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Editorial on the Research Topic
Diving deeper with metabolomics into animal physiology
s

This research topic brings together metabolomics based research in different animal
species that include dairy cows, goats, pigs, bats, silkworms and parasitic nematodes. The
studies in dairy cows, goats and pigs employed metabolomics to understand the physiology
of different aspects of the animal that could be applicable to improve sustainability, animal
health and welfare, antimicrobial use and fertility. Furthermore, metabolomics was used to
compare the metabolites in the cochleae of two bat species. The effect of diet on cocoon yield
in silkworms and developmental stage specific mechanisms of survival in parasitic nematode
has been investigated using metabolomics.

Feed efficiency and reproductive management are two important aspects of dairy
farming which has significant economic contribution to milk production. Hailemariam
et al. investigated the physiological underpinnings of residual feed intake (a measure of
feed efficiency), identified biomarkers and developed prediction models using targeted milk
metabolomics.Theauthorsreportedvaryingmechanismsof feedefficiencyduringthe lactation
period and lactation stage-dependent biomarkers and prediction models that can assist in
generating large-scale records that canbeused to select dairy cows for improved feed efficiency.
Some of the lactation stage specific biomarkers include decanoylcarnitine (AUC = 0.81),
dodecenoylcarnitine (AUC=0.81)andphenylalanine (AUC=0.85)at early,midand late stages
of lactation, respectively. In another study, Pollock et al. explored the relationship between
higher estrus associated temperatures (HEAT) and pre-ovulatory follicular fluidmetabolome.
The study revealed association of follicular fluid metabolome with HEAT, for instance, the
maximum vaginal temperature was related to the differential abundances of uracil, uric acid,
and6-phospho-D-gluconatewhenexpressedas change fromthebaseline.Thefindings support
the concept that HEAT is related to changes in the pre-ovulatory follicular fluid metabolites
involved in energy metabolism, thermoregulation, and oxidative stress management. The
study by Vasco et al. combines the use of untargeted metabolomics and metagenomics to
investigate the effect of intramammary ceftiofur treatment and different lactation stages on
the metabolic and microbial profiles of dairy cattle hindgut. The authors reported that the
week after treatment, treated cows had elevated levels of stachyose, phosphatidylethanolamine
diacylglycerol and inosine.This research provides information into how antibiotic treatments
and lactation stages influence the gut microbiome and metabolome in cattle. Furthermore,
the dynamics of fecal microbiome and blood metabolites of dairy calves during the first
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2 weeksafterbirthwas investigatedbyKojimaet al.Earlymicrobiomes
weredominatedbyProteobacteria,whileFirmicutesandBacteroidetes
became more prevalent later-on. Blood metabolite profiles changed
during the neonatal period, reflecting shifts in energy metabolism,
immune response, and gut function as the calves transitioned from
colostrumintake to solid feed.Thetemporal changesobservedprovide
insights intotheimpactsofgutmicrobiotamaturationonthemetabolic
health of calves, emphasizing the importance of gut-microbiome
interactions during the early stages of life.

Animal welfare is another important aspect of farming that
is known to significantly impact animal production. The impact
of prolonged transportation on the welfare and health of goats
is becoming a growing societal concern. The study by Batchu
et al. used targeted metabolomics and demonstrated that extended
transportation induces metabolic stress in goats, affecting key
metabolic pathways related to amino acids metabolism, energy and
stress response. However, habituation to livestock trailers appears to
reduce the severity of these effects, suggesting that habituation may
be a valuable strategy to improve the welfare and health of livestock
during transportation. By identifying specific metabolic markers of
stress, the findings offer practical insights into improving livestock
management practices and ensuring animal welfare during transport.

Application of metabolomics has expanded in several livestock
species, including pigs. For example, combining genomics and
metabolomics, Dervishi et al. investigated the genetic and metabolic
factors that influence the immune response. Analysis of genetic
correlations between plasma metabolites and complete blood count
(CBC) traits in young pigs revealed that plasma concentration of L-
proline and L-glutamine were genetically positively correlated with
hemoglobin and neutrophils concentration, respectively. In addition,
metabolites such as dimethylglycine, betaine, and L-methionine were
reported as candidate metabolites to improve growth rate of young
healthy pigs. This research has practical implications for improving
pig health and immunity through selective breeding strategies based
on metabolic and blood traits. The study also opens up the potential
for precision livestock farming throughmetabolic profiling tomonitor
and optimize immune function in pigs.

In this special edition, application of metabolomics expanded
beyond livestock species. For example, in bats, echolocation is a
complex biological process that involves the production and detection
of sound waves, and the cochlea plays a central role in this auditory
system. The study by Wang et al. used untargeted metabolomics to
identify and compare the metabolites in the cochleae of the two
bat species. By identifying specific metabolites related to several
biological processes, including signaling pathways, nervous system,
and metabolic process, the study advances the understanding of
how molecular mechanisms support complex biological functions
like echolocation. These findings could have broader implications
for studying auditory physiology and evolution in other echolocating
mammals and other species.

In this special edition, studies on silkworms and parasitic
nematodes that used metabolomics were included. Wu et al.
investigated the impact of differentdiets on cocoonyield in silkworms.
Traditionally, silkworms are fed mulberry leaves, which are known
to be their natural diet. This study compared the effect of feeding
formula feed and mulberry leaves on cocoon production and quality.
Distinct metabolic profiles between silkworms fed with mulberry
leaves and formula feed were observed in regards to cysteine and

methionine metabolism, arginine biosynthesis, and arginine and
proline metabolism. This study provides insights into the potential
mechanismsthroughwhichformulafeedmayenhancesilkproduction
and could provide directions for formula feed optimization in factory-
raised silkworms. On the other hand, Polak et al. examined how
the parasitic nematode Anisakis simplex adapts to different host
environments during its larval stages.Usingmetabolomic analysis, the
study compared the metabolic profiles of Anisakis simplex larvae at
various developmental stages, focusing on how these changes help the
parasite survive and thrive inside different hosts. Metabolic pathways
related to amino acids, starch, and sucrose were mainly activated
in the L3 stage, meanwhile the molecules responsible for successful
migration within their host, such as pyridoxine and prostaglandins
(E1, E2, F1a) were present in the L4 stage. This research enhances
the understanding of Anisakis simplex’s adaptation mechanisms to
different host environments, providing valuable insights into parasite-
host interactions. The findings may inform future strategies for
controlling parasitic infections in humans and animals by targeting
specific metabolic pathways crucial for the parasite’s survival.

The research articles presented in this Research Topic contribute
to a deeper understanding of metabolic pathways and how they
influence physiological, health, and disease states in different animal
species. In addition, it highlights the potential of metabolomics to
advance our knowledge of animal physiology and improve animal
welfare and health, fertility and production practices.
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Multi-tissue metabolomic
profiling reveals potential
mechanisms of cocoon yield in
silkworms (Bombyx mori) fed
formula feed versus mulberry
leaves

Xuehui Wu1, Xuedong Chen1, Aihong Ye1, Jinru Cao1,
Ruimin He2, Meiliang Pan3, Feng Jin2, Huanyan Ma3 and
Wenlin Zhou1*
1Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang,
China, 2Shengzhou Mulsun Biotech Co., Ltd., Shengzhou, Zhejiang, China, 3Zhejiang Provincial
Agricultural Technology Extension and Service Center, Hangzhou, Zhejiang, China

Use of formula feed (FF) for silkworms for all instars, has promoted

transformation and progress in traditional sericulture. However, the cocoon

yield of FF silkworms has failed to reach that of silkworms fed mulberry leaves

(ML). The biological mechanisms underlying this phenomenon have not been

well described. This study aimed to identify metabolic mechanisms and

potential biomarkers relating to the poor cocoon yield of FF silkworms. In

this study, silkworms received treatments of either ML (ML group) or FF (FF

group) for all instars. At the 3rd day of the 5th instar, the midgut (MG),

hemolymph (HL) and posterior silk gland (PSG) were collected for the

metabolome profiles detection. The remaining silkworms were fed ML or FF

until cocooning for investigation. The whole cocoon yield (WCY) was

significantly higher in the FF group than the ML group (p < 0.05), whereas

the cocoon shell weight (CSW) and cocoon shell rate (CSR) were significantly

lower in the FF group (p < 0.05). A total of 845, 867 and 831 metabolites were

qualified and quantified in theMG, HL and PSG of the FF silkworms, respectively.

Correspondingly, 789, 833 and 730 metabolites were quantified in above three

tissues of the ML group. Further, 230, 249 and 304 significantly different

metabolites (SDMs) were identified in the MG, HL and PSG between the FF

and ML group, respectively. Eleven metabolic pathways enriched by the SDMs

were mutual among the three tissues. Among them, cysteine and methionine

metabolism, arginine biosynthesis, and arginine and proline metabolism were

the top three pathways with the highest impact value in the PSG. Six biomarkers
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were obtained through biomarker analysis and Pearson correlation calculation.

Among them, homocitrulline, glycitein, valyl-threonine, propyl gallate and 3-

amino-2,3-dihydrobenzoic acid were positively correlated with WCY, but

negatively correlated with CSW and CSR (p < 0.05). An opposite correlation

pattern was observed between 3-dimethylallyl-4-hydroxyphenylpyruvate and

the three cocoon performance traits. Overall, three key metabolic pathways

and six biomarkers associated with cocoon yield were interpreted, and should

provide directions for formula feed optimization in factory-raised silkworms.

KEYWORDS

silkworm, metabolome profile, biomarker, formula feed, mulberry leaves

1 Introduction

The domesticated silkworm (Bombyx mori) is a Lepidoptera

model organism that has been reared and domesticated onmulberry

leaves (ML) for thousands of years (Tao et al., 2022). However, with

continual optimization and changes in rural economic structure,

Chinese sericulture is facing unprecedented challenges. Silkworm

rearing on formula feed (FF), amethod that originated in themiddle

of last century in Japan (Nair and Kumar, 2004), is becoming a

major focus in the sericulture industry, because it alleviates season,

climate, land and environmental restrictions (Kim et al., 2021). In

2019, rearing the silkworm variety “Zhong 2016×Ri 2016” on FF for

all instars was successful in a commercial industry. However, the

issue of poor cocoon yield in the FF silkworms remains unresolved,

thus hindering sericulture.

It has been acknowledged that the three cocoon yield

performance traits: the whole cocoon yield (WCY), the

cocoon shell weight (CSW) and the cocoon shell rate (CSR)

has drawn much attention in researches (Ruan et al., 2021; Chen

et al., 2022), for they being closely related to sericulture profits.

The WCY consists of CSW and the pupae weight, which can be

utilized to evaluate the growth and development of the silkworm

larva and its cocooning ability. The CSW is an indicator to assess

the silk synthesis ability, while the CSR is used to evaluate the

efficiency of nutrients to silk. However, there is no standard for

which levels could be more desirable of these three performance

traits in the production owing to the variety differences. For

example, the cocoon shell weight of silkworm variety “Zhong

2016×Ri 2016” was more than 0.40 and 0.35 g in the ML and FF

silkworms, respectively (Chen et al., 2022). In detail, the CSW

and CSR of “Zhong 2016×Ri 2016” were decreased by 13.1 and

4.19% in the FF group, respectively (Chen et al., 2022).

Many studies have been performed to improve the cocoon

yield performance of the FF silkworms to the greatest extent

possible (Zhang et al., 2020; Kim et al., 2021; Yamamoto et al.,

2021). Most have focused on optimizing the FF composition

(Kim et al., 2021; Yamamoto et al., 2021) and silkworm variety

breeding (Zhang et al., 2020). However, the mechanisms

underlying the poor cocoon yield of the FF silkworms have

not been well documented. With the rapid development of

systems biology, omics methods have been widely used in

livestock studies, including the sericulture field (Dong et al.,

2018; Fang et al., 2020; Ge et al., 2020; Xiao et al., 2020; Tao et al.,

2022). Researchers have explored the molecular differences

between the FF and ML silkworms (Zhou et al., 2008; Dong

et al., 2017; Dong et al., 2018; Lamberti et al., 2019; Qin et al.,

2020; Tao et al., 2022). For instance, the intestinal microbiota

diversity was reported to be higher in the ML silkworms than the

FF silkworms (Dong et al., 2018). Lamberti et al. (2019) found

five differentially expressed proteins associated with diet type

through comparative proteomics. Furthermore, the content of

pupa proteins in the FF silkworms was markedly higher than that

in traditional ML silkworms as reported (Lamberti et al., 2019).

Metabolomics can qualify and quantify thousands of

metabolites, and describe the specific metabolomic profiles of

certain tissues or biofluids at specific time points in organisms

(Saoi and Britz-McKibbin, 2021). Currently used detection

platforms are based on gas chromatography-mass spectrometry,

liquid chromatography-mass spectrometry (LC-MS) and nuclear

magnetic resonance, each of which has its own merits. LC-MS aids

in identifying metabolites with high polarity and high formula

weight, and can quantify and qualify more metabolites than

other platforms (Tao et al., 2022). Metabolomics has been

applied in exploring the metabolic profiles of silkworms subjected

to two rearingmethods (FF versusML) (Dong et al., 2017; Qin et al.,

2020; Tao et al., 2022). However, previous studies have focused

mainly on metabolic changes in a single tissue; therefore, the results

cannot fully reflect systematic variations of the whole organism.

Consequently, multi-tissue studies on modern sericultural research

are necessary. Hemolymph (HL), the transporter of nutrients and

intermediates, reflects changes in the whole body (Tao et al., 2022).

Zhou et al. (2015) have reported that changes in theHLmetabolome

are closely associated with dietary composition, cell membrane

biosynthesis, and protein and energy metabolism. However, the

non-specific characteristic of the HL restricts the explain validity to

some issues. The midgut (MG) plays a crucial role in nutrient

digestion and absorption (Shen et al., 2022), and thus warrants

further nutrition metabolism studies. Posterior silk gland (PSG) is

the locus of fibroin production (Shigematsu and Koyasako, 1962),

which is closely associated with various cocoon performance traits.
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Consequently, integrating the metabolomic profiles of the three

aforementioned tissues should provide systematic knowledge in

silkworm nutritional biology.

This study aimed to identify mechanisms and biomarkers

relating to poor cocoon yield in silkworms reared on formula feed

for all instars, by integrating systematic metabolomic profiling.

2 Materials and methods

2.1 Animals and rearing

The B. mori variety “Zhong 2016×Ri 2016,” provided by the

Zhejiang Silkworm Egg Quality Inspection Station (Hangzhou,

China), was studied. Three thousand silkworms were divided

into six groups and were randomly allocated to receive two diet

treatments: formula feed (FF group) and fresh mulberry leaves

(ML group) for all instars. The FF silkworms were fed once from

the newly hatched period to the 2nd instar, and were fed one, one

and two times in the 3rd, 4th and 5th instars, respectively. The

ML group was fed three times at 7:00 a.m., 13:00 p.m. and 19:

00 p.m. per day during five instar periods.

All silkworms were reared in an intelligent and independent

room with relatively optimal room temperature and humidity,

according to the different requirements of each instar. All

remaining experimental silkworms were reared to cocoon

stage for further cocoon yield performance investigation,

including the WCY, CSW and CSR.

2.2 Diet preparation

The ingredients of the formula feed were based on a report by

Dong et al. (2017). The formula contained 33% mulberry leaf

powder for silkworms in the 1st -3rd instars, whereas 4th to 5th

instar silkworms were fed formula feed containing 25% mulberry

leaves. The formula feed powder was mixed with 1.85× (w/w)

sterile water. The mixture was placed in a storage bag, pressed to

a thickness of approximately 1.00 cm and heated for 50 min at

100°C after sealing. After heating, the formula feed mixture was

naturally cooled and stored at 4°C for feeding trials.

Mulberry leaves were picked from the Nongsang

No.14 mulberry variety every morning and were stored at 4°C

to maintain freshness. Nongsang No.14 with good mulberry leaf

quality was provided by Shaoxing Dayu Silkworm Egg

Production Co., Ltd. (Shaoxing, China).

2.3 Sample collection and preparation

2.3.1 Sample collection
The 3rd day of the 5th instar is the most active time point of

silkworm larval metabolism (Dong et al., 2017). MG, HL and

PSG were collected on ice at the 5th instar after feeding for 72 h.

HL was gathered by cutting the anal horns of the silkworm larvae.

Those silkworm larvae were fixed and cut in a dissecting pan to

obtain the experimental MG and PSG with specialized surgical

nippers and scissors. Groups of six silkworm tissues were

combined into one sample replicate. A total of 12 samples per

tissue were analyzed, consisting of six male and six female

replicates. To terminate the metabolic activity of each tissue,

every sample was frozen in liquid nitrogen as soon as possible

and was stored at −80°C for subsequent metabolomic profiling

analysis.

2.3.2 Sample preparation for metabolite
detection

Sample preparation, including thawing and following

procedures before detection, was performed on ice.

2.3.2.1 HL

On the basis of the readily oxidizable property of silkworm

HL, nitrogen oxides were inflated to the refrigerated HL sample

for 5 s after the experimental samples were removed from −80°C

storage. The thawed HL was vortexed for 10 s, and 50 μL of

sample was added to an Eppendorf (EP) tube containing 300 μL

pure methanol with 0.1% butylated hydroxytoluene and internal

standard extract (1 ppm: [2H3]-L-carnitine HCl, 4-fluoro-L-α-
phenylglycine, L-phenylalanine (2–13C, 99%), L-2-

chlorophenylalanine, [2H5]-kynurenic acid, [2H5]-hippuric

acid, [2H5]-phenoxy acetic acid). The above mixtures were

vortexed for 3 min and centrifuged for 4 min at 12,000 rpm

(r = 0.15 m) and 4°C. Subsequently, 200 μL supernatant was

transferred to a new EP tube to silence for 30 min in −20°C. Then,

the above supernatants were centrifuged at 12,000 rpm for

10 min at 4°C. Finally, 150 μL supernatant was transferred

into a brown injection bottle and stored at −20°C for UHPLC-

MS/MS detection.

2.3.2.2 MG and PSG

Tissue samples were thawed, and approximately 50 mg was

cut and placed into a clean 1.5 ml EP tube. Steel balls were added

to the EP tubes, and samples were homogenized at 30 Hz for

3 min. The mixture was vortexed for 5 min after 1 ml 70%

methanol with the aforementioned internal standard extract

was added. The mixture was placed on ice for 10 min before

centrifugation (4°C, 12,000 rpm, 10 min). Subsequently, 400 μL

supernatant was transferred into a new EP tube and stored

overnight at −20°C. Finally, the supernatant was centrifuged

for 3 min at 12,000 rpm and 4°C, and 200 μL supernatant was

transferred to an injection bottle for UHPLC-MS/MS detection.

Of note, after every ten samples. 10 μL of the prepared sample

supernatants of each tissue was combined into a mixed sample,

which served as the QC for UHPLC-MS/MS detection, to

evaluate the manual accuracy, instrument stability and

technology replicability.
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2.4 UHPLC-MS/MS detection and analysis

2.4.1 Compound detection by UHPLC-MS/MS
The above sample extracts were analyzed with a UHPLC

(ExionLC FF, https://sciex.com.cn/)-electrospray ionization

(ESI)-MS/MS system (QTRAP® System, https://sciex.com/).

The UHPLC conditions were as follows: Waters ACQUITY

UPLC HSS T3 C18 column (1.8 µm, 2.1 mm × 100 mm), A

phase: ultrapure water (0.1% formic acid), B phase: acetonitrile

(0.1% formic acid), column temperature: 40°C, injection volume:

2 μL. The UHPLC gradient elution was conducted as follows: 95:

5 V/V (A phase/B phase) at 0 min, 10:90 V/V at 10.0 min, 10:

90 V/V at 11.0 min, 95:5 V/V at 11.1 min and 95:5 V/V at

14.0 min.

The QTRAP® LC-MS/MS system equipped with an ESI

Turbo Ion-Spray interface was used to acquire the linear ion

trap and triple quadrupole (QQQ) scans. This system was

controlled by Sciex Analyst 1.6.3 software (https://sciex.com.

cn/), and was operated in positive and negative ion mode.

The ESI parameters were set as follows: source temperature:

500°C; ion spray voltage: 5500 V (positive) to 4500 V (negative);

ion source gas I, gas II and curtain gas set at 55.0, 60.0 and 25.

0 psi, respectively; collision-activated dissociation parameter set

high. Equipment tuning and mass calibration were performed

with 10 and 100 μmol/L polypropylene glycol solutions in QQQ

and linear ion trap modes, respectively. In QQQ scans, each ion

pair was detected on the basis of the optimal declustering

potential and collision energy (Chen et al., 2013).

2.4.2 Identification and quantification of
metabolites

Compound identification was based on the metware

database, retention time, macroion and precursor ion

information, and secondary spectrum data of specific

compounds.

Multiple reaction monitoring of the QQQ system was used to

quantify the compounds detected. The areas under each

chromatographic peak were calculated and represented the

relative content of the detected compound in MultiQuant

software (https://sciex.com.cn/). On the basis of the retention

time and peak pattern information of the detected compounds,

integral correction in different samples was performed to ensure

the qualification and quantification accuracy (Fraga et al., 2010).

Metabolites were defined as detected if they were present in more

than 50% of the QC samples. Similarly, metabolites were

considered to exist in a given group if they were detected in

at least 50% of the samples in the group.

2.4.3 Unique and mutually present metabolites
in the MG, HL and PSG

To identify the metabolic similarities and differences among

the MG, HL and PSG, we analyzed the unique and mutual

metabolites in different tissues in this study.

2.5 Statistical analysis

2.5.1 Significantly different metabolites
identification between the ML and FF group

Metaboanalyst 5.0 (https://www.metaboanalyst.ca/) was used to

perform multivariate data analysis (MVDA) under the log

transformation of data and auto scaling mode (Pang et al.,

2021). Sample normalization was set to “normalized by sum”.

MVDA, as conducted in this study, included PCA and OPLS-

DA. The PCA model was used to observe the global distribution of

experimental samples. OPLS-DA was performed to identify the

metabolomic differences among treatments, particularly in

distinguishing different metabolites. Missing value estimation was

performed by default. In detail, missing values were replaced by one-

fifth of the minimum positive values in corresponding variables.

The VIP >1.00, FC > 2.00 or < −2.00 and FDR <0.05 were the
criteria used to define SDMs, whichwere further identified, validated

and classified in the KEGG and HMDB. Mutual and unique SDMs

were analyzed and shown in Venn diagrams. Furthermore, the

|log2FC| was the index used to identify the top 15 up-regulated and

the top 15 down-regulated SDMs in three tissues.

2.5.2 Pathway analysis based on the significantly
different metabolites

Pathway analysis was conducted in Metaboanalyst 5.0, with

the fruit fly (Drosophila melanogaster) library applied in this

step. Sample normalization, data transformation and data scaling

was set “Normalization by sum”, “Log transformation” and

“Data scaling”, respectively. In this study, the impact value

(IPV) > 0.100 was set as the cutoff for relevance (Sun et al.,

2015; Wu et al., 2019).

2.5.3 Biomarker and correlation analysis
Biomarker analysis was conducted in Metaboanalyst 5.0 with

the relative concentrations of metabolites detected. To improve the

reliability of results, metabolites with level B were discarded in this

procedure. SDMs with an AUC = 1 served as the preselected

biomarkers to explain and indicate the metabolic differences

between the FF and ML silkworms across the three tissues.

Preselected biomarkers mutually present among the MG, HL

and PSG were chosen for correlation analysis with the cocoon

yield performance traits (WCY, CSW and CSR). Correlation

analysis was conducted in the R package (https://www.r-project.

org/) using Pearson coefficient.

2.5.4 Performance traits analysis
In sericulture production, male and female silkworms are fed

together in nearly all silkworm varieties. Normally, the proportion

of male and female silkworms bred is 1:1. So equal number of male

and female silkworms were collected together to be consistent with

the production. In addition, for the three cocoon performance traits

in this study, therewas no interaction between the diet and sex in the

statistical model. Thus, sex was not included in the model. In detail,
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the SAS MIXED model and the univariate statistical analysis was

used to analyze the WCY, CSW and CSR between the FF and ML

group. Diets was set as the only factor in the statistical model. p <
0.05 was defined as the significance threshold, and p < 0.01 was

regarded as an extremely significant difference.

3 Results

3.1 Cocoon yield performance

In this study, WCY, CSW and CSR, typical cocoon yield

performance traits were investigated and analyzed between the

FF and ML silkworms (Figure 1A; Table 1). The WCY was

10.6% higher in the FF group than the ML group (p < 0.05),

whereas the CSW and CSR of the FF group were 11.7 and 20.5%

lower than the ML group, respectively (p < 0.05). Besides, the

pupa of FF group was 17.1% heavier than those of ML group

(p < 0.05).

3.2 UHPLC-MS/MS detection and analysis

3.2.1 Metabolite identification and quantification
The total ion chromatogram information under positive

and negative ion modes are shown in Supplementary Figure

FIGURE 1
Metabolites distribution in the hemolymph (HL), midgut (MG) and posterior silk gland (PSG) between the FF andML silkworms. (A) Silkworms fed
formula feed (FF) or mulberry leaves (ML), and corresponding cocoons. (B)Metabolites distribution among three tissues in the FF (up) and ML (down)
silkworms. (C) Unique and mutual metabolites identified in different tissues in the FF and ML groups.

Frontiers in Molecular Biosciences frontiersin.org05

Wu et al. 10.3389/fmolb.2022.977047

10

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2022.977047


S1. A total of 1,033 compounds were identified by ultra-high

performance LC-MS/MS (UHPLC-MS/MS). After filtering,

927 metabolites were finally qualified. The results of

compound identification and quantification are described in

Supplementary Table S1. Different letters (A or B) in the level

column indicate different levels of identified metabolites

(Supplementary Table S1), which were associated with

subsequent biomarker analysis. Level A indicates that the

information on two ion fragments was consistent with the

metware database, whereas level B indicates that only one ion

fragment was consistent.

3.2.2 Metabolite distribution
The number of metabolites detected in three tissues of

silkworms fed the two diets are shown in Figure 1B and

Figure 1C. A total of 845, 867 and 831 metabolites were

identified in the MG, HL and PSG of the FF silkworms,

respectively. Correspondingly, 789, 833 and 730 metabolites

were detected in the MG, HL and PSG of the FF group,

respectively.

The metabolite distribution in the analyzed tissues in the

FF and ML silkworms is depicted in Figure 1B. A total of

760 metabolites were mutual in the MG, HL and PSG of the

FF group, whereas 671 metabolites were mutual in the

corresponding tissues of the ML silkworms. A total of

52 and 87 specific metabolites were detected in the HL of

the FF and ML groups, respectively. Only 14 and three

metabolites were specific in the MG and PSG of the FF

group. Similarly, nine metabolites and one metabolite

were specific in the MG and PSG of the ML group,

respectively.

Similarly, the metabolite distributions (Figure 1C) indicated

that 773, 817 and 716 metabolites were mutual in the MG, HL

and PSG of the FF and ML groups. The numbers of specific

metabolites in the FF group were 72, 50 and 115, and those in the

ML group were 16, 16 and 14 in the MG, HL and PSG,

respectively.

3.2.3 Multivariate statistical comparison of
metabolites between the FF and ML groups

Figure 2 shows the multivariate statistical analysis (MVDA)

results of the metabolic profiling between the FF and ML

silkworms in the MG (A-C), HL (D-F) and PSG (G-I). For

the MG metabolic profile, a significant separation was observed

between the FF and ML groups in the principal component

analysis (PCA) score plot. For the HL and PSG, a similar pattern

was demonstrated. No outliers were beyond the 95% Hotelling’s

T-squared ellipse in all PCA score plots. The PCA score plot

contained quality control (QC) samples is shown in

Supplementary Figure S2 (A-MG, B-HL, C-PSG). All QC

samples clustered together and was separately from the FF

and ML samples (Supplementary Figure S2). The orthogonal

partial least squares discriminant analysis (OPLS-DA) score plot

also showed two clearly distinct clusters, with no samples

exceeding the 95% ellipse. Furthermore, 2000 permutation

tests indicated that the OPLS-DA model was suitable for

significantly different metabolites (SDMs) identification (MG:

R2Y = 0.993 and Q2 = 0.985, HL: R2Y = 0.998 and Q2 =

0.996 and PSG: R2Y = 0.995 and Q2 = 0.987).

3.2.4 Significantly different metabolite
identification between the FF and ML silkworms

A total of 230, 249 and 304 SDMs (Variable importance for the

projection (VIP) > 1.00, fold change (FC) > 2.00 or FC < -2.00,

false discovery rate (FDR) < 0.05) were identified in the MG, HL

and PSG, respectively, between the FF and ML groups

(Supplementary Table S2). In the volcano plot (Figure 3A,

Figure 4A, Figure 5A), the upregulated metabolites in the FF

silkworms are in red, whereas downregulated metabolites are in

blue. A total of 180, 153 and 256 upregulated SDMs were found in

the MG, HL and PSG, respectively. In contrast, the numbers of

downregulated SDMs of the MG, HL and PSG were 50, 96 and 48,

respectively. The above upregulated and downregulated SDMs

were categorized and shown in Figure 3B, Figure 4B and Figure 5B,

respectively. In the MG metabolic profiling, the class of amino

acids, peptides, and analogues; carbohydrates and carbohydrate

conjugates; lipids and lipid-like molecules; and coenzymes and

vitamins accounted for 50, 15, 66 and 7, respectively. In the HL, 54,

24, 55 and 7 SDMs were classified as amino acids, peptides, and

analogues; carbohydrates and carbohydrate conjugates; lipids and

lipid-like molecules and coenzymes and vitamins, respectively. In

the metabolic profiles of the PSG, a large proportion of SDMs was

classified as amino acids and their derivatives (n = 89) and lipids

and lipid-like molecules (n = 74). Furthermore, carbohydrates and

carbohydrate conjugates, and coenzymes and vitamins accounted

for 16 and 4, respectively.

The top 15 upregulated SDMs and top 15 downregulated

SDMs of the three tissues with the most significant differences

(|log2FC|) are displayed in Figure 3C, Figure 4C and Figure 5C,

respectively. Among them, 3-dimethylallyl-4-

TABLE 1 The cocoon yield performance of silkworms reared on
formula feed or mulberry leaves.

Treata WCYb, g CSWc, g CSRd, % PWe, g

FF group 2.08 ± 0.114a 0.371 ± 0.0228b 17.8 ± 0.34b 1.71 ± 0.085a

ML group 1.88 ± 0.016b 0.420 ± 0.0126a 22.4 ± 0.62a 1.46 ± 0.015b

aFF group, silkworms reared on formula feed; ML group, silkworms reared on mulberry

leaves.
bWCY, whole cocoon yield.
cCSW, cocoon shell weight.
dCSR, cocoon shell rate.
ePW, pupae weight.

Data are presented as mean ± standard deviation.

Different letters within a column indicate significant differences between FF and ML

groups (p < 0.05).
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hydroxyphenylpyruvate was the only top 15 downregulated SDM

mutually among the three tissues.

The mutual and specific SDM distribution results among the

MG, HL and PSG are depicted in Supplementary Figure S3. A

total of 60 SDMs were mutually found in the three tissues

(Supplementary Table S3). The numbers of specific SDMs of

the MG, HL and PSG were 75, 116 and 144, respectively.

3.2.5 Identification of metabolic pathways
related to SDMs

Metabolic pathways were enriched by the SDMs between

the FF and ML groups among three tissues (Figure 3D,

Figure 4D and Figure 5D, respectively.). In the MG,

23 metabolic pathways were enriched by the 230 SDMs,

among which alanine, aspartate and glutamate metabolism

FIGURE 2
PCA score plot, OPLS-DA score plot and corresponding permutation test results of the metabolite profiles. PCA, principal component analysis;
OPLS-DA, orthogonal partial least squares discriminant analysis. PCA score plot (A,D,G), OPLS-DA score plot (B,E,H) and corresponding permutation
test results (C,F,I) were derived from the metabolite profiles of the midgut (MG, (A–C), hemolymph (HL, (D–F) and posterior silk gland (PSG, (G–I).
Red dots represent silkworms fed formula feed (FF), and blue dots represent silkworms fed mulberry leaves (ML).
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(IPV = 0.422); histidine metabolism (IPV = 0.400); nicotinate

and nicotinamide metabolism (IPV = 0.368); arginine, proline

metabolism (IPV = 0.318); and sphingolipid metabolism

(IPV = 0.265) were the top five enriched pathways

(Supplementary Table S4). The SDMs of the HL were

mainly enriched in 22 metabolic pathways (impact value

FIGURE 3
Significantly different metabolites (SDMs) and enriched pathways relating to different diets in the midgut (MG). (A) Volcano plots of metabolites for
the formula feed (FF) and themulberry leaves (ML) silkworms in theMG. The red dot represents themetabolite is significantly higher in the FF silkworms,
and the blue dot indicates a higher abundantmetabolite in the ML silkworms. The dot size represents the VIP value. (B) SDMs classification and variation
between the FF and ML group. The blue and red bar indicate the number of downregulated and upregulated metabolites in the MG of FF group,
respectively. (C) The top 15 upregulated SDMs and downregulated SDMs in the MG of the FF silkworms. (D)Metabolic pathways enriched by the SDMs
between the FF and ML groups in the MG. C19580, alpha-[3-[(Hydroxymethyl)nitrosoamino]propyl]-3-pyridinemethanol.
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(IPV) > 0.100). D-glutamine and D-glutamate metabolism

(IPV = 1); riboflavin metabolism (IPV = 1.00); alanine,

aspartate and glutamate metabolism (IPV = 0.757);

ascorbate and aldarate metabolism (IPV = 0.500); and

glutathione metabolism (IPV = 0.407) were the top five

affected pathways (Supplementary Table S4). A total of

FIGURE 4
Significantly different metabolites (SDMs) and enriched pathways relating to different diets in the hemolymph (HL). (A) Volcano plots of
metabolites for the formula feed (FF) and themulberry leaves (ML) silkworms in the HL. The red dot represents themetabolite is significantly higher in
the FF silkworms, and the blue dot indicates a higher abundant metabolite in the ML silkworms. The dot size represents the VIP value. (B) SDMs
classification and variation between the FF and ML group. The blue and red bar indicate the number of downregulated and upregulated
metabolites in the HL of the FF group, respectively. (C) The top 15 upregulated SDMs and downregulated SDMs in the HL of the FF silkworms. (D)
Metabolic pathways enriched by the SDMs between the FF and ML groups in the HL.
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28 metabolic pathways were enriched in the SDMs of the PSG,

among which D-glutamine and D-glutamate metabolism

(IPV = 1.00); phenylalanine, tyrosine and tryptophan

biosynthesis (IPV = 1.00); cysteine and methionine

metabolism (IPV = 0.731); arginine biosynthesis (IPV =

0.629); and glycine, serine and threonine metabolism

FIGURE 5
Significantly different metabolites (SDMs) and enriched pathways relating to different diets in the posterior silk gland (PSG). (A) Volcano plots of
metabolites for the formula feed (FF) and the mulberry leaves (ML) silkworms in the PSG. The red dot represents the metabolite is significantly higher
in the FF silkworms, and the blue dot indicates a higher abundant metabolite in the ML silkworms. The dot size represents the VIP value. (B) SDMs
classification and variation between the FF and ML group. The blue and red bar indicate the number of downregulated and upregulated
metabolites in the PSG of the FF group, respectively. (C) The top 15 upregulated SDMs and downregulated SDMs in the PSG of the FF silkworms. (D)
Metabolic pathways enriched by the SDMs between the FF and ML groups in the PSG.
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(IPV = 0.608) were the top five enriched pathways.

Furthermore, phenylalanine metabolism (IPV = 0.552);

glutathione metabolism (IPV = 0.550); and ascorbate and

aldarate metabolism (IPV = 0.500) also showed high impact

values (IPV ≥0.500, Supplementary Table S4).

A total of 11 mutual pathways were enriched in the SDMs

across the three tissues. Among them, the top three mutual

pathways with the highest IPV in the PSG were listed as follows,

which was integrated and depicted in Figure 6. Cysteine and

methionine metabolism (IPV = 0.731) was enriched by ten SDMs

in the PSG: S-methyl-5′-thioadenosine (Log2FC = 2.02),

S-adenosylmethionine (Log2FC = 3.15), L-cystathionine

(Log2FC = 2.13), L-serine (Log2FC = 2.39), L-homocysteine

(Log2FC = 2.74), L-methionine (Log2FC = 1.29), L-cystine

(Log2FC = 3.46), L-cysteine (Log2FC = 2.98), L-2-

aminobutanoate (Log2FC = 1.69) and 2-Oxobutanoate

(Log2FC = 7.89). Arginine biosynthesis, with an IPV of 0.629,

was enriched by the SDMs: L-glutamate (Log2FC = 4.09),

L-arginine (Log2FC = 1.71), N-acetylornithine (Log2FC =

1.78), L-citrulline (Log2FC = 2.51), 2-oxoglutarate (Log2FC =

6.54), L-ornithine (Log2FC = 2.83) and urea (Log2FC = 5.43).

Arginine and proline metabolism (IPV = 0.463) was enriched by

the SDMs: L-arginine (Log2FC = 1.71), putrescine (Log2FC =

1.26), S-adenosylmethionine (Log2FC = 3.16), L-glutamate

(Log2FC = 4.09), L-ornithine (Log2FC = 2.83), 4-

hydroxyproline (Log2FC = 4.41) and 1-pyrroline-4-hydroxy-2-

carboxylate (Log2FC = 2.32).

3.2.6 Biomarkers associated with cocoon yield
performance traits

A total of 722 metabolites with level A were used to perform

biomarker analysis. Together with the differential trend of each

metabolite (the selected metabolites are the SDMs in Results

Section), 93, 171 and 163 preselected biomarkers (area under the

curve (AUC) = 1) were obtained in the MG, HL and PSG,

respectively (Supplementary Table S5). Among them, a total of

24 metabolites could serve as mutual preselected biomarkers

across the three tissues (Supplementary Table S6).

The correlation analysis indicated that six mutual preselected

biomarkers were significantly associated with the WCY, CSW

and CSR (p < 0.05, Figure 7). Among them, homocitrulline,

glycitein, valyl-threonine, propyl gallate and 3-amino-2,3-

dihydrobenzoic acid were positively correlated with WCY, but

were negatively correlated with CSW and CSR. In contrast, an

opposite correlation pattern was observed between 3-

dimethylallyl-4-hydroxyphenylpyruvate and the three cocoon

performance traits (WCY, CSR and CSW). In this study, the

above six preselected potential candidate biomarkers were

defined as biomarkers relating to cocoon yield performance

traits, which deserve further study.

FIGURE 6
The integrated mutual metabolic pathways in the midgut (MG), hemolymph (HL) and posterior silk gland (PSG) of the formula feed (FF)
silkworms. The blue, red and yellow line represented different metabolic pathways. The KEGG ID represented those were not detected or were not
significantly different between the FF and mulberry leaves (ML) fed silkworms. The three squares with colors showed the different trends of
metabolites in theMG, HL and PSG, respectively. The red, blue and blank squares represented themetabolites were significantly higher, lower or
unchanged in the FF group, respectively.
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4 Discussion

To our knowledge, this study is the first to integrate the

metabolomic profiles of three tissues (MG, HL and PSG)

with cocoon yield performance traits (WCY, CSW and CSR)

in factory sericulture research. The current study also

provides a method to systematically identify the metabolic

reasons for the poor cocoon performance of the FF

silkworms. We also performed pathway analysis and

biomarker identification to explore the internal metabolic

mechanisms and key biomarkers relating to the cocoon yield,

thus providing future directions for improving the cocoon

performance of the FF silkworms by optimizing the nutrition

supply.

4.1 Poor cocoon performance of the FF
silkworms

The experimental B. mori variety “Zhong 2016×Ri 2016”

has been widely reared in a commercial enterprise. Although

the CSW and CSR of the FF group were lower than those of

the control ML silkworms, they also reached the average

levels of the ML silkworms reported in previous studies

(Qin et al., 2020; Xiao et al., 2020). Furthermore, given the

high feeding adaptability to formula feed, developmental

uniformity and silk quality of the silkworm variety with

the relatively high efficiency of factory sericulture, feeding

silkworms on formula feed has demonstrated practical

application value. However, much room remains for

cocoon performance improvement in the FF silkworms.

Systematic metabolomic research provides a perspective to

identify the internal mechanisms relating to cocoon and

nutrition supply, which should aid in improving cocoon

performance.

4.2 Significantly different metabolites

Regarding the metabolic differences between the FF and ML

silkworms in three experimental tissues, we assessed, validated

and classified the SDMs in the online Kyoto Encyclopedia of

Genes and Genomes database (KEGG: https://www.kegg.jp/) and

the Human Metabolome Database (HMDB: https://hmdb.ca/

metabolites). Our analysis indicated that a large proportion of

SDMs were significantly higher in the FF silkworms, a finding

which was inconsistent with a previous report (Tao et al., 2022).

Tao et al. (2022) has reported that the FF group had more

downregulated metabolites in the HL than the ML group, thus

indicating that the formula feed inhibited the metabolic activity

of silkworms. This contradictory results might due to the nutrient

levels of the formula feed. In our study, theWCY of FF silkworms

was greater than the control group (ML group). However, in the

report of Tao et al. (2022), the three cocoon performance traits of

FF silkworms were much lower than the control, which might

indicate the nutrient supply didn’t meet the requirement of FF

silkworms.

To explore the largest differences in metabolomic profiling,

the top 15 upregulated and top 15 downregulated SDMs were

considered.

In the MG, N-methyltyramine, a potent stimulant of gastrin

release with a role in promoting intestinal secretion and

movement (Ohta et al., 2020), was significantly higher in the

FF group. Consequently, we inferred that the absorbed energy

and nutrients did not satisfy the cocoon requirements in the FF

silkworms, thus increasing the release of N-methyltyramine and

accelerating the digestion and absorption in the MG.

N-methyltyramine is also involved in tyrosine metabolism

(Leete and Marion, 1953). On the basis of this finding,

combined with lower levels of tyramine (an intermediate

metabolite from tyrosine to N-methyltyramine) in the HL, we

inferred that more tyrosine was metabolized into

FIGURE 7
Correlation results between the cocoon yield performance traits and the six biomarkers identified. The red “p” indicates biomarkers which was
significantly correlated with the cocoon yield performance traits. WCY, whole cocoon yield; CSW, cocoon shell weight; CSR, cocoon shell rate.
C12456, 3-Dimethylallyl-4-hydroxyphenylpyruvate; C12110, 3-Amino-2,3-dihydrobenzoic acid.
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N-methyltyramine in the FF silkworms. Furthermore, tyrosine

was significantly higher in the PSG of the FF silkworms. Thus, we

inferred that more tyrosine was supplied in the experimental

formula feed. Tyrosine, one of the four main components of silk,

might not be the limiting factor for silk synthesis in the FF

silkworms. Pyridoxine 5′-phosphate was one of the top

15 downregulated SDMs in the FF silkworms, which

participates in pyridoxine (vitamin B6) metabolism (KEGG

PATHWAY: map00750). Combined with the significantly

diminished pyridoxine in the FF silkworms, the above results

indicated that pyridoxine was in short supply in formula feed.

Further, pyridoxine 5′-phosphate is involved in cofactor

biosynthesis, thus indirectly affecting several amino acids,

including serine, glutamine, methionine and cysteine

metabolism (KEGG PATHWAY: map01240). Thus, we

inferred that insufficient pyridoxine resulted in a lower

pyridoxine 5′-phosphate level, which in turn restricted the

corresponding amino acid metabolism. Ultimately, the cocoon

yield decreased in silkworms reared on formula feed. Moreover,

pyridoxine 5′-phosphate can be converted into pyridoxal 5′-
phosphate through interaction with the pyridoxine-5′-phosphate
oxidase (Huang et al., 2016a; Huang et al., 2016b). Pyridoxine-5′-
phosphate oxidase is regulated by development and hormones

(juvenile hormone, molting hormone) in silkworms (Huang

et al., 2016a). Thus, the lower pyridoxine 5′-phosphate in the

FF silkworms might be related to the hormone levels-a possibility

requiring further validation.

In the HL, seven of the top SDMs were classified as flavonoids

and isoflavonoids, given that flavonoid and isoflavonoid

metabolism differs among diet treatments. Among above

seven SDMs, all flavonoids were significantly higher in the

ML group, whereas all isoflavonoids were much higher in the

FF silkworms. (+)-Norpseudoephedrine plays a role in

suppressing appetite (Balasubramanian, 2020). Thus, the

significantly higher concentration of (+)-norpseudoephedrine

in the FF group might indicate lower feed intake of the FF

silkworms. The substrate of riboflavin (vitamin B2), 6,7-

dimethyl-8-(D-ribityl)lumazine (Zylberman et al., 2006), was

much higher in the FF group. Correspondingly, the riboflavin

level in the FF silkworms was significantly higher than that in the

ML group. These results indicated that the riboflavin supply was

beyond the requirement, a result warranting further validation in

the FF silkworms. Tyramine, a monoamine compound derived

from nondigestible tyrosine-containing peptides and proteins by

bacterial fermentation (Anderegg et al., 2020), was markedly

lower in the FF silkworms. Our results showed that the tyrosine

to tyramine pathway was less active in the FF group, possibly

because of less bacterial fermentation activity. However, this

possibility requires further validation.

Among the top 30 SDMs (15 upregulated and

15 downregulated) in the PSG, 11 SDMs were classified as

flavonoids and isoflavonoids, thus further validating that the

flavonoid and isoflavonoid supply or metabolism markedly

differed between the FF and ML groups. Among the

11 SDMs, eight were enriched in the ML group, a result

consistent with the high number of flavonoids in mulberry

leaves. Higher content of cysteine glutathione disulfide might

imply that the FF silkworms were in a state of oxidative stress,

because cysteine glutathione disulfide is a product of glutathione

oxidation (Eriksson et al., 1967). Thus, the health and immune

status of the FF silkworms should be examined with biochemical

methods in the future.

A total of 60 mutual SDMs were identified in the three

experimental tissues. Among them, 48 up-regulated and two

down-regulated SDMs showed the same difference patterns. In

silkworm larvae, superfluous amino acids are deaminized in the

fat body and MG, thus producing ammonia, which is removed in

three forms (Weihrauch and O’Donnell, 2021). Part of the

ammonia is excreted in the form of ammonium salt by the

Malpighian tubules (Weihrauch and O’Donnell, 2021), and a

portion of the ammonia is stored as amides to provide amidogen

for amino acid synthesis (Hirayama et al., 1997), or is involved in

purine synthesis and eventually metabolized to uric acid or urea

(Hirayama et al., 1996; Hiroko et al., 2016). Uric acid and urea,

the end-product of amino acid metabolism, were significantly

higher in all three tissues in the FF group than the ML group,

possibly because of the higher urease activity of mulberry leaves

(Hirayama et al., 1999). We speculated that urease was

inactivated in the production and heat treatment of formula

feed, thus impairing the metabolism of proteins, amino acids and

other nitrogen-containing substances, which was consistent with

a previous report (Tao et al., 2022). Many amino acids or small

peptides including histidine, asparagine, homocitrulline and

gamma-glutamylleucine were enriched in the FF tissues, in

agreement with the above hypothesis. The difference trends

for ascorbic acid were discrepant in three tissues: the levels

were markedly lower in the MG and HL of the FF silkworms,

but higher in the PSG. Ascorbic acid, also called vitamin C, is a

crucial nutrient for the growth and development of silkworm

larvae (Sayyad, 2020) and is obtained mainly from the diet. Thus,

we inferred that the ascorbic acid supply was insufficient in the

FF silkworm larvae, thus restricting the development of

silkworms. The discrepant patterns of ascorbic acid in

different tissues might be related to ascorbic acid metabolism,

as observed for ascorbate and aldarate metabolism in the

metabolic pathways enriched in the HL and PSG.

4.3 Metabolic pathways

In this study, the SDMs of different diets were found to be

classified and involved mainly in the metabolism of amino acids

and other nitrogen-contained intermediates, lipids,

carbohydrates, vitamins, flavonoids and isoflavonoids. Some

studies have found that insufficient vitamin supply; higher

urea and uric acid content; and metabolic disorders related to
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amino acid, carbohydrate and lipid metabolism are the main

discrepancies between silkworms fed ML and FF (Dong et al.,

2017; Qin et al., 2020; Tao et al., 2022). To identify crucial

pathways relating to the diet treatments, we put the mutually

enriched pathways among three tissues to the first place. The PSG

serves as the production locus for fibroin, a main component of

silk (Shigematsu and Koyasako, 1962). Besides, the SDM

amounts in the PSG were much higher than those in the MG

and HL, thus illustrating that the metabolomic differences

affected by the rearing method were highest in the PSG;

therefore, our analysis was focused on the top three mutual

pathways with the highest IPV in the PSG.

With the highest IPV, cysteine and methionine metabolism

was enriched by ten SDMs in the PSG. The ten SDMs accounted

for approximately one-third of the entire pathway. Notably, the

log2FC values revealed that all SDMs involved in cysteine and

methionine metabolism were significantly higher in the FF

group. Cysteine is derived from the diet or biosynthesis, with

the latter source used serine as the substrate (KEGG Module:

M00021, M00338). The serine content was indeed higher in the

PSG of the FF silkworms. Serine is one of the four main

components of silk (Kensuke et al., 1976). Given the

biological function of the PSG, our results might indicate that

the higher serine was not integrated into silk as expected but was

metabolized into cysteine or other intermediates. This possibility

is supported by the higher content of L-cystathionine, 2-

oxobutanoate and L-homocysteine, which are intermediate

products of serine metabolism in the cysteine and methionine

metabolism pathway (KEGG PATHWAY: map00270). Thus, the

above possibility might partly explain the contradictory finding

of higher serine and lower silk performance traits in the FF

silkworms. Methionine has been reported to be upregulated in

silkworms reared on formula feed (Tao et al., 2022). As an

essential amino acid, methionine cannot be synthesized by

silkworms (Ito, 1967). Thus, we inferred that the higher

content of methionine might have been derived from the diet

or bacterial synthesis.

Arginine biosynthesis (KEGG PATHWAY: map00220), with

an impact value of 0.629, was the 2nd mutual metabolic pathway

enriched in the three experimental tissues. Arginine, an essential

amino acid for silkworms, has been speculated to be synthesized

mainly by the microbiota (Ito, 1967). On the one hand, the

content of L-glutamate, N-acetylornithine and L-citrulline,

which are substrates for arginine synthesis (KEGG Module:

M00845), were all higher than those in the ML group. On the

other hand, three metabolic products of arginine had higher

levels in the FF silkworms: L-ornithine, L-citrulline and urea.

Consequently, we speculated that the above arginine pathways

involved in synthesis andmetabolismmight be more active in the

FF silkworms. As noted in Discussion section: Significantly

different metabolites, the substantially high FC of urea

(Log2FC = 5.43) implied that the free arginine exceeded the

requirements for normal growth and development of the FF

silkworms. Further, combined with the lack of urease, the higher

content of urea could not be hydrolyzed into ammonia to provide

nitrogen for silkworm growth and development. Thus, the higher

content of arginine might be detrimental indirectly for the

silkworm growth and development.

Arginine and proline metabolism, with the 3rd highest IPV,

was discussed subsequently. Arginine and proline are essential

and semi-essential amino acids for silkworms (Ito, 1967),

respectively. In the current study, the metabolic products of

arginine, including L-ornithine, putrescine and L-glutamate

(KEGG PATHWAY: map00330), all showed higher content in

the FF silkworms. Although L-proline was not identified as an

SDM in the PSG, owing to its low VIP value (VIP <1.00), it was
numerically higher in the FF silkworms (FDR <0.05). Proline can
be transformed by arginine and ornithine (Xu et al., 1980) to

partly or completely meet the requirement of silkworm growth.

In the FF group, proline was significantly higher in the MG,

which indicated the high content of proline was partly derived

from the diet source. The lack of proline could restricted the

development and growth of silkworms (Ito, 1972). In this study,

the higher content of proline in the FF group might be helpful to

explain the heavier pupae weight of the FF group. The higher

proline content was metabolized into hydroxyproline and

L-glutamate, both of which were significantly higher than

those in the ML silkworms (p < 0.05). L-glutamate is an

essential amino acid for silkworm (Ito, 1972), which provides

amidogen in transaminatin. Under the role of alanine

aminotransferase, L-glutamate could be metabolized into

pyruvic acid (Fukuda, 1957), which could provide energy for

silk synthesis. However, pyruvic acid was not significantly

different between the FF and ML silkworms, which might be

attributed to the less active alanine aminotransferase in the FF

silkworms. It was reported alanine aminotransferase was less

active when the vitamin B6 was insufficient in silkworms (Horie

and Nakamura, 1986). In this study, we inferred vitamin B6 was

in short supply in the Discussion section: Significantly different

metabolites. Thus, we thought the insufficient vitamin B6
restricted the activity of alanine aminotransferase which

further limited the transformation of L-glutamate to pyruvic

acid and restricted the silk synthesis ultimately.

4.4 Biomarkers associated with cocoon
yield performance traits

Biomarker analysis combined with a Pearson correlation

calculation revealed six biomarkers that showed positive or

negative relationships with the WCY, CSW and CSR:

homocitrulline (Log2FC = 4.88, 4.82 and 8.88 in the MG, HL

and PSG, respectively), glycitein (Log2FC = 12.6, 9.83 and 8.43 in

the MG, HL and PSG, respectively), valyl-threonine (Log2FC =

4.56, 4.28 and 5.19 in the MG, HL and PSG, respectively), propyl

gallate (Log2FC = 12.1, 9.70 and 14.3 in the MG, HL and PSG,
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respectively), 3-amino-2,3-dihydrobenzoic acid (Log2FC = 1.93,

2.44 and 3.97 in the MG, HL and PSG, respectively) and 3-

dimethylallyl-4-hydroxyphenylpyruvate (Log2FC = -2.98,

-3.64 and -4.60 in the MG, HL and PSG, respectively).

Among these six biomarkers identified, the first five showed a

positive relationship with WCY, and a negative relationship with

CSW and CSR.

Homocitrulline, an L-alpha amino acid, is a post-

translational modification product (Mahmoudi et al., 2019).

As reported, homocitrulline is closely associated with

inflammatory responses, physical condition and diseases (Lac

et al., 2018), and has been proposed to serve as a biomarker for

identifying patient frailty (Mahmoudi et al., 2019) or oxidative

stress relating to myeloperoxidase (Pireaux et al., 2021). In this

study, homocitrulline was significantly higher in the FF

silkworms, particularly in the PSG (Log2FC = 8.88). Thus, we

speculated that the FF silkworms might have been in a state of

oxidative stress or weakness, a possibility warranting further

exploration.

Glycitein, an isoflavonoid, was detected only in the FF group

in this experiment. It is present in high concentrations in natto,

miso and soybeans, according to the HMDB (https://hmdb.ca/

metabolites/HMDB0005781). Therefore, our results were

reasonable, given that soybean meal was a major component

of the experimental formula feed (1st to 3rd instar silkworm feed:

31%, 4th and 5th instar silkworm feed: 40%). Moreover, glycitein,

a primary metabolite, is directly associated with the growth,

development and reproduction of organisms (Hu et al., 2015;

Pastore et al., 2018). The extremely high glycitein might

contribute to greater growth and development of silkworm

larvae, thus resulting in a positive correlation between

glycitein and pupa weight, as included in the WCY.

Valyl-threonine, a dipeptide of valine and threonine, is an

incomplete breakdown product in protein digestion or

catabolism (https://hmdb.ca/metabolites/HMDB0029137). The

high content of valyl-threonine might have indicated

incomplete proteolysis in the FF silkworms, thereby restricting

the substrate supply for silk synthesis. Thus, this compound was

negatively correlated with CSR and CSW. Moreover, some

dipeptides have been found to be directly used in organism

development (Fedoreyeva et al., 2020), thus possibly explaining

the positive relationship with WCY.

Propyl gallate, an antioxidant used in the food industry

(Nguyen et al., 2021), was significantly higher in the FF

group. Propyl gallate is found in corn, a major component of

the experimental formula feed. In addition, gallic acid, a part of

propyl gallate, was added in the formula feed as a preservative.

Thus, the content of propyl gallate was affected by the diet

treatment. Propyl gallate is absorbed after ingestion (Becker,

2007), and thus showed a relatively higher concentration in the

MG, which plays important roles in digestion and absorption

(Shen et al., 2022). The HL, a circulatory system for nutrients and

metabolites, also contained more propyl gallate in the FF

group. The biological roles of propyl gallate include

scavenging of oxygen free radicals, antimicrobial activity,

inhibitory enzyme activity and biosynthetic processes

inhibition (Becker, 2007). Thus, the higher concentration of

propyl gallate might have resulted in lower microbiota and

enzymatic activity, thereby restricting nutrient metabolism

and silk synthesis in the FF group. Furthermore, propyl

gallate shows slight toxicity when ingested (Becker, 2007) and

therefore might have influenced silkworm health status.

The compound 3-amino-2,3-dihydrobenzoic acid, in the

category of amino acids, peptides and analogues, showed

higher concentrations in all experimental tissues of the FF

silkworms. This compound, also known as gabaculin or 5-

aminocyclohexa-1,3-diene-1-carboxylic acid, exists in all living

organisms and inhibits the activity of γ-aminobutanoic acid-

transaminase (Park et al., 2021) and ornithine aminotransferase

(Li et al., 2016). Inhibition of ornithine aminotransferase results

in restriction of ornithine synthesis with glutamate (KEGG

Module: M00028) as a substrate. Thus, the higher content of

3-amino-2,3-dihydrobenzoic acid might have restricted the

corresponding amino acid metabolism in the FF silkworms

and partially explained the negative correlations between 3-

amino-2,3-dihydrobenzoic acid and CSW, and 3-amino-2,3-

dihydrobenzoic acid and CSR. In plant research, 3-amino-2,3-

dihydrobenzoic acid is used as an inhibitor of chlorophyll

biosynthesis, a tetrapyrrole synthesis relating to heme and

holocytochrome (Demko et al., 2010).

As the only biomarker which was negatively correlated with

WCY and positively correlatedwithCSWandCSR, 3-dimethylallyl-

4-hydroxyphenylpyruvate was significantly lower in the FF

silkworms. Of note, 3-dimethylallyl-4-hydroxyphenylpyruvate

was also the only top SDM identified mutully in all experimental

tissues in this research. On the basis of the KEGG database, 3-

dimethylallyl-4-hydroxyphenylpyruvate is involved in novobiocin

biosynthesis (KEGG PATHWAY: map00401) and biosynthesis of

secondary metabolites (KEGG PATHWAY: map01110). In the

novobiocin biosynthesis pathway, 3-dimethylallyl-4-

hydroxyphenylpyruvate is indirectly synthesized by L-tyrosine.

Given the higher tyrosine and lower 3-dimethylallyl-4-

hydroxyphenylpyruvate levels, we inferred that the novobiocin

biosynthesis pathway was less active in the FF silkworms.

5 Conclusion

In this study, systematic metabolomic profiles of the MG, HL

and PSG were integrated to clarify the metabolic characteristics

of silkworms fed formula feed versus mulberry leaves. Cysteine

and methionine metabolism; arginine biosynthesis; and arginine

and proline metabolism were mutual key pathways affecting

cocoon yield performance traits. Homocitrulline, glycitein, valyl-

threonine, propyl gallate, 3-amino-2,3-dihydrobenzoic acid were

positively correlated with WCY, but negatively correlated with
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CSW and CSR, while 3-dimethylallyl-4-hydroxyphenylpyruvate

showed an opposite correlation pattern. In other words, the lower

level of homocitrulline, glycitein, valyl-threonine, propyl gallate,

3-amino-2,3-dihydrobenzoic acid and the higher level of 3-

dimethylallyl-4-hydroxyphenylpyruvate, the higher CSW and

CSR might be achieved, which requires further validation by a

nutritional experiment further.
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The initial colonization and early development of the intestinal microbiome are

important stages in the growth of calves during pre-weaning. This study

investigated temporal changes in the diversity and composition of the fecal

microbiota, focusing on the first 2 weeks after birth, with the aim of identifying

intestinal bacteria and blood metabolites that are associated with calf diarrhea.

In this study, 10 calves were fed colostrum on day 0 after birth, whole milk from

days 2 to 5, and milk replacer from day 6. Six calves showedmild diarrhea in the

second week (i.e., from day 8 to 14). We observed dramatic changes in the

development of the fecal microbiome from day 2 to 14 and found several

bacterial species, such as Lactobacillus and Collinsella, changing significantly in

abundance during the milk transition (i.e., from day 4 to 10). In investigating

whether there is an association between the microbiome and the milk

transition, we found the level of hypotaurine and D-xylose to be significantly

higher in whole milk from days 4 and 5 than in milk replacer. A comparison of

four healthy calves and six diarrheal calves revealed that the diarrheal calves

had a low abundance of Collinsella on day 10. Furthermore, we explored

plasma metabolites statistically correlated with the change of fecal Collinsella

and found a high level of dimethylglycine in healthy calves. Taken together,

these findings suggest a possible link between temporary changes in the fecal

microbiome and neonatal diarrhea during the milk transition in calves.
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Introduction

The gastrointestinal microbiome has been proven to be a key

feature in the relationship between health and disease across

animal species. A balanced microbiome composition,

characteristic of each host species, is necessary for maintaining

the intestinal mucosal barrier, antagonizing the colonization of

pathogenic bacteria, and contributing to metabolism and

immune homeostasis (O'Hara & Shanahan, 2006). Disruption

of the composition of microbiota, known as “dysbiosis,” can

trigger several diseases, including gastrointestinal disorders

(Sommer et al., 2017). Neonatal diarrhea is predominantly

caused by enteric infections during the early stages of life in

mammals, when the gastrointestinal microbiome starts to

colonize and develop (Bauer et al., 2006).

Dairy cattle are known to have a diverse community of

ruminal bacteria that provides energy for growth and milk

production, whereas the rumen of neonatal calves is non-

functional but starts growing on the addition of cereal to their

diets at 3 or 4 weeks of age (Baldwin et al., 2004). It has been

suggested that the intestinal (not ruminal) microbiome plays an

instrumental role in maintaining calf health by not only

providing nutrients and energy, but also stimulating the host

immune system to combat pathogens (Yeoman & White, 2014;

Malmuthuge & Guan, 2017; Malmuthuge et al., 2019). Neonatal

diarrhea is one of the major causes of calf morbidity and

mortality and has a large impact on the economics of dairy

farms (Uetake, 2013; USDA, 2018). Although enteric infection is

often observed, the cause of neonatal diarrhea is difficult to

define because it commonly presents with coinfections and most

pathogens, consistent with the occurrence of neonatal diarrhea,

can also be found in healthy individuals (Cho et al., 2013; Adaska

et al., 2017). Recently, studies have reported differences in fecal

microbial communities between healthy and diarrheal calves

during the first few weeks of life (Oikonomou et al., 2013; Gomez

et al., 2017; Zeineldin et al., 2018).

The development of a healthy intestinal microbiome is

profoundly influenced by the calf’s diet, which is essential in

preventing calf diarrhea (Malmuthuge & Guan, 2017; Badman

et al., 2019). In general, dairy calves are fed colostrum within a

few hours of birth and their diet is changed from whole milk to

milk replacer or a solid diet within 2–7 days. There are various

management protocols to optimize the process of milk

transition and weaning (Khan et al., 2011). However, even

under a proper management protocol, neonatal diarrhea is

often observed after the milk transition. More importantly,

some calves develop diarrhea and others do not, even under the

same management protocol. These observations prompted us

to investigate changes in the intestinal microbiota before and

after the milk transition, and to explore whether there is an

association between changes in the microbiome and

neonatal diarrhea.
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In this study, we analyzed the change in the fecal microbiome

by next-generation sequencing and determined the metabolite

profiles of colostrum, whole milk, and milk replacer by

untargeted metabolomics using gas chromatography–mass

spectrometry (GC-MS). The abundance of bacteria significantly

changed during the milk transition, and there were different

levels of one species of bacterium, Collinsella, between healthy

and diarrheal calves. In addition, we found that levels of

dimethylglycine in plasma, which show a positive correlation

with the abundance of Collinsella, decreased in the diarrheal

calves. This study suggests that a temporary change in the fecal

microbiome during the milk transition may be associated with

diarrhea in early neonatal calves.
Materials and methods

Animals and sample collection

A total of 10 female Holstein calves born from March to June

2019 were randomly enrolled in this study for fecal and plasma

sampling. In addition, the calves’ mothers (10 Holstein cows) were

used for collecting corresponding milk samples. The newborn calves

were moved to the calf hutch 1 h after birth. From each cow,

colostrum was obtained within 1 h after birth (day 0), and whole

milk was collected daily at 8:00 and 16:30 with a bucket milker from

days 1 to 5 after parturition. The milk was warmed to approximately

38°C and artificially fed twice a day to the calves using a feeding

bottle. The calves were fed the milk collected from their respective

mothers. Milk replacer containing 28% crude protein (CP) and

4.23 Mcal/kg metabolizable energy (ME) (for composition see

Supplementary Table S1) was fed to the calves at 9:30 and 16:30

from days 6 to 48 after birth. Calf starter, including 19%CP and 2.89

ME (for composition see Supplementary Table S1), and roughage

(timothy hay) were fed ad libitum from day 6 after birth. A summary

of the feeding procedure is shown in Supplementary Figure S1. Feces

and blood samples were collected from calves at 9:00 on days 2, 4, 6,

8, 10, and 14 after birth and stored at –20°C until analysis. Fecal

consistency was monitored, and feces showing a liquid appearance

were recorded as diarrhea. All experiments were performed in

accordance with the guidelines of the University Animal Care and

Use Committee of the Tokyo University of Agriculture and

Technology (Fuchu, Japan) (R03-176).
DNA extraction from fecal samples

Genomic DNA from the collected fecal samples was

extracted using a QuickGene DNA tissue kit S (Kurabo

Industries Ltd, Osaka, Japan) in accordance with the

manufacturer’s instructions. In brief, 40 mg of feces, 15 mg of

0.2-mm glass beads (No.02, Toshin Riko Co., Ltd, Tokyo, Japan),
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and 200 µl of tissue lysis buffer were mixed and bead

homogenized at 3,000 rpm for 120 s using a Micro Smash Cell

Disrupter (MS-100, Tomy Seiko Co., Ltd, Tokyo, Japan).

Proteinase K (25 µl) was added to the homogenized sample

and the sample was incubated at 55°C for 1 h. The sample was

then centrifuged for 10 min at 16,000 × g at 20°C, and the

supernatant was transferred to another microtube containing

180 µl of lysis buffer and incubated at 70°C for 10 min. After

incubation, 240 µl of > 99% ethanol was added to the microtube

and vortexed at the maximum speed for 15 s. The whole lysate

was transferred to a QuickGene Mini480 cartridge and

pressurized. Wash buffer (750 µl) was applied three times to

the cartridge. After the third wash, 200 µl of elution buffer was

added and the mixture was incubated at 20°C. DNA was

extracted after the third pressurization. The DNA

concentration was adjusted to 20 ng/µl using elution buffer.
Library preparation and DNA sequencing

16S ribosomal RNA (rRNA) metagenomic analysis of fecal

samples was performed. Briefly, a PCR targeting the variable

regions 3 and 4 (V3–4) of the 16S rRNA gene was performed

using the primers 341F (5′-CCTACGGGNGGCWGCAG-3′)
and 805R (5′-GACTACHVGGGTATCTAATCC-3′), followed
by a second PCR to attach dual indices. The amplicon of the

second PCR was purified and the concentration was normalized

with a SequalPrep Normalization Plate Kit (Life Technologies,

Tokyo, Japan). The size and quantity of the library were assessed

with a Bioanalyzer 2100 (Agilent Technologies Japan Ltd,

Tokyo, Japan) and a Library Quantification Kit for Illumina

(Kapa Biosystems, Inc., Wilmington, MA, USA), respectively.

The library was mixed with phiX control and sequenced using a

MiSeq v3 kit (Illumina Inc., San Diego, CA, USA) in accordance

with the manufacturer’s instructions. Data from the sequences

were processed using QIIME 2™ (version 2021.11), and the

imported reads were denoised using the DADA2 plugin to

generate the amplicon sequence variant (ASV) feature table.

Singleton and ASVs assigned to mitochondria and chloroplasts

were excluded from further analysis. Taxonomy was assigned to

filtered ASVs using a pretrained QIIME 2-compatible SILVA

version 138 database (99% full-length sequences). We assayed

for microbial variance using the MicrobiomeAnalyst software

with default settings (URL: www.microbiomeanalyst.ca). All 16S

rRNA sequencing data were deposited in September 2022 and

are available under the accession number PRJNA835625.
Sample preparation for metabolomic
analysis

The whole-milk samples collected from individual calves’

mothers were centrifuged at 21,500 × g for 60 min at 4°C, and
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the middle layer was collected as skimmed milk. The milk

replacers, prepared for each of the calves, were also centrifuged.

Blood anticoagulated with ethylenediaminetetraacetic acid

(EDTA) was centrifuged at 2,000 × g for 20 min at 4°C, and

plasma samples were collected.

An untargeted metabolomics analysis was performed using

GC-MS, as described previously, with some modifications

(Usuda et al., 2018). For the pretreatment solution of the

plasma, 50 ml of filtered plasma was mixed with 250 ml of
methanol–chloroform–water (2.5 : 1 : 1) and 5 ml of 1 mg/ml

2-isopropylmalic acid as an internal standard. The samples were

subsequently mixed in a shaker at 1200 rpm at 37°C for 30 min

and centrifuged at 16,000 × g at 4°C for 5 min, and 225 ml of the
supernatant was mixed with 200 ml of distilled water and

vortexed. This was followed by centrifugation at 16,000 × g at

4°C for 5 min, and 250 ml of the supernatant was partially dried
using a centrifugal evaporator CVE-2200 (Tokyo Rikakikai Co.,

Ltd, Tokyo, Japan) for 30 min and frozen at –80°C. The frozen

samples were completely dried using vacuum freeze-drying

equipment FDU-1200 (Tokyo Rikakikai Co., Ltd, Tokyo,

Japan) for 16 h. The dried samples were dissolved in 40 µl of

20 mg/ml pyridine-containing methoxamine hydrochloride

(Sigma-Aldrich Co. LLC, St. Louis, MO, USA) and incubated

in a shaker at 1,200 rpm at 30°C for 90 min. To this, 20 ml of N-
methyl-N-trimethylsilyl-trifluoroacetamide (MSTFA, Thermo

Fisher Scientific, Waltham, MA, USA) was added and the

samples further incubated in a shaker at 1,200 rpm at 37°C

for 45 min.

For pretreatment of the skimmed milk, 50 ml of filtered
skimmed milk was mixed with 50 µl of water, 800 µl of

acetonitrile, and 5 ml of 1 mg/ml 2-isopropylmalic acid. The

samples were subsequently mixed in a shaker at 1200 rpm at 37°

C for 30 min and centrifuged at 16,000 × g at 4°C for 5 min. After

centrifugation, the derivatization of skimmed milk samples was

performed using a solid-phase derivatization kit for metabolome

analysis (AiSTI SCIENCE Co., Ltd, Wakayama, Japan).
Metabolomic analysis using gas
chromatography–mass spectrometry

One microliter (plasma) or 2 µl (milk) of the derivatized

sample was injected splitless into a GC-MS QP2020 NX

(Shimadzu Corporation, Kyoto, Japan). The capillary column

was a 1.00-mm DB5 column (30 m × 0.25 mm i.d.; Agilent

Technologies, Inc., Santa Clara, CA, USA). The temperature of

the vaporizing chamber was 280°C, and the gas flow rate through

the column was maintained at 5 ml/min. The temperature

program was as follows: 4 min of isothermal heating at 100°C,

which was then increased to 320°C at 10°C/min and held at 320°C

for 11 min. Ions were generated at 70 eV using electron ionization

and recorded at intervals of 0.2 s over the mass range of 45–

600 m/z. The metabolites were identified using the standard Smart
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Metabolites Database (Shimadzu Corporation, Kyoto, Japan),

with each peak being identified manually using LabSolution

(Shimadzu Corporation, Kyoto, Japan), and data analysis

conducted using MetaboAnalyst (URL: www.metaboanalyst.ca/)

(Chong et al., 2019).
Statistical analysis

The data presented were analyzed and visualized using

MicrobiomeAnalyst, MetaboAnalyst, and GraphPad Prism 9

(GraphPad Software Inc., San Diego, CA, USA). In microbiome

analysis, the beta diversity of the fecal microbiome was plotted by

principal coordinate analysis (PCoA) on unweighted unique

fraction metric (UniFrac) distance and permutational

multivariate analysis of variance. A linear discriminant analysis

effect size (LEfSe) analysis was performed to discriminate

microbial features among groups. In metabolomics analysis,

partial least-squares discriminant analysis (PLS-DA) was used to

visualize the separation among the groups [i.e., colostrum (day 0),

whole milk (days 1, 2, 3, 4, and 5 after parturition), and milk

replacer], and to identify important metabolites responsible for

the separation. To further analyze the differences between the

whole milk and milk replacer, a volcano plot selected significant

metabolites with a fold change threshold of 10 and a t-test

threshold of p < 0.05. Correlations between the selected

microbial and serum metabolites were analyzed by Pearson’s

correlation test. The identified bacteria and metabolites were

statistically compared between healthy and diarrheal calves

using Bonferroni correction with Dunn’s test. Differences were

considered statistically significant at a p-value < 0.05.
Results

Changes in fecal microbiome
composition during milk transition

To investigate the compositional changes in the fecal

microbiome during the milk transition, 16S rRNA gene

sequencing was conducted using fecal samples from day 2 to 14

after birth. In total, 1,376,154 (mean ± SD: 22,936 ± 5,020 reads/

sample) sequence reads were obtained from 60 samples. As shown

in Figure 1A, the alpha diversity index represents the dynamics of

the microbiome composition. Chao1, which is defined as

“richness,” and Shannon, which is defined as “evenness,”

increased from day 2 to 14 after birth. Similarly, in the PCoA

plot based on the unweighted UniFrac distance, beta diversity

gradually changed from day 2 to 14 (Figure 1B). In this study, all

calves were fed whole milk from their mothers until day 5 after

birth, but were switched to a milk replacer on day 6

(Supplementary Figure S1 and Figure 2A). To detect the specific

bacteria associated with the milk transition, we conducted the
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LEfSe using samples from days 4, 6, 8, and 10, and identified four

bacterial genera, namely Clostridium sensu stricto 2, Lactobacillus,

Collinsella, and Phascolarctobacterium, showing high logarithmic

linear discriminant analysis scores (Figures 2B, C).
Differences in metabolic components
between whole milk and milk replacer

Untargeted metabolomic analysis of the milk samples detected

113metabolites, and PLS-DA showed that colostrum on day 0 had

a high variability among the mother cows, but the variation

decreased each day and the metabolite composition in whole

milk was stable on day 4 and day 5 after parturition. Milk replacer

formed a separate cluster from the whole-milk sample

(Figure 3A). The patterns in the abundance of several

metabolites were identified by PLS-DA. For example, fructose 6-

phosphate, mannose 6-phosphate, and glucose 6-phosphate

decreased, whereas orotic acid and ureidosuccinic acid

increased, from day 0 (in colostrum) to 5 (in whole milk and

the milk replacer) (Figure 3B). To identify further differences in

metabolites between the whole milk (days 4 and 5) and the milk

replacer, we constructed a volcano plot, which identified seven

metabolites, as shown in Figure 3C (p < 0.05, fold change

threshold 10). Histograms denoting the relative abundance of

the metabolites hypotaurine, D-xylose, and ureidosuccinic acid in

the milk replacer and whole milk (days 4 and 5) are shown in

Figure 3C (right).
Differences in the fecal microbiome
between healthy and diarrheal calves

One calf in the first week after birth and six calves in the second

week after birth showed mild diarrhea (Figure 4A and

Supplementary Table S2). Diarrhea observed during this period

was temporary and all animals recovered the next day, and body

weight gain was normal for all calves (Supplementary Figure S2).

Calves were divided into two groups (i.e., four healthy calves and six

diarrheal calves) based on the observation of diarrhea in the second

week after birth. There was no difference in the Chao1 index

between healthy and diarrheal calves (Figure 4B). Of the four

bacteria that change their abundance during the milk transition,

Collinsella revealed a different trend in comparing healthy and

diarrheal calves. As shown in Figure 4C, Collinsella on day 10, after

milk transition, was lower in diarrheal calves than in healthy calves.
Differences in plasma metabolites
between healthy and diarrheal calves

We hypothesized that Collinsella is an important bacterium

in the early development of calves; therefore, we explored plasma
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metabolites that correlate with the abundance of Collinsella in

calf feces. Pearson’s correlation analysis revealed that

dimethylglycine, beta-alanine, and glyoxylic acid were

positively correlated with the abundance of Collinsella

(Figure 5A). As shown in Figure 5B, plasma dimethylglycine

showed a different trend when comparing healthy and

diarrheal calves.
Discussion

The gut microbiome encompasses the bacteria inhabiting

the gastrointestinal tract. The gut microbiome plays a critical

role in the development and functioning of the gastrointestinal

tract and overall gut health across animal species. The disruption
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of this optimal bacterial community (i.e., dysbiosis) can

contribute to gastrointestinal disorders. Neonatal diarrhea is

often observed in calves with an immature rumen and has

been associated with intestinal microbiome colonization and

development during the pre-weaning period. In this study, we

focused in particular on the first 2 weeks after birth, when the

milk transition, from whole milk to milk replacer, took place,

and found that the levels of several fecal bacteria, such as

Lactobacillus and Collinsella, changed significantly during the

milk transition. A comparison of healthy and diarrheal calves

indicated that Collinsella decreased after the milk transition in

diarrheal calves. Furthermore, we found that plasma

dimethylglycine, which shows a positive correlation with

Collinsella, also decreased in the diarrheal calves. This study

suggests a link between temporary changes in the fecal
A

B

FIGURE 1

Changes in fecal microbiome composition in pre-weaned calves. (A) Chao1 and Shannon index of alpha diversity in fecal samples from day 2 to 14 after
birth (n = 10). (B) Plots of principle coordinate analysis based on the unweighted unique fraction metric (UniFrac) distance of microbial communities.
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microbiome and neonatal diarrhea during the milk transition

in calves.

A calf’s intestinal microbiome has a simple and less diverse

bacterial community at birth and it increases in complexity and

diversity with growth (Mayer et al., 2012; Oikonomou et al.,

2013; Dill-McFarland et al., 2017). We observed dramatic

development of the fecal microbiome, with an increase in the

alpha diversity (Chao1 and Shannon), from day 2 to 14 after

birth. Analysis of the beta diversity also showed that the

composition gradually changed as the calves grew. LEfSe

identified four bacterial genera that showed significant changes

during the milk transition, with a linear discriminant analysis

score >5.0. It was reported that the postnatal intestinal

microbiome is profoundly influenced by the type of milk

(Deng et al., 2017; Badman et al., 2019) and, therefore, we also

investigated the compositional differences between whole milk

(from days 4 and 5 after birth) and milk replacer. Untargeted

metabolomic analysis found that the milk replacer was deficient

in hypotaurine and D-xylose compared with whole milk.

Hypotaurine, a precursor of taurine, is known as an

antioxidant and is involved in a variety of crucial biological

functions, including cell proliferation, immunomodulation, and

oxidative stress inhibition (Green et al., 1991; Bouckenooghe
Frontiers in Animal Science 06
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et al., 2006; Sakuragawa et al., 2010). A recent report indicated

that dietary polyphenols, a major group of antioxidants, are

relevant in the modulation of the human gut microbiome and

that gut bacteria convert polyphenols into active and

bioavailable metabolites for host health (Tomás-Barberán

et al., 2016). In addition, hypotaurine and D-xylose can be

utilized by bacteria as a source of carbon, nitrogen, and energy

for growth; therefore, a milk replacer deficient in hypotaurine

and D-xylose might alter development of the intestinal

microbiome. These findings suggest that these metabolites

could be used to supplement milk replacers as a means of

promoting a beneficial microbiome in the early development

of calves.

In this study, one calf in the first week after birth and six

calves in the second week after birth showed mild diarrhea. Ma

et al. (2020) reported that most of the diarrhea incidence in veal

calves occurred between 7 and 21 days of age and speculated that

this might be associated with the lower relative abundance of

Blautia and higher relative abundance of Escherichia-Shigella at

14 days of age. Although we could not detect those two bacterial

changes by LEfSe, we found that the abundance of Collinsella

was significantly higher in healthy calves than in diarrheal calves

on day 10. In humans, Collinsella and Bifidobacterium are
A B

C

FIGURE 2

Changes of specific bacteria during milk transition. (A) Chao1 index of alpha diversity during milk transition (n = 10). All calves were switched
from whole milk from their mother to a milk replacer on day 6. (B) Specific genera identified by linear discriminant analysis effect size (LEfSe).
The colored boxes on the right indicate the relative abundance of the corresponding genera each day. (C) Changes of
Clostridium_sense_stricto_2, Lactobacillus, Collinsella, and Phascolarctobacterium during milk transition.
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known as the major lactose utilizers. Collinsella and

Bifidobacterium act to modify the bile acids of the host and

modulate the virulence and pathogenicity of enteric pathogens

(Rajilić-Stojanović & De Vos, 2014). It was also reported that

zinc supplementation to newborn calves for 14 days reduced the

incidence of diarrhea, and the relative abundance of Collinsella

was higher in those calves (Chang et al., 2020). Taken together,

this study further suggests that low levels of Collinsella

abundance during the milk transition may be associated with

an increased incidence of diarrhea.

Further investigation revealed that plasma metabolites,

such as dimethylglycine, beta-alanine, and glyoxylic acid,

were positively correlated with the abundance of fecal

Collinsella. Further experiments are required to determine

the detailed relationship between these metabolites in plasma

and Col l inse l la in the feca l microbiota ; however ,

dimethylglycine is known as an anti-stress nutrient with

antioxidant properties, and it has been reported to improve

offspring growth performance in piglets (Bai et al., 2022). It is
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also known that dimethylglycine can be derived from gut

microbiota, and microbiome- and smoking cessation-induced

weight gain involves a concerted host and microbiome

shunting of dietary choline to dimethylglycine, which drives

an increased gut energy harvest (Fluhr et al., 2021). These

observations suggest that dimethylglycine may be an essential

nutr ient for the ear ly development of calves and

healthy growth.

In conclusion, we investigated the temporal changes in the

fecal microbiome and plasma metabolites during the milk

transition in early neonatal calves. We found that the

bacterium Collinsella and the metabolite dimethylglycine

were key factors associated with the milk transition and/or

diarrhea. However, the number of animals used in this study

was small, and, because it was primarily an observational study

using next-generation sequencing, further research is

warranted to verify the validity of the suggested links

between the bacteria, the metabolite, and diarrheal incidence

in the early lives of calves.
A B

C

FIGURE 3

Differences in metabolic components between whole milk and milk replacer. (A) 2D principal component analysis score plot of colostrum (day
0, n = 10), whole milk (days 1, 2, 3, 4, and 5 after parturition, n = 10 each), and milk replacer (n = 20). (B) Important features identified by partial
least-squares discriminant analysis (PLS-DA). The colored boxes on the right indicate the relative concentrations of the corresponding
metabolites in each group. (C) Statistically significant features with a fold change threshold of 10 (x-axis) and a t-test threshold of p < 0.05
(y-axis) selected by a volcano plot. The red circles represent higher metabolites in whole milk on days 4 and 5 and the blue circles represent
higher metabolites in milk replacer. On the right, histograms show the relative abundance of hypotaurine, D-xylose, and ureidosuccinic acid in
milk replacer and whole milk on days 4 and 5.
frontiersin.org

https://doi.org/10.3389/fanim.2022.934204
https://www.frontiersin.org/journals/animal-science
https://www.frontiersin.org


Kojima et al. 10.3389/fanim.2022.934204
A B

C

FIGURE 4

Differences in fecal microbiome between healthy calves and diarrheal calves. (A) Number of calves with diarrhea in the first or second week
after birth. (B) Chao1 index of alpha diversity during milk transition. Calves were divided into two groups (i.e., four healthy calves and six diarrheal
calves) based on the observation of diarrhea in the second week after birth. (C) Changes of Lactobacillus and Collinsella in feces from healthy
and diarrheal calves during milk transition. Asterisk indicates significant difference between healthy calves and diarrheal calves using the
Bonferroni Correction with Dunn Test method (p < 0.05).
A B

FIGURE 5

Differences in plasma metabolites between healthy and diarrheal calves. (A) Identified serum metabolites correlated with the abundance of
Collinsella by Pearson’s correlation analysis. (B) Change of dimethylglycine in serum from healthy and diarrheal calves during milk transition.
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SUPPLEMENTARY FIGURE 1

Diet of calves (n = 10) until day 56. Bar graph: Intake of milk feed per day

(colostrum, whole milk, and milk replacer). Line graph: Intake of solid diet
per day (calf starter pellet and roughage).

SUPPLEMENTARY FIGURE 2

Weight of individual calf until day 56. The average weight gain rate
showed no significant difference.

SUPPLEMENTARY TABLE 1

Composition of milk replacer and calf starter.

SUPPLEMENTARY TABLE 2

Diarrhea incidence and antibiotic treatment during the 2 weeks after birth.

SUPPLEMENTARY TABLE 3

Comparison of feed intake of healthy and diarrheal calves.
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Metabolomic exploration of the
effects of habituation to livestock
trailer and extended
transportation in goats
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Goats raised for meat production are often transported long distances. Twelve-

month-oldmale Spanishgoatswereused todetermine the effects of habituation to

trailers on plasmametabolomic profiles when transported for extended periods. In

a split-plot design, 168 goats were separated into two treatment (TRT; whole plot)

groups and maintained on two different paddocks. Concentrate supplement was

fed to one group inside two livestock trailers (habituated group, H), while the other

group received the same quantity of concentrate, but not inside the trailers (non-

habituated,NH).Goatswere subjected to a 10-h transportation stress in 4 replicates

(n = 21 goats/replicate/TRT) after 4 weeks of habituation period. Blood samples

were collected prior to loading, 20min after loading (0 h), and at 2, 4, 6, 8, and 10 h

of transportation (Time; subplot). A targeted quantitative metabolomics approach

was employed to analyze the samples. The data were analyzed using R software

and MIXED procedures in SAS. Several amino acids (alanine, serine, glycine,

histidine, glutamate, trans-hydroxyproline, asparagine, threonine,

methylhistidine, ornithine, proline, leucine, tryptophan) were higher (p < 0.05) in

the H group compared to the NH group. Six long-chain acylcarnitines were higher

(p < 0.05), while free (C0) and short-chain (C3, C5) carnitines were lower (p < 0.05)

in the NH goats compared to the H goats. In general, amino acid concentrations

decreased and long-chain acylcarnitine (>C10) levels increasedwith transportation

time (p < 0.05). Butyric acid, α-ketoglutaric acid, and α-aminoadipic acid

concentrations were lower (p < 0.05) and β-hydroxybutyric acid concentrations

were higher in the NH goats compared to the H goats. Plasma glucose, non-

esterified fatty acid (NEFA) and urea nitrogen concentrations were significantly

influenced by Time (p <0.01). PlasmaNEFA concentrationswere significantly lower

(p<0.01) in theHgroup than theNHgroup.Habituation to trailers can bebeneficial

in enhancing stress coping abilities in goats due to higher concentrations of

metabolites such as butyrate and certain amino acids that support antioxidant

activities and immune function. Plasma long-chain acylcarnitines may be good

indicators of stress during long-distance transportation in goats.
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Introduction

In the US, goats raised for meat production are often transported

long distances under commercial situations. Long-distance

transportation results in physiological changes in animals to

maintain body homeostasis, and adverse effects of stress become

evident when physiological mechanisms fail to counterbalance.

Assuring the well-being of animals during transportation is

becoming a growing societal concern since the negative effects of

stress can be prolonged for days after transportation.

Food animals are exposed to various stress factors, such as

handling, loading and unloading, novel environment, noise, motion,

and vibration, disruption of social structure, food and water

deprivation, and extreme temperature and humidity conditions

(Kannan et al., 2000; Minka and Ayo, 2009). Severe preslaughter

stress related to transportation has been reported as one of themajor

factors affecting meat quality in small ruminants (Kannan et al.,

2003). Evidence from previous studies suggests that transportation

stress elicits metabolic changes that impact adrenocortical activity,

energy balance, immune response, and body weight in goats

(Kannan et al., 2000).

To evaluate stress in food animals, researchers have used a

wide range of physiological indicators, and studies have also

focused on the validity of these animal welfare indices (Verbeke

and Viaene, 2000). Increase in plasma non-esterified fatty acid

(NEFA) concentrations have been observed in goats after feed

deprivation and transportation (Kannan et al., 2002, 2003) and in

sheep after 8 h of transportation (Zhong et al., 2011). Blood

glucose and urea nitrogen (BUN) concentrations increase due to

transportation in goats and remain elevated after transportation

during the initial hours of holding (Kannan et al., 2000). Stress

due to heat and transportation causes higher β-hydroxybutyrate
concentrations in goats and other ruminants (Salama et al., 2014;

Batchu et al., 2021).

The metabolome is a collection of small molecular mass

components found in biological media, and metabolomic

analysis involves large-scale detection and quantification of

metabolites (Junot et al., 2014). Advanced analytical

techniques and chemometrics are used to identify a vast

number of metabolites in a sample, including amino acids,

sugars, ketones, fatty acids, organic acids, and exogenous

small molecules. Our previous study indicated that stress has

a significant impact on the plasma metabolome in goats, with the

amino acid levels decreasing and medium- and long-chain

acylcarnitine concentrations increasing with increasing

duration of stress (Batchu et al., 2021). Therefore, plasma

acylcarnitine concentrations could reflect oxidation rate of

fatty acids and amino acids in tissues, particularly in liver and

muscle (Xu et al., 2011).

The behavioral and physiological responses of an animal can

be negatively affected when exposed to a novel situation, and

repeated exposure to the same stressor such as handling can

attenuate these responses (Ujita et al., 2021). Habituating to

transportation has been reported to significantly decrease the

frequencies of behaviors indicative of stress as well as

physiological stress responses in donkeys (Dai et al., 2020).

These authors further observed that habituation to

transportation reduced the time needed to load donkeys onto

the vehicle. Weeks et al. (2012) also reported that regardless of

the age of horses, habituation made the loading process

considerably easier. Habituating animals to transportation

may help animals cope with the detrimental effects of stress

(Stockman et al., 2011); however, to what extent this can be

applied in commercial conditions is questionable. We propose

habituating goats to livestock trailers may be a more practicable

method that could be easily adopted by goat producers

worldwide, who invariably operate on smaller-scale and with

limited resources.

There are no data available on the effects of conditioning

goats to livestock trailers on stress responses during

transportation. Recent studies conducted in other livestock

species have confirmed the positive effects of habituation to

handing and transportation in reducing stress-related

physiological responses (Dai et al., 2020; Ujita et al., 2021).

The objective of this study was to determine the effects of

habituation to livestock trailers on plasma metabolomic

profiles in goats.

Materials and methods

Animals

The protocol for this research was reviewed and approved by

Fort Valley State University’s Animal Care and Use Committee

prior to beginning the experiment. Twelve-month-old male Spanish

goats were used to determine the effects of habituation to trailers on

plasma metabolomic profiles when transported for long periods.

The goats were dewormed 3 weeks before the study. All animals

were examined for general health status and were determined to be

healthy prior to beginning of the experiment. In a split-plot design,

168 uncastrated male Spanish goats (12-month old; Average BW =

31.6 ± 0.34 kg) were separated into two treatment (TRT; whole plot)

groups and maintained on two different grass paddocks

(predominantly Bermudagrass, Cyanodon dactylon). Concentrate

supplement (commercial goat pellet, 14% crude protein) was fed to

one group inside two livestock trailers (5.3 × 2.3 m each; habituated

group, H), while the other group received the same quantity of

concentrate, but not inside the trailers (non-habituated, NH).

Habituation to trailer was conducted during feeding time

between 8:30 a.m. and 9:30 a.m. every day during the months of

March-April. The average high/low temperatures in March were

21.1°C/7.2°C and inApril were 25.0°C/10.6°C. Every day, the animals

remained in the trailer for a 50 ± 10 min-period until all the

concentrate feed was consumed. Goats were subjected to a 10-h

transportation stress on 4 consecutive days (replicates; n = 21 goats/
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replicate/TRT) after 4 weeks of habituation period. The livestock

trailers used for habituation and transportation were identical in

dimensions and positions of windows provided for ventilation. The

average temperatures on the days 1, 2, 3, and 4 of transportation

trials were 17.8, 21.7, 22.5, and 23.1°C, respectively. The average

relative humidity percentages were 68.0, 73.5, 68.5, and 79.0,

respectively, on days 1, 2, 3, and 4. Each trailer was partitioned

into two compartments with H goats in one compartment and the

NH goats in the other. The order of loading of goats onto the trailer

was alternated on each day, such that H goats were in the front

compartment on 1 day and they were in the rear compartment on

the next day. The floor space allocated was 0.29 m2/animal during

transportation in all replicates that allowed adequate air circulation.

The goats were transported approximately 550 km at an average

speed of 61 km/h with a 10-min stop every 2 h for blood sampling.

To be consistent and to minimize vehicular vibrations, the same

route that comprised of paved roads was followed during

transportation on all 4 days.

Blood sampling

Blood samples were collected prior to loading (Preload, PL),

20 min after loading (0 h), and at 2, 4, 6, 8, and 10 h of

transportation (Time; subplot). For 2, 4, and 8 h sampling, the

truck was stopped for 10 min at each time period and blood

samples were collected inside the trailer to avoid repeated

unloading and loading animals. Only two individuals had to

enter the trailer, one animal handler and one blood sampler, for

blood sampling. All efforts were made not to agitate the goats,

including avoiding loud noise and rough handling. After blood

sampling, each goat was marked on the horns with a colored

marker to avoid being sampled again. Blood samples were

collected by a trained individual by jugular venipuncture into

K2EDTA-coated vacutainer tubes and kept on ice until

separation of plasma. Blood samples were collected without

any time lapse after the goats were caught in order to avoid

confounding of the effect of blood sampling. The individual who

collected the blood samples at all time points was so proficient

such that it took only a few seconds (<30 s) to draw a sample

from each animal. The tubes were then centrifuged at 1,000 × g

for 20 min for separation of plasma. Plasma samples were

pipetted into screw-cap vials and stored at −80°C until

analysis. For blood glucose, BUN, and creatine concentrations,

samples were obtained separately in 3 ml vacutainer tubes coated

with EDTA (K3) and kept on ice until analysis.

Plasma NEFA, BUN, creatine, and glucose
concentrations

The NEFA-HR (2) Kit (Fujifilm, Mountain View, CA) was

used to determine plasma NEFA concentrations. The

colorimetric assay was conducted using 96-well micro-titer

plates according to the instructions provided by the

manufacturer. Briefly, plasma samples (5 μL) were placed in

the wells, followed by 200 μL of color reagent A solution. The

plates were then incubated for 5 min at 37°C before the first

optical density measurement was made using a microplate reader

at a wavelength of 550 nm (Synergy HTX Microplate Reader,

Bio-Tek, Winooski, VT). Then, 100 μL of color reagent B

solution was added to each well, and the optical density was

measured again at 550 nm. By measuring against a standard

curve generated using the manufacturer’s instructions and

following the manufacturer’s directions, the difference between

the optical density readings was used to estimate NEFA

concentrations in each sample. The concentrations of glucose,

BUN, and creatine were determined using the VETSCAN

HM5 Hematology Analyzer (Abaxis, Union City, CA)

according to the manufacturer’s protocol.

Plasma metabolomics

All 168 plasma samples (n = 21 goats/replicate/TRT) were

shipped on dry ice to The Metabolomics Innovation Center

(TMIC) at the University of Alberta, Edmonton, Canada for

metabolomics analysis. The samples were analyzed utilizing a

targeted quantitative metabolomics technique that combined

direct injection mass spectrometry with a reverse-phase

LC–MS/MS custom assay. This custom assay, in combination

with a mass spectrometer, was used to identify and quantify up to

150 different endogenous metabolites, such as amino acids,

acylcarnitines, biogenic amines and derivatives, uremic toxins,

glycerophospholipids, sphingolipids, and sugars. Derivatization

and extraction of analytes were combined with selective mass-

spectrometric detection using multiple reaction monitoring

(MRM) pairs in this approach.

Samples were thawed on ice, vortexed and centrifuged at

13,000 × g for all metabolites except organic acids. The center of

the filter on the upper 96-well plate was loaded with 10 µL of each

sample, which was then dried in a nitrogen stream. Then, phenyl-

isothiocyanate was added for derivatization. The filter spots were

dried again with an evaporator after incubation. The metabolites

were extracted using 300 µL of extraction solvent. Centrifugation

into the lower 96-deep well plate yielded the extracts, which were

then diluted with MS running solvent.

For organic acid analysis, 50 µL of sample was mixed with

150 µL of ice-cold methanol and 10 L isotope-labeled internal

standard mixture for overnight protein precipitation. It was then

centrifuged for 20 min at 13000 × g. A 96-deep well plate was

loaded with 50 µL of supernatant, followed by the addition of 3-

nitrophenylhydrazine (NPH) reagent. Before LC-MS injection,

BHT stabilizer and water were added after a 2-h incubation.

An ABSciex 4000 Qtrap® tandem mass spectrometry

instrument (Applied Biosystems/MDS Analytical
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Technologies, Foster City, CA) with an Agilent 1260 series

UHPLC system (Agilent Technologies, Palo Alto, CA) was

used for mass spectrometric analysis. An LC approach was

used to deliver the samples to the mass spectrometer, followed

by a direct injection (DI) method. Analyst 1.6.2 was used to

analyze the data.

Statistical analysis

Plasma glucose, NEFA, BUN, and creatine concentration

data were analyzed using MIXED procedures in SAS. When

significant by ANOVA, the means were separated using the pdiff

procedure.

Data from all 168 samples were used for metabolomics

analysis. The metabolites with identical concentrations for all

samples (ex. 0 µM) and those with more than 20% of missing

concentrations were removed from the datasets. For multivariate

analysis, data were scaled by range scaling with Metaboanalyst R.

Samples with missing time points were removed and the data

were log-transformed for analysis of variance. For two-group

comparisons, the data from different time points were combined

and univariate T-test and effect size calculation were performed

for eachmetabolite. Because different sets of animals were used at

different time points, one-way ANOVA tests were performed for

longitudinal analysis of time points, followed by post-hoc tests

and effect size calculations. For comparison of TRT (H vs. NH) at

different time points, two-way ANOVA was conducted. For all

types of comparisons, PCA and PLS-DA tests were performed.

Since the data for all groups were not normally distributed,

univariate analysis was conducted using a non-parametric

version of statistical tests. Specifically, T test for two

independent samples was conducted with Mann-Whitney U

rank method. The effect size was calculated with the Cliff’s

Delta method. Fold change was determined by calculating the

ratio between group medians. One-way ANOVA was performed

using Kruskal–Wallis test. ANOVA post-hoc tests were

conducted using the Dunn’s test with Benjamini Hochberg

False Discovery Rate correction for multiple comparisons. The

effect size was calculated with the Cliff’s Delta method (Vargha

and Delaney, 2000; Macbeth et al., 2011). Fold change was

determined by calculating the ratio between group medians.

Two-way ANOVA and post-hoc tests were conducted on log-

transformed data, using Benjamini Hochberg False Discovery

Rate method to correct p-values for multiple comparisons. To

balance the risk of Type 1 and Type 2 errors, thresholds of

0.05 for raw p-values and 0.1 for FDR values were used to identify

statistically significant changes in metabolite concentrations

from the T test.

Metaboanalyst R was used to perform principal component

analysis (PCA) and partial least square discriminant analysis

(PLS-DA). The PLS-DA, a multivariate supervised pattern

recognition method, maximizes discriminating variation

between classes. The models were tested for performance and

the absence of overtraining with 10-fold cross-validation. The

model accuracy was considered satisfactory when R2 and

Q2 were above 0.66 and considered not over-trained when

R2 and Q2 were comparable with each other (within 20%). A

permutation test was conducted to assess statistical significance

of PLS-DA model. A model was considered statistically

significant if p < 0.05. The metabolites were then plotted

according to their importance in separating the different

treatment groups and transportation time groups based on the

PLS-DA results using variable importance in projection (VIP)

scores. A VIP score of >1.0 indicates that the metabolite is

significantly involved in separation of the classes.

Day (replicate) effects were removed by the commonly used

median batch effect correction (Rusilowicz et al., 2016). Median

concentrations of metabolites were calculated and a batch with

the largest median value was selected as the reference per

metabolite. For the remaining batches, correction factors for

FIGURE 1
Effects of habituation treatment (TRT) and transportation
time (Time; PL = Preload) on plasma (A) glucose (TRT, p = 0.14;
Time, p < 0.01; TRT × Time, p < 0.05) and (B) non-esterified fatty
acid (NEFA; TRT, p < 0.05; Time, p < 0.05) concentrations in
goats.
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each metabolite were calculated by subtracting the batch median

value from the reference median value. Finally, concentrations of

each metabolite in the remaining batches were adjusted by

adding the corresponding correction factors.

Results

Plasma glucose concentrations were significantly influenced

by Time (p < 0.01) and TRT × Time (p < 0.05; Figure 1A). In the

NH goats, glucose concentrations spiked at 2 h before gradually

decreasing, yet remained higher than PL and 0 h levels. However,

in the H group, the glucose concentrations increased gradually

and peaked at 4 h. The Time main effects showed that the

concentrations were highest at 2 and 4 h, lowest at PL and 0 h

sampling, and intermediate at 6, 8, and 10 h for both groups.

Plasma NEFA concentrations were significantly higher (p < 0.05;

Figure 1B) in the NH group compared to the H group. Plasma

NEFA concentrations were low at PL and 0 h sampling,

significantly increased at 2 h, and further increased with

increasing transportation time (p < 0.05) in both groups

(Time main effect). The overall BUN concentrations were

high at PL sampling, low at 6, 8, and 10 h, and intermediate

at 0, 2, and 4 h (p < 0.05; Figure 2A). Plasma creatine

concentrations were not affected by any of the factors

(Figure 2B).

At the metabolome level, 13 amino acids, 12 acylcarnitines,

25 phosphatidylcholines, and sphingomyelins, and 13 other

metabolites were significantly affected (p < 0.05) by TRT. Of

the 13 amino acids, 12 (alanine, serine, glycine, tryptophan,

histidine, glutamic acid, trans-hydroxyproline, asparagine,

threonine, ornithine, proline, and leucine) were significantly

lower in the NH group, while methylhistidine was higher in

the NH group compared to the H group (Table 1). Eight of the

acylcarnitines were higher in the NH group and 4 were lower in

the NH group compared to the H group (Table 1). All

25 phosphatidylcholines and sphingomyelins that were

significantly influenced by TRT were higher in the NH group

compared to the H group (Table 2). In addition, HPHPA, β-
hydroxybutyrate, creatinine, and acetyl-ornithine concentrations

were higher in the NH groups, while methylmalonic acid,

kynurenine, indole acetic acid, α-ketoglutaric acid, propionic

acid, uric acid, putrescine, butyric acid, and α-aminoadipic

acid were lower in the NH group compared to the H group

(Table 3).

Visualization of metabolites clustered by means of a heatmap

also revealed that the majority of the amino acids were higher in

the H group, while most of the phoshatidylcholines and

sphingomyelins and acylcarnitines were lower in the H group

compared to the NH group, as evidenced by the intensity of red

color (Supplementary Figure S1). When averaged across all time

points, stearoylcarnitine, β-hydroxybutyric acid, alanine,

lysophosphatidylcholine C18:0, hydroxysphingomyelin C22:1,

diacylphasphotidylcholine C36:0, sphingomyelin C18:1, serine,

methyl malonic acid, acetylcarnitine, kynurenine, sphingomyelin

C18:0, lysophosphatidylcholine C18:2, and

hexadecanoylcarnitine were the top 15 metabolites identified

by PLS-DA multivariate model (p < 0.05) and VIP values

with the highest influence (VIP scores >1.5) in separating the

H and NH groups, as shown in Figure 3.

Time had a significant effect (p < 0.05) on 20 amino acids,

with the concentrations decreasing with increasing

transportation time as shown in the box plots (Supplementary

Figure S2). Several long-chained acylcarnitine concentrations

increased (p < 0.05; Supplementary Figure S3) with increasing

transportation time, while this pattern was not apparent with

short-chained acyl carnitines. In addition, carnosine, pyruvic

acid, α-amino adipic acid, butyric acid, hippuric acid, lactic acid,

kynurenine, indole acetic acid, spermine, citric acid, serotonin,

and HPHPA were also significantly (p < 0.05) affected by Time

(Supplementary Figure S4). The changes in concentrations of all

metabolites that were significantly influenced by Time are shown

FIGURE 2
Effects of habituation treatment (TRT) and transportation
time (Time; PL = Preload) on plasma (A) urea nitrogen (Time, p <
0.05), and (B) creatine concentrations in goats.
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using a heatmap (Supplementary Figure S5). The PCA plot

created to visualize the separation of metabolites by Time in

principal components 1 and 2 showed that the clusters

corresponding to different time periods overlapped; however,

the clusters representing PL and 0 h spaced slightly apart from

clusters of other time periods (Figure 4). The top 15 metabolites

identified by PLS-DA multivariate model (p < 0.05) and VIP

values are shown in Figure 5. Aspartic acid, total

dimethylarginine, lysine, carnitine, propionylcarnitine,

glutamine, propenoylcarnitine, betaine, trans-hydroxyproline,

tiglylcarnitine, asymmetric dimethylarginine,

lysophosphatidylcholine C26:1, diacylphosphatidylcholine C40:

6, spermine, and acyl alkylphosphatidylcholine C36:0 had the

highest influence (VIP scores >1.5) in separating the different

time periods.

Interaction effects (TRT × Time) were significant (p < 0.05;

Figure 6) for α-ketoglutaric acid, kynurenine, 4 amino acids

(alanine, trans-hydroxyproline, isoleucine, ornithine), and

3 acylcarnitines (hexadecanoylcarnitine, octadecenoylcarnitine,

octadecanoylcarnitine). The increases in concentrations of the

3 acylcarnitines over transportation time was greater in the NH

group compared to the H group. The concentrations of the

TABLE 1 Amino acids and acylcarnitines significantly (p < 0.05) affected by treatment (H = Habituated; NH = Non-habituated) in goats.

Metabolite p-value FDRa Fold
change

Cliff’s delta effect
size

Cliff’s delta effect
level

Direction of
change

Amino Acids

Alanine 9.31e-05 2.04e-
03

0.85 0.33 Medium ↓ in NH

Serine 1.12e-04 2.04e-
03

0.81 0.33 Small ↓ in NH

Glycine 1.42e-04 2.04e-
03

0.90 0.32 Small ↓ in NH

Tryptophan 4.90e-04 4.24e-
03

0.86 0.29 Small ↓ in NH

Histidine 1.13e-03 8.11e-
03

0.91 0.27 Small ↓ in NH

Glutamic acid 0.013 0.043 0.85 0.20 Small ↓ in NH

trans-Hydroxyproline 0.013 0.044 0.92 0.20 Small ↓ in NH

Asparagine 0.017 0.054 0.79 0.19 Small ↓ in NH

Threonine 0.021 0.062 0.85 0.18 Small ↓ in NH

Methylhistidine 0.027 0.075 1.04 −0.17 Small ↑ in NH

Ornithine 0.032 0.078 0.91 0.17 Small ↓ in NH

Proline 0.036 0.085 0.91 0.16 Small ↓ in NH

Leucine 0.039 0.086 0.93 0.16 Small ↓ in NH

Acylcarnitines

Octadecanoylcarnitine (C18) 1.40e-05 5.80e-
04

1.22 −0.37 Medium ↑ in NH

Propionylcarnitine (C3) 4.77e-04 4.24e-
03

0.88 0.30 Small ↓ in NH

Dodecanedioylcarnitine (C12DC) 4.82e-04 4.24e-
03

0.89 0.30 Small ↓ in NH

Acetylcarnitine (C2) 7.36e-04 5.58e-
03

1.17 −0.28 Small ↑ in NH

Hexadecanoylcarnitine (C16) 1.71e-03 0.011 1.15 −0.26 Small ↑ in NH

Tetradecenoylcarnitine (C14:1) 1.79e-03 0.011 1.14 −0.26 Small ↑ in NH

Octadecenoylcarnitine (C18:1) 4.54e-03 0.020 1.14 −0.23 Small ↑ in NH

Isovalerylcarnitine (C5) 0.016 0.050 0.97 0.19 Small ↓ in NH

Hydroxyisovalerylcarnitine
(C5OH)

0.024 0.067 0.96 0.18 Small ↓ in NH

Tetradecanoylcarnitine (C14) 0.038 0.086 1.07 −0.16 Small ↑ in NH

Decanoylcarnitine (C10) 0.043 0.093 1.07 −0.15 Small ↑ in NH

Carnitine (C0) 0.047 0.098 0.95 0.15 Small ↓ in NH

aFalse Discovery Rate.
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3 amino acids decreased to a greater extent after 10 h in the NH

group compared to the H group. The α-ketoglutaric acid

concentration at PL sampling was significantly higher (p <
0.05) in the H group compared to the NH group but

decreased rapidly at 0 h and remained at that level throughout

the transport duration. However, α-ketoglutaric acid

concentrations remained low at all sampling periods.

Discussion

Stress indicators

When an animal is exposed to a stressor, catecholamine

release from adrenal medulla causes glycogenolysis in the liver

and lipolysis of adipose tissue that lead to increase in both blood

glucose and NEFA concentrations (Kannan et a., 2000; 2002;

Saeb et al., 2010). Adipocytes are lipase sensitive during stress,

and the stored triacylglycerol is split into glycerol and NEFA.

Changes in blood glucose concentrations result in glucocorticoid

release that stimulates liver to convert fat and protein to

intermediary metabolites that are used for energy production

(Saeb et al., 2010). Gluconeogenic substrates, such as amino acids

and short-chain fatty acids, also decrease during prolonged

energy demand and deficit. As a result, fatty acids may be the

main source of energy during these situations, and the primary

fatty acid metabolic organ is the liver.

Plasma NEFA concentrations were significantly lower in the

H group compared to NH group as shown in Figure 1. These

effects suggest that habituation to livestock trailer was efficient in

reducing stress responses in goats during long-distance

transportation. Mobilization of fatty acids from adipose tissue

TABLE 2 Phosphatidylcholines and sphingomyelins significantly (p < 0.05) affected by treatment (H = Habituated; NH = Non-habituated) in goats.

Metabolite p-value FDRa Fold
change

Cliff’s delta effect
size

Cliff’s delta effect
level

Direction of
change

Diacylphosphatidylcholine C36:0 1.40e-04 2.04e-
03

1.17 −0.32 Small ↑ in NH

Hydroxysphingomyelin C22:1 2.61e-04 3.37e-
03

1.16 −0.31 Small ↑ in NH

Sphingomyelin C18:0 4.71e-04 4.24e-
03

1.12 −0.30 Small ↑ in NH

Sphingomyelin C18:1 4.93e-04 4.24e-
03

1.19 −0.29 Small ↑ in NH

Lysophosphatidylcholine C18:0 5.36e-04 4.33e-
03

1.12 −0.29 Small ↑ in NH

Lysophosphatidylcholine C28:1 1.68e-03 0.011 1.15 −0.26 Small ↑ in NH

Diacylphosphatidylcholine C36:6 1.90e-03 0.011 1.08 −0.26 Small ↑ in NH

Diacylphosphatidylcholine C40:1 1.98e-03 0.011 1.08 −0.26 Small ↑ in NH

Lysophosphatidylcholine C18:2 2.12e-03 0.011 1.18 −0.26 Small ↑ in NH

Diacylphosphatidylcholine C32:2 2.71e-03 0.014 1.09 −0.25 Small ↑ in NH

Lysophosphatidylcholine C26:1 2.77e-03 0.014 1.12 −0.25 Small ↑ in NH

Diacylphosphatidylcholine C38:0 3.11e-03 0.015 1.22 −0.24 Small ↑ in NH

Hydroxysphingomyelin C24:1 4.50e-03 0.020 1.06 −0.23 Small ↑ in NH

Lysophosphatidylcholine C26:0 7.32e-03 0.029 1.13 −0.22 Small ↑ in NH

Acyl alkylphosphatidylcholine
C36:0

7.39e-03 0.029 1.12 −0.22 Small ↑ in NH

Sphingomyelin C16:0 8.64e-03 0.033 1.09 −0.21 Small ↑ in NH

Sphingomyelin C16:1 9.74e-03 0.036 1.10 −0.21 Small ↑ in NH

Lysophosphatidylcholine C24:0 0.011 0.039 1.08 −0.20 Small ↑ in NH

Hydroxysphingomyelin C16:1 0.021 0.062 1.09 −0.18 Small ↑ in NH

Lysophosphatidylcholine C20:4 0.023 0.067 1.08 −0.18 Small ↑ in NH

Lysophosphatidylcholine C18:1 0.028 0.075 1.07 −0.17 Small ↑ in NH

Hydroxysphingomyelin C14:1 0.030 0.077 1.06 −0.17 Small ↑ in NH

Sphingomyelin C20:2 0.031 0.078 1.07 −0.17 Small ↑ in NH

Lysophosphatidylcholine C16:0 0.044 0.094 1.03 −0.15 Small ↑ in NH

Lysophosphatidylcholine C28:0 0.047 0.098 1.07 −0.15 Small ↑ in NH

aFalse Discovery Rate.
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and higher NEFA blood concentrations may provide energy for

the animals. Blood urea nitrogen concentrations decreased with

increasing transportation time in both H and NH treatment

groups (Figure 2). The BUN concentrations were highest at PL

and lowest at 6 h, 8 h and 10 h samplings. Any situation that

causes protein catabolism, including elevated blood

glucocorticoid concentrations and feed deprivation, will likely

increase BUN (Finco, 1997; Kannan et al., 2000). Transport stress

causes increase in BUN concentrations in farm animals

(Hurtung, 2003) since feed deprivation is confounded with

transportation stress and the process invariably increases

glucocorticoids (Kannan et al., 2000).

Amino acids

Several amino acids were lower in the NH group compared to

the H group in our study (Table 1). In addition to protein

synthesis, amino acids are metabolized to compounds that

enter the tricarboxylic acid (TCA) cycle to produce adenosine

triphosphate. The amino acids that do not enter the TCA cycle

are either ketogenic, glucogenic, or both (Litwack, 2021).

TABLE 3 Metabolites significantly (p < 0.05) affected by treatment (H = Habituated; NH = Non-habituated) in goats.

Metabolite p-value FDRa Fold change Cliff’s delta effect size Cliff’s delta effect level Direction of change

HPHPA 7.00e-07 9.03e-05 1.32 −0.43 Medium ↑ in NH

Methylmalonic acid 6.22e-06 4.01e-04 0.84 0.39 Medium ↓ in NH

β-Hydroxybutyric acid 1.80e-05 5.80e-04 1.24 −0.37 Medium ↑ in NH

Kynurenine 1.26e-04 2.04e-03 0.77 0.33 Small ↓ in NH

Indole acetic acid 6.33e-03 0.027 0.75 0.22 Small ↓ in NH

α-Ketoglutaric acid 6.64e-03 0.028 0.96 0.22 Small ↓ in NH

Propionic acid 0.011 0.038 0.91 0.21 Small ↓ in NH

Uric acid 0.015 0.050 0.91 0.19 Small ↓ in NH

Putrescine 0.029 0.076 0.94 0.17 Small ↓ in NH

Butyric acid 0.032 0.078 0.95 0.17 Small ↓ in NH

Creatinine 0.036 0.085 1.05 −0.16 Small ↑ in NH

α-Aminoadipic acid 0.038 0.086 0.92 0.16 Small ↓ in NH

Acetyl-ornithine 0.048 0.098 1.04 −0.15 Small ↑ in NH

aFalse Discovery Rate.

FIGURE 3
PLS-DA VIP plot showing differences between treatment (H =
Habituated; NH = Non-habituated) groups and the metabolites
(VIP scores >1.5) that significantly contribute to the difference. The
metabolite concentrations averaged across all time points
were used in the PLS-DA model (p < 0.05).

FIGURE 4
Principal Component Analysis (PCA) plot of principal
components 1 and 2 of transportation time for metabolites.
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Alanine, serine, glycine, histidine, asparagine, proline, and

glutamic acid that forms glutamine, are glucogenic amino

acids and were probably used for glucose production due to

higher stress and energy demand in the NH group. Decreased

amino acid concentrations in circulation may indicate their being

used in gluconeogenesis, particularly in stressful situations

(Coleman et al., 2020). For instance, during feed deprivation,

alanine regulates gluconeogenesis to replenish glucose in dairy

cattle (Guo et al., 2018). Leucine is a ketogenic amino acid that

was used up for fatty acid production due to elevated stress in the

NH goats. In addition, tryptophan and threonine were also lower

in the NH groups and could have been involved in both glucose

and fatty acid formations. Glucose concentrations were not

significantly different between the two treatments in our study.

Almost all of the 20 amino acids affected by Time decreased

slightly after loading (0 h), further decreased after the beginning of

transportation, and stayed at a lower level throughout the rest of the

transportation period (Supplementary Figure S2). A progressive

decrease with increasing transportation time was noticed only for

arginine, ornithine, and isoleucine. Based on interaction effects, the

differences in alanine, trans-hydroxyproline, isoleucine, and

ornithine concentrations at different time points became

significant after 4 h of transportation. While the concentrations

of these amino acids decreased or continued to decrease after 4 h in

the NH group, the levels increased or stabilized after 4 h in the H

group (Figure 6). This may indicate that habituating goats to

transportation trailer could result in lower amino acid catabolism.

In addition to their function in protein building, amino acids

have several important roles, such as immunomodulatory and

immunometabolic activities (Li et al., 2007; Coleman et al., 2020).

Glycine and serine concentrations were significantly lower in the

NH goats compared to the H goats. Glycine is involved in protein

and heme synthesis, as well as in bile acid conjugation (Wang

et al., 2013). Its functions also include purine synthesis,

glutathione synthesis, cell proliferation and differentiation, and

regulating oxidative stress (Chen et al., 2013; Wang et al., 2013).

Serine supports glutathione production and has also been

reported to support T cell proliferation by supplying glycine

and maintaining 1-carbon metabolism (Newsholme et al., 1999;

Ma et al., 2017). Histidine that was lower in the NH group plays

important roles in immune and antioxidant responses and

energy metabolism. In addition, histidine produces

glycoproteins that play an important role in immune

function-related activities, such as phagocytosis and removal

of antibody complexes (Wakabayashi, 2013).

Other amino acids with anti-inflammatory and immune

support functions include glutamate and ornithine, whose

concentrations were also lower in the NH goats during

transportation. Glutamate is a nonessential amino acid and is

required for the synthesis of glutathione, NADPH, and α-
ketoglutarate (Wu et al., 2004; Newsholme et al., 2003).

Glutamic acid converts to glutamine, a purine and pyrimidine

precursor, which is required for nitric oxide, cytokine, and

NADPH production and accelerated interleukin-6 production

by macrophages (Yassad et al., 1997; Newsholme et al., 2003).

Ornithine that is synthesized from arginine is required for

polyamine synthesis and plays an important role in urea cycle.

Arginine concentrations sharply decreased after beginning of

transportation and stayed at low levels throughout the

transportation period in goats in the present study.

Modulating immune function is one of the important

functions of arginine, which is synthesized from citrulline

(Zhao et al., 2018). Arginine catabolism also produces

polyamines through the arginase pathway (Wu et al., 2009)

that can activate toll-like receptors (TLRs) and in turn activate

innate immunity (Handa et al., 2018). The essential amino acid

threonine, which was also lower in the NH goats, is needed for

immunoglobulin production and influences glutathione

synthesis (Li et al., 2007). Leucine concentrations were lower

in the NH goats compared to the H goats, while the three

branched-chain amino acids, leucine, isoleucine, and valine,

decreased with transportation time. These amino acids also

have multiple roles, such as regulation of immunity and

energy homeostasis (Coleman et al., 2020). The lower

concentrations of these amino acids in goats not habituated to

trailers indicate that these animals could have compromised anti-

inflammatory and immune capacities, which could collectively

make them more susceptible to infections after long journeys.

Methionine, which decreased with transportation time in

goats, is needed for glutathione and taurine synthesis (Lushchak,

2012). Methionine could support phosphatidylcholine and

carnitine by providing methyl groups to form S-adenosyl

methionine (Vance et al., 1997). Lysine is one of the

conserved amino acids due to its ability for slower catabolism

(Flodin, 1997). Smirga et al. (2002) reported that dietary lysine

FIGURE 5
PLS-DA VIP plot showing differences among transportation
time (PL = Preload) groups and the metabolites (VIP scores >1.5)
that significantly contribute to the difference. The metabolite
concentrations averaged across the two treatments were
used in the PLS-DA model (p < 0.05).
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deficiency increases stress-induced anxiety by enhancing

serotonin release from amygdala. In our study, lysine

concentrations decreased over transportation time in goats;

however, serotonin concentrations did not increase with time.

Lysine acts akin to a receptor competitor of serotonin and

inhibits serotonin receptor-mediated anxiety, although lysine

does not influence plasma serotonin concentrations (Venzi

et al., 2016), which explains the pattern of serotonin

concentrations over transportation time. It is not clear if these

metabolites had an influence on the emotional status of goats in

the present study.

Acylcarnitines

The NH goats had significantly higher octadecanoylcarnitine

(C18), hexadecanoylcarnitine (C16), tetradecenoylcarnitine

(C14:1), octadecenoylcarnitine (C18:1), tetradecanoylcarnitine

(C14, and decanoylcarnitine (C10) concentrations than the H

goats (Table 1). Also, plasma long-chain acylcarnitines invariably

increased with increasing transportation time (Supplementary

Figure S3). In addition to energy expenditures due tomaintaining

posture and balance in a moving livestock trailer, extended

transportation also imposes metabolic stress in goats since

they are deprived of feed and water. The animal’s ability to

cope up with metabolic stress depends on energy-production

pathways, such as fatty acid oxidation in mitochondria and the

TCA cycle (McCoin et al., 2015; Ghaffari et al., 2020).

The carnitine system, consisting of carnitine, acylcarnitines,

carnitine enzymes and carnitine transporters, plays a crucial role

in energy generation in cells (Peluso et al., 2000). The

endogenous carnitine pool is comprised of the water-soluble

compound L-carnitine and its esters, acylcarnitines. Although

carnitine is present in highest quantity in muscle, it is mainly

FIGURE 6
Plots of means (± SEM) of metabolites with significant treatment (H = Habituated; NH = Non-habituated) × transportation time (PL = Preload)
interaction effects (p < 0.05).
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synthesized in the liver from the amino acids lysine and

methionine and then transported through circulation.

Medium and long-chain acylcarnitines that increased during

transportation, particularly in the NH goats, are produced by

fatty acid oxidation, while short-chain acylcarnitines are mainly

synthesized from amino acids and fatty acids (Makrecka-Kuka

et al., 2017). The mitochondrial carnitine system plays an

indispensable role in β-oxidation of long-chain fatty acids

(Calo et al., 2006). The long-chain fatty acids are transferred

from the cytoplasm to the mitochondrial matrix by carnitine and

acylcarnitines regulated by carnitine palmitoyltransferase 1,

which is present in the mictochondrial outer membrane. After

being transferred into the mictochondria, the enzyme carnitine

palmitoyltransferase 2, present in the matrix, regulate

regeneration of carnitine and long-chain acyl-CoA

(Schooneman et al., 2013). The β-oxidation of fatty acyl CoA

produces acetyl CoA, which enters the TCA cycle to generate

NADH/FADH2 for utilization in the electron transport chain.

Acylcarnitine reconversion in mitochondria is an important step

that controls the amounts of fatty acids entering mitochondria

from cytoplasm for β-oxidation. During times of intense

workload, the acylation state of cytoplasmic carnitine pool

increases more than the mitochondrial carnitine pool,

suggesting that acylcarnitines are exported out of muscle cells

(Ramsey and Andruini, 1993). This cellular efflux may cause

increase in circulating acylcarnitine concentrations (Veld et al.,

2009). Acylcarnitines in blood is the total from different tissues,

as they are utilized by tissues such as skeletal muscle, cardiac

muscle, and liver (Simcox et al., 2017). Increased concentrations

of acylcarnitines in circulation is primarily due to muscle

contraction during exercise that increases glucose and fatty

acid oxidation (Hiatt et al., 1989).

Elevation in blood long-chain acylcarnitine concentrations

can occur if there is a deficiency of carnitine

palmitoyltransferases, incomplete β-oxidation of long-chain

fatty acids, or depletion of TCA cycle intermediates

(Schooneman et al., 2013; Yang et al., 2018; Ghaffari et al.,

2020). Acylcarnitine concentrations can increase when the

rates of β-oxidation are greater than those of the TCA cycle

(Yang et al., 2019). Another reason for elevated long-chain

acylcarnitine concentrations in plasma of goats during

extended transportation, particularly in NH group, is elevated

NEFA concentrations to meet the energy demand. The intense

mobilization of fat is also reflected in elevated β-hydroxybuyrate
in the NH group due to higher stress experienced during

transportation than for the H group. Animal studies have

indicated that approximately one-third of NEFA taken up by

muscle is directly converted to long-chain acylcarnitines to meet

oxidative needs (Sun et al., 2006). Xu et al. (2011) observed that

high NEFA concentrations curb carnitine palmitoyltranferase-1

activity and fatty acid oxidation in cultured bovine hepatocytes.

Ghaffari et al. (2019) reported that increased serum acylcarnitine

concentrations coincided with increased NEFA concentrations in

periparturient cows with high body condition. The increase in

long-chain acylcarnitines may reflect enhanced lipolysis and the

resultant β-oxidation rate that is greater than that of the TCA

cycle (Ghaffari et al., 2019). The ensuing accumulation of fatty

acids in the matrix could result in mitochondrial stress and

incomplete fatty acid oxidation leading to acylcarnitines entering

the circulation (Koves et al., 2008). In the present study, the rate

of fatty acid oxidation was likely not able to cope up with the rate

of accumulation of long-chain fatty acyl CoA in the

mitochondrial matrix, that could have resulted in the increase

in long-chain acylcarnitine concentrations in the blood.

Prolonged stress due to extended transportation can also

promote inflammatory reactions in goats, particularly in those

not habituated to transport trailers. Rutkowsky et al. (2014)

reported that long-chain acylcarnitines activate pro-

inflammatory pathways in rodent macrophages. These authors

found that elevated palmitoylcarnitine (C16) concentrations

increase release of interleukin-6 (IL-6) in monocytes and

adenylate kinase (AK) in macrophages, the latter being a

death marker. Long-chain acylcarnitines have also been

reported to be associated with increased reactive oxygen

species, apoptosis, and endoplasmic reticulum stress in cardiac

muscle (Son et al., 2010). However, McCoin et al. (2015) did not

observe markers for endoplasmic reticulum stress with increased

C16 carnitine in their study, although the authors found

increases in intracellular calcium and caspase-3 activity, and

rapidly activated JNK/ERK/p38 MAPK stress pathways.

McCoin et al. (2015) also opined that increase in long-chain

acylcarnitines could promotemuscle cell inflammation and stress

under conditions that affect fatty acid oxidation. These reactions

as a result of higher plasma long-chain acylcarnitines, if also

occurring in goats, could negatively impact muscle metabolism

and possibly meat quality characteristics. Conditioning goats to

livestock trailers could attenuate the negative effects, such as

inflammation and compromised immune function due to

transportation stress. Further studies are needed to

understand the potential effects of elevated plasma long-chain

acylcarnitines on muscle cell inflammation, muscle metabolism,

and meat quality characteristics in goats.

The beneficial effects of habituating goats to livestock trailers is

clearly seen in the pattern of increase in the three long-chain

acylcarnitines (C16, C18, C18:1) in the plasma (Figure 6). In the

NH goats, these three long-chain acylcarnitines increased steeply

with transportation time, while in the H goats, the increase was

moderate, explaining the significant TRT × Time interaction effects.

Carnitine concentration was also lower in the NH goats

compared to the H goats. The lower free carnitine

concentrations in serum could be due to enhanced utilization

by skeletal muscle fibers (Yang et al., 2019) for transferring long-

chain fatty acids from cytosol into mitochondrial matrix because

of intense stress and energy need. Carnitine maintains the

balance between free and esterified CoA (Sharma and Black,

2009).
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Phosphatidylcholines and sphingomyelins

The phosphatidylcholines and sphingomyelins significantly

affected by TRT were lower in the H goats compared to the NH

goats (Table 2). In mammalian cells, the primary phospholipid that

forms membranes is phosphatidylcholine, a glycerophospholipid

that has a polar phosphocholine head group and two non-polar

hydrocarbon chains (Taylor et al., 2007). Lyso-phosphatidylcholine

is usually formed when the enzyme phospholipase 2 cleaves the fatty

acid from the cell membrane phosphatidylcholine glycerol

backbone. Small variations in phospholipid levels can have

significant effects on lipid profiles and insulin signaling (van der

Veen et al., 2017). In hepatocytes, 1-palmitoyl-2-oleoyl-sn-glycerol-

3-phosphocholine acts as an endogenous ligand for PPATα, a
transcription factor that regulates expression of multiple genes

that are involved in lipid metabolism (Kersten, 2014). This

nuclear hepatocyte receptor has also been reported to control a

lipogenic pathway that regulates fatty acid uptake and β-oxidation
by muscle (Furse and de Kroon, 2015). The elevated levels of

phosphatidylcholines and lyso-phosphatidylcholines are likely

associated with increased fatty acid metabolism in NH goats, as

these animals experienced higher stress compared to the H goats,

based on plasma NEFA concentrations.

Lyso-phosphatidylcholine (20:4) has been suggested as a

marker of stress and depression in rats and humans (Adams

et al., 1996; Wu et al., 2019). Although phosphatidylcholines are

involved in normal cognition (Haus et al., 2009), and chronic

stress can cause depression due to decreases in

phosphatidylcholines (Ren et al., 2018), high levels as seen in

the present experiment are due to enhanced fatty acid

metabolism. Increases in plasma sphingosine and sphinganine

could also result in increase in ceramide, which can cause

depression (Gulbins et al., 2013).

Other metabolites

Ketone bodies have a glucose-sparing role in ruminants and are

used as a source of energy in the small intestines and peripheral

tissues in ruminants (Penner et al., 2011). In the NH group of goats,

β-hydroxybutyrate concentrations were higher compared to the H

goats (Table 3). The metabolic precursor of β-hydroxybutyric acid,
acetoacetate, is a metabolite of fatty acids (ex. butyrate) and

ketogenic amino acids (ex. Leucine and isoleucine). Both butyrate

and leucine concentrations were significantly lower in the NH goats

in the present study (Tables 1, 3), indicating both fatty acids and

amino acids were used up to a higher degree in the NH goats in

producing energy during transportation. Some animal species may

have a unique way of coping up with ketosis, for instance, β-
hydroxybutyrate was not significantly affected as a result of 5-h

transportation in dromedary camels (Wensvoort et al. (2004).

α-ketoglutarate is an important molecule that determines the

rate of the TCA cycle (Wu et al., 2016). Under normal conditions,

it promotes protein synthesis and curbs protein breakdown. In

the present study, α-ketoglutarate was lower in the NH groups

compared to the H group (Table 3), and the significant TRT ×

Time interaction effect noticed was because of the rapid decline

of this metabolite in the H goats after loading onto the trailer

(Figure 6). Decrease of this key TCA cycle intermediate could

have also contributed to the possible enhanced level of β-
oxidation, resulting in fatty acid overload and the consequent

increase in long-chain acylcarnitines in circulation. α-
ketglutarate could synthesize glutamate, which was also lower

in the NH group (Table 1). α-ketoglutaric acid plays an

important role in immune function of the organism.

Glutamine, that is formed by glutamate, is an important fuel

for lymphocytes and macrophages (Parry-Billings et al., 1990)

that are part of the innate defense system. In addition, α-
ketoglutarate can enhance cellular antioxidant capacity by

increasing superoxide dismutase and glutathione peroxidase

activities and preventing lipid peroxidation, as well as by

scavenging reactive oxygen species (Velvizhi et al., 2002;

Mailloux et al., 2009). The lower α-ketoglutarate levels in

goats during transportation could negatively impact immune

function and antioxidant activities.

α-aminoadipic acid was lower in the NH group and decreased

with transportation time in goats in our study (Table 3). Under

normal resting conditions, lower α-aminoadipic acid and higher

lysine levels will result in protein synthesis (Goldansaz et al., 2020).

α-aminoadipic acid is a breakdown product of lysine (Guidetti and

Schwarcz, 2003), a ketogenic and indispensable amino acid. The

decrease in plasma aminoadipic acid concentrations with

transportation time corresponded with decrease in lysine

concentrations in our study. This suggests that the breakdown of

lysine via the saccharophine pathway does not stop with the

formation of aminoadipic acid due to the energy demand during

stress. The initial step in the catabolism of α-aminoadipic acid is

transamination with α-ketoglutarate to form glutamate and then 2-

ketoadipic acid. Subsequently, glutaryl-CoA is formed by

decarboxylation of 2-ketadipic acid, which is then metabolized

through the CoA esters to form acetyl-CoA (Matthews, 2020).

The lower α-ketoglutaric acid noticed in the NH goats in the

present study is likely due to the intensity of this catabolic

process during extended transportation.

Tryptophan, that has both ketogenic and glucogenic

properties was lower in the NH goats and decreased with

transportation time in our study, which also corresponded

with the decrease in kynurenine concentrations (Table 3).

Kynurenine is degraded during tryptophan catabolism. Butyric

acid concentrations were lower in the NH group compared to the

H group (Table 3), and the concentrations also decreased over

transportation time (Supplementary Figure S4). Butyric acid is

produced from rumen microbial fermentation of dietary fiber,

and its concentrations in blood negatively correlates with certain

inflammatory markers (Juanola et al., 2019). Butyrate has also

been shown to have anti-inflammatory and immune boosting
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capacities, in addition to its crucial role in energy homeostasis

(Kasubuchi et al., 2015). The metabolite profiles together suggest

the goats that have been previously conditioned to livestock

trailers before a long-distance transportation may have better

ability to cope with the negative effects of stress.

The limitation in this study was that other potential factors

such as weather, noise, and vehicular vibration could not be

evaluated separately due to the confounding nature of these

stressors. The extent to which these factors influenced the

metabolic profiles of individual goats is therefore not clear in

this study.

Conclusion

Habituation to trailers could be beneficial to goats in

maintaining energy metabolism during transportation as

glucogenic and ketogenic amino acid levels in blood were

lower, and their decrease over transportation time was greater

in the non-habituated goats compared to habituated goats. There

is evidence in this study that both gluconeogenesis and fatty acid

oxidation pathways are upregulated and that there is possible

mitochondrial overload and incomplete fatty acid oxidation

during prolonged intense stress, such as transportation, that

results in elevated blood long-chain acylcarnitine

concentrations. We suggest that long-chain acylcarntines

could be good indicators of prolonged stress in goats as these

metabolites increased with increasing transportation time, more

so in the non-habituated goats, although further studies focusing

on biomarker sensitivity and specificity are required. The

potential negative effects of elevated long-chain acylcarnitines

on myofiber inflammation, muscle metablolism, and meat

quality characteristics also require further investigation.

Habituation to trailers can also be beneficial in enhancing

stress coping abilities in goats during long-distance

transportation due to higher concentrations of metabolites

that support energy homeostasis, antioxidant activities, and

immune function.
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GWAS and genetic and
phenotypic correlations of plasma
metabolites with complete blood
count traits in healthy young pigs
reveal implications for pig immune
response

E. Dervishi1, X. Bai1, M. K. Dyck1, J. C. S. Harding2,
F. Fortin3, J. C. M. Dekkers4 and G. Plastow1* on behalf of PigGen
Canada Members
1Livestock Gentec, Department of Agriculture, Food and Nutritional Science, Faculty of Agricultural, Life
and Environmental Sciences, University of Alberta, Edmonton, AB, Canada, 2Department of Large Animal
Clinical Sciences, University of Saskatchewan, Saskatoon, SK, Canada, 3Centre de Developpement du
porc du Quebec inc (CDPQ), Quebec City, QC, Canada, 4Department of Animal Science, Iowa State
University, Ames, IA, United States

Introduction: In this study estimated genetic and phenotypic correlations
between fifteen complete blood count (CBC) traits and thirty-three heritable
plasma metabolites in young healthy nursery pigs. In addition, it provided an
opportunity to identify candidate genes associated with variation in metabolite
concentration and their potential association with immune response, disease
resilience, and production traits.

Methods: The blood samples were collected from healthy young pigs and Nuclear
Magnetic Resonance (NMR) was used to quantify plasma metabolites. CBC was
determined using the ADVIA® 2120i Hematology System. Genetic correlations of
metabolite with CBC traits and single step genome-wide association study
(ssGWAS) were estimated using the BLUPF90 programs.

Results: Results showed low phenotypic correlation estimates between plasma
metabolites and CBC traits. The highest phenotypic correlation was observed
between lactic acid and plasma basophil concentration (0.36 ± 0.04; p < 0.05).
Several significant genetic correlations were found betweenmetabolites and CBC
traits. The plasma concentration of proline was genetically positively correlated
with hemoglobin concentration (0.94 ± 0.03; p < 0.05) and L-tyrosine was
negatively correlated with mean corpuscular hemoglobin (MCH; −0.92 ± 0.74;
p < 0.05). The genomic regions identified in this study only explained a small
percentage of the genetic variance of metabolites levels that were genetically
correlated with CBC, resilience, and production traits.

Discussion: The results of this systems approach suggest that several plasma
metabolite phenotypes are phenotypically and genetically correlated with CBC
traits, suggesting that they may be potential genetic indicators of immune
response following disease challenge. Genomic analysis revealed genes and
pathways that might interact to modulate CBC, resilience, and production
traits.
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Introduction

Immunity refers to the immune system’s capacity to protect
individuals from disease by recognizing and eliminating potentially
pathogenic agents, including bacteria, bacterial toxins, viruses, parasites
and fungi (Stanfield and Germann, 2008). The earliest line of defence
against microbes and pathogens it is provided by innate immunity
which is a non-specific response. The principal components of innate
immunity include: 1) physical and chemical barriers example: skin,
epithelia, the gastrointestinal tract and antimicrobial chemicals
produced at epithelial surfaces 2) cellular components include:
neutrophils, eosinophils, monocytes, macrophages, dendritic cells,
and natural killer (NK) cells; 3) other innate lymphoid cells and
blood proteins, including members of the complement system and
other mediators of inflammation (Janeway et al., 2001; Stanfield and
Germann, 2008). Adaptive immunity is a more sophisticated defense
response which uses specific antigens to strategically mount an immune
response. Cellular components of adaptive immune system include
lymphocytes: B cells and T cells. B cells are made and mature in bone
marrow and are responsible for production of antibodies and release
them into the blood. T cells migrate from the bonemarrow through the
blood stream and mature in the thymus (Janeway et al., 2001). T
lymphocytes are distinguished by the presence of cell surface molecules
CD4 and CD8 and are a major source of cytokines production. T
lymphocytes expressing CD4 are known as helper T cells and are
subdivided into Th1, Th2, Th17 and inducible regulatory T cells (Paul
and Zhu, 2010). The cytokines produced by Th1 and Th2 cells are
known as Th1-type cytokines and Th2-type cytokines (Berger, 2000).
The cytokines produced by Th1 cells, tend to produce an inflammatory
response. Th1 cells mount a host defense against intracellular pathogens
such as protozoa, bacteria, and viruses (Butcher and Zhu, 2021)
meanwhile Th2 cells participate in different types of allergic disease,
but they important in helping to mount a defense against extracellular
parasites infections and exposure to venoms (Paul and Zhu, 2010).

Other component of blood such as platelets, possess immune
receptors and produce inflammatory molecules (Semple et al., 2011).
Platelets also contribute in recruiting leukocytes, principally neutrophils,
to the affected site (Kolaczkowska and Kubes, 2013). New findings
suggest that red blood cells (RBCs), which develop in bone marrow, are
also components of inflammatory responses, as Lam et al. (2021) showed
that RBCs serve as critical immune sensors through surface expression of
the nucleic acid–sensing Toll-like receptor 9 (TLR9).

In humans,metabolic reprogramming of immune cells has a critical
influence on their function (Rodriguez-Coira et al., 2021). For example,
sphingolipids are involved in dendritic cell maturation, activation, and
migration (Park and Im, 2019). Metabolites such as succinate and
citrate have been identified to be involved in innate immune responses
by acting as signals in inflammation (Corcoran and O’Neill, 2016). In
addition, short chain fatty acids (SCFA) and biogenic amines, enhance
dendritic cell regulatory activity (Tan et al., 2014).

Therefore, understanding the impact of different metabolites on
metabolic reprogramming of immune cells is important to improve
diagnosis, prognosis, and therapeutic personalized medicine
strategies in humans (Rodriguez-Coira et al., 2021). In this

regard, pigs serve in biomedical research as an animal model
because of their similarity with human physiology. Therefore,
understanding the relationship of metabolites and immune
response cells in pigs can offer insights for human physiology
and immune response.

In the last decade, metabolomics has been used to discover
biomarkers of disease in different livestock species as well as in
animal genetic studies because it provides the potential to identify
new phenotypes or traits which can be used to select for more
efficient and resilient animals (Montgomery et al., 2009; Widmann
et al., 2013; Karisa et al., 2014; Dervishi et al., 2018a; Dervishi et al.,
2018b; Carmelo et al., 2020; Li et al., 2020). It is therefore important
to understand the genetic architecture of these potential new
phenotypes and their relationship with immune response.

The importance of health and the immune system in relation to
productivity in pigs facing disease challenge has been described (Bai
et al., 2020; Cheng et al., 2020). Bai et al. (2020) reported that pigs
classified as resilient initiated a faster adaptive immune response and
recovered earlier following infection showing a greater increase in
lymphocyte concentration in blood collected 2- weeks before and 2-
weeks after the disease challenge, compared to susceptible pigs. In
addition, Bai et al. (2020) reported estimates of heritability of CBC traits
and the phenotypic and genetic correlations of CBC traits with growth
rate and veterinary treatment rate. Estimates of the heritability of
44 metabolites on young healthy pigs along with estimates of the
phenotypic and genetic parameters of plasma metabolite concentration
with subsequent performance, disease resilience, and carcass traits
under the same natural disease challenge described by Bai et al.
(2020) was reported by Dervishi et al. (2021).

The present study is part of a larger project which has identification
of predictors of disease resilience in young healthy pigs prior to a disease
challenge as itsmain objective. For this purpose, a natural polymicrobial
disease challenge model (Cheng et al., 2020; Bai et al., 2020) was
established and numerous samples and traits were collected before and
after challenge, including complete blood count traits (CBC), average
daily gain (ADG), feed intake and feed intake duration (ADFI and
ADFD), number of individual health treatments (nTRT), mortality,
residual feed intake (RFI), and feed conversion ratio (FCR) (Dervishi et
al., 2021; Bai et al., 2020; Cheng et al., 2020).

The purpose of this study was to estimate the phenotypic and
genetic parameters between CBC traits and plasma metabolite
concentrations in plasma samples collected on young healthy pigs,
prior to the disease challenge. Furthermore, we attempted to identify
genomic regions that control the genetic variance ofmetabolites that are
genetically correlated with CBC, resilience, and production traits.

Material and methods

Ethics statement

The experiment was carried out in accordance with the
Canadian Council on Animal Care guidelines (CCAC, 1993) and
(Kilkenny et al., 2010) Animal Research: Reporting of In Vivo
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Experiments guidelines ARRIVE; https://arriveguidelines.org;
(Percie du Sert et al., 2020). The animal experiments were
performed with the approval of the Animal Protection
Committee of the Centre de Recherche en Sciences Animales de
Deschambault (15PO283) and the Animal Care and Use Committee
at the University of Alberta (AUP00002227).

Experimental design

All the details of the polymicrobial challenge together with
phenotypes/traits that were collected were described by Putz
et al. (2019), Cheng et al. (2020) and Bai et al. (2020). Briefly,
healthy F1 crossbred (Landrace × Yorkshire) castrated male weaned
pigs were provided in rotation by seven genetic suppliers, all
members of the PigGen Canada research consortium. Each batch
consisted of approximately 65 or 75 pigs from a healthy multiplier
farm from one of the genetic suppliers (Bai et al., 2020). All weaned
pigs arrived at an average age of 21 days and were housed in a
quarantine nursery (Supplementary Figure S1). At approximately
40 days of age, pigs were transferred to the test station late nursery
(challenge nursery) and exposed to multiple pathogens through
contact with the previous batch that entered 3-weeks prior. Pigs were
sent for slaughter when they reached the slaughter weight of 130 kg,
at approximately 181 days of age (Bai et al., 2020).

Jugular blood was collected into K2 ethylenediaminetetraacetic
acid (EDTA) tubes (BD Vacutainer, Blood Collection Tubes,
United States) from all pigs in the quarantine nursery 5 days
post-arrival at average 26 days of age (Bai et al., 2020) for CBC
and metabolomics analysis. Complete blood count, number of
treatments, mortality, growth rate, feed intake and feed efficiency,
were collected from a total of 3,205 F1 crossbred pigs, either when
sent to slaughter or euthanized at humane end points specified for
animal welfare.

All animals were genotyped using a 650 k Affymetrix Axiom
Porcine Genotyping Array at Delta Genomics (Edmonton AB,
Canada). Raw Affymetrix SNP data were processed by Delta
Genomics, separately for each cycle, using the Axiom Analysis
Suite. All the details of genotyping and quality control have been
previously described (Putz et al., 2019; Bai et al., 2020; Cheng et al.,
2020). A total of 417,443 SNPs for 3,205 pigs remained after quality
control and were used for analysis (Dervishi et al., 2021).

Complete blood count and metabolomics
traits

In this study we used CBC and metabolomics data obtained
from blood samples collected in the quarantine nursery from
968 pigs. Details of the CBC and metabolomic data have been
described by Bai et al. (2020) and Dervishi et al. (2021) respectively.
CBC analysis was performed using the ADVIA® 2120i Hematology
System (Siemens Healthineers, Erlangen, Germany). A total of
15 CBC traits were included: concentration of total white blood
cell concentration (WBC, 103/μL), neutrophils (NEU, 103/μL),
lymphocytes (LYM, 103/μL), monocytes (MONO, 103/μL),
eosinophils (EOS, 103/μL), basophils (BASO, 103/μL), red blood
cells (RBC, 106/μL), hemoglobin (HGB, g/L), hematocrit (HCT, %),

mean corpuscular volume (MCV, fL), mean corpuscular
hemoglobin (MCH, pg), mean corpuscular hemoglobin
concentration (MCHC, g/L), red blood cell distribution width
(RDW, %), platelet concentration (PLT, 103/μL), and mean
platelet volume (MPV, fL). Descriptive statistics including mean
and standard deviation values of CBC traits by batch, for the pigs
included in the analysis, are shown in Supplementary Table S1.

Details of metabolomics analysis are described in Dervishi et al.
(2021). In order to remove plasma macromolecules, samples were
thawed on ice and a deproteinization step, involving ultra-filtration
was performed (Psychogios et al., 2011). Prior to filtration process, a
3 kDa cut-off centrifugal filter units (AmiconMicrocon YM-3), were
rinsed five times each with 0.5 mL of H2O and centrifuged
(10,000 rpm for 10 min) to remove residual glycerol bound to the
filter membranes. To remove macromolecules from the sample
(primarily protein and lipoproteins), aliquots of each sample
were transferred into the centrifuge filter devices and spun at
10,000 rpm during 20 min (Dervishi et al., 2021). After collecting
the filtrates, the volumes for each sample were recorded. If the total
volume of the sample was under 250 µL an appropriate amount of
150 mM KH2PO4 buffer (pH 7) was added and the dilution factor
was annotated and metabolite concentrations were corrected in the
subsequent analysis. Thereafter, 46.5 µL of a standard buffer
solution (54% D2O:46% 1.75 mM KH2PO4 pH 7.0 v/v containing
5.84 mM DSS (2,2-dimethyl-2-silcepentane-5-sulphonate),
5.84 mM 2-chloropyrimidine-5 carboxylate, and 0.1% NaN3 in
H2O) was added to the sample (Dervishi et al., 2021). After
preparation step, plasma samples (250 µL) were transferred in
3 mm SampleJet NMR tubes for spectral analysis and 1H-NMR
spectra were collected on a 700 MHz Avance III (Bruker)
spectrometer equipped with a 5 mm HCN Z-gradient pulsed-field
gradient (PFG) cryoprobe (Dervishi et al., 2021). 1H-NMR spectra
were acquired at 25°C using the first transient of the NOESY pre-
saturation pulse sequence (noesy1dpr), chosen for its high degree of
quantitative accuracy (Saude et al., 2006). All free induction decays
(FID’s) were zero-filled to 250 K data points. The singlet produced
by the DSS methyl groups was used as an internal standard for
chemical shift referencing (set to 0 ppm). The quantification all
1H-NMR spectra were processed and analyzed using an in-house
version of theMAGMET automated analysis software package using
a custommetabolite library (Dervishi et al., 2021). MAGMET allows
for qualitative and quantitative analysis of an NMR spectrum by
automatically fitting spectral signatures from an internal database to
the spectrum. This fitting procedure provides absolute
concentration accuracy of 90% or better (Ravanbakhsh et al.,
2015). An NMR spectroscopist inspected all spectra to minimize
compound misidentification and misquantification (Dervishi et al.,
2021). A representative NMR spectrum with assignments it is
provided in Supplementary Figure S2.

Forty-four metabolites were quantified: amino acids (AAs),
short chain fatty acids (SCFA), sugars, alcohols, organic acids,
amines, TCA cycle intermediates and urea cycle intermediates
(Dervishi et al., 2021). In addition, two indexes were calculated:
1) ketogenic amino acids (ketoAA), calculated as the sum of L-lysine
and L-leucine and 2) the sum of branched amino acids (BCAA) that
was calculated as the sum of L-leucine, L-isoleucine and L-valine
(Dervishi et al., 2021). Dervishi et al. (2021) reported that the
concentrations of 33 metabolites were heritable; in the present

Frontiers in Molecular Biosciences frontiersin.org03

Dervishi et al. 10.3389/fmolb.2023.1140375

51

https://arriveguidelines.org/
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2023.1140375


study we only considered these for estimation of genetic correlations
between CBC and metabolite traits and subsequent GWAS. The
observations for leukocyte count (white blood cells) and
concentrations of 2-hydroxybutyrate and L-alpha aminobutyric
acid were not normally distributed and, therefore, were log-
transformed before statistical analyses.

Estimation of genetic correlations

Genetic correlations of metabolite with CBC traits were
estimated using AIREMLF90 of the BLUPF90 programs (Misztal
et al., 2002), with the following bivariate mixed linear model
described by Dervishi et al. (2021):

ϒijk � Batchi + Ageijk + Penj + Litterijk + uijk + eijk

whereijk is the phenotype for the trait (metabolite, CBC) for one of the
968 analyzed pigs; Batchi is the fixed effect (i = 1, . . ., 15); Ageijk is the
covariate of age when the pig entered the quarantine nursery; Penj is the
random effect of nursery pen by batch, with Penj ~N (0, σ2P), where σ2P
is pen variance; Litterijk is the common environmental effect associated
with litter, with Litterijk ~ N (0, σ2L), where σ2L is the litter
environmental variance; uijk is the random additive genetic effect,
with the vector u ~ N (0, Gσ2A), where G is the genomic
relationship matrix and σ2A is the additive genetic variance; and eijk
is the residual effect, with eijk ~ N (0, σ2e), where σ2e is the residual
variance (Dervishi et al., 2021). Environmental enrichment was
included as fixed effect for 3-methyl 2-oxovaleric acid and amino
acids L-ornithine, L-leucine, L-valine, L-asparagine because it was
previously found to be significant (p ≤ 0.05; Dervishi et al., 2021).
The genomic relationship matrix, G, was created using the software
preGSf90 (Misztal et al., 2002) and the method described by VanRaden
(2008). Matrix G, was first created separately for pigs from each of the
seven companies and thereafter combined into one Gmatrix. In order
to focus on the within-company variance components, genetic
relationships between companies was set to zero as described by
Cheng et al. (2020). In addition, we estimated phenotypic and
genetic correlations among metabolites that belong to the same
pathway. Genetic correlations between two traits were estimated as
the estimate of the genetic covariance from the bivariate analysis divided
by the product of the genetic standard deviations for the two traits. A
likelihood ratio test with 1 degree of freedomwas used to determine the
significance of correlation estimates (Dervishi et al., 2021).

GWAS and functional analyses

Phenotypic data (concentration of 33 plasma metabolites) were
available for 968 F1 crossbred pigs and genotypic data were available
for 3,205 F1 crossbred pigs. The complete pedigree for 3,205 pigs
was unavailable due to the use of pooled semen in some batches (Bai
et al., 2020), however dam information was available for 3,194 pigs
and sire information was available for 1,138 pigs.

Single step genome-wide association study (ssGWAS), was
performed using the programs of BLUPF90 software family
(Misztal et al., 2002; Wang et al., 2014), modified to account for
genomic information (Geiger et al., 2016). Single step GWAS

integrates pedigree and genomic data in a single step (H matrix;
Geiger et al., 2016). The inverse ofHmatrix needed for mixed model
equations is given by:

H−1 � A−1 + 0 0
0 G−1 − A22

−1[ ]
where A−1 is the inverse of the numerator relationship matrix; A22

−1

is the inverse of the pedigree relationship matrix; and G−1 is the
inverse of the genomic relationship matrix. The genomic
relationship matrix (G) was constructed as: G = ZDZ′q
(VanRaden, 2008); where Z is the incidence matrix containing
genotypes (aa = 0, Aa = 1 and AA = 2) adjusted for allele
frequency, D is a diagonal matrix of weights for SNP markers
(initially D = I), and q is a weighting factor. The weighting factor
was as in Vitezica et al. (2011), ensuring that the average diagonal in
G is close to that of A22. The genomic estimated breeding value
(GEBV, âg) was calculated by ssGBLUP and the solutions of the SNP
effects (û) were obtained using the AIREMLF90 (Wang et al., 2012)
algorithm. Briefly, on the first step, setD = I, which gives a weight of
1 to all SNP, and G = ZDZ′q where G is the genomic relationship
matrix. On the second step we estimated âg, which were converted to
SNP effects: û = λDZ’G−1 âg, where âg is the GEBV of genotyped
animals. This process was run for one iteration.

In this study, SNPs located within 0.5 Mb were grouped as a
single window, and the percentage of genetic variance (GV)
explained by each window was calculated using the
postGSF90 module as: [Var(ai)/σ2a] x 100%, where ai is the
genetic value of the ith SNP window and σ2a is the additive GV
(Wang et al., 2014). The results of GWAS were reported as the
proportion of the genetic variance explained by non-overlapping
genomic windows (0.5 Mb). The windows that explained equal to or
greater than 0.5% of the genetic variance from ssGWAS were
considered as QTL regions (Hong et al., 2020). The model for
GWAS was as follow:

Y � Xb +Wc + Ul + Za + e

where Y is the vector of the phenotypes (metabolite concentration);
b is the vector of fixed effects (batch and covariate of age when the
pig entered the quarantine nursery); X is the incidence matrix
relating observations to the fixed effects, c is the vector for the
random pen effect; W is the incidence matrix of the random pen
effect; l is the vector of for the random litter effect; U is the incidence
matrix of the random litter effects; a is the vector of direct additive
genetic effects; Z is the incidence matrix of random animal effects;
and e is a vector of the random residuals.

Batches were nested within farms and coded uniquely; therefore
population stratification was accounted for in the association
analysis by fitting batch as the fixed effect in the model (Bai
et al., 2020).

The identification of candidate genes was performed using Sus
scrofa genome version 11.1 in BioMart (http://uswest.ensembl.org/
biomart/martview/73240e1280d6d0c946725fde6eb27af9). Genecards
(https://www.genecards.org/) was used to investigate the gene
function based on orthologous genes of humans. Candidate genes
were also compared with the information about QTLs reported in
QTLdb (Hu et al., 2016; http://www.animalgenome.org/cgi-bin/
QTLdb/index).

Frontiers in Molecular Biosciences frontiersin.org04

Dervishi et al. 10.3389/fmolb.2023.1140375

52

http://uswest.ensembl.org/biomart/martview/73240e1280d6d0c946725fde6eb27af9
http://uswest.ensembl.org/biomart/martview/73240e1280d6d0c946725fde6eb27af9
https://www.genecards.org/
http://www.animalgenome.org/cgi-bin/QTLdb/index
http://www.animalgenome.org/cgi-bin/QTLdb/index
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2023.1140375


The Metscape plugin (Karnovsky et al., 2012) in Cytoscape 3.8.2
(Shannon et al., 2003) was used to explore and visualize the
biochemical pathway that metabolites are involved in.
Metabolites that had significant (p ≤ 0.05) genetic correlations
with traits of interest (example: NEU, MONO, EOS, BASO,
LYM, ADG) were used for network visualization. In order to
generate a gene-compound network, a file containing the list of
KEGG elements was loaded into Metscape following instructions
provided by (Karnovsky et al., 2012). In a gene-compound network,
genes and metabolites are represented as nodes and reactions are
represented as edges. A compound node with an outgoing edge is a
substrate, while a compound node with an incoming edge is the
product of a specific biochemical reaction (Dervishi et al., 2021).

Results

Phenotypic correlations

In general, estimates of phenotypic correlations of the
metabolites with CBC were small (Supplementary Figure S3).
The estimate of greatest magnitude was between L-glutamic acid
and PLT. L-lactic acid was positively correlated with BASO,
WBC, NEU, EOS, and MPV, while it showed negative
phenotypic correlation with MCHC (p < 0.05). Pyruvic acid
showed positive phenotypic correlation estimates with HCT,
MCV, MCH (p < 0.05), and negative correlations with PLT,
RDW, and MPV (p < 0.05). D-glucose showed negative
phenotypic correlation estimates with NEU, BASO, EOS,
MONO, LYM, and MPV. Furthermore, L-alanine showed
negative phenotypic correlation with MCHC (Supplementary
Table S2; p < 0.05). Finally, oxoglutarate was positively
correlated with HGB (p < 0.05). A scatter plot showing the
negative correlations between pyruvic acid, D-glucose and
CBC traits is shown in Supplementary Figure S4.

The phenotypic correlation between metabolites that are
involved in the same pathway (betaine, dimethylglycine,
L-glycine, L-glutamic acid, L-serine, oxoglutarate, L-glutamine
and methionine) are shown in Table 3. The highest significant
positive correlation was observed between oxoglutarate an
L-glutamic acid.

Genetic correlations

Overall, estimates of genetic correlations of the metabolites with
CBC traits were larger than phenotypic correlations (Tables 1, 2) but
had larger SE. Table 1 shows the estimates of genetic correlation
between metabolites and white blood cell traits. Some metabolites
showed significant correlation estimates (p < 0.05) with white blood
cell traits. For example, a high negative genetic correlation between
NEU and plasma L-lysine was observed (p < 0.05). L-glutamine was
positively correlated with NEU (p < 0.05) and L-aspartate was
positively correlated with MONO (p < 0.05). 2-hydroxybutyrate,
3-methyl-2-oxovaleric acid and L-alpha aminobutyric acid had
positive genetic correlation estimates with EOS, while
dimethylglycine was negatively correlated with EOS

concentration (p < 0.05). Positive genetic correlations were
estimated for WBC with the amino acids L-asparagine and
L-glutamic acid (p < 0.05). Lymphocyte concentration was
positively correlated with isobutyric acid and L-histidine (p <
0.05), while LYM was negatively correlated with hypoxanthine
and L-ornithine (p < 0.05; Table 1).

Overall, we found a higher number of significant genetic
correlation between metabolites and leukocytes than RBC or
platelets traits. Therefore, metabolites that were genetically
correlated with leukocytes traits are visualized in a compound
network in Figure 1. These metabolites are involved in different
metabolic pathways, including vitamin H (biotin) metabolism,
vitamin B9 (folate) metabolism, urea cycle and metabolism of
arginine, proline, glutamate, aspartate and asparagine, histidine
metabolism, glycine, serine, alanine and threonine metabolism.

Estimates of genetic correlations between metabolites and RBC
and platelet traits are shown in Table 2. L-proline was highly
genetically positively correlated with HGB (p < 0.05) and HCT
(p < 0.05). A high negative genetic correlation was observed for
L-tyrosine with MCV (p < 0.05) and MCH (p < 0.05). In addition,
L-glycine was positively correlated at the genetic level with MCH
(p < 0.05). L-alanine (-p < 0.05) and L-alpha-aminobutyric acid (p <
0.05) were negatively correlated with RDW. Furthermore L-alanine
was positively correlated with PLT (p < 0.05). Finally, the amino acid
L-methionine was negatively correlated with MPV (p < 0.05).
Basophils, RBC, platelets, MCHC, and MCV were not genetically
correlated with any of the metabolites. The genetic correlation
between metabolites that are involved in the same pathway are
shown in Table 3 (below diagonal). The highest significant positive
correlation was observed between oxoglutarate and L-glutamic acid
followed by the correlation between L-serine and L-glycine.

GWAS

GWAS was performed for L-alpha aminobutyric acid,
L-aspartate, L-asparagine, L-glutamic acid, L-glutamine,
L-glycine, L-histidine, L-lysine, L-methionine, L- ornithine,
L-serine, betaine, creatinine, dimethylglycine, hypoxanthine,
isobutyric acid, oxoglutarate, 2-hydroxybutyrate and 3-methyl-
2 oxovaleric acid because in the present study they were
estimated to be genetically correlated with CBC, and in a
previous study they were genetically correlated with resilience, or
production traits (Dervishi et al., 2021).

For L-glutamic acid, the five most important windows were
located on SSC14 and explained 7% of the genetic variance (Table 4).
In addition, for L-tyrosine two windows on SSC1 explained 1.4%
and 2.56% of the genetic variance. For L-asparagine, the most
important window explained 1.1% of the genetic variance was
found on SSC6. For creatinine a window on SSC12 explained
1.2% of the genetic variance and for hypoxanthine a window on
SSC4 explained 1.2% of the genetic variance. One window on
SSC6 explained 1.1% of the genetic variance for L-aspartate.
Finally, one window on SSC2 explained 1.1% of the genetic
variance of isobutyric acid.

The results of GWAS showed that some windows overlapped for
some of the metabolites. For example, the window on SSC14
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(49,337,114–49,836,497 bp) explained some of the genetic variance
for both L-glutamic acid and glutamine. In this window a total of
10 genes were found (SPECC1L, ADORA2A, UPB1, GUCD1,

LRRC75B, GGT5, SUSD2, CABIN1, DDT, GSTT4). Another
window on SSC2 (87,468,329–87,968,307 bp) was found to
explain genetic variance for both betaine and dimethylglycine.

TABLE 1 Estimates and standard errors (SE) of genetic correlations of metabolite correlationsa with white blood cells traitsb.

Metabolite NEU MONO EOS BASO LYM WBC

2-Hydroxybutyrate 0.07 (0.73) −0.21 (0.70) 0.86 (0.78)** 0.51 (0.80) 0.31 (0.79) 0.11 (0.02)

3-Methyl-2-oxovaleric acid −0.04 (0.63) 0.41 (1.0) 0.68 (0.05)* 0.37 (2.32) −0.45 (0.85) −0.30 (0.79)

Betaine −0.25 (0.27) 0.06 (0.28) 0.06 (0.20) −0.12 (0.9) −0.013 (0.23) −0.12 (0.29)

Citric acid - 0.22 (0.34) - −0.45 (0.78) - −0.01 (0.37)

Creatinine −0.09 (0.27) −0.08 (0.26) −0.08 (0.20) 0.35 (0.78) 0.12 (0.22) −0.09 (0.30)

D-glucose −0.28 (0.34) −0.29 (0.35) 0.04 (0.3) −0.65 (0.77) −0.006 (0.31) -

Dimethylglycine −1.06 (1.48) 0.20 (0.40) −0.37 (0.20)* −0.5 (0.80) 0.59 (0.60) −0.29 (0.29)

Hypoxanthine 0.11 (0.28) −0.22 (0.29) 0.12 (0.18) −0.33 (3.81) −0.42 (0.23)* −0.02 (0.29)

Isobutyric acid 0.10 (0.42) −0.06 (0.45) 0.043 (0.06) 0.85 (1.32) 0.69 (0.35)*** 0.37 (0.40)

L-alanine 0.45 (0.52) 0.02 (0.5) −0.72 (1.05) −0.06 (0.04) - 0.12 (0.47)

L-alpha-aminobutyric acid 0.56 (0.44) 0.40 (0.36)X 0.75 (0.51)* 0.70 (0.87) 1.0 (0.90)* 0.86 (0.86)

L-asparagine 0.41 (0.54) −0.01 (0.51) 0.19 (0.40) 0.73 (1.54) 0.56 (0.69) 0.74 (0.58)*

L-aspartate 0.34 (0.85) 0.66 (0.58)* 0.09 (0.30) 0.86 (1.89) 0.10 (0.36) 0.15 (0.50)

L-glutamine 0.75 (0.30)*** −0.08 (0.25) 0.11 (0.18) 0.56 (0.89) 0.06 (0.20) 0.51 (0.29)*

L-glutamic acid - 0.01 (0.27) 0.27 (0.12) 0.61 (0.92) −0.0035 (0.2) 0.41 (0.06)**

L-glycine 0.02 (0.26) 0.02 (0.35) −0.14 (0.20) 0.06 (0.64) 0.26 (0.23) −0.04 (0.29)

L-histidine −0.006 (0.38) −0.04 (0.35) 0.01 (0.02) 0.67 (3.09) 0.33 (0.29)* -

L-isoleucine −0.08 (0.86) 0.11 (6.0) 0.50 (0.69) 0.33 (1.18) −0.58 (0.69) 0.11 (0.02)

L-Lactic acid 0.19 (0.42) 0.0003 (0.4) 0.13 (0.26) 0.57 (0.68) −0.01 (0.30) −0.17 (0.50)

L-lysine −0.81 (0.4)* −0.17 (0.32) 0.19 (0.24) −0.02 (0.72) 0.16 (0.26) −0.32 (0.56)

L-leucine −0.09 (0.46) 0.77 (0.81) 0.27 (0.30) 0.43 (0.95) −0.07 (0.36) −0.26 (0.56)

L-methionine 0.22 (0.45) −0.51 (0.52) 0.39 (0.29)X −0.08 (0.1) −0.26 (0.36) -

L-ornithine −0.34 (0.33) - −0.10 (0.21) −0.39 (0.64) −0.42 (0.21)* -

L-phenylalanine −0.56 (0.95) 0.79 (0.51) - 0.43 (1.08) −0.15 (0.49) −0.51 (1.35)

L-proline 0.34 (0.69) 0.004 (1.01) −0.04 (0.01) 0.45 (1.03) - 0

L-serine −0.23 (0.48) −0.26 (0.44) −0.04 (0.31) −0.19 (0.96) 0.37 (0.43) 0.006 (0.4)

Oxoglutarate - −0.32 (0.55) 0.25 (0.20) 0.56 (0.94) −0.20 (0.1) −0.33 (0.71)

Pyruvic acid −0.03 (0.32) 0.18 (0.33) 0.13 (0.23) 0.70 (0.97) 0.36 (0.24)X 0.42 (0.36)

L-threonine −0.49 (1.57) −0.24 (0.86) −0.75 (1.12) −0.03 (1.37) 0.07 (0.52) −0.31 (0.65)

L-tyrosine - 0.12 (0.93) −0.1 (0.33) 0.28 (1.0) −0.16 (0.40) −0.15 (0.97)

L-valine −0.14 (0.55) 0.03 (0.54) 0.08 (0.37) 0.52 (0.81) −0.06 (0.41) −0.06 (0.67)

BCAA −0.12 (0.48) - 0.22 (0.34) 0.45 (0.81) −0.18 (0.39) −0.25 (1.24)

KetoAA −0.81 (0.59)* 0.21 (1.27) 0.25 (0.27) 0.10 (0.87) 0.12 (0.30) −0.33 (0.71)

aBCAA, Branched-chain amino acid index was calculated as the sum of L-leucine, L-isoleucine and L-valine and ketoAA, ketogenic amino acids was calculated as the sum of L-lysine and

L-leucine.
bNEU, neutrophil concentration (103/μL); MONO, monocyte concentration (103/μL); EOS, eosinophil; BASO, basophil concentration (103/μL); LYM, lymphocyte concentration (103/μL);

WBC, total white blood cell concentration (103/μL).

Significance of the genetic correlations are highlighted in bold based on the likelihood ratio test and indicated as ***, **, *, X, corresponding to p < 0.001, p < 0.01 and p ≤ 0.05, and 0.05 < p <
0.10 respectively; “-” indicates not estimable.
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Four genes were located in this window (ARSB, DMGDH, BHMT2
and BHMT). In addition, one window on SSC1
(73,972,391–74,471,148 bp) was found to explain some of

percentages of the genetic variance for L-ornithine, L-proline,
and L-tyrosine. A total of 5 genes were found in this region
(SEC63, OSTM1, NR2E1, SNX3 and AFG1L).

TABLE 2 Estimates and standard errors (SE) of genetic correlations of metabolite concentrationsa with red blood cell and platelet traitsb.

Metabolite RBC HGB HCT MCV MCH MCHC RDW PLT MPV

2-Hydroxybutyrate 0.05 (0.41) 0.05 (1.27) 0.21 (1.27) 0.03 (0.4) −0.25 (0.37) 0.07 (0.7) −0.83 (0.03) −0.78 (0.83) −0.2 (0.42)

3-Methyl-2-oxovaleric acid 0.29 (0.64) 0.62 (2.06) 0.51 (2.0) −0.36 (0.45) −0.48 (0.07) −0.08 (0.74) 0.43 (0.08) −1.02 (2.25) 0.52 (0.80)

Betaine 0.26 (0.25) 0.37 (0.50) 0.68 (1.09) −0.07 (0.20) 0.03 (0.19) −0.01 (0.31) 0.45 (0.30) 0.48 (0.46) −0.04 (0.26)

Citric acid 0.007 (0.26) −0.17 (0.57) 0.37 (0.58) 0.11 (0.20) −0.18 (0.21) −0.11 (0.4) −0.78 (1.48) 0.13 (0.42) −0.14 (0.26)

Creatinine 0.04 (0.23) 0.19 (0.47) −0.12 (0.68) 0.11 (0.18) 0.19 (0.18) 0.04 (0.28) −0.75 (0.90) −0.08 (0.34) −0.06 (0.33)

D-glucose −0.05 (0.30) −0.56 (0.72) −0.25 (0.58) −0.11 (0.26) −0.06 (0.27) 0.33 (0.54) −0.22 (1.15) - 0.02 (0.34)

Dimethylglycine −0.03 (0.24) 0.07 (0.4) 0.21 (0.49) 0.08 (0.18) 0.18 (0.18) −0.17 (0.27) 0.50 (0.10) - 0.17 (0.25)

Hypoxanthine 0.21 (0.22) 0.48 (0.52) 0.63 (0.49)* 0.21 (0.16) 0.08 (0.28) 0.08 (0.28) −0.30 (0.76) −0.42 (0.4) −0.02 (0.23)

Isobutyric acid −0.20 (0.35) 0.27 (0.66) −0.13 (0.71) 0.17 (0.31) 0.18 (0.34) 0.49 (0.52) −0.76 (0.04)X −0.44 (0.90) −0.17 (0.36)

L-alanine 0.54 (0.48)X 0.44 (1.06) 0.17 (0.06) 0.11 (0.28) 0.09 (0.28) −0.36 (0.43) −0.64 (0.05)* 0.98 (0.05)** 0.07 (0.39)

L-alpha-aminobutyric acid 0.14 (0.32) 0.24 (0.67) 0.56 (0.69) 0.26 (0.31) 0.06 (0.30) −0.07 (0.37) −0.98 (0.03)** −0.85 (1.54) −0.13 (0.33)

L-asparagine −0.02 (0.55) 0.07 (1.33) 0.29 (0.92) 0.32 (0.52) 0.40 (0.59) 0.2 (0.81) −0.10 (1.41) −0.30 (2.17) −0.42 (0.91)

L-aspartate 0.05 (0.40) −0.36 (0.59) −0.35 (0.73) −0.24 (0.29) −0.16 (0.38) 0.25 (0.44) −0.52 (1.23) −0.54 (0.73) 0.01 (0.04)

L-glutamine 0.07 (0.22) 0.37 (0.62) 0.36 (0.60) 0.18 (0.17) 0.16 (0.18) 0.16 (0.28) −0.32 (0.88) −0.56 (0.55) −0.21 (0.23)

L-glutamic acid 0.03 (0.23) 0.03 (0.39) −0.08 (0.48) −0.12 (0.16) −0.01 (0.17) 0.22 (0.26) −0.42 (0.06) −0.47 (0.07) −0.10 (0.23)

L-glycine 0 0.09 (0.59) 0.27 (0.59) 0.13 (0.18) 0.45 (0.17)** 0.26 (0.29) −0.19 (0.94) 0.16 (0.45) 0.23 (0.25)

L-histidine −0.02 (030) 0.19 (0.56) −0.73 (0.88) −0.20 (0.24) 0.17 (0.23) 0.37 (0.34) −0.36 (0.80) −0.72 (1.05) −0.21 (0.39)

L-isoleucine 0.55 (0.75) 0.97 (0.25)X 0.82 (1.78) −0.26 (0.50) −0.34 (0.52) −0.03 (0.78) 0.08 (1.35) −0.68 (1.11) 0.33 (0.77)

L-Lactic acid 0.61 (0.71) 0.93 (1) 0.67 (0.85) −0.002 (0.38) −0.02 (0.39) −0.26 (0.54) −0.25 (2.09) - −0.38 (0.61)

L-lysine 0.15 (0.32) 0.04 (0.59) −0.02 (0.71) −0.27 (0.25) −0.19 (0.24) 0.29 (0.33) −0.65 (0.05) −0.24 (0.44) −0.17 (0.29)

L-leucine 0.42 (0.43) 0.82 (0.90) 0.35 (0.79) −0.23 (0.32) −0.12 (0.33) −0.38 (0.78) −0.21 (1.45) −0.14 (0.78) 0.17 (0.48)

L-methionine 0.13 (0.35) −0.27 (3.57) 0.018 (0.72) −0.10 (0.39) −0.33 (0.25) −0.49 (0.45) 0.75 (0.70) −0.56 (0.83) −0.56
(0.41)*

L-ornithine −0.11 (0.25) −0.07 (0.46) −0.19 (0.62) −0.34 (0.21) −0.24 (0.22) −0.07 (0.11) −0.23 (1.52) −0.09 (0.40) 0.36 (0.28)

L-phenylalanine 0 −0.14 (1.38) −0.41 (0.95) −0.32 (0.47) −0.34 (0.36) −0.01 (0.51) −0.03 (1.25) −0.49 (0.66) 0.18 (0.60)

L-proline 0.90 (0.97) 0.94 (0.03)* 0.70 (0.04)** 0.18 (0.32) 0.08 (0.57) −0.39 (0.30) −0.68 (0.06) 0.02 (0.04) 0.20 (0.66)

L-serine 0.01 (0.35) −0.04 (0.68) 0.6 (1.13) 0.05 (0.27) 0.17 (0.35) 0.27 (0.49) 0.79 (0.70) −0.007 (0.71) 0.18 (0.38)

Oxoglutarate 0.08 (0.24) 0.12 (0.64) 0.32 (0.61) −0.007 (0.19) 0.18 (0.19) 0.31 (0.28) −0.82 (0.10)X −0.54 (0.48)X −0.08 (0.28)

Pyruvic acid 0.18 (0.31) 0.52 (0.83) 0.57 (0.64) 0.07 (0.74) 0.01 (0.26) −0.47 (0.63) −0.75 (0.29) −0.12 (0.51) −0.06 (0.28)

L-threonine −0.06 (0.56) 0.01 (0.96) 0.26 (1.63) 0.09 (0.50) 0.04 (0.48) −0.1 (0.84) 0.92 (0.16) 0.62 (1.63) −0.12 (0.55)

L-tyrosine 0.44 (0.45) −0.10 (1.14) 0.37 (0.95) −0.73 (0.68)* −0.92(0.74)
**

−0.42 (0.54) 0.66 (1.02) −0.20 (0.52) −0.22 (0.46)

L-valine 0.11 (0.49) 0.48 (1.25) 0.16 (0.98) −0.15 (0.67) −0.02 (0.63) 0 - 0.26 (0.97) 0.13 (0.59)

BCAA 0.33 (0.46) 0.69 (0.78) 0.34 (0.99) −0.21 (0.32) −0.12 (0.31) −10 (0.46) −0.04 (1.32) −0.12 (0.93) 0.16 (0.42)

KetoAA 0.24 (0.33) 0.24 (0.91) 0.07 (0.65) −0.33 (0.32) −0.22 (0.39) 0.17 (0.58) −0.68 (0.05)X −0.27 (0.63) −0.16 (0.36)

aBCAA, branched-chain amino acid index was calculated as the sum of L-leucine, L-isoleucine and L-valine; ketoAA, ketogenic amino acids was calculated as the sum of L-lysine and L-leucine.
bRBC, red blood cell concentration (106/μL); HGB, hemoglobin concentration (g/L); HCT, hematocrit (%); MCV, mean corpuscular volume (fL); MCH, mean corpuscular hemoglobin (pg);

MCHC, mean corpuscular hemoglobin concentration (g/L); RDW, red blood cell distribution width (%). PLT, platelet concentration (103/μL) and MPV, mean platelet volume (fL).

Significance of the genetic correlations are highlighted in bold based on the likelihood ratio test and indicated as ***, **, *, X, corresponding to p < 0.001, p < 0.01 and p ≤ 0.05, and 0.05 < p <
0.10 respectively; “-” indicates not estimable.
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Discovery of common genomic regions for differentmetabolites led
us to further investigate some genes that control the genetic variance of
different metabolites. Thus, a compound-gene network of metabolites
that had significant (p < 0.05) genetic correlations with traits of interest

(example: neutrophils, EOS, MCH, ADG and number of veterinary
treatments), and for which had overlapping genomic windows that
explained genetic variance. Figure 2 shows the input metabolites (in
dark purple color) and chemical reactions are represented as edges. The

FIGURE 1
A compound network of metabolites that are significantly (p < 0.05) genetically correlated with leukocytes (white blood cells). Input metabolites are
shown in green color and chemical reactions are represented as edges. Positive or negative sign on the edges represent positive or negative genetic
correlation.

TABLE 3 Estimates and standard errors (SE) of genetic correlations (below diagonal) and phenotypic correlation (above diagonal) betweenmetabolites involved in
the same pathway.

Metabolites Betaine Dimethylglycine Glycine L-glutamic
acid

L-Serine Oxoglutarate L-Glutamine Methionine

Betaine 1 0.40 (0.03)** 0.33 (0.04)* −0.03 (0.03) 0.35
(0.03)**

0.01 (0.04) −0.002 (0.04) 0.24 (0.04)**

Dimethylglycine 0.28 (0.14) 1 0.09 (0.04) - 0.13 (0.04)* −0.06 (0.04) −0.12 (0.04)** 0.029 (0.03)

L-glycine 0.19 (0.19) 0.16 (0.21) 1 0.20 (0.03)*** - 0.25 (0.05)*** 0.18 (0.03)*** 0.01 (0.04)

L-glutamic acid −0.14 (0.20) −0.22 (0.26) −0.007
(0.18)

1 0.27
(0.03)**

0.69 (0.02)*** 0.42 (0.034)*** 0.09 (0.04)

L-serine −0.02 (0.47) 0.21 (0.33) 0.76
(0.52)***

0.14 (0.29) 1 0.27 (0.03) 0.22 (0.04)*** 0.19 (0.04)*

Oxoglutarate 0.002 (0.22) −0.18 (0.20) 0.22 (0.18) 0.79 (0.09)*** 0.39 (0.34) 1 0.27 (0.03)*** 0.05 (0.04)

L-glutamine −0.37
(0.20)***

−0.28 (0.17)x −0.23 (0.21) 0.2 (0.16) −0.16 (0.34) 0.38 (0.18)* 1 0.33 (0.03)***

L-methionine 0.07 (2.25) 0.07 (0.22) −0.59
(0.29)**

0.13 (0.40) −0.46 (1.43) 0.11 (0.30) 0.3 (0.26) 1

Significance of the genetic and phenotypic correlations are highlighted in bold based on the likelihood ratio test and indicated as ***, **, *, X, corresponding to p < 0.001, p < 0.01 and p ≤ 0.05, and

0.05 < p < 0.10 respectively; “-” indicates not estimable.
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TABLE 4 Chromosome position (in basepairs) and the proportion of additive genetic variance explained for each metabolite and genes located in the region.

Metabolite Chromosome Start
(bp)

End (bp) Variance explained by
adjacent SNPs

Gene name

L-alanine 1 77,666,621 78,166,009 0.7 FYN, U6, CCN6, TUBE1

13 148,254,310 148,753,746 0.6 NECTIN3

14 98,696,648 99,196,606 0.54 PRKG1, A1CF, N-acylsphingosine amidohydrolase 2

L-asparagine 1 134,389,442 134,886,597 0.71 CDIN1

6 63,321,290 63,818,847 0.65 NOC2L, KLHL17, PLEKHN1, HES4, ISG15, AGRN, RNF223, ssc-
mir-200b, ssc-mir-429, TNFRSF4, SDF4, B3GALT6, C1QTNF12,
UBE2J2, ACAP3, PUSL1, INTS11, TAS1R3, DVL1, MXRA8,
AURKAIP1, CCNL2, MRPL20, TMEM88B, VWA1, ATAD3A,
TMEM240, SSU72, MIB2, MMP23B

6 65,142,458 66,987,107 2.49 TPRG1L, WRAP73, TP73, CCDC27, SMIM1, LRRC47, CEP104,
ssc-mir-2320, DFFB, C1orf174, ssc-mir-4331-1, AJAP1, NPHP4,
KCNAB2

L-aspartate 6 24,433,478 24,931,615 1.06 U2

6 25,256,424 25,751,462 0.63 None

6 70,267,482 70,764,647 0.88 LZIC, NMNAT1, RBP7, UBE4B, KIF1B, U6, PGD, CENPS

14 43,982,025 44,481,714 0.82 SEZ6L, ASPHD2, HPS4, SRRD, TFIP11, TPST2, CRYBB1,
CRYBA4

14 106,941,420 107,439,174 0.61 SORBS1, ALDH18A1, TCTN3, ENTPD1, CC2D2B

14 107,490,232 107,987,938 0.96 CC2D2B, CCNJ, ZNF518A, BLNK, DNTT, OPALIN

L-glutamic Acid 14 44,945,208 45,444,193 1.10 MN1, PITPNB, TTC28

14 46,222,942 46,720,805 1.54 ZNRF3, C22orf31, KREMEN1, EMID1, RHBDD3, EWSR1,
GAS2L1, RASL10A, AP1B1, SNORD125, NEFH, THOC5,
NIPSNAP1, NF2

14 46,863,516 47,363,323 1.36 MTMR3, HORMAD2, LIF, OSM, CASTOR1, TBC1D10A, SF3A1,
RNF215

14 47,569,039 48,065,569 2.06 OSBP2, MORC2, TUG1, SMTN, SELENOM, INPP5J, PLA2G3,
RNF185, LIMK2, PIK3IP1

14 49,337,114 49,836,497 0.89 SPECC1L, ADORA2A, UPB1, GUCD1, LRRC75B, GGT5, SUSD2,
CABIN1, DDT, GSTT4

L-glutamine 12 9,686,276 10,186,144 0.57 None

14 47,589,083 48,088,498 0.65 OSBP2, MORC2, TUG1, SMTN, SELENOM, INPP5J, PLA2G3,
RNF185, LIMK2, PIK3IP1, PATZ1

14 49,337,114 49,836,497 0.72 SPECC1L, ADORA2A, UPB1, GUCD1, LRRC75B, GGT1, GGT5,
SUSD2, CABIN1, DDT, GSTT4

14 107,490,232 107,987,938 0.54 CC2D2B, CCNJ, ZNF518A, BLNK, DNTT, OPALIN, TLL2,
TM9SF3

L-glycine 6 41,826,913 42,324,310 0.54 ZNF507

7 85,729,010 86,228,917 0.82 RGMA, CHD2

13 67,207,607 67,707,171 0.53 HRH1, ATG7, VGLL4

L-histidine 2 134,063,036 134,562,065 0.53 FNIP1, MEIKIN, ACSL6, CSF2, P4HA2, PDLIM4

6 66,977,105 67,476,230 0.6 KCNAB2, CHD5, RPL22, RNF207, ICMT, HES3, GPR153,
ACOT7, HES2, ESPN, TNFRSF25, PLEKHG5, NOL9, TAS1R1,
ZBTB48, KLHL21, PHF13, THAP3, DNAJC11

7 49,996,822 50,495,753 0.69 IL16, STARD5, TMC3

10 8,877,853 9,376,716 0.58 LYPLAL1

14 9,447,641 9,946,090 0.6 GNRH1, KCTD9, CDCA2, EBF2

(Continued on following page)
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TABLE 4 (Continued) Chromosome position (in basepairs) and the proportion of additive genetic variance explained for each metabolite and genes located in the
region.

Metabolite Chromosome Start
(bp)

End (bp) Variance explained by
adjacent SNPs

Gene name

L-lysine 1 73,972,391 74,471,148 1.02 SEC63, OSTM1, NR2E1, SNX3, AFG1L

1 74,474,926 74,974,129 0.58 AFG1L, FOXO3, ARMC2

15 107,259,807 107,753,851 0.74 CTLA4, ICOS

16 25,159,487 25,656,089 0.63 None

L-methionine 4 72,410,298 72,909,455 0.51 CHD7, RAB2A

14 99,323,188 99,821,978 0.54 MINPP1, PAPSS2, ATAD1

L-ornithine 1 73,972,391 74,471,148 0.92 SEC63, OSTM1, NR2E1, SNX3, AFG1L

1 8,554,166 9,054,053 0.89 DYNLT1, TMEM181, GTF2H5, SERAC1, SYNJ2

3 9,162,389 9,658,871 0.56 collagen type XXVI alpha 1 chain, MYL10, CUX1

L-proline 1 73,972,391 74,471,148 0.58 SEC63, OSTM1, NR2E1, SNX3, AFG1L

1 116,533,603 117,031,491 0.57 RAB27A, RSL24D1

6 65,802,953 66,302,936 0.58 AJAP1

L-Serine 6 65,676,029 66,175,375 0.65 AJAP1

14 46,499,201 46,998,737 0.54 AP1B1, NEFH, THOC5, NIPSNAP1, NF2, CABP7, ZMAT5,
UQCR10, ASCC2, MTMR3

14 47,569,039 48,065,569 0.62 OSBP2, MORC2, TUG1, SMTN, SELENOM, INPP5J, PLA2G3,
RNF185, LIMK2, PIK3IP1

17 31,756,334 32,255,590 0.7 RNF24, PANK2, ssc-mir-103-2, AP5S1, CDC25B, CENPB, SPEF1,
C20orf27, HSPA12B, HSPA12B, SIGLEC1, ADAM33, GFRA4,
ATRN, U6

L-tyrosine 1 73,972,391 74,471,148 1.16 SEC63, OSTM1, NR2E1, SNX3, AFG1L

1 74,642,280 75,141,490 1.4 FOXO3, ARMC2, SESN1

1 75,293,381 75,793,269 0.65 CD164, PPIL6, SMPD2, MICAL1, ZBTB24, FIG4

1 80,371,029 80,869,342 0.68 None

3 28,372,233 28,869,026 0.55 ABCC1, BFAR, PARN

Betaine 1 37,056,251 37,556,077 0.58 NCOA7, HEY2

2 86,542,827 87,041,852 0.53 TBCA, AP3B1

2 87,468,329 87,968,307 0.53 ARSB, DMGDH, BHMT2, BHMT

6 82,101,618 82,599,859 0.57 STPG1, NIPAL3, RCAN3, U6, SRRM1, CLIC4, RUNX3

15 124,184,229 124,681,509 0.69 PAX3, SGPP2, MOGAT1

17 26,471,906 26,969,482 0.82 PET117, KAT14, U6, ZNF133, DZANK1, POLR3F, RBBP9,
SEC23B, SMIM26, DTD1

Creatinine 2 149,629,454 150,127,355 0.74 SPINK9, FBXO38, HTR4, ADRB2

12 2,562,992 3,060,017 1.15 CBX8, CBX2, ENPP7, U6

Dimethylglycine 2 85,842,752 86,340,606 0.51 AGGF1, PDE8B, SNORA47

2 86,505,377 87,003,259 0.93 OTP, TBCA, AP3B1

2 87,468,329 87,968,307 0.60 ARSB, DMGDH, BHMT2, BHMT

6 82,101,618 82,599,859 0.64 STPG1, NIPAL3, RCAN3, U6, SRRM1, CLIC4, RUNX3

15 129,051,568 129,551,348 0.86 SCYGR5, SCYGR6, SCYGR8, C-C motif chemokine ligand 20,
DAW1, SPHKAP, U6

(Continued on following page)
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genes that are associated with these metabolites are displayed in bright
green. For example, Figure 2 shows that betaine and dimethylglycine
metabolism are interconnected. Genes located in same window on
SSC2, (DMGDH, BHMT2, BHMT), are associated with both
metabolites, suggesting pleiotropic effects of genes on multiple
metabolites.

Discussion

To our best knowledge, this is the first study reporting genetic
correlation between metabolites and CBC traits in healthy young

pigs. The aims of the present study were to estimate 1) genetic
correlations between thirty-three heritable metabolites with CBC
traits in healthy young pigs, and 2) identify genomic regions
controlling the genetic variance of metabolites that were
genetically correlated with CBC and production and disease
resilience traits. Identification of genetic predictors/markers of
resilience and production traits under disease challenge by using
samples from healthy pigs is necessary for genetic selection
programs in high health nucleus farms. This study contributes to
our understanding of the relationship of metabolites and immune
response cells in pigs. The results of phenotypic and genetic
correlations increase our understanding of the crosstalk between

TABLE 4 (Continued) Chromosome position (in basepairs) and the proportion of additive genetic variance explained for each metabolite and genes located in the
region.

Metabolite Chromosome Start
(bp)

End (bp) Variance explained by
adjacent SNPs

Gene name

Hypoxanthine 3 10,293,739 10,789,778 0.70 RHBDD2, CCL26, HIP1, NSUN5, TRIM50, FKBP6, FZD9,
BAZ1B

4 129,471,881 129,968,024 1.18 CLCA1, CLCA2, ODF2L, COL24A1

4 130,191,423 130,690,509 0.76 COL24A1, ZNHIT6, CCN1, DDAH1, BCL10, C1orf52

5 69,586,920 70,086,295 0.60 CECR2, BCL2L13, BID, MICAL3

17 31,589,919 32,084,533 0.66 SMOX, U6, RNF24, PANK2, ssc-mir-103-2, AP5S1, CDC25B,
CENPB, SPEF1, C20orf27, HSPA12B, SIGLEC1, ADAM33,
GFRA4, ATRN

17 32,123,118 32,620,235 1.14 ATRN, U6, DNAAF9, SLC4A11, ITPA, DDRGK1, LZTS3,
FASTKD5, UBOX5, AVP, OXT

Isobutyric acid 2 149,658,663 150,158,529 1.10 FBXO38, HTR4

4 129,471,881 129,968,024 0.52 CLCA1

12 2,562,992 3,060,017 0.59 CBX8, CBX2, ENPP7, U6

L-alpha-
aminobutyric acid

14 107,490,232 107,987,938 0.62 CC2D2B, CCNJ, ZNF518A, BLNK, DNTT, OPALIN

14 110,517,873 111,017,235 0.54 CNNM1, GOT1, NKX2-3, SLC25A28, ENTPD7, ENTPD7,
COX15, CUTC, ABCC2

Oxoglutarate 1 25,502,333 26,001,840 0.83 REPS1, ECT2L, CCDC28A, NHSL1, SNORA70, heme binding
protein 2

1 24,945,041 25,443,993 0.61 U6, CITED2, TXLNB, HECA, ABRACL

2 134,496,051 134,994,766 0.64 P4HA2, PDLIM4, SLC22A4, SLC22A5, RAD50, IRF1, IL5, KIF3A,
IL13, IL4

14 46,622,301 47,118,015 0.58 THOC5, NIPSNAP1, NF2, CABP7, ZMAT5, UQCR10, ASCC2,
MTMR3, HORMAD2

14 47,569,039 48,065,569 0.85 OSBP2, MORC2, TUG1, SMTN, SELENOM, INPP5J, PLA2G3,
RNF185, LIMK2, PIK3IP1

14 49,337,114 49,836,497 0.56 SPECC1L, ADORA2A, UPB1, GUCD1, LRRC75B, GGT5, SUSD2,
CABIN1, DDT, GSTT4

2-hydroxybutyrate 7 85,799,632 86,298,534 0.55 RGMA, CHD2

3-methyl-2-
oxovaleric acid

1 4,465,007 4,963,404 0.95 QKI

13 26,247,606 26,746,605 0.54 CCDC13, HIGD1A, ACKR2, CYP8B1, ZNF662, POMGNT2,
SNRK, ANO10

15 122,986,770 123,486,192 0.53 EPHA4

16 18,909,569 19,408,454 0.84 NPR3
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metabolites and immune cells in healthy animals, which might help
design nutritional and selection strategies to improve resilience.
Meanwhile, it is possible to estimate the genetic correlations between
different traits, it is often not clear what molecular processes
contributes to these genetic correlations. Thus, this study deepens
our understanding to what contributes to the genetic correlations at
a molecular level in young healthy pigs.

Phenotypic and genetic correlations

Phenotypic correlations of metabolites with CBC traits were
generally very low. D-glucose had negative phenotypic correlation
estimates with NEU, LYM, MONO, EOS, BASO, and MPV, while
lactic acid was phenotypically positively correlated withWBC, NEU,
LYM, BASO, EOS, RBC, HGB and MPV. Lactic acid is a
hydroxycarboxylic acid and is mainly produced in muscle cells
and red blood cells during anaerobic glycolysis (Connor et al.,
1983). During glycolysis, glucose is metabolized into pyruvate,
ATP, and NADHs. In the presence of oxygen, pyruvate is
converted to acetyl-CoA in the tricarboxylic acid (TCA) cycle.
Under oxygen-deprived conditions, pyruvate is reduced to lactate.
However, the conversion of pyruvate to lactate also occurs under
aerobic conditions, under which glucose uptake increases and
preferential production of lactic acid takes place and it is known
as the “Warburg effect” (Manca et al., 2021). In humans, increased
levels of lactic acid are often used as biomarkers for various diseases,
including autoimmune diseases, sepsis and neoplasia malignancy
(Jansen et al., 2009; Ippolito et al., 2019). Lactic acid has been
observed to be released by neutrophils in humans and mice

(Stanfield and Germann, 2008; Kilkenny et al., 2010), acting as a
critical regulator of neutrophil mobilization from the bone marrow.
In ruminants, a greater concentration of lactic acid in blood is
associated with ruminal acidosis (Hernández et al., 2014) and other
health issues. In addition, lactic acid is reported to decrease platelet
aggregation in horses and dogs (Lam et al., 2021; Lanier et al., 2022).
Interestingly, our earlier work on these same data showed that lactic
acid concentration in healthy pigs was found to be heritable
(Dervishi et al., 2021), however, in this study we did not find
significant genetic correlation estimates between lactic acid and
CBC traits. Nonetheless, the results of phenotypic correlation are
consistent with the possible role of lactic acid in exerting
immunomodulatory effects that regulate the inflammatory
response (Hoque et al., 2014; Pucino et al., 2017; Manca et al., 2021).

Overall, estimates of genetic correlations between metabolites
and CBC traits ranged from moderate to high. We found high
negative genetic correlation between plasma L-lysine and NEU
(−0.81 ± 0.4), which is in agreement with previous studies
reporting that lysine can modulate the neutrophil metabolism
(Hu et al., 2016). L-Lysine is an essential amino acid in protein
biosynthesis. Pigs have a high requirement for lysine (Liao et al.,
2015) and supplementation with lysine can improve muscle protein
accretion in pigs (Wu et al., 2014). On the other hand, impaired
immune function, and increase susceptibility to infectious diseases
have been reported in animals receiving a diet deficient in lysine
(Chen et al., 2003). In pigs, (Brooks et al., 1964) found that lysine
supplementation resulted in reductions in white blood cell counts,
gamma globulin levels, and sedimentation rates, and increases in
hematocrit values, red cell counts, hemoglobin levels, total serum
protein levels, and serum albumin levels. In rats, supplementation of

FIGURE 2
A compound-gene network of metabolites that are significantly (p < 0.05) genetically correlated with traits of interest (NEU, EOS, MCH, ADG and
number of veterinary treatments). Input metabolites are shown in dark purple hexagonal and input genes are shown in bright green circles. Chemical
reactions are represented as edges.
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lysine significantly reduced the neutrophil, lymphocyte counts, the
tumor necrosis factor alpha (TNF-α), interleukin-8 (IL-8), and
migration inhibitory factor (MIF) levels and protected against
sepsis-induced chronic lung injury (Zhang et al., 2019). Lysine is
found in high abundance in histones and lysine residues in the
histones are accessible to several post translational modifications,
including methylation and acetylation. Neutrophils are key
participant in the innate immune response with a short half-life
varying from 8–20 h and the regulation of neutrophil death rate is
essential for maintaining hemostasis under physiological conditions
(Perez- Figueroa et al., 2021). One of the defense mechanism of
neutrophils is the formation of neutrophil extracellular traps (NETs;
Brinkmann et al., 2004), which consist of DNA fibers associated with
histones, enzymes from neutrophil granules and anti-microbial
peptides which are released in the extracellular environment. The
release of NETs is also a part of programmed cell-death process
called NETosis. Lysine is important amino acid which is involved in
histone modification process that take place during NETosis which
will result in the formation of dispersed chromatin (Poli et al., 2021;
Pérez-Figueroa et al., 2021). This molecular process might explain
the negative genetic correlation between lysine and neutrophils. Our
results suggest that L-lysine modulates neutrophil concentration and
hence the immune response in pigs. The molecular aspect of it needs
to be clarified and deserve further investigation.

We found that L-glutamine was genetically positively highly
correlated with NEU and L-aspartate was positively correlated with
MONO. Positive genetic correlation estimates were observed for the
amino acids L-asparagine and L-glutamic acid with WBC.
Lymphocyte concentration was negatively correlated with
hypoxanthine and L-ornithine. Extensive research conducted in
human and animal studies have demonstrated the role of amino
acids in immune cell maturation, modulation, and function. For
example, amino acids such as glutamic acid, glutamine, histidine,
methionine, leucine, isoleucine, and valine are functional regulators
of macrophages, dendritic cells, and T cells (Yoneda et al., 2009;
McGaha et al., 2012; Wu, et al., 2012; Liu et al., 2017).

One of our most interesting results is the high positive genetic
correlation between L-proline and hemoglobin concentration
(0.94 ± 0.03). Using NMR spectroscopy and mutagenesis Gell
et al. (2009) identified the importance of an evolutionary
conserved proline residue in α-hemoglobin stabilizing protein.
The results of genetic correlation between hemoglobin and
proline may reflect the fact that proline is necessary for the
structural reorganization of α-hemoglobin (Gell et al., 2009) and
for the synthesis of iron related proteins such as hemoglobin,
ferritin, and transferrin (Kitajima et al., 2003). Indeed, in rats,
supplementation with proline enhanced a significant increase in
the number of red blood cells and hemoglobin (Kitajima et al., 2003).

In addition, isobutyric acid was found to be positively genetically
correlated with LYM concentration (0.69 ± 0.35) in healthy pigs.
Previously, Dervishi et al. (2021), using the same pig population,
reported that isobutyric acid in these pigs is heritable and negatively
genetically correlated with residual feed intake under disease (RFI;
−0.38). Furthermore, LYM concentration in young healthy pigs was
found to be negatively genetically correlated with veterinary
treatment rate under disease (Bai et al., 2020) in the same pig
population. These results suggests that isobutyric acid might
modulate both traits, LYM in young healthy pigs and RFI in pigs

under disease conditions. Further research is necessary to investigate
the relationship between isobutyric acid and LYM levels in blood of
young healthy pigs, and RFI under disease.

Other metabolites such as 2-hydroxybutyrate, 3-methyl-2-
oxovaleric acid and L-alpha aminobutyric acid were estimated to
have positive genetic correlations with LYM and EOS concentration
meanwhile dimethylglycine was negatively correlated with EOS.
Furthermore, we found that the amino acids L-alanine and
L-alpha-aminobutyric acid, also called homoalanine, are
negatively genetically correlated with RDW. The red blood cell
distribution width is a measure of size variability and
heterogeneity of erythrocytes in the pheripheral blood and
reflects the degree of anysocytosis. At present it is not clear why
L-alpha aminobutyric and L-alanine are genetically correlated with
RDW, but it is worth further investigation. For many other
metabolites such as 2-hydroxybutyrate and 3-methyl-2-oxovaleric
acid, literature on genetic correlations is lacking, making the
interpretation of our results difficult.

GWAS

We performed a GWAS for 22 metabolites in young healthy pigs
that were genetically correlated either with production or resilience
traits or with CBC traits and investigated the genomic regions that
explained a sizeable proportion of the variance for each metabolite.
GWASwith CBC traits, were previously reported by Bai et al. (2020).
Interestingly, Bai et al. (2020) proposed Member RAS Oncogene
Family (RAB32) located on SSC1 as a candidate gene for RBC
concentration. In the present study we found Member RAS
Oncogene Family (RAB27A), located on SSC1 as a candidate
gene for L-proline. In addition, proline was found to be
genetically correlated with HGB concentration and HCT. These
results might suggest that member RAS oncogene family
(RAB32 and RAB27A) and proline modulate RBC traits, however
further functional studies are necessary to validate our results. In
addition, Bai et al. (2020) proposed tubulin beta class VI coded by
TUBB1 (tubulin beta 1 class VI) on SSC17 as candidate gene for
mean platelet volume (MPV fL). In our study we found that TUBE1
(tubulin epsilon 1) on SSC1, explains a small percentage of genetic
variation of L-alanine which is positively genetically correlated with
platelet concentration (PLT 103/μL) suggesting a possible role of
L-alanine and tubulin superfamily in platelets concentration.

Furthermore, in our study we found that a window on
SSC1 containing five genes (SEC63, OSTM1, NR2E1, SNX3 and
AFG1L), explained 1.02% of genetic variation of L-lysine
concentration which was negatively genetically correlated with
NEU concentration. Interestingly NR2E1 (Nuclear Receptor
Subfamily 2, Group E, Member) functions as a repressor and
activator of gene transcription (Corso-Díaz et al., 2016). As
repressor of gene expression, NR2E1 interacts with co-repressor
histone Lysine-specific demethylase 1 (LSD1) (Yokoyama et al.,
2008). There is evidence that acetylation of lysine residues of other
transcription factor such as C/EBPε is necessary for terminal
neutrophil differentiation (Bartels et al., 2015). Our results
suggest a possible epigenetic role of L-lysine and NR2E1 gene in
modulating NEU concentration. However functional studies are
necessary to validate our results.
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Overall, the percentage of genetic variance explained by each
window was small (<2%) for all metabolites. For L-glutamic acid,
there were five important neighboring windows on SSC14 that
together explained 6.9% of the genetic variance. Interestingly, we
found overlapping windows on SSC14 that explained variance for
L-glutamic acid, L-glutamine, L-serine, and oxoglutarate (example:
47,569,039–48,065,569 bp; 49,337,114–49,836,497 bp). These
overlapping genomic windows might explain the positive genetic
correlation between L-glutamic acid and oxoglutarate. Other
overlapping windows were detected on SSC1 for L-lysine,
L-ornithine, L-proline, and L-tyrosine
(73,972,391–74,471,148 pb), on SSC2 for betaine and
dimethylglycine (87,468,329–8768,307), on SSC6 for
L-asparagine, L-proline, and L-serine (65,676,029–66,175,375 pb),
and on SSC12 for creatinine and isobutyric acid
(2,562,992–3060017 pb). These overlapping windows on
SSC2 might contribute to the positive genetic correlation
observed between betaine and dimethylglycine. These results
suggest pleiotropic effects of loci on metabolite concentrations,
i.e., that the same gene may control variation in more than one
metabolite. Pleiotropy effects of loci on metabolites have been
previously described in human studies (Smith et al., 2022). To
further investigate, we attempted to integrate metabolites and
genes in a single network (Figure 2). Indeed, we found that some
of the genetic variation of metabolites such as L-glutamic acid,
L-glutamine, oxoglutarate, dimethylglycine, betaine, and L-serine
were explained by the same loci. For example, on SSC14 the window
47,569,039–48,065,569 pb contains phospholipase A2 group III
(PLA2G3). PLA2G3 is involved in L-serine metabolism and lipid
metabolism. It catalyzes the calcium-dependent hydrolysis of the sn-
2 acyl bond of phospholipids to release arachidonic acid and
lysophospholipids. Phosphatidylserine is a phospholipid that
consists of two fatty acids attached in ester linkage to the first
and second carbon of glycerol and serine attached through a
phosphodiester linkage to the third carbon of the glycerol
(Nelson and Cox, 2008). In a previous study on these same pigs,
Dervishi et al. (2021) reported that L-serine was positively
genetically correlated with average daily gain in the quarantine
nursery (0.54). This might suggest PLA2G3 as a candidate gene
for ADG in healthy young pigs. Additionally, the window
87,468,329–87,968,307 pb on SSC2 includes arylsulfatase B
(ARSB), dimethylglycine dehydrogenase (DMGDH), betaine-
homocysteine S-methyltransferase (BHMT), and betaine-
homocysteine S-methyltransferase 2 (BHMT2). DMGDH is
involved in the catabolism of choline, catalyzing the oxidative
demethylation of dimethylglycine to form sarcosine. BHMT and
BHMT2 are methyl transferases. BHMT encodes a cytosolic enzyme
that catalyzes the conversion of betaine and homocysteine to
dimethylglycine and methionine, respectively. BHMT2 can
catalyze the transfer of the methyl group from betaine to
homocysteine to create methionine (Ganu et al., 2015). The
metabolism of dimethylglycine, of betaine, and of methionine are
intertwined, as is shown in Figure 2, suggesting pleiotropic effect of
these genes on metabolites. Previously, in pigs DMGDH has been
associated with total weight of live neonates per litter (Wu et al.,
2018) and BHMT has been associated with number of muscle fibers
per unit area (Wimmers et al., 2006). Interestingly, using the same
pig population, Dervishi et al. (2021) showed that betaine,

dimethylglycine, and methionine concentrations in blood of
young healthy pigs were genetically positively correlated with
growth rate in the quarantine nursery. Here we found that, in
blood of healthy young pigs, dimethylglycine was genetically
negatively correlated with EOS and the amino acid L-methionine
was negatively correlated with MPV, suggesting a genetic
connection between immune response and growth. Our results
suggest PLA2G3, DMGDH, BHMT, and BHMT2 as candidate
genes for variation in L-serine, dimethylglycine, betaine, and
L-methionine concentration. Furthermore, serine,
dimethylglycine, betaine, and L-methionine might be candidate
metabolites to improve nursery growth rate of young healthy
pigs. Future Mendelian randomization analysis and/or functional
experiments should be performed in order to confirm that the
metabolite mediates the effect of the SNP/gene on the phenotype
and to establish a causal relationship.

We previously reported that isobutyric acid concentration in
blood of young healthy pigs is negatively genetically correlated
with RFI under disease challenge, suggesting that young healthy
pigs that have higher plasma isobutyric acid content genetically
have lower RFI under disease conditions (Dervishi et al., 2021).
The GWAS for isobutyric acid showed that the most important
windows on SSC2 explained 1.1% of the genetic variance for
isobutyric acid. Two genes have been annotated for this window;
F-box protein 38 (FBXO38) and 5-hydroxytryptamine receptor 4
(HTR4). 5-hydroxytryptamine receptor 4 is a member of the
family of serotonin receptors, which are G protein coupled
receptors that stimulate cAMP production in response to
serotonin (5-hydroxytryptamine). Interestingly Yao et al.
(2013) identified a significant SNP in HTR4 to be associated
with RFI in dairy cattle using the Random Forests (RF) algorithm.
In addition, GWAS performed by Manca et al. (2021) suggested
HTR4 as a candidate gene for residual concentrate intake (RCI) in
dairy cattle. In pigs there is no evidence in the literature to
connect isobutyric acid with HTR4 and RFI, making
interpretation of our results challenging. However, 5-
hydroxytryptamine receptor 2B, (HTR2B), which belongs to
the same family of serotonin receptors as HTR4, was proposed
as functional candidate gene for feed conversion ratio (FCR) in
pigs (Horodyska et al., 2017). We think that further research is
necessary to elucidate the relationship between isobutyric acid,
HTR4 and RFI.

Conclusion

Phenotypic correlation estimates of plasma metabolites levels
with CBC traits in young healthy pigs were generally low. Lactic acid
might exert immunomodulatory effects that regulate the
inflammatory response in pigs, which deserves further research
and validation. This study showed significant genetic correlation
estimates between metabolites and CBC traits in blood of young
healthy pigs, demonstrating a potential role of metabolites in
modulating the immune system. We identified candidate genes
for part of the genetic variation of plasma metabolite
concentrations. The GWAS demonstrated that the regulation of
metabolites concentration is polygenic with no individual region,
explaining a large proportion of the total genetic variation. Results of

Frontiers in Molecular Biosciences frontiersin.org14

Dervishi et al. 10.3389/fmolb.2023.1140375

62

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2023.1140375


GWAS suggest that DMGDH, BHMT, and BHMT2 are candidate
genes for dimethylglycine, betaine and L-methionine concentration
in blood of young healthy pigs, while dimethylglycine, betaine, and
L-methionine are candidate metabolites to improve growth rate of
young healthy pigs.

This study contributes to understanding the relationship of
metabolites and immune response cells in pigs and can offer
insights for human physiology and immune response, however
replication studies and validation of our results in human samples
are necessary.
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Milk metabolomics analyses of
lactating dairy cows with
divergent residual feed intake
reveals physiological
underpinnings and novel
biomarkers
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Ghader Manafiazar1,2, Paul Stothard1 and Graham Plastow1

1Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, AB, Canada,
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Canada

The opportunity to select for feed efficient cows has been limited by inability to
cost-effectively record individual feed efficiency on an appropriate scale. This
study investigated the differences in milk metabolite profiles between high- and
low residual feed intake (RFI) categories and identified biomarkers of residual feed
intake and models that can be used to predict residual feed intake in lactating
Holsteins. Milk metabolomics analyses were undertaken at early, mid and late
lactation stages and residual feed intake was calculated in 72 lactating dairy cows.
Cows were ranked and grouped into high residual feed intake (RFI >0.5 SD above
the mean, n = 20) and low residual feed intake (RFI <0.5 SD below the mean, n =
20). Milk metabolite profiles were compared between high residual feed intake
(least efficient) and low residual feed intake (most efficient) groups. Results
indicated that early lactation was predominantly characterized by significantly
elevated levels of medium chain acyl carnitines and glycerophospholipids in high
residual feed intake cows. Citrate cycle and glycerophospholipidmetabolismwere
the associated pathways enriched with the significantly different metabolites in
early lactation. At mid lactation short and medium chain acyl carnitines,
glycerophospholipids and amino acids were the main metabolite groups
differing according to residual feed intake category. Late lactation was mainly
characterized by increased levels of amino acids in high residual feed intake cows.
Amino acid metabolism and biosynthesis pathways were enriched for metabolites
that differed between residual feed intake groups at the mid and late lactation
stages. Receiver operating characteristic curve analysis identified candidate
biomarkers: decanoylcarnitine (area under the curve: AUC = 0.81),
dodecenoylcarnitine (AUC = 0.81) and phenylalanine (AUC = 0.85) at early, mid
and late stages of lactation, respectively. Furthermore, panels of metabolites
predicted residual feed intake with validation coefficient of determination (R2)
of 0.65, 0.37 and 0.60 at early, mid and late lactation stages, respectively. The
study sheds light on lactation stage specific metabolic differences between high-
residual feed intake and low-residual feed intake lactating dairy cows. Candidate
biomarkers that distinguished divergent residual feed intake groups and panels of
metabolites that predict individual residual feed intake phenotypeswere identified.
This result supports the potential of milk metabolites to select for more efficient
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cows given that traditional residual feed intake phenotyping is costly and difficult to
conduct in commercial farms.

KEYWORDS

milk metabolome, biomarker, feed efficiency, physiology, dairy cows

Introduction

Feed cost represents a large proportion of the variable costs of
dairy production and it has increased substantially over time
(Berry and Crowley, 2013). Selection for feed efficiency has both
economic and environmental benefits by addressing the
increasing cost of feed and environmental concerns over the
carbon footprint of dairy cattle production (Basarab et al., 2013).
Residual feed intake (RFI) is a measure of feed efficiency and is
defined as the difference between actual and predicted feed intake
after accounting for production and maintenance (Koch et al.,
1963). Low RFI (the most efficient) cows consume less feed for
the same milk output and emit less methane compared to the
high RFI (least efficient) cows (Hailemariam et al., 2021). Despite
its importance, RFI is difficult and costly to include in an industry
wide recording scheme for the purpose of generating accurate
estimates for direct selection in the breeding program. Therefore,
RFI is designated as a hard-to-measure trait for the dairy
industry. Alternatively, low cost and easy-to-measure
biomarker models associated with underlying metabolic
differences in RFI could provide a potential alternative.
Biomarkers offer indirect measurement of traits that would
otherwise be expensive to directly measure.

The between-animal differences in RFI could be determined by
digestive ability (Potts et al., 2017) ruminal microbial composition
(Jewell et al., 2015), feed intake pattern, fermentation and digestion
of feed, anabolic and catabolic metabolism, physical activity and
thermoregulation (Herd and Arthur, 2009). It has been proposed
that variation in RFI may represent inherent variation in basic
metabolic processes that determine production efficiency
(Cantalapiedra-Hijar et al., 2018). Potts et al. (2017) speculated
differences in post absorptive metabolic processes, heat production,
or energy utilization for maintenance account for more of the
variation in RFI than digestibility.

The mammary gland becomes metabolically active and is an
energetically demanding tissue during lactation (Hanigan et al.,
2009). Hanigan and Baldwin (1994) constructed a model of
energy metabolism in the udder of lactating cows and showed
that ATP generated was used for maintenance and synthesis of
milk components. Milk components are synthesized in
mammary epithelial cells and milk precursors are constantly
absorbed from blood (Knight et al., 1994). Proteins, some
amino acids, fats and lactose are synthesized and secreted by
the mammary epithelial cells (Xiao and Cant, 2005; Rezaei et al.,
2016). Branched-chain amino acids are catabolized to support
milk production (Li et al., 2009).

Given the vital role of the mammary gland in the energy
metabolism of lactating dairy cows, we used a milk metabolomics
approach to study the biological mechanisms of divergence in feed
efficiency. High-throughput milk metabolomics have been used to
study the metabolism (Tian et al., 2016) and pathophysiology (Klein

et al., 2011; Sun et al., 2017) of dairy cows. To the best of our
knowledge milk metabolomics data had not been used to study the
physiology of feed efficiency in dairy cows. In this study, we
investigated the differences in milk metabolite profiles between
high and low RFI cows at early, mid and late lactation stages. In
addition, candidate biomarkers that can distinguish cows between
high and low RFI groups and panels of metabolites that can be used
to predict individual RFI phenotypes at each stage of lactation were
identified.

Materials and methods

Animals and diet

The experiment was conducted at the University of Alberta,
Dairy Research and Technology Center (DRTC) from June 2017 to
October 2018. The study was undertaken on mixed parity lactating
Holsteins managed in a tie-stall system. The layout of the study is
shown in Figure 1. All the experimental procedures for this study
were approved by the University of Alberta Animal Policy and
Welfare Committee for Livestock (Study ID: AUP00000170), and
animals were cared for in accordance with the guidelines of the
Canadian Council on Animal Care (2009). We used 72 mixed parity
lactating Holstein cows 3–240 days in milk (DIM). Out of the
72 cows that were used in the study, 40 cows (20 least efficient
and 20 most efficient) were selected for comparison. Cows that were
culled/died due to disease/s or any other reason before last milk
sampling point (240 DIM) were excluded from the experiment.
Disease incidences in the window of 2 weeks before each sampling
dates were considered in the analysis. The number of cows affected
by different diseases during the experimental period varied with the
sampling points. At 50 DIM, a total of 6 cows (out of 40) were sick
and they had lameness (n = 1), milk fever (n = 3), and mastitis (n =
3). Out the 6 sick cows, 1 had both milk fever and mastitis. At
150 DIM, a total of 4 cows had lameness (n = 2), milk fever (n = 1)
and mastitis (n = 2). One cow had both lameness and mastitis. At
240 DIM 2 cows had lameness and 2 had mastitis. One of these had
both lameness and mastitis. The forty cows (19 primiparous,
21 multiparous) had parity ranging from one to four and all
cows with parity >3 were categorized as “3+” during the analyses.

All cows were fed the same diet and daily ration was offered as
total mixed ration (TMR) for ad libitum intake to allow
approximately 5% feed refusals throughout the experiment. All
cows were fed once daily in the morning at 08:00 a.m. Individual
offered feed weight in themorning and refusal feed weight left on the
next morning were recorded daily. Feed composition, including dry
matter (%), crude protein (%), and neutral detergent fiber (%), acid
detergent fiber (%), and net energy lactation were determined when
the TMR ingredients were changed. The ingredients and chemical
composition of the TMR is described in Table 1.
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Feed intake, milk yield and composition, and
body weight recording

Daily feed intake, weekly milk composition and yield and
monthly body weight data were collected on 72 lactating dairy
cows from 3–240 days in milk (DIM) at DRTC. Feed intake was
calculated as the difference between the amount of feed offered and
refused for individual cows on a daily basis. Dry matter percentage
of the feed was analyzed every week and daily individual dry matter
intake (DMI) was calculated as a product of feed intake and dry

matter percentage. Cows were milked twice per day and both PM
and AMmilk samples were collected separately once per week. Milk
samples were collected with bar-coded plastic vials. Samples were
stored at +4OC temporarily and shipped to Lactanet Canada,
Edmonton for milk composition analyses. Mid-infrared (MIR)
spectrometry (Foss MilkoScan FT6000; Foss Electric A/S,
Hillerød, Denmark) was used to determine milk composition
(milk fat, protein and lactose). Milk yield (for the dates of milk
sampling) data was obtained from the DRTC where it is recorded as
a routine farm activity. Animals were weighed once per month at 7:

FIGURE 1
Workflow of the study showing calculation of RFI in 72 cows from 3–240 DIM and milk samples collection at three time points (50, 150, 240 DIM)
during lactation. Cowswere ranked and the high and low RFI groupswere identified. Milk samples fromhigh and lowRFI groups in all the three time points
were analyzed using DI/LC-MS/MS method.

TABLE 1 Diet ingredients and chemical composition of total mixed ration for the study cows. Average values of ingredients and chemical composition are
presented.

Diet ingredients, % (DM basis) Ration

Alfalfa hay 11.55

Barley silagea 35.28

Rolled grainb 33.58

Protein supplement 19.59

Chemical composition

DM, % 50.57

Crude protein, % of DM 17.09

Acid detergent fiber, % of DM 20.71

Neutral detergent fiber, % of DM 32.26

NE lactation, Mcal/kg 1.81

DM, dry matter; NE, net energy for lactation.
aRolled gran: Corn and barley.
bProtein supplement: 26.61% amino plus (high bypass soy), 26.25% soy bean meal-47%, 25.75% canola meal, 8.15% F 100 Dairy fat, 4% corn distiller 2010, 2.3% limestone, 2% AFA/canola oil,

1.5% SOD, bicarbonate, 1.2% DICAL PHOS-21%, 1% salt, 0.58%MAGOX-56%, 0.4% nutritec-diamond Vmills, 0.1% selenium 1,000 mg/kg, 0.1% ruminant TM, pak, 0.05% ADE VIT, PAK-

30% and 0.02% biotin 2%-Rovimix H-2.
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00 a.m. after milking using Myscale Pro-W810 scale (Gallagher,
Canley, United Kingdom).

Milk sample collection for DI/LC-MS/MS
analyses

Milk samples were collected from 72mixed parity lactating cows
at DRTC. Sampling was undertaken 03:00 to 06:00 a.m. before
feeding at 3 time points during the lactation period (50, 150 and
240 DIM) and hereafter named as early, mid and late lactation
stages, respectively. All the milk samples were collected using a
50 mL tube and temporarily maintained on ice. Following
homogenization of the milk sample in each 50 mL tube, aliquots
of 500 µL were prepared and stored at −80OC until DI/LC-MS/MS
analyses.

Trait derivation for RFI calculation

Metabolic body weight and empty body weight were derived
from body weight data recorded once per month. Similarly, milk
production energy requirement was derived from milk yield, fat,
protein and lactose percentages that were recorded weekly. The daily
values of metabolic body weight and empty body weight were
predicted from monthly values and daily values of milk
production energy requirement were predicted from weekly
values using a random regression model. The details of the
Legendre polynomial random regression model and calculations
of the parameters were described in Manafiazar et al. (2013). After
predicting daily values of metabolic body weight from monthly
values, empty body weight change was calculated as a difference in
empty body weight between two consecutive days (days after minus
day before, e.g., empty body weight at fourth -third DIM) from
3–240 DIM. Cows that lose weight after calving had negative empty
body weight change values while cows that gain weight had positive
values. Empty body weight change was calculated to account for the
body tissue mobilization in the RFI calculation during the study
period (3–240 DIM). A multiple linear and quadratic regression
model was used to predict expected energy intake values from
3–240 DIM.

Calculation of residual feed intake

Residual feed intake values were calculated for 72 lactating
Holsteins as the difference between the actual and expected net
energy intake as described in our previous study (Hailemariam et al.,
2021). In short, daily actual energy intake, metabolic body weight,
empty body weight, empty body weight change and milk production
net energy requirements were used to calculate RFI. Mixed parity
cows were used in the study and parity was included in the RFI
calculation model. The daily average lactation RFI for each
individual over 237 days (3—240 DIM) was obtained by dividing
the total lactation RFI by the number of days recorded for each cow.
Then, the 72 RFI predicted cows were ranked and categorized into
most efficient (low RFI: RFI <0.5 SD from the mean) and least
efficient (high RFI: RFI >0.5 SD from the mean) at all the three time

points (50, 150, 240 DIM) using the same average (3–240 DIM) RFI
values.

Targeted milk metabolomics using TMIC
prime assay DI/LC-MS/MS method

All the milk samples were analyzed at The Metabolomics
Innovation Center (TMIC, University of Alberta, Edmonton, AB)
using a TMIC prime custom assay (DI/LC-MS/MS). A targeted
quantitative metabolomics approach was used to analyze the
samples using a combination of direct injection mass
spectrometry with a reverse-phase LC-MS/MS custom assay. This
custom assay, in combination with an ABI 4000 Q-Trap (Applied
Biosystems/MDS Sciex) mass spectrometer, was used for the
targeted identification and quantification of up to 143 different
endogenous metabolites including amino acids, acylcarnitines,
organic acids, biogenic amines and derivatives, uremic toxins,
glycerophospholipids, sphingolipids and sugars. The method
combines the derivatization and extraction of analytes and
selective mass-spectrometric detection using multiple reaction
monitoring (MRM) pairs. Isotope-labeled and other internal
standards were used for metabolite quantification. The custom
assay contains a 96 deep-well plate with a filter plate attached
with sealing tape and reagents and solvents used to prepare the
plate assay. The first 14 wells were used for one blank, three zero
samples, seven standards and three quality control samples. For all
metabolites except organic acids, samples were thawed on ice and
were vortexed and centrifuged at ×13,000 g. Ten µL of each sample
was loaded onto the center of the filter on the upper 96-well plate
and dried in a stream of nitrogen. Subsequently, phenyl-
isothiocyanate was added for derivatization. After incubation, the
filter spots were dried again using an evaporator. Extraction of the
metabolites was then achieved by adding 300 µL of extraction
solvent. The extracts were obtained by centrifugation into the
lower 96-deep well plate, followed by a dilution step with MS
running solvent.

For organic acid analysis, 150 µL of ice-cold methanol and
10 µL of isotope-labeled internal standard mixture was added to
50 µL of milk sample for overnight protein precipitation. After
centrifugation at 13,000 g for 20 min 50 µL of supernatant was
loaded into the center of wells of a 96-deep well plate, followed by
the addition of 3-nitrophenylhydrazine (NPH) reagent. After
incubation for 2 h, BHT stabilizer and water were added before
LC-MS injection. Mass spectrometric analysis was performed on
an API4000 Qtrap® tandem mass spectrometry instrument
(Applied Biosystems/MDS Analytical Technologies, Foster
City, CA) equipped with an Agilent 1,100 series HPLC system
(Agilent Technologies, Palo Alto, CA). The samples were
delivered to the mass spectrometer by a liquid
chromatography (LC) method followed by direct injection
(DI). Data analysis was done using Analyst 1.6.2.

Statistical analyses

A step wise multiple linear regression analysis in R was used to
analyse the differences of milk metabolites between low and high
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RFI groups. The model was fitted for each metabolite concentration
as dependant variable and RFI groups (R), parity (P), age at first
calving (AFC), health status (HS), and month and year of sampling
(MY) as independent variables. A total of 118 metabolites were
analysed using the following model:

Yijklmn � μ + Ri + Pj +MYk + AFCl +HSm + ℮ijklmn,

where Yijklmn is the metabolite concentration for the nth cow tested
from the ith RFI group (low and high RFI) and jth parity (1–3+), kth
MY, lthAFC, mth HS and eijklm is the deviation due to the ijklmth
cow or error term.

Each metabolite was tested for normal distribution and where
appropriate, for data that were not normally distributed, the
natural log-transformation was used and back-transformed
results are presented. The results were presented as least
squares means ± standard error of mean per RFI category.
Benjamini Hochberg False Discovery Rate (FDR) method was
used to correct the raw p-values for multiple comparisons. A
threshold of p < 0.05 for raw p-values and FDR <0.1 were used to
identify statistically significant changes in metabolite
concentration between RFI groups. Tendencies were declared
at 0.05 ≤ p < 0.1 for raw p-values.

The disease incidences were not equally distributed during
the lactation period or in RFI groups. Because of this we coded

cows as sick and healthy and included this factor in the model.
The concentration of milk metabolites at all the three time points
were adjusted for significant fixed effects including health status.
To avoid potential bias for the analyses other than the
regression, we used metabolome data adjusted for significant
fixed effects. Therefore, in all the analyses the effect of disease or
other fixed effects on milk metabolite concentration has been
taken care of.

Multiple linear regression analyses were used to predict average
RFI phenotypes from milk metabolite profiles at early, mid and late
lactation stages. Only the metabolites that were significantly different
and tended to differ between high vs. low RFI comparisons were fitted
in the model. Leave-one-out cross validation (LOOCV) of linear
models were done using caret package (Kuhn, 2005).

Metabolite pathway analyses were performed using
MetaboAanalyst (Xia et al., 2013) to identify pathways that were
enriched for the metabolites that had differential concentration
between high vs. low RFI comparison groups. A hypergeometric
test was used for over representation analysis and
relative–betweenness centrality for pathway topology analysis.
Homo sapiens was used as a reference with Human Metabolome
Database (HMDB) ID since a high proportion of metabolites
affected by RFI at early stage of lactation were missing from the
bovine metabolome database (BMDB).

FIGURE 2
Principal component analysis showing a clear separation in the milk metabolite profiles of cows among early, mid and late lactation stages.
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Multivariate analyses were performed using MetaboAnalyst
(Xia et al., 2013). Principal component analysis (PCA) were used
to visualize the change in milk metabolite profiles with lactation
stage. Orthogonal partial least squares discriminant analysis
(OPLS-DA) was used to assess whether the high and low RFI
groups cluster separately on the basis of milk metabolite profiles.
To minimize the possibility that any observed separation for an
OPLS-DA plot was due to chance, permutation testing involving
repeated (2,000 times) OPLS-DA calculations using different
random labeling of the samples was performed. A p-value
(<0.05) was considered significant for the separation observed
between the two groups. Metabolites with VIP score >1 were
considered as the metabolite significantly contributed for
separation of RFI groups. Biomarker profiles and the quality
of the biomarkers were determined using receiver-operator
characteristic (ROC) curves. A receiver operator characteristic
curve shows the sensitivity and specificity of the test and often
summarized into a single metric known as the area under the
curve (AUC). A rough guide for assessing the utility of a

biomarker based on its AUC is 0.9–1.0 = excellent; 0.8 to
0.9 = good; 0.7 to 0.8 = fair; 0.6 to 0.7 = poor; 0.5 to 0.6 = fail
(Hailemariam et al., 2014). For this study, we presented the top
five metabolites (on the basis of AUC values) at early, mid and
late lactation stages.

Results

Dynamics of milk metabolites during
lactation

Using targeted DI/LC-MS/MS, 118 milk metabolites were
identified and quantified at each of the lactation stages (early,
mid and late). To obtain a global perspective on metabolic
changes during the lactation period, principal component
analysis (PCA) of milk metabolites profiled at early, mid and late
lactations were performed without considering RFI grouping. The
first two principal components (PCs) accounted for 46.1% of the

TABLE 2 List of milk metabolites with altered concentrations in the high vs. low RFI comparisons at early lactation stage. The metabolite concentrations were
described in least square means (LSM) and corresponding standard error of mean (SEM) in each group with p-values and false discovery rate (FDR).

Metabolite (µM) High RFI (n = 20) Low RFI (n = 20) p-value FDR

Decenoylcarnitine (C10:1) 0.13 ± 0.01 0.10 ± 0.01 0.001 0.024

lysoPC a C20:4 0.12 ± 0.02 0.04 ± 0.01 0.001 0.012

lysoPC a C18:1 3.30 ± 0.22 2.12 ± 0.25 0.001 0.008

lysoPC a C18:2 1.40 ± 0.16 0.61 ± 0.23 0.003 0.018

PC aa C40:1 0.05 ± 0.00 0.03 ± 0.01 0.004 0.019

Decadienylcarnitine (C10:20) 0.01 ± 0.00 0.008 ± 0.00 0.008 0.032

Decanoylcarnitine (C10) 0.05 ± 0.00 0.04 ± 0.00 0.009 0.031

Hydroxyhexadecenoylcarnitine (C16:1-OH) 0.13 ± 0.01 0.11 ± 0.01 0.009 0.027

lysoPC a C16:1 0.40 ± 0.03 0.28 ± 0.03 0.009 0.024

lysoPC a C18:0 0.99 ± 0.06 0.75 ± 0.06 0.010 0.024

Total dimethyl arginine 0.55 ± 0.05 0.72 ± 0.05 0.013 0.028

Spermidine 0.45 ± 0.03 0.37 ± 0.02 0.019 0.038

lysoPC a C28:1 0.30 ± 0.03 0.20 ± 0.04 0.021 0.039

Butyric acid 28.8 ± 2.32 21.4 ± 2.26 0.023 0.039

Acetylornithine 0.27 ± 0.05 0.47 ± 0.09 0.027 0.043

Betaine 36.7 ± 3.96 26.5 ± 3.72 0.040 0.060

lysoPC a C26:0 0.16 ± 0.02 0.22 ± 0.02 0.052 0.073

Citric acid 3,897 ± 127 4,271 ± 175 0.060 0.080

Fumaric acid 23.4 ± 1.56 19.5 ± 1.30 0.060 0.076

Butenylcarnitine (C4:1) 0.04 ± 0.00 0.031 ± 0.00 0.070 0.084

SM C16:0 16.1 ± 0.75 14.1 ± 0.75 0.070 0.080

lysoPC a C16:0 5.21 ± 0.32 4.44 ± 0.39 0.082 0.089

PC aa C38:6 0.07 ± 0.01 0.05 ± 0.01 0.084 0.088

Methylmalonic acid 0.13 ± 0.02 0.10 ± 0.01 0.091 0.091
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total variation among samples (Figure 2). The three stages of
lactation were clearly distinguished from one another based on
the top 2 PCs. Since the three lactation stages strikingly clustered in a
non-overlapping manner, we performed the high vs. low RFI
comparison independently for each lactation stage.

Next, we compared the high (n = 20) vs. low (n = 20) RFI groups for
all 118 metabolites at each lactation stage. In the comparisons of each
metabolite concentration between high and low RFI groups, fixed effects
such as parity (P), age at first calving (AFC), sampling month and year
(MY), health status (HS) were adjusted whenever significant (p < 0.05).
The result indicated that different sets of metabolites differed (p < 0.05)

between high-and low RFI groups at each lactation stage. At early
lactation, the concentrations of 4 acyl carnitines, 7 glycerophospholipids,
3 biogenic amines, 1 organic acid and betaine were significantly (p <
0.05) different between the high and low RFI groups (Table 2). A similar
comparison at mid lactation (high vs. low RFI) revealed the differential
(p < 0.05) concentration of 7 acyl carnitines, 4 amino acids,
7 glycerophospholipids and glucose between the comparison groups
(Table 3). The late lactation stage was characterized by differential (p <
0.05) concentration of 14 amino acids, 2 biogenic amines,
6 glycerophopholipids, 2 acyl carnitines, 3 organic acids, carnosine
and betaine between high and low RFI cows (Table 4).

TABLE 3 List of milk metabolites with altered concentrations in the high vs. low RFI comparisons at mid lactation stage. The metabolite concentrations were
described in least square means (LSM) and corresponding standard error of mean (SEM) in each group with p-values and false discovery rate (FDR).

Metabolites (µM) High RFI (n = 20) Low RFI (n = 20) p-value FDR

Dodecenoylcarnitine (C12:1) 0.40 ± 0.02 0.50 ± 0.02 0.001 0.028

PC aa C36:6 0.03 ± 0.00 0.02 ± 0.00 0.002 0.028

Methylglutarylcarnitine (C5-M-DC) 0.07 ± 0.00 0.08 ± 0.00 0.003 0.028

Hydroxypropionylcarnitine (C3-OH) 0.04 ± 0.00 0.05 ± 0.00 0.004 0.028

LysoPC a C28:1 0.40 ± 0.03 0.30 ± 0.03 0.004 0.022

Hydroxyhexadecenoylcarnitine (C16:1-OH) 0.02 ± 0.00 0.03 ± 0.00 0.005 0.023

PC aa C38:6 0.09 ± 0.01 0.06 ± 0.00 0.005 0.020

Methionine 1.90 ± 0.19 1.20 ± 0.12 0.006 0.021

Histidine 2.70 ± 0.53 1.20 ± 0.24 0.006 0.019

Dodecanoylcarnitine (C12) 4.70 ± 0.29 5.70 ± 0.30 0.008 0.022

Glucose 33,823 ± 1,136 38,742 ± 1,301 0.008 0.020

PC aa C32:2 0.90 ± 0.07 0.70 ± 0.08 0.019 0.044

Tryptophan 0.60 ± 0.11 0.40 + 0.06 0.029 0.063

PC ae C40:6 0.02 ± 0.00 0.03 ± 0.00 0.032 0.064

Pimelylcarnitine (C7-DC) 0.05 ± 0.00 0.08 ± 0.01 0.033 0.062

Valine 6.00 ± 1.20 3.30 ± 0.65 0.035 0.061

PC ae C36:0 0.60 ± 0.04 0.50 ± 0.03 0.039 0.064

Hexenoylcarnitine (C6:1) 0.05 ± 0.00 0.06 ± 0.00 0.044 0.068

SM C20:2 0.10 ± 0.00 0.08 ± 0.00 0.048 0.071

SM C16:0 23.2 ± 1.31 19.6 ± 1.31 0.055 0.077

SM C18:1 0.74 ± 0.05 0.62 ± 0.04 0.06 0.080

Arginine 11.5 ± 1.16 8.50 ± 0.89 0.066 0.084

Creatine 460 ± 36.3 556 ± 36.3 0.068 0.083

Methylmalonic acid 0.12 ± 0.00 0.10 ± 0.00 0.071 0.083

Phenylalanine 3.10 ± 0.32 2.40 ± 0.29 0.073 0.082

LysoPC a C26:1 0.08 ± 0.00 0.05 ± 0.00 0.073 0.079

SM C16:1 0.70 ± 0.05 0.60 ± 0.04 0.074 0.077

Creatinine 66.1 ± 3.19 76.5 ± 4.47 0.081 0.081
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TABLE 4 List of milk metabolites with altered concentrations in the high vs. low RFI comparisons at late lactation stage. The metabolite concentrations were described in least square means (LSM) and corresponding standard
error of mean (SEM) in each group with p-values and false discovery rate (FDR).

Metabolites (µM) High RFI (n = 20) Low RFI (n = 20) p-value FDR

Valine 12.0 ± 2.80 3.40 ± 0.79 0.001 0.037

Acetyl ornithine 0.61 ± 0.12 0.20 ± 0.03 0.001 0.019

Lysine 51.8 ± 11.7 18.6 ± 4.89 0.002 0.025

Histidine 25.1 ± 2.19 15.7 ± 2.25 0.002 0.019

Methylhistidine 1.10 ± 0.23 0.40 ± 0.08 0.002 0.015

Tryptophan 1.00 ± 0.21 0.40 ± 0.08 0.003 0.019

Proline 33.8 ± 5.94 16.1 ± 2.59 0.003 0.016

Citrulline 3.30 ± 0.75 1.20 ± 0.27 0.003 0.014

Ornithine 5.90 ± 0.94 3.00 ± 0.44 0.003 0.012

Arginine 15.5 ± 2.29 8.00 ± 1.18 0.003 0.011

Phenylalanine 4.20 ± 0.63 2.20 ± 0.33 0.004 0.013

Serine 9.30 ± 1.17 5.40 ± 0.68 0.005 0.015

Hexadecanoylcarnitine (C16) 0.04 ± 0.01 0.02 ± 0.00 0.006 0.017

Lactic acid 267 ± 66 104 ± 23.7 0.007 0.019

Methionine 2.50 ± 0.35 1.40 ± 0.20 0.01 0.025

Alanine 19.4 ± 7.30 5.20 ± 1.78 0.011 0.025

Total dimethylarginine 0.60 ± 0.06 0.40 ± 0.05 0.011 0.024

PC acyl-alkyl (ae) C40:6 0.03 ± 0.00 0.02 ± 0.00 0.013 0.027

Betaine 123 ± 19.50 80.8 ± 15.9 0.015 0.029

Carnosine 1.00 ± 0.19 0.50 ± 0.09 0.017 0.031

PC diacyl (aa) C36:6 0.03 ± 0.00 0.04 ± 0.00 0.017 0.030

Glutamine 4.12 ± 0.63 2.80 ± 0.53 0.018 0.030

SM C20:2 0.10 ± 0.01 0.07 ± 0.01 0.021 0.034

Pyruvic acid 29.7 ± 3.29 21.1 ± 2.13 0.023 0.035

SM C16:0 23.7 ± 1.65 19.5 ± 1.86 0.025 0.037

PC aa C38:6 0.10 ± 0.01 0.06 ± 0.01 0.032 0.046

(Continued on following page)
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TABLE 4 (Continued) List of milk metabolites with altered concentrations in the high vs. low RFI comparisons at late lactation stage. The metabolite concentrations were described in least square means (LSM) and
corresponding standard error of mean (SEM) in each group with p-values and false discovery rate (FDR).

Metabolites (µM) High RFI (n = 20) Low RFI (n = 20) p-value FDR

Dodecanoylcarnitine (C12) 4.50 ± 0.32 5.40 ± 0.45 0.032 0.044

Choline 353 ± 26.2 276 ± 30.8 0.037 0.049

LysoPC a C18:2 1.80 ± 0.41 1.30 ± 0.35 0.044 0.056

Threonine 6.60 ± 1.51 3.60 ± 0.76 0.05 0.062

Spemidine 0.50 ± 0.07 0.30 ± 0.10 0.052 0.062

Carnitine (C0) 31.6 ± 3.60 21.4 ± 4.39 0.058 0.067

Hexadecadienylcarnitine (C16:2) 0.02 ± 0.00 0.02 ± 0.00 0.063 0.071

Glycine 45.5 ± 10.5 26.1 ± 5.51 0.071 0.077

PC ae C36:0 0.80 ± 0.05 0.60 ± 0.05 0.073 0.077

Creatinine 86.3 ± 3.79 93.8 ± 4.27 0.081 0.083

Hexenoylcarnitine (C6:1) 0.05 ± 0.00 0.06 ± 0.00 0.097 0.097
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Notably, acyl carnitines, glycerophospholipids and amino acids
were predominantly different (p < 0.05) between RFI comparison
groups (high vs. low). The concentrations of medium and long chain
acyl carnitines (C10:2, C10:1, C10, C16:1-OH) were increased at
early lactation stage in the high RFI group, however at the mid
lactation stage the concentrations of short chain acyl carnitines (C3-
OH, C5-M-DC, C6:1, C7-DC) were significantly decreased in high
RFI cows. At the late lactation stage, the levels of a medium (C12)

and long chain (C16) acyl carnitines were affected by the RFI
grouping and C12 was decreased whereas C16 was increased in
high RFI cows.

The comparison of glycerophospholipids (high vs. low RFI) at
early lactation stage showed that lysophosphatidylcholines (lysoPC a
C20:4, lysoPC a C18:1, lysoPC a C18:2, lysoPC a C16:1, lysoPC a
C18:0 and lysoPC a C28:1) were significantly elevated in high RFI
cows. Lysophosphatidylcholines are formed by hydrolysis of

FIGURE 3
Venn diagram showing the number of metabolites altered between high and low RFI groups at early, mid and late lactation stages. The number of
commonly altered metabolites between lactation stages are shown at the intersections of the circles representing the different lactation stages.

FIGURE 4
Metabolome view map showing enriched pathways for the metabolites that differed in concentration between high and low RFI groups at early (A),
mid (B) and late (C) stages of lactation.
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phosphatidylcholines by lipoprotein-associated phospholipase A2.
Interestingly, during mid lactation, phosphatidylcholines (PC aa
C38:6, PC aa C32:2, PC aa C36:6 and PC ae C36:0) were elevated in
high RFI cows. On the contrary, PC ae C40:6 was significantly
decreased in high RFI cows. Among other species of
glycerophospholipids, only lysoPC a C28:1 and SM C20:2 were
significantly increased in high RFI cows at mid lactation stage. The
increased (p < 0.05) level of PC aa C38:6 in high RFI cows persisted
during the late lactation stage. The levels of PC ae C40:6 and PC aa
C38:6 were elevated in high RFI cows whereas PC aa C36:
6 decreased in high RFI cows at the late lactation stage. In
addition, SM C16:0, SM C20:2 and lysoPC a C18:2 were
significantly increased in high RFI cows.

The high and low RFI cows did not differ (p > 0.05) in any of the
amino acids compared at the early stage of lactation. At the mid
lactation stage, however, valine, tryptophan, methionine and
histidine were significantly elevated in high RFI cows.

Interestingly, the late lactation stage was characterized by
significant elevation of amino acids: valine, lysine, histidine,
methylhistidine, tryptophan, proline, citrulline, ornithine,
arginine, phenylalanine, serine, methionine, alanine, glutamine,
threonine and glycine. Valine, one of the branched chain amino
acids, was markedly decreased in low RFI cows (Table 4). Among the
biogenic amines, total dimethyl arginine and acetyl ornithine were
significantly decreased in high RFI cows, whereas spermidine was
significantly increased in the high RFI group at the early stage of
lactation. Acetyl ornithine and total dimethylarginine were also
significantly increased in high RFI cows at the late lactation
stage. The comparison of organic acids (high vs. low RFI) at the
early lactation stage revealed that the level of butyric acid was
elevated in high RFI cows. In addition, fumaric and methyl
malonic acid tended to increase in high RFI cows, while citric
acid showed a tendency to increase in low RFI. Methyl malonic
acid maintained a similar trend in mid lactation, where tendency of

FIGURE 5
Orthogonal partial least squares discriminant analysis showing a clear separation between the least and most efficient cows at early (A), mid (B) and
late (C) lactation stages.

FIGURE 6
Metabolites ranked by variable importance in projection (VIP) at the early (A), mid (B) and late (C) lactation stages. The VIP score plots indicate the top
15 metabolites that distinguished high and low RFI groups at each of the three time points.
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TABLE 5 Top 5 metabolites (biomarkers) with corresponding AUC and CI at early, mid and late lactation stages. The correlation between the candidate biomarkers’ concentration in milk and the RFI values is shown in Pearson
correlation coefficient (r) and p-value.

Lactation stage Metabolites AUC CI r p-value

Early lactation (50 DIM) C10 0.81 0.67–0.93 0.29 0.070

Acetylornithine 0.75 0.55–0.89 −0.41 0.009

SM 16:1 0.75 0.57–0.90 0.38 0.020

lysoPC a C16:1 0.74 0.57–0.88 0.15 0.350

lysoPC a C18:1 0.74 0.56–0.88 0.37 0.020

Mid-lactation (150 DIM) C12:1 0.81 0.64–0.93 −0.48 0.002

Histidine 0.79 0.63–0.94 0.33 0.040

Creatinine 0.78 0.61–0.91 0.05 0.740

C3:1 0.77 0.62–0.91 0.01 0.970

C16:1-OH 0.75 0.61–0.88 −0.40 0.010

Late lactation (240 DIM) Phenylalanine 0.85 0.74–0.95 0.39 0.010

Valine 0.81 0.67–0.93 0.43 0.006

Methionine 0.79 0.64–0.92 0.39 0.010

Arginine 0.79 0.64–0.92 0.44 0.005

Acetylornithine 0.78 0.64–0.92 0.55 <0.001

Fro
n
tie

rs
in

M
o
le
cu

lar
B
io
scie

n
c
e
s

fro
n
tie

rsin
.o
rg

H
aile

m
ariam

e
t
al.

10
.3
3
8
9
/fm

o
lb
.2
0
2
3
.114

6
0
6
9

77

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2023.1146069


increase was observed in high RFI groups. At the late lactation stage,
however, pyruvic and lactic acid significantly increased in high RFI
cows (Table 4). The high RFI cows had consistently elevated levels of
betaine at early and late lactation stages.

To understand the change in the types of metabolites affected by
RFI grouping, we compared the significantly different metabolites
between the lactation stages (early vs. mid, early vs. late and mid vs.
late). The early vs. mid-lactation comparison showed that C16:1-
OH, lysoPC a 28:1, SM C16:0, PC aa 38:6 and methyl malonic acid
consistently differed between the RFI groups. In a comparison
between early and late stages of lactation, the concentrations of
lysoPC a C18:2, PC aa C38:6, SMC16:0, total dimethyl arginine,
spermidine, acetylornithine and betaine were commonly altered
while, C12, C16:1, methionine, histidine, arginine, phenylalanine,
valine, tryptophan, PC aa C38:6, PC aa C36:6, PC ae C36:0, SMC20:
2, SMC16:0 and creatinine were commonly different in the mid vs.
late comparison (Figure 3). The mid and late lactation stage had
more common metabolites than early and mid or -late lactation
stage.

Enriched pathway shift with lactation stages

The enriched pathways (p < 0.05) for the metabolites that
differed and tended to differ in concentration between high and
low RFI cows at early, late and mid lactation are shown in Figure 4.
Citrate cycle (TCA cycle) and glycerophospholipid metabolism had
a pathway impact value higher than 0.1, which is the cutoff value for
relevance (Figure 4A) at early lactation stage. Phenylalanine,
tyrosine and tryptophan biosynthesis and phenylalanine
metabolism were enriched pathways at mid lactation. Among the
significant pathways, only phenylalanine metabolism and
phenylalanine, tyrosine and tryptophan biosynthesis had a
pathway impact factor greater than 0.1 (Figure 4B). At late
lactation stage, aminoacyl-tRNA biosynthesis, argenine
biosynthesis, glycine, serine and threonine metabolism were the
top three pathways significantly (p < 0.05) enriched between high
and low RFI groups (Figure 4C).

Multivariate analyses of milk metabolites
during lactation

The supervised orthogonal partial least squares discriminant
analysis (OPLS-DA) approach was used to explore the clustering of
milk samples from high and low RFI cows at early (Figure 5A), mid
(Figure 5B) and late (Figure 5C) lactations. The OPLS-DA score plot
showed a clear separation of the high and low RFI cows at early (Q2 =
0.68, p < 0.001; R2Y = 0.99, p = 0.008), mid (Q2 = 0.65, p < 0.001; R2

Y = 0.98, p < 0.001) and late (Q2 = 0.63, p < 0.001; R2Y = 0.88, p <
0.001) lactation. The variable importance in projection (VIP)
analyses at early, mid and late lactation stages showed the top
15 metabolites that contributed to the separation of high and low
RFI groups were shown in Figures 6A–C, respectively. The top
15 metabolites at all the three time points had VIP >1. The step wise
linear regression analysis (metabolites significantly different
between RFI groups) and VIP (metabolites with VIP >1)
identified similar metabolites. Out of the top 15 metabolites

(VIP) that contributed to the separation of high and low RFI
groups, 12, 13, 14 metabolites were significantly different between
RFI groups at early, mid and late lactation, respectively.

A ROC analyses was undertaken to identify the metabolites that
could classify cows into high or low RFI categories. Candidate
biomarkers were ranked based on the area under the curve
(AUC) and the top five candidate biomarkers at each of the
three stages of lactation are shown in Table 5. At the early stage
of lactation, C10, acyl ornithine, SM C16:0, lysoPC a C16:1 and
lysoPC a C18:1 were the top five candidate biomarkers with AUC
values of 0.81, 0.75, 0.75, 0.74 and 0.74, respectively.
Dodecenoylcarnitine (C12:1), histidine, creatinine, C3:1, C16:
1OH were the top five metabolites that were able to distinguish
cows in the high or low RFI categories. During the late stage of
lactation, phenylalanine, valine, methionine, arginine, acetyl
ornithine were the top 5 metabolites with AUC values of 0.85,
0.81, 0.79, 0.79 and 0.78, respectively (Table 5).

Correlation analyses were performed between the top five
metabolites (ranked according to AUC values) and their
corresponding RFI phenotypes at all the three stages of lactation.
At the early stage of lactation, C10, SM C16:0, lysoPC a C18:1 were
positively correlated (p < 0.05) with RFI phenotypes and acetyl-
ornithine was negatively correlated (p < 0.05) with RFI. At the mid-
lactation stage, out of the top five candidate biomarkers, C12:1 and
C16:1-OH were negatively (p < 0.05) correlated with RFI
phenotypes while, histidine had positive correlation (p < 0.05)
with RFI. All the top five candidate biomarkers at the late stage
of lactation are positively correlated (p < 0.05) with RFI phenotypes
(Table 5).

Prediction of RFI phenotypes from milk
metabolite profiles

A stepwise linear regression analysis was performed to identify
milk metabolites that can predict individual RFI phenotypes at early,
mid and late lactation stages. Out of the 118 metabolites identified
and quantified at each stages of lactation, only metabolites that were
significantly different and tended to differ between high and low RFI
comparisons were used in the analysis. The analysis was performed
on the metabolite concentration data after adjusting for significant
fixed effects (parity, MY, HS, and AFC). At the early lactation stage,
a total of 24 metabolites were fitted and the model picked
6 metabolites (lysoPC a C18:2, PC aa C40:1, lysoPC a C16:1,
acetyl ornithine, citric acid and fumaric acid) as predictors of
RFI phenotypes with high accuracy (R2 = 0.76, adjusted R2 =
0.71, root mean squares of error (RMSE) = 1.64). Leave-one-out
cross validation R2 (LOOCV R2) of 0.65 was observed for the model.
Among the 6 metabolites, fumaric acid and lysoPC a C18:
2 explained 43% and 34% of the variation explained by the
model, respectively. Similarly, at the mid lactation stage, the
prediction model was fitted for 28 milk metabolites and the
model picked 5 of them (C12.1, PC aa C36:6, C6:1, valine and
C12) with relatively lower R2 (Model R2 = 0.53, adjusted R2 = 0.45,
RMSE = 2.2 and LOOCV R2 = 0.37) compared to the early stage of
lactation. A relatively lower prediction accuracy and higher root
mean squares of error were observed at the mid lactation stage as
compared to the early and late stages. At the late lactation,
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37 metabolites were fitted in the model and ornithine, serine, PC ae
C40:6, betaine, C0, PC ae 36:0, C6:1 and C16 predicted RFI with
relatively higher accuracy (model R2 = 0.77, adjusted R2 = 0.71,
RMSE = 1.73, LOOCV R2 = 0.60).

Discussion

Lactation stage specific physiological
changes in divergent RFI groups

The physiology of residual feed intake during lactation in dairy
cows is affected by multi-dimensional factors. The magnitude of
change in body reserve mobilization, drainage of nutrients from
circulation towards milk synthesis and dry matter intake define the
dynamics of physiological state during the lactation period. Taking
these dynamics into account, we hypothesized that feed efficient
cows may undergo unique physiological adjustments to cope with
the metabolic challenges and maintain similar production level from
less feed as compared to the feed inefficient cows. To this end, first
we compared milk metabolite profiles between high and low RFI
cows at the three time points (50, 150, 240 DIM) and traced the
pathways enriched by the significantly different metabolite profiles
during lactation. Furthermore, we tested the utilization of metabolite
profiles which are components or by-products of regulatory
networks to identify the feed efficiency level of the cows in the
RFI ranking or predict individual RFI phenotypes.

Elevated acyl carnitines and
lysophosphatidylcholines in high RFI cows

The comparison of milk metabolite profiles between high and
low RFI cows at the early lactation stage revealed elevated
concentrations of medium and long-chain acyl carnitines in high
RFI cows. The result is in agreement with previous studies that
reported increased plasma concentrations of medium and long
chain acyl carnitines as an indication for intracellular energy
metabolism pattern and metabolic dysfunction (Koves et al.,
2008; Adams et al., 2009; Makrecka-Kuka et al., 2017). Carnitine
plays an essential role in energy metabolism with the main function
of transferring long-chain fatty acids to mitochondria for
subsequent β-oxidation (Houten et al., 2016). Incomplete β-
oxidation gives rise to even chain C4-C22 acylcarnitine species
(Koves et al., 2008). The increase in concentration of milk acyl
carnitines (C10:2, C10:1, C10, C16:1) in the least efficient cows is
likely due to the incomplete fatty acid β-oxidation as early lactation
is characterized by body fat mobilization to overcome the energy
deficit. A study in model animals showed that raising plasma fatty
acids induces increased biogenesis of mitochondria in skeletal
muscle (Garcia-Roves et al., 2007) and lactating dairy cows
divergent in genetic background for milk production had
different mitochondrial DNA copy number in liver and
mammary gland (Weikard and Kuehn, 2018). These results
suggest that low RFI cows might increase their mitochondrial
biogenesis in key energetically active tissues (mammary gland,
liver and muscle) during early lactation to maximize the
oxidation of body fat as compared to the high RFI cows.

Conversely, it remains possible that the high RFI cows may have
a mismatch between increased level of fat and mitochondrial copy
number that may lead to increased levels of medium and long-chain
acyl carnitines caused by incomplete β-oxidation.

The least efficient cows had increased milk concentration of
glycerophospholipids, specifically lysophosphatidylcholines at the
early stage of lactation. Lysophosphatidylcholines are formed by
hydrolysis of phosphatidylcholines by lipoprotein-associated
phospholipase A2 and have been identified as a group of
proinflammatory lipids (Schmitz and Ruebsaamen, 2010). The
overproduction of lysophosphatidylcholines can result from the
overexpression or enhanced activity of enzymes such as
lipoprotein-associated phospholipase A2 (Lp-PLA2) in circulation
(Thompson et al., 2010). In hepatocytes, higher concentrations of
lysophosphocholine disrupts mitochondrial integrity and enhances
cytochrome C release (Hollie et al., 2014). The increased milk
lysophosphatidylcholine (lysoPC a C20:4, lysoPC a C18:1, lysoPC
a C18:2, lysoPC a C16:1, lysoPC a C18:0 and lysoPC a C28:1)
concentration in the high RFI group might be due to increased level
of lipoprotein-associated phospholipase A2. This may have caused
disruption of mitochondrial integrity leading to compromised
energy production in the high RFI group. Acyl carnitines and
lysophosphatidylcholines are known to activate proinflammatory
pathways in rodent models (Hung et al., 2012; Rutkowsky et al.,
2014). The energy cost of activating the immune system has been
reported to be 0.64 g of glucose/kg of metabolic body weight per
hour in dairy cows (Kvidera et al., 2017). Therefore, the increased
concentration of acyl carnitines and lysophosphatidylcholines in
high RFI cows may have activated the immune system and caused
comparatively higher energy loss.

Pathway enrichment analysis for the metabolites that differed
(p < 0.05) in concentration between least and most efficient cows at
the early stage of lactation revealed significant enrichment of TCA
cycle and glycerophospholipid metabolism. This indicates that the
difference between the least and most efficient lactating cows in
energy efficiency at early lactation is likely related to the ATP
production efficiency. Of note, mitochondria are responsible for
producing over 90% of cellular ATP from acetyl CoA, which is
generated upon digestion and catabolism of carbohydrates, protein
and lipid derived from the diet and/or body reserves (Cantalapiedra-
Hijar et al., 2018). Regulation of the TCA cycle occurs at the points
that involve citrate synthase, isocitrate dehydrogenase, and alpha-
ketoglutarate dehydrogenase (Cavalcanti et al., 2014). The increased
concentration of citric acid in low RFI groups suggests a lower rate of
energy production in low RFI cows as glycolysis is inhibited by
increased citrate (Wiegand and Remington, 1986).

Elevated short-chain acyl carnitines and
decreased amino acids in low RFI cows

At mid lactation stage short-chain acyl carnitines such as C3 and
C5 were elevated in low RFI cows and the concentrations of valine,
methionine, histidine and tryptophan were decreased (p < 0.05). The
reciprocal regulation of short-chain acylcarnitines and valine
observed in low RFI cows suggests that low RFI cows may
supplement their energy source from valine catabolism compared
with the high RFI cows. Amino acid catabolism is a source for
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C3 and C5 species (Koves et al., 2008) and specifically, valine
catabolism results in C3-acylcarnitine production (Newgard,
2012). The oxidation of branched-chain amino acids produces
more energy than complete oxidation of glucose in the form of
ATP (Monirujjaman and Ferdouse, 2014). The low RFI cows at the
mid lactation stage may maintain a comparative energy efficiency by
catabolizing amino acids for energy source and subsequently
diluting amino acid concentration in milk. Contrary to the early
lactation stage, low RFI cows at mid lactation had elevated long-
chain acylcarnitines suggesting that low RFI cows oxidize body fat to
a certain level as opposed to their high RFI counter parts that may
have switched from mobilizing body fat for energy source. In
addition, the concentration of methionine was concomitantly
increased with the concentration of PC aa C38:6, PC aa C32:2,
PC aa C36:6, PC ae C36:0 in high RFI cows and agrees with the
finding that methionine activates phosphatidylcholine synthesis
(Yao and Vance, 1988).

Compared to high RFI cows, the concentration of the methionine,
histidine and tryptophan were decreased (p < 0.05) whereas
phenylalanine and arginine tended to decrease in low RFI cows.
Bifari and Nisoli (2017) reported that the effect of essential amino
acids drastically changes when the animal is in catabolic or anabolic
condition. In catabolic state, essential amino acids serve as energy
substrates while, in anabolic condition they induce protein synthesis
and cell growth. The decreased concentrations of these amino acids in
milk from low RFI cows is likely due to catabolism that resulted in their
subsequent depletion in milk. Notably, histidine, valine andmethionine
are reported to induce milk protein synthesis in mammary gland
epithelial cells via the mTOR signalling pathway (Gao et al., 2015;
Zhou et al., 2018). Protein production is a costly process and central to
the cell physiology (Kafri et al., 2016). In line with this, Aoyagi et al.
(1988) estimated the requirement of 7.52 ATPs per peptide synthesis in
chicken. Thus, the elevated concentration of these amino acids in high
RFI cows suggests that the energy demanding cellular process of protein
synthesis or turnover is comparatively higher in high RFI cows.
Conversely, the decreased concentration of valine, one of the three
branched-chain amino acids, in the low RFI cows suggests that
oxidation of amino acids as a fuel source may be taking place and
this partly explains the comparative energy efficiency of lactating
dairy cows.

Elevated concentrations of amino acids in
high RFI cows at late lactation stage

Concentrations of valine, lysine, histidine, tryptophan, proline,
citrulline, ornithine, argenine, phenylalanine, serine, methionine,
alanine and glutamine were universally elevated in high RFI cows
compared to the low RFI group at 240 DIM. In lactating dairy cows, the
mammary gland may contribute 40%–45% of whole body protein flux
(Lobley, 2003). Capuco et al. (2001) reported decrease in milk
production and quantity of mammary gland epithelial cells by 23%
and 17% between 90 and 240 DIM, respectively. The increase in the
concentration of milk amino acids in the high RFI group at 240 DIM
suggests that high RFI cows partition a higher amount of energy to
maintain comparatively elevated levels of amino acid concentrations in
milk. Richardson and Herd (2004) showed that 37% of the variation in
RFI was explained by protein turnover and Cantalapiedra-Hijar et al.

(2018) proposed lower energy metabolic rate that may be caused by
decreased protein turnover for lowRFI animals. The protein turnover in
high RFI cows may be characterized by increased protein synthesis and
decreased protein degradation, while the low RFI cows may be
characterized by decreased protein synthesis and increased protein
degradation. Furthermore, serummethylhistidine concentration is used
as indicator of muscle breakdown in dairy cows (Houweling et al.,
2012). Similarly, the increased concentration of methylhistidine in high
RFI cows observed in our studymay suggest increased mammary tissue
regression in high RFI cows. Therefore, it is likely that at the late
lactation stage the difference in feed efficiency levels at least partly
accounted by the decreased protein turnover in low RFI cows.

In addition, the concentration of pyruvic acid was increased in
the high RFI group compared to the low RFI cows suggesting lower
uptake of pyruvate by mitochondria to be oxidized to acetylCoA as
the energy source may have shifted to amino acid catabolism.
Branched chain amino acids (BCAA) such as valine are oxidized
in peripheral tissue (Monirujjaman and Ferdouse, 2014) and the
catabolism of the BCAA in the mammary gland increases
significantly during lactation (Manjarin et al., 2014). The
proportion of mammary intracellular valine utilized for
metabolism other than protein synthesis was 34% and this
proportion appeared to remain unaffected by dietary AA regime,
indicating that valine may participate considerably in metabolism.
In the current study, the concentration of valine in milk from high
RFI cows markedly exceeds the concentration in the low RFI groups
(12.0 ± 2.8 vs. 3.4 ± 0.8) indicating that low RFI cows obtain more
energy by catabolism of valine. The oxidation of BCCA produces
more energy than complete oxidation of glucose in the form of ATP
(Monirujjaman and Ferdouse, 2014) and this partly explains the
comparative energy efficiency of most efficient cows.

Milk metabolite profiles as predictors of RFI

The result of ROC analysis revealed that decanoylcarnitine
(AUC = 0.81) can distinguish high and low RFI cows and is
positively correlated with RFI phenotypes at early lactation stage.
This indicates that decanoylcarnitine (C10) can be used as a
candidate biomarker of RFI with moderate utility and agrees
with the finding that accumulation of medium-chain
acylcarnitine fatty acid derivatives are markers of incomplete
long-chain fatty acid oxidation (Adams et al., 2009). More
interestingly, a set of six metabolites predicted individual RFI
phenotypes with moderate accuracy and among the 6 metabolites
TCA cycle intermediates (fumaric acid and citric acid) and lysoPC a
C18:2 accounted 89% of the variation explained by the model. This
complements the pathway enrichment analysis that revealed TCA
cycle and glycerophopholipid metabolism as the most important
pathways enriched at early lactation. At the mid lactation stage,
dodecanoycarnitine (C12) was a promising candidate biomarker
(AUC = 0.81) of feed efficiency, however, the panels of metabolites
identified to predict individual RFI phenotypes had lower prediction
potential indicating their more limited applicability. Ultimately,
phenylalanine (AUC = 0.85) and valine (AUC = 0.81) were the
top 2 candidate biomarkers at late lactation stage. The panels of
metabolites identified to predict individual RFI phenotypes showed
comparable prediction potential in early lactation. Overall, early
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lactation is the optimum time period to predict RFI phenotypes from
milk metabolite since this time point has higher prediction potential
and provides individual RFI estimates earlier during the lactation
period which can assist management decisions.

Conclusion

This study identified lactation stage specific metabolic differences
between high and low RFI cows.We utilized thesemetabolic differences
and identified candidate biomarkers that distinguish RFI categories and
developed models that can be used to predict RFI phenotypes from
panels of milk metabolite profiles. This result has potential for
application to improve feed efficiency of dairy cows and reduce the
carbon footprint of milk production.
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Untargeted metabolomics of the
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echolocating bats
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High-frequency hearing is regarded as one of the most functionally important
traits in laryngeally echolocating bats. Abundant candidate hearing-related genes
have been identified to be the important genetic bases underlying high-frequency
hearing for laryngeally echolocating bats, however, extensive metabolites
presented in the cochleae have not been studied. In this study, we identified
4,717 annotated metabolites in the cochleae of two typical laryngeally
echolocating bats using the liquid chromatography–mass spectroscopy
technology, metabolites classified as amino acids, peptides, and fatty acid
esters were identified as the most abundant in the cochleae of these two
echolocating bat species, Rhinolophus sinicus and Vespertilio sinensis.
Furthermore, 357 metabolites were identified as significant differentially
accumulated (adjusted p-value <0.05) in the cochleae of these two bat species
with distinct echolocating dominant frequencies. Downstream KEGG enrichment
analyses indicated that multiple biological processes, including signaling
pathways, nervous system, and metabolic process, were putatively different in
the cochleae of R. sinicus and V. sinensis. For the first time, this study investigated
the extensive metabolites and associated biological pathways in the cochleae of
two laryngeal echolocating bats and expanded our knowledge of the metabolic
molecular bases underlying high-frequency hearing in the cochleae of
echolocating bats.

KEYWORDS

bats, cochlea, echolocation, high-frequency hearing, untargeted metabolomics

1 Introduction

Echolocation is a remarkable and perceptive behavior that is well evolved in bats, which
is usually used for orientation, obstacle avoidance, and hunting (Jones, 2005; Jones and
Teeling, 2006). Although echolocation is found in several mammalian lineages (He et al.,
2021), laryngeally echolocating bats are renowned for their sophisticated echolocation
(Simmons et al., 1979; Jones and Teeling, 2006). High-frequency hearing is an important
component of echolocation and is essential for echolocating bats to perceive ultrasonic
signals (Wohlgemuth et al., 2016; Moss, 2018). The molecular bases underlying echolocation
accompanied by high-frequency hearing have attracted increasing attentions (Cao et al.,
2022).

The majority of echolocating bats are usually referred to as laryngeally echolocating bats
who can emit ultrasonic vocalizations through their larynxes (Waters and Vollrath, 2003;
Yovel et al., 2010), including constant-frequency (CF) bats and frequency-modulated (FM)
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bats. Therefore, both CF and FM bats have been identified as
laryngeally echolocating bats in the true sense of the term with
high-frequency hearing. The realization of high-frequency hearing
involves many organs and physiological processes, among them, the
cochlea is a most important organ of the auditory system (Adams
and Pedersen, 2013; Moss, 2018). It is a snail-shaped inner ear
structure that plays important roles in sound perception, signal
processing, and transmission to the brain (Davies et al., 2013; Moss,
2018). Previous studies have demonstrated that the cochleae of
laryngeally echolocating bats have possessed special structural,
physiological and genetic adaptations for detecting high-
frequency acoustic signals (Ulanovsky and Moss, 2008; Schnitzler
and Denzinger, 2011; Vater and Kössl, 2011; Davies et al., 2013).

Transcriptomic approaches have been usually used to uncover
candidate genes and biological pathways underlying the genetic
bases of adaptations for high-frequency hearing in echolocating bats
(Dong et al., 2013; Wang et al., 2018; Ma et al., 2020). A study
involving comparative inner ear transcriptomic analysis betweenM.
ricketti (FM echolocating bat) and Cynopterus sphinx (non-
echolocating bat) demonstrated that the genes upregulated in
Myotis ricketti were particularly associated with cochlear
morphogenesis, inner ear morphogenesis, and sensory perception
of sound categories, which are consistent with the morphological
and physiological differentiation of the inner ear between these two
species (Dong et al., 2013). In addition, comparative cochlear
transcriptomic analyses of four different bat species have
demonstrated variations of gene expression among the bats and
different nervous system activities during auditory perception in the
cochlea particularly in CF bats (Wang et al., 2018). Besides,
numerous efforts to identify high-frequency hearing-related genes
have examined differences in coding sequences between
echolocating and non-echolocating mammalian species including
bats and even whales (Li et al., 2008; Liu et al., 2010; Davies et al.,
2012; Wang et al., 2020; Liu et al., 2022). Genome-wide screening
has also revealed that multiple hearing-related genes showmolecular
adaptation in lineages of echolocators (Parker et al., 2013; Zou and
Zhang, 2015; Liu et al., 2018; Liu et al., 2022).

In recent years, an accumulating body of researches have
indicated that abundant metabolites may be particularly
important for specific phenotype (Keurentjes, 2009; Zampieri and
Sauer, 2017; Han et al., 2021). Metabolomics is a new branch of
“-omics” science in the postgenomic era that has high potential due
to its close relationship with phenotype (Fraga-Corral et al., 2022).
In addition to the hearing-related genes, cochlear metabolites may
also play important roles in the realization of high-frequency
hearing for echolocating bats (Meng et al., 2020; Wörheide et al.,
2021). However, cochlear metabolites and associated metabolic
pathways in laryngeally echolocating bats have been less clearly
understood.

Therefore, in this study, we explored the utility of liquid
chromatography–mass spectroscopy (LC-MS) to take an insight
into the cochlear metabolites of two typical laryngeally echolocating
bats, R. sinicus and V. sinensis. R. sinicus, belonging to the
Rhinolophidae, is a typical CF bat species, whose dominant
frequency is around 83.15 kHz (Xie et al., 2017; Wang et al.,
2018). Meanwhile, Vespertilio sinensis is a typical FM bat and
belongs to the Vespertilionidae, with a dominant frequency
around 24.2 kHz (Fukui et al., 2004). For the first time, we here

aim to detect the metabolites responsible for the cochlear function of
laryngeally echolocating bats. We also aim to uncover the differences
of metabolites and related biological processes in the cochleae
between these two bat species. This study is expected to provide
a new perspective for the studies of echolocation and high-frequency
hearing in bats.

2 Materials and Methods

2.1 Sample collection

Six biological repeats for each bat species were included for the
metabolomic analyses. Therefore, six adults of R. sinicus and V.
sinensis were captured during July, respectively. To avoid any
influence of sex-related differences, only females were selected for
inclusion in the study. All individuals were euthanized by cervical
dislocation, and a pair of cochleae from each individual were
collected and immediately flash-frozen in liquid nitrogen in the
field, before transfer to a −80°C freezer.

2.2 Metabolite extraction and sequencing
sample preparation

Equal amounts of the cochlear samples from the two bat species
(30 mg, n = 12) were transferred to a 2 ml centrifuge tube,
supplemented with 600 µl of precooled 50% methanol (stored
at −20°C) containing 2-amino-3-(2-chlorophenyl)-propionic acid
(4 ppm), and vortexed for 1 min. Subsequently, the samples were
precooled at −20°C for 2 min, supplemented with 100 mg of glass
beads, and placed in a tissue grinder for 2 min at 60 Hz. Room
temperature ultrasonic extraction was then applied for 15 min,
followed by storage at −20°C for 30 min. After centrifugation at
13,000 g for 10 min at 4°C, the supernatant was transferred to a new
tube. The extraction solution was vacuum-dried and resuspended in
50% methanol (vortexing for 30 s and ultrasonic extraction for
3 min), followed by storage at −20°C for 2 h. Finally,
centrifugation was applied at 13,000 g for 10 min at 4°C, and the
obtained supernatant was transferred into a detection bottle.
Meanwhile, pooled quality control (QC) samples were prepared
by mixing an equal volume of each extraction sample. All the
samples were stored at −80°C prior to the LC-MS analysis. The
experimental process mainly refers to the reagent supplies manual
instruction and references (Zhou et al., 2012; Cao et al., 2020).

2.3 LC-MS-based metabolomic analysis

All samples were analyzed using an ACQUITY UPLC I-Class
system (Waters Corporation, Milford, MA, USA) coupled with a
VION IMS QTOF mass spectrometer (Waters Corporation,
Milford, MA, United States) for metabolic profiling in both ESI
positive and ESI negative ion modes. An ACQUITY UPLC BEH
C18 column (1.8 μm, 2.1 × 100 mm) was employed in both positive
and negative modes. Water and acetonitrile/methanol 2/3 (v/v),
both containing 0.1% formic acid, were used as mobile phases A and
B, respectively. The following linear gradient was applied: 0.01 min,
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5% B; 4 min, 30% B; 8 min, 50% B; 10 min, 80% B; 14 min, 100% B;
15 min, 100% B; 15.1 min, 5% B; and 16 min, 5% B. The flow rate
was 0.35 mL/min and the column temperature was maintained at
45°C. All samples were kept at 4°C during the analysis. The injection
volume was 2 μL. The mass range was from m/z 100 to 1,200. The
resolution was set at 70,000 for the full MS scans and 17,500 for the
HCD MS/MS scans. The collision energy was set at 10, 20, and
40 eV. The mass spectrometer was operated as follows: spray
voltage, 3,800 V (+) for the positive ion mode and 3,200 V (−)
for the negative ion mode; sheath gas flow rate, 40 arbitrary units;
auxiliary gas flow rate, 8 arbitrary units; capillary temperature,
320°C; probe heater temperature, 350°C; and S-lens RF level, 50.
The QC samples (created by pooling all of the samples) were injected
at regular intervals throughout the analytical run to provide a set of
data from which repeatability could be assessed (Zhou et al., 2012;
Cao et al., 2020).

2.4 Metabolomic data processing

The raw LC-MS data were processed using the software Progenesis
QI V2.3 (Non-linear Dynamics, Newcastle, United Kingdom) for
baseline filtering, peak identification, integrity, retention time
correction, peak alignment, and normalization. The main parameters
of 5 ppm precursor tolerance, 10 ppm product tolerance, and 5%
product ion threshold were applied. Compound identification was
based on the precise mass-to-charge ratio (m/z), secondary
fragments, and isotopic distribution using the Human Metabolome
Database (HMDB, http://www.hmdb.ca), The Kyoto Encyclopedia of
Genes and Genomes (KEGG, http://www.kegg.com/), Lipidmaps (V2.
3), Metlin, EMDB, PMDB, and custom-made databases to perform
qualitative analysis. The extracted data were then further processed by
removing any peaks with a missing value (ion intensity = 0) in more
than 50% in groups, and by screening according to the qualitative results
of the compound. Compounds with resulting scores below 36 points
were also deemed to be inaccurate and removed (the full score is 60 and
the pass mark is 36). A data matrix was combined from the positive ion
and negative ion data. The matrix was imported into R to carry out
principal component analysis (PCA) to observe the overall distribution
among the samples and the stability of the whole analytical process.
Orthogonal partial least-squares discriminant analysis (OPLS-DA) and
partial least-squares discriminant analysis (PLS-DA) were used to
distinguish the metabolites that differ between groups. To prevent
overfitting, sevenfold cross-validation and 200 response permutation
testing (RPT) were used to evaluate the quality of the model. Variable
importance of projection (VIP) values obtained from the OPLS-DA
model were used to rank the overall contribution of each variable to
group discrimination. Two-tailed Student’s t-test was further used to
verify that the metabolites differing between groups were significant.
Differential metabolites with VIP values greater than 1.0 and p-values
less than 0.05 were selected.

2.5 Differentially accumulated metabolites
(DAMs) identified and bioinformatic analysis

To reveal the differences between the cochleae of R. sinicus and
V. sinensis, a series of criteria were used to identify the DAMs

among annotated metabolites: VIP >1, |fold change| > 1.5, and
adjusted p-value <0.05. Visualization of the DAMs in the two bat
species was achieved by creating heatmaps and a volcano plot
using the OmicShare tools (http://www.omicshare.com/tools), a
free online platform for data analysis. Among the DAMs, the
predominantly accumulated metabolites in the cochleae of R.
sinicus and V. sinensis were submitted to the OmicShare tools
(http://www.omicshare.com/tools) to identify the representative
KEGG pathways for further elucidation of the functional
properties.

3 Results

3.1 Global metabolites detected in the
cochlea of two laryngeally echolocating bat
species

To explore the global metabolites in the cochleae of the two
laryngeally echolocating bats, R. sinicus and V. sinensis, untargeted
metabolomic analyses were performed, which identified
4,717 annotated metabolites from 10,958 positive ion and
negative ion features (Table 1; Supplementary Table S1). The
overlapping total ion chromatograms (TIC) of positive mode and
negative mode of all samples and the QC samples demonstrated that
all samples obtained in the positive ion and negative ionmodes had a
good overlap, which indicated that this model was stable,
reproducible, and consistent for all of the samples
(Supplementary Figure S1).

3.2 Multivariate statistical analysis of
sequencing samples

PCA was used to determine the sample separation and
aggregation between R. sinicus and V. sinensis (Figure 1A). Each
point on the PCA score graph represents a single sample.
Aggregation of points indicates that the observed variables are
highly similar, while discrete points represent significant
differences in the observed variables. The PCA scores illustrated
that PC1 and PC2 were responsible for 54.4% and 9.6% of the
variation, respectively, indicating a clear separation between these
two bat species. The results demonstrated that R. sinicus and V.
sinensis had different cochlear metabolic characteristics. In addition,
PLS-DA, which is a supervised discriminant profiling statistical
method, was used to identify more specific differences between
the groups (Figure 1B). Accordingly, higher values for PLS-DA
model parameters denote greater reliability for the PLS-DA model.
R2 of the PLS-DA model was 0.998 and Q2 was 0.967, which
denoted greater reliability for the PLS-DA model. According to
the PLS-DA model parameters, this model was reasonable for
interpreting the differences between the two bat species. In
addition, the OPLS-DA score plot demonstrated a clearer
separation of R. sinicus and V. sinensis and the parameters were
as follows: R2X = 0.774, R2Y = 0.998, and Q2 = 0.974, indicating that
the current OPLS-DA model is more reliable and that consistent
modeling and predictability were achieved (Figures 1C, D).
Therefore, these data were used for subsequent analyses.
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3.3 Classification of metabolites

In addition, heatmaps of the 4,717 annotated metabolites
identified in the cochleae of the two echolocating bats are
presented in Figure 2, which illustrates that metabolites varied
greatly between R. sinicus and V. sinensis according to the total
metabolites and both sets of metabolites detected based on positive
ion and negative ion analyses.

Based on the annotations of the 4,717 metabolites, most
metabolites were assigned to at least one metabolic category and
various different types of metabolites were detected in the cochleae
of the two echolocating bats (Supplementary Table S2). Among
these 4,717 annotated metabolites, 3,410 metabolites,
3,405 metabolites, and 3,177 metabolites were identified to be

Super-class, Class, and Sub-class metabolic categories (Figure 3;
Supplementary Table S2). At the Super-class level, the three largest
metabolic categories were Lipids and lipid-like molecules
(1,987 metabolites), Organic acids and derivatives
(446 metabolites), Organoheterocyclic compounds
(315 metabolites) (Figure 3A). Similarly, metabolites detected at
the Class and the Sub-class levels were illustrated by Figures 3B, C,
respectively.

Various metabolic categories were identified for the
metabolites detected in the cochleae of the two echolocating
bats. Figure 4 has showed the KEGG classes of all identified
metabolites, indicating that several metabolism related
processes were the most abundant, including Amino acid
metabolism, Lipid metabolism, and Carbohydrate

TABLE 1 Basic information of the cochlear metabolomics of the two echolocating bats.

Identification Metabolites Annotated metabolites Super-class Class Sub-class

Positive ion 5,867 3,108 2,325 2,323 2,172

Negative ion 5,091 1,609 1,085 1,082 1,005

Total 10,958 4,717 3,410 3,405 3,177

FIGURE 1
Results of multivariate analysis of cochlear samples from the R. sinicus, and V. sinensis. (A) PCA score plot, (B)OPLS-DA score plot, (C) PLS-DA score
plot, (D) permutation plot. There is a clear separation of R. sinicus, and V. sinensis.
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metabolism. Further analysis of the third hierarchical levels of
KEGG pathways is listed in Supplementary Table S3. The top
5 largest KEGG pathways were Metabolic pathways (416),

Arachidonic acid metabolism (46), Glycerophospholipid
metabolism (39), Biosynthesis of amino acids (39), and ABC
transporters (39).

FIGURE 2
Heatmaps of the 4,717 annotatedmetabolites identified in the cochlea of R. sinicus and V. sinensis. (A) Total ions, (B) Positive ion mode, (C)Negative
ion mode. Rhin and Vesp stand R. sinicus and V. sinensis, respectively, as also used elsewhere in this paper.

FIGURE 3
Annotated cochlear metabolites detected for Super-classification (A), Classification (B) and Sub-classification (C), respectively.
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3.4 DAMs detected in the cochlea between
R. sinicus and V. sinensis

Accordingly, 4,717 high-quality metabolites were used to screen
the significant DAMs using the criteria referred to in the Materials
andMethods. A total of 357 DAMs were identified to be significantly
differentially accumulated (adjusted p-value <0.05) between R.

sinicus and V. sinensis, including 129 and 228 metabolites
significantly abundant in the cochleae of R. sinicus and V.
sinensis, respectively. A heatmap was used to exhibit the
357 DAMs with different levels in the cochleae of R. sinicus and
V. sinensis (Figure 5A), which suggested that significantly different
metabolites were accumulated in the cochleae of the two bat species.
A volcano plot indicated the results of analyzing the significance of

FIGURE 4
The KEGG categories of all identified metabolites.

FIGURE 5
Visualization of DAMs present at significantly different levels in R. sinicus and V. sinensis. (A) Heatmaps of DAMs with the abundance levels in all
cochlear samples. Red indicates an increase, blue indicates a decrease, rows indicate different metabolites, and columns indicate different samples. (B)
Volcano plot of DAMs.
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the DAMs between R. sinicus and V. sinensis (Figure 5B).
Concretely, the DAMs were further assigned to the Super-class
(Supplementary Figure S2), Class (Supplementary Figure S3), and
Sub-class categories (Supplementary Figure S4) indicating variations
of cochlear metabolites between R. sinicus and V. sinensis.

3.5 Differences of related biological
processes between R. sinicus and V. sinensis
revealed by DAMs

Numerous KEGG pathways were significantly associated with
the DAMs from the R. sinicus versus V. sinensis comparison

(Figure 6). In detail, 39 pathways were significantly associated
with the DAMs predominantly accumulated in R. sinicus, while
10 pathways were for the DAMs predominantly accumulated in V.
sinensis. According to the order of p-values, the top 10 pathways are
represented in a bubble plot (Figures 6B, D), which indicates that
different biological processes were activated in the cochleae of R.
sinicus and V. sinensis. In particular, two nervous system-related
pathways, Neurotrophin signaling pathway (ko04722) and
Cholinergic synapse (ko04725), were significantly associated with
the DAMs predominantly accumulated in R. sinicus, both of which
are closely associated with the process of auditory perception.
Several signal transduction-related pathways were also found to
be important in the cochlea of R. sinicus, such as the MAPK

FIGURE 6
KEGG pathways significantly associated with 129 and 228 DAMs with significantly abundant levels in the cochleae of R. sinicus and V. sinensis,
respectively. (A) and (C) KEGG A and B categories significantly associated with DAMs for R. sinicus and V. sinensis. (B) and (D) The top 10 KEGG pathways
significantly associated with DAMs for R. sinicus and V. sinensis.
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signaling pathway (ko04010), ErbB signaling pathway (ko04012),
Ras signaling pathway (ko04014), Rap1 signaling pathway
(ko04015), and Calcium signaling pathway (ko04020).

Furthermore, network analysis for significantly enriched KEGG
pathways was performed to obtain insights into the relationships of
the metabolites differently accumulated in R. sinicus and V. sinensis.
The network for R. sinicus as shown in Figure 7A indicated that the
MAPK signaling pathway (ko04010) was the most important core
pathway, which communicated with multiple other signaling
pathways, such as the NF-kappa B signaling pathway (ko04064)
and Calcium signaling pathway (ko04020). At the same time, it also
connected with various biological systems, such as Nervous system,
Immune system, and Endocrine system. Meanwhile, specific
metabolism-related pathways were potentially more active in the
cochlea of V. sinensis, as revealed by the network analysis of
significantly enriched KEGG pathways (Figure 7B), including
Glycerophospholipid metabolism (ko00564), Pantothenate and

CoA biosynthesis (ko00770), and Purine metabolism (ko00230),
which closely interacted with each other.

4 Discussion

Echolocating bats have attracted much attentions for their
remarkable high-frequency hearing ability (Moss, 2018; Cao
et al., 2022). However, there seems to be a lack of further
understanding of the extensive metabolites in the key auditory
organs. Among multiple omics approaches, metabolomics has
gradually become the most direct and efficient method to explore
complex biological traits (Fiehn, 2022). It is very necessary to
identify the cochlear metabolites and to provide further scientific
clues for understanding the molecular mechanisms of high-
frequency hearing in echolocating bats. Therefore, untargeted
metabolomics were performed here to obtain an insight into the

FIGURE 7
Network relationships of the KEGG pathways significantly associated with the significantly abundant metabolites in the cochlea of R. sinicus (A) and
V. sinensis (B), respectively. The size of the dot indicates the level of connectivity of a specific pathway interacting with others. Significantly enriched
pathways are indicated by colored dots rather than gray ones. Dot and font colors are as follows: signal transduction-related pathways (red), metabolism-
related pathways (orange), nervous system-related pathways (blue), immune system-related pathways (green), and others (purple).
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various metabolites and biological processes in the cochleae of
echolocating bats for the first time, and also to reveal the
differences of metabolites and related physiological processes in
the cochleae of the two bat species.

The cochleae of R. sinicus and V. sinensis were characterized by
abundant metabolites that reflect specific biochemical pathways
involved in the process of auditory perception. Metabolites classified
as amino acids, peptides, and analogues were the most abundant in the
cochleae of echolocating bats, while similar abundance levels were also
detected in the inner ear fluid of guinea pig (Fujita et al., 2015; Pirttilä
et al., 2019). Besides, amino acid metabolites were also detected in the
inner ear of mice (Ji et al., 2019). In addition to amino acids, various
metabolites, including hydroxy acids, carbohydrates, alcohols and
polyols, homogeneous non-metal compounds, carboxylic acids, fatty
acids, and purines and purine derivatives were detected in the inner ear
fluid of guinea pig cochlea by gas chromatography–mass spectrometry
(GC-MS) (Fujita et al., 2015), which were also detected in the cochleae
of the two echolocating bats in this study by LC-MS. However,
4,717 annotated metabolites were detected in the cochlea of bats,
which was a greater number than the 77 kinds of metabolites
detected in the inner ear fluid of guinea pig cochlea (Fujita et al.,
2015). This is reasonable given that the cochlea contains more
microscopic structures and more abundant cells than the inner ear
fluid of the cochlea, so the metabolites in the cochlea could be more
abundant than those only detected in the inner ear fluid of the cochlea.
Besides, various metabolites across the major metabolic pathways in
central carbon metabolism, including amino acids, nucleotides,
cytosine, L-methionine, L-arginine, glutamate, xanthurenic acid,
aspartate, phenylalanine, tyrosine, aromatic amino acids, adenosine,
oxidized glutathione, methionine, and tryptophan, were detected in the
inner ear of mice, which may be involved in responses to noise trauma
(Ji et al., 2019); those metabolites were also identified in the cochlea of
our two echolocating bat species, which may also constitute the
molecular basis to response to noise stimulation, for bats were more
usually expose to high intensity noise environment.

In addition, more abundant metabolites were found in the
cochlea of laryngeally echolocating bats, which are involved in
various aspects of the physiological function of the cochlea,
including metabolic processes of amino acids, carbohydrates,
lipids, cofactors and vitamins, and nucleotides, as well as the
immune system, nervous system, sensory system, membrane
transport, and signal transduction. Previous studies demonstrated
that hearing acquisition relies on the functional maturation and
appropriate organization of the cochlea that couples the transfer of
signaling, ions, and nutrients (Kelly and Chen, 2009; Ceriani and
Mammano, 2012). Therefore, metabolites detected in the cochleae of
bats that participated in the pathways related to various signal
transductions, the nervous system, membrane transport, and
transport and catabolism, among others, potentially provide
comprehensive references for future studies on cochlear function.

Significant metabolic differences were detected between the
cochleae of R. sinicus and V. sinensis. Compared with the levels in V.
sinensis, 129 metabolites were identified to be significantly abundant in
the cochlea of R. sinicus. Multiple pathways were shown to be influenced
by these metabolites, including those involving signal transduction, the
nervous system, endocrine system, lipid metabolism, and environmental
adaptation. This indicates that these biological processes were different
and specific in the cochlea of R. sinicus. Neurotrophin signaling pathway

(ko04722) and Cholinergic synapse (ko04725) were the two most
important pathways, which may play important roles in the auditory
perception in R. sinicus. Neurotrophins have been identified as a key
factor in the maintenance of spiral ganglion health, playing important
roles in the normal function of cochleae (Shew et al., 2021). Previous
studies identified several key features of cholinergic synapses in the
cochleae of mammals, especially the efferent cholinergic synaptic
transmission in the vestibular periphery (Poppi et al., 2020). Our
findings suggest that the metabolites participating in the
neurotrophin signaling pathway and cholinergic synapses are
potentially crucial metabolic bases for the process of auditory
perception in R. sinicus. As a representative species of CF bats, R.
sinicus possessed unique and high-frequency CF component in their
echolocation calls compared with V. sinensis, this regarded as one of the
possible reasons for the more abundant neurotrophin signaling pathway
and cholinergic synapses in the cochleae of R. sinicus. Besides, CF bat
have developed special cochlear adaptations, such as auditory fovea and
neurons with extraordinarily sharp frequency tuning, these may consist
of other potential reasons for the differences between R. sinicus and V.
sinensis revealed by DAMs and related pathways. Besides, it has been
reported that SK2 calcium-activated potassium channel is required for
cholinergic function in mouse cochlear hair cells (Kong et al., 2008;
Jordan et al., 2013) and also for the long-term maintenance of efferent
synapses on-to mammalian cochlear hair cells (Murthy et al., 2009). A
previous study demonstrated that the SK2 gene, as one of the most
important hearing-related genes, has undergonemore rapid evolution in
echolocating mammals than in non-echolocating mammals and may be
involved in the high-frequency hearing of echolocatingmammals (Wang
et al., 2021). Therefore, adaptive evolutionary changes detected in the
cochlea of R. sinicusmay be revealed by analyses of bothmetabolites and
genes, and even complex networks of interactions between them, which
have adapted in the process of auditory perception.

Notably, compared with the findings in FM bat, different
nervous system activities were also demonstrated in the cochlea
of R. sinicus (CF bat), as revealed by the gene expression data
obtained using RNA-Seq (Wang et al., 2018). Genes overexpressed
in R. sinicus (CF bat) compared with the levels in Taphozous
melanopogon (FM bat) were shown to be significantly associated
with various nervous system components, such as Cholinergic
synapse (ko04725), Glutamatergic synapse (ko04724), and
Dopaminergic synapse (ko04728). Similarly, at the metabolic
level here, two nervous system-related pathways, Cholinergic
synapse (ko04725) and Neurotrophin signaling pathway
(ko04722) were significantly associated with the DAMs
predominantly accumulated in R. sinicus. The Cholinergic
synapse (ko04725) was the same pathway that significantly
enriched by overexpressed genes and high-accumulated
metabolites detected in the cochleae of R. sinicus. Taken
together, both expressed genes and metabolites detected in the
cochlea of R. sinicus indicated that Cholinergic synapse (ko04725)
is an important physiological basis underlying the auditory
function. However, more studies are needed to conduct to
verify if these clues were suitable for other CF bats.

In addition, the activity of multiple signal transduction pathways
was also detected in the cochlea of R. sinicus compared with the
findings for V. sinensis, which suggested more active signal
transduction in the former. Importantly, the MAPK signaling
pathway (ko04010) was identified as the most central signal
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transduction pathway. Previously, metabolomic and bioinformatic
analyses indicated that this is the major pathway in various types of
hearing loss (Alagramam et al., 2014; Muurling and Stankovic, 2014;
Liu et al., 2021). Numerous studies related to hearing damage have
also shown that noise exposure immediately activates the cochlear
MAPK signaling pathway, which plays important roles in
maintaining normal physiological function of the cochlea (Maeda
et al., 2013; Alagramam et al., 2014; Kurabi et al., 2017). For
nocturnal echolocating bats, which are highly dependent on
acoustic signals and are continually exposed to ultrasonic signals
in daily life, the MAPK signaling pathway could be particularly
important in regulating the development and survival of auditory
hair cells. Compared with V. sinensis (around 24.2 kHz), R. sinicus
(around 83.15 kHz) has developed a much higher- and constant-
frequency component in its acoustic signals (Fukui et al., 2004; Xie
et al., 2017; Wang et al., 2018), so the metabolites significantly
accumulated in the MAPK signaling pathway may constitute an
important auditory basis in the cochlea of R. sinicus. The molecular
interactions of the MAPK signaling pathway and other signaling
pathways play an important role in the survival of hair cells and the
normal function of cochlea. Pathways such as the calcium signaling
pathway play numerous fundamental roles in the inner ear
(including in neurotransmitter release and synaptic transmission)
(Ceriani and Mammano, 2012; Liu et al., 2021), along with multiple
signaling pathways that interact with the MAPK signaling pathway
in the cochlea of R. sinicus. Similarly, among the pathways
significantly associated with the overexpressed genes detected in
the cochlea of R. sinicus rather than in T. melanopogon, signal
transduction pathways were almost the most represented, second
only to nervous system pathways (Wang et al., 2018). Taken
together, evidence from comparative cochlear transcriptomic and
metabolomic analyses consistently indicated that signal
transduction might be more active in the cochlea R. sinicus
compared with FM bats.

More abundant metabolites in the cochlea of V. sinensis when
compared with the levels in R. sinicus were significantly associated
with metabolic pathways including Glycerophospholipid
metabolism (ko00564), Pantothenate and CoA biosynthesis
(ko00770), and Purine metabolism (ko00230), which have
generally been demonstrated to be involved with exposure to
noise. A recent animal experimental study on the brain of rats
found that purine metabolism was markedly altered by acoustic
trauma (He et al., 2017). Furthermore, in mice, purinergic
signaling has been suggested to protect against noise trauma
and contribute to cochlear adaptation to elevated sound levels
(Muñoz et al., 1999; Housley et al., 2013). It was also identified that
metabolites that showed a significant difference in accumulation
between microtia and healthy ear cartilage were associated with
Pantothenate and CoA biosynthesis, so these may have an
association with the development of microtia ear cartilage
(Yang and He, 2020). Finally, with regard to
Glycerophospholipid metabolism, this has potential protective
roles in the cochlea, which was reported to be significantly
related to noise-induced hearing loss (Xie et al., 2021). Taken
together, our results indicated that different metabolic processes
presenting in the cochleae of R. sinicus and V. sinensis. The specific
metabolic pathways identified in V. sinensis could be related to
cochlear development and protective mechanisms in response to

echolocation calls and echoes. Moreover, in this study, it should be
noted that the V. sinensis individuals were collected from a large
colony roosting under a bridge, containing about
10,000 individuals living together from early June to late
September each year. These bats are thus exposed to high-
intensity noise from their peers at night and from traffic in the
day (Song et al., 2020). The specific metabolic pathways detected in
the cochlea of V. sinensis could also be related to cochlear
development and protective mechanisms in response to
inhabiting a noisy environment. However, more evidences are
needed in future to uncover the functions of these metabolic
pathways in the cochlea of V. sinensis.

To better understand the molecular bases underlying high-
frequency hearing of bats, our study provided an overview of the
cochlear metabolites and associated biological processes of two typical
laryngeally echolocating bat species. Our study takes new insights into
the molecular mechanisms of auditory perception of echolocating
bats. In consideration of the limitations of single omics, future work
should focus on a comprehensively study to fully uncover the
molecular mechanisms and key network relationships combing the
transcriptome, proteome, and metabolome in echolocating bats.
Unfortunately, no sufficient bat cochlear samples were left here for
the experimental validation which needs to be further studied.
Therefore, comparative cochlear metabolic and transcriptomic
sequencing of more representative bat species from CF, FM and
even non-echolocating bat groups will be further performed in future
along with the experimental validations to reveal the genetic bases of
high-frequency hearing and also the different molecular bases and
biological mechanisms underlying the auditory processes of bats with
distinct hearing traits.
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Introduction: Anisakis simplex are parasitic nematodes that cause anisakiasis. The
possibility of infection with this parasite is through consumption of raw or
undercooked fish products. A. simplex infections are often misdiagnosed,
especially in subclinical cases that do not present with typical symptoms such
as urticaria, angioedema, and gastrointestinal allergy. The resulting allergic
reactions range from rapid-onset and potentially fatal anaphylactic reactions to
chronic, debilitating conditions. While there have been numerous published
studies on the genomes and proteomes of A. simplex, less attention has been
paid to the metabolomes. Metabolomics is concerned with the composition of
metabolites in biological systems. Dynamic responses to endogenous and
exogenous stimuli are particularly well suited for the study of holistic
metabolic responses. In addition, metabolomics can be used to determine
metabolic activity at different stages of development or during growth.

Materials andmethods: In this study, we reveal for the first time themetabolomes
of infectious stages (L3 and L4) of A. simplex using untargeted metabolomics by
ultra-performance liquid chromatography-mass spectrometry.

Results: In the negative ionization mode (ESI-), we identified 172 different
compounds, whereas in the positive ionization mode (ESI+), 186 metabolites
were found. Statistical analysis showed that 60 metabolites were found in the ESI-
modewith different concentration in each group, of which 21 weremore enriched
in the L3 larvae and 39 in the L4 stage of A. simplex. Comparison of the individual
developmental stages in the ESI + mode also revealed a total of 60 differential
metabolites, but 32 metabolites were more enriched in the L3 stage larvae, and
28 metabolites were more concentrated in the L4 stage.

Discussion: Themetabolomics study revealed that the developmental stages of A.
simplex differed in a number of metabolic pathways, including nicotinate and
nicotinamide metabolism. In addition, molecules responsible for successful
migration within their host, such as pyridoxine and prostaglandins (E1, E2, F1a)
were present in the L4 stage. In contrast, metabolic pathways for amino acids,
starch, and sucrose were mainly activated in the L3 stage. Our results provide new
insights into the comparativemetabolome profiles of two different developmental
stages of A. simplex.
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1 Introduction

Anisakis simplex is one of the most important emerging parasitic
nematodes in Europe, according to the Risk Management Ranking
of Foodborne Parasites, prepared for recommendations by the Food
and Agriculture Organization of the United Nations (FAO) and the
World Health Organization (WHO) (Stryiński et al., 2020). The
disease caused by the genus Anisakis is called anisakiasis and
frequently described (Audicana et al., 2002; Aibinu et al., 2019).
The life cycle of A. simplex is complex and involves four larval stages
parasitizing several intermediate and paratenic hosts (fish,
cephalopods, and crustaceans) and the adult stage parasitizing
marine mammals (seals, dolphins, and whales). The first case of
human infection by a species of the Anisakidae family occurred in
the 1960s, when Van Thiel of the Institute of Tropical Medicine in
Leiden, the Netherlands, identified patients who suffered severe
abdominal pain after eating fish (van Thiel et al., 1960).
Transmission of the parasite is clearly associated with the
consumption of raw or undercooked fish. In particular, Japanese
sushi and sashimi, Dutch salted or smoked herring, Nordic gravlax
(dry, cured salmon), Hawaiian lomi-lomi (raw salmon), German
rollmops (rolled fillet of marinated/pickled herring), South
American cebiche, and Spanish boquerones en vinagre (pickled
anchovies) are regular routes of infection (Audicana et al., 2002;
Ivanovic et al., 2015). The ingestion of viable larvae might lead to
gastrointestinal symptoms (abdominal pain, nausea, vomiting,
diarrhea), which may be associated with mild to severe allergic
reactions, and the clinical symptoms most often are such as rhinitis,
urticaria, and, in worst cases, anaphylactic shock (Aibinu et al.,
2019). Although, cooking (or freezing) is expected to kill the
parasites, it might not decrease its allergenicity, because A.
simplex allergens have high heat and frost resistance; and
sensitization may occur after consumption (Audicana and
Kennedy, 2008). It is estimated that the incidence of the disease
is 0.32 cases per 100,000 individuals/year worldwide (Orpha.net,
2022). The globalization, development of diagnostic tools and better
analytical methods, have led to significantly even more anisakiasis
being reported. Before 2010, over 20,000 cases of anisakiasis were
reported worldwide, with the highest prevalence (over 90%) in Japan
(EFSA, 2010; Baird et al., 2014), where now 7,000 cases of the disease
are reported annually (Yorimitsu et al., 2013; Suzuki et al., 2021).
European countries where cases of anisakiasis have been reported
include among others, Spain (Herrador et al., 2019), Italy (Guardone
et al., 2018; Mattiucci et al., 2018), France (Yera et al., 2018), Croatia
(Mladineo et al., 2015), and Poland (Kołodziejczyk et al., 2020). The
ingested L3 larvae rarely develop to L4 stage in humans and
consequently die, but both of these larval stages are considered
dangerous to humans (Kagei and Isogaki, 1992; Sohn et al., 2015).

The infective L3 of parasitic nematodes require specific stimuli
for resumption of development and completion of shedding of the
outer cuticle; thus, CO2 appears to be the most important stimulus
for hatching or molting of Anisakis nematodes. In addition,
temperature, pH, and pepsin are known to trigger the
development of infectious L3 to adults in vitro (Iglesias et al.,
2001, 2005). All these stimuli are thought to reflect the

conditions that prevail in vivo when they reach the
gastrointestinal tract of the definitive hosts, where they develop
into adults. During this molting process, they adapt to the new
environment of their hosts’ digestive tracts and also exhibit
pathogenicity toward their hosts. These differences may reflect
metabolic adaptations of A. simplex larvae to the host switch
from fish (L3) to mammals (L4), i.e., adaptations to a new
habitat (Baird et al., 2014; Kuhn et al., 2016).

Metabolomics is a distinct ‘omics’ method that offers a more
direct assessment of physiology compared to others. It responds
promptly to nutrients, stress, and disease unlike transcriptomic or
proteomic approaches. Given this advantage, metabolomics has
gained considerable interest in various fields such as environmental
toxicology, evolutionary biology and developmental studies, medical
diagnosis and treatment responses as well as drug development
(Vernocchi et al., 2016). Synthetic biologists also use metabolomic
flux analyses for insights into the effect of genetic modifications on
metabolic pathways and products. As it pertains directly to molecular
response mechanisms resulting from genetic alterations or
environmental changes at the ultimate level of biological systems’
metabolism function regarding molecule abundance predictions offer
better accuracy than gene expression or protein-level information
provides (Liu et al., 2021). Similarly, parasitic nematode research
increasingly relies on metabolomics techniques due to its immense
potential applications in studying these organisms effectively. The
gastrointestinal tract is a dynamic metabolic and immunologically
active ecosystem, and its complete set of metabolites reflects both
the enzymatic pathways of host and gut inhabitants and the
complex network that connects them (Palevich et al., 2021, 2022;
Whitman et al., 2021). The use of metabolomics is particularly
suited to understanding nematode metabolism, including the
identification of novel drug targets, differences between developmental
stages, and mechanisms involved in host-parasite interactions (Jasmer
et al., 2019; Molenaars et al., 2021).

Amajor problemwith untargeted metabolomics in general is the
lack of comprehensive measurements of the whole metabolome
using a single technique because of its great complexity. As things
stand, it is not possible to measure the entire metabolome of an
organism in a single experiment. In addition to some known
compounds, a large portion of the metabolome has not even
been identified (“metabolic dark matter”) (da Silva et al., 2015).
Metabolomics is capable of providing a static snapshot of the current
metabolic state. However, in most cases, it remains unclear how this
state was reached, and which metabolic pathway was active (Salzer
and Witting, 2021). With respect to parasitic nematodes, the field of
metabolomics faces similar challenges to untargeted metabolomics
in general, as its complex nature makes it difficult to obtain complete
measurements of the entire metabolome using a single approach.
Nevertheless, the use of metabolomics in the study of parasitic
nematodes is a promising area that could provide important insights
into their biology and pathogenesis.

Such studies on the metabolome of nematodes from the family
Anisakidae are lacking. Therefore, to fill the described gap, it was
decided to analyze and characterize the metabolome of A. simplex, a
parasite of great public health importance. In the central part of this
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work, we focused on the identification and characterization of the
metabolites of A. simplex in two developmental stages to increase
our knowledge of the biology of this organism and to find a way to
understand how this parasite was able to adapt to different host
environments by developing a unique metabolism.

2 Materials and methods

2.1 Parasites and in vitro culture

The study was performed on the L3 and L4 larval stages ofAnisakis
simplex Nematodes were collected from the Biobank platform
implemented for the PARASITE project (www.parasite-project.eu) at
Institute of Marine Research, Spanish National Research Council (IIM-
CSIC), Vigo, Spain. The larval stages of A. simplex were isolated:
L3 from hake (Merluccius) and L4 from striped dolphin (Stenella
coeruleoalba). All used larvae were taxonomically identified using
conventional PCR to amplify the ITS region and Cox2 gene as
described before by Levsen et al. (2018). Eight samples of L3 larvae
(24 larvae in total) and four samples of L4 larvae (8 larvae in total) were
preserved in −80°C until the time of next step of the analysis.

2.2 Samples preparation

Samples were thawed and add with 800 μL of 80% methanol.
Then all samples were extracted at 4°C with ultrasound for 30 min,
kept at −40°C for 1 h. After that, samples were vortexed for 30 s, and
centrifuged at 12,000 rpm and 4°C for 15 min. Finally, 200 μL of
supernatant and 5 μL of DL-o-chlorophenylalanine (140 μg/ml) was
transferred to vial for LC-MS/MS analysis. Quality control (QC)
samples were used to evaluate the methodology. The same amount
of extract was obtained from each sample and mixed as QC samples.
The QC samples (3 in total) were prepared using the same sample
preparation procedure.

2.3 UPLC-TOF-MS/MS

The separation of compounds was performed by ultra-performance
liquid chromatography coupled with tandem mass spectrometry using
Ultimate 3000LC combined with Q Exactive MS (Thermo Fisher
Scientific, Waltham, MA, United States) in both polarities (ESI −/+).
The LC system was comprised of a Hyper gold C18 column (100 ×
2.1 mm 1.9 μm) (Thermo Fisher Scientific, Waltham, MA,
United States). The mobile phase was composed of solvent A (0.1%
formic acid, 5% acetonitrile, HPLC-grade water) and solvent B (0.1%
formic acid, acetonitrile) with a gradient elution (0–1.5 min, 0%–20% B;
1.5–9.5 min, 20%–100% B; 9.5–14.5 min, 100% B; 14.5–14.6 min,
100%–0% B; 14.6–18.0 min, 0% B). The flow rate of the mobile
phase was 0.3 ml/min. The column temperature was maintained at
40°C, and the sample manager temperature was set at 4°C. Mass
spectrometry parameters in ESI+ and ESI- mode are listed as follows:
the sheath gas flow rate was set to 45 a. u. (arbitrary units), aux gas flow
rate to 15 a. u., and sweep gas flow rate to 1 a. u., capillary temperature
was 350°C, and probe heater temperature was 300°C. Electrospray
ionization source was set to 3.0 kV in ESI+ and 3.2 kV in ESI-.

2.4 Data processing and analysis

The raw LC-MS/MS data were acquired and aligned using the
Compound Discover (v. 3.0, Thermo Fisher Scientific, Waltham,
MA, United States) based on the m/z value and the retention time
(RT) of the ion signals. The spectral data were normalized, and auto
scaled before statistical analysis. The data was introduced into the
SIMCA-P software (version 14.1, Santorius, Goettingen, Germany)
for multivariate analysis. A Principal Components Analysis (PCA)
was first used as an unsupervised method for data visualization and
outlier identification (Yeshi et al., 2020). Supervised regression
modeling was performed on the data set by use of Partial Least
Squares Discriminant Analysis (PLS-DA). The quality of the models
was evaluated with the relevant R2 and Q2. The importance of each
ion in the PLS-DA was evaluated by variable importance in the
projection (VIP) score (Tambellini et al., 2013; Gao et al., 2016). The
VIP score positively reflects the metabolite’s influence on the
classification, and metabolites with VIP >1 were considered
important in the study.

The chemical structures and IDs for metabolites were identified
according to Human Metabolome Database (Wishart et al., 2012),
KEGG database (Kanehisa and Goto, 2000; Kanehisa et al., 2016),
PubChem Compound ID database (Kim et al., 2022) and
ChemSpider databse (https://www.chemspider.com/Default.aspx).
When necessary, further identification was performed through
comparisons of the retention times and MS/MS fragmentation
patterns in other databases: Metabolite and Chemical Entity
Database (METLIN) (Smith et al., 2005) or MassBank (https://
massbank.eu/MassBank/) (Salek et al., 2013).

The metabolites showing different concentrations among two
given groups (DMs) were filtered and confirmed by combining the
results of the multivariate analysis (VIP values >1.0) and the results
of univariate analyses: t-test (p-value ≤0.05) and fold-change (FC)
method (-1.5 # Log2FC # 1.5) for both ESI modes. Data were
visualized on volcano plots.

In multivariate analyses, the hierarchical clustering analysis
(HCA) with Euclidean measured distance, and the average
clustering algorithm was used to visualize the differences in the
concentration of each statistically significant metabolites between
groups in two different ESI modes. Subsequently, the metabolites
assignment to the compounds groups and pathway enrichment
analysis was performed using Metaboanalyst 5.0 (Xia et al., 2009;
Pang et al., 2021). The enrichment overview was based on the KEGG
database with Caenorhabditis elegans as a reference (Kanehisa and
Goto, 2000; Kanehisa et al., 2016).

Furthermore, the distribution of common and unique
metabolites identified in the two ESI modes was analyzed and
visualized using the Venn Diagrams tool (https://bioinformatics.
psb.ugent.be/webtools/Venn/).

3 Results

3.1 Metabolites identification and statistical
analysis

The QC samples were used to demonstrate the stability of the
LC-MS system. The QC samples run in positive and negative mode
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at regular intervals throughout the entire sequence. The ion features
of the QC samples were used to calculate the relative standard
deviation (RSD). The %RSD distribution for negative and positive
modes is presented in Supplementary Figures S1A, B, respectively;
an overwhelming majority of the RSD is less than 30%. The base
peak intensity (BPI) chromatograms of the QC samples in ESI−/+
modes are presented in Supplementary Figures S1C, D. The
normalization after alignment was also performed and the line
plot (Supplementary Figures S1E, F) was used to evaluate the
methodology. The X axis indicates the number of samples, the Y
axis indicates the 95% confidence interval. The line plot
demonstrated that the system is relatively stable during sample
analysis. Due to all of that, the analysis procedure was robust and
could be used for subsequent sample analysis.

To investigate the global metabolism variations, the PCA
analysis was used to analyze all observations acquired in both ion
modes. As show in PCA plot (Figures 1A, B), the QC samples were
successfully separated from the tested samples and clustered
together (QC, L3 and L4 developmental stages of A. simplex).
The parameters R2 and Q2 confirmed the validity of the PCA
model as follows: ESI- mode, R2X = 0.676, Q2 = 0.514; ESI +
mode, R2X = 0.661, Q2 = 0.499 (Figures 1A, B). To eliminate any
non-specific effects of the operative technique and confirm the
presence of DMs, the PLS-DA was performed. The PLS-DA
score scatter plots showed that there was significant separation

between the L3 developmental stage group and the
L4 developmental stage group in the ESI- and ESI + modes
(Figures 1C, D). The values of the cumulative R2 and Q2

parameters confirmed the validity of the PLS-DA model: ESI-
mode, R2X = 0.691, R2Y = 0.995, and Q2 = 0.987; ESI + mode,
R2X = 0.683, R2Y = 0.997, and Q2 = 0.990 (Figures 1C, D).
Additionally, the CV-ANOVA analysis assessing the reliability of
the PLS-DA model was performed (Supplementary Figure S2). The
p-value obtained for ESI- and ESI + modes was less than 0.05:
7.3415 × 10−6, and 3.998 × 10−6, respectively. The CV-score plots of
the samples in ESI- and ESI + modes showed, as well, clear
separation of the two analyzed groups with F factor = 77.64 and
91.61 for negative and positive ionization modes, respectively
(Supplementary Figures S2A, B). According to the permutation
test results, the PLS-DA model was proved to have good
robustness without over fitting (Supplementary Figures S2C, D).

As a result of LC-MS/MS analysis, we identified a total of 3603 and
3877 compounds (Supplementary Tables S1, 2) in ESI- and ESI+,
respectively. The peak intensities after normalization against QC
samples (Supplementary Tables S3, 4) were further processed and the
chemical structures and IDs for metabolites were identified
(Supplementary Tables S5, 6). In the ESI- we identified 172 different
compounds (Supplementary Table S5), when in ESI +, 186 metabolites
were found (Supplementary Table S6). It was checked whether the
identified compounds overlap and occur similarly in both used

FIGURE 1
The results of multivariate data analysis. The score scatter plots of PCA model (A, B) comparing LC-MS/MS metabolomic profiles for the L3 and
L4 developmental stages of A. simplex in negative and positive ionization mode (ESI−/+), respectively, and QC group. The score scatter plots of PLS-DA
model (C, D) comparing LC-MS/MSmetabolomic profiles for the L3 and L4 developmental stages of A. simplex in negative and positive ionization modes
(ESI−/+), respectively. The R2 and Q2 values are indicated in the figures.
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FIGURE 2
Visualization of statistically significant data results. Distribution of common and unique metabolites identified in the study between negative and
positives ionization modes (ESI−/+) (A). The metabolites IDs are listed in Supplementary Table S7. Distribution of common and unique metabolites for
each of A. simplex developmental stage (L3 and L4) identified in the study in negative and positives ionizationmodes and (ESI−/+) (B). Themetabolites IDs
are listed in Supplementary Table S10. Volcano plots of the untargeted metabolomics analysis in negative and positive ionization modes (ESI−/+),
respectively (C, D), of two developmental stages of A. simplex. The metabolites showing different concentrations among the given groups (DMs) were
filtered and confirmed by combining the results of the multivariate analysis (VIP values >1.0) and the results of univariate analyses (-1.5# Log2FC# 1.5 in
normalized ratios of L3 vs L4, p-value ≤0.05) for both ESImodes. Metabolitesmore enriched in the L3 stage are coloured in red, and in the L4 stage in blue.
The metabolites IDs with calculated p-values, FC and VIP are listed in Supplementary Tables S8, 9. Hierarchical clustering analysis of the two sample
groups (L3 and L4 stages of A. simplex) in negative (ESI-) and positive (ESI+) ionizationmodes, respectively (E, F). The HCA shows discrimination between
the samples groups and differential abundances of DMs in ESI- (E) and ESI+ (F). The scale bars represent the normalized intensity of metabolites, where
blue indicates a decrease/low and red an increase/high.
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TABLE 1 Metabolites of developmental stages of A. simplex (L3 and L4) identified in negative ionization mode (ESI-).

Hmdb ID Compound name Log2(FC) p-value Stage with increased concentration

HMDB0005807 Gallic acid 12.89 0.006171 L3

HMDB0000005 2-Ketobutyric acid 2.49 0.037232 L3

HMDB0011171 gamma-Glutamylleucine 7.89 0.002065 L3

HMDB0003355 5-Aminopentanoic acid 2.75 0.000237 L3

HMDB0000687 Leucine 2.34 8.59E-05 L3

HMDB0003339 Glutamic acid 3.82 0.006789 L3

HMDB0000696 L-Methionine 4.13 0.015656 L3

HMDB0028825 Glutamylmethionine 4.09 0.008103 L3

HMDB0029068 Threonylphenylalanine 3.91 0.030709 L3

HMDB0001488 Nicotinic acid 4.89 0.001914 L3

HMDB0000975 Trehalose 9.44 0.003788 L3

HMDB0028940 Leucyl-Tryptophan 7.83 0.006797 L3

HMDB0000719 Homoserine 5.91 0.019309 L3

HMDB0002068 Erucic acid 1.57 0.018429 L3

HMDB0000929 Tryptophan 1.66 0.042818 L3

HMDB0000152 Gentisic acid 6.95 0.009357 L3

HMDB0000517 L-Arginine 7.06 0.017952 L3

HMDB0000296 Uridine 5.79 0.005042 L3

HMDB0000759 Glycylleucine 6.95 0.01415 L3

HMDB0000866 N-Acetyl-L-tyrosine 3.20 0.000844 L3

HMDB0002404 Alpha-Hydroxyhippuric acid 7.71 0.004941 L3

HMDB0000623 Dodecanedioic acid -2.02 6.54E-11 L4

HMDB0036563 Valerenolic acid -3.48 3.07E-07 L4

HMDB0000947 Undecanoic acid -4.04 1.48E-09 L4

HMDB0001870 Benzoic acid -4.49 1.85E-10 L4

HMDB0001220 Prostaglandin E2 -4.08 1.46E-08 L4

HMDB0000139 Glyceric acid -3.62 6.09E-08 L4

HMDB0004679 8-HETE -3.19 7.36E-07 L4

HMDB0000857 Pimelic acid -3.45 6.7E-11 L4

HMDB0000792 Sebacic acid -3.02 1.44E-09 L4

HMDB0002685 Prostaglandin F1a -5.80 3.72E-09 L4

HMDB0000872 Tetradecanedioic acid -4.16 1.11E-11 L4

HMDB0000511 Capric acid -2.65 1.69E-08 L4

HMDB0000910 Tridecanoic acid -1.80 2.49E-06 L4

HMDB0000555 3-Methyladipic acid -5.32 5.45E-09 L4

HMDB0001858 p-Cresol -5.12 2.25E-07 L4

HMDB0004705 12,13-DHOME -5.92 6.92E-12 L4

HMDB0035919 Corchorifatty acid F -5.27 2.57E-07 L4

(Continued on following page)
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polarizationmodes (Figure 2A). Analysis showed that 94metabolites are
common for both ESI modes (Supplementary Table S6).

These data were further processed, and several filters were next
applied to obtain the final list of DMs among the given groups: a)
-1.5 # Log2FC # 1.5 in normalized ratios (L3 vs L4), b) t-test
(p-value ≤0.05), c) VIP >1.0. Afterwards, the significantly changed
metabolites between the two groups were filtered out and listed in
Supplementary Tables S8, 9. Statistical analysis showed that in ESI-
mode was 60 DMs, of which 21 were more detected in the L3 larvae
and 39 in the L4 stage of A. simplex (Supplementary Table S8).
Comparison of the individual developmental stages in ESI + mode
revealed, as well, a total of 60 DMs, however with 32 metabolites
more enriched in the L3 stage larvae and 28 metabolites more
enriched in the L4 stage (Supplementary Table S9). The distribution
of common and unique metabolites identified in the two ESI modes
specific for each developmental stage was also analyzed and
visualized with the use of Venn diagram (Figure 2B,
Supplementary Table S10). It was found that there are
11 common metabolites between the ESI −/+ modes for the
L3 stage (L-arginine, tryptophan, threonylphenylalanine,
homoserine, leucyl-tryptophan, glutamylmethionine, gamma-

glutamylleucine, glutamic acid, L-methionine, leucine, and
glycylleucine), and eight for the L4 stage (13-HOTE, LysoPE (18:
1 (9Z)/0:0), prostaglandin E2, N-lauroylglycine, glyceric acid,
LysoPE (16:0/0:0), p-cresol, and 19,20-DiHDPA) (Figure 2B,
Supplementary Table S10). The volcano plot representations of
DMs are shown in Figures 2C, D. Among the DMs more
enriched for L3 stage larvae, found in ESI-, we identified gallic
acid and trehalose, as those with the highest fold change. Moreover,
in the group of metabolites more enriched in L3 we found, e.g.,
nicotinic acid, leucine, tryptophan or gamma-glutamylleucine
(Figure 2C; Table 1). In the studied polarization (ESI-), such
compounds as pimelic acid, sebacic acid, benzoic acid, or
prostaglandins E1, E2, F1a were found in increased concentration
in L4 larvae compared to L3 (Figure 2C; Table 1). The analysis of the
A. simplexmetabolome in ESI + mode showed higher concentration
in L3 compared to L4 of such metabolites as: glutamylmethionine,
serine, piperidine or 3-hydroxyanthranilic acid (Figure 2D; Table 2).
Moreover, in ESI + mode, increased amounts of e.g., pyridoxine, psi-
pelletierine, styrene, citrulline or N-laurolylglicine were observed in
L4 larvae in relation to the L3 stage (Figure 2D; Table 2). The HCA
was used to visualize the differences in the concentration of each

TABLE 1 (Continued) Metabolites of developmental stages of A. simplex (L3 and L4) identified in negative ionization mode (ESI-).

Hmdb ID Compound name Log2(FC) p-value Stage with increased concentration

HMDB0031230 2-Ethylhexanoic acid -2.68 3.15E-10 L4

HMDB0061743 Perfluoroundecanoic acid -7.47 1.57E-07 L4

HMDB0000707 4-Hydroxyphenylpyruvic acid -5.13 1.72E-06 L4

HMDB0000672 Hexadecanedioic acid -5.04 9.47E-07 L4

HMDB0005076 13,14-Dihydro PGF-1a -3.81 1.99E-05 L4

HMDB0000764 Hydrocinnamic acid -7.18 2.19E-06 L4

HMDB0013272 N-Lauroylglycine -5.52 5.22E-06 L4

HMDB0000893 Suberic acid -2.34 4.47E-07 L4

HMDB0061738 Perfluorodecanoic acid -5.24 1.37E-05 L4

HMDB0000638 Dodecanoic acid -1.57 5.55E-05 L4

HMDB0001852 Retinoic acid -3.79 5.68E-05 L4

HMDB0001442 Prostaglandin E1 -5.82 4.8E-05 L4

HMDB0010203 13-HOTE -2.43 1.23E-05 L4

HMDB0000391 7-Ketodeoxycholic acid -3.60 3.35E-07 L4

HMDB0010214 19,20-DiHDPA -3.57 0.000744 L4

HMDB0032797 Jasmonic acid -4.26 0.000464 L4

HMDB0001844 Methylsuccinic acid -2.58 2.97E-05 L4

HMDB0011503 LysoPE (16:0/0:0) -2.41 0.00034 L4

HMDB0006940 9(S)-HPODE -3.73 0.000702 L4

HMDB0000422 2-Methylglutaric acid -2.04 0.004432 L4

HMDB0011506 LysoPE (18:1 (9Z)/0:0) -1.92 0.007341 L4

HMDB0005862 2-Methylguanosine -6.42 0.005289 L4
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TABLE 2 Metabolites of developmental stages of A. simplex (L3 and L4) identified in positive ionization mode (ESI+).

Hmdb ID Compound name Log2(FC) p-value Stage with increased concentration

HMDB0094701 N-Acetylproline 1.83 0.00030629 L3

HMDB0000687 Leucine 1.54 0.00000855 L3

HMDB0000696 L-Methionine 3.15 0.00101515 L3

HMDB0033304 Gerberinol 8.29 0.00002015 L3

HMDB0034301 Piperidine 3.30 0.00000038 L3

HMDB0003339 Glutamic acid 4.44 0.00003730 L3

HMDB0000517 L-Arginine 6.49 0.00234735 L3

HMDB0000267 Pyroglutamic acid 3.99 0.00000169 L3

HMDB0000156 Malic acid 4.08 0.00004064 L3

HMDB0000719 Homoserine 3.45 0.00000530 L3

HMDB0011171 gamma-Glutamylleucine 7.88 0.00005651 L3

HMDB0001476 3-Hydroxyanthranilic acid 9.26 0.00039118 L3

HMDB0028825 Glutamylmethionine 10.15 0.00000120 L3

HMDB0001138 N-Acetyl-L-glutamic acid 3.46 0.00024656 L3

HMDB0000929 Tryptophan 1.54 0.04665395 L3

HMDB0000734 Indoleacrylic acid 1.54 0.04653269 L3

HMDB0028940 Leucyl-Tryptophan 3.98 0.01189554 L3

HMDB0000187 Serine 2.82 0.00000020 L3

HMDB0001325 N6,N6,N6-Trimethyl-L-lysine 1.65 0.04833034 L3

HMDB0000228 Phenol 4.01 0.00001597 L3

HMDB0001250 N-Acetylarylamine 3.62 0.00001107 L3

HMDB0001199 N2-Succinyl-L-ornithine 4.57 0.00169112 L3

HMDB0000026 Ureidopropionic acid 4.39 0.00000215 L3

HMDB0000205 Phenylpyruvic acid 4.34 0.00002708 L3

HMDB0000759 Glycylleucine 6.35 0.00550864 L3

HMDB0011756 N-Acetylleucine 3.67 0.01260170 L3

HMDB0013122 LysoPC(P-18:0/0:0) 1.66 0.00040691 L3

HMDB0000158 L-Tyrosine 4.24 0.00007212 L3

HMDB0000214 Ornithine 1.67 0.01629332 L3

HMDB0003447 Tryptophol 1.98 0.00949214 L3

HMDB0029068 Threonylphenylalanine 5.87 0.01050157 L3

HMDB0000706 Aspartylphenylalanine 4.02 0.00026174 L3

HMDB0062769 Epsilon-caprolactam -1.75 0.00005150 L4

HMDB0034580 psi-Pelletierine -4.81 0.00000000 L4

HMDB0000239 Pyridoxine -6.08 0.00000000 L4

HMDB0010214 19,20-DiHDPA -6.02 0.00000035 L4

HMDB0034240 Styrene -6.16 0.00000001 L4

HMDB0001858 p-Cresol -4.65 0.00000152 L4

(Continued on following page)
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statistically significant metabolite between L3 and L4 developmental
stages of A. simplex in two different ESI modes (Figures 2E,F). An
overview on the DMs concentrations from all samples can be
observed and clear clustering and grouping trend between L3 and
L4 developmental stages of A. simplex is showed.

3.2 Metabolite classes and enriched
pathways

The DMs identified in ESI- and ESI+ (60 in each mode) were
assigned to different metabolite classes/groups (Supplementary Tables
S11, 12). The highest number of metabolites identified in ESI- mode
were categorized into the fatty acyls (e.g., prostaglandin E2,
prostaglandin E1, prostaglandin F1a, 8-HETE, 13-HOTE), organic
acids (e.g., sebacic acid, pimelic acid, suberic acid, methylsuccinic
acid), and benzenoids (p-cresol, benzoic acid, alpha-hydroxyhippuric
acid) (Figure 3A, Supplementary Table S11). Of 60 DMs identified in
ESI + mode, 23 of them were organic acids (e.g., ureidopropionic acid,
citric acid, L-malic acid), nine were organoheterocyclic compounds
(dihydrothymine, indoleacetic acid, pyridoxine, serotonin,
pyroglutamic acid, indoleacrylic acid, nicotinic acid, tryptophanol,

piperidine), 10 were fatty acyls and benzenoids, and four were
glycerophospholipids (e.g., LysoPC(18:3 (9Z,12Z, 15Z)); LysoPE (16:
0/0:0); LysoPE (18:1 (9Z)/0:0); LysoPC(P-18:0)) (Figure 3B,
Supplementary Table S12).

Based on the DMs identified in both developmental stages of A.
simplex in ESI−/+ ionization modes, the metabolic pathways were
mapped, and enrichment analysis was performed (p-value ≤0.05)
(Figures 3C, D; Supplementary Tables S13, 14). In negative
ionization mode (ESI-) the highest number of identified DMs were
products of ubiquinone and other terpenoid-quinone biosynthesis
(KEGG 00130), followed by phenylalanine, tyrosine and tryptophan
biosynthesis (KEGG 00400), fatty acid biosynthesis (KEGG 00061),
valine, leucine and isoleucine biosynthesis and degradation (KEGG
00290, 00280), tyrosine metabolism (KEGG 00350), starch and sucrose
metabolism (KEGG 00500), and nicotinate and nicotinamide
metabolism (KEGG 00760) (Kanehisa and Goto, 2000; Kanehisa
et al., 2016). Mapping and enrichment analysis of pathways for
identified DMs in positive ionization mode (ESI+) against known
pathways in KEGG database, showed that highest number of DMs
were products of lysine degradation (KEGG 00310), and nicotinate and
nicotinamide metabolism (KEGG 00760) (Kanehisa and Goto, 2000;
Kanehisa et al., 2016).

TABLE 2 (Continued) Metabolites of developmental stages of A. simplex (L3 and L4) identified in positive ionization mode (ESI+).

Hmdb ID Compound name Log2(FC) p-value Stage with increased concentration

HMDB0002005 Methionine sulfoxide -2.09 0.00000794 L4

HMDB0000904 Citrulline -8.60 0.00000631 L4

HMDB0001370 Diaminopimelic acid -5.33 0.00001148 L4

HMDB0013272 N-Lauroylglycine -6.24 0.00002255 L4

HMDB0001220 Prostaglandin E2 -2.08 0.00126021 L4

HMDB0010203 13-HOTE -2.81 0.00028251 L4

HMDB0001256 Spermine -1.78 0.00031453 L4

HMDB0005809 Eugenol -5.61 0.00004089 L4

HMDB0004667 13-HODE -4.48 0.00006656 L4

HMDB0000197 Indoleacetic acid -2.55 0.00021292 L4

HMDB0004483 Estrone glucuronide -5.38 0.00022515 L4

HMDB0010388 LysoPC(18:3 (9Z,12Z,15Z)/0:0) -4.60 0.00028059 L4

HMDB0000139 Glyceric acid -1.52 0.00197458 L4

HMDB0000259 Serotonin -3.90 0.00062622 L4

HMDB0000079 Dihydrothymine -3.39 0.00033464 L4

HMDB0001488 Nicotinic acid -1.97 0.00014390 L4

HMDB0000094 Citric acid -2.22 0.00019260 L4

HMDB0000501 7-Ketocholesterol -1.89 0.00398334 L4

HMDB0011503 LysoPE (16:0/0:0) -1.80 0.00059878 L4

HMDB0000208 Oxoglutaric acid -2.08 0.00040543 L4

HMDB0011506 LysoPE (18:1 (9Z)/0:0) -2.11 0.00499579 L4

HMDB0015109 Edetic Acid -1.75 0.00130870 L4
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4 Discussion

One of the most recent additions to the Caenorhabditis elegans
toolbox is metabolomics and lipidomics, which allow new and
deeper investigations of nematode metabolism. Combining a
genetically defensible model organism such as C. elegans with the
functional evaluation of metabolomics and/or lipidomics holds great
promise for expanding our knowledge of metabolism and metabolic
regulation (Salzer and Witting, 2021). While there are numerous
published studies on the genomes (Mattiucci et al., 2016; Coghlan
et al., 2019; Łopieńska-Biernat et al., 2019), transcriptomes
(Cavallero et al., 2018; Kim et al., 2018; Llorens et al., 2018;
Łopieńska-Biernat et al., 2018; Cavallero et al., 2020), and
proteomes (Stryiński et al., 2019; Stryiński et al., 2022; Polak
et al., 2020; Mierzejewski et al., 2021; Kochanowski et al., 2022)
of A. simplex, less attention has been paid to its metabolome.
Metabolic changes between L3 and L4 larval stages of A. simplex
have been studied previously, however in a narrow range, e.g., of one
metabolic pathway (Łopieńska-Biernat et al., 2008; Łopieńska-
Biernat et al., 2018; Łopieńska-Biernat et al., 2019), and almost
nothing is known about the complement of an intermediate or end
product of metabolism in Anisakis nematodes, especially in the
stages found in humans (L3 and L4).

In the first stage of infection the larvae are invading the host
intestinal tissues and establishing in the gastrointestinal tract of
the host. Such tissue migration requires larvae to adapt to
constantly changing external environments, in terms of
temperature, oxygen supply, redox potential and host
immune reactions (Huang et al., 2020; Yeshi et al., 2020). In
this metabolomic study, we observed substantial differences in
the composition and abundance of trehalose, nicotinic acid,
prostaglandins, and acyl acids, likely associated with key
biological functions, including energy metabolism and
nicotinate and nicotinamide metabolism during the parasite’s
growth and development. Alterations in metabolomic profiles
are likely reflected in the adaptation of A. simplex nematode to
changing environments within the host (poikilotherm and
homeotherm organisms). Nevertheless, comparative analyses
of levels of metabolites in the L3 and L4 of these two larval
stages led to the identification of groups of molecules with
putative roles in mechanisms of parasite pathogenicity.

Our results revealed that specific to L3 are nicotinic acid and
branched-chain and aromatic amino acids (BCAA). The recent
metabolomics studies showed that BCAA are positively related to
longevity common to Dauer in C. elegans and Haemonhus contortus
during mitochondrial biogenesis in ensheathment eggs (Palevich

FIGURE 3
Metabolite classes and enriched pathways. Distribution of DMs by different metabolite classes identified in negative and positive ionization modes,
respectively (A, B). The metabolites names assigned to different classes are listed in Supplementary Tables S11, 12. Dot plots of pathway enrichment
analysis of DMs identified in negative and positive ionization modes, respectively (C, D). The scale bars represent p-value and enrichment ratio. The
pathways names with calculated p-value are listed in Supplementary Tables S13, 14.
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et al., 2022). In this study, BCAA were only identified in L3 stage,
which like a Dauer stage, uses endogenous energy sources.
Starvation-induced stress may invoke a series of regulations of
metabolic pathways (Fuchs et al., 2010; Łopieńska-Biernat et al.,
2019). In this study, some pathways, including fatty acid
metabolism, nicotinate/nicotinamide metabolism, terpenoid
backbone biosynthesis were only identified in L3 stage.

Fatty acids serve as energy storage and structural components in
biomembranes. The main chemical composition of the cuticular
lipids in A. simplex from Atlantic cod (Godus morhua) was
recognized as three fatty acids, 15 triacylglycerols, five sterols and
12 sphingolipids (Mika et al., 2010) what is consisted with our
current results. Moreover, we have identified fatty acyls and
glycerophospholipids in L4 stage larvae.

Terpenoids are the precursor in the production of steroids and
sterols. Therefore, the constant activity of the terpenoid backbone
biosynthesis pathway is important for the regulation of steroids
metabolism, as they regulate a variety of developmental and
biological processes (molting, larval development, and innate
immunity) (Hernández-Bello et al., 2011). The ubiquinone/
terpenoid quinone biosynthesis (energy metabolism) involved in
biosynthesis of other secondary metabolites, and metabolism of
cofactors (nicotinate/nicotinamide metabolism) and vitamins is
specific to two larval stages. Based on current results and
previous studies, energy metabolism of A. simplex is based on
carbohydrates metabolism, where L3 larvae is metabolizing
trehalose, and L4 larvae glycogen (Łopieńska-Biernat et al., 2006,
Łopieńska-Biernat et al., 2007; Łopieńska-Biernat et al., 2008;
Łopieńska-Biernat et al., 2018; Łopieńska-Biernat et al., 2019).
However, based on the current results we can suppose that
L4 larvae energy metabolism is also related to fatty acids (Ma
et al., 2019). This could be an adaptation due to different host
environments and usage of energy sources.

In addition, we have identified significant amounts of the
prostaglandin PGE2 in L4 larvae of A. simplex, which helps
larvae successfully migrate into their host and acts as a
mediator of host immunity. These molecules mediate and have
an immunosuppressive effect on T cells (Tebbey and Buttke, 1990).
Genes of the prostaglandin synthesis cascade (Fitzpatrick, 2004),
including cyclooxygenase (WormBase ParaSite ASIM_
0001219401), alpha-tubulin N-acetyltransferaseare (WormBase
ParaSite ASIM_0001506401), and phospholipase A2
(WormBase ParaSite ASIM_0001246201) are present in the
genome of the nematode studied (Coghlan et al., 2019),
demonstrating that A. simplex larvae can synthesize
prostaglandins. Moreover, studies on Trichuris suis may provide
insight into the mechanisms by which the worm suppresses
inflammatory host responses, with one active component
identified as prostaglandin PGE2 (Laan et al., 2017).

Lipidome analysis of Schistosoma mansoni has detected
eicosanoids, signaling molecules made by the enzymatic or non-
enzymatic oxidation of polyunsaturated fatty acids, that promote a
Th2 response (Shepherd et al., 2015;Whitman et al., 2021). Metabolites
analysis in this study specific to L4 stage also revealed eicosanoids.
However, studies show that some helminth-derived small molecules
have distinct immunomodulatory components, suggesting that further
studies are needed at this host-pathogen interface (Shepherd et al., 2015;
Whitman et al., 2021).

Our metabolomics study showed that A. simplex induced
metabolic changes in a variety of metabolic pathways in both
larval stages, including amino acid metabolism, phospholipid
metabolism, energy metabolism, nicotinate/nicotinamide
metabolism and ubiquinone/terpenoid quinone biosynthesis. In
addition, several stage-specific metabolites were identified,
providing potential clues for understanding the molecular
mechanisms of this parasite biology: its pathogenicity and
adaptation to the host environment.

By undertaking the first small-scale analysis of the metabolome
molecules present in the L3 and L4 of A. simplex that are putatively
involved in the host environment, we provide here a ready-to-use
molecular groundwork for in-depth studies of the biological
pathways specifically involved in parasite growth and
development. Further studies under experimental, controlled
in vitro conditions, as well as between other developmental stages
of the life cycle, are needed to reliably assess the role of these
molecules in the pathogenesis of anisakiasis. A snapshot of the
metabolic status in specific age of the larvae and/or tissues of larval
stages of A. simplex could provide new information on the
expression of target metabolites potentially involved in host
invasion. Furthermore, 13C flux experiments can provide
adequate information on the route of formation of key metabolites.

Gastrointestinal nematodes strategy mediated through the
carbohydrates and lipid metabolites and employed for the
manipulation of the host immune response towards successful
propagation and parasitism, opens a wide perspective that should
be compounded by the contemporary use of multi-omics
approaches.
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and the bovine preovulatory
follicular fluid metabolome

Abigayle B. Pollock1, Sarah E. Moorey1*, Emma A. Hessock1,
Jessica L. Klabnik1†, Rebecca R. Payton1, F. Neal Schrick1,
Shawn R. Campagna2 and J. Lannett Edwards1*

1Department of Animal Science, The University of Tennessee Institute of Agriculture and AgResearch,
Knoxville, TN, United States, 2Department of Chemistry, University of Tennessee Knoxville, Knoxville,
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Introduction: A higher estrus-associated temperature (HEAT) is a hallmark

feature in sexually active females; however, its functional importance is

unclear. Our objective was to examine the relationship between HEAT and the

preovulatory follicular fluid metabolome. It was hypothesized that HEAT is

functionally important as it affects fertility-related components in the

preovulatory follicle.

Methods: Estrus was synchronized in non-lactating Jersey cows. A

Thermochron iButton temperature data logger was affixed to blank controlled

internal drug release (CIDR) devices and intravaginally inserted after CIDR device

removal. The follicular fluid was aspirated 14.9 h + 3.3 h after an animal first stood

to bemounted. Regressionmodels were performed usingmetabolite abundance

and HEAT variables. Best-fit models were determined using backward manual

selection (p < 0.05).

Results: A total of 86 metabolites were identified in cow follicular fluid samples.

The vaginal temperature at first mount and when it was expressed as a change

from baseline was positively related to the abundance of four metabolites (i.e.,

taurine, sn-glycerol 3-phosphate, glycine, and cysteine) and negatively related to

one metabolite (i.e., serine). The vaginal temperature at the first standing mount

was related to the differential abundance of two metabolites (i.e., jasmonate and

N-carbamoyl-L-aspartate). Three metabolites were related to the maximum

vaginal temperature ( i .e . , N-carbamoyl-L-aspartate, uraci l , and

glycodeoxycholate). When expressed as a change from baseline, the maximum

vaginal temperature was related to the differential abundances of uracil, uric acid,

and 6-phospho-D-gluconate. The time taken to reach maximum vaginal

temperature was related to N-carbamoyl-L-aspartate, glycodeoxycholate,

jasmonate, and tricarballylic acid. Pertaining to the combination of HEAT and its

duration, the area under the curve associated with the time between the first

increase in vaginal temperature and themaximum vaginal temperature was related

to 6-phospho-D-gluconate, sulfolactate, guanidoacetic acid, and aspartate. The

area under the curve associated with the time between the initial vaginal

temperature increase and up to 10 h after a cow first stood to be mounted or
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when a cow’s temperature returned to baseline was related to the differential

abundances of uracil, sn-glycerol 3-phosphate, methionine sulfoxide, and

taurodeoxycholate.

Discussion: Our findings support the notion that HEAT is related to changes in

the preovulatory follicular fluid metabolites involved in energy metabolism,

thermoregulation, and oxidative stress management.
KEYWORDS

estrus, vaginal temperature, HEAT, metabolome, follicular fluid, preovulatory
follicle, bovine
1 Introduction

Although the basis of fertility in cattle is multifaceted, events

occurring at or around estrus are essential for reproductive success.

Estrus signifies the major endocrine transition in which the

preovulatory follicle prepares for ovulation. To this end, the

estradiol-induced gonadotropin-releasing hormone (GnRH)—

luteinizing hormone (LH) surge (Stumpf et al., 1991) sets the stage

for ovulation 24 h to 30 h thereafter (Malhi et al., 2005; Saumande and

Humblot, 2005; Ginther et al., 2013). The mural granulosa undergoes

luteinization (i.e., the beginnings of corpus luteum formation) and the

oocyte contained within the preovulatory follicle undergoes meiotic

resumption and progression to metaphase II (Smith et al., 1994;

Duggavathi and Murphy, 2009).

Increasing estradiol levels during the follicular phase of the estrous

cycle underlie much of the behavioral changes leading up to and during

estrus (Lyimo et al., 2000). Female cattle approaching estrus become

restless, may walk up to four times more than those not exhibiting

estrus, and interact with others forming sexually active groups (Kiddy,

1977; Diskin and Sreenan, 2000; Sveberg et al., 2013). Other secondary

signs of estrus activity include, but are not limited to, chin-resting, head

butting, and vulva sniffing (Kerbrat and Disenhaus, 2004). The most

definitive sign of estrus, however, is the willingness of a female to stand

to be mounted by another cow. Interestingly, several studies report a

positive relationship between the level of activity in an estrual female

and the probability of pregnancy outcome (López-Gatius et al., 2005;

Madureira et al., 2015; Madureira et al., 2019; Tippenhauer et al., 2023).

Increased body temperature is another hallmark feature of

estrus-active females, even under thermoneutral environmental

conditions (Piccione et al., 2003; Sakatani et al., 2016). Higher

estrus-associated temperatures (HEAT) may range from 0.3°C to

1.3°C or greater above the baseline (Redden et al., 1993; Kyle et al.,

1998; Piccione et al., 2003; Fisher et al., 2008; Suthar et al., 2011;

Randi et al., 2018). An estrus-related increase in body temperature

is short in duration (5 h to 18 h; Redden et al., 1993; Kyle et al., 1998;

Sakatani et al., 2016); it typically occurs around the LH surge and

persists for several hours thereafter (Fisher et al., 2008; Miura et al.,
02109
2017). In addition to being an informative indicator of estrus

(Redden et al., 1993; Sakatani et al., 2016), varying levels of

HEAT may be functionally relevant.

In support of HEAT’s functional impact on fertility important

events specific to the cumulus–oocyte complex, an acute, but short

episode of exposure at 41°C for 4 h to 6 h in vitro, induces germinal

vesicle breakdown earlier than in thermoneutral controls (Edwards

et al., 2005; Hooper et al., 2015) without compromising embryo

development after fertilization (Rowinski et al., 2021). In terms of

impacts on other preovulatory follicle components, two transcripts

(i.e., calreticulin and serpin family F member 2) in granulosa cells

have been shown by others to potentiate ovulation (Tsafriri et al.,

1989; Tokuhiro et al., 2015). These transcripts were upregulated by

vary ing degrees o f hyper thermia occurr ing a f t e r a

pharmacologically induced LH surge (Klabnik et al., 2022).

Calreticulin can enhance the binding of bradykinin to its receptor

(reviewed in Bedard et al., 2005). Interestingly, higher bradykinin

levels were noted in the preovulatory follicular fluid of the same

cows exhibiting varying levels of hyperthermia, from which the

granulosa samples (Klabnik et al., 2022) were collected (Rispoli

et al., 2019). Bradykinin has been shown to potentiate follicular

rupture in other species (Yoshimura et al., 1988; Hellberg

et al., 1991).

Follicular fluid provides the necessary substrates for follicle

growth and progression, oocyte developmental competence, and

subsequent embryo viability (Leroy et al., 2011; Sirard, 2011). The

differences in follicular fluid metabolome profiles have recently

been associated with fertility, follicle maturity, or follicle

progression after the onset of estrus (Read et al., 2021; Read et al.,

2022; Hessock et al., 2023). Although changes in milk, serum, and

urine metabolome profiles have been noted in cattle experiencing

elevated body temperature resulting from chronic heat stress (Liao

et al., 2018; Yue et al., 2020), it remains unclear whether an acute

episode of HEAT is associated with changes in the follicular fluid

metabolome of the preovulatory follicle. Thus, the objective of this

study was to examine the relationship between HEAT and the

preovulatory follicular fluid metabolome.
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2 Materials and methods

2.1 Animals and synchronization protocol

Animal use during this study occurred during the month of May.

Institutional animal care and use approval at the University of

Tennessee, Knoxville, TN, USA, was obtained before the onset of

this study. Non-lactating Jersey cows located at a University of

Tennessee AgResearch and Education Center grazed the same

fescue-based pasture and were provided ad libitum access to

minerals (Burkmann Nutrition; Danville, KY, USA). Cows ranged in

age from 2.5 years to 7.7 years (5.1 years ± 1.4 years), weighed between

365.6 kg and 585.1 kg (508.3 kg ± 61.6 kg), and had a body condition

score ranging from 2.5 to 3.5 (3.1 ± 0.4). Toward the synchronization of

a first wave dominant–preovulatory follicle (Figure 1), GnRH was

administered (Cystorelin®; 100 µg; i.m.; Boehringer Ingelheim;

Ingelheim am Rhein, Germany) and a controlled internal drug

release (CIDR) device was placed intravaginally (1.38 g progesterone;

Eazi-Breed CIDR; Zoetis Animal Health, Kalamazoo, MI, USA). Nine

days later, the CIDR device was removed and prostaglandin F2a
(PGF2a; 12.5 mg of dinoprost tromethamine/mL Lutalyse®
HighCon; Zoetis Animal Health, Kalamazoo, MI, USA) was

administered. GnRH was administered 48 hours after PGF2a (when

progesterone levels were < 1 ng/mL; Supplementary Figure 1) and a

new CIDR device was inserted. PGF2a was administered 7 days later,

after CIDR device removal. The cattle were visually monitored for

behavioral signs of estrus; this took place every 4 h after PGF2a
administration and continued until a cow displayed estrus activity (~

31 h after PGF2a). Thereafter, cows were continually monitored by a

team of individuals trained in the visual observation of estrus activity.

The onset of estrus was defined as the first time a cow was observed to

stand to be mounted by another. Of the 16 cows used for this study, 14

exhibited estrus (87.5%).
Frontiers in Animal Science 03110
2.2 Vaginal and ambient temperature data

Cows’ vaginal temperature was recorded using a Thermochron

iButton™ 1922L data logger (Embedded Data Systems,

Lawrenceburg, KY, USA) affixed to a blank CIDR device (i.e.,

containing no progesterone) consistent with the method

described by Burdick et al. (2012). Cows’ vaginal temperature was

recorded every 3 min (0.5°C resolution), beginning 12 h after PGF2a
administration and continuing until iButton removal, which

occurred immediately before preovulatory follicle aspiration.

During the time when estrus expression was induced, the ambient

temperature and humidity were recorded onsite (hourly) using the

HOBO U23 Pro v2 data logger (Onset Computer Corporation,

Bourne, MA, USA). Data for the ambient temperature and

humidity from the start of the pre-synchronization protocol to

PGF2a administration to induce estrus were collected at a local

meteorological station and averaged every 2 h. The temperature

humidity index (THI) was calculated in accordance with the

method described by Abbott et al. (2018).
2.3 Ovarian ultrasound and follicular
fluid aspiration

The largest follicle diameter (> 7 mm) was recorded at GnRH,

PGF2a, first mount, and follicle aspiration using an IBEX EVO® II

ultrasound and eL7 linear probe (E.I. Medical Imaging, Loveland,

CO, USA; Figure 1). The neat follicular fluid was successfully

collected from the preovulatory follicles of 13 out of the 14 estrus

cows through ultrasound-guided transvaginal aspiration (18-g

needle; Rispoli et al., 2019; Hessock et al., 2023) using a Samsung

HM70A ultrasound and CFA-9 convex probe 14.9 h± 3.3 h after a

cow was first observed to stand to be mounted by another cow.
FIGURE 1

Study schematic depicting synchronization scheme and data collected at each of the different time points relative to when follicle aspiration
occurred. GnRH, gonadotropin-releasing hormone; CIDR, controlled internal drug release; PGF2a, prostaglandin F2a; E2, estradiol; P4, progesterone;
FF, follicular fluid.
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2.4 Serum and follicular fluid
hormone assays

The blood samples were collected from the coccygeal vein/

artery (Figure 1) and processed in accordance with Hessock et al.

(2023) . Serum estradiol (E2) was evaluated using a

radioimmunoassay (Kirby et al., 1997), with intra- and inter-assay

coefficients of variation (CVs) of 3.6% and 6.7%, respectively. The

sensitivity of the serum estradiol assay was 1.03 pg/mL. The

follicular fluid E2 was analyzed using the DetectX® Serum 17b-
Estradiol ELISA Kit (Arbor Assays, Ann Arbor, MI, USA; the

sensitivity was 2.21 pg/mL). The intra- and inter-assay CVs for

the follicular fluid E2 were 1.7% and 7.3%, respectively. The serum

and follicular fluid progesterone (P4) concentrations were measured

using ImmuChem™Double Antibody Radioimmunoassay Kit (MP

Biomedicals, LLC, Orangeburg, NY, USA). The intra- and inter-

assay CVs for serum P4 were 8.0% and 4.2%, respectively; whereas

the follicular fluid progesterone intra- and inter-assay CVs were

4.4% and 5.7%, respectively. The sensitivity of the progesterone

assays was 0.11 ng/mL.
2.5 HEAT data—pertinent variables
of interest

Vaginal temperature, recorded every 3 min, was averaged every

30 min. The HEAT variables of interest are defined in Table 1 and

highlighted in Figure 2. A baseline temperature was calculated for

each cow. The baseline temperature was defined as the average

vaginal temperature of those recorded between the first

temperature, which was taken 12 h after PGF2a, and those

recorded over the next 20 h. An increase in vaginal temperature

related to HEAT was defined as the first time when the vaginal
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temperature was 0.3°C higher than baseline, with the increase

persisting for 3 h or more (Clapper et al., 1990). Cow vaginal

temperature when first observed to stand to be mounted by another

cow was noted as first mount. The maximum HEAT vaginal

temperature was denoted as VTmax. Both the first mount and

VTmax temperature, when expressed as a change from baseline,

were also considered. The time to VTmax was the number of hours

from the first mount to VTmax. The area under the different

portions of the HEAT curves (AUC1: time when vaginal

temperature first increased to Vmax; AUC2: time when the

vaginal temperature first increased up to 10 h after estrus onset

or when the vaginal temperature returned to baseline) was

calculated for each cow, in accordance with Pruessner et al.

(2003), using the trapezoid formula with the baseline temperature

as a lower limit.
2.6 Metabolome profiling of follicular fluid

Ultra-high-performance liquid chromatography–high

resolution mass spectrometry (UHPLC-HRMS) was performed at

the University of Tennessee Knoxville Biological and Small

Molecule Mass Spectrometry Core Facility [Research Resource

Identifier (RRID):SCR_021368], as previously described by Horn

et al. (2022). In brief, metabolites were extracted from 50 µL of each

follicular fluid sample (n = 13) with a solution of 20: 40: 40 water/

methanol/acetonitrile with 0.1 M formic acid. The metabolites were

then separated on a Synergi Hydro RP, 2.5 mm, 100 mm × 2.0 mm

column (Phenomenex, Torrance, CA, USA). The solvents for the

mobile phase to elute metabolites were (A) 97: 3 methanol to water

with 11 mM tributylamine and 15 mM acetic acid and (B) 100%

methanol. The solvent gradient from 0 min to 5 min was (A) 100%

and (B) 0%; from 5 min to 13 min, it was (A) 80% and (B) 20%;

from 13 min to 15.5 min, it was (A) 45% and (B) 55%; from
TABLE 1 Higher estrus-associated temperature (HEAT) variables of interest.

HEAT variables Definition Range Mean SEM

Baseline1 Average vaginal temperature of those recorded between the first temperature, which was taken 12 h after
PGF2a, and those recorded over the next 20 h

38.0°C to
38.8°C

38.4 0.05

First mount
Cow vaginal temperature when first observed to stand to be mounted by another cow

38.1°C to
39.1°C

38.6 0.1

Change (baseline to
first mount) Change in vaginal temperature: first mount minus the baseline

−0.5°C to
0.5°C

0.1 0.07

VTMax Maximum HEAT vaginal temperature
38.5°C to
40.1°C

39.3 0.1

Change (baseline to
VTMax) Change in vaginal temperature: VTMax minus the baseline

0.2°C to
1.5°C

0.8 0.1

Time to VTMax

Number of hours from first mount to VTMax

0.5 h to 6.0
h

3.0 0.7

AUC1 Area under the curve: time when vaginal temperature first increased* to VTMax 4.5 to 147.1 45.8 12.0

AUC2 Area under the curve: time when vaginal temperature first increased up to 10 h after estrus onset or when
vaginal temperature returned to baseline

53.8 to
209.9

127.9 11.6
frontie
1Data used to calculate the HEAT variables of interest but were not used as an independent variable in the statistical analysis.
*The time when the vaginal temperature increased was defined as the first time when the vaginal temperature was 0.3°C higher than the baseline temperature, with this increased temperature
observed for 3 or more hours thereafter (Clapper et al., 1990).
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15.5 min to19 min, it was (A) 5% and (B) 95%; and from 19 min to

25 min, it was (A) 100% and (B) 0%, with a flow rate of 0.2 mL per

min. The mass spectrometry was performed using an Exactive™

Plus Orbitrap™ mass spectrometer (Thermo Fisher Scientific,

Waltham, MA, USA) fitted with an electrospray ionization probe

operating in negative mode. The scan range was 72000 m/z to 1,000

m/z, with a resolution of 140,000 and an acquisition gain control of

3 × 106 (Greene et al., 2020).

The files generated by HRMS in the Xcalibur® (RAW) format

were converted to an open-source mzML format (msconvert;

ProteoWizard package) and then processed using the

Metabolomic Analysis and Visualization Engine (MAVEN; mzroll

software, Princeton University) for an untargeted analysis of the

full-scan LC-MS data. A group algorithm for non-linear retention

time alignment was used to pick peaks, integrate intensities, and

visualize extracted ion chromatograms. The metabolites were

identified based on peak shape, signal-to-noise ratio, and

retention time. The MAVEN preprocessed peak data were used

for further statistical analysis.
2.7 Statistical analyses

The analyses were conducted using R Studio (version

2023.3.0.386; RStudio Team 2020, Boston, MA, USA). Data were

checked for normality using the Shapiro–Wilk test and log-

transformed when necessary. The outliers identified using the

interquartile range (IQR) method were removed. Supplementary

Table 1 denotes the metabolites that were log-transformed or had

outliers removed for statistical analyses. To examine the

relationship between the different features of HEAT (independent
Frontiers in Animal Science 05112
variable of interest, e.g., VTMax and other HEAT variables defined

and listed in Table 1) with metabolite abundance (dependent

variable), hierarchical linear regression models were performed

using a backward stepwise approach to derive the best-fit models

for each metabolite. The cow and other related independent

variables used to derive the best-fit models were utilized as

covariates [i.e., variables that may affect response variables but

were not of direct interest in our study; these included cow age,

weight, body condition score (BCS), proestrus length, serum

estradiol and progesterone, follicular fluid E2-to-P4 ratio, follicle

size, and THI]. The covariates were included in the model only if

they were deemed significant in an initial simple linear regression (p

< 0.1). The final models included the HEAT variables of interest

(significant if p-value ≤ 0.05) and the covariates significant at a p-

value < 0.05.
3 Results

3.1 Proestrus length, follicle size, and
ambient conditions

The time from PGF2a to the first observed standing mount (i.e.,

proestrus length) was 43.1 h ± 8.4 h (range 31.1 h–63.9 h). The

preovulatory follicle size at aspiration was 16.2 mm ± 1.3 mm

(range 12.9 mm–18.5 mm). At the time of follicle aspiration, serum

progesterone and estradiol were 0.13 ng/mL ± 0.02 ng/mL (range

0.1 ng/mL–0.37 ng/mL) and 4.42 pg/mL ± 0.74 pg/mL (range 1.03

pg/mL–9.14 pg/mL), respectively. The ambient temperature,

relative humidity, and the THI from the start of the pre-

synchronization protocol through to the time of the final
FIGURE 2

Representative image of the different HEAT variables of interest used to examine the relationship between HEAT and the preovulatory follicular fluid
metabolome. The baseline is the average vaginal temperature of those recorded between the first temperature, which was taken 12 h after PGF2a,
and those recorded over the next 20 h, which was well before HEAT-related increases. A HEAT-related vaginal temperature increase was defined as
the time that the vaginal temperature was 0.3°C higher than the baseline, with this increased temperature observed for 3 or more hours thereafter
(Clapper et al., 1990). First mount: the vaginal temperature when the cow was first observed to stand to be mounted by another cow; △ baseline to
1M: the vaginal temperature at first mount minus the baseline; VTMax: the maximum HEAT vaginal temperature; △ baseline to VTMax: the maximum
vaginal temperature minus the baseline; time to VTMax: hours from first mount to VTMax; AUC1: area under the curve—time when the vaginal
temperature first increased to VTMax; AUC2: area under the curve—time when the vaginal temperature first increased up to 10 h after estrus onset or
when the vaginal temperature returned to the baseline; △=change; *AUC2 includes AUC1 area and remaining solid gray shaded area.
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follicular fluid aspiration are shown in Figure 3. The estrus-

associated vaginal temperature curves for each individual cow (n

= 13) are shown in Figure 4.
3.2 Preovulatory follicular fluid metabolites

Eighty-six metabolites were identified in the preovulatory

follicular fluid aspirates collected 14.9 h ± 3.3 h after the onset of

estrus (Supplementary Table 1). Identified metabolites primarily

included amino acids, glucose metabolism and tricarboxylic acid

(TCA) cycle derivatives, and nucleosides. The abundances of 17 out

of 86 metabolites (19.8%) were related to different aspects of HEAT.
3.3 Follicular fluid metabolites related
to HEAT

The vaginal temperature at first standing mount, when

expressed as a change from baseline, was associated with the

differential abundance of five metabolites. Four of the five

metabolites had a positive relationship with the vaginal

temperature change from baseline to first mount (i.e., taurine, sn-

glycerol 3-phosphate, glycine, and cysteine), and one metabolite,

serine, had a negative relationship (Figure 5; Supplementary

Table 2). The vaginal temperature at first standing mount was

related to the differential abundance of two metabolites. Jasmonate

was negatively related to it, and N-carbamoyl-L-aspartate was

positively related to it (Figure 6; Supplementary Table 3).

The abundances of three follicular fluidmetabolites at 14.9 h ± 3.3 h

after the onset of estrus were related toVTMax:N-carbamoyl-L-aspartate

was positively related to it, whereas uracil and glycodeoxycholate were

negatively related to it (Figure 7; Supplementary Table 4). When VTMax

was expressed as a change from baseline, uric acid and 6-phospho-D-

gluconate were positively related to it, whereas uracil was negatively

related to it (Figure 8; Supplementary Table 5).
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To examine the relationship between HEAT duration and the

preovulatory follicular fluid metabolome, time to VTMax was used as

an independent variable. Time to VTMax was positively associated

with the abundance of N-carbamoyl-L-aspartate but negatively

related to the abundances of glycodeoxycholate, jasmonate, and

tricarballylic acid (Figure 9; Supplementary Table 6).

Combining HEAT level with duration, AUC1 and AUC2 were

tested as independent variables of interest. Sulfolactate, 6-phospho-

D-gluconate, and aspartate levels were positively related to AUC1,

whereas guanidoacetic acid abundance was negatively related to

AUC1 (Figure 10; Supplementary Table 7). In contrast, AUC2 was

positively associated with the abundance of methionine sulfoxide,

taurodeoxycholate, and sn-glycerol 3-phosphate but negatively

related to uracil abundance (Figure 11; Supplementary Table 8).
3.4 Metabolites relating to multiple
HEAT variables

Of the 17 metabolites (35.3%) significantly related to different

aspects of HEAT, 6 were related to two or more HEAT variables

(Figure 12). Uracil and N-carbamoyl-L-aspartate were related to

three HEAT variables (uracil: VTMax, vaginal temperature change

from baseline to VTMax, and AUC2; N-carbamoyl-L-aspartate: first

mount, VTMax, and time to VTMax; Figure 12). The abundances of

jasmonate, glycodeoxycholate, 6-phospho-D-gluconate, and sn-

glycerol 3-phosphate were related to two HEAT variables

(Figure 12). Jasmonate was related to both vaginal temperature at

first standing mount and time to VTMax. Glycodeoxycholate was

related to both VTMax and time to VTMax. Neither AUC1 nor AUC2

were related to any common differentially abundant metabolites;

however, 6-phospho-D-gluconate was differentially abundant in

analyses of AUC1 and temperature change from baseline to

VTMax, while sn-glycerol 3-phosphate abundance was related to

AUC2 and temperature change from baseline to first standing

mount (Figure 12).
A B

FIGURE 3

(A) The ambient temperature, relative humidity, and temperature humidity index (THI) collected from a local meteorological station from the start of
pre-synchronization protocol to the PGF2a administration to induce estrus. The weather data were averaged every 2 hours. The black dotted line
represents the end of the meteorological data and the beginning of the hourly onsite environmental data. (B) The hourly ambient temperature,
relative humidity, and temperature humidity index (THI) from PGF2a administration to induce estrus (day 1—17:30) to after final follicle aspiration (day
5—11:30). The red stars denote the time each animal first stood to be mounted. The blue line represents the THI threshold (77) for non-lactating
dairy cattle (Ouellet et al., 2021). The THI was calculated as per Abbott et al. (2018).
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4 Discussion

The novel findings described in this study highlight the

relationship of varying levels of HEAT with the abundance of

multiple metabolites in the preovulatory follicle fluid (19.8% of 86

total) ~ 14 h after the onset of estrus. Interestingly, the majority of
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affected metabolites were positively related to HEAT (11/17; 65%).

This finding is especially interesting because intra-follicular changes

in the preovulatory follicle in the final hours leading up to the LH

surge are important for promoting oocyte competence for embryo

development (Atkins et al., 2013; Jinks et al., 2013) and impacting

cumulus–oocyte complex metabolism (Read et al., 2021; Moorey
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FIGURE 4

(A–M) Estrus-associated vaginal temperatures for the 13 estrus cows whereby follicular fluid was collected from the preovulatory follicle are
presented relative to the time that they first stood to be mounted (hour 0) in order of greatest (A) to least (M) VTMax. The blue line represents an
individual animal’s baseline temperature, which was calculated by averaging the vaginal temperature of those recorded between the first
temperature, which was taken 12 h after PGF2a, and those over the next 20 h. The red dot depicts VTMax, and the dotted line represents the first time
an animal stood to be mounted. The graphs have been truncated for clarity and depict only the first 20 h before estrus and through preovulatory
follicle aspiration. (N, O) Representative vaginal temperature graphs of the cows that did not exhibit estrus and did not exhibit a higher estrus-
associated vaginal temperature. These animals were not included in the analysis and are displayed for reference only. Data are not shown for the
one cow where follicular fluid was not successfully collected.
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FIGURE 5

(A–E) Partial regression plots for the final model for each metabolite related to the change in vaginal temperature from the baseline to first mount.
The plots depict the relationship between the vaginal temperature change from the baseline to first mount and metabolite abundance while
adjusting for additional variables included in the final model.
A B

FIGURE 6

(A, B) Partial regression plots for the final model for each metabolite related to the vaginal temperature at first standing mount. The plots depict the
relationship between vaginal temperature at first standing mount and metabolite abundance while adjusting for the additional variables included in
the final model.
Frontiers in Animal Science frontiersin.org08115

https://doi.org/10.3389/fanim.2023.1241033
https://www.frontiersin.org/journals/animal-science
https://www.frontiersin.org


Pollock et al. 10.3389/fanim.2023.1241033
A B

C

FIGURE 7

(A–C) Partial regression plots for the final model for each metabolite related to maximum vaginal temperature (VTMax). The plots depict the
relationship between VTMax and metabolite abundance while adjusting for additional variables included in the final model.
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FIGURE 8

(A–C) Partial regression plots for the final model for each metabolite related to the vaginal temperature change from the baseline to the maximum
vaginal temperature (VTMax). The plots depict the relationship between vaginal temperature change from the baseline to VTMax and metabolite
abundance while adjusting for additional variables included in the final model.
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et al., 2022; Read et al., 2022) in addition to affecting subsequent

luteal function (Perry et al., 2005) and pregnancy outcome (Lamb

et al., 2001; Perry et al., 2005; Atkins et al., 2013).

Regardless of species, sex, or reproductive status, heightened

levels of activity for as few as 45 min to 1 hour increase body

temperature (Murray and Yeates, 1967; Vajrabukka and Thwaites,

1984; Gleeson, 1998). Estrus-induced or not, resultant increases in

body temperature are likely a by-product of increased metabolic

activity, increased blood flow, and or muscle strain due to elevated

activity (Gleeson, 1998). Higher estrus-associated temperatures in

our study fell within a range reported by others (Lewis and

Newman, 1984; Redden et al., 1993; Kyle et al., 1998; Fisher et al.,

2008), with one cow exceeding 40°C. Although the THI during the

final week of our study approached the upper limit of

thermoneutral conditions (77 THI for non-lactating Holsteins;

Ouellet et al., 2021), the varying levels of HEAT likely reflect

those attributable to changes in estrus activity. Increases in

vaginal temperature were most notable after a cow first stood to

be mounted, which is not surprising when using non-lactating

Jersey cows, as they are more thermotolerant (Seath and Miller,

1947; Harris et al., 1960; Muller and Botha, 1993; Lim et al., 2021).

In addition, the calculated baseline body temperature for each

individual cow fell within the range of normal body temperatures

for cattle not experiencing heat stress (Gaalaas, 1945). It is also

important to note that estrus onset occurred in the majority of cows

when the ambient conditions were thermoneutral.
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Although instances of chronic elevations in body temperature

because of disease or heat stress are detrimental to reproductive

success, short-term acute increases in temperature may in fact be

beneficial. At the cellular level, Hoshino (2018) demonstrated that

increased oocyte intracellular temperature during maturation may

be an indicator of oocyte quality and developmental competence.

Fallon (1962) reported rectal temperatures ranging from 98.8°F to

105°F in dairy cows undergoing artificial insemination (AI) the

morning (a.m.) after estrus was first observed the preceding

afternoon (p.m.). In this otherwise synchronized set of females,

cows with rectal temperatures ranging from 101.7°F to 105.0°F had

higher fertility (73.5%) than those with lower rectal temperatures

(98.8°F to 101.6°F). Fallon speculated that cows with a lower rectal

temperature may have been out of estrus or were too close to

ovulation when AI was performed. However, because the pregnancy

outcomes (60.2%) in the cows with a lower rectal temperature were

similar to those in other reported cow groupings observed in estrus

and bred at different times, it is also plausible that HEAT was

functionally relevant and impactful. The positive benefits of

elevated body temperature are not limited to dairy cattle.

Recently, our laboratory reported that a higher rectal temperature

at AI in beef cattle subjected to a fixed-time AI protocol was related

to a higher likelihood of pregnancy (Liles et al., 2022).

Nonetheless, for HEAT-related changes to be related to estrus

activity, Laitano et al. (2010) reported that whole-body heat stress-

induced oxidative stress in humans. When hyperthermia was
A B
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FIGURE 9

(A–D) Partial regression plots for the final model for each metabolite related to time from first temperature increase to maximum vaginal
temperature (VTMax). The plots depict the relationship between the time from the first temperature increase to VTMax and metabolite abundance
while adjusting for additional variables included in the final model.
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combined with moderate-intensity exercise, however, a parallel

increase in antioxidant defense compensated for hyperthermia-

induced oxidative stress. Laitano et al. (2010) further speculated

that elevated body temperature in combination with exercise likely

enhances antioxidant defense by avoiding redox imbalance, thereby

preventing cellular damage. Antioxidants are essential components

within mammals, as they maintain oxidative homeostasis within the

body (Mulla et al., 2018). Glutathione, an important antioxidant, is

a major component of animal cells (Wu et al., 2004) and has

properties that have been deemed essential to successful

reproduction through maintaining reactive oxygen species levels

(ROS; De Matos et al., 1997; Edwards et al., 2001; Zuelke

et al., 2003).

Pertaining to our study, HEAT was positively related to

different glutathione precursors (cysteine and glycine).

Interestingly, cysteine alleviates the negative consequences of

prolonged exposure of bovine oocytes to elevated temperature

through the stimulation of glutathione production (De Matos

et al., 1996; Luberda, 2005; Nabenishi et al., 2012). Glutathione

levels fluctuate throughout the estrous cycle, with the highest

concentrations at or around meiotic maturation (Sutovsky and

Schatten, 1997; Brad et al., 2003; Zuelke et al., 2003). Not only is

glutathione involved in events related to meiotic maturation and

subsequent development, but its levels have also been linked to

thermal responses. When a glutathione inhibitor was administered,

the thermotolerance of various cell types decreased (Mitchell et al.,
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1983; Russo et al., 1984; Harris et al., 1991). Given that cold stress

depletes glutathione levels and the inhibition of glutathione results

in decreased thermotolerance, metabolite abundance changes

associated with HEATs are more likely the result of a

combination of activity-induced elevations in temperature.

Serine was the only metabolite that had a negative association

with vaginal temperature at the onset of estrus when expressed as a

change from the baseline. This metabolite is a non-essential amino

acid that serves as a precursor for numerous molecules, including

glutathione, taurine, and cysteine (Kalhan and Hanson, 2012).

Turathum et al. (2021) suggested that oxidative stress is managed

during oocyte maturation through the utilization of serine for

glutathione synthesis within the developing oocyte. In mice,

serine uptake within the oocyte reaches its maximum during the

latter stages of metaphase I and then rapidly decreases once the

oocyte reaches metaphase II (Zhang et al., 2020). Given its role in

mediating ROS accumulation in the maturing oocyte and that

elevated temperatures are known to promote ROS production, in

retrospect, it is not surprising that HEAT may be negatively related

to se r ine abundance in the fo l l i cu l a r flu id o f the

preovulatory follicle.

The increased bioavailability of other metabolites highlights

other potential HEAT-related consequences on intrafollicular

metabolism important to support oocyte maturation and

maintain oxidative balance. The amino acid taurine was positively

associated with the vaginal temperature at estrus onset when
A B
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FIGURE 10

(A–D) Partial regression plots for the final model for each metabolite related to the area under the curve from the first increase to the maximum
vaginal temperature (AUC1). The plots depict the relationship between AUC1 and metabolite abundance while adjusting for additional variables
included in the final model.
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expressed as a change from the baseline. Taurine is present in many

mammalian tissues and is involved in numerous cellular functions.

Specifically, it is a cytoprotective molecule with antioxidant

properties that is also thought to be involved in the

thermoregulatory process (Schaffer and Kim, 2018; Page et al.,

2019). Toward this end, when humans engaged in intense

exercise, the oral administration of taurine resulted in increased

exercise endurance and temperature regulation in hotter

environments (Page et al., 2019). While the impacts of taurine

supplementation before the LH surge and during oocyte maturation

are not clear, it is interesting to note that taurine positively impacts

bovine embryo development under thermoneutral conditions

(Dumoulin et al., 1992; Takahashi and Kanagawa, 1998).

The generation of heat is a natural and normal byproduct of

cellular function and processes (Holtzclaw, 2001). In our study,

during times of elevated body temperature, three pyrimidines (i.e.,

cytidine, uridine, and uracil) that have been implicated to play a role

in body temperature increases (Cradock et al., 1986; Peters et al.,

1987b) were detected in preovulatory follicular fluid. One of these

metabolites (uracil) was HEAT-related. Notably, the administration

of uracil’s precursor, uridine, has been shown to induce

hyperthermia in rabbits, mice, and humans (Cradock et al., 1986;

Peters et al., 1987b). Because uridine’s effect on body temperature is

delayed, it has been postulated that uridine’s catabolites may be

responsible for the induction of hyperthermia (Peters et al., 1987a;

Peters et al., 1987b). The administration of uracil to rabbits

increased their body temperature by 0.3°C (Peters et al., 1987b).
Frontiers in Animal Science 12119
The uracil levels in the follicular fluid collected ~ 14 h after estrus

onset were negatively related to the vaginal temperature at first

mount when expressed as change from the baseline, maximum

vaginal temperature change from the baseline (VTMax), and AUC2,

representing a combination of temperature increase and duration.

These findings, while still unclear, are the first that we are aware of

that associate pyrimidine metabolites with HEAT.

In instances of HEAT, it is not surprising for thermoregulatory

and other processes to be impacted as the body strives for

homeostasis during bouts of hyperthermia (reviewed by Godyń

et al., 2019). The change in vaginal temperature at VTMax was also

positively related to follicular fluid uric acid levels. Although the

significance of these findings in estrus-active females remains

unclear, it is interesting to note that increases in exercise intensity

in both horses and humans increase plasma uric acid levels (Green

and Fraser, 1988; Räsänen et al., 1996). In humans, uric acid may in

certain instances act as an antioxidant through its reduction of

exercise-induced oxidative stress (Waring et al., 2003).

Regardless of related or contributive factors, the consequences

of elevated body temperature are largely systemic in nature (Finch,

1986; Hahn, 1999). Whether HEAT-related differences in

metabolite abundance in the follicular fluid of the preovulatory

follicle ~14 h after estrus onset are reflective of changes occurring in

the circulation or altered function of cells comprising the

preovulatory follicle (i.e., granulosa and or cumulus–oocyte

complex) remains unclear. Toward having a potential impact or a

putative role, granulosa cells, which are contributors to follicular
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FIGURE 11

(A–D) Partial regression plots for the final model for each metabolite related to area under the curve from the first temperature increase to 10 h
post-estrus onset, or the completion of the temperature curve (AUC2). The plots depict the relationship between AUC2 and metabolite abundance
while adjusting for additional variables included in the final model.
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fluid components, have been shown to increase metabolism and

amino acid production approximately 6 h after the LH surge

(Gilbert et al., 2011).

To our knowledge, this is the first study to investigate the

relationship between estrus-induced changes in body temperature

and preovulatory follicular fluid metabolites. The significant

outcomes related to temperature changes at or around the time of

estrus onset are suggestive of a functional relevance of HEAT in

driving the preparatory mechanisms involved in thermoregulation,

energy metabolism, and oxidative stress management, and, in turn,

possibly impacting oocyte competence and other preovulatory

follicle components.

Although outside the scope of this study, it is interesting to note

that the best-fit models derived to assess the impact of different

aspects of HEAT on follicular fluid metabolomes included, in some

instances, covariates related to estradiol and follicle size (see

Supplementary Tables 4–6). We are only aware of one other

study examining follicular fluid metabolomics in estrual cattle

(Hessock et al., 2023), but its authors did not relate their findings

to hormone levels or follicle size. In non-estrual cows, metabolites

in preovulatory follicular fluid have been reported (Bender et al.,

2010; Read et al., 2021; Read et al., 2022). Although estradiol

concentration and follicle diameter have been found to be related

to a number of follicular fluid metabolites (Read et al., 2021; Read

et al., 2022), these findings do not overlap with those in this study.

This is not entirely unexpected due to the dynamic changes
Frontiers in Animal Science 13120
occurring in the follicle around estrus and the inherent impact of

those changes on systemic hormones.
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The gut microbiota in cattle is essential for protein, energy, and vitamin
production and hence, microbiota perturbations can affect cattle
performance. This study evaluated the effect of intramammary (IMM) ceftiofur
treatment and lactation stage on the functional gut microbiome and
metabolome. Forty dairy cows were enrolled at dry-off. Half received IMM
ceftiofur and a non-antibiotic teat sealant containing bismuth subnitrate
(cases), while the other half received the teat sealant (controls). Fecal samples
were collected before treatment at dry off, during the dry period (weeks 1 and 5)
and the first week after calving (week 9). Shotgun metagenomic sequencing was
applied to predict microbial metabolic pathways whereas untargeted
metabolomics was used identify polar and nonpolar metabolites. Compared
to controls, long-term changes were observed in the cows given ceftiofur,
including a lower abundance of microbial pathways linked to energy
production, amino acid biosynthesis, and other vital molecules. The
metabolome of treated cows had elevated levels of stachyose,
phosphatidylethanolamine diacylglycerol (PE-DAG), and inosine a week after
the IMM ceftiofur application, indicating alterations in microbial fermentation,
lipid metabolism, energy, and cellular signaling. Differences were also observed
by sampling, with cows in late lactation having more diverse metabolic pathways
and a unique metabolome containing higher levels of histamine and histamine-
producing bacteria. These data illustrate how IMM ceftiofur treatment can alter
the functionality of the hindgut metabolome and microbiome. Understanding
how antibiotics and lactation stages, which are each characterized by unique
diets and physiology, impact the function of resident microbes is critical to define
normal gut function in dairy cattle.
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1 Introduction

The gut microbiota of ruminants produces proteins, vitamins,
and ~75% of the energy necessary for the host through an obligatory
symbiotic relationship (Bergman, 1990). Rumen microorganisms
ferment the plant biomass to generate energy in the form of volatile
fatty acids (VFAs) (Bergman, 1990) and convert nitrogen-
containing compounds into protein (Bach et al., 2005). Thus,
prior studies have sought to determine the relationship between
the microbiome composition of cattle and animal production and
methane emissions (reviewed by (O’Hara et al., 2020)). Most
notably, microbial communities of the gastrointestinal tract were
shown to influence the quality and yield of milk production,
affecting key components such as fat, protein, and lactose
content (Jami et al., 2014; Xu et al., 2017; Buitenhuis et al., 2019;
Wu et al., 2021). Consequently, shifts in the microbiome and
metabolome can potentially alter milk composition and affect
cow health. Although antibiotics are known to cause
perturbations in the gut microbiome, little is known about the
specific effects of intramammary (IMM) antibiotic treatment on
the function of the fecal microbiome in dairy cows.

β-lactam antibiotics such as ceftiofur, a third-generation
cephalosporin, are often used in dairy cattle for the treatment of
mastitis or dry cow therapy (Hallberg et al., 2006; Campos et al.,
2021). When cephalosporins are applied intramammarily, they are
mainly excreted through the urine and udder (Wilson and Gilbert,
1986; Rule et al., 1998; Ray et al., 2014). Yet, ~13% of the IMM-
administered ceftiofur dose in lactating cows, which includes two
doses of 125 mg per quarter given 12 h apart, is detectable in the
feces 5–6 days post-treatment (European Agency for the Evaluation
of Medicinal Products, 2002). When administered subcutaneously
to Holstein steers, ceftiofur active metabolites were shown to alter
the microbiota composition of the gut (Foster et al., 2019) due to
activity against both Gram-negative and Gram-positive bacteria.
Our previous study of Holstein cows given IMM ceftiofur treatment
at dry-off also showed an altered abundance of specific taxa in the
short and long-term, although no effect was observed on microbiota
diversity (Vasco et al., 2023). Specifically, we observed a higher
abundance of Actinobacteria and Bacteroidetes and lower
abundance of Proteobacteria and Firmicutes in the cows given
IMM antibiotics at dry off versus untreated cattle over a 9-week
period. It is therefore possible that these taxa play an important role
in the function of the gut microbiota during antibiotic therapy.

To examine the function of microbial communities,
metagenomic approaches have been applied that enable the
prediction of microbial metabolic capacity based on the detection
of genes encoding enzymes and mapping them onto metabolic
pathways (Beghini et al., 2021). The characterization of
metabolites from host, dietary, and microbiome sources can also
provide a better understanding of the functional interactions
between the microbiome and environment. Untargeted
metabolomics, for instance, uses liquid chromatography–tandem
mass spectrometry (LC–MS/MS) to simultaneously detect multiple
compounds based on their retention time and spectral
fragmentation patterns (MS/MS) (Rakusanova et al., 2023).
Metabolomics of the rumen content of dairy cows has improved
understanding of diet-related metabolism while defining how it is
influenced by the introduction of grain into the diet (Saleem et al.,

2012) and identifying differences between fecal and rumen
metabolites (Malheiros et al., 2021). Furthermore, integrated
‘omics approaches such as metagenomics, metatranscriptomics,
and metabolomics, have been used to characterize the functional
microbiome in the rumen to identify microbial features linked to
feed efficiency (Xue et al., 2022).

Since we demonstrated that IMM ceftiofur treatment of dairy cattle
impacted the fecal microbiota and antibiotic-resistant bacterial
populations when compared to cows without treatment (Vasco
et al., 2023), we sought to characterize the function of the hindgut
microbiome andmetabolome in the same dairy cows. To identify short-
and long-term changes due to antibiotic therapy, samples were taken a
day prior to dry-off and ceftiofur treatment and again at 1 and 9 weeks
later as described (Vasco et al., 2023). These time points correspond to
three different stages of lactation and include late lactation (day -1), dry-
off (week 1), and the periparturient period (week 9).

The different stages of lactation differ with respect to the diet
given to the cows but also their physiology as outlined by the
National Research Council (National Research Council, 2001).
Indeed, cows in late lactation require a maintenance diet
containing high levels of metabolizable protein and energy.
During the dry period when cows are not producing milk,
however, the mammary gland and udder tissue will involute and
regenerate before the next lactation. The dry period lasts about
60 days prior to calving. As opposed to lactation, cows require lower
quantities of metabolizable energy in their diet during the dry
period. Comparatively, early lactation lasts approximately 30 days
post-calving and represents the start of the lactation period. Higher
levels of energy, calcium, and metabolizable protein are required for
fresh cows when compared to dry cows to compensate for the energy
imbalance induced by milk production and low dry-matter intake
(National Research Council, 2001). This energy deficit generally
persists through the 60th day of lactation, after which the cows shift
to a net positive energy state. Since dietary changes are also linked to
alterations in the gut microbiota in dairy cattle (Lin et al., 2023), we
applied multi-omics approaches to identify interactions between the
microbiome andmetabolites present in fecal samples from ceftiofur-
treated and ceftiofur-untreated dairy cows during different stages of
lactation. The findings of this study enhance understanding of the
effects that both ceftiofur treatment and lactation stage have on the
function of the gut microbiome.

2 Materials and methods

2.1 Study population and
epidemiological data

Forty Holstein cows were enrolled at the start of the dry-off
period in June-November of 2019 at the Michigan State University
(MSU) Dairy Cattle Teaching and Research Center as described
(Vasco et al., 2023). After the last milking, twenty cows (cases)
received a single IMM infusion containing 500 mg of ceftiofur
hydrochloride (CHCL; SpectramastDC®; Zoetis Animal Health)
along with a non-antibiotic teat sealant with bismuth subnitrate
(Orbeseal®; Zoetis Animal Health) in each teat (n = 4; total of 2 g of
CHCL). Cows in the control group (n = 20) received only the IMM
teat sealant. All cows had a somatic cell count (SCC)
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of <150,000 cells/mL at the most recent Dairy Herd Improvement
Association test and none received antibiotics in the prior 90 days of
lactation. The study protocol was approved by the Institutional
Animal Care and Use Committee at MSU (IACUC number
ROTO201800166) prior to sampling.

To avoid a parity effect, controls were matched to the ceftiofur-
treated cows based on parity as well as monthly milk production.
Diet regimens were formulated using Spartan Dairy 3™ software per
guidelines outlined in the Nutrient Requirements of Dairy Cattle
report (National Research Council, 2001). Based on the dietary
information extracted from farm records, different diets were given
to the cows in accordance with their production demands across the
sampling period (Table 1); the matched treated and control cows
were given the same diets within each lactation stage. Near the end of
lactation, which corresponded to a day prior to the IMM treatment
(day -1), cows received the maintenance diet containing 14% more
metabolizable energy and 2.5 times more metabolizable protein (g)
than is provided in the dry-off diet (weeks 1 through 5)
(Supplementary Table S1). At week 9, animals were given a diet
for fresh cows consisting of 64% of dry matter intake when
compared to lactating cows, but with transitioning levels of
energy and protein that were 15% and 64% higher than during
dry-off, respectively.

Animals in all phases received corn silage, soybean meal with
47.5% crude protein, CFE MSU dairy base, and haylage. It was only

during the lactation and fresh periods that the ration included corn
(ground fine and fed dry) as well as MSU fresh high supplement to
increase the energy density and provide essential nutrients such as
calcium, magnesium, potassium, and niacin to prevent metabolic
disorders that can occur during the transition into lactation.
Comparatively, soybean hull pellets, cottonseed, and long bulk
brown midrib (BMR) corn silage (CS) were exclusively given to
cows in late lactation, while alfalfa hay was only provided to fresh
cows. Although grass silage, MSU straw, grass pasture, and ignite
supplement (Quality Liquid Feeds®, WI, Unites States) were given to
all animals, they were only provided during the dry period in small
quantities. The ignite supplement contains 25% protein, fat, trace
minerals, and vitamins A, D, and E (https://onealsfarmandgarden.
com/products/tub-qlf-ignite-30).

2.2 Sample collection and processing

Fecal samples were collected from all cows at four time points
corresponding to the different stages of lactation (Figure 1). These
stages included late lactation (day -1), dry-off (weeks 1 and 5), and
the periparturient period (week 9). Along with physiological
differences, the dietary needs of the animals and feed
formulations differ across the three lactation stages. Samples were
collected before ceftiofur administration at the end of lactation when

TABLE 1 Diet rations fed to dairy cows at four different lactation stages.

Ration component Maintenance Early dry Close-up Fresh

As-Fed (kg) 48.77 32.58 19.89 31.35

DM Fed (kg) 24.04 12.98 12.74 15.89

Corn grain ground fine (DM fed kg) 4.31 0 0 2.27

Corn gluten feed dry (DM fed kg) 1.81 0 0 0.45

Soybean Hulls Pellet (DM fed kg) 2.04 0 0 0

Soybean meal 475 solvent (DM fed kg) 1.13 0.95 2.72 1.36

Cottonseed Fuzzy (DM fed kg) 1.36 0 0 0

MSU Corn silage (DM fed kg) 4.08 4.08 3.8 5.58

MSU Haylage (DM fed kg) 4.08 4.04 0 2.72

CFE MSU dairy base (DM fed kg) 0.45 0.27 0.32 0.36

MSU Long bunk BMR CS (DM fed kg) 3.63 0 0 0

MSU fresh high supplement (DM fed kg) 1.13 0 0 1.07

MSU Purchased Alfalfa Hay (DM fed kg) 0 0 0 2.09

CFE MSU PreFresh DE (DM fed kg) 0 0 0.45 0

MSU Low K Grass Hay (DM fed kg) 0 0 4.76 0

SoyChlor (DM fed kg) 0 0 0.69 0

MSU grasslage (DM fed kg) 0 2.72 0 0

MSU Straw (DM fed kg) 0 0.91 0 0

Grass Pasture 16 CP 55 NDF 7 LNDF (DM fed kg) 0 0 0 0

QLF Ignite Dry Cow 25 (tub) (DM fed kg) 0 0 0 0

DM, dry matter; NDF, neutral detergent fiber; LNDF, Lignin as a percent of the NDF; CP, crude protein; CS, corn silage; BMR, brown midrib.
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the cows received a maintenance diet (day -1) as well as after dry-off
(week 1; week 5) when they were given an early dry diet. The final
sample was collected during or just prior to calving (week 9) when
the cows were given the fresh formulation. One cow could not be
sampled at week 9 due to birthing by cesarean section that required
antibiotics treatment, leaving 79 samples for analysis from the 9-
week sampling point and 159 samples in all. As indicated previously
(Vasco et al., 2023), the fecal samples were collected via the rectum
using clean obstetric sleeves and transported in a cooler to MSU in
sterilized sampling bags for processing.

Each sample was homogenized by hand and aliquots containing
0.25 g of feces and 0.25 g of feces in 750 µL of 190 Proof ethanol were
stored for metabolite and DNA extractions, respectively. All fecal
aliquots were flash frozen with liquid nitrogen for 1 min and were
stored at −80°C until further processing. The 119 samples collected at
the day -1, week 1, and week 9 samplings were used for both untargeted
metabolomics and metagenomic sequencing, while metagenomic
sequencing data were also available for the 40 samples collected at
week 5 through our prior study (Vasco et al., 2023). Since we previously
observed similar microbiota diversity and composition in the samples
collected at weeks 1 and 5, metabolomics was not applied to the week 5
(dry-off) samples.

2.3 Metagenomics analyses

2.3.1 Metagenomic sequencing
Fecal samples were centrifuged for 5 min at 16,000 rpm at 4°C to

remove the supernatant and the pellets were washed twice with 1 mL
of 1× PBS as described (Vasco et al., 2023). DNA was extracted with
the DNeasy PowerSoil Pro Kit (Qiagen, Germantown, MD, United
States) using the manufacturer’s protocol followed by an additional
wash step using the C5 solution to improve quality. Samples with an
average dsDNA concentration of 1,277.3 ng (±310.5 ng) as
measured using a Qubit, were sent to CosmosID (Rockville, MD,
United States) for metagenomic next-generation sequencing
(mNGS). The Nextera™ XT DNA Library Preparation Kit
(Illumina, San Diego, CA, United States) was used on all samples
and sequencing was performed using the Illumina HiSeq X platform
(2 × 150 bp).

2.3.2 Microbiome characterization
Metagenomic analyses to characterize the gut microbiota and

resistome in the same cows were described previously (Vasco et al.,
2023). Briefly, removal of bovine DNA and adapter sequences was
performed and the microbiome and resistome composition were

FIGURE 1
Diagram illustrating the animal treatment schedule and sample collections across the stages of lactation. The fecal sampling regimen coincidedwith
three key lactation stages. These include: 1) the end of lactation (1 day before the initiation of dry cow therapy with intramammary (IMM) ceftiofur, or Day
-1); 2) after dry cow therapy during the dry-off period (Weeks 1 and 5); and 3) 9 weeks after treatment at the end of the dry-off period and beginning of the
fresh phase (Week 9). The black line demonstrates the fluctuations in milk production across each stage.
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analyzed with MetaPhlan4 (Blanco-Miguez et al., 2023) and
Resistome Gene Identifier (Alcock et al., 2020), respectively. The
software KMA was used to identify plasmids, virulence genes and
viruses using the databases PLSDB (Schmartz et al., 2022), VFDB
(Chen et al., 2005), and Virus-Host (Mihara et al., 2016). Abundance
scores were determined based on genome equivalents and the
number of reads to calculate the relative abundance of taxa
and genes.

An evaluation of the function of the cattle microbiome was
performed using the HUMAnN 3.0 pipeline (Beghini et al., 2021),
which allows for the identification of metabolic pathways with their
microbial species-level contributions. The following databases were
used: ChocoPhlAn 3 (Beghini et al., 2021) for taxonomic
identification, UniRef90 (Steinegger and Söding, 2018) for
enzyme commission number screening, and MetaCyc v24.0
(Caspi et al., 2020) for the assignation of pathways. First, paired-
raw sequences were processed with Trimommatic v.0.39 (Bolger
et al., 2014) to remove low-quality reads and adapters used for
Illumina sequencing. Burrows-Wheeler Aligner v.0.7.15 (Li, 2013)
and SAMtools v.1.4.1 (Danecek et al., 2021) removed bovine DNA
reads [Bos taurus, ARS-UCD1.2 (Rosen et al., 2020)]. Trimmed non-
host paired FASTQ reads were merged with the UNIX command
‘cat’. Merged reads were used as input for HUMAnN 3.0 and the
resulting pathway abundances, reported as reads-per-kilobase
(RPK), were normalized as the relative abundance per sample. A
joined matrix containing the pathway relative abundances for all
samples was generated with the command “humann_join_tables”,
whereas pathways of interest were depicted with the “humann_
barplot” function while stratifying the pathway contributions by
bacterial taxa (https://github.com/biobakery/humann).

2.4 Extraction of metabolites from
cattle feces

Metabolite extractions were performed on all 119 fecal samples
collected at day -1 (n = 40), week 1 (n = 40), and week 9 (n = 39).
Internal standard solutions were prepared for quality control and
normalization including: 1) labeled short-chain fatty acids (SCFAs)
(10 µM each of [13C]sodium formate, [13C2]sodium acetate, [13C3]
sodium propionate, and [13C4]sodium butyrate) in 50:50 (v/v)
methanol/water; 2)) [13C16]palmitic acid (10 µM in 100%
isopropanol); 3) phenylalanine-d7 (10 µM in 50:50 methanol/
water); 4) succinic acid-d4 (10 µM in 50:50 methanol/water); and
5) labeled bile acids (10 µM each of glycocholic acid-d4 and
glycoursodeoxycholic acid-d4 in 50:50 methanol/water). A total of
20 mg of feces was weighed under sterile conditions and 350 µL of
ice-cold methanol containing 0.1% butylated hydroxytoluene (BHT)
was added. The sample was homogenized and incubated on ice for
10 min. For feces sedimentation, 10 µL of each standard was mixed
into the samples, agitated for 30 s, and centrifuged at 10,000 × rpm at
4°C for 10 min. The supernatant was pipette-transferred to a sterile
microcentrifuge tube on ice, while ice-cold HPLC-grade isopropanol
(200 µL) was added to the pellet, homogenized for 30 s, and
centrifuged at 10,000 × rpm and 4°C for 10 min. Finally, the
isopropanol supernatant was combined with the initial extract
and 100 µL aliquots of the mixed extracts were stored into glass
vials inserted in 2-mL amber glass autosampler vials sealed with

9 mm screw septum caps. Metabolite extracts were preserved
at −80°C until analyzed.

2.5 Metabolomics analyses

2.5.1 Untargeted metabolomics
Polar and nonpolar positive metabolites, which are a group of

metabolites that carry a net positive charge, were analyzed through
LC-MS/MS in a Thermo Scientific Vanquish™ Ultra High-
Performance Liquid Chromatography (UHPLC) coupled to a Q
Exactive™Hybrid Quadrupole-Orbitrap™mass spectrometer (MS).
Metabolites with a net negative charge were not evaluated in this
study. Along with the samples (n = 119), three blanks and pools were
included at the beginning of each run (polar and nonpolar) and for
every 20 samples. The Xcalibur™ software (ThermoFisher
Scientific™, United States) was used for method setup and data
acquisition.

The analysis of polar and nonpolar metabolites was conducted
using distinct chromatographic conditions tailored to the properties
of each metabolite class. Nonpolar metabolites were detected with
reversed-phase chromatography using 10 µL of each sample injected
with a column Waters Acquity Ethylene Bridged Hybrid (BEH)-
C18 UPLC (2.1 × 100 mm) at 60°C. A 0.4 mL/min flow rate was used
for a gradient analysis that consisted of 98% mobile phase A (water
plus 0.1% formic acid) and 2% mobile phase B (acetonitrile plus
0.1% formic acid) for 1 min. Mobile phase B was ramped to 100% at
minute 8 and was held for 2 min. Lastly, mobile phase B was
returned to 2% at 10.01 min and held at that concentration for
two more minutes.

By contrast, polar metabolites were detected through
hydrophilic interaction liquid chromatography (HILIC). A
Waters BEH-Amide UPLC column (2.1 × 100 mm) held at 60°C
was used to inject 10 µL of sample. The gradient analysis was carried
out at a rate of 0.4 mL/min starting with 100% mobile phase B
(10 mM ammonium formate/10 mM ammonium hydroxide in 95:
5 acetonitrile/water (v/v)) and 0% mobile phase A (10 mM
ammonium formate/10 mM ammonium hydroxide in water) for
1 min. Mobile phase B was ramped to 40% at minute 8 and held at
this concentration for 2 min. Mobile phase B was returned to 100%
at minute 10.01 and held at this concentration for 2 min.

Data were acquired using a data-dependent MS/MS method
with electrospray ionization in positive mode and capillary voltage
of 3.5 kV, transfer capillary temperature at 262.5°C, sheath gas at 50,
auxiliary gas at 12.5, probe heater at 425°C, and S-lens RF level at 50.
Survey scans were acquired at 35,000 resolution, automatic gain
control (AGC) target of 1E6, maximum inject time 100 m, and m/z
range 100–1,500. The top 5 ions were selected for MS/MS with a
resolution setting of 17,500, AGC target of 1E5, minimum AGC of
5E3, maximum inject time 50 m, isolation window of 1.5, fixed first
mass at m/z 50, dynamic exclusion setting of 3 s and stepped
normalized collision energy settings of 20, 40 and 60.

2.5.2 Mass-spectrometry (MS) data processing
Raw files (.RAW) for each sample were transformed to mzXML

format with the Global Natural Product Social Molecular
Networking (GNPS) conversion software. MS data processing
was performed using MZmine v2.53 (Pluskal et al., 2010) while
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analyzing the polar and nonpolar files separately. Instead of using
standards for comparison, we determined the noise levels for
MS1 and MS2 (centroided spectrum type) using the blanks and
pools. First, mzXML files were imported to MZmine for mass
detection at the levels MS1 and MS2 using a noise level of
4E04 for MS1 and 3.5E03 for MS2, which was set based on
visual analyses of chromatograms from the pools and blanks.
Chromatograms were built with the ADAP (Automated Data
Analysis Pipeline) (Myers et al., 2017) module using a scan
retention time of 1.00–10.00 min for MS level 1, minimum group
size in number of scans equal to 4, group intensity threshold of
4.0E4, minimum highest intensity of 5.0E4, and scan to scan
accuracy of 0.002 m/z or 10.00 ppm.

Chromatograms were smoothed using the Savitzky Golay
algorithm with a filter width of 5 and deconvoluted with local
minimum feature resolver. The deconvolution settings included
MS/MS scan pairing with a retention time tolerance of
0.15 absolute min and MS1 to MS2 precursor tolerance of
0.002 Da. Additionally, the deconvolution algorithm was set up
with a chromatographic threshold of 83.3999%, minimum search
range RT/Mobility (absolute) of 0.05, minimum relative height of
0.0%, minimum absolute height of 5.0E4, min ratio of peak top/edge
1.80, and peak duration range (min/mobility) 0.00–1.51. Isotopes
were grouped with a m/z tolerance of 0.0015 m/z or 3.0 ppm, a
retention time tolerance of 0.05 absolute mins, and a maximum
charge of 2 while choosing the most intense representative isotopes.

Next, an aligned feature list containing data from all samples was
generated with module join aligner using a tolerance of 0.0015 m/z
or 5.0 ppm, weight for m/z of 3, retention time (RT) tolerance of
0.1 absolute min, and weight for RT of 1. Gaps in the aligned list
were filled with the module peak finder using an intensity tolerance
of 20%, an m/z tolerance of 0.002 m/z or 10.0 ppm, and a retention
time tolerance of 0.05 absolute min. Duplicate peaks generated
during gap filling were removed at a m/z tolerance of 8.0E-4 m/z
or 1.5 ppm and an RT tolerance of 0.035 absolute (min). To identify
only those features present in at least three samples, the module
“feature list rows filter” was used with at least 3 peaks in a row,
keeping only peaks with MS2 scan, and resetting the peak number
ID. Finally, the feature list was exported for analyses in GNPS for the
Feature-Based Molecular Networking (FBMN) workflow using filter
rows only with MS2. The exported files consisted of a feature
quantification table (.CSV format) and an MS/MS spectral
summary file (.MGF format) with a list of MS/MS spectra
associated with the LC-MS/MS ion features.

2.5.3 Metabolite classification
The FBMN workflow in GNPS was used (Wang et al., 2016;

Nothias et al., 2020) after importing the MGF file and feature
quantification table generated in MZmine as well as the metadata
containing the sample attributes. Precursor ion mass and fragment
ion mass tolerances were set at 0.02 Da. Default settings were used
for the advanced options except for minimum matched fragment
ions for networks and library search minmatched peaks, which were
set at 4. All the spectra with IDs were downloaded; library ID and the
network component index were recorded for each metabolite and
are referred to as “cluster” for the downstream analyses. Molecular
networks were visualized in GNPS to identify metabolite
components and clusters of interest.

2.5.4 Metabolome data analyses
The R package Phyloseq v.1.38 was used to analyze

metabolomics diversity and composition (McMurdie and
Holmes, 2013). A Phyloseq object was generated by merging
metadata with the feature table containing cluster intensities, and
the cluster identifications, which included three levels: network
component, library ID and cluster numbers. The R package
decontam v.1.14 (Davis et al., 2018) was used to remove
contaminant clusters associated with the standards based on a
combined method that uses the Fisher’s exact test. This method
concatenates the probabilities of a cluster being present in a sample
based on the amount of feces used for the metabolite extraction and
the prevalence of a given cluster in controls versus the samples.
Although the standards were present in the blanks and assessed
separately, they were excluded from the final analysis. Lastly, cluster
intensities were normalized to their relative abundances per sample.

2.5.5 Metabolome diversity analyses
The alpha diversity was calculated using the Shannon index and

the number of observed features. The paired, one-tailed Wilcoxon
signed-rank test was used to compare alpha diversity between
groups and time points, whereas the Friedman’s test was used to
compare the indexes by animal over time since it accounts for
repeated measures. Differences in beta-diversity or metabolome
composition, were evaluated based on Bray-Curtis dissimilarity
distances that were mapped with Principal Coordinate Analyses
(PCoA) using the R packages Vegan v.2.5-7 (Dixon, 2003) and
ggplot2 v.3.3.5 (Wickham, 2011). The mean compositions,
represented by the centroid of each group of samples in the
PCoA, were compared with permutational multivariate analysis
of variance (PERMANOVA) with 999 permutations, while
dispersion was compared with PERMDISP (Anderson, 2006).

2.6 Statistical analyses

2.6.1 Detecting significantly different features
between groups

To detect significantly different features between the treatment
groups and stages of lactation (time points), the following were used: 1)
Linear Discriminant Analysis (LDA) Effect Size (LEfSe) (Segata et al.,
2011); 2) Analysis of compositions of microbiomes with bias correction
(ANCOM-BC) (Lin and Peddada, 2020); and 3) Microbiome
Multivariable Associations with Linear Models (MaAsLin2) (Mallick
et al., 2021), as suggested in a prior study (Nearing et al., 2022). LEfSe
analysis was performed on normalized log2 abundances, focusing solely
on features that passed a significance threshold in the Kruskal-Wallis
test (p-value ≤0.05). ANCOM-BC analysis was conducted to detect
differences between groups applying the Holm method for p-value
adjustment. This analysis included only features present in at least 90%
of samples, setting a convergence tolerance of 1e-05 and limiting the
analysis to 100 iterations to minimize type I error rates. MaAsLin2 was
utilized to identify associations with the group as a fixed effect, requiring
a minimum feature prevalence of 90% and employing z-score
standardization for data normalization. Because case and control
cows were paired and shared the same environment, timing since
treatment, parity, and diet, other covariates (random effects) were not
included when using any of these analytical methods. Significantly
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different features (adjusted p-value ≤0.05) were noted if they were
detected using at least two of the three methods. Pairwise comparisons
were made between treatment groups at each time point as well as
between stages of lactation. Random Forest (RF) with 5,000 decision
trees was used to estimate the out-of-bag (OOB) error rate that allows
for correctly classifying the sample groups based on the metabolite
composition. RF was also used to predict features (clusters and
components) based on the discriminatory levels between sample
groups ranked by their mean decrease accuracy (MDA).

2.6.2 Multi-omics analyses
Associations between the fecal microbiome and metabolome

were examined by correlating the relative abundances of known
metabolites (by library ID) with microbial taxa at the phylum and
species levels and for antimicrobial resistance genes (ARGs),
virulence genes, and microbial metabolic pathways across
samples. Spearman correlations were calculated with the R
package Hmisc (https://cran.r-project.org/web/packages/Hmisc/
index.html); coefficients (ρ) >0.75 with p-values < 0.01 were
filtered to construct networks with Gephi v.0.9.2 (Bastian et al.
, 2009).

To characterize patterns of change in the abundance of
microbial and metabolic features, hierarchical clustering was
performed using the R package stats v4.1.2 (https://www.r-
project.org/). Only those features that differed significantly

between lactation stages using two of the three analytical
methods (LefSe, ANCOM-BC and MaAsLin2) were included in
this analysis. First, a distance matrix was constructed with the
Euclidean metric using the fold-change (FC) relative to each
feature average per sample. The FC was calculated by computing
the mean abundance of each feature across samples, and by dividing
the abundance of a feature from a given sample by their
corresponding mean. The distance matrix was used for
hierarchical clustering with the Ward method (ward.D) and the
resulting tree was cut into 30 clusters. The optimal number of
clusters was identified with the NbClust v3.0.1 package (Charrad
et al., 2014), which resulted in five clusters; however, a finer analysis
of each branch was biologically more meaningful. Boxplots of each
hierarchical clustering group were constructed to visualize the
patterns of change between stages of lactation. Experimental and
analytical methods are summarized in Figure 2.

3 Results

3.1 Untargeted metabolomics reveals a
diverse metabolite composition

Analysis of mass-spectra identified twice the amount of
nonpolar (n = 11,007) metabolite clusters than polar (n = 5,390)

FIGURE 2
Summary of the methodology applied to analyze the functional gut microbiome of dairy cattle. Metagenomic sequencing (top panel) was used to
characterize the microbial metabolic pathways, while metabolomics (bottom panel) was used to examine the metabolome composition among fecal
samples collected from 40 dairy cows.
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clusters. Likewise, molecular networks aggregating metabolites
based on their MS2 spectral similarity resulted in 1,122 nonpolar
and 658 polar components (Supplementary Figure S1A). Network
components connect clusters (nodes) that are structurally related via
edges representing a modified cosine score that is calculated based
on ions that differ by the mass difference (Supplementary Figure
S1B). Only a small fraction of clusters had annotations based on
library matches, corresponding to 2.48% of the total metabolites
(polar, n = 135; nonpolar, n = 270), of which 68 were found with
both polar and nonpolar modes.

In the metabolite clusters with library matches, various classes of
metabolites were observed in all samples (Figure 3). These included
amino acids, lactones, carboxylic acids, cyclic anhydrides,
phospholipids, glycerides, ketones, sugars, fatty acids, nucleosides,
chromones, vitamins, and butanoate derivatives. Additionally,
several highly abundant metabolites including guanosine,
benzofuran-2-one, phthalic anhydride, phosphocholine,
monoelaidin, anzacyclotridecan-2-one, cytidine, glycan lacto-N-
biose, glycan lacto-N-biose, hexanedioic acid, propanoic acid,
octadecenoic acid, and others, were found in all samples. A

FIGURE 3
Fecal metabolome of dairy cows. The hierarchical clustering method Ward D2 was used to cluster rows (metabolites) and columns (samples) and
onlymetabolites with library identification were included and aggregated at the class level. The color scale represents the logarithm (log) 10 of the relative
abundance, with orange representing the most abundant metabolites and blue representing the least. Columns correspond to the samples, in which the
time of collection (time_Tx) and IMM ceftiofur treatment status (Treatment) are indicated.
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comprehensive list of the relative abundance of each metabolite and
class detected is shown in Supplementary Table S2. Importantly,
known metabolites categorized at the class level clustered together
based on the stage of lactation but not the ceftiofur treatment status.
The samples collected during the fresh period were most similar to
each other.

3.2 Microbial metabolic pathways highlight
the importance of essential molecule
biosynthesis

Among the 159 samples, 262 metabolic pathways were identified
that were assigned to bacterial taxa representing 797 pathways with
different bacterial contributions. Only nine bacterial genera,
however, were assigned to the pathways and included:
Bifidobacterium (n = 75 pathways), Clostridium (n = 4),
Escherichia (n = 25), Methanobrevibacter (n = 18), Olsenella (n =
2), Ruminococcaceae unclassified (n = 26), Sarcina (n = 12),
Turicibacter (n = 12), other (n = 262), and unclassified (n =
200). On average, 93% of the reads were classified as unmapped
and 6% as unintegrated for microbial metabolic pathways.

At the class level the most abundant microbial pathways were
associated with the biosynthesis of amino acids, nucleoside and
nucleotides, carbohydrates, and vitamins (Supplementary Figure
S2). Aminoacyl-tRNA charging, fermentation and glycolysis
pathways were also highly abundant in all samples. Pathways
associated with the biosynthesis of fatty acid/lipids, cell
structures, aromatic compounds, pentose phosphate and
secondary metabolites were also common but were found in
lower abundance. Similarly, pathways linked to the degradation
of nucleoside/nucleotides as well as carbohydrates, carboxylates, and
amine polyamines were commonly found (Supplementary Table
S3). The abundance of microbial metabolic pathways varied between
phases, with late lactation predominantly displaying elevated levels
for most pathways. Nonetheless, no distinct clustering at the class
level was evident among the lactation stages or by treatment status
(Supplementary Figure S2).

3.3 Fluctuations in alpha diversity were
observed across the sampling period

The within-sample diversity was measured by comparing the
number of observed features and the Shannon index for the
metabolomes and metagenomes among samples collected from
the same time point, between two time points, and over the
entire sampling period while accounting for repeated measures.
For the number of nonpolar metabolites, considerable fluctuations
in alpha diversity were detected over time (ANOVA, nonpolar: p =
0.001). The number of polar metabolites, however, displayed a more
consistent number of clusters (Observed, ANOVA, p = 0.288) but
with varying evenness (Shannon, ANOVA, p = 0.005) (Figures
4A,D). A significantly greater number of nonpolar metabolites
was detected during lactation (day -1) relative to the dry-off
period (week 1) (t-test: p < 0.0001), though no difference was
observed relative to the fresh period (t-test, p = 0.086). Fresh
cows exhibited a similar number of metabolites as when they

were dry (t-test, polar: p = 0.71, nonpolar: 0.98) but with lower
evenness for polar (Shannon, t-test, p = 0.0028) and nonpolar
(Shannon, t-test, nonpolar: p = 0.0025) metabolites (Figures
4B,E). Although the metabolite richness was similar between
fresh and lactating cows, the Shannon index showed lower
diversity in the fresh phase denoting a transition like the one
detected for diet composition. No differences were observed
between polar and nonpolar metabolites when comparing the
ceftiofur-treated and control cattle at any of the time points.

For the metabolic pathway predications, fluctuations in alpha
diversity were also observed across samplings (ANOVA, p < 0.0001)
(Figures 4C,F). Interestingly, the alpha diversity was more similar
between the dry and fresh cows than between fresh and lactating
cows despite the similarity in diet. Compared to cows in the dry and
fresh periods, cows in late lactation had a significantly greater
quantity and diversity of microbial metabolic pathways (t-test,
p < 0.0001). Stratifying by treatment status did not result in
significant differences in alpha diversity between the groups,
except that the number of metabolic pathways at week 5 was
significantly higher in control cows as compared to the cows
given IMM ceftiofur at dry off (t-test, p < 0.001). Because
samples from week 5 were not analyzed with untargeted
metabolomics, however, we could not compare between
treatment groups at this time point. Nonetheless, no long-term
effects in the number of metabolites were observed at week 9
(fresh cows).

3.4 Beta diversity of the metabolome and
microbial pathways varies across samplings,
whereas the effects of ceftiofur treatment
manifest several weeks post-treatment

Bray-Curtis dissimilarity distances showed significant
differences between samplings for polar and nonpolar
metabolome composition comprising all metabolite clusters
(PERMANOVA, p < 0.001) (Figure 5A). Although the microbial
pathways had overlapping composition between dry and fresh cows
(PERMANOVA, p > 0.3), the lactating cows showed a significantly
higher dispersion in the PCoA compared to the samples from dry
and fresh cows (PERMDISP, F = 53.32, p = 1.34e-11) as well as a
different average composition (PERMANOVA, F = 63.69, p = 0.001)
(Figure 5B). Despite the metabolome composition differences
associated with the sampling period, the microbial metabolic
pathways were similar in the dry and fresh phases. Furthermore,
cows treated with IMM ceftiofur had an identical mean metabolite
composition as the controls (PERMANOVA, p > 0.38) even though
differences in the composition of the microbial pathways were
observed in weeks 5 (PERMANOVA, F = 4.25, p = 0.007) and 9
(PERMANOVA, F = 2.67, p = 0.045).

3.5 Differences in the metabolome were
observed between ceftiofur-treated and
control cows at specific time points

After comparing the abundance of a total of 16,589 metabolite
clusters, 3,753 metabolite components, and 797 microbial-metabolic
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FIGURE 4
Alpha diversity of metabolites and microbial pathways. The top three panels show the number of observed features for (A) polar, (B) nonpolar, and
(C) microbial metabolic pathways, while the bottom panels represent the Shannon index, for (D) polar, (E) nonpolar, and (F) microbial metabolic
pathways, respectively. p-values were calculated with one-sided and paired t-test to compare treatment groups within a sampling point (black) or
between time points regardless of treatment (gray). Each boxplot shows the median, lower, and upper quartiles with the whiskers representing
extreme values in the distribution. Friedman’s test, which accounts for repeated measures, indicates significant fluctuations in alpha diversity over time.

FIGURE 5
Beta diversity of (A) polar and nonpolar metabolites; and (B)microbial pathways. PCoA of the Bray-Curtis dissimilarity is clustered by treatment and
sampling point (ellipses contain at least 90% of the samples in a group). Control animals are indicated by circles, whereas the ceftiofur-treated animals are
indicated by triangles within each plot.
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pathways, only one metabolite cluster was significantly different
between controls and cows treated with IMM ceftiofur 1 week after
the treatment. This cluster corresponds to the nonpolar-positive
metabolite cluster #6574 with a parent mass of 245.07 m/z, and a
consensus retention time of 1.08 min (Supplementary Figure S3).
This cluster is not identifiable and was not part of a network
component, thereby limiting our understanding of its occurrence
in the ceftiofur-treated animals. Similarly, RF could not correctly
classify the metabolomic composition by treatment group at any
time point; the OOB estimate of error rate was >55% when groups
were compared based on metabolite or microbial-pathway
composition at each time point.

Comparing groups with RF when considering only metabolite
clusters with a library ID, which excluded unknown metabolites, the
classifier error between treatment groups was reduced. Specifically, the
OOBwas 30% at day -1, 25% at week 1, and 18% at week 9. The primary
identifiable metabolites that influenced the classification with RF varied
across the time points. A week after drying off, for instance, inosine and
palmitoylcarnitine were higher and lower, respectively, in cows treated
with IMM ceftiofur (Mean decrease accuracy (MDA): 10.43, 7.83) than
controls (Figure 6A). At week 9, the most important classifier was Leu-
Val, followed by (E)-5-(4-methoxy-5-methyl-6-oxopyran-2-yl)-3-
methylhex-4-enoic acid, which was higher in the controls relative to
the antibiotic-treated cows (MDA: 14.31) (Figure 6B). By contrast,

aleuretic acid (MDA: 7.49) was higher in the antibiotic-treated cows at
week 9 compared to the controls.

3.6 Predicted microbial functions differed
between ceftiofur-treated and control cows
at specific time points

In the microbial metabolic pathway analysis, we identified
nuanced distinctions among treatment groups. During the first
week, for example, only seven microbial metabolic pathways
exhibited disparities between cows treated with ceftiofur and the
control group. These differences included an elevated presence of
thiamine phosphate pathways by yeasts, as well as reduced levels of
biosynthesis of cis-vaccenate and the degradation of punine
ribonucleosides, D-fructuronate, and 4-deoxy-L-threo-hex-
4enopyranuronate in the ceftiofur-treated cows.

At week 5, 17 microbial pathways were significantly less
abundant in the cows treated with ceftiofur than the control
cows; these included pathways involved in the biosynthesis of
amino acids (i.e., L-ornithine, L-isoleucine, L-lysin, L-threonine,
L-methionine), peptidoglycan, glycogen, isoprene, preQ0,
chorismate, and coenzyme A, as well as in the degradation
of L-arginine (Figure 7A). The unintegrated pathways of

FIGURE 6
Hindgut metabolites identified in dairy cows with IMM ceftiofur (antibiotic) treatment relative to the control group. Differences in the relative
abundance of eachmetabolite are shown at (A) 1 week after treatment (Week 1) and (B) 9 weeks after treatment (Week 9). The bars in the figure represent
the mean fold change along with the corresponding confidence interval. One-tailed Wilcoxon signed-rank test was used to compare the relative
abundance and significance (p-value) is shown as **≤0.01, or *≤0.05. NCGC00380646-01 represents (E)-5-(4-methoxy-5-methyl-6-oxopyran-2-
yl)-3-methylhex-4-enoic acid.
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Ruminococcaceae bacterium P7 and methylerythritol phosphate
pathway I, however, were significantly lower in ceftiofur-treated
cows. During week 5, several pathways were primarily identified in
control cows but were absent in those given ceftiofur (Figure 7B).
These pathways include L-arginine degradation XIII (controls, n =
5), the incomplete reductive TCA cycle (controls, n = 5), and
L-ornithine biosynthesis II (controls, n = 6; ceftiofur, n = 1).

At week 9 (fresh phase), eleven microbial pathways explained
differences between treatments using RF (Figure 7C). The most
important differentially abundant pathways among the ceftiofur-
treated cows included those related to peptidoglycan maturation,
degradation of D-galacturonate, glycogen, purines, D-galactose, and
the biosynthesis of 6-hydroxymethy-dihydropterin diphosphate and
L-cysteine. Mirroring the observations from week 5, three microbial

pathways were exclusive to controls (n = 4) at week 9, while another
pathway was detected in just one ceftiofur-treated cow and seven
controls. Curiously, a higher abundance of pathways related to
anaerobic energy metabolism, and the biosynthesis of
L-methionine and L-alanine were identified in cows treated with
ceftiofur compared to the controls.

3.7 Differences in metabolites and microbial
pathways were detected across samplings
regardless of treatment status

The OOB error was 1.68% across the samplings, as the
metabolomes of two fresh cows were misclassified as lactating

FIGURE 7
Differentially abundant microbial pathways in cows treated with IMM ceftiofur (antibiotic) compared to the control group. Differences in the relative
abundance of eachmicrobial pathway are shown at: (A) 1 week after IMM treatment (Week 1); (B) 5 weeks after treatment (Week 5); and (C) 9 weeks after
treatment (Week 9). The bars in the figure represent the mean fold change along with the corresponding confidence interval. One-tailed Wilcoxon
signed-rank test was used to compare the relative abundance and significance (p-value) is shown as **≤0.01, or *≤0.05.
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cows. Hierarchical clustering of the 50 most important metabolite
components identified with RF showed a transitional composition in
fresh cows between the lactation stages (Supplementary Figure S4).
Only four of these 50 components had clusters with library
identification representing long-chain fatty acids, which were
more abundant in the dry-off period (week 1), and amino acids
that were increased during lactation (Supplementary Figure S5).

Differential abundance tests also identified 9,850 features that
differed between samplings, corresponding to 46.59% of the total
features (metabolites and microbial pathways) (Supplementary
Figure S6). Dry and fresh cows showed a lower number of
different features (53.88% of the total) than lactating and dry and
cows (64.64%) or lactating and fresh cows (66.9%). In particular, the
dry and fresh cows only differed in a few microbial pathways,
whereas approximately one-third of the microbial metabolic
pathways had varying abundances during lactation as compared
to the other stages.

Among the top 25 most important metabolites classified by RF
with library matches (Figure 8), cows in late lactation had a greater

abundance of oxoheptadecanedioic acid, tri(propylene glycol) butyl
ether, apigenin tetramethoxyflavone, phosphocholine, and
phenylalanine compared to dry and fresh cows. Conversely, dry
cows had higher concentrations of coenzyme Q10, myristoyl
ethanolamide, riboflavin, harmol, oxobutanoic acid,
guanidineacetic acid, citrulline, and phosphoethanolamide. Fresh
cows demonstrated increased abundance of glutamate, histidine,
and lysine, alongside histamine, which was elevated in both fresh
and lactating cows compared to dry cows. Similarly, an evaluation of
the top 25 microbial metabolic pathways showed that multiple
pathways were significantly higher in lactating cows compared to
those cows in the other stages (Figure 9). Pathways involved in the
biosynthesis of nucleotides, amino acids, cell wall and glycolysis are
among the most abundant. Intriguingly, during dry-off (week 5),
higher levels of 2-oxobutanoate degradation I pathways
were detected.

Notably, the top 8 most important pathways that predicted the
sampling period through RF corresponded to three categories: 1) cell
division, 2) amino acid biosynthesis, and 3) carbohydrate

FIGURE 8
Differentially abundant metabolites across the three samplings in all 40 dairy cows regardless of treatment status. Each sampling corresponds to
different stages of lactation. Day -1 corresponds to late lactation,Week 1 to dry off, andWeek 9 to fresh cows. Data from all animals was combined and not
stratified by treatment status. The bars in the figure represent the mean fold change along with the corresponding confidence interval.
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biosynthesis. These pathways were significantly higher during
lactation, particularly those related to cell division that were
mostly absent during the dry-off period. Cell-division pathways
included inosine-5′-phosphate biosynthesis III, pyrimidine
deoxyribonucleotides de novo biosynthesis IV, UDP-N-acetyl-D-
glucosamine biosynthesis I, and O-antigen building blocks
biosynthesis (E. coli), which were assigned to Bifidobacterium,
Turicibacter, Olsenella, and Escherichia coli (Supplementary
Figure S7). The three main pathways related to amino acid
biosynthesis involved the superpathway of L-lysine, L-lysine
biosynthesis VI, L-valine biosynthesis, and L-threonine and
L-methionine biosynthesis II (Supplementary Figure S8). During
lactation, these amino acid biosynthesis pathways were mainly
assigned to Bifidobacterium spp. No taxa could be assigned to
these pathways in the samples collected during the dry and fresh
periods. Finally, carbohydrate biosynthesis pathways included
glycogen biosynthesis I (from ADP-D-Glucose), sucrose
biosynthesis II, and horismite biosynthesis I (Supplementary
Figure S9). Although Sarcina was the main taxa assigned to

glycogen and sucrose biosynthesis during the dry-off and fresh
periods, Bifidobacterium was mainly associated with carbohydrate
biosynthesis during lactation.

3.8 Multi-omics analysis identifies
correlations between the microbiome and
metabolome

Positive Spearman’s correlations among metabolites, microbial
pathways, microbial species, viruses, and antimicrobial resistance
genes were analyzed. Potential functional relationships between
metabolites and microbial species included uncultured Firmicutes
and Bacteroidetes species with triacylglycerol (TAG); Clostridium
with N,N,N-trimethyllysine, N,N-dimethyldodecylamine N-oxide
and myristamidopropyl betaine; Proteobacteria and Blautia with
histamine; monolinolenin, beauvericin [+NH4+], and
neobavaisoflavone, with Campylobacter, Ruminococcaceae
uncultured bacteria (GGB3236), and bacteriophages from

FIGURE 9
Differentially abundant microbial pathways across samplings in 40 dairy cows regardless of treatment status. The different samplings are shown and
correspond to the different stages of lactation. Day -1 represents late lactation, while Week 1 and Week 9 represent the dry-off and fresh periods,
respectively. The bars in the figure represent the mean fold change along with the corresponding confidence interval.
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enterobacteria (Vectrevirus Vec3); 2′-deoxyadenosine with
Gammaproteobacterial; 1,2-Diheptadecanoyl-sn-glycero-3-
phosphocholine with uncultured Bacteroidetes. Fruchterman
Reingold networks show other correlations between the
microbiome and polar metabolites (Supplementary Figure S10) as
well as nonpolar metabolites (Supplementary Figure S11).

3.9 Metabolome and microbiome patterns
changed across the sampling period

To better explore the functional associations of differentially
abundant features, hierarchical clustering was performed with
only those known metabolic clusters that differed significantly
between samplings using LefSe, MaAsLin2 and ANCOM-BC. A
tree was constructed based on a distance matrix highlighting the
fold-change of metabolites and metagenomic features that
differed significantly (n = 684). One relevant group showed
concomitant higher levels of Actinobacteria, Proteobacteria,
and histamine during lactation (Figure 10). This finding
suggests a role of these taxa in the production of pro-
inflammatory compounds such as histamine, which was also
observed in the correlation networks.

Fresh cows showed higher levels of urate and nonpolar plant-
derived compounds, which was likely due to a diet rich in alfalfa hay
that was provided to the animals during this phase. Other clusters also
showed patterns with lower contrast across the stages of lactation, with
the most relevant HC groups displayed in Supplementary Figure S12.
For instance, higher quantities of amino acids and dipeptides were
detected with the polar mode on samples from lactation, which was
related to a higher abundance of bacterial amino acid synthesis
pathways mentioned priorly (Supplementary Figure S8). Not
surprisingly, higher levels of androstane were also detected in fresh
cows, which are expected to have peak levels of estrogens at this time
(Supplementary Figure S13).

4 Discussion

In this study, we sought to identify changes in the gut
metabolome of dairy cows due to IMM treatment with ceftiofur
applied at dry-off over a 9-week period. Although IMM ceftiofur
treatment impacted the abundance of specific metabolites,
substantial alterations in the overall metabolome composition
were not observed and could be attributed to low levels of
ceftiofur metabolites in the cattle gut. Indeed, ceftiofur
metabolites were not detected in the feces of IMM-treated cows
1-week after treatment. This was an anticipated finding as a prior
study of steers treated subcutaneously found the total concentration
of ceftiofur equivalents to be negligible in the gastrointestinal tract
after 96 h (Foster et al., 2019). Another study showed that ceftiofur
excretion began as early as 24 h after intramuscular administration,
but most residues were detected in the urine (60%–80%) (Brown
et al., 1991). Therefore, the lack of detection of ceftiofur metabolites
in our samples post-treatment likely contributed to fewer functional
alterations in the gut. Regardless, several metabolites were detected
in greater abundance in the ceftiofur-treated versus -untreated cows
along with an uncharacterized metabolite, which was found
exclusively in the treated cows 1-week after treatment. This
metabolite could represent a constituent of Spectramast® DC,
which also contains microcrystalline wax, oleoyl oilyoxyglyceride,
and cottonseed oil as well. Additional studies are needed for
verification.

Among the metabolites present in greater abundance in the
ceftiofur-treated cows was stachyose, an oligosaccharide of plant
origin that is resistant to host enzymatic digestion (Zheng et al.,
2000). Its presence suggests potential disruptions in gut bacteria
responsible for its fermentation. Additionally, the enhanced levels of
PE-DAG and inosine detected in the ceftiofur-treated cows suggest
variation in microbial metabolism of lipids, energy, and cellular
signaling, while lower concentrations of anti-inflammatory
compounds, daphnoretin and dehydrocostus lactone (He et al.,

FIGURE 10
Metagenome and metabolome patterns by sampling period. This figure shows the variation in metagenome feature abundance at the genus and
phylum levels as well as metabolome feature abundance across the sampling period. The samplings correspond to the Lactation (left panel), Dry-off
(middle panel), and Fresh (right panel) periods. Emphasis is placed on features that are dominant in one sampling but nearly absent in others. These
patterns were discerned using Hierarchical Clustering with the Ward D2 method. The Y-axis details the fold-change, compared to the average
feature abundance across all samples. Boxplots encapsulate the median and interquartiles with whiskers indicating extreme values and marked outliers
also presented.
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2002; Chen et al., 2020), were discerned. Diminished fatty acid
oxidation processes, as reflected by the reduced levels of
palmitoylcarnitine, phospholipids, and trisaccharide maltrotiose
in the ceftiofur-treated cows, also suggest differences in digestive
processes compared to the controls.

Microbial metabolic pathways were also modified following
IMM ceftiofur treatment. While the impact was not immediately
observable in these pathways 1-week after treatment, discernible
functional alterations were detected by week 5. Indeed, the
diminished abundance of numerous microbial metabolic
pathways at week 5 suggests a curtailed metabolic potential of
the bovine microbiome in response to ceftiofur treatment.
Notable among these were decreased utilization and biosynthesis
of certain amino acids encompassing L-arginine, L-ornithine,
L-isoleucine, L-lysine, L-threonine, and L-methionine.
Furthermore, the capacity to produce precursor molecules and
the synthesis of crucial biochemicals such as sterols, carotenoids,
chlorophylls, fatty acids, cholesterol, among others, was decreased in
the ceftiofur-treated group. Since the metagenomic analysis did not
invariably elucidate the activity of the gene-encoded enzymes
present in fecal samples in the first week post-treatment, the
application of metatranscriptomics could be used in future
studies to provide clarification.

Importantly, ceftiofur treatment had no short-term or
persistent effects on metabolome diversity in the cow gut over
the 9-week sampling period. Although this result is consistent
with our findings showing no difference in microbiome diversity
in the same cohort of cows (Vasco et al., 2023), the ceftiofur-
treated microbiome showed a reduced propensity for energy
production. Evidence for this observation is provided by the
observed downturn in the biosynthesis of glycogen and coenzyme
A. By the ninth week, however, multiple pathways associated
with Bifidobacterium were more abundant in ceftiofur-treated
cows. For example, L-methionine and L-alanine, which are
prominently involved in anaerobic energy metabolism and the
biosynthesis of amino acids, are associated with the genus
Bifidobacterium, a member of the phylum Actinobacteria that
was significantly more abundant in ceftiofur-treated cows
previously (Vasco et al., 2023). Despite these observations, a
decline in sugar degradation (such as D-galactose, purine
ribonucleosides, glycogen, D-galacturonate) and a reduction in
the production of vitamin B12 and peptidoglycan maturation
were observed in the ninth week following ceftiofur treatment.
These findings highlight the complex and multilayered response
of the bovine gut microbiome to IMM ceftiofur treatment.

While we did not collect milk samples for evaluation in this
study, it is worth noting that treatment-associated modifications
in the gut microbiome and metabolome could potentially impact
milk quality. The presence of Bifidobacterium, for example, has
been linked to higher milk-fat yields (Jami et al., 2014), while
genus Prevotella (phylum Bacteroidetes) has been connected to
metabolic pathways integral to protein and fat content in milk as
well as the production of volatile fatty acids (Wu et al., 2021).
Despite these associations, the primary determinants of milk
composition are specific to each herd’s diet (Albonico et al., 2020)
and to a lesser extent, the interplay between genetic makeup and
the composition of rumen bacteria (Buitenhuis et al., 2019). It is
important to recognize that even though IMM ceftiofur may exert

specific effects on the fecal metabolome and the functionality of
the microbiome, the judicious application of antibiotic therapy
during the dry-off period is essential for preventing mastitis. This
condition not only impairs milk production but also has adverse
consequences on the welfare of the animal (Ruegg, 2017). We did
not assess the efficacy of IMM ceftiofur in preventing IMM
infections herein, nor did we investigate whether IMM
infections induce inflammation and independently perturb the
gut microbiota.

Moreover, our analysis demonstrated that the overall
metabolome and related microbial metabolic pathways varied
across the sampling period. Each stage of lactation, which is
characterized by unique physiology and diets, had a distinct
metabolome and functional microbiome, highlighting the
collective role that these factors play in metabolome variation
regardless of ceftiofur treatment. Even though the individual
impact of these factors could not be explored based on our study
design, prior studies have shown that diet impacts the fecal
metabolome and microbiome composition in cows (Zhang
et al., 2018; Hagey et al., 2019; Liu et al., 2020; Vasco et al.,
2021). For instance, increasing grain-forage ratios have been
linked to a higher abundance of Proteobacteria and a lower
abundance of Bacteroidetes in feces (Zhang et al., 2018; Liu
et al., 2020). Moreover, diets with >30% grain given to cows
in early lactation significantly changed the ruminal metabolome,
increasing the abundance of short-chain fatty acids as well as
toxins, inflammatory compounds, putrescine, methylamines, and
ethanolamine (Saleem et al., 2012). Herein, cows in late lactation
(day -1) received the highest amount of grain in the diet,
constituting about 39% of the dry matter intake vs 26% in
fresh cows (week 9) and 7% in dry cows (week 1). It is
therefore likely that different feed ingredients will have
distinct effects on the metabolome and microbial activity in
the bovine gastrointestinal tract.

Comparatively, those cows sampled during late lactation also
had enhanced diversity of microbial pathways and metabolites.
Phenylalanine, for instance, is an essential amino acid, and had
higher levels during late lactation. This finding suggests increased
protein intake or metabolism in cows on the maintenance diet
compared to the diets used during other stages of lactation
(Reitelseder et al., 2020). It also aligns with the diet formulation
containing higher levels of crude protein compared to those
administered in the early dry and fresh phases. Similarly,
compounds like phosphocholine and carnitine are involved in
lipid metabolism and energy production; hence, the higher levels
observed during late lactation may reflect differences in energy
substrate utilization compared to dry and fresh phases. Higher
levels of dry matter, fat, net energy, non-fiber carbohydrates,
starch and vitamin A were also provided during lactation that
could have differentially impacted community function and
require further examination.

During late lactation when a higher abundance of
Actinobacteria and Proteobacteria was observed, greater levels
of histamine were also found. Microbial-origin gut histamine,
which is linked to grain-rich diets, has been associated with
inflammatory responses, such as laminitis (Garner et al., 2002),
and inflammatory reactions in the bovine lung (Barcik et al.,
2019). Furthermore, increased levels of histamine in the gut can
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lead to symptoms such as increased vascular permeability,
edema, and the recruitment of inflammatory cells (Ashina
et al., 2015). These outcomes can result in the translocation of
bacteria, toxins, and other molecules across the intestinal barrier,
potentially contributing to inflammatory processes and other
gut issues.

During the dry-off period, cows are typically transitioned to a
diet primarily composed of forage with a lower percentage of grain
(Dancy et al., 2019), which could impact the metabolic response. For
example, propionic acid is a volatile fatty acid produced during
rumen fermentation of carbohydrates, and its higher levels may
reflect increased fermentation of forage-based diets, particularly
grasslage (Ribeiro et al., 2009). Compounds like citrulline,
guanidinacetic acid, oxobutanoic acid, riboflavin, myristoyl
ethanolamide, and coenzyme Q10 are involved in energy
metabolism, amino acid metabolism, and cellular processes, and
their levels may be influenced by metabolic shifts. Similarly, during
dry off, cows also exhibited a higher abundance of the 2-
oxobutanoate degradation I pathway, which plays a role in the
breakdown of specific amino acids and contributes to energy
production and the generation of key metabolic intermediates.
Since dry-off is associated with changes in hormone levels,
particularly the decline in lactation-related hormones such as
prolactin (Ollier et al., 2013), hormonal fluctuations can also
impact metabolic pathways and the production or utilization of
certain compounds.

A higher diversity of microbial pathways, as was observed
during late lactation, has also been associated with enteric
infection in monogastrics in a case-control clinical study
performed by our group (Hansen et al., 2024). Despite the
similarity in diet and the metabolome between the fresh and
lactating cows, the microbial metabolic pathway diversity and
composition were significantly different. Hence, it is essential to
emphasize the marked disparity in dry matter intake and metabolic
status between fresh and lactating cows, particularly when
distinguishing between negative and positive energy balances.
During early lactation, cows typically experience a negative
energy balance, whereas those in late lactation transition to a
positive energy balance (Butler and Smith, 1989). In fact, the
pathway profiles of fresh cows were like those observed in the
dry phase suggesting a slow adaptation to a high grain diet.
Although it only took a week on a forage-based diet at dry-off to
identify changes in the functional gut microbiome, this was
accompanied by lower levels of histamine-producing bacteria
compared to the lactation stage. Since the core microbiome
composition is unique to each farm due to factors that include
housing, breed, and age (Hagey et al., 2019; Furman et al., 2020),
changes in the diet are the most impactful on the cattle metabolome
and microbial diversity. Although manipulation of the functional
microbiome through dietary changes is plausible, functional changes
can take longer to develop in a new environment as was observed
herein. Nonetheless, it is important to note that we did not control
for diet or other factors when making comparisons across sampling
periods and hence, these relationships require validation in
future studies.

Similar to findings from other metabolomic studies (da Silva
et al., 2015; Peisl et al., 2018), many of the metabolites and
microbial-metabolic pathways were unknown and could not be

classified. Despite this limitation, biologically important
compounds and metabolic pathways enabled the interpretation
of some associations that were observed between the microbiome
and metabolome. Future studies, however, should include GC/
MS to promote the identification of short-chain fatty acids
(SCFAs) since they have been linked to health outcomes in
humans (Tan et al., 2014) and production in cattle (Bionaz
et al., 2020). Moreover, associations between metagenome,
metabolome and milk production could guide improvements
in diet formulations, health, and probiotic development.
Serum metabolome analyses could also help identify
relationships between microbiome functionality and host
factors such as hormonal levels (i.e., estrogens, cortisol,
progesterone, prolactin), or metabolic disorders in cattle.
Neither SCFAs or serum metabolites were evaluated in our
study nor was the application of fecal proteomics, which could
be used to define markers of immunity and inflammation that are
indicative of specific host responses. These analyses as well as the
use of metatranscriptomics and metaproteomics combined with
targeted metabolomics should be performed in the future to
better characterize the functional microbiome (Van Den
Bossche et al., 2021).

5 Conclusion

IMM ceftiofur treatment of dairy cattle at dry-off resulted in
alterations to the microbial metabolic pathways and fecal
metabolites associated with lower biosynthesis of amino acids
and energy a week after its application. Nevertheless, these
alterations were not as pronounced as those observed with
dietary changes and physiological shifts linked to lactation stage.
Indeed, each stage of lactation was characterized by a distinct
metabolome composition that was related to feed ration and
physiology regardless of treatment status. During lactation, a
higher level of microbial activity, particularly amino acid
biosynthesis, was observed as compared to dry and fresh cows;
however, histamine-producing bacteria were more abundant during
late lactation. Together, these data highlight how integrative analyses
of metagenomics and untargeted metabolomics data can be used to
define the metabolite-microbe interactions in the cattle gut.
Understanding the role of the gut environment in the microbial
profile is critical to identify factors related to cow health in
dairy farms.

Data availability statement

The paired-end metagenome raw reads used in this study are
deposited in the NCBI repository, BioProject PRJNA825520
(Biosamples SAMN27520269 to SAMN27520427). FBMN data
processed through GNPS is available online for polar and
nonpolar metabolites (https://gnps.ucsd.edu/ProteoSAFe/status.jsp?
task=d4a761f0a6be422c8b89db9408f57b0d and https://gnps.ucsd.
edu/ProteoSAFe/status.jsp?task=1d6f7e95d2f04f96a94fede8c195702d,
respectively). Additional analyses that support our conclusions are
available in the GitHub repository (https://github.com/karla-vasco/
metabolome_microbiome_cattle).
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