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Editorial on the Research Topic

Understanding the crosstalk between immune cells and the tumor

microenvironment in cancer and its implications for immunotherapy

This editorial features the articles published in this Research Topic in Frontiers

in Medicine. This Research Topic aimed to uncover the complex interactions between

tumor cells, immune cells, and their microenvironment, as well as their implications in

cancer immunotherapy. Also, this topic aimed to provide insights into various crosstalk

mechanisms that could be translated into the clinics. A case report by Liu et al. reported a

68-year-old male with chemotherapy-intolerable stage IV intrahepatic cholangiocarcinoma.

This study revealed that the biomarkers predicting the response to immunotherapy failed to

accurately capture the treatment response and clinical benefit of anti-PD-1 immunotherapy

(Liu et al.). Moreover, lung metastasis occurred despite the shrinkage of the primary

liver tumor and metastasis in the lymph nodes when anti-PD-1 immunotherapy was

combined with radiotherapy. However, with the continued administration of radiotherapy

and immunotherapy, a complete response was evident for the primary tumor and metastatic

lesions with no treatment-related adverse effects.

Another study discussed another immunotherapeutic approach which is cytokine-based

therapy (Razeghian et al.). The toxicity of cytokine-based therapeutics is attributed to the

high doses required to reach the anticipated outcome, which limited their clinical utility

and led to the employment of mesenchymal stem/stromal cells (MSCs) as potential vehicles

for cytokine delivery in various tumors owing to their relatively low immunogenicity and

tumor tropism (Razeghian et al.). Despite their unfavorable effects on drug resistance and

metastasis, the use of MSC-based cytokine delivery systems can lead to effective immune

cell-induced anti-tumor response and provide sustained cytokine release. Current research

advances suggest that the combined use of engineered MSCs and small molecules could

result in their notable safety and therapeutic efficacy.
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The systemic review by Numprasit et al. highlighted the

association between the expression of carbonic anhydrase IX

(CAIX), a reliable endogenous marker of hypoxia, and BC patients’

survival. It was reported that high expression of CAIX was

associated with poor disease-free survival (DFS) in 9,157 BC

patients. Furthermore, upon classifying BC patients according to

their molecular subtypes, high CAIX expression was found to be

associated with poor DFS and overall survival (OS) in the triple-

negative subtype and a shorter DFS in the hormonal-positive

subtype. This indicated that high CAIX expression is a poor

prognostic indicator regardless of the subtypes and could be a

potential therapeutic target in BC.

Hua et al., in this study, focused on the association

between ovarian aging and BC risk. In this research article,

the authors performed a multicohort genetic analysis, where

clinicopathological data and gene expression data for 3366

BC patients were retrieved and analyzed. The results showed

that the eight-validated Ovarian aging-related genes (OARG)-

based signature established a prognostic model for BC using

independent cohorts. Furthermore, a nomogram with good

predictive performance was implemented by incorporating the

OARG risk score with the clinicopathological factors. It is

also worth noting that the OARG-based signature correlated

with DNA damage repair, immune cell signaling pathways, and

immunomodulatory functions. Collectively, this study postulated

a comprehensive analytical method for BC assessment based on

a unique eight OARG signature, which could accurately predict

clinical outcomes and drug sensitivity of BC patients.

Decoding genomic and epigenetic changes in tumor cells has

helped scientists comprehend the nature of cancer and find curative

ways, including the contemporary notion of immunotherapies.

The mini-review article by Talaat and Kim discussed the tumor

microenvironment (TME) as a compartment guiding the dynamic

interplay of different cell types. Also, they reviewed numerous

initiatives, such as data-driven strategies, that will quickly advance

our knowledge of the environment in which tumor cells thrive,

leading to novel findings of prognostic indicators and eventually

resulting in overcoming resistance to management.

The TME is known to consist of tumor-infiltrating lymphocytes

(TILs), tumor-associated macrophages (TAMs), and tumor-

associated neutrophils (TANs). The review by Talaat et al. highlights

the several immune checkpoint molecules that are expressed on

these immune cells and their interaction with colon cancer cells.

Thus, novel approaches for therapy for solid tumors such as

colorectal cancer (CRC) are targeting immune checkpoint markers;

however, there are still obstacles to successful treatment. On the

other hand, the article by Liu and Wang reviewed the use of

TAMs in immunotherapy.Whilst macrophages are phagocytic cells

that perform a variety of roles in the protection against external

invaders, TAMs enhance tumor development and progression by

supporting tumor cell division and invasion, immunosuppression,

and angiogenesis, which is linked to the poor prognosis in the

majority of solid tumors. As a result, an in-depth understanding

of TAMs can lead to the discovery of more successful cancer

treatment methods. Currently, a significant number of TAM-

targeting medicinal drugs are in clinical studies.

The article by Banna et al. explored new techniques for

quantitative image analysis, like radiomics or pathomics, which

may provide a thorough method for analyzing spatial and

temporal data from macroscopic imaging features that may

be indicative of underlying molecular drivers and tumor-

immune microenvironment in addition to the prognosis after

immunotherapy. Additionally, merging data from other sources,

such as blood levels, molecular characteristics, radiomics, and

pathomics can boost the precision of their models. As a result,

“digital biopsy”, as a non-invasive digital method, may have the

ability to enable a tailored strategy for cancer patients.

Due to the limitations of immunotherapy in CRC, the review

by Mahgoub et al. explores the manipulation of autophagy as a

possible adjuvant therapeutic method for patients with different

molecular subtypes of CRC. Themolecular regulation of autophagy

in CRC and how it impacts numerous mechanisms and processes

that regulate TME, as well as its role in the development of CRC,

tumor immunity, hypoxia, and oxidative stress. Moreover, the

clinical efforts and difficulties associated with combining autophagy

modulators with other cancer-targeted drugs were discussed to

improve CRC patients’ survival and slow disease progression.

Rashid et al. reviewed the diagnosis, prognosis, and therapeutic

approaches of CRC by shedding light on non-steroidal anti-

inflammatory drugs (NSAIDs) that are commonly used as

analgesics and anti-inflammatory agents. They have highlighted

that NSAIDs possess a potent chemo-preventive effect on

several gastrointestinal malignancies, including CRC, in several

epidemiological and preclinical studies. The authors also described

the molecular mechanisms postulated by which NSAIDs could

act as chemo-preventive agents by preventing the synthesis of

prostaglandins and resulting in NSAID-induced apoptosis and

CRC growth inhibition.

Currently, an increasing number of studies examine the

role of RNA modifications such as N7-methylguanosine (m7G)

in tumors. A significant m7G-related signature, known as

the m7G score, was elucidated based on four principal genes,

namely E2F7, FAM83A, PITX3, and HOXA13, for predicting the

immune infiltration and prognosis of lung adenocarcinoma

(LUAD) (Li et al.). The m7G score could preferentially

differentiate between two distinct molecular subtypes of

LUAD. Moreover, the higher m7G score indicated poorer

prognosis, higher immune infiltration, significant PD-1 and PD-L1

upregulation, higher tumor mutational burden, and lower tumor

immune dysfunction and exclusion scores. Such an approach

could aid in the advancement of novel therapeutic strategies

for LUAD.

Zajac et al. focused in their review article on MAGE-

A antigens, which are the first identified molecular human

tumor-associated antigens. The authors shed light on their

high tumor specificity and their potential usage as attractive

targets for cancer immunotherapies. The review article

was mainly focusing on structural features and functional

aspects of MAGE-A antigens. Nonetheless, the authors

reviewed all past and ongoing clinical studies targeting

MAGE-A antigens, as well as the pros and cons of different

therapeutic approaches.
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MAGe-A Antigens and cancer 
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MAGE-A antigens are expressed in a variety of cancers of diverse histological origin 
and germinal cells. Due to their relatively high tumor specificity, they represent attractive 
targets for active specific and adoptive cancer immunotherapies. Here, we (i) review past 
and ongoing clinical studies targeting these antigens, (ii) analyze advantages and disad-
vantages of different therapeutic approaches, and (iii) discuss possible improvements in 
MAGE-A-specific immunotherapies.

Keywords: MAGe-A, cancer–testis antigens, cancer immunotherapy, clinical trials, adoptive immunotherapy

MAGe-A tUMOr-AssOciAteD ANtiGeNs

MAGE-A were the first human tumor-associated antigens identified at the molecular level (1). 
They belong to the larger family of cancer/testis antigens (CTA), whose expression is consistently 
detected in cancers of different histological origin and germinal cells (2). The MAGE-A sub-family 
includes 12 highly homologous genes located on chromosome Xq28 (3, 4). Specific gene products 
have been identified by immunohistochemistry in cancers of different histological origin, includ-
ing high percentages of non-small cell lung cancers (NSCLC), bladder cancers, esophageal and 
head and neck cancers, and sarcomas (5). These antigens are also frequently expressed in triple 
negative breast cancers (6), myeloma (7), and Reed–Sternberg cells (8) in Hodgkin’s disease, with 
the highest frequency being detected in synovial sarcoma (9). Among healthy tissues, the expres-
sion of specific members of the family has been observed in spermatogonia, placenta (10), and 
fetal ovary (11). However, recently, MAGE-A1 and -A12 genes have been shown to be expressed 
in CNS as well, as discussed below (12).

FUNctiONAL AsPects OF MAGe-A ANtiGeNs

Preferential intracellular location may be different for different antigens, e.g., mostly cytoplasmic for 
MAGE-A1, -A3, and -A4, but mostly nuclear for MAGE-A10 (13–16).

Functions are still unclear, although different studies have associated MAGE-A2, -A3/6, and -A9 
expression with pro-tumorigenic activities such as p53 dysregulation (17–19), enhanced tumor cell 
proliferation potential, or maintenance of a cancer-stem cell-like functional profile (20).

In a variety of tumors of different histological origin, a clear correlation between expression 
of MAGE-A antigens and poor prognosis has been observed. In this context, data on bladder 
cancer (21, 22), NSCLC (23, 24), head and neck cancers (25–27), and ovarian cancer (28, 29) 
have consistently been reported. Indeed, MAGE-A antigen expression, at the gene and protein 
level, has repeatedly been shown to be associated with widespread DNA demethylation frequently 
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observed in advanced cancers. On the same line, it has been 
shown to be inducible by demethylating agents, including 
chemotherapeutic compounds widely used in cancer treatment 
such as 5-aza-2′-deoxycytidine (30, 31), thus realistically envis-
aging the possibility of treatments combining chemotherapy and 
specific vaccination (32).

iMMUNOGeNicitY OF MAGe-A 
ANtiGeNs

Although peptides restricted by both HLA classes I and II have 
been identified (33), naturally occurring adaptive immune 
responses to MAGE-A antigens are usually characterized by a 
very low frequency of specific precursors (34) in both healthy 
donors and patients bearing cancers expressing them (35). 
However, responses to MAGE-A10 have been more frequently 
detected (36, 37). Responses in tumor-associated lymphocytes 
(TIL) have seldom been explored, but we have observed that 
MAGE-A10-specific CTL could be expanded from TIL infiltrat-
ing NSCLC displaying a high expression of the target antigen 
(38). On the other hand, CTL recognizing peptide motifs 
shared by multiple MAGE-A proteins may be generated from 
peripheral blood from patients and healthy donors (39). Most 
recently, tumor reactive CD8+ T  cells, isolated based on their 
expression of activation marker (PD-1) from peripheral blood 
of melanoma patients, have been shown to relatively frequently 
target MAGE-A antigens (40).

cLiNicAL triALs tArGetiNG MAGe-A 
ANtiGeNs

In the past 10  years (2006–2016), a total of 44 clinical trials 
could be identified in “https://clinicaltrials.gov” database using 
“MAGE-A” as keyword: a total of 16 phase 0 or I, 13 phase I/
II, 13 phase II, and 2 phase III studies. Regarding immunogen 
formulations, 16 studies utilized entire proteins in the presence 
or absence of adjuvants (41, 42), 11 used peptides (43–45), 6 used 
mRNA-transfected DC (46, 47), 1 was based on tumor cell lysate-
pulsed DC, 2 took advantage of recombinant viral vectors (48, 
49), and more recently, 6 and 2 trials, respectively, have focused 
on adoptive treatments by using specific T cell receptor (TCR)-
transduced T cells (12) or expanded CTL (50).

Efficacy clinical data published so far, from patients immu-
nized in the context of the 15 larger studies (phase II or III, 
Table S1 in Supplementary Material) mainly using MAGE-A 
protein (n = 11), do not appear to support significant clinical 
effectiveness (51).

Of interest, a chronological analysis of these 44 studies clearly 
underlines a strategy shift in the most recent years. Indeed, in 
the past 4  years, among the (only) 10 clinical studies initiated 
and including MAGE-A as antigens, there are no phase II or 
III studies. Moreover, the majority of the phase I or I/II studies 
are based on adoptive cell transfer. This “shift” in MAGE-A 
translational research strategy clearly results from the combined 
effect of “protein/peptide” efficacy failure and from the confi-
dence generated by new approaches focusing on personalized 

effector T-cell treatment. In addition, one should also mention 
the shift in target paradigm from classical TAA to neo-antigens 
also contributing to the decreased use of MAGE-A antigens.

MAGe-A3 PrOteiN As iMMUNOGeN

One of the most important clinical trials ever performed in 
MAGE-A cancer immunotherapy, involving thousands of 
patients with NSCLC, was focusing on the administration of 
recombinant MAGE-A3 protein together with adjuvants (52, 
53). Despite promising initial data and the proven ability of the 
immunization protocol to induce detectable humoral responses 
in vaccinated patients (54), disease-free interval in patients with 
completely resected stage IB, II, and IIIA NSCLC did not appear 
to be significantly prolonged, as compared to patients of control 
group, in phase III studies in the context of an adjuvant therapy 
setting (41).

Why did these trials fail to reach efficacy? First, similar to 
MAGE-A antigens, a large majority of classical TAA-specific 
cancer vaccines clinically tested so far have been shown to induce 
heterogeneous immune responses rarely resulting in significant 
clinical effects.

However, specific issues should be considered for CTA-
specific immunization. For instance, MAGE-A CTA expres-
sion, a pre-requisite for the eligibility of patients for treatment 
in these studies, has usually been assessed at the gene level by 
quantitative RT-PCR (RT-qPCR) (41, 54), which cannot provide 
insights into the actual numbers of CTA-positive tumor cells. 
Immunohistochemical studies using available MAGE-A-specific 
mAbs consistently underline that expression of these antigens 
might be highly heterogeneous in cancerous tissues with high 
expression often only detectable in relatively low percentages of 
tumor cells (10, 55). Remarkably, due to the high homology of 
sequences from different components of the MAGE-A family, 
a majority of currently available reagents do recognize multiple 
antigens. Our own experience based on the use of a MAGE-A10 
highly specific mAb (Figure 1) suggests that expression of these 
antigens may be highly heterogeneous in a variety of tumors of 
different histological origin, with percentages of “positive” cells 
ranging between 5 and >60% (16). One could speculate that 
criteria based on the expression of target antigen(s), at the protein 
level, in high percentages of tumor cells and in multiple areas 
of primary and metastatic cancers could be applied for a more 
stringent selection of patients potentially eligible for MAGE-A-
targeted antitumor immunization. Additionally, it might be of 
interest to verify the expression of the target MAGE-A antigen in 
recurrent tumors following specific immunization protocols, to 
verify possible selective immune editing (56). It is worth noting, 
however, that successful antigen-specific vaccination has also 
been shown to be able to promote responsiveness against unre-
lated antigens, the so-called “antigen spreading” phenomenon 
(57), thus potentially overcoming the requirement for a uniform 
expression of target antigens in tumors to be treated.

Importantly, the recombinant protein used in most efficacy 
studies was shown to induce humoral response and HLA class 
II-restricted lymphoproliferation, as expectable (41, 53, 54). 
However, the ability of these antigen formulations to promote 
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tAbLe 1 | MAGe-A gene expression, as detected by rt-qPcr in primary 
non-small cell lung cancers (NscLc) and in corresponding lymph nodes 
(LN) showing evidence of metastatic outgrowth by standard clinical 
pathology techniques.
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Tissues obtained from surgical resections from patients with NSCLC were tested 
by RT-qPCR for Mage-A1, -A2, -A3, -A4, -A10, and -A12 gene expression. 
Positivity (+) was defined by expression of at least one target gene above threshold 
(threshold = delta Ct to β-actin < 10). LN were similarly assessed by RT-qPCR and 
standard clinical pathology scoring.

FiGUre 1 | Heterogeneity of MAGe-A10 expression at the protein level. Melanoma tissues from a multi-tumor tissue microarray were stained with a 
MAGE-A10-specific reagent by standard techniques, as previously detailed (16). Antigen expression displays a high heterogeneity, regarding both percentages of 
antigen-positive tumor cells and staining intensity.
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class I-restricted responses appears to be more limited. One 
could speculate that libraries of overlapping “long” peptides (58), 
or highly immunogenic recombinant vectors (38, 59), could be 
more effective in this regard.

HeterOGeNeOUs eXPressiON OF 
MAGe-A GeNes iN PriMArY AND 
MetAstAtic cANcers

Studies from our group clearly document the heterogeneity of 
MAGE-A antigens expression at the gene expression level as well. 
We tested by RT-qPCR the expression of Mage-A1, -A2, -A3, 
-A4, -A10, and -A12 genes in primary NSCLC from 33 patients 
(Table 1). In keeping with published data (23, 24), a total of 22 
tumors (66%) showed evidence of expression of at least one of the 
antigens under investigation. Similar to recently published data in 
oral cancer (60), out of these patients with MAGE-A+ NSCLC, 10 
(45%) had lymph nodes (LN) showing evidence of tumor metas-
tasis, as compared with only 2 (18%) from the 11 MAGE-A(−) 
primary tumors. Interestingly, among the 10 metastatic LN 
from MAGE-A+ primary cancers, only half showed evidence of 
MAGE-A gene expression. Furthermore, in four LN, classified 
as non-metastatic, based on pathological evidence, expression 
of MAGE-A genes could be observed by RT-qPCR. Intriguingly, 
among LN associated with MAGE-A− primary cancers, 1/2 and 

1/8 metastatic and non-metastatic samples, respectively, showed 
evidence of MAGE-A gene expression.

Taken together, these data suggest a higher sensitivity of 
RT-qPCR as compared to standard techniques for the detec-
tion of cancer cells within LN draining primary tumor tissues. 
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Most importantly, however, they confirm the dynamic nature 
of MAGE-A antigens expression during cancer progression and 
may support the concept of combination therapies including 
treatments promoting MAGE-A antigen expression together 
with specific immunization procedures (61).

ADOPtive iMMUNOtHerAPies

In recent clinical studies, effector T cells, transduced with vectors 
encoding for specific TCRs recognizing peptides from MAGE-A3 
or MAGE-4, have been adoptively transferred into patients bear-
ing tumors expressing these antigens. Unfortunately, upon anti-
MAGE-A3, HLA-A0201-restricted TCR gene therapy, despite 
measurable clinical responses in some patients, treatment-related 
severe adverse events and deaths were also reported. These 
events may possibly be due to the high affinity of these TCRs (see 
below) and to the recognition (“on-target/off-tumor”) of highly 
homologous peptide(s) from other MAGE-A proteins expressed 
in the CNS (12, 62). Similarly, myocardial toxicity, resulting in 
treatment related death, has also been observed following gene 
therapy with a MAGE-A3-specific HLA-A0101-restricted TCR 
(63, 64). In the latter case, the “off-target” effect was attributed to 
the high homology between the target peptide and a peptide from 
Titin muscle protein.

It is worth noting that the TCR transduced into T cells in the 
first study originally derived from “humanized” mice expressing 
HLA-A0201 and its affinity toward the target antigen was further 
improved by site-directed mutagenesis (65), thus increasing the 
chances of “on-target_off-tumor” adverse events affecting tis-
sues characterized by low but detectable expression of defined 
MAGE-A antigens (12). The affinity of the TCR used in the 
second study, originally derived from a patient immunized with a 
recombinant viral vector (66), was also enhanced by site-directed 
mutagenesis.

By contrast, T cells expressing a MAGE-A4-specific TCR have 
been safely used in adoptive immunotherapy of patients with 
recurrent esophageal cancer (67).

Taken together, these data suggest that the clinical use of 
enhanced TCR effectors targeting MAGE-A antigens for cancer 
immunotherapy should be carefully evaluated in order to mini-
mize potential “off-tumor” side effects.

However, natural MAGE-A-specific TCRs, from clones 
derived from tumor bearing patients or healthy donors, might 
also be of interest. Such CTLs would probably be characterized 
by a lower affinity for cognate HLA–class I peptide complex and 
possibly by a lower antitumor effector potential, but they would 
also likely have less toxic side effects. Considering the cumulative 
potency related to the high numbers of transduced cells usually 
infused into treated patients, and their ability to proliferate and 
generate “memory,” the effectiveness of this type of treatment 
should reasonably be further tested.

cONcLUsiONs

Taken together, published data may suggest that therapeutic 
strategies targeting MAGE-A antigens have so far failed to fulfill 
the promise of representing effective tools for cancer treatment. 

However, the understanding of mechanisms controlling immune 
response as a whole and cancer-specific immune responses in 
the tumor microenvironment in particular has made enormous 
progress in the past decade, generating an unprecedented 
“momentum” for cancer immunotherapy.

Successful utilization of therapeutic mAbs recognizing 
“immunological checkpoints” is currently generating enormous 
interest in clinical oncology. Their mechanisms of actions (MoA) 
are not fully clarified (68, 69). However, one of the main MoA is 
arguably represented by the “release of brakes” hampering T cell 
responses specific for tumor-specific or associated antigens. This 
hypothesis is supported, for instance, by the higher effectiveness 
of treatment with anti CTLA-4 therapeutic mAbs in cancers 
characterized by a high mutational load, likely to result in a 
higher expression of mutated proteins potentially recognized as 
“non-self ” by the adaptive immune system (70). It is therefore 
reasonable to postulate that adequately timed combinations 
of vaccination procedures and administrations of therapeutic 
“checkpoint inhibitor” specific mAbs could be of high clinical 
relevance. Within this framework, a critical point might be 
represented by the choice of antigens of potential clinical use. 
Neo-antigens, e.g., tumor-specific mutated proteins have been 
successfully identified by whole exome sequencing (71–73), 
and the expression of defined antigenic “non-self ” peptides 
associated with restricting HLA class I determinants may be 
detected by mass spectrometry techniques (74). Although highly 
appealing, the “personal” nature of neo-antigens might possibly 
also represent their Achilles’ heel, not only because of regulatory 
hurdles (75) but also because it would likely prevent the perfor-
mance of conventional randomized trials, thereby complicating 
a reliable assessment of the effectiveness of innovative treatment 
procedures.

Based on these considerations, vaccination with tumor-asso-
ciated or CTA could still realistically find an important place in 
cancer immunotherapy in the era of “immunological checkpoint” 
inhibitors (76). Considering that MAGE-A antigens are expressed 
in tumors with poor prognosis and a scarcity of therapeutic 
options, such as TNB, and lung and esophageal cancers, it is easy 
to predict that the interest of the scientific community in CTA 
might actually be revived in the light of the enormous advances 
in cancer immunotherapy of the last years.
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Immunotherapy by immune checkpoint inhibitors has emerged as an effective treatment

for a slight proportion of patients with aggressive tumors. Currently, some molecular

determinants, such as the expression of the programmed cell death ligand-1 (PD-L1)

or the tumor mutational burden (TMB) have been used in the clinical practice as

predictive biomarkers, although they fail in consistency, applicability, or reliability to

precisely identify the responding patients mainly because of their spatial intratumoral

heterogeneity. Therefore, new biomarkers for early prediction of patient response to

immunotherapy, that could integrate several approaches, are eagerly sought. Novel

methods of quantitative image analysis (such as radiomics or pathomics) might offer a

comprehensive approach providing spatial and temporal information from macroscopic

imaging features potentially predictive of underlying molecular drivers, tumor-immune

microenvironment, tumor-related prognosis, and clinical outcome (in terms of response

or toxicity) following immunotherapy. Preliminary results from radiomics and pathomics

analysis have demonstrated their ability to correlate image features with PD-L1 tumor

expression, high CD3 cell infiltration or CD8 cell expression, or to produce an image

signature concordant with gene expression. Furthermore, the predictive power of

radiomics and pathomics can be improved by combining information from other

modalities, such as blood values or molecular features, leading to increase the accuracy

of these models. Thus, “digital biopsy,” which could be defined by non-invasive

and non-consuming digital techniques provided by radiomics and pathomics, may

have the potential to allow for personalized approach for cancer patients treated

with immunotherapy.
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INTRODUCTION

In the data deluge era, there is a unique opportunity to
explore biological processes at multiple scales. Deriving useful
information from data, often poorly structured, at large scales,
led to the emergence of the so-called “-omics” disciplines
(genomic, transcriptomic, proteomic, metabolomic, etc.)
(1). Powerful bioinformatic tools allow for high-throughput
extraction processes that convert images into data, from which
biostatistical analysis, combined with clinical or other “-omics”
data, may enhance diagnostic accuracy and find new predictive
or prognostic factors (2). Applied to radiological images (most
often computed tomography [CT], magnetic resonance [MR]
imaging, and positron-emission tomography [PET]), it is called
radiomics, which has been the pioneer in the field of images data
analysis. Pathomics, that is a more recent discipline, ensues when
the same processes are being applied to histopathological images.

In this review, we describe the basic background based
on which these new disciplines have emerged and the
important steps involved in imaging acquisition to clinical
supporting correlations. Selected radiomics and pathomics
reports will illustrate achievements in this field, with a focus
on immunotherapy. Challenges and future development will be
then considered.

BACKGROUND FOR RADIOMICS AND
PATHOMICS

The founder hypothesis supporting the use of radiomics and
pathomics in medical care is that data derived from images
have a correlation with the underlying biological processes.
More precisely, data derived from images would give additional
information in relation with the underlying biological processes
in comparison with the visual interpretation of the image as a
picture, which is the traditional way of interpreting images (3).

Radiomics and, at a lesser extent, pathomics, fill the need
to assess tumor heterogeneity. The presence, within the tumor,
of distinct molecular cell clones, is a hallmark of cancer
physiopathology (4). Natural history of cancer, as well as
resistance mechanisms acquired through therapeutic selective
pressure, manifest spatial and temporal heterogeneity of tumor
cells (5, 6). Addressing tumor heterogeneity is one of the major
goals of new therapeutic approaches and blood biomarkers may
present limitations that could be overcome by radiomics and
pathomics. In particular, radiomics represents a promising non-
invasive and repeatable tool during the course of the disease.

Furthermore, traditional medical practice, based on human
visual interpretation of images, is known to be inaccurate in up to
20% of cases in radiology and almost the same discrepancy rates
are found in pathology reports (2). Despite many explanations
accounting for these reporting errors, the result is the high
prevalence of diagnosis unreliability, with clinical consequences
for patients.

As far as cancer immunotherapy is concerned, immune
checkpoint inhibitors (CPIs) have emerged as an effective
therapeutic option for patients with aggressive tumors such as

lung cancer (7, 8), although a few patients seem to benefit
from the long-term benefit from this treatment (9). Aiming
at identifying these patients, the expression of programmed
cell death ligand-1 (PD-L1) has been widely explored as a
predictive biomarker with contrasting results across different
tumor subtypes and several methodological issues, mostly related
to its variability and spatial intratumoral heterogeneity, that
have been undermining its role and use (10). Other predictive
biomarkers, such as the tumor mutational burden (TMB),
are currently poorly applicable in the clinical practice and,
noteworthy, identify a different sensitive population from the
one selected by the PD-L1 (11). Thus, there is a need for new
biomarkers to integrate into clinical practice in order to early
identify patient response (or progression) to CPIs and avoid their
potential sever toxicity (12–14).

PROCESS DESCRIPTION AND METHODS

Every “-omics” analysis requires a multistep process. Each stage
has its own specificities. Radiomics process has been established
as a model for other disciplines in image data analysis (such
as pathomics) and essentially consists in the following five
steps: image acquisition, identification of the target volumes,
segmentation of the volumes, features extraction from the
volumes and analysis [see Figure 1; (3, 15)].

After the first step, the identification of the volumes must
identify tumor location and determine distinct parts within
the tumor. These regions will be called habitats, and present
specific biological properties (blood flow, cell density, edema,
necrosis). Image data analysis can help to identify such habitats
(16) before data extraction. This step is intentionally done before
data extraction, thus giving additional data that would not be
automatically detected by subsequent data analysis (17).

The next step, the most critical one, is the segmentation. It
consists in contouring the volumes of interest. Its importance
derives from the fact that all the data extraction process will
be generated by each segmented volume, and any error at this
point could mislead further interpretation. Given inter-operator
variability and the time consuming of manual delineation, semi-
automated tools seem to be the most reliable and cost-effective
approaches to this step (18).

Next stages, highly technical, allow for high-throughput
extraction of quantitative data and their analysis. Data
extraction results in image-based “features.” These features
are mathematically and bioinformatically derived from images
through first-, second-, or higher order statistical processes.

Radiomics features could be “texture” feature, “tumor
heterogeneity” feature, etc. Quantitative features may be
presented based on histograms for each volume of interest.

Analysis of radiomics features, along with clinical data or
other “-omics” data try to find correlations with biological
processes. The analysis aims to define and validate image-derived
features as biomarkers that could have prognostic or predictive
values helping thus to support medical decisions.

Different methods could apply to exploit this process, but
we will exclusively describe, as an example to understand the
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FIGURE 1 | Essential steps of the radiomics/pathomics process.

full operation, the bio-inspired system we have been currently
investigating within a multi-disciplinary joint lab (engineers,
mathematicians, and clinicians) for pathomics and radiomics.
The mathematical core is based on recent Machine Learning
(ML) approaches. The high capability of the ML systems in
addressing complex problems and, in particular, those related to
healthcare and medical applications, has already been confirmed
(19, 20). As an additional validation, we have also implemented
a joined mathematical-ML system for the early discrimination
of skin lesions by dermoscopic images with high diagnostic
accuracy (21). The bio-inspired system is based on the correlation
between the tumor aggressiveness and fractal dimension of the
related lesions (22).

Currently, we have been testing this approach within two
specific subject areas. The first one in the field of pathomics
for lung cancer (reported in Figure 2A), regards specifically
the prediction of PD-L1 overexpression (a biomarker predictive
of response to immunotherapy in this tumor subtype) by the
analysis of histopathological hematoxylin stained images; this
could represent a useful guide to pathologists (and physicians).
The second one concerns radiomics for urothelial cancer and
it is aimed to correlate tumor response to immunotherapy with
CT-scans medical images and other blood data (i.e., radiomics).

Starting from these premises, for pathomics, we
have implemented a hyper-filtering pre-processing of
histopathological hematoxylin stained images (Figure 2A). Each
of the analyzed images has been converted from RGB (red-green-
blue) color spaces to luminance (Y) chrominance information
(CbCr) spaces with the divided gray-level representation of the
histopathologic image. The luminance Y gray-level images have
been then pre-processed by the hyper-filtering layer inside the
“Pre-processing Block” using an ad-hoc adaptive thresholds-
based approach in order to obtain a 1D representation of the
source gray-level Y images. From every pre-processed Y images,
the system computes the corresponding fractal dimension
according to the Hausdorf model allowing to obtain, through
an additional computing analysis, a time-series collection of
those fractal dimensions (23). These pathomics features, ensued
along with histopathologic image-features extracted by the
AutoEncoder system (that is designed with one hidden layer of
20 neurons) also included in the “Pre-processing Block” are fed
into a regression neural network learned by a classical Scalable
Conjugate Gradient (SCG) back-propagation algorithm, with the
final classification layer based on the SoftMax approach (21).

For the learning process (training phase), the authors used
70 percent of the histopathologic images while the remaining 30

percent serves for testing and validation. The learning dynamic of

the bio-inspired system and an example of the fractal dimension
time-series extracted from images are represented in Figure 2B.

For our radiomics project, the system is basically the same as
above described (Figure 2A) with the input being the sequence
of segmented CT-scan slices in which the lesion is visible
along with the possible association of normalized representation
of laboratory data (i.e., blood values). Through an innovative
patented approach, time-series mapped signals are extracted in
the pre-processing layer, starting from an ad-hoc analysis of the
morpho-geometric dynamic of the CT-scan lesion in each of the
slices. The resulting output (time-series data) feed, as a new input,
the regression neural layer and then the SoftMax classificatory,
which finally provide the binary discrimination of the positive or
negative response to the immunotherapy (Figure 2C).

RADIOMICS AND PATHOMICS
APPLICATIONS

Diagnosis (Early) and Classification
Computer-aided diagnosis and detection system (CAD) help
for better detection and diagnostic accuracy (24). Radiomics
analysis, although sharing some principles with CAD, do not
answer only a precise question (detection) but it is a complex
process looking for a correlation with biological mechanisms.
Magnetic resonance (MR) images from 147 patients with
confirmed prostate cancer showed that several MR derived
“texture” features were significantly different in benign and
malignant prostate tissue and in samples with different Gleason
scores (25). Another study confirmed that texture features
extracted from MR prostatic images could define with accuracy
not only the Gleason score but also score patterns: two patterns of
Gleason score 7 (“4+ 3” vs. “3+ 4”) were correctly discriminated
with 92% accuracy (26).

Pathomics studies were preceded by computer-aided-system
tools, with for instance a fractal analysis set, showing powerful
discrimination in grading prostatic cancer (27). In another
study, analysis from 39 patients with colorectal lesions finds
that analysis of multiscale texture features, extracted through
a “3D wavelet transform filter” from histopathological images,
were able to correctly distinguish different colorectal cancer
grades (28).

In the context of immunotherapy, Tang et al. associated
radiomics features with PDL1 expression and CD3 count in
two cohorts (training and validation cohort of n = 114 and
n = 176, respectively) lung cancer patients (29). Sun et al.
developed a radiomic signature for tumor-infiltrating CD8 cells
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FIGURE 2 | Bio-inspired system for radiomics and pathomics. (A) Bio-inspired system for pathomics in lung cancer; (B) the diagram on the left shows an example of

fractal dimension time–series extracted from a single histopathological hematoxylin stained image. The one on the right illustrates the learning dynamic of the system

during the training session: the lower (blue) curve shows the training dynamic (i.e., the progressive error reduction) while the middle (red) and the upper (green) curves

show the testing and validation, respectively; (C) bio-inspired system for radiomics in urothelial cancer. The pre-processing input data used arise from CT-scan images

and blood analysis data.
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in a retrospective multicohort study on overall 491 patients with
advanced solid tumors (30).

Prognosis
The prognostic value of radiomics was reported in 108 patients
with lung adenocarcinoma (separated in two independent
cohorts), radiomics features (including tumor shape complexity
and intratumor density variation) were strongly correlated with
overall survival (31). Furthermore, Aerts et al. analyzed 440
image-related features extracted from CT images of 1019 patients
with lung or head and neck cancer. They could find many
radiomic features having a prognosis value and built a prognostic
radiomic signature, which was found to be correlated with
underlying gene-expression patterns (32).

Pathomics could also yield prognostic information. Pathomics
features derived from the analysis of 2186 histopathological
images were explored to distinguish short-term and long-term
survivors in patients with non-small lung cancer. The survival
prediction model was validated on 294 additional images (33).

Pathomics and radiomics studies in glioblastoma patients
illustrated how correlations derived from different data
scales (neuroimaging, pathologic and genomic) may give a
deeper understanding of tumor biology and predict clinical
outcomes (34–37).

Regarding immunotherapy, in the above-mentioned
study of Tang et al. (29), a radiomic immune pathology-
informed model was developed. The model defined four
subsets of lung cancer patients significantly associated
with overall survival. A group of patients with favorable
prognosis was identified, harboring low CT intensity
and high heterogeneity (as radiomic features) and low
PDL1 with high CD3 infiltration, indicating a favorable
immune activity.

Outcome Prediction
To date, fewer works have explored the predictive value
of radiomics and pathomics features. MR images-derived
texture features from 58 breast cancer patients showed that
radiomic features before neoadjuvant chemotherapy could
predict response (38).

As far as immunotherapy is concerned, in the study of
Sun et al. (30), the radiomic-based biomarker of tumor-
infiltrating CD8 cells was validated in 3 independent cohorts
and showed predictive value for tumor response to the
anti-PD-1 or anti-PD-L1 therapy. Moreover, Colen et al.
elaborated a two-feature radiomic model in order to predict

immunotherapy-induced pneumonitis characterized by strong
internal accuracy (100%) (39).

FUTURE CHALLENGES OF
IMAGE-DERIVED FEATURES

Some challenges regarding the multistep process of radiomics
and pathomics still need to be adequately addressed.
Methodologically, quantitative image-derived features
biomarkers should undergo a multicenter prospective trial
to be validated, as it is for other biomarkers. Technically,
each step of image data analysis needs proper benchmarking
and reproducibility. Furthermore, curation of big data, time
processing and data sharing are other major challenges. In
this sense, great efforts have been made by the scientific
community to share tools (software, web-based platforms)
allowing physicians to explore image data analysis (40–42). The
Quantitative Imaging Network, for instance, initiated in 2008
and supported by the National Cancer Institute, is an example
of the importance of these new disciplines. Along with the
identification of biological biomarkers, assessed by longitudinal
repeated tumor samples taken by tissue biopsy and/or liquid
biopsy, we postulate that “digital biopsy,” as previously defined,
could allow to find potential correlation between biological
biomarkers and “radiomics and pathomics biomarkers,” and
have the potential to better define prognosis and prediction of
response. Interdisciplinarity and integration within “-omics”
disciplines and clinicians will certainly be of key importance for
greater precision in oncology diagnosis and treatment in the
next future.
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Due to the unsatisfactory robustness of current predictive biomarkers in many cases,

application of immunotherapy in advanced cancers with limited treatment options,

such as stage IV intrahepatic cholangiocarcinoma (ICC), was quite common. Hence,

strategies to enhance the therapeutic effect of immunotherapy or to extend the scope

of potential beneficial patients were urgently needed. Combination of radiotherapy and

anti-programmed death receptor-1 (PD-1) immunotherapy was a promising one, since

they were found to have a synergistic anti-tumor effect in animal models and a couple

of patients. We here present a 68-years-old male with chemotherapy-intolerable stage

IV ICC, whose primary tumor had low PD-L1 expression level, scarce CD8+ cells in

tumor microenvironment, high microsatellite instability (MSI), and high tumor mutation

burden (TMB). These biomarkers showed a conflicting prediction of the treatment

response and clinical benefit of anti-PD-1 immunotherapy. Combination therapy of

anti-PD-1 immunotherapy and radiotherapy was adopted as first-line treatment for

the patient. After six cycles of immunotherapy, shrinkage of the primary liver tumor

and metastatic lymph nodes happened, alongside with new lung metastasis, which

indicated a mixed response. Radiotherapy was then administered to both the liver

and lung lesions, accompanied with continued immunotherapy. The combined therapy

eventually led to a complete response for both the primary tumor and all metastases

without treatment-related adverse effects. The patient has survived for 26 months after

the combined therapy and remains tumor-free currently. This case demonstrates the

high inconsistency between immunotherapy response biomarkers and the synergetic

anti-tumor effect of immunotherapy and radiotherapy in ICC.
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INTRODUCTION

Stage IV intrahepatic cholangiocarcinoma (ICC) patients have
very poor survival outcomes. Gemcitabine plus cisplatin
chemotherapy is currently recommended as the only first-line
treatment for these patients, with a median overall survival (OS)
of only 11.7 months (1). The worst is that more than 70% of
patients are intolerable to the chemotherapy regimen because of
severe complications. Therefore, the use of current chemotherapy
for most stage IV ICC patients is limited and the requirement for
a novel treatment option is urgent (1).

Recently, immune checkpoint blockades showed promising
therapeutic effects in a wide range of solid tumors, including
a small number of ICC cases (2). However, robust biomarkers
for predicting treatment response remains one of the most
crucial issues. Although several biomarkers including PD-L1
expression level, microsatellite instability (MSI), tumor mutation
burden (TMB), and immune cell infiltration have been applied
for selecting target patients, their accuracies were all limited
and diverse across different types of tumors. Only MSI was
reported to be predictive in a few ICC cases (2). On the
other hand, general outcomes of anti-PD-1 immunotherapy
for ICC remain controversial. Thus, considering the lack
of robust biomarkers and the limited treatment options for
cholangiocarcinoma, it is more urgent to find out universal
strategies for applying immunotherapy. Most evidence by far
shows the inadequate efficacy of immunotherapy alone for the
control of advanced cancer.

Radiotherapy is another treatment option for unresectable
ICC, which showed a local control effect (3, 4). However,
due to limited evidence, recommendations of anti-PD-1
immunotherapy and radiotherapy are both category 2A. It
has been reported that local tumor destruction combined with
immunotherapymay have a synergetic effect against solid tumors
(5). Radiotherapy is a powerful local treatment that can only
reduce tumor burden to the minimal but also trigger the anti-
tumor immunity and reprogram the tumor microenvironment.
Yet, present evidence of the synergistic anti-tumor effect of
radiotherapy and immunotherapy for ICC is lacking.

Here we comprehensively investigated the current predictive
markers and showed their inconsistency and complexity in a
chemotherapy-intolerable stage IV ICC patient with metastases
to lymph nodes and lungs, who had a complete response and
survival benefit to the combination therapy of immunotherapy
and radiotherapy as the first-line treatment.

CASE PRESENTATION

A 68-years-old male complained with xanthochromia, scleral
icterus, and abdominal distension for over 20 days was admitted
to our hospital in January 2018. He lost about 10 kg of body
weight. Physical examination showed deep jaundice of the patient
and the left supraclavicular lymph nodes were palpable. The
performance status (PS) score was 3. Laboratory tests showed that
total bilirubin (TB) was 707.9 umol/L, and CA19-9 level was over
12,000 U/mL, while AFP level was <20 ug/L (Table 1). Magnetic
resonance imaging (MRI) found a 47 × 42mm space-occupying

TABLE 1 | Clinical variables of the patient during treatment.

Variables 22 Jan

2018

8 Apr

2018

31 Jul

2018

10 Dec

2018

14 Feb

2019

31 May

2019

(baseline)

Size of the

liver lesion

(mm × mm)

47 × 42 38 × 33 35 × 29 32 × 23 29 × 21 10 × 7

Total bilirubin

(umol/L)

707.9 114.0 21.2 9.7 23.0 12.9

CA199

(U/mL)

>12,000 >12,000 4620.49 109.31 36.41 14.70

CEA (ug/L) 19.69 8.90 2.97 1.39 1.62 1.82

CA125

(U/mL)

114.90 60.10 15.50 12.50 12.70 10.60

AFP (ug/L) 2.20 5.26 3.01 3.84 2.99 3.15

lesion in Segment 4 (S4) and S5 of the liver and a mass in
the common bile duct, suspicious for ICC. Subsequent positron
emission tomography (PET) showed multiple distant metastases
to lungs, abdominal lymph nodes, and left cervical lymph
nodes. Histology of the liver lesion biopsy found numerous
tubular structures of adenocarcinoma and a fibrous stoma
(Figures 1A,B). Immunohistochemistry (IHC) analysis showed
the following: CK(+), CK7(+), CK20(weak+), and Ki-67(3%+).
The diagnosis was confirmed as stage IV ICC. The presumed
survival time was only 3–5 months (6).

According to the opinion of the ICC multi-discipline team in
our hospital, the patient was not a candidate for conventional
treatments including surgery and chemotherapy, considering
both tumor and PS status. Then, percutaneous transhepatic
cholangial drainage (PTCD) was performed to relieve the
jaundice and the patient’s appetite recovered and the PS
score was still 3. To comprehensively investigate the immune
microenvironment, the tumor tissue of the liver lesion was
submitted for subsequent tests. Additional IHC analysis found
a low expression level of programmed cell death ligand 1 (PD-
L1) and a low frequency of CD8+ T cells (Figures 1C–F).
The whole-exome sequencing (WES) data showed high levels
of both MSI and TMB (16.9 mutations/Mb), which indicated
the potential benefit of immunotherapy. Additionally, there
were 420 indels (insertions and deletions) and 660 single
nucleotide variants (SNVs), with five mutations (including
MLH1, SMARCA4, BRCA2, POLE2, and ARID1A) known to
be associated with sensitivity to immunotherapy while one
gene (B2M) conferred resistance to immunotherapy. We further
included another 36 ICC cases in the Cancer Genome Atlas
(TCGA) dataset to comparatively analyze the patient’s tumor
immune microenvironment based on the RNA-seq data. This
case was found to have a moderate level of immune infiltration
under a comprehensive immune signature (Figures 2A,B) (7–
11). Analysis of immune cell components in the tumor
microenvironment using the CIBERSORT algorithm revealed
scarce CD8+ cells but a large number of M2 macrophages,
which is consistent with the IHC result and indicates an
immunodeficient state (Figure 2C) (10). After all, anti-PD-1
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FIGURE 1 | H&E staining (A, B) and IHC result of CD8 (C,D) and PD-L1 (E,F)

for the liver lesion. H&E staining, hematoxylin and eosin staining; IHC,

immunohistochemistry; PD-L1, programmed cell death ligand 1.

immunotherapy (pembrolizumab, at a dose of 200mg every
month) combinedwith radiotherapy was considered as treatment
for the patient, which was initiated in February 2018 (Figure 3A).

After two cycles of immunotherapy, the patient’s symptoms
relieved and his PS improved. The size of the liver lesion slightly
reduced to 38 × 33mm but CA-199 was still over 12,000 U/mL
(Figure 3B; Table 1). After six cycles, PS score was 1 and CA-199
was decreased to 4620.49 U/mL (Table 1). Contrast-enhanced
computed tomography (CT) scans showed that the liver lesion
reduced to 32 × 23mm (Figure 3B). However, the number of
lung metastases increased, which indicated a mixed response
to immunotherapy (Figure 3C). Anti-PD-1 immunotherapy
continued while radiotherapy was introduced to control the liver
and lung lesions, with doses of 50.0 and 48.0Gy, respectively.
All visible tumors reduced in size gradually in the follow-up and
the PTCD was removed 3 months later (Figure 3C). Currently,
after 26 months of treatment, the patient is alive with high life
quality. There aren’t any symptoms and PS score is 1. The patient
regained 5 kg of body weight. All tumor biomarkers including
CA19-9 level are normal. The latest imaging examinations show
invisible signs of the liver lesion, the metastatic lymph nodes, and

the lung metastases. CR is achieved in this stage IV ICC case
(Figure 3C; Table 1).

DISCUSSION

Currently, emerging evidence shows the therapeutic effect of
anti-PD-1 immunotherapy in various types of cancers, yet
target patient selection remains one of the biggest problems.
Although several biomarkers including PD-L1 expression level,
TMB, MSI, or immune cell infiltration, have been used to
select patients and predict treatment response in anti-PD-1
immunotherapy, they were still not reliable in many situations.
As for cholangiocarcinoma, only weak evidence showed that
MSI had the potential to be an appropriate predictive marker.
Undoubtedly, the anti-tumor immune response is a very
complicated biological process that involved cancer cells and
cells in the microenvironment. Each biomarker only reflected
some aspect of the whole process and it was no wonder that they
would be inconsistent with others and fail to predict in some
situations. In this case, we comprehensively analyzed the immune
microenvironment of the patient and found that although both
MSI and TMB were high, the PD-L1 expression level was low
and the immunosuppressive tumor microenvironment of the
liver lesion had scarce CD8+ cells but lots of M2 macrophages.
High infiltration of M2 macrophages in the tumor stroma
could suppress T cell infiltration and down-regulate antitumor
immune responses. The contradiction between biomarkers
resulted in difficulty in predicting response. Even though
both MSI and TMB are currently the most valuable predictive
biomarkers for anti-PD-1 immunotherapy, there are also lots of
cancer patients with MSI-H or/and TMB-H that do not respond
well. According to previous studies, only approximately half of
solid tumors with MSI-H achieved object response to anti-PD-1
immunotherapy (2). Besides, low lymph cell infiltration in this
case might also indicate immune escape, which allows tumor
evolution and thus higher genomic diversity. The tumor with this
situation was considered to be unresponsive to immunotherapy
(12). On the other hand, tumor heterogeneity also influences
the accuracy in determining the status of these markers (13).
Intratumor genetic heterogeneity was found obvious in ICC
and multi-point aspiration was needed to evaluate the markers
accurately, which was impossible in patients that did not receive
surgery or underwent tumor recurrence. In a word, there is
currently no robust marker for predicting the response to
anti-PD-1 immunotherapy. On one hand, further studies are
needed to develop robust predictive markers for selecting those
patients that might benefit from anti-PD-1 immunotherapy.
On the other hand, strategies such as combination
therapy of anti-PD-1 immunotherapy and radiotherapy
in this case that make patients with limited treatment
options benefit from immunotherapy might be applicated
at present.

The possible mechanisms of the synergistic anti-tumor
effect of combination therapy have been investigated by
many researchers so far. We summarized them as follows,
including tumor burden reduction, immunity activation, and
tumormicroenvironmentmodification. First, radiotherapy could
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FIGURE 2 | Immune characterization of the primary tumor before treatment. (A) The heatmap of the ICC case and 36 ICC cases in the TCGA dataset, with the

measurement of ImmunoScore, interferon-γ signaling (Reactome.org), CYT score, Cibersort Absolute Score, TIS, IIS, PD-L1, and PD-1. (B) Plot of the mean Z-scores

across this ICC case and 36 ICC cases in TCGA dataset. (C) The absolute immune score shows the components of the immune cells in primary tumor of the ICC

case. ICC, intrahepatic cholangiocarcinoma; TCGA, the Cancer Genome Atlas; TIS, T cell Infiltration Score; IIS, Immune Infiltration Score; PD-L1, programmed cell

death ligand 1; PD-1, programmed death receptor-1.

reduce the tumor burden and create a background of minimum
tumor burden for immunotherapy. Second, radiotherapy can
fully trigger the recognition of tumor cells by antigen-presenting
cells. Irradiation can directly destroy the DNA, allowing more
neoantigens released by tumor cells to trigger immune responses
(14). Some innate immune pathways can be activated during
radiotherapy to regulate the anti-tumor immune responses.
Irradiation-induced cGAS-STING pathways can lead to the
recruitment of dendritic cells and trigger the type I IFN
signaling, thus regulating the adaptive immune response and
reinforcing the cytotoxic T cells (15). Third, radiotherapy can
modify the tumor microenvironment, potentially affecting the
immune compositions, and priming the adaptive immunity.
Localized irradiation can induce chemokines involved in
the recruitment of effector T cells, converting the tumors
into tissues susceptible to immune attack (16). In our case,
the primary tumor had significantly high infiltration of M2
macrophages, which contributed to the immunosuppressive
tumor microenvironment. Klug et al. have recently shown that
low doses of radiotherapy can reprogram tumor-associated
macrophages to a M1 phenotype, which conversely enhanced the
efficacy of adaptive immunity (17). Probably, the macrophages

of the primary and metastatic tumors in this patient had
experienced such a conversation from M2 to M1 under
irradiation, initiating a significant change in the tumor immune
microenvironment, which deserves further studies and clinical
trials on the dynamic evolution of ICC under combined therapy.

Currently, chemotherapy such as gemcitabine plus cisplatin
is considered as the only first-line treatment for metastatic ICC.
However, the chemotherapy regimen results in a severe (grade
3 or 4) toxic effect rate of about 70% (1). Due to the toxicities
of traditional chemotherapeutic drugs, good performance status
is often required for chemotherapy. But in fact a large number
of advanced-stage patients have bad performance status, so
that they are intolerable to chemotherapy. On the contrary,
immunotherapy combined with radiotherapy has relatively
slighter short-term side effects and may be more suitable for
these patients. Clinical trials that investigated the possibility of
anti-PD-1 immunotherapy combined with radiotherapy as first-
line treatment in ICC patients could be conducted.

During the treatment, new lung lesions occurred while
the other lesions demonstrated controlled, which indicated
different treatment responses across organs, namely a mixed
response. This atypical response pattern has been noticed
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FIGURE 3 | Imaging of the patient during treatment. (A) The timeline of his clinical course. (B) Imaging shows the change of the liver lesion over time. (C) Imaging of

the patient at baseline and the latest follow-up.

in previous studies (18, 19). According to the conventional
radiological response criteria, the Response Evaluation Criteria
in Solid Tumors (RECIST) version 1.1, this would be evaluated
as PD. However, patients with the response pattern were
found to have non-inferior OS compared with those who had
controlled diseases, which means the RECIST underestimates
the clinical benefit of immune checkpoint blockade. Thus,
several novel response evaluation criteria have been proposed
recently, including the iRECIST, the immune-related response
criteria (irRC), and the immune-modified RECIST (imRECIST).
According to these criteria, the patient in this case should not
be characterized as PD in the situation, and the combination
therapy could be continued, which was proven to be a sensible
choice afterwards.

CONCLUSIONS

In conclusion, we analyzed the most valuable biomarkers for
immunotherapy response and demonstrated their complexity
and inconsistency in an ICC patient who had limited treatment
options. The current dilemma made us adopt the combination
therapy of anti-PD-1 immunotherapy and radiotherapy as his
first-line treatment, which led to a complete response and
prolonged survival time. This suggests their synergic anti-tumor
effect and the bright prospect of combination therapy. Further
efforts are required to investigate the combination therapy in
ICC patients.
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Macrophages are phagocytic cells that play a broad role in maintaining body homeostasis

and defense against foreign pathogens; whereas tumor-associatedmacrophages (TAMs)

support tumor growth andmetastasis by promoting cancer cell proliferation and invasion,

immunosuppression, and angiogenesis, which is closely related to the poor prognosis

in almost all solid tumors. Hence, deep-insight knowledge into TAMs can provide an

opportunity to discover more effective strategies for cancer therapeutics. So far, a large

number of therapeutic agents targeting TAMs are in clinical trials. In this review, we

introduce an extensive overview about macrophages and macrophage-targeting agents.

Keywords: macrophage, tumor microenvironment, cancer, immunotherapy, polarization

INTRODUCTION

Cancer, a global public health problem, is the first or second leading cause of death in most
countries, and its incidence andmortality are rapidly growing (1). Clinically it is well-acknowledged
that tumor sites contain not only cancer cells, but also immune cells, including macrophages,
regulatory T (Treg) cells (2), neutrophils (3), mast cells (4), natural killer (NK) cells (5), etc.
Macrophages, the main component of the mononuclear phagocyte system (6), are phagocytic cells
which play a broad role in maintaining body homeostasis and defense against foreign pathogens;
whereas there are a large number of TAMs in tumor microenvironment (TME), which support
tumor growth and metastasis by promoting cancer cells proliferation, immunosuppression,
invasion, and angiogenesis. Therefore, scientists pay special attention to TAMs when looking for
effective cancer treatment strategies. In recent decades, several types of immunotherapies targeting
TAMs are playing more and more important roles in the treatment of cancer.

This comprehensive review first summarizes most recent updates regarding macrophage
recruitments and functions in tumor, then focuses on the development and evaluation of cancer
immunotherapy strategies targeting TAMs including drugs in pre-clinical and clinical stages.
Finally, we would like to provide some views and visions of immunotherapy targeting TAMs.

ORIGINS AND POLARIZATION OF MACROPHAGES

Macrophages were first discovered and isolated by Ilya Metchnikoff in the nineteenth century
(7). For decades, most people thought that blood-circulating monocytes derived from adult
bone marrow (BM) continuously repopulate tissue-resident macrophages (TRMs). It is now well-
accepted that a large number of TRMs derive from embryonic precursors, which are from both
fetal yolk sac and fetal liver progenitors (8–12). All precursors seed different tissue and differentiate
into specialized TRMs on the basis of tissue-specific context (10, 13). Moreover, most tissues
also contain macrophages derived from monocytes after birth (13–15). However, some tissues are
different, such that monocytes derived from hematopoietic stem cells (HSCs) fleetly take the place
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of embryonic macrophages after birth in the colon, but microglia
are rarely frommonocytes derived fromHSCs under homeostatic
conditions (16, 17) (Figure 1A). In tumors, TAMs are usually
thought to primarily derive from circulating monocytes, and
most recent studies have shown that functions and phenotypes
of embryonic-derived and monocyte-derived macrophages are
different (13, 18, 19). For example, Pierre-Louis Loyher et al.
showed that embryonic-derived TAMs largely correlated with
tumor cell growth in vivo, while monocyte-derived TAMs
accumulation was associated with enhanced tumor spreading
(18). Furthermore, several studies have suggested that TRMs are
up to 50% in some murine models such as lung and brain cancer
(18, 20).

Macrophages are a type of remarkable plastic cells and can
be easily induced by surrounding microenvironment (21, 22).
According to different activation methods, macrophages are
divided into two extremes (23), Classically activatedmacrophages
(M1 macrophages) and alternatively activated macrophages
(M2 macrophages). M1 and M2 macrophages have significant
differences in surface receptor expression, tissue distribution,
metabolism, cytokine and chemokine production, function, and
intracellular signal transduction. M1 macrophages are polarized
by lipopolysaccharide (LPS), which binds to the Toll-like
receptor 4 (TLR4). Then an inflammatory response is elicited
(24), and pro-inflammatory cytokines are released, such as
interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α (TNF-
α). These downstream signals recruit more macrophages to
resist pathogenic insult (25). M2 macrophages are polarized by
cytokines such as IL-4 and IL-13, and release anti-inflammatory
cytokines including transforming growth factor-β (TGF-β)
and IL-10, inducing processes like membrane remodeling and
angiogenesis to promote tissue repair (26, 27). Depending
on specific inducing signals and their biological roles, M2
macrophages could be further divided into M2a, M2b, M2c, and
M2d (28–32) (Figure 1B). Generally speaking, M1 macrophages
mainly kill and clear cancer cells (33, 34), while M2 macrophages
mainly support tumor development (35, 36). This M1/M2
concept can easily explain macrophage heterogeneity, but it is
too simple to explain the complexity of macrophage activation.
Actually, TAMs seem to consist of various populations with a
wide range of polarization features or activation states, and their

Abbreviations: AMT, adoptive macrophages transfer; Arg-1, arginase-1; BM,

bone marrow; BTK, Bruton’s tyrosine kinase; CAR-M, chimeric antigen

receptor macrophage; CAR-T, chimeric antigen receptor T cells; CCL, CC

chemokine ligand; CCR, CC chemokine receptor; CSF-1R, CSF-1 receptor;

CXCL8, CXC chemokine ligand 8; ECM, extracellular matrix; FLT1, FMS-like

tyrosine kinase 1; HIF1α, hypoxia-inducible factor 1α; HSCs, hematopoietic

stem cells; IFN-γ, interferon-γ; iNOS, inducible nitric oxide; Jak2, Janus kinase

2; IL-1β, interleukin-1β; LPS, lipopolysaccharide; MAMs, metastasis-associated

macrophages; M-CSF/CSF-1, macrophage-colony stimulating factor; MHC II,

major histocompatibility complex class II; MPS, mononuclear phagocyte system;

MR, mannose receptor; NF-κB, nuclear factor-κB; NK, natural killer; PI3Kγ,

PI-3 kinase γ; PMN, pre-metastatic niche; SIRPα, signal regulatory protein α;

SR, scavenger receptor; STAT3, signal transducer and activator of transcription

3; TAMs, tumor-associated macrophages; TGF-β, transforming growth factor-

β; TH2, T helper 2; TIE-2, tumor endothelium releases angiopoietin-2; TLR4,

Toll-like receptor 4; Treg, regulatory T; TRMs, tissue-resident macrophages;

TME, tumor microenvironment; TNF-α, tumor necrosis factor-α; VEGF, vascular

endothelial growth factor.

function is determined by microenvironment. Hence, additional
studies are necessary to better classify macrophages, and there are
several articles about other classifications (37–39).

FUNCTIONS OF MACROPHAGES IN TME

Promoting Tumorigenesis and Progression
TAMs are believed to be the bridge between cancer and
inflammation. Some studies show that about 25% of all cancers
are related to chronic infection and inflammation (40). The
production of chemokines and cytokines are induced by key
transcription factors [such as nuclear factor-κB (NF-κB)],
hypoxia-inducible factor 1α (HIF1α), and signal transducer and
activator of transcription 3 (STAT3) when chronic inflammation
occurs, which activates the innate immune system and especially
macrophages (41). There is a lot of evidence that the
inflammatory microenvironment promotes genetic instability
of tumor epithelial cells and tumor-infiltrating immune cells
(42, 43). Recently, the inflammatory cytokines IL-23 and IL-
17 secreted by TAMs have been shown to be closely related
to human colorectal cancer progression (44). For instance,
Kupffer cells can promote the progression of hepatocellular
carcinoma by secreting mitogens, which relies on the NF-κB
signaling pathway (45). Other results show that IL-6 produced by
TAMs promotes the development of liver cancer through STAT3
signaling pathway (46), and IL-10 produced by TAMs promotes
the development of non-small cell lung cancer through STAT1
signaling (47).

Formation of the Immunosuppressive
Microenvironment
Macrophages cannot only kill tumor cells directly when they are
activated by interferon-γ (IFN-γ), but also recruit and activate
CD8+ cytotoxic T lymphocytes and NK cells by presenting
antigens and secreting cytokines to promote the adaptive
immunity (48). In addition, T cells can activate monocytes
through CD40-CD40L interplay to enhance their expression of
major histocompatibility complex class II (MHC II), inducible
nitric oxide (iNOS), and TNF (49). In fact, the T helper 2
(TH2) cells, dominating in the TME, activate macrophages to
be polarized toward M2 macrophages, which promotes the
development of immune suppression (50). Numerous studies
have shown that TAMs can directly or indirectly inhibit T cell
immune response through different mechanisms. The direct
mechanisms include TAMs expressing inhibitory receptors to
negatively regulate the activation of T cells by interaction with
CD94 (51), expressing T cell immune checkpoint ligands to
inhibit T cell functions (52, 53), producing cytokines to maintain
a immunosuppressive microenvironment through inducing Treg

cell expansion and inhibiting CD4+ and CD8+ T cells (54, 55),
and depleting L-arginine and tryptophan to inhibit cytotoxic T
cells (56, 57). The indirect mechanisms include TAMs regulating
the release of chemokines to control the recruitment of Treg

cells (58, 59), and blunting T cell recruitment by regulating the
extracellular matrix (ECM) (60).
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FIGURE 1 | Origins and polarization of macrophages. (A) Macrophages can have three different developmental pathways: fetal yolk sac, fetal liver, and bone marrow.

Precursors seed different tissues and differentiate into specialized tissue-resident macrophages on the basis of tissue-specific context, and they have dramatical

(Continued)
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FIGURE 1 | differences in their phenotypes and functions. In tumors, TAMs are usually thought to primarily derive from circulating monocytes. (B) According to

activation methods, macrophages are divided into M1 and M2 macrophages. M1 macrophages are polarized by LPS, which binds to TLR4. M2a macrophages are

induced by IL-4 and IL-13. M2b macrophages are polarized by immune complexes and some TLR ligands. M2c macrophages would increase in the presence of IL-10

or glucocorticoids. M2d macrophages are induced by TLR agonists and adenosine. They have significant differences in surface receptor expression, metabolism,

cytokine, and chemokine production. CD169+ macrophages, TCRαβ
+, and TCRγδ

+ macrophages are classified into neither M1 macrophages nor M2 macrophages.

Promoting Invasion and Metastasis
Cancer metastasis is a complicated event, which plays a crucial
role in the cause of morbidity and mortality (61, 62). It is
worth noting that macrophages play an important role in tumor
cells invasion and metastasis. They facilitate the escape of
tumor cells from the basement membrane through the dense
stroma by producing proteases to promote ECM degradation
(63). Furthermore, several factors, such as macrophage-colony
stimulating factor (M-CSF/CSF-1), can stimulate macrophages
to promote tumor invasion (64, 65). Metastasis-associated
macrophages (MAMs), a unique population of macrophages,
have been identified are found to be recruited by CC chemokine
ligand (CCL) 2 (66, 67). MAMs promote cancer cell invasion and
metastasis by FMS-like tyrosine kinase 1 (FLT1) receptor tyrosine
kinase signaling in a mouse model of breast cancer (68). In
addition, several studies show that the activation of the CCL2/CC
chemokine receptor (CCR) 2 axis is very important in MAM-
mediated metastasis (66, 67, 69). Recent studies have shown
that pre-metastatic niche (PMN) is a pre-requisite in mediating
tumor cell metastasis. Primary tumor cells are thought to initiate
the formation of PMN by the secretion of proinflammatory
cytokines, chemokines, and angiogenic factors that recruit BM-
derived cells into future metastatic sites, and these cells induce
PMN formation in reverse (70). For example, CXCL1 secreted by
TAMs was reported to recruit CXCR2+ myeloid suppressor cells
to promote liver PMN formation (71, 72).

Promoting Angiogenesis
Angiogenesis is necessary for tumor growth and metastasis,
which is regarded as a “hallmark” of cancer (73). Accumulating
evidence emphasizes the crucial roles of macrophages in
promoting tumor angiogenesis, and TAMs is closely related to
the number of blood vessels in the tumor (74). Hypoxia is the
primary driver of angiogenesis, and some studies show that
anoxic areas of tumors, especially the necrotic tissue, have large
numbers of macrophages due to the releasing of endothelins,
vascular endothelial growth factor (VEGF), high mobility group
1, CCL2, CXC chemokine ligand 8 (CXCL8), CXCL12, and
CSF-1 (75). The increased expression of hypoxia-inducible
transcription factors on TAMs up-regulates the transcription
of various genes in hypoxic tumor sites, which responds to
hypoxia and promotes tumor cells proliferation, metabolism,
and angiogenesis (75–77). In a CSF-1 knockout mice model,
macrophage number was found to significantly reduce in the
tumor site, accompanied by impaired vascular development (78).
In addition, tumor endothelium-released angiopoietin-2 (TIE-2)
was reported to play an significant role in tumor angiogenesis
by recruiting monocytes that express the TIE-2 receptor (79).
Furthermore, results of gene analysis indicated that TAMs could

up-regulate the expression of various factors, which participate in
tumor angiogenesis and provide nutrients for tumor growth (39).

IMMUNOTHERAPY-TARGETING TAMS IN
CANCER

Restoration of Macrophage Phagocytosis
CD47 has been found expressed on many tumor cells, and it can
bind with signal regulatory protein α (SIRPα) on the membrane
surface of macrophages, which down-regulates macrophage
phagocytosis of tumor cells (80, 81). In the past few years,
a number of clinical trials have been conducted to determine
various treatments that block CD47/SIRPα (Figure 2) (82). Anti-
CD47 antibody treatment could inhibit tumor growth in a
pediatric brain malignancies model (83). Anti-CD47 antibody
in combination with TTI-621, a SIRPα-Fc fusion protein that
could block the binding between SIRPα and CD47, promotes
phagocytosis of tumor cells in s B-cell lymphoma mouse model
(84). Hu5F9-G4, a humanmonoclonal antibody directing against
CD47 has been tested in a tumor therapy as a single agent,
as well as in combination with cetuximab. Nevertheless, anti-
CD47 therapies may increase the occurrence of transient anemia,
because HSCs and red blood cells extensively express CD47 (85,
86). Furthermore, there are other “don’t eat me” signals including
programmed cell death ligand 1 (PD-L1), MHC 1 component β2-
microglobulin, and CD24, and antibodies which direct against
the interaction of these signals with their macrophage surface
receptors have demonstrated therapeutic potential in several
cancers (87–89).

Inhibition of Macrophage Recruitment
Under tumor microenvironment, monocytes are rapidly
recruited into tumor (90). Chemokines CCL2, CCL3, CCL4
and cytokines IL-1β, and CSF-1 have proven to contribute to
the monocyte recruitment into tumors (91, 92). It is shown
that CCL2 expression is up-regulated by macrophages and
tumor cells in TME (93–95). Moreover, the high expression
of CCL2 has a correlation with the poor prognosis in many
human and murine tumors (96). CCL2 promotes monocytes
recruitment by stimulating CCR2. In fact, blocking CCL2/CCR2
not only inhibits the monocyte infiltration but also prevents
immunosuppressive polarization of macrophages (97, 98).
Currently, a number of treatments targeting CCL2/CCR2
are in clinical trials (99) (Figure 2). A CCR2 inhibitor, PF-
04136309, has been demonstrated to effectively inhibit tumor
growth in pancreatic cancer patients (100, 101). CCL2 antibody
treatment has proven to suppress tumor metastasis in a breast
cancer model (96). Moreover, IL-1β has been identified as a
chemoattractant target for cancer treatment. An IL-1 receptor
antibody has been demonstrated to suppress inflammatory
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FIGURE 2 | Targeting TAM strategies in cancer treatments. Several critical targets have been identified that regulate TAMs recruitment, polarization, survival, and

phagocytosis during tumor progression. Targeting key receptors or signaling molecules can modulate these macrophage properties and suppress tumor progression.

For example, targeting CSF1R can suppress the survival of TAMs. Agonists of CD40 can promote TAMs toward a proinflammatory phenotype that can suppress

tumor. Inhibitors of CCR2 or CXCL2 can inhibit monocyte recruitment. Targeting CD47 on tumor cells can promote macrophage phagocytosis of tumor cells. These

therapeutic strategies are developed to promote effective antitumor immune responses and many drug candidates are currently investigated in clinical trials for cancer

therapy.

macrophage accumulation and tumor growth in lung and
breast cancer mouse models (100). Moreover, in combination
with fluorouracil and bevacizumab, Anakinra, an IL-1 receptor
antibody, has been shown to prolong patients’ life in a colorectal
carcinoma Phase II clinical trial (102) (Table 1).

Controlling Macrophage Proliferation and
Survival
CSF-1 receptor (CSF-1R), a tyrosine kinase receptor, plays a key
role in regulating macrophage proliferation and survival (103).
Several studies show that blocking CSF-1/CSF-1R inhibited
immunosuppressive macrophage polarization, reduced tumor
cell proliferation, and promoted apoptosis, therefore suppressing
tumor progression and prolonged life survival (104, 105)
(Figure 2). M279, a CSF-1R antibody, blocking both CSF-1 and
IL-34, has been shown to inhibit tumor growth and improve
survival rate in a spontaneous breast tumor model (106, 107).
BLZ945, a small-molecule CSF-1R inhibitor has been reported
to be therapeutically effective in glioma and breast cancer mouse
models (108). Moreover, a number of CSF-1R-specific inhibitors,
including PLX3397, PLX7486, and BLZ945, have been tested

in clinical trials (109, 110). Especially, PLX3397, exhibiting
higher affinity to CSF-1R, has demonstrated a better effect for
tenosynovial giant cell tumor therapy, and the drug has been
advanced into clinical trial phase III (111). In addition, several
FDA-approved tyrosine kinase inhibitors, such as targeting c-KIT
and VEGFR, have also been shown to have a binding activity with
the CSF-1R kinase (112).

Modulation of Macrophage Phenotype
PI-3 kinase γ (PI3Kγ) has been identified as a promising target
for modulating macrophage phenotype and proinflammatory
cytokine expression (113) (Figure 2). IPI-549, a PI3Kγ inhibitor,
is currently tested in Phase 1b clinical trials for several solid
tumors, in combination with nivolumab. Bruton’s tyrosine kinase
(BTK), a downstream of PI3Kγ, has been investigated as a
target for cancer treatment. In line with studies, ibrutinib, a
BTK inhibitor, has been advanced in Phase III clinical trials
for pancreatic adenocarcinoma treatment and in Phase II
clinical trials for relapsed or refractory solid tumor therapy in
combination with durvalumab. Janus kinase 2 (JAK2) and STAT3
also have been regarded as potential targets for macrophage
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TABLE 1 | Clinical trials of macrophage-targeting agents.

Drug Company Clinical trial

number

Tumor type Phase

CD47 Hu5F9-G4 Forty Seven NCT02953782 Advanced solid malignancies and colorectal

carcinoma + cetuximab

I

NCT02216409 Advanced solid malignancies I

TTI-621 Trillium NCT02663518 Small cell lung cancer I

NCT02890368 Relapsed and refractory solid tumors I

CD40 SEA-CD40 Seattle Genetics NCT02376699 Solid tumors + pembrolizumab I

APX005M

(Agonist antiCD40)

Apexigen NCT03389802 Pediatric CNS I

CP-870,893

(agonist antiCD40)

VLST Corporation NCT01103635 Metastatic melanoma + tremelimumab

(antiCTLA-4)

I

R07009879

(selicrelumab,

agonist antiCD40

Roche NCT02760797 Advanced solid tumors + anti-PDL1 I

NCT02665416 Advanced solid tumors + bevacizumab or

vanucizumab

I

NCT02588443 PDAC + gemcitabine + nab-paclitaxel II

CSF1R BLZ945 Novartis NCT02829723 Advanced solid tumors single agent I

Advanced solid tumors + PDR001 II

Emactuzumab Hoffman La Roche NCT02323191 Advanced solid tumors + atezolizumab I

NCT03708224 Advanced HNSCC + atezolizumab I

NCT03193190 PDAC + additional therapies I

IMC-CS4 (antiCSF1R) Lilly NCT01346358 Advanced solid tumors I

NCT02265536 Advanced breast, prostate cancer I

NCT03153410 PDAC + cyclophosphamide pembrolizumab,

GVAX

I

CCR2 BMS-813160 Bristol Meyers Squibb NCT02471716 Tenosynovial giant cell tumor II

NCT03158272 Advanced malignancy + nivolumab I

NCT02526017 Advanced solid tumors + nivolumab I

CCX872-B ChemoCentryx NCT03778879 PDAC + SBRT II

MLN1202 (antiCCR2

antibody)

Millennium NCT01015560 Bone metastases II

IL1Ra Anakinra Swedish Orphan Biovitrum NCT0255032 7 PDAC + abraxane, gemcitabine, cisplatin I

TLR4 GSK1795091 GlaxoSmithKline NCT03447314 Advanced solid tumors + GSK3174998

antiOX40) or (GSK3359609 anti-ICOS) or

pembrolizumab

I

Stat3 TTI-101 Tvardi Therapeutics NCT03195699 Advanced cancers I

PI3Kγ IPI-549 Infinity Pharmaceuticals NCT02637531 Advanced solid tumors + nivolumab Ib

BTK Ibrutinib Pharmacyclics/AbbVie NCT02599324 Renal cell, urothelial, gastric, colon, pancreatic

adenocarcinoma

III

NCT02436668 PDAC, gemcitabine + nab-paclitaxel Ib/II

NCT02403271 Relapsed or refractory solid tumors +

durvalumab

III

repolarization (114). The STAT3 inhibitor TTI-101 is currently
investigated in a Phase I clinical trial for advanced cancers, and
the JAK2 inhibitor has been applied for the treatment of psoriasis,
myelofibrosis, and rheumatoid arthritis in clinic (115).

CD40 is mainly expressed on antigen presenting cells,
monocytes, and some tumor cells. CD40 ligation in macrophages
induces secretion of proinflammatory cytokines and
promotes macrophage polarization toward a proinflammatory
macrophage. Several anti-CD40 antibodies and CD40 ligands,

such as RO7009789, APX005M, are currently under test
and evaluation in clinical trials for solid tumors (Figure 2).
Interestingly, unlikely other activatory Fc receptors, the antibody
Fc domain with inhibitory FcγRIIb is required for anti-40
antibody because of its agonistic immunostimulatory activity.
In particular, CP-870893, a Pfizer anti-CD40 antibody of
IgG2 subclass, has been shown to be more competitive in
immunostimulation compared to other drugs in clinical trials
(116). Moreover, TLR agonist treatment has been studied and
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developed for cancer therapy because TLRs stimulation can
polarize macrophages toward a proinflammatory phenotype.

Metabolic Modulation of TAMs
To support specialized cellular activities, macrophages use
diverse metabolic pathways for energy and metabolite at
different states (117). Metabolic changes contribute to the
regulation of macrophage polarization, and TAMs display an
immunosuppressive phenotype that is defined by the production
of ornithine and polyamines through the arginase pathway as well
as by expression of TH2 cytokines that include IL-10 (118–120).
Several studies have shown that the tumor microenvironment,
featured poor nutrient and acidic environment, directly
induced macrophages to adopt immunosuppressive phenotypes
(121–123). For example, lactate, a byproduct of tumor
cells, can promote monocytes and macrophages toward to
immunosuppressive macrophage polarization in B16 melanoma
and lung carcinomas mouse model (121). Moreover, the tumor
microenvironment in melanomas characterized by acid has
been reported to promote immunosuppressive polarization of
TAMs, including upregulating arginase and VEGF expression
(124). Collectively, these studies have shown that altering the
metabolic pathways of TAMs to repolarize macrophages might
be an effective strategy for antitumor functions.

The PI3K/Akt/mTOR myeloid signaling pathway plays a
key role in regulation of TAMs metabolism by promoting
L-arginine metabolism, a curial section that could promote
immunosuppression. The gene and protein expression of
Arginase-1 (Arg-1) in TAMs up-regulates and inhibition
of PI3Kγ can suppress Arg-1 expression and activity (90).
Additionally, the deletion of PI3Kγ promotes the expression of
the enzyme NOS, which promotes the production of the free
radical and NO to function as anti-tumor. Kaneda et al. reported
that IPI-549, a PI3kγ inhibitor, inhibited lung carcinoma and
breast tumors by promoting TAM-immunostimulatory response
(125). Moreover, mTORC1 and mTORC2 also play a key role
in the metabolic programming of macrophages by sensing
nutrients, oxygen, and metabolites. Rapamycin, an mTORC1
inhibitor, has been reported to promote macrophages toward
the proinflammatory phenotype with an anti-tumor effect (126)
(Figure 2).

Adoptive Macrophages Transfer
Adoptive cell transfer is an emerging method of immunotherapy,
which kills and removes cancer cells by the infusion of
immune cells (127). Macrophages have the capacity to penetrate
tumors (128), which may kill tumor cells where CAR-T
therapy has fallen (129). Therefore, adoptivemacrophage transfer
(AMT) has become a hot research field for tumor detection
and treatment lately. Amin Aalipour et al. used engineered
macrophages as diagnostic sensors to successfully detect tumors
as small as 4mm in diameter and show better sensitivity
than traditional cancer biomarkers (130). Recently, Michael
Klichinsky et al. described an anti-HER2 CAR-macrophage

(CAR-M) that significantly reduced metastatic tumor burden
(131). A cellular IFN-γ “backpack” for macrophages was reported
to promote phagocytosis and polarize macrophages toward the
M1 phenotype, which further slows down the tumor growth in a
murine breast cancer model (132). Overall, the adoptive transfer
therapy of macrophages is still in the research stage, and there
are many problems to be solved, such as the establishment of
pre-clinical models to evaluate the efficacy and safety of AMT.
In addition, the way to efficiently transfer genes into human
macrophages is still challenging and needs further study.

DISCUSSION

Various strategies targeting TAMs have been studied for cancer
therapy, and some treatments have been advanced into clinical
trials. However, because of complexity of tumors, a combination
therapy is usually adopted to maximize the anti-tumor effect;
whether currently targeted signaling pathways therapeutically
overlap or synergize in vivo remains to be explored. More
importantly, current researches do not have a thorough
understanding of these targets, and their other functions are often
overlooked in cancer treatment. Besides, with multiple targets
being identified and drugs being tested for the modulation of
TAMs, drug delivery technologies have been advanced to further
enhance the efficacy of these drugs, through the way of improving
stability, selectivity, and intracellular delivery efficiency, etc.
CAR-M, as an emerging strategy for cancer therapeutic, is still
in research stage. Currently, overcoming the challenge that genes
transfer into human macrophages and finding effective solid

tumor targets are the main tasks. Perhaps CAR-M in the future is
to adopt multiple macrophages having different functions rather
than a single population.

TAMs represent a heterogeneous population with different
functions according to different origins and contexts.
Consequently, it is necessary to understand this heterogeneity

and how it evolves during the progression of cancer and also
following therapy in human, not mouse, models. In this context,

the extensive use of single-cell RNA sequencing, multiplex
immunohistochemistry, and mass cytometry will considerably
increase our knowledge about TAMs, which is essential for the
adoption of precision medicine and good prediction of patient
responses. Admittedly, many questions remain regarding to

properties and functions of macrophages in TME. However,
with the deeper understanding of macrophage diversity through
single-cell sequencing and other technologies, we believe that
TAM-targeted treatment will be an important addition for
cancer immunotherapy.
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A tumor is a result of stepwise accumulation of genetic and epigenetic

alterations. This notion has deepened the understanding of cancer biology and

has introduced the era of targeted therapies. On the other hand, there have

been a series of attempts of using the immune system to treat tumors, dating

back to ancient history, to sporadic reports of inflamed tumors undergoing

spontaneous regression. This was succeeded by modern immunotherapies

and immune checkpoint inhibitors. The recent breakthrough has broadened

the sight to other players within tumor tissue. Tumor microenvironment is a

niche or a system orchestrating reciprocal and dynamic interaction of various

types of cells including tumor cells and non-cellular components. The output

of this complex communication dictates the functions of the constituent

elements present within it. More complicated factors are biochemical and

biophysical settings unique to TME. This mini review provides a brief guide on

a range of factors to consider in the TME research.

KEYWORDS

tumor microenvironment, Immune Checkpoint Inhibitors, immune system, network,

immunotherapy

Introduction

The earliest form of cancer immunotherapy using infection started around 1550

BCE (1). In the modern era, an incidental observation of tumor regression after surgical

wound infection was advanced into a more controlled approach using bacterial vaccines

to treat sarcoma (2). This journey was then succeeded by application of Bacillus

Calmette-Guerin (BCG), various types of oncolytic viruses and Immune Checkpoint

Inhibitors (ICIs) (3). Substantial efficacy and superior safety profiles with tumor-agnostic

features have immediately positioned ICIs in the main treatment arm in most advanced

cancers. This has turned the focus from genetic and epigenetic alterations of tumor cells

to immune cells. However, ICIs are no exception in primary or secondary resistance of

drugs. This has led the investigators to place a heavier emphasis on other players and

the surroundings of tumor cells. Long before the era of ICIs, histologic description of

tumor tissues had already provided some insights in tumor surroundings. For instance,

melanomas are characterized by fibrosis, melanophages (a type of macrophage), new

blood vessels and infiltration of lymphocytes in and around the nests of dying tumor

cells (4). Exuberant lymphoid reaction was the hallmark of colorectal cancer (CRC)
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with high microsatellite instability (MSI-high) (5). The study

of CRC with MSI-high, either in Lynch syndrome or sporadic

cases has indicated the hypermutator phenotype and MSI is

still the most relevant predictive biomarker of ICIs currently

(6). It is quite logical to speculate that the tumor mutational

burden (TMB) follows MSI. However, the TMB is not a

one-marker-fit-for-all (7). An example that displays this fact

to the furthest extent was from an animal study where

fibroblasts having inactivated TGF-β type II receptor induced

precancerous lesions and carcinomas from an otherwise normal

epithelium (8). With all these factors to consider, the center

of attention always has been revolving around tumor cells.

Environment is defined as the circumstances, objects, or

conditions by which one is surrounded (9). The circumstances

surrounding tumor cells theoretically ranges from ions, humoral

factors and matrikines to various types of cells and tissues

and even to host itself. Like the stem cell niche, tumor

cells reside in their own niche or TME, and also have a

reciprocal non-static spatiotemporal coordination with each

other to regulate functions and differentiation of tumor

cells and non-tumor cells, under the influence of specific

physicochemical conditions (10–16). The current mini-review

aims to cover as many attributes in this complex system,

ranging from ions to cell and extracellular matrix (ECM), to

physico-chemical properties of TME in an attempt to assist

future studies.

Definition of tumor
microenvironment

The National Cancer Institute defines the TME as “The

normal cells, molecules, and blood vessels that surround and

feed a tumor cell. A tumor can change its microenvironment,

and the microenvironment can affect how a tumor grows

and spreads.” (17). This definition may appear simple at

first, but encompasses the idea of reciprocal interaction and

regulation of a tumor cell behavior. The most common ones

are based on a structural view (18). Regularly emphasized

is the dynamic nature of the cell population, such as

the resident players and non-resident cellular components

(19, 20). However, these definitions do not specifically

identify other elements, such as tumor interstitial fluid,

and physicochemical properties. To better depict a dynamic

symbiotic system, “Seed and Soil,” an analogy of the stem

cell niche, was introduced (14). “The TME comprises of a

diverse cellular and acellular milieu, in which cancer stem cells

(CSCs) develop and thrive, and various stromal and immune

cells are recruited to form and maintain this self-sustained

environment” (21). In that regard, the definition of “seed

and soil” is comprehensive enough to cover all components

in TME.

Cellular component

Histologic observation of tumors shows cancer cells

intricately mixed with various inflammatory cells, fibroblasts,

fibrotic stroma and blood vessels. One of the most studied

examples is colorectal cancer (CRC) with high microsatellite

instability (MSI). The tumor cells exhibit morphologic

alterations such as mucinous change, signet ring cell feature

and medullary histology (22). The presence of other cellular

players is observed such as high number of tumor infiltrating

lymphocytes (TILs) and peritumoral lymphoid follicles

reminiscent of the inflammatory pattern of Crohn’s disease

(5). There are many cases providing morphologic evidence of

multiple players in tumor tissues (6). On the other hand, data-

driven approach was able to characterize complex alterations

from genes to transcription, and has brought in molecular

classifications agnostic about morphology (23). However,

immune cells are still the major focus in the era of ICIs, and

the classification systems based on proportion of these cells

have been proposed (24–26). Two tier system such as a hot

tumor vs. a cold tumor is widely accepted one. A three tier

system, such as immune infiltrated/inflamed, immune excluded,

and immune silent/desert is also a commonly used method of

classification (25).

Back to the role of each population in TME, cells are

generally classified as tumor-promoting vs. tumor-suppressing

(27) (Table 1). In this scheme, players are not simply

dysfunctional in TME, but also actively suppress other immune

cells and promote tumor cells, ranging from growth, invasion,

metastasis to immune evasion (27). Members found to

promote tumors are regulatory T cells (Tregs), myeloid-derived

suppressor cells (MDSCs), M2 tumor-associated macrophages

(TAMs), resident or derived from bone marrow/spleen,

N2 tumor-associated neutrophils (TANs), cancer-associated

fibroblasts (CAFs), tolerogenic dendritic cells (DCs) and more

details are summarized in Table 1 (76–78). Once cells migrate

into the TME, they are polarized or differentiated under the

local condition, and in return, these cells accelerate the immune-

suppressive and tumor-promoting environment (37). Hence,

the state is not static but can be dynamic depending on the

context or milieu of cytokines and signaling molecules. For

example, M1 macrophage can turn into the M2 type and vice

versa, while an intermediate form between M1 and M2 has been

discovered (37). Proportion-wise, cancer-associated fibroblasts

(CAFs) are the most abundant component in the tumor tissue

(13). CAFs have a critical position in all steps, from tumor

initiation to metastasis, and even being related to therapeutic

resistance (8, 79). CAFs are derived from resident fibroblasts and

other cells such as smooth muscle cells, vascular pericytes and

bone marrow-derived mesenchymal cells, adipocytes and this

process is caused by various factors [stromal cell-derived factor

1 (SDF1), platelet-derived growth factor (PDGF), transforming
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growth factor-β (TGF-β), fibroblast growth factor 2 (FGF2)]

produced by tumor cells and immune cells (18, 80–83). CAFs

then reciprocally promote tumor progression by production

of growth factors (PDGF, TGF-β, epidermal growth factor

(EGF), bone morphogenetic proteins (BMP) and C-X-C motif

chemokine 12 (CXCL12), CXCL13) and these cells also stimulate

angiogenesis by secreting vascular endothelial growth factor

(VEGF), CXCL12 and FGF2 (72–75). Recently, focus was

turned to rare cell populations in TME such as mast cells,

basophils, eosinophils (84–86). The next-generation pathology,

together with the single-cell analysis and systems pathology, will

provide new insightful hints for developing effective therapeutic

protocols targeting the TME (87, 88).

Extracellular matrix

Tumor stroma shows fibrosis or even desmoplasia in

certain types of tumors, such as biliary cancer and gray-colored

myxoid change, likely due to the ECM alteration (89, 90).

ECM undergoes a remodeling process in physiologic and

pathologic conditions, and it is an intricate phenomenon

involving more than 700 proteins (91, 92). The characteristics

of the remodeled ECM eventually affect the fate of cells (91, 92).

The major alterations of tumor ECM are degradation, stiffening

and physical remodeling (18, 93). In TME, acidic condition,

excessive amount of proteases [i.e., matrix metalloproteases

(MMPs), disintegrin and metalloproteinases (ADAMs),

disintegrin and metalloproteinases with thrombospondin

motifs (ADAMTS)] and production of reactive oxygen species

(ROS) from tumor cells, CAF, TAN and TAM cause degradation

of ECM (18). During this process, Extracellular Matrix-Derived

Fragments are produced. These undertake active biological

functions as matrikines leading to various effects such as

acceleration of matrix production, promoting or suppressing

tumor progression and angiogenesis (93, 94). Neoplastic tumors

are stiffer than adjacent normal tissues and this is due to

an excessive laydown of ECM and altered post-translational

modification (PTM) (18). At first, CAFs secrete ECM in

excess, including collagens, glycoproteins, proteoglycans, and

polysaccharides (18). Then, the hypoxic condition enhances

the cross-linking via production of lysyl oxidase (LOX) and

transglutaminase from CAGs (95, 96). These modified rigid

collagen fibrils are known to facilitate tumor cell migration and

progression (97–100). In addition to the structural changes,

PTM of ECM directly controls the tumor cell behavior by

modulating the function of various growth factors embedded

in the matrix (46, 101–103). For example, heparan sulfate

proteoglycans (HSPGs) have different binding and releasing

capacity of growth factors, depending on the sulphation pattern.

This pattern is modified by the enzyme called endosulphatase

(Sulf). In tumor tissue, the isotypes of Sulf are differentially

expressed that the sulphation pattern made by Sulf1 inhibits

the signaling pathways promoting tumors, while contrastingly,

the other formed by Sulf2 enhances them (101, 102). Altered

glycosylation patterns are reported in tumor tissues, and are

currently under research (22, 104, 105). Lastly, mechanical

force causes physical remodeling of the ECM, and makes fibers

aligned to make routes for tumor cell migration (93). In TME,

the ECM is continuously remodeled in terms of the amount,

structure and chemical properties and this process shapes the

interplay of the components modulating the fate of tumor

cells in their progression (93). High-throughput proteomics

approach is expected to acquire more insight from this process

(91, 106).

Biochemical component

One of the approaches to understand the biochemical

property of TME is to look into the fluid of tumor or tumor

interstitial fluid (TIF) (107, 108). TIF is characterized by high

PCO2, low PO2 and low pH, and these parameters are linked

with each other (11, 12). Hypoxia in tumor tissues is the

major contributor to acidic environment. Rapid proliferation of

tumor cells and insufficient oxygen supply cause hypoxia. This

condition reprograms tumor cells favoring aerobic glycolysis

with production of lactate (109). Major regulators in this process

are hypoxia-inducible factor (HIF)-1α, c-Myc, and p53 (110–

114). Hypoxia induces inhibition of prolyl-hydroxylases and this

stabilizes the HIFs. HIF-1α switches metabolisms in tumor by

upregulating the transcription of enzymes of glycolysis, such

as hexokinase 1/2 (HK I/II) and pyruvate kinase isoenzyme

M2 (PKM2), glucose transporters (Glut) such as Glut-1 and

3, alongside other genes inhibiting oxidative phosphorylation

(115–118). As the dimer form of PKM2 prevails in the tumor,

glucose metabolism is shifted to lactate production (118, 119).

Abnormal vessels are unable to clear hydrogen ions effectively

and hydration of CO2 by carbonic anhydrase IX in hypoxic

areas further increase acidity (120). This altered biochemical

environment reconditions the cells under its influence forming

a selective pressure which favors cancer cells over normal

cells (120–128). This situation promotes tumorigenesis, tumor

progression and immune evasion and is related with a poor

clinical prognosis and resistance to therapy. Recently reported

findings suggest that the lactic acid not only intensifies

acidity but also directly impacts cellular signaling pathways

preferentially polarizing TAM to M2 type (129).

What about the ions in TME? Previous studies have shown

that the concentration of ions in TIF is similar to that in

plasma (130). Recently, this notion has been revisited. More

sophisticated analysis revealed that the potassium concentration

is higher in TIF, while other ions such as sodium, chloride

and magnesium remain within normal range (131). Higher

potassium level was found to suppress activation and effector

function of T cells (131). A starvation response is induced by

local hyperkalemia, and this in turn reduces nutrient uptake,

resulting in the imbalance of Acetyl Co-A (AcCoA) level in
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TABLE 1 Tumor-suppressing and tumor-promoting roles of diverse cells in tumor microenvironment.

Tumor-suppressing Tumor-promoting References

T lymphocyte • Th1→ ↑CTL, M1, NK

• via IFN- γ, IL-2

• CTL??direct killing

• CTL→ ↓angiogenesis via IFN-γ

• Th9→ ↑CTL via IL-9 and ↑NK via IL-21

• Th17 recruit CTL, PMN, DC via CCL2, CCL7,

CCL20, CXCL9, CXCL10

• Treg suppress CTL

• Treg→ ↓costimulatory molecules on DC

• Treg modulate homeostasis of NK via IL-2

• Treg→ ↑tumor growth via GFs

• Treg→ ↑angiogenesis

• Th2→ ↓Th1 and ↑M2

• Th17→ ↑angiogenesis

(25, 28–36)

B lymphocyte • B cell as APC to T cell

• B cell→antibody &

• IFN-γ → ↑CTL

• Breg→ ↓CTL, macrophage, TAN via IL-10, TGF-β (25)

Macrophage • M1 cells as APC to Th1, NK

• M1 produces inflammatory cytokine, ROS, RNS and

ADCC→killing tumor cells

• M2 produce IL-10→induce PD-L1 on monocyte

→ ↑infiltration of Treg and ↓CTL

• M2→ ↑PD-1→ ↓macrophage phagocytosis via tumor

PD-L1

• M2→ ↑PD-L2→immune escape and tumor promotion

via PD-1

• M2→ ↑tumor growth via EGF, FGF, PDGF, IL-4

• M2→ ↑angiogenesis via VEFG, IL-8, FGF, MMP-9

(25, 37–43)

Dendritic cell • DC as APC and stimulate CTL via ICAM-1, CD86,

CD40, CD80

• DC recruit naïve T cell via CCL17, CCL19, CCL22,

IL-32

• DC stimulate Th1, CTL, NK via IL-12, IL-15

• DC→ ↑Ag expression by tumor via TNF-α, IL-6

• IL-10, TGF-β in TME→ ↑PD-1 on DC

→immune-suppressive DC

• DC→ ↑Treg but ↓CTL, Th, macrophage, PMNs via

IL-10, PDL1, IDO, Arginase-1

(44–50)

NKT cell • NKT as APC via CD1d

• NKT activates NK, DC, CTL via IL-12, CD40

• NKT II→ ↑M2, MDSC and ↓CTL via IL-4, IL-13 (51, 52)

NK cell • NK kill tumor cells via ADCC, Fas-FasL,

perforin-granzyme and cytokines (TNF, IFN-γ,

GM-CSF, IL-6, and CCL5)

• NK stimulate DCs via FLT3L

• TGF-β in TME→ ↑dysfunctional NK

• NK→ ↑autonomous inhibitory checkpoint molecules

(PD-1, TIGIT, CD96, TIM-3, LAG-3, CTLA-4,

KIR2DL-1/2/3 and NKG2A)

(53–56)

Neutrophil • N1 TANs kill tumor cells via ADCC and

pro-inflammatory factors (IFN-γ, MMP-8) & ROS

• N1 TAN recruit DC via CCL19, CCL20 and T cells

via CXCL9, CXCL10 and stimulate CTL, NK

via TNF-α

• Tumor cells produce GM-CSF→ PD-L1 expression in

TAN via JAK/STAT pathway→PD-L1+ TAN inhibit

T-cell immunity (N2 TAN)

• TAN suppress immune cells via Arginase-1, i-NOS

• TAN recruit Treg via CCL17

• TAN→ ↑angiogenesis viaMMP-9, VEGF

(25, 57–62)

Myeloid-Derived

Suppressor Cell

(MDSC)

• MDSC→ ↓immune cells via TGF-β, ROS, NO,

Arginase-1, PGE-2 through PD-L1/PD-1

• MDSC→ ↓metabolites in TME

• MDSC block lymphocyte homing via ↓e-selectin

• MDSC→ ↑angiogenesis via VEGF

(56, 63–65)

Mast cell • Mast cells regulate immune cells (T, B, APC)

via cytokines

• Mast cells secrete angiogenic (VEGF-A, CXCL8, and

MMP-9) and lymphangiogenic factors (VEGF-C and

VEGF-F)

• Mast cells secrete IL10→ ↑Treg in draining lymph nodes

• Tumor cells secrete TNF-α → ↑PD-L1 in mast cells via

NF-κB pathway

(66–69)

(Continued)
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TABLE 1 Continued

Tumor-suppressing Tumor-promoting References

Endothelial cell • Tumor-derived HIF→↑endothelial cell sprouting via

PDGF, EGF, VEGF, FGF, Ang2, IL-8→ ↑endothelial cell

migration→ support nutrient and metabolite to tumor

cells

• ↓ICAM-1, VCAM on endotheleial cells→ ↓immune cell

infiltration

• ↑TGF-β, BMP in TME convert endothelial cells to CAF

(25, 70, 71)

Cancer

Associated

Fibroblast (CAF)

• Tumor cells secrete FGF, PDGF, SDF→ ↑CAF→ ↑PDGF,

TGF-β →↑tumor growth

• CAF→immunosuppression via TGF-β

• CAF→ ↑angiogenesis via VEGF, CXCL12

• CAF→ ↑MDSC recruitment via CCL7

• CAF→glucosaminoglycans and

MMP-2→ ↑tumor migration

(72–75)

ADCC, antibody-dependent cellular cytotoxicity; Ag, antigen; Ang, angiopoietin; APC, antigen presenting cell; BMP, bone morphogenetic protein; Breg, B-regulatory lymphocyte; CAF,

cancer-associated fibroblast; CAM, cell adhesion molecule; CAR, chimeric antigen receptor; CCL, CXCL, chemokines; CD, Cluster of differentiation; CTL, cytotoxic lymphocyte; DC,

dendritic cell; ECM, extracellular matrix; EGF, epidermal growth factor; FasL, Fas-ligand; FGF, fibroblast growth factor; GF, growth factors; HIF-1, hypoxia-inducible factor-1; ICOS,

inducible T-cell costimulator; IDO, Indoleamine 2, 3-dioxygenase; IL, interleukin; i-NOS, inducible nitric oxide synthase; M1, M1 macrophage; M2, M2 macrophage; MAB, monoclonal

antibody; MDSC, myeloid-derived suppressor cell; MMP, matrix metalloproteinase; NK cell, natural killer cell; NKT cell, natural killer T cell; NKT II; type II NKT cells; NO, nitric oxide;

PDL-1, programmed death-ligand-1; PGE2, prostaglandin E2; PMN, Polymorphonuclear neutrophil; RNS, reactive nitrogen species; ROS, reactive oxygen species; TAN, Tumor associated

neutrophil; N2 TAN, N2 type tumor associated neutrophil; TGF-β, transforming growth factor-β ; Th, T helper lymphocyte; Th1, type 1 T helper lymphocyte; Th17, T helper lymphocyte

17; Th2, type 1 T helper lymphocyte; Th9, T helper lymphocyte 9; TLR, Toll-like receptors; TME, tumor microenvironment; TNF-α, tumor necrosis factor-α; TRAIL, TNF-related

apoptosis-inducing ligand; Treg, T regulatory lymphocyte; VEGF, vascular endothelial growth factor;→, influence; ↑, increase; ↓, decrease.

subcellular compartments (132). In this setting, mitochondrial

AcCoA is relatively higher than nucleocytosolic AcCoA, and this

disproportionate state causes reduction of histone acetylation

promoting stemness of T cells, eventually impeding the

activation of effector genes (132).

ROS are known as the byproduct of hypoxic environment

produced by tumor cells in TME, and the up-to-date

interpretation is that ROS are not only radicals having

damaging effect, but also have diverse biologic effects such

as stabilization of HIFs to promote angiogenesis, activation

of cell proliferation, as well as survival pathways, metabolic

reprogramming, differentiation of CAFs and deregulation of

immune cells (133). Reactive Nitrogen Species (RNS) are also

rich in TME, due to an increase in arginine metabolism within

tumor cells and tumor-infiltrating myeloid cells (134). RNS

causes nitration of chemokine (C-Cmotif) ligand 2 (CCL2), and

this modification suppresses infiltration and effector function of

lymphocytes (134, 135).

Altered metabolic condition is a common survival strategy

by tumor cells (136–139). Clinically, cachexia represents

increased catabolic status to feed cancer cells (140, 141).

Abnormally increased anabolism is also seen in cancer

patients. Non-Islet Cell Tumor Hypoglycemia (NICTH) is a

paraneoplastic syndrome where non-endocrine tumors cause

hypoglycemia, while promoting anabolism of tumor cells

by aberrantly producing insulin-like growth factor II (IGF-

II), insulin receptor antibodies and various cytokines (tumor

necrosis factor-α, interleukin-1 and−6) (142–145). Metabolic

condition comes into play at microscopic level as well.

As immune cells enter into tumor tissue, those cells face

hypoglycemia and a scant amount of essential amino acids

including glutamine and lipids. This condition hinders all steps

of immune cell functions such as infiltration, proliferation

and effector because these tasks have great demand for

energy, nutrition andmetabolic reprogramming (136–139). This

competitive condition places the immune system in an anergy

and exhaustion state (146, 147).

Extracellular vesicles (EVs) are rich in TIF (148). EVs

such as exosomes, microvesicles, and apoptotic bodies carry

active signaling and regulatory molecules like mRMA, miRNA,

signaling proteins, microRNAs (miRNAs), long non-coding

RNAs (LncRNAs), and circular RNAs (circRNAs) (149–151).

All types of cells including cancer stem cells are known to

secrete them (152, 153). Isolated EVs enriched in TME have

the capability of promoting angiogenesis, modulating immune

cells, enhancing tumor migration and epithelial-mesenchymal

transition (EMT), metastasis and increasing drug resistance

(148, 154, 155). However, EVs in TIF are not always tumor-

promoting. Some EVs were found to exhibit anti-tumor

effects (156, 157). This concept can be applied to patient

treatment via an EV engineering. EVs derived from proven

fighters such as active TILs and chimeric antigen receptor

(CAR)-T cells may potentially recondition dysfunctional or

anergic immune cells in tumor tissue (158–162). There
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are other humoral factors not mentioned here. Proteomic

approach is expected to find unique signatures of TIF and

further develop our understanding of the complex nature

of TME.

Biophysical component

Highly cellular tumors like lymphoma, seminoma, and

Ewing sarcoma frequently present characteristic bulging cut

surfaces. These features are related to an increased pressure

inside tumor tissue (163). High tissue pressure is due to an

increase in the proliferation and migration of tumor cells,

alteration of ECM and increased interstitial fluid pressure

(IFP) (163). The increased IFP is caused by the abnormal

vessels having higher permeability, lack of pericytes, vascular

compression by tumor growth and abundant ECM (164–

167). IFP is elevated by 10–40 mmHg in tumor tissues (168,

169). Increased IFP generates an outward tissue flow and cell

velocity flow, which hinders an inward penetration of cells,

antibodies and drugs (164, 165, 170, 171). Interestingly, high

pressure itself has been shown to enhance tumor proliferation

and is often related to a poor clinical outcome (172–174).

Vascular endothelial growth factor inhibitors, pegylated human

recombinant hyaluronidase-α, collagenase and angiotensin

inhibitors are suggested for potential drugs which can reduce

IFP and promote the delivery of various molecules into tumor

tissues (165). Migration and homing of immune cells is an

entrenched process involving various chemokines, gradients and

APC interaction (175–179). However, movement of immune

cells under high IFP and altered ECM are not well studied,

requiring further research.

Conclusion

The main stream in cancer research has been about

decoding genetic and epigenetic alterations in tumor cells. This

scheme has been powerful to understand the nature of cancer

diseases, and has led to the discovery of means to restore it.

Meanwhile, a distinct course of ideas appeared long ago from

the ancient time to the modern concept of immunotherapies

and ICIs. This different perspective has widened sight to other

attributes within tumor tissue. TME is a system consisting of a

reciprocal communication network among components under

unique physicochemical conditions. This process influences all

components and the output influences TME in an iterative way.

Various attempts such as data-driven approaches will rapidly

improve understanding of surroundings of tumor cells and lead

to several discoveries of predictive biomarkers and an eventual

control of resistance. Another aspect not discussed in this mini

review is about the host factors such as host genetic makeup.

Certain single nucleotide polymorphisms (SNPs) in genes of the

immune system were found to affect cancer susceptibility of an

individual and these may also influence response to ICIs (180–

182). There are case reports on renal cell carcinomas undergoing

regression after transfusion of plasma from another patient of

the same family (183, 184). This may indicate the presence

of an inherited resistance to cancer. Even though these are

still speculative and can be explained by other mechanisms,

this macro-environment also needs to be considered in the

dimension of future studies.
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Colorectal cancer (CRC) is one of the most prevalent cancer types worldwide,

with a high mortality rate due to metastasis. The tumor microenvironment

(TME) contains multiple interactions between the tumor and the host,

thus determining CRC initiation and progression. Various immune cells

exist within the TME, such as tumor-infiltrating lymphocytes (TILs), tumor-

associated macrophages (TAMs), and tumor-associated neutrophils (TANs).

The immunotherapy approach provides novel opportunities to treat solid

tumors, especially toward immune checkpoints. Despite the advances in the

immunotherapy of CRC, there are still obstacles to successful treatment.

In this review, we highlighted the role of these immune cells in CRC,

with a particular emphasis on immune checkpoint molecules involved in

CRC pathogenesis.

KEYWORDS

tumor microenvironment, macrophages, neutrophils, lymphocytes, colorectal
cancer, immune checkpoint

Introduction

Colorectal cancer (CRC) is the third most commonly diagnosed cancer in 2020,
affecting 10% of the global population (1). The increasing mortality rate in patients
with advanced CRC is of concern and reflects the limited range of treatment options.
This could be attributed to the diagnosis of CRC at a late stage when the tumor
has already metastasized. Furthermore, in most CRC patients, surgical resections are
not the ultimate cure as there is a high possibility of recurrence of the disease in a
more aggressive form; thus, using additional therapeutic modalities is mandatory (2).
CRC is not a single disease and every patient has a unique illness due to distinctive
genetic/epigenetic causes (3). The molecular classification of CRC is changing over
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time. Global genomic status [microsatellite instability (MSI)
status and chromosomal instability (CIN) status] and
epigenomic status [CpG island methylator phenotype (CIMP)
status] contribute significantly to the clinical, pathological
and biological properties of CRC. CIN tumors are mostly
microsatellite stable (MSS) and have been associated with an
aggressive clinical picture (4–6). Such tumors usually have
large genomic abnormalities that lead to higher average DNA
copy number compared with MSI tumors (7). MSI is typically
diagnosed by the variable lengths of DNA microsatellites
(mononucleotide and dinucleotide repeats) (8), which are
caused by epigenetic silencing (9, 10) or mutation of DNA
mismatch repair (MMR) genes, leading to accumulated
mutations at 10–100 times the normal rate promoting cancer
progression (8). CRC tumourigenesis has been reported to be
triggered by gene mutations associated with multiple signaling
pathways such as KRAS, BRAF, and PIK3CA (11). Several
studies have confirmed that association between BRAF and
KRAS mutations, in addition to BRAF mutations being more
linked to MSI status (3, 12–14).

The tumor microenvironment (TME) is a dynamic
and ever-changing phenomenon that has a pivotal role in
determining CRC initiation and progression. The TME
is a unique environment that develops during tumor
progression due to its interactions with the host. It comprises
several components, such as immune cells, stromal cells,
myofibroblasts, vessels, and extracellular matrix (ECM), which
differ according to tumor type (15). The tumor growth occurs in
a multi-step process, where the neoplastic cells recruit stromal
and immune cells to establish the TME. Then, within the
tumor site, the deranged production of inflammatory cytokines
and growth factors by cellular components in the TME leads
to further recruitment of various immune cells (16). Finally,
angiogenesis and ECM degradation occur during the tumor
growth, eventually leading to invasion and metastasis. Several
multiplexed technologies, such as single-cell RNA sequencing
and mass cytometry, explore the functional diversities of
tumor-infiltrating immune cells and the recent progress in
the cancer immunotherapy (17). Furthermore, multiplex
immunohistochemistry/immunofluorescence (mIHC/IF)
provides throughput staining and standardized quantitative
analysis that could be a proficient approach to detect specific
proteins or molecular aberrations as well as explore the
immune evasion (18). Thus, it could have a great potential
to discover novel prognostic and predictive biomarkers in
cancer immunotherapy and contribute in translational research
and clinical practice (19). During multiplex IHC, more than
three markers can be analyzed simultaneously in a single
cut of formalin fixed parrafin embedded tissue (FFPE) with
good cell discrimination and spatial information due to recent
developments in multiple immunolabeling and multispectral
imaging (20–23). A valuable method for assessing the expression
of numerous markers simultaneously in a single tissue section

was a multiplex IHC with tyramide signal amplification
(TSA) (20–24). This is a more sensitive method than standard
chromogenic IHC and may be able to identify proteins that are
expressed at lower quantities (20, 25). In this review, we aim to
discuss the various cellular immune components, focusing on
the impact of immune checkpoint molecules on the CRC TME.

Immune checkpoint molecules

The therapeutic use of antibodies that disrupt immune
checkpoints was a critical turning point in the cancer
immunotherapy (26). Blocking inhibitory coreceptors
and pathways, which constrain immune cell activities in
normal physiologic contexts, might “loosen the brakes” on
immunological response, thus eliminating tumors. Immune
cell activities are known to be exploited in malignancies (27).
In addition, multiple immune checkpoint molecules have
been identified in CRC pathogenesis and on various cell types,
including lymphocytes, macrophages and neutrophils (28).

The co-inhibitory receptor programmed death-1 (PD-1),
also known as CD279, is expressed inducibly on CD4+ T cells,
CD8+ T cells, B cells, natural killer T cells, and macrophages
(29). PD-L1 (B7-H1) and PD-L2 (B7-DC) are two known
PD-1 ligands. PD-L1 is constitutively expressed on various
immune and non-immune cells. However, PD-L2 expression
can be induced in response to microenvironmental stimuli (30).
The upregulation of PD-1 on tumor-infiltrating lymphocytes
(TILs) and the increased expression of its ligands on tumor
cells have been linked to tumor immune evasion, resulting in
the suppression of tumor-specific CD8+ T cells. This receptor
upregulation has also been linked to T cell exhaustion in
malignant tumors, defined as a reduction in the proliferation
and cytokine production (31). Thus, blocking PD-1 and PD-
L1 using monoclonal antibodies (mAbs) might be effective in
stage IV solid tumors by overcoming this immune suppression
(32, 33).

A well-known immune checkpoint molecule is cytotoxic T
lymphocyte antigen-4 (CTLA-4), expressed on T lymphocytes’
surfaces. CTLA-4 binds to B7-1 (CD80) and B7-2 (CD86)
costimulatory receptors present on antigen-presenting cells
(APCs), leading to inhibition of T cell activity by competitive
blocking of CD28 (29). Therefore, CTLA-4 has been a hot target
for mAbs cancer immunotherapy such as Ipilimumab (28).
A remarkable target for immune checkpoint blockade (ICB) is
lymphocyte activation gene-3 (LAG-3), a surface molecule of the
immunoglobulin superfamily. LAG-3 interacts with MHC class
II markers, thus leading to negative regulation of T cells, natural
killer (NK) cells, B cells, and plasmacytoid dendritic cells (DCs)
(34, 35). T cell immunoglobulin and mucin-containing protein-
3 (TIM-3) is another immune checkpoint marker expressed on
T helper 1 (Th1) and CD8+ cytotoxic T cells (CTLs). TIM-3
plays a critical role in inhibiting Th1 responses by causing cell
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death and is also known as hepatitis A virus cellular receptor
2 (HAVCR2) (36). Hence, blocking TIM-3 boosted the anti-
tumor activity, with a greater efficiency upon combinatorial
effect with PD-1 blockade (36). On the other hand, blockage of
the inducible T-cell co-stimulator (ICOS), belonging to the B7-
CD28 immunoglobulin superfamily, gained promising results in
the treatment of different malignancies. Its expression is linked
to a better prognosis in CRC patients, as the percentage of
ICOS+ CD4+ cells operating as Th1 cells in either primary
tumor tissue or peripheral blood could be a clinical predictive
marker for a favorable prognosis (37).

CD40, a member of the tumor necrosis factor (TNF)
family, was characterized on immune cells such as DCs, B cells
and macrophages, as well as non-immune cells. The ligand
of CD40 (CD40L) is expressed by activated B and T cells
as well as platelets (38). CD40/CD40L interactions regulate
T cell activity, cytokine production and antigen presentation
(38, 39). In some cases, this interaction could inhibit tumor
growth (40). On the other hand, tumors could utilize the
CD40/CD40L to manipulate both T-cell and antigen-presenting
compartments, thus contributing to the establishment of
the immunosuppressive TME (38, 41). For instance, this
immunosuppression could be achieved by inducing their
proliferative capacity, growth, and survival (42).

Sialic acid-binding immunoglobulin-type lectins (Siglecs)
are expressed on most white blood cells of the immune system,
as well as TILs, DCs, and macrophages. Hypersialylation of
neoplastic cells was identified as a hallmark of poor clinical
outcomes and contributes to tumor escape from immune
surveillance (43). Therefore, they are considered potential
immune checkpoint targets for anticancer therapy (44, 45).
Another promising target for cancer immunotherapy is the T
cell immunoreceptor with immunoglobulin and ITIM domain
(TIGIT). Its expression was known to be upregulated by various
immune cells such as activated T cells, regulatory T (Treg) cells
and NK cells. In addition, it can bind to two known ligands,
CD155 and CD112, expressed by tumor and antigen-presenting
cells in the TME (46).

Therapies targeting immune
checkpoint molecules in
colorectal cancer

Several immunotherapeutic strategies are under clinical
trials, especially in metastatic CRC; however, the results in MSS-
CRC are generally modest. The ongoing studies investigate
the outcome and potential biomarkers of metastatic CRC
using various immunotherapy-based modalities, including
immune checkpoint blockers (ICB) such as PD-1 blockers
(e.g., nivolumab, pembrolizumab, atezolizumab, avelumab,
durvalumab) and CTLA-4 blockers (e.g., ipilimumab,
tremelimumab). This is besides the use of other approaches

such as cancer vaccines (autologous, peptide, viral vector,
and dendritic cell-based) that aim to stimulate an immune
response against tumor cells, as well as adoptive cell transfer
using chimeric antigen receptor T-cell therapy to kill the tumor
cells directly, and oncolytic virus therapy (e.g., herpes simplex
virus and NV 1020) where the viruses selectively replicate in
cancer cells to destroy them with no harm to normal cells. Also,
among immunotherapies under clinical trials are indoleamine
2,3-dioxygenase 1 (IDO-1) inhibitors, OX40 antagonists (e.g.,
epacadostat, indoximod) that enhance the immune response,
and biphasic antibody targeting carcinoembryonic antigen (e.g.,
RO6958688) on T cells (47, 48).

Multiple clinical trials in this research area are at different
phases, and some of which have been completed and the
results are expected to be published soon. To mention
a few examples, a phase II clinical trial investigated a
combination of pembrolizumab and azacytidine in metastatic
CRC refractory to chemotherapy. The findings demonstrated
the safety and tolerability of this regimen, however, the
clinical effect was modest in the investigated cohort, likely
due to DNA methylation and immunomodulation of the
tumor as an effect of azacitidine therapy (NCT02260440)
(49). Another remarkable study was IMblaze370, which did
not meet its primary endpoint of improved overall survival
with atezolizumab plus cobimetinib or monotherapy using
atezolizumab vs. regorafenib in previously treated metastatic
CRC (NCT02788279). The study findings highlighted the
challenge of using immunotherapy in tumors with low baseline
levels of immune inflammation, such as that observed in the
MSS metastatic CRC (50). Results from ongoing comparative
clinical trials, such as Morpheus-CRC, are likely to thoroughly
evaluate the role of immunotherapy in CRC. Morpheus-
CRC is an ongoing study to evaluate the efficacy and safety
of multiple immunotherapy combinations in metastatic CRC
(NCT03555149) (48).

There are several challenging factors in using
immunotherapeutic agents in CRC. In contrast to melanoma,
which represents a successful example of immunotherapy,
patients with metastatic CRC responded modestly to
immunotherapy treatment, with many trials with high
failure rates. Several mechanisms may explain the discrepancy
in immunotherapy outcomes in different types of cancer. The
tumor mutational burden (TMB) has been early identified as a
potential predictor for effective response to immunotherapy.
For example, MSI in CRC, where there is deficient DNA
repair, gives rise to high TMB. In addition, appropriate
immune response in the intestine could be preserved by
ameliorating the host immune system that must tolerate
commensal bacteria while maintaining the ability to face
infections, otherwise, severe chronic inflammatory reactions
might occur (51). Another important aspect of the poor
outcome of CRC to immunotherapy is the fact that most tumors
are associated with activated WNT/β-catenin signaling which
can promote dendritic cell and T-cell exhaustion (52). This is
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similar to metastatic melanoma, where the activation of the
WNT/β-catenin signaling pathway resulted in T-cell exclusion
and resistance to anti-PD-L1/anti-CTLA-4 monoclonal
antibody immunotherapy (53). Similarly, in a mouse model
of hepatocellular carcinoma, the β-catenin pathway enhanced
immune escape and suppressed the recruitment of DCs, and
consequently led to impaired T-cell activity (54). Apart from
the MSI status of the tumor, at the moment, no predictive
biomarkers of immunotherapy response in CRC are available.

Immune components of the colon
cancer microenvironment

The cellular landscape of the TME includes various immune
cells, namely, TILs such as T, B, and NK cells, as well as
tumor-associated macrophages (TAMs) and tumor-associated
neutrophils (TANs). Various immune checkpoint molecules are
expressed on these immune cells, thus modulating the colon
cancer microenvironment and regulating the pathogenesis and
response to therapy (Figure 1). The anti-tumor and pro-tumor
roles of these immune cells on the TME have been previously
discussed in CRC context [reviewed in (55)].

Tumor-infiltrating lymphocytes

TILs mainly include CD8+ T cytotoxic and CD4+ T
helper lymphocytes, in addition to B and NK cells. They are
usually considered the host protecting element against tumor
formation, as they induce the recruitment, maturation, and
stimulation of immune cells that repress tumor growth (56).

T cells
In conventional terms, TILs represent the heterogeneous

population of αβ T cells, both CD4+ and CD8+ subsets,
present within the TME (57). CD8+ T cells (CTLs) recognize
tumor-associated antigens (TAAs) along with proteins of HLA
class I. These cells become differentiated into killer cells,
release perforins, and express the apoptotic inducer FasL
after expansion. Perforins disrupt the cell membrane, aiding
the entry of granzymes inside the cells, causing cleavage of
caspases’ precursors, thus directing the neoplastic cells toward
apoptosis. Additionally, CD4+ T helper cells proved to have
an essential role in the anti-tumor immunity by responding to
antigens presented by antigen-presenting cells (APCs) such as
macrophages (58).

Increased TILs is a favorable prognostic factor in
many malignancies, including CRC (59). In addition, the
quantification of lymphocyte infiltration has prognostic
significance, suggesting that lymphocyte infiltration is not
passive but may actively modulate tumor growth (60). This was
supported by a large multicenter study spanning more than

10 years, which demonstrated levels of lymphocyte infiltration
into primary tumors to be a strong independent predictor of
relapse and overall survival (61). Using expression profiling of
CRC, they further defined the relevance of specific immune
signatures, demonstrating that Th1 type interferon-γ (IFN-γ)
dominant immune profiles signified an improved prognosis. In
contrast, Th17 type IL-17 dominant immune profiles signified a
poor prognosis (61).

A recent study of most tumor-infiltrating immune cell
subtypes revealed that CD8+ T cells had the most significant
impact on patients’ survival (62). CD8+ CTLs mediate tumor
rejection by recognizing TAAs and directly killing transformed
cells. Effector CD8+ T cells in the TME generate IL-2, IL-12, and
IFN-γ, which enhance the cytotoxic potential of CD8+ CTLs,
leading to a targeted tumor cell killing (63, 64). On the other
hand, CD4+ helper T cells present in the TME are involved in
activating CTLs against tumor cells (65). Exhaustion of CTLs
could be caused by long-term interaction between CTLs and
antigens, leading to loss of their efficiency and function.

Similarly, tumor cells suppress the immune response by
inducing the exhaustion of CTLs in the TME through the
expression of inhibitory immune checkpoint receptors such
as PD-1, CTLA-4, and LAG-3 (66, 67). In CRC pathogenesis,
PD-1 was shown to be upregulated on CD8+ T cells in
the TME, and its ligand was associated with cytokines and
perforin impairment (30). Furthermore, a study by Hua
et al. reported an inverse relationship between T cell density
in the TME and the expression of PD-L1 on CRC cells
(68). This was accompanied by an expansion of Treg cells,
further linking the presence of PD-L1+ tumor cells and poor
prognosis (68).

CTLA-4 was found to be expressed on TILs within
the epithelial component of the tumor, the surrounding
tumor stroma and the invasive front of the tumor. Further,
CTLA-4 was identified on subsets of Treg cells, where
high expression of CTLA-4 was revealed along with a
significant increase of activated Tregs (CD45R Foxp3+ T
cells) in the blood and tissues of CRC patients (69). Also,
a highly suppressive subset of the CD4+ Foxp3− T cell
population was described in CRC patients to express multiple
immune checkpoints (such as LAG-3, PD-1, and CTLA-
4) and produce immunosuppressive cytokines such as IL-
10 and transforming growth factor (TGF)-β (70). Therefore,
CTLA-4 expression on Treg cells highlighted its potential
role as a therapeutic target in CRC, such as in the case of
Tremelimumab, which has been investigated in a phase II study
for CRC patients with refractory metastatic adenocarcinoma
who failed standard chemotherapy (70). Additionally, LAG-
3 was reported to regulate the function of Treg cells, and
its expression on CD4+ CD25+ cells was associated with
potent inhibitory activity (71). Exhausted CD8+ T cells
were observed to express LAG-3 along with other inhibitory
receptors, such as PD-1, and thus inhibition of both PD-1
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FIGURE 1

Immune checkpoint molecules on various immune cells in colorectal cancer. The schematic representation shows the expression of various
immune checkpoint molecules on immune cells that interact with colon cancer cells. These immune cells include tumor-infiltrating
lymphocytes (TILs) such as natural killer (NK) cells, T cells, regulatory T cells (Tregs) and B cells, as well as tumor-associated macrophages
(TAMs) and tumor-associated neutrophils (TANs). The molecules include programmed cell death (PD1) and its ligand (PDL1/PDL2), CD40 and its
ligand (CD40L), CD80/CD86, cytotoxic T-lymphocyte associated protein 4 (CTLA4), T-cell immunoglobulin and mucin domain 3 (TIM-3),
lymphocyte-activation gene 3 (LAG-3), identification of the inducible T cell co-stimulator (ICOS) and its ligand (ICOS-L), T cell immunoreceptor
with Ig and ITIM domains (TIGIT) and sialic acid-binding immunoglobulin-type lectins (Siglec). Furthermore, several monoclonal antibodies
have been introduced to target these molecules (LAG-3, PD/PD-L axis, and CTLA4) as potential CRC immunotherapeutic agents.

and LAG-3 could boost T cell activity (72). There are several
clinical trials with LAG-3 inhibitors (LAG-525 and BMS-
986016) with or without the combination of PD-1 inhibitors
(Nivolumab and PDR001) in patients with advanced solid
malignancies (28).

Xu et al. found considerably greater levels of circulating
TIM-3+ PD-1+ CD8+ T cells in CRC patients’ peripheral
blood samples than in healthy subjects’ blood (73). The
expression of TIM-3 and PD-1 on CD8+ and CD4+ T cells
was also revealed in peripheral blood collected after surgery.
Furthermore, both TIM-3 and PD-1 expression appeared to

be linked to decreased T cell activity (74). In comparison to
adjacent colonic tissues, tumor tissue had a higher number
of TIM-3+ PD-1+ CD8+ T cells. Together with the lack
of quantifiable responses to PD-1 blockage in a large group
of CRC patients, these findings point to TIM-3 as a more
prominent inhibitory receptor in CRC patients, thus limiting
T cell responses. Furthermore, inhibiting this route may help
to restore damaged cell-mediated immunity following surgical
resection. These findings support the development of TIM-3
inhibitors and show considerable promise in CRC patients as
single or combined treatments (34).
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Immunoregulatory cells such as Treg cells, mesenchymal
derived stem cells (MDSCs), and M2 macrophages possess
the ability to control and modulate T cell function by
releasing cytokines such as IL-10 and TGF-β that can activate
specific inhibitory immune checkpoints (75–77). Likewise,
tumor cells and other cells in the TME can express these
inhibitory ligands and activate their receptors, thus impairing
T cells’ activity (78). This was reported to disrupt the
proliferation of CTLs and reduce the immune response against
CRC (79).

A known prognostic approach for immune checkpoint
inhibitor therapy is MSI. Furthermore, MSI is linked with an
MMR system that recognizes and repairs DNA damage. Several
clinical trial data highlight that deficient MMR (dMMR) or
MSI were able to predict treatment response across different
solid tumor types, including CRC (80). In particular, MSI is
known to be a good predictor of CRC prognosis, as it is
closely associated with the abundance of tumor-infiltrating T
cells. Several immunohistochemical studies have revealed high
infiltration of intraepithelial activated CD8+ T cells within MSI
colorectal tumors (81–83). Furthermore, Dolcetti et al. found
that cytotoxic infiltrating structures were highly abundant in
tumor epithelial cells of MSI-high (MSI-H) patients. The exact
pathophysiology of TILs accumulation in MSI-H CRC has not
been elucidated. However, an early proposal was that MSI-H
tumors produce many abnormal proteins that trigger a host
immune response. This was supported in a study by Smyrk
et al. which reported an active immune microenvironment in
MSI/dMMR tumors that are characterized by a more favorable
prognosis compared to MSS/MMR-proficient (pMMR) tumors
(8). In the MSI/dMMR subset of CRC, the high accumulated
mutation creates many tumor-specific neoantigens, typically
10–50 times that of MSS/MMR-proficient subset (84), which
might be the reason for the high level of TILs and active
Th1/CTL immune microenvironment in MSI/MMR-tumors
observed in many previous studies (8).

Moreover, granase B expression and other cytotoxic effects
were more active in MSI-H tumors (85). Additionally, pMMR-
microsatellite instability-low (MSI-L)/MSS have low tumor
mutational burden, poor infiltration by TILs and often have
a worse prognosis than dMMR-MSI-H as well as a poor
response to immune checkpoint inhibitors (86). In the TME,
the PD/PD-L1 pathway leads to the escape of tumor cells
from the immune response via the inhibition of CTLs (87, 88).
Additionally, the expression of PD-L1 on tumor cells is related
to the exhaustion of T cells, therefore blocking this pathway
has been demonstrated to be a successful approach for the
treatment of different types of cancers, including non-small cell
lung cancer, melanoma, breast, renal cell carcinoma, and CRC
(87–92). In particular, higher expression of PD-1 and PD-L1
has been associated with a better prognosis in CRC patients.
Furthermore, PD-1 expression in TILs has been found to be an
independent prognostic factor for overall survival and disease-
free survival of CRC patients, especially for MMR-proficient

tumors (93). Therefore, the upregulation of the PD-1/PD-L1
axis in CRC is correlated with a favorable clinical outcome. Such
a pattern could be a compensatory upregulatory mechanism
in the TME in order to identify the tumor and trigger an
immune response. Furthermore, an association between PD-L1
on tumor cells and a high TILs density could further support this
hypothesis, similar to that observed in breast cancer (94, 95).
Moreover, there is a remarkable high expression of checkpoint
molecules such as PD-1, PD-L1, CTLA-4, and LAG-3 in MSI
CRC in comparison to MSS CRC, which could contribute to the
immunosuppressive microenvironment that aids MSI tumors
evade immune destruction by the infiltrating immune cells.
Therefore, this explains why the MSI subset of CRC could be a
potentially good candidate for the checkpoint immunotherapy
(9). ICB was described as more effective in MSI CRC in a
phase 2 trial of Pembrolizumab, a fully human mAb targeting
PD-1. In addition, another PD-1 mAb, Nivolumab, showed
efficacy in CRC, where a patient showed complete response
with no disease recurrence and demonstrated MSI (27, 96).
Therefore, MMR status is a critical key for response to therapy,
as shown by different clinical trials with anti-PD-1 and anti-
PD-L1 therapy. Moreover, it was also demonstrated that CTLA-
4 expression is increased in MSI tumors compared to MSS
cancers (84).

B cells
Tumor-infiltrating B cells constitute a significant proportion

of the immune infiltrates in CRC. Until recently, B cells
have not been considered an important population of TILs,
despite that they compose around 40% of TILs (97, 98).
They are considered positive regulators of immunity, often
collaborating with T cells to generate potent, unrelenting
immune responses (98).

B cells can exert anti-tumor effects by activating antibody-
dependent cell cytotoxicity (ADCC) and the complement
cascade (99). In tumor tissues, B cells can be found in lymphoid
aggregates, known as tertiary lymphoid structures (TLSs) or
could be sparsely distributed in the TME. B cells present
in the immature TLSs were reported to possess immune-
regulatory functions by the secretion of anti-inflammatory
cytokines and thus leading to the inhibition of anti-tumor
immunity (100). Also, B cells can act as APCs besides
their main function as antibody producers. Furthermore, B
cells possess the unique capability of concentrating antigens
through membrane immunoglobulin mediated uptake, which
might also facilitate T cell activation above certain thresholds
for TAAs (98, 101). Autoantibodies were shown to react
primarily with autologous tumor targets or allogeneic tumors
of the same tissue type, suggesting recognition of TAAs
(102). Antibodies were believed to play a negligible role in
the TME, so their relevance in tumor biology has been
overlooked. However, studies revealed that B cell markers such
as CD20 and CD138 correlated significantly with a lower CRC
stage (103).
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A study by Maletzki et al. observed that tumor-infiltrating
B cells in primary CRC were of a mature immunophenotype,
suggesting activation and antigen-induced maturation (104).
This was supported by other studies where most tumor-
infiltrating B cells reside in follicular aggregates in CRC.
Likewise, peritumoral follicular aggregates of lymphocytes
have been previously reported as a “Crohn’s-like reaction”
and interpreted as an immune-mediated anti-tumor effect in
CRC (105, 106). Similar to T cells, B cells express checkpoint
ligands on their surface, such as PD-L1, CD80/CD86, and
ICOS-L (107–109). Furthermore, a study by Helmink et al.
observed significantly higher levels of B-cell-related gene
expression, increased B cell receptor diversity, and clonal
expansion in tumor samples from melanoma patients
who responded to ICB treatment compared to other
patients (110).

Natural killer cells
Being members of the innate immunity, NK cells can lyse

tumor cells without prior sensitization or clonal expansion,
unlike T cells. NK cells can be classified into two major
groups, where the CD56bright CD16− subset represents 10-
15% of circulating NK cells and are more immunoregulatory
by releasing cytokines such as IFN-γ. They mainly reside in
the secondary lymphoid organs, such as lymph nodes and
tonsils (111). In contrast, CD56dim CD16+ cells represent
the significant population (90% of circulating NK cells) and
predominantly mediate cytotoxicity (112, 113). NK cells play
a fundamental role in cancer immunosurveillance through
their anti-tumor activity (114). This has been supported by
studies where the elimination of NK cells led to increased
malignancy occurrence (115). NK cells perform their anti-tumor
activity mainly when the expression of MHC class I molecules
is downregulated. Moreover, upregulation of stress-induced
molecules such as ligands of the activating receptor C type lectin
receptor D (NKG2D) on cancerous cells makes them prone to
NK-cell killing (116).

Most neoplastic cells and tumor-associated cells in the TME
secrete factors that block the activation of NK cells, such as IL-
6, IL-10, IDO, TGF-β, and prostaglandin E2 (PGE2), through
downregulating NK cells activating receptors including NKG2D
(117). Thus, NK cells, which infiltrate the tumor stroma,
might proficiently lose their tumor-killing function due to these
immunosuppressive mediators (118). For instance, IDO causes
tryptophan depletion and kynurenine accumulation leading to
immunosuppression of T and NK cell functions as well as the
stimulation of Treg cells (119). Additionally, PGE2 suppresses
IFN-γ production and responsiveness to IL-12 and IL-15 (120).
Moreover, there is a reduction in the cytokine production of
intra-tumoral NK cells (121). TGF-β affects the IL-15 signaling
pathway, thus dampening NK cell proliferation and cytotoxicity
(122). Furthermore, hypoxia and poor nutrient levels in the
TME suppress NK cell activity (116). On another note, NK

cell migration and penetration into the tumor growth site
might be halted by ECM accumulation and increased interstitial
fluid (123).

Furthermore, the recruitment of immunosuppressive cells
such as MDSCs and the emergence of NK cell-resistant tumor
variants result in primary tumor overgrowth. On the other hand,
other tumor cells try to increase the expression of MHC class
I molecules, such as human leukocyte antigen (HLA)-E, which
engages the inhibitory receptor NKG2A on NK cells. This has
been supported by studies where high expression of HLA-E and
NKG2A led to a high inhibitory signal, potentially leading to
poor outcomes and tumor growth (124–126).

NK cells have the potential to regulate the function of the
adaptive immune system. For example, NK cells have been
found to enhance T cell infiltration, thus triggering immune
responses through their cytokine and chemokine secretion
turning tumors immunologically “hot.” In contrast, the absence
of these immune cells leaves the tumors immunologically “cold”
(127). Consequently, CD8+ T cell recruitment in the TME
and their interaction with NK cells elicit tumor regression. In
addition, NK cells possess anti-metastatic activity by possible
elimination of circulating tumor cells, “i.e., metastatic clones”
(118, 127). However, tumors could escape NK cell activity
through several mechanisms, including immune checkpoints
expression by NK cells: PD-1, CTLA-4, LAG-3, and TIM-3.
Upon binding to their receptors, NK cell activity is dampened
(128), which can be surpassed by ICB, thus restoring NK and
CD8+ T cell anti-tumor immunity. Nevertheless, many tumors
still develop resistance to ICB therapy, representing a potential
therapeutic target (129).

Another major obstacle in solid tumors is the homing of
immune cells such as NK cells to tumor growth sites. This
could be attributed to a dysregulation in the chemokine gradient
in the TME, thus preventing NK cells from reaching the
tumor growth sites (130). This has been reported in several
studies where aberrant signaling pathways led to alterations
in chemokines, including CCL27, CCL2, and CXCL11, hence
impairing leukocyte migration (131–133). In CRC, loss of
MHC class I expression is quite common, allowing NK cell
recognition and killing of tumor cells (134, 135). However,
like other types of cancer, a decreased number of NK cells
in CRC patients was reported, which was associated with
an increased frequency of CRC tumor recurrence (136, 137).
This has been further supported where a negative correlation
between peripheral NK cells and the CRC staging was reported,
especially at early (I) and late (IV) stages of the disease (138).
Phenotypically, CRC patients exhibited a reduction in the
expression of the natural cytotoxicity receptors, NKp44 and
NKp46 (139).

Furthermore, other activating receptors such as NKG2D,
NKp30, NKp46, and DNAX accessory molecule-1 (DNAM-1)
were reduced in the peripheral blood of patients with CRC (140–
142). Upon tumor progression, the percentages of NKG2D+ NK
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cells were decreased, indicating a role in the metastasis of CRC
(143). It has been shown that reduced expression of NKG2D
on NK cells was correlated with high soluble serum levels of
its ligand MHC-class I related molecule A (MICA) (144). The
pathway of NKG2D and its ligands has been reported to be
affected by TGF-β, which is highly expressed by colorectal cells
(145). Hence, ligands of the activating receptor NKG2D were
detected in the early stages of CRC, but as an immune evasion
strategy, their expression decreased upon disease progression
(146). Additionally, dysregulated NK cells displayed impaired
function in CRC, including IFN-γ secretion and degranulation
(140). Moreover, phenotypic alteration has been observed in the
circulating CD56dim population of NK cells in CRC patients
(139). Interestingly, a subpopulation of NK cells that is positive
for CD16 and CD56 was studied and correlated negatively
with the occurrence of CRC and the staging of CRC (147).
The inhibitory receptor, NKG2A, has been reported to be an
interesting target as a checkpoint molecule in cancer (148).
Thus, blocking the inhibitory NKG2A receptor enhances tumor
immunity by promoting both NK and CD8+ T cell effector
functions. Monalizumab, a humanized anti-NKG2A antibody,
was reported to induce NK cell activity against various tumor
cells, especially in combination with PD axis blockade (149).
This is under investigation in multiple clinical trials in solid
tumors such as CRC (149).

Differentiated CRC cells were found to be more resistant
to NK cells compared to cancer-initiating cells that were more
susceptible to NK cell killing (150). It has been established
by both in vitro and in vivo studies, where NK cells were
shown to mediate the direct killing of human tumor cells in
colon cancer (151–153). This has been implemented in clinical
settings, where autologous NK cells were utilized in patients
with advanced gastric or colorectal cancers combined with
trastuzumab or cetuximab chemotherapy (154, 155). Colon
adenocarcinomas exhibited low NK cell infiltration rates, thus
causing the NK cell population to remain in the outer stroma
and halting them from performing their anti-tumor activity
(60, 134, 156, 157). Additionally, infiltration of NK cells was
proposed to be a potential predictive marker of therapy. The
homing and migration of NK cells are dependent on selectins,
adhesion molecules and chemokines. Hence, future clinical
trials should target the trafficking of NK cells into tumor sites
rather than focusing on the simple administration of a single
cytokine/chemokine as a therapeutic approach (157).

Another interesting aspect that is critical for
immunotherapy for CRC is the expression of immune
checkpoint molecules on NK cells (158). These include CTLA-4
and PD-1 receptors as well as TIGIT, CD96, LAG-3, and
TIM-3. In CRC animal models and human patients, NK cell
exhaustion was reported to be associated with the expression
of TIGIT. Furthermore, the presence of NK cells was critical
for the efficacy of TIGIT and PD-L1 checkpoint inhibitors, as
they regulate the frequency of effector CD8+ T cells secreting

IFN-γ and TNF-α (159). The combination of these checkpoint
inhibitors showed a synergistic effect in their anti-tumor
potential that was accompanied by prevention of NK cell
exhaustion in both animal models and CRC patients (159,
160). In addition, PD-1 was found to be upregulated on tumor-
infiltrating and peripheral NK cells in digestive cancers such as
esophageal, gastric, biliary, and CRCs (161).

Other recently reported immune checkpoints are the Siglec
family receptors, such as Siglec-7 and -9, CD47, and CD200. On
another note, NK cells express Siglec-7 and Siglec-9 receptors,
with a further upregulation on the cytotoxic CD56dim NK
cell subset (162, 163). In addition, Siglec-9 was found to be
upregulated on tumor-infiltrated CD8+ cytotoxic T cells in
various solid tumors, including CRC (164, 165). An interesting
fact about the Siglec immune checkpoint molecules is that they
are expressed on various immune cells and are usually expressed
on T cells that concomitantly express PD-1, further enhancing
the co-inhibitory signal (165). Furthermore, they were known
to play an inhibitory effect on NK cell function against tumor
cells, particularly cytotoxicity.

On the other hand, blocking these immune checkpoint
molecules such as Siglec-9 antibodies improved the anti-tumor
cytotoxic potential of NK cells. This was due to the blockage
of Siglec markers on tumor cells as well as the NKG2A
receptor on NK cells (164). Also, sialidase treatment was
found to enhance NK cell killing against various cell lines,
including the colon cell lines. Therefore, anti-Siglec-7 and
anti-Siglec-9 blocking antibodies could be developed to be
used for cancer immunotherapy, along with other immune
checkpoint inhibitors.

Tumor-associated macrophages

TAMs are the dominant inflammatory constituent in the
TME and are ample in all stages of carcinogenesis. Activated
infiltrating TAMs secrete a plethora of proteolytic enzymes as
well as growth and inflammatory mediators, known to modulate
different molecular pathways involved in tumor progression and
metastasis (166).

Macrophages can be classified into two well-defined
subtypes: M1 macrophages “classically activated” and M2
macrophages “alternatively activated.” M1 macrophages have a
pivotal role in eradicating different organisms and cancerous
cells, as they have an inflammatory function by secreting
pro-inflammatory cytokines like TNF-α, IL-6, and IL-1β.
On the contrary, M2 macrophages release anti-inflammatory
cytokines, such as TGF-β, IL-10, and IL-13, and have been
implicated in tissue healing and tumor progression. M1 and
M2 are distinguished with certain markers in the tumor
samples, where M1 macrophages are characterized by the
expression of HLA-DR, CD11c, CD86, inducible nitric oxide
synthetase (iNOS), and phosphorylated signal transducer and
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activator of transcription 1 (pSTAT1), while M2 macrophages
express CD163, CD204, and CD206 (167). In the TME,
TAMs are mostly pro-tumorigenic/anti-inflammatory “M2
phenotype form.” Their significance in tumor evolution and
progression is accentuated by the fact that they may comprise
up to 80% of the tumor mass (168). The suppression
of an immune response, activation of angiogenesis, and
remodeling of ECM are important functional characteristics
of TAMs. Furthermore, TAMs produce proteolytic enzymes
such as matrix metalloproteinases (MMPs) and cathepsins
that cause ECM breakdown, leading to the intravasation of
tumor cells into the bloodstream, thus enhancing metastases
(169). Additionally, TAMs release angiogenic factors, allowing
tumor cells to spread beyond the primary tumor site
and contributing to metastasis (170). They also provide a
favorable environment for metastatic tumor cells by releasing
inflammatory mediators like IL-1β. Furthermore, reactive
oxygen species (ROS) produced by TAMs are implicated in
malignant cell instability, a hallmark of cancer (168). On
another note, TAMs could promote cancer cell proliferation
by releasing growth factors such as epidermal growth factor
(EGF) (170).

Recently, the effect of colon cancer ECM on macrophage
polarization was investigated, where it was discovered that
tumor ECM-educated macrophages could develop into M2
macrophages. The anti-inflammatory markers (IL-10, CCL18,
and TGF-β) were upregulated, and the pro-inflammatory
markers (TNF-α and IL-6) were downregulated by the
macrophages that are differentiated within the tumor matrices.
It was also found that MMP1, the MMP responsible for
M2 polarization, was upregulated in tumor matrices. These
results indicated that tumor-derived matrices caused an anti-
inflammatory M2-like macrophage polarization significantly
(171). Additionally, clinical staging and lymph node metastases
were found to be associated with macrophage infiltration
and vascular density in CRC (172). Moreover, blocking the
colony-stimulating factor 1 receptor (CSF1R), required for
TAMs’ recruitment, differentiation, and survival, is one of the
most effective ways to target TAMs (173). Small molecule
inhibitors or mAbs against CSF1R diminish the number
and/or affect the behavior of TAMs in mice models of
solid tumors such as CRC, breast cancer, and glioblastoma,
thus impairing tumor formation and progression (174–
176).

TAMs were reported to express molecular triggers of
checkpoint proteins that regulate T-cell activation. Such proteins
are the site of action of checkpoint-blockade immunotherapies
(177). On another note, TAMs are key players in immunological
resistance and their manipulation could improve the efficiency
of immunotherapies, possibly through the NF-κB pathway.
Such a pathway could be inhibited to increase the efficacy of
immunotherapies by repolarizing M2 TAMs and to decrease
the expression of PD-L1 on them (178). A recent study in

CRC by Fiegle et al. showed that the combined blockade of
CTLA-4 and PD-L1 increased the levels of the pro-inflammatory
Th1/M1-related cytokines, increased NOS+ macrophages in
the tumor tissue and reduced PD-L1+ macrophages (179).
The role of TAMs as therapeutic targets was reviewed by
Malfitano et al. (177). Also, CD40+ TAMs and plasma sCD40
in CRC tissues have been identified as favorable prognostic
markers (180). Apoptotic susceptibility is dependent on the
“quality” of the signal, as death occurs when the CD40 signal
is delivered in membrane-bound form (mCD40L), whereas the
soluble CD40 agonists are non-apoptotic (181). Blocking of
CD40 using membrane-bound CD40L showed pro-apoptotic
signal and pro-inflammatory cytokine production in CRC
cells, thus suggesting CD40 as a promising therapeutic in
CRC (182).

Tumor-associated neutrophils

Neutrophils play an intricate and complex role in cancer
(183). Many reports support the dual function of neutrophils,
including anti-tumoral and pro-tumoral roles, and thus TANs
are segregated into anti-tumor (N1) and pro-tumor (N2)
phenotypes (184). However, these cells do not have specific cell
surface markers to discriminate N1 and N2 neutrophils. Some
studies indicate that N1 neutrophils have a higher expression
of CD54, CD95, TNF-α, CXCL10, and low production of IL-
8, while N2 neutrophils have high expression of CD182 and
IL-8 production (185). In addition, neutrophils play a role in
the immunosuppression of tumors (186), through the release of
different mediators, including IL-4, TGF-β, immune checkpoint
ligands, ROS, and reactive nitrogen intermediates (187). On
the other hand, releasing nitric oxide by neutrophils could
enhance cancer cell killing and suppress CRC growth and
metastasis (188).

Under the effect of TGF-β present in the TME, neutrophils
polarize into pro-tumor N2 neutrophils, which produce
proangiogenic factors and exert immunosuppressive activity
through the secretion of arginase-1 (Arg1) (184, 189, 190). TANs
mediate direct suppression of Th1 and CTL in tumors (191).
On the other hand, upon blockade of TGF-β or administration
of type 1 IFN, neutrophils could polarize into anti-tumor
N1 neutrophils, which activate CD8+ T cells, thus exerting
anticancer cytotoxic activity, by reducing the expression of the
proangiogenic factors (e.g., VEGF and MMP-9), and increasing
the expression of T cell-attracting chemokines (e.g., CCL3,
CXCL9, and CXCL10) (184, 189, 192).

Neutrophils are recruited to the tumor site through
inflammatory molecules such as granulocyte-colony stimulating
factor (G-CSF), tumor-derived cholesterol derivatives
(oxysterols) (193) and anaphylatoxin C5a (complement
component) (99, 194). In CRC, neutrophils play an anti-
tumoral role through the secretion of IFN-β, IFN-γ and
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Granulocyte macrophage-colony stimulating factor (GM-
CSF), and are known to express CD66b, CD11b, CD101, and
CD177 (187). Neutrophils may promote tumor metastasis by
accumulating in the metastatic niche. Tumor and stromal cells
expressing G-CSF, CXCL1, and CXCL2 enhance neutrophil
recruitment in the metastatic sites (195).

In solid tumors, neutrophils’ accumulation is a poor
prognostic marker associated with tumor progression and
metastases (196–198). However, in CRC, high infiltration of
TANs was reported to be associated with a better response
to 5-FU-based chemotherapy (199). In this regard, CRC
represents an exception from other solid tumors in which a
high number of TANs is associated with poor response to
chemotherapy and radiotherapy (200). Different key players in
tumor immunobiology among different cancers may explain
the discrepancy of TANs function in CRC compared to other
tumors (e.g., ovarian and gastric).

Noteworthy, neutrophils interact with TILs. Using an
inducible colon tumor mouse model, Germann et al. reported
that the most potent inhibitor of T-cell activity in the
TME was the TANs. The suppression is exerted through
matrix metalloproteinase-mediated activation of TGF-β (201).
Interestingly, MMP-9 secreted by TANs, converts TGF-β
precursor into an active form. Thus, inhibiting the MMP-
9/TGF-β axis eliminates the immunosuppressive effect of
neutrophils and suppresses their tumor-promoting functions
(201). On the other hand, a recent study reported that the pre-
operative and post-operative neutrophil to lymphocyte ratio
was associated with histological markers of CRC progression.
Also, there was a trend of association between post-operative
neutrophil count and disease-free survival (202). Different
factors affect neutrophil polarization and may, at least
in part, explain the apparent paradoxical impact of TME
neutrophil count.

The link between TANs infiltration and tumor angiogenesis
determines to a great extent the response to ICBs. It has
been reported that neutrophil infiltration in the TME is
associated with significant resistance elements to ICBs and
their adjuvant anti-angiogenic agents. More than 100 clinical
trials investigate the combination of bevacizumab (Avastin; anti-
VEGF-A antibody) with ICBs (203). In addition, inhibition
of CXCL1 or CXCL5/CXCR2 signaling in tumors with low
TILs causes a reduction in TANs infiltration, with an increase
in the number of PD-1+ CD8+ T cells. Furthermore, this
enhances the sensitization of cancer cells to the anti-CD40, anti-
CTLA-4, and anti-PD-1 combination immunotherapy (204).
Moreover, the use of CXCR2 inhibitors might overcome
the resistance to anti-PD-1 immunotherapy in KRASG12D-
expressing CRC (205). Such findings, together with similar
ones in other cancers, promoted the development of phase
I and II clinical trials, using CXCR1 and CXCR2 inhibitors
in combination with anti-PD-1 in patients with metastatic
CRC with MSI-L and Ras-mutation (195). Furthermore, the

“neutrophil extracellular trap” or “NET” is considered an
important element of the TME that leads to resistance to
ICB therapy (206, 207). Accordingly, DNase I, an inhibitor of
NETs, was reported to significantly enhance the therapeutic
effects of anti-PD-1 in an MC38-bearing mouse model of
CRC (208).

Conclusion

Blocking immune checkpoints has ushered in a new era
of cancer treatment. Targeting immunological checkpoints in
CRC TME is an intriguing novel cancer therapeutic approach
via altering the immune cells’ function. Increasing evidence
suggests that patients’ responses are linked to different pro-
tumor and anti-tumor immune cells in the TME, such as TILs,
TAMs, and TANs. Anti-PD-1, anti-PD-L1 and anti-CTLA-4 are
well-known ICBs showing promising results in CRC patients. In
addition, other intriguing immunological checkpoints that can
suppress T or NK cell activity have emerged in recent years, such
as TIM-3 and LAG-3. As a result, combining ICBs with other
therapeutic modalities has shown encouraging results and could
be a successful step forward in CRC treatment.
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Background: Lung adenocarcinoma (LUAD) is one of the most frequent

causes of tumor-related mortality worldwide. Recently, the role of N7-

methylguanosine (m7G) in tumors has begun to receive attention, but no

investigation on the impact of m7G on LUAD. This study aims to elucidate

the significance of m7G on the prognosis and immunotherapy in LUAD.

Methods: Consensus clustering was employed to determine the molecular

subtype according to m7G-related regulators extracted from The Cancer

Genome Atlas (TCGA) database. Survival, clinicopathological features

and tumor mutational burden (TMB) analysis were applied to research

molecular characteristics of each subtype. Subsequently, “limma” package

was used to screen differentially expressed genes (DEGs) between

subtypes. In the TCGA train cohort (n = 245), a prognostic signature

was established by univariate Cox regression, lasso regression and

multivariate Cox regression analysis according to DEGs and survival

analysis was employed to assess the prognosis. Then the prognostic value

of the signature was verified by TCGA test cohort (n = 245), TCGA

entire cohort (n = 490) and GSE31210 cohort (n = 226). Moreover,

the association among immune infiltration, clinical features and the

signature was investigated. The immune checkpoints, TMB and tumor

immune dysfunction and exclusion (TIDE) were applied to predict the

immunotherapy response.

Results: Two novel molecular subtypes (C1 and C2) of LUAD were identified.

Compared to C2 subtype, C1 subtype had poorer prognosis and higher

TMB. Subsequently, the signature (called the “m7G score”) was constructed

according to four key genes (E2F7, FAM83A, PITX3, and HOXA13). The

distribution of m7G score were significantly different between two molecular

subtypes. The patients with lower m7G score had better prognosis in TCGA

train cohort and three verification cohort. The m7G score was intensively
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related to immune infiltration. Compared with the lower score, the higher

m7G score was related to remarkable upregulation of the PD-1 and PD-L1,

the higher TMB and the lower TIDE score.

Conclusion: This study established a m7G-related signature for predicting

prognosis and immunotherapy in LUAD, which may contribute to the

development of new therapeutic strategies for LUAD.

KEYWORDS

N7-methylguanosine, lung adenocarcinoma, molecular subtype, prognosis,
immunotherapy efficacy

Introduction

Lung adenocarcinoma (LUAD) accounts for the largest
proportion in non-small cell lung cancer (NSCLC) (1). Since
patients with LUAD suffer from advanced disease or have distant
metastasis when first diagnosed, they have a poor prognosis,
and the overall 5-year survival rate is still below 20% (2, 3).
Impressively, immune checkpoint blockade (ICB) has become
a promising therapy strategy for NSCLC (4). However, some
patients have a low response rate to ICB treatment, or even drug
resistance, thus resulting in disease relapse or dead cases (5, 6).
Therefore, it is essential to identify a novel biomarker in LUAD,
in order to improve the outcomes of patients and formulate
personalized treatment strategies.

Increasing evidence indicates that the initiation and
progression of lung cancer depends not only on genetic
variation, but also on epigenetic dysregulation (7, 8). As an
important part of epigenetic modification, RNA modification
is involved in regulating many physiological processes and
disease occurrence (9). Besides, dynamic regulation and
disruption of these RNA modifications are also related to the
tumorigenesis, maintenance and progression of lung cancer
(10, 11). Among numerous RNA dynamic modifications,
N6-Methyladenosine (m6A), 5-Methylcytosine (m5C), and
N7-methylguanosine (m7G) are extremely common (12).
Importantly, m7G is the most prevalent modifications of
RNA caps (13), which occurs in various RNAs of eukaryotes
(14). m7G modification has a significant impact on RNA

Abbreviations: LUAD, lung adenocarcinoma; m7G, N7-
methylguanosine; TCGA, The Cancer Genome Atlas; TMB, tumor
mutational burden; DEGs, differentially expressed genes; NSCLC,
non-small cell lung cancer; ICB, immune checkpoint blockade; GEO,
Gene Expression Omnibus; PCA, principal component analysis; GSEA,
Gene Set Enrichment Analysis; FDR, false discovery rate; LASSO, least
absolute shrinkage and selection operator; ROC, receiver operating
characteristics; ssGSEA, single-sample gene set enrichment analysis;
TIDE, tumor immune dysfunction and exclusion; IC50, half-maximal
inhibitory concentration; CDF, cumulative distribution function; AUC,
areas under the curves; C-index, concordance index.

metabolism, processing and function (15). Nevertheless, the
exploration of m7G-related regulators on tumors have only
recently begun to receive attention owing to technological
limitations. Mis-regulated m7G modification could disturb
the translation of many oncogenic transcripts involved
in RPTOR/ULK1/autophagy pathway, which contributed
to esophageal squamous cell carcinoma oncogenesis (16).
EIF4E is regarded as one of m7G-related regulators, whose
phosphorylation could increase the translations of oncogene
mRNAs to promote prostate cancer tumorigenesis (17).
Moreover, one study demonstrated that METTL1 and WDR4
were upregulated in lung cancer samples and vital for the
progression (18). Besides, RNA dynamic modification could
influence the response function and maturation of tumor
immune cells (19). So far, the overall impact of m7G-related
regulators on the immunotherapeutic response in LUAD
and its relationship with patient prognosis and treatment
are still unclear.

With the advances in high-throughput sequencing
technique, research on tumor genes is more in-depth, which
can help to classify tumors to some content. There are many
signatures that assess the prognosis of LUAD according to
various subtypes (20–22). However, these signatures are still
far from guiding precise treatment, which urgently requires a
reliable signature. Here, two molecular subtypes of LUAD were
constructed according to the gene expression of m7G-related
regulators. We further evaluated the relation between survival,
clinical characteristics, immune infiltration and molecular
subtype. Then, a novel m7G score was established to quantify
the m7G modification patterns, which was proven to be an
independent predictor of LUAD prognosis. Moreover, the
prognostic signature effectiveness was validated by the internal
and external cohort (GSE31210). Furthermore, we elucidated
whether this signature could provide reference for clinical
immunotherapy and chemotherapy. In conclusion, this study
not only provides a novel understanding of molecular subtype
by m7G regulators, but also built a robust signature to estimate
prognosis and guide individualized treatments in LUAD.
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Materials and methods

Lung adenocarcinoma datasets

We obtained gene expression profile, clinical and somatic
mutation data of LUAD from The Cancer Genome Atlas
(TCGA) database.1 Four hundred ninety LUAD cases were
included in the follow-up study after removing patients
with survival time less than 30 days. We acquired the
external verification cohort (GSE31210) from Gene Expression
Omnibus (GEO) database.2 226 cases were finally included after
processing as TCGA data. 29 m7G regulators were extracted
from previous report (23) and three m7G-related gene sets in
MSigDB database3 (Supplementary Table 1).

Landscape of genetic variation and
identification molecular subtype

The expression of m7G regulators was extracted from
TCGA-LUAD dataset. Then various methods were applied to
depict the genetic variation of m7G regulators. The expression
of m7G regulators was compared between tumor and normal
groups. The mutation map was presented by using “maftools”
package. Next, Cox analysis was used to filter genes correlated
with LUAD prognosis (P < 0.05).

The “ConsensusClusterPlus” R package was employed
to identify molecular subtype by consensus clustering of
prognostic gene (parameters: reps = 50, pItem = 0.8,
pFeature = 1, clusterAlg = “pam,” distance = “Pearson”)
(24). Pam and Pearson distances were used as the clustering
algorithm and distance measure, respectively. Furthermore, the
sample’s distribution was characterized by principal component
analysis (PCA). Moreover, we employed “survival” package to
investigate the survival differences among subtypes. Besides,
“heatmap” package was applied to explore the relation
among molecular subtypes, expression of prognostic gene and
clinicopathological features.

Biological function analysis and
immune infiltration profile estimation

We investigated the biological process of distinct molecular
subtype by Gene Set Enrichment Analysis (GSEA). The
“h.all.v7.5.1.symbols.gmt” gene set was obtained from MSigDB
database. We applied the CIBERSORT algorithm (25) to assess
the immune status among different molecular subtypes. In
recent years, tumor mutational burden (TMB) was widely

1 https://portal.gdc.cancer.gov/

2 https://www.ncbi.nlm.nih.gov/geo/

3 http://www.gsea-msigdb.org/gsea/index.jsp

applied to measure the effectiveness of ICB therapy (26). TMB
score was calculated by using the somatic mutation data of
each patient and then we compared TMB score in different
subtypes. In addition, patients were further separated into low
and high TMB groups on the basis of the threshold value
(27) (10 mutations/megabase) of TMB and then we compared
the frequency of high TMB in different subtypes. GSE135222
immunotherapy cohort including 27 cases was obtained from
GEO database, which used to verify immunotherapy efficacy of
different subtypes.

Screening of differentially expressed
genes

We calculated the differentially expressed genes (DEGs)
between molecular subtypes by using the Bioconductor “limma”
package. The significance criteria were | log2FC| > 1 and
false discovery rate (FDR) < 0.01. The upregulated and
downregulated of DEGs were visualized by volcano map. The
heatmap was also applied to show the distribution of DEGs in
different subtypes.

Construction and validation of the
m7G related signature

The all patients (n = 490) were randomly separated into train
and test cohort according to the ratio of 1:1 by using “caret”
package. In train cohort (n = 245), univariate Cox analysis
was applied to screen genes related to the survival (P < 0.01).
Then, least absolute shrinkage and selection operator (LASSO)
regression was employed to further reduce the overfitting
genes. Finally, a m7G related signature was established by
multivariate Cox analysis, and we also called it m7G score. The
previously reported formula (28) was used to calculate m7G
score: 6(gene expression level × corresponding coefficient).
Patients was separated into high and low m7G score groups
according to median m7G score. Then the sample’s distribution
was characterized by PCA. We applied “survival” package to
investigate the survival differences between two groups. We also
plotted the receiver operating characteristics (ROC) curve to
estimate the accuracy of the m7G Related signature by using
“timeROC” package. The test cohort (n = 245) and the entire
cohort (n = 490) were employed to validate the signature power
by using the same analyses. We further used GSE31210 dataset
(n = 226) to verify the robustness of the signature.

m7G related signature analysis and
nomogram construction

Univariate and multivariate analysis were applied to
demonstrate the independent prognosis of the m7G score. Then
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these results were visualized with the forest plots. We also
constructed a nomogram by combining the age, gender, stage
and m7G score for clinical practice. Additionally, calibration
curve was applied to evaluate the predictive accuracy of the
nomogram by using “rms” package.

Analysis of immune infiltration and
anti-cancer treatment

We applied different bioinformatics methods including
XCELL, TIMER, QUANTISEQ, MCPCOUNTER, EPIC,
CIBERSORT-ABS, CIBERSORT, and single-sample gene set
enrichment analysis (ssGSEA) (29, 30) to study the relation
between m7G score and immune score. Subsequently, we also
compared the expression of immune checkpoints between two
groups. Mutation maps were manifested by using “maftools”
package in two groups. In recent years, in addition to immune
checkpoints, tumor immune dysfunction and exclusion (TIDE)
was also widely employed to assess the effectiveness of ICB
therapy (31). The TMB score was calculated by using the
somatic mutation data of each patient and the TIDE score
was calculated in the TIDE website4 (P < 0.05). Moreover, the
drug sensitivity of each group was estimated by “pRRophetic”
package (32). The half-maximal inhibitory concentration (IC50)
of drugs was compared through Wilcoxon rank test between
different m7G score groups (P < 0.05).

Statistical analysis

R software (version 4.1.0) was employed for all data analysis.
Wilcoxon rank test was applied to compare m7G regulators
expression between normal and LUAD groups. All above
survival distribution was evaluated through survival analysis.
The relation among molecular subtype, clinicopathological
features and high TMB distribution was estimated by the chi-
squared test. Immune infiltration, TMB and TIDE were also
compared through Wilcoxon rank test. P < 0.05 was regarded
as statistically significant.

Results

Genetic variation profile and m7G
modification pattern

The overall research procedure is shown in Figure 1.
Twenty-four regulators were manifested significant
downregulation or overexpression in different groups according

4 http://tide.dfci.harvard.edu/

to P-value less than 0.05 (Figure 2A). The result of mutation
map showed that EIF4G3 had the highest mutation frequency
followed by LARP1 (Figure 2B). The correlation and prognostic
significance of m7G regulators were presented in Figure 2C.
Four genes including EIF4E3, LARP1, WDR4, and NCBP1 were
significantly associated with prognosis. m7G regulators were
also showed a remarkable interaction, which was critical for the
development of the different m7G modification patterns. The
above-mentioned results suggested m7G regulators may relate
to tumorigenesis and progression in LUAD.

The LUAD patients were classified into two molecular
subtypes (C1 and C2) by using “ConsensusClusterPlus” package
according to prognostic genes. The intergroup correlation
was lowest and intragroup correlation was highest when
k = 2 (Figure 3A). Cumulative distribution function (CDF)
curve performed the highest partition efficiency when k = 2
(Figures 3B,C). Taken together, two molecular subtypes
were established according to the m7G modification pattern,
including 245 patients of C1 and 245 patients of C2.
The PCA analysis also demonstrated that the two subtypes
could be completely distinguished (Figure 3D). The result
of Kaplan–Meier analysis showed distinct survival outcome
between two subtypes (P < 0.001) (Figure 3E), suggesting
that C1 subtype had worse prognosis than C2. Subsequently,
the clinical features and gene expression were compared,
then we found patients in C1 subtype had poorer tumor
stage than C2. EIF4E3 was upregulated in C2 subtype,
while LARP1, WDR4, and NCBP1 were upregulated in C1
subtype (Figure 3F).

Analysis of biological functional and
immune infiltration

The results of GSEA presented diverse functional
pathways between two subtypes. Functional analysis showed
E2F_targets, G2M_checkpoint, glycolysis, MITOTIC spindle,
MTORC1_signaling, MYC_targets_V1, MYC_targets_V2 were
significantly enriched in C1 subtype (Figure 4A). While, there
were significantly different pathways were enriched in C2
subtype, such as allograft rejection, complement, inflammatory
response, interferon gamma response, IL2_STAT5_signaling,
IL6_JAK_STAT3_signaling (Figure 4B).

Subsequently, we found that two subtypes had markedly
different immune infiltration patterns (Figure 4C). The result
of CIBERSORT algorithm showed the expression level of
T cells follicular helper, resting NK cells, M0 macrophages,
activated mast cells were high in C1 subtype, while resting
CD4 memory T cells, T cells gamma delta, monocytes,
resting dendritic cells, resting mast cells are high in C2
subtype. These suggested that two subtypes may have different
immunotherapeutic response, so we further compared TMB
score in two subtypes. Then we observed that C1 had
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FIGURE 1

The flowchart of the overall study.

higher TMB score as well as the proportion of high-TMB
compared to C2 subtype (22 vs. 10%) (Figures 4D,E).
GSE135222 immunotherapy cohort was divided into two
subtypes by using the same method mentioned above, including
15 cases in C1 subtype and 12 cases in C2 subtype.
The results presented that the proportion of response to
immunotherapy was higher in C1 subtype than C2 subtype (40
vs. 17%) (Figure 4F).

Screening differentially expressed
genes between m7G subtypes and
construction of m7G related signature

Based on “limma” package, we identified 1,014 DEGs
between m7G Subtypes, including 534 upregulated genes and
480 downregulated genes. Then the significant DEGs were
visualized with volcano map (Figure 5A). The expression
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FIGURE 2

Landscape of genetic variation in LUAD. (A) The difference of m7G regulators expression level in normal and tumor group. (B) The mutation map
of m7G regulators in LUAD. (C) The interplay and prognostic significance of m7G regulators. *P < 0.05; **P < 0.01; ***P < 0.001.

profiles of DEGs between C1 and C2 subtype were visualized
with heatmap (Figure 5B). We utilized the train cohort
to establish m7G related prognostic signature (n = 245).

First, 201 genes correlated with patient prognosis were found
by univariate analysis (Supplementary Table 2). Then we
further applied LASSO regression to filter eight genes for the
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FIGURE 3

Identification, survival, and clinical characteristics analysis of molecular subtype. (A–C) The optimal value of consensus clustering.
(D) Distribution of all patients. (E) Survival analysis in C1 and C2 subtypes. (F) Heatmap of prognostic gene and clinicopathological features
between two subtypes. *P < 0.05.

subsequent multivariate analysis (Figure 5C). Finally, four key
genes including E2F7, FAM83A, PITX3, and HOXA13 were
identified by using multivariate Cox regression (Figure 5D).
The m7G score was calculated with the following formula:
0.5171 × E2F7 (mRNA level) + 0.1888 × FAM83A (mRNA
level) + 1.5576 × PITX3 (mRNA level) + 0.5210 × HOXA13
(mRNA level). Then we split patients into high and low
m7G score groups according to approach mentioned above
(Figures 5E–G). The relative expressions of E2F7, FAM83A,
PITX3, and HOXA13 in two groups were presented in
Figure 5H. Patients had significant poor survival in high m7G
score group (Figure 5I). The areas under the curves (AUC) for
predicting survival rates at 1-, 3-, and 5-year were 0.736, 0.732,
and 0.672, respectively (Figure 5J).

Verification of m7G related signature
and analysis of survival in different
clinical subgroups

Patients in the internal verification cohort (test and entire
cohort) and the external verification cohort (GSE31210) were
categorized into two groups on the basis of the same risk
formula in train cohort. Patients of test cohort were classified
into two groups (Figures 6A–C), which were consistent with the

result of the train cohort. The heatmap showed the expression
profile of four key gene were apparently different between two
groups (Figure 6D). The Kaplan–Meier curve also indicated
that two groups had distinct survival (Figure 6E). The area
of AUC verified that the signature was a great indicator
for assessing prognosis in LUAD (Figure 6F). The similar
results were acquired in the entire cohort and GSE31210
cohort (Figures 6G–L, 7A–F). On the basis of Kaplan–Meier
analysis of entire TCGA cohort, we also found that patients
presented lower survival rate in high m7G score group among
different clinical subgroups compared to low m7G score group
(Supplementary Figure 1).

Evaluation of association between m7G
score, clinicopathological features, and
molecular subtype

The results showed strikingly distinct of m7G score in
age, gender, N-stage, M-stage, clinical stage and T-stage
(Figures 8A–F) (P < 0.05). We also investigated the relation
between m7G score, m7G subtype and survival state by using
Sankey diagram (Figure 8G). We found that C2 subtype has a
strong correlation with low m7G score, while C1 subtype has a
strong correlation with high m7G score. Moreover, the majority
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FIGURE 4

Functional pathways, immune infiltration and TMB analysis. (A) Functional pathways in C1 subtype. (B) Functional pathways in C2 subtype.
(C) Comparison of immune score. (D) Comparison of TMB score. (E) Distribution of low and high TMB between two subtypes. (F) Distribution of
response to immunotherapy between two subtypes in GSE135222. *P < 0.05; ***P < 0.001; ns: not significant.

of patients with low m7G score were alive, which was consistent
with preceding survival analysis. Furthermore, stacked bar chart
also presented C1 subtype has a strong correlation with high
m7G score (Figure 8H). Similarly, the m7G score was higher in
C1 subtype than that in C2 subtype (Figure 8I).

Construction of nomogram and
comparison of prognostic signatures

Univariate analysis identified that m7G score was related
to poor prognosis in LUAD (Figure 9A). Moreover, m7Gs
core was still an independent prognostic indicator after using
multivariate analysis (Figure 9B) (P < 0.001). Subsequently,
we used m7G score and other clinical factors to establish a
nomogram (Figure 9C). Calibration curve demonstrated that
1, 3, 5-year predicted survival rates matched the veritable
condition (Figure 9D). These evidences revealed that the m7G
score could potentially assist clinical practice to evaluate the
prognosis of LUAD patients.

After reviewing previous researches, we further compared
the m7G related signature with other prognostic models,
including 5-gene signature (Wang) (33), 4-gene signature (Wu)

(34), 3-gene signature (Yue) (35), and 5-gene signature (Zhai)
(36). In order to ensure comparability among models, the
risk score of each LUAD sample in entire TCGA cohort was
calculated with the same formula according to corresponding
genes in four signatures, and then patients were categorized into
two groups based on same cut-off value (37). The results of
survival analysis showed significant difference in four models
(Figures 10A–C,G) (P < 0.05). However, all AUC at 1-, 3-, and
5-years in four models were lower than that corresponding AUC
of our prognostic signature (Figures 10D–F,H). Furthermore,
we conducted “survcomp” package to calculate the concordance
index (C-index) of each signature. The C-index was highest in
our prognostic signature (Figure 10I). Therefore, our signature
was more efficient to estimate prognosis in LUAD.

Investigation of immune
microenvironment and anti-cancer
therapy

Firstly, the results of bubble plot exhibited that CD8+ T
cell, common lymphoid progenitor, plasmacytoid dendritic
cell, macrophage M1/M0, CD4+ Th1/Th2 cell, neutrophil,
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FIGURE 5

Construction of m7G related signature based on TCGA train cohort. (A) Volcano plot of DEGs. (B) Heatmap of DEGs. (C) Eight genes through
Lasso regression analysis. (D) Four key genes through multivariate Cox regression. (E,F) Distribution of m7G score and survival state.
(G) Distribution of patients according to m7G-related signature. (H) Heatmap of four genes expression between high and low m7G score
groups. (I) Survival analysis in two groups. (J) AUC for predicting 1-, 3-, 5-years survival rates.
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FIGURE 6

m7G related signature validation in TCGA test cohort and TCGA entire cohort. (A,B) Distribution of m7G score and survival state in TCGA test
cohort. (C) Distribution of patients in TCGA test cohort. (D) Four genes expression between two groups in TCGA test cohort. (E) Survival analysis
between two groups in TCGA test cohort. (F) AUC for predicting 1-, 3-, 5-years survival rates in TCGA test cohort. (G–L) The results of validation
in TCGA entire cohort.

cytotoxicity score, NK cell, cancer associated fibroblast,
monocyte, Myeloid dendritic cell, and mast cell resting were
positively correlated with m7G score (Figure 11A). The ssGSEA
displayed that activated CD4 T cell, CD56dim natural killer

cell, natural killer T cell, neutrophil, Type-2 T helper cell
were more active in high m7G score group (Figure 11B)
(P < 0.05). Subsequently, the level of CD274 (PD-L1) and
PDCD1 (PD-1) were presented upregulated in high m7G score
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FIGURE 7

Validation of m7G related signature in GSE31210. (A,B) The distribution of m7G score and survival state. (C) Distribution of patients according to
m7G-related signature. (D) Heatmap of four genes expression between two groups. (E) Survival analysis between two groups. (F) AUC for
predicting 1-, 3-, 5-years survival rates.

group (Figures 11C,D) (P < 0.05). Moreover, we compared
somatic mutations in two risk groups. The results of mutation
map showed remarkably high mutational rate in high m7G score
group. TP53 was the highest mutational gene in both groups
(Figures 12A,B). We also found that high m7G score group
was related to higher TMB score (Figures 12C,D) (P < 0.05).
Compared to low m7G score group, high m7G score group had
strikingly lower TIDE score (Figure 12E) (P < 0.05).

We further investigated common drug sensitivity in two
groups (Figure 13). Patients presented lower IC50 of Cisplatin,
Docetaxel, Doxorubicin, Etoposide, Gemcitabine, Paclitaxel,
and Rapamycin in high m7G score group, representing these
drugs were more effective for high m7G score group. Meanwhile,
IC50 of Bicalutamide, Erlotinib, Axitinib, Imatinib, Metformin,
Methotrexate, Bexarotene, Sorafenib, and Temsirolimus were
lower in low m7G score group, representing these drugs were
more effective for low m7G score group.

Discussion

Recently, the role of m7G in tumors has begun to receive
increasing attention. However, there are no reports on studying
the molecular subtype correlated with m7G and the implications

of m7G related signature on the prognosis and immunotherapy
in LUAD. Therefore, we expect to discover more tumor
phenotypes through this classification, which could be used to
evaluate the prognosis of LUAD patients. Here, we first extracted
twenty-nine m7G related regulators expression profiles from
TCGA, four of which were demonstrated to have prognostic
value. Then, two novel molecular subtypes were identified
according to theses prognostic genes. Results showed that
patients in C1 subtype had more poor survival outcomes
and advanced tumor stages compared to C2 subtype through
survival analysis and clinicopathological features comparison,
indicating m7G regulators correlated with prognosis and
progression of LUAD. And the two subtypes presented markedly
different molecular features. Compared with C2 subtype, m7G
regulators were more activated in C1 subtype, including LARP1,
WDR4, and NCBP1, while only EIF4E3 was activated in C2
subtype. Xu et al. (38) demonstrated that the expression level
of LARP1 was upregulated in NSCLC, which positively related
to poor prognosis and progression of cancer. A study of
WDR4 uncovered that knockdown of WDR4 could restrain the
aggressiveness of NSCLC cells, demonstrating that WDR4 may
have tumorigenic function in lung cancer (18). NCBP1 was
significantly overexpressed in LUAD, combined with CUL4B,
which promoted the proliferation, migration and invasion of
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FIGURE 8

Correlation among clinical features, molecular subtype and m7G score. (A–F) Correlation between clinical features and m7G score. (G) Relation
between m7G score, m7G subtype and survival state by using Sankey diagram. (H) Distribution of m7G subtype between high and low m7G
score groups. (I) Comparison of m7G score between C1 and C2 subtypes.

tumor cells (39). It was reported that compared with patients
with lower expression of EIF4E3, patients with high expression
of EIF4E3 had markedly better survival rates in various
cancers, including LUAD (40). These results are consistent
with our study, indicating LUAD patients with C1 subtype
have poor prognosis compared to C2 subtype. Furthermore,
we investigated the possible functional mechanisms in both
two subtypes by using GSEA analysis. Interestingly, the
functional pathways enriched in C1 subtype were mainly cell
proliferation-related pathways, which may indicate advanced
clinicopathological staging, adverse survival outcomes and
aggressive tumor subtypes. This evidence also suggested the

worse prognosis of C1 subtype. Immune cells as an important
part of the tumor microenvironment intensively relate to the
response to immunotherapy (41). Recently studies showed that
RNA modifications were correlated with the differentiation of
immune cells in the tumor microenvironment (42). As one
of the RNA modifications, m7G also influenced immune cells
in the tumor microenvironment. Chen et al. (43) quantified
the tumor-infiltrating lymphocytes and found that CD4+ T
exhaustion and Tregs decline after knockout of m7G regulators.
Besides, Devarkar et al. (44) presented that m7G was involved
in innate immunity mediated by RIG-I. Therefore, the immune
score was applied to characterize immune microenvironmental
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FIGURE 9

m7G related signature analysis and nomogram construction. (A) Univariate analysis of m7G score and clinical factors. (B) Multivariate analysis of
m7G score and clinical factors. (C) Establishment of nomogram. (D) Calibration curve of the nomogram.

landscapes in two subtypes. Then we found that follicular
helper T cells, resting NK cells and activated mast cells were
increased in C1 subtype. It was reported that follicular helper
T cells could recruit CD8+ T cells to enhance antitumor
immune response (45). The resting NK cells could secrete
various cytokines to kill target cells, for example tumor cells
(46). The TLR4 activation by mast cells resulted in the
secretion of CXCL10, which could recruit effector T cells to
influence antitumor immune response (47). These evidences
indicated that C1 subtype with activated m7G regulators may
more sensitive to immunotherapy compared to C2 subtype.
Increasing investigations suggested that TMB is a biomarker
of response to immunotherapy and is positively relate to the
effectiveness of ICB in various cancers, including NSCLC (48).
In this study, the TMB score in patients with C1 subtype was
distinctly higher compared with C2 subtype. After dividing
TMB into high and low groups, more percentage of high
TMB was observed in patients with C1 subtype compared
with C2 subtype. Consequently, patients with C1 subtype may
present better immunotherapeutic response than C2 subtype.

Besides, by using an immunotherapy cohort of lung cancer,
we also demonstrated that patients with C1 subtype had better
immunotherapy efficacy than C2 subtype.

Considering the individual heterogeneity of m7G
modification, we utilized a novel m7G score to quantify
the m7G modification patterns in LUAD. In the TCGA train
cohort, we identified four key genes (E2F7, FAM83A, HOXA13,
and PITX3), and then calculated the m7G score through the
previously mentioned algorithm. After separating patients into
high and low m7G score groups, we found that the four genes
were overexpressed in the high m7G score group. It was reported
that overexpression of E2F7 correlated with poor prognosis and
microRNA-935 could inhibit tumor metastasis and invasion
by targeted suppression the level of E2F7 in NSCLC (49).
Wang et al. (50) found that activating the expression of E2F7
expression by targeting microRNA-140-3p could promote
the progression of LUAD. Studies presented that FAM83A
was significantly related to TMB and DNA damage response
pathways in NCSLC (51, 52), indicating that it may play an
important part in tumor progression and immunotherapy.
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FIGURE 10

Comparison of prognostic signatures. (A–C,G) Survival analysis of 5-gene signature (Wang), 4-gene signature (Wu), 3-gene signature (Yue) and
5-gene signature (Zhai). (D–F,H) AUC of 5-gene signature (Wang), 4-gene signature (Wu), 3-gene signature (Yue), and 5-gene signature (Zhai)
for predicting 1-, 3-, 5-years survival rates. (I) C-index of each signature.

Hu et al. (53) demonstrated that the expression of FAM83A
regulated the proliferation and invasiveness of NSCLC through
PI3K/Akt/mTOR pathway. Investigations showed HOXA13,
as a nuclear transcription factor, was related to tumor cells
proliferation and differentiation, which could accelerate tumor
aggressive characteristics through disturbing P53 and Wnt/β-
catenin signaling pathways in NSCLC (54). One research
reported that HOXA13 was markedly upregulated and strongly
correlated with tumorigenesis and progression in LUAD (55).
Some studies demonstrated that PITX3 as a transcription

factor was involved in many tumors (56, 57). Zhang et al. (58)
presented that high expression of PITX3 was strongly associated
with the poor prognosis in LUAD. According to these evidences,
we indicated that patients with high m7G score in which these
four genes were activated, had poor survival. Also, survival
analysis demonstrated that the high m7G score group presented
worse survival outcomes. ROC curves further showed the great
efficacy of m7G score to predict survival rate. And, the TCGA
test cohort, entire cohort and GSE31210 cohort were applied
to validate the accuracy and reliability of the m7G related
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FIGURE 11

Comparison of immune infiltration and immune checkpoints between high and low m7G score groups. (A) Correlation between immune cell
and m7G score. On the right side of the correlation coefficient = 0 indicates a positive correlation with m7G score. (B) Immune infiltration
analysis by ssGSEA. (C) Comparison of CD274 (PD-L1). (D) Comparison of PDCD1 (PD-1). *P < 0.05; **P < 0.01; ***P < 0.001.

signature. Similar results were acquired from all validation
cohorts, demonstrating that the prognostic signature may be a
robust biomarker to evaluate the prognosis in LUAD. Patients
with high m7G score also presented remarkably poor survival
condition among different clinical subgroups. After analyzing
the association between m7G score and clinicopathological
parameters, we observed that m7G score was significantly
high in N2 + N3, M1, Stage III + IV and T2-T4, suggesting
high m7G score is associate with cancer progression. The
characterization of m7G modification patterns showed C2
subtype had lower m7G score compared with C1 subtype.
And, the high m7G score correlated with poor survival and
cancer progression was consistent with characteristics of C1
subtype. Univariate and multivariate analysis presented that the
m7G score was an independent prognosis predictor of LUAD
patients. Subsequently, the nomogram also presented high
accuracy in predicting survival rate of 1, 3, 5-years. In recent
years, many signatures were built to predict the prognosis
of LUAD patients. Furthermore, we presented that the AUC
area and C-index of our signature were higher than the other
four public prognostic signatures, suggesting our signature
have better performance in predicting clinical prognosis
in LUAD patients.

Currently, although the immunotherapy of lung cancer has
got great progress, how to choose the appropriate therapeutic
regime for patients is still a clinical challenge. Besides, a part of
patients did not obtain effective benefits from immunotherapy
(59), and even some patients will undergo obvious side effects
during therapy (60). Therefore, it is critical to explore a novel
method to guide individualized and precise treatment in LUAD
patients. The results of various evaluation methods of immune
cell infiltration showed distinct activation of immune cells in
both groups, which were similar to molecular subtypes. We
speculated there was different immunotherapeutic response
in two groups, so we further investigated the association
between m7G score groups, immune checkpoint, TMB and
TIDE. The immune checkpoints are also an integral part of
the immune system and participate in regulating immune
escape (61). In recent years, immunotherapy targeting immune
checkpoints has obtained huge clinical therapeutic results,
especially anti-PD-1/PD-L1 antibody (62). In the study, we
observed that patients with high m7G score had upregulated
PD-1/PD-L1, indicating that these patients may be more
sensitive to ICB than low m7G score. Subsequently, compared
with the low m7G score group, the high m7G score group
had markedly higher TMB which was consistent with the
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FIGURE 12

Immunotherapeutic response evaluation in high and low m7G score groups. (A) Mutation plot in high m7G score group. (B) Mutation plot in low
m7G score group. (C) Results of TMB between two groups. (D) Distribution of low and high TMB between two subtypes. (E) Results of TIDE
between two groups.

C1 subtype. In addition, we found that compared with the
patients with low m7G score, patients with high m7G score
had more percentage of TP53 mutation. Studies showed
that TP53 mutation was remarkably related to high PD-L1
expression and patients with TP53 mutation could acquire
benefits from ICB therapy in LUAD (63, 64). Investigations
presented TIDE was an accurate biomarker used to predict
the immunotherapeutic effects of NSCLC, which was negatively
associated with the efficacy of ICB (31). Meanwhile, recent
studies have reported the clinical application of TIDE in
predicting and evaluating immunotherapeutic response (65, 66).
In our study, compared with patients with low m7G score
patients with high m7G score had lower TIDE score, suggesting
patients in the high m7G score group may obtain clinical
benefits from immunotherapy. Integration analysis of the m7G
score, immune cell infiltration, immune checkpoint, TMB, and

TIDE indicated that the signature is a potential biomarker to
assess immunotherapeutic response and tailor individualized
treatment for LUAD patients.

Chemotherapy is a classic treatment for lung cancer, but
patients have different response rates to chemotherapy drugs.
Selecting an appropriate chemotherapy regimen is helpful to
improve the prognosis and reduce the economic burden of
patients. Our study revealed that common drugs including
Cisplatin, Docetaxel, Doxorubicin, Etoposide, Gemcitabine,
Paclitaxel, and Rapamycin were suitable for patients with
high m7G score, while Axitinib, Bexarotene, Bicalutamide,
Erlotinib, Imatinib, Metformin, Methotrexate, Sorafenib, and
Temsirolimus were more appropriate for patients with low
m7G score.

Our research may assist in judging the prognosis in LUAD,
but there are also some limitations. First, the research is a
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FIGURE 13

Comparison of drug sensitivity between low and high m7G score groups.

retrospective study according to the data from TCGA and GEO
datasets, so it’s crucial to collect prospective clinical data to
further verify the signature. Second, the potential functional
mechanisms of m7G score are not fully verified, so these need
to be further verified by experiments at the molecular level
in vivo and in vitro. Finally, the drug response in patients is
based on methodological prediction, so clinical trials need to be
implemented in the future.

Conclusion

In summary, we identified two novel molecular subtypes
of LUAD according to m7G regulators. The survival,
immune infiltration, and TMB are significantly different

in two subtypes. The m7G related signature to quantify
the heterogeneity of the two subtypes was constructed.
The signature can be employed to predict prognosis
in LUAD, then the internal and external cohort were
applied to verify the prognostic value. And the signature
was elucidated be helpful to guide immunotherapy and
chemotherapy. Therefore, this research provides a new
direction for improving prognosis and current anti-cancer
strategies in LUAD.
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Colorectal cancer (CRC) is considered as a global major cause of cancer

death. Surgical resection is the main line of treatment; however, chemo-,

radiotherapy and other adjuvant agents are crucial to achieve good outcomes.

The tumor microenvironment (TME) is a well-recognized key player in CRC

progression, yet the processes linking the cancer cells to its TME are not

fully delineated. Autophagy is one of such processes, with a controversial

role in the pathogenesis of CRC, with its intricate links to many pathological

factors and processes. Autophagy may apparently play conflicting roles in

carcinogenesis, but the precise mechanisms determining the overall direction

of the process seem to depend on the context. Additionally, it has been

established that autophagy has a remarkable effect on the endothelial cells

in the TME, the key substrate for angiogenesis that supports tumor metastasis.

Favorable response to immunotherapy occurs only in a specific subpopulation

of CRC patients, namely the microsatellite instability-high (MSI-H). In view

of such limitations of immunotherapy in CRC, modulation of autophagy

represents a potential adjuvant strategy to enhance the effect of those

relatively safe agents on wider CRC molecular subtypes. In this review, we

discussed the molecular control of autophagy in CRC and how autophagy

affects different processes and mechanisms that shape the TME. We explored

how autophagy contributes to CRC initiation and progression, and how it

interacts with tumor immunity, hypoxia, and oxidative stress. The crosstalk

between autophagy and the TME in CRC was extensively dissected. Finally,

we reported the clinical efforts and challenges in combining autophagy

modulators with various cancer-targeted agents to improve CRC patients’

survival and restrain cancer growth.

KEYWORDS

colorectal cancer, autophagy, tumor microenvironment, endothelial cells, hypoxia,
oxidative stress, targeted therapy, MSI-H
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Introduction

Colorectal Cancer (CRC) is counted as one of the most
predominant cancers in both genders with high death rates.
CRC is third in terms of prevalence which accounted for 6.1%
of new cases and second in terms of the cause of death which
accounted for 9.2% of deaths by cancer worldwide (1). There
is a high incidence of colorectal cancer at young age (15–
39 years) which was estimated by 70.2–82.9 thousand cases
in 2019 with a mortality rate of 26.2–30.5 thousand in the
same year (2). By the year 2035, it is estimated that the total
number of deaths will increase by 71.5 and 60% from colon
and rectal cancers, respectively (3). CRC is a heterogeneous
disease with numerous variations in its molecular profiles,
clinical manifestations and prognosis. CRC prognosis depends
on the tumor staging at the time of diagnosis. Currently,
the best therapeutic option for stage I and most of the stage
II CRC patients is the aggressive surgical resection of the
primary tumors which showed high success rates, with/without
adjuvant radio-chemotherapy for high risks patients in stage
II and stage III of CRC. Notably, stage III CRC patients
usually suffer from recurrent disease, which may be associated
with micro-metastasis. Stage IV CRC represents a metastatic
state with a high risk of relapse and with less/no benefit
from surgery. Instead, chemotherapy combinations are usually
used at this stage, such as oxaliplatin/irinotecan and folinic
acid, 5-fluorouracil (5-FU)-based regimens (4, 5). However,
adjuvant treatment is highly accompanied by drug resistance,
and ultimately disease progression in metastatic CRC. Recent
advances in cancer-targeted therapy as second-line treatment of
CRC in combination with chemotherapy, to disrupt signaling
pathways or cellular mechanisms, have led to enhanced overall
survival (OS) and progression-free survival (PFS). Currently,
anti-angiogenic drugs including bevacizumab, regorafenib and
aflibercept, are approved as a treatment of metastatic stage of
CRC, whereas immunotherapy for CRC is still limited to the
MSI-H tumors (6).

Classification system of CRC, based on molecular
structure, was established to categorize both the tumor
and the surrounding tumor microenvironment (TME)
through variations in CRC gene expression (7). TME is a
dynamic ecosystem that plays a crucial role in the support
and progression of tumors. The composition of TME may
significantly affect the tumor response to immunotherapy.
TME includes different types of cells, e.g., tumor-infiltrating
lymphocytes (TILs), tumor-associated macrophages (TAMs),
tumor-associated neutrophils (TANs), cancer-associated
fibroblasts, natural killer (NK) cells, regulatory T cells and
dendritic cells (DCs). There are four main consensus molecular
subtypes: CMS1, CMS2, CMS3, and CMS4 (8). Both CMS1 and
CMS4 subtypes are characterized by increased immune cells
infiltration, while CMS1 tumors, in particular, is identified by
enhanced Th1-cell response as well as inflamed and stimulated

TME. Whereas CMS4 TME is characterized by being inflamed
and highly angiogenic, hence a good target for combination
therapy. CMS2 tumors are caused by β-catenin pathway
activation, with subsequent dendritic and T-cell exhaustion.
Therefore, this subtype of tumors does not elicit anti-tumor
immune response. CMS3 tumors are characterized by several
metabolic pathways dysregulation such as nitrogen, glucose
pentose, fatty acids, etc. (7).

Tumor microenvironment of
colorectal cancer

Tumors are cellular networks characterized as being
different and complex with de-differentiated malignant cell
types, tumor stem cells, fibroblasts and endothelial and immune
cells. TME is a dynamic ecosystem that plays a crucial
role in supporting the progression of tumors. Cytotoxic
CD8+ T-lymphocytes (CTL) are considered the major defense
mechanism against tumor cells, hence T-cell abundance is
a decisive and crucial prognostic factor for immunotherapy
and chemotherapy response, particularly at the early tumor
initiation stage, where an increased activity of T cells has been
reported (9). The PD-L1/PD1 axis is identified as an inhibitor
of CTL activity in several CRC phenotypes including Mismatch
repair deficiency (MMRd)/Microsatellite instability-high (MSI-
H) phenotype in which anti-PD1 monoclonal antibodies are
highly beneficial in fighting the tumor (10, 11). Another essential
type of T-cells highly associated with colorectal tumors is the
Regulatory T-cells (Tregs) (12).

Other cell types in the TME include TAMs involved in
regulating metastatic phenotype of cancer and modulating
growth and invasion of cancer cells (13, 14). Two sub-
populations of TAMs have been identified, the pro-tumorigenic
(M2) and the anti-tumorigenic (M1) phenotypes, which are
characterized by high plasticity (15). TAMs and myeloid-derived
suppressor cells (MDSCs) are the most abundant cells in solid
tumors including CRC. Moreover, other immune cell types have
been identified in the CRC microenvironment, such as NK cells,
TANs, eosinophils and mast cells, with variable roles in CRC
progression (16, 17). CRC stroma is well-known for its ability
to promote tumor-associated blood vessels. Immune cells and
fibroblasts supply tumor cells with VEGF (18). Moreover, matrix
metalloproteinase and associated proteases, expressed by CAFs,
are abundant in TME.

Autophagy and colorectal cancer

Autophagy signaling in cancer

Autophagy has a diverse and dynamic impact on cancer cells
that can affect both tumor initiation, progression and cancer
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response to therapy. Recently, vast published data indicate a
crosstalk between autophagy-related genes (ATG’s) associated
pathways with oncogenes and/or tumor suppressor genes.
Indeed, the precise role of autophagy in modulating cancer
tumorigenicity is highly complicated and is dependent on the
context (19). Several autophagy genes might be involved in
switching normal cells to CRC under particular conditions. The
first autophagy marker indicated to be involved in colorectal
carcinogenesis is LC3 (20). One of the LC3 isoforms, named
LC3-II, is overexpressed in CRC cells particularly in advanced
stages, compared to normal colon cells (21). Notably, low LC3
level has been interrelated to good CRC prognosis, particularly
in advanced stages (22). Moreover, ATG5 and ATG10 showed a
major role in CRC progression and chemotherapy resistance in
several studies. ATG5 was found to be down-regulated in 95%
of CRC cases, and its high expression level indicates lympho-
vascular invasion (23). In contrast, ATG10 was upregulated in
CRC tissues and increased protein expression of ATG10 was
accompanied by tumor lymph node metastasis and invasion
(24). Another essential protein implicated in autophagy is the
activating molecule in Beclin-1-regulated autophagy (Ambra1)
protein encoded by the AMBRA1 gene. Mutated AMBRA1
gene was found in a subset of colorectal neoplasms (25).
Additionally, Beclin-1 gene, UVRAG gene and Bif-1 gene were
highly correlated with CRC carcinogenesis which is explained in
the following sections.

Role of autophagy in colorectal cancer
initiation

Autophagy is an equilibrating mechanism that promotes
anti-malignant mechanism by clearance of unhealthy damaged
proteins, DNA abnormalities and reactive oxygen species
(ROS). A proper autophagic mechanism is crucial for the
mutagen’s elimination and appropriate genomic stability as
it avoids the genetic defects accumulation that proceeds to
malignant transformation. Thereby, autophagy might act as a
tumor-suppressor in the early stages of the tumor. Evidence
demonstrates that the tumor-suppressive effect is derived
from some ATG-proteins such as Beclin-1, which shows anti-
oncogenic properties. Tumor suppressor role of Beclin-1 is
validated genetically in breast, ovarian and prostate tumors,
as mono-allele deletion of Beclin-1 occurs (26, 27). However,
Beclin-1 has a debatable role in CRC in that it promotes
tumorigenesis, but may paradoxically inhibit CRC cell growth.
Increased Beclin-1 expression was associated with better OS in
patients with locally advanced colon carcinomas who received
postoperative 5-FU chemotherapy for 6 months (28). Beclin-1
Overexpression in cases with resected stage II and stage III colon
carcinomas, who received 5-FU-based therapy was associated
with worse OS, denoting a potential effect of autophagy in drug
resistance (29).

Moreover, allelic loss of UVRAG, an autophagy component,
and attenuation of Bif-1 expression that both interact with

Beclin-1 directly, might be correlated to CRC initiation and
development (30). UVRAG protein is needed to form a complex
with Beclin-1 to induce autophagy; therefore, the loss of this
protein results in impaired autophagy machinery. Similarly,
Bif-1 serves to induce autophagy via interacting with Beclin-
1 and UVRAG.

Autophagy displays an important defense mechanism
against pathogens and therefore plays an anticarcinogenic role
in combatting viral and bacterial infections. For example,
autophagic machinery was shown to effectively eliminate
digestive cancer-associated pathogens such as Streptococcus
bovis (S. bovis) that may cause CRC (31). In the same
study, using autophagy-deficient ATG5-/- cells showed S. bovis
pathogen survival and enhanced multiplication within the cells
(31). The presence of infectious endocarditis of S. bovis may be
followed by colonic neoplasia in an estimated incidence of 18–
62% of cases, even after years of its presentation in the host (32,
33). Similarly, 25 to 80% of S. bovis bacteremia cases induce
colorectal tumors (34). Despite this, the relationship between
CRC and S. bovis bacteremia has been underestimated for a long
time and is under the controversy of whether this association is
a result of gastro-intestinal tumor or the S. bovis itself could be
the etiology of CRC (35).

Role of autophagy in colorectal cancer cell
survival and metastasis

In previous studies, autophagy seems to support tumor
progression. Autophagy helps tumor cells overcome induced
metabolic stress resulting from high proliferative rate, hypoxia
and nutrient deprivation due to insufficient blood supply needed
by these tumors for proliferation and progression (36, 37).
Cancer cells consume more energy and metabolites than normal
cells due to their rapid proliferative rate. Both energy and
metabolites can be provided to cancer cells by increasing
autophagy (38). Autophagy is considered a survival mechanism
for cancer cells under hypoxic and metabolic stress conditions
to provide them with the energy required for their survival and
proliferation (39). In this regard, down-regulation of crucial
autophagy proteins level led to restraining cancer growth and
reduced oxygen consumption along with the accumulation
of abnormal mitochondria, and specifically, autophagy was
demonstrated to be essential to promote the growth of Ras-
driven tumors, including CRC (40). Several in vitro studies
indicated that gaining autophagy activity in Ras-driven cancer
cells shows a significant increase in the survival and progression
of those cancer cells in several settings of metabolic stress (41).

Besides its critical role in regulating protein turnover
and cancer immunogenicity, autophagy has been involved in
epithelial-to-mesenchymal transition (EMT), a crucial multistep
mechanism needed by tumor cells to metastasize (42, 43). The
commonly identified EMT inducer TGFβ is known to induce
EMT through the stimulation of SMAD, MAPK, Rho-GTPases
and PI3K/AKT (44). During tumor progression, cells that
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undergo EMT need to stimulate autophagy machinery for their
survival and metastases. In this regard, it has been demonstrated
that autophagy is essential for EMT activation and cancer cell
metastasis in hepatoblastoma cells (45). Similarly, autophagy is
needed in TGFβ1-mediated EMT in non-small-cell lung cancer
cells (46). In CRC cells and upon using rapamycin, a specific
mTOR inhibitor and an autophagy inducer, starvation-mediated
autophagy was demonstrated to induce invasion and migration
and increase EMT marker expression; and interestingly, this was
reverted by Beclin-1 knockdown (47).

Effect of autophagy on cancer stem cells
Cancer stem cells (CSCs) are recognized to promote

tumor initiation, progression and contribute to therapy
resistance. CSCs drive tumor heterogeneity via EMT and
inflammatory signaling activation (48). Autophagy is identified
to promote the survival and control the pluripotency of CSCs
in the TME. IL-17B/IL-17RB signaling induces autophagy,
and subsequently, autophagy controls and maintains CSCs
homeostasis. Interestingly, TRAF6 is recruited in the cytoplasm
by IL-17B, which would induce autophagosome formation
through Beclin-1 ubiquitination, thus promoting self-renewal
and sphere-forming potential in gastric carcinoma (49).
Likewise, IGF-2/insulin receptor signaling controls CSCs
stemness and pluripotency through autophagy regulation. In
CRC, loss of imprinted gene expression of IGF-2 indicated
increased autophagy, leading to higher sphere-forming
potential, and increased CD133 expression, which is a marker
of stemness (50).

Increased autophagic flux is highly maintained and required
by CSCs to promote therapy resistance. In CRC, SOX2
transcriptional factor increases the expression of EMT and
ABCC2 genes and promotes chemotherapy resistance through
translocation and activation of β-catenin. Interestingly, SOX2
tends to increase Beclin-1 expression to induce autophagy
and promote chemoresistance. Thus, SOX2-β-catenin/Beclin-
1/autophagy pathway is involved in tumor progression and
chemotherapy resistance (51). A graphical illustration of the
autophagy signaling pathway and its dual role in CRC initiation
and progression is displayed in Figure 1.

Autophagy signaling modulates tumor
microenvironment

Autophagy is actively involved in remodeling TME via
unconventional secretion of several peptides, proteins and
hormones that are typically operated and secreted through the
conventional secretory system controlled by the endoplasmic
reticulum–Golgi pathway (53). Knockdown of autophagy in
both stromal cells and cancer cells is associated with a reduction
of several cytokines and chemokines release including IL-
1β, IL-2, IL-6, IL-8, IL-18, CCL2, CCL20, TNFα, and LIF.

Herein, autophagy is capable of modulating tumor growth,
metastasis and angiogenesis as well as immune evasion and
stemness maintenance, through autophagy-dependent secretion
of pro-inflammatory and pro-invasive factors (54–57). Another
tumor secretome released in an autophagy-dependent manner
includes growth factors (TGF-β1, b-FGF), extracellular matrix
proteins (MMP2, MMP9) and the angiogenesis stimulant
(VEGFA) (Table 1) (55, 58, 59). Additionally, autophagy
deficiency impedes the release and secretion of crucial cytokines
and chemokines involved in T cells and DC recruitment,
including IFN-γ, CXCL9, CXCL10, and CXCL11, thus immune
surveillance escape occurred (Table 1) (60).

In contrast, autophagy stimulates the release of specific
proteins known as DAMPs (damage-associated molecular
patterns) that enhance an immunomodulatory effect by
triggering immune cells. Therefore, it enhances the anti-tumor
immunity and restricts tumor progression (61, 62).

Cross-talk of autophagy and anti-tumor
immunity

In the age of immunotherapy success to fight cancer, there
is an increasing demand to know how autophagy modulation
affects the response to anti-cancer medications. Evidence
suggested a decline in autophagy levels in aging T lymphocytes,
indicating that autophagy inhibition might contribute to
hematopoiesis and/or systemic immunity impairment (64).
Furthermore, the survival of hematopoietic stem cells and
memory T cells are dependent on autophagy (65, 66).
In the myeloid compartment, autophagy supports B1 cell
self-renewal and provides free fatty acids needed by the
differentiating cells (67, 68). Additionally, autophagy has a
major influence on the tumor-specific CD8+ T cells (69) and
memory T-cells (70). Autophagy has been shown to dictate the
degradation of cytolytic granules secreted by cytotoxic CD8+
T cells and NK cells (71, 72). Intriguingly, autophagy has
a crucial role in protein degradation, thus allowing antigen-
presenting cells (APCs), like DCs, to utilize such proteins as
antigens on major histocompatibility complex (MHC)-I and
II. The process occurs through three main pathways; namely,
exogenous, cross-presentation, and endogenous pathways
(Figure 2). Such role was previously reviewed by Koustas
et al. (73).

Furthermore, immune suppressor cells have variable
responses to autophagy inhibition. For instance, the
immunosuppressive effect of Tregs is highly autophagy-
dependent (12). Interestingly, it has been indicated that
ATG5 or ATG7 deletion in T cells produces severe tumor
implant rejection in the syngeneic mouse tumor model (74).
Another published work demonstrated that inhibition of
Beclin-1 gene expression enhances T cells infiltration into the
TME (75).

In the developed TME, TAMs, M2 phenotype, are vital
in the growth and metastasis of cancer cells, as well as
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FIGURE 1

Multiple steps are involved in autophagy machinery: induction, initiation, vesicular expansion, lysosomal fusion, and degradation. Autophagy has
contradictory roles in tumorigenesis by either promoting or suppressing depending on the stage of cancer. The figure was modified from
Burada et al. (52).

angiogenesis (76). On the other hand, several studies
proposed that M1 macrophages inhibit tumor progression
(77). Autophagy has been shown to participate in the
production and polarization of macrophages. Toll-like
receptor-2 (TLR2) deficiency is associated with autophagy
inhibition and subsequently results in the biosynthesis
of M2-type macrophages, which in turn supports tumor

progression (78). In addition, autophagy initiation in TAMs
promotes apoptotic cell death, restrains proliferation, and
enhances radiosensitivity of CRC (79). Altogether indicated that
autophagy in TAM plays an essential role in suppressing cancer
(Figure 2).

Furthermore, other native immune cells critically participate
in CRC tumorigeneses, such as tumor-associated neutrophils
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TABLE 1 Summarized list of the crucial autophagy-dependent
secretome and inflammatory mediator in TME.

Substances/
Secretome

Definition and function

TGF-β1 Transforming growth factor β-1 (TGF-β1) is an
important pleiotropic cytokine in wound healing,
immunoregulation, angiogenesis and cancer.
TGF-β1 isoform is produced by immune cells that
exert powerful anti-inflammatory functions.

β-FGF Beta- Fibroblast Growth Factors (β-FGF) are
involved in cell proliferation, differentiation,
normal development, wound repair, and
angiogenesis. β-FGF is mostly produced by stromal
cells in bone marrow, leukemic cells, and T cells.
β-FGF is an important regulator in the self-renewal
and differentiation of multipotent hematopoietic
progenitor cells.

MMP2 Matrix metalloproteinase-2 (gelatinase a); is a type
IV collagenase that plays a role in vasculature
remodeling, angiogenesis, tissue repair, tumor
invasion, inflammation, and atherosclerotic plaque
rupture. Also, MMP2 functions as degrading
extracellular matrix proteins.

MMP9 Matrix metalloproteinase-9; potentially involved in
local proteolysis of the extracellular matrix,
leukocyte migration and bone osteoclastic
resorption. Also, it cleaves type IV and type V
collagen and fibronectin degradation.

VEGFA Vascular endothelial growth factor-A is involved in
angiogenesis, vasculogenesis and endothelial cell
growth. As well as it Induces endothelial cell
proliferation, promotes cell migration, inhibits
apoptosis and induces permeabilization of blood
vessels.

IFN-γ Interferon γ; Produced mostly by lymphocytes, has
antiviral activity, and an important
immunoregulatory functions. It acts as an activator
of macrophages and has anti-proliferative effects
on transformed cells. IFN-γ can potentiate the
antitumor effects of the type I interferons.

CXCL9 C-X-C motif chemokine 9; is a cytokine that
impacts the growth, movement, or involved in the
immune and inflammatory response. It acts as a
chemotactic for activated T-cells.

CXCL10 C-X-C motif chemokine 10; Chemotactic for
monocytes and T-lymphocytes. Binds to CXCR3;
Belongs to the intercrine alpha (chemokine CxC)
family.

CXCL11 C-X-C motif chemokine 11 is an important
chemotactic for interleukin-activated T-cells,
neutrophils, or monocytes. CXCL11 induces
calcium release in activated T-cells. Also, it is
participating in CNS diseases that involve T-cell
recruitment.

(TANs) and NK cells (Figure 2). For instance, promoting
autophagy in TANs enhances the migration and metastasis
of cancer cells (80). Analogous outcomes have been reported
in other cancer types such as melanoma and renal cell
carcinoma (81).

Autophagy as a regulator of
immune-checkpoints

Additionally, autophagy has an impact on immune
tolerance in response to immunotherapy, since immunologic
molecules such as indoleamine 2,3-dioxygenase (IDO),
Programmed cell death protein 1 (PD-1), and T-lymphocyte-
associated protein 4 (CTLA-4) are regulated by autophagy
pathways. IDO can inhibit tumor immunity through its
inhibitory effects on cytotoxic T-cell responses, DC maturation,
and Treg proliferation, thus promoting immune tolerance
and tumor development. However, autophagy can inhibit
the production of IDO in tumor sites (82, 83). Tumor
cell PD-1 interacts with T-cells PD-L1 and serves as an
inhibitory checkpoint molecule, preventing tumor cells
from being recognized, thus suppressing the antitumor
immunity. It has been reported that PD1 inhibits the
availability of nutrients to nearby T-cells by interacting
with its ligand, inducing autophagy (84). Results from
experiments with murine melanoma cells and human
ovarian cancer cells suggest that PD-L1-overexpressing
cells are more responsive to autophagy inhibitors than cells
with weak PD-L1 expression. This finding suggests that
autophagy inhibitors may become an important therapeutic
tool in PD-L1-overexpressing cancer cells (85). However,
further experiments are warranted to explore how PD-L1
signaling and autophagy operate in different cell types,
including CRC. This will assist in determining whether
anti-PD-L1 therapy combined with autophagy inhibitors
will enhance antitumor responses. The CTLA-4 protein is
another immune tolerance checkpoint that can be targeted to
treat tumors. A cancer-antigen called MAGE-A is associated
with CTLA-4 inhibitor resistance and is known to suppress
autophagy, suggesting that autophagy induction may be used
therapeutically as a way to improve the efficacy of CTLA-4
inhibitors in human melanomas (86). Further experiments
are needed to explore cross-talk of autophagy and immune
checkpoints in CRC as well. Immune checkpoint therapy
for CRC, as a whole, remains unsatisfactory at present.
However, there has been renewed interest in examining
additional immune checkpoint molecules. New immune
checkpoint targets have been identified like the T cell
immunoglobulin and mucin domain containing-3 (TIM-
3), the V-domain Ig suppressor of T cell activation (VISTA),
the T cell immunoglobulin and ITIM domain (TIGIT), and
the lymphocyte activation gene-3 (LAG-3) (87–89). Despite
an exponential growth in clinical trials for emerging immune
modulators, such as anti-LAG-3 antibodies and anti-TIM-
3 antibodies, registered on ClinicalTrials.gov, no drugs
have yet been approved for clinical use. Despite promising
monotherapy results, more effort needs to be integrated toward
developing rational combinations of immune-therapy to inhibit
cancer growth through non-redundant pathways that work
synergistically.
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FIGURE 2

Autophagy roles in immune responses as a tumor-suppressive and tumor protective mechanism in the tumor microenvironment. This figure
was modified from Zada et al. (63).

Cross-talk of autophagy and endothelial cells
The innermost layer of blood vessels is lined by endothelial

cells. In addition to being essential for normal tissue
function, new blood vessels also play an important role
in cancer pathology. For tumor cells to grow and spread,
neovascularization is necessary. Tumor endothelial cells have a
multifaceted functional role since they are not only responsible
for enhancing angiogenesis, but are also important in immune
regulation in the TME (90). Regulatory mechanisms profoundly
influence peripheral immune cell recruitment into the TME by
acting as significant gatekeepers during cellular transmigration
(91–93). Furthermore, tumor endothelial cells act as antigen-
presenting cells (APCs), which are associated with T cell
activation, proliferation, and priming (92). Furthermore, tumor
endothelial cells are required for the development of “tertiary
lymphoid structures,” which are associated with the response
to checkpoint antibody therapy (94). Other qualities that
distinguish tumor endothelial cells from normal endothelial
cells are their high proliferation potential and markedly
changed gene expression profile (i.e., an increase in pro-
angiogenic, extracellular matrix remodeling, and stemness
genes), leading to increased secretion of immunomodulatory

cytokines and altered cell-surface receptors, e.g., MHC and
immune checkpoints (90, 95). It is possible that the tumor
endothelial cells phenotype is rooted in an aggressive tumor
micro-milieu driven by hypoxia and ROS (96, 97). In clinical
practice, chemotherapy combined with angiogenesis inhibitor
results in marked enhancement of anti-cancer effects in patients
with metastatic CRC (98).

Increasing evidence suggests that autophagy impacts
endothelial cell survival, proliferation, migration and
angiogenesis. However, whether autophagy regulates
angiogenesis positively or negatively is still debated. For
instance, according to Du et al., overexpressing ATG5 induced
autophagy in bovine endothelial cells resulting in enhanced
formation and migration in those endothelial cells while
3-methyladenine (3-MA) or siRNA targeting ATG5 reduced
angiogenesis (99). A study by Goyal et al. discovered that
decorin-induced autophagy provided protection against tumor
neovascularization and epithelial death (100). Autocrine VEGF
released from endothelial cells and gastrin-releasing peptide
(GRP) secreted by tumors promote angiogenesis, endothelial
survival, and proliferation of endothelial cells by inhibiting
autophagy (101). Moreover, a study carried out by Seon-Jin Lee
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et al. established that genetically disrupting Beclin1 can increase
tumor growth and angiogenesis in hypoxic environments (102).
A broader view suggests that autophagy can influence the
angiogenesis process, which is important to tumor growth, by
affecting the function and survival of endothelial cells, which
has a pro- or anti-tumor effect on CRC.

Autophagy and colorectal cancer metabolism
Autophagy is a conserved catabolic process by which

various proteins, cytoplasmic constituents and organelles
can re-enter the different metabolic processes. Cancer cells
altered their metabolism, thus promoting their proliferation,
progression, and long-term survival. Cancer cells enhance
glucose uptake and metabolize glucose to lactate even when
completely functioning mitochondria support the oxidative
phosphorylation mechanism, altogether is known as Warburg
effect (103). In the normal process, pyruvate kinase (PKM2),
the enzyme catalyzing the last step in the glycolytic process,
takes control of the glycolytic flux, preventing the excessive
accumulation of glycolytic metabolites (104, 105). However,
pyruvate kinase (PKM2) enzyme breakdown is enhanced in
cancer cells via chaperon-mediated autophagy, thus associated
with increased accumulation of glycolytic metabolites (106).
Also, hexokinase 2 (HK2), rate-limiting enzyme of the glycolytic
pathway, is selectively damaged by autophagy in liver carcinoma
(107, 108). Therefore, autophagy plays a vital role in cancer
metabolism via controlling glycolysis at different stages and
levels. Warburg effect elevates lactate level in the TME
that disturbs the extracellular environmental pH, resulting in
autophagy activation (109). For instance, acute acidification of
breast cancer cells results in increased expression of LC3, ATG5,
and BNIP3 (110). Therefore, autophagy destructive effect on
vital metabolic enzymes may critically influence many features
of central metabolism in cancer. Hence, autophagy contributes
to malignancy progression and transformation by providing
cancer cells with the efficient ability to re-distribute metabolites
allowing metabolic rewiring.

Moreover, as a result of starvation, infections, and
cancer, glutamine homeostasis is disturbed and the need for
exogenous glutamine to promote cell survival and growth
is increasing (111). Due to the Warburg effect, glutamine
is excessively required to sustain oxidative phosphorylation
through its role as a key intermediate in the tricarboxylic
acid (TCA) cycle. Furthermore, it is the main nitrogen
source for many aminotransferase enzymes involved in the
synthesis of nucleotides and non-essential amino acids (112).
Glutamine participates in redox homeostasis by contributing
to NADH/NADPH synthesis and glutamate synthesis, which is
critical for glutathione synthesis (112). Therefore, with such a
wide range of glutamine functions, it is critical for some cancers
including CRC to ensure an adequate glutamine supply (113).
Targeting glutamine transport and metabolism has therefore
been a promising approach for treating CRC (113). As soon

as glutamine is deficient or lacking, the cells show differential
manifestations, including a pronounced decline in ATP and
NADH, as well as a significant accumulation of ROS (114, 115).
Herein, Autophagy plays an important role in this adaptive
response by suppressing glutamine-consuming processes and
elevating glutamine content in the body. Macro-pinocytosis
is one of the mechanisms by which activated autophagy
restores glutamine levels via recycling intracellular proteins
and extracellular compartments (116). Meanwhile, some reports
claim that autophagy plays a crucial role in cancers that
escape death with high success rates (117). Upon limitation
of exogenous glutamine, inhibition of autophagy in SW620
and SW480 colorectal cell lines resulted in increased apoptotic
activity (118). In the same way, chronic activation of mTORC1
may result in severe mTORC1-dependent cell death (later
termed glutamoptosis), ultimately inhibiting autophagy (119).
In nutrient starvation, autophagy activation is often associated
with cell survival. However, over-activating autophagy in
specific contexts has shown anti-tumor potential.

Role of autophagy in the regulation of hypoxia
and oxidative stress in tumor
microenvironment

Autophagy plays a pivotal role in helping cancer cells
adapt and survive under hypoxic TME. Intriguingly, autophagy
promotes the survival of cancer cells through its main effector,
hypoxia-inducible factor-1α (HIF-1α), which is mostly the case
in solid tumors, specially CRC (120). Tumor cells can endure
hypoxia through Beclin1-mediated cytoprotective autophagy by
upregulating the transcription of BNIP3 and BNIP3L (121).
Moreover, BNIP3L/NIX functions as a selective receptor for
autophagy that is highly expressed in tumor cells, which is
crucial to promote mitophagy under hypoxic TME through
NFE2L2/NRF2 transactivation. In addition, cells overexpressing
NIX, are more susceptible to acquire glioma stem cell-like
properties via mTOR/AKT/HIF pathway (122). Under hypoxic
conditions, a crucial adaptor protein, FUNDC1, is triggered
to eliminate dysfunctional mitochondria. FUNDC1 protein
functions critically in autophagy via engaging with LC3 protein
through LC3 interacting region (LIR) of FUNDC1 (123).
Additional form of autophagy regulation under hypoxia occurs
via HMGB1 signaling through upregulating YAP expression in
tumor cells. Similarly, ATG5 and ATG12 are stimulated by PAK1
acetylation and PTBP3, respectively, resulting in promoting
pro-survival autophagy. Furthermore, an important kinase,
PRKCA/PKCα, that regulates hypoxia-mediated autophagy via
ATG5 and Beclin1, stimulates tumor-initiating cell renewal
in CRC (124). Likewise, YTHDF1 gene is activated by HIF-
1α to promote autophagy protective effect through ATG2A
and ATG14. Of note, protein phosphatase 2 (PP2A) along
with mTOR downstream kinase signaling pathways control
the prolyl hydroxylase domain-containing protein 2 (PHD2)
phosphorylation to govern and promote HIF-1α mediated
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autophagy in CRC cells survival (125). Also, ANKRD37 gene is
demonstrated to induce HIF-1α mediated autophagy in hypoxic
colon cancer once it translocates to the nucleus (126).

Hypoxia-mediated HIF-1α induction is reported to promote
autophagy, thus controlling glycolytic processes to maintain
energy supply and cell progression. In this regard and under
hypoxic conditions, proline gets metabolized into pyrroline-
5-carboxylate (P5C) with the help of proline oxidase (POX)
enzyme, which elicits ROS production that promotes protective
autophagy mechanism, which is necessary for the survival of
HT29 cells (127). Proline oxidase (POX) enzyme role is AMPK-
dependent; however, it is controlled in HIF-1α and HIF-2α

independent manner (127).
Interestingly, autophagy was demonstrated to restrain

oxidative stress-dependent inflammation and promote tumor-
suppressor mechanisms. For instance, the transcription
activator “BRG1” stimulates autophagosome biogenesis by
regulating the transcription of ATG7, AMBRA1, and Wipi2,
thus attenuating colonic inflammation and CRC development
in an oxidative stress-mediated autophagy manner (128).

Autophagy targeted therapy in
colorectal cancer

Recent and ongoing clinical trials

Despite the controversial and contextual relationship
between cancer and autophagy, it is still considered a
promising target for treatment, as many shared regulatory
pathways of carcinogenesis and autophagy are involved. Some
studies demonstrated that autophagy induction is highly
correlated to the resistance of cancer cells to chemotherapy,
immunotherapy, and radiotherapy via directly modulating
cancer cell metabolism or diminishing cell death pathway
(72, 129–131). Thus, various preclinical and clinical studies
have been conducted to develop pharmacological autophagy
inhibitors (132). The most recent development of autophagy
inhibitors can be known by tracing the clinical trials (Table 2).
The most effective targeted therapies recognized in CRC
treatment, so far, are anti-angiogenesis such as cabozantinib,
apatinib and bevacizumab, and the inhibitors of epidermal
growth factor receptor (anti-EGFR) such as cetuximab (133).

For decades, chloroquine has been approved in malaria
and arthritis treatment and is currently an inhibitor of
autophagy via inhibiting the fusion of autophagosomes with
lysosomes in the last step of autophagy machinery. Hence,
many clinical trials are investigating chloroquine or chloroquine
derivatives either alone or in chemotherapy or radiotherapy
combinations in patients suffering from different forms of
cancers. One trial named CHOICES (Chloroquine and Imatinib
Combination to Eliminate Stem cells), a phase II trial,
is investigating and comparing the effect of imatinib and

hydroxychloroquine combination versus imatinib alone in
patients with chronic myeloid leukemia, establishing evidence
of autophagy inhibitors concept (134). Apatinib, a tyrosine
kinase inhibitor of VEGFR2, has been indicated to stimulate
autophagy via AKT- mTOR signaling pathway in colon cancer
cells (135). Additionally, Cabozantinib is an inhibitor of
various kinases responsible for angiogenesis, cell growth and
metabolism that showed a major autophagy induction in
HCT116 and HT29 CRC cell lines. Notably, cabozantinib in
combination with autophagy inhibitors promotes apoptosis
in HT29 and HCT116 cells (136). In a study using CRC
cell lines, bevacizumab stimulates autophagy as evidenced
by punctate patterns of LC3, autophagic vacuoles presence
and Beclin-1 accumulation. Autophagy inhibition by targeting
ATG5 and Beclin-1, via RNA interference or chloroquine,
enhances the ability of bevacizumab to induce apoptosis and
prevent proliferation, verifying the protective role of autophagy.
Similarly, in vivo studies using small interfering RNA or
chloroquine and bevacizumab combination showed significant
inhibition in tumor growth when compared to bevacizumab
monotherapy (137).

Of note, a combination of temozolomide and
hydroxychloroquine is indicated to be safe and tolerable
as well as exerted beneficial anti-tumor effect in phase I trial in
patients with solid tumors, including CRC, and in advanced
melanoma (138). Similarly, another phase I trial documented
the significant efficacy of hydroxychloroquine in combination
with mTOR inhibitor temsirolimus in tumor suppression
(139). On the other hand, a recent phase I study showed that
hydroxychloroquine treatment with AKT inhibitor MK-2206 is
tolerable but with minimal anti-tumor activity in solid tumors
including CRC (140). As evidenced by multiple instances
previously reported, autophagy inhibitors as monotherapy
might not be a good treatment choice for cancer therapy (141).
Treatment combination of hydroxychloroquine with HDAC
inhibitor vorinostat in an ongoing phase I study for patients
with advanced renal and colorectal cancers shows no significant
clinical improvement in the safety profile and in the patient
PFS, indicating a limited benefit of adding hydroxychloroquine
(Table 2) (142).

In a study on CRC cell lines, autophagy inhibition by 3-
MA showed significant 5-FU-induced apoptosis, thus autophagy
might have a crucial role in enhancing response of colon cancer
cells treated with 5-FU (143). Likewise, another study using
chloroquine, an autophagy inhibitor, in combination with 5-
FU showed an enhanced anti-proliferative effect of 5-FU in
CRC cells (144). More, inhibiting late-stage autophagy has been
demonstrated to enhance the apoptotic cell death activity of
the pyrrolo-1,5-benzoxazepines (PBOXs) in human CRC cells
(145). Moreover, UAMC-2526 displays inhibitory effects on
ATG4. This compound abolishes autophagy in mice bearing
colorectal tumors and promotes chemotherapy-induced cell
death (146). Recent in vitro assays and in silico screening has
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TABLE 2 Previous and current clinical trials involving hydroxychloroquine (HCQ) in combination with a variety of anti-cancer
targeted agents in CRC.

Treatment Target of the
treatment

Phase Patients number Status Outcome Trial reference number at
ClinicalTrials.gov/References

Vorinostat +
HCQ

Histone deacetylase
(HDAC) inhibitor.

I 72 Active not
recruiting

No significant clinical
improvement in the safety

profile and the
progression-free survival.

NCT01023737 (142)

Temsirolimus +
HCQ

mTOR inhibitor. I 40 completed Safe and tolerable, Significant
tumor suppression effect.

NCT00909831 (139)

Temozolomide +
HCQ

DNA alkylating
agent/induce cell cycle

arrest at G2/M.

I 38 completed Safe and tolerable, beneficial
anti-tumor effect.

NCT00714181 (138)

Protein kinase B
Akt inhibitor
(MK-
2206) + HCQ

Akt inhibitor. I 62 Active not
recruiting

Tolerable, minimal
anti-tumor activity.

NCT01480154 (140)

HCQ, FOLFOX
and
bevacizumab.

FOLFOX: chemotherapy
that inhibits DNA

synthesis.
Bevacizumab:

VEGF/VEGF receptor
inhibitor.

II 38 completed Increases in autophagy
marker LC3 with a complete

response rate of 11% but
without improved OS in the

28 evaluable patients.

NCT01006369 (98)

identified a new, important ATG4B inhibitor (S130) that has
the ability to interfere with ATG4 proteolytic activity but not
with other proteases. Also, S130 is well distributed in tissues
in vivo, enhances cell death in CRC and reduces the tumor
size (147). These findings identify ATG4B as a potential anti-
cancer target.

Challenges and potential solutions of
the autophagy targeted treatment

Based on studies and clinical trials described above, it
seems that autophagy inhibitors have a different clinical
response in cancer therapy. Identification of good biomarkers
with suitable pharmaco-dynamic properties that can estimate
any change in autophagy, is of the major difficulties facing
scientists (148). It remains to be explored whether the
limited clinical efficacy of chloroquine is correlated with
its lack of specificity in inhibiting autophagy. In fact, both
chloroquine and hydroxychloroquine are non-selective
autophagy inhibitors which are evident by their role in the
reduction of nutrient scavenging (149). This diminished
targeted delivery results in plummeting the bioavailability of
the drugs. However, hydroxychloroquine is characterized by
higher bioavailability compared to chloroquine. Moreover,
both drugs have been identified to modify the pH of
tumors, hence resulting in bioavailability modulation
of different cytotoxic drugs when used in combination
(150). Furthermore, frequent use of chloroquine has been
identified for a long time to elicit renal failure (151).
Noteworthy, both hydroxychloroquine and chloroquine

could affect pacemaker channels and voltage-gated Na+,
Ca2+, and K+ ion channels in the heart, leading to
serious dysrhythmias.

In this regard, there is an urgent need for novel
safe autophagy inhibitors with selective targets and a good
bioavailability; properties that many proposed drugs failed to
reach. One of the major advancements in the field is the
discovery of Lys05, a dimeric form of chloroquine, which shows
higher accumulation capabilities in the lysosome. Also, Lys05
has been identified to exert potent monotherapy anti-tumor
activity in both in vitro and preclinical mouse models with
limited toxicity in the treated mice. Of note, Lys05 potent
characteristic in autophagy inhibition is dependent on C7-
Chlorine, bivalent aminoquinoline rings and a short tri-amine
linker (152).

Recently, new druggable autophagy target proteins
have been established, including Vps34 (or class III
PI3K) and Beclin-1. Notably, both proteins are involved
in the early autophagy initiation process. A kinase
inhibitor, SAR405, inhibits both Vps34 and Vps18,
thus diminishing the lysosomal function via disturbing
the vesicle trafficking between the lysosome and the
late endosome. Further, SAR405 has been found to
prevent mTOR- and starvation-dependent stimulation of
autophagy (153).

Another druggable protein for autophagy modulation which
has been recently proposed is the serine/threonine kinase
ULK1/ATG1. Identification of small-molecule SBI-0206965, a
potent ULK1 inhibitor, was happened through cell-based screen.
This inhibitor was found to be high in vitro selective for ULK1
kinase as well as suppressed phosphorylation events mediated

Frontiers in Medicine 10 frontiersin.org

92

https://doi.org/10.3389/fmed.2022.959348
https://clinicaltrials.gov
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-09-959348 September 5, 2022 Time: 10:22 # 11

Mahgoub et al. 10.3389/fmed.2022.959348

by ULK1 kinases. Markedly, SBI-0206965 anti-tumor effect has
been evidenced in vivo as it showed potent tumor inhibition
when combined with mTOR inhibitors, hence allowing it for use
in the clinic (154). However, a major limitation of this molecule
is that it could affect the activity of other kinases including JAK3,
FLT3, FAK, and Src.

Conclusion and perspectives

A large number of proteins involved in the complex process
of autophagy, which appears to play a significant role in all stages
of carcinogenesis as it impacts tumor progression, initiation
and metastatic capacity. Although the role of autophagy is
not fully understood in cancer, it is thought to play both a
promoting and inhibiting role depending on the context. Thus,
it is imperative to identify how these apparently paradoxical
roles of autophagy are regulated in CRC, and to constitute an
overall view of the mechanisms that enable autophagy to play
one role, not the other.

Autophagy modulates the effect of hypoxia and oxidative
stress, regulates metabolism, promotes cancer stem cells and
constrains the surveillance of immune cells to support cancer
progression. The development of several therapeutic agents
that modulate autophagy in CRC has led to promising results,
supporting their use to enhance the action of other medications.
Currently, autophagy inhibitors used in cancer therapy are
limited to hydroxychloroquine and chloroquine that require
close monitoring, when used for a prolonged period, for hepatic
and renal adverse effects. Therefore, there is an urgent need
for more translational and basic research to clarify the intricate
role of autophagy, and to resolve unanswered questions about
the enhanced efficacy of autophagy-targeted cancer therapy.
Notably, there is an increased interest in personalized cancer
treatment by joining the TME modulation status with advanced

technology to explore the alteration in cancer progression. This
will hopefully propose a major success in cancer therapy.
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Colorectal cancer is a sporadic, hereditary, or familial based disease in its origin, 
caused due to diverse set of mutations in large intestinal epithelial cells. Colorectal 
cancer (CRC) is a common and deadly disease that accounts for the 4th worldwide 
highly variable malignancy. For the early detection of CRC, the most common 
predictive biomarker found endogenously are KRAS and ctDNA/cfDNA along with 
SEPT9 methylated DNA. Early detection and screening for CRC are necessary 
and multiple methods can be employed to screen and perform early diagnosis of 
CRC. Colonoscopy, an invasive method is most prevalent for diagnosing CRC or 
confirming the positive result as compared to other screening methods whereas 
several non-invasive techniques such as molecular analysis of breath, urine, blood, 
and stool can also be performed for early detection. Interestingly, widely used 
medicines known as non-steroidal anti-inflammatory drugs (NSAIDs) to reduce 
pain and inflammation have reported chemopreventive impact on gastrointestinal 
malignancies, especially CRC in several epidemiological and preclinical types 
of research. NSAID acts by inhibiting two cyclooxygenase enzymes, thereby 
preventing the synthesis of prostaglandins (PGs) and causing NSAID-induced 
apoptosis and growth inhibition in CRC cells. This review paper majorly focuses 
on the diversity of natural and synthetic biomarkers and various techniques for 
the early detection of CRC. An approach toward current advancement in CRC 
detection techniques and the role of NSAIDs in CRC chemoprevention has been 
explored systematically. Several prominent governing mechanisms of the anti-
cancer effects of NSAIDs and their synergistic effect with statins for an effective 
chemopreventive measure have also been discussed in this review paper.
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1. Introduction

Colorectal cancer remains one of the fourth most common 
malignancies worldwide after lung, liver, and stomach cancer. It 
majorly develops after the age of 50 whereas, a dramatic increase in 
the younger generation has been observed with an expected 
increase rate of 140% by the year 2030. A significant disparity in the 
incidence and survival rates of CRC between developed and 
developing countries depicts a difference in socioeconomic 
development (1).Genetic inheritance has been proved to play an 
important role in the development of CRC, with men being the 
major targets. Apart from genetic predisposition, lifestyle factors 
such as inactivity, type-2 diabetes mellitus (TDM), alcohol 
consumption, smoking, and obesity also influence the risk of CRC 
(2). Familial adenomatous polyposis and lynch syndrome are the 
two most prominent inherited syndromes that account for 
approximately 5% of all CRC. The accumulation of genetic 
mutations results in the transformation of normal colonic 
epithelium to a precancerous lesion and ultimately to invasive 
carcinoma over 10-15 years. Whereas people having adenomatous 
polyps or polyps with villous or tubulovillous dysplasia are at higher 
risk of developing synchronous and metachronous CRC primary 
cancer. Unfortunately, people who survived cancer at a childhood 
age and received abdominal radiation are at higher risk of 
developing CRC thus, it is recommended to adopt a screening 
session after 10 years or at the age of 35 (3). Hence, the early 
detection and removal of preformed or developing polyps will 
eliminate the chances of CRC. Polyps which are hamartomatous 
and serrated have also proven to be  responsible for leading to 
CRC. The molecular pathways such as chromosomal instability, 
mismatch repair and hypermethylation has been attributed to the 
major pathways linked to CRC (4). Adenocarcinomas accounts for 
more than 90% of CRC whereas adenosquamous, spindle, squamous 
and undifferentiated are frequently not seen. Among the treatments 
for CRC, surgical resection is commonly adopted for localized 
non-metastatic stage CRC. Additionally, palliative systemic 
chemotherapy and the use of NSAIDs as chemoprevention are 
offered to non-surgical candidates and may prove to be a curative 
option (5).

Surgical removal of polyps and increasing death of CRC requires 
the demand of risk assessment, screening, differential diagnosis, 
prognosis determination, treatment response prediction, and disease 
progression monitoring. These potentialities are determined with the 
help of biomarkers in oncology. Biomarkers help in biological 
observation, which ideally predicts the endpoint or intermediate 
outcome of a disease at an early stage where it is difficult to be observed 
(6). Biomarkers must undergo a thorough evaluation, including 
analytical validation, clinical validation, and assessment of clinical 
utility, before being incorporated into routine clinical care because of 
the crucial role they play at all stages of the disease (7). In CRC treatment 
biomarkers, molecular pattern act as a tool for the early detection of 
colorectal cancer. These biomarkers play an important role in the early 
detection and well-individualized treatment of people suffering from 
cancer. The various categories of biomarkers are predictive, prognosis, 
and diagnostic which help to determine the progression and recurrence 
of cancer whereas, it also proves to be an effective therapeutic target (8). 
The detail view of various biomarkers along with their potentiality in 
CRC has been mentioned systematically in the next section.

After an early detection of CRC, the intervention of therapeutics 
to curb the progression of colorectal cancer becomes an important 
task. Hence, NSAIDs are believed to have a chemopreventive impact 
on gastrointestinal malignancies, and more especially, on colorectal 
cancer, according to a significant body of data from epidemiological 
and preclinical research (9). Non-steroidal anti-inflammatory drugs 
(NSAIDs) are a group of chemical compounds that are typically 
unrelated yet have some therapeutic qualities and side effects. They are 
among the most widely used medicines in the world and have potent 
analgesic, antipyretic, and anti-inflammatory properties (10). NSAIDs 
are among the most widely used medications, supporting their 
inclusion on the WHO’s Model List of Essential Medicines due to their 
effectiveness in lowering pain and inflammation (11). They primarily 
work by inhibiting two cyclooxygenase enzymes, which stop the 
production of prostaglandins (PGs). Numerous cellular activities, 
including gastrointestinal cytoprotection, hemostasis and thrombosis, 
inflammation, renal hemodynamics, cartilage turnover, and 
angiogenesis, depend heavily on PGs. A lot of different illnesses’ 
pathophysiologies are heavily influenced by inflammation. PGs, 
coagulation cascade-derived peptides, interleukin IL-2, IL-6, and 
tumor necrosis factor (TNF) are among the inflammatory mediators 
whose production and activity are affected by NSAIDs (12). Long-
term use of NSAIDs has also been linked to renal illness, which can 
cause both acute and chronic abnormalities in kidney function (13). 
The US Food and Drug Administration (FDA) was led by these 
consequences to issue a scientific statement in 2005 that emphasized, 
“the necessity of utilizing the lowest effective dose for the shortest time 
feasible if therapy with an NSAID is necessary for an individual 
patient” (14).

2. Biomarkers

According to the National Cancer Institute, a biomarker is a 
biological molecule found in blood, other body fluids, or tissues that 
is a sign of a normal or abnormal activity, as well as of a condition or 
disease, such as cancer (NCI). A patient with the condition can 
frequently be distinguished from a healthy person using biomarkers. 
The adjustments could be  brought on by post-translational 
modifications, somatic or germline mutations, transcriptional 
changes, or other factors. Proteins (such as an enzyme or receptor), 
nucleic acids (such as a microRNA or other non-coding RNA), 
antibodies, and peptides are only a few examples of the wide variety 
of biomarkers. A few examples of the kinds of alterations that can 
be regarded biomarkers are changes in gene expression, proteomic 
signatures, and metabolomic signatures. In order to be  analyzed 
non-invasively and serially, biomarkers can be  detected in the 
circulation (whole blood, serum, or plasma), excretions or secretions 
(stool, urine, sputum, or nipple discharge), or they may be formed 
from tissues, necessitating a biopsy or specialized imaging. Sequence 
variations in germ-line DNA recovered from whole blood, sputum, or 
buccal cells are examples of inherited genetic biomarkers. Mutations 
in DNA extracted from tumor tissue are examples of somatic genetic 
biomarkers (8). Briefly tabulated certain biomarkers and their 
significance in various type of cancer in Table 1. Prostate-specific 
antigen (PSA) is a frequently employed but contentious biomarker for 
screening (22). Biomarkers can be used to assess a patient’s prognosis, 
or the likelihood of the disease returning without regard to treatment, 
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TABLE 1 Biomarkers and their significance in various type of cancers.

S. no. Type of cancer Biomarkers Significance Drawbacks References

1. Lung cancer
 - Plasma CD4 levels  - Identification of benign lung 

nodules-89% Specificity

 - No validation for high-

risk individuals-Mild CT 

screening trial

(15)

 - miRNA  - 81 % specificity

 - 87% sensitivity

-

 - ctDNA

 - CTCs

 - Tumor shed Product  - Advanced tumor stages

 - Sensitivity 57%

 - Blood antigens: CYFRA 21-1, 

CEA, NSE, SCC-Ag

 - 88–95% specificity  - Multi-antigen approach is 

required

2. Liver cancer
 - GP73

 - CA19-9

 - GPC3

 - Hep Par 1

 - Gs

 - Arg 1

 - Helps in Diagnosis

 - Prominent Indicators

 - Average 95–100% specificity

 - Combined identification 

is required

(16)

3. Stomach cancer
 - CEA

 - CA19-9

 - CA72-4

 - CA125

 - HER2

 - Helps in early detection

 - Involved in diagnosis and 

prognosis

 - HER2-Prognosis is not 

established

(17)

4. Colorectal cancer
 - KRAS

 - BRAF

 - 94–98% specificity

 - Prognostic and predictive factor

- (18)

 - PTEN
-Predictive factor

 - TP53  - 58% sensitivity

 - 88% specificity

 - CEA  - Screening

 - Prognostic factor

5. Ovarian cancer
 - CA125  - Predicts prognosis EOC  - Low sensitivity 67.39%

 - No clinical value

(19)

 - HE4  - Detection of Endometrioid

 - 91.4% specificity

-

 - OPN  - Early detection
-

6. Prostate cancer
 - PCA3  - Significant biomarker

 - Approved biomarker

 - Specificity 88%

- (20)

 - PSA glycoforms

 - MPRSS2-ERG

 - Detection, potential new 

biomarkers

 - Not approved yet

7. Breast cancer
 - BRCA 1/2  - 98-100% specificity

 - Early diagnostic and prognosis 

of cancer

- (21)
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after a cancer diagnosis. More lately, the prognosis for specific 
malignancies is being determined using modern methods. 
Additionally, biomarkers can be used to modify the response to a 
particular therapy, or as “predictive factors,” or to determine which 
therapy is most likely to be successful. Because somatic mutations in 
KRAS are linked to poor response to anti-epidermal growth factor 
receptor (EGFR) focused therapy, KRAS is a predictive biomarker for 
colorectal cancer (23).

Overexpression of the estrogen receptor in breast cancer predicts 
sensitivity to anti-endocrine therapy like tamoxifen (24) whereas 
overexpression of the HER2 gene or gene amplification in gastric and 
breast cancers predicts response to anti-Her2 drugs like trastuzumab. 
Chemotherapy sensitivity and resistance assays, which have been 
researched in a variety of tumor types, are potential somatic 
biomarkers for predicting response to therapy. These assays are offered 
commercially and have been the subject of numerous published 
clinical investigations (25).

Biomarkers can be utilized to identify early disease recurrence in 
patients who have finished adjuvant therapy before they experience 
symptoms. For instance, serial monitoring of CEA after adjuvant 
treatment for colon cancer is done to look for liver metastases while 
they are still treatable and resectable (26). Similar to this, beta HCG, 
lactate dehydrogenase, and alpha-fetoprotein are serially examined in 
non-seminomatous germ cell tumors to look for early disease 
recurrence. Additionally, biomarkers can be  used to monitor the 
efficacy of treatment in the context of metastatic disease. Circulating 
soluble protein tumor indicators such CEA, PSA, CA125, the MUC1 
antigens CA15, CA27.29, and CA19, as well as the efficiency of 
palliative care in metastatic colorectal, prostate, ovarian, breast, and 
pancreatic cancers, are suggested (27).

2.1. Synthetic biomarkers

Some researchers are adopting a different strategy rather than 
depending on endogenous signals, which come from the body. They 
are tricking a tumor into secreting synthetic biomarkers that can 
be detected in biofluids while the tumor is still undetectable by any 
existing technique by using cunning engineering technologies and 
tumor-specific biological knowledge. When ingested, the 
exogenously supplied bioengineered sensors can send out a signal 
indicating the presence of cancer cells. These techniques have 
successfully detected significantly lower tumor sizes in animal 
models (28). The biological, physiological, and statistical constraints 
of endogenous biomarkers serve as a justification for the 
development of synthetic biomarkers. Endogenous biomarkers such 
as proteins in the pool of blood and having varying secretion rates 
are difficult to detect due to short periods of retention and frequent 
clearance from circulation (29). These represent a new class of 
diagnostics that use bioengineered sensors such as molecular 
probes or genetically encoded vectors that take the advantage of the 
potentially dysregulated characteristics of early stage tumors or 
their precursors which could become lethal, inside the body to scan 
for early stage tumors and amplify illness signals to levels that may 
be  greater than those of shed biomarkers detectable from body 
fluids such as blood and urine. Several imaging techniques also 
employ synthetic biomarker approach including reporter gene 
imaging, in which an exogenous molecular tracer (such as a 

positron emitting probe) is systematically infused (29). Synthetic 
biomarkers on the basis of their activities are called protease-
activated synthetic biomarkers that are particularly effective 
molecular amplifiers. Apart from it vector-based, mammalian cell-
based, and bacterial cell-based synthetic biomarkers are also 
employed on the basis of their advantages (Figure 1). Moreover, 
some preclinical studies have reported the potential use of activity-
based sensor composed IONPs synthetic biomarkers for early 
detection of LS174T colorectal cancer (30).

3. Biomarkers for early detection of 
colorectal cancer

Colorectal cancer is treatable if caught early enough. As a result, 
early identification of colorectal cancer can minimize mortality. The 
categories of colorectal biomarkers that are now studied include 
proteins, mutated and methylated DNA, RNAs that are mostly 
microRNAs, volatile organic chemicals, alterations, and variations in 
gut microbiota makeup. It is generally known that early-onset CRC is 
becoming more common and is more deadly among those under the 
age of 50. These patterns have prompted thorough research aimed at 
clarifying the epidemiology and characteristics of early-onset CRC as 
well as formulating tactics for early identification and prevention. It is 
generally known that during the past 30 years, early-onset CRC 
incidence has grown globally (31). The identification of blood-based 
biomarkers may be a useful screening method for CRC due to how 
simple it is to donate or collect blood. A significant percentage of 
sporadic, non-hereditary malignancies have genetic abnormalities in 
the initial phases of carcinogenesis. Large numbers of these aberrant 
cells are shed from the expanding tumor, and their cell-free nucleic 
acids can be found in biological effluents, especially in urine, serum, 
and faeces. To promptly detect genetic disorders, molecular 
biomarkers with higher sensitivity and specificity than the faecal 
occult blood test (FOBT) or faecal immunochemical test (FIT) can 
be  utilized (32). The biomarkers can be  grouped into broader 
categories: Blood, Tissue, Stool, and Others.

3.1. Blood biomarkers

 1. Tumor cells in circulation: According to a recent study, a 
limited fraction of circulating tumor cells (CTCs) with the 
ability to cause metastasis include those that express the 
molecules; EpCAM, CD44, CD47, and MET. It has been found 
that individual CTCs from the same patient have different 
KRAS, BRAF, and PIK3CA mutations. CTC are detected using 
flow cytometry and immunocytochemical analysis are also 
highly sensitive methods to detect biomarkers for CRC (33).

 2. Tumor DNA in circulation: There is circulating tumor DNA 
or ctDNA called cell-free DNA (cfDNA) in cancer patients that 
are a diagnostic biomarker for CRC (34). cfDNA contains 
mutations, methylation, microsatellite instability, and loss of 
heterozygosity that contribute to tumor-specific alterations 
(35). There is a high concentration of cfDNA in neoplastic 
disease. The ctDNA/cfDNA is considered a novel biomarker 
for the early detection of colorectal malignancies.
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 3. Micro RNAs in circulation: Non-coding RNAs subclass 
contains more than 38,500 microRNAs in human beings 
discovered so far. Circulating upregulated or downregulated 
miRNAs like miR-18a, miR-31, miR-145, miRNA-486, 
miRNA-320, miRNA-451, etc., are sensitive biomarkers for 
CRC (36). Other Biomarkers like ctDNA, mSEPT9 DNA, 
miR-31, miR-141, miR-224-3p, miR-576-5p, miR-4669, 
miR-21, exosomal miR-548c-5p, lncRNA CRNDE-h, etc. were 
identified as biomarkers of CRC. Dysregulation of miRNAs is 
frequent in CRC and hence are potential biomarkers. RT-qPCR 
and next-generation sequencing (NGS) are a few methods to 
detect these miRNAs.

 4. DNA methylation-based biomarkers: In CRC the most 
frequent process to occur as compared to genetic mutation is 
the methylation of the CpG island of the promoter. More than 
600 hypermethylated genes have been identified so far. Among 
these, the best-known biomarker for CRC is the SEPT9 
methylated DNA. There are 13 genes in the SEPT gene family, 
which is located on chromosome 17q25  in the human 
genome (37).

 5. Long non-coding RNA-based biomarkers: Long noncoding 
RNAs (lncRNAs) have been shown to be stable in blood and to 
have diagnostic potential during the past 10 years (38). 
Through processes, such as chromatin remodeling, chromatin 
interaction, competing endogenous RNAs, and natural 
antisense transcripts, they can affect cancer cells (39). Because 
lncRNAs may pass across cell membranes, they can 
be discovered in a variety of bodily fluids, including blood, 
plasma/serum, and urine. Various biomarkers used for CRC 
detection based on these lncRNAs are CCAT1, HOTAIR, 

LOC285194, RP11-462C24.1, BCAR4, BLACAT1, UCA1, 91H, 
PVT-1, MEG3, ATB, CCAT1, NEAT1, etc.

 6. Others: Pyruvate kinase M2 (PKM2), an isoform of pyruvate 
kinase enzyme is reported as overexpressed in CRC. PKM2’s 
great sensitivity makes it appear like a viable blood and fecal 
biomarker for CRC screening (40).

3.2. Tissue biomarkers

 1. Transcription factors: The caudal type homeobox 
transcription factor (CDX2) is one of many transcription 
factors that contribute to the development and differentiation 
of the intestine (41). It is a widely used immunomarker for 
CRC as it is a tumor suppressor gene in CRC and its expression 
is lacking in CRC cases. Another transcription factor special 
AT-rich sequence-binding protein 2 (SATB2) regulates 
skeletogenesis and is a CRC biomarker with a positivity rate of 
83.7% of stage III/IV colorectal adenocarcinomas, 91.4% of 
stage II and 92.4% of stage I of this malignancy (42).

 2. Transmembrane glycoproteins: The A33 antigen, a type 
I  transmembrane glycoprotein of the immunoglobulin 
superfamily, is expressed in the basolateral membranes of both 
proliferating cells in the lower regions of the crypts and 
differentiating cells in the upper regions of the crypts, as well 
as in 95% of colon tumors in the colon and small intestine (10). 
Another glycoprotein, a member of the cadherin superfamily, 
cadherin-17 (CDH17) is a calcium-dependent transmembrane 

FIGURE 1

A detailed diagrammatic overview of Synthetic Biomarkers on the basis of their activity and various methodologies for endogenous administration.
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glycoprotein (43). In normal, metaplastic, and neoplastic 
tissues of the gastrointestinal tract, CDX2 binds to elements in 
the 50 flanking regions of the gene to regulate this cadherin’s 
transcription. With a specificity of 50–83.8% and a sensitivity 
of 96–100%, CDH17 is a helpful immunohistochemical marker 
for the identification of primary and metastatic colorectal 
adenocarcinomas (44).

 3. Telomerase: Telomeres, which guard the ends of chromosomes, 
have certain hexameric repeats (TTAGGG)n in them. They 
control the longevity of cells and chromosomal integrity. A 
telomere-specific reverse transcriptase (hTERT) found in 
telomerase is similar in structure and function to viral 
transcriptase. The replicative capacity of CRCs and the risk of 
recurrence are increased by the overexpression of hTERT (45). 
hTERT appears to be a recurrent biomarker that may be utilized 
to track systemic treatment responses.

 4. Cytokeratins: The intermediate filament-forming protein 
known as cytokeratins is found in the cytoplasmic cytoskeleton. 
The only cells that exhibit them are epithelial cells. Numerous 
cellular processes, including cell size determination, apical-
basal polarization, protein translation regulation, organelle 
location, and membrane protein targeting, are regulated by 
cytokeratins (46). In CRC diagnoses, cytokeratins are 
frequently utilized as immunohistochemistry markers. Various 
cytokeratins involved in the prognosis expressed in CRC 
patients are cytokeratin 7, cytokeratin 20, cytokeratin 20+/
cytokeratin 7-, cytokeratin 15, and cytokeratin 18 (47).

3.3. Stool biomarkers

As the exfoliating tumor cells first occur in the large intestine or 
rectal lumen during colorectal carcinogenesis, stool specimens are 
more suitable for the early identification of CRC than blood samples 
(48). The presence of stool biomarkers has resulted in the early 
detection of CRC. The guaiac-based fecal occult blood testing 
(gFOBT) and fecal immunochemical test are mostly used for the 
screening of rectal blood loss, which is the biomarkers in the stool. The 
fecal microRNA-106a test is used to detect mRNAs in stool (37). 
Tumor suppressor genes are rendered inactive by hypermethylation at 
every stage of carcinogenesis, from polyps to colorectal 
adenocarcinomas. Many genes, particularly those in the promoter 
region, are methylated in CRC, including APC, MLH1, MGMT, 
SFRP1, SFRP2, CDK2A, TIMP3, VIM, SEPT, CDH1, and HLTF (49). 
There are numerous methylated DNA stool biomarkers used in CRC 
like SFRP methylation, CDKN2A, MGMT methylation, Vimentin 
methylation, NDRG4 methylation, BMP3 methylation, K-ras 
mutation, hypermethylated SCNA, etc.

4. Techniques and current 
advancements in biomarkers for early 
detection of CRC

4.1. Techniques for early detection of CRC

Early detection and screening for CRC is necessary and could 
potentially be lifesaving in many cases, as the symptoms of CRC often 

tend to develop late in the natural course of the disease (50). Multiple 
methods can be used to screen and perform early diagnosis of CRC, 
each with its associated advantages and disadvantages. The most 
important feature of these tests is the test’s sensitivity, and to a certain 
degree, its specificity (51).

4.1.1. Colonoscopy
Endoscopic procedures involve passing a camera attached to a 

long flexible tube into the gut of the patient. These procedures can 
be used to visualize and non-surgically remove adenomas and early 
cancers (52). Currently, colonoscopy is the most prevalent method for 
diagnosing CRC or confirming the positive result from other 
screening methods, with most doctors suggesting regular colonoscopy 
at a gap of 10 years for patients over the age of 45. A colonoscopy can 
be performed to spot and remove pre-cancerous lesions and tumors 
across the entire large bowel (53). Its sensitivity for CRC detection is 
around 95%, and for advanced adenomas (about 10 mm in diameter) 
its sensitivity is around 88–98%. It has been seen in case–control 
studies that with the use of colonoscopy there was a decline of about 
53–72% in the incidence of CRC and a 31% decline in CRC-associated 
mortalities (54). But colonoscopy has its associated disadvantages, like 
high dependency on the operator, significant burden to the patient, 
expensive nature, post-colonoscopy CRC risk, etc. (55).

4.1.2. Sigmoidoscopy
Flexible sigmoidoscopy (FSIG) enables the endoscopic 

examination of the rectum and, distal colon (56). FSIG is most 
performed without sedation, unlike colonoscopy (57). Concerning 
colonoscopy, has its advantages it requires less intestinal preparation, 
takes less time, causes less discomfort for the patient without 
anesthesia, has fewer complication rates, and is cheaper (58). The 
common risk associated includes bleeding and perforations (59). 
Within this test’s reach, the sensitivity and specificity for large 
adenomas and CRC have been found to be 95 and 87%, respectively.

4.1.3. Colon capsule endoscopy
Colon capsule endoscopy or CCE is a recent development in the 

field of CRC screening and involves swallowing a wireless camera, 
which has the size of a pill, which moves along the GI tract taking 
images of its surroundings (60). For advanced neoplasia, 10 mm or 
larger, the CCE-2 has a sensitivity of 76.7% and a specificity of 90.7% 
(61). g-FOBT and fecal immunochemical tests Guaiac Faecal Occult 
Blood Tests or g-FOBT involve the testing of stool for the presence of 
blood in it. The stool sample is tested using peroxidase enzyme for the 
presence of the heme group using a guaiac card. A positive g-FOBT 
necessitates a follow-up colonoscopy test (12). Fecal Immunochemical 
Tests or FITs incorporate antibodies that specifically bind to the globin 
protein of hemoglobin. Thus, like g-FOBT, they also search for the 
presence of blood in the stool of the patient (62). The biggest advantage 
of such stool-based tests is the ease of use. An issue with these 
techniques is that most polyps do not bleed. Thus, their presence goes 
undetected with these tests.

4.1.4. Stool DNA testing
This non-invasive method tests for the presence of molecular 

debris and occult blood in the stool samples (63). This debris might 
include mutant DNA seen in tumor cells, like mutant KRA, p53, 
aberrantly methylated BMP3, NDRG4 promoters, etc. (64). 
Cologourd®, an FDC-approved multi-target stool test, has been 
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shown to have higher sensitivity than FIT (92 and 72% respectively) 
but lower specificity (92 and 74% respectively), in a study that tested 
both on nearly 10,000 patients, using colonoscopy as reference. It also 
had a low detection rate for large advanced melanomas of only 42%, 
therefore limiting its preventive role (64).

4.1.5. Computed tomography colonography
Computed tomography colonography, or CTC, provides images 

of the entire abdomen and pelvis, not just the colon. It uses a 
radiographic agent to non-invasively tag stool for digital imaging. 
CTC’s per-person sensitivity for adenomas below 10 mm varied 
between 66.7 to 93.5% in a meta-analysis evaluating its effects with 
colonoscopy, while its specificity values ranged from 96.0 to 
97.9% (65).

4.1.6. Double-contrast barium enema
Double-contrast barium enema or DCBE is performed without 

any use of sedative and involves the injecting of air and rectal contrast 
and is therefore an unpleasant experience for the patient. But it can 
evaluate the entire colon for any abnormality (51). A study between 
DCBE and colonoscopy showed that DCBE detected only 32% of 
polyps less than 5 mm, 53% of polyps 6 to 10 mm, and only 48% of 
those greater than 1 cm (66).

4.1.7. Serological tests
A blood-based detection test, or liquid biopsies, checks for DNA 

markers floating in blood. The presence of methylated septin 9 in 
plasma has been assessed in many studies (67). According to a meta-
analysis study that was based on 25 research articles, the SEPT9 assay 
is only better than the FIT in the symptomatic group (68). The test’s 
current commercially available iteration has a sensitivity for advanced 
neoplasia and CRC of 25 and 68%, respectively, with a specificity of 
79% (69, 70) (Table 2).

4.2. Current advancements in biomarkers 
for early detection of colorectal cancer

The need for more specific and sensitive biomarkers to detect 
CRC arises from the fact that CRC is one of the top four most 
prevalent cancers worldwide (71) with a high mortality rate. The 
current non-invasive techniques used for screening, for example, are 
not very sensitive to the earlier stages of cancer and may miss any 
pre-cancerous lesions and polyps. According to Imperiale et al. (72) 
“In asymptomatic persons at average risk for colorectal cancer, 
multitarget stool DNA testing detected significantly more cancers than 
did FIT but had more false positive results” (73). The finding further 
establishes the need for more sensitive biomarkers along with the 
already used screening techniques. The emergence of gene expression 
analysis along with transcriptome studies has allowed scientists to 
categorize CRC into subtypes for developing a better understanding 
of the disease and for devising better treatment strategies based on the 
subtype of CRC a patient may have. (74)Maida et al. (Maida et al., 
2017) performed Molecular sub-typing of colorectal cancer, dividing 
it into 4 major subtypes: CMS1, CMS2, CMS3, and CMS4. This 
analysis has also elucidated new biomarkers. Similarly, Multi-Omics 
studies analyzing large amounts of data on the structure and function 
of several biological molecules in their totality have led to a better 

understanding of multifaceted and complex diseases like cancer. The 
omics studies including genomics, transcriptomics, proteomics, 
metabolomics, glycomics, etc. have revealed many new promising 
biomarkers for CRC. These biomarkers include several different kinds 
of molecules which may be  DNA–RNA-based, protein-based, 
metabolite-based, or even volatile substances found in a patient’s 
breath. They can be  detected utilizing techniques like genomic 
analysis, mutation analysis using hybridization arrays, micro-arrays, 
bioinformatics analysis, mass spectroscopy, Gas- Chromatography 
MS, Gel electrophoresis, etc. (9).

5. Effect of NSAIDS on the 
gastrointestinal system

PGs increase mucus production and PGI2 and PGE2 have a 
vasodilator effect on the vasculature of the gastric mucosa and reduce 
gastric acid output. On the other side, NSAIDs could prevent the 
effects of PG on the gastrointestinal tract. Mucosal proliferation, 
HCO3 secretion, and mucin synthesis are all inhibited by this action. 
NSAIDs can damage the gastrointestinal tract by impairing this 
function, which can lead to stomach problems (75). Gastric 
hypermotility results from NSAID usage that inhibits COX-1. 
Although the exact process is unknown, it is possible that tissue 
hypoxia and microvascular damage arise from high-amplitude, 
limited blood flow. There is some evidence that NSAID usage may 
lower the chances of GI malignancies, including gastric, pancreatic, 
and colorectal cancers, in contrast to the acute effects of NSAIDs on 
the GI tract (76). For instance, multiple studies have discovered that 
NSAIDs without aspirin are linked to a lower risk of gastric cancer 
(77) and, in the case of celecoxib, a higher rate of per-cancerous gastric 
lesions regressing when compared to placebo. To identify these 
possibly beneficial effects more fully, more research is nonetheless 
required (78).

5.1. Effect of NSAIDS and relation between 
cancer and inflammation

Acute inflammation, also known as resolved inflammation, is a 
self-limiting adaptive host defense mechanism that brings the body 
back to a state of homeostasis. However, persistent, unchecked, or 
unresolved inflammation can result in a number of diseases, including 
cancer. Nonsteroidal anti-inflammatory drugs (NSAIDs), like aspirin, 
lower the risk and death from several malignancies, which is 
significant evidence that connects inflammation and cancer. Clinical 
studies using COX-2 inhibitors for cancer prevention or therapy were 
justified by the overexpression of COX-2 in the colon and many other 
malignancies. NSAIDs, on the other hand, do not need COX-2 to 
prevent cancer (79).

Since ancient times, it has been understood that the primary 
reaction to damage is “Inflammation.” Hippocrates, a Greek physician, 
may have been the first to view inflammation as the start of a healing 
process and used terms like erysipelas and edema to characterize its 
symptoms (80). The body’s reaction to an exposure, such as an 
infection or an injury, is inflammation. NSAIDs have been identified 
as the prototype chemopreventive drugs against several types of 
cancer by more than 30 epidemiological investigations that combined 
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reported findings on more than one million participants. NSAIDs can 
affect the microenvironment of tumors by slowing cell migration, 
boosting apoptosis, and decreasing chemosensitivity. Targeting the 
molecules (COX-2 cyclooxygenase 2, NF-kB, VEGF) involved in the 
inflammatory process might offer a useful technique for cancer 
prevention and therapy since they can predispose to tumors (81). 
Several NSAIDs like aspirin, celecoxib, piroxicam have shown 
preventive effects on inflammation in colorectal cancer. Colorectal 
cancer-related prevention by NSAIDs mostly works by acting on the 
pathway of the eicosanoids (82). NSAIDs have been shown in the past 
to have anti-tumor effectiveness, less toxicity, and non-specific side 
effects than those caused by conventional chemotherapy. They were 
also able to limit tumor growth by causing changes in the inflammatory 
environment of the tumor (83). NSAIDs have demonstrated 
chemoprotective and anti-inflammatory effects on inflammations 
associated with tumors. The fact that COXIB has more notable 
protective advantages than non-selective NSAIDs against a variety of 
malignancies is associated with a larger reduction in the risk of cancer 
(84, 85).

6. Role of NSAIDs in colorectal cancer 
chemoprevention

Cyclooxygenase (COX)-dependent and independent pathways 
participate in anti-tumorigenesis, albeit their mechanisms are not 
completely known (86). The primary anticancer action of NSAIDs is 
assumed to be  a COX-2 inhibition-mediated suppression of 
prostaglandin E2 production, which reduces tumor cell proliferation, 
angiogenesis, and enhances apoptosis. Various signal transduction 
pathways like nuclear factor-kappa B, NF-κB, have been proven as 
COX-independent NSAID-induced effects, despite the fact that many 
of the anticancer mechanisms of NSAIDs are described as 
COX-dependent. Numerous studies have been conducted on the 
relationship between expression of COX and colorectal cancer, 

including prognostic variables and potential chemo-preventive 
drugs (87).

6.1. Mechanism of anti-cancer activity of 
NSAIDs

6.1.1. COX dependent pathway
COXs are regulators that have critical roles in carcinogenesis, 

angiogenesis, and inflammation. COXs found on luminal side of the 
ER (endoplasmic reticulum) are connected with the nuclear envelope 
and have three isoforms: COX 1, COX 2, and COX 3 (58, 88). The 
pharmacological basis for anti-inflammatory activity of NSAIDs is 
believed to be the inhibition of COX 1 and COX 2 enzymes, which 
catalyse conversion of arachidonic acid into prostaglandin H2, a 
precursor for the formation of prostacyclins, thromboxanes and 
prostaglandins. These eicosanoids have been associated to pain, fever, 
and inflammation. Moreover, they protect stomach and gut lining 
from harmful impact of the acid, stimulate blood clotting by activating 
blood platelets, and control kidney function. COX 2 is triggered by 
inflammatory stimuli, whereas on the other hand COX 1 is 
constitutively expressed in several tissues and has a significant role in 
the tissue homeostasis (89).

Several molecules linked to inflammatory and malignant 
processes have their gene transcription and protein synthesis regulated 
by aspirin and NSAIDs (90). The ability of NSAIDs and aspirin to 
decrease COX expression and downstream signals, that are essential 
for CRC cell diffusion, survival proliferation, allows for differentiation 
of these actions. Arachidonic acid is transformed into prostaglandin 
G2 by cox enzymes which is an unstable intermediate that is quickly 
degraded into PGH2. After that, PGH2 is transformed in a number of 
PGs with comparable structural properties, such as Thromboxane 
(TX) A2, PGD2, PGF2, PGI2, and PGE2 (91). Despite the fact that 
research in experimental CRC models has shown that COX 1 may 
promote cancer growth, in mammalian tissues, COX 1 is expressed 

TABLE 2 Summary of detection techniques used for CRC detection based on cost-effectiveness.

Techniques used Sensitivity Specificity Cost effectiveness References

Colonoscopy 95% 88–98% Higher cost when compared to 

other methods.

(54)

Sigmoidoscopy 95% 87% More affordable than a 

colonoscopy

(59)

Colon Capsule Endoscopy 76.7% 90.7% More expensive than a 

colonoscopy

(12)

g-FOBT 96–98% 50–75% More affordable than a 

colonoscopy

(12)

FITs 94% 74% More affordable than a 

colonoscopy

(70)

stool DNA testing 85% 93% More expensive than a FITs (64)

Computed tomography 

colonography

66.7–93.5% 96.0–97.9% More affordable than a 

colonoscopy.

(65)

DCBE 80% 95% Almost same as colonoscopy (66)

Serological tests 68% 79% More affordable than a 

colonoscopy

(69, 70)
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constitutively, and PGs synthesized from COX 1 are required for 
physiological functions (56).

On the other hand, COX 2 is activated in various cell types by 
tumor promoters, growth factors, and inflammatory cytokines (92). 
In 80-90% of carcinomas and 40–50% of human colorectal adenoma 
cancers, COX-2 expression is elevated, which increases PG synthesis 
(93, 94). Platelet-derived growth factor, matrix metalloproteinases, 
and vascular endothelial growth factor are all vital for the genesis, 
development, and advancement of tumors. COX 2 stimulates the 
synthesis of these molecules. Additionally, COX-2 restricts the 
development of immune cells with antineoplastic activity and controls 
the production of proteins that are both pro- and anti-apoptotic 
(61, 95).

Aspirin is the NSAID which has the ability to permanently 
suppress COX 1 and COX 2 action. On antiplatelet therapeutic levels 
of 75-100 mg daily, aspirin is 100-fold more effective than monocyte 
COX-2 in suppressing platelet COX-1 (96). Platelet activation in CRC 
patient stimulates the generation of proteolytic enzymes and 
chemokines which promote metastasis, angiogenesis and cancer cell 
proliferation (97). Activated platelets may potentially contribute to 
COX 2 overexpression in CRC by producing TGF, IL-1 and platelet-
derived growth factor (97). Aspirin’s anti-platelet activity may thus 
be responsible for some of its anti-tumorigenic actions. Aspirin and 
other NSAID suppression of PGE2 and COX 2 synthesis may depend 
on modulating a variety of signals which also includes sphingosine-1-
phosphate (S1-P) synthesis suppression and activation of NAG-1, a 
gene induced by NSAID.

6.1.2. COX independent pathway
COX inhibition does not account for all of the NSAID-mediated 

anticancer effects. In fact, not all NSAIDs which are COX inhibiting 
possess anticancer effects and reactivating COX does not release the 
CRC cells from the arrested cell growth induced by NSAIDs. 
Additionally, CRC cells deficient in COX experience NSAID-induced 
apoptosis and growth inhibition (98).

6.1.2.1. NF-κB activation
Different subunits of the NF-κB family are regulated by NSAIDs 

in Colorectal cancer and can combine to produce homodimers and 
heterodimers. Among these, the binding of the RelA (p65) and p50 
heterodimer occurs in an inactive state in cytoplasm with the help of 
I-kappaB (IκB) inhibitor protein. The translocation of this heterodimer 
to nucleus occurs in response to the activating stimuli which leads to 
phosphorylation of IκB with its subsequent degradation by 
proteasome. Translocated p50/RelA heterodimer controls the 
transcription of various genes (99). Reduced NF-κB transcriptional 
activity is resulted from the nucleolar sequestration of RelA induced 
by a dose of 5–10 mM of aspirin in cultured CRC cells (100). A dose 
of 50 μM of Sulindac sulfide limits the HCT-116 invasion of cells by 
inhibiting transcription (mediated by NF-κB) of some particular 
microRNAs like miR 9, miR 17, miR 21 which regulates gene 
expression implicated in metastasis and tumor cell invasion (101).

6.1.2.2. Wnt/β-catenin pathway
Wnt/β-catenin pathway (Wingless and integration site growth 

factor (Wnt)/-catenin) is a pathway that NSAIDs can target easily, 
since it is active in most of the CRC cells. A protein called cytoplasmic 
disheveled (Dsh) protein is activated by binding of Wnt with TFR 

(transmembrane frizzled receptor). The glycogen synthase kinase 3 
(GSK3), casein kinase 1 (CK1), protein phosphatase 2A (PP2A), axin, 
and Apc, make up the catenin destruction complex, which Dsh 
protein binds with. The ubiquitination and degradation of the 
destruction complex is facilitated by the phosphorylation of the 
cytoplasmic β-catenin while Wnt signaling being absent (102). 
However, a decrease in the β-catenin degredation in response to the 
Wnt signals is seen with the aggregation of cytoplasmic β-catenin and 
gradual translocation to nucleus. Therefore, gene expression that 
promote tumor, for example, c-jun, peroxisome proliferator-activated 
receptor delta, c-myc, cyclin D1, and matrilysin is stimulated by the 
binding of β-catenin with the family components of LEF (lymphoid 
enhancer factor) and TCF (T-cell factor) (103).The β-catenin 
phosphorylation is enhanced by 5 mM and 100 mM doses of aspirin 
and celecoxib which reduces its nuclear aggregation and, as a result, 
transcription of Wnt/-catenin target genes in colorectal cancer cells 
(104). A study reported more data supporting the Wnt/-catenin 
pathway as a target of NSAIDs in CRC chemoprevention. According 
to this study, a 50 μM dosage of sulindac sulphide suppresses TCF 
transcriptional action of Wnt/β-catenin without enhancing 
phosphorylation of β-catenin, hence downregulating cyclin D1, and 
specifically inhibiting CRC cell proliferation (105). Several types of 
NSAIDs and their chemical structures have been discussed under 
Table 3 (Figures 2, 3).

6.2. Combined use of statins and NSAIDS for 
synergistic effect in CRC-chemoprevention

The drugs which lower cholesterol, also known as statins are made 
of tiny molecules called 3-hydroxy-3-methyl glutaryl coenzyme-A 
(HMG-coA) reductase inhibitors. Since statins show anti-carcinogenic 
characteristics in several in vitro and in vivo preclinical tests, there is 
a great interest in finding out how they might be  used in cancer 
chemoprevention. Statin use may offer some preventive benefits 
against total cancer risk, according to some observational human 
research, but not others (113).

Statins are routinely used to reduce cholesterol and NSAIDs are 
mainly used to treat inflammation. Recent studies have focused on 
their potential function as cancer chemo-preventive drugs. Human 
studies have not shown solid data on the protective benefits of statins 
against various malignancies, although NSAIDs have yielded more 
compelling results for cancer prevention, particularly in 
CRC. Combining statins with NSAIDs may induce synergy and result 
in a reduction in the doses needed for each agent, which is a potential 
technique for improving cancer prevention effectiveness. This method 
is of particular importance for the prospective long-term utilization 
of low dosages of NSAIDs and statins for cancer chemoprevention. 
Significantly, colorectal cancer chemo-preventive studies have shown 
elevated possibility for gastrointestinal and cardiovascular adverse 
effects linked to NSAID usage. A growing body of research has 
conclusively shown that NSAIDs help prevent cancer, particularly 
colorectal cancer. Because of the potential elevated risk of severe 
cardiovascular and gastrointestinal side effects, relatively high dose 
needed to produce the observed chemo-preventive benefit in human 
studies can dissuade the long-term usage of NSAIDs alone for cancer 
prevention (114). Emerging research suggests that combining cancer 
chemo-preventive drugs, NSAIDs with distinct mechanisms of action 
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TABLE 3 A systematic representation of mechanism of action of NSAIDs along with their advantages and drawbacks.

Name of the 
NSAID

Chemical structure Mechanism of action Advantages in 
CRC

Drawbacks References

Aspirin
 - Inhibit COX1 and COX2 in 

CRC tissues.

 - PIK3CA pathway inhibition 

(COX independent)

Reduces colorectal 

polyps and 

inflammation

GI bleeding (106, 107)

Diclofenac
 - Inhibit Wntβ catenin 

signaling via NF-kβ

Reduce inflammation Abdominal 

discomfort, nausea, 

diarrhea

(108, 109)

Ibuprofen
 - Inhibition of MAPK, NFkβ 

(COX independent)

 - COX dependent inhibition

Reduce inflammation GI bleeding (110, 111)

Indomethacin
 - NF-kβ, PPARδ inhibition

 - COX dependent inhibition

Anti-proliferative and 

apoptotic effects

Gastric ulceration 

and renal toxicity

(108, 109)

Ketorolac
 - COX1 and COX2 dependent 

inhibition

Anti-metastatic effects Post surgical 

anastomotic leak

(112)

Oxaprozin  - COX1 and COX2 dependent 

inhibition

Anti-metastatic effects Cardiovascular risk, 

GI ulceration

(Continued)
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TABLE 3 (Continued)

Name of the 
NSAID

Chemical structure Mechanism of action Advantages in 
CRC

Drawbacks References

Rofecoxib  - COX dependent inhibition Anti-inflammatory and 

analgesic properties

Cardiovascular risk, 

strokes

(110, 111)

Sulindac  - COX dependent inhibition

 - Inhibition of Wnt/

βcatenin pathway

Reduced colorectal 

polyps, anti-

inflammatory roles

GI ulceration and 

bleeding

(106, 107)

Celecoxib  - COX2 inhibition

 - MAPK pathway inhibition

Decreased recurrence 

of colorectal adenoma

GI bleeding, 

ulceration and 

cardiovascular risk

(106, 107)

FIGURE 2

Cox-dependent and independent mechanism overview associated with NSAIDs. Cyclooxygenase dependent and independent pathways play a 
significant role in anti-tumorigenesis. The major anticancer action of NSAIDs is thought to be COX 2 suppression mediated decrease of prostaglandin 
E2 synthesis, which inhibits tumor cell proliferation and angiogenesis while increasing apoptosis.
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may result in synergistic interactions, which might result in far higher 
anti-carcinogenesis benefits than each chemo-preventive agent could 
independently. NSAIDs have demonstrated synergistic effect in 
various other in vitro studies when treated with other therapeutic 
agents for example EGFR family inhibitors, statins, TRAIL receptor 
ligands, and PPARg ligands (115).

The combined use of statins and NSAIDs is particularly intriguing 
for cancer prevention. Atorvastatin is an example of the drug that was 
prescribed most in the year 2006 in US. In a significant experiment, 
to examine the results in individuals with coronary artery disease, 
pravastatin usage was found to be linked to a 43% decrease in several 
newly detected instances of colon cancer. Notably, 83% of individuals 
in both placebo and pravastatin groups received aspirin every day, 
implying that interaction between aspirin and pravastatin may have 
an improved protective impact (116).

The effects of statins and aspirin on risk of CRC were studied in a 
population-based case control research (117). This study comprised 
612 controls and 537 patients with CRC cases that had been 
histologically proven. Frequent use of aspirin at a low dosage level was 
linked to a moderate reduced risk for CRC, whereas frequent use of 
statins, primarily simvastatin and atorvastatin, was linked to a stronger 
risk reduction. The most intriguing finding was that taking statins and 

lower dose of aspirin together for 5 years or more was linked to 62% 
risk of risk in CRC.

Utilizing the AOM rat model, effectiveness of celecoxib, aspirin, 
and atorvastatin against colon carcinogenesis when given separately 
on high dosage levels and when combined at low dosage levels (118). 
In comparison to single high doses of atorvastatin given at 150 ppm 
or celecoxib given at 600 ppm, the combination of 100 ppm 
atorvastatin and 300 ppm celecoxib reduced the prevalence and 
multiplicity of adenocarcinomas. Accordingly, low-dose combination 
of atorvastatin and aspirin significantly inhibited the prevalance and 
multiplicity of adenocarcinoma when compared to higher doses of 
each treatment alone. The effects of celecoxib and atorvastatin was 
examined on growth of adenomatous polyps in intestines in a different 
experiment utilizing the ApcMin/+ mouse model. Combining 
atorvastatin and celecoxib at 100 ppm and 300 ppm, respectively, was 
found to completely suppress colonic adenomatous polyps and reduce 
adenomatous polyps in small intestines by 86%. However, these effects 
were more potent than those brought on by either celecoxib or 
atorvastatin treatment administered separately (119). Together, these 
findings certainly showed that statin/NSAID combination regimens 
significantly increased the effectiveness of either type of agent 
administered alone in preventing cancer. This strongly supports the 
use of the statin/NSAID combination as a promising method for 
cancer chemoprevention.

6.2.1. Pathway involved
The pathways through which statins and nonsteroidal anti-

inflammatory drugs (NSAIDs) limit cancer cell proliferation, induce 
apoptosis, and block other procarcinogenic processes are not 
completely known. Examples of celecoxib and atorvastatin were 
selected to briefly describe the potential mechanism of statins and 
NSAIDS as cancer chemo-preventive medications. By inhibiting 
HMG-CoA reductase, the rate-limiting enzyme in the mevalonate 
pathway, statins reduce the formation of isoprenoids such 
geranylgeranylpyrophosphate (GGPP) and farnesylpyrophosphate 
(FPP; FPP). These isoprenoids are necessary for the isoprenylation, 
membrane localization, and subsequent activation of a number of 
signaling proteins, such as Ras, Rho, and Rac. In contrast to GGPP, 
which can stop the apoptosis that statins cause in cancer cells, 
add-back assays showed that FPP had little to no protective benefits 
(120). These results demonstrated that GGPP had a more significant 
contribution to statin-induced effects than FPP. Studies have shown 
that geranylgeranylated Rho proteins play a part in the effects that 
statins induce, whereas the findings on farnesylated Ras have been 
contentious (121).

The specific mechanism by which statins and NSAIDs operate 
synergistically to create improved anti-carcinogenic effects remains 
largely unknown. A study was carried out on colon cancer HCT 29 
and HCT116 cells. The mode of action was studied, and a strong 
synergistic effect was observed (122). Cell cycle arrest in the G0/G1 
phase was brought on by the atorvastatin/celecoxib combination 
therapy for 24 h, and this effect was substantially stronger than those 
brought on by atorvastatin or celecoxib alone. These results are in line 
with those from animal studies, which showed that atorvastatin and 
celecoxib combination therapies reduced proliferative index and 
elevated apoptotic index in tumor tissues. Other studies in cancer cells 
demonstrated increased apoptosis with statin and NSAID 
co-treatments (123).

FIGURE 3

An overview of downstream targets in colorectal cancer & NF-κB 
and β-catenin/Wnt pathways. Catenin accumulates as a result of 
APC gene or activating mutations in the β-catenin, which leads to 
the formation of complex with the TCF/LEF transcription factors. 
TCF can interact with extra to stimulate the transcription of genes 
which are proliferative in the colon, including c-Myc and cyclinD1. 
With the release of p65, that is subsequently translocated to nucleus, 
inflammatory cytokines activate NF- κB, which leads to an increase 
in target gene transcription. NSAIDs in combination with other drugs 
like naproxen or sulindac targets β-catenin /Wnt and NF-κB 
pathways and suppresses downstream signaling.
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According to research, atorvastatin lowers the level of 
membrane bound RhoA, probably by isoprenylation inhibition and 
its impact is greatly boosted when combined with celecoxib (124). 
This may inhibit RhoA’s carcinogenic actions, which have been 
linked to cell cycle progression, enhanced tumor invasiveness, and 
metastasis (125). The suppression of RhoA’s membrane attachment 
is one potential method by which the combination of atorvastatin 
and celecoxib might cause cell cycle arrest. This can cause disruption 
of RhoA’s negative control on both p21Cip1/Waf1 and p27Kip1 and 
that may raise the levels of these two CDK inhibitors (126). Unlike 
RhoA, the combination of atorvastatin and celecoxib raised the 
membrane-bound RhoB by an unknown mechanism. Due to the 
potential tumor-suppressing action of RhoB, the enhanced 
membrane association of RhoB may contribute to the inhibitory 
effects of atorvastatin/celecoxib combo on cancer cell proliferation 
(127). Celecoxib was discovered to strongly synergize with 
atorvastatin to abolish phosphorylation of Akt in colon cancer cells, 
even at low doses when little or no inhibition on Akt was shown on 
its own (128). The same treatments decreased Akt’s upstream 
kinases, PDK1 and PI3K, phosphorylation levels. Furthermore, by 
reducing PTEN’s phosphorylation at Ser380, the combination 
therapy may have elevated PTEN activity. In colon cancer cells 
treated with celecoxib or atorvastatin alone, all of these effects were 
either completely absent or markedly diminished. The apoptosis 
brought on by the combination of atorvastatin and celecoxib 
therapy may be significantly influenced by the suppression of the 
Akt pathway (128). It is crucial to note that neither of the two 
human colon cancer cell lines used had enough COX-2 expression. 
HCT11 cells lack the enzymatically inactive COX-2 protein that 
HT29 cells express (129). As a result, the effects of celecoxib and its 
combination with atorvastatin reported in this study were COX-2 
activity independent. Findings on the combined treatment of 
licofelone (a dual inhibitor of COX-1 and 2) as well as 
5-lipoxygenase, and atorvastatin did not show a significant synergy 
in inhibiting HCT116 cellular proliferation. More research is 
required to validate the involvement of COX-2 in the statin/NSAID 
combined treatment (Figures 4, 5).

6.2.2. The Nanoformulation of NSAIDs for CRC 
chemoprevention

Nanotechnology encompasses a wide range of novel and 
extraordinary nanomaterials with diagnostic and therapeutic 
potential. Carbon nanotubes, liposomes, dendrimers, gold 
nanoparticles, silica nanoparticles, and other nanomaterials are 
employed in colorectal cancer diagnosis and therapeutic delivery. 
Various drugs loaded on gold and silica nanoparticles are engaged 
in the death of CRC cells by targeted delivery of anticancer 
medications to cancer cells. With technological innovation, new 
approaches incorporating the utilization of nanotechnology have 
paved the way for the manufacture of nanomaterials capable of 
treating CRC cancer as well as other tumor types. These approaches 
have also aided in the identification and screening of CRC. The use 
of nanotechnology in CRC is crucial for the development of 
tailored drug delivery systems, the early detection of malignant 
tumors (which are nanomaterial-based), and several other 
improved therapeutic approaches. Regarding the present progress 
of nanotechnologies in the treatment of CRC, it has gained global 
attention due to its capacity to enhance screening techniques as 

well as diagnosis and therapy. Nanoparticles have been shown to 
increase current information on biochemical and physiological 
principles underlying a few diseases and their therapies. 
Nanoparticles have shown improved performance in few 
techniques like PET (positron emission tomography) and MRI 
(magnetic resonance imaging) with the respective use of 
radioisotope chelator-free nanoparticles in PET and iron-oxide 
based nanoparticles in MRI.

Due to their small size, remarkable sensitivity, and unique 
chemical constitution, nanoparticles are ideal contrast agents and 
are frequently employed in the treatment of cancer. When used 
therapeutically, it enhances the aggregation and discharge of 
pharmacologically active substances at the diseased site, increasing 
therapeutic efficacy and minimizing adverse toxic side effects. 
Additionally, NPs which have been recently developed have the 
capacity to combine diagnostic and therapeutic compounds into a 
single nanoparticle that is simple to employ for theranostic 
applications. Theranostic nanoparticles (NPs) may also be used in 
individualized nanomedicine-based therapeutics, according to 
studies. To develop an efficient treatment for colorectal cancer, 
new technologies for detecting proteins, genes, and other 
components in an individual’s cancer should be devised. Anti-
angiogenesis therapy is an alternative for CRC treatment in 
addition to EGFR inhibitor therapy. The most prevalent negative 
effects of targeted treatment are appearance of upper body and 
facial rashes. Poor drug responsiveness to chemotherapy while 
treating CRC is commonly observed, and this may be  largely 
because of the development of multidrug resistance in tumor cells. 
Nanomedicine is believed to be a current method to improve the 
prognosis and treatment for CRC patients in order to combat 
multidrug resistance.

Numerous significant nanotechnological applications in cancer 
biology have been established, including early cancer screening and 
diagnosis as well as the development of novel therapy modalities 
that cannot be achieved with the currently available conventional 
technologies. In fact, particles bearing nano sizes of various forms 
and constitution have evolved as crucial and promising innovative 
tools for colorectal cancer screening, diagnostics, and treatments.

Different nano-formulations have been developed throughout 
the years to enhance curcumin delivery to cancer cells or tissues. 
Nano-formulations are generally utilized to improve solubility of 
curcumin in water and provide more constant curcumin 
administration (107, 130). Also, Curcumin nano-formulations 
treating tumors should ideally have increased anticancer efficacy 
when compared to curcumin alone and be harmless to normal cells.

Various studies have reported the documentation of curcumin 
nano-formulation for colorectal cancer treatment. The studies 
involve the use of polymeric nanoparticles, nano gels, liposomes, 
gold nano particles, cyclodextrins, solid lipid nanoparticles etc. 
Even though several nano formulations are through clinical testing, 
the number of nano formulations employed in CRC clinical trials 
is restricted. With the improvement in the designing of nano 
devices, nanomedicine has demonstrated its effectiveness in 
transforming the treatment and diagnosis of cancer. The drug-
encapsulation methods that are on the nanoscale are particularly 
effective in passively retaining additional drug-loaded NPs close to 
cancer cells. These tactics have aided in the establishment of the 
subsequent generation of anticancer nanomedicine.
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The main purpose of NSAIDs is to prevent colon cancer. The 
epidemiological studies show that aspirin is the most promising 
NSAID of all the reported ones. Whereas the prevention of colon 

cancer by aspirin either alone or in combination has been 
demonstrated, nano encapsulation of aspirin can increase its 
effectiveness at a lower dose. A study conducted on seven-week-old 

FIGURE 4

Anticancer effects exerted by Statins by inhibiting mevalonate pathway. Acetyl-CoA, the byproduct of glycolysis, is converted into mevalonate, IPP, 
GPP, FPP, GGPP, and cholesterol through a series of enzymatic processes that make up the mevalonate pathway. FPP and GGPP may both 
be supplemented to proteins post-translationally, particularly minor monomeric GTPases such as Ras predominantly part of MAPK/ERK pathway 
responsible for inducing VEGF expression in colorectal cancer. The inhibitory effect of FPP on MAPK/ERK pathway and inhibition of mevalonate 
pathway by statins causes tumor cell death and prevents migration of tumor cells. Statins shows its inhibitory effect on VEGFR and EGFR thus, 
inhibiting angiogenesis and tumor progression in cancer. It also inhibits BCL2 and induces aoptosis of cancerous cells.

FIGURE 5

Synergistic action of statins and NSAIDs: Statins repress and activate signaling cascades that result in cell-cycle arrest, cell death, apoptosis, and 
autophagy when used with anti-cancer medications such TRAIL, troglitazone, celecoxib, gemcitabine, cisplatin.
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male Sprague Dawley rats which were treated with azoxymethane 
revealed the chemo protective impact of calcium, folic acid, and 
aspirin. It was discovered that this combination was 1.7-fold more 
effective than their unmodified complement routine (111, 131). The 
clinical uses of another NSAID, known as celecoxib in context of 
chemo preventive activity has been widely explored. The preparation 
of celecoxib polymeric Nanoparticles with ethyl cellulose, lipid 
hybrid nanoparticles, sodium casein ate bile salt, and micro 
emulsions improved the drug’s bioavailability and permitted a 
reduction in dosage, crystallization, and associated toxicity. 
Phytochemicals are naturally derived plant-based compounds that 
are widely explored as possible chemo preventive agents and they 
are non-toxic and have pleiotropic properties. Curcumin has 
demonstrated effective chemoprotective effects in colon and 
intestine cancer, although it exhibits limited absorption, minimal 
solubility in water, and poor bioavailability. To address the issue, 
nano capsules of curcumin whey protein were produced, which not 
only demonstrated >70% discharge after 48 h but also increased 
bioavailability and cell internalization. In subsequent studies, it was 
discovered that encapsulating curcumin using polymeric nano 
carriers improved its solubility and the treatment group receiving 
curcumin nanoparticles demonstrated fewer structural 
abnormalities, a significant decrease in tumors, and beta-catenin 
levels than the group receiving curcumin alone.

In the future, this knowledge might be utilized to generate new 
approaches for the continued development of nanotechnology to 
upgrade existing medications and produce newer therapeutics.

6.3. NSAIDs – Dosage and duration and 
their therapeutic effects

Studies on the detection of colorectal cancer and its prevention 
are currently an expanding area of clinical oncology because it is one 
of the most prevalent tumors in the world. An analysis of randomized 
controlled, double blinded clinical studies including a few NSAIDs 
such as aspirin, sulindac, and celecoxib and colorectal cancer 
chemoprevention was done for this study. People taking NSAIDs had 
a decreased incidence of CRC, which points to the medications 
sustained chemo-preventive effects in both per-clinical and clinical 
studies. This advanced method of treating colorectal cancer could 
make it less fatal and more manageable. Clinical trials have examined 
and analyzed different NSAIDs for their proper dosage, duration, and 
therapeutic effects on CRC chemoprevention (110, 132, 133). 
Evidence from these clinical trials determined the extent of their 
chemopreventiveness in CRC. Seven trials on the use of aspirin in 
monotherapy, polytherapy with folic acid or eicosapentanoic acid for 
the prevention of CRC has been completed to date. For aspirin one 
such study involved the people with a history of CRC and not the 
ones with FAP or HNPCC. Patients had to wait for at least 5 years 
following tumor removal before experiencing a relapse to be eligible 
for carrying out colorectal adenoma prevention study (CAPS). It was 
found that the groups receiving aspirin 325 mg per day for 3 years had 
reduced average number of adenomas recurrence by 35% (134). 
Similar encouraging results were reached in the Asian population in 
the clinical trials with ASA 100 mg/day for 2 years, which involved 
participants with adenoma and a history of colon cancer (135). The 
Rothwell team also looked at if there was any weight or height 

dependence and how aspirin affected the risk of colon cancer over the 
next 20 years. In people weighing 70 kg or more, they found that 
75-100 mg of aspirin used once day was ineffective at avoiding 
cardiovascular events, sudden cardiac death, or cancer, especially in 
those who smoked or took enteric-coated forms, suggesting that its 
dosage is too low for treatment (136). Sulindac was the subject of a 
further double-blind, placebo-controlled investigation in FAP 
patients. It was discovered that standard sulindac doses did not 
prevent adenomas from developing in younger patients with FAP 
(137) despite the fact that the number of scientific experiments with 
sulindac was significantly lower and was too small to be trusted. They 
were either given 75 or 150 mg orally twice a day of sulindac or 
identically looking placebo tablets for 48 months. Contrarily, 
celecoxib has a proven track record of protecting patients who have 
previously experienced sporadic colorectal adenomas from 
developing the condition again. Over 1,500 patients participated in 
the PreSAP (prevention of sporadic adenomatous polyps) and APC 
(adenoma prevention with celecoxib) trails. Both studies findings-one 
evaluating celecoxib at a daily dose of 400 mg for 3 years and the other 
evaluating daily doses of 400 and 800 mg are in an agreement with 
each other. Celecoxib’s effectiveness in preventing adenoma 
recurrence improves with dosage (138, 139). Celecoxib’s effectiveness 
in treating various tumor types when administered in conjunction 
with cystostatic medicines or monoclonal antibodies such as 
gemcitabine, cisplatin, fluorouracil, or cyclophosphamide has been 
studied. Moreover, in studies involving certain patient population, 
rofecoxib has shown to have a lower incidence of adenoma recurrence 
(58). Usually non aspirin NSAIDs use is associated with increased 
risk of cardiovascular risk and gastrointestinal bleeding which limit 
their use in CRC chemoprevention (140). However certain case 
control studies such as the one based on Danish population analyzing 
non aspirin NSAID use (average daily dose & gt; or = 0.3) was 
associated with a substantial reduction in CRC risk. Aspirin and 
non-selective NSAIDs (SIR 0.74 [0.71-0.77]), but not COX-2i, were 
linked to lower risk of GI malignancies including CRC, according to 
a Swedish population-based analysis of persons taking frequent 
NSAIDs (cumulative exposure of 6 months) (141). Another 
prospective cohort study analysis found that using non-aspirin 
NSAIDs was linked to a decreased risk of CRC in postmenopausal 
women (142).

Chemoprevention necessitates the continuous administration of 
NSAIDs. The case for prescribing a chemopreventive medication is 
more convincing when the patient’s CRC risk is higher, and the drug’s 
cumulative side effects are less severe. Traditional NSAIDs have 
adverse effects that worsen over time, particularly in older patients 
who take other drugs due to comorbidities that interact with the 
chemopreventive agent (107, 143). As a result, the CRC risk must 
be significantly more than the 5% likelihood that a person at average 
risk will develop CRC in order to sustain the lifetime treatment of a 
typical NSAID. The use of NSAIDs for cancer chemoprevention is 
not advised despite the substantial evidence of activity because of the 
risk of serious renal, gastrointestinal, and cardiovascular adverse 
effects that arise from COX inhibition and the suppression of 
physiologically significant prostaglandin (111, 133). The 
chemopreventive efficacy of NSAIDs is also insufficient, albeit it is 
unclear whether this deficiency is brought on by dosage restrictions 
or resistance mechanisms. Hence preventing NSAIDS from getting 
into more clinical trials and FDA approval in CRC chemoprevention.
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7. Advantages, challenges and future 
perspective of NSAIDs

7.1. Advantages of NSAIDs

Patients who smoked heavily and had a high BMI had decreased 
ability to benefit from the chemo-preventive effects of NSAIDs, 
especially aspirin. Ibuprofen use was linked to a lower incidence of 
CRC in a different cohort study of patients with germline mismatch 
repair gene mutations (144, 145). The use of both aspirin and 
non-aspirin NSAIDs was associated with a reduced risk of cancer, 
including CRC. The FDA has authorized the use of NSAIDs as 
analgesics, antipyretics, and anti-inflammatory drugs. These qualities 
allow NSAIDs to be used to treat a wide range of illnesses, such as 
migraines, pyrexia, gout, arthritic disorders, muscle pain, and 
dysmenorrhea, and as an opioid alternative in some cases of severe 
trauma (145). Colorectal cancers with PIK3CA mutations or COX2 
overexpression appear to have a stronger correlation between NSAID 
and aspirin usage and decreased mortality. Thus lending credence to 
the idea that NSAIDs might be  used as adjuvant therapy for 
CRC. Optimizing the timing of NSAID use as an adjuvant treatment 
is clinically important. The synergistic anticancer effect of aspirin, 
biologically, might be  explained by the stimulation of apoptosis 
through a COX-dependent or COX-independent mechanism (107, 
146), the decrease of metastatic risk by preventing the contact between 
platelets and circulating cancer cells (109, 111, 147, 148), or the 
modification of the antitumor immune response (112, 149). In the 
end, NSAIDs may have more than one target and most likely has 
several adjunctive effects.

7.2. Challenges In The Use of NSAIDs As 
CRC chemopreventive

Despite the immense potential of NSAIDs as chemo-preventive 
agents, their use in CRC chemoprevention encounters many 
challenges. The poor acceptability and cost of screening colonoscopies 
are the two factors that make chemoprevention of colorectal cancer 
(CRC) a viable approach. The most promising treatment agents are 
those NSAIDs, which are presently not advised for the prevention of 
CRC (150). NSAIDs’ limited chemo-preventive effectiveness is 
exacerbated by their considerable toxicity, which can be cumulative. 
These limitations can be curbed by the use of drug combinations, and 
the development of certain classes of NSAIDs that are chemically 
modified (for example – phospho-NSAIDs, nitro-NSAIDs, sulindac) 
and thus have prolonged safety than any other type of NSAIDs like 
those of conventional ones (150). One of the major challenges for 
using NSAIDs as a chemo-preventive drug is identifying the subjects 
who will gain the most from the chemo-preventive medication and 
those who are at potentially higher risk (151). The development of 
biomarkers that are predictive and techniques to reliably evaluate risk 
would be  immensely beneficial in this case. Another challenge is 
optimizing chemo-preventive drug delivery time, dosage, and 
duration. According to research, very brief durations of agent 
administration may be necessary and can prevent colon carcinogenesis 
at an extremely early stage (152). The dosage and duration of NSAID 
administration might therefore be adjusted to ensure that the least 
amount of NSAID is utilized for the shortest duration of time. 

Furthermore, for individuals at risk, starting such an intervention at 
an early age may be beneficial. Also, the use of other new or combined 
agents or those agents that prevent other diseases in addition to 
colorectal cancer has its own merits (153). A meta-analysis of aspirin’s 
role in preventing CRC and other malignancies in recent years 
published in May 2009 showed frequent aspirin use is linked to a 
lower risk of cancer. However, this theory raises various issues, such 
as the best aspirin dose and the prevention of gastrointestinal bleeding 
brought on by prolonged aspirin usage. Thus, there is still much debate 
about the use of aspirin in the prevention and treatment of 
cancer (154).

NSAIDs are associated with other serious non-cancerous 
conditions also. As it was recently revealed that using NSAIDs 
increases the risk of myocardial infarction (155). Among the 
medications examined were Celecoxib, ibuprofen, diclofenac, 
naproxen, and rofecoxib (156). According to a study, many NSAID 
users reported gastrointestinal side effects ranging from nausea, slight 
pain, and dyspeptic symptoms to serious problems like bleeding, 
peptic ulcer rupture, and intestinal blockage (157). Peptic ulcer illness 
in the past, age, and concurrent aspirin usage are all significant risk 
factors for developing GI side effects in NSAID users (158, 159). 
NSAIDs are known for having substantial renal side effects, which in 
extreme situations might result in renal failure, in addition to 
cardiovascular and gastrointestinal problems (160). A higher risk has 
been noted in previous research for acute renal failure. Thus, the use 
of NSAIDs in the treatment and prevention of cancer must be carefully 
evaluated and there must also be a balance between the risks and the 
benefits (5).

7.3. Future perspectives

The number of studies on CRC chemoprevention has grown. 
Although NSAIDs have shown the most promise, only those with a 
greater risk of CRC predisposition syndromes, such as Lynch 
syndrome or FAP, have been advised to take them as chemopreventive 
medicines (161). The ideal CRC chemoprevention drug is elusive for 
the majority of patients. Finding new colonic neoplastic pathways that 
can be targeted as well as developing drug combinations that maximize 
efficacy and reduce toxicity are obstacles to CRC chemoprevention. 
It’s crucial to establish if more typical intermediate endpoints, like 
ACF or adenomas, may be employed given the generally low incidence 
of CRC in populations at average risk. Identifying subgroups based on 
genetic characteristics that influence treatment response, a history of 
polyps, and the subtype of a polyp is vital to determine which 
subgroups are most likely to benefit from chemoprevention drugs 
with the lowest degree of risk. CRC chemoprevention research must 
overcome obstacles including the necessity for funds to finance 
lengthy trials that enlist lots of participants and the requirement to 
validate results in various ethnic groups and geographical regions. 
Since many possible chemoprevention medicines are sold as over-the-
counter drugs or dietary supplements, it is crucial to get reliable data 
on risk since their widespread usage might skew study results. It seems 
doubtful that CRC screening will ever be replaced as the main form 
of prevention by chemoprevention. The ability to prove the 
effectiveness of chemoprevention techniques in clinical trials will 
become more challenging as screening rates rise and CRC incidence 
and death decline (162, 163). Therefore, studies in groups who 
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regularly receive CRC screening will need to show a stronger 
protective impact to significantly support chemoprevention in 
addition to screening. In conclusion, a chemopreventive drug that is 
generally effective, safe, affordable, accessible, and simple to use is 
appropriate for CRC. The promise of lowering CRC risk and lowering 
its morbidity and mortality makes CRC chemoprevention an activity 
worth continuing to pursue, even if it is difficult to discover a 
chemoprevention medication that complies with these requirements.

8. Conclusion

CRC being the second leading cause of cancer death globally is a 
major concern among the WHO (World Health Organization). Its 
preventive measures and treatments have become one of the 
challenging issues in the public health sector. CRC has been regarded 
as a sporadic and hereditary disease caused due to accumulation of 
genetic and epigenetic abnormalities in epithelial cells of the large 
intestine. It comprises of several modifiable (diet, alcohol, obesity, 
exercise) and non-modifiable risk factors such as age, genes, family 
history, etc. Several biomarkers such as KRAS, a major CRC 
biomarker, help in the early detection of colorectal cancer in patients. 
With the advent of technology and biological, physiological, and 
statistical constraints of endogenous biomarkers unavoidable need for 
the development of synthetic biomarkers in cancer sectors became a 
priority. Hence, several vector-based, mammalian cell-based, and 
bacterial cell-based synthetic biomarkers have been employed for the 
early detection of CRC on the basis of their advantages. Furthermore, 
among the various invasive techniques, colonoscopy is the most 
preferred method for early detection of CRC due to its better 
sensitivity-95% and specificity- 98% whereas sigmoidoscopy is more 
cost-efficient as compared to the expensive colonoscopic procedure. 
However, due to better specificity, colonoscopy is the most preferred 
procedure followed by sigmoidoscopy. Apart from this several 
non-invasive analytical methods based on DNA–RNA, protein, and 
metabolites found in a patient’s breath, blood, urine, and stool can 
be detected by utilizing genomic and mutation analytical techniques.

Chemoprevention techniques may help to further lower the 
incidence and mortality of CRC. Chemoprevention medications can 
be used for both low- and high-risk populations, as well as to stop 
colorectal cancer from returning following treatment. Aspirin, 
non-aspirin non-steroidal anti-inflammatory medications, statins, 
medicines that target metabolic pathways, vitamins, and minerals are 
examples of CRC chemoprevention treatments that have been 
explored (164).

NSAIDs are powerful anti-inflammatory, antipyretic and analgesic 
drugs having a chemopreventive impact on gastrointestinal 
malignancies, especially CRC, whereas long-term use of NSAIDs has 
also been linked to renal illness, myocardial infarction, gastrointestinal 
illness etc. Several NSAIDs, especially aspirin lower the risk and death 
from several malignancies, which is significant evidence that connects 
inflammation and cancer. The primary anticancer action of NSAIDs 
is assumed to be  a COX-2 inhibition-mediated suppression of 
prostaglandin E2 production, which reduces tumor cell proliferation, 
and angiogenesis, and enhances apoptosis. Numerous studies have 
been conducted on the relationship between the expression of COX 
and colorectal cancer potential impact of NSAIDs-chemo-preventive 
drugs. It has been noted that statins and NSAIDs together show the 
synergistic effect as anticarcinogenic drugs in several in vitro and in 
vivo preclinical investigations, and this has drawn significant interest 
in examining their potential collaborative impact in cancer 
chemoprevention and combating the problems associated with the use 
of NSAIDs. This synergistic effect of combinational use of drugs 
proves to be beneficial in terms of reduced dosage and duration which 
is a potential technique for improving cancer prevention effectiveness.
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Background: Recent studies have shown that ovarian aging is strongly

associated with the risk of breast cancer, however, its prognostic impact on

breast cancer is not yet fully understood. In this study, we performed a

multicohort genetic analysis to explore its prognostic value and biological

features in breast cancer.

Methods: The gene expression and clinicopathological data of 3366 patients

from the The Cancer Genome Atlas (TCGA) cohort, the Molecular Taxonomy of

Breast Cancer International Consortium (METABRIC) cohort and the GSE86166

cohort were analyzed. A total of 290 ovarian aging-related genes (OARGs) were

included in the establishment of the prognostic model. Furthermore, functional

mechanisms analysis, drug sensitivity, and immune cell infiltration were

investigated using bioinformatic methods.

Results: An eight OARG-based signature was established and validated using

independent cohorts. Two risk subgroups of patients with distinct survival

outcomes were identified by the OARG-based signature. A nomogram with

good predictive performance was developed by integrating the OARG risk score

with clinicopathological factors. Moreover, the OARG-based signature was

correlated with DNA damage repair, immune cell signaling pathways, and

immunomodulatory functions. The patients in the low-risk subgroup were

found to be sensitive to traditional chemotherapeutic, endocrine, and targeted

agents (doxorubicin, tamoxifen, lapatinib, etc.) and some novel targeted drugs

(sunitinib, pazopanib, etc.). Moreover, patients in the low-risk subgroup may be

more susceptible to immune escape and therefore respond less effectively to

immunotherapy.

Conclusions: In this study, we proposed a comprehensive analytical method for

breast cancer assessment based on OARG expression patterns, which could

precisely predict clinical outcomes and drug sensitivity of breast cancer patients.
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frontiersin.org01119

https://www.frontiersin.org/articles/10.3389/fimmu.2023.1139797/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1139797/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1139797/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1139797/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2023.1139797&domain=pdf&date_stamp=2023-03-07
mailto:cjy11756@rjh.com.cn
https://doi.org/10.3389/fimmu.2023.1139797
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2023.1139797
https://www.frontiersin.org/journals/immunology


Hua et al. 10.3389/fimmu.2023.1139797
Introduction

Breast cancer is a hormone-sensitive tumor and its development

and progression are closely related to the host’s hormone levels (1,

2). The decline in ovarian function, known as ovarian aging, results

from a decrease in the quantity and quality of oocytes and is one of

the key intrinsic determinants of hormonal changes (3). Numerous

studies have shown that ovarian aging is strongly associated with

the risk of breast cancer, but its prognostic impact on breast cancer

is not yet fully understood. Therefore, it is of great significance to

explore the prognostic implications of ovarian aging and its

potential as an alternative individual therapeutic target for

breast cancer.

Menarche and menopause mark the origin and end points in

the process of ovarian ageing, as well as affect breast cancer risk.

It has been well-documented that women who experienced

menarche at an early age have an exponentially increased

risk of developing breast cancer (4–7). Large cohort studies

have also demonstrated that breast cancer incidence decreases

with an earlier onset of menopause (8–10). Ovarian aging is a

complex process with multi-linked genetic, etiological, or

influencing factors and its molecular mechanisms remains

largely unelucidated (3, 11). Fortunately, a new study in

Nature conducted a large-scale genome-wide association study

of ovarian ageing and identifies 290 genetic determinants of

ovarian aging (12). Therefore, a comprehensive understanding

of the relationship between the expression of the 290 ovarian

aging-related genes (OARGs) and survival outcomes in breast

cancer, would be important in determining the effects of ovarian

aging in breast cancer.

Herein, this study was conducted to evaluate the prognostic

profiles of OARGs in breast cancer. A novel ovarian aging-based

signature for evaluating breast cancer prognosis was developed and

validated in multiple cohorts. Furthermore, the present study aimed

to present the prognostic landscape of OARGs in breast cancer, and

screen for survival-related OARGs as biomarker candidates and

potential therapeutic targets.
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Methods

Data collection

RNA-sequencing (HTSeq-fragments per kilobase per million

[FPKM]), clinicopathological, and survival data were obtained from

three individual large breast cancer cohorts, namely The Cancer

Genome Atlas (TCGA) database (https://portal.gdc.cancer.gov/

repository, accessed in July 2022), The Molecular Taxonomy of

Breast Cancer International Consortium (METABRIC) (https://

www.cbioportal.org/, accessed in July 2022) and the GSE86166

dataset from Gene Expression Omnibus database (https://

www.ncbi.nlm.nih.gov/geo/, accessed in July 2022). Subjects who met

the following criteria were included in the study: (a) had a histologically

confirmed breast cancer without metastatic disease; (b) from post-

surgery; (c) with available follow-up data of overall survival (OS), and

anOS of not less than 30 days. The OSwas defined as the time from the

date of diagnosis to the date of death due to any cause or to the date of

the last follow-up. A total of 290 OARGs were identified from the study

of Ruth et al. (Table S1) (12). The overall workflow followed in this

study was presented in Figure 1.
Screening for prognostic genes

The Kaplan-Meier and univariate Cox regression analyses,

using OS as an outcome, were employed to estimate the

predictive values of the 290 OARGs and screen for prognostic

genes (with both P < 0.05) in the TCGA cohort.
The prognostic pattern of ovarian aging in
breast cancer

Consensus cluster analysis was carried out based on the

identified prognostic genes to classify patients into different

groups by a non-negative matrix factorization (NMF) algorithm
FIGURE 1

The flow chart detailing the comprehensive analysis of ovarian aging patterns in postoperative breast cancer patients.
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using the NMF package (13). This was done to ensure maximum

differences between the groups and minimum differences within the

groups. The samples were clustered using the Brunet criterion. The

K’s range was set at 2 to 10. According to cophenetic, dispersion,

and silhouette, the ideal K was found. The prognostic pattern of

ovarian aging in breast cancer
Development and validation of the
prognostic OARG signature

To further screen candidate genes for the prognostic model, the

identified prognostic genes were subjected to LASSO Cox regression

analysis to avoid potential co-linearity and simplify the number of

independent variables (14). Then, multivariate Cox regression

analysis was performed to evaluate the prognostic contributions

of the selected candidate genes from the LASSO Cox regression

analysis (hazard ratio, HR, 95% confidence interval, CI should not

cross HR 1; P < 0.05), and establish the OARG risk score using the

following formula: risk score = sum (each OARG normalized

expression level × corresponding coefficients). Based on this, we

calculated the OARG risk score for each patient and determined the

optimal cut-off value for the OARG risk score according to

maximally selected rank statistics method with OS for an

outcome (15). Thus, according to the cutoff value, we divided

each patient into different risk-stratified groups: the patient would

be assigned into high-risk group if the patient’s calculated OARG

risk score was larger than the cutoff value; otherwise assigned into

low-risk group. The survival differences between the two risk groups

were compared using Kaplan-Meier analyses with a log-rank test.

Furthermore, in the TCGA cohort, a nomogram was constructed,

which incorporated the OARG risk score and additional prognostic

clinicopathological characteristics identified from the multivariate

Cox regression analysis. Calibration curves for the survival

probability at one, three, and five years were also plotted to assess

the prognostic precision of this nomogram. The same procedures

and calculations were performed in the METABRIC and GSE86166

cohorts for validation.
Functional enrichment analysis of the
OARG signature

Gene Set Variation Analysis (GSVA) using the “GSVA” package

and Gene Set Enrichment Analysis (GSEA, https://www.gsea-

msigdb.org/gsea/index.jsp) were conducted to determine the

pathway and biological function differences between the two risk

groups (16, 17). We used the c2.cp.kegg.v7.4.symbols.gmt in the

Molecular Signatures Database (MSigDB) for board hallmarkers

(17). Gene sets with normal P < 0.05 and false discovery rate < 0.10

were considered to be significantly enriched. Gene ontology (GO)

enrichment analysis was performed using Metascape (https://

metascape.org/gp/index.html#/main/step1) and plotted using the

“ClusterProfiler” and “Cytoscape” package.
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Identification of potential target drugs for
high-risk group patients

The “pRRophetic” package, which was developed upon

statistical models calculated from huge collections of cancer cell

lines gene expression and drug sensitivity data (18), was used to

predict the drug sensitivity of the two risk groups. The half maximal

inhibitory concentrations (IC50) of potential target drugs were

compared between the two risk groups.
Estimation of the immune cell
infiltration landscape

The “GSVA” package with single-sample GSEA (ssGSEA) was

used to evaluate the infiltration scores of immune cell types and

immune-related pathways between the two risk groups. In addition,

the variations in the compositions of immune cell types between the

two risk groups were evaluated using the CIBERSORT method (19).

Then, the differences in the reported famous six immune subtypes

of wound healing (Immune C1), IFN-g dominant (Immune C2),

inflammatory (Immune C3), lymphocyte depleted (Immune C4),

immunologically quiet (Immune C5), and TGF-b dominant

(Immune C6) subtypes (20) were compared between the two

groups. We also estimated the immunogenicity and immunome

infiltration characteristics of breast cancer using the Estimation of

STromal and Immune cells in MAlignant Tumours using

Expression data (ESTIMATE) and Tumor Immune Dysfunction

and Exclusion (TIDE) approaches (21, 22), and further investigated

how well the risk signature performed in predicting the effects of

immunotherapy. More specifically, a higher TIDE score means a

higher likelihood of immune escape and a lower likelihood that the

patient will benefit from immunotherapy.
Statistical analysis

Continuous data were reported as medians with interquartile

ranges (IQR), while categorical data were reported as frequencies

with percentages, and compared using the Mann-Whitney U test,

chi-square test, continuity corrected chi-square test, or Fisher’s

exact test, whichever is appropriate. Disease-free survival (DFS) was

defined as the time from the date of diagnosis to the date of

recurrence/metastasis or to the date of death due to any cause or

to the last follow-up. Meanwhile, recurrence-free survival (RFS) was

defined as the time from the date of diagnosis to the date of

recurrence or to the date of death due to any cause or to the last

follow-up. The survival outcomes were estimated using the Kaplan-

Meier method and compared by the log-rank test. The Cox

proportional hazards model was performed to calculate the

adjusted HRs and corresponding 95% confidence intervals (CIs).

All statistical analyses were conducted with R version 4.1.2 (http://

www.r-project.org). Statistical significance was set at two‐sided

P < 0.05.
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Results

Screening for prognostic OARGs

A total of 1096 subjects from the TCGA cohort, 1904 subjects

from the METABRIC cohort, and 366 subjects from the GSE86166

cohort were included in this study. After filtering out subjects who

did not meet our selection criteria, a total of 3267 subjects were

enrolled in the final analysis, including 1017 subjects in the TCGA

cohort for training, as well as1888 subjects in the METABRIC

cohort and 362 subjects in the GSE86166 cohort for validation.

The Kaplan-Meier and univariate Cox regression analyses,

using OS as an outcome, were conducted to screen for prognostic

genes among the 290 OARGs. In total, the expression of 22 genes

was found to be significantly related to OS, with 11 genes having a

negative association and 11 genes with a positive association

(Figure S1).
The prognostic pattern of ovarian aging in
breast cancer

The selected 22 prognostic OARGs were subjected to cluster

analyses using the Brunet selection criterion for 50 iterations. The

classification of clusters (K) was limited to 2-10. Three were chosen

as the optimal cluster number based on the homogeneity,

discreteness, and silhouette (Figures S2A, B). The results show

that the OS (P < 0.001; Figure S2C) and DFS (P < 0.001; Figure S2E)

of C2 were worse than those of C1 and C3.
Development and validation of the
prognostic OARG signature

The selected 22 prognostic OARGs were also subjected to LASSO

Cox regression analysis to avoid potential co-linearity and simplify

the number of independent variables in the prognostic signature

(Figures 2A, B). Subsequently, the LASSO Cox analysis yielded a total

of 17 genes and therefore multivariate Cox regression analysis was

performed to establish the prognostic OARG signature (Figure 2C).

Finally, an 8-OARG risk signature was established in the TCGA

cohort. The corresponding risk score of each patient was calculated

using the following formula: risk score = HLA-B × (-0.24351) +

RBBP8 × (-0.34470) + SPRY4 × 0.31174 +WT1 × 0.29836 +WWOX

× 0.39556 + UPRT × 0.40719+ PELO × 0.43603+ ZNF208 ×

(-0.23972). The patients in the TCGA cohort were grouped into

risk-stratified groups (high-risk group, n = 337; low-risk group, n =

680) based on the cut-off value of 4.49 which was determined using

maximally selected rank statistics (Figure S2). The distributions of

patient risk score and survival status, as well as each patient’s 8-

OARGs expression levels, are summarized in Figures 3A, B,
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respectively. The Kaplan-Meier survival curves demonstrated that

the high-risk group patients had significantly worse survival OS (P <

0.001; Figure 3C) and DFS (P < 0.001; Figure 3D) than the low-risk

group patients. Moreover, the OARG risk signature remained

significantly associated with OS (HR = 3.79, 95% CI = 2.42-5.95,

P < 0.001; Figure 3E) and DFS (HR = 2.20, 95% CI = 1.28-

3.76, P = 0.004; Figure 3F) after adjusting for other

clinicopathological variables.

Using the same formula and the cut-off value from the TCGA

cohort, the risk scores and risk-stratified groupings weredetermined

for patients in the METABRIC and GSE86166 cohorts for

validation (Figures S3, S4). Consistently, the Kaplan-Meier

survival curves also showed that the high-risk group patients had

significantly worse OS (P < 0.001; Figure S3C) and RFS (P < 0.001;

Figure S3D) in the METABRIC cohort, and worse OS (P = 0.016;

Figure S4C) and RFS (P = 0.022; Figure S4D) in the GSE86166

cohort, respectively. Furthermore, after adjusting for other

clinicopathological variables, the OARG risk signature remained

associated with OS (HR = 1.35, 95% CI = 1.14-1.60, P < 0.001;

Figure S3E) and RFS (HR = 1.22, 95% CI = 1.00-1.49, P = 0.050;

Figure S3F) in the METABRIC cohort and OS (HR = 1.94, 95% CI =

1.05-3.60, P = 0.035; Figure S4E) and RFS (HR = 1.86, 95% CI =

0.91-3 .82 , P = 0.090; Figure S4F) in the GSE86166

cohort, respectively.
Establishment of a prognostic nomogram
based on the OARG signature

A risk score-based visualized nomogram, which integrates the

risk signature and three important clinicopathological factors (age,

stage and subtype) selected from the multivariate Cox regression

analysis, was established to individually quantify and assess the OS

probability at 1-, 3- and 5-years of breast cancer patients in TCGA

cohort (Figure 4A). We conducted a bootstrap validation and

calculated the nomogram’s C-index to be 0.812 (95% CI: 0.768-

0.856) in the TCGA cohort and 0.757 (95% CI: 0.734-0.779) in the

METABRIC cohort, respectively. To evaluate the predictive efficacy

and clinical application of the nomogram, calibration curves were

plotted for both the TCGA cohort (Figure 4B) and the METABRIC

cohort (Figure 4C). The calibration curves demonstrated

satisfactory consistency among the actual and anticipated OS

probabilities at 1-, 3- and 5-years.
Gene set variation analysis of
OARG signature

We performed GSVA to determine the potential biological

functions of the OARG signature in breast cancer. In the training

cohort of TCGA, the pathway sets DNA sensing, primary
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1139797
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Hua et al. 10.3389/fimmu.2023.1139797
immunodeficiency, and nutrients metabolism were found to be

activated in the high-risk group (Figure S5A). Meanwhile, the

pathway sets with the immune network, autoimmune system, and

immune disease were activated in the low-risk group (Figure S6D).

GO enrichment analysis confirmed that the immune-related

biological processes were enriched in the low-risk group (Figure
Frontiers in Immunology 05123
S6A). These results were further validated in the METABRIC

(Figures S5B, S6B, E) and GSE86166 (Figures S5C, S6C, F)

cohorts and similar functional results were found. These results

support the comprehensive DNA repair and immunomodulatory

function effects of the OARG signature in the development and

progression of breast cancer.
A B

C

FIGURE 2

Screening and identification of prognostic ovarian ageing-related genes (OARGs) in the TCGA cohort. (A) Selection of the optimal candidate genes in
the LASSO model. (B) LASSO coefficients of prognosis-associated OARGs, each curve represents a gene. (C) Forest plots showing results of
univariate Cox regression analysis between the candidate OARGs expression and overall survival.
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Clinical implications of the OARG signature
in predicting therapeutic effects

The potential intrinsic connections between the OARG

signature and therapeutic effects of chemotherapeutic,

endocrine, and targeted agents were further explored. In the
Frontiers in Immunology 06124
training cohort of TCGA, the low-risk group had a lower IC50

for chemotherapeutics such as doxorubicin, etoposide,

gemcitabine, paclitaxel, vinorelbine and 5-fluorouracil ,

indicat ing the predict ive potent ia l of the model for

chemosensitivity (Figures 5A–F). For the endocrine and targeted

drugs, the low-risk patients had a lower IC50 for tamoxifen and
A B

D

E F

C

FIGURE 3

Estimate the prognostic value of ovarian ageing-related gene (OARG) signature model in TCGA cohort. (A) The distribution of risk scores in the TCGA
and patient distribution in the high- and low-risk group according to overall survival (OS) status. (B) The heatmap showing expression profiles of the
8 OARGs. (C) Kaplan-Meier curves for the OS of patients in the high- and low-risk groups. (D) Kaplan-Meier curves for the diseases-free survival (DFS)
of patients in the high- and low-risk groups. (E) Multivariate Cox regression analysis of OS. (F) Multivariate Cox regression analysis of DFS.
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fulvestrant (Figures 5G, H), as well as for lapatinib, sunitinib,

dasatinib, crizotinib, pazopanib, and ruxolitinib (Figures 5I–N).

Most of the results were validated in the METABRIC (except for

crizotinib; Figure S7) and the GSE86166 (except for vinorelbine,
Frontiers in Immunology 07125
crizotinib, and ruxolitinib; Figure S8) cohorts. The better

prognosis for the low-risk group could be partially explained by

these findings. These findings also imply that the low-risk group

would benefit more from therapy with traditional and novel drugs.
A

B C

FIGURE 4

Development of a nomogram based on ovarian ageing-related genes (OARGs) signature for predicting overall survival (OS) of patients with breast
cancer. (A) The nomogram plot integrating OARG risk score, age, stage and subtype in the TCGA training cohort. (B) The calibration plot for the
probability of 1-, 3-, and 5-year OS in the TCGA training cohort. (C) The calibration plot for the probability of 1-, 3-, and 5-year OS in the METABRIC
validation cohort.
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Immunocyte infiltration profiling of the
OARG signature in breast cancer

The profiling of immune infiltration was performed using the

ssGSEA and CIBERSORT methods, and the outcomes showed

noticeably different immune infiltration landscapes between the

two r i sk ca tegor i e s . Spec ifica l l y , func t ions such as

APC_co_inhibition, APC_co_stimulation, CCR, Check-point,

Cytolytic_activity, HLA, Inflammation-promoting, MHC_class_I,

Parainflammation, T_cell_co-inhibition, T_cell_co-stimulation and

Type_I_IFN_Reponse were elevated in the low-risk group patients

(Figure 6A). Moreover, the patients in the low-risk group exhibited

a higher percentage of B cells naive, Macrophages M0 and
Frontiers in Immunology 08126
Macrophages M2. In contrast, the percentages of B cells memory,

T cells CD8, T cells CD4 memory activated, T cells follicular helper,

NK cells activated, Monocytes, Macrophages M1, Dendritic cells

resting and Dendritic cells activated were all higher in high-risk

group individuals (Figure 6B). In addition, the high-risk group had

significantly lower immune and ESTIMATE scores than the low-

risk group (Figure 6C). There was no immune C5 subtype in our

cohort and the risk scores between the immune subtypes

significantly differed. The immune C4 subtype had the highest

risk score and the immune C2 subtype had the lowest risk score

(Figure 6D). In contrast, the low-risk group presented with higher

TIDE scores indicating that the low-risk group patients may be

more susceptible to immune escape (Figure 6E). The patients
A B D
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FIGURE 5

Analysis of the association between the risk model and chemotherapeutics, endocrine therapy, and targeted therapy. (A–F) The model predicting the
sensitivity to chemosensitivity. It was estimated that low-risk patients had lower IC50 for chemotherapeutics of doxorubicin, etoposide, gemcitabine,
paclitaxel, vinorelbine and 5-fluorouracil. (G, H) The model predicting the sensitivity to endocrine therapy. It was estimated that low-risk patients had
lower IC50 of tamoxifen and fulvestrant. (I–N) The model predicting the sensitivity to targeted therapy. It was estimated that low-risk patients had
lower IC50 of lapatinib, sunitinib, dasatinib, crizotinib, pazopanib and ruxolitinib.
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responding to immunotherapy also had higher risk scores than

those non-responding to immunotherapy (Figure 6F). We also

discovered that the proportion of patients responding to

immunotherapy in the high-risk group was higher than that in

the low-risk group (33.5% vs 18.5%, P < 0.001, Figure 6G). Overall,

these findings showed that the immune infiltration profiles in breast

cancer are linked with the risk stratification based on the OARG

signature, and the immunotherapy effects could be also predicted.
Discussion

The current multicohort genetic association research provided a

bioinformatics-based analysis model, which incorporated clinical

information collection, transcriptome profiling, survival analysis,

functional evaluation, and immune infiltration estimation to

interpret the possible molecular mechanisms of ovarian aging and

its implication in breast cancer. Moreover, this analysis model

proposes a comprehensive perspective to explore the ovarian

aging microenvironment in breast cancer and could reveal the

potential outcomes and mechanisms related to the prognostic

OARG signature.

Ovarian aging, involves complex genetic variants regulation and

elaborate biological mechanisms. It is linked to several unfavorable
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consequences of hormone-sensitive cancers (23, 24). In recent

years, increasing evidence suggests that ovarian aging is crucial in

the female reproductive longevity biological processes, which have

been demonstrated to be associated with the tumorigenesis and

development of endocrine tumors (25–29). This study developed a

signature featuring 8 OARGs (HLA-B, RBBP8, SPRY4, WT1,

WWOX, UPRT, PELO, ZNF208) and determined its prognostic

and functional implications in breast cancer patients. HLA-B has

been previously demonstrated to have significant immunogenic

involvement in breast cancer by supporting multiple downstream

immunogenic pathways (30, 31). Our research showed that a better

prognosis was related to a relatively higher expression of HLA-B.

On the other hand, RBBP8 functions as a tumor suppressor protein

in breast cancer by interacting with some distinct tumor-

suppressing factors, including BRCA1 and retinoblastoma (32,

33). Our findings also suggest that RBBP8 served as a protective

factor for breast cancer. An in vivo research revealed that SPRY4

may influence the characteristics of cancer stem cells, as well as

tumor cell migration and proliferation (34). Numerous studies have

demonstrated that WT1 plays an oncogenic role in various solid

cancers including breast cancer, by promoting epithelial-to-

mesenchymal transition and lowering chemotherapy efficacy (35,

36). Although previous studies found that WWOX expression was

reduced in various cancers, our study has shown that it may be a
A B

D E F GC

FIGURE 6

The landscape of immune function and immune cell infiltration between the high- and low-risk group in the TCGA cohort. Red represents high-risk
samples; blue represents low-risk samples. *P < 0.05, **P < 0.01, ***P < 0.001. (A) Barplot showing differences of immune functions between the
low- and the high-risk group. (B) Violin plot showing differences of infiltrating immune cell types between the low- and the high-risk group. (C)
Comparison of tumor microenvironment scores calculated by ESTIMATE between the low- and the high-risk group. (D) Comparison of risk scores
between different immune subgroups. (E) Comparison of tumor microenvironment scores calculated by TIDE between the low- and the high-risk
group. (F) Comparison of risk scores between different responder subgroups. (G) Comparison of the immunotherapy responding proportion
between the low- and the high-risk group.
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risk factor affecting the prognosis of breast cancer (37). Moreover,

the current study found that the overexpression of UPRT was

associated with a worse prognosis in breast cancer and is closely

related to cancer gene-therapy efficacy (38). PELO is a new HER-

signaling regulator and was suggested to play a role in inhibiting

tumor cell proliferation and metastasis (39, 40). ZNF208 is a

member of the zinc finger family of proteins and its mutations

were found in many cancers, such as pancreatic cancer, gastric

cancer, esophageal cancer and laryngeal cancer (41–43). We

discovered its prognostic significance for breast cancer in

our investigation.

The functional analysis results support the comprehensive

DNA damage repair and immunomodulatory functions of the

OARG signature in the development and progression of breast

cancer. DNA damage repair mechanisms can trigger an innate

immune response, resulting in a reduction in cell proliferation and

the production of interferon, which is a crucial mechanism for

promot ing immune regu la t ion (44–46) . The tumor

microenvironment enables tumor cells to avoid immune

monitoring and medication interference, which permits them to

survive (47). Previous studies have found that numerous pathways

and genes associated with DNA damage repair networks play a role

in genetic instability and immune activity (46, 48–50). Our results

revealed that patients in the low-risk group exhibited a higher

percentage of B cells naive, Macrophages M0 and Macrophages M2.

Macrophages M0 have been polarized into M1-like and M2-like

subtypes, both of these two macrophages are strongly linked to

inflammatory reactions. Specifically, M1-like macrophages are

primarily involved in pro-inflammatory reactions, while M2-like

macrophages primarily participate in anti-inflammatory reactions

(51). Ovarian aging activity is typically connected to the trigger of

the anti-inflammatory signal, which is consistent with our results.

Many studies have revealed that a better outcome is associated with

the abundance of M1-like macrophages, while a worse outcome is

suggested by the predominance of M2-like macrophages in breast

cancer (52, 53). Therefore, the increased enrichment of M2-like

macrophages that occurs with ovarian aging may be a possible

explanation for the poor prognosis and may serve as a novel

prognostic biomarker for breast cancer. Additionally, patients in

the low-risk group had lower IC50 values for chemotherapeutic

agents (doxorubicin, etoposide, gemcitabine, paclitaxel, vinorelbine,

and 5-fluorouracil), endocrine agents (tamoxifen and fulvestrant),

and targeted agent (lapatinib), which may have contributed to their

better prognosis, since they were more responsive to systemic

therapeutic drugs. Moreover, patients in the low-risk group have

a higher sensitivity to sunitinib, pazopanib, ruxolitinib and

crizotinib, which are currently being tested in ongoing clinical

trials and may be potential targets for breast cancer therapy.

Although the present study shows that the OARG signature has

an excellent performance in multicohort of breast cancer datasets,

the study also has some limitations. Firstly, the participants were

retrospectively enrolled, which may inevitably introduce bias to

some extent. Secondly, the functional results of OARG genes from

our bioinformatics analyses have not yet been confirmed in in vitro

and in vivo experimental studies. Thirdly, we recognize that it is

essential for well-designed clinical trials to investigate the
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prognostic significance of this model and its therapeutic

implications in selecting novel drugs for breast cancer.

In conclusion, the current multicohort genetic association

research comprehensively explored the OARGs in breast cancer

based on their biological functions, linked pathways, regulatory

immune infiltration, efficacy levels, and clinical implications. The

survival-related OARG signature proposed in the current study has

the potential to distinguish prognosis and may be clinically applied

as useful biomarker and candidate targets in breast cancer.
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Screening of ovarian ageing related prognostic genes by univariate Cox

regression analysis.
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The prognostic pattern of ovarian aging in breast cancer and determination of

the optimal cutoff value of the vitamin C index according to maximally
selected rank statistics.

SUPPLEMENTARY FIGURE 3

Estimate the prognostic value of ovarian ageing-related gene (OARG)

signature model in METABRIC cohort. (A) The distribution of risk scores in
the TCGA and patient distribution in the high- and low-risk group according

to overall survival (OS) status. (B) The heatmap showing expression profiles of
the 8 OARGs. (C) Kaplan-Meier curves for the OS of patients in the high- and

low-risk groups. (D) Kaplan-Meier curves for the recurrence-free survival

(RFS) of patients in the high- and low-risk groups. (E) Multivariate Cox
regression analysis of OS. (F) Multivariate Cox regression analysis of RFS.

SUPPLEMENTARY FIGURE 4

Estimate the prognostic value of ovarian ageing-related gene (OARG)
signature model in GSE86166 cohort. (A) The distribution of risk scores in

the TCGA and patient distribution in the high- and low-risk group according

to overall survival (OS) status. (B) The heatmap showing expression profiles of
the 8 OARGs. (C) Kaplan-Meier curves for the OS of patients in the high- and

low-risk groups. (D) Kaplan-Meier curves for the recurrence-free survival
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(RFS) of patients in the high- and low-risk groups. (E) Multivariate Cox
regression analysis of OS. (F) Multivariate Cox regression analysis of RFS.

SUPPLEMENTARY FIGURE 5

Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment

analysis of ovarian ageing-related gene (OARG) signature. (A) TCGA cohort.
(B) METABRIC cohort. (B) GSE86166 cohort.

SUPPLEMENTARY FIGURE 6

Gene ontology (GO) and Gene set enrichment analysis (GSEA) functional

enrichment analysis functional enrichment analysis of ovarian ageing-related

gene (OARG) signature. GO functional enrichment analysis for (A) TCGA
cohort. (B) METABRIC cohort. (B) GSE86166 cohort; GSEA functional

enrichment analysis for (D) TCGA cohort. (E) METABRIC cohort. (F)
GSE86166 cohort.

SUPPLEMENTARY FIGURE 7

Analysis of the association between the risk model and chemotherapeutics,

endocrine therapy, and targeted therapy in the METABRIC cohort. (A–F) The
model predicting the sensitivity to chemosensitivity. It was estimated that

low-risk patients had lower IC50 for chemotherapeutics of doxorubicin,
etoposide, gemcitabine, paclitaxel, vinorelbine and 5-fluorouracil. (GH) The

model predicting the sensitivity to endocrine therapy. It was estimated that

low-risk patients had lower IC50 of tamoxifen and fulvestrant. (I–M) The
model predicting the sensitivity to targeted therapy. It was estimated that

low-risk patients had lower IC50 of lapatinib, sunitinib, dasatinib, pazopanib
and ruxolitinib.

SUPPLEMENTARY FIGURE 8

Analysis of the association between the risk model and chemotherapeutics,

endocrine therapy, and targeted therapy in the GSE86166 cohort. (A–E) The
model predicting the sensitivity to chemosensitivity. It was estimated that

low-risk patients had lower IC50 for chemotherapeutics of doxorubicin,
etoposide, gemcitabine, paclitaxel and 5-fluorouracil. (FG) The model

predicting the sensitivity to endocrine therapy. It was estimated that low-
risk patients had lower IC50 of tamoxifen and fulvestrant. (H–K) The model

predicting the sensitivity to targeted therapy. It was estimated that low-risk

patients had lower IC50 of lapatinib, sunitinib, dasatinib and pazopanib.
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Carbonic anhydrase IX-related 
tumoral hypoxia predicts worse 
prognosis in breast cancer: A 
systematic review and 
meta-analysis
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Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand

Background: Tumoral hypoxia is associated with aggressiveness in many cancers 
including breast cancer. However, measuring hypoxia is complicated. Carbonic 
anhydrase IX (CAIX) is a reliable endogenous marker of hypoxia under the control 
of the master regulator hypoxia-inducible factor-1α (HIF-1α). The expression of 
CAIX is associated with poor prognosis in many solid malignancies; however, its 
role in breast cancer remains controversial.

Methods: The present study performed a meta-analysis to evaluate the correlation 
between CAIX expression and disease-free survival (DFS) and overall survival (OS) 
in breast cancer.

Results: A total of 2,120 publications from EMBASE, PubMed, Cochrane, and 
Scopus were screened. Of these 2,120 publications, 272 full texts were reviewed, 
and 27 articles were included in the meta-analysis. High CAIX was significantly 
associated with poor DFS (HR = 1.70, 95% CI = 1.39–2.07, p < 0.00001) and OS 
(HR = 2.02, 95% CI 1.40–2.91, p = 0.0002) in patients with breast cancer. When 
stratified by subtype, the high CAIX group was clearly associated with shorter 
DFS (HR = 2.09, 95% CI =1.11–3.92, p = 0.02) and OS (HR = 2.50, 95% CI =1.53–4.07, 
p = 0.0002) in TNBC and shorter DFS in ER+ breast cancer (HR = 1.81 95% CI =1.38–
2.36, p < 0.0001).

Conclusion: High CAIX expression is a negative prognostic marker of breast 
cancer regardless of the subtypes.

KEYWORDS

breast cancer, carbonic anhydrase IX, meta-analysis, prognosis, survival

Introduction

The incidence of breast cancer has increased in recent decades, with an estimated 13% of 
women developing breast cancer in their lifetime and over 40,000 deaths per year (1, 2). The 
survival depends on clinicopathological factors, such as tumor size, nodal status, evidence of 
distant metastasis as well as biological markers, including estrogen receptor (ER), progesterone 
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receptor (PR), and human epidermal growth factor receptor 2 (HER2) 
status (3–5). The intrinsic breast cancer subtypes are currently 
significant prognostic and predictive markers. Five-year overall 
survival (OS) was the highest in the ER/PR-positive subtype (94%) as 
compared to the HER2-positive subtype (85%) and the triple-negative 
(TNBC) subtype (77%) (1). Breast cancer has distinct phenotypes as 
evidenced by patients who have a similar staging and molecular 
classification but have a different treatment response and prognosis 
(6–8). Thus, additional predictive and prognostic markers are 
warranted to improve the treatment and prognostic outcomes.

Tumoral hypoxia is a common characteristic of many solid 
tumors (9, 10). In breast cancer, median oxygen partial pressure is 
approximately 10 mmHg, which is less than that of the normal 
breast tissue (52–65 mmHg) (11, 12). Cancer cells adapt to survive 
under hypoxic conditions via hypoxia-inducible factor-1α (HIF-
1α), leading to the transcription of targeted genes resulting in 
tumor progression and invasion (13). Subsequently, HIF-1α can 
trigger the transcription of targeted genes, leading to tumor 
progression and invasion (14).

The expression of carbonic anhydrase IX (CAIX) is targeted 
by the HIF-1α transcriptional activity and controls the pH 
between intracellular and extracellular compartments (15). It is 
mainly dependent on HIF-1α regulation; therefore, it can also be a 
marker of tumor hypoxia (16, 17). However, hypoxia is not an 
obligated factor, and the inactivation of the von Hippel–Lindau 
(VHL) gene can stabilize HIF-1α under a non-hypoxic condition 
and subsequently activated the CAIX overexpression (15, 18). 
CAIX catalyzes extracellular hydrating CO2 into HCO−

3 and H+ 
and cooperates with other acid/base transporters to maintain 
extracellular acidosis and intracellular neutral/slight alkalosis 
(19). In contrast, CAIX-bound Cl−/HCO−

3 exchangers (AEs) can 
import or provide or export HCO−

3 from intracellular 
compartment during cell migration (20). CAIX expression 
mediates cancer cell growth, migration, and invasion (18) by 
directly binding to β-catenin, resulting in the disruption of the 
E-cadherin/cytoskeleton/β-catenin complex; and an acidic 
extracellular pH also suppresses the function of cytotoxic 
T-cells (21).

Many studies have shown that high CAIX expression was 
associated with adverse survival outcomes. In breast cancer, some 
studies evaluated the importance of CAIX expression in relation to 
survival; however, those results were controversial and mostly 
included a small number of patients. Ong et al. reported that CAIX 
expression was the independent prognostic factor for disease-free 
survival (DFS) and OS in TNBC. Similarly, Brennan et al. reported 
that high CAIX was associated with shorter OS, breast cancer-specific 
survival (BCSS), and relapse-free survival (RFS) (22, 23). In contrast, 
Currie et al. found no association between the level of CAIX and DFS 
and OS (24), while Pinheiro et al. reported that only a high CAIX 
expression was related to DFS but not to OS (25).

To address this issue, a meta-analysis was conducted to evaluate 
the prognostic value of CAIX in breast cancer and to determine the 
correlation between CAIX and breast cancer subtypes. To date, this is 
the first meta-analysis to focus on the prognostic role of CAIX in 
breast cancer. The meta-analysis revealed that a high CAIX protein 
expression was associated with unfavorable survival outcomes and 
could discriminate the prognosis in the ER-positive and 
TNBC subtypes.

Materials and methods

Search strategy

This study used EMBASE, PubMed, Cochrane, and Scopus 
electronic databases to search for articles. The keywords including 
[(Prognos*) OR (surviv*) OR (hazard) OR (disease-free) OR (“disease 
free”) OR (progression-free) OR (“progression-free”) OR (Kaplan–
Meier) OR (“Kaplan Meier”) OR (predict*) OR (outcome) OR (efficacy) 
OR (effective*)] AND [(CAIX) OR (ca9) OR (“carbonic anhydrase IX”) 
OR (“carbonic anhydrase 9”) OR (“carbonic anhydrase-IX”) OR 
(“carbonic anhydrase-9”) OR (CA-IX) OR (ca-9) OR (G250)] AND 
[(breast cancer) OR (breast tumors*) OR (breast carcinoma)] were used.

Selection criteria

The inclusion criteria of the present study were as follows: (a) the 
patients in the study cohorts who were confirmed to have invasive 
breast cancer, regardless of the subtype, (b) CAIX expression which 
was detected by immunohistochemistry (IHC), (c) the studies that 
reported DFS or OS with hazards ratios (HRs) and 95% confidence 
intervals (CIs) or the Kaplan–Meier survival curves from which HRs 
and 95% CIs could be  extracted, and (d) the studies that were 
published in English. The exclusion criteria for the present study were 
studies that failed to meet any of the inclusion criteria, were related to 
non-human studies, or contained duplicated and unavailable full texts.

Data extraction and quality assessment

The search with regard to data extraction and quality assessment 
was reviewed by three independent reviewers (WN, JP, and SY). The 
following information was extracted from each study: the first author’s 
name, year of publication, the total number of patients, the scoring 
method and cut-off level for high or low CAIX expression, breast 
cancer subtypes, HRs, 95% CIs of DFS and OS, and whether univariate 
or multivariate analysis was performed.

Statistical methods

Pooled HRs and their 95% CIs were used to determine the 
association between CAIX expression and survival. Heterogeneity 
among studies was assessed using the chi-squared test and I2. A 
p-values of <0.1 or an I2 statistic of >50% was indicative of significant 
heterogeneity between studies; in these cases, a random-effects model 
was used. The meta-analysis was performed with Review Manager 5.4 
(RevMan the Cochrane Collaboration; Oxford, England). The p-values 
of <0.05 were considered statistically significant.

Results

Study selection and characteristics

A PRISMA flow diagram for the process of study selection is 
summarized in Figure 1. Initially, 275 articles from EMBASE, 242 
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from PubMed, 19 from Cochrane, and 1,897 from Scopus were 
identified, and subsequently, 313 duplicated records were removed. A 
total of 2,120 papers were screened. A total of 1,848 studies were 
excluded based on the titles and abstracts resulting in 272 full texts 
being reviewed. Of these, 245 articles were excluded. Finally, 27 papers 
met the eligibility criteria (Figure 1; Table 1).

Study characteristics

The 27 included studies were published between 2001 and 2022. 
DFS was reported in 22 articles, 10 of which provided HRs and 95% 
CIs, while the OS analysis was included in 16 articles, 7 of which 
provided HRs and 95% CIs (Table 1). Most of the articles (20 out of 
27, 74%) were reported on mixed breast cancer subtypes and provided 
data on ER, PR, and/or HER2 staining, with survival analysis on all 
cases, regardless of the subtype. Three studies focused on TNBC, two 
articles on ER-positive (ER+), one on ER-negative (ER−), and one on 
male breast cancer. The mean age of patients was between 46 and 
62 years. Fifty percent of the studies used the primary antibody clone 
M75 to detect the CAIX expression. In most studies (80%), the level 
of CAIX expression was determined by estimating both staining 
intensity and the percentage of tumor cells stained. The remaining 
studies (20%) used only intensity or percentage. The low–-high cutoff 
value varied across all studies. Overall, high CAIX expression in 
patients with breast cancer varied in each study, ranging from 8 to 
91.1%. Most studies (45.5%, 12 out of 27 studies) did not report on the 
cellular location of CAIX expression. In 36% of studies, expression was 

reported in the cell membrane, in 9% of studies, CAIX expression was 
reported in the membrane and cytoplasm/nucleus, and in two studies, 
CAIX expression was reported in the exclusive cytoplasm or nuclear 
staining (9%).

High CAIX was associated with poor DFS in 
breast cancer

Twenty-two studies totaling 9,157 patients were analyzed for the 
effect of CAIX expression on DFS. Shamis et  al. studied CAIX 
expression in two independent cohorts with specific HRs and 95% CIs 
and DFS in each cohort, and both cohorts were included in this meta-
analysis (26). The study by Jubb et al. did not define the low/high 
cutoff for CAIX expression, but it provided the HR and 95% CI for 
each CAIX score of 1, 2, and 3 and compared each with that of the 
negative CAIX group (41). Hence, the HR and 95% CI for each CAIX 
score were included in the meta-analysis. High CAIX was significantly 
associated with poor DFS in patients with breast cancer (HR = 1.70, 
95% CI = 1.39–2.07, p < 0.00001) with heterogeneity I2  = 83% 
(Figure 2).

High CAIX was associated with poor OS in 
breast cancer

A total of 3,591 patients from the selected 17 studies were 
investigated for the association between CAIX expression and 

FIGURE 1

The PRISMA flow diagram for the process of study selection.
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TABLE 1 Characteristics of the eligible studies for meta-analysis in this study.

References Country Mean 
age

BC 
subtypes 
(n)

Stage Treatment 
(n)

IHC score 
method

CAIX cut-
off level

CAIX 
high 
(%)

Ab 
clones

HR (95% 
CI) for 
DFS

p-value HR 
(95% 
CI) for 
OS

p-value

Shamis et al. (26)
United 

Kingdom

NA ER+ (373) I–III CMT (110)

Weight H 

score

Log-rank 

statistics by R 

Studio

9

M75

UV = 1.81 

(1.12–2.92)
0.018

NA NA

MV = 1.04 

(0.46–2.35)
0.926

NA ER+ (285) I–III CMT (71) 28

UV = 1.64 

(1.14–2.37)
0.008

MV = 1.74 

(1.08–2.82)
0.023

Ong et al. (22) Singapore 55 TNBC (306) NA NA I and P ≥1 39.3 NA
MV 2.77 

(1.78–4.31)
<0.001

MV 2.48 

(1.50–

4.09)

<0.001

Li et al. (27) China 49 ER+ (55) Recurrence NA I and P NA 34.5 ab108351
UV* 2.64 

(1.28–5.44)
0.0086 NA NA

Alves et al. (28) Brazil 49.6 Mixed BC (196) IIb or III CMT (196) I and P ≥3 7.4 ab15086
UV* 0.32 

(0.19–0.55)
<0.00001

UV* 0.33 

(0.15–

0.66)

<0.00001

Ozretic et al. (29) Croatia 60 TNBC (64) NA NA I and P >60 77 ab15086 NA NA

UV 2.85 

(0.36–

22.25)

0.32

Jin et al. (30) South Korea NA TNBC (270) I–II NA NA ≥10% 21.9 NA
UV* 1.45 

(0.77–2.67)
0.25 NA NA

Chu et al. (31) China 55.34 Mixed (149) I–IV CMT I and P

Strong 

intensity in 

≥10% cells

15 NA
MV 5.758 

(2.28–14.50)
<0.001 NA NA

Samaka et al. (32) Egypt 48 Mixed (56) I–IV NA I and P >1% 91.1 ab107257 NA NA

UV* 2.09 

(1.05–

4.19)

0.0358

Aomatsu et al. (33) Japan NA Mixed (102) IIA–IIIA CMT (102) I and P

Moderate to 

strong staining 

in >10% cells

46 M75
UV* 4.52 

(2.05–9.97)
0.0002

UV* 3.31 

(1.56–

7.05)

0.0018

Deb et al. (34) Australia NA Male (276) I–IV NA I and P

Strong 

intensity in 

≥10% cells

8 NA
UV 2.2 

(0.8–5.7)
0.11 NA NA

(Continued)
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References Country Mean 
age

BC 
subtypes 
(n)

Stage Treatment 
(n)

IHC score 
method

CAIX cut-
off level

CAIX 
high 
(%)

Ab 
clones

HR (95% 
CI) for 
DFS

p-value HR 
(95% 
CI) for 
OS

p-value

Kim et al. (35) South Korea 52
Mixed 

metastasis (162)
IV NA I and P ≥2 19.8 NA NA NA

MV 1.69 

(0.77–

3.69)

0.189

Noh et al. (36) South Korea NA ER-AR+ (127) I–III NA I and P ≥2 28.7 NA

MV 2.231 

(0.670–

7.426)

0.191

MV 15.89 

(1.82–

131.6)

0.01

Betof et al. (37) United States 48 Mixed (209) I–III CMT (209) I and P ≥50 88 M75
UV* 1.75 

(0.92–3.31)
0.088

UV* 2.73 

(1.2–6.21)
0.0166

Kaya et al. (38) Turkey 46 Mixed (111) I–III NA I Any staining 55.8 H-120
UV* 0.86 

(0.54–1.36)
0.5253

UV* 2.77 

(1.58–

4.85)

0.0004

Beketic-Oreskovic 

et al. (39)
Croatia 61.5 Mixed (40) I–III NA I and P 52.5 60 NA

UV 6.74 

(2.27–20.03)
<0.001

UV 5.68 

(2.11–

15.31)

<0.001

MV 4.14 

(1.28–13.35)
0.018

MV 3.99 

(1.38–

11.59)

0.011

Lou et al. (40) Canada NA Mixed (3,630) I–III NA I and P Any staining 15.6 M75
UV* 2.30 

(1.91–277)
<0.00001 NA NA

Pinheiro et al. (25) Portugal NA
Mixed (122) T1-3anyN NA I and P ≥3 18 ab15086 UV* 2.24 

(0.79–6.35)

0.1294 NA NA

Jubb et al. (41) United 

Kingdom

57 (27–80) Mixed (151) I–III CMT (63) I and P >10% 32 M75 CAIX score 

1; UV 0.63 

(0.29–1.41)

0.26 NA NA

CAIX score 

2; UV 1.24 

(0.49–3.13)

0.65

CAIX score 

3; UV 1.83 

(0.86–3.89)

0.12

TABLE 1 (Continued)

(Continued)
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References Country Mean 
age

BC 
subtypes 
(n)

Stage Treatment 
(n)

IHC score 
method

CAIX cut-
off level

CAIX 
high 
(%)

Ab 
clones

HR (95% 
CI) for 
DFS

p-value HR 
(95% 
CI) for 
OS

p-value

Tan et al. (42) United 

Kingdom

55 Mixed (407) I–III NA I and P ≥10% 14 M75 UV* 1.81 

(1.14–2.86)

0.0119 UV* 4.29 

(2.61–

7.04)

<0.00001

Crabb et al. (43) Canada NA Mixed (602) II–III NA NA NA 16.7 M75 MV 1.58 

(1.12–2.22)

0.008 NA NA

Kyndi et al. (44) Denmark NA Mixed (945) II–III NA I and P ≥10% 16 M75 UV 1.29 

(1.02–1.62)

<0.05 UV 1.3 <0.05

(1.06–

1.60)

Hussain et al. (45) United 

Kingdom

62 Mixed (144) I–II NA I and P Weak or 

strong staining 

and focal or 

diffuse 

distribution

26 M75 NA NA UV 2.63 

(1.21–

5.70)

0.01

MV 2.43 

(1.07–

5.53)

0.035

Trastour et al. (46) France 62 Mixed (132) I–III CMT/ET I and P >1% 29 M75 MV 2.0 

(1.0–4.2)

0.05 NA 0.2

Brennan et al. (23) Ireland NA Mixed (400) II ET (199) I Any staining 11 M75 UV* 1.62 

(1.02–2.72)

0.041 UV* 1.92 

(1.09–

3.38)

0.0239

Generali et al. (47) United 

Kingdom

NA Mixed (166) T2-4N0-1 CMT/ET (187) I and P Any staining 24.7 M75 UV* 1.79 

(0.84–3.89)

0.1315 UV* 1.99 

(0.79–

5.02)

0.1443

Tomes et al. (48) Canada NA Mixed (53) any T,N NA P NA NA M75 NA NA UV* 0.50 

(0.30–

0.85)

<0.0001

Chia et al. (49) Canada 59 Mixed (103) I–III CMT (27)/ET (80) I and P ≥1 48 M75 UV* 2.38 

(1.34–4.22)

0.0031 UV 2.61 

(1.01–

6.75)

0.05

TABLE 1 (Continued)
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OS. High CAIX expression was statistically significantly associated 
with shorter OS (HR = 2.05, 95% CI 1.44–2.91, p < 0.0001) with 
heterogeneity I2 = 80% (Figure 3).

High CAIX was associated with poor OS 
and DFS in ER+ and TNBC subtypes

Three articles focused on the CAIX expression in 640 TNBC 
cases. One study reported both DFS and OS, while the other two 
reported either DFS or OS, resulting in 576 TNBC cases included in 
the DFS analysis and 370 TNBC cases included in the OS analysis. 
Two articles focused on CAIX expression and DFS in ER+ breast 
cancer from 731 ER+ breast cancer cases. The results revealed that, 
when compared to patients with a low CAIX expression, patients with 
a high CAIX expression were clearly associated with shorter DFS in 
TNBC (HR = 2.09, 95% CI =1.11–3.92, p = 0.02) with heterogeneity 
I2 = 63% and OS (HR = 2.50, 95% CI =1.53–4.07, p = 0.0002) without 
heterogeneity I2 = 0%; and shorter DFS in ER+ breast cancer (HR = 1.81 
95% CI =1.38–2.36, p < 0.0001) without heterogeneity I2  = 0% 
(Figure 4).

The antibody does not affect CAIX survival

The studies used a variety of CAIX antibodies for IHC. Twelve 
studies used an M75 antibody clone: 1 from BioScience, 1 from Novus 
Biologicals, and 1 from Bayer, but the other 9 could not be identified. 
The HR for DFS was 1.66 (95% CI: 1.35–2.0, p < 0.00001). Clones used 
in other studies were as follows: 6 studies used Abcam, 1 from Cell 
Marque, 1 from Novus Biologicals, and 2 from Santa Cruz 
Biotechnology (Table 1), which also demonstrated the effect of CAIX 
with HR for DFS 1.94 (95% CI: 1.06–3.57; p < 0.0001; Figure 5). There 
was no significant difference between the M75 antibody and other 
antibodies (p = 0.63; Figure 5). The HR for OS in the group stained 
with the M75 antibody was 2.01 (95% CI: 1.19–3.38; p = 0.009), and it 
was 2.10 (95% CI: 1.26–3.52; p = 0.002) for the other antibody group 
(Figure  6). There was no significant difference between the M75 
antibody and the other antibodies in terms of OS (p = 0.90; Figure 6).

Discussion

This meta-analysis focused on the prognostic role of CAIX 
expression in breast cancer. Hypoxia, as determined by the CAIX 

FIGURE 2

A Forest plot of HR and 95% CI for the association of CAIX with DFS of all patients with BC.
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FIGURE 4

A Forest plot of HR and 95% CI for the association of CAIX with (A) DFS, (B) OS of patients with TNBC, and (C) DFS of patients with ER+ BC.

FIGURE 3

A Forest plot of HR and 95% CI for the association of CAIX with OS of all patients with BC.
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expression, has been associated with poor survival outcomes, 
independent of other clinicopathological factors in many solid 
malignancies, including breast cancer (50). The current meta-analysis 
included a greater number of studies and confirmed a negative 
survival outcome in patients with breast cancer who had a high CAIX 
expression. To our knowledge, this is the first meta-analysis that has 
examined the CAIX expression exclusively in breast cancer. The 
results of this meta-analysis may lead to the use of CAIX expression 
as a prognostic marker, resulting in better treatment options for 
patients with breast cancer.

High CAIX was significantly associated with poor DFS 
(HR = 1.70, 95% CI = 1.39–2.07, p < 0.00001) and OS (HR = 2.02, 95% 
CI 1.40–2.91, p = 0.0002), despite the high heterogeneity of DFS, 
I2 = 83%, and OS, I2 = 81%. This heterogeneity could be explained by 
the bias in the scoring method and cutoff level as most of the studies 
determined the CAIX protein expression by the intensity and 
percentage of tumor cell staining and with individual cutoff levels. 
However, this meta-analysis did support the use of CAIX as a 

prognostic marker; therefore, the evaluation of CAIX expression 
should be considered in breast cancer.

Tumoral hypoxia has long been established as a factor in the 
progression and metastasis of cancer cells (51). CAIX protein 
expression is a reliable endogenous hypoxic marker as its expression 
is dependent on the HIF-1α activity (16). CAIX is a zinc 
metalloproteinase that is located at the transmembrane and acts to 
convert CO2 to HCO−

3 and H+ (52). This process occurs extracellularly 
and results in an extracellular acidic pH. The cancer cells exploit the 
extracellular acidity to invade the stroma by promoting epithelial–
mesenchymal transition (EMT) and cell motility as well as suppressing 
anti-tumor immunity by, for example, dysregulating cytotoxic T-cell 
functions while enhancing the function of M2 macrophages and 
myeloid-derived suppressor cells (MDSCs) (53, 54). These effects may 
explain the correlation between the increased expression of CAIX and 
poor survival outcomes.

Carbonic anhydrase IX is highly induced in a HIF-1-dependent 
manner and is constitutively expressed in VHL-defective cells. While 

FIGURE 5

A Forest plot of HR and 95% CI for the association of CAIX expression with DFS in patients with BC stratified by the antibody clone.
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CAXII is upregulated in VHL-defective renal tumors and induced 
hypoxia in tumor cells, its dependence on HIF is not well established 
(15). Additionally, it is well known that the tumor expression of 
HIF-1α and CAIX was correlated with poor patient survival, CAXII, 
which lacks the extracellular proteoglycan domain of CAIX implicated 
in cell adhesion, had a less obvious survival effect (17). CAXII 
expression is related to better survival statistics for patients (55–57). 
In breast cancer, there is a strong association between luminal cancers 
and CAXII expression. Moreover, CAXII is also a biomarker of 
favorable prognosis in lung (58) and brain (59) tumors but is 
associated with a poor prognosis in colorectal cancer (60).

Additionally, this meta-analysis clarified the importance of CAIX 
expression associated with survival outcomes in both ER+ and 
TNBC. Li et al. reported increased tamoxifen resistance in ER+ breast 
cancer with a high CAIX expression (27). Similarly, a study by Tan 
et al. demonstrated the adverse effect of CAIX expression on basal-like 
breast cancer subtypes by escalating the chemotherapy resistance (42). 
This may imply that CAIX overexpression is a hostile factor mediating 
treatment resistance. Thus, a combination of chemotherapy and CAIX 
inhibitors may be helpful in the prevention of chemoresistance. This 
meta-analysis had several limitations. The high degree of heterogeneity 
of the study indicated that we were unable to accurately define a CAIX 
expression scoring method and optimal threshold values. Further 
studies to standardize the IHC protocol for CAIX are needed. The 
publication bias might overestimate the survival outcome as articles 
reporting positive findings were selected.

Conclusion

Our results highlight the importance of a high CAIX expression 
being associated with poor DFS and OS in patients with breast cancer. 
This information may be  useful for future studies, leading to the 
incorporation of CAIX inhibitors in treatment regimens for patients 
with breast cancer. High-quality studies with larger homogeneous 
samples are required to determine the prognostic role of CAIX in 
different breast cancer subtypes.
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