phosphorylation↑,
MMP(1ψm)↑, ROS↓,

Protected against hyperglycemia
aggravated I/R injury by regulating
mitochondrial functions in a manner
dependent on AMPK.

Li et al., 2017

HUVECs, human umbilical vein endothelial cells; RAECs, rat aortic endothelial cells; VSMCs, vascular smooth muscle cells; Drp1, dynamin-related protein; Mfn1, mitofusin
1; Mfn2, mitofusin 2; OPA1, optic atropy-1; ROS, reactive oxygen species; NADPH, nicotinamide adenine dinucleotide phosphate; MFF, mitochondrial fission protein;
Fis1, mitochondrial fission protein 1; Cyt c, cytochrome C; MMP (1ψm), mitochondrial membrane potential; DKD, diabetic kidney disease; I/R, ischemia/reperfusion.

mitochondrial damage was reduced, and myocardial fibrosis and
infarct size were significantly reduced (Chen et al., 2021a).

CONCLUSION AND PERSPECTIVES

Atherosclerosis is a disease caused by multiple complex factors.
A high-fat and high-calorie diet leads to the deposition of lipid
particles, and ox-LDL produces a series of complex oxidative
stress and inflammatory responses to endothelial stimulation,
eventually forming foam cells and typical atheromatous
plaques. In recent years, an increasing number of studies have
shown that atherosclerosis may be related to mitochondrial
fusion and fission. Cardiomyocytes consume substantial
amounts of energy, and mitochondria produce ATP through
oxidative phosphorylation. The dynamic homeostasis of
mitochondria is essential to ensure normal functioning.

Multiple studies have shown that mitochondrial dynamic
dysfunction, such as mitochondrial over-division due to the
absence of the fusion protein Mfn2 or overexpression of Drp1,
can lead to CVD progression. The mechanisms involved
in atherosclerosis may be closely related to mitochondrial
fusion and fission.

In addition to lifestyle improvements and drugs such as
statins, new types of antioxidants and mitochondrial regulators
such as mdivi-1 have become research hotspots for the
treatment of atherosclerosis. Exploration of treatment options
for atherosclerosis is warranted; however, this is difficult
because only a few classes of drugs are available for treatment,
lipid-lowering therapy standards have not been agreed upon,
and the cost of new drugs remains unaffordable. Moreover,
the mechanisms involved in mitochondrial dynamics are
relatively complex and their study is limited as the models
are affected by many factors. Therefore, studies on the
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role of mitochondrial dynamics in atherosclerosis are at the
basic research stage and lacks validation based on large-scale
clinical studies. While mitochondrial dynamic homeostasis may
play a role in atherosclerotic therapy, this hypothesis needs
further confirmation.
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