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Current and future role of artificial intelligence in cardiac imaging, volume II
Introduction

Heart imaging without the need for invasive procedures plays a crucial

role in various aspects of cardiology, including diagnosis, risk evaluation,

treatment decisions, medical and invasive therapies, prognosis, and ongoing

monitoring. As a key component in the pursuit of precision medicine, cardiac

imaging enables a personalized approach to healthcare. Cardiac imaging is

essential for a comprehensive understanding of cardiovascular conditions,

intricate physiology, and the implications of imaging results for managing

cardiovascular health and disease. Consequently, the demand for cardiac imaging

continues to grow.

Artificial Intelligence (AI) methods are increasingly needed for improving

imaging exams, to optimize workflow, reduce waiting times, improve accuracy and

precision, reduce costs and benefit patient outcomes. The special issue on

“Current and Future Role of Artificial Intelligence in Cardiac Imaging” in 2020

provided 10 comprehensive reviews of a wide range of AI applications in

cardiovascular imaging, from efficient image acquisition and fast reconstruction, to

structure and function analysis, to statistical atlases and imaging-genetics synergies.

In the meantime the field has been advancing rapidly. The second volume of

this topic focuses on original research articles which showcase new methods

and applications. Applications were invited for all topics and forms of cardiac

imaging, and the resulting published papers reflect a range of modalities and

applications which have a common goal of improving patient outcomes

through extraction of more detailed and precise information than has previously

been possible.
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Special issue content

The special issue attracted a greater number of submissions

than the first edition, with 15 papers eventually published

(Abdulkareem et al., Alabed et al., Beetz et al., Campello et al.,

Chen et al., Hampe et al., Li et al., Lin et al., Lin et al.,

Puyol-Antón et al., Suinesiaputra et al., Szabo et al., Zhai et al., Zhao

et al. and Zhao et al.). Figure 1 shows a breakdown of topics

and applications.

Imaging modality was varied with CMR being the most

common (Abdulkareem et al., Alabed et al., Beetz et al., Campello

et al., Puyol-Antón et al. and Suinesiaputra et al.), followed closely

by CT (Chen et al., Hampe et al., Li et al. and Zhai et al.) and

echocardiography (Lin et al., Lin et al. and Puyol-Antón et al.).

One paper provided a guide to trustworthy and responsible AI in

all imaging modalities (Szabo et al.). Although not an imaging

method, ECG processing is an important topic in cardiovascular

disease, and can give anatomical information such as hypertrophy,

which was the focus of one paper (Zhao et al.). In terms of

application area, the most common was structural analysis

(segmentation of chambers, vessels, and detection of hypertrophy)

(Hampe et al., Lin et al., Suinesiaputra et al., Zhao et al. and Zhao

et al.), followed by image motion analysis [in echo (Lin et al.) and

CT (Chen et al. and Li et al.)]. These reflect the ongoing

development of methods for quantifying anatomy and function in

cardiac images, which are extremely important for diagnosis and

prognosis. Two papers were concerned with synthesis of images or

anatomy, using generative adversarial networks (Campello et al.)

and variational auto encoders (Beetz et al.) respectively. This is an

exciting area of research with the promise to synthesise large

numbers of datasets with different pathology and characteristics,

which can be used to understand the influence of disease

processes on structure and function. Two papers discussed

learning contrast-enhanced information from non-contrast scans,

applied to late gadolinium enhancement CMR (Abdulkareem et al.

) and calcium scoring CT (Zhai et al.) respectively. These
FIGURE 1

Breakdown of special issue papers by modality and topic.
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highlight the ability of AI methods to leverage information present

in standard scans to provide additional information, which would

normally require an extra scan and administration of a contrast

agent. The papers on AI fairness (Puyol-Antón et al.), and

trustworthiness (Szabo et al.), illustrate another promising area of

research into methods for improving AI methods, mitigating bias

in the training data and explaining how inferences are made in

complex networks. These were identified in the first special issue

as topics of high importance. Another important topic highlighted

by the first special issue is the reporting of AI methods to foster

reproducibility and generalization, and this is the focus of the

review article (Alabed et al.).
Future perspectives

AI methods are becoming ubiquitous in all areas of cardiac

imaging. This is driven by the increasing role of imaging in

guidelines for patient treatment, as well as the wealth of data

generated by large cohort imaging studies such as the UK

Biobank and the Multi-Ethnic Study of Atherosclerosis. The

recent advent of widely available large language models which

link imaging and videos with text such as GPT-4 highlight the

rapidly advancing technology which will transform medical

imaging in general and cardiovascular imaging in particular. The

ability to generate reports from images and to combine images

and reports into structured datasets will enable large amounts of

data already residing in hospital databases to be reused for new

applications. Generative models will enable new understanding of

the ways in which longitudinal changes between imaging exams

can be more precisely quantified, by comparing predicted follow-

up images with the actual scans and highlighting any anomalies.

Physics-based networks and neural implicit functions are also on

the horizon which will enable super-resolution in fluid flow

imaging, and computation of physical entities such as pressure

and stiffness from imaging data. The linking of digital twins with
frontiersin.org
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imaging methods will enable surrogate AI-based methods to

simulate growth and remodeling in health and disease, to

estimate physiological parameters from non-invasive imaging. In

summary, this second issue on AI in cardiac imaging illustrates

important areas which are rapidly developing. However the next

advances in this area are only limited by the imaginations of the

researchers in the community. At present, there is no AI solution

for this!
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The Multi-Ethnic Study of Atherosclerosis (MESA), begun in 2000, was the first large

cohort study to incorporate cardiovascular magnetic resonance (CMR) to study the

mechanisms of cardiovascular disease in over 5,000 initially asymptomatic participants,

and there is now a wealth of follow-up data over 20 years. However, the imaging

technology used to generate the CMR images is no longer in routine use, and methods

trained on modern data fail when applied to such legacy datasets. This study aimed to

develop a fully automated CMR analysis pipeline that leverages the ability of machine

learning algorithms to enable extraction of additional information from such a large-scale

legacy dataset, expanding on the original manual analyses. We combined the original

study analyses with new annotations to develop a set of automated methods for

customizing 3D left ventricular (LV) shape models to each CMR exam and build a

statistical shape atlas. We trained VGGNet convolutional neural networks using a transfer

learning sequence between two-chamber, four-chamber, and short-axis MRI views

to detect landmarks. A U-Net architecture was used to detect the endocardial and

epicardial boundaries in short-axis images. The landmark detection network accurately

predicted mitral valve and right ventricular insertion points with average error distance

<2.5mm. The agreement of the network with two observers was excellent (intraclass

correlation coefficient >0.9). The segmentation network produced average Dice score of

0.9 for both myocardium and LV cavity. Differences between the manual and automated

analyses were small, i.e., <1.0 ± 2.6 mL/m2 for indexed LV volume, 3.0 ± 6.4 g/m2

for indexed LV mass, and 0.6 ± 3.3% for ejection fraction. In an independent atlas

validation dataset, the LV atlas built from the fully automated pipeline showed similar

statistical relationships to an atlas built from the manual analysis. Hence, the proposed

pipeline is not only a promising framework to automatically assess additional measures

of ventricular function, but also to study relationships between cardiac morphologies and

future cardiac events, in a large-scale population study.

Keywords: cardiac anatomy, machine learning, left ventricle, MRI, deep learning
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INTRODUCTION

Cardiovascular magnetic resonance (CMR) is widely used for the

non-invasive assessment of cardiac function, and has excellent

accuracy and reproducibility for clinical evaluation of cardiac

mass and volume (1). The ability of CMR to evaluate all
regions of the heart with high signal to noise ratio without
harmful radiation exposure has led to its use in several large

cohort studies investigating the development of cardiac disease
in general populations, including the Multi-Ethnic Study of

Atherosclerosis (MESA) (2) and the UK Biobank (3). MESA
was the first large epidemiological study to utilize CMR to

evaluate pre-clinical characteristics of participants before the
onset of clinical symptoms of cardiovascular disease (CVD).
The baseline MESA CMR exam was performed between 2000
and 2002 using the common imaging method prevalent at that
time: gradient echo cine imaging. However, this imaging method
has been largely replaced by steady-state free precession cine
imaging in subsequent studies and in clinical practice (4). Due
to differences in fundamental properties that comprise image
contrast as well as spatial resolution (5), image analysis tools
designed for modern steady-state free precession images are
likely to have poor performance when applied to 20-year-old
gradient echo imaging.

Three-dimensional (3D) atlas-based analysis methods have
been developed to quantify subtle differences in heart shape
(remodeling) and function associated with CVD risk factors
such as hypertension, smoking and diabetes (6–10). To date,
these methods have only been applied to a limited subset of

FIGURE 1 | Fully-automated atlas generation pipeline of cardiac MRI analyses. Three deep learning networks were trained to perform: (1) detection of mitral valve

points from long-axis (LAX) images, from both two-chamber or four-chamber views, (2) detection of right ventricular (RV) insert points from short-axis (SAX) images,

and (3) segmentation of myocardium mask from SAX images. Landmark points and contours from myocardium mask images were converted into 3D patient

coordinates to guide the customization of a left ventricle (LV) model. Breath-hold mis-registration of SAX slices were corrected. The final model was used to construct

a statistical shape LV atlas.

MESA cases, due to the need for additional image analysis
which was not performed as part of the original CMR analysis.
This is a recurring problem in large cohort legacy datasets,
since a limited amount of annotations are available and manual
analysis is unfeasible due to time and resource constraints. A fully
automated processing pipeline is therefore necessary to enable
more comprehensive analysis and make better use of the large
amount of image data acquired.

Deep learning methods, particularly convolutional neural
networks (CNN), have demonstrated high accuracy and
reproducibility for fully automated image analysis when sufficient
training images and high computational power is available
(11, 12). CNN can automatically learn optimal weights for
convolutional operations in each layer to extract image features.
It has been applied and adapted for image classification
(13), object recognition (14), segmentation (15), and image
registration (16). However, CNN solutions trained on modern
steady-state free precession images fail when applied to the old
gradient echo images. Transfer learning approaches, such as pre-
training or layer-wise fine tuning, have been proposed to adapt a
network to different domain, but when large amount of labeled
data is available, full training from scratch is the best option to
train a CNN (17).

In this study, we developed an automated CMR preprocessing
pipeline, shown in Figure 1. In order to automatically construct
3D LV shape models and a statistical shape atlas, anatomical
landmarks were required to orient the model and contours
were required to customize the shape models. Custom CNNs
were used to detect anatomical landmarks and to segment
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TABLE 1 | Patient demographics from the MESA cohort.

MESA CMR Landmark detection Segmentation Atlas validation

N 5,003 2,372 1,545 1,052

Age (years) 61.5 (10.1) 61.3 (10.1) 61.0 (10.2)** 60.1 (9.8)***

Gender Female 2,622 (52.4) 1,230 (51.9) 814 (52.7) 430 (40.9)***

Male 2,381 (47.6) 1,142 (48.1) 731 (47.3) 622 (59.1)

SBP (mmHg) 125.4(21.3) 126.2 (21.9)* 126.4 (22.0)* 124.8 (20.2)

DBP (mmHg) 71.8 (10.30) 71.6 (10.3) 71.7 (10.3) 73.6 (10.1)***

Heart Rate (bpm) 62.8 (9.5) 62.7 (9.5) 62.9 (9.5) 62.1 (9.6)**

Diabetes Yes 459 (9.2) 232 (9.8) 162 (10.5)* 74 (7.0)**

No 4,544 (90.8) 2,140 (90.2) 1,383 (89.5) 978 (93.0)

Hypertension Yes 1,766 (35.3) 805 (34.0) 539 (34.9) 373 (35.5)

No 3,234 (64.7) 1,566 (66.0) 1,005 (65.1) 677 (64.5)

Smoking status Never 2,569 (51.5) 1,237 (52.3) 805 (52.4) 511 (48.6)

Former 1,786 (35.8) 824 (34.9) 521 (33.9) 394 (37.5)

Current 634 (12.7) 302 (12.8) 209 (13.6) 146 (13.9)

Framingham score 13.9 (9.5) 14.1 (9.5) 14.0 (9.6) 13.7 (9.2)

Two sub-cohorts were defined to train and validate deep learning networks for landmark detection and segmentation. Another sub-cohort, disjoint from the two training datasets, was

defined for validation of the atlas generated from automated compared with core lab manual analysis. Continuous variables are written as mean (standard deviation), while categorical

variables are written as count (percentage). Statistical tests were performed between a sub-cohort against its complement with one-way ANOVA for continuous variables and χ
2 test

for categorical variables. *p < 0.05, **p < 0.01, ***p < 0.001 for difference between a particular sub-cohort and the rest of the MESA CMR cohort.

myocardium from the MESA gradient echo CMR images. We
demonstrate that these networks provide robust and consistent
contours and landmarks compared with manual annotations.
We also show that an LV atlas built from the proposed pipeline
produced similar associations with CVD risk factors to an atlas
built from manual analyses.

MATERIALS AND METHODS

Dataset
The MESA study has been described previously in (2). Briefly,
the CMR exam consisted of 5,098 participants who were initially
free from clinically recognized CVD at the time of enrollment
(18). Images were acquired with 1.5TMR scanners at six different
institutions across the United States using Siemens and General
Electric scanners between July 2000 and July 2002. All images
were acquired during breath-holding at resting lung volume.
From each CMR examination, we only included short- and long-
axis cine images for this study. The cine CMR images consist
of 10–12 short-axis slices (SAX), single four-chamber (4CH)
and single two-chamber (2CH) long-axis (LAX) views. All cine
images were acquired using fast gradient echo pulse sequence,
with typical parameters of slice thickness 6, 4mm gap, field of
view 360–400mm, 256× 160 image matrix (smallest 192× 160),
flip angle 20◦, echo time 3–5ms, repetition time 8–10ms with
20–30 frames per slice (temporal resolution <50ms) and pixel
size from 1.4 to 2.5 mm/pixel depending on patient size. All
participants gave informed consent, and the institutional review
board at each site approved the study protocol.

The MESA Core Lab provided 2D contour points drawn
manually by trained technologists. The Core Lab analysis
protocol for MESA study has been described previously
(18), including inter- and intra-observer variability. Briefly,

endocardial and epicardial borders were traced on short-axis
slices at end-diastole (ED) and end-systole (ES) frames using Q-
MASS software (version 4.2, Medis, the Netherlands). Papillary
muscles were included in the blood pool. All image contours were
reviewed and corrected by a cardiac MR physician.

In total 5,003 exams had adequate MRI data for analysis
(Table 1). Of these, 2,496 cases (49.9%) were available from
the Cardiac Atlas Project (19), while the remaining 2,507 cases
(50.1%) were provided by the MESA Core Lab at the Johns
Hopkins Medical Center, Baltimore, USA. In this study, we used
cases from the Cardiac Atlas Project for training, testing and
validating the deep learning networks, while the remaining cases
were used for an independent LV atlas validation. Figure 2 shows
detail divisions of the baseline MESA cohort for the automated
CMR analysis pipeline development.

Of the 2,496 cases for the training data, 2,273 cases had
manual contours. We further excluded 728 cases due to mis-
alignment of contours with the image slices, unmatched contours
with DICOM images or missing DICOM header information.
This resulted in 1,545 cases to train the segmentation
network, which were randomly split into 1,236 training
cases (80%), 154 validation cases (10%), and 155 test cases
(10%). Contour points were converted into mask images
consisting of three disjoint areas: myocardium, LV cavity, and
background pixels.

As anatomical cardiac landmark points were not part of
the MESA Core Lab protocol, we employed two experienced
analysts (both had >5 years of fulltime experience in CMR
exams) to manually place cardiac landmarks by using
Cardiac Image Modeler software (version 6.2; Auckland
MR Research Group, University of Auckland, New Zealand).
Of the 2,496 cases for the training data, 2,372 cases had
adequate annotations to train the landmark detection network.
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FIGURE 2 | Division of MESA cases into two independent sets of Atlas Validation and Training sub-cohorts. Within the Training sub-cohort, cases were divided into

training, validation and testing sub-groups for the different deep learning networks (Segmentation Network and Landmark Detection Network).

These were randomly split into 2,091 training cases (88%),
231 validation cases (10%), and 50 test cases (2%). The test
cases were also used for inter-observer variability study,
where landmark points from both analysts are available for
each case.

For the LV atlas validation, we need cases where we can derive
3D points from themanual contours. Unfortunately, information
about 3D image positions and orientations were not stored in
the Q-MASS contour files available from the Core Lab. We
therefore developed a simple matching algorithm to align Q-
MASS contours with the DICOM image headers. This consisted
of ordering the images and contours from apex to base, followed
by alignment based on image position and orientation. The
alignment results were manually reviewed to confirm correct
matching of contours and images. This process resulted in 1,052
cases with manually verified DICOM image matching, sufficient
to validate the automated pipeline developed in this study (see
Figure 2).

Cardiac MRI Analysis Pipeline
As shown in Figure 1, the proposed automated CMR analysis
combines two types of CNNs (myocardial segmentation and
landmark detection) with LV finite element shape modeling.
Cardiac landmark points were needed to determine the initial
pose and orientation of the LV model, but were not part of
the original MESA analysis protocol, hence further annotation
was required to provide training data. The LV contours were
required to guide the patient-specific customization of the LV
model, and training data could be provided from the original
MESA CMR analyses.

Landmark Detection Network
The landmark detection network was based on the VGGNet
architecture (20), which has been successfully used to classify
images and to recognize objects. It consists of 16 layers of CNN
blocks that gradually extract features into smaller tensor size.
The input is 256 × 256 MR image and the output is a feature
vector of 2,048 elements. The final layer reduces this feature
vector into four neurons corresponding to two points on the
input image in [x1, y1, x2, y2] format. Details of this landmark
detection architecture are given in Appendix A.

Two types of anatomical landmarks are predicted for the
proposed pipeline. The first landmark is the position of mitral
valve hinge points at the intersection between the left atrium and
the left ventricle from two long-axis MR images: two-chamber
(2CH) and four-chamber (4CH) views. The other landmarks are
the position of the intersection points between the right ventricle
and the interventricular septum (RV insert points) from short-
axis MR images. Mitral valve points were used to determine the
basal extent of the heart, whereas RV insertion points were used
to estimate the position of the septum.

Although sharing the same architecture, we trained three
separate landmark detection networks to detect the different
types of cardiac landmark points and image views: 2CH mitral
valve points, 4CH mitral valve points and short-axis RV insert
points. We developed a novel transfer learning scheme between
these networks during training, which was designed to exploit
similarities in the images, yet allowing for differences in the
spatial relationships. First, an initial network for one view was
trained from scratch with random weight initialization until
convergence. Then, the network was retrained for one of the
remaining two views. However, instead of using a random
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FIGURE 3 | Distributions of distances between landmark points identified by the landmark detection method (Auto) and the two analysts (Obs1 and Obs2). Median

(solid line), quartiles (thin lines) outliers (red points).

TABLE 2 | Landmark distance errors from neural networks trained independently

compared to networks trained with our training strategy.

System trained with

independent neural networks

System trained with our

training strategy

Two-chamber 2.98 (1.44) 1.53 (0.74)

Four-chamber 3.24 (1.55) 1.44 (0.74)

Short axis 2.94 (1.6) 2.07 (1.11)

Error values were measured on 232 validation cases and shown as mean (standard

deviation). All values are in millimeters.

initialization, the weights from the previous training step were
used as initial weights. After the new network was converged, its
weights were used as initialization for the third view. The order
in which the three different views were trained was random. This
sequence was repeated until convergence (e.g., the performance
of the two-chamber network compared to the previously trained
two-chamber network was not improved). An advantage of
this sequence is that it allows for maximum freedom when
training the neural networks for the different kinds of image
views whilst still being able to infer features learned from other
images. Table 2 shows the improvement of performance using
the transfer learning scheme in the validation set, where the
landmark distance errors significantly decreased.

On average, we included five frames per case for the mitral
valve points on each of the four-chamber and two-chamber
views, and five short-axis slices per case for the RV inserts
on the end-diastolic frame. In total, there were 11,604 images

for the two-chamber view, 11,670 images for the four-chamber
view, and 13,402 images for the short-axis view. Images were
whitened by subtracting the mean pixel intensity and divided by
standard deviation, on a per-image basis. Zero-padded cropping
was performed to create 256× 256 input images as needed.

We validated the predicted landmark points by the Euclidean
distance (in mm) on the image space. The strength of agreement
between the landmark detection and the two analysts was
measured using the intraclass correlation coefficient (ICC) with
a two-way random effects model (21). A high ICC (close to 1)
indicates a high similarity between landmark point locations
from all observers.

Segmentation Network
To segment the myocardium, we used the U-Net architecture
(22), which has been successfully used in a wide range area of
medical image analysis (12). The input is 256 × 256 short-axis
MR image and the output is a mask image of the same size
that consists of either myocardium, cavity or background pixel.
The short-axis image was segmented individually; no temporal
or other spatial multi-slice information was learned for this
segmentation network. During training, data augmentation was
performed by image flipping, zoom, brightness, and contrast
variations. Input images were zero-padded and cropped into
256 × 256 image size as needed. More details about the
segmentation network architecture and its training results are
given in Appendix B.
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We validated the accuracy of the segmentation network
by using the Dice score (23), for both myocardium and LV
cavity. We also validated standard clinical measurements for
post-processing CMR exams (1), which include LV volumes at
end-diastole and end-systole, ejection fraction and LV mass.
Volumes were estimated by the LV cavity areas times the
slice thickness (and slice gaps) for all short-axis slices where
endocardial contours were available. LV masses were calculated
from the myocardial volume (defined between endocardial and
epicardial contours) multiplied by a density of 1.05 g/mL. All
volumes and masses were indexed by body surface area, resulted
in LV end-diastolic volume index (LVEDVi), LV end-systolic
volume index (LVESVi), LVmass index (LVMi). Ejection fraction
(LVEF) was measured by (LVEDVi – LVESVi) / LVEDVi ∗ 100.
We compared all these values from the test cases (n = 155)
using the Bland-Altman plot analysis (24) to identify if there
is a systematic error from the mean offset of the differences,
inconsistent variability from the limits of agreement (mean ±

1.96× standard deviation), and any trend of proportional error.

LV Atlas Construction
After landmark detection and segmentation (Figure 1), a finite
element LV model was automatically customized to each set
of myocardial contours and landmark points, as described
previously in (25). Briefly, the LV model was first fitted to the
landmark and contour points by a least squares optimization.
The extent of the LV was defined from landmarks on mitral
valve points and an LV apex point obtained from the contours.
The septum area was located using the RV insertion landmark
points. After orienting the model according to the landmarks, the
endocardial and epicardial surfaces were fitted to the short axis
contours by minimizing the distance between the surfaces and
the contour points.

One advantage of using this LV model customization is that
we can automatically correct image slice shifting due to breathing
motion. In Figure 1, an example of this shifting artifact can be
seen from the 3D contour points. The automatic breath-hold
misregistration correction was based on (6). Briefly, a highly
regularized customization of the LV was performed first to
align a smooth LV model with the data. This model preserves
the overall shape but is robust to breath-hold misalignments.
Intersections between the LV model with short-axis image
slices were then calculated and the contours were aligned with
the model. The alignment movement was performed in-plane
allowing only two degrees of freedom during shifting (no shift in
the longitudinal direction). The shifting direction was calculated
from the centroid of the intersection of the model with the image
slice, based on the area-weighted average of the mesh barycenter.
Then the LV model was re-customized to the data with a
low regularization weight, minimizing the distance between the
model and the contours.

After model fitting, an LV atlas was constructed by
concatenating LV models from end-diastolic (ED) and end-
systolic (ES) frames to capture both shape and motion
information. In our previous study (7), concatenating ED
and ES surface sample points yielded better performance
to extract cardiac shape remodeling features compared to

points from individual frames alone. Let N be the number
of points sampled from the finite element model, and
Pendo_ED, Pepi_ED, Pendo_ES, Pepi_ES ∈ R

Nx3 be 3D surface
sampling points from the endocardium at ED, epicardium at
ED, endocardium at ES and epicardium at ES, respectively. A
single shape vector is defined by flattening each point matrix

into S =
[

x1, y1, z1, . . . , xN , yN , zN
]T
vector and concatenating all

of the four surfaces, resulting in 4 × 3 × N = 12N points.
We removed position and orientation variations between shape
vectors by using Procrustes alignment (26). The mean shape was
then calculated and the principal component analysis (PCA) can
be applied to the registered shape vectors.

Association With Cardiovascular Risk
Factors
To demonstrate the clinical efficacy of the predicted LV atlas, we
analyzed associations between LV shape and cardiovascular risk
factors, i.e., hypertension, diabetes, smoking status, cholesterol
level, and calcium score, and compared atlas associations
obtained from the automatic pipeline with atlas associations
obtained from manual contours and landmarks. For this
evaluation, we evaluated 1,052 MESA cases independent of
the sub-cohorts used to train the landmark and segmentation
networks (the atlas validation dataset, Table 1 and Figure 2).

Our hypothesis was that there is no significant differences in
the strength of risk factor associations between the automatically
generated LV atlas and the atlas derived from manual analyses.
Logistic regression (LR) models were used to evaluate the
strength of the risk factor associations. A separate LR model
was generated for each risk factor using that factor as a
binary univariate dependent variable and the first 20 principal
component scores (90% total variance explained) derived from
the atlas as the independent variables. Visual comparisons
between modes of shape variations from LV Atlas derived from
manual analyses and from the proposed cardiac MRI pipeline
are available in the Supplementary Files. The strength of the
association between shape and risk factor was quantified using
the area under the curve of the receiver operating characteristic
(AUC). To avoid overfitting, a ten-fold cross validation scheme
was employed. At each cross validation iteration, we rebuilt
the PCA from scratch to show that the associations were not
dependent to a fixed orientation of the principal axes.

RESULTS

Landmark Detection
The total training time for three landmark detection networks
was 14 h on NVidia Titan X Pascal GPU. Typically, five iterations
of transfer learning between 2CH, 4CH, and SAX networks
were required for overall convergence. The performance of the
landmark detection networks was tested on 50 independent cases,
which were annotated by two expert analysts independently.
Only images where both analysts identified all landmark points
were included. These resulted in 111 2CH, 107 4CH, and 286 SAX
images for comparisons. Since two points are identified from each
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FIGURE 4 | Examples of automated landmark detection (red markers) compared with manually defined placements by two observers (blue and green markers). The

top row shows cases with the maximum distance of automated detection to one of the observers while interobserver distances are small. The bottom row shows

cases with the largest interobserver distances.

image, the total number of points during the test was 222, 214 and
572 points for 2CH, 4CH, and SAX, respectively.

The distributions of Euclidean distances between automated
methods and the observers are shown in Figure 3. Mean,
standard deviation, and maximum distances are given in Table 3.
The results show that the automated landmark detection errors
are within the inter-observer variabilities with no significant
differences in the location of landmark points (all p < 0.001).
ICC between the automated method and the two analysts were
all excellent, i.e., 0.998, 0.996, and 0.995 for 2CH, 4CH, and
SAX respectively.

Examples of landmark detections are shown in Figure 4

together with manual expert observer placements. The top row
images show the largest distance of the automated detection
method where the distance between observers was low (< 3
pixels). Even in these cases, the automated method could identify
the landmarks very close to the observers. The bottom row
images in Figure 4 showcase the largest distances between expert
observers. The automated method was able to identify landmark
points in these cases with the position very close to one of the

TABLE 3 | Differences and intraclass correlation (ICC) values in detecting

landmarks on 50 validation cases.

2CH LAX 4CH LAX SAX

N = 222 N = 214 N = 572

Auto vs. Obs1 1.86 (1.19) 2.09 (1.32) 2.29 (2.15)

Auto vs. Obs2 1.81 (1.21) 2.19 (1.28) 2.27 (1.61)

Obs1 vs. Obs2 1.78 (1.16) 2.24 (1.68) 2.67 (2.29)

ICC value 0.998 0.996 0.995

All difference values are expressed mean (standard deviation) from the Euclidean distance

between annotations in millimeters. N is the number of cases.

observers. These cases show the difficulty of visually identifying
landmark points where image contrast is low and high image
noise is present.

Segmentation
Quartiles, means, and standard deviations of the Dice score from
the test dataset are presented in Table 4. Median and mean Dice
scores were high (>0.8) for myocardium and LV cavity masks,
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both at ED and ES frames. Typical segmentation results are
shown in Figure 5 with cases of best, mean, and worst results.
Figure 5 also demonstrates the difficulty of segmenting basal
slices near the LV outflow tract.

Table 5 shows comparisons of volumes (LVEDVi and
LVESVi), mass (LVMi) and ejection fraction (LVEF) from
the test cases. The segmentation network achieved excellent
correlation coefficients for all clinical measurements (all
Pearson’s coefficients are >0.9, p < 0.001). The mean offset
of differences are also small, i.e., <1 mL/m2 for volumes,
only 0.7% for ejection fraction, and 3 g/m2 for mass. As
shown in Figure 6, the differences are consistent within

TABLE 4 | Dice score results of the segmentation network from the test dataset

with 2,465 images.

Mask Frame Q1 Median Q3 Mean Std dev

Cavity ED 0.92 0.95 0.97 0.93 0.07

ES 0.86 0.91 0.94 0.88 0.11

Myocardium ED 0.85 0.89 0.91 0.87 0.07

ES 0.89 0.92 0.94 0.90 0.08

Frames indicate end-diastole (ED) and end-systole (ES). The 25th quartile (Q1), median,

and 75th quartile (Q3) are shown, together with means and standard deviations.

the limit of agreement lines without any visible trend for
proportional error.

Atlas Validation
Finally, we compared cardiovascular risk factor associations from
the LV atlas from the automated analysis pipeline with an atlas
formed from themanual analyses using a similar analysis method
to (25). Table 6 shows the comparison of the area under the
receiver operating characteristic curves (AUC) from risk factor
association results (test cases from the cross validation). From all
risk factors (hypertension, diabetes, smoking status, cholesterol,
and calcium score), none of them have significant differences
between the two methods except for cholesterol (p= 0.02) which

TABLE 5 | Comparisons of indexed LV volumes, ejection fraction and mass from

the 155 test cases between the predicted segmentation results with manual

contours.

LV function Correlation coefficient Differences

LVEDVi (mL/m2) 0.98 (p < 0.001) −0.02 (2.6)

LVESVi (mL/m2 ) 0.95 (p < 0.001) −0.46 (2.3)

LVEF (%) 0.92 (p < 0.001) 0.69 (3.3)

LVMi (g/m2) 0.92 (p < 0.001) 3.0 (6.4)

The differences are written as mean (standard deviation).

FIGURE 5 | Examples of short axis segmentation network results. Top row, base; middle row, mid-ventricle; bottom row, apex. Manual contours are in red while

automated contours are in blue. A range of Dice score results are shown.
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FIGURE 6 | Differences between automated analysis (Auto) and manually drawn contours (Man). Solid lines are mean differences and dashed lines are the limits of

agreement within ±1.96 × standard deviation from the mean. The mean difference values are shown in Table 5.

TABLE 6 | Area under the ROC curve (AUC) comparisons from the 1,052 LV

shape association studies using different contours: manual (Man) and deep

learning (Auto).

AUC P-value

Man Auto

Hypertension 0.69 0.71 0.22

Diabetes 0.56 0.53 0.34

Smoking status 0.59 0.61 0.33

Cholesterol 0.50 0.54 0.02

Calcium score 0.61 0.61 0.99

showed a stronger association with the automated analysis than
with the manual analysis.

DISCUSSION

In this study, we present methods for the automated analysis
of large cohort data from a legacy dataset obtained in the
MESA study, aided by deep learning methods. These methods
enable a more complete analysis of large cohort datasets,
augmenting the parameter set available from these valuable
studies. In addition to the end-diastolic and end-systolic volumes
computed in the original study, these methods enable the
analysis of 3D shapes, facilitating a fully automated 3D model-
based atlas analysis method. Almost all risk factors showed
similar strength of relationships with atlas scores, except for
cholesterol level in which the automated method showed a
stronger relationship (Table 5). However with AUC around 0.50,
the elevated cholesterol association was essentially random. The
slightly higher AUC for the automated contoursmay indicate that
some signal may be available in the automated analysis which was
lost in the manual analysis. This requires more research using a
larger cohort.

The automated landmark detection method was successfully
applied to GRE images, which are known to have lower signal-to-
noise ratio and lower contrast compared to the current standard
steady state free precession CMR imaging methods (5). The

agreements with two expert analysts were all excellent (ICC >

0.9). Since signal-to-noise ratio is low in some gradient echo
images, the analysts had noticeable disagreements between them
in some cases, as shown in Figure 4 (bottom row). However,
the automated detection method could identify the location of
the landmark point in agreement with one of the observers.
This ability was achieved by our approach to transfer learning
weight parameters between image views iteratively. We exploited
features between different domains to make the detection robust
to noise and other artifacts.

Other machine learning methods have reported good results
with landmark detection in cardiac MRI data, as well.
For instance, Tarroni et al. (27) applied a hybrid random
forest approach integrating both regression and structured
classification networks and reported mean errors of 3.2–3.9mm
in mitral valve landmark detection. Although it is difficult
to determine which methods give the “best performance” in
this application, our results show that the CNN-based method
is powerful enough in the applications where legacy datasets
provide sufficient annotated cases.

For the segmentation task, we demonstrated that the popular
U-Net architecture (22) without any major modifications is
capable of providing acceptable segmentation of the myocardium
in gradient echo cine images. The segmentation network,
which was trained based only on individual SAX images
(without temporal information), has already achieved excellent
performance. The first quartiles of the Dice score were all
above 0.85 (Table 4), and 92% of the Dice scores were above
0.80. From the test dataset, the network only failed to segment
one slice and only 8 images with Dice scores <0.5. All of
these slices were the apical slices, where blood cavity is hardly
recognizable even by visual inspection. Other problematic slices
were at the base around the outflow tract, where there are
more variability of the contours at the aortic root. Figure 5
shows some examples of the segmentation results at different
levels of the LV (base, middle and apex) with variations of
the Dice scores. Although apical and basal slices were more
difficult for the network, the LV shape customization method
was relatively robust to segmentation mask outliers, as evidenced
by the agreement in statistical relationships with common risk
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FIGURE 7 | An example of fully automated CMR pipeline result as a patient-specific LV model. Intermediate predictions of the myocardial contours (in blue) and

landmark points (yellow circles) are shown in each corresponding DICOM image. Manual contours are shown in red. The intersection contours between the 3D LV

model with the images are shown in green. This particular example demonstrates how failed segmentation contours (in apex and base slices) do not affect the final LV

model, which are clearly shown in the LAX intersection contours.

factors, since the model customization process used data from
all slices. Figure 7 demonstrates the benefit of the LV model
customization over large errors predicted in some problematic
slices. This is shown by the intersection contours of the LV
model with the SAX images that are well aligned with the manual
contours. Figure 7 also shows the intersection contours on LAX
images where the alignment of the contours at the myocardium
can be visually assessed.

It is known that different groups annotate cardiac MRI
data differently (28). For this study, the manual contours were
performed by a single core lab, whereas the landmarks were
performed in another core lab, so both the landmark detection
and segmentation networks will reflect the core lab standard
operating procedures on the gradient echo images. Differences
in local shape are expected when comparing the shape models
generated with gradient echo imaging with those generated from
other protocols, and these can be corrected using atlas-based
methods (29). Alternatively, the training data distribution can be
made richer to include more pathologies, images from different
centers and multiple observers, as has been demonstrated by Tao
et al. (30) and Bhuva et al. (31).

A common approach to train a complex deep learning
network is by end-to-end training (32, 33), where a combined

loss function is defined for multiple tasks as the global cost
function to optimize. In this work, landmarks and contours were
only available on separated image views, so we decided to train
the landmark detection network separately to the segmentation
network to make each network capable of predicting unseen
images independently. The ability to identify mitral valve points
therefore does not need to depend on the segmentation masks or
vice versa.

The problem of missing information is common to legacy
datasets such as MESA. In this study, information linking
contours with the corresponding 3D image position was not
available. Since most cases were able to be matched with a
simple algorithm, leading to sufficient training data, we did
not invest more time in developing more sophisticated image-
contour matching algorithms. The 3D conversions failed mainly
due to missing 3D position information in the DICOM header
or missing trigger time information needed to sort the images
temporally. To investigate whether there was any bias due to
poor image quality, we examined the image quality score given
by the original Core Lab readers. This was a three-level subjective
rating: 1 for good, 2 for moderate and 3 for poor. There were
no significant differences between included and excluded cases
(p = 0.4, Fisher’s Exact test), with 85.4% vs. 86.3% having score
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1, 14.6% vs. 13.5% for score 2 and 0% vs. 0.2% for score 3, for
included vs. excluded cases, respectively. LV wall motion was
also scored on a three point scale and there were no differences
between included and excluded cases.

Although this study specifically trained deep learning
networks for old legacy gradient echo (GRE) cine images, there
are some clinical applications employing GRE imaging. In a
recent guideline (34), the image quality of GRE images is better
than that of the current steady-state free precession (SSFP)
cine images for patients with cardiac implantable electronic
devices (35). GRE images are also preferred for T1 and T2-
weighted images particularly for patients with suspected iron
overload (36). Hence the proposed CMR analysis pipeline has
a wider application in other cardiac imaging studies as well,
albeit transfer learning is needed to adapt the learned weight
parameters to specific pathology. Note that the pipeline does not
depend only on GRE; it can be applied directly to other types
of CMR images, particularly where legacy datasets can provide
valuable additional data.

CONCLUSIONS AND FUTURE WORK

We have shown that deep learning networks can be used for
automatically finding LV landmarks and segmentations on legacy
MESA CMR images, in order to automate the construction of
LV models, which can be used to build an atlas and evaluate
associations between LV shape and risk factors. The final
prediction of the LV model based on deep learning networks had
similar power to evaluate associations with cardiovascular risk
factors compared to manual analysis. This has greatly reduced
the amount of time to analyze large-scale collections of cardiac
MRI study. In future work, the automated atlas will be used to
derive associations between LV shape and outcomes. In addition,
analysis of all frames in the cine will allow the calculation of
ejection and filling rates and other dynamic information.
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Background: Artificial intelligence (AI) techniques have been proposed for automation
of cine CMR segmentation for functional quantification. However, in other applications
AI models have been shown to have potential for sex and/or racial bias. The objective
of this paper is to perform the first analysis of sex/racial bias in AI-based cine CMR
segmentation using a large-scale database.

Methods: A state-of-the-art deep learning (DL) model was used for automatic
segmentation of both ventricles and the myocardium from cine short-axis CMR. The
dataset consisted of end-diastole and end-systole short-axis cine CMR images of 5,903
subjects from the UK Biobank database (61.5 ± 7.1 years, 52% male, 81% white). To
assess sex and racial bias, we compared Dice scores and errors in measurements
of biventricular volumes and function between patients grouped by race and sex. To
investigate whether segmentation bias could be explained by potential confounders, a
multivariate linear regression and ANCOVA were performed.

Results: Results on the overall population showed an excellent agreement between
the manual and automatic segmentations. We found statistically significant differences
in Dice scores between races (white ∼94% vs. minority ethnic groups 86–89%) as well
as in absolute/relative errors in volumetric and functional measures, showing that the
AI model was biased against minority racial groups, even after correction for possible
confounders. The results of a multivariate linear regression analysis showed that no
covariate could explain the Dice score bias between racial groups. However, for the
Mixed and Black race groups, sex showed a weak positive association with the Dice
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score. The results of an ANCOVA analysis showed that race was the main factor that
can explain the overall difference in Dice scores between racial groups.

Conclusion: We have shown that racial bias can exist in DL-based cine CMR
segmentation models when training with a database that is sex-balanced but not
race-balanced such as the UK Biobank.

Keywords: cardiac magnetic resonance, deep learning, fair AI, segmentation, inequality fairness in deep learning-
based CMR segmentation

INTRODUCTION

Artificial intelligence (AI) is a rapidly evolving field in medicine,
especially cardiology. AI has the potential to aid cardiologists
in making better decisions, improving workflows, productivity,
cost-effectiveness, and ultimately patient outcomes (1). Deep
learning (DL) is a recent advance in AI which allows computers
to learn a task using data instead of being explicitly programmed.
Several studies in cardiology and other applications have shown
that DL methods can match or even exceed human experts in
tasks such as identifying and classifying disease (2–4).

In cardiology, cardiovascular imaging has a pivotal role
in diagnostic decision making. Cardiac magnetic resonance
(CMR) is the established non-invasive gold-standard modality
for quantification of cardiac volumes and ejection fraction
(EF). For decades, clinicians have been relying on manual or
semi-automatic segmentation approaches to trace the cardiac
chamber contours. However, manual expert segmentation
of CMR images is tedious, time-consuming and prone to
subjective errors. Recently, DL models have shown remarkable
success in automating many medical image segmentation
tasks. In cardiology, human-level performance in segmenting
the main structures of the heart has been reported (5,
6), and researchers have proposed to use these models for
tasks such as automating cardiac functional quantification (7).
These methods are now starting to move toward broader
clinical translation.

In the vast majority of cardiovascular diseases (CVDs), there
are known associations between sex/race and epidemiology,
pathophysiology, clinical manifestations, effects of therapy,
and outcomes (8–10). Furthermore, in clinically asymptomatic
individuals the Multi-Ethnic Study of Atherosclerosis (MESA)
study showed that men had greater right ventricular (RV)
mass and larger RV volumes than women, but had lower
RV ejection fraction; African-Americans had lower RV mass
than whites, whereas Hispanics had higher RV mass (11);
and the LV was more trabeculated in African-American and
Hispanic participants than white participants, and smoothest in
Chinese-American participants (12), but the greater extent of
LV trabeculation was not associated with an absolute decline in
LVEF during the approximately 10 years of the MESA study.
Similarly, the Coronary Artery Risk Development in Young
Adults (CARDIA) study (13) showed differences between races
(African American and white) and sexes in LV systolic and
diastolic function, which persist after adjustment for established
cardiovascular risk factors.

Although these physiological differences are associations and
not proven causative links with race/gender, their presence
raises a potential concern about the performance of AI models
in cardiovascular imaging. Although AI has great potential
in this area, no previous work has investigated the fairness
of such models. In AI, the concept of “fairness” refers to
assessing AI algorithms for potential bias based on demographic
characteristics such as race and sex. In general, AI models
are trained agnostic to demographic characteristics, and they
assume that if the model is unaware of these characteristics while
making decisions, the decisions will be fair. However, we have
recently shown, for the first time, that using this assumption there
exists racial bias in DL-based cine CMR segmentation models
when trained using racially imbalanced data (14). The previous
study aimed to identify the presence of bias and the technical
development of different bias mitigation strategies, in order to
reduce the bias effect between different racial groups. The object
of this study is to investigate in more detail the origin and
the effect of this bias on cardiac structure and function and to
assess whether the bias could be explained by any confounder
and therefore be linked with changes in subject characteristics,
anatomy or cardiovascular risk factors.

MATERIALS AND METHODS

Participants
The UK Biobank is a prospective cohort study with more than
500,000 participants aged 40–69 years of age conducted in the
United Kingdom (15). This study complies with the Declaration
of Helsinki; the work was covered by the ethical approval for
UK Biobank studies from the NHS National Research Ethics
Service on 17th June 2011 (Ref 11/NW/0382) and extended on
18th June 2021 (Ref 21/NW/0157) with written informed consent
obtained from all participants. The present study was performed
using a sub-cohort of the UK Biobank imaging database, for
whom CMR imaging and ground truth manual segmentations
were available. In this study, in order to minimize the effects of
physiological differences due to cardiovascular and other related
diseases, we only focus on the healthy population of the UK
Biobank database and analyze possible confounders that can
explain racial and sex bias.

Therefore, we excluded any subjects with known
cardiovascular disease, respiratory disease, hematological
disease, renal disease, rheumatic disease, malignancies,
symptoms of chest pain, respiratory symptoms or other diseases
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impacting the cardiovascular system, except for diabetes mellitus,
hypercholesterolemia and hypertension (see all exclusion criteria
in Supplementary List 1). We included these cardiovascular risk
factors to evaluate if or to what degree different cardiovascular
risk in otherwise healthy patients could explain a potential bias
in segmentation performance. We used the ICD-9 and ICD-10
codes and self-reported detailed health questionnaires and
medication history for the selection process.

In this paper, race was assumed to align with self-reported
ethnicity, which was the data collected in the UK Biobank.
From the total UK Biobank database (N = 501,642), the race
distribution is as follows: White 94.3%, Mixed 0.6%, Asian, 1.9%,
Black 1.6%, Chinese: 0.9%, Other: 0.4%. The UK Biobank cohort
has a similar ethnic distribution to the national population of
the same age range in the 2011 UK Census (16). The imaging
cohort used in this study (N = 5,660) has a slightly different
racial distribution (White 81%, Mixed 3%, Asian, 7%, Black 4%,
Chinese: 2%, Other: 3%), but it is still predominantly White
race, in line with the full cohort of the UK Biobank database.
Imaging centers of the UK Biobank are in Newcastle upon Tyne,
Stockport, Reading and Bristol. The same imaging protocol was
used in all imaging centers and no racial distribution difference
was found between them. More details of the image acquisition
protocol can be found in Petersen et al. (17).

Subject characteristics obtained were age, binary sex category,
race, body measures (height; weight; body mass index, BMI; and
body surface area, BSA), and smoker status (smoker was defined
as a subject smoking or smoked daily for over 25 years in the
previous 35 years). We also obtained the average heart rate (HR)
and brachial systolic and diastolic blood pressure (SBP and DBP)
measured during the CMR exam. These subject characteristics
were considered as possible confounders in the statistical analysis,
as they are directly or indirectly related to the measurements
made and therefore plausibly associated with the accuracy of
the measurements.

Automated Image Analysis
A state-of-the-art DL based segmentation model, the “nnU-Net”
framework (18), was used for automatic segmentation of the
left ventricle blood pool (LVBP), left ventricular myocardium
(LVMyo) and right ventricle blood pool (RVBP) from cine short-
axis CMR slices at end-diastole (ED) and end-systole (ES). This
model was chosen as it has performed well across a range of
segmentation challenges and was the top-performing model in
the “ACDC” CMR segmentation challenge (6). For training and
testing the segmentation model, we used a random split of 4,410
and 1,250 subjects, respectively, each with similar sex and racial
distributions. We refer the reader to our previous paper (14) for
further details of the model architecture and training.

Evaluation of the Method
For quantitative assessment of the image segmentation model,
we used the Dice similarity coefficient (DSC), which quantifies
the overlap between an automated segmentation and a ground
truth segmentation. DSC has values between 0 and 100%, where
0 denotes no overlap, and 100% denotes perfect agreement.
From the manual and automated image segmentations, we

calculated the LV end-diastolic volume (LVEDV) and end-
systolic volume (LVESV), and RV end-diastolic volume (RVEDV)
and end-systolic volume (RVESV) by summing the number
of voxels belonging to the corresponding label classes in
the segmentation and multiplying this by the volume per
voxel. The LV myocardial mass (LVmass) was calculated by
multiplying the LV myocardial volume by a density of 1.05 g/mL.
Derived from the LV and RV volumes, we also computed
LV ejection fraction (LVEF) and RV ejection fraction (RVEF).
We evaluated the accuracy of these volumetric and functional
measures by computing the absolute and relative differences
between automated and manual measurements. We define the
absolute and relative error as εabsolute = |vmanual − vauto|)
and εrelative(%) = 100∗ |vmanual − vauto|/vmanual, where v
corresponds to each clinical measure.

Analysis of the Influence of Confounders
To investigate whether a true bias between racial and/or sex
groups exists for automated DL-based cine CMR segmentation,
we conducted a statistical analysis to investigate if the
observed bias could be explained by the most common
confounders. In this study, we use as possible confounders
age, sex, body measures (i.e., height, weight and BMI), HR,
SBP, DBP, CMR-derived parameters (LVEDV, LVESV, RVEDV,
RVESV, LVmass), cardiovascular risk factors (i.e., hypertension,
hypercholesteremia, diabetes and smoking) and center (i.e.,
core lab where most of the segmentations were performed vs.
additional lab).

Statistical Analysis
Data analysis was performed using SPSS Statistics (version
27, IBM, United States). Continuous variables are reported
as mean ± standard deviation (SD) and tested for normal
distributions with the Shapiro–Wilk test. Log transformations
were applied to the (1-DSC) values to obtain an approximately
normal distribution. After transformation, all continuous
variables were normally distributed. Categorical data are
presented as absolute counts and percentages. Comparison of
variables between groups (i.e., races and sexes) was carried out
using an independent Student’s t-test.

Independent association between log-transformed DSC values
and race was performed using univariate linear regression
followed by multivariate adjustment for confounders. All
variables in the regression models were standardized by
computing the z-score for individual data points.

Finally, the differences in DSC values among different racial
groups were initially assessed by a 1-way ANOVA (Model 4)
followed by an analysis of covariance—ANCOVA (Model 5) to
statistically control the effect of covariates. In addition, we check
the assumption concerning regression residuals (19) as follows:
(1) Homoscedasticity tested by a Levene’s Test of quality of error
variance; (2) Normality of residuals tested by the Kolmogorov–
Smirnov and Shapiro–Wilk test; (3) Multicollinearity tested
by the Durbin Watson Test. For all statistical analysis, the
threshold for statistical significance was p < 0.01 and confidence
intervals (%) were calculated by non-parametric bootstrapping
with 1,000 resamples.
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Pairwise post hoc testing was carried out using Bonferroni
correction and Scheffé correction for multiple comparisons on
the t-test and ANOVA analysis, respectively.

MATERIALS

Subject Characteristics
The dataset used consisted of ED and ES short-axis cine CMR
images of 5,660 healthy subjects (with or without cardiovascular
risk factors). Subject characteristics for all participants were
obtained from the UK Biobank database and are provided in
Table 1.

For all subjects, the LV endocardial and epicardial borders
and the RV endocardial border were manually traced at ED
and ES frames using the cvi42 software (version 5.1.1, Circle
Cardiovascular Imaging Inc., Calgary, Alberta, Canada). 4,975
subjects were previously analyzed by two core laboratories based
in London and Oxford (20), the remaining 685 subjects were
analyzed by two experienced CMR cardiologists at Guy’s and
St Thomas’ Hospital following the same standard operating
procedures described in Petersen et al. (20). For all CMR
examinations that underwent manual image analysis, any case
with insufficient quality (i.e., presence of artifacts or slice location
problems, operator error or evidence of pathology, such as
significant shunt or valve regurgitation) were rejected (21). All
experts performing the segmentations were blinded to subject
characteristics such as race and sex. From our database, 4,410
subjects were used to train and validate the DL-based CMR
segmentation model, and 1,250 subjects were used as a test set
for the validation of the model and the statistical analysis (split
70/10/20 for training/validation/test set). The train and test sets
were stratified to contain approximately the same percentage of
samples for each racial group and sex. Supplementary Figure 1
shows the flow chart for selection of cases for this study.

RESULTS

Deep Learning-Based Image
Segmentation Pipeline
Table 2 reports the DSC values between manual and automated
segmentations evaluated on the test set of 1,250 subjects which
the segmentation model had never seen before. The table shows
the mean DSC for LVBP, LVMyo and RVBP for both the full
test set and stratified by sex and race. Overall, the average
(AVG) DSC was 93.03 ± 3.83% (94.40 ± 2.61% for the LVBP,
88.78 ± 3.08% for the LVMyo and 90.77 ± 3.96% for the RVBP).
Table 2 shows that the CMR segmentation model had a racial
bias for all comparisons but no sex bias (independent Student’s t-
test between each racial group and rest of the population;
p < 0.001 for LVBP, LVMyo, RVBP and AVG for all races).1

Supplementary Figure 2 shows in the first-row visual examples
of frames from a cine CMR sequence and their associated ground
truth segmentations, and in the two last rows some sample
segmentation results (on different frames) for different racial
groups with both high and low DSC.

Next, we evaluate the accuracy of the volumetric and
functional measures (LVEDV, LVESV, LVEF, LVmass, RVEDV,
RESV, RVEF). Table 3A reports the mean values based on
the manual segmentations, and Tables 3B,C report the mean
absolute differences and relative differences between automated
and manual measurements, respectively. The Bland-Altman plots
for agreement between the pipeline and manual analysis are
shown in Supplementary Figure 3. For the overall population,
results are in line with previous reported values (5, 22) and within
the inter-observability range (20).

These results show that for sex there is a statistically significant
difference in the absolute error for LVEF, LVmass and RVEF

1Table 2 differs from Table 1 of our previous work (14), as in the present study we
have excluded any case with cardiovascular disease.

TABLE 1 | Population characteristics for the train/validation and test sets.

Train/validation Test

Continuous variables Patients, n 4,410 1,250

Age (years; mean, SD) 62 (8) 61 (8)

Height (cm; mean, SD) 169 (9) 169 (9)

Weight (kg; mean, SD) 76 (15) 75 (14)

BMI (kg/m2; mean, SD) 27 (4) 26 (4)

BSA (m2; mean, SD) 1.86 (0.21) 1.85 (0.20)

Systolic blood pressure (mmHg; mean, SD) 136 (20) 136 (18)

Diastolic blood pressure (mmHg; mean, SD) 79 (11) 80 (10)

Heart rate (bpm; mean, SD) 63 (20) 63 (10)

Categorical variables Sex (males; n, %) 2,299 (52) 655 (52)

Racial group White (n, %) 3,570 (81) 1,025 (81)

Mixed (n, %) 136 (3) 34 (3)

Asian (n, %) 313 (7) 83 (7)

Black (n, %) 190 (4) 47 (4)

Chinese (n, %) 87 (2) 27 (2)

Other (n, %) 144 (3) 34 (3)

All continuous values are reported as mean(SD), while categorical variables are reported as number (percentage). SD, standard deviation.
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TABLE 2 | Dice similarity coefficient (DSC) values for the overall test set and by sex and race.

N = 1,250 LVBP LVMyo RVBP AVG

Total 94.39 (2.61) 88.68 (3.06) 90.77 (3.86) 91.28 (3.18)

Male 94.35 (2.55) 89.10 (2.84) 90.61 (3.96) 91.35 (3.12)

Female 94.44 (2.67) 88.59 (3.26) 90.94 (3.94) 91.32 (3.29)

White 95.13 (1.98)*** 89.81 (1.48)*** 92.24 (2.11)*** 92.39 (1.86)***

Mixed 89.79 (1.34)** 80.72 (2.38)** 82.95 (2.53)** 84.49 (2.08)**

Asian 92.15 (2.48)** 86.46 (2.18)* 86.27 (2.63)** 88.29 (2.43)**

Black 91.41 (1.53)*** 85.78 (1.73)*** 80.88 (2.10)*** 86.02 (1.79)***

Chinese 88.98 (2.43)* 79.75 (2.21)* 82.58 (2.32)* 83.77 (2.32)*

Others 90.46 (2.53)* 82.64 (5.44)* 84.77 (3.46) 85.96 (3.81)*

DSC reported for the LV blood pool (LVBP), LV myocardium (LVMyo) and RV blood pool (RVBP), and average DSC values across LVBP, LVM and RVBP (AVG column).
DSC is reported as mean and standard deviation (in parentheses). The first row reports the DSC for the full database, the second and third rows report DSC by sex and the
remaining rows report DSC by racial group. Values are reported as mean(SD). Comparison of variables between groups (i.e., male vs. female, white vs. non-white, mixed
vs. non-mixed, etc.) was carried out using an independent Student’s t-test. Pairwise post hoc testing was carried out using Bonferroni correction for multiple comparisons.
Asterisks indicate statistically significant differences between each group and the rest of the test set after correction (28 tests), where *p < 0.01/28, **p < 0.001/28,
***p < 0.0001/28. Exact p-values are reported in Supplementary Table 3. SD, standard deviation.

(independent Student’s t-test p < 0.001). For different racial
groups, they show that the White and Mixed groups have for all
clinical parameters a statistically significant difference in absolute
and relative error (except Mixed LVmass p = 0.66 and p = 0.15
for absolute and relative error, respectively). They also show that
there is a statistically significant difference in the absolute and
relative errors for LVEDV, LVESV, LVEF (except for absolute
error for Black and Other LVESV p = 0.25 and p = 0.01,
respectively, and Black LVEF p = 0.17; and relative error for
Black LVEDV p = 0.03, LVESV p = 0.53 and LVEF p = 0.20).
Interestingly, there is no statistically significant difference in
absolute or relative error for RV clinical parameters for the
Chinese and Other racial groups.

Multivariable Analysis
To analyze if there is any other factor (i.e., risk factors, patient
characteristics) that could explain the bias in DSC between
races, we performed a multivariate linear regression between the
DSC and race adjusted for patient size, cardiac parameters and
cardiovascular risk factors and taking the white group as control.
Table 4 shows the unadjusted [model 1—4(a)] and adjusted
[model 2—4(b)] standardized regression beta coefficients [with
95% confidence interval (CI)] for the association between DSC
and racial groups. Supplementary Table 1 shows the full list of
standardized regression beta-coefficients from the multivariate
analysis for each racial group (model 3), representing the z-score
change in variables with the associated factors. Our results
show that all associations remained significant after multivariate
adjustment and that there is no covariate that can explain the
DSC bias between racial groups (see Table 4B). For the Mixed
and Black race groups, sex shows a weak positive association
with DSC (see Supplementary Table 1), however, race remains
the main factor.

Analysis of Variance
We also compared change of marginal means of DSC
between different racial groups using a 1-way ANOVA
(F = 219.43, p < 0.0001, η2 = 0.47) and an ANCOVA adjusted for

patient size, cardiac parameters and cardiovascular risk factors
(F = 196.237, < 0.0001, η2 = 0.44, see Supplementary Table 2).
Estimated marginal means are given in Table 5, before and after
adjustment for the mean of covariates. The results show that
there is an overall difference between racial groups, and after
adjustment for covariates race still remains the main factor.

Effect of Bias on Heart Failure Diagnosis
The previous experiments have demonstrated that racial bias
exists in the DL-based CMR segmentation model. This final
experiment aims to provide an example of how this racial
bias could potentially have an effect on the diagnosis and
characterization of heart failure (HF). To this end, we trained
another nnU-Net segmentation model using both healthy
and cardiomyopathy subjects from the UK Biobank (training
and validation: 4,410 healthy subjects/200 cardiomyopathy
subjects and test: 1,250 healthy subjects/150 cardiomyopathy
subjects). For the cardiomyopathy test cases, we computed the
misclassification rate (MCR, %) between the manual LVEF and
the automated LVEF based on the standard classification of HF
according to LVEF (23, 24), i.e., HF with reduced EF (HFrEF): HF
with an LVEF of ≤ 40%; HF with mildly reduced EF (HFmrEF):
HF with an LVEF of 41–49%; HF with preserved EF (HFpEF):
HF with an LVEF of ≥ 50%. The results are presented in
Table 6. Overall, although the number of subjects in the minority
racial groups was relatively small, the misclassification rate using
the AI-derived segmentations for White subjects was low, with
generally much higher rates for minority races.

DISCUSSION

We have demonstrated for the first time the existence of racial
bias in DL-based cine CMR segmentation. The results show that
after adjustment for possible confounders such as cardiovascular
risk factors the bias persists, suggesting that it is related to
the balance of the database used to train the DL model. This
conclusion is supported by our earlier work (14), where a model
trained with a (much smaller) racially balanced database had
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TABLE 3 | Manual clinical measurements (top table) and absolute (middle table) and relative (bottom table) differences in volumetric and functional measures between
automated and manual segmentations, overall and by sex and race.

(A) Manual

iLVEDV
(mL/mm2)

iLVESV
(mL/mm2)

LVEF (%) iLVmass
(g/mm2)

iRVEDV
(mL/mm2)

iRVESV
(mL/mm2)

RVEF (%)

Total 79 (20) 33 (12) 60 (7) 51 (14) 86 (22) 38 (13) 57 (7)

Male 82 (20)* 36 (12) 59 (7)* 50 (12) 95 (21)* 45 (13) 54 (7)*

Female 72 (14)* 29 (8) 61 (7)* 42 (9) 77 (14)* 32 (8) 58 (6)*

White 83 (20) 35 (12) 59 (6) 51 (14)* 87 (22)* 39 (13)* 56 (6)
Mixed 76 (20)* 27 (9)* 64 (8)* 47 (14) 83 (20)* 35 (10)* 58 (8)*

Asian 70 (18)* 25 (10)* 65 (8)* 48 (12)* 76 (19)* 32 (11) 58 (6)

Black 87 (21) 33 (11) 63 (6) 59 (13) 94 (27)* 41 (14) 56 (6)

Chinese 66 (12)* 22 (7)* 66 (7)* 46 (11)* 75 (16) 32 (8) 58 (6)

Others 77 (19)* 28 (9) 64 (6)* 53 (15) 86 (23) 36 (13) 59 (7)

(B) Absolute difference

iLVEDV
(mL/mm2)

iLVESV
(mL/mm2)

LVEF (%) iLVmass
(g/mm2)

iRVEDV
(mL/mm2)

iRVESV
(mL/mm2)

RVEF (%)

Total 2.6 (1.7) 2.1 (1.8) 2.5 (2.4) 3.8 (3.9) 3.5 (2.6) 3.0 (2.2) 3.6 (3.0)

Male 2.7 (1.7) 2.1 (1.7) 2.1 (1.9)* 4.1 (4.2) 3.4 (2.6) 3.0 (2.1) 3.1 (2.7)*

Female 2.6 (1.7) 2.1 (1.8) 2.9 (2.8)* 3.5 (3.4) 3.5 (2.6) 4.6 (2.2) 4.1 (3.3)*

White 2.3 (1.5) 1.9 (1.5)* 2.1 (2.1)* 4.0 (3.3)* 3.2 (2.6)* 2.8 (2.2) 3.4 (2.9)*
Mixed 3.9 (2.1)* 3.4 (1.7)* 4.1 (2.7) 1.9 (1.7)* 4.6 (1.8)* 3.9 (1.8)* 4.9 (2.5)*

Asian 3.4 (1.9)* 2.8 (2.3)* 4.0 (2.9) 2.0 (2.3)* 4.4 (2.4)* 3.4 (1.9) 4.4 (3.3)

Black 3.6 (1.8)* 2.9 (2.8)* 3.3 (3.0)* 2.0 (2.2)* 4.4 (1.6)* 3.5 (1.9) 3.9 (2.6)

Chinese 4.4 (2.2)* 3.4 (2.1)* 4.7 (2.8)* 4.1 (3.6)* 4.8 (2.4) 4.0 (2.9)* 6.4 (5.4)*

Others 3.7 (1.9) 3.1 (2.0)* 4.3 (3.2) 2.3 (2.5) 4.6 (3.4) 3.6 (1.8)* 4.3 (2.8)

(C) Relative difference

iLVEDV
(mL/mm2)

iLVESV
(mL/mm2)

LVEF (%) iLVmass
(g/mm2)

iRVEDV
(mL/mm2)

iRVESV
(mL/mm2)

RVEF (%)

Total 3.4 (2.5) 7.1 (7.4) 4.1 (3.9) 8.7 (8.3) 4.3 (3.4) 8.8 (7.5) 6.4 (5.2)

Male 3.0 (2.3)* 6.2 (6.3)* 3.6 (3.1)* 7.8 (6.5)* 3.7 (3.0)* 7.3 (5.9)* 5.8 (5.0)*

Female 3.7 (2.7)* 7.9 (8.2)* 4.6 (4.4)* 9.6 (9.6)* 4.9 (3.7)* 10.2 (8.4)* 7.0 (5.4)*

White 3.0 (2.1)* 6.0 (6.1)* 3.7 (3.6) 8.4 (8.7) 4.0 (3.4)* 8.2 (7.3) 6.0 (5.1)*
Mixed 5.7 (3.1)* 14.1 (8.2)* 6.5 (4.2)* 10.3 (6.1)* 6.2 (2.4)* 13.3 (6.8)* 9.2 (5.1)*

Asian 5.1 (3.2)* 11.8 (11.6)* 5.8 (4.2)* 10.5 (5.4)* 6.1 (3.4)* 11.5 (6.8) 7.2 (4.9)

Black 4.1 (2.3) 7.7 (6.8) 5.1 (4.8)* 7.3 (4.1) 5.1 (2.2) 9.3 (5.9) 7.3 (4.7)

Chinese 7.0 (4.3)* 16.5 (10.6)* 6.9 (3.7)* 13.6 (7.1)* 6.2 (3.2) 13.8 (11.4)* 10.4 (9.4)*

Others 5.0 (2.9)* 12.6 (10.2) 7.7 (5.5)* 8.9 (4.2) 5.2 (3.9) 11.9 (7.0)* 8.1 (4.9)

Clinical measurements for the LV and RV end diastolic volume (EDV), end systolic volume (ESV), ejection fraction (EF), and left ventricular mass (LVmass). All cardiac
volumes were indexed to body surface area using the Dubois and Dubois formula (32). We define the absolute and relative errors asεabsolute = |vmanual − vauto|)
andεrelative(%) = 100∗ |vmanual − vauto|/vmanual , wherev corresponds to each clinical measure. Clinical measures are reported as mean and standard deviation (in
parentheses). The first row reports the clinical measurements for the full database, the second and third rows report the clinical measurements by sex and the remaining
rows report the clinical measurements by racial group. Values are reported as mean(SD). Comparison of variables between groups (i.e., male vs. female, white vs.
non-white, mixed vs. non-mixed, etc.) was carried out using an independent Student’s t-test. Pairwise post hoc testing was carried out using Bonferroni correction for
multiple comparisons. Asterisks indicate statistically significant differences between each group and the rest of the test set after correction (49 tests), i.e., p < 0.01/49.
Exact p-values are reported on Supplementary Table 4. SD, standard deviation.

much reduced bias (although poorer performance overall due to
the smaller training database).

Assessment of the Bias in the Deep
Learning-Based Cardiac Magnetic
Resonance Segmentation Model
For the overall population, the DSC values are in line with
previous reported values (5, 22) and with the inter-observer

variability range (20). DSC as well as absolute differences and
relative differences show a higher bias on the RV, however, this
is expected as previous studies have highlighted the difficulty in
manual contouring of the RV and the higher variability between
observers (20).

The bias we found in segmentation model performance
was near-exclusively based on race. Statistically significant
differences in some derived volumetric/functional measures (see
Table 3) were found by sex but these differences were small
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TABLE 4 | Associations between average DSC and racial group.

(A) Univariate
linear regression

Standardized beta-coefficients (95% CI)

N Model 1 p-value

Mixed 1,250 0.34 (0.30, 0.38)*** 6.30E-16

Asian 1,250 0.33 (0.29, 0.37)*** 1.57E-12

Black 1,250 0.36 (0.32, 0.40)*** 1.30E-19

Chinese 1,250 0.32 (0.28, 0.36)*** 1.08E-8

Other 1,250 0.30 (0.26, 0.34)*** 4.43E-14

(B) Multivariate linear regression

Standardized beta-coefficients (95% CI)

N Model 2 p-values

Age 1,250 0.03 (–0.02, 0.08) 0.210

Sex 1,250 0.02 (–0.03, 0.08) 0.364

Weight 1,250 0.10 (–0.36, 0.51) 0.699

Height 1,250 0.00 (–0.28, 0.29) 0.972

BMI 1,250 -0.02 (–0.36, 0.36) 0.944

HR 1,250 0.03 (–0.01, 0.07) 0.114

SBP 1,250 -0.01 (–0.07, 0.04) 0.579

DBP 1,250 -0.04 (–0.08, 0.01) 0.114

LVEDV 1,250 -0.02 (–0.21, 0.17) 0.855

LVESV 1,250 -0.07 (–0.20, 0.06) 0.284

RVEDV 1,250 0.12 (–0.09, 0.31) 0.235

RVESV 1,250 -0.11 (–0.24, 0.04) 0.127

Lvmass 1,250 -0.04 (–0.11, 0.02) 0.174

Diabetes 1,250 0.10 (–0.07, 0.27) 0.273

Hypertension 1,250 0.05 (0.00, 0.10) 0.034

Hyper
cholesterolemia

1,250 0.00 (–0.04, 0.05) 0.860

Smoking 1,250 0.00 (–0.05, 0.03) 0.812

Center 1,250 0.15 (0.09, 0.21) 9.99E-02

Mixed 1,250 0.38 (0.36, 0.41)** 9.99E-04

Asian 1,250 0.37 (0.34, 0.41)** 9.99E-04

Black 1,250 0.40 (0.38, 0.43)** 9.99E-04

Chinese 1,250 0.36 (0.34, 0.39)** 9.99E-04

Other 1,250 0.34 (0.30, 0.38)** 9.99E-04

Standardized regression beta-coefficients and CI are shown, representing the
z-score change in variables with increasing DSC. The White racial group was
selected as control. LV, left ventricle, EDV, end-diastolic volume, ESV, end-
systolic volume, SBP, systolic blood pressure, DBP, diastolic blood pressure, CI,
confidence interval. Model 1 is unadjusted; Model 2 is adjusted for sex, height,
weight, blood pressure at scan-time, heart rate at scan-time, LVEDV, LVESV,
RVEDV, RVESV, LVmass, diabetes, hypertension, hypercholesterolemia, smoking
and center. *p < 0.01, **p < 0.001, ***p < 0.00001.

compared to the differences observed in both DSC (Table 2)
and volumetric/functional measures (Table 3) by race. Therefore,
none of the confounders used in this study could explain the
differences by race. Results from the ANCOVA analysis show
that one factor that contributed more to the model was the
center where the segmentations were performed. This could
be explained by differences in CMR reporting between the
core lab and the additional lab. Similarly to the complete UK

Biobank database, the subcohort that we used is approximately
sex-balanced but not race-balanced, and the highest errors
were found for relatively underrepresented racial groups. This
phenomenon has been observed before in applications in
computer vision (25) and medical imaging (26, 27), but never
before reported in CMR image analysis.

We believe that this bias is due to the imbalanced nature of the
training data. Combined with previous studies that have shown
race-based associations with differences in cardiac physiology
using diverse databases (10, 11), the imbalance causes the
performance of the DL model to be biased toward the physiology
of the majority group (i.e., white subjects), to the detriment of
performance on minority racial groups.

Our last experiment showed that using the AI-based predicted
EF values will result in higher misclassification rates for the
minority races compared to the White subjects, which is in
line with the other experiments showing a higher bias for the
minority groups.

Consistent Reporting of Sex and Racial
Subgroups in Artificial Intelligence
Models
It is envisioned that AI will dramatically change the way doctors
practice medicine. In the short term, it will assist physicians
with easy tasks, such as automating measurements, making
predictions based on big data, and putting clinical findings into
an evidence-based context. In the long term, it has the potential
to significantly optimize patient care, reduce costs, and improve
outcomes. With AI models now starting to be deployed in the real
world it is essential that the benefits of AI are shared equitably
according to race, sex and other demographic characteristics. It
has long been known that current medical guidelines have the
potential for sex/racial bias due to the imbalanced nature of the
cohorts upon which they were based (28, 29). One might think
that AI can solve such problems, as they are “neutral” or “blind”
to characteristics such as sex and race. However, as we have shown
in this paper, when AI models are used naively, they can inherit
the bias present in clinical databases. It is important to highlight

TABLE 5 | The comparison of adjusted mean between racial groups based on
one-way ANOVA and ANCOVA.

Mean (95% CI)

N Model 4 Model 5

White 1,025 0.93 (0.93, 0.93) 0.93 (0.93, 0.93)

Mixed 34 0.84 (0.86, 0.82) 0.83 (0.85, 0.80)

Asian 83 0.89 (0.90, 0.88) 0.88 (0.89, 0.88)

Black 47 0.86 (0.87, 0.85) 0.85 (0.86, 0.83)

Chinese 27 0.84 (0.86, 0.81) 0.82 (0.84, 0.78)

Other 34 0.86 (0.88, 0.85) 0.85 (0.87, 0.83)

Model 4 is unadjusted; Model 5 is adjusted for sex, height, weight, blood pressure
at scan-time, heart rate at scan-time, LVEDV, LVESV, RVEDV, RVESV, LVmass,
diabetes, hypertension, hypercholesterolemia, smoking, and center. CI, confidence
interval. For model 4 and model 5, pairwise post hoc testing was carried out using
Scheffé’s method.
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TABLE 6 | Misclassification rate for HF diagnosis.

HFrEF HFmrEF HFpEF

LVEF < 40% LEF 40–49% LVEF ≥ 50%

n n GT MCR (%) n GT MCR n GT MCR (%)

White 107 5 3.74 14 5.61 88 7.48

Mixed 11 3 45.45 0 – 8 36.36

Black 8 0 – 4 12.05 4 25.00

Asian 14 4 21.43 2 7.14 8 14.29

Chinese 4 0 – 2 25.00 2 50.00

Other 6 1 33.33 5 16.67 0 –

Minority groups 43 8 23.26 13 9.30 22 23.26

The table summarizes numbers of subjects in each racial group and HF diagnosis (i.e., HFrEF, HFmrEF and HFpEF), as well as the misclassification rate (MCR,%) for
each racial group and diagnosis. The row Minority groups combines data from the Mixed, Black, Asian, Chinese and Other groups. The left column (n overall) shows the
number of subjects for each racial group used to compute the MCRs. For each HF diagnosis, the first column shows the number of ground truth positive subjects in that
group, and the second column shows the MCR. When computing the MCRs, the ground truth negative subjects were all subjects from the other HF diagnoses for that
racial group. HFrEF, HF with reduced EF; HFmrEF, HF with mildly reduced EF; HFpEF, HF with preserved EF. Blank cells show regions with missing data.

the potential shortcomings of AI at this stage before AI models
become more widely deployed in clinical practice.

For these reasons, we believe that it is necessary that
new standards are established to ensure equality between
demographic groups in AI model performance, and that there
is consistent and rigorous reporting of performance for new AI
models that are intended to be integrated into clinical practice.
Similar to Noseworthy et al. (30), we would recommend that any
new AI-based publication include a report of performance across
a range of demographic subgroups, particularly race/sex.

Strategies to Reduce Racial Bias
The obvious way to mitigate bias due to imbalanced datasets
(whether in current clinical guidelines or AI models) is to use
more balanced datasets. However, this is a multifactorial problem
and is associated with many challenges, such as historical
discrimination, research design and accessibility (22). We note
that AI has the potential to address/mitigate bias without
requiring such balanced datasets. A range of bias mitigation
strategies have been proposed that either pre-process the dataset
to make it less imbalanced, alter the training procedure or post-
process the model outputs to reduce bias (31). We have recently
proposed three algorithms to mitigate racial bias in CMR image
segmentation: (1) train a CMR segmentation algorithm that
ensures racial balance during training; (2) add an AI race classifier
that helps the segmentation model to capture racial variations;
and (3) train a different CMR segmentation model for each
racial group. For more detail of these models, we refer to the
reader to our previous work (14). All three proposed algorithms
result in a fairer segmentation model that aims to ensure that
no racial group will be disadvantaged when segmentations of
their CMR data are used to inform clinical management. Note
that, compared to our previous work (14), in this paper we have
excluded all subjects with cardiovascular disease to ensure that
racial bias was not influenced by this factor.

Limitations
This study utilizes the imaging cohort from the UK Biobank. UK
Biobank is a long-term prospective epidemiology study of over
500,000 persons aged 40–69 years across England, Scotland, and

Wales. Therefore, the data are geographically limited to the UK
population, which might not reflect geographic, socioeconomic
or healthcare differences among other populations. This work
uses the UK Biobank participants’ self-reported ethnicity, which
corresponds to them self-identifying as belonging to ethnic
groups based on shared culture and heritage. A possible
limitation is that ethnic groups are socially constructed and thus
may not serve as reliable proxies for analysis. Future work should
aim to perform a similar study using genetic ancestry data, which
will make the analysis more generalizable. In addition, Mixed
Race was considered to be a single category, whereas in reality
this encompasses many different subcategories.

Manual analysis of CMR scans was performed by three
independent centers using the same operating procedures
for analysis. For the three centers, inter- and intra-observer
variability between analysts was assessed by analysis of fifty,
randomly selected CMR examinations (20). However, one
limitation of this study is that inter- and intra-observer variability
was not assessed individually by race and sex. Also, this
study is limited by the lack of diversity and relatively small
sample sizes for certain racial groups and by the exclusion
criteria for comorbid and pre-morbid conditions. The study
only includes the following cardiovascular risk factors as
confounders: hypertension, hypercholesteremia, diabetes and
smoking. However, there are other clinically relevant risk factors
such as sedentarism, alcohol consumption or stress that could
potentially explain the bias found in our study. For instance,
a previous study showed an association between RV size and
living in a high traffic area (7). Another limitation is that current
analysis does not adjust for any measures of ventricular function,
which could explain the structural differences. Future work will
aim to extract echocardiographic measures of relaxation to assess
whether the current bias could be explained by changes in
subclinical diastolic dysfunction.

CONCLUSION

We have demonstrated that a DL-based cine CMR segmentation
model derived from an imbalanced database has poor
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generalizability across racial groups and has the potential to
lead to inequalities in early diagnosis, treatments and outcomes.
Therefore, for best practice, we recommend reporting of
performance among diverse groups such as those based on sex
and race for all new AI tools to ensure responsible use of AI
technology in cardiology.
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Background: There has been a rapid increase in the number of Artificial

Intelligence (AI) studies of cardiac MRI (CMR) segmentation aiming to

automate image analysis. However, advancement and clinical translation in

this field depend on researchers presenting their work in a transparent and

reproducible manner. This systematic review aimed to evaluate the quality of

reporting in AI studies involving CMR segmentation.

Methods: MEDLINE and EMBASE were searched for AI CMR segmentation

studies in April 2022. Any fully automated AI method for segmentation of

cardiac chambers, myocardium or scar on CMR was considered for inclusion.

For each study, compliance with the Checklist for Artificial Intelligence in

Medical Imaging (CLAIM) was assessed. The CLAIM criteria were grouped into

study, dataset, model and performance description domains.

Results: 209 studies published between 2012 and 2022 were included in the

analysis. Studies were mainly published in technical journals (58%), with the

majority (57%) published since 2019. Studies were from 37 different countries,

with most from China (26%), the United States (18%) and the United Kingdom

(11%). Short axis CMR images were most frequently used (70%), with the left

ventricle the most commonly segmented cardiac structure (49%). Median

compliance of studies with CLAIM was 67% (IQR 59–73%). Median compliance

was highest for the model description domain (100%, IQR 80–100%) and

lower for the study (71%, IQR 63–86%), dataset (63%, IQR 50–67%) and

performance (60%, IQR 50–70%) description domains.
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Conclusion: This systematic review highlights important gaps in the literature

of CMR studies using AI. We identified key items missing—most strikingly poor

description of patients included in the training and validation of AI models and

inadequate model failure analysis—that limit the transparency, reproducibility

and hence validity of published AI studies. This review may support closer

adherence to established frameworks for reporting standards and presents

recommendations for improving the quality of reporting in this field.

Systematic Review Registration: [www.crd.york.ac.uk/prospero/], identifier

[CRD42022279214].

KEYWORDS

artificial intelligence, machine learning, cardiac MRI, segmentation, systematic
review, quality, reporting

Introduction

Cardiac MRI (CMR) is the gold standard for non-invasive
assessment of cardiac structures. Quantitative measurement of
cardiac volumes can be achieved with CMR and relies on
accurate segmentation of structures on CMR images. Manual
segmentation is routinely performed by cardiac imaging experts
but suffers from a number of drawbacks. In addition to being
laborious and time-intensive, manual segmentation is operator-
dependent, potentially impacting interobserver agreement. As
the demand for cardiac imaging continues to grow and outpaces
the supply of trained readers, there is an increasing need for
automation (1, 2).

Artificial intelligence (AI) is changing medical imaging
through the automation of complex and repetitive tasks,
including the segmentation of anatomical structures (3).
Machine learning is a subfield of AI that is commonly used for
image analysis and processing in medical applications. Machine
learning algorithms learn by experience, typically in a supervised
manner: the algorithm is trained on labeled data, such as a
set of manually segmented CMR images, where the manual
segmentation provides the reference standard or ground truth.
The algorithm identifies discriminative features and patterns in
this image data, which are incorporated to generate a model
that can perform the task—such as segmentation of the cardiac
chambers—on new unlabeled data without the need for explicit
programming. Machine learning itself encompasses a diverse
range of techniques, including deep learning, which can be
applied to the segmentation of structures in imaging (4).

Abbreviations: AI, artificial intelligence; CLAIM, checklist for artificial
intelligence in medical imaging; CMR, cardiac MRI; CT, computer
tomography; DSC, dice similarity coefficient; PRISMA, preferred
reporting items for systematic reviews and meta-analyses; PROSPERO,
international prospective register of systematic reviews; MICCAI, medical
image computing and computer-assisted intervention.

A growing number of studies have reported the use of
AI methods for segmentation in CMR. The manner in which
these studies are reported is important. Transparent reporting
of methods and results facilitates reproducibility and allows
proper evaluation of validity. Equally, a consistent standard of
reporting aids comparison between studies and may improve
accessibility of the literature, which may be of particular
benefit in a rapidly expanding field such as AI. The need for
consistency in reporting medical research is well recognized
and reflected in various guidelines and checklists for different
study types. The Checklist for Artificial Intelligence in Medical
Imaging (CLAIM), (5) has adopted the validated and widely
used Standards for Reporting of Diagnostic Accuracy Studies
(STARD) guidelines and incorporated domains specific to AI
studies, including detailed descriptions of data sources, model
design and performance evaluation. This systematic review
aimed to evaluate the quality of reporting of studies involving
AI CMR segmentation by assessing compliance with CLAIM.

Materials and methods

The study protocol was registered with The International
Prospective Register of Systematic Reviews (PROSPERO;
registry number CRD42022279214). The study was undertaken
and is presented in accordance with the Preferred Reporting
Items for Systematic reviews and Meta-Analyses (PRISMA)
guidelines (6). No ethical approval was required.

Inclusion and exclusion criteria

Studies reporting the use of AI for segmentation of
structures in CMR were considered for inclusion. Studies
were deemed eligible if they reported: (1) any type of fully
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automated AI method (including machine learning, deep
learning and neural networks), (2) segmentation of cardiac
chambers, myocardium or scar tissue and (3) use of adult
human CMR images, regardless of acquisition methods (such
as use of intravenous contrast), parameters, post-processing
methods and software. Exclusion criteria were as follows:
absence of a newly developed segmentation model (e.g., studies
assessing existing methods), use of semi-automated AI methods
(where the segmentation process required manual input),
multiorgan segmentation, combined segmentation of multiple
imaging modalities (e.g., CMR and CT), segmentation of
cardiac vessels (e.g., aorta, pulmonary artery, coronary arteries)
or pericardial tissue, use of non-human or ex vivo images,
and conference publications. Figure 1 shows an example of
automatic biventricular (7) (Figure 1A) and four-chamber (8)
(Figure 1B) segmentation on CMR.

Search method

The MEDLINE and EMBASE databases were searched
for relevant studies on April 20 2022. The search strategy is
outlined in the SupplementaryMaterial. Non-English language
publications were excluded.

Study selection

Figure 2 indicates the flow of study identification and
inclusion. Duplicate studies were removed following the initial
database search. The titles and abstracts of the remaining studies
were screened for relevance. The full texts of all potentially
relevant studies were retrieved and assessed for eligibility against
the inclusion and exclusion criteria. Conference abstracts
and studies lacking sufficient information for evaluation were
excluded at this point. Screening was performed independently
by (SA) and by (SD, AM2, MS2) and full texts were assessed for
eligibility by SA, AM1 and MS, with SA acting as an arbitrator.

Data extraction

Three authors extracted data from the included studies
(SA, AM1, MS1) according to a standardized checklist. Half
of the included studies were also evaluated independently by
an additional five authors (SD, AM2, SJ, MG, HA) for the
purpose of quality control. All discrepancies were resolved
with discussion, with SA acting as an arbitrator, and the final
extracted data confirmed. Descriptive information about each
study was recorded, including publication details (type, source,
country, year), data used (type of data set, type of CMR
image, segmented structures) and AI model (validation and
performance evaluation methods). The studies were assessed

for compliance against the 42 criteria of CLAIM, which were
grouped into four domains: study description (9 criteria),
dataset description (17 criteria), model description (6 criteria)
and model performance (10 criteria). Supplementary Table 2
indicates all CLAIM criteria and their assignment to the
domains. For each criterion, compliance was marked as yes, no
or not applicable (N/A). Studies deemed N/A were excluded
when evaluating the proportion of studies compliant with
CLAIM criteria. For studies using solely public datasets,
the following criteria were marked as N/A, as they can be
considered implicit in the use of publicly available data sources:
retrospective or prospective study, source of ground truth
annotations, annotation tools, de-identification methods and
inter- and intra-rater variability. Additionally, the following
criteria were marked as N/A for all studies: rationale for
choosing the reference standard (as manual expert contouring is
the standard in the field) and registration number and name of
registry. Descriptive data and the number of studies compliant
with CLAIM criteria are presented as proportional values (%).

Results

Search results

The database search yielded 2,855 hits from which the
title and abstract screening identified 364 relevant studies.
The subsequent full-text assessment deemed 209 eligible for
inclusion in the analysis (Figure 2).

Included studies

Descriptive information for all of the 209 included studies
are provided in Supplementary Table 1. Selected metrics are
highlighted in Figure 3. The majority of studies (57%) were
published since 2019 (Figure 3A). Most studies were published
in technical journals (58%), with a minority published in
medical (31%) or hybrid (11%) journals. The studies were
undertaken in 37 different countries (Figure 3B), with just over
half coming from China (26%), the United States (18%) and the
United Kingdom (11%).

Publicly available datasets were used in 49% of studies,
and single or multicenter non-public datasets used in 61%,
17% of studies used multiple or combined datasets (including
multiple public datasets and a combination of public and non-
public datasets). A minority of studies (6%) did not report
their data source (Figure 3C). Of the public datasets used, the
majority (86%) had been made available through Medical Image
Computing and Computer-Assisted Intervention (MICCAI)
challenges or the Cardiac Atlas Project (9) (Figure 3D). Most
studies reported the number of cases used (95%), with a range of
3–12,984 and a median of 78. Short axis CMR images were most
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FIGURE 1

Examples of AI cardiac MRI segmentation. Examples of automatic (A) biventricular and (B) four-chamber segmentation. The colored contours in
green and red show the left ventricular epi- and endocardium, respectively. The contours in dark blue and yellow show the right ventricular epi-
and endo- cardium, respectively. The pink and turquoise contours outline the left and right atria, respectively.

frequently used (70%), while 14% of studies did not report the
specific type of CMR image used for segmentation (Figure 3E).
The left ventricle was the most commonly segmented structure,
either alone or in combination (49%, Figure 3F). Segmentation
of multiple structures was reported in 23% of studies.

Model validation was mostly reported using internal
holdout methods (78%), such as cross-validation. A minority
reported testing on external and mainly public datasets
(22%, Figure 3G). The Dice similarity coefficient (DSC)
was used to assess model performance in 79% of studies,
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FIGURE 2

PRISMA flow chart. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses flow chart of literature search.

either alone or in combination with other metrics such as
the Hausdorff distance or the Jaccard index (Figure 3H).
Few studies (10%) provided working links to publicly
available code, with a further 1% indicating that code was
available on request.

Compliance with CLAIM

Results for compliance with the domains and selected
individual criteria of CLAIM are summarized in Figure 4.
The complete results are presented in Supplementary Table 2.
The median compliance of all studies with all 42 criteria of
CLAIM was 67% (IQR 59–73%). Notable results excluding non-
applicable criteria are as follows.

Study description
Median compliance with the study description domain was

71% (IQR 63–86%). Almost all studies clearly indicated the use

of AI methods (91%) and their objectives (94%). Where non-
public datasets were used, only a minority of studies (36%)
indicated whether these were prospective or retrospective. No
studies provided access to a full study protocol. Sources of
funding were declared in 82% of studies.

Dataset description
Median compliance with the dataset description domain

was 63% (IQR 50–67%), the lowest of the four domains. The
source of the dataset was reported in most studies (94%).
While most studies provided eligibility criteria for included
cases (74%), few studies reported their demographic and clinical
characteristics (18%) or indicated the flow of these cases (10%)
in sufficient detail. Details regarding the calculation of the
intended sample size (4%) and how missing data were handled
(9%) were also infrequently reported. The definition of the
ground truth reference standard was provided in 68% of studies.
Where non-public datasets were used, the source of ground
truth annotations and annotation tools were stated in 55%
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FIGURE 3

Descriptive information. Descriptive information for the 209 included studies. (A) Publication dates; five studies (2.4%) were included from early
2022 and are not indicated here. (B) Location of origin of studies. (C) Data sources; the proportion of studies which used public and non-public
datasets is shown, with some studies having used multiple or combined datasets. (D) Public datasets used by studies, where relevant. (E) Type of
CMR images used. (F) Cardiac structures segmented; some studies performed segmentation on multiple structures. (G) Method of model
validation. (H) Method of model performance evaluation.

and 31% of studies respectively, with inter- and intra-rater
variability reported in 42%. The majority of studies reported
data preprocessing steps (94%), definitions of data elements
(99.5%), how data were assigned to partitions (89%) and the
level at which partitions were disjoint (87%).

Model description
Median compliance with the model description domain

was 100% (IQR 80–100%), the highest of the four domains.
The majority of studies provided details about the model
used (95%), initialization of model parameters (92%), training
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FIGURE 4

Compliance with CLAIM. (A) Violin plot showing compliance of the 209 included studies with the CLAIM criteria, grouped into domains of study,
dataset, model and performance description. Median (solid line) and 1st and 3rd quartile (dashed lines) values are indicated. (B) Proportion of
studies compliant with selected CLAIM criteria, grouped by domain (the titles of the individual criteria have been shortened for ease of reading).

approach (78%) and method of selecting the final model (92%).
The software libraries, frameworks and packages used were
reported in 74%.

Model performance
Median compliance with the performance description

domain was 60% (IQR 50–70%). A minority of studies
reported testing on external data (22%) Almost all studies
provided metrics of model performance (99.5%). Most studies
provided statistical measures of significance and uncertainty
when reporting results (78%). Many studies provided forms
of robustness or sensitivity analysis (61%) and methods for

explainability and interpretability (64%). A minority of studies
reported failure analysis for incorrectly classified cases (32%).
Most studies discussed their limitations (76%) and implications
for practice (76%).

Discussion

Poor reporting is a major source of research waste (10, 11)
and ultimately may hinder advancement of AI research in the
medical field. This systematic review evaluated the quality of
reporting in AI studies involving automatic segmentation of
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structures on cardiac MRI. 209 studies were included from 2012
to early 2022. Each study was assessed for compliance with
CLAIM, a checklist that attempts to provide a “best practice”
framework for the reporting and publication of AI research in
medical imaging (5). We identified major gaps in reporting and
make a number of recommendations in order for this to be
addressed (Table 1).

Accurate and sufficiently detailed descriptions of study
materials and methods are of particular importance for
AI studies in medical imaging to allow the assessment of
reproducibility and reliability of results. Overall compliance
with CLAIM was highest for the model description domain,
with most studies providing a description of the model and
details of training approaches. However, this was lowest for the
dataset description domain, which indicated variable reporting
of the data sources used to train and evaluate models.

A good understanding of data sources is a prerequisite
for evaluating the validity of AI models. Although most
studies identified their data sources, this was a significant
omission in the studies that did not and one which greatly
limits their interpretability. Public datasets were used in
almost half of the studies, with the majority of these made
available through segmentation challenges hosted by MICCAI
(Supplementary Table 3). Public datasets contain previously
de-identified and expertly contoured images, making them
attractive to researchers. The proportion of studies using
datasets from MICCAI challenges underlines its role as a
driver for advancing the field. Importantly, the use of public
datasets facilitates reproducibility and aids comparison between
segmentation methods. However, public sources are not without
their limitations. Public datasets consist of entirely retrospective
data, which may place constraints on study design and model

training. They are often small in size with limited demographic
and clinical diversity, and therefore have inherent selection bias.
Systematic biases affecting patient demographics are of serious
concern in the application of AI methods to clinical practice.
For example, a previous analysis of AI-based segmentation in
CMR using a large-scale database found systematic bias for both
sex and race (12) and similar biases have been reported for
AI in radiographic imaging (13). The use of diverse datasets
when training, validating and testing models is essential for
generalizability and translation to clinical practice. A model
trained on a dataset from one population does not guarantee
equal performance on another. Multiple data sets, such as both
retrospective and prospective, could be used in combination
to improve the generalizability of AI models being trained.
Even accounting for the use of public datasets, we found
that few studies reported the intended sample size (which
influences statistical power and reliability of results) or the
demographic and clinical characteristics of the cases in each
partition, (which indicates selection bias, confounders and
generalizability). Providing summary information about the
age and sex of cases is important, but may be insufficient
in isolation. We noted that studies often lacked details about
the proportions of cases with different pathologies, and the
demographics for these groups. Furthermore, studies should
not assume that readers are familiar with public datasets,
and if these are used then detailed demographics and clinical
characteristics should still be reported. The performance and
validity of any model depend on the data on which it is
trained and the data sources, including the rationale behind
their choice and the intended sample size, should be clearly
indicated. Study methodology must be reported in sufficient
detail to enable accurate reproduction of results. Notably, the

TABLE 1 Recommendations for study reporting. Main recommendations for AI study reporting are based on the gaps in the literature identified in
this systematic review.

Recommendation Importance

General Utilize a reporting framework (e.g., CLAIM). Comparability of studies.

Use of consistent and descriptive terminology. Accessibility and comparability of studies.

Data sources Describe the source of data, including patients’ eligibility criteria,
their numbers and demographic and clinical characteristics.

Contextualizing model performance and generalizability.

Clarify the number of scans and the flow of both patients and scans
into different datasets (e.g., training, validation, and testing).

Understanding model performance and generalizability.

Use publicly available datasets. Comparability of models against a common benchmark.

Model training and evaluation Describe the neural network, software packages and libraries in
sufficient detail.

Study reproducibility.

Define how the reference contours were generated, the experience of
the annotator and annotation tools used.

Understanding model performance and generalizability.

Explain the method of model training and performance. Understanding model performance and generalizability.

Test the model performance on external data with different
characteristics to the training data.

Study and model reliability.
Understanding model generalizability.
Implementation in clinical practice.

Perform failure analysis and report the limitations of the model. Understanding model performance and generalizability.

Publication of open-source code. Understanding model performance and generalizability.
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definition of the ground truth reference standard, the source
of ground truth annotations and the annotation tools used
were absent in a substantial number of studies. Understanding
the structures included in the ground truth contours and the
expertise of the annotator is essential in evaluating the training
process and ultimately contextualizing the model’s performance.
The proportions of studies that provided sufficiently detailed
descriptions of the ground truth and its source were lower than
expected for the field. For example, judging from the figures
present in the included studies, ventricular trabeculations were
usually included in the blood pool contours, although few
studies described this process. Similarly, many studies failed
to report the specific type of image used for ground truth
annotation and model training and testing. While this could
be inferred from figures, it remains essential information
for understanding models and their generalizability. Finally,
only a handful of studies indicated how missing data were
handled and no studies indicated where a full study protocol
could be accessed.

Detailed description of model training and performance is
expected in this field. Testing model performance on external
data was performed in less than a quarter of all studies. Model
generalizability can only be fully evaluated when performance
is assessed in demographic and clinical populations different
from the original training cohort. The reported external datasets
were small and captured only limited variations in imaging
appearances. This represents a major hurdle to overcome
before AI models can be implemented in clinical practice. We
also noted subjectively that many publications used the terms
“validation” and “test” interchangeably, or failed to distinguish
these methods clearly. Regarding the use of data in AI studies,
a validation set is used to optimize hyperparameters and
performance between training epochs, while a testing set is
used to assess the performance of the final model. The lack of
consistent terminology in studies can limit the interpretability of
their models and blur the distinction between internal holdout
and external testing methods. Additionally, few studies reported
failure analysis of incorrectly classified cases, suggesting that
most did not explore the reasons for model underperformance.
Furthermore, the vast majority of studies did not discuss the
limitations of their methods, limiting their transparency. Open
publishing of source code is a contentious topic in AI research
and was only provided in one in ten of all studies. The public
availability of code aids transparency, assists peer review and
facilitates the development of new models, but bears important
implications for ownership and rights.

The use of reporting frameworks, such as CLAIM, can
be beneficial. For example, they may help to inform study
design and highlight areas that may require rectification prior
to dissemination of results. Frameworks assist standardization
in reporting, improving comparability and interpretability by
the wider scientific community. Study accessibility is also an
important consideration in advancing the field. Regardless of
journal type, AI studies in medical imaging need to cater

for a broad potential readership, from clinicians to computer
scientists. More standardized reporting and the use of consistent
and accessible terminology are important in this regard.

We acknowledge limitations in this systematic review.
Firstly, this review focused solely on AI segmentation in CMR
studies. However, these findings are likely to apply to AI studies
in other cardiac imaging modalities, such as echocardiogram,
CT coronary angiography or nuclear myocardial perfusion
studies. Furthermore, given that AI studies in chest imaging
have shown similar shortcomings in reporting quality (14),
our findings may be more broadly relevant to AI studies in
medical imaging. Secondly, while our systematic search aimed to
identify all published AI CMR segmentation studies, the body of
unpublished, pre-print or technical conference literature is vast.
A Github or arxiv.org search reveals numerous segmentation
attempts of varying levels of reporting quality and beyond the
scope of this review to capture. Thirdly, even despite the use of
structured tools such as CLAIM, there remains an element of
subjectivity in determining report quality, such as the amount
of information required for a study to be deemed reproducible.

Conclusion

This systematic review highlights the variability in reporting
and identifies gaps in the existing literature of studies using
AI segmentation of CMR images. We identified several key
items that are missing in publications—most strikingly poor
description of patients included in the training and validation
of AI models and inadequate model failure analysis—which
may limit study transparency, reproducibility and validity. This
review supports closer adherence to established frameworks for
reporting standards, such as CLAIM. In light of these findings,
we have presented a number of recommendations for improving
the quality of reporting of AI studies in both CMR and the wider
field of cardiac imaging.
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Research UK, London, United Kingdom, 4Circle Cardiovascular Imaging Inc., Calgary, AB, Canada,
5Artificial Intelligence in Medicine Lab (BCN-AIM), Faculty of Mathematics and Computer Science,
University of Barcelona, Barcelona, Spain, 6Department of Biomedical Engineering, King’s College
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Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London,
United Kingdom, 8Newham University Hospital, Barts Health National Health Service (NHS) Trust,
London, United Kingdom, 9The Alan Turing Institute, London, United Kingdom

Objectives: Currently, administering contrast agents is necessary for

accurately visualizing and quantifying presence, location, and extent of

myocardial infarction (MI) with cardiac magnetic resonance (CMR). In this

study, our objective is to investigate and analyze pre- and post-contrast

CMR images with the goal of predicting post-contrast information using

pre-contrast information only. We propose methods and identify challenges.

Methods: The study population consists of 272 retrospectively selected CMR

studies with diagnoses of MI (n = 108) and healthy controls (n = 164). We

describe a pipeline for pre-processing this dataset for analysis. After data

feature engineering, 722 cine short-axis (SAX) images and segmentation mask

pairs were used for experimentation. This constitutes 506, 108, and 108 pairs

for the training, validation, and testing sets, respectively. We use deep learning

(DL) segmentation (UNet) and classification (ResNet50) models to discover

the extent and location of the scar and classify between the ischemic cases

and healthy cases (i.e., cases with no regional myocardial scar) from the

pre-contrast cine SAX image frames, respectively. We then capture complex

data patterns that represent subtle signal and functional changes in the cine

SAX images due to MI using optical flow, rate of change of myocardial area,

and radiomics data. We apply this dataset to explore two supervised learning

methods, namely, the support vector machines (SVM) and the decision tree

(DT) methods, to develop predictive models for classifying pre-contrast cine

SAX images as being a case of MI or healthy.
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Results: Overall, for the UNet segmentation model, the performance based

on the mean Dice score for the test set (n = 108) is 0.75 (±0.20) for the

endocardium, 0.51 (±0.21) for the epicardium and 0.20 (±0.17) for the scar.

For the classification task, the accuracy, F1 and precision scores of 0.68, 0.69,

and 0.64, respectively, were achieved with the SVM model, and of 0.62, 0.63,

and 0.72, respectively, with the DT model.

Conclusion: We have presented some promising approaches involving DL,

SVM, and DT methods in an attempt to accurately predict contrast information

from non-contrast images. While our initial results are modest for this

challenging task, this area of research still poses several open problems.

KEYWORDS

CMR, contrast, contrast-free, deep learning, machine learning, support vector
machines, decision tree

Introduction

Background and objectives

Cardiovascular diseases (CVDs) are a major cause of death
in the world in 2022, causing approximately 18.6 million deaths
(31% of all deaths) annually according to the World Heart
Federation (1). Ischemic heart disease (IHD) was responsible
for almost half of all cardiac deaths in 2019 (2). A common
and important consequence of IHD is myocardial infarction
(MI) defined pathologically as myocardial cell death due to
prolonged ischemia which can lead to the loss of contraction of
that damaged portion of the heart muscle.

Cardiac magnetic resonance (CMR) is an imaging modality
that has proven to be very effective in diagnosing MI through
visualization of the regional myocardial scar allowing the
determination of the presence, location, and extent. Currently,
administering contrast agent, using gadolinium-based chelates
(gadolinium), is necessary for diagnosing MI with CMR. This
technique relies on the relative gadolinium accumulation in
areas of necrosis and fibrosis following myocardial damage. The
presence and pattern of the gadolinium contrast can vary, with
subendocardial or transmural late gadolinium enhancement
(LGE) images usually indicating fibrosis caused by previous
coronary ischemic events or MI. Eliminating the need of
contrast administration could in several ways benefit many
patients, such as, patients who cannot be safely given a contrast

Abbreviations: CMR, cardiac magnetic resonance; CVD, cardiovascular
disease; DT, decision tree; DL, deep learning; DSC, dice similarity
coefficient (Dice score); LGE, late gadolinium enhancement; LV,
left ventricle; ML, machine learning; MI, myocardial infarction; PFI,
permutation feature importance; ROI, region of interest; SAX, short axis;
SI, signal intensity; SVM, support vector machines; TT, trigger time.

agent due to allergies or severe kidney disease, and could
improve safety and patient experience (avoiding need for
intravenous cannulation) and costs of cardiovascular healthcare.
Moreover, a typical contrast CMR scan takes approximately 35–
45 min, whereas without contrast it could take approximately
half the time, leading to shorter times in the scanner. Figure 1
shows some examples of some LGE images.

Machine learning (ML) is a set of techniques in artificial
intelligence (AI) which refers to computer algorithms with
human-like intelligence developed to accomplish specific tasks.
Deep learning (DL) algorithms, which are a set of ML techniques
based on neural networks, are useful for medical imaging related
tasks such as those involving diagnosis of diseases (3, 4). Such
diagnoses often consist of one or a combination of several ML
methods involving image segmentation or classification. Image
segmentation involves identifying and marking the region of
interest (ROI) while image classification involves extracting
features from the ROI and uses those features as a basis for
classifying patients or diseases. The UNet (5) and the ResNet
(6) are examples of popular segmentation and classification
algorithms, respectively. The use of ML methods such as support
vector machines (SVM) (7, 8) and decision trees (DT) (9)
are common in applications involving identification of latent
relationships in patient phenotypes (10) and development of
predictive models (11, 12). Models based on DTs methods are
easy to interpret (i.e., are white box models) while those based
on SVM methods are versatile and effective including in high
dimensional spaces such as when the number of features is
greater than the number of sample points.

In this study, our goal is to investigate and analyze
pre- and post-contrast CMR images to predict post-contrast
information (i.e., presence, location, and/or extent of MI
scar) from pre-contrast information only (i.e., without having

Frontiers in Cardiovascular Medicine 02 frontiersin.org

42

https://doi.org/10.3389/fcvm.2022.894503
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


fcvm-09-894503 July 25, 2022 Time: 11:54 # 3

Abdulkareem et al. 10.3389/fcvm.2022.894503

FIGURE 1

Representative short-axis late gadolinium enhancement-cardiac magnetic resonance images (LGE-CMR) of various possible locations and
extents of myocardial scar. The top images are the original LGE images, with the red arrows indicating the distribution of LGE (scar) in the LV
wall segments. At the bottom are the segmentation masks (expert manual contouring) with the scarred regions in white.

to administer contrast to patients) using ML. This subject
has recently gained the interest of many researchers (13–
21) but despite these interests, many open problems and
challenges on this subject still exist. The accurate prediction
of contrast information without contrast administration with
ML methods is very challenging for many reasons. Qualitatively
assessed interpretation by expert humans of the images are
recorded in free text and are highly variable, while quantitative
ground-truth of these images are not recorded. In addition,
format, and quality standardization of CMR imaging data for
ML does not exist.

In this article, in order to predict contrast information from
non-contrast CMR images, we describe a pipeline for processing
routinely acquired pre-contrast cine short-axis (SAX) CMR and
post-contrast LGE images so that these images can be used for
preparing ground truth for training models that can predict
the location of the epicardial and endocardial walls and the
location and the extent of the scar. We explore two approaches,
namely, segmentation and classification approaches. For the
segmentation approach, we use the popular UNet DL model in
our attempts to discover the extent and location of the scar given
the pre-contrast cine SAX image frames. For the classification
approach, we use the ResNet50 classification model in our
attempts to distinguish between the ischemic and non-ischemic
cases from the non-contrast cine SAX image frames. The
performance of the ML algorithms can be significantly improved
by extracting features that could be useful or relevant in the
model training process for solving particular problems. This

feature extraction can be described as a data transformation
process (and may or may not require domain knowledge of the
problem). Some advantages of the feature extraction process in
addition to performance and predictive accuracy improvements
includes dimensionality reduction of the feature space, noise
reduction, and improvement in the speed of convergence of
the learning algorithms (22–24). Thus, in other to use other
ML approaches for the classification task, we extract data
from the cine SAX images that capture complex patterns
representing subtle signal and functional changes in the cine
CMR due to myocardial tissue-specific abnormalities and used
for qualitative prediction. In particular, we focus on capturing
three sets of data from the cine SAX images, namely, the
optical flow data, the rate of change of myocardial area, and
the radiomics data. Optical flow (image velocity) measurement
is a fundamental method in the processing of a sequence
of images (successive frames) and its goal is to compute
an approximation of a 2D motion field from spatiotemporal
data of image intensities (25). Radiomics features are high-
dimensional handcrafted quantitative features that are based
on mathematical and statistical methods extracted from images
(26). They have recently been used on a wide range of problems,
such as identifying the causes of myocardial hypertrophy (27) or
detecting fibrosis in patients with hypertrophic cardiomyopathy
(28). We use the three sets of data to explore two supervised
ML methods, namely, the SVM and the DT methods to develop
predictive models for classifying pre-contrast cine SAX images
as being a case of MI or being free of myocardial scar.
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State of the art

Recently, the attempt to predict post-contrast information
without contrast administration is attracting the attention of ML
researchers and clinicians alike. Efforts to tackle this challenging
task either treats the problem as a pixel-wise tissue identification
problem (29) where the extent and location of scar is sought
or as an image synthesis problem (14) which involves the
generation of images predicting what the post-contrast image
would look like.

Changes in mechanical properties of myocardium caused
by infarction can lead to regional wall motion abnormalities.
This phenomenon inspires the pixel-wise tissue identification
approach given in Xu et al. (29) where the proposed DL
architecture consists of three connected function layers: the
heart localization layers which automatically crop the ROI (i.e.,
the LV from the cine SAX image frames); the motion feature
extraction layers which use long short-term memory (LSTM)
recurrent neural networks and optical flow techniques to build
local and global motion features through local intensity changes
and global intensity changes between adjacent images; and the
fully connected layers which learns to predict tissue identities
(that is, infarct or not) in each pixel.

In Xu et al. (13), a so-called deep spatiotemporal generative
adversarial network (DSTGAN) was used to simultaneously
segment and quantify (i.e., infarct size, percentage of infarct size,
percentage of segments, perimeter, centroid, major axis length,
minor axis length, orientation, and transmurality) MIs directly
from the cine MR image. The DSTGAN uses the conditional
generative adversarial network (cGAN) DL approach and the
input images are cine SAX images. After a network for heart
localization process, the DSTGAN technique consists of three
components: (i) a multi-level and multi-scale spatiotemporal
variation encoder (which actually uses 25 temporal frames
from a single slice location), (ii) the top-down and cross-task
generator, and (iii) three task labels relatedness discriminators.

In Zhang et al. (14), a cGAN DL model was trained to tackle
the challenge using an image synthesis approach. The generator
part of the cGAN uses encoder-decoder architecture with cine
SAX images, inversion recovery-weighted (IRW) images and T1
mapping images as input to produce virtual native enhancement
(VNE) images. The discriminant part of the cGAN uses the VNE
images as input and conditioned with LGE images during the
model training process. The limitation of this approach is that it
requires the acquisition of additional CMR images (IRW and T1
mapping images) that are not (yet) typically acquired in routine
CMR imaging in the diagnosis of MI.

Researchers have developed a CNN-based model that
identifies ischemic scar slices in computed tomography (CT)
angiography of the LV without any contrast agents (15). The
model’s algorithm uses LGE images from CMR as ground truth
(i.e., a CT-MRI paired dataset) to determine the presence or
absence of scar for the binary classification problem. However,

this promising approach does not give an idea of the extent or
the percentage myocardium affected by scar.

In addition to wall motion abnormalities, myocardial
features such as myocardial wall thinning and myocardial
lipomatous metaplasia that lead to chemical shift artifacts have
been shown to characterize MI (30–32) and suggest that it
may be possible for radiomics analysis to identify ischemic scar
from non-contrast cine CMR images (16–19). Thus, in Baessler
et al. (16), for example, researchers have proposed radiomics
texture analysis for the diagnosis of subacute and chronic MI
on non-contrast cine CMR images. The approach analyses end-
systolic cine SAX images using stepwise dimension reduction
(the Boruta feature selection algorithm and the recursive feature
elimination method – where a classifier, random forest classifier
in this case, is recursively trained and the feature with the
smallest ranking score is removed at each iteration), logistic
regression ML method and correlation analysis to select features
that will enable the classification of end-systolic cine images
as cases with or without myocardial scar. The limitation of
this approach is that it focuses on texture radiomics features
only (i.e., ignoring other radiomics features such as shape) even
though features such as wall thinning in myocardial regions are
already reported as potential signs of myocardial scar (30). The
approach also ignores wall motion abnormalities.

Another radiomics texture analysis approach was proposed
in Larroza et al. (17) for differentiating acute MI from chronic
MI cases using both contrast LGE images and non-contrast cine
CMR images. The approach analyzed LGE images by developing
three ML classifiers namely, random forest, SVM with Gaussian
kernel, and SVM with polynomial (degree = 3) kernel classifiers.
The three counterpart classifiers were developed for non-
contrast cine CMR. The recursive feature elimination method
with SVM classifier was used as the feature selection technique.
Similar to Baessler et al. (16), this approach focused on texture
radiomics features only. The major limitation of the texture
analysis approaches in Baessler et al. (16) and Larroza et al.
(17) is that they have included orientation dependent texture
features (obtained from 2D ROI delineation) in their analysis
which influence the results if the SAX views are not acquired in
a standardized position as presented in those reports.

In Larroza et al. (18), texture analysis was used for classifying
myocardial regions of patients suffering from chronic MI
into three categories (segments) namely, remote segments
(LGE = 0%), viable segments (0 < LGE < 50%), and non-
viable segments. LGE CMR images were used to prepare
the ground-truth for the non-contrast cine SAX myocardium
regions using the 17-segment model. A SVM with radial basis
function kernel classifier was trained. Importantly, texture
features were calculated in their rotation invariance form in
order to evade image rotation as a possible source of bias.
Time dimension available in cine sequences are also included as
part of analysis in order to take advantage of the information
on temporal dimension. The recursive feature elimination
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method with SVM classifier was used as the feature selection
technique. The proposed method also focused on texture
radiomics features only.

In Di Noto et al. (19), researchers evaluated radiomics
features of LGE regions of CMR images for distinguishing
between MI and myocarditis. K-nearest neighbor, linear
discriminant analysis (LDA), neural network (multilayer
perceptron), SVM, and TreeBagger DT are the five different ML
algorithms investigated in the report and the recursive feature
elimination method was used as the feature selection technique.
However, these analyses were carried out on LGE images and
not on non-contrast cine images.

In Avard et al. (20), researchers used radiomics analysis
to extract shape, first-order, and texture features for the
differentiation of MI and viable tissues (normal) cases in the
LV using non-contrast cine CMR images. The whole of the left
ventricular myocardium (3D volume) in end-diastolic volume
phase was used for the analysis. Ten ML algorithms were
investigated for the classification tasks and the SVM and the
logistic regression-based models show superior performance
compared to other methods on evaluation dataset.

A state-of-the-art review of the methods for delineating
LV scar without contrast administration can be found in Wu
et al. (21). In general, as far as radiomics analysis is concerned,
no specific subset of features has been found to be reliable
discriminative of myocardial scar from disease-free regions of
the myocardium. Research in this area is still ongoing and
progress in this field and progress toward clinical application
will require standardization of the discriminative features and
evaluation of proposed models to ensure generalizability.

Materials and methods

Data acquisition and analysis tools

Study population
The study population consists of 272 retrospectively selected

CMR studies with diagnoses of MI (n = 108) and healthy
controls (n = 164) from the Barts BioResource between
January 2015 to June 2018. Barts BioResource is a local
biorepository of Barts Heart Centre (Barts Health NHS Trust,
London, United Kingdom) that holds data from prospectively
consented (written) patients for cardiovascular research (Ethics
REC reference: 14/EE/0007). All images were de-identified
prior to analysis.

Cardiac magnetic resonance acquisition and
myocardial infarction diagnosis

Cardiac magnetic resonance examinations were obtained
using 1.5T and 3T scanners (Siemens Healthineers, Germany).
The steady-state free precession cine images for SAX were

analyzed using CVI42 R© research prototype software 5.11 built-
in ML tool. In order to diagnose for MI, firstly, CMR images –
the cine short axis (SAX) images and images of horizontal long-
axis (HLA) 4 chamber view and the vertical long-axis (VLA)
2 chamber view – of the patient are taken. The cine SAX
images are spatio-temporal, meaning that, for each slice location
(in space) of the left ventricle (LV), several images are taken
(in time) over the cardiac cycles. Next, gadolinium contrast
agent of 0.1 to 0.2 mmol/kg is administered to the patient
intravenously. Then, after around 10 min wait, the second set
of CMR images are taken using a conventional 2D breath-hold
technique. This second set of post-contrast SAX images only
have spatial component (have no time component, i.e., one slice
for each slice location) and often referred to as the LGE images.
It is these LGE images that are scanned for scar in the heart
muscle and predominantly of the LV. Both the cine SAX and
LGE images cover the whole heart. The diagnosis of MI is made
in accordance with the standard definition given in (33, 34).

Machine learning software tools
All experiments were conducted on a Nvidia Tesla

M40 machine using Python programming language with the
following packages: Scikit-learn (Version 0.24.0) (35) was used
to implement SVM and DT, Pyradiomics (Version v3.0.1)
(36) was used for radiomics feature extraction, TensorFlow
2.0 Python API machine learning framework (Version 2.7.0)
(37) was used for implementing UNet and ResNet50 DL
architectures, and MATLAB (Version 9.7.0.1586710, R2019b,
Update 8) was used for image registration as part of the ground
truth data preparation pipeline.

Segmentation approach

We carry out experiments with DL-based image
segmentation and classification architectures, the UNet
and the ResNet50, respectively, in order to derive contrast
information without contrast administration.

Ground truth data pre-processing pipeline
The three key steps of the image pre-processing pipeline

for the ground truth images of the supervised ML problem are
illustrated in Figure 2 and described as follows:

1. The pre-contrast cine SAX images and their corresponding
post-contrast LGE images for each slice location are
extracted. Each cine SAX image is associated with a trigger
time (TT), i.e., the slice acquisition time during the cardiac
cycle with respect to the peak of the R wave; the peak
of the R wave coincides with the early ventricular systole
(in Figure 2, for example, the TT in ms for the 10 cine
SAX images shown are given at the top of each image). As
such the cine SAX image frame of a given slice location
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whose TT approximately “matches” the TT of the LGE
image of the same slice location is selected. The idea is
that the heart muscle is at approximately the same position
for the two images.

2. The LGE image is then registered with the selected
cine SAX image as reference; that is, the LGE image
is transformed and resampled into the coordinate
system of the cine SAX image (the LGE and cine
SAX images are the “moving” and the “fixed” images,
respectively, in image registration terminology). The image
registration process is an affine transformation consisting
of translation, rotation, scale, and shear using the one-
plus-one evolutionary algorithm (38) as the optimizer
and the Mattes mutual information algorithm (39) as the
mutual information metrics (40). MATLAB’s “imregtform”
function, for example, can be used to accomplish
this image registration process. With image registration
completed, the registered LGE image now has the same
orientation, scale, and size with its matching cine SAX
image. This image registration aims to correct the spatio-
temporal misalignment between the pre-contrast matching
cine SAX image and the post-contrast LGE image.

3. The registered LGE image is then contoured to mark
regions of the epicardium, the endocardium, and the scar.
Manual image segmentation was undertaken by trained
observers (ER and AK). The LV structures were manually
segmented to obtain three labels, namely, the LV cavity (the
endocardial wall), the myocardium (the epicardial wall),
and the scar. The fourth label (the background) is the
non-segmented part of the image.

Given that the patients may have moved (even if slightly)
between the pre- and post-contrast image acquisition, the slice
location before and after contrast are not exactly the same.
A further step of quality control action is taken by removing
those slices with significant spatial mismatch between the cine
SAX and LGE images. This quality control step was carried out
by manual visual inspection. We are then left with 722 cine
SAX images and segmentation mask pairs from the 272 subjects.
It should be noted that the cine SAX images included images
across all slice locations (i.e., all slices between and including the
basal and the apical slices).

For the image segmentation task of marking the extent and
location of the scar as well as the epicardial and endocardial

FIGURE 2

Image ground truth data pre-processing pipeline. The trigger times (TT) in ms for the 10 cine short axis (SAX) images shown are given at the top
of each image. The cine SAX frame with closest TT match to the late gadolinium enhancement (LGE) image’s TT is selected (1); this is followed
by an image registration process (2), where the “fixed” image and the “moving” image of the registration process are denoted (a) and (b),
respectively. The regions of the epicardium, the endocardium, and the scar are segmented in (3).
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walls, the model training involves feeding our model with
cine SAX images as inputs and their corresponding masked
registered LGE images as the ground truth. The model
prediction involves feeding the trained model with cine SAX
stack as input so that it can predict contoured LGE masks
in its output. The segmentation masks are not required for
the image classification task, which involves categorizing pre-
contrast cine SAX images as cases with MI or non-MI. For any
set of cine SAX images, we determined from its corresponding
LGE image of the same slice location whether it contained scar
or not and then labeled it as such (i.e., Class 0 for non-MI
cases, and Class 1 for MI cases). The cine SAX stack for each
slice location contained up to 32 image frames (phases) for both
segmentation and classification tasks. For the cases with fewer
than 32, empty images (zero arrays) were appended with the
stack to make 32 frames.

UNet segmentation model
The UNet architecture given in Figure 3 is used as the

image segmentation model, wherein the cine SAX frames are
the input, and the ground truth is a segmentation mask that
marks the regions of the epicardium, the endocardium and,
if present, the scar. The UNet architecture includes batch
normalization following the convolutional layers to enhance
robustness of the model and drops out 30% hidden neurons
in the first three consecutive up-sampling convolutional
layers of the architecture to avoid problems associated with
model overfitting. The output of the model yields an image
segmentation mask with four channels: the background pixels
labeled 0, the myocardium labeled l, the LV cavity labeled 2, and
the scar labeled 3. The total number of parameters of the model
is 75,019,204 out of which 75,011,524 parameters are trainable.

The model training settings are as follows: the 32 input
images were resized to 224 × 224. The images were rotated up
to ±60◦ and their intensities normalized as part of the on-the-
fly data augmentation. In the normalization of the intensities,
similar to the normalization used in Wolterink et al. (41) for
the segmentation of cine CMR images, each image has been
normalized between (0.0, 1.0) according to the 1 and 99%
percentile of intensities in the image. The parameters of the
models were randomly initialized, and training proceeded for
100 complete epochs using a batch size of 32 cine SAX images –
segmentation mask pairs. The optimization method used was
the Adam optimizer, with an initial learning rate of 0.001,
decreasing exponentially at a rate of−0.1 after the first 5 epochs.
If 30 epochs elapsed with no decrease in the loss function,
training was set to cease and the weights from the best epoch
is restored as the model’s weights. With the total of 722 cine
SAX images and segmentation mask pairs, we have used 70, 15,
and 15% as the training, validation, and testing (evaluation) sets
(representing, 506, 108, and 108 pairs), respectively.

Channel-weighted (class weighted) dice similarity
coefficient (DSC or Dice score) function was used as the

loss function. Image segmentation accuracy can be evaluated
using DSC, which can be defined in terms of the per pixel
classification for the i-th channel of a 2D segmentation mask as
follows:

DSCi =
2
∑N

n=1 yin ŷin∑N
n=1 yin +

∑N
n=1 ŷin

(1)

where yin and ŷin are the ground truth mask and the predicted
mask (the posterior probability obtained after the application
of the “softmax” activation function on the output layer of the
model), respectively, and N is the number of pixels in the mask
(224 × 224). The dice loss of the i-th channel, 1− DSCi, can be
written as:

li = 1−
2
∑N

n=1 yin ŷin∑N
n=1 yin +

∑N
n=1 ŷin

(2)

The channel-weighted dice loss function L for the model can
then be written for the 4 channels as follows:

L =
4∑

i=1

βili (3)

where βi is the associated with channel i. In our case, we defined
β1 = 0.15, β2 = 0.25, β3 = 0.25 and β4 = 0.35; meaning
that, we have assigned more weight to the scar channel than the
others, and the background channel has the least weight.

Classification approach

ResNet50 classification model
The architecture of ResNet50 given in Figure 4 is used to

train the DL classification model. Given cine SAX input frames,
the ResNet model predicts whether or not the corresponding
post-contrast LGE image would contain a scar as a result of
MI. The main characteristic of this architecture of ResNet50 is
that the number of channels of the input is 32 (i.e., 32 cine SAX
images) – as against the 3 channels for a colored RGB image in
a standard ResNet50 model. The output of the model is a binary
prediction of whether the cine SAX images in a case without MI
(class 0) or with MI (class 1) (without or with scar, respectively).
The total number of parameters of the model is 23,680,705 out
of which 23,627,585 parameters are trainable.

For the model training, the optimization method used was
the Root Mean Squared Propagation (RMSProp) optimizer, with
an initial learning rate of 0.0001. All other model training
settings are the same as those of the segmentation model given
in the preceding sub-section.

Of the 506 pairs that constitute the training set, the
number of pairs that represent scar cases and cases with
no scar are 336 and 170, respectively. In order to address
this data imbalance, we used a weighted loss function. Let{(

x1, y1
)
,
(
x2, y2

)
,
(
xn, yn

)
, (xN , yN)

}
denote a training

set of N samples where x is the cine SAX input images and
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FIGURE 3

Configuration of the UNet architecture to predict the segmentation mask that marks of the regions of the scar, the myocardium and left
ventricle (LV) cavity. The input image is a set of 32 frames of cine SAX image frames. The ground truth (output image) consists of an image with
four channels, namely, the background (label = 0), the myocardium (label = 1), the LV cavity (label = 2), and the scar (label = 3).

y ∈ {0, 1}C denote a binary one-hot encoded label with C 2 in
our case, then the weighted loss function is defined as:

Ew (θ) = −
1
N

[
λ0

N∑
n=1

T0(xn) ynlog(ŷn (xn, θ))+ (4)

λ1

N∑
n=1

T1(xn) ynlog(ŷn (xn, θ))

]

where θ denotes the trainable parameters of the model;
ŷn (xn, θ) is the posterior probability obtained after the
application of sigmoid activation function on the output layer
of the model; T0(xn) and T1(xn) are functions that indicate
whether image xi belongs to class 0 (cases with no scar) or

class 1 (cases with scar), respectively; and λ0 and λ1 are weights
that penalize the loss function for false negative errors and false
positive errors, respectively. The weights, λ0 and λ1, can be
computed using the following equation:

λi =
1
ki
·

N
c

(5)

where ki is the number of samples belonging to class i.
In our case, N = 506; class 0 and class 1 are subgroups
indicating the collection of samples with no scar and with scar,
respectively; then, λ0 = (1/336) × (506/2) = 0.753 and
λ1 = (1/170) × (506/2) = 1.488. In other words, the images
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FIGURE 4

Configuration of the ResNet50 architecture to predict the binary outcome of presence or absence of myocardial scar using the set of 32 cine
short axis image frames as input to the model.

representing scar cases (class 1) are weighted as being more
valuable than those representing no scar cases (class 0).

Feature extraction
In order to use ML methods for identifying MI using pre-

contrast cine SAX images, we explore the data-driven approach
by capturing three sets of data from the cine SAX images,
namely, the optical flow data, the rate of change of myocardial
area, and the radiomics data.

Optical flow data

The goal of optical flow is to compute an approximation of
2D motion field from spatiotemporal data of image intensities
(25). Using Lucas–Kanade method (see Supplementary
Material) for estimating optical flow velocities, we have chosen
the window size (spatial neighborhood�) of 8 × 8 and selected
a Gaussian filter w of kernel size 5 × 5 with a SD of 3 along
each of x and y directions (σx = σy = 3.0). The magnitude of

the optical flow velocities v = |v| can be computed as follows:

v =
√

vx + vy (6)

vx and vy represent x and y component of v. The magnitude
of the displacement of the optical flow field r (pixel-wise
displacement) can therefore be computed as follows:

r = v1t (7)

where 1t is the time difference between acquisition of the
two successive images. We further reduced the dimension of
the displacement matrix r using principal component analysis
(PCA) approach and vectorized (reshaped) the resulting matrix
into a row vector.

For illustration, Figure 5A shows flow maps which helps
to visualize the pixel-wise displacement between two cine SAX
image frames images 0 and 1 in (a) and images 0 and 3 in (b). We
refer to the interval between image frames as the “skip” interval,
k; in (a), the k = 1 and in (b), the k = 3. The images on
the right show the super-imposition of the flow map images on
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FIGURE 5

(A) Flow maps showing the pixels that have been displaced between the time the two cine SAX image frames were acquired with the skip
intervals k = 1 in (a) and k = 3 in (b). On the left in (a), flow map (images 0, 1) represents the pixel-wise displacement between image 0 and
image 1, and the corresponding the pixel-wise displacement between image 0 and image 3 is shown at the bottom. The images on the left
show the super-imposition of the flow map images on the segmentation masks. (B) An illustration of the computation of rate of change of
myocardial cross-section area for a given slice location. The rate of change of myocardial area between frames captures the pixel-wise area
change information of slices through the cardiac cycle. (C) An illustration of the computation of radiomics features of three frames namely, the
end-diastolic (ED) frame, end-systolic (ES) frame and the “middle” frame in between the ED and ES frames. The shape, first-order, and texture
radiomics features are extracted and then a statistical test (Pearson correlation analysis) to assess the significance of these features in relation to
the binary outcome (i.e., with or without MI).

the segmentation masks. Equation 7 assumes k = 1 (i.e., the
two image frames are next to each other, e.g., the 2nd and 3rd
frames, in a cine SAX set of 32 frames). The choice of k = 1
reduces the number of displacement matrices. In the case of 32
cine SAX frames for a given slice location, the choice k = 3
results in having 11 displacement matrices where the magnitude
of the displacement is r = v × k1t and 1t can be calculated

by subtracting the TT as follows: 1t = ti+1 − ti where ti is the
TT associated with image i.

Rate of myocardial area change

The rate of change of myocardial cross-section area between
successive frames of a given slice location, ai, captures the
pixel-wise area change information of slices through the cardiac
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cycle and can be expressed as follows:

ai =
4A
k4t

(8)

where 1A = Ai+k − Ai; Ai and Ai+k are the areas of
myocardium for the i-th and (i+ k)-th image frames at a given
slice location, respectively, and k is the skip interval. Figure 5B
illustrates the computation of ai for a given slice location. Thus,
for the up to 32 cine SAX frames for a given slice location
and with k = 3, we compute 11 values of ai (i.e., ai for
i = 0, 2, 10).

Data from radiomics

Rather than computing the radiomics features of each
of the 32 cine SAX frames, we extracted radiomics from
three frames: end-diastole, end-systole and the “middle” frame,
which is precisely in between the end-diastolic and end-
systolic frames. We extracted 306 shape, first-order, and texture
radiomics features for the three frames of interest using the
Pyradiomics open-source package. It should be noted that only
the myocardium is segmented (i.e., an image segmentation mask
with the background pixels labeled 0, and the myocardium
labeled l). More details on radiomics features can be found in
Freeman et al. (42) and Chu et al. (43).

The pixel spacing varies from 1.41 to 2.34 mm and to
correct for differences in pixel size, each of the 2D image
slices were resampled to 1.9 mm × 1.9 mm spacing through
a one-dimensional (1D) area interpolation. Similar to Di Noto
et al. (19), owing to strongly anisotropic CMR acquisition
(i.e., out-of-plane information is intrinsically poorer), we
resampled on the XY plane to preserve in-plane information.
Furthermore, to account for sensitivity of radiomics features
to intensity variation associated with the image acquisition
process, intensity normalization of the images is carried out
prior to the extraction of radiomics features. For the intensity
normalization, the 1–99% intensity normalization (i.e., 1–99%
percentile of intensities) with 256 intensity levels of each
image has been used. In our pre-processing step, we have
not performed bias correction although it may improve the
inhomogeneity of images (44).

From the 306 set of radiomics features, a subset of features
that are highly correlated (i.e., redundant features) are removed.
In particular, features with Pearson correlation coefficient higher
than 0.9 are removed while retained only one of those correlated
features, resulting in 144 features (48 features for each of the
three frames). We have chosen this value (r > 0.9), similar
to Rauseo et al. (45), to ensure only highly correlated features
are removed. We then carried out statistical test to assess
the significance of the radiomics features in relation to the
outcome – in this case, a binary outcome of whether the
cine SAX images results predict MI or not. A p < 0.001 was
considered to be statistically significant, leading to the selection
of 38 radiomics features (15 systolic frame, 9 diastolic frame, and

14 middle frame features). Figure 5C illustrates the computation
of radiomics features as we have described here.

Support vector machines and decision tree
machine learning methods

Given that we now have information on the optical flow
data, data on rate of change of myocardial cross-section area at
any given slice location, and the radiomics data, we explored
two supervised learning methods to qualitatively predict the
presence/absence of scar, namely, the SVM and the DT methods.

Firstly, we carried out the z-score standardization. This
standardization method transforms the feature space to have
zero mean and unit variance, and has been shown to improve
speed of convergence of SVM algorithms for classification
problems and SVM model performance (46). Normalization is
important for SVM method (47, 48) [in fact, SVM method may
not be appropriate for some problems without normalization
(49)]. While feature space transformation using standardization
or normalization plays an important role in Euclidean distance
minimization-based algorithms (e.g., SVM, neural networks,
K-nearest neighbor, etc.), algorithms that are insensitive to
feature scaling (variance scaling), such as DT, are not affected
by the transformation (50).

Next, we split the dataset into random 80% train and 20%
test subsets (representing, 577 and 145 sets, respectively). The
training set was used for training SVM and DT models and
the test set was used for unbiased evaluation of these models.
Further details of the SVM with the radial basis function kernel
(7, 8) and DT (9) methods used in this work are provided in the
Supplementary Material.

Model evaluation methods

The DSC is a measure of similarity between the label and
predicted segmentation masks and is often used to evaluate
performance of ML segmentation models. Given two sets (two
images in this case) A and B, DSC score can be expressed as
follows:

DSC =
2 |A ∩ B|
(|A| + |B|)

(9)

where |A| and |B| represent the cardinalities of set A and B (i.e.,
the number of elements in each set), respectively. The DSC,
which has a range of [0,1], is a useful summary measure of spatial
overlap that can be applied to quantify the accuracy in image
segmentation tasks. Computing the DSC of several images from
a segmentation model and evaluating the mean DSC (or other
statistical validation metric) allows the comparison of the model
with other models.

The performance of a classification models can be evaluated
using the following metrics: confusion matrix, F1 score and
accuracy score. The confusion matrix is a table that describes
the performance of a model on a set of data for which the true
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labels are known by summarizing the count values for each
class. For binary classification, the confusion matrix counts the
number of true negative (TN), false negative (FN), true positive
(TP) and false positive (FP). Precision (model’s ability not to
misclassify a negative sample as positive, i.e., a measure of result
relevance), recall (model’s ability to find all positive samples), the
F1 score (the harmonic mean of the precision and recall) and the
accuracy score (the fraction of the correct prediction out of the
total number of samples) are other performance metrics useful
in evaluating binary classification tasks.

Results

Segmentation approach

The evaluation of the predicted results of the UNet
segmentation model was performed using the DSC score as the
performance metric. For the testing set (n = 108), the mean
DSC is 0.20 [±0.17 SD; 0.64 maximum; 0.14 median (50%
percentiles)] for scar, the mean DSC is 0.51 (±0.21 SD; 0.86
maximum; 0.52 median) for epicardium (the myocardium), and
the mean DSC is 0.75 (±0.20 SD; 0.94 maximum; 0.85 median)
for endocardium (the LV cavity). These results are summarized
in Table 1. The results from fivefold cross-validation are
presented in Table 2 and give the mean (±SD) DSC as 0.24
(±0.12), 0.48 (±0.23), and 0.77 (±0.18) for the scar, epicardium,
and endocardium, respectively. In general, we observe that the
UNet model is able to discover the regions of the endocardium
and the epicardium with high degree of accuracy. The accuracy
of the prediction of the extent and location of the scar is much
lower. Some examples of the results of the UNet segmentation
model are presented in Figure 6. Only the first cine SAX image
in the set of 32 cine SAX images is shown in each example. In
relation to the channel-weighted dice loss function, although
the choices of βi were empirical, our experiments as given in
Figure 7 shows that our choice of these values are reasonable.
In Figure 7, we have presented the results of our simulation
experiment for the first 30 epochs to show the accuracy (pixel-
wise categorical accuracy) and loss (Equation 3). The arrows
in (b) indicate our choice and both the loss and accuracy
are satisfactory compared to other possible choices. For this
experiment, we have only considered the cases of (A) β1 = 0.1,
(B) β1 = 0.15, and (C) β 1 = 0.2.

TABLE 1 The mean, maximum and median Dice scores of the UNet
segmentation model.

Mean (SD) Maximum Median

Scar 0.20 (±0.17) 0.64 0.14

Epicardium 0.51 (±0.21) 0.86 0.52

Endocardium 0.75 (±0.20) 0.94 0.85

Classification approach

The performance metrics (confusion matrix, precision,
recall, accuracy, and F1 scores) of the trained ResNet50 model
on the evaluation dataset are given in Figure 8A. Figure 8B
provides some examples of the predictions of the classification
models. The precision score (0.19) is particularly poor for
ResNet50 model (i.e., the number of TP of the confusion
matrix is relatively small) making the model unsatisfactory in
determining the presence of absence of MI.

The results of the SVM with radial basis function kernel
are shown in (a) of Table 3 with different combinations of
data, namely, (i) the optical flow “plus” rate of myocardial
area change data ( 4A

k4t ); (ii) the optical flow “plus” 4A
k4t “plus”

radiomics data; and (iii) 4A
k4t “plus” radiomics data. We observe

improvement in prediction accuracy of the SVM model from the
confusion matrices moving from left to right; that is, the model
with the rate of myocardial area change data “plus” radiomics
data has the highest accuracy and F1 scores of 0.68 and 0.69,
respectively. The results of the DT model are shown in (b) of
Table 3. Similarly, DT model where the input consists of the
three combination of data features has the best performance
in terms of the precision score. Figure 9 shows the receiver
operating characteristic curves (ROC) for the best performing
SVM and DT classifiers calculated from 10-fold cross-validation.
The area under the curve (AUC) values (0.5 < AUC < 1), that

TABLE 2 Comparing the mean, maximum, and median Dice scores of
five UNet segmentation models calculated from fivefold
cross-validation.

Mean (SD) Maximum Median

Model 1

Scar 0.16 (±0.14) 0.44 0.12

Epicardium 0.48 (±0.23) 0.86 0.54

Endocardium 0.74 (±0.23) 0.95 0.83

Model 2

Scar 0.17 (±0.13) 0.42 0.13

Epicardium 0.41 (±0.27) 0.90 0.46

Endocardium 0.67 (±0.29) 0.97 0.81

Model 3

Scar 0.24 (±0.15) 0.53 0.27

Epicardium 0.46 (±0.24) 0.87 0.48

Endocardium 0.77 (±0.18) 0.97 0.83

Model 4

Scar 0.20 (±0.17) 0.64 0.16

Epicardium 0.44 (±0.25) 0.88 0.48

Endocardium 0.72 (±0.22) 0.96 0.80

Model 5

Scar 0.20 (±0.12) 0.42 0.14

Epicardium 0.41 (±0.25) 0.87 0.43

Endocardium 0.72 (±0.22) 0.96 0.79
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FIGURE 6

Examples of image segmentation results. The “Good” (correctly identifying the absence of myocardial scar due to MI), “Average” [correctly
identifying the presence of the scar with DSC ∈ (0.4, 0.65)], and “Poor” (incorrect identification of the presence of the scar). Cases with
DSC < 0.4 are not shown in the figure.

is, 0.58 ± 0.06 and 0.57 ± 0.06 for SVM and DT classifiers,
respectively, show that the classifiers have some predictive
power to distinguish between the positive class values from the
negative class values.

The list of 38 radiomics features (15 systolic frame,
9 diastolic frame, and 14 middle frame features) that are
considered statistically significant (p < 0.001) are given in
Table 4. The definition of these feature can be found in (36).
In order to estimate the importance of each radiomics feature
to the SVM and DT models, permutation feature importance
method (51) is used. This involves shuffling each of the
features N number of times (N = 10 in our case) and estimate
the importance of the feature by measuring the decrease in
model predictive accuracy. Figure 10 shows the importance of
each radiomics feature for the (optical flow “plus” 4A

k4t “plus”
radiomics data) SVM and DT models computed using the test
data set (i.e., using the training set data may indicate features
that are important during model training only and these may
not generalize).

Discussion

Summary of findings

In this study, we have presented a novel pipeline for
processing routinely acquired CMR images that can be used
as ground truth images for supervised and unsupervised ML
methods in order to predict presence, location and extent of MI
from contrast agent free cine SAX set.

For the UNet segmentation model whose input are the
cine SAX frames and whose output is the segmentation mask
that marks the regions of the epicardium, endocardium and
the scar, the overall performance based on the average DSC
score for the 108 test set is 0.75 (±0.20) for the endocardium,
0.51 (±0.21) for the epicardium and 0.20 (±0.17) for the
scar; and 0.24 (±0.12), 0.48 (±0.23), and 0.77 (±0.18) for the
scar, epicardium and endocardium, respectively, from fivefold
cross-validation. At first glance, the prediction accuracies of
the epicardium or endocardium appear low given that medical
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FIGURE 7

Simulation experiment for (A) β1 = 0.1, (B) β1 = 0.15, and (C) β1 = 0.2. In each case, β2 = β3. The arrows in (B) indicate the choice
(β1 = 0.15, β2 = β3 = 0.25, β4 = 0.35).

image segmentation is a widely studied subject (3) and the state-
of-the-art average DSC could reach 0.94 for CMR (52) or 0.885
for cardiac CT images (53). We note that in those previous
studies, the models (i.e., the one-input and one-output models)
involved a single image and the prediction of the models is
compared with the ground truth obtained after segmenting
the input image. In our case (i.e., a 32-inputs and one-output
model), the model input is a set of 32 image frames and the
DSC score was obtained for only one of these images whose TT
“matches” the TT of the LGE image of the same slice location;
thus, comparing the predicted mask with only one mask (i.e.,
mask of the registered LGE image only out of the 32 possible
masks) does not necessarily paint the overall picture of the
level of the accuracy (and therefore, cannot be benchmarked
with standard image segmentation models involving one-input,
one-output models).

Also, in the LGE image registration for data pre-processing,
we have used affine image transformation. Other non-rigid
image registration methods, e.g., the free-form deformation
(FFD) image registration methods (54, 55), may be more
suitable for recovering motion and deformation since they can
capture local motion of the myocardium into the registration

process. Using FFD-based methods for spatio-temporal CMR
image registration to correct spatial misalignment caused by
patient motion and temporal misalignment caused by the
motion of the heart may improve the accuracy of registration
and, consequently, the manual segmentation for the ground
truth and the prediction of the UNet model. Such methods may
therefore be considered in a future work on this subject.

Moreover, the limited amount of dataset (the training,
validation, and testing sets representing, 506, 108, and 108
cine SAX images – mask pairs, respectively) could explain this
relatively low level of prediction accuracy for the scar (which
is a more difficult problem even for human experts at times).
Importantly, we note that we have used the channel-weighted
DSC function as the loss function and have assigned 0.15,
0.25, 0.25, and 0.35 as weights of the background, epicardium,
endocardium, and scar (i.e., assigning more importance to the
scar channel than others). Future work on this project will
involve experimenting with a much larger dataset as well as
exploring different choices of weights assigned to the channels.
It is worth mentioning that none of the other loss functions we
have experimented so far [including the sparse categorical cross
entropy loss and (unweighted) dice loss] were able to discover
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FIGURE 8

(A) Performance of the ResNet50 classification model (to determine presence/absence of myocardial scar) using the test dataset (N = 108). The
low value of the precision score (0.19) makes the model unsatisfactory in determining the presence of absence of myocardial infarction.
(B) Some examples of the prediction of the ResNet50 classification model. The red arrows point to the location of the scar. The middle column
shows the case that the classification models got wrong.

TABLE 3 Performance of machine learning data-driven approaches, with methods (a) support vector machines (SVM) using radial basis function
(RBF) kernel and (b) decision tree, for different combinations of the optical flow, rate of change of myocardial area and radiomics data.The SVM
model had the best performance in terms of accuracy and F1 scores when the input consists of the rate of change of myocardial area and the
radiomics data. The DT model had the best in terms of the precision score when the input consists of the optical flow, the rate of change of
myocardial area and the radiomics data.

the scar at all (despite some varying degree of successes in their
discoveries of the epicardium and endocardium).

The performance metrics of ResNet classification model that
predicts whether a cine SAX image frames constitute an MI case
or non-MI case show that the model’s performance is poor (see
Figure 8). Of particular note here is the precision score ( 7

37 , i.e.,

0.19 – see also the confusion matrix). ResNet is a very successful
DL architecture (3, 53) and the low performance of our ResNet
model in this case (which could be for several reasons, e.g., not
enough dataset or not information from the given dataset that
will enable the model learn the underlying model parameters)
emphasize difficulty and complexity of the problem we intend
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FIGURE 9

Receiver operating characteristic (ROC) curves for (A) the support vector machines (SVM) and (B) the decision tree (DT) classifiers. In both
models, the area under the curve (AUC) values (0.5 < AUC < 1) show that the classifiers have some predictive power above “chance” to
distinguish between the positive class values from the negative class values. The gray area indicates ±1 SD calculated from 10-fold
cross-validation.

to solve. The lack of sufficient information could also be as a
result of reduction of the resolution of the cine SAX images due
to resizing (i.e., 224 × 224) although resizing can sometimes
be necessary due to hardware limitations or to ensure all input

images have common size. This motivated the data-driven ML
approaches involving the use of the SVM and DT methods. In
using these methods, we have experimented with the use of a
combination of three sets of model input data that were captured
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TABLE 4 Statistically significant radiomics features of the three cine
short-axis image frames.

Systolic frame Diastolic frame Middle frame

2D shape-based
features:
•Major axis length
•Maximum diameter
•Minor axis length
•Perimeter
•Sphericity

2D shape-based
features:
•Major axis length
•Minor axis length
•Perimeter

2D shape-based
features:
Major axis length
•Minor axis length
•Perimeter
•Sphericity

First-order statistics
features:
• 90th percentile
• Energy
•Maximum
•Mean
•Median
• Range
• Root mean squared
•Total energy

First-order statistics
features:
•10th percentile
•Energy
•Total energy

First-order statistics
features:
•10th percentile
•Energy
•Maximum
•Mean
•Median
•Root mean squared
•Total energy

Gray level run length
matrix
Texture-based
features:
•Gray level
non-uniformity
•Run length
non-uniformity

Gray level run length
matrix
Texture-based
features:
•Gray level
non-uniformity
•Run entropy
•Run length
non-uniformity
normalized

Gray level run length
matrix
Texture-based
features:
•Gray level
non-uniformity
•Run entropy
•Run length
non-uniformity
normalized

from the cine SAX images, namely, the optical flow data, the
rate of change of myocardial area, and the radiomics data. The
SVM method had the best performance of accuracy score and
F1 score of 0.68 and 0.69, respectively, when we included data
from rate of change of myocardial area and the radiomics as
input. The precision score was 0.64. The DT method had the
best performance in terms of precision reaching 0.72 when
the three sets of data are combined as input. In this case, the
accuracy score and F1 score are 0.62 and 0.63, respectively.
The best performing models of the data-driven ML methods
outperforms the ResNet model on the precision score metric.
Also, the SVM and DT models’ AUC values (0.5 < AUC < 1)
show that these classifiers do indeed have predictive power
above “chance” to distinguish between the positive class values
from the negative class values.

Related work

The pixel-wise tissue identification approach given in Xu
et al. (29) is an interesting approach given that it does not require
any preliminary segmentation of myocardial walls, captures the
dense motion of the myocardium and integrates both local and
global motion features for its prediction. The main problem
with the approach however is the absence of the ground truth
data preparation pipeline or any technique necessary to address
the spatio-temporal misalignment between the pre-contrast and
post-contrast image. Given the complex nature of this problem

and the reported accuracy of 95.03% mean Dice score of the
trained model for the identification and segmentation of the scar
from cine SAX images, it is most likely that the model – trained
on the dataset of 165 cine CMR patients (140 diagnosed with MI
and 25 control cases) – suffers from overfitting issues. Moreover,
even simpler DL-based image segmentation problems involving
CMR images hardly achieved this level of accuracy to date
[for example, in Bai et al. (52), endocardium and epicardium
segmentation models achieved 0.88 (0.03) and 0.94 (0.04)
mean (±SD) Dice scores, respectively; in Jacobs et al. (56),
myocardial segmentation model achieved 0.86 (±0.06) Dice
score on gadolinium-enhanced CMR images; and in Zhuang
et al. (57), myocardial segmentation of the mid-ventricular slice
achieved 0.86 (±0.07) inter-observer Dice score on LGE CMR
images]. It should be noted that in Zhang et al. (58), researchers
have used the framework given in Xu et al. (29) (i.e., with the
following main components: LV localization; the motion feature
extraction layers which use LSTM and optical flow techniques;
and the fully connected layers) for a training dataset that consists
of only chronic MI (n = 169) and control (n = 69) patients.
The Dice score of 86.1% (±5.7) was reported in the study but
this was the result of a small test set [chronic MI (n = 43)
and control (n = 18) patients] from a single vendor and single
center (i.e., the same vendor and center as the training set). The
approach and dataset presented in this article are not limited to
chronic MI cases only.

The DSTGAN approach given in Xu et al. (13) uses a
total of 495 cine SAX images and segmentation mask pairs
(i.e., 25 cine frames for each segmentation mask) from 165
patients (140 acute MI patients and 25 non-MI patients),
the approach demonstrates impressive performance of 96.98%
pixel-wise classification on a 10-fold cross-validation test (i.e.,
the test set consists of approximately 49 cine SAX and
segmentation mask pairs).

The cGAN model proposed in Zhang et al. (14) was
trained and tested on a dataset of 2,695 and 345 triplets,
respectively. The performance of the model (for n = 326
datasets) measured by the correlation with LGE images are
[r 0.77–0.79; intraclass correlation coefficients (ICC) = 0.77–
0.87; p 0.001] in detecting and quantifying hyperintensity
myocardial lesions and (r 0.70–0.76; ICC = 0.82–0.85; p 0.001)
in detecting and quantifying intermediate-intensity lesions.
Moreover, as the authors rightly mentioned, this approach is
relevant in the image acquisition stage, meaning that, clinicians
will still have to visually scrutinize each of the synthesized
images for the location and extent of scar in order to diagnose
MI. Importantly, the T1 mapping images contain information
about the characteristics of the tissues, and MI scar can
somewhat be visible in these images – for example, refer to
Figure 4 in the original article. Thus, in our view, the problem
solved in Zhang et al. (14) seems to take a relatively complex
approach since the task can be reduced to a simpler image
synthesis or segmentation task (i.e., synthesize a postcontrast
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FIGURE 10

Importance of the 38 radiomics features associated with (A) the end-systolic frame (15 features), (B) the end-diastolic frame (9 features), and (C)
the middle frame (14 features) for the SVM and DT models. The length of the blue bar indicates the importance of the feature to the
generalization power of the model (the black line is the ±SD). The DT classifier considers only the 9 features indicated as the only important
features for its own classification.

image or obtaining an image segmentation mask from a T1
mapping image). Moreover, as highlighted in Manisty et al.
(59), T1 mapping images and LGE images are not imaging
equivalent (i.e., interchangeable) myocardial disease processes,
so one cannot be expected to replace the other. The approach
proposed in this article differs to this model as its outcome is

to diagnose with minimal amount of imaging data (cine SAX
images only) as input and determine whether it is a case of
infarction or not.

In the CNN-based model developed in (15) that identifies
ischemic scar slices in CT angiography of the LV, with CT images
as input and a training set of 200 patients of which 83 are with
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scar, the trained network achieved an accuracy of 88.3% on a
10-fold cross-validation metric.

The texture analysis approach proposed in (16) uses end-
systolic cine SAX images from 120 MI patients [72 large
transmural (>20%) patients and 48 small subacute or chronic
(≤20% transmural) patients] and 60 control subjects and, using
5 textural radiomics features, reported a 10-fold cross-validation
estimate of accuracy of 0.81 for patients with large myocardial
scar versus control subjects, and a cross-validation estimate of
accuracy of 0.75 for patients with small myocardial scar versus
control subjects.

Similarly, the texture analysis approach proposed in Larroza
et al. (17) uses LGE images and end-diastolic cine SAX images
from 44 MI patients (22 acute MI patients and 22 chronic
MI patients) and reported a fivefold cross-validation results.
The SVM with polynomial kernel yielded the best classification
performance with ROC providing AUC (mean ± SD) of 0.86
(±0.06) on LGE MRI using 72 textural radiomics features.
For the cine CMR images, the SVM with polynomial kernel
classifier’s performance given by the AUC of ROC of 0.82
(±0.06) from 75 textural radiomics features.

In Larroza et al. (18) where the texture analysis was used to
classify myocardial regions of chronic MI patients into remote,
viable and non-viable segments, the approach uses end-diastolic
cine SAX images from 50 chronic MI patients [randomly
split into training (30 patients) and testing (20 patients) sets]
and, using 5 textural radiomics features and a fivefold cross-
validation, reported AUC under ROC of 0.849 with sensitivities
of 85, 72, and 92% for remote, viable, and non-viable segments,
respectively.

In Di Noto et al. (19), radiomics features where captured
from LGE images in order to classify the images from 173
patients (111 with MI and 62 with myocarditis) into MI
and myocarditis. The approach involved both 2D and 3D
texture analysis to capture textural radiomics features; thus, the
proposed method used shape and first-order features in addition
to texture radiomics features. Five different ML algorithms
were investigated and a stratified 10-fold cross-validation
was performed. The SVM classifier achieved the best results
(accuracy: 88%) for the 2D features and LDA showed the highest
accuracy (85%) for 3D features. In comparison with subjective
visual analyses by readers with different experience levels, the
radiomics approach was superior to the less experienced reader
but performed lower with the experienced reader.

Radiomics analysis was used in Avard et al. (20) to
classify MI from healthy patients using a dataset of 50 MI
and 20 healthy control cases, the average of univariate AUCs
was 0.62 ± 0.08. For multivariate analysis, logistic regression
(AUC = 0.93 ± 0.03) and SVM (AUC = 0.92 ± 0.05) yielded
optimal performance. It is clear that this is a small and an
imbalanced dataset (i.e., MI cases are 2.5 times the number
of healthy cases) – and this can have significant influence on
the predictive power of the models (classifiers are generally

not robust to the change of training data size (60). In their
report, the researchers have not mentioned how they have
eliminated the impact of class imbalance or how its effect on
their results.

Thus, while eliminating the need for contrast will save both
time and cost of cardiovascular healthcare and improve the
patient experience, accurate prediction of contrast information
without contrast administration is a very challenging task.
We have presented some promising approaches using a
heterogeneous dataset for qualitative analysis using DL, SVM,
and DT methods in order to predict post-contrast information
accurately without requiring contrast administration. While our
initial results are modest, our investigation shows that this
area still poses several open challenges and opportunities for
further research.

Limitations and future work

The main limitation of our study is that it included
a relatively small number of patients from a single center.
However, the study confirms the efficacy of ML methods and
can improve our understanding of the diagnostic potentials
of these emerging methods as well as data phenotypes that
are yet to be standardized in CVD. Future work will focus
on using novel DL architectures that combine both cine SAX
image frames and the derived heterogenous variables to predict
the extent and location of scar in the myocardium. To have a
larger dataset for model training will involve automating the
ground truth data preparation pipeline. Also, there is the need
to consider risks associated with the applications when contrast
is not administered when it should have been acquired and
vice versa (i.e., the consequences of the false negatives and
false positives).

Conclusion

Cardiac magnetic resonance imaging has potential to benefit
from practical and inexpensive methods in the emerging field
of ML for diagnosing MI without the use of a contrast
agent. We have presented some promising approaches using a
heterogeneous dataset for qualitative analysis using ML methods
in an attempt to predict contrast information accurately without
requiring contrast administration. Our study provided an
original contribution and development in this area, presenting
new parameters, such as, rate of myocardial area change,
optical flow and radiomics parameters, that could be considered
biomarkers of the mechanics of myocardial disease. However,
further studies that would improve the proposed methods
and identify other parameters are needed, just as it would be
necessary to develop such models on a larger population in order
to validate the results and make it possible to reach acceptable
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prediction level that could make it possible and safe to avoid
contrast administration in clinical CMR scans.
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Background: The presence of left ventricular (LV) wall motion abnormalities

(WMA) is an independent indicator of adverse cardiovascular events in patients

with cardiovascular diseases. We develop and evaluate the ability to detect

cardiac wall motion abnormalities (WMA) from dynamic volume renderings

(VR) of clinical 4D computed tomography (CT) angiograms using a deep

learning (DL) framework.

Methods: Three hundred forty-three ECG-gated cardiac 4DCT studies (age:

61± 15, 60.1%male) were retrospectively evaluated. Volume-rendering videos

of the LV blood pool were generated from 6 di�erent perspectives (i.e., six

views corresponding to every 60-degree rotation around the LV long axis);

resulting in 2058 unique videos. Ground-truth WMA classification for each

video was performed by evaluating the extent of impaired regional shortening

visible (measured in the original 4DCT data). DL classification of each video

for the presence of WMA was performed by first extracting image features

frame-by-frame using a pre-trained Inception network and then evaluating

the set of features using a long short-term memory network. Data were split

into 60% for 5-fold cross-validation and 40% for testing.

Results: Volume rendering videos represent ∼800-fold data compression

of the 4DCT volumes. Per-video DL classification performance was high

for both cross-validation (accuracy = 93.1%, sensitivity = 90.0% and

specificity = 95.1%, κ: 0.86) and testing (90.9, 90.2, and 91.4% respectively,

κ: 0.81). Per-study performance was also high (cross-validation: 93.7,

93.5, 93.8%, κ: 0.87; testing: 93.5, 91.9, 94.7%, κ: 0.87). By re-binning

per-video results into the 6 regional views of the LV we showed DL

was accurate (mean accuracy = 93.1 and 90.9% for cross-validation and

testing cohort, respectively) for every region. DL classification strongly

agreed (accuracy = 91.0%, κ: 0.81) with expert visual assessment.
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Conclusions: Dynamic volume rendering of the LV blood pool combined with

DL classification can accurately detect regional WMA from cardiac CT.

KEYWORDS

computed tomography, left ventricle (LV), wall motion abnormality detection, volume

rendering (VR), deep learning

Introduction

Left Ventricular (LV) wall motion abnormalities (WMA) are

an independent indicator of adverse cardiovascular events and

death in patients with cardiovascular diseases such asmyocardial

infarction (MI), dyssynchrony and congenital heart disease (1,

2). Further, regional WMA have greater prognostic values after

acute MI than LV ejection fraction (EF) (3, 4). Multidetector

computed tomography (CT) is routinely used to evaluate

coronary arteries (5, 6). Recently, ECG-gated acquisition of

cardiac 4DCT enables the combined assessment of coronary

anatomy and LV function (7, 8). Recent publications show that

regional WMA detection with CT agrees with echocardiography

(9, 10) as well as with cardiac magnetic resonance (11, 12).

Dynamic information of the 3D cardiac motion and regional

WMA is encoded in 4DCT data. Visualization of regional

WMA with CT usually requires reformatting the acquired 3D

data along standard 2D short- and long-axis imaging planes.

However, it requires experience in practice to resolve the

precise region of 3D wall motion abnormalities from these 2D

planes. Further, these 2D plane views may be confounded by

through-plane motion and foreshortening artifacts (13). We

propose to directly view 3D regions of wall motion abnormalities

through the use of volumetric visualization techniques such

as volume rendering (VR) (14), which can preserve high

resolution anatomical information and visualize 3D (15, 16) and

4D (17) data simultaneously over large regions of the LV in

cardiovascular CT. In VR, the 3D CT volume is projected onto a

2D viewing plane and different colors and opacities are assigned

to each voxel based on intensity. It has been shown that VR

provides a highly representative and memory efficient way to

depict 3D tissue structures and anatomic abnormalities (18, 19).

In this paper, we perform dynamic 4D volume rendering by

sequentially combining the VR of each CT time frame into a

video of LV function (we call this video a “Volume Rendering

video”). We propose to use volume rendering videos of 4DCT

data to depict 3D motion dynamics and visualize highly local

wall motion dynamics to detect regional WMA.

Analytical approaches to quantify 3D motion from 4DCT

using image registration and deformable LV models have

been developed (9, 20, 21). However, these approaches usually

require complex and time-consuming steps such as user-

guided image segmentation and point-to-point registration or

feature tracking. Further, analysis of multiple frames at the

native image resolution/size of 4DCT can lead to significant

memory limitations (22), especially when running deep learning

experiments using current graphical processing units (GPU).

Volume rendering (VR) videos provide a high-resolution

representation of 4DCT data which clearly depicts cardiac

motion at a significantly reduced memory footprint (∼1

Gigabyte when using original 4DCT for motion analysis and

only 100 kilobytes when using volume rendering video). Given

the lack of methods currently available to analyze motion

observed in VR videos, we sought to create an objective

observer that could automate VR video interpretation. Doing

so would facilitate clinical adoption as it would avoid the need

for training individuals on VR video interpretation and the

approach could be readily shared. Deep learning approaches

have been successfully used to perform classification of patients

using medical images (23, 24). Further, DL methods, once

trained, are very inexpensive and can be easily deployed.

Therefore, in this paper, we propose a novel framework

which combines volume rendering videos of clinical cardiac

CT cases with a DL classification to detect WMA. We outline

a straightforward process to generate VR videos from 4DCT

data and then utilize a combination of a convolutional neural

network (CNN) and recurrent neural network (RNN) to assess

regional WMA observable in the videos.

Methods and materials

CT data collection

Under institutional review board approval, 343 ECG-gated

contrast enhanced cardiac CT patient studies between Jan 2018

and Dec 2020 were retrospectively collected with waiver of

informed consent. Inclusion criteria were: each study (a) had

images reconstructed across the entire cardiac cycle, (b) had

a field-of-view which captured the entire LV, (c) was free

from significant pacing lead artifact in the LV and (d) had

a radiology report including assessment of cardiac function.

Images were collected by a single, wide detector CT scanner with

256 detector rows (Revolution scanner, GE Healthcare, Chicago

IL) allowing for a single heartbeat axial 16cm acquisition across

the cardiac cycle. The CT studies were performed for range

of clinical cardiac indications including suspected coronary

Frontiers inCardiovascularMedicine 02 frontiersin.org

64

https://doi.org/10.3389/fcvm.2022.919751
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org


Chen et al. 10.3389/fcvm.2022.919751

artery disease (CAD, n = 153), pre-procedure assessment

of pulmonary vein isolation (PVI, n = 126), preoperative

assessment of transcatheter aortic valve replacement (TAVR,

n = 42), preoperative assessment of left ventricular assist device

placement (LVAD, n= 22).

Production of volume rendering video of
LV blood-pool

Figure 1 step 1-4 shows the pipeline of VR video production.

The CT images were first rotated using visual landmarks such

as the RV insertion and LV apex, so that every study had the

same orientation (with the LV long axis along the z-axis of

the images and the LV anterior wall at 12 o’clock in cross-

sectional planes). Structures other than LV blood-pool (such as

LV myocardium, ribs, the right ventricle, and great vessels) were

automatically removed by a pre-trained DL segmentation U-

Net (25) which has previously shown high accuracy in localizing

the LV in CT images (25, 26). If present, pacing leads were

removed manually.

The resultant grayscale images of the LV blood-pool (as

shown in Fig. 1 step 2) were then used to produce Volume

renderings (VR) via MATLAB (version: 2019b, MathWorks,

Natick MA). Note the rendering was performed using the native

CT scan resolution. The LV endocardial surface shown in VR

was defined by automatically setting the intensity window level

(WL) equal to the mean voxel intensity in a small ROI placed

at the centroid of the LV blood pool and setting the window

width (WW) equal to 150 HU (thus WL is study-specific,

and WW is uniform for every study). Additional rendering

parameters are listed in Supplementary Materials 1A. VR of all

frames spanning one cardiac cycle was then saved as a video

(“VR video,” Figure 1).

Each VR video projects the 3D LV volume from one specific

projection view angle θ , thus it shows only part of the LV blood-

pool and misses parts that are on the backside. Therefore, to see

and evaluate all AHA segments, 6 VR videos were generated per

study, with six different projection views θ60×n, n∈[0,1,2,3,4,5]

corresponding to 60-degree rotations around the LV long axis

(Supplementary Materials 1B for details). With our design, each

projection view had a particular mid-cavity AHA segment

shown on the foreground (meaning this segment was the nearest

to and in front of the ray source-point of rendering) as well

as its corresponding basal and apical segments. Two adjacent

mid-cavity AHA segments and their corresponding basal and

apical segments were shown on the left and right boundary of

the rendering in that view. In standard regional terminology, the

six projection views (n = 0, 1, 2, 3, 4, 5 in θ60×n) looked at the

LV from the view with mid-cavity Anterolateral, Inferolateral,

Inferior, Inferoseptal, Anteroseptal and Anterior segments on

the foreground, respectively. In this paper, to simplify the text we

call them six “regional LV views” from anterolateral to anterior.

In total, a large dataset of 2058 VR videos (343 patients × 6

views) with unique projections were generated.

Classification of wall motion

Figure 1 steps a-d shows how the ground truth presence

or absence of WMA at each location on the endocardium was

determined. It is worth clarifying first that the ground truth

is made on the original CT data not the volume rendered

data. First, voxel-wise LV segmentations obtained using the

U-Net were manually refined in ITK-SNAP (Philadelphia,

PA, USA) (27). Then, regional shortening (RSCT) (8, 28,

29) of the endocardium was measured using a previously-

validated surface feature tracking (21) technique. The accuracy

of RSCT in detecting WMA has been validated previously with

strain measured by tagged MRI (12) [a validated non-invasive

approach for detecting wall motion abnormalities in myocardial

ischemia (30, 31)]. Regional shortening was calculated at each

face on the endocardial mesh as:

RSCT =

√

AreaES

AreaED
− 1

where AreaES is the area of a local surface mesh at end-

systole (ES) and AreaED is the area of the same mesh at end-

diastole (ED). ED and ES were determined based on the largest

and smallest segmented LV blood-pool volumes, respectively.

RSCT for an endocardial surface voxel was calculated as the

average RSCT value of a patch of mesh faces directly connected

with this voxel. RSCT values were projected onto pixels in

each VR video view (see Supplementary Material 2 for details

about projection) to generate a ground truth map of endocardial

function for each region from the perspective of each VR

video. Then, each angular position was classified as abnormal

(WMA present) if >35% of the endocardial surface in that view

had impaired RSCT (RSCT ≥-0.20). Supplementary Material 2A

explains how these thresholds were selected.

To do per-study classification in this project, we defined that

a CT study is abnormal if it has more than one VR videos labeled

as abnormal (Nab_videos ≥ 2). Other thresholds (e.g., Nab_videos

≥ 1 or 3) were also chosen and the corresponding results were

shown in the Supplementary Material 3.

DL framework design

The DL framework (see Figure 2) consists of three

components, (a) a pre-trained 2D convolutional neural network

(CNN) used to extract spatial features from each input frame

of a VR video, (b) a recurrent neural network (RNN) designed
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FIGURE 1

Automatic generation and quantitative labeling of volume rendering video. This figure contains two parts: Rendering Generation: automatic

generation of VR video (left column, white background, step 1-4 in red) and Data Labeling: quantitative labeling of the video (right column,

light gray background, step a-d in blue). RenderingGeneration: Step 1 and 2: Prepare the greyscale image of LV blood-pool with all other structures

(Continued)
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FIGURE 1

removed. Step 3: For each study, 6 volume renderings with 6 view angles rotated every 60 degrees around the long axis were generated. The

mid-cavity AHA segment in the foreground was noted under each view. Step 4: For each view angle, a volume rendering video was created to

show the wall motion across one heartbeat. Five systolic frames in VR video were presented. ED, end-diastole; ES, end-systole. Data Labeling:

Step a: LV segmentation. LV, green. Step b: Quantitative RSCT was calculated for each voxel. Step c: The voxel-wise RSCT map was binarized and

projected onto the pixels in the VR video. See Supplementary Material 2 for more details. In rendered RSCT map, the pixels with RSCT ≥ −0.20

(abnormal wall motion) were labeled as red and those with RSCT < −0.20 (normal) were labeled as black. Step d: a video was labeled as

abnormal if >35% endocardial surface has RSCT ≥ −0.20 (red pixels).

FIGURE 2

Deep learning framework. Four frames were input into a pre-trained inception-v3 individually to obtain a 2048-length feature vector for each

frame. Four vectors were concatenated into a feature matrix which was then input to the next components in the framework. A Long

Short-term Memory followed by fully connected layers was trained to predict a binary classification of the presence of WMA in the video. CNN,

convolutional neural network; RNN, recurrent neural network.

to incorporate the temporal relationship between frames, and

(c) a fully connected neural network designed to output

the classification.

Given our focus on systolic function, four frames (ED, two

systolic frames, and ES) were input to the DL architecture. This

sampling was empirically found to maximize DL performance

(32). Given the CT gantry rotation time, this also minimizes

view sharing present in each image framewhile providing a fuller

picture of endocardial deformation. Each frame was resampled

to 299×299 pixels to accommodate the input size of the pre-

trained CNN.

Component (a) is a pre-trained CNN with the Inception

architecture (Inception-v3) (33) and the weights obtained after

training on the ImageNet (34) database. The reason to pick

Inception-v3 architecture can be found in this reference (32).

This component was used to extract features and create a 2048-

length feature vector for each input image. Feature vectors from

the four frames were then concatenated into a 2D feature matrix

with size= (4, 2048).

Component (b) is a long short-term memory (35) RNN

with 2048 nodes, tanh activation and sigmoid recurrent

activation. This RNN analyzed the (4, 2048) feature matrix

from component (a) to synthesize temporal information (RNN

does this by passing the knowledge learned from the previous

instance in a sequence to the learning process of the current

instance in that sequence then to the next instance). The final

component (c), the fully connected layer, logistically regressed

the binary prediction of the presence of WMA in the video.

Cross-validation and testing

In our DL framework, component (a) was pre-trained and

directly used for feature extraction whereas components (b)

and (c) were trained end-to-end as one network for WMA

classification. Parameters were initialized randomly. The loss

function was categorical cross-entropy.
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The dataset was split randomly into 60% and 40% subsets.

60% (205 studies, 1230 videos) were used for 5-fold cross-

validation, meaning in each fold of validation we had 164 studies

(984 videos) to train the model and the rest 41 studies (246

videos) to validate the model. We report model performance

across all folds. 40% (138 studies, 828 videos) were used only

for testing.

Experiment settings

We performed all DL experiments using TensorFlow on

an 8-core Ubuntu workstation with 32 GB RAM and with a

GeForce GTX 1080 Ti (NVIDIA Corporation, Santa Clara, CA,

USA). The file size of each 4DCT study and VR video were

recorded. Further, the time needed to run each step in the

entire framework (including the image processing, VR video

generation and DL prediction) on the new cases was recorded.

Model performance and LVEF

The impact of systolic function, measured via LVEF on

DL classification accuracy was evaluated in studies with LVEF

<40%, LVEF between 40-60%, LVEF >60%. We hypothesized

that the accuracy of the model would be different for different

LVEF intervals since because the “obviously abnormal” LV with

low EF, and the “obviously normal” LV with high EF would be

easier to classify. The consequence of a local WMA in hearts

with LVEF between 40-60% might be a more subtle pattern

and harder to detect. These subtle cases are also difficult for

human observers.

Comparison with expert visual
assessment

While not the primary goal of the study we investigated

the consistency of the DL classifications with the results

from two human observers using traditional views. 100 CT

studies were randomly selected from the testing cohort for

independent analysis of WMA by two cardiovascular imaging

experts with different levels of experiences: expert 1 with

>20 years of experience (author A.K.) and expert 2 with >5

years of experience (author H.K.N.) The experts classified the

wall motion in each AHA segment into 4 classes (normal,

hypokinetic, akinetic and dyskinetic) by visualizing wall motion

from standard 2D short- and long-axis imaging planes, in

a blinded fashion. Because of the high variability in the

inter-observer classifications of abnormal categories we: (1)

combined the last three classes into a single “abnormal”

class indicating WMA detection, and (2) we performed the

comparison on a per-study basis. A CT study was classified

as abnormal by the experts if it had more than one abnormal

segment. The interobserver variability is reported in the

result Section Model performance-comparison with expert

assessment. It should be noted that our model was only trained

on ground truth based on quantitative RSCT values; the expert

readings were performed as a measure of consistency with

clinical performance.

Statistical evaluation

Two-tailed categorical z-test was used to compare

data proportions (e.g., proportions of abnormal videos)

in two independent cohorts: a cross-validation cohort

and a testing cohort. Statistical significance was set

at P ≤ 0.05.

DL Model performance against the ground truth label

was reported via confusion matrix and Cohen’s kappa value.

Both regional (per-video) and per-study comparison were

performed. A CT study is defined as abnormal if it has more

than one VR videos labeled as abnormal (Nab_videos ≥ 2).

As stated in Section Production of volume rendering video

of LV blood-pool, every projection view of the VR video

corresponded to a specific regional LV view. Therefore, we

re-binned the per-video results into 6 LV views to test the

accuracy of the DL model when looking at each region of the

LV. We also calculated the DL per-study accuracy for patients

with each clinical cardiac indication in the testing cohort

and use pair-wise Chi-squared test to compare the accuracies

between indications.

Results

Of the 1230 views (from 205 CT studies) used for 5-fold

cross-validation, 732 (from 122 studies, 59.5%) were male (age:

63 ± 15) and 498 (from 83 studies, 40.5%) were female (age:

62 ± 15). The LV blood pool had a median intensity of 516

HU (IQR: 433 to 604). 40.0% (492/1230) of the videos were

labeled as abnormal based on RSCT analysis, and 45.4% (93/205)

of studies had WMA in ≥2 videos. 104 studies had LVEF >

60%, 54 studies had LVEF < 40% and the rest 47 (47/205 =

22.9%) studies had LVEF between 40-60%. For clinical cardiac

indications, 85 studies have suspect CAD, 77 studies have the

pre-PVI assessment, 31 studies have the pre-TAVR assessment,

and 12 studies have the pre-VAD assessment.

Of the 828 views (from 138 CT studies) used for testing, 504

(from 84 studies, 60.9%) were male (age: 57± 16) and 324 (from

54 studies, 39.1%) were female (age: 63 ± 13). The LV blood

pool had a median intensity of 520 HU (IQR: 442 to 629). 37.0%

(306/828) of the videos were labeled as abnormal, and 45.0%

(62/138) of studies hadWMA in≥2 videos. 72 studies had LVEF

> 60%, 25 studies had LVEF < 40% and the rest 41 (41/138 =
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TABLE 1 DL classification performance in cross-validation and testing.

Cross-validation Testing

Per-video Per-study (Nab_videos ≥ 2) Per-video Per-study (Nab_videos ≥ 2)

Ground truth Ground truth Ground truth Ground truth

Abnormal Normal Abnormal Normal Abnormal Normal Abnormal Normal

DL Abnormal 443 36 87 7 276 45 57 4

Normal 49 702 6 105 30 477 5 72

Sens 0.900 Sens 0.935 Sens 0.902 Sens 0.919

Spec 0.951 Spec 0.938 Spec 0.914 Spec 0.947

Acc 0.931 Acc 0.937 Acc 0.909 Acc 0.935

κ 0.855 κ 0.872 κ 0.808 κ 0.868

Two hundred five CT studies and 1230 Volume Rendered (VR) videos were used for 5-fold cross-validation. One hundred thirty-eight CT studies and 828 VR videos were in the testing.

The four confusion matrices correspond to per-video classification (light gray) and per-study classification (dark gray) for cross-validation (left) and testing (right). Nab_videos ≥2 (number

of views classified as abnormal) was used to classify a study as abnormal. Sens, sensitivity; Spec, specificity; Acc, accuracy. Cohen’s kappa κ is also reported.

28.7%) studies had LVEF between 40-60%. For clinical cardiac

indications, 68 studies have suspect CAD, 49 studies have the

pre-PVI assessment, 11 studies have the pre-TAVR assessment,

and 10 studies have the pre-VAD assessment.

There were no significant differences (all P-values > 0.05)

in data proportions between the cross-validation and testing

cohorts in terms of the percentages of sex, abnormal videos,

abnormal CT studies.

Model performance—per-video and
per-study classification

Per-video and per-study DL classification performance for

WMA were excellent in both cross-fold validation and testing.

Table 1 shows that the per-video classification for the cross-

validation had high accuracy = 93.1%, sensitivity = 90.0%

and specificity = 95.1%, Cohen’s kappa κ = 0.86 with 95%

CI as [0.83, 0.89]. Per-study classification also had excellent

performance with accuracy = 93.7%, sensitivity = 93.5% and

specificity = 93.8%, κ = 0.87[0.81, 0.94]. Table 1 also shows

that the per-video classification for the testing cohort had high

accuracy= 90.9%, sensitivity= 90.2% and specificity= 91.4%, κ

= 0.81[0.77, 0.85].We obtained per-study classification accuracy

= 93.5%, sensitivity = 91.9% and specificity = 94.7%, κ =

0.87[0.78, 0.95] in the testing cohort.

Figure 3 shows the relationship between DL classification

accuracy and LVEF in the cross-validation. Table 2 shows that

CT studies with LVEF between 40 and 60% in the cross-

validation cohort were classified with per-video accuracy =

78.7%, sensitivity= 78.0% and specificity= 79.8%. In the testing

cohort, per-video classification accuracy = 80.1%, sensitivity =

82.9% and specificity = 75.5% accuracy for this LVEF group

remained relatively high but was lower (P < 0.05) than the

accuracy for patients with LVEF < 40% and LVEF > 60% due to

FIGURE 3

DL classification accuracy vs. LVEF. The per-video (black) and

per-study (gray) accuracy are shown in studies with (LVEF <

40%), (40 < LVEF < 60%) and (LVEF > 60%). *Indicates the

significant di�erence.

the more difficult nature of the classification task in this group

with more “subtle” wall motion abnormalities.

Model performance—regional LV views

Table 3 shows that our DL model was accurate for detection

of WMA in all 6 regional LV views both in cross-validation

cohort (mean accuracy = 93.1% ± 0.03) and testing cohort

(mean accuracy= 90.9%± 0.06).
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TABLE 2 DL classification performance in CT studies with 40 < LVEF < 60%.

Cross-validation Testing

Per-video Per-study (Nab_videos ≥ 2) Per-video Per-study (Nab_videos ≥ 2)

Ground truth Ground truth Ground truth Ground truth

Abnormal Normal Abnormal Normal Abnormal Normal Abnormal Normal

DL Abnormal 131 23 33 5 126 23 32 3

Normal 37 91 4 5 26 71 1 5

Sens 0.780 Sens 0.892 Sens 0.829 Sens 0.970

Spec 0.798 Spec 0.500 Spec 0.755 Spec 0.625

Acc 0.787 Acc 0.809 Acc 0.801 Acc 0.902

κ 0.567 κ 0.407 κ 0.581 κ 0.657

Forty-seven CT studies with 40% < LVEF < 60% were in the cross-validation and 41 CT studies were in the testing. The light gray indicates per-video evaluation, dark gray indicates

per-study evaluation.

TABLE 3 Results re-binned into six regional LV views.

Per-video classification

Cross-validation Testing

Projection view LV wall on the foreground Sens Spec Acc κ Sens Spec Acc κ

0 Anterolateral 0.845 0.964 0.922 0.824 0.886 0.936 0.920 0.818

60 Inferolateral 0.938 0.952 0.946 0.888 0.909 0.915 0.913 0.805

120 Inferior 0.879 0.974 0.932 0.860 0.917 0.910 0.913 0.824

180 Inferoseptal 0.882 0.946 0.917 0.832 0.847 0.861 0.855 0.705

240 Anteroseptal 0.963 0.944 0.951 0.899 0.927 0.952 0.942 0.879

300 Anterior 0.893 0.931 0.917 0.822 0.932 0.904 0.913 0.807

This table shows the per-video classification of our DL model when detectingWMA from each regional view of LV. See the definition of regional LV views in Section Production of volume

rendering video of LV blood-pool. Sens, sensitivity; Spec, specificity; Acc, accuracy.

Model performance—di�erent clinical
cardiac indications

We calculated the DL per-study classification accuracy

equal to 91.2% for CT studies with suspect CAD (n = 68 in

the testing cohort), 93.9% for studies with pre-PVI assessment

(n = 49), 100% for patients with pre-TAVR assessment (n =

11), 100% for studies with pre-LVAD assessment (n = 10).

Using Chi-squared test pairwise, there was no significant

difference of DL performance between indications (all

P-values > 0.5).

Model performance—comparison with
expert assessment

First, we report the interobserver variability of two

experts. The Cohen’s kappa for the agreement between

observers on per-AHA-segment basis was 0.81[0.79, 0.83]

and on the per-CT-study basis was 0.88[0.83, 0.93]. For

TABLE 4 Comparison between DL and expert visual assessment.

Expert visual assessment

Expert 1 Expert 2

Abnormal Normal Abnormal Normal

DL Abnormal 37 5 33 9

Normal 4 54 4 54

κ 0.815 κ 0.729

Per-study comparison were run on 100 CT studies randomly selected from the

testing cohort. The light gray indicates per-video evaluation, dark gray indicates per-study

evaluation.

those segments labeled as abnormal by both experts, the

Kappa for the two experts to further classify an abnormal

segment into hypokinetic, akinetic and dyskinetic dramatically

dropped to 0.34.

Second, we show in the Table 4 that per-study comparison

between DL prediction and expert visual assessment on 100

CT studies in the testing cohort led to Cohen’s Kappa κ =

0.81[0.70,0.93] for expert 1 and κ = 0.73[0.59,0.87] for expert 2.
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Data-size reduction

The average size of the CT study across one cardiac cycle was

1.52 ± 0.67 Gigabytes. One VR video was 341 ± 70 Kilobytes,

resulting in 2.00 ± 0.40 Megabytes for 6 videos per study. VR

videos led to a data size that is ∼800 times smaller than the

conventional 4DCT study.

Run time

Regarding image processing, the image rotation took 14.1

± 1.2 seconds to manually identify the landmarks and then

took 38.0 ± 16.2 seconds to automatically rotate the image

using the direction vectors derived from landmarks. The DL

automatic removal of unnecessary structures took 141.0 ± 20.3

seconds per 4DCT study. If needed, manual pacing lead artifacts

removal took around 5–10 mins per 4DCT study depending

on the severity of artifacts. Regarding automatic VR video

generation, it took 32.1 ± 7.0 seconds (to create 6 VR videos

from the processed CT images). Regarding DL prediction of

WMA presence in one CT study, it took 0.7 ± 0.1 seconds

to extract image features from frames of the video and took

∼0.1 seconds to predict binary classification for all 6 VR videos

in the study. To summarize, the entire framework requires

approximately 4 minutes to evaluate a new study if no manual

artifacts removal is needed.

Discussions

In this study, we developed and evaluated a DL framework

that detects the presence of WMA in dynamic 4D volume

rendering (VR videos) depicting the motion of the LV

endocardial boundary. VR videos enabled a highly compressed

(in terms of memory usage) representation of large regional

fields of view with preserved high spatial-resolution features

in clinical 4DCT data. Our framework analyzed four frames

spanning systole extracted from the VR video and achieved high

per-video (regional LV view) and per-study accuracy, sensitivity

and specificity (≥0.90) and concordance (κ ≥ 0.8) both in

cross-validation and testing.

Benefits of the volume visualization
approach

Assessment of regional WMA with CT is usually performed

on 2D imaging planes reformatted from the 3D volume.

However, 2D approaches often confuse the longitudinal bulk

displacement of tissue into and out of the short-axis plane with

true myocardial contraction. Various 3D analytical approaches

(9, 20, 28) to quantify 3D motion using image registration

and deformable LV models have been developed; our novel

use of regional VR videos as input to DL networks has several

benefits when compared to these traditional methods. First, VR

videos contain 3D endocardial surface motion features which

are visually apparent. This enables simultaneous observation

of the complex 3D motion of a large region of the LV in a

single VR video instead of requiring synthesis of multiple 2D

slices. Second, our framework is extremely memory efficient

with reduced data size while preserving key anatomical and

motion information; a set of 6 VR videos is ∼800 times smaller

in data size than the original 4DCT data. The use of VR

videos also allows our DL experiments to run on the current

graphic processing unit (GPU), whereas the original 4DCT

data is too large to be imported into the GPU. Third, our

framework is simple as it does not require complex and time-

consuming computations such as point registration or motion

field estimation included in analytical approaches. The efficiency

of our technique will enable retrospective analysis of large

numbers of functional cardiac CT studies; this cannot be said

for traditional 3D tracking methods which require significant

resources and time for segmentation and analysis.

Model performance for each LV view

We re-binned the per-video results into 6 projection views

corresponding to 6 regional LV views and showed that our

DL model is accurate to detect WMA from specific regions of

the LV. The results shown in Table 3 indicate that all results

for classification can be labeled with a particular LV region.

For example, to evaluate the wall motion on the inferior wall

of a CT study, the classification from the VR video with the

corresponding projection view θ (=120) would be used.

Comparison with experts and its
limitations

To evaluate the consistency of our model with standard

clinical evaluation, we compared DL results with two

cardiovascular imaging experts and showed high per-study

classification correspondence. This comparison study has its

limitations. First, we did not perform a per-AHA-segment

comparison. Expert visual assessment was subjective (by

definition) and had greater inter-observer variability on per-

AHA-segment basis than the per-study basis the variability

(Kappa increased from 0.81 for per-segment to 0.88 for per-

study). Second, the interobserver agreement for experts to

further classify an abnormal motion as hypokinetic, akinetic

or dyskinetic was also too poor (Kappa = 0.34) to use expert

visual labels for three severities as the ground truth; therefore,

we used one “abnormal” class instead of three levels of severity

of WMA. Third, experts could only visualize the wall motion
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from 2D imaging planes while our DL model evaluated the

3D wall motion from VR videos. A future study using a larger

number of observers, and a larger number of cases could be

performed in which trends could be observed; however, it is

clear that variability in subjective calls for degree of WMA will

likely persist in the expert readers.

Using RSCT for ground truth labeling

Direct visualization of wall motion abnormalities in volume

rendered movies from 4DCT is a truly original application;

hence, as can be expected there are no current clinical

standards/guidelines for visual detection of WMA from

volume rendered movies. In fact, we believe our paper is

the first to introduce this method of evaluating myocardial

function in a formal pipeline. In our recent experience, visual

detection of patches of endocardial “stasis” in these 3D movies

highly correlates with traditional markers of WMA such as

wall thickening, circumferential shortening and longitudinal

shortening. However, specific guidance on how to clinically

interpret VR movies is not yet available. We expect human

interpretation to depend on both experience and training.

Thus, we used quantitative regional myocardial shortening

(RSCT) derived from segmentation and 3D tracking to delineate

regions of endocardial WMA. RSCT has been previously

shown to be a robust method for quantifying regional LV

function (8, 12, 28, 29).

Limitations and future directions

First, our current DL pipeline has several manual image

processing such as manual rotation of the image and manual

removal of lead artifacts. These steps lengthen the time required

to run the entire pipeline (see Section Run time) and limit the

clinical utility. One important future direction of our technique

is to integrate the DL-driven automatic image processing to get

a fully automatic pipeline. Chen et al. (26) have proposed a DL

technique to define the short-axis planes from CT images so

that the LV axis can be subsequently derived for correct image

orientation. Zhang and Yu (36) and Ghani and Karl (37) have

proposed DL techniques to remove the lead artifacts.

Second, our work only focuses on the systolic function and

only takes 4 systolic frames from the VR video as the model

input. The future direction is to input diastolic frames into

the model to enable the evaluation of diastolic function and to

use a 4D spatial-temporal convolutional neural network (38) to

directly process the video without requiring explicit selection of

temporal frames.

Third, we currently perform binary classification of the

presence of WMA in the video. The DL model integrates all

information from all the AHA segments that can be seen in

the video and only evaluates the extent of pixels with WMA

(i.e., whether it’s larger than 35% of the total pixels). The DL

evaluation is independent of the position of WMA; thus, we

do not identify which of the AHA segments contribute to the

WMA just based on the DL binary classification. Future research

is needed to “focus” the DL model’s evaluation on specific AHA

segments using such as local attention (39) and evaluate whether

the approach can delineate the location and extent of WMA

in terms of AHA segments. Further, by using a larger dataset

with a balanced distribution of all four severities of WMA, we

aim to train the model to estimate the severity of the WMA in

the future.

Fourth, tuning the inceptionV3 (the CNN)weights to extract

features most relevant to detection of WMA is expected to

further increase performance as it would further optimize how

the images are analyzed. However, given our limited training

data, we chose not to train weights of the inception network

and the high performance we observed seems to have supported

this choice.

In conclusion, we developed a framework that combines

the video of the volume rendered LV endocardial blood

pool with deep learning classification to detect WMA

and observed high per-region (per-video) and per-study

accuracy. This approach has promising clinical utility to

screen for cases with WMA simply and accurately from highly

compressed data.
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Technology Co., Ltd., Hefei, China, 6Center for Artificial Intelligence, Research Institute of Tsinghua,

Pearl River Delta, Guangzhou, China

Background: Current electrocardiogram (ECG) criteria of left ventricular

hypertrophy (LVH) have low sensitivity. Deep learning (DL) techniques have

been widely used to detect cardiac diseases due to its ability of automatic

feature extraction of ECG. However, DL was rarely applied in LVH diagnosis.

Our study aimed to construct a DL model for rapid and e�ective detection of

LVH using 12-lead ECG.

Methods: We built a DL model based on convolutional neural network-

long short-term memory (CNN-LSTM) to detect LVH using 12-lead ECG. The

echocardiogram and ECG of 1,863 patients obtained within 1 week after

hospital admission were analyzed. Patients were evenly allocated into 3 sets

at 3:1:1 ratio: the training set (n = 1,120), the validation set (n = 371) and the

test set 1 (n = 372). In addition, we recruited 453 hospitalized patients into

the internal test set 2. Di�erent DL model of each subgroup was developed

according to gender and relative wall thickness (RWT).

Results: The LVH was predicted by the CNN-LSTM model with an area under

the curve (AUC) of 0.62 (sensitivity 68%, specificity 57%) in the test set 1, which

outperformed Cornell voltage criteria (AUC: 0.57, sensitivity 48%, specificity

72%) and Sokolow-Lyon voltage (AUC: 0.51, sensitivity 14%, specificity 96%).

In the internal test set 2, the CNN-LSTM model had a stable performance

in predicting LVH with an AUC of 0.59 (sensitivity 65%, specificity 57%). In

the subgroup analysis, the CNN-LSTM model predicted LVH by 12-lead ECG

with an AUC of 0.66 (sensitivity 72%, specificity 60%) for male patients, which

performed better than that for female patients (AUC: 0.59, sensitivity 50%,

specificity 71%).

Conclusion: Our study established a CNN-LSTM model to diagnose LVH by

12-lead ECG with higher sensitivity than current ECG diagnostic criteria. This

CNN-LSTM model may be a simple and e�ective screening tool of LVH.

KEYWORDS

left ventricular hypertrophy, electrocardiogram, echocardiography, deep learning

model, convolutional neural network-long short-term memory
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Introduction

Left ventricular hypertrophy (LVH) is an early structural and

functional cardiac change of hypertension, with an estimated

echocardiographic prevalence of 36–41% (1). Other causes

of LVH include aortic stenosis, hypertrophic cardiomyopathy,

valvular heart disease, infiltrative heart muscle disease, storage

and metabolic disorders (2, 3). The incidence of LVH is further

affected by age and obesity (4, 5). Previous studies showed that

LVH is an independent risk of arrhythmias (3), heart failure (6)

and mortality (7).

Echocardiography is the current standard diagnostic

method (8), whereas 12-lead ECG is the most commonly

used diagnostic tool in clinical cardiology as it allows a rapid

screening of LVH. However, current ECG criteria of LVH

including the Cornell voltage and the Sokolow-Lyon voltage

criteria have low sensitivity (7, 9). These criteria mainly focus

on increased QRS complex amplitude, but overlook a leftward

shift of electrical axis in the frontal plane, ST segment deviation

and T wave changes, which are also principal ECG diagnostic

characteristics for LVH (10). Besides, the interpretation of these

ECG criteria are tedious for doctors, affecting the efficiency

and accuracy of diagnosis. To improve these limitations of the

current ECG criteria for LVH, new methods for analysis of ECG

are urgently needed.

Since the digitalization of ECG, artificial intelligence

methods have been employed in computerized interpretation

of ECGs (11). Recently, few studies were presented by machine

learning for the ECG characteristics to detect presence of LVH

(12, 13). Among these methods, deep learning (DL) techniques

are superior to conventional machine learning techniques due

to its ability of automatic feature extraction. The Convolutional

Neural Network (CNN), combined with the Long Short-

Term Memory (LSTM) model, appear to be the most useful

architectures for classification (14). A 16-layer CNN-LSTM

model was efficaciously used to classify coronary atherosclerotic

disease (CAD), myocardial infarction, and chronic heart failure

signals, with a precision rate of 98.5% (15). Our previous

study also showed that the CNN-LSTM performed better

than the CNN, LSTM, and doctors in detecting acute ST-

segment elevation myocardial infarction (STEMI) based on 12-

lead ECG, with an area under the curve (AUC) of 0.99 (16).

Accordingly, our study aimed to establish a DL model based on

the CNN-LSTM for reliable and rapid detection of LVH using

12-lead ECG.

Methods

Study population

A total of 3,120 patients hospitalized at the Third Affiliated

Hospital of Sun Yat-sen University in China from January 2017

to December 2019 were recorded. Only the first admission

for each patient was included; repeated hospitalizations were

not evaluated in this study. Finally, 1,863 patients with ECG

obtained within 1 week after hospitalization were included

for analysis. Exclusion criteria were as follows: complete

left or right bundle branch block, ventricular paced rhythm,

ventricular arrhythmia at the time of ECG acquisition. Another

independent cohort consisted of 453 patients was used as the

internal test set 2 using the same inclusion and exclusion criteria.

All personal details were erased to protect the confidentiality

of patients’ data. Data collection was approved by the ethics

committee at the Third Affiliated Hospital of Sun Yat-

sen University.

Baseline data collection

Data was extracted from the standard clinical electronic

medical record (EMR) database of the Third Affiliated

Hospital of Sun Yat-sen University, including demographic

characteristics, comorbidities, laboratory tests, and medicines.

The comorbidities were retrieved according to ICD-10

diagnostic codes.

Acquisition and procession of
echocardiography data

Comprehensive 2-dimensional Doppler echocardiography,

the gold standard to assess LVH, was routinely performed using

commercially available ultrasound equipment. Acquisitions and

measurements were performed by two experienced cardiac

ultrasound doctors. LVH is defined as a left ventricular mass

index (LVMI) >115 g/m2 in male subjects and >95 g/m2

in female subjects (17). Calculation of relative wall thickness

(RWT) with the formula (2× posterior wall thickness)/(LV

internal diameter at end-diastole), permits categorization of an

increase in LV mass as either concentric (RWT > 0.42) or

eccentric (RWT ≤ 0.42) hypertrophy (17).

Acquisition and procession of ECG data

ECG was performed at a sampling rate of 1,000Hz, and

acquired in the supine position using the ECGNET Vision 3.0

(SanRui Electronic Technology, Guangdong, China). The ECG

signal had to be clear, stable baseline with no interference.

All ECG data were labeled with the study ID, and stored

as XML file format following the H7L standard on a secure

server. The quality of ECG data and ECG interpretations were

independently reviewed by 2 cardiologists. The comparison of

our model was referred to the Cornell voltage criteria and the

Sokolow-Lyon voltage, given their relative higher sensitivity and
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specificity (9, 18). The sex-specific Cornell voltage criteria was

computed as the amplitude of R in aVL plus the amplitude

of S or QS complex in V3 (RaVL + SV3) with a cutoff of

>2.8mV in men and >2.2mV in women. The Sokolow-Lyon

voltage was obtained by adding the amplitude of S in V1 and

the amplitude of R in V5 or V6 ≥3.5mV (SV1 + RV5 or

RV6) (19).

Deep-learning modeling

ECG data extraction

ECG data was extracted from XML files, consisted

of 12 channels. The duration of ECG generally lasted

from 10 to 90 s, and were cut into 5-s segment.

The specification of each ECG segment was finally

intercepted (5,000, 12), which was then utilized in the

input model.

Data balance

There was imbalance in the quantity of cases and ECG

segments between the control and LVH groups, as the latter

group had less cases and ECG segments. To solve this problem,

we drew sample cases and ECG segments of the control group

referring to these of the LVH group, at last the cases and ECG

segments were balanced in two groups.

The model was evaluated through 5-fold cross-validation

technique. In each repetition of the cross-validation process, one

part was selected as the validation set, another part was selected

as the test set, while the remaining parts were served as the

training set. Thus, the datasets of cases and ECG segments were

needed to be equally split into 5 parts following below steps:

(1) ECG segments of each case were ranked by number; (2)

counted the frequency of the number of ECG segments; (3) if

the ECG data of cases had the same quantity of segments and

the number of those cases was more than 5, the ECG data of

those five cases were selected and evenly divided into five parts,

and then the remaining ECG data of cases were partitioned

into five proximately equal parts, making the total number of

cases and ECG segments among 5-fold subsets approximate.

In order to split five equal parts rapidly, we developed an

algorithm replacing manual processing with automation. The

final dataset included 36,350 ECG segments (n = 931) and

36,348 ECG segments (n= 932) in the control and LVH groups,

respectively. Previous studies have showed that the sensitivity

and specificity of ECG criteria could be influenced by gender

and left ventricular geometry, therefore we performed subgroup

analyses. And we also balanced data for all subgroup analyses

using the same method.

Model architecture and training

The architecture of CNN-LSTMmodel has been described in

our previous study (16). In the training process, the model input

was 12-lead ECG segment which had the specification of (5,000,

12). The first part of the CNN-LSTMmodel was CNN layers. The

(5,000, 12) ECG segments were split into m smaller segments

(length of smaller segments = 5,000/m) to train m CNN time

Distributed layers simultaneously. The time Distributed layer is

fully connected in the time dimension. In CNN time Distributed

layer, weight parameters or convolution kernels were shared,

instead of each have its own weight. We made the number of

smaller segments (m) as a parameter with a value scope in (1, 2,

5, 10, 20, 25, 50, 100, 200, 250, and 500). The number of smaller

segment (m) was settled according to the best validation output

during training process. The number of CNN layers ranged from

1 to 5, and that of LSTM layers was 2. The CNN layer kernels

would be selected from the scope of (16, 24, 32, 48, 56, and 64).

All hyper-parameters would be Grid Search by keras tuner tool,

which could automatically record and compare the accuracy of

different models. Finally, the model with the best performance

and corresponding hyper-parameters were selected, and then the

parameters of the best model were utilized for LVH prediction

based on ECG. Among all of the models explored, the CNN-

LSTMmodel which had 200 smaller segments to input data, and

contained 3 CNN layers (16 kernels in each layer), followed by 2

LSTM layers (200 LSTM units and 2 LSTM units in each LSTM

layer, respectively) performed the best. The last 2 LSTM units

output was predictive probability of the control and LVH groups.

The DL models of each subgroup, including gender and RWT,

were developed in the same process. More details of all models

were showed in Supplementary Table 1.

Statistical analysis

The baseline characteristics were described as mean

(standard deviation) (SD) or median with interquartile range

(IQR) for continuous variables, and categorical variables

were described as proportions. Kolmogorov-Smirnov test

was used for continuous variables whether conforming to

normal distribution. Differences in baseline characteristics were

compared using t-test between two groups or analysis of

variance (ANOVA) for continuous variables, while Mann-

Whitney U-test between two groups and Kruskal-Wallis test

among three groups was for abnormal distribution, and Chi-

square test was applied for categorical variables. The statistical

analyses were performed using the SPSS 22.0. A 2-tailed P-value

< 0.05 was considered statistically significant.

Receiver operating characteristic (ROC) curve analysis

and area under the curve (AUC) were used to evaluate the

diagnostic efficacy of CNN-LSTM models and conventional

ECG indexes of LVH. Delong’s test was used to compare the
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performance of two ROC curves. Sensitivity, specificity,

positive predictive value (PPV), negative predictive

value (NPV) and F1-score were calculated with python

(version 3.6.9).

Results

Study population and baseline
characteristics

The study flow chart was shown in Figure 1. In the first

cohort, 1,863 patients were divided into 2 groups according to

the LVMI criteria: LVH group (n= 932) and control group (n=

931). Compared with the patients of control, patients in the LVH

group were older, composed of higher proportion of female,

more combined with hypertension, chronic heart failure (CHF),

chronic kidney disease (CKD), as well as more likely to receive

angiotensin-converting enzyme inhibitor (ACEI) and diuretics,

but had lower level of hemoglobin (HGB). More details were

shown in Table 1.

Further, patients in the first cohort were evenly split

into 3 sets: the training set (n = 1,120), the validation set

(n = 371) and the test set 1 (n = 372). Patients in the

training set had higher prevalence of CAD. There were no

significant difference in other clinical characteristics among the

three sets. More baseline characteristics were summarized in

Supplementary Table 2. In the internal test set 2, patients in the

LVH group were older, composed of higher proportion of female

and had higher prevalence of CHF, but had lower level of HGB

(Supplementary Table 3).

The predictive value of DL models in LVH
diagnosis

LVH was predicted by the CNN-LSTM model with an

AUC of 0.62 (sensitivity 68%, specificity 57%) in the test set

FIGURE 1

Study flow diagram. (A) The first cohort was further divided into training, validation and test sets. (B) The second cohort was used as internal test

2 to evaluate developed DL model.
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TABLE 1 Patient characteristics between LVH and control groups.

Characteristics LVH Control P-value

(n = 932) (n = 931)

Demographic

Female, n (%) 511 (54.8) 273 (29.3) <0.001

Age, years 67.3 (10.5) 63.9 (11.3) <0.001

Medical history

CAD, n (%) 601 (64.5) 564 (60.6) 0.082

HT, n (%) 586 (62.9) 486 (52.2) <0.001

CHF, n (%) 330 (35.4) 223 (24.0) <0.001

DM, n (%) 306 (32.8) 333 (35.8) 0.182

Stroke, n (%) 129 (13.8) 122 (13.1) 0.641

CKD, n (%) 85 (9.1) 47 (5.0) 0.001

STEMI, n (%) 23 (2.5) 16 (1.7) 0.259

Laboratory examination

HDL-C (mmol/L) 1.07 (0.29) 1.04 (0.27) 0.270

LDL-C (mmol/L) 2.77 (1.06) 2.82 (1.03) 1.030

HGB (g/L) 125.71 (19.06) 133.02 (18.74) <0.001

PLT (10∧9/L) 230.52 (85.34) 228.64 (68.03) 0.607

BUN (mmol/L) 6.82 (4.58) 6.16 (2.70) <0.001

Cr (umol/L) 103.92 (122.34) 87.81 (58.00) <0.001

UA (umol/L) 394.94 (124.77) 394.92 (112.51) 0.997

potassium (mmol/L) 3.99 (0.45) 4.00 (0.40) 0.620

sodium (mmol/L) 141.58 (3.24) 141.39 (5.17) 0.767

ECG

RV5 (mV) 1.49 (1.12, 1.99) 1.40 (1.09, 1.75) <0.001

RV6 (mV) 1.20 (0.87, 1.58) 1.10 (0.86, 1.42) <0.001

RaVL (mV) 0.42 (0.24, 0.63) 0.33 (0.17, 0.54) <0.001

SV1 (mV) −0.81 (−1.12 to−0.53) −0.72 (−0.97 to−0.50) <0.001

SV3 (mV) −0.93 (−1.32 to−0.58) −0.86 (−1.17 to−0.55) 0.002

Cornell voltage LVH, n (%) 414 (45.2) 240 (26.3) <0.001

Sokolow-Lyon LVH, n (%) 109 (11.9) 18 (2.0) <0.001

Echocardiography

LVEF (%) 64.08 (9.35) 67.43 (5.17) <0.001

LVEDD (mm) 49.23 (5.34) 44.6 (3.97) <0.001

LVPW (mm) 10.44 (1.10) 9.58 (1.01) <0.001

IVS (mm) 11.77 (1.68) 10.50 (1.34) <0.001

LVMI (g/m2) 129.28 (28.93) 89.97 (14.47) <0.001

Concentric LVH, n (%) 515 (55.3) 532 (57.1) 0.412

Treatment

ACEI, n (%) 192 (20.6) 113 (12.1) <0.001

ARB, n (%) 264 (28.3) 234 (25.1) 0.120

Spirolactone, n (%) 134 (14.4) 107 (11.5) 0.064

CCB, n (%) 366 (39.3) 326 (35.0) 0.057

BB, n (%) 586 (62.9) 563 (60.5) 0.286

Diuretics, n (%) 240 (25.8) 186 (20.0) 0.003

CAD, coronary artery disease; HT, hypertension; DM, diabetes mellitus; CHF, chronic heart failure; CKD, chronic kidney disease; STEMI, ST-segment elevation myocardial infarction;

HDL-C, high density lipoprotein cholesterol; LDL-C, low density lipoprotein cholesterol; HGB, hemoglobin; PLT, platelet; BUN, blood urea nitrogen; Cr, creatinine; UA, uric acid; LVEF,

left ventricular ejection fraction; LVEDD, left ventricular end-diastolic dimension; LVPW, left ventricle posterior wall; IVS, ventricular septum; LVMI, left ventricular mass index; ACEI,

angiotensin-converting enzyme inhibitor; ARB, angiotensin receptor blocker; CCB, calcium channel blocker; BB, beta-block.
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FIGURE 2

Receiver operating characteristic curve analysis, (A) compared the DL model with Cornell voltage and Sokolow-Lyon voltage in test set 1, the

confusion matrix for predicting control and LVH using the DL model in the test set 1; (B) to test the DL model in internal test set 2. DL, deep

learning model; CV, Cornell voltage, SL, Sokolow-Lyon voltage.

1, which had a better performance than the Cornell voltage

criteria (AUC: 0.57, sensitivity 48%, specificity 72%) and the

Sokolow-Lyon voltage (AUC: 0.51, sensitivity 14%, specificity

96%). Differences in ROC curves were statistically compared

via Delong’s test (CNN-LSTM model vs. Cornell voltage

criteria, p-value = 0.075; CNN-LSTM model vs. Sokolow-Lyon,

p-value = 0.037). Although no significant difference was found

between CNN-LSTM model and Cornell voltage criteria, the

sensitivity of CNN-LSTMmodel was higher than that of Cornell

voltage criteria. In the internal test set 2, the CNN-LSTMmodel

had a stable performance in predicting LVH with an AUC of

0.59 (sensitivity 65%, specificity 57%) (Figure 2), which was

comparable to that of the internal test set 1.

In the subgroup analysis, the first step was to train different

DL models according to gender. In the test sets, the CNN-

LSTM model predicted LVH with an AUC of 0.66 (sensitivity

72%, specificity 60%) for male patients, which was better

than that for female patients (AUC: 0.59, sensitivity 50%,

specificity 71%) (Figure 3). The second step was to evaluate

the effect of left ventricular geometry on the diagnosis of

ventricular hypertrophy based on ECG. The DL models were

trained for concentric and eccentric hypertrophy according

to RWT. In the test sets, the CNN-LSTM model predicted

concentric hypertrophy with an AUC of 0.66 (sensitivity 62%,

specificity 70%) and eccentric hypertrophy with an AUC of

0.68 (sensitivity 65%, specificity 71%) in male patients, and an

AUC of 0.58 (sensitivity 48%, specificity 68%) for concentric

hypertrophy and an AUC of 0.58 (sensitivity 47%, specificity

69%) for eccentric hypertrophy in female patients (Figure 4)

(Supplementary Table 4).

Discussion

This is a study to develop DLmodels of LVH diagnosis based

on a large real-world ECG database. Our main achievement was

that we built a DL model based on CNN-LSTM with higher

sensitivity than current ECG diagnostic criteria. Moreover, we

constructed different CNN-LSTM models to predict LVH for

male and female patients separately, and the predictive value was

better in male patients.

Our DL model predicted LVH with higher sensitivity than

the Cornell voltage criteria and Sokolow-Lyon voltage (68, 48,

and 14%, respectively), whereas its specificity was inferior to
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FIGURE 3

Comparing the DL model with Cornell voltage and Sokolow-Lyon voltage to predict LVH, the confusion matrix for predicting control and LVH

using the DL model in the test set; (A) for male patients; (B) for female patients. DL, deep learning model; CV, Cornell voltage; SL, Sokolow-Lyon

voltage.

these two criteria (57, 72, and 96%, respectively). The accuracy

of our model still needed to be improved. In the study of

Bressman et al., found that the sensitivity and specificity of

ECG for left ventricular hypertrophy were 30.7 and 84.4% in a

cohort of 13,960 subjects using a computer-generated algorithm,

which is similar to the combination of the Sokolow-Lyon and

Framingham criteria (20). Peguero et al. proposed a new ECG

criteria involved measuring the amplitude of the deepest S wave

(SD) in any single lead and adding it to the S wave amplitude

of lead V4 (SV4), which outperformed Cornell voltage with

a significantly higher sensitivity (62 vs. 35%) in a relatively

small sample size (21). However, another study found that the

Cornell voltage carried the best AUC of 0.678 (sensitivity 33.1%,

specificity 88.8%), while Peguero Lo Presti criterion had an

AUC of 0.64 (sensitivity 42.3%, specificity 75.8%) in a cohort

of 2,134 patients (19). Current ECG criteria of LVH have low

sensitivity, limit the application of ECG in screening for LVH.

Recently, a few studies utilized machine learning techniques

for ECG and clinical characteristics to diagnose LVH. Lin et

al. used a support vector machine classifier as the machine

learning method for 31 clinical characteristics and 28 ECG

parameters to detect LVH, successfully achieving a specificity

of 73.3%, and a much better sensitivity of 86.7%, compared to

3.3 and 52.7% of the Cornell and Sokolow-Lyon voltage criteria

in a large sample of 2,196 males (12). Although this research

developed a method with high accuracy in a large sample size,

the patients included were only of youngermales, and this model

needed lots of clinical characteristics. Additionally, a machine-

learning technique called Bayesian Additive Regression Trees

was developed to predict LVH based on ECG and participant

characteristics, and the result showed a specificity more than

93% but a poor sensitivity of only 29.0% in a cohort of 4,714

participants from the Multi-Ethnic Study of Atherosclerosis

study (13). Khurshid et al. trained a CNN to predict cardiac

magnetic resonance (CMR)-derived LV mass using 12-lead

ECGs (LVM-AI) in the UKBiobank prospective cohort of 32,239

individuals. The results showed that the LVH discrimination

of LVM-AI was 0.653 (sensitivity 34%, specificity 96%) and

0.621 (sensitivity 41%, specificity 83%) in the independent

UK Biobank test set and Mass General Brigham, respectively.

However, low sensitivity was still limiting the application of

these models. On the other hand, the CNN-LSTM was able to

detect CAD ECG signals with a diagnostic accuracy of 99.85%

with blind-fold strategy (22). Our previous study showed the
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FIGURE 4

Receiver operating characteristic curve analysis of di�erent models according to gender and relative wall thickness (Model 1: Control-M vs.

concentric LVH-M; Model 2: Control-M vs. eccentric LVH-M; Model 3: Control-F vs. concentric LVH-F; Model 4: Control-F vs. eccentric LVH-F).

LVH-F, female patients with left ventricular hypertrophy; LVH-M, male patients with left ventricular hypertrophy; Control-F, female patients in

control group; Control-M, male patients in control group.

ECG DL diagnosis systems based on the CNN-LSTM have a

good performance to detect STEMI and predict culprit vessel

occlusion (16). On this basis, we developed a DL model of

LVH diagnosis that showed higher sensitivity than current

ECG criteria.

Moreover, previous work showed that female gender was

associated with lower sensitivity but higher specificity (20, 23).

Consistently, in our study, the LVH diagnosed by the DL model

was lower in female patients (50% sensitivity, 71% specificity),

compared to 72% of sensitivity and 60% of specificity for male

patients. Additionally, left ventricular geometry is associated

with ECG-defined left ventricular hypertrophy (24). An RWT

> 0.42 demonstrated an increased sensitivity and decreased

specificity for LVH (20). However, our models showed similar

sensitivity to predict eccentric and concentric hypertrophy

in female patients, and even higher sensitivity for eccentric

hypertrophy in male patients.

There are some advantages in our DL models based on

CNN-LSTM. First, the most common method of model training

is to manually set a parameter, and the optimal value is selected

after repeated experiments, which is inconvenient for clinical

application. In our model training stage, the grid search method

was used to search all possible parameter combinations of

each model. For each parameter, grid search algorithm can

extensively search the whole possible parameters space, and

these parameters searching can be done in parallel, regardless

of computing resource constraints, to reduce the training time.

Moreover, our DL model did not need additional preprocessing

for ECG data like removing noise, which may also perform

well with different sources of ECG. However, the accuracy

of our model still needed to be improved. Previous study

showed multiple patient characteristics were associated with

differences in sensitivity and specificity of LVH prediction by

ECG. Therefore, adding the baseline characteristics like age,

gender, body mass index, comorbidities to our model training

may improve its performance. On the other hand, the attention

module integrates channel information, obtains the importance

of features and allocates attention weight to make the network

pay attention to important features, so channel-wise attention

could be added to different convolution layers in order to

optimize the CNN-LSTMmodel. In terms of clinical application,

our DL model was established in a real-world ECG database,

in which all patients were included regardless of the admitting

diagnosis. In addition, LVH is a modifiable risk factor related

to systolic BP and regression of LVH may reduce subsequent

CV events (25). Therefore, it might be helpful in the better

management of hypertension. Besides, our CNN-LSTM model

is an end-to-end approach, it only utilized raw ECG data

input and built binary classification and multiclassification

without experts or experienced cardiologists. It could be able

to give primary diagnosis timely and reduce the workload

of doctors.
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Limitations

Some limitations of our study should be considered. Our

study was a single-center study, the models may have the

risk of generalizing poorly to other hospital systems and

other datasets. Besides, our ECG diagnostic models based

on CNN-LSTM have higher sensitivity at the expenses of

relatively lower specificity compared to currently commonly

used ECG diagnostic criteria. But ECG used as a screening

tool, the interpretation method with higher sensitivity is

more likely to identify more individuals with LVH who

need confirmation of the diagnosis with echocardiography

or MRI. Moreover, this study population mainly included

south China population. Therefore, more researches from

different regions and ethnic groups are necessary to confirm

these findings.

Conclusion

Our ECG diagnostic model based on the CNN-

LSTM has higher sensitivity than currently used ECG

diagnostic criteria. The performance of the model trained

for male patients was better than that for female patients.

Therefore, this CNN-LSTM model may be a simple and

effective screening tool of LVH in hypertensive patients and

general population.
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Objective: To compare the performance of a newly developed deep learning

(DL) framework for automatic detection of regional wall motion abnormalities

(RWMAs) for patients presenting with the suspicion of myocardial infarction

from echocardiograms obtained with portable bedside equipment versus

standard equipment.

Background: Bedside echocardiography is increasingly used by emergency

department setting for rapid triage of patients presenting with chest pain.

However, compared to images obtained with standard equipment, lower

image quality from bedside equipment can lead to improper diagnosis.

To overcome these limitations, we developed an automatic workflow to

process echocardiograms, including view selection, segmentation, detection

of RWMAs and quantification of cardiac function that was trained and

validated on image obtained from bedside and standard equipment.

Methods: We collected 4,142 examinations from one hospital as training

and internal testing dataset and 2,811 examinations from other hospital as

the external test dataset. For data pre-processing, we adopted DL model to

automatically recognize three apical views and segment the left ventricle.

Detection of RWMAs was achieved with 3D convolutional neural networks

(CNN). Finally, DL model automatically measured the size of cardiac chambers

and left ventricular ejection fraction.

Results: The view selection model identified the three apical views with

an average accuracy of 96%. The segmentation model provided good
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agreement with manual segmentation, achieving an average Dice of 0.89.

In the internal test dataset, the model detected RWMAs with AUC of 0.91

and 0.88 respectively for standard and bedside ultrasound. In the external

test dataset, the AUC were 0.90 and 0.85. The automatic cardiac function

measurements agreed with echocardiographic report values (e. g., mean bias

is 4% for left ventricular ejection fraction).

Conclusion: We present a fully automated echocardiography pipeline

applicable to both standard and bedside ultrasound with various functions,

including view selection, quality control, segmentation, detection of the

region of wall motion abnormalities and quantification of cardiac function.

KEYWORDS

artificial intelligence - AI, myocardial infarction, echocardiography, deep learning,
bedside ultrasound

Introduction

Myocardial infarction (MI) is the most severe manifestation
of coronary heart disease, resulting in disability or sudden
cardiac death. According to Report on Cardiovascular Health
and Diseases in China 2021, AMI mortality increased by a factor
3.5 in rural areas and by a factor of 2.66 in urban areas from
2002 to 2019. In 2019, AMI mortality was 0.08% in rural areas
and 0.06% in urban areas (1). Recent studies show that there is
significant variability in the care and outcomes of MI patients
in hospitals with different levels of care (2). Rapid diagnosis
and prompt reperfusion treatment are of primary importance
to reduce mortality from MI.

With the advantages of easy availability, low cost, fast
performance and safety, transthoracic echocardiography
(especially bedside ultrasound) is the most commonly used
non-invasive imaging tool for detecting regional wall motion
abnormalities (RWMAs) and providing information on short-
and long-term outcomes after acute myocardial infarction
(AMI) (3–5). The American College of Cardiology/American
Heart Association and the European Heart Association
guidelines give a Class I recommendation for using
transthoracic echocardiography to detect RWMAs in chest
pain patients presenting to the emergency ward without
delaying angiography (6, 7).

Abbreviations: A4C, apical four chambers; A2C, apical two chambers;
ALX, apical long axis; CNN, convolutional neural networks; DL, deep
learning; LVEF, left ventricular ejection fraction; LVEDV, left ventricular
end-diastolic volume; LVESV, left ventricular end-systolic volume; LV
EDTD, left ventricular end-diastolic transversal dimension; LA ESTD,
left atrial end-systolic transversal dimension; LOA, limits of agreement;
MI, myocardial infarction; RV EDTD, right ventricular end-diastolic
transversal dimension; RA ESTD, right atrial end-systolic transversal
dimension; RWMAs, regional wall motion abnormalities; ROC, receiver
operating characteristic.

However, accurate recognition of RWMAs by
echocardiography requires highly trained and experienced
physicians which are in short supply and typically not available
around the clock in many hospitals. Furthermore, visual
diagnosis of RWMAs often varies amongst doctors with various
level of expertise (8). Therefore, an effective solution for
efficient, accurate and objective diagnosis of RWMAs is needed.

Deep learning (DL) models have strong data processing
capabilities and have been used for automated interpretation
of images obtained from various modalities. Related to
echocardiography, DL models can perform a variety of analyses,
such as image quality assessment, view classification, boundary
segmentation, and disease diagnosis (9–14). With the help of
DL, tedious and time-consuming tasks like segmentation and
quantification of different parameters can be performed quickly
and precisely, saving increasingly scarce human resources (11,
13, 14).

Recently, tremendous advances have been made in DL
models for the detection of RWMAs (15, 16). However, these
studies applied relatively strict, up front image quality criteria
such that ∼40% of studies were excluded from analysis,
indicating that those models may not be practical for widespread
use. Furthermore, in those studies, standard echocardiographic
equipment was used which, in general, produce higher quality
images than newer, portable bedside ultrasound equipment.
With the advantages of portability and availability, bedside
ultrasound is becoming increasingly applied in emergency
rooms and intensive care units for specific applications, such as
real-time assessment of cardiac function and RWMA in patients
presenting with chest pain syndromes. Use of DL models to
analyze images from these machines has not been specifically
explored in prior studies (9, 10).

We developed a novel DL model to analyze
echocardiographic videos to detect RWMAs and standard
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indexes of cardiac size and function from three standardized
apical views. In contrast to prior studies, the structure of our
model and the training dataset were geared toward analysis
of images from bedside echocardiograms while fully retaining
the ability to analyze images from standard equipment.
Accordingly, the main purpose of this study was to compare
the accuracy of this model for analyzing videos obtained from
bedside ultrasound to those of standard equipment.

Materials and methods

Study population

The methods used in the design, implementation, and
reporting of this study were consistent with the recently
published PRIME (Proposed Requirements for Cardiovascular
Imaging Related Machine Learning Evaluation) checklist
(17), which was provided in the Supplementary Appendix.
We retrospectively accessed a total of 2,274 transthoracic
echocardiographic examinations obtained between May 2015
and September 2019 from the Fourth Medical Center of
Chinese PLA General Hospital as our training and validation
dataset (ratio 8:2). MI and control cases were matched
for age and sex. We then prospectively collected 1,868
examinations between May 2020 and May 2021 from the
same hospital as an internal test dataset. For the external
test dataset, we collected 3,026 examinations between Jan
2021 and Dec 2021 from the Second Affiliated Hospital of
Shandong University of Traditional Chinese Medicine. Training
and testing datasets each included echocardiographic studies
from standard and bedside echocardiographic equipment as
detailed in the Figure 1. The diagnosis of acute or prior
MI were based on information from the electronic medical
records (including echocardiographic report, blood tests, ECGs
and angiograms). The presence and extent of RWMAs
were extracted from echocardiographic reports generated
by experienced sonographers and the echocardiograms were

reviewed a second time by an experienced cardiologists who
authorized the final diagnoses.

Echocardiography

Each echocardiographic examination was acquired through
standard methods. Videos from three standard apical views were
include in this study: apical 4-chamber (A4C), apical 2-chamber
(A2C), and apical long axis (ALX). Images were acquired
from a diverse array of standard echocardiography machine
manufacturers including Phillips EPIQ 7C and iE-elite with S5-
1 and X5-1 transducers (Phillips, Andover, MA, United States),
and Vivid E95 (General Electric, Fairfield, CT, United States)
and portable bedside machines including Philips CX50 and
Mindray M9cv with transducer SP5-1s (Mindray, Shenzhen,
Guangdong, China). All images were stored with a standard
Digital Imaging and Communication in Medicine (DICOM)
format according to the instructions from each manufacturer.

View selection and quality control

We labeled 33,404 images to develop a method to classify 29
standard views and then selected the three apical views required
for the subsequent analysis. View selection was performed using
a Xception Net neural network model according to methods that
were previously described (18).

An automated algorithm was developed to assess image
quality and exclude images whose quality were insufficient
for analysis. Expert echocardiographers manually labeled 2,837
A4C, 1,880 A2C, and 1,910 ALX images as qualified or
unqualified. These labeled images were then used to build the AI
model. Examples of qualified and unqualified images as assigned
by the model are shown in Supplementary Figure 1. As seen in
these examples, the contour of left ventricle was ambiguous so
that the endocardial or epicardial border was rarely identified in

FIGURE 1

Summary of number of echocardiograms used in this study.
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FIGURE 2

The segmentation of different wall regions. The 2015 ASE guideline recommend typical distributions of the coronary artery in apical
four-chamber (A4C), apical two-chamber (A2C), and apical long-axis (ALX) views. In the echocardiographic images, we labeled A for apical,
anterior and anteroseptal walls (green area), F for inferior and inferoseptal walls (orange area), and L for anterolateral and inferolateral walls
(purple area).

unqualified views. Subsequently, images automatically classified
as unqualified were excluded from analysis.

Segmentation

The segmentation model was developed to outline the
endocardial and epicardial borders of the left ventricle and
the endocardial borders of the left atrium, right atrium and
right ventricle. Left ventricle was grouped into 3 different
regions, designated A (apical, anterior, and anteroseptal walls),
F (inferior and inferoseptal walls) and L (anterolateral and
inferolateral walls) according to 2015 American Society of
Echocardiography guidelines (19) (Figure 2). We annotated
493 apical 4-chamber videos (8,555 frames), 332 apical 2-
chamber videos (5,768 frames) and 366 apical long-axis videos
(6,389 frames) which served as ground truth for developing
and testing this algorithm to segmented the heart into
regions A, F and L as detailed above (19, 20). Myocardial
segmentation masks were generated for every frame of each
video with the pretrained segmentation LSTM-Unet (21–23).
Three separate segmentation models with the same structure
were developed to analyze the A4C, A2C, and ALX views.
For the A4C video, the model segmented the left ventricle,
the left atrium, the right ventricle and the right atrium
which were used to quantify the size of each chamber. For

detection of RWMAs, each video frame was cropped into a
128 × 128 pixels square with the left ventricle at the center
and pixel values are normalized to the range from 0 to
1 (Figure 2).

Detection of regional wall motion
abnormalities

The overall process for detecting RWMAs was summarized
in Figure 3. Each original DICOM video was concatenated with
the mask of the myocardium obtained by the segmentation
model. The mask and video were then input into A, F, and
L classification models. Detection of the presence of RWMAs
and the territory of RWMAs was achieved with Deep 3D
Convolution Neural Network.

Details of the RWMA detection model are shown in
Supplementary Figure 2. The backbone of the model is
R2plus1D, which is a time-saved and calculation-saved feature
extractor. In order to effectively use the information extracted
by the R2plus1D feature extractor, three fully connected layers
are added to the model (24). There is a Batch Normalization
layer, an activation layer (LeakyReLU) and a 50% dropout layer
following each full-connected layer. Batch Normalization can
improve the efficiency of model training, which can save time
required to train the video model (25). The output of the
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FIGURE 3

The whole work flow of deep learning model. Steps of data processing. The first model achieves view selection on echocardiography. The
Xception model generates a confidence level for view selection and selects A4C, A2C, and ALX views whose confidence is higher than 0.9.
Secondly, LSTM-Unet segments each frames of outputs of Xception. The segment and the original video are concatenated as inputs of
classification models to detect regional wall motion abnormality. The outputs of LSTM-Unet with A4C and A2C are calculated important
parameters, such as LVEDV, LVESV, and LVEF.

RWMA detection model contains two values (two red neurons
as shown in Supplementary Figure 2). These values (the
score of no abnormality and the score of an abnormality) are
derived from the full-connected layers transform information
extracted by R2plus1D.

The RWMAs detection models were trained using two
Graphics Processing Units (GPU), NVIDIA Tesla P100. Each
model contains about 1 million parameters. All the parameters
are trained in the direction of minimizing cross entropy, which
is an error function to calculate how far the models’ outputs is
from real label. The models are trained with Stochastic Gradient
Descent Momentum (SGDM) with 0.9 momentum and 1e−4
weight decay. The learning rate starts from 1e−5 and increases
linearly with epoch until 1e−4 at epoch 10, which is called
warm-up (26). Then learning rate decline linearly from 1e−4 at
epoch 10 to 5e−5 at epoch 50.

In order to improve the generalization of RWMAs detection
models, spatiotemporal video augmentation methods are
adopted. The left subplot in Supplementary Figure 3 shows the
clipping in the time dimension and the right subplot shows the
spatial cropping. At the training state, each video is randomly
cropped and clipped in the spatial and temporal dimensions, so
as to enhance the diversity of data and the generalization of the
model. In the test and validation phase, the videos are divided
into non-overlapping 8-frame video segments and each video
segment is inferred three times with three spatial crops. For
example, a 32-frame video is divided into 4 video segments, each
of which contain 8 frames, and each video segment generates
three crops, which means the 32-frame sample generate 12
results in total. Majority voting combines 12 results. The models
are performed with Python 3.6.8 and PyTorch 1.4.0. The code
will be released in GitHub.

Quantification of key metrics

The key metrics derived from the model include left
ventricle ejection fraction (LV EF), end-diastolic volume (LV
EDV), end-systolic volume (LV ESV), end-diastolic transversal
dimension (LV EDTD), left atrial end-systolic transversal
dimension (LA ESTD), right ventricular end-diastolic
transversal dimension (RV EDTD), and right atrial end-
systolic transversal dimension (RA ESTD). We calculated these
metrics based on the output of segmentation model and the
2015 guidelines of the American Society of Echocardiography
and the European Association of Echocardiography (19). In
order to enhance the interpretability of deep learning, we
adopted the segmentation model to segment the area of four
chambers, and then used Simpson biplane method to calculate
LVEDV, LVESV, and EF. The long short-term memory (LSTM)
can effectively extract the time information from the video.

Statistical analysis

Analyses were performed using algorithms written in
Python 3.6 from the libraries of Numpy, Pandas, and Scikit-
learn. Continuous variables were expressed as mean ± standard
deviation, median and interquartile range, or counts and
percentage, as appropriate. Comparisons of reports and
machine algorithm performances were performed using one-
way analysis of variance (ANOVA), followed by the least
significant difference (LSD) t-test. The detection models were
assessed according to the area under the receiver operating
characteristic (AUROC) curves which plotted sensitivity versus
1–specificity derived from the model’s prediction confidence
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score. Results were regarded as statistically significant when
P < 0.05. All calculations were performed by using IBM
SPSS version 23.0.

Result

Study population

For the internal training and validation dataset, a total
of 2,274 transthoracic echocardiographic examinations were
divided between standard and bedside ultrasound. As specified
in the echocardiography and clinical reports, MIs and RWMAs
were present in 1,137 of the 2,274 studies (50%), 62% of which
were from bedside ultrasound. In the internal test dataset,
MIs and RWMAs were present in 374 of 1,868 cases (20%),
52% of which were examined by bedside ultrasound. In the
external test dataset, MIs and RWMAs were present in 849 of
3,026 cases (28%), 37% of which were examined by bedside
ultrasound. The clinical and echocardiographic characteristics
of the included populations are summarized in Table 1 (training
dataset) and Supplementary Table 1 (internal and external
test datasets). As expected, significant differences in baseline
characteristics existed between normal subjects and those with
a myocardial infarction.

View selection and segmentation

As summarized in Supplementary Figure 4, the deep-
learning architecture identified the apical 4-chamber, 2-
chamber and long-axis views with a high degree of accuracy:
94, 99, and 95%, respectively. The quality control model
achieved an average 95% consistency compared with expert
in identifying qualified images (Supplementary Figure 1). As
for segmentation, the model provided good agreement with
manual segmentation with an average Dice of 0.89 (Table 2).
Although the performance of the model for segmenting bedside
ultrasound images was slightly lower than that in standard
ultrasound, our model was applicable with both machines.

Detection of regional wall motion
abnormalities

For the detection of a regional wall motion abnormalities
in the internal test dataset, the deep learning model had an
average AUROC of 0.91 for images obtained with standard
echocardiographic equipment compared to 0.88 for images
obtained with beside equipment. Youden’s Index was used
to evaluate model performance, which yielded sensitivities
of 85.4% vs. 85.2% and specificities of 83.2% vs. 78.2% for
standard versus beside equipment, respectively. In the external

test dataset, the model achieved an average AUROC of 0.90 vs.
0.85 for standard versus bedside ultrasound, with corresponding
sensitivities of 81.6% vs. 78.3% and specificities of 83.7% vs.
78.1%. The model had a similar performance for detecting
anterior, inferior and lateral wall motion abnormalities in both
bedside and standard ultrasound (Figure 4 and Table 3).
Overall, these results corresponded to comparable accuracies in
detecting RWMAs in the three territories: 0.83 for anterior, 0.81
for inferior and 0.85 for lateral walls.

To test the advantages of this tool for experts and beginners,
we randomly selected 100 cases from both MI and control
cases captured from standard and bedside equipment. In total,
3 experts and 5 beginners participated in the test, where the
first reads were based on their own judgments, while they
had access to the AI results for the second reads. The second

TABLE 1 Baseline characteristics of the training and
validation dataset.

Training and validation dataset

Standard Bedside

MI Normal MI Normal

Echo number 430 947 707 190

Age 65 (55,73) 60 (53,76) 67 (54,77) 58 (50,66)

Male patients(%) 353 (83.3) 590 (62.3) 460 (65.2) 118 (62.1)

Comorbidities (%)

Hypertension 115 (35.1) 249 (26.3) 270 (42.4) 37 (19.5)

Hyperlipidemia 217 (66.2) 148 (14.6) 326 (51.3) 10 (5.3)

Diabetes 124 (38.0) 103 (10.9) 324 (50.8) 21 (11.1)

Renal insufficiency 65 (17.4) 79 (8.3) 228 (35.8) 6 (3.2)

Ischemic stroke history 53 (17.4) 96 (10.1) 121 (21.5) 17 (8.9)

Echo parameters

LV EF (%) 46 (41,54) * 62 (60,64) 43 (36,48) † 60 (59,62)

LV EDV (mm2) 119 (98,144) * 87 (80,100) 106 (88,129) † 84 (75,98)

LV ESV (mm2) 62 (48,82) * 33 (30,37) 59 (46, 76) † 33 (30,39)

LV EDTD (mm) 49 (45,53) * 43 (41,45) 47 (43,51) † 42 (40,45)

LA ESTD (mm) 40 (38,43) * 36 (34,38) 41 (38,43) † 36 (34,38)

RV EDTD (mm) 32 (30,34) * 30 (29,32) 31 (29,33) † 30 (28,32)

RA ESTD (mm) 32 (30,34) * 30 (28,32) 32 (29,34) † 30 (28,31)

Territories of RWMAs

Multiple walls 168 (39.1) 319 (45.1)

A 291 (67.7) 529 (74.8)

F 220 (51.2) 363 (51.3)

L 154 (35.8) 268 (37.9)

Values are median (IQR) or n (%). *p < 0.05 vs. normal subjects in standard group.
†p < 0.05 vs. normal subjects in bedside group. BMI, Body Mass Index; LVEF, left
ventricular ejection fraction; LVEDV, left ventricular end-diastolic volume; LVESV, left
ventricular end-systolic volume; LV EDTD, left ventricular end-diastolic transversal
dimension; LA ESTD, left atrial end-systolic transversal dimension; RV EDTD, right
ventricular end-diastolic transversal dimension; RA ESTD, right atrial end-systolic
transversal dimension; MI, myocardial infarction; RWMAs, regional wall motion
abnormalities; A, apical, anterior and anteroseptal walls; F, inferior and inferoseptal walls;
L, anterolateral and inferolateral walls.
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TABLE 2 Performance of the segmentation model.

Segmentation (Dice)

LV endocardium LV myocardium LA endo RV endo RA endo

Standard Bedside Standard Bedside Standard Bedside Standard Bedside Standard Bedside

A4C 0.94 0.95 0.84 0.81 0.94 0.93 0.89 0.90 0.94 0.93

A2C 0.93 0.93 0.79 0.77 0.93 0.91

ALX 0.93 0.92 0.82 0.78 0.93 0.93

A4C, apical 4-chamber; A2C, apical 2-chamber; ALX, apical long axis; LV, left ventricle; LA, left atrium; RA, right atrium; RV, right ventricle; A4C, apical 4-chamber; A2C, apical 2-chamber;
endo, endocardium.

FIGURE 4

The performance of the RWMAs detection model. The performance of the RWMAs detection model for bedside vs. standard cases in
retrospective invalidation dataset and prospective testing dataset. Abbreviations as in Figure 2.

reads were performed at a separate time without access to
the results of the first read. The comparison of results of
the first and second reads are summarized in Supplementary
Figure 5 and Supplementary Table 2. The AI models did not

significantly improve the accuracy of experts, but was very
helpful for beginners, with average accuracy improving by 9.8,
7.4, and 12.8% for the A, F and L territories, respectively
(Supplementary Table 2).
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Quantification of metrics of chamber
sizes and function

The output of our segmentation model was used to compute
chamber dimensions and ejection fraction based on the biplane
method of disks summation (modified Simpson’s rule) (19).
As above, this analysis was performed on studies which passed
the automated quality control algorithm. Results of the Bland–
Altman analysis comparing parameter values provided by the
AI algorithm and from the clinical reports are summarized
in Table 4. For each of the 7 parameters, the mean bias
and LOAs were similar for the analysis performed on studies
obtained with standard and bedside equipment. Accordingly,
data are further summarized in the Bland–Altman plots in
Figure 5 (LVEF) and Supplementary Figure 6 (structural
parameters) in which results obtained from standard and
bedside equipment are pooled.

We further extended our analysis to segregate patients
into 3, clinically meaningful discrete LVEF groups: reduced
(<40%), midrange (40–50%) and preserved (>50%). The
results of this prediction were moderately consistent with
that of echocardiographic reports, with an accuracy of
77% (Supplementary Table 3). There was a tendency to
underestimate LVEF in our model, especially in higher manual
values. Overall, these results indicate that the degree of accuracy
of the automatic quantification of these key metrics was within
the bounds of normal clinical practice.

Discussion

Prompt recognition of RWMAs by echocardiography is an
important tool for timely diagnosis and treatment of myocardial
infarction in patients presenting with chest pain, especially
in the emergency department. However, accurate diagnosis
relies on technical expertise in image acquisition, intrinsic
quality of the imaging equipment, and significant experience
in image interpretation. Technological advances in portable
echocardiographic equipment are making high quality imaging
more readily available. However, availability of appropriately
trained physicians for on-demand interpretation is limited in
most hospitals and analyses performed by less experienced
physicians may lead to misdiagnoses which can adversely impact
clinical care. Our tool provides a fully automated pipeline
for all routine aspects of interpreting echocardiograms. For
example, echocardiographic images obtained from a patient
admitted to the emergency department with chest pain can
be submitted electronically to the model which automatically
assess for the presence of RWMAs and also quantifies cardiac
function, enabling high-efficient serial primary care. In non-
emergent settings, this tool can be used to assess temporal
changes of regional and global heart function during repeated
echocardiographic videos in patients during follow up for a

myocardial infarction, for monitoring cardiotoxicity during
chemotherapy and in patients receiving cardiac rehabilitation.
Our model makes analysis of these echocardiograms less
burdensome to the system while maintaining (or even
enhancing) reliability and reproducibility.

Our study is the first to rigorously demonstrate that deep
learning methods can automatically assess image quality and
interpret RWMAs with a high degree of accuracy and to
provide a comparison of results from standard and portable
echocardiographic equipment. The first steps in our pipeline
involve automated view selection, quality control and image
segmentation. Each of these steps was performed with a high
degree of accuracy. The importance of automated image quality
assessment cannot be overstated. In order to mimic clinical
practice, we did not apply any initial screening of image quality
for inclusion since physicians are also faced with images of
varied quality. Our algorithm excluded unqualified images from
which detection of RWMAs would be inappropriate, even
by experienced clinicians (see Supplementary Figure 1 for
examples). Interestingly, 2.7% of standard cases and 14.7%
of portable bedside cases were excluded. As summarized
Supplementary Figure 7, when the deep learning model was
applied to detect regional wall motion abnormalities in these
unqualified images, the AUCs, sensitivities and specificities were
all markedly decreased and the bias and LOAs for each of the
7 parameters of chamber sizes and function were significantly
larger. In our cohort, most portable bedside studies were
obtained in the emergency room in patients presenting with
chest pain. Thus, the higher rate of exclusion of bedside cases

TABLE 3 Performance of model for identifying the presence and
territories of RWMAs.

Internal test dataset External test dataset

Standard Bedside Standard Bedside

AUC

A 0.901 0.883 0.906 0.844

F 0.908 0.865 0.889 0.849

L 0.929 0.903 0.897 0.861

Average 0.913 0.884 0.897 0.851

Sensitivity

A 86.3% 87.4% 82.7% 76.80%

F 81.4% 79.3% 83.3% 76.10%

L 88.4% 89.0% 78.9% 82.10%

Average 85.4% 85.2% 81.6% 78.30%

Specificity

A 78.8% 76.8% 84.9% 78.7%

F 86.7% 76.4% 79.3% 78.8%

L 84.0% 81.3% 87.0% 76.9%

Average 83.2% 78.2% 83.7% 78.1%

A, apical, anterior and anteroseptal walls; F, inferior and inferoseptal walls; L,
anterolateral and inferolateral walls.
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may reflect factors such as the critical nature of the patients
under which images are obtained and perhaps less availability
of experienced sonographers in this setting. Under such urgent
conditions, less consideration may be given to image quality.
Therefore, availability of an AI model that can provide feedback
in real time can promote acquisition of high-quality images and
ensure that measurements and detection of RWMAs are based
on qualified images.

Another important feature of our model that analyzed
RWMAs was that it focused analysis on the left ventricle by
excluding the other cardiac chambers. As such, the segmentation
model (which achieved an average Intersection Over Union
value of 80.9%) was able to divide the left ventricle into three
regions corresponding to coronary artery perfusion territories

(15, 16). This division was based on the current guidelines
and, in addition to its intrinsic clinical utility, could provide
the foundation for subsequent research. The model exhibited a
high performance with average Intersection Over Union value
of 80.9%, but relatively lower for epicardium due to the obscure
borders near the edge of imaging area.

Wall motion abnormality detection and
classification

Overall, the deep learning model exhibited good
performance with similar accuracies for detecting RWMAs
in all 3 regions of the left ventricle in both internal and

TABLE 4a The measurements of the corresponding clinical metrics for the RWMAs made by physicians and predicted by AI in internal test dataset.

Parameters Equipment Median value from clinical report (IQR) Bland–Altman analysis (Physicians vs. AI)

Bias Upper LOA Lower LOA

LV EF Standard 60 (59,62) 4.0 15 −11

Bedside 58 (51,60) 4.7 15 −9

LV EDV Standard 92 (81,108) 6.0 50 −40

Bedside 85 (77,101) 6.4 45 −39

LV ESV Standard 36 (31,43) −1.1 19 −23

Bedside 35 (31,47) −1.2 21 −30

LV EDTD Standard 44 (42,47) 0.8 8.0 −5.9

Bedside 42 (38,46) 1.5 11 −6.2

LA ESTD Standard 38 (35,40) 2.6 14 −7.5

Bedside 36 (31,41) 2.7 15 −8.0

RV EDTD Standard 31 (29,33) −0.9 8.1 −9.5

Bedside 31 (29,33) 0.9 10 −8.4

RA ESTD Standard 31 (29,33) 0.5 11 −9.0

Bedside 32 (29,33) 1.5 11 −10

TABLE 4b The measurements of the corresponding clinical metrics for the RWMAs made by physicians and predicted by AI in external test dataset.

Parameters Equipment Median value from clinical report (IQR) Bland–Altman analysis (Physicians vs. AI)

Bias Upper LOA Lower LOA

LV EF Standard 59 (51,63) 3.4 17 −7.7

Bedside 47 (37,58) 4.6 16 −4.1

LV EDV Standard 103 (95,114) 14 41 −20

Bedside 108 (90,136) 4.7 58 −43

LV ESV Standard 59 (55,62) 6.6 16 −12

Bedside 55 (39,83) −2.2 18 −24

LV EDTD Standard 48 (45,50) 1.9 12 −6.4

Bedside 48 (43,53) −1.1 7.0 −10

LA ESTD Standard 36 (32,39) −1.4 10 −12

Bedside 40 (36,44) 0.5 12 −14

RV EDTD Standard 35 (32,38) 1.8 11 −7.6

Bedside 35 (21,38) 1.2 8.9 −7.5

RA ESTD Standard 35 (32,38) 1.4 9.8 −5.9

Bedside 35 (31,39) −0.1 13 −9.7

LVEF, left ventricular ejection fraction; LVEDV, left ventricular end-diastolic volume; LVESV, left ventricular end-systolic volume; LV EDTD, left ventricular end-diastolic transversal
dimension; LA ESTD, left atrial end-systolic transversal dimension; RV EDTD, right ventricular end-diastolic transversal dimension; RA ESTD, right atrial end-systolic transversal
dimension; IQR, interquartile range; LOA, limits of agreement.
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FIGURE 5

The performance of the automated quantification model. Bland–Altman plots of left ventricular ejection fraction in repeated measurements
using the exact same video clips of internal (left plot) and external (right plot) testing dataset. The red dots represent cases acquired from
portable bedside ultrasound; the blue dots represent cases acquired from standard ultrasound. The black lines represent limits of agreement.

external test datasets (Table 3). Performance in the external test
dataset was only slightly lower (by ∼3%) than in the external
test dataset. Also importantly, results achieved from images
obtained with the bedside ultrasound were comparable to those
of the standard equipment with the difference of average AUC
between equipment of only 0.04 in internal and external test
datasets (Figure 4). Our primary motivation is that the model
will assist, not replace, physician decision making. Therefore,
the AI model will save experts’ time without influence his or
her judgment and proved to be very helpful for beginners, with
average accuracy improving by 9.8, 7.4, and 12.8% respectively
for the A, F, and L territories. With the advantage of objectivity
and consistency, the AI model may become an educational
tool for beginners to improve their skill in image acquisition
and interpretation.

We also analyzed the incorrect cases of each models using
Logistic regression. After multivariable adjustment, correlation
between the accuracy and age was statistically significant in all
models (Supplementary Table 4). The violin plot showed that
the average age of incorrect cases was older than that of correct
cases (Supplementary Figure 8). This finding is consistent
with our experience in clinical practice. Because the degree of
wall motion in older patients was generally lower than young
patients, which makes it more difficult for models to distinguish
MI and normal cases.

Automatic quantification of cardiac
function

In addition to detection of territories with RWMAs,
patient care is influenced by parameters of cardiac size
and function. Accordingly, our model also automatically and
reliably quantified the relevant parameters derived from end-
diastolic and end-systolic images. Since it is intended that

our deep learning model be used in conjunction with bedside
echocardiographic devices without ECG capabilities, end-
diastolic and end-systolic images need to be selected based on
endocardial areas determined from the segmentation model;
this approach is similar to those employed by Zhang et al. (10)
and Ouyang et al. (9). Finally, the deep learning model was
reasonably consistent with physicians’ classification of reduced
(<40%), midrange (40∼50%) and preserved (>50%) LVEFs,
which has important implications for treatment and prognosis
of patients with heart failure (3, 5).

Related work

Automated detection of RWMAs have been described in two
recent studies. Kusunose et al constructed a deep learning model
that utilized 3 mid-level short-axis static images acquired at
the end-diastolic, mid-systolic, and end-systolic phases to detect
the presence and territories of RWMAs (15). The highest AUC
produced by the model is 0.97, which is similar to the AUC by
cardiologist and significantly higher than the AUC by resident
readers. However, the pipeline was semiautomatic in that the
initial input requires manual selection for echocardiogram views
and cycle phases. As such, that model was based on analysis of
static images, which does not parallel how RWMAs are detected
in clinical practice which rely on dynamic videos. Finally, the
study lacked external test dataset.

Huang et al also developed a deep learning model for
detection of RWMA that directly analyzed dynamic videos,
first by performing automated view selection and segmentation
(16). The AUC for the external dataset was 0.89. However, the
dataset of RWMAs was relatively small (n = 576) and 84%
(n = 486) of studies included RWMAs of multiple walls; thus
the ability to detect cases with single wall RWMAs was not
fully evaluated. In contracts, nearly 50% of cases in our study
have single wall RWAMs. In addition, to meet the stringent
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quality control, the author excluded up to a third of the
examinations despite only using standard echocardiographic
equipment. This model is therefore not suitable for widespread
use in clinical practice, especially for analysis of bedside
ultrasound in the emergency department. In contrast, our
quality control algorithm was based on assessments by expert
echocardiographers and therefore more closely mimicked
clinical practice. Accordingly, our algorithm excluded only 2.7%
of studies from standard equipment and 14.7% of studies from
portable bedside studies. Despite having excluded a smaller
percent of cases, our overall model performed was comparable
to that of this prior study. Thus, our fully automatic pipeline can
be applied to both standard and bedside ultrasound for detection
of RWMAs and measurement of cardiac function, even in the
emergency department.

Study limitations

The results of our study need to be considered within
the context of several limitations. First, the distribution of
echocardiography machines differed between MI and control
cases, because the MI cases are more likely to have been
performed with portable bedside equipment in an intensive
care or emergency department, while control cases were mainly
obtained by standard equipment in dedicated ultrasound rooms.
Second, like other deep learning studies, we face the “black box
problem” related to unexplained model features and how they
contribute to the final result. To limit this problem to some
degree, we removed irrelevant areas (e.g., RV free wall region)
during the segmentation process so that the model focused
on LV myocardium. Third, our model detected the presence
and RWMAs rather than the severity of motion abnormalities,
because wall motion score indexes recommended by society
guidelines have interobserver and intra-observer variabilities.
Instead, we developed an automated model to quantify cardiac
function in real time. Although our model achieved good
performance in the external test set, testing of the pipeline in
a prospective RCT cohort is warranted.

Conclusion

We developed and validated a fully automated
echocardiography pipeline applicable to both standard and
portable bedside ultrasound with various functions, including
view selection, quality control, segmentation, detection of the
region of wall motion abnormalities and quantification of
cardiac function. With high levels of sensitivity and specificity,
the model has the potential to be used as a screening tool to
aid physician in identifying patients with RWMAs, particularly
in through the use of portable bedside ultrasound in the
emergency room and intensive care units.
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and Nuclear Medicine, Amsterdam University Medical Center, Location University of Amsterdam,

Amsterdam, Netherlands, 6Department of Radiology, Utrecht University Medical Center, University

of Utrecht, Utrecht, Netherlands, 7Department of Radiology, Mayo Clinic, Rochester, MN,
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Deep learning methods have demonstrated the ability to perform accurate

coronary artery calcium (CAC) scoring. However, these methods require large

and representative training data hampering applicability to diverse CT scans

showing the heart and the coronary arteries. Training methods that accurately

score CAC in cross-domain settings remains challenging. To address this, we

present an unsupervised domain adaptation method that learns to perform

CAC scoring in coronary CT angiography (CCTA) from non-contrast CT

(NCCT). To address the domain shift between NCCT (source) domain and

CCTA (target) domain, feature distributions are aligned between two domains

using adversarial learning. A CAC scoring convolutional neural network is

divided into a feature generator that maps input images to features in the

latent space and a classifier that estimates predictions from the extracted

features. For adversarial learning, a discriminator is used to distinguish the

features between source and target domains. Hence, the feature generator

aims to extract features with aligned distributions to fool the discriminator.

The network is trained with adversarial loss as the objective function and a

classification loss on the source domain as a constraint for adversarial learning.

In the experiments, three data sets were used. The network is trained with

1,687 labeled chest NCCT scans from the National Lung Screening Trial.

Furthermore, 200 labeled cardiac NCCT scans and 200 unlabeled CCTA scans

were used to train the generator and the discriminator for unsupervised domain

adaptation. Finally, a data set containing 313 manually labeled CCTA scans

was used for testing. Directly applying the CAC scoring network trained on

NCCT to CCTA led to a sensitivity of 0.41 and an average false positive volume

140 mm3/scan. The proposed method improved the sensitivity to 0.80 and

reduced average false positive volume of 20 mm3/scan. The results indicate

that the unsupervised domain adaptation approach enables automatic CAC

scoring in contrast enhanced CT while learning from a large and diverse

set of CT scans without contrast. This may allow for better utilization of
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existing annotated data sets and extend the applicability of automatic CAC

scoring to contrast-enhanced CT scans without the need for additional

manual annotations. The code is publicly available at https://github.com/

qurAI-amsterdam/CACscoringUsingDomainAdaptation.

KEYWORDS

coronary artery calcium scoring, unsupervised domain adaptation, convolutional

neural network (CNN), coronary CTA, adversarial learning

1. Introduction

In recent years, deep neural networks have achieved

impressive performance on various medical image analysis tasks

(1, 2). This success is highly associated with the use of large

amounts of representative annotated training data. However, the

dependence on such data sets limits the applicability of already

trained and well-performing networks to non-representative

data sampled from a different distribution, such as images

acquired at different sites, on different scanners, and by different

acquisition protocols. Hence, generalizing deep neural networks

trained on specific data to test data originating from a different

domain remains a major challenge.

The domain shift, i.e., differences in data distributions

and types of data between training and test domains, can

be addressed by unsupervised domain adaptation methods

that transfer a model that was trained on the source domain

in a supervised manner to the target domain where no

labels are available (3, 4). The common idea of unsupervised

domain adaptation methods is to align features extracted by

a network between two domains, aiming to generate similar

feature distributions for both domains (4, 5). To achieve

this, an adversarial learning strategy can be used. In this

case, the generator network is optimized to extract features

with similar distribution for the two domains while the

discriminator network is trained to distinguish features from

these domains (6).

Several works have investigated methods for unsupervised

approaches to domain shift problem for segmentation of

cardiac images (7–10). Dou et al. (8) proposed an unsupervised

adversarial domain adaptation network to transfer cardiac

segmentation network between MRI and CT. In this work the

feature distributions of source and target domains were aligned

at multiple scales. Chen et al. (7) extended the work of Dou et al.

by aligning the domains in both image and feature perspectives.

This method was evaluated with cardiac segmentation and

abdominal multi-organ segmentation between MRI and CT.

Wu et al. (10) presented an unsupervised domain adaptation

framework to adapt cardiac segmentation betweenMRI and CT.

In thismethod, a novel distancemetric was proposed to calculate

the misalignment of feature distributions in latent space and

enable explicit domain adaptation.

In this work, we address detection and quantification of

coronary artery calcium (CAC scoring) in contrast-enhanced

coronary CT angiography (CCTA). Our aim is to exploit large

sets of already annotated data in CT scans without contrast

enhancement and extend the applicability of CAC scoring to

CCTA. Current CAC scoring protocols are performed in a highly

standardized manner without injection of iodinated contrast.

Coronary artery calcifications are identified as high density

areas of ≥ 130 Houndsfield Units (HU) in the coronary artery

(11). Manual CAC scoring can be tedious and time-consuming,

therefore, automated CAC scoring methods have been proposed

(12, 13). Recent methods using deep learning have demonstrated

accurate performance (14, 15). Given that CAC scoring is

commonly performed in non-contrast CT (NCCT), automated

methods have mostly focused on application in these scans.

While earlier methods focused on a single type of NCCT

scans (16–18) recent studies showed that the methods can

generalize to diverse types of NCCT data. In a large-scale

study containing data of 7,240 subjects, Van Velzen et al. (19)

trained and evaluated a method proposed by Lessmann et

al. (16) with different types of NCCT scans including scans

from different hospitals, multiple scanners and multiple image

acquisition protocols and demonstrated a good agreement

between automated and manual scoring. Subsequently, Zeleznik

et al. (20) demonstrated the robustness of a deep learning system

for automated CAC scoring on routine cardiac gated and non-

gated NCCT of 20,084 individuals.

In addition to CAC scoring in NCCT, CAC can be

quantified in CCTA (21) and consequently, a number of

methods automating the process have been developed (22–25).

In a clinical cardiac CT exam, commonly cardiac NCCT is

acquired first to determine the calcium score, which is followed

by the acquisition of CCTA to detect presence of non-calcified

plaque and stenosis in the coronary arteries. However, the

amount of calcified plaque extracted from CCTA scans allows

accurate cardiovascular risk stratification (22, 24). Hence, when

the scan without contrast is not available, calcium scoring

in CCTA may allow determination of patient’s cardiovascular

risk and thus allow better utilization of the already acquired

data. Furthermore, performing CAC scoring in CCTA could

allow omitting acquisition of the NCCT and thereby reduce

the radiation dose to the patient and save scan time (24, 25).
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Coronary artery calcium scoring in CCTA differs substantially

from scoring in NCCT as the contrast material enhancing the

coronary artery lumen typically exceeds the threshold (130 HU)

used for CAC scoring in NCCT. Therefore, automatic methods

trained on NCCT are not directly applicable to CCTA scans.

Training the deep learning method with extra annotated CCTA

data may improve its applicability to CCTA. However, manually

annotating a large amount of representative training data is

tedious and time consuming. To address this, in this study, we

investigate the feasibility of adapting a CAC scoring network

trained on a large set of labeled NCCT scans (16, 19) to unlabeled

CCTA scans using unsupervised domain adaptation. For this,

we investigate a cross-domain approach described by Dou et al.

(8) to enable CAC scoring in CCTA without annotations while

utilizing NCCT with available manual annotations.

2. Materials

2.1. Image data

This study includes three data sets. First, a data set of labeled

low-dose chest NCCT scans from the National Lung Screening

Trail (NLST) was used. The NLST enrolled 53,454 current or

former heavy smokers aged 55–74 in the United States (26). In

our previous study, a set of 1,687 baseline chest NCCT scans was

selected (16). This set was designed to be diverse with respect to

scanner model and reconstruction algorithm. The selected scans

were acquired on 13 different scanner models in 31 hospitals.

These chest NCCT scans were acquired with breath hold after

inspiration and using a tube voltage 120 or 140 kVp, depending

on the subjects weight. Scans were reconstructed to 0.49–0.98

mm in-plane resolution, 1–3 mm slice thickness, and 0.6–3 mm

increment. For our work, all scans were resampled to 3 mm slice

thickness and 1.5 mm increment, following earlier studies (16).

Second, a mixed set of labeled cardiac NCCT and

unlabeled CCTA scans was used. Specifically, 200 labeled cardiac

NCCT scans were acquired in clinical patient workup at

University Medical Center Utrecht, The Netherlands (19, 27)

and 200 unlabeled CCTA scans were acquired at Amsterdam

University Medical Center location University of Amsterdam,

The Netherlands. The cardiac NCCT scans were acquired with a

Philips Brilliance iCT 256 scanner, with ECG synchronization

and 120 kVp tube voltage. Scans were reconstructed to 0.29–

0.49 mm in-plane resolution, 3 mm slice thickness, and 1.5

increment. The CCTA scans were acquired with a Siemens

Somatom Force CT Scanner, with ECG synchronization and

70–120 kVp tube voltage. Scans were reconstructed to 0.22–

0.46 mm in-plane resolution, 0.6 mm slice thickness, and

0.4 mm increment.

Third, a data set of labeled 313 CCTA scans fromAmsterdam

University Medical Center location University of Amsterdam,

The Netherlands was used to evaluate the CAC detection on

the target domain (CCTA test set). These CCTA scans were

acquired with the Siemens Somatom Force CT Scanner, with

ECG synchronization and 70–120 kVp tube voltage. Scans were

reconstructed to 0.19–0.77 mm in-plane resolution, 0.6–1 mm

slice thickness, and 0.4 mm increment.

2.2. Manual reference annotations

Manual reference labels of CACwere available from previous

studies for the low-dose chest NCCT scans in the NLST data

set(16) and the cardiac NCCT in the mixed set (19). The

labeling was performed semi-automatically: all regions of ≥ 3

adjacent voxels with a CT value above 130 HU were shown

as overlay. An observer manually identified lesions and labeled

them according to their anatomical location, i.e., left anterior

descending artery (LAD), left circumflex artery (LCX), or right

coronary artery (RCA) (19). Given that chest CT without ECG

synchronization does not allow visualization of the left main

(LM) artery, CAC in the LM was labeled as LAD. Examples of

chest NCCT slices and manual reference annotations are shown

in the Supplementary Figure S1.

For the 200 CCTA scans in the mixed set, reference labels

of CAC were not available. Hence, for the CCTA scans from

the CCTA test set, CAC was manually annotated with a semi-

automated method as either LAD, LCX, or RCA. This was done

using an in-house developed software designed in MevisLab

3.2 (28). In agreement with manual labeling in NCCT, CAC

in the LM was labeled as LAD. Because the standard 130

HU threshold for CAC detection in NCCT can not be used

in CCTA, we used scan specific thresholds, following earlier

studies (25, 29). For this, a region of interest (ROI) defined

by a bounding box with a size around 35 × 36 × 44 voxels

in the ascending aorta at the level of the origin of the left

coronary artery was manually selected. Subsequently, the mean

meanROI and standard deviation STDROI from the CT values

of the voxels within the ROI were used to compute a scan

specific threshold meanROI + 3STDROI. Using this threshold,

each coronary artery calcification was manually identified by a

mouse click on the lesion. Subsequently, all connected voxels

in the lesion above the scan specific threshold were marked as

CAC in LAD, LCX, or RCA using 3D connected component

labeling considering six-voxel connectivity. Examples of CCTA

slices and manual reference annotations are shown in the

Supplementary Figure S2.

In this study, NCCT scans (both chest and cardiac) are

considered the source domain and CCTA scans are representing

the target domain. The NCCT scans with CAC annotations

from the NLST data set were used to train the CAC detection

network on the source domain. The mixed set of labeled cardiac

NCCT (source domain) and unlabeled CCTA (target domain)

was used to train our unsupervised domain adaptation method.

The labeled CCTA scans (target domain) in the CCTA test
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set were only used to evaluate the CAC detection on the

target domain. The description of data sets and their usage are

illustrated in Table 1.

3. Methods

A CNN is used for detecting CAC candidates in CCTA scans

that is followed by false positive (FP) reduction, as shown in

Figure 1. The CNN, which is trained on labeled NCCT data is

adapted for application in CCTA using unsupervised domain

adaptation. False positive reduction is performed by limiting the

detected lesions to plausible CAC location and size.

3.1. CAC detection in CCTA with
unsupervised domain adaptation

Unsupervised domain adaptation aims to transfer a model

trained with data from a source domain with labels Ds =

(Xi
s,Y

i
s)i=1..ns

to a target domain without labels Dt =

(Xi
t)i=1..nt

, where D represents domain, X represents images

and Y represents labels. As proposed by Dou et al. (8), we

use an adversarial training strategy to adapt the CNN to the

target domain. In our application, a large set of chest NCCT

scans with CAC labels is available, and hence, we aim to

transfer the knowledge from NCCT to CCTA for CAC scoring.

Therefore, the CAC scoring CNN trained with labeled low-

dose chest NCCT scans is transfered to CCTA using adversarial

domain adaptation.

We used our previous CAC scoring method described by

Lessmann et al. (16) that has been trained and evaluated with

a large set of low-dose chest NCCT data. The method consists

of two sequential convolutional neural networks (CNN). The

first CAC scoring CNN detects CAC candidates and labels them

according to their anatomical location, i.e., as CAC in LAD, LCX,

or RCA. The second CNN reduces the number of false positive

detections. In our current work, only the first CNN is used

to transfer knowledge obtained by training the network with

NCCT to enable application in CCTA data using unsupervised

domain adaptation.

To adapt the CAC detection network(16) from the source

domain to the unlabeled target domain, we aim to align

the distributions of extracted features from the two domains

following the work by Dou et al. (8). For this, we divide the

CAC detection network into two parts: a feature generator G(·)

and a classifier C(·), as shown in Figure 1. The G(·) maps input

images into feature representations in the latent space and the

C(·) predicts the output class from the feature representations.

The early layers of the network which are used for feature

extraction are mostly related to the domain, while the deeper

layers are mostly task-specific and learn semantic-level features

for conducting the predictions (8, 30). Hence, we adapt the

feature generator G(·) trained with NCCT to enable application

in CCTA with adversarial domain adaptation, and we reuse the

classifier C(·) as originally trained.

To enable adversarial learning, we design a discriminator

D(·) to identify whether the features are from the source domain

or the target domain. While the feature generator G(·) aims

to extract features with similar distributions for both domains,

the D(·) discriminates between the two domains (Figure 2). The

adversarial loss based on the differences in feature distribution

between the two domains is formulated as:

Ladv = Ext∈Dt
log(D(G(xt)))− Exs∈Ds

log(D(G(xs))) (1)

whereG(·) is optimized to minimize the adversarial loss, and

D(·) is optimized to maximize the same loss. The generator G(·)

is optimized based on the objective function calculated from the

discriminator D(·), which can lead to an incorrect optimization

forgetting the classification task. That means the features

extracted by the trained G(·) can fool the D(·). However, these

features are not beneficial for the final classification task C(G(·)).

For cross domain learning with paired data, the alignment loss

in feature space, such as L1(G(xs),G(xt)) or L2(G(xs),G(xt)),

can be used as a constraint for the generator optimization (31).

For cross-domain learning with unpaired training data as in our

case, such an alignment loss in feature space can not be used

as a constraint for the generator optimization. In this work, the

images were not registered to a common space either. Instead, as

proposed in the work by Chen et al. (4), we use a classification

loss in the source domain Ds as constraint to stabilize the

training and avoid catastrophic forgetting.

The classification loss is formulated as:

Lcls = LCE(C(G(Xs)),Ys) (2)

where LCE is the cross-entropy loss, Xs and Ys are the images

and the corresponding reference labels on the source domain.

TABLE 1 Description of data and corresponding usage.

Scan type #Scans Reference Domain Usage

Chest NCCT 1,687 ✓ Source Training CAC scoring on source domain

Cardiac NCCT 200 ✓ Source
Training unsupervised domain adaptation

CCTA 200 ✗ Target

CCTA 313 ✓ Target Testing CAC scoring on target domain
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FIGURE 1

Overview of the proposed method for coronary artery calcium (CAC) detection in CCTA. The CNN for CAC detection is divided into a feature

generator and a classifier. The feature generator is trained on source domain and is adapted to the target domain using unsupervised domain

adaptation. The classifier in the target domain is reused from the source domain. After detection of CAC candidates using the CNN, false

positive (FP) reduction is applied to remove FP detections.

FIGURE 2

Unsupervised domain adaptation with unpaired data is performed using an adversarial learning strategy. The discriminator is optimized to

distinguish the features from NCCT (source) domain and CCTA (target) domain. The generator is trained to extract features with similar

distributions for the two domains. The blue dots in latent space represent features from the source domain, the orange ones from the target

domain. The Ladv is used as the objective function and the Lcls is used as a constraint, which is determined on the source domain using the

classifier.

During training, the D(·) is trained to maximize the objective of

Ladv, while the G(·) is optimized to minimize the objective of

Ladv and Lcls. These are formulated as:

max
D

Ladv

min
G

Ladv + αLcls

(3)

where α is a hyper-parameter for balancing the two loss

terms. It is set to 2.0 in this work, based on a grid search strategy.

3.2. FP reduction

To identify CAC lesions, 3D connected component labeling

is performed from the detected voxels and the scan specific

threshold (25, 29). To remove potential false positive detections,

detected lesions smaller than 1 mm3 are discarded as those

are likely noise voxels. Similarly, detected lesions larger than

500 mm3 are discarded as those exceed the expected CAC

volume (27). In addition, lesions detected outside the heart are

discarded. For this, the heart volume is defined by segmentation
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of cardiac chambers, as described by Bruns et al. (32) which

was trained with CCTA scans of 12 patients scanned for

transcatheter aortic valve implantation (SOMATOM Force,

Siemens, 70–120 kVp, 310–628 mAs, in-plane resolution 0.31–

0.61mm, slice thickess 0.31–0.61mm, slice increment 0.45mm).

No additional changes or fine tuning for the data in this current

study was performed. Subsequently, the segmentation of cardiac

chambers was dilated by a sphere as a structuring element with

diameter of 10.0 mm to ensure the heart wall and coronary

arteries are included in the segmentation.

3.3. Evaluation

To evaluate the performance of CAC scoring on CCTA,

the volume-wise and lesion-wise performance was determined

by comparing automatically detected CAC with the manually

annotated reference. Since the typically used Agatston score

(11) is not applicable for CAC quantification in CCTA, the

volume score was used. The evaluation was performed for total

CAC and separately for CAC in LAD, LCX, and RCA. Both

the volume-wise and lesion-wise performance was evaluated

using sensitivity, false-positive (FP) rate, and F1 score (16).

The agreement of calcium volume and number of lesions

between the automatic detection and the reference labels was

determined with Spearman correlation coefficients. Finally,

the agreement between automatic volume scores and manual

reference volume scores was assessed by examining Bland-

Altman plots including 95% limits of agreement. Since errors

tend to increase with increasing CAC volume, the variation

of absolute differences between automatic and manual scores

was modeled using regression for nonuniform differences(33).

Because the absolute differences have a half-normal distribution,

the modeled absolute differences were multiplied by 1.96 ×

(π/2)0.5 to obtain the 95% limits of agreement.

4. Experiments and results

4.1. CAC scoring on CCTA

First, we retrained the two-stage CNNs for CAC detection

(16) with the labeled chest NCCT data as the source domain. For

this, the 1,687 NCCT scans in the NLST data set were randomly

divided into 60% training set (1,012 scans), 10% validation set

(169 scans), and 30% test set (506 scans). As originally reported

(16), during the training, categorical cross-entropy was used as

loss function, Adam was used as optimizer with a learning rate

of 5 × 10−4. The first CNN was trained with three orthogonal

(axial, sagittal and coronal) patches of 155×155 pixels and the

second CNN with three orthogonal patches of 65×65 pixels

(16). Randomized patch extraction was used as augmentation

for training.

Next, to stabilize adversarial training in the unsupervised

domain adaptation, the generator was initialized with the

weights of the CAC scoring model trained with the chest

NCCT data from the NLST dataset. The unsupervised domain

adaptation method was trained with the mixed dataset of

labeled cardiac NCCT data from source domain and unlabeled

CCTAdata from target domain.When performing unsupervised

domain adaptation with mixed data containing labeled cardiac

NCCT and unlabeled CCTA scans the method achieved

sensitivity of 0.78 in CCTA (Table 2). For comparison, the

sensitivity of 0.53 was achieved when unsupervised domain

adaptation was performed with mixed data containing labeled

chest NCCT and unlabeled CCTA scans. Labeled cardiac NCCT

data was chosen because these scans resemble CCTA scans more

than chest NCCT. Unlabeled CCTA were used as unlabeled data

from the target domain. To obtain a reliable discriminator, the

discriminator was solely pretrained for 1,000 iterations first.

Thereafter, the generator and discriminator were optimized

together by training alternately. Specifically, the generator

was optimized one iteration after every 20 iterations of the

discriminator, according to the heuristic rules of training a

Wasserstein GAN (34). Following the standard for adversarial

training (34, 35), the discriminator was kept in a compact space.

To enforce this constraint, the weights were clipped between

[−0.1, 0.1]. The RMSProp optimizer was used to optimize

the discriminator with a learning rate of 5 × 10−4, and the

generator with a learning rate of 5×10−5, respectively (36). The

optimal hyperparameters were determined by grid search. The

adversarial learning was trained for 200 epoch. The networks

were implemented in PyTorch (37). All the training was trained

on NVIDIA GeForce RTX 2080 Ti.

To establish the performance of the CNN adapted from

NCCT to CCTA, the network was evaluated with the 313

labeled CCTA test scans. The adapted CNN obtained an average

volume-wise sensitivity of 0.78, an average FP volume per scan

of 73.9 mm3 and an F1-score of 0.41. After the FP reduction, the

proposedmethod achieved an average volume-wise sensitivity of

0.80 with an average FP volume per scan of 19.8 mm3, and F1 of

0.66. There were 36 patients without CAC but with FP detected

by the proposed method, with an average FP volume per scan

of 40 mm3. The Spearman correlation between automatically

detected and reference CAC volume was 0.73. The Bland-

Altman plots comparing automatically detected CAC volume

with manually annotated reference are illustrated in Figure 3.

Coronary CT angiography slices and corresponding

automatic CAC detections for two outliers cases (marked

orange in Figure 3) are shown in Figures 4a,b. In addition,

two representative cases from the labeled CCTA test set are

shown in Figures 4c,d. For lesion-wise evaluation, the proposed

method achieved an average sensitivity of 0.79 and FP lesion

per scan of 1.06. The correlation between the number of

automatically detected and manually annotated reference

lesions was 0.69.
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TABLE 2 Results of the automatic CAC scoring evaluated by volume-wise sensitivity, FP volume per scan, and F1-score between automatic

detection and manual reference.

NCCT [506] CCTA [313]

Ladv ✗ ✓ ✓ ✓ ✗

Lcls ✗ ✓ ✓ ✗ ✗

FP reduction ✗ ✓ ✗ ✗ ✗

CAC

Sensitivity 0.89 (0.25) 0.80 (0.32) 0.78 (0.33) 0.68 (0.38) 0.41 (0.48)

FP volume/scan 73.6 (141) 19.8 (60.6) 64.5 (150) 25.8 (70) 132 (205)

F1 0.66 (0.37) 0.66 0.38 0.41 (0.40) 0.49 (0.41) 0.16 (0.36)

LAD

Sensitivity 0.92 (0.21) 0.89 (0.27) 0.86 (0.28) 0.79 (0.33) 0.47 (0.48)

FP volume/scan 31.6 (79.6) 13.9 (45.5) 44.5 (118) 20.2 (54.4) 55.8 (90.5)

F1 0.79 (0.34) 0.74 (0.37) 0.48 (0.42) 0.56 (0.42) 0.24 0.41

LCX

Sensitivity 0.88 (0.29) 0.74 (0.44) 0.71 (0.45) 0.71 (0.46) 0.66 (0.48)

FP volume/scan 19.7 (55.6) 0.13 (1.13) 0.17 (1.01) 0.02 (0.31) 1.60 (0.30)

F1 0.67 (0.42) 0.74 (0.44) 0.69 (0.46) 0.70 (0.46) 0.66 (0.48)

RCA

Sensitivity 0.89 (0.26) 0.87 (0.30) 0.87 (0.31) 0.80 (0.38) 0.67 (0.47)

FP volume/scan 30.1 (73.4) 6.80 (35.6) 21.3 (78.1) 6.64 (35.6) 77.6 (157)

F1 0.65 (0.42) 0.73 (0.41) 0.52 (0.46) 0.68 (0.44) 0.31 (0.46)

The method with different settings (using adversarial loss and classification loss in the CAC detection network, and false positive reduction stage) is tested on chest NCCT data and CCTA

data. FP volume/scan is given in mm3 . The results are shown as average (standard deviation) for total CAC as well as for LAD, LCX, and RCA separately. Ladv , adversarial loss; Lcls ,

classification loss; CAC, coronary artery calcification; LAD, left anterior descending artery; LCX, left circumflex artery; RCA, right coronary artery.

FIGURE 3

Bland-Altman plots comparing automatically detected CAC volume with the manual reference volume. 95% limits of agreement are represented

by the formula: Di�erence = ±1.96× (π/2)0.5 × (b+ a×Mean0.5), with a = 10.9 and b = −17.8. Two outlier cases are colored orange. The

Bland-Altman plot of lesions with volume less than 150 mm3 is shown on the left and all lesions is shown on the right.

4.2. Ablation study

To establish whether our retraining of the original CAC

scoring network on the source domain led to adequate

performance, the CAC scoring network was evaluated on NLST

test set (Section CAC scoring on CCTA) and compared with

the originally reported results (16). Results are listed in Table 2

(column 3 showing NCCT results). Our retained network

obtained a sensitivity of 0.89, an average FP volume of 73.6 mm3

per scan and F1 of 0.66. The sensitivity is in agreement with the

results (0.84 - 0.91) reported in the original work (16), while the

originally reported FP rate (40.7–62.8 mm3) and therefore F1

(0.84–0.89) slightly outperform our results.

To evaluate the performance of the two-stage CAC scoring

networks trained on NCCT to CCTA, the trained CNNs was

directly applied to CCTA test scans without adversarial domain

adaptation learning. This led to an average sensitivity of 0.41,

an average FP volume per scan of 139.7 mm3, and F1 of 0.16
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FIGURE 4

Automated CAC detection results in CCTA scans of four patients. The images in the first row show CCTA slices and the detected CACs are

shown as overlay in the second row. Panels (a) and (b) illustrate the two largest outliers shown by orange dots in Figure 3, and false negative

CAC are indicated by orange circles. Panels (c) and (d) show two cases with correct automatic CAC detections.

(Table 2, column 7 showing the CCTA results). Subsequently,

adding FP reduction led to an average sensitivity of 0.43, an

average FP volume of 0.58 mm3 and F1 of 0.41. Note that FP

reduction stage slightly improved the sensitivity as the region-

growing algorithm (38) used to define the lesions from the voxels

detected by the CNN may improve lesion segmentation and

lead to better agreement with manual reference that used the

region-growing algorithm to define CAC lesions.

To investigate the benefit of using the adversarial loss and

classification loss for domain adaptation, and FP reduction,

additional experiments were performed. The proposed method

obtained a volume-wise sensitivity of 0.80, average FP volume

per scan of 19.8 mm3, and F1 of 0.66. Without FP reduction,

the volume-wise sensitivity decreased to 0.78, average FP volume

per scan increased to 64.5 mm3 and consequently, F1 score

decreased to 0.41. Furthermore, removing the classification loss

Lcls from the objective function resulted in the volume-wise

sensitivity of 0.68, average FP volume per scan of 25.8 mm3, and

F1 of 0.49. Finally, as described above, removing the adversarial

loss Ladv (i.e., without adversarial domain adaptation learning)

led to sensitivity of 0.41, FP volume of 139.7 mm3 per scan, and

F1 of 0.16. Detailed results are listed in Table 2 columns 4–7.

4.3. Comparison with previous work

The performance of the proposed method was compared

with previously published methods that use deep learning for

CAC scoring in CCTA scans (22–25). Wolterink et al. (25)

proposed a method that employed paired CNNs for CAC

scoring. The first CNN was used to identify CAC-like voxels

and the second CNN was used to reduce CAC-like negatives.

Fischer et al. (22) proposed a method that firstly detected

the coronary artery centerlines and then identified CAC in

cross-sectional images along the detected centerlines using long

short-term memory (LSTM). In the study by Liu et al. (23), a

vessel focused 3D CNN was proposed for CAC detection. The

coronary arteries were firstly extracted and straightened volumes

were reformed along the coronary arteries. Thereafter, a CNN

was used for CAC detection. The results as reported in the

original work are listed in Table 3. These demonstrate that our

unsupervised method achieved competitive performance. Given

that the original implementations of these earlier studies are not

publicly available, the compared methods the results should be

used as indication only.

5. Discussion

In this work, we have utilized an unsupervised domain

adaptationmethod described by Dou et al. (8) employing a CNN

architecture which enables CAC scoring in CCTAwhile learning

from annotated non-representative CT scans without contrast

and representative CCTA without reference annotations. For

this, the first-stage CNN as previously designed by Lessmann

et al. for CAC scoring (16) is divided into a feature generator

and a classifier. The feature generator is adapted from NCCT
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TABLE 3 Comparison with previously published results on automated coronary artery calcium scoring on CCTA.

Lesion-wise evaluation Volume-wise evaluation

Method # train # test Sensitivity FP lesion F1 Sensitivity FP volume F1

Wolterink et al. (25) 150 100 0.71 0.48 – – – –

Liu et al. (23) 80 20 – – – 0.85 – 0.83

Fischer et al. (22) 232 194 0.92 0.20 – – – –

Ours – 313 0.79 1.06 0.66 0.80 19.8 0.66

The number of labeled CCTA scans used for training (# train) and testing (# test) are listed. Performance [sensitivity, false positives (FP) per scan and F1-score] using CAC lesions and

volume are given.

to CCTA through adversarial unsupervised domain adaptation

and the classifier trained on NCCT is reused. An adversarial loss

and classification loss on source domain are used as the objective

function. The results demonstrate that the method achieves a

competitive performance.

Like previous methods for automatic calcium scoring, our

method consists of two distinct stages. In the first stage, a CNN

for CAC detection and labeling in non-contrast chest CT from

previous work (16) is adjusted for the CAC scoring in CCTA.

The ablation study showed that our retraining of the CAC

detection CNN did not lead to the same performance reported

in the original manuscript (16). However, there are several

differences. First, although training and test scans originate from

the same set, exact division on the scans into training and test

set differs. Second, the original work reported results separately

for sharp and soft kernel CT reconstructions, while we did not

distinguish between these. Like in the original work, a second

stage is used to reduce the number of false positives. Using the

described approach for CAC scoring in CCTA, simple image

processing (restricting allowed volume of CAC, limiting the

analysis to the volume of interest) substantially reduced false

positive detections. Nevertheless, retrospective analysis showed

that occasionally false positives remain inside heart and in

the coronary arteries with high HU value. Visual analysis of

the results showed small false positive detections in the distal

RCA representing contrast material. This is also reflected in the

limited Spearman correlation coefficient between the detected

and reference lesions. This might be due to the varying contrast

levels of CCTA, where parts of the coronary artery lumen

had a very high HU value. Likely, locally defined threshold

for the extraction of CAC would alleviate the problem. Future

research should investigate whether this would would benefit the

overall performance. In few cases false positive detections were

representing extra-coronary calcifications. Those were aortic

calcification in the vicinity of the coronary ostia or calcifications

in the aortic valves, which is not uncommon to automatic

calcium scoring methods(19).

Retrospective analysis of the outliers shown in Figures 3 and

4 showed that in one case, a large CAC in the RCA (625 mm3)

was detected by the CNN but removed in the FP reduction

stage because its volume exceeded the maximum expected CAC

volume. In the other case, large CAC in LCX (313 mm3) was

not detected by the CNN. In our training set, median (Q1, Q3)

CAC was 7.1 (1.6, 29.2) mm3 and 95th percentile was 188 mm3.

This shows that the volumes of our false negatives substantially

exceeded CAC examples in the training set. Adding examples

of large CAC lesions in the training set or learning specifically

focused on rare CAC examples might improve the performance.

To train the CNN for detection and labeling of CAC,

three different data sets were used. First, we reused

the CNN trained on a large set of labeled chest CTs

without contrast enhancement. To achieve unsupervised

domain adaptation, non-representative labeled cardiac

CT without contrast and representative unlabeled CCTA

were used. Future work could investigate the optimal size

of each set and the optimal way of injecting different

data into the training, e.g., training the CNN with

different non-contrast CT scan types, refinement with

specific data or introducing different data in the domain

adaptation stage.

To make the cross domain training stable with unpaired

data, the classification loss on the source domain was used.

For cross domain learning with paired data, a feature-wise loss

could be used (31). Given that we don’t have paired data or

register the images to a common space, this kind of loss is

not applicable in our study. In our work, the feature generator

was adapted from source domain to target domain, however,

the classifier was directly reused. This could be done even

though the input images to feature generator are from different

domains because the classifier performs the same task with

aligned feature distributions.

To transfer the knowledge of CAC detection from NCCT

to CCTA, unsupervised domain adaptation was used. When a

limited set of annotated training data from the target domain

is available, it is common to pretrain the network with labeled

data from the source domain and fine-tune the network with

this small set (30, 39). In our case, annotated training data

from the target domain is not available and unsupervised

domain adaptation allows the training with labeled data from

the source domain and unlabelled data from the target domain.

Future work could investigate whether a small set of annotated

images from the target domain may benefit the performance,

possibly also by combining transfer learning approaches with

unsupervised domain adaptation.
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In this study, following the work by Dou et al. (8), the

knowledge about CAC detection was transferred from NCCT

to CCTA by aligning the feature distributions between the two

domains. However, Chen et al. (7) performed unsupervised

domain adaptation by aligning the domains in both image

and feature perspectives. The image alignment was used to

transform the image appearance and narrow the domain shift

between source and target domains. However, we opted for

feature alignment only because lack of visible anatomical

boundaries in non-contrast scans (arteries, cardiac chambers) to

guide the image registration renders image alignment a highly

challenging task. Moreover, very small CAC may disappear due

to registration, which would not be beneficial for learning.

Comparing the proposed method with previously published

deep learning methods on CAC scoring in CCTA scans showed

that the proposed method achieved a competitive sensitivity.

However, the number of false positive detections did not reach

the performance of supervised methods. Methods (22, 23)

that limited the ROI for CAC scoring with coronary artery

extraction, achieved a lower number of FP detections. Future

research could investigate whether limiting the the analysis to

the vicinity of the coronary arteries like proposed by Fischer et

al. (22) and Liu et al. (23) would be beneficial. For this, tracking

the coronary artery centerline (40) could be used.

Bland-Altman plot shown in Figure 3 shows

heteroskedastic-like behavior of CAC scores. This behavior is

not uncommon for CAC scoring methods, because typically

errors tend to increase with higher CAC scores (19, 24).

False negative detections tend to be larger in patients with

higher calcium burden, possibly because their lesions tend

to be larger. Moreover, larger false positive detections often

consist of non-coronary calcifications, e.g., aortic calcifications

in the vicinity of the coronary ostia or cardiac valves,

which are also typically larger in patients with a higher

coronary calcium burden. To calculate the 95% confidence

intervals of the Bland-Altman plots we accounted for the

heteroskedastic behavior by modeling the variation in absolute

differences (33).

While CCTA scans are mainly made to provide important

information on the presence and the amount of non-calcified

plaque and stenosis, cardiac CT scans without contrast

enhancement are the reference modality for quantification

of calcified coronary artery plaque. Hence, limitation of our

method is its ability to quantify calcified plaque in CCTA only.

To fully exploit information contained in CCTA, our further

work will focus on extending the method to quantification of

calcified and non-calcified plaque and stenosis.

In this work, the unsupervised domain adaptation method

was trained with 200 NCCT scans and 200 CCTA scans. Like

with any machine learning methods, training the unsupervised

domain adaptation method with more scans that include more

diversity would likely lead to more accurate performance.

Finding the optimal set size should be a topic of future research.

In the literature, a wide range in inter-observer agreement

for CAC quantification in CCTA has been reported. Specifically,

11% variability in CAC volume when utilizing a scan-specific

threshold (41) and 13–25% when using manual delineation

of CAC (42). Moreover, correlation of CAC volume between

observers of 0.89–0.98 has been reported (42, 43). In the current

study the variability between automatic and reference scores was

21%, with a correlation of 0.73. Given that no clinically used risk

categories are defined based on CAC volume or other CAC score

quantified from CCTA, it remains unclear whether the obtained

errors impact clinical decision-making. Therefore, further work

needs to investigate the value of the extracted CAC scores for

predicting cardiovascular events.

In conclusion, an unsupervised domain adaptation method

for CAC scoring that transfers knowledge from NCCT with

reference labels to CCTA without reference labels has been

presented. The results show that the method achieves a

competitive performance. This may allow for better utilization

of the existing large and annotated data sets and extend

applicability to diverse CT scans without the requirement of

extra annotations.
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Age has important implications for health, and understanding how age

manifests in the human body is the first step for a potential intervention. This

becomes especially important for cardiac health, since age is the main risk

factor for development of cardiovascular disease. Data-drivenmodeling of age

progression has been conducted successfully in diverse applications such as

face or brain aging. While longitudinal data is the preferred option for training

deep learningmodels, collecting such a dataset is usually very costly, especially

in medical imaging. In this work, a conditional generative adversarial network

is proposed to synthesize older and younger versions of a heart scan by using

only cross-sectional data. We train our model with more than 14,000 di�erent

scans from the UK Biobank. The induced modifications focused mainly on the

interventricular septum and the aorta, which is consistent with the existing

literature in cardiac aging. We evaluate the results by measuring image quality,

the mean absolute error for predicted age using a pre-trained regressor, and

demonstrate the application of synthetic data for counter-balancing biased

datasets. The results suggest that the proposed approach is able to model

realistic changes in the heart using only cross-sectional data and that these

data can be used to correct age bias in a dataset.

KEYWORDS

aging heart, generative adversarial network, magnetic resonance imaging, synthesis,

data augmentation

Introduction

Understanding the effects of the aging process is becoming more important as the

life expectancy increases worldwide. Aging has crucial implications for health and age is

the main risk factor for the development of cardiovascular disease (1, 2). Insights into

the aging mechanism can be very valuable to inform new interventions to delay the

occurrence of possible adverse events and for improving health of the elderly.
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According to the medical literature, age is positively related

to morphological changes in the heart such as increased left

atrial diameter (3), increased wall thickness in the left ventricle

(LV) and reduced LV dimensions (1, 2). These changes are

associated with atrial fibrillation and heart failure with preserved

ejection fraction (2, 4). Females and males show differences in

the aforementioned changes with increased LV wall thickness

being more prevalent in women (5). Also, a marked increase

in epicardial adipose tissue deposition has been observed with

age (5).

Collecting longitudinal data is very time-consuming and

requires repeated visits of participants with the associate chance

of dropouts along the duration of the study. Two longitudinal

studies have analyzed cardiac health with more than three

decades of measurements. These are the Framingham Heart

Study (FHS) (6) and the Baltimore Longitudinal Study on

Aging (7). However, imaging is only available for the FHS

and only for echocardiography. Imaging with higher spatial

resolution may be found in two other longitudinal studies,

the UK Biobank (ukbiobank.ac.uk) and the Multi-Ethnic Study

of Atherosclerosis (MESA) study (8), where participants are

scanned using magnetic resonance imaging (MRI). However,

only a subset of participants have repeated scans adquired in

the next 1–10 years after the first scan visit. Thus, modeling

the aging process in the heart with good spatial resolution is

restricted to 10 years or less if one relies only on longitudinal

data, and the analysis may be limited by small differences in

the patient positioning between visits. A potential data-driven

approach, however, that leverages cross-sectional data, i.e., data

from different participants with different age, to synthetically

age or rejuvenate a real image could boost the efficient use

of such a large cohort. In recent years, models based on

generative adversarial networks (GANs) (9) have been proposed

for this task.

Deep learning models for synthesizing an aged version of

an input image have been proposed for several applications,

but especially for face aging. For example, Zhang et al. (10)

was one of the first works to propose learning a manifold

of images, via cross-sectional data, that can be navigated for

increasing or decreasing the apparent age of a human face.

The authors used an autoencoder and adversarial training to

generate photorealistic images of a younger and older version

of an input face. Later, Liu et al. (11) used a GAN-based model

that included also attribute conditioning such as race or sex to

enforce attribute preservation, highlighting the importance of

covariates for the modeling. Contrary to Zhang et al. (10), their

model had a last layer responsible for fusing the input image with

the generated features, so that themodel did not need to generate

the whole image as output.

In medical imaging, a recent study by Xia et al. (12)

proposed a conditional GAN (cGAN) (13) that considered age

and disease status for generating an aged brain MRI using only

cross-sectional data. Other works have modeled the changes

in the brain due to aging with autoencoders and adversarial

training (14, 15) or with normalizing flows (16), although the

image quality was worse in these cases. Finally, cGANs have also

been applied recently to synthesize future fundus images given a

lession probability map and a vessel segmentation (17).

In this work, we propose a conditional generative model

for extracting longitudinal patterns related to aging from cross-

sectional data and apply it to cardiac imaging for the first

time, to the best of our knowledge. Moreover, we demonstrate

the model applicability for counter-balancing biased datasets

with respect to age. Finally, we analyze the modeling ability

of the proposed approach for two other tasks: apparent body

mass index modification and end-systolic phase synthesis from

end-systolic frames.

Materials and methods

Dataset

For this work, MRI studies from the UK Biobank were

used. These studies contain short- and long-axis views of 43,352

participants (including 23,508 female subjects). The participants

were scanned at ages between 45 and 82 years old (mean age

64.1 ± 7.7). The scanner used was a MAGNETOM Aera, syngo

MR D13A (Siemens, Erlangen, Germany) with a field strength

of 1.5 Tesla [see (18) for further details about the imaging

protocol]. Only the four chamber view was used in this work

for simplicity and in order to include information from all heart

chambers during the modeling. The end-diastolic phase for each

subject was identified and used in this work, given that themodel

was two-dimensional. A total of 14,788 subjects were selected for

training the generative models. No preprocessing was applied to

the images.

Additionally, 764 ground-truth annotations of the four

chamber long axis view performed by expert cardiologists from

the Barts Heart Centre were made available to the authors

from a previous work (19). The regions of interest annotated

were the left and right ventricular cavities, the left ventricular

myocardium and the left and right atria. We also delineated

the aorta in 50 samples. Automatic segmentations for the

rest of participants were generated for the four chambers, the

myocardium and the aorta by training a U-Net model (20)

(details in Supplementary material).

Conditional generative modeling

In order to generate synthetic images of the heart

depending on a given covariate, a conditional generative

adversarial network is proposed, as depicted in Figure 1.

The two components of the model are a generator and a

discriminator. Specifically, the generator is responsible for
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FIGURE 1

Depiction of the proposed model for generating synthetically aged and rejuvenated heart images. The covariate is combined with the model

features by using conditional biasing. Heart scans reproduced by kind permission of UK Biobank ©.

creating the mapping that will be applied to the input image

when conditioned on different covariates to obtain a target

image, while the discriminator is trained to tell apart real and

synthesized images given some covariates.

The architecture of the generator follows a typical U-

Net (20) encoding-decoding scheme where each layer is

composed of stacks of two residual blocks with an intermediate

attention block. It is based on the generator used in recent state-

of-the-art diffusion models (21, 22) that was first introduced by

Ho et al. (23). The discriminator consists of an encoder, just as

the one used for the generator, and an adaptive pooling layer.

Each residual block along the networks is conditioned on the

input variable by using conditional biasing, i.e., by transforming

the variable into a vector of varying dimension and adding

one value per intermediate feature channel prior to a group

normalization step. Figure 2 depicts the conditional biasing

mechanism in more detail. This type of conditioning allows for

a better conservation of the input information throughout the

network by consistently introducing the conditional variable on

each layer. Additionally, the network is able to fit the different

parameters used to compute the conditioning vector on each

layer separately, enhancing the ability of the model to learn

different distributions at different resolutions.

As covariates, age and body mass index (BMI) were

considered for two separate tasks. The generator was

conditioned with the difference between the age (respectively

BMI) of the input image and the desired output age (respectively

BMI). The discriminator, however, was conditioned on the

actual age (respectively BMI) of the input image (real or

synthesized). The covariate was specified to the model using the

Transformer sinusoidal embedding (24).

Training details

The underlying framework for training the model relied on

the Wasserstein-GAN with a gradient penalty term (WGAN-

GP) (25, 26), that achieved better results than usual GANs,

by minimizing the Wasserstein-1 distance (also called Earth-

Mover distance).

The generator (G) and the discriminator (D) were trained

using the adversarial objective loss for WGAN-GP:

LWGAN-GP = Ex̃∼Pgen. [D(x̃, at)]− Ex∼Preal [D(x, at)]

+λGPEx̂∼Px̂
[(||∇2

x̂
D(x̂, at)|| − 1)2],

(1)

where as and at stand for source and target age, respectively, x is

the input image, x̃ = G(x, ad) is the generated sample with age

gap ad = at − as, and x̂ = ǫx + (1 − ǫ)x̃, with ǫ ∼ U(0, 1), is

a random point along the line connecting the real and generated

samples. Preal and Pgen represent the distributions of real and

generated images, respectively. The gradient penalty factor, λGP ,

was set to 10 in all experiments following the original work by

Gulrajani et al. (26).
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FIGURE 2

Depiction of a general residual block and the conditional biasing mechanism used to pass covariates to the model. A sinusoidal embedding is

applied to transform the scalar covariate into a vector that is later converted to a vector with the same dimensionality as the number of

intermediate feature channels. Each value in the vector is then added to its corresponding channel in order.

In addition to the adversarial loss, a cycle-consistency term

was considered to enforce the reconstruction of the original

image after two generator steps, one for aging (rejuvenating) and

one for rejuvenating (aging) the subject back to the original state.

In detail, the difference between the transformed image (after

adding ad years) and the reconstructed image (after subtracting

ad years to the transformed image) was minimized. This term is

formally written as

Lcc = E
x∼Preal

[||x− G(G(x, ad),−ad)||1]. (2)

Overall, the final objective loss was

L = min
G

max
D

(LWGAN-GP + λccLcc) , (3)

where the weight λcc was empirically set to 1 based on

model performance.

During training, WGAN-GP requires the discriminator

performance to be close to optimal. For this reason, the first 20

epochs were used as a warm-up period, and the discriminator

was updated 50 times for every generator update. For the

remaining epochs, the discriminator was updated five times

for every generator update. The AdamW (27) optimizer was

used for both networks with a learning rate and weight decay

of 10−4 and first and second moments equal to 0.9 and

0.999, respectively. Data augmentation was used to increase the

variability in the input images appearance. The transformations

considered were random bias field addition, random histogram

shift and random contrast adjustment (28). The images were

cropped along the x axis by 90 pixels, resized to 1282 pixel size

and the intensities rescaled to the [0, 1] range. The generated

mapping is an array of shape 1282 with values clipped to

the range [−1, 1] (the maximum modification allowed to the

input image). After the addition of the mapping, the resulting

image was again clipped to [0, 1]. The whole training process

took ∼90 h in a Nvidia 3090 GPU for 300 epochs and with a

batch size of 12 images. PyTorch (version 1.10.0) was used for

the implementation.

Results

Given the lack of real longitudinal data with a time span

between visits larger than 10 years and the added factor

of morphological variations attributed to different patient

positioning, we propose to evaluate the current model using two

proxy approaches that circumvent the limited time span and

the potential disalignment between scans. First, we assess the

resulting synthetic images via age accuracy and image quality,

and compare the proposed model against two baselines. Second,

we train age regressors with an imbalanced dataset augmented

with synthetic samples. Moreover, in order to demonstrate

the modeling capabilities of the current approach, two

alternative tasks with an easier interpretation are considered:

(1) BMI modification and (2) end-diastolic to end-systolic

phase transformation.
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FIGURE 3

Synthetic aged and rejuvenated images for a randomly selected subject from the test set for the current proposal and the two baselines. Each

pair of rows contain the generated image and the mapping applied to the original image to obtain it. The column with age gap equal to zero

represents the reconstructed image. Reproduced by kind permission of UK Biobank ©.

TABLE 1 Mean absolute error (MAE) for age prediction of images generated synthetically from a random testing set of 907 subjects with varied age

and grouped in age gaps of 5 years.

MAE for predicted age (|predicted age − target age|) ↓

Age gap −20 −15 −10 −5 5 10 15 20

Ours 7.24.3 5.83.8 6.04.0 4.73.6 4.83.4 5.83.8 5.83.7 6.23.6

Xia et al. (12) 12.84.7 9.44.8 6.84.4 5.74.2 5.73.9 8.74.7 10.64.9 12.85.0

Zero order 16.44.3 12.64.7 8.74.7 5.64.1 6.04.1 9.24.8 12.84.9 16.64.7

Results are presented for models with the ability to generate a variable age gap: our proposal and the adapted model by Xia et al. (12). The Zero order shows the prediction error for

unmodified images. The best results are shown in bold face and standard deviations as subscripts.

Qualitative results

At a qualitative level, as presented in Figure 3, the changes

of our proposal tend to be more localized in space than the

modifications introduced by the other baseline models. These

modifications focus mostly on the interventricular septum and

the aorta with opposed transformations for opposite age gaps. In

detail, for increased age, the interventricular septum is enlarged

toward the LV cavity and the aorta is enlarged. Finally, although

most of the changes occur in the heart, some modifications are

observed in surrounding areas.

Quantitative assessment of generated
images

Assessment via predicted age

The apparent age of synthesized images was assessed using a

pre-trained ResNet18 (29) age regressor (MAE: 4.6 ± 3.2 years

for males and 3.9 ± 3.1 years for females). The hypothesis was

that images aged (respectively rejuvenated) by the model should

have a target age greater (respectively lower) than the original

images. Tables 1, 3 show the mean absolute error (MAE) for age

predictions using the pre-trained regressor when tested on the
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TABLE 2 Image quality in terms of Fréchet inception distance (FID) and peak signal-to-noise ratio (PSNR) for images generated synthetically from a

random testing set of 907 subjects with varied age and grouped in age gaps of 5 years.

FID ↓ PSNR (dB) ↑

Age gap −20 −15 −10 −5 5 10 15 20 −20 −15 −10 −5 5 10 15 20

Ours 1.0 1.0 1.0 0.9 1.1 1.2 1.8 2.2 19.7 21.2 24.4 25.9 26.6 25.0 21.2 19.2

Xia et al. (12) 0.4 0.4 0.2 0.0 0.0 0.0 0.2 0.5 28.0 28.4 30.7 49.8 63.8 58.7 44.0 31.2

Results are presented for models with the ability to generate a variable age gap: our proposal and the adapted model by Xia et al. (12).

TABLE 3 Mean absolute error (MAE) for age prediction and image quality metrics (FID and PSNR) for synthetically generated images from a subset of

subjects with 60 and 70 years old (for an age gap of 10) and with 55 and 75 years old (for an age gap of 20).

MAE for predicted age ↓ FID ↓ PSNR (dB) ↑

Age gap −20 −10 10 20 −20 −10 10 20 −20 −10 10 20

Ours 4.74.1 5.03.1 4.13.3 5.43.0 0.9 1.2 1.2 1.5 19.4 24.5 25.0 19.1

Xia et al. (12) 10.84.1 5.63.2 7.84.4 12.64.6 0.4 0.2 0.0 0.5 28.1 29.7 58.8 30.9

StarGAN-v2 4.24.3 5.23.0 9.24.0 5.14.7 12.5 5.0 12.4 9.9 9.8 10.3 10.0 9.7

Zero order 16.44.3 8.74.7 9.24.8 16.64.7 – – – – – – – –

Best results are shown in bold face and standard deviations as subscripts.

images generated by the proposed approach and compare it to

a model adapted from the work of Xia et al. (12) that generates

images with a controllable age gap and to StarGAN-v2 (30) that

transforms images between fixed age gaps (gaps of 10 and 20

years), respectively.

The last row (Zero order) corresponds to the results obtained

when the original images are not modified at all, i.e., the

predicted age is always the same but the target age changes

according to the desired age gap. We find that the proposed

model with residual and attentional blocks outperforms the

model based on the work by Xia et al. (12) and it obtains

comparable results to StarGAN-v2, while StarGAN-v2 can only

translate images between fixed domains. The proposed approach

presents a significant improvement in MAE when compared to

the Zero order.

Assessment via image quality

Image quality was assessed via the Fréchet inception

distance (FID) (31) and the peak signal-to-noise ratio

(PSNR). The FID gives a sense of how different two

datasets are in terms of features extracted from a pre-

trained deep learning model (better quality corresponds

to lower values). An InceptionV3 model (32) was trained

on the UK Biobank for this purpose (further details in

Supplementary material). PSNR, on the other hand, evaluates

the amount of corruption or noise in the generated images

by directly comparing them to the original ones (better

quality corresponds to higher values). As observed in Table 2,

both metrics were coherent and showed better image quality

for the model based on the work on Xia et al. (12), while

StarGAN-v2 obtained images with significantly worse image

quality (see Table 3).

This can be attributed to Xia et al.’s model introducing less

modifications in the image (see Figure 3), resulting in synthetic

images that are more similar to the original images but that

do not represent the target age accurately as shown when

computing the predicted age error in Table 1. On the other

hand, StarGAN-v2 is introducing more modifications in the

image, degrading its quality (see Figure 3), while maintaining a

competitive predicted age error in Table 3.

Volumetric analysis

In order to quantify the specific changes performed in

the heart, the LV size, the interventricular septum width

and the ejection fraction are derived from automatically

generated segmentations of the original and synthesized images

(more details about the segmentation model are provided in

Supplementary material). The normalized variation for these

metrics after adding or subtracting 20 years to the original

subjects is presented in Figure 4 separated by sex.

As observed in the figure, the model shows a clear tendency

for decreased LV size with age, going from a 5% increase

for rejuvenated subjects to a 5% decrease for aged subjects

(with respect to the original sample) for both sexes. With

respect to the interventricular septum average width, a decrease

around 25% for males and 15% for females is observed for

rejuvenated images, while the aged images also show a decrease
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FIGURE 4

Normalized volumetric variations of synthesized images for the left ventricle, the interventricular septum and the ejection fraction. Every dot

represents a subject and the boxes represent the interquartile range. The normalized variation is computed as the normalized di�erence of the

selected metric with respect to the mean value for the original distribution (i.e., the “Original age” distribution). The results are obtained for a

subset of participants aged 60.

of around 5–10% for both sexes. Finally, the ejection fraction

shows a similar distribution for rejuvenated and original images

while the aged subjects present a larger variability and an

overall mean decrease of around 20% for males and 5%

for females.

Synthetic images as data augmentation

Finally, in order to assess the utility of generated images

for data augmentation, several age regressors (ResNet18) were

trained with two datasets created from a new sample of

1,000 subjects with a particular age imbalance. Dataset one

(D1) consisted of an imbalanced dataset with 90% of subjects

younger than 70 years old. Dataset two (D2) was constructed

to manifest an imbalance for younger patients, with 90% of the

subjects being older than 60 years. These datasets were gradually

augmented with 1, 5, 10, and 25% of synthetically aged (for D1)

or rejuvenated (for D2) subjects. The results are presented in

Table 4. A clear reduction in prediction error is observed when

using synthetically age (or rejuvenated) subjects and the error

when using 10 or 25% of synthetic images is comparable to the

error obtained with a balanced dataset (12.7± 8.9).

Alternative tasks

In order to showcase the capabilities of the proposed

approach, the same model is used for modifying the BMI of an

input patient and for transforming an image in the end-diastole

(ED) time frame to an image in end-systole (ES).

Table 5 compares the prediction error (MAE) between

apparent BMI and the target BMI, as obtained from a pre-trained

ResNet18 BMI regressor (MAE 1.4± 1.1 for males and 1.6± 1.4

for females), for images generated with the proposed model and

for images that were not modified at all (Zero order). The MAE

TABLE 4 Mean absolute error (MAE) of ResNet18 age regressors when

trained with two imbalanced datasets and di�erent proportions of

added synthetic images.

MAE ↓

0% 1% 5% 10% 25%

D1 (10% of older subjects) 14.59.0 13.38.6 14.29.3 12.88.6 11.07.6

D2 (10% of younger subjects) 18.09.7 17.09.7 17.810.0 15.49.4 13.99.2

Balanced dataset 12.78.9 – – – –

Standard deviations are presented as subscripts.

increases slightly with higher BMI differences between input and

synthetic images, although it shows a significant improvement as

compared to the Zero order error, indicating a relative increase

(respectively decrease) for positive (respectively negative) gaps

in the apparent BMI of the subject.

With regards to the transformation of cardiac time frames,

the model obtained a root mean square error between generated

images and the real ES frames of 0.06 (±0.01), when compared

at the whole image level. Figure 5 shows some qualitative results

obtained for this task that include the generated mapping and

the pixel-wise absolute difference between the generated frames

and the real ones. As observed in the figure, the model captured

the thickening of the myocardium, the contraction of the right

ventricle as well as the smaller changes in size in the atria

between ED and ES. However, several hallucinations were also

introduced (highlighted with orange arrows) by the model that

are not clinically accurate.

Discussion

A conditional generative model is proposed that allows for

the modification of a cardiac image in two directions, i.e., for
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TABLE 5 Mean absolute error (MAE) for apparent BMI of generated images, obtained from a pre-trained ResNet18 BMI regressor.

MAE ↓

BMI gap −8 −6 −4 −2 −1 0 1 2 4 6 8

Ours 2.31.6 2.01.5 1.81.4 1.71.3 1.61.3 1.51.2 1.51.3 1.71.4 2.11.6 2.31.7 2.71.8

Zero order 7.22.0 5.61.9 3.81.8 2.21.4 1.71.3 1.51.2 1.71.4 2.31.6 4.11.8 6.01.8 7.91.7

Standard deviations are presented as subscripts.

FIGURE 5

Qualitative results for end-systole (ES) frame generation from end-diastole (ED) frames. Orange arrows highlight clinical inaccuracies of the

generated images such as incomplete interventricular septum or mitral valve or an extra “blob” in between the atria. Reproduced by kind

permission of UK Biobank ©.

increased and decreased age. This is the first approach, to the

best of our knowledge, for modeling the aging heart trained

only on cross-sectional data. Realisticmodifications are obtained

without the need of complicated pre-processing steps, such

as image registration or histogram matching, or of manual

subdivision of the dataset in age groups. The accuracy and image

quality of the results is comparable to state-of-the-art GAN

methods, such as StarGAN-v2 (30), while the current model

allows for a controllable target age and does not need to train

several models for the aging task.

The results obtained for increasing age show in general a

qualitative thickening of the interventricular septum, with the

associated reduction of the LV cavity size, and an enlargement

of the aorta. These changes are observed in the opposite

direction for rejuvenated hearts. Quantitatively, there is a clear

tendency for reduced LV size with age that is consistent with

the literature (1, 2). The interventricular septum average width

however, is reduced for both increased and decreased age, with

the literature signaling this region as the most affected by the

asymmetrical concentric LV hypertrophy observed with age (2).

The ejection fraction suffers a small decrease in the mean value,

while the literature states that it is preserved with age (1), and the

distribution becomes wider with age, which might be related to a

potential larger group of pathological subjects for increased age

and the introduction of uncontrolled bias in the model which

should be investigated in future works. Finally, an increased

diameter is also observed in the aorta with increased age in

both sexes according to the literature (33). Notably, the aorta

and the interventricular septum are important areas also for

age predictors based on deep learning, according to a recent

study (34).

A potential application for this method has been showcased

by counter-balancing biased datasets which improves the

accuracy of age regression models trained on them. Recent

works in the literature (35, 36) also demonstrate the feasibility

of synthetic data augmentation. Such augmentation may be

especially interesting for counter-balancing datasets with an age

bias between healthy and diseased patients or when there are

simply not enough control subjects.

Finally, two alternative tasks are presented to demonstrate

the model ability to synthesize images given cross-sectional data.

On one hand, the model was able to successfully increase and
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decrease the apparent BMI of subjects in an analogous manner

to the aging task. On the other hand, four chamber images in

the ES cardiac frame were synthesized from ED frames with a

relatively low error when compared to the real frame.

Limitations

The proposed model presents several limitations. First of all,

the model has not been validated against real longitudinal data.

This validation is particularly challenging, since repeated visits

may have images acquired at slightly different slice positions

which may then introduce changes in the heart morphology not

associated with age. Additionally, the time gap between visits

needs to be sufficiently large in order to observe visible changes,

while current longitudinal datasets have a time span of<10 years

between scans.

Secondly, the model is observed to produce images with

clinical inaccuracies, as observed in Figure 5, where the synthetic

images present an incomplete interventricular septum, an

extra “blob” in between the right and left atria or a partially

missing mitral valve. One possible approach to avoid incomplete

structures is to use deformable maps, instead of modifying

directly the pixel intensities, at the expense of preventing the

appearance of new structures that are not present in the original

image in the first place.

Conclusions

This work proposes a conditional generative model to

extract longitudinal patterns using only cross-sectional data.

Such a model may be applied to compare population groups,

such as subjects following a specific treatment vs. a control

group, that are spread in time in a cross-sectional dataset,

without the need of acquiring a cost- and time-expensive

longitudinal dataset. Moreover, we demonstrate the feasibility of

using the generated images for dataset balancing.
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A growing number of artificial intelligence (AI)-based systems are being

proposed and developed in cardiology, driven by the increasing need to deal

with the vast amount of clinical and imaging data with the ultimate aim of

advancing patient care, diagnosis and prognostication. However, there is a

critical gap between the development and clinical deployment of AI tools. A

key consideration for implementing AI tools into real-life clinical practice is

their “trustworthiness” by end-users. Namely, we must ensure that AI systems

can be trusted and adopted by all parties involved, including clinicians and

patients. Here we provide a summary of the concepts involved in developing

a “trustworthy AI system.” We describe the main risks of AI applications and

potential mitigation techniques for the wider application of these promising

techniques in the context of cardiovascular imaging. Finally, we show why

trustworthy AI concepts are important governing forces of AI development.

KEYWORDS

artificial intelligence, cardiovascular imaging,machine learning (ML), trustworthiness,

AI risk

Introduction

In recent years, several artificial intelligence (AI) based systems have been developed

in cardiology. This trend is driven by the increasing need to deal with the vast amount

of clinical and imaging data produced in the field and with the ultimate aim to

advance patient care, diagnosis and prognostication (1, 2). It is not a question anymore

Frontiers inCardiovascularMedicine 01 frontiersin.org

119

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://doi.org/10.3389/fcvm.2022.1016032
http://crossmark.crossref.org/dialog/?doi=10.3389/fcvm.2022.1016032&domain=pdf&date_stamp=2022-11-08
mailto:sz.liliana.e@gmail.com
mailto:l.szabo@qmul.ac.uk
https://doi.org/10.3389/fcvm.2022.1016032
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fcvm.2022.1016032/full
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org


Szabo et al. 10.3389/fcvm.2022.1016032

whether AI will transform healthcare but rather how it will

do so (3). Transformative measures have already impacted

many areas of cardiovascular medicine, from smart devices

promising to diagnose arrhythmias based on single-lead ECG

(4) to automatic image segmentation tools shortening manual

image analysis (5, 6). However, there is a critical gap between

the development and deployment of AI tools. To date only

24 AI-driven cardiovascular imaging products have received

FDA approval (7), suggesting there remain critical challenges in

building and implementing these models into everyday practice.

It is easy to scare away busy clinicians with endless legal

documentation and specialized terms from philosophy, law and

data science. On the other hand, expecting the data science

community to be up to date with their field, understand complex

medical concepts and consider the ethical ramifications of AI is

the recipe for serious unintended consequences (8). Indeed, the

discussion around the ethical issues of AI should be inclusive of

all participants, from funding agencies to the patients.

The promise of AI revolutionizing cardiovascular imaging

could not be delivered without achieving the trust of the

end-users and patients. Currently, there are several ethical

frameworks for AI applications. One of the most universal

guideline was proposed by the European Commission in 2019

(9). This document provides a detailed technical summary and

general guidance for dealing with the ethical questions of AI.

However, it was written by senior data scientists, consequently

does not focus on issues of healthcare applications (10).

Indeed, to date, little is accessible to healthcare professionals

without an in-depth understanding of the technical terms of

the ethical questions embedded in AI applications. Notably,

the document written by the European and North American

Societies in Radiology detailing potential AI ethics issues can

work as a primer for other societies in medicine (11). More

recently, the first comprehensive guideline for assessing the

trustworthiness of AI-based systems in medical imaging was

developed, named FUTURE-AI (12). This technical framework

promises to transform AI development in medical imaging and

will help create an environment for safe clinical implementation

of novel methods (https://future-ai.eu/).

In this narrative review, we aim to summarize the main risks

of AI application and potential mitigation techniques in plain

language. We provide an overview of ongoing efforts to improve

the “trustworthiness” of AI in cardiovascular imaging. Finally,

we aim to provide key questions to help initiate dialogue within

research groups.

The basic concepts of AI

Several dedicated publications describe AI’s definitions and

main applications within cardiology in great detail (13–16). Here

we restrict ourselves to those basic concepts essential for further

discussion of AI trustworthiness.

AI is an umbrella term within data science, incorporating a

wealth of models, use cases and aiding methodologies to mimic

human thought processes and learning patterns (8). Within

AI, the most commonly used models are machine learning

(ML)-based in medical research; therefore, several important

source documents handle AI and ML almost synonymously (1).

An overly simplified definition of ML is computer algorithms

that “learn” from data. ML methods use pre-processed (e.g.,

anthropometric data derived from patients) and raw data (e.g.,

raw imaging files).Deep learning (DL) is a subset ofML that deals

with algorithms inspired by the structure and function of the

human brain. DL algorithms use neural networks to transform

the raw data into an abstract level, refine accuracy and adjust

when encountering new data (17).

We can differentiate between supervised and unsupervised

learning based on the type of data fed into an AI algorithm.

In supervised learning, humans curate and label data before

training, and the model is optimized for accuracy with

known inputs and outputs. The following models are used

for: classification (putting data into categories) and regression

(predicting continuous variables within the concept of ML).

On the other hand, unsupervised learning deals mainly with

unlabelled data, with the ultimate goal of identifying novel

patterns in a dataset such as clustering (14).

A critically important step in ML model development is a

large and consistently labeled data set—the diverse quality of

data and the inconsistent labeling could reduce the accuracy of

AI model. Another important step is data splitting: datasets are

generally split into training, validation and test sets. Training

and validation sets used to train and fit the model, more

specifically the validation provides an estimation of the model

fit for model selection or tuning of parameters, whilst the

test set is reserved to evaluate the final model (18). Given

the degradation in performance reported for deep-learning

algorithms for medical imaging, it is of paramount importance

that the test set consists of independent cohorts to allow

for external validation, a key requirement for ensuring the

trustworthiness of AI systems (19, 20). Moreover, the external

validation should be performed by independent parties to ensure

objectiveness. Please note, that validation in the original dataset

is not synonymous with external validation, which is performed

on a separate dataset.

The concept of trust and
trustworthiness of AI in medicine

It is easy to get lost in a philosophical discussion about

how to define trust or if it is even possible outside the

human realm (21, 22). From a practical standpoint, these

questions are confusing rather than helpful. For decades AI

was part of the scientific discussion, existing in research

environments, and science fictions. Therefore, the question
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of whether to trust AI tools in healthcare was merely

a discussion for scholars in the ethical and data science

fields. However, with novel tools emerging daily, we are

forced to reconsider the potential ramifications embedded

in AI.

The questions we face today are highly practical and

directly affect the field’s development. Can we trust the

CMR segmentation provided by the AI tool? Are we

confident that the new artifact-removing algorithm does

not mask any important clinical clue? Should we rely

on the novel diagnosis support toolkit? What does it

mean to trust the judgement of an automatic tool? How

do we communicate the uncertainties embedded in a

novel predictions score? Are we holding AI to a higher

standard than clinical judgement based on intuition

and experience?

As an example, left ventricular ejection fraction (LVEF)

measured using echocardiography is a long-standing “trusted”

parameter in cardiovascular medicine. Because with years

of development, validation, and experience, we learned to

comprehend the signals that link it to disease and outcome,

and communicate the findings to the patients so that they trust

their practitioners to understand echocardiography (23, 24).

Although the information it provides is far from complete

and prone to errors, the usefulness of knowing the EF of

a patient in a clinical situation is beyond question; even

when clinicans use eyeballing (25). On the other hand an

AI application based on the idea that the human eye and

brain can learn with experience how to estimate EF without

measuring ventricular volumes and making calculations is more

controversial, as this approach does not allow the revision

of the ventricular contours in case of seemingly disparate

results (26).

Wynants et al. reviewed multivariable COVID-19-related

prediction models at the beginning of the pandemic. They found

that the 232 models identified in the study all reported moderate

to excellent predictive performance, but all were appraised to

have a high or uncertain risk of bias owing to a combination of

poor reporting and poor methodological conduct for participant

selection, predictor description, and statistical methods used

(27). The most sobering conclusion was that none of the

proposed models proved to be of much help in clinical practice.

The same conclusion was drawn from the investigation by the

Alan Turing Institute (28) and others (29).

Main AI applications within
cardiovascular imaging

Within cardiovascular imaging, the main areas of AI

application are: (1) image acquisition and reconstruction—

which helps to reduce the scan time, (2) improving the

imaging workflow and efficiency of time-expensive tasks such as

segmentation, (3) improving the diagnosis-making process, (4)

evaluation of disease progression and prognosis, (5) assessment

of treatment effectiveness, and (6) generation of new knowledge.

Examples illustrating key areas of AI applications from non-

invasive cardiovascular imaging is summarized in Table 1,

further examples in can be found in dedicated publications

(15, 16, 18, 49, 50).

There has been a steep increase in publications using ML in

cardiovascular imaging in the past 5 years. This trend was driven

by the increasing availability of high computational power,

large datasets (16), and the discovery of the computational

effectiveness of convolutional neural network architecture

(AlexNet) (51).

It has been envisioned that AI tools will take over or at least

substitute the work of radiologists and cardiovascular imagers

to a great extent and consequently necessitate fewer human

resources creating cheaper and more accurate care in the future

(52). Roughly a decade into the area of accessible AI innovation,

we can see that changes are less rapid, and the results are beneath

our expectations (53). No segmentation is used unchecked, no

diagnosis is made without human supervision and approval, and

the need for well-trained imagers has increased (54). Notably,

only a small proportion of the proposed methods, models and

tools gain approval from the appropriate authorities (FDA or

European Medicines Agency), and reach the clinical application

stage. Should we then just conclude that AI is pointless and we

must not use it? On the contrary, these experiences and setbacks

should motivate the research into more robust AI models and

rigorous validation standards. Only by learning from the critical

issues raised by researchers and end-users can we move forward

in the field of AI.

Unintended consequences of AI
applications in cardiovascular
imaging and mitigation strategies

To understand why AI applications are not approved

and used to the rate it was predicted during the height of

the ML hype in 2016, we have to look into the potential

limitations of these tools. Here we provide an introduction

to the main risks of AI applications within cardiovascular

imaging: (1) lack of robustness and reliability causing patient

harm, (2) issues of AI usability and the misuse of tools, (3)

bias and lack of fairness within the AI application which can

perpetuate existing inequities, (4) privacy and security issues,

(5) lack of transparency, (6) gaps in explainability, (7) gaps in

accountability, and (8) obstacles in implementation (Table 2).

In each section, we describe the main attributes of each risk,

provide relevant examples within cardiovascular imaging and

illustrate potential mitigation strategies.
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TABLE 1 Examples of AI applications from non-invasive cardiovascular imaging.

AI application Purpose Modality References

Image acquisition and

reconstruction

Improving image

quality, decreasing

image artifacts

CCTA Wolterink et al. (30)

CMR Oksuz et al. (31)

Lowering radiation dose CT Benz et al. (32)

Increasing imaging

speed

CMR Caballero et al. (33)

Improving non-expert

usage (e.g., view

classification,

automated planning)

Echocardiography Zhang et al. (34)

CMR Edalati et al. (35)

Improving the imaging

workflow and

efficiency of

time-expensive tasks

Automatization of

previously manual tasks

for increased speed,

effectiveness, and

potentially improved

standardization (e.g.,

image segmentation)

Echocardiography Leclerc et al. (36)

CCTA Huang et al. (37)

CMR Bai et al. (5)

Diagnosis making Supporting early

diagnosis and timely

treatement initiation or

prevention

Echocardiography Sengupta et al. (38)

CCTA de Vos et al. (39)

CMR Zhang et al. (40)

Disease

prognostication

Improving the

discrimination of high

risk imaging features

Echocardiography Samad et al. (41)

CCTA Patel et al. (42)

CMR Cheng et al. (43)

Assessment of

treatment effectiveness

Monitoring response to

medication, device

therapy etc.

Echocardiography Tokodi et al. (44)

CCTA Queirós et al. (45)

Generation of new

knowledge

Discovering new

patterns, cardiovascular

phenotypes or disease

presentations (key role

for unsupervised

learning methods)

Echocardiography Casaclang-Verzosa et al.

(46)
CCTA Hoshino et al. (47)

CMR Zheng et al. (48)

CCTA, coronary computed tomography angiography; CMR, cardiovascular magnetic resonance.

Robustness and reliability

AI robustness is defined as the ability of a system

to maintain its performance under changing conditions

(56). The promise of a robust AI tool is that it can

consistently deliver accurate outputs, even when it

encounters unexpected or subquality data. When a model’s

functionality and accuracy change easily, it is considered

“brittle” (8).

Medical imaging encapsulates a wealth of potential sources

for AI brittleness (12):

(1) Heterogeneity within imaging types of equipment

and vendors.

(2) Image acquisition heterogeneity within imaging centers

and operators.

(3) Patient-related heterogeneity (including clinical status

and anthropometric peculiarities).

(4) Data labeling and segmentation heterogeneity

between annotators.

As mentioned above, ML algorithms play an increasingly

important role in the image acquisition of all cardiovascular
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TABLE 2 Questions to promote discussion of AI trustworthiness

between clinicians and technical experts.

Robustness and reliability

• Did you perform any pre-processing that can potentially affect the

reliability of your models?

• Did you use homogenous/ single center data OR

heterogenous/multicenter data?

Are there any checkpoints for quality control in your pipeline?

Usability

• Do you have an understanding of the end-users needs in terms of the

tool’s interface?

• Does the implementation of your tool viable within the

clinical workflow?

Bias and fairness

• What fairness means for your application?

• Are there any potential hidden sources of bias?

• Does the algorithm exhibit discrimination toward any group? Is it

harmful or beneficial for the use case?

• Did you document and report these potential biases?

Security and safety

• Did you document potential risks of your AI tool? How do you

communicate these?

• Does the implementation of your AI can potentially harm patients,

worsen outcome or create security breach? If not, how do you know?

Transparency

• Did you document the characteristics of your dataset?

• Did you follow any relevant reporting guideline or checklist?

Explainability

• Do you know what level of explainability your end-users require?

• Can you explain, how your model reaches a certain decision?

• Did you explore complementary explainability methods?

Accountability

• What are the relevant regulations in terms of liability in your use

case?

• Who is responsible for errors occurring during the clinical

application of the AI tool?

• Who is monitoring the application and how frequently?

Summary of potential questions to support the discussion of AI trustworthiness between

clinicians and technical experts adapted from Ammanath (8) and Lekadir et al. (55).

imaging modalities. However, these applications are not without

certain limitations. For example, Antun et al. (57) highlighted

possible sources of instability of deep learning algorithms at

CMR reconstructions. The instabilities usually occur in several

forms e.g., undetectable perturbations may result in artifacts in

the reconstruction, or a small structure like tumors may not be

captured in the reconstruction phase.

The potential brittleness of AI tools is also very well-

illustrated by the recent developments in CMR image

segmentation (58). Critically, DL-based segmentation tools

are often trained and tested on images from single clinical

centers, using one vendor with a well-defined protocol

resulting in homogenous datasets (59, 60). Furthermore, CMR

protocols across prominent multi-center cohort studies are

also standardized, prohibiting wider generalizability (5, 61, 62).

A notable effort to develop segmentation tools on more

heterogeneous datasets to promote robust AI tool development

is the Multi-Center, Multi-Vendor and Multi-Disease Cardiac

Segmentation (M&Ms) Challenge (63). Investigators of the

euCanSHare international project established an open-access

CMR dataset (six centers, four vendors, and more than nine

phenotype groups) to enable generalizable DL models in cardiac

image segmentation. The Society of Cardiovascular Magnetic

resonance Imaging (SCMR) registry (64) and Cardiac Atlas

project (65) are also aimed at providing diverse databases for

similar research ambitions. These efforts are still ongoing, and

Campello et al. (63) noted that further research is necessary to

improve generalizability toward different scanners or protocols.

Automated coronary computed tomography angiography

(CCTA) segmentation faced similar challenges in the

past decade. Although the accuracy of the CCTA plaque

segmentation tools has been validated against the gold standard

invasive methods, the interplatform reproducibility remains

disputed (66, 67). Indeed, the time-consuming and labor-

intensive nature of quantitative plaque assessment is still

responsible for the frequent visual evaluation of coronary

artery disease in clinical practice, despite some emerging

solutions (68).

Apart from well-curated diverse datasets for benchmarking

of segmentation algorithms and the development of novel

segmentation tools, the reliability of the output is also a

critical to the clinical implementation of these tools. Recently,

automated quality control tools have been suggested in

high-volume datasets where manual expert inspection is not

achievable. Automated quality control tools utilizing different

methods, such as Dice similarity coefficient, reverse classification

accuracy (RCA) framework, and quality control-driven (QCD)

framework, have been implemented within ventricular (69),

T1 mapping (70), aortic (71), coronary, and pericardial fat

segmentation (72).

AI robustness largely relies on the adaptability of a given

model to changing circumstances. A segmentation tool might

perform well in a given dataset of healthy hearts, but it might

not directly translate into a heterogeneous dataset. The following

concepts help promote robustness and reliability in medical

imaging applications of AI:

(1) Heterogeneous training data (multi-center, multi-vendor,

multiple diseases).

(2) Checking intra- and interobserver variability and

whether automated AI tool difference lies within the

observer variability.

(3) Applying well-established annotation with powerful

annotation software.

(4) Image quality control (to identify artifacts within the data,

applying algorithms which help to reduce artifacts).
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(5) Applying image harmonization techniques (including the

use of phantoms and dedicated harmonization tools such

as histogram normalization).

(6) Applying feature harmonization techniques (using test-

retest studies and feature selection methods to select stable,

robust features for the models).

(7) Data augmentation.

(8) Uncertainty estimation [there is a variety of uncertainty

quantification methods, including prediction intervals,

Monte Carlo dropout, and ensembling; they are designed to

pick up the distance of the new observation to observations

the algorithm has already seen Kompa et al. (73)].

Potential issues that can arise during the assessment

of robustness and clinical usability is well-illustrated by

the adaptation of radiomics in cardiovascular imaging (74).

Radiomics enable the extraction of voxel-level information

from digital images, promising the quantitative description of

tissue shape and texture. The utility of CT radiomics has been

demonstrated in identifying vulnerable coronary atherosclerotic

plaques (75–77) and linking pericoronary adipose tissue patterns

to local inflammation (78, 79). CMR radiomics has also been

shown to improve the discrimination of cardiomyopathies (80–

82) and improve risk prediction among ST-elevation myocardial

infarction patients (83, 84). Despite these advances, the clinical

implementation of radiomics is in its infancy. The general

critique of the technique lies in the poor repeatability of

radiomics features. To improve radiomics usability in CMR,

Raisi-Estabragh et al. (85) conducted a multi-center and multi-

vendor test-retest study to evaluate the repeatability and

reproducibility of CMR radiomics features using cine imaging.

The authors reported variable levels of repeatability of the

features, which are likely to be clinically relevant. To reduce

the radiomics variability introduced by the acquisition center

Campello et al. (86) evaluated several image- and feature-

based normalization techniques. The authors demonstrated

that ComBat, a feature-based harmonization technique, can

remove center information, but this does not translate to

better algorithmic generalization for classification. The best

performing approach in this respect was piecewise linear

histogram matching normalization.

Usability

Usability is defined as the extent to which an AI application

can be utilized to achieve specific goals by specified users with

effectiveness, efficiency and satisfaction (87). As the interaction

between healthcare professionals and technology is increasingly

important, more and more research effort is aimed at testing

clinical usability. However, AI tools are barely tested regarding

how they interact with clinicians, and most applications are still

in “proof-of-concept” status (88). Key issues of usability include

lack of a human-centered approach for the development of the

AI technologies, e.g., lack of involvement of the end-user for the

definition of the clinical requirements and of multi-stakeholder

engagement throughout the production lifecycle.

Bias and fairness

In AI, defining bias and fairness is challenging due to

the ever-changing applications we put AI to ISO/IEC TR

24027:2021 (89). Within the healthcare domain, fairness means

that AI algorithms should be impartial and maintain the same

performance when applied to similarly situated individuals

(individual fairness) or different groups of individuals, including

under-represented groups (group fairness) (12).

Until now, little data is available regarding the bias and

fairness of algorithms in cardiovascular imaging, even though

the phenomenon is well-known. As Rajkomar et al. summarized:

any type of bias depicted within the dataset is learned and

adapted into model performance (90). Overrepresentation of a

certain group leads to data collection bias (18), as exemplified by

Larrazabal et al. (91). They demonstrated in a large-scale analysis

of chest X-ray images that gender imbalance in the training

dataset led to incorrect classification of important conditions

such as atelectasis, cardiomegaly or effusion. Puyol-Antón et al.

performed the first analysis of DL fairness in cardiovascular

segmentation using the UKB dataset (92). They found that the

segmentation algorithm trained on a dataset balanced regarding

participant sex but imbalanced concerning ethnicity resulted

in less reliable outcomes for minority groups. It is easy to

see how data biases might lead to a less inclusive distribution

of resources. Lack of fairness might not only lead to loss

of opportunities and worse health outcomes among minority

groups but may also reduce public trust in AI applications.

Lekadir et al. identified the main guiding principles for

fairness in medical imaging AI (12). Actions to promote AI

fairness are not one step but should be implemented throughout

the AI lifecycle. Here we summarize the main recommendations

from a clinical perspective:

(1) Multi-disciplinarity, which stands for the inclusion

of all important stakeholders (AI developers, imaging

specialists, patients, and social scientists) in the AI design

and implementation.

(2) Context-specific definition of fairness with regards to

potential hidden biases in the dataset and data annotators.

(3) Standardization of key variables (e.g., sex, and ethnicity

should be collected in a standardized way, because these

descriptors of the groups can help test, and verify

AI fairness).

(4) The data should be probed for (im)balances, particularly

participant age, sex, ethnicity, and social background.

Frontiers inCardiovascularMedicine 06 frontiersin.org

124

https://doi.org/10.3389/fcvm.2022.1016032
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org


Szabo et al. 10.3389/fcvm.2022.1016032

Once we know the potential biases, we have several options

to deal with them. There are tools to promote AI fairness on a

data collection and curation level, as well as in themodel training

and testing process.

(1) Data collection process in itself should be transparent

and well-documented.

(2) Collecting multi-center data.

(3) Application of specialized statistical methods to

evaluate fairness (e.g., true positive rate disparity,

statistical parity group fairness, equalized odds,

predictive/equality) (93, 94).

(4) Application of specialized statistical methods to mitigate

bias (e.g., re-sampling, data augmentation, development of

stratified models by sex, or ethnicity).

Exploratory data analysis is also a great tool to probe

the dataset for hidden biases (8) and should not be a

solitary task for the data scientist. Researchers with a medical

background are more adept at picking up chance associations

and odd correlations within the dataset. Among other things,

data scientists can produce synthetic data to compensate for

missing values to create a more balanced dataset. At the

same time, we must always stay vigilant to the potential

biological meaning of missing data before deciding to make

up for it. Therein lies another strong argument for inclusive

AI research.

Privacy and security

Any potential breach in healthcare AI systems can seriously

undermine the trust of end-users. Therefore, developers should

cooperate with cybersecurity experts to protect personal

information against bad actors before clinical implementation.

In some critical areas, such as data protection, there are

firmly outlined rules in place: e.g., EU General Data Protection

Regulation (GDPR) or the California Privacy Rights Act

(CPRA). However, these regulations can never keep up with the

speed of innovation.

Key issues surfacing with the use of clinical data for AI

development (95):

(1) Sensitive data being shared without informed consent.

(2) Inappropriate informed consent forms (e.g., information

within the consent form is detailed beyond the processing

capability of the patient/user, no dedicated time allocated

for consent review, and opaque use cases permitting

patients from understanding how their datamight be used).

(3) Data re-purposing without the patient’s knowledge

and consent.

(4) Personal data being exposed.

(5) Attacks on AI applications (e.g., data poisoning,

adversarial attacks).

For example, the South Denver Cardiology Associates

recently confirmed a data breach affecting 287,000 patients.

The stolen dataset contained dates of birth, Social Security

numbers, driver’s license numbers, patient account numbers,

health insurance information, and clinical information (96).

This leakage might result in identity theft, insurance fraud or

other inappropriate use of sensitive data. Moreover, in the field

of medical imaging, particular attention is necessary toward

dealing with potential adversarial attacks (97), including “one-

pixel” attacks (98). These attacks involve slight changes to the

input images intending to fool the AI and produce a false result.

In other cases details of large scale data sharing agreements

remain gray for the public (99), which might lead to data privacy

controversies in the future.

Fortunately, several steps can be taken to mitigate these risks

on an individual and institutional level:

(1) Increasing the awareness of privacy and

security risks, informed consent and cybersecurity

through (self)education.

(2) Transparent regulations of data privacy,

data re-purposing.

(3) De-centralized, federated learning approaches such as

federated learning. Federated learning is an ML setting

where many de-centralized clients collaboratively train a

model under the arrangement of a central server, keeping

the data in several individual locations (100). Despite

this, some researchers might be hesitant to use federated

learning, because of the potential disclosure of the model.

However, the data is never exposed to third parties, not

even to the data scientist.

(4) Ongoing cybersecurity research into novel, more

secure algorithms.

Transparency and traceability

Transparency in AI is a broad term; it refers to the

information about the dataset, processes, uses, and outputs

that is a prerequisite for accountability. AI transparency

within medicine aims to provide all stakeholders with enough

information to join in the discussion in a meaningful way. Two

universal requirements guide and promote AI transparency:

(1) Data transparency includes transparent methods and

guidelines for data collection, utilization, storage, sharing,

and documentation.

(2) Model transparency means we have enough

knowledge/information about a model’s internal properties

to apprehend its output meaningfully.
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The goal of traceability is to document the entire

development process and to monitor the behaviour and

functioning of an AI model or system over time. This approach

allows tracking any drift from the original training settings.

As clinical practice constantly evolves, images provide greater

granularity or novel guidelines emerge; keeping track of the

model performance and adapting it to the new circumstances is

critical (101). Two main concepts driving a decrease in model

performance over time are “concept drift” and “data drift”.

Concept drift means that some underlying characteristics of

variables change (for example, a novel type of cardiomyopathy is

distinguished, creating a new class for a classification algorithm),

which decreases the accuracy of the model. Data or dataset drift

refers to the change in the data, meaning that a difference in

the scanning device or image acquisition may directly affect the

prediction model deployed (12).

Standardized dataset documentation methods can facilitate

ML results’ transparency, accountability and repeatability.

Recently, Gebru et al. posed a list of questions on how and why

data was collected, what is the composition of the data, and how

it was curated and labeled in their document entitled "Datasheets

for Datasets” (102). Sendak et al. proposed the use of “Model

facts cards” for each ML model to ensure that clinicians have a

thorough understanding of “how, when, how not, and when not

to” incorporate the output into their decisions (103).

Explainability

In terms of an AI system, explainability means that it

is possible to comprehend how the output was reached.

The greater the explainability of a model, the better we can

understand the internal mechanisms of a decision-making tool.

However, as Arbelaez Ossa et al. (104) point out, the key issue in

AI explainability is the lack of consensus among data scientists,

regulators, and healthcare professionals regarding the definition

and requirements.

Notably, explainability is not necessary for all ML models.

Simple rule-based models applying linear regression or decision

trees are inherently explainable. If we can calculate how a given

parameter is weighted within the model, it is unnecessary to

push the limits of explainability further.

From a strictly clinical end-user perspective, it is also not

necessary to understand all steps involved in a complex DL

network if the output is readily accessible and visually verifiable

by a physician, such as segmentation. On the other hand, if the

algorithm promises to deliver a clinical diagnosis or prognostic

information based on imaging data or a combination of imaging

features, the clinical application needs to reach high levels of

intelligibility. A clinician who does not understand how the

algorithm reached its conclusion will likely to rely on their own

expertise rather than an opaque output.

To deal with the “black box” nature of particularly DL

methods, several post-hoc explainability algorithms were defined

to create more interpretable models. The so-called saliency

maps or heat maps are the most widely adopted explainability

tools in medical imaging. These color-coded maps show the

contribution of each image region to a given model prediction

(105, 106). Several distinct approaches can be utilized, such

as Gradient-weighted Class Activation Mapping (Grad-CAM)

(105) or Dense Captioning (DenseCap) (107), to capture the

most crucial image areas. Saliency maps have long been applied

in image analysis to understand better the key areas supporting

the model’s decision. As an example, Candemir et al. (108)

trained a 3-dimensional convolutional neural network (CNN)

to differentiate between coronary arteries with and without

atherosclerosis and has shown the essential features learned by

the system on color-coded maps. Saliency maps can also suggest

if an algorithm picks up temporal data: Howard et al. (109)

applied time distributed CNN model with saliency maps for

disease classification based on echocardiography images. The

author found that these new architectures more than halve the

error rate of traditional CNNs, possibly because of the networks’

ability to track the movement of specific structures such as heart

valves throughout the cardiac cycle.

Local Interpretable Model-Agnostic Explanations (LIME)

is used to explain the model locally for one single subject

(110). LIME evaluates a given variable’s contribution to the

whole of the predictive model. SHapely Additive exPlanations

(SHAP) is a model agnostic explainability model (can be

used to interpret any model) (111). SHAP is based on game

theory and can reveal each predictor’s effect on the outcome.

It calculates a score for each feature in the model, showing

the feature’s size and direction effects on the outcome. Al’Aref

et al. (112) applied boosted ensemble algorithm (XGBoost) in

the participants of the CONFIRM registry and showed that

incorporating clinical features (e.g., age, sex, cardiovascular

risk factors, laboratory values, and symptoms) in addition to

coronary artery calcium score can accurately estimate the pretest

likelihood of obstructive coronary artery disease on CCTA. They

could supply the 20 most crucial features supporting the model’s

prediction using the SHAPmethod. Similarly, Fahmy et al. (113)

applied the SHAP to support the interpretation of their model

looking into the association between CMR metrics and adverse

outcomes (cardiovascular hospitalization and all-cause death) in

patients with dilated cardiomyopathy. Many other explainability

techniques are also available, and new tools are likely to become

more sophisticated and model-specific.

Although these models can improve model interpretation,

their understanding requires additional efforts from the

physicians. We are yet to see if their outputs can become as

acceptable to the community and if they can overcome current

limitations. Critiques of current explainability models warn that

the performance of the explanations are not routinely quantified,

and we can rarely elucidate if a given decision was sensible or
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FIGURE 1

Principles of trustworthy AI within the machine learning lifecycle.

not (114). Moreover, they might reduce the complexity of a

model to a level that is not representative and promote a false

sense of security among users. Ghassemi et al. note that with

the currently available methods, our best hope is to go through

rigorous internal and external validation and use explainability

models for troubleshooting and system audits (114).

Accountability and liability

Accountability refers to the state of being responsible.

However, in the context of AI, where algorithms are based

on both ML and human ingenuity, the mistakes or errors

of the application come from humans developing or using

machines (95, 115, 116). On the other hand, it is not clearly

defined and regulated yet, with whom the responsibility of AI-

powered medical tools lies. Does liability fall on developers,

chief executive officers of the developing company, leaders of the

healthcare institution buying and authorizing clinical utilization

or the doctors using them? Notably, sometimes it is also hard

to pinpoint why the AI-related medical error happened (95);

therefore, responsibility issues can lead to daunting detective

work, steering away the attention from the actual patient care.

Themain proposed tools to mitigate accountability issues within

AI are: (1) the roles and responsibilities of developers and users

should be defined, (2) a regulatory framework for accountability

should be in place, and (3) dedicated regulatory agencies should

be established and monitor AI use.

Clinical implementation

Even if an AI tool complies with all of the criteria mentioned

earlier, integrating a new tool into clinical practice hides

several expected and unexpected difficulties. The main obstacles

to clinical implementation stem from three primary sources:

(1) the differences among institutions regarding equipment,

staffing, location, financial possibilities, and inner structures

of each healthcare institution, (2) change in physician-patient

relationship, and (3) difficulties of clinical and technical

integration into existing workflows (95, 117).

Medical data, in general, is very noisy and requires human

oversight before integration. Cardiovascular imaging data is

slightly more structured than clinical records but still lacks

interoperability to a great extent (118). Several initiatives already

aim at increasing interoperability among healthcare providers

[e.g., European Commission (119), Health Data Research UK

(120)]. However, it seems fairly evident that medical AI tools

will have to adapt to a certain level of data heterogeneity.

The physician-patient relationship has been transformed by

technical advances and the maturity of social sciences, but it

is yet uncertain how AI tools will impact this relationship.

Some argue that it will help by easing clinician workload

and providing more personalized data for shared decision-

making, while others question doctors’ role once critical tasks are

delegated to sophisticated algorithms (121). Clinical guidelines

will need to be updated to consider the potential role of AI tools

between healthcare workers and patients (95, 122). Moreover,
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these guidelines will also need to be updated to integrate novel

tools into the clinical workflow without severe disruption of

care (123).

Actionable steps

Trustworthy AI is not an obscure concept reserved for

technical specialists and scholars of ethical reals (124), but rather

a practical set of steps and questions, which, when implemented,

can provide us with reliable tools for a new era in healthcare.

In an effort to improve the overall quality of the AI prediction

models, van Smeden et al. presented 12 critical questions for

cardiovascular health professionals to ask (125). Moreover, the

use of the Proposed Requirements for Cardiovascular Imaging-

Related Machine Learning Evaluation (PRIME) checklist has

been suggested by Sengupta et al. (126), a framework that

contains a comprehensive list of crucial responsibilities that need

to be completed when developing ML models. Here we report

key questions to promote discussion of AI trustworthiness

between clinicians and technical experts (Table 2), moreover

we summarize how these principles fit into the ML lifecycle

(Figure 1).

We have to acknowledge that in some instances medical

research and consequently medical AI research is plainly

inaccurate, but we can rectify these mistakes over time. AI

competitions provide an excellent platform for robust validation

or rebuttal of results. As an example, a recent competition to

predict O(6)-Methylguanine-DNA-methyltransferase (MGMT)

promoter methylation from brain magnetic resonance imaging

(MRI) scans (127). Overall, 1,555 teams of many thousands

of researchers took a large dataset of MRI scans and the

results clearly demonstrate that this task is not possible with

current approaches, even tough several group claimed to have

achieved an ROC scores of up to 0.85 previously (128–130). This

suggest that well designed competitions provide and excellent

opportunity to improve the quality of AI research.

In order to promote the safe adoption of AI-powered tools

in cardiovascular imaging, practicing doctors and futuremedical

professionals need to be properly trained in the technical

aspects, potential risks and limitations of the technology (131).

McCoy et al. (132) and Grunhut et al. (133) proposed crucial

points to improve AI literacy in medical education programs.

Furthermore, the involvement and education of the general

public are also essential for the broader adoption of these

emerging tools.

Embracing the human-in-the-loop principle may offer

further benefits where both imagers and ML algorithms

fall short (134). It means that we can benefit from the

advantages of AI models (i.e., automated segmentation or

diagnosis) and having a human at various stages or checkpoints

to correct potential errors or use critical thinking where

algorithms are not confident in their results. The human

can validate or correct the results where the algorithm

delivers lower confidence outputs, creating a combined and

better decision.

In essence, it does not matter if we call it trustworthy

AI, reliable AI or responsible AI—the driving idea is

to create an inclusive, collaborative effort in healthcare

between all stakeholders. Our task is to consider the possible

impact and test our AI tool and all elements of the AI

development by posing the right questions relevant to our

desired aims.
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Patients with intermediate anatomical degree of coronary artery stenosis

require determination of its functional significance. Currently, the reference

standard for determining the functional significance of a stenosis is invasive

measurement of the fractional flow reserve (FFR), which is associated with

high cost and patient burden. To address these drawbacks, FFR can be

predicted non-invasively from a coronary CT angiography (CCTA) scan.

Hence, we propose a deep learning method for predicting the invasively

measured FFR of an artery using a CCTA scan. The study includes CCTA

scans of 569 patients from three hospitals. As reference for the functional

significance of stenosis, FFR was measured in 514 arteries in 369 patients,

and in the remaining 200 patients, obstructive coronary artery disease was

ruled out by Coronary Artery Disease-Reporting and Data System (CAD-

RADS) category 0 or 1. For prediction, the coronary tree is first extracted

and used to reconstruct an MPR for the artery at hand. Thereafter, the

coronary artery is characterized by its lumen, its attenuation and the area

of the coronary artery calcium in each artery cross-section extracted from

the MPR using a CNN. Additionally, characteristics indicating the presence of

bifurcations and information indicating whether the artery is a main branch

or a side-branch of a main artery are derived from the coronary artery tree.

All characteristics are fed to a second network that predicts the FFR value

and classifies the presence of functionally significant stenosis. The final result

is obtained by merging the two predictions. Performance of our method is

evaluated on held out test sets frommultiple centers and vendors. Themethod

achieves an area under the receiver operating characteristics curve (AUC)

of 0.78, outperforming other works that do not require manual correction
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of the segmentation of the artery. This demonstrates that our method

may reduce the number of patients that unnecessarily undergo invasive

measurements.

KEYWORDS

convolutional neural networks, coronary computed tomography angiography,

fractional flow reserve, transformer, coronary artery tree

1. Introduction

Coronary artery disease (CAD) is the leading cause of

death worldwide (1, 2). CAD is characterized by a buildup

of atherosclerotic plaque in the coronary arteries, potentially

leading to a functionally significant stenosis, i.e., stenosis that

causes myocardial ischaemia. Currently, invasive fractional

flow reserve (FFR) measurements are considered the clinical

reference for determining the functional significance of a

stenosis. However, invasive FFR is associated with high costs

and it constitutes a burden for the patient (3, 4). Hence,

identifying patients with functionally significant stenosis prior

to the invasive measurements and treatment would be of high

value. While visual interpretation of coronary CT angiography

(CCTA) by clinical experts enables identification of the vast

majority of functionally significant stenoses (high sensitivity),

it suffers from a high number of false positives (low specificity)

(5, 6). As a consequence, 20–50% of invasive FFR measurements

are performed unnecessarily (6). Therefore, predicting FFR

non-invasively from CT angiography is a subject of intensive

investigations.

For non-invasive FFR prediction from CCTA, several

algorithms have been proposed. Currently, most accurate

methods are based on computational fluid dynamics (CFD)

(7–12). However, CFD-methods are computationally expensive,

hampering (real-time) implementation on clinical workstations.

Moreover, CFD-based methods rely on the accuracy of the

anatomical artery tree model, i.e., artery lumen segmentation

and boundary conditions describing aortic pressure and

peripheral resistances, which are challenging to obtain.

In addition to development of CFD-based FFR prediction

methods, approaches emerged that correlate quantitative indices

derived from CCTA with measured FFR value. These clinical

indices characterize a coronary artery through e.g., transluminal

attenuation gradient (TAG) (13, 14) or plaque volume (15, 16),

or describe specific lesions by quantifying degree of stenosis

(16, 17) or contrast density difference (CDD) (18, 19). While the

mathematical simplicity and intuitive design of the calculated

indices enables their interpretation, it limits their capability

to model the complex relationship between FFR and the

coronary artery characteristics on CCTA. Hence, to improve

FFR prediction with clinical indices, machine learning classifiers

were employed that combined multiple indices (11, 16, 20–24).

This led to a substantial performance increase compared to

the performance of a single index. Similarly, using clinical

indices describing the local geometry and plaque composition,

as well as global features describing the entire artery tree, Itu

et al. (21) trained a deep learning classifier for prediction of

the pressure gradient caused by each lesion. For training, the

authors leveraged hemodynamic simulations in 12,000 artificial

coronary anatomies. To enable learning of relationships between

lesions, Wang et al. (25) and Gao et al. (26) employed the same

features as input to a recursive neural network (RNN). However,

these index-based works share a drawback with CFD-based

methods: calculating the indices requires accurate segmentation

of the coronary artery lumen, which can be highly challenging,

especially in the presence of pathology (27). While these

methods typically use an automatic segmentation method as a

starting point, errors in the automatic segmentation regularly

necessitate substantial manual interaction.

To avoid lengthy assessment times, algorithms that apply

deep learning technology directly to the CCTA scan have

been investigated. Deep learning algorithms have shown the

ability to model complex relations of image characteristics in

a large number of medical task (28). However, these methods

often require a large amount of diverse training data, which

may be challenging to obtain in the medical domain. Hence,

previous deep learning-based works reduced the complexity

of the task by focusing analysis to a relevant region of

interest (29–32) or by training separate networks to extract

image characteristics (29, 31–33). Given that obstruction in

the coronary arteries is expected to lead to underperfusion of

the left ventricle (LV), Zreik et al. (29) focused analysis on

the LV myocardium by characterizing it using a convolutional

autoencoder (CAE). Subsequently, the authors predicted the

presence of a functionally significant stenosis using a support

vector machine (SVM), which can be strained with limited data

due to its small number of parameters. In a subsequent study,

Zreik et al. (31) characterized the coronary arteries by training a

CAE on multi planar reconstructions (MPRs) of the coronary

arteries. Related to this, Denzinger et al. (30) used a CNN

in combination with an RNN to classify MPRs. The authors

used the clinical revascularization decision as reference label,

obtained using functional tests including cardiac stress MRI
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or MIBI SPECT. To further improve performance, Zreik et al.

(32) combined the characterizations of the myocardium and the

coronary arteries using a deep learning-based multi instance

learning framework. As an alternative to focusing analysis to a

region of interest, Kumamaru et al. (33) enhanced lumen-related

image features using a difference image between the CCTA scan

and a non-contrast cardiac CT, synthesized from CCTA using

deep learning. Thereafter, authors trained a 3D ladder network

to extract relevant image characteristics. These deep learning-

based works were limited by their moderate performance.

Unlike other deep learning-based works that applied CNNs to

the CCTA scan, Li et al. (34) first used the artery segmentation to

extract a point cloud representing the coronary artery geometry.

The authors used this point cloud as input to a modified

version of the point-net (35), to predict the pressure in the

coronary artery tree. However, the authors used hemodynamic

simulations as reference labels in training and testing and hence,

the performance compared to invasive FFR measurements is

unknown.

In this work, we propose a method to non-invasively predict

the presence of a functionally significant stenosis in an artery

through deep learning-based analysis of CCTA scans. As in

previous deep learning works, we focus on a region of interest

by first extracting an MPR for the artery of interest. Given that

previous research demonstrated the importance of lumen area,

its attenuation and plaque volume for predicting FFR, we exploit

these characteristics. To circumvent the need for challenging

lumen segmentation, during testing, we use a convolutional

neural network (CNN) to directly extract these characteristics

from the MPR along the artery centerline. Additionally, we

extract characteristics directly from the coronary artery tree

that indicate per coronary artery centerline point whether it

is located in a main artery or side-branch and whether a

bifurcation is present at that location. Thereafter, using the

extracted characteristics we assess the functional significance

of FFR.

For this purpose, we train a second network to perform both

regression of the FFR value and classification of the functional

significance of an artery. In contrast to previous works that use

abstract, high dimensional features, extraction of our specific

characteristics is supervised, resulting in targeted information

distillation and lower dimensional features. While training of

previous deep learning-based works on the limited training

data requires compressing the high dimensional features along

the artery prior to training the stenosis classification (31, 32),

our targeted extraction of artery characteristics enables us to

directly use these characteristics along the artery as input

to our second network. This second network is designed

to exploit the spatial structure encoded in the extracted

characteristics through the use of convolutions and self-

attention. The so-learned representations are likely more

descriptive than unsupervised features characterizing the entire

artery. Additionally, using tangible characteristics, instead of the

abstract features employed in previous deep learning works (29,

31–33), enables interpretability of our method. We performed

experiments on a diverse data set from multiple centers and

vendors.

This paper is organized as follows. The data is described in

Section 2. Section 3 provides a description of the method, which

is followed by a description of our evaluation in Section 4 and by

experiments and results in Section 5. We discuss our findings in

Section 6 and describe our conclusions in Section 7.

2. Data

2.1. Patients and imaging data

This study retrospectively included 657 patients who

underwent CCTA for suspected obstructive CAD. Scans were

acquired in three different hospitals: Scans of 263 patients

(age 47–79 years) were acquired in the Onze Lieve Vrouwe

Ziekenhuis, Aalst, Belgium (Site 1) with a Siemens Somatom

Definition Flash CT scanner; Scans of 152 patients (age 34–84

years) were acquired in the University Medical Center Utrecht,

the Netherlands (Site 2) with a Philips iCT 256 CT scanner;

Scans of 243 patients (age 48–85 years) were acquired in the

Amsterdam University Medical Centers—location University of

Amsterdam, the Netherlands (Site 3) with a Siemens Somatom

Force CT scanner. Patients were only included if all arteries were

in the field of view of the CCTA scan. This study was approved

(Site 1) or the need for informed consent was waived by the

respective institutional review boards (Site 2, Site 3).

During acquisition, contrast medium was injected with a

flow rate of 4 to 6 mL/s for a total of 30 to 92 mL iopromide

(Ultravist 300 mg I/mL, Bayer Healthcare, Berlin, Germany),

depending on the patient weight and test bolus images (29, 36).

The tube voltages ranged between 70 and 140 kVp and tube

currents between 71 and 901 mAs. All scans were reconstructed

to an in-plane resolution ranging from 0.22 to 0.83 mm2 with

0.3 to 0.5 mm slice increment and 0.5 to 1.0 mm slice thickness.

In total 85 out of 658 patients were excluded because the

quality of the CCTA scan was not sufficient due to e.g., severe

step-and-shoot artifacts (n = 22), severe cardiac motion artifacts

(n = 47) or artifacts caused by metal implants (n = 16; Table 1).

Furthermore, patients who underwent stenting or coronary

artery bypass grafting (CABG) prior to CCTA acquisition were

excluded (n = 4). After exclusions, 569 patients remained for

further analysis.

For development and validation of the method, 438

arteries with FFR measurements from 302 patients were used.

Additionally, for independent evaluation of the method, the

performance was evaluated with two held-out test sets. The

first set consisted of 76 arteries with FFR measurements in 67

patients randomly sampled from all three sites. It is referred to

as TestCath. The sets used for development and validation, as
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TABLE 1 Patients were excluded due to artifacts, i.e., severe step-and-shoot artifacts, severe cardiac motion artifacts or artifacts caused by metal

implants.

Artifacts Stenting/ Total

Step and shoot Motion Metal CABG excluded

Site 1 13 21 2 1 37

Site 2 8 15 11 3 37

Site 3 1 11 3 0 15

Total 22 47 16 4 89

well as TestCath, consist of patients with intermediate degree

of anatomical stenosis for which the cardiologist recommended

invasive FFR measurement to assess hemodynamic significance

of the stenosis. Therefore, these sets are representative of

the clinical population that undergoes FFR measurement for

suspicion of obstructive CAD in the catheterization laboratory,

which represents our primary target population. The second

test set consisted of 600 arteries of 200 patients, in which

instead of invasive FFR measurement obstructive CAD was

ruled out as they were assigned to category zero (absence of

stenosis or plaque in all coronary arteries) or one (low degree of

anatomical stenosis or plaque in all coronary arteries) according

to the Coronary Artery Disease-Reporting and Data System

(CAD-RADS) (37). Hence, arteries in this population have a

degree of stenosis < 25%. The chances of finding functionally

significant stenosis in these patients would be marginal (38). To

warrant that our algorithm classifies these arteries correctly, they

were used for testing by assuming FFR > 0.8, indicating the

absence of functionally significant stenosis. Thus, this second

test set is referred to as TestNoCath and it is used for evaluation

purposes only as no patient with little or no stenosis was sent for

invasive FFR measurement.

Analysis in this set was performed for the main arteries,

i.e., left anterior descending artery (LAD), left circumflex artery

(LCX) and right coronary artery (RCA). CAD-RADS scoring

was performed within 3 days of the acquisition of the CCTA

scan. Figure 1 and Table 2 show details regarding the data

selection.

2.2. FFR measurements

Among the 569 patients, 369 underwent invasive FFR

measurement in 514 arteries. To measure FFR, a coronary

pressure guidewire (Certus Pressure Wire, St. Jude Medical,

St. Paul, Minnesota or Pressure wire X, Abbott Vascular,

California) was inserted into the distal segment of the

coronary vessel, and maximal hyperemia was induced by

administration of intravenous adenosine through a central vein.

The lowest FFR value measured at the most distal location

was chosen for analysis. An FFR pullback was performed to

FIGURE 1

Data included in the study.

assess the presence of drift. If multiple FFR measurements

were available in one artery, the value measured at the

most distal location was chosen. The maximum time interval

between the acquisition of the CCTA scan and the FFR

measurement was 90 days for Site 1 and 1 year for Site 2 and

Site 3.

2.3. Reference artery characteristics

To train the network for extraction of artery characteristics,

reference annotations of the coronary artery lumen and

coronary calcium were required. Given the extensive manual

workload of the tasks, these were performed semi-automatically

in a subset of 56 arteries, randomly selected from the

development data set. First, automatic segmentations of the

lumen and calcium were generated in the original CT

image volumes using methods previously developed in our

group (39, 40). Thereafter, automatic segmentations were
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TABLE 2 Data set for training and validation (Development), and two

separate test sets, one with FFR measurements (TestCath) and one

without (TestNoCath).

Development TestCath TestNoCath

Patients 302 67 200

Arteries 438 76 600

Hospital

Site 1 249 58 0

Site 2 159 14 0

Site 3 30 4 600

Anatomical segment

LAD 221 50 200

LCX 81 9 200

RCA 72 10 200

LM 14 1 0

SB 50 6 0

FFR statistics

% positive 0.42 0.78 0.00

Mean FFR 0.82 0.70 -

Std FFR 0.11 0.16 -

In addition to the number of arteries and patients in each set, the table lists the

contribution of each site to each set, the anatomical segments in which the invasive

measurements were performed and statistics describing the distribution of FFR values.

Anatomical segments were categorized into the main branches, i.e., LAD, left anterior

descending artery; LCX, left circumflex artery; RCA, right coronary artery; LM, left main;

SB, side-branch of the main arteries.

transferred to the MPR of the artery, visually inspected

and corrected when needed. Using the segmentations, the

reference lumen area and calcium area were generated by

summing up the pixels of the respective segmentation in

each cross-sectional slice of the MPR perpendicular to the

artery centerline. Note that MPRs for all arteries share the

same spacings and in-plane resolution. For the average lumen

attenuation, the average of the image pixels within the lumen

segmentation mask was calculated in each cross-sectional slice

of the MPR.

3. Methods

Our method assesses the functional significance of stenosis

in an artery from CCTA. First, we extract the coronary

artery centerline tree. To analyze the artery of interest, we

then reconstruct an MPR. Subsequently, we extract relevant

characteristics of the artery along its centerline using a 2D

CNN and the characteristics of the artery within the coronary

artery tree. Using these characteristics, we assess the presence

of a functionally significant stenosis with a dedicated CNN

(Figure 2).

3.1. Artery extraction

To localize the coronary arteries in the CCTA image, the

coronary artery centerline tree is extracted and anatomical

labels are assigned to the tree’s segments using our previously

developed method (41). Thereafter, the labeled centerline tree

is inspected and manually corrected if needed. This is the only

manual interaction that might be required for our method

at test time. Figure 3 illustrates the pre-processing steps. In

most cases this took 1 min, but could take up to at most 5

min when challenged by pathology. For each selected artery

centerline, an MPR with 0.1 mm in-plane voxel size and 0.5

mm distance betweenMPR slices is reconstructed using trilinear

interpolation. The in-plane shape of the MPR is 127 x 127 and

the number of slices is dependent on the artery length. Finally,

image intensities in the MPRs are normalized to zero mean and

unit variance across the data set, to ensure training stability of

the neural networks.

3.2. Artery characterization

3.2.1. Extraction of coronary artery
characteristics

To automatically characterize a coronary artery, we extract

the lumen area, its attenuation and the amount of coronary

artery calcium from the artery’s MPR. Specifically, for each point

of the coronary artery centerline, we predict the lumen area,

the average lumen attenuation and the calcium area in its cross-

section with a 2D CNN (Figure 4). The network analyzes stacks

of three cross-sectional slices and consists of four alternating

convolutional blocks and pooling operations. The convolutional

blocks are comprised of two convolutional layers (kernel size 3,

16 filters), each followed by batch normalization and the ReLU

activation function. Finally, three separate output heads regress

values for the lumen area, average attenuation in the lumen and

calcium area for the central slice of the input stack.

3.2.2. Extraction of coronary tree
characteristics

The coronary artery geometry has impact on the

characteristics of the blood flow and local appearance of

the artery. Therefore, for each point along the coronary artery

centerline, we extract two additional characteristics. The first

one indicates the presence of bifurcations at the artery centerline

point. The second one indicates whether a centerline point

belongs to a main branch (i.e., left main (LM), LAD, LCX,

RCA) or a side-branch. The locations of bifurcations and side-

branches follow from the tree topology and labels. Specifically,

for each MPR slice, information about bifurcations and side

branches was extracted from the coronary artery centerline

point of the tree at that location, i.e., by considering the amount
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FIGURE 2

Overview of our method for assessing the presence of a functionally significant stenosis in a coronary artery. From the CCTA scan, we extract a

coronary artery centerline tree. For each artery we generate an MPR that is further analyzed to predict the lumen area, its average attenuation

and the calcium area per centerline point. These characteristics, as well as characteristics indicating the presence of bifurcations and whether

the artery is a main branch or to a side branch of a main artery, are fed to the classification network to determine the presence of a functionally

significant stenosis in the artery.

of successive centerline points and the label, respectively. We

normalize all characteristics to zero mean and unit variance

across the training data set.

3.3. Stenosis assessment

To assess the presence of a functionally significant

stenosis, we analyze the extracted artery characteristics with

a 1D convolutional neural network (Figure 5). The network

performs both regression of the FFR value and classification

of functionally significant stenosis. To obtain a robust final

decision, we merge the predictions.

The network receives the 5 artery characteristics (lumen

area, average lumen attenuation, calcium area, bifurcations and

side-branches) as input. To focus on changes in lumen area and

its attenuation rather than their absolute values, we calculate

their percentage difference at each location in the artery with

respect to the previous location. Because the relevant features in

the lumen area and its attenuationmay be subtle andmay appear

in different locations along the artery (i.e., a stenosis is expected

to cause changes in the attenuation distal to the appearance in

the lumen area), these two characteristics are first separately

encoded. This is done using two non-shared convolutional

layers with the LeakyReLU activation function applied in

between the layers. Thereafter, the remaining characteristics are

concatenated with the encoded features from the lumen area and

its attenuation.

The information of all five extracted artery characteristics

is merged by a common encoder, consisting of convolutional

layers and a transformer layer, as follows: To increase the

receptive field and reduce the dimensionality, average pooling

with kernel size 4 is applied, followed by two convolutional

layers with dilation 1 and 2, respectively. Each convolutional
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FIGURE 3

Pre-processing steps.

layer is followed by the LeakyReLU activation function, instance

normalization and dropout. Subsequently, artery encodings are

concatenated with the original lumen area and its attenuation,

and fed to a transformer layer (42). Due to the global receptive

field, the transformer layer connects all artery points with one

another. This potentially enables modeling interaction between

multiple lesions, and proximal and distal section of the artery.

The network has two output heads that are each designed to

perform a separate task: one performs regression of the FFR

value and the other performs classification of the presence of

a functionally significant stenosis in the artery. Inspired by the

additive nature of sequential flow resistances, the regression

head is designed to predict pressure drops along the artery.

First, two layers of convolutions are applied, each followed

by the LeakyReLU activation function, instance normalization

and dropout. Thereafter, a third convolutional layer with a

single output filter map is followed by a ReLU activation

function to enforce positivity of the pressure drops. Finally,

the predicted pressure drops are summed up along the artery

using a sum pooling layer and the resulting overall FFR drop

is transformed into the final FFR value by subtracting it from

1. The classification head predicts the presence of functionally

significant stenosis (FFR≤0.8). To explicitly relate proximal and

distal sections, first, adaptive sum pooling with 5 output features

is applied followed by 2 dense layers, each with LeakyReLU

activation and dropout. At last, a dense layer with a single output

filter map and sigmoid activation yields output probabilities for

functionally significant stenosis.

For all convolutions throughout the network for stenosis

assessment, a kernel size of 3 is employed in combination with

zero-padding to prevent shrinkage of the features. Furthermore,

for all convolutions as well as for the transformer, a relatively

small number of 16 filter maps is utilized, to balance the required

expressiveness and to prevent overfitting. For the same purpose,

all dropout probabilities are set to 0.5.

During training, the regression head is supervised using the

mean squared error with the reference FFR value. Since the

invasive reference FFR is often not measured at the most distal

location, predicted pressure drop contributions from anatomical

locations distal to the measurement location are masked during

training and testing. The measurement location is assumed

to be 10 mm distal to the annotated lesion location, in line

with measurement protocols from clinical practice. For the

TestNoCath data set, as no measurement was taken, the most

distal clinically relevant location (lumen area > 2 mm2) was

chosen as the measurement location. The classification task is

supervised using the binary cross entropy loss function.

To combine strengths of the classification and the regression

head, their outputs are merged into a single probability for

the presence of a functionally significant stenosis in the artery.

While the classification head directly predicts probabilities

for the positive and negative class, the regressed FFR values

are distributed around the threshold of 0.8. To allow their

merging, the predicted FFR values are first transformed into

pseudo-probabilities by linearly scaling a symmetric window

around 0.8, using the following formula:

ppseudo =

{

0.5−
(FFRregress−0.8)

0.4 for FFRregress ∈ [0.6, 1.0]

1.0 for FFRregress ∈ [0.0, 0.6)

(1)

Figure 6 shows the transformation function, with x values

corresponding to the predicted FFR (input) and y values to the

pseudo probabilities (transformations).

To obtain the final prediction result, the pseudo-

probabilities are averaged with the probabilities from the

classification head.

We developed our method performing randomized

10 fold cross-validation (i.e., training of 10 networks on

random 90% subsets of the development selection and

testing on the remaining 10%). To increase robustness of

the method and determine uncertainty of the prediction,

during testing we ensemble the 10 networks by averaging

the predicted probabilities and FFR values (43). For

the prediction of the uncertainty, we calculate the

standard deviation over the probabilities and the FFR

values (44).

4. Evaluation

We evaluate the performance of our method by computing

AUC, accuracy, sensitivity, and specificity using the invasively

measured FFR as reference. This is done for the final

prediction, obtained bymerging the classification and regression

results, and for the regressed FFR values and classification

probabilities separately. For evaluation, the regressed FFR

values and reference FFR values were dichotomized using

the threshold of 0.8 for significant stenosis. To test for
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FIGURE 4

Architecture of the network for extracting artery characteristics. Stacks of 3 cross-sectional artery slices are fed to a 2D CNN with 4 pooling

layers interleaved with convolutions. The network is trained to predict the lumen area, its average attenuation and the calcium area for the

central slice of the 3 input slices.

FIGURE 5

Architecture of the network used for stenosis assessment. The lumen area and its attenuation predicted by the characterization network are first

pre-encoded and subsequently concatenated with the calcium area, and with additional characteristics indicating bifurcations and whether the

analysis is performed in the main- or side-branch of the artery. The combined encodings are thereafter fed to the encoder. In the encoder, the

features are first pooled and thereafter, convolutions and a transformer layer are applied. For final classification, two separate output heads are

applied. In the regression head, two convolutional layers and the ReLU activation function are used. The resulting sequence is pooled along the

artery dimension and subtracted from 1 to yield a single FFR value. In the classification head, the features are pooled to a fixed length of 5 (2.5

mm). Thereafter, two dense layers are used in combination with the sigmoid activation function to yield output probabilities for the presence of

a functionally significant stenosis in the artery.

the statistical significance of the AUC differences between

models, we performed permutation testing (45) with 1,000

iterations and report p-values. To obtain a patient-level

prediction, the highest output value of all classified arteries

in a patient is used to assign the predicted class to the

patient. In the reference, patients were considered negative

if none of the measured arteries had an FFR ≤ 0.8, and

otherwise positive.

5. Experiments and results

5.1. Experimental settings

To account for possible overfitting during training of the

network for artery characterization, the 56 annotated arteries

were split into 42 arteries for training, 4 arteries for validation

and 10 arteries for quantitative testing. The network was trained

Frontiers inCardiovascularMedicine 08 frontiersin.org

140

https://doi.org/10.3389/fcvm.2022.964355
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org


Hampe et al. 10.3389/fcvm.2022.964355

FIGURE 6

Transformation from predicted FFR values to pseudo

probabilities.

utilizing the mean absolute error as loss function and the

ADAMW (46) optimizer with a learning rate of 10−5 and a

batch size of 512. Training was terminated after 800 epochs as

convergence was reached. Based on preliminary experiments,

the loss term of the lumen attenuation was scaled with a

factor 0.1, such that all loss terms are within the same order

of magnitude. After training, we applied the network to each

cross-section of the MPR to obtain the lumen area, its average

attenuation and the area of calcium along the length of the

artery.

The network for stenosis assessment was trained for 150

epochs using the ADAMW (46) optimizer with a linearly

scheduled cyclic learning rate. The cyclic learning rate varied

between 5e-4 and 1e-5 over a period of 40 epochs. Because

different artery lengths limit the network for stenosis assessment

to process only a single artery at a time, the loss was

accumulated over 8 training iterations before backpropagating,

corresponding to an effective batch size of 8. The loss terms of

the regression head and the classification head were weighted

equally, as both terms are of similar magnitude and as both tasks

are equally important.

5.2. Stenosis assessment

We evaluated the performance of our method on the two

held out test sets, using the ensemble of 10 trained networks

(Table 3). The method achieved an AUC of 0.78 on TestCath
for predicting the presence of functionally significant stenosis

in an artery when merging the regression and the classification.

In addition, we evaluated the FFR regression and stenosis

classification separately. For the TestCath data the results

demonstrate that regression outperforms classification and the

merged prediction, with an AUC of 0.83. On the patient level,

our method achieved an AUC of 0.75 and an accuracy of 0.80.

TABLE 3 Performance of our method.

Algorithm Selection AUC Accuracy Sensitivity Specificity

Merged
TestCath 0.78 0.79 0.84 0.61

TestNoCath - 0.86 - -

Classification
TestCath 0.68 0.55 0.53 0.61

TestNoCath - 0.90 - -

Regression
TestCath 0.83 0.89 0.95 0.67

TestNoCath - 0.59 - -

The table lists the obtained AUC, accuracy, sensitivity and specificity. Rows correspond

to the classification, regression and merged outputs. To obtain binary predictions, for

probabilities a threshold of 0.5 was used and for regressed FFR values a threshold of 0.8.

TABLE 4 Performance of our method on TestCath per site.

Data set Arteries AUC Accuracy Sensitivity Specificity

All 76 0.78 0.79 0.84 0.61

Site 1 58 0.84 0.84 0.85 0.78

Site 2 14 0.73 0.71 0.88 0.50

Site 3 4 (0.00) (0.25) (0.00) (0.33)

Results demonstrate best performance on the data from Site 1. Only 4 arteries in TestCath
were acquired at Site 3 (Table 2). As this may not be sufficient to obtain a representative

per-site performance, the respective numbers are presented in brackets.

To investigate the performance of our method on CCTA

scans without or with low degree of anatomical coronary artery

stenosis, we applied the method to the TestNoCath data set.

Given that no scan contains functionally significant stenosis, we

evaluated the performance in terms of accuracy. When merging

classification and regression, the method achieved an accuracy

of 0.86. The results demonstrate that for detection of arteries

with little or no stenosis in the TestNoCath data set, stenosis

classification outperforms the FFR regression.

To assess whether the method is robust to the differences

in scanner types and acquisition parameters, we investigated

the performance per acquisition site on the TestCath data set

(Table 4). The best performance was measured for Site 1. Note

that the majority of training scans originated from this site

(Table 2).

Figure 7 shows the invasivelymeasured reference FFR versus

the merged prediction, the classification probability and the

regressed FFR. The method tends to be more uncertain in

incorrectly classified or regressed arteries. Furthermore, Figure 7

depicts MPRs and predicted characteristics for two arteries.

To evaluate the added value of the uncertainty measure

provided by our method, we simulated a semi-automatic setting

in which cases with high uncertainty are referred for invasive

FFRmeasurement. This was done by assigning the reference FFR

to the 5, 10, or 20% of cases in the TestCath data set with the

highest uncertainty (Table 5). The results show that by referring
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FIGURE 7

Top: Scatter plots relating the invasively measured FFR with the predictions for each artery from the TestCath data set. The graph on the left-hand

side corresponds to the merged output probability, in the graph in the middle the output probability from the classification head is shown and in

the graph on the right-hand side the regressed FFR value is depicted. Points are colored in red according to their prediction uncertainty.

Background colors indicate in which arteries the functional significance was assessed correctly (white) or incorrectly (gray). Whereas, for

probabilities (left and middle), high values correspond to the positive class, for regression (right), low output values correspond to the positive

class. Black lines show the linear fit to the data. Bottom: MPRs and predicted characteristics for two arteries (positions in scatter plots indicated

by blue circles). The location of the annotated lesion is plotted in green. Whereas the merged probability assigned to the artery on the left

corresponds to the correct class, for the artery on the right, output of the classification head was strongly negative (low probability for

functionally significant stenosis), which when combined with the regressed FFR caused the merged probability to yield the incorrect class.

Incorrect output of the classification head may be related to a visually minor step-and-shot artifact causing a low intensity section in the MPR

on the right (indicated by arrow).

20% of the cases, a sensitivity of 0.92 with a specificity of 0.78

was reached.

5.3. Contribution of artery characteristics

To determine the specific importance of each regressed

characteristic, we trained and evaluated models that each only

get a single characteristic as input. Additionally, the tree

characteristics (bifurcation and the side-branch) were used in

each network. In Table 6, the obtained performances for the

TestCath data set are compared with the proposed method.

The model with lumen as input performed best among the

networks using only a single characteristic and the proposed

method outperformed all tested models. Excluding the tree

characteristics yielded a slight performance decrease.

5.4. Comparison with previous work

Table 7 compares the performance of our method with

performances of previous methods determining presence of

functionally significant coronary artery stenosis, as reported

in the original works. However, note that these algorithms

are not publicly available, and that all of the methods were

trained and tested with different proprietary data sets. Hence, the
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TABLE 5 Performance of our method on TestCath when a percentage

of cases with the highest uncertainty is excluded or corrected to the

reference FFR.

AUC Accuracy Sensitivity Specificity

All arteries 0.78 0.79 0.84 0.61

Excluded 5 % 0.79 0.81 0.86 0.61

10% 0.81 0.83 0.89 0.63

20% 0.84 0.86 0.90 0.69

Corrected 5% 0.80 0.81 0.87 0.61

10% 0.85 0.85 0.90 0.67

20% 0.91 0.89 0.92 0.78

TABLE 6 Contribution of individual characteristics.

Characteristics AUC Accuracy Sensitivity Specificity p

All 0.78 0.79 0.84 0.61 -

No lumen 0.72 0.71 0.76 0.56 0.039

No calcium 0.73 0.54 0.52 0.61 0.152

No attenuation 0.76 0.76 0.81 0.61 0.191

No tree 0.76 0.74 0.79 0.56 0.380

Rows correspond to the proposed approach, networks trained on artery characteristic

[with the characteristics from the artery tree (bifurcation and side-branch)], and a

network trained on all characteristics apart from the tree characteristics (no tree). Among

the separate artery characteristics, the network trained on the lumen area performed

best. Including all characteristics in the proposed approach lead to the best performance.

Excluding the tree characteristics resulted in a slight decrease in performance. p-

values indicate the statistical significance of AUC improvements of the model using all

characteristics over the model using the respective characteristic.

differences in the reported performance can only be seen as an

indication. For each method, we indicate whether it requires the

segmentation of the coronary artery at test time. The comparison

shows that methods that use the artery segmentation at test

time attain higher performances. However, artery segmentation

is a highly challenging task and results from potentially used

automatic methods require manual correction. This manual

correction is a time consuming process, leading to excessive

analysis times. Our method outperforms the methods that like

the proposed method do not use the artery segmentation at test

time.

6. Discussion

We presented a deep learning method that assesses the

presence of functionally significant stenosis in an artery from

CCTA. The method first extracts relevant characteristics from

the artery’s MPR by regressing the lumen area, its attenuation

and the amount of calcifications, and extracting characteristics

of the artery within the coronary artery tree. Subsequently, using

the extracted characteristics, regression of the FFR value and

classification of the presence of a functionally significant stenosis

in the artery are performed and thereafter merged to obtain the

final result.

The primary target population consisted of patients

with an intermediate or high anatomical degree of stenosis

(TestCath), since these patients typically undergo invasive FFR

measurement. Additionally, we investigated the performance

of our method in patients with no or low degree of stenosis

according to the clinically determined CAD-RADS score

(TestNoCath). In order to make analysis in a large set feasible,

we restricted evaluation to the main coronary arteries.

Results demonstrate that regression performs better in

the population with intermediate or high anatomical degree

of stenosis (TestCath), while classification performs better in

the population with low degree of anatomical stenosis or

without stenosis (TestNoCath). To combine the strengths of both

approaches and obtain robust overall performance, in this work

the outputs were merged. However, in a clinical setting, the

classification or regression output could be used depending on

the target population. The accuracy attained on this set was

higher than on TestCath, demonstrating that arteries with FFR

distributed around the threshold of 0.8, i.e., arteries from our

primary target population, are more difficult to assess than

arteries with little or no stenosis.

Literature shows that methods for predicting the presence

of functionally significant stenosis from CCTA that require

coronary artery segmentation achieve high performance (8,

10, 22, 24, 25, 47). However, since the performance is

heavily dependent on the quality of the coronary artery

segmentation, these approaches typically require manual

correction of the segmentation, leading to extensive analysis

times. Therefore, methods have been developed that omit the

highly challenging segmentation task, leading to fast analysis.

In a first investigation, Denzinger et al. (30) showed promising

results for end-to-end prediction of the revascularization

decision based on functional tests different from FFR in a

predominantly negative population. Apart from this, methods

that predict FFR without using the artery segmentation typically

extract features in an unsupervised manner (31–33). These

methods have not been shown to reach the same level of

performance as the methods that exploit coronary artery

segmentation. Hence, to incorporate information that has been

shown to be important for FFR prediction (16, 20–22, 24, 26)

while retaining fast analysis, we extract information directly

from the MPR in a supervised manner. To do this, a limited

number of artery segmentations is used to obtain reference

characteristics for training a network to directly predict features

characterizing the arteries at test time. During inference, our

method does not require the artery segmentation and therefore,

the method remains fast at inference.

While previous works used unsupervised feature extraction

to describe the arteries, these features were not directly

optimized to determine the FFR value (31, 32). As in previous

RNN-based works (25, 26, 30), in this work extraction of

Frontiers inCardiovascularMedicine 11 frontiersin.org

143

https://doi.org/10.3389/fcvm.2022.964355
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org


Hampe et al. 10.3389/fcvm.2022.964355

TABLE 7 Comparison of the performance on the TestCath data set with previous work.

Algorithm Artery

segmentation

Analysis

level

Analysis

time

Samples

train

Samples

test

AUC Accuracy

Proposed ML no Arteries < 5 min 438 76 0.78 0.79

Proposed ML no Patients < 5 min 67 0.75 0.80

Denzinger et al.

(30) ‡

ML no Arteries 345 * 0.88 0.87

Zreik et al. (31) ML no Arteries 192 * 0.62

Kumamaru et al.

(33)

ML no Patients 131 * 0.69 0.71

Zreik et al. (32) ML no Patients 126 * 0.74 0.70

Nørgaard et al. (8) CFD yes Arteries 1–4 h - 254 0.90 0.81

Itu et al. (21) ML yes Arteries simulations 125 0.90 0.83

Dey et al. (22) ML yes Arteries 254 * 0.84

Tesche et al. (10) CFD yes Arteries 43 min - 85 0.91

Tesche et al. (10) ML yes Arteries 41 min Simulations 85 0.91

Coenen et al. (11) CFD yes Arteries >30–60 min Simulations 525 0.84

Coenen et al. (11) ML yes Arteries >30–60 min Simulations 525 0.84

Ko et al. (47) CFD yes Arteries - 96 0.89 0.84

von

Knebel Doeberitz

et al. (23)

ML yes Arteries Simulations 84 0.83

von

Knebel Doeberitz

et al. (23)

ML + CFD yes Arteries Simulations 84 0.93

Wang et al. (25) ML yes Arteries Simulations 71 0.93 0.89

Gao et al. (26) ML yes Arteries Simulations 180 0.93

Yang et al. (24) ML yes Arteries 1,013 † 0.80

*Cross-validation experiments.

†Bootstrap experiments.

‡Predicted FFR is compared to revascularization decision instead of invasive FFR.

Methods are categorized into using machine learning (ML) or computational fluid dynamics (CFD). Methods that use the artery segmentation at test time occasionally require manual

interaction. Analysis times include the time needed for manual interaction.

features characterizing arteries and classification of the arteries

are optimized together in an end-to-end fashion. However,

unlike Wang et al. (25) and Gao et al. (26), we do not use pre-

designed high level input features like the degree of stenosis

or the lesion length. Instead, we use convolutions to locally

encode the low level artery characteristics, enabling the model

to learn high level features itself. Moreover, to model the

interaction between proximal and distal artery segments, we

include a transformer layer that enables learning global features.

Furthermore, to regress the FFR value, sequential vascular

resistance was modeled by adding up local pressure drops.

Incorporating these inductive biases into the network enables

targeted feature extraction for prediction, thereby reducing the

amount of irrelevant parameters in the model. Together with

a small number of descriptive characteristics per centerline

point, this targeted model design mitigates the risk of potential

overfitting and hence, enables end-to-end learning of high and

low level features with limited training data. These features

are learned using the predicted characteristics as input, which

in some locations inhibit noise (see Supplementary materials).

Therefore, our automatically learned features might be more

robust to potential noise in the predicted characteristics than the

pre-designed features used by Wang et al. (25) and Gao et al.

(26). Nevertheless, training the characterization network with a

larger data set of manually segmented lumen and calcium might

improve the performance of our method.

To investigate the role of each characteristic, we trained

additional models only on single artery characteristics. The

results showed that the models using all characteristics but one

reach reasonable performance and only omitting the lumen area

lead to a statistically significant drop in performance (p < 0.05,

Table 6). This is in line with previous research that underlines the

importance of clinical indices derived from these characteristics

for FFR prediction (14, 16). Including all characteristics in the
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proposed method yielded the highest performance, indicating

that the extracted artery characteristics contain complementary

information. Nevertheless, the proposed method is not limited

to the used characteristics. Future work should investigate

whether using additional characteristics, like the amount of

non-calcified plaque, plaque composition, luminal diameter and

artery remodeling (16, 22, 24), would further improve the

performance. Furthermore, using unsupervised features (32) in

addition to the targeted characteristics may be valuable as it may

additionally enable extracting information that has not yet been

discovered to be clinically relevant.

To identify possible causes of errors in the detection, arteries

from TestCath with the largest difference between the regressed

and invasively measured FFR were inspected. We found that

in these arteries errors in the extraction of their characteristics

were made. They frequently corresponded to overestimation of

the calcium area and accordingly, underestimation of the lumen

area. This indicates that although the proposed method does

not model lesions explicitly, it is sensitive to errors in the artery

characterizations that resemble lesions. Therefore, to further

improve the performance, future work could focus on improving

the artery characterizations.

By employing multiple networks in an ensemble, the

robustness of our method was increased and the uncertainty of

the predictions was determined (43). The uncertainty measure

may be valuable in clinical practice where the method could

be employed in a semi-automatic setting. In particular, patients

with arteries in which the method indicates high prediction

uncertainty could be referred for invasive measurements.

Separate evaluation of the method on the data from each

site showed that the best performance was attained for patients

scanned at Site 1. This may be caused by the fact that the

training set contained most (57%) of arteries from that site.

Lower performance for underrepresented sites (Site 2 and Site

3), might have been caused by differences in scanner types

and acquisition parameters. Furthermore, for patients from

Site 2 and Site 3, the typical time interval between the CCTA

acquisition and the FFR measurement was larger compared to

Site 1, which may have introduced additional noise. Another

reason for performance differences between sites may relate

to differences in the protocol for measuring FFR. To only

account for proximal measurement positions, pressure drop

contributions distal to the estimatedmeasurement position were

masked. However, the measurement location may vary between

the experts and this may have caused noise in the data which

may have negatively impacted performance. Using a larger, more

diverse data set will likely enable improved performance for the

currently underrepresented sites.

Results in this work show that when the decision

threshold is optimized for high sensitivity, our method enables

sparing unnecessary FFR measurement in 44% of patients

with intermediate degree of stenosis while detecting 95%

of functionally significant stenoses (Supplementary materials).

Alternatively, combining the proposed method with expert

CCTA reading may improve the performance of non-invasive

detection of significant stenosis from CCTA (48). While visual

assessment of CCTA by an expert radiologist has been reported

to have consistently high sensitivity for detection of obstructive

CAD (5, 6), it suffers from limited specificity for indicating the

functional significance of a stenosis. By specifically optimizing

the decision threshold, the proposed method can potentially

complement the high sensitivity of expert CCTA reading with

high specificity. Future work could evaluate the clinical value

of automatic stenosis assessment using the proposed method in

combination with expert CCTA reading.

This study has several limitations. First, a relatively

small number of scans with corresponding invasive FFR

measurements was retrospectively included. While data

was acquired in multiple hospitals, the hospitals were not

represented equally in the data set. Future work should

investigate potential improvements of our method when

trained on a larger dataset, equally distributed across hospitals.

To avoid biases in the test data, a large-scale (prospective)

study in multiple centers is required to confirm the findings.

Second, 13% of patients were excluded due to lacking image

quality. This may have introduced a selection bias toward

patients with preferable externalities, i.e., sinus rhythm and low

body-mass-index, which may have caused exclusion of patients

at higher risk of significant stenosis. Third, comparison of our

method with previous work can only be seen as an indication,

as each method was developed and tested on different data sets.

At last, we tested our trained method on arteries with no or

low degree of stenosis according to the clinically determined

CAD-RADS score assuming an FFR > 0.8. However, it can not

be fully excluded that despite the clinical stenosis assessment

a small number of these arteries have FFR ≤ 0.8, e.g., due to

diffuse CAD. Nevertheless, given the high sensitivity of visual

assessment of CCTA for detection of CAD (5, 6), we expect this

effect to be marginal.

7. Conclusion

We presented a deep learning approach for assessment of the

functional significance of coronary artery stenosis from CCTA.

Results demonstrate that the proposed approach outperforms

previous works that do not require the artery segmentation as

input. This indicates that the method may reduce the number of

patients that unnecessarily undergo invasive measurements.
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Introduction: 4D cardiac CT (cineCT) is increasingly used to evaluate cardiac

dynamics. While echocardiography and CMR have demonstrated the utility of

longitudinal strain (LS) measures, measuring LS from cineCT currently requires

reformatting the 4D dataset into long-axis imaging planes and delineating the

endocardial boundary across time. In this work, we demonstrate the ability of

a recently published deep learning framework to automatically and accurately

measure LS for detection of wall motion abnormalities (WMA).

Methods: One hundred clinical cineCT studies were evaluated by three

experienced cardiac CT readers to identify whether each AHA segment had

a WMA. Fifty cases were used for method development and an independent

group of 50 were used for testing. A previously developed convolutional neural

network was used to automatically segment the LV bloodpool and to define

the 2, 3, and 4 CH long-axis imaging planes. LS was measured as the perimeter

of the bloodpool for each long-axis plane. Two smoothing approaches were

developed to avoid artifacts due to papillary muscle insertion and texture

of the endocardial surface. The impact of the smoothing was evaluated by

comparison of LS estimates to LV ejection fraction and the fractional area

change of the corresponding view.

Results: The automated, DL approach successfully analyzed 48/50 patients in

the training cohort and 47/50 in the testing cohort. The optimal LS cuto� for

identification of WMA was −21.8, −15.4, and −16.6% for the 2-, 3-, and 4-CH

views in the training cohort. This led to correct labeling of 85, 85, and 83% of

2-, 3-, and 4-CH views, respectively, in the testing cohort. Per-study accuracy

was 83% (84% sensitivity and 82% specificity). Smoothing significantly improved

agreement between LS and fractional area change (R2: 2 CH = 0.38 vs. 0.89

vs. 0.92).

Conclusion: Automated LV blood pool segmentation and long-axis plane

delineation via deep learning enables automatic LS assessment. LS values
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accurately identify regional wall motion abnormalities and may be used to

complement standard visual assessments.

KEYWORDS

cardiac computed tomography, left ventricle, wall motion abnormality, longitudinal

strain, image segmentation, deep learning

Introduction

Longitudinal strain (LS), measured using echocardiography

(1) or cardiac magnetic resonance (2), has been proven useful

in evaluating patients at risk of chemotherapy cardiotoxicity

(3) and those with aortic stenosis (4, 5), cardiac amyloidosis

(6) atrial fibrillation (7), and heart failure patients (8). In

revascularized STEMI patients, CMR-based LS was superior

and incremental to LVEF and scar size in the prediction of

MACE (9).

LS can also be used as a quantitative metric to improve

detection of wall motion abnormalities (WMA) (10, 11) and

in the setting of infarction WMA have been shown to be

independent predictors of adverse events (12, 13). Further, in

patients without overt cardiovascular disease, presence of a

WMA leads to a 2.4–3.4 higher risk of cardiovascular morbidity

and mortality, independent of established risk factors (14).

Cardiac computed tomography (CT) is increasingly used

to evaluate both coronary artery anatomy (15, 16) and cardiac

function (17). Recent work has shown that ECG-gated CT can

detect regional wall motion abnormalities (18–21) and that

findings agree with echocardiography (22, 23) and CMR (18, 24).

However, quantitative evaluation of cardiac function on 4D CT

data can require significant computational processing such as 3D

segmentation or measurement of wall thickening.

While several automated methods have been developed

for the evaluation of cardiac chamber size and global

function (25–28), automated estimation of LS from 4DCT

is not currently available as it requires the combination

of manual/semi-automated reformatting of the 4D dataset

into long-axis imaging planes as well as delineation of the

endocardial boundary across frames (29).

Recently, a deep learning framework has been shown to

automatically and accurately identify the long-axis planes within

a 4D CT dataset and, using the same architecture, segment

the LA and LV blood pools (30). Specifically, long-axis views

generated via the DLmethod were in close agreement with user-

defined planes and >94% of views were diagnostically accurate.

By segmenting both the LV and LA blood pools, this creates

the opportunity to evaluate LS by measuring the LV endocardial

perimeter (after removal of the mitral valve plane).

In this study, we evaluate the ability of this recently

developed deep learning algorithm to be adapted to obtain

automated LS estimates from each long-axis view. To test the

clinical utility of our approach, we evaluated whether automatic

LS can be used to detectWMA in a set of 100 clinical cases which

were visually analyzed by three trained experts for the presence

of WMA. We created two cohorts (n = 50 training and n =

50 testing cases). We used the training cohort to determine the

optimal LS threshold for detecting a WMA and report accuracy

in the independent testing cohort.

Methods

Study population

This study was approved by our system’s institutional review

board with waiver of informed consent. Five hundred and five

ECG-gated contrast enhanced cardiac CT studies were acquired

between April 2018 and December 2020 which had (1) full

R-wave to R-wave (RR) coverage and (2) an imaging report

including the explicit mention of cardiac function as normal or

abnormal (either globally or regionally) (Table 1). All CT scans

were performed on the same wide-detector CT scanner with 256

detector rows and 16 cm z-axis coverage (Revolution scanner,

GE Healthcare, Chicago IL).

Visual inspection by (author ZC) resulted in 97 studies

being excluded due to poor image quality, lead artifacts which

impacted the LV blood pool, or failure to visualize the entire LV.

Imaging reports were used to attempt to balance the study

cohort. Two hundred and forty six studies were reported to

have “normal” function in the report while 162 were classified as

having “abnormal” function. To balance between patients with

normal and abnormal function, the studies with normal function

acquired at the end of the review period (acquired between

August and December 2020, n= 66 studies total) were excluded.

From the remaining n = 180 studies with normal function

and n = 162 studies with abnormal function, 100 studies were

randomly selected. As described below, studies selected were

then visually inspected by three experts for the determination

of normal/abnormal used in our study. Therefore, this step was

aimed at arriving at a relatively balanced distribution of normal

and abnormal studies without introducing bias into the selection

process. The process is shown as a flowchart in Figure 1.

All studies had functional phases reconstructed at 10%

RR intervals using the vendor default cardiac function image
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TABLE 1 Patient cohort information.

Entire dataset Training

cohort

Validation

cohort

Cohort size, n 100 50 50

Age, years 59± 14 59± 15 59± 13

Male, % 61 58 64

Median LVEF, % 62.4

(IQR: 41.7–69.3)

62.1

(IQR: 38.9–69.6)

63.8

(IQR: 45.1–68.5)

Abnormal segments 27%

(432/1,600)

27%

(219/800)

27%

(213/800)

Normal studies, n 54 28 26

Study indication, n

Coronary disease 50 21 29

Pulm. vein ablation 33 19 14

Heart failure 9 4 5

Aortic stenosis 5 4 1

Cardi-oncology 3 2 1

LVEF, left ventricular ejection fraction.

reconstruction method. Images were reconstructed on a 512 ×

512 pixel matrix in the axial plane over a field of view of 240 ±

20mm with 0.625mm slice thickness.

Expert identification of wall motion
abnormalities

The CT studies were independently evaluated for WMA by

three cardiovascular imagers with 15 years (A.K), 14 years (SK),

and 5 years (HKN) of experience interpreting cardiac studies.

For each study, wall motion at 16 AHA segment locations

(not including the apical segment) was labeled, in a blinded

fashion, as either (1) normal, (2) hypokinetic, (3) akinetic or

dyskinetic. This was performed using movie reformats of the 4D

CT dataset along standard 2D short- and long-axis views. This

led to 1,600 segments being labeled. Given the limited number of

hypo- and dyskinetic segments and the interobserver variability,

we combined hypokinetic, akinetic and dyskinetic labels into a

single “abnormal” class and only performed per-imaging plane

and per-study comparison. A long-axis view was considered

abnormal if it contained one or more AHA segments that were

labeled abnormal. Given that three long axis videos were made

per patient, this resulted in 300 long-axis videos (150 in the

training and 150 in the testing cohort), each with a normal or

abnormal designation. A CT study was classified as abnormal if

it had one or more abnormal LAX video. For comparison to our

DL-based approach, the three expert scores were combined such

that a segment was labeled abnormal if there was agreement by

two or more readers.

Automated estimation of longitudinal
strain along each long-axis plane

As described by Chen at al. (30), automated blood pool

and long-axis views were generated by using a modified U-net

architecture. Briefly, the algorithm was first trained to perform

blood pool segmentation of the left atrium and ventricle. Then,

an output was added after the last max-pooling layer in the

downsampling path. This was used to regress the translation

vector (to define the spatial position of the long-axis view) and

direction vectors (to define the orientation of the view) for each

of the long-axis views. The code to perform this segmentation

and slice planning is available here: https://github.com/ucsd-

fcrl/DL_CT_Seg-Plane_Prediction_Final_v_ZC.

The bloodpool segmentation at each of the long-axis

views was evaluated and the left atrial segmentation was used

to identify portions of the left ventricle bloodpool which

correspond to the mitral valve. Based on this designation,

the length of the LV endocardial boundary was calculated.

This methodology has been previously been used with

echocardiographic imaging (31, 32) and prior work in CT

has measured global LS using epicardial contours (33). The

process is shown in Figure 2. We expect our approach will

more closely match speckle tracking echocardiography (as

GLS is measured close to the endocardial boundary) rather

than tagged CMR (where evaluation focuses primarily on

mid-myocardial deformation) (34). Further, by measuring LS

using an automated approach, our method aims to eliminate

a significant source of variation (manual contouring by

operators) (34).
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FIGURE 1

Flowchart of patient inclusion/exclusions.
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FIGURE 2

Processing of ECG-gated CT for evaluation of LS. (A) ECG-gated volumes are analyzed using a deep-learning (DL) framework that provides the

location of the 2-chamber, 3-chamber, and 4-chamber long axis planes and delineates the LV and LA blood pools. From this information,

long-axis slices of the segmentations were created throughout the cardiac cycle. (B) The perimeter of the left ventricle and the LV/LA boundary

pixels were identified and used to extract the LV perimeter. Method A did not perform any additional processing of the perimeter. However, a

convex hull was applied to correct for papillary muscle artifacts (leading to Method B). Further, a cubic splint was fit to the result of the convex

hull to correct for variations in texture (Method C). (C) For each long-axis view and each analysis method, the length of the perimeter was

measured at end-diastole (the timeframe with largest LV volume) and end-systole (the timeframe with smallest LV volume) and used to calculate

LS.

Papillary muscle artifacts and
correction approaches

Measuring LS directly from the segmentation was

susceptible to artifacts due to the papillary muscles. An example

is shown in Figure 3A. Two smoothing approaches were

implemented and evaluated, First, the concave areas created by

the papillary muscles were “filled in” by using the binary “close”

function with a disk of 10 pixels and then fitting a convex hull to

the perimeter of the endocardial bloodpool for each frame (35).

An example result of this approach is shown in Figure 3.

However, there are limitations with this approach. First, the

perimeter measured depends on the “texture” of the surface.

This may lead to overestimation of the perimeter. Second, use

of the convex hull fills the area of the papillary muscle insertion

with a straight line that may underestimate the perimeter. To

address these limitations, we fit a “natural” spline curve (36) to

the perimeter obtained after closing and filling via the convex

hull. Fitting was performed after downsampling the curve by

a user-defined factor of 5. The result of the three methods, in

the same patient as above, is shown in Figure 3. The code used

to generate the different LS measures is available here: https://

github.com/ucsd-fcrl/DL_CT_GLS_Final.

For all three methods, LS was calculated as the change

in length over time. The unsmooth LS result as well as LS

after convex hull and convex hull + curve fitting refinement

were evaluated by comparing the LS estimate to the LV

ejection fraction and the fractional area change (FAC) of the

corresponding view.

Determination of LS cuto�s in training
cohort and evaluation in testing cohort

We varied the threshold used to determine whether a LS

value (for a particular view) accurately detected the presence

of a WMA, as determined by our three experts. Using the

training cohort (n = 50), we identified the thresholds which

optimized performance for each LAX view and identified the

single threshold that had peak performance when applied to all

LAX views. Optimal performance was based on the threshold

corresponding to the upper left most point on the receiver

operating characteristic (ROC) curve.

The accuracy, sensitivity, and specificity of these

thresholds were then evaluated in an independent cohort of

n= 50 patients.

Statistical evaluation

Normally distributed values are expressed as mean ±

standard deviation while non-normal values are reported
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FIGURE 3

Measurement of endocardial perimeter based on the blood pool segmentation is susceptible to artifacts created by the papillary muscles. (A)

The papillary muscles create indentations which impact the measurement of the perimeter. The end-diastolic (left) and end-systolic (right)

perimeters for each of the views are shown. They are all overestimated. (B) By modeling the blood pool as a convex hull, we can correct for the

errors from indentations created by papillary muscles. However, the perimeter measurement remains a�ected by the perimeter’s texture. (C)

Fitting of a curve to the perimeter avoids issues related to the surface texture.

using the median and interquartile range (IQR). Two-tailed

categorical z-test was used to compare data proportions (e.g.,

proportions of abnormal videos) in the training and a testing

cohort. To compare R2 values between fractional area change

(FAC) and LS for different smoothing methods in dependent

samples, the Fisher’s r-to-z transformation was utilized to

determine statistical significance. Statistical significance was set

at P ≤ 0.05.

The ability of LS to detect WMA was compared against

the expert labeled ground truth label and was reported via

confusion matrix and Cohen’s kappa value. Both per-long

axis video and per-study comparisons were performed.

Readers reviewed long-axis and short-axis movies of the

cardiac cycle and labeled each AHA segment. A video was

labeled as abnormal if it had one or more abnormal AHA

segments present. A study was defined as abnormal if it

had one or more long-axis videos labeled as abnormal.

Interobserver agreement in terms of labeling wall motion as

normal or abnormal between three experts was measured

using Fleiss’s Kappa (37) since there were more than

two observers.

Anonymized long-axis images, calculated perimeters, and

corresponding expert annotations will be made available

upon request.

Results

Sixty-one subjects were men and 49 were women with a

mean age of 59 ± 14. Studies were obtained for evaluation

of coronary disease (n = 50), pre-ablation assessment of

pulmonary vein anatomy (n = 33), assessment prior to left

ventricular assist device placement (n = 9), preoperative

assessment for transcatheter aortic valve replacement (n =

5), and evaluation of cardiac function after chemotherapy

(n = 3). The LV blood pool had a median intensity

of 530 HU (IQR: 435–663). Out of the 1,600 segments

evaluated, 27% (432/1,600) were labeled abnormal by

experts. This led to 39.3% (118/300) abnormal long-

axis videos and 46 studies with at least one abnormal

AHA segment. There were no significant differences (all

P-values > 0.05) between the training and testing cohorts in

terms of the percentages of sex, abnormal videos, abnormal

CT studies.

Median LV ejection fraction (EF) for the training and

validation cohorts were 62.1 and 63.8%, respectively.

In the training cohort, normal studies had an EF of

69.0% (interquartile range of 65.1–73.0%) while abnormal

studies had an EF of 38.1% (IQR: 28.3–48.6%). In the

validation cohort, normal studies had an EF of 67.8%
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FIGURE 4

Agreement between LS and FAC increases with use of the convex hull and perimeter curve fitting. The perimeter measured using our deep

learning method is susceptible to artifacts due to the insertion points of the papillary muscles and by the texture of the endocardial surface. Use

of a convex hull to “fill” in the papillary insertions and curve fitting of the surface improves agreement (R2) with fractional area change of the

corresponding long-axis view. Dotted lines represent the 95% confidence interval of the linear fit.

(IQR: 63.6–74.2%) and abnormal studies had an EF of 49.0%

(IQR: 26.0–56.0%).

Automated, DL approach successfully analyzed 48/50

patients in the training cohort and 47/50 in the testing cohort.

The five failures occurred due to incorrect prediction of long-

axis planes. In two of these five cases, the patients had a metal

prosthetic mitral valve.

84.6% (1,354/1,600) of segments were labeled identically

by all three reviewers. The interobserver agreement amongst

the three observers in terms of classifying a segmental wall

motion into normal vs. abnormal, measured via Fleiss’s Kappa,

was 0.746, which indicates strong agreement. Fleiss’s Kappa for

agreement in classifying a LAX video was 0.800 (0.791, 0.811,

and 0.797 for the 2, 3, and 4 CH views, respectively) and the value

for classifying a patient was 0.786.

Correction for papillary muscle artifacts

The papillary muscle artifacts and the rough endocardial

surface led to poor agreement between the fractional area

change and longitudinal strain (LS) when LS is measured
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FIGURE 5

WMA classification accuracy using LS in the training cohort. Receiver operating characteristic curves for the three long-axis views are shown for

the three LS methods (blue: naive, red: convex hull, orange: convex hull + curve fitting). The optimal operating point for the convex hull with

curve fitting is depicted by a black dot. The operating point of the convex hull with curve fitting in the testing cohort is shown by the black

diamond.

without use of the convex hull or surface smoothing (Figure 4).

Specifically, the R2 between fractional area change (FAC)

and LS is between 0.38 and 0.42 depending on the long-

axis view. When the convex hull is used to fill in the

voids created by papillary muscles, R2 increases (0.83–0.89,

Figure 4). Curve fitting of the endocardial surface leads

to a further increase in R2 (0.91–0.92, Figure 4). The

increase in R2 was statistically significant (p < 0.05) for

all views.

Determination of LS cuto�s and
classification performance in training
cohort

For all long-axis views, the area under the ROC curve

using the convex hull and curve fitting was high (0.957–0.984,

Figure 5) and the optimal threshold corresponded to a

100% specificity performance, accuracy >91.7% and sensitivity

between 84.2 and 90.0% There was a small range of

LS thresholds amongst LAX views with a higher cutoff

identified for the 2 CH view (−0.218) relative to the 3

and 4 CH views (−0.154 and −0.166, respectively). Per-

patient performance (95.8% accuracy, 90.0% sensitivity, 100%

specificity) was comparable to the values obtained for each

long-axis view.

We also evaluated the ability of a single threshold to

classify WMA across all long-axis views. When pooled,

LS thresholding had an area under the ROC of 0.965 and

the use of −0.170 as the cutoff led to 92.4% accuracy,

83.0% sensitivity, and 100% specificity. This led to

95.8% accuracy, 90.0% sensitivity, and 100% specificity

when classifying patients. Complete values are shown in

Table 2.

Per-study and per-video classification
performance in testing cohort

Using the convex hull and curve fitting approach, we then

applied the thresholds identified in the training cohort to the

testing population. The accuracy and specificity remained high

(>83.0 and>87.1%, respectively) when each view was evaluated

independently. Sensitivity ranged between 63.2% (4 CH view)

and 81.3% (2 CH view). This led to an overall accuracy in

classifying LAX views of 84.4% with a specificity of 92.0%.

The use of a single threshold had similar performance (85.1%

accuracy, 94.3% specificity). In both the individual and single

threshold case, the per-patient accuracy was 83.0% in the testing

cohort. Complete values are shown in Table 3.

Discussion

We demonstrate how deep learning (DL) segmentation of

the left atrial and left ventricular bloodpools can be combined

with automated prediction of the long-axis imaging planes to

automatically calculate longitudinal strain along each long-axis

view and detect wall motion abnormalities. In this study, we

applied the previously trained DL tool to our CT studies without

retraining or refinement and developed steps to extract LS from

the resulting data. To the best of our knowledge, this is the first

study to automatically quantify LS along long-axis views from

ECG-gated cardiac CT angiograms. To demonstrate the clinical
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TABLE 2 Use of training cohort for identification of LS cuto�s for WMA detection using the curve fitting approach.

Thresh AUC Acc Sens Spec PPV

Individual

threshold

2 CH −0.218 0.970

(0.914–1)

93.8

(89.9–100)

90.0

(76.9–100)

100 100

3 CH −0.154 0.984

(0.942–1)

91.7

(83.9–99.5)

84.2

(67.8–100)

100 100

4 CH −0.166 0.957

(0.892–1)

91.7

(83.9–99.5)

85.0

(69.4–100)

100 100

Per-LAX view 92.4

(88.0–96.7)

81.4

(71.4–91.3)

100 100

Per-patient 95.8

(90.2–100)

90.0

(76.9–100)

100 100

Single

threshold

Per-LAX view −0.170 0.965

(0.930–0.999)

92.4

(88.0–96.7)

83.1

(73.5–92.3)

100 100

Per-patient 95.8

(90.2–100)

90.0

(76.9–100)

100 100

Thresh, optimal threshold identified for classification; AUC, area under the receiver operating characteristic curve; Sens, sensitivity; Spec, specificity; PPV, positive predictive value; 2 CH,

two-chamber view; 3 CH, three-chamber view; 4 CH, four-chamber view; LAX, long-axis view. 95% confidence interval values are given in the parenthesis.

TABLE 3 Performance of LS in the testing cohort using the curve-fitting approach.

Thresh Acc Sens Spec PPV

Individual

threshold

2 CH −0.218 85.1

(74.9–95.3)

81.3

(62.1–100)

87.1

(75.3–98.9)

76.5

(56.3–96.6)

3 CH −0.154 85.1

(74.9–95.3)

73.7

(53.5–93.5)

92.9

(83.3–100)

87.5

(71.3–100)

4 CH −0.166 83.0

(72.2–93.7)

63.2

(41.5–84.9)

96.4

(89.6–100)

92.3

(77.8–100_

Per-LAX view 84.4

(78.4–90.4)

72.2

(60.3–84.2)

92.0

(86.2–97.7)

84.8

(74.4–95.2)

Per-patient 83.0

(72.2–93.7)

84.2

(67.8–100)

82.1

(68.0–96.3)

76.2

(58.0–94.4)

Single

threshold

Per-LAX view −0.170 85.1 (79.2–91.0) 70.4 (58.2–82.6) 94.3 (89.4–99.1) 88.4 (78.8–98.0)

Per-patient 83.0

(72.2–93.7)

79.0

(60.6–97.3)

85.7

(72.8–98.7)

79.0

(60.6–97.3)

Thresh, optimal threshold identified for classification; AUC, area under the receiver operating characteristic curve; Sens, sensitivity; Spec, specificity; PPV, positive predictive value; 2 CH,

two-chamber view; 3 CH, three-chamber view; 4 CH, four-chamber view; LAX, long-axis view. 95% confidence interval values are given in the parenthesis.

utility, we evaluated the ability of automated LS to detect WMA.

When applied to the testing cohort, the LS identifiedWMAwith

accuracy > 83.0% and specificity > 92.9%.

A single LS threshold value of −17.0% had similar

performance during the training phase as unique thresholds

for each long-axis view and higher performance in the testing

cohort. This LS cutoff is similar to those previously reported in

other populations and with other imaging methods. In a meta-

analysis of chemotherapy-induced cardiotoxicity, Oikonomou

et al. reviewed studies which had high-risk cutoff values of

−21.0 to −13.8% (3). Similarly, Kearney et al. found LS in

controls to be −21 ± 2% while patients with AS had LS

between −18 and −15% depending on the AS severity (4)

and Zhu et al. found mortality in AS patients was higher in

those with LS > −15.2% (5). Recently, Chen et al. reported

another automated method to detect wall motion abnormalities

using ECG-gated CT which relies on a volume rendering

approach (38). Our results are slightly lower than the per-patient

accuracy (93.5%), sensitivity (91.9%), and specificity (94.7%)

reported in this prior work. This is likely due to the fact that
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LS provides a single metric of performance which may mask

subtle abnormalities.

This method could add to the clinical interpretation of

cardiac CT angiograms by serving as an aid for expert readers.

It is also likely that providing the LS score for each view is

of value. For example, reporting the LS score along with the

relevant cutoff would enable the expert to gain a sense of

both the prediction of the algorithm as well as the confidence

of the prediction. Also, it is possible that a high sensitivity

threshold provides more clinically useful predictions, especially

if applied to patients in a screening type of setting. However,

this utility is left for future studies. Full R-R ECG-gated

imaging has higher dose than obtaining only a single phase.

This can be partially mediated by dose modulation. Twenty-

five percentage of the studies evaluated in this study had mA

reduction of >50% during the cardiac cycle without an impact

on clinical interpretability.

While the development of the deep learning segmentation

required specialized graphics hardware, the use of the DL and

the subsequent LS processing can be easily incorporated into a

clinical pipeline and can be readily performed on conventional

computers. Further, there are additional metrics that can be

readily obtained from this tool, such as the mitral annular plane

systolic excursion (MAPSE). However, the extraction and utility

of such metrics is left for future studies.

As mentioned, 3D methods to measure endocardial

displacement using ECG-gated CT have been previously

described (18–21). Solving for endocardial displacement is

computationally intensive and delineating the endocardial

surface throughout the chamber can be time-intensive.

However, recent work aims to avoid these limitations (39).

Therefore, our streamlined, automated approach could serve as

an initial check to determine whether more extensive assessment

is needed.

Our study had several limitations. First, our single

site/scanner study only evaluated studies which had global

function reported on radiology reports. These factors could

introduce biases and motivate a dedicated study to validate our

findings in an external, broader cohort across multiple vendors.

However, detailed evaluation of wall motion abnormalities in

a standardized, AHA segment fashion is not readily available.

Second, the DL segmentation failed to produce accurate

segmentations and/or long-axis imaging planes in 5/100 patients

(n = 2 in the training cohort and n = 3 in the testing

cohort). The 95% success rate is likely sufficient for clinical

use, especially given that the result of the DL blood pool

segmentation and long-axis planes can be displayed to the

reader for review. Our study excluded studies with low image

quality, lead artifacts, and incomplete coverage of the LV as

the DL method developed by Chen et al. relied on these

exclusion criteria (25). Therefore, future work is needed to

determine the failure rate in a larger, more diverse, dataset.

Further, our approach identifies WMA using LS since the DL

segmentation only provides endocardial boundary information.

If epicardial segmentations were available, then other metrics

such as regional wall thickening could be measured. As a

retrospective study, paired echocardiography andMRI data were

not available. Future work should directly compare LS measured

with CT to these more-conventional methods. Lastly, LS is

correlated with other metrics of function such as fractional

area change (FAC) and ejection fraction (EF). Our study was

not designed nor powered to identify whether LS is a better

independent predictor of WMA than these other metrics but

others have documented the utility of LS (7, 9).

In conclusion, longitudinal strain (LS), typically measured

with MRI or echocardiography, has been previously shown to

be diagnostic and prognostic of several patient populations.

We leverage a recently developed deep learning approach

to automate LS estimation in ECG-gated CT angiograms

(cineCT) and demonstrate that LS can be used to detect wall

motion abnormalities.
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Cardiac anatomy and function vary considerably across the human population

with important implications for clinical diagnosis and treatment planning.

Consequently, many computer-based approaches have been developed to

capture this variability for a wide range of applications, including explainable

cardiac disease detection and prediction, dimensionality reduction, cardiac

shape analysis, and the generation of virtual heart populations. In this work,

we propose a variational mesh autoencoder (mesh VAE) as a novel geometric

deep learning approach to model such population-wide variations in cardiac

shapes. It embeds multi-scale graph convolutions and mesh pooling layers

in a hierarchical VAE framework to enable direct processing of surface mesh

representations of the cardiac anatomy in an e�cient manner. The proposed

mesh VAE achieves low reconstruction errors on a dataset of 3D cardiac

meshes from over 1,000 patients with acute myocardial infarction, with

mean surface distances between input and reconstructed meshes below the

underlying image resolution.We also find that it outperforms a voxelgrid-based

deep learning benchmark in terms of both mean surface distance and

Hausdor� distance while requiring considerably less memory. Furthermore,

we explore the quality and interpretability of the mesh VAE’s latent space

and showcase its ability to improve the prediction of major adverse cardiac

events over a clinical benchmark. Finally, we investigate the method’s ability

to generate realistic virtual populations of cardiac anatomies and find good

alignment between the synthesized and gold standard mesh populations in

terms of multiple clinical metrics.

KEYWORDS

mesh VAE, 3D ventricular shape analysis, virtual anatomy generation, clinical outcome

prediction, acute myocardial infarction, major adverse cardiac events, graph neural

networks, geometric deep learning
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1. Introduction

Inter-subject variability in human cardiac anatomy and

function plays a decisive role in the accurate diagnosis

and treatment of many cardiovascular diseases, including

myocardial infarction, heart failure, and reinfarction (1–3).

Therefore, it is a key objective of computational models of the

heart to be able to capture this variability across a population in

order to obtain realistic representations of cardiac morphology

and physiology. Such models not only enable a more accurate

definition of shape normality within a given subpopulation but

also improve the ability to detect abnormalities while retaining

interpretability of the diagnosis (4, 5). Cardiac magnetic

resonance imaging (MRI) is considered the gold standard

imaging modality for the non-invasive assessment of cardiac

anatomy and function in clinical practice (6). Accordingly, it

has been extensively used as the basis to investigate anatomical

shape variability in previous literature. While many works have

focused on quantifying anatomical information based on the

2D slices of the underlying cine MRI acquisition (4, 7–10),

this provides only an approximation of the heart’s true 3D

shape and therefore neglects more localized shape variability

which is crucial for the detection and diagnosis of various

cardiac diseases (2, 11, 12). Consequently, other works have

conducted cardiac shape analysis directly on 3D representations

of the heart which have either been reconstructed from 2D

slices (13–18) or been acquired using a 3D MRI acquisition

protocol (19). In order to study the anatomical variability in

the obtained 3D heart shapes, principal component analysis

(PCA) has been widely used in previous literature, as it allows

to easily and quickly identify the most important modes of

shape variation within the population (5). This low-dimensional

representation of cardiac shape information can then be used

for a variety of follow-up tasks, such as to investigate the

association of shape and cardiovascular risk factors (20, 21),

determine the probability of future major adverse cardiac

events (MACE) (2), study the connection between shape and

simulated cardiac function (22, 23), generate virtual population

cohorts for in silico trials (24), or predict myocardial infarction

(MI) (12). While the low-dimensional scores are obtained by

PCA in an unsupervised manner, supervised methods, such as

linear discriminant analysis (LDA) and information maximizing

component analysis, have also been proposed to directly take

into account information about the task-specific objective in the

cardiac anatomy modeling (25).

More recently, deep learning approaches based

predominantly on the variational autoencoder (VAE) (26)

framework have been increasingly used to capture population-

wide anatomical variability for a variety of tasks (5). Similar

to PCA, the VAE allows for the representation of 3D shape

information in a low-dimensional space with individual

components corresponding to different aspects of inter-subject

variability. However, in contrast to standard PCA or LDA

approaches, VAEs are capable of modeling considerably more

complex relations, primarily due to their deep learning-based

architecture with a high number of trainable parameters

and the presence of non-linear functions. The autoencoder

structure with a low-dimensional latent space representation

also allows for the straightforward integration with other

common image-based tasks while maintaining a good degree

of interpretability. Such tasks include the detection of coronary

artery disease (27) and hypertrophic cardiomyopathy (28),

image segmentation with shape priors (29–32), multi-task

segmentation and regression (33), image-to-image synthesis

(33), and survival prediction (34). However, the aforementioned

approaches mostly rely on representing cardiac shapes as

fixed-size 3D voxelgrids and use standard grid-based deep

learning operations. This is not only inefficient in terms of

memory and time requirements but also complicates effective

feature learning when processing anatomical surface data.

In order to overcome these issues, geometric deep learning

techniques (35) have been introduced to enable accurate

learning directly on non-Euclidean data, such as point clouds

or graphs. This enables the anatomical surface information

of the heart to be represented and processed in a highly

efficient manner targeted to the data-type at hand and hence,

has seen various applications in cardiac image analysis. For

example, point cloud-based deep learning approaches have

been proposed for the generation of virtual cardiac anatomies

(36), classification of cardiac disease (37), modeling of 3D

deformation of the heart (38), surface reconstruction of cardiac

anatomy (13, 39), combined reconstruction and segmentation

of the left ventricular (LV) wall (40), and the joint modeling of

cardiac anatomy and electrocardiogram data (41, 42). Similarly,

graph neural networks have been investigated for the simulation

of cardiac mechanics (43), reconstruction of cardiac meshes

(44), prediction of cardiac depolarization times (45), and the

estimation of wall shear stress in 3D artery models (46).

Following these advancements, we propose in this work a

variational mesh autoencoder (mesh VAE) as a novel approach

to cardiac anatomy modeling. The mesh VAE is specifically

designed to work directly on 3D mesh representations of

the heart and thus overcomes the limitations of voxelgrid-

based approaches. This enables the efficient processing of

high-resolution 3D cardiac anatomy data and provides a

more accurate modeling of 3D shape variability. The mesh

VAE combines graph convolution and mesh sampling layers

in a hierarchical setup to allow effective multi-scale feature

learning of non-linear relationships. At the same time, the

VAE framework ensures a high degree of interpretability with

a disentangled, low-dimensional latent space. The architecture

is also highly adaptable and can be used in combination with

different imaging modalities, disease types, and application

domains in a similar way as grid-based autoencoders.

In summary, we make the following contributions in

this work:
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FIGURE 1

Overview of the proposed cardiac shape analysis pipeline (A,B) and the two possible applications investigated in this work (C,D). First, we pass

raw cine MRI acquisitions through a multi-step 3D surface reconstruction pipeline (Section 2.2) to reconstruct 3D surface meshes of the left

ventricular (LV) anatomy as a preprocessing step (A). It consists of an image segmentation step using two cascaded U-Nets followed by a

personalized template mesh fitting step based on variational warping techniques (Section 2.2). Next, as the core part of the pipeline, we propose

a variational mesh autoencoder with an interpretable latent space z to e�ciently capture population-wide variability in 3D cardiac shapes in a

single geometric deep learning model (B) (Section 2.3). The decoder of the pre-trained mesh VAE can then be used to generate virtual

population cohorts of 3D heart meshes (C) (Section 3.5). The pre-trained encoder converts input meshes into low-dimensional latent space

representations which can serve as inputs to a MACE outcome classifier (D) (Section 3.6).

• We develop a novel variational mesh autoencoder for 3D

cardiac anatomy modeling directly on 3D surface meshes.

• We successfully embed the mesh VAE into a multi-

step cardiac anatomy modeling pipeline to enable

clinical applicability.

• We evaluate the mesh VAE’s ability to reconstruct high-

resolution anatomy meshes on a multi-domain cine MRI

dataset of myocardial infarction patients at both the

end-diastolic (ED) and end-systolic (ES) phases of the

cardiac cycle.

• We conduct a comparative analysis of the mesh VAE and

a voxelgrid-based VAE benchmark in terms of both their

reconstruction capabilities and technical specifications and

demonstrate the advantages of the mesh VAE for the

processing of anatomical surface data.

• We investigate the latent space of the mesh VAE as an

efficient low-dimensional encoding of high-dimensional

cardiac surface anatomy information in terms of its

interpretability, disentanglement, association with

generated output meshes, and accurate representation of

inter-subject shape variability.

• We analyze the suitability of the mesh VAE for the

generation of realistic virtual population cohorts of cardiac

anatomy meshes.

• We explore the utility of the mesh VAE’s latent space

representations to capture pathology-specific shape

biomarkers and predict MACE events in post-MI patients.

• We provide a pertinent literature review and a detailed

discussion of the results including the proposed method’s

limitations and possible future use cases.

2. Materials and methods

In this section, we give an overview of the proposed

cardiac shape modeling pipeline (Section 2.1), describe the

dataset and preprocessing steps (Section 2.2) used for method

development, and explain the architecture (Section 2.3), loss

function (Section 2.4), and training procedure (Section 2.5) of

the proposed mesh VAE network.

2.1. Overview

In this work, we introduce a novel variational mesh

autoencoder embedded into a multi-step pipeline to enable

efficient non-linear 3D shape analysis of the human heart

(Figure 1).
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In the first part of our pipeline, we apply several

preprocessing steps to prepare the raw images of our dataset for

3D shape modeling with the mesh VAE (Figure 1A). The input

consists of the short-axis (SAX) slices of a standard cine MRI

acquisition which we first segment using a two-step cascaded

U-Net (47) approach (Section 2.2). Next, we fit a template

mesh to the resulting SAX contours in a numerical optimization

procedure in order to obtain 3D mesh representations of the

cardiac anatomy (Section 2.2). We then use these 3D surface

meshes to train and evaluate the proposed mesh VAE to capture

cardiac shape variability across the population (Figure 1B). The

mesh VAE constitutes the core part of the shape modeling

pipeline with its architecture specifically tailored to process

complex 3D surfaces of the cardiac anatomy (Section 2.3).

This enables a variety of different clinical and research-related

use cases. As two possible sample applications, we investigate

both the generation of virtual populations of cardiac anatomy

meshes using the mesh VAE’s decoder (Figure 1C) and the

binary prediction of MACE outcomes based on 3D cardiac

shape information as encoded in the mesh VAE’s latent space

representations (Figure 1D). In the following sections, we

describe each part of the pipeline in greater detail with a

particular emphasis on the proposed mesh VAE.

2.2. Dataset and preprocessing steps

Our dataset consists of 1,021 post-MI patients for which

cine MR images were acquired a median of 3 days after the

infarction event in a multi-center study. It is based on both the

TATORT-NSTEMI trials (Thrombus Aspiration in Thrombus

Containing Culprit Lesions in Non-ST-Elevation Myocardial

Infarction; NCT01612312) and the AIDA-STEMI trials

(Abciximab Intracoronary vs. Intravenously Drug Application

in ST-Elevation Myocardial Infarction; NCT00712101) and

hence includes both Non-ST-Elevation Myocardial Infarction

(NSTEMI) and ST-Elevation Myocardial Infarction (STEMI)

patients (48–50). Electrocardiography-gated balanced steady-

state free precession sequences were used for all acquisitions.

The pixel resolution varied across the acquired images with a

mean value of 1.36 mm (range: [1.16, 2.08] mm) and standard

deviation (SD) of 0.21 mm. Each patient was followed up for

12 months post-MI with MACE (reinfarction, new congestive

heart failure, or all-cause death) defined as the clinical endpoint.

Overall, 74 patients experienced a MACE outcome. Further

details regarding the study population and image acquisition

can be found in (2, 48–50).

We first apply a multi-step preprocessing pipeline to

reconstruct 3D surface mesh representations of the left

ventricular anatomy from the raw cine MRI acquisitions. The

first step of this pipeline consists of the segmentation of left

ventricular (LV) myocardium on the cine cardiac MRI using two

cascaded U-Nets with enhanced preprocessing (51, 52). The first

U-Net locates the LV to crop and orient the images accordingly,

while the second U-Net performs the fine segmentation. This

architecture addresses both canonical orientation for regional

metrics quantification and label imbalance for segmentation

performance improvement. Next, two personalized 3D LV

meshes at the ED and ES phases are built from the segmentation

contours for each patient. The reconstruction of these 3D

meshes uses a solution based on smooth cubic Hermite

interpolation, where, in brief, an idealized LV template mesh is

fitted to the 3D myocardium segmentation mask by combining

image registration and mesh projection techniques (17, 53, 54).

The Hermite template mesh is an idealized LV (truncated

ellipsoid of 6 longitudinal × 12 circumferential × 1 radial

elements). Since the same template is used for all the patients,

homologous points are directly obtained. Further details on the

pipeline can be found in (2). The resulting 3D surface meshes

of the left ventricular anatomy are then used as inputs for

training and evaluating the mesh VAE.We split the mesh dataset

into 70% training, 5% validation, and 25% test datasets while

maintaining the same class imbalance between MACE and no

MACE cases in each subset. Finally, we apply standardization

(i.e., subtracting the mean and dividing by the SD) to each mesh

before inputting it into the network.

2.3. Variational mesh autoencoder
architecture

As the core part of our shape modeling pipeline, we propose

a novel mesh VAE architecture, specifically designed based

on recent advances in mesh-based deep learning (55, 56) to

efficiently process triangular mesh data of the 3D cardiac

anatomy (Figure 2).

The overall architecture consists of an encoder and a

decoder connected by an interpretable 16-dimensional latent

space with the ability to capture high-dimensional cardiac

shape information in a low-dimensional representation. The

building blocks of the network follow recent advances in

mesh-based deep learning to enable effective learning of non-

linear relationships directly on triangular mesh data. The

main feature extraction is accomplished by graph convolution

blocks which are composed of spectral graph convolutional

layers (56) followed by rectified linear unit (ReLU) activation

functions. Multiple mesh downsampling operations (55) are

positioned between successive graph convolution blocks along

the encoder to allow for stepwise decreases in mesh resolution

and multi-scale hierarchical learning. The decoder follows

a symmetric design to the encoder with mesh upsampling

operations interspersed between graph convolution blocks and

the same mesh resolutions, number of levels and feature maps

as the encoder. This enables the decoder to reconstruct high-

resolution anatomical meshes from the latent space in a gradual
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FIGURE 2

Architecture of the mesh VAE. The input and output are cardiac anatomy models represented as 3D triangular meshes. All meshes in the dataset

share the same connectivity and consist of 2,450 vertices with associated x,y,z coordinates. Multi-scale feature learning directly on mesh data is

enabled by alternating graph convolution and sampling operations which are arranged in a hierarchical setup. The mesh encoder and decoder,

connected by a 16-dimensional latent space, follow a symmetric design with the same number of levels and the same mesh resolution per level.

multi-scale process akin to the stepwise encoding operation

of the encoder. Fully connected layers are introduced before

and after the latent space to connect the tensors representing

downsampled mesh information and the latent space in an

effective way. All spectral graph convolutions use the Chebyshev

polynomial approximation (56, 57) of order 5 for efficient

calculation. The mesh sampling operation uses quadric error

minimization to identify the vertices that are removed in the

downsampling step, then saves their location in barycentric

coordinates, before using these coordinate values to reinsert

them in the upsampling step (55). All input anatomies are

represented as 3D triangular surface meshes with 2,450 vertices

and identical vertex connectivity across the dataset.

2.4. Loss function

The loss function of the proposed mesh VAE is based

on the β-VAE framework (58) and consists of the sum of a

reconstruction loss term and a Kullback-Leiber (KL) divergence

term, weighted by a parameter β .

Ltotal = Lreconstruction + β ∗ LKL. (1)

The weighting parameter β is used to control the importance

of each of the two loss terms during training. Similar to previous

approaches for cardiac shape analysis using point cloud deep

learning (36), we follow amonotonic annealing schedule (59) for

β and set it to small values (starting at 0.0001) at the beginning

of training before gradually increasing it until 0.001 at the end

of training. This allows the network to put more emphasis on

the accurate mesh reconstruction task first and then step-by-step

focus more on also achieving a high latent space quality. The

Kullback-Leibler divergence term in the total loss function used

in this work is defined as follows:

LKL = DKL
[

Q(z|X)‖P(z)
]

. (2)

Here, X refers to the input mesh, z to the latent space of the

mesh VAE, and Q(z|X) to the posterior distribution of the VAE’s

latent space. P(z) is the prior distribution of the VAE’s latent

space for which we choose a multivariate standard Gaussian

distribution in this work. This helps the VAE to achieve a smooth

and disentangled latent space, thus improving the representation

of cardiac shape variability.

We select the mean squared error (MSE) between the

coordinate values of the corresponding vertices n in the input

mesh x and the reconstructed mesh y as our reconstruction loss

term. This encourages the VAE to put more emphasis on larger

vertex distances between input and ground truth meshes which

facilitates the task of capturing the full extent of cardiac shape

variability across the population.

Lreconstruction =
1

N

N
∑

n=1

(xn − yn)
2 (3)

2.5. Network training and
implementation

We train the mesh VAE for 250 epochs with a learning

rate of 0.001 and a batch size of 8 using the Adam optimizer

(60) on a CPU. The reparameterization trick (26) is applied

during training. All general deep learning code in this work

was based on the PyTorch framework (61), while the PyTorch

Geometric library (62) was used for graph-specific deep

learning operations. The machine learning classifiers for the
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experiments in Section 3.6 were implemented using the scikit-

learn library (63).

3. Experiments and results

We evaluate the proposed mesh VAE in a variety of

different settings using various evaluation metrics (Section 3.1)

to showcase its versatility and demonstrate its usefulness in

multiple applications related to cardiac shape analysis. These

include an assessment of its ability to accurately reconstruct 3D

cardiac mesh inputs (Section 3.2), a comparative analysis with

a voxelgrid-based deep learning benchmark (Sections 3.2, 3.3),

and an investigation of its latent space quality (Section 3.4).

In addition, we evaluate its ability to generate realistic virtual

population cohorts of cardiac anatomies (Section 3.5) and the

utility of its latent space to predict MACE events (Section 3.6) as

two possible sample applications of the mesh VAE.

3.1. Evaluation metrics

We utilize multiple metrics in this work to enable a thorough

evaluation of the mesh VAE in a variety of settings and tasks.

We select the mean surface distance (MSD) (Equation 4)

between two triangular meshes X and Y as our first metric

to quantify the averaged difference between two anatomical

surfaces. This allows the assessment of the general alignment

between our method’s predictions and the corresponding

gold standard.

MSD(X,Y) =
1

2

(

1

|X|

∑

x∈X

d(x,Y)+
1

|Y|

∑

y∈Y

d(y,X)

)

(4)

In addition to the average distance between two meshes, we

also want to obtain the maximum difference between the two.

This allows us to see whether larger deviations are present in

smaller regions on the mesh surfaces which is important for a

more localized cardiac shape analysis. We choose the Hausdorff

distance (HD) between input meshes X and Y for this purpose.

HD(X,Y) = max

{

sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(x, y)

}

(5)

While MSD and HD provide a geometric quantification of

mesh alignment, we also aim to provide an assessment in terms

of commonly used clinical metrics to facilitate the proposed

method’s application in clinical practice. To this end, we choose

the LV endocardial volume and the LV myocardial mass to

validate the anatomical realism of the virtual meshes generated

by our method across a given population. Here, we define the LV

mass as the difference between LV epicardial and LV endocardial

volumes multiplied by a constant (ρ = 1.05 g/mL) to represent

the average density of the myocardial tissue.

An advantage of any variational autoencoder architecture is

the existence of a latent space that aims to provide an accurate

low-dimensional and disentangled representation of the high-

dimensional population distribution. In order to improve

interpretability and performance on multiple follow-up tasks,

each dimension of the latent space ideally encodes a different

aspect of the inter-subject anatomical variability. To this end, we

quantify the contribution of each latent space dimension u using

the activity metric (64).

Activityu = CovX(Eu∼q(u|X)[u]) (6)

Here, X refers to the input meshes, E to the expected

value, Cov to the covariance, and q to the posterior probability

distribution of the latent space component u. Intuitively,

a higher activity score indicates that a larger amount of

population-wide shape variability is captured by the given latent

space dimension.

Finally, in order to assess the utility of the mesh VAE’s

latent space representation for the binaryMACE prediction task,

we select the area under the receiver operating characteristic

(AUROC) curve as our metric due to the class imbalance in

our dataset.

3.2. Mesh reconstruction

In our first experiments, we want to assess whether

the proposed mesh VAE is capable of accurately encoding

and reconstructing the complex high-dimensional anatomical

meshes at both the ED and ES phases of the cardiac cycle. To

this end, we first train separate mesh VAE models for each

of the two cardiac phases and evaluate their reconstruction

performance qualitatively by comparing the output meshes with

the corresponding input meshes of the unseen test dataset. The

obtained results for five sample cases are depicted for both ED

and ES phases in Figures 3A,B, respectively.

We observe that the shapes of the input and reconstructed

meshes closely resemble each other on both a local and global

level and for both the ED and ES phases. The relationship

between epicardial and endocardial surfaces remains consistent

between input and predicted meshes, while the most noticeable

differences appear in regions with remaining slice misalignment

artifacts and at the base of the left ventricular anatomy. We

also notice a slight smoothing effect of the mesh VAE outputs

compared to the respective input meshes, especially in localized

regions affected by surface reconstruction artifacts.

In order to quantify the mesh VAE’s encoding and

reconstruction ability, we calculate both the mean surface

distance (Equation 4) and the Hausdorff distance (Equation 5)

between the predicted meshes and gold standard meshes of the

test dataset (Table 1). This enables an assessment of both the

average and worst-case performance of how accurately the mesh
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FIGURE 3

Qualitative reconstruction results of the mesh VAE for five sample cases. Results are presented separately for ED (A) and ES (B) phases. Predicted

meshes are color-coded based on the vertex-wise distances to their corresponding input meshes.

TABLE 1 Reconstruction results of the mesh VAE and the 3D VAE on

the test dataset.

Phase Method Hausdorff

distance (mm)

Surface distance

(mm)

ED
3D VAE 6.43 (±2.57) 1.26 (±0.48)

Mesh VAE 4.73 (±1.46) 0.96 (±0.23)

ES
3D VAE 6.64 (±2.81) 1.53 (±0.66)

Mesh VAE 4.43 (±1.23) 0.99 (±0.20)

Values represent mean (± standard deviation) in all cases.

VAE can process unseen 3D shape information. As a benchmark

method for comparative validation, we choose a 3D VAE which

is designed for 3D voxelgrid data and has previously been used

to process 3D cardiac surface information (28, 65). We train and

evaluate the 3DVAE on the same training and test datasets as our

mesh VAE and report the results in Table 1. In order to apply the

3D VAE to our mesh dataset, we first voxelize each 3D triangular

mesh and then place it in the center of a 128×128×128 voxelgrid

with a voxel size of 1.5× 1.5× 1.5 mm. The resulting voxelgrids

serve as the input and gold standard data for the 3D VAE.

The architecture, loss function, and training procedure of the

3D VAE are chosen to be as close as possible to the mesh

VAE’s design in order to enable a fair comparison. The graph

convolutions and mesh pooling layers are replaced by standard

convolution and max pooling operations, respectively.

We find that the mesh VAE obtains mean surface distance

values considerably below the pixel resolution of the underlying

image acquisition (1.36 mm) for both ED and ES phases. It

also achieves significantly lower distance scores than the 3D

VAE for both HD and MSD metrics and for both ED and ES

phases. For both evaluated methods and phases, the Hausdorff

distance values are substantially larger than the MSD scores

indicating that certain small localized regions exhibit larger

differences between reconstructed and gold standard meshes

than the global average.

3.3. Technical comparison

In addition to assessing the mesh VAE in terms of its

reconstruction performance, we also evaluate its memory

footprint in comparison to the 3D VAE. To this end, we

calculate both the size of each data instance used as an input

to the respective networks and the number of trainable network

parameters in each approach (Table 2).

In terms of both metrics, the mesh VAE shows considerably

better scores than the 3D VAE. It requires only about 25

times fewer trainable network parameters and processes
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TABLE 2 Technical comparison of the mesh VAE and the 3D VAE.

Method Data type Data instance size Network

parameters

3D VAE Voxelgrid ∼2.1×106 (128×128×128) ∼1.1× 106

Mesh VAE Mesh ∼7.4×103 (2450×3)∗ ∼4.4× 104

∗Vertex connectivity is the same for each mesh in the dataset.

approximately 285 times smaller input data while still

representing the underlying cardiac anatomy with higher

fidelity. This also allows us to train the mesh VAE on a standard

CPU as opposed to the GPU required for the 3D VAE. While

this makes a direct comparison of the run time difficult, we

would expect it to lead to a considerably faster execution of the

Mesh VAE.

3.4. Latent space analysis

After having shown the mesh VAE’s ability to accurately

model 3D cardiac shapes with high efficiency, we want to further

investigate its latent space as a key architectural component

to successfully represent inter-subject anatomy changes. As

indicated by the two terms in the VAE’s loss function, the

objective of the latent space is similarly two-fold. On the

one hand, it aims to provide a suitable low-dimensional

encoding of high-dimensional input meshes that allows for

accurate reconstruction. On the other hand, it is also tasked to

represent important aspects of population-wide shape variability

in a disentangled and interpretable way by approximating a

multivariate Gaussian distribution. While the experiments in

Section 3.2 show the adequacy of the mesh VAE’s latent space for

the reconstruction task, we want to focus on its role in modeling

variability in this section.

To this end, we first pass all meshes of our dataset

through the pretrained encoder of the mesh VAE to obtain

the latent space representation of each case. We then use these

representations to calculate the activity of each latent space

component. Intuitively, the activity scores give an indication

as to how much of the overall shape variability across the

population is captured by a given latent space dimension.

We follow these steps separately for the mesh VAEs trained

on ED and ES data, respectively, and report the results in

Figure 4. Hereby, the activity of each latent space dimension is

presented as a percentage of the total activity, and latent space

dimension are arranged in decreasing order of their respective

activity percentages.

We observe that while the majority of the 16 latent space

components capture more than 8% of the overall population

variability each, a few components model close to 0%. Among

the significantly contributing components, differences between

the most and least active dimensions are relatively small at

approximately 3%. Results are mostly consistent between the

ED and ES phases with the ED phase showing one additional

significantly contributing component and consequently slightly

smaller activity scores for each of them.

After quantifying the variability in the low-dimensional

latent space, we want to investigate the effect of changes in the

individual latent space components on 3D shape variability. This

allows us to identify if different latent space dimensions are

responsible for modeling different aspects of the 3D anatomical

variability. To this end, we first determine the mean latent space

encoding across the population and then vary individual latent

space components while keeping the other components fixed

at the population mean value. We next pass these latent space

representations through the decoder of the pre-trained mesh

VAE in order to visualize the effect of the change in the particular

latent space component on the 3D anatomy. Each individual

latent space component is varied by 3 standard deviations from

its mean value in both the positive and negative directions to

analyze shape changes in both sides of the unimodal probability

distribution. Based on our findings in Figure 4, we depict the

resulting meshes corresponding to changes in the four most

active latent space components, the least active one, and the one

with the largest activity difference between ED and ES phases in

Figure 5.

We observe that variations in each of the four most active

latent space components result in gradual and easily identifiable

changes in 3D anatomical shapes for both the ED and ES phases.

These include changes in overall heart size, the pointedness of

the apex, the basal plane tilt, and the longitudinal curvature and

elongation of the ventricle. Variations along the least active latent

space component do not cause any easily noticeable changes

to the overall shape in either the ED or ES phase. We also

find clear 3D shape changes when varying the last component

with significant activity scores for the ED phase (component

11), while the same component for ES phase represents the first

component with low activity scores and does not produce any

easily visible 3D shape changes.

3.5. Generation of virtual cardiac mesh
populations

As a first possible sample application of our mesh VAE,

we next want to analyze whether it is able to generate new

as well as realistic 3D cardiac meshes altogether. Such virtual

population cohorts have a variety of use cases, such as data

augmentation for disease classification or electrophysiological

computer simulations as part of in silico trials. Hereby, the

synthesized meshes should be as indistinguishable as possible

from the real ones on both an individual and a population level.

In order to evaluate the mesh VAE’s performance in this task,
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FIGURE 4

Activity values of each latent space dimension as a percentage of total activity in mesh VAEs trained separately on ED (A) and ES (B) data. Latent

space dimensions are presented in decreasing order of their activity percentage values.

FIGURE 5

E�ect of changes in the individual latent space components (rows) on the 3D mesh shapes reconstructed by the decoder of the mesh VAE for

ED (A) and ES (B) phases. Results are shown for the four most active latent space components (1–4), the least active one (16), and the one with

the largest activity di�erence between ED and ES phases (11).
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FIGURE 6

Sample meshes generated by separate pretrained ED (A) and ES (B) mesh VAEs.

we draw random samples from the multivariate latent space

distribution and pass each of them through the trained decoder

of the VAE to obtain the corresponding virtual output meshes.

We perform this procedure separately for themesh VAE decoder

trained on ED and ES and depict 8 sample results for each phase

in Figure 6.

We observe that the generated meshes exhibit a degree of

shape variation close to that of the true population for both the

ED and ES phases, while still maintaining realistic anatomical

shapes on an individual level. Typical shape changes regarding

for example the overall heart size, mid-cavity diameter, or basal

plane tilt, are successfully represented in the virtual population.

In addition, the heart meshes at ES phase generally show a

thicker myocardium and a smaller overall volume than the ED

population, which is again reflective of the true population. Since

we use separate networks for the ED and ES phases, no per-case

correspondence between individual generated meshes of the two

phases is enforced.

In order to quantify the realism of the generated heart

population, we first randomly sample 1,000 latent space vectors

and pass them through the mesh VAE’s decoder to obtain a

large virtual population of 3D cardiac meshes. We then calculate

the widely used clinical metrics LV volume and LV mass for

each mesh in the generated population and report the resulting

population mean and standard deviation values in Table 3.

For a comparative analysis, we also provide the same scores

for the meshes in the unseen test dataset, which we assume

as our gold standard in this work. We apply this procedure

for both ED and ES phases using the respective pre-trained

networks and report the results separately for each phase in

Table 3.

We find similarmean and standard deviation values between

the synthesized mesh population and the gold standard mesh

TABLE 3 Clinical metrics of generated and gold standard mesh

populations.

Phase Clinical metric Gold standard Mesh VAE

ED
LV volume (ml) 156 (±42) 152 (±40)

LV mass (g) 123 (±28) 120 (±26)

ES
LV volume (ml) 81 (±32) 79 (±28)

LV mass (g) 128 (±32) 125 (±31)

Values represent mean (± standard deviation) in all cases.

population for both evaluation metrics and cardiac phases. The

average difference in population means across all scores is 2.5%,

with slightly larger deviations for the ED phase compared to the

ES phase.

3.6. MACE prediction

In addition to its utility for generating virtual mesh

populations, we also want to investigate whether the mesh VAE

can capture pathology-specific information that is useful for

cardiac disease detection and diagnosis. In this work, we focus

on MACE as a possible sample outcome and want to first

study whether there exist differences in the mesh VAE’s latent

space representations of post-MI subjects with and without an

associated MACE. We therefore pass all MACE cases through

the encoder of the pre-trained mesh VAE, average the resulting

latent space representations, and then feed the resulting mean

vector through the pre-trained decoder to obtain the average

mesh representation of all MACE cases in the population. We

repeat the same process for all cases without MACE and depict
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FIGURE 7

Cardiac anatomy meshes reconstructed by decoders of pre-trained mesh VAEs from averaged latent space representations of patients with and

without subsequent MACE. Results are shown for ED (A) and ES (B) data.

the obtained averaged meshes in Figure 7A for ED data and in

Figure 7B for ES data.

We observe that the differences between averaged MACE

and noMACE anatomies are small for ED data, but easily visible

for ES data. This indicates that ED shape alone is considerably

less predictive of incidentMACE outcomes than ES shape, which

is in line with clinical guidelines and previous research work (2).

Since the observed differences in 3D ES shapes between

averaged MACE and no MACE cases were obtained using

the same pre-trained decoder for mesh reconstruction, they

should be caused by corresponding differences in the mesh

VAE’s latent space representations. As a next step, we want

to investigate whether these low dimensional representations

of 3D cardiac anatomies are not only suitable to represent

subpopulation-specific average shapes, but also to predict future

MACE outcomes for individual patients. To this end, we employ

a logistic regression classifier to predict the binary outcome

MACE vs. noMACE based on per-patient latent space encodings

obtained from the mesh VAE encoder. As a clinical benchmark,

we select the ES volume as a widely used metric in clinical

practice and use it as the input to the another logistic regression

model with the same settings. We choose the AUROC as a

comparative metric for binary prediction performance due to

the high class imbalance between MACE and no MACE cases

in the dataset. In order to maintain the same class imbalance in

the respective train and test sets and to improve the robustness

of our analysis, we conduct stratified 10-fold cross validation

experiments with both classifiers and report the averaged results

in Table 4.

We find that the mesh VAE’s latent space representations

achieve an about 7% higher AUROC score than the ES volume

values for the task of binary MACE prediction. We note,

however, that the primary objective of this experiment is only

to showcase the utility of the mesh VAE for a possible clinical

application and not to present a method optimized for MACE

prediction specifically, which we leave for future work.

TABLE 4 Results of binary MACE classification.

Metric ES volume Mesh VAE

AUROC 0.627 (±0.042) 0.671 (±0.038)

Values represent mean (± standard deviation).

4. Discussion

In this work, we have presented a novel geometric deep

learning approach specifically designed for cardiac mesh

processing as part of a multi-step cardiac shape analysis pipeline

and demonstrated its versatility in multiple applications.

4.1. Mesh reconstruction

In our experiments, we find that the mesh VAE is able to

accurately encode and decode complex 3D cardiac anatomy

shapes with high degrees of realism, by attaining average surface

distances between predicted and ground truth anatomies in the

test dataset smaller than the underlying image resolution. This

demonstrates that it is not only capable of capturing anatomical

surface information in individual cases, but also correctly

represents population-wide variability in cardiac shapes. These

results are consistent across both the ED and ES mesh datasets

and show that the mesh VAE is suitable for processing cardiac

anatomy data at various phases of the cardiac cycle, albeit

with separate networks for each phase. As these represent

the two extreme ends of the cardiac cycle, we hypothesize

that an application to intermediate frames is equally feasible.

We observe this good alignment between predicted and input

meshes not only on a global but also on a local surface level. This

indicates that inter-subject shape variation is also successfully

captured on a smaller, more localized scale which promises
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to aid in the discovery of new image-based biomarkers of

cardiac abnormalities that go beyond the purely volume-based

metrics widely used in current clinical practice. The largest

localized prediction errors occur at regions with remaining slice

misalignment artifacts and near the base of the left ventricle.

We believe this to be at least partially a consequence of the

limitations of the 3D surface reconstruction step (Section 4.6)

rather than an issue of the mesh VAE itself. In fact, the observed

slight smoothing effect of the mesh VAE typically occurs in

localized regions that are still affected by reconstruction artifacts.

This hints at potentially favorable effects of this small smoothing

behavior, since its implicit slight misalignment corrections

often result in more anatomically plausible 3D meshes without

significant loss of true localized shape details. Multiple ways

that would likely reduce the smoothing effect can be easily

integrated into our mesh VAE framework, such as increasing the

weight value of the reconstruction loss term during training or

using a reconstruction loss that puts a disproportionately higher

penalty on larger vertex-wise reconstruction errors. However,

such measures could also lead to other unwanted effects, such as

a reduced quality of the latent space distribution or an increased

number of unnatural local deformations in the output meshes

that mimic errors in the original 3D surface reconstruction

process. In general, we note that the anatomically accurate

reconstruction results have been achieved on a challenging

dataset of pathological subjects acquired from multiple studies,

in contrast to more homogeneous datasets of healthy subjects,

such as the UK Biobank study (66). This further demonstrates

the robustness of our mesh VAE.

4.2. Latent space quality

The ability of themesh VAE to successfullymodel 3D cardiac

shape variability across the population is further corroborated

by the analysis of its latent space. We find that variations in

latent space components are associated with realistic changes

in reconstructed 3D shapes and that individual components are

responsible for encoding different aspects of the population-

wide shape variability. Examples of such easily visible effects

include changes to the overall heart size, mid-ventricular

diameter, and basal plane tilt, which are all similar to previous

findings in cardiac shape modeling (19). This high degree of

disentanglement enables an improved understanding of the

key components of cardiac shape variations and higher levels

of interpretability for the multiple clinical applications of the

mesh VAE. When comparing the contribution of individual

latent space components to overall shape variability, we find

that some components are responsible for a larger percentage

of the total variation than others. This is similar to the

results of other widely used shape analysis techniques, such

as PCA, where different principal components account for

different proportions of the overall variance. Contrary to PCA,

however, we find that the differences in activity percentage

scores decrease only very slowly for the majority of components

before a sharp drop after the 11th and 10th most contributing

components for ED and ES data, respectively. All following

components play almost no part in explaining the population

variance. This is in contrast to PCA where the percentage

of explained variance by each component typically decreases

sharply for the first fewmost contributing components with very

little change between less contributing components (2, 19–21).

We hypothesize that this is due to the non-linearities in the

mesh VAE’s architecture which enable the modeling of richer

and more condensed relationships between high-dimensional

input data and low-dimensional latent space representations

compared to purely linear approaches, such as PCA. This results

in a different way of encoding shape variability with more equal

activity scores for each contributing component. When varying

along the latent space components with close to zero activity

and observing the effect on the reconstructed 3D anatomies,

we indeed find very little change, especially on a global

level (Figure 4). However, similar to PCA, such components

might still encode meaningful information about smaller, more

localized shape variations. This induces a certain amount of

risk when removing seemingly non-contributing components

post-training, as otherwise important variability might be

inadvertently removed. When experimenting with different

latent space sizes in our mesh VAE, we find that differences in

reconstruction accuracy are minimal between larger and smaller

latent space dimensionalities. We also observe that 5–50% of

the latent space dimensions have minor contributions to the

overall variance, regardless of the choice of latent space size.

Hence, we reason that the more condensed encoding of the

same amount of shape information is a property of the overall

mesh VAE architecture itself rather than solely a consequence of

the latent space size. This also shows that changing the latent

space size has little effect on removing potentially redundant

latent space dimensions as the network adjusts its encoding

accordingly. Furthermore, we also notice that training the same

network with the same parameter settings can result in varying

numbers of significantly contributing latent space dimensions.

This indicates that the various sources of randomness involved

in training deep learning networks (e.g., trainable parameter

initialization, order of cases seen during training) affect the way

the mesh VAE encodes shape information in the latent space.

As such, we conclude that our choice of 16 as the latent space

size reflects a reasonable trade-off between having too many

modes and a representation that is too condensed, both of

which would negatively affect interpretability. This also means

that our choice is not a fixed optimal value but rather that it

should be chosen with the particular dataset and downstream

application in mind. When comparing the results for ED and ES

meshes, we find very minor differences with only one additional

contributing latent space component for ED and similar levels

of disentanglement. We therefore conclude that the mesh VAE

Frontiers inCardiovascularMedicine 12 frontiersin.org

172

https://doi.org/10.3389/fcvm.2022.983868
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org


Beetz et al. 10.3389/fcvm.2022.983868

can successfully capture 3D shape variability at different phases

of the cardiac cycle.

4.3. Generation of virtual cardiac mesh
populations

In addition to accurately capturing 3D anatomical patterns

of existing subjects, we also find that the mesh VAE is capable

of generating realistic virtual populations of 3D heart meshes.

Hereby, we observe a high degree of realism in both the

individually generated meshes and in the amount of variability

present in the overall virtual population, which closely mimics

the true underlying population. We have shown this both

qualitatively and quantitatively by calculating commonly used

clinical metrics on a population level. We also note that we find

not only a good alignment between virtual generated population

and gold standard population in terms of their mean values

but also in terms of their standard deviation scores, indicating

that the variability across the population is well-captured in the

virtual population. The mesh VAE achieves these positive results

for both ED and ES phases which shows its versatility to different

datasets and suggests the possibility of a feasible extension to

other phases of the cardiac cycle. For example, the generated ES

anatomies typically exhibit a thicker myocardium and an overall

smaller size than their ED counterparts which is reflective of real

cardiac morphology. The high degree of realism in the generated

meshes is also visible on both a global and local level. This is

particularly important for virtual population cohorts used in

computer simulations of cardiac electrophysiology which model

conduction patterns granularly for each face in a mesh. We

also note that all generated virtual meshes retain the same

vertex connectivity as a result of the chosen network architecture

which is another beneficial property for many follow-up tasks.

In our experiments, we find that sampling from a latent space

distribution based on encoder predictions of the training dataset

leads to better mesh generation results than sampling from a

multivariate standard Gaussian distribution. We attribute this

to the trade-off between the reconstruction and latent space

terms in the loss function which cause the latent space to only

approximate the idealized prior distribution in order to retain a

high reconstruction accuracy.

4.4. MACE prediction

As a compact low-dimensional representation of high-

dimensional cardiac anatomies, the latent space should also

be able to capture subpopulation-specific differences based

solely on information in the input shapes. In our experiments,

we observe such differences for the MACE vs. no MACE

subpopulations in the ES data and to a lesser extent in the ED

data. In both cases, we hypothesize this to be a reflection of the

information contained in the 3D shapes instead of a potential

inadequacy of the latent space itself. This is corroborated by

findings in previous work and clinical practice where metrics

based on ES heart shapes are considerably more predictive

than corresponding ED-based scores (2). We then show how

these latent space differences for ES data can be successfully

used to predict MACE outcomes and outperform a common

clinical benchmark. We presume that the classifier’s access to

a condensed representation of the full 3D shape information

as opposed to a single value to coarsely approximate said 3D

shape is the key reason for this result. This allows the classifier

to take into account finer and more localized patterns without

getting overwhelmed by too much information, as the complex

3D shape has already been sensibly encoded by the mesh

VAE’s encoder in a non-linear way. We note, however, that the

objective of this experiment was not to achieve the best possible

classification performance but rather to generally showcase

the utility of the mesh VAE’s latent space representation for

this task. Hence, we achieve good results without any specific

classification loss term during network training but relying only

on general encodings of shape variability. Such a multi-task

learning approach would likely have improved the separability

of the latent space to further differentiate betweenMACE and no

MACE cases, while maintaining a high degree of interpretability.

This high degree of extensibility is a key advantage to the

presented mesh VAE approach which we aim to explore further

in future work.

4.5. Network architecture and training

In general, the positive results obtained by the mesh VAE in

the previously discussed experiments demonstrate that both its

architectural design, loss function, and training procedure were

adequately chosen for effective cardiac anatomy modeling with

3D surface mesh data. The graph convolutional layers combined

with the mesh downsampling and upsampling operations

enable multi-scale feature learning in a hierarchical setup that

successfully considers both global and local aspects of cardiac

shape variability, which is important to its many possible

clinical and research applications. While this is in principle

similar to conventional convolution and pooling operations on

voxelgrid data, we find that these achieve higher reconstruction

errors than a geometric deep learning architecture that is

specifically designed to process triangular surface mesh data.

In addition, the mesh VAE achieves this outperformance in

terms of accuracy while using only about 4% of the number

of trainable parameters. This significantly reduces the training

time and memory requirements of the algorithm and allowed us

to train and evaluate our deep learning models on a standard

CPU as opposed to a GPU which is typically required for the

3D voxelgrid VAE. At the same time, the mesh VAE allows for

anatomical shapes to be represented as triangular surfacemeshes
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which reduces the required data storage costs considerably

compared to voxelgrids despite not losing any anatomical

information. Furthermore, meshes allow for a continuous

encoding of vertex coordinates as opposed to the discretization

needed to store similar data in grid-based formats. This sets

an upper bound on the possible data resolution due to limited

available memory which in turns affects the quality of the

anatomical representation.

The choice of VAE framework also allows for

straightforward ways to include other metadata, such as

patient characteristics or acquisition conditions, into the

network as conditional inputs in addition to the anatomical

shape information (36, 67). These can, for example, be

included as per-vertex features in combination with the

coordinate values, or concatenated to the latent space vector

or intermediate layers of the network (36, 67, 68). Such an

extension enables subpopulation-specific cardiac anatomy

modeling while still using a single network and dataset. This is

in contrast to PCA, which would need to be applied separately

for each subpopulation and would hence only be able to use

smaller partitions of the original dataset without making use of

synergies across the subpopulations. In order to then achieve the

same performance, more data would likely be necessary, whose

acquisition is particularly costly in case of medical images.

Regarding the mesh VAE’s training procedure, we find

that setting the weighting parameter β in the loss function

to a suitable value for the given dataset is important to find

the right balance between reconstruction and latent space

quality and enable effective cardiac anatomy modeling. In

our experiments, prioritizing reconstruction quality and using

a monotonic annealing schedule resulted in the best overall

performance which is in line with previous applications of the

β-VAE framework to 3D shape modeling (36, 55). In addition,

the mesh VAE is also highly flexible and can work with a variety

of different input modalities and reconstruction pipelines, as

long as vertex correspondence between meshes in the dataset

is ensured. Its architecture also allows for the easy integration

of other network components (e.g., as a separate encoder or

decoder branch) and multiple different objectives (e.g., cardiac

disease classification) in a multi-task learning setting without

loss of interpretability. This is akin to grid-based VAEs and

therefore creates the possibility of further improvements in

similar use cases (27–34).

4.6. Limitations

The proposed shape modeling approach also comes with

some limitations. All meshes in the input dataset need to exhibit

vertex-to-vertex correspondence between each other. As this

needs to be established in the preprocessing steps, it limits the

method’s flexibility and increases its complexity. While this is

a common requirement for most shape modeling approaches,

including PCA, it is in contrast to voxelgrid-based (28) and

point cloud-based shape modeling approaches (36), where such

point correspondence is not strictly needed. As a deep learning

approach, the mesh VAE requires 2–3 h of CPU training time in

our current setup before the population-wide shape variability

is accurately captured and follow-up tasks can be performed.

This is contrasted with traditional machine learning approaches

for the same purpose, such as PCA, which are typically faster

in determining their respective data transformation parameters.

However, as mentioned in Section 4.5, the mesh VAE still

compares favorably in terms of memory footprint and training

time to other deep learning approaches based on voxelgrid or

point cloud processing.

Furthermore, we have only investigated shape variability in

the left ventricle and at the ED and ES phases in this work.

In addition, we have trained separate models for ED and ES

data which likely results in limited per-subject correspondence

between ED and ES meshes in the generated populations.

However, we believe that the presented approach can be

extended to other cardiac chambers and to other phases of the

cardiac cycle, including a combined multi-temporal modeling

setup, which we plan to explore in future work. This could

be achieved by introducing conditional inputs into various

parts of the current architecture that control the cardiac phases

to be modeled. Alternatively, separate phase-specific encoder-

decoder blocks could be used with a shared latent space to

capture multiple cardiac phases at once. This would then likely

enable the shape analysis and virtual population generation

of paired ED and ES heart meshes. We also note that errors

introduced in the preprocessing steps (e.g., MRI segmentation,

3D surface reconstruction) of our shape modeling pipeline

affect the results of both the mesh VAE and its follow-up tasks

presented in this work. In particular, the reconstruction step

does not take into account the information of long-axis slices

of the cine MRI acquisition, leading to possible inaccuracies

in the basal and apical areas of the 3D heart mesh. While

the 3D surface reconstruction step explicitly tries to correct

for slice misalignment due to respiratory motion during image

acquisition, there are likely still some smaller errors present

in the resulting meshes. However, we find that the mesh VAE

can successfully process such cases and is often even able to

remove unnatural curvatures of the anatomical surface in its

reconstructed outputs.

We have also only evaluated the mesh VAE on post-

MI subjects and not on a purely healthy cohort. Specifically

regarding the MACE classification experiment, we did not

consider any patient metadata that would likely help to

further improve the results (e.g., sex, age). However, we

note that the objective of this work was not to achieve the

best possible performance in a single one of the presented

tasks but rather to showcase the versatility and applicability

of the mesh VAE as a novel approach to 3D cardiac

anatomy modeling.
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5. Conclusion

To conclude, we have presented the mesh VAE as a novel

approach to 3D cardiac anatomy modeling that can be directly

applied to surface meshes of the heart in an efficient manner.

We have demonstrated its ability to accurately capture complex

3D cardiac shapes at both ends of the cardiac cycle while

using low-dimensional and easily interpretable latent space

representations. The mesh VAE also compares favorably to

voxelgrid-based deep learning approaches in terms of both

accuracy and memory requirements. Furthermore, we have

shown its utility for two exemplary applications, namely the

generation of realistic virtual population cohorts of 3D cardiac

anatomies and the prediction of MACE outcomes in post-

MI patients.
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Segmentation of the left ventricle (LV) in echocardiography is an important

task for the quantification of volume and mass in heart disease. Continuing

advances in echocardiography have extended imaging capabilities into

the 3D domain, subsequently overcoming the geometric assumptions

associated with conventional 2D acquisitions. Nevertheless, the analysis of

3D echocardiography (3DE) poses several challenges associated with limited

spatial resolution, poor contrast-to-noise ratio, complex noise characteristics,

and image anisotropy. To develop automated methods for 3DE analysis, a

sufficiently large, labeled dataset is typically required. However, ground truth

segmentations have historically been difficult to obtain due to the high inter-

observer variability associated with manual analysis. We address this lack of

expert consensus by registering labels derived from higher-resolution subject-

specific cardiac magnetic resonance (CMR) images, producing 536 annotated

3DE images from 143 human subjects (10 of which were excluded). This

heterogeneous population consists of healthy controls and patients with
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cardiac disease, across a range of demographics. To demonstrate the utility

of such a dataset, a state-of-the-art, self-configuring deep learning network

for semantic segmentation was employed for automated 3DE analysis. Using

the proposed dataset for training, the network produced measurement biases

of −9 ± 16 ml, −1 ± 10 ml, −2 ± 5 %, and 5 ± 23 g, for end-diastolic volume,

end-systolic volume, ejection fraction, and mass, respectively, outperforming

an expert human observer in terms of accuracy as well as scan-rescan

reproducibility. As part of the Cardiac Atlas Project, we present here a large,

publicly available 3DE dataset with ground truth labels that leverage the

higher resolution and contrast of CMR, to provide a new benchmark for

automated 3DE analysis. Such an approach not only reduces the effect of

observer-specific bias present in manual 3DE annotations, but also enables

the development of analysis techniques which exhibit better agreement

with CMR compared to conventional methods. This represents an important

step for enabling more efficient and accurate diagnostic and prognostic

information to be obtained from echocardiography.

KEYWORDS

3D echocardiography (3DE), machine learning (ML), segmentation (image
processing), left ventricle (LV), multimodal imaging, cardiac magnetic resonance
(CMR) imaging, domain adaptation, Cardiac Atlas Project

1. Introduction

Machine learning (ML) has shown considerable promise
for automated analysis and interpretation in the domain
of cardiovascular imaging (1, 2). Already, its application to
cardiac magnetic resonance (CMR) imaging has exhibited
excellent results with high accuracy and reproducibility
by leveraging several large cohort databases such as the
UK Biobank (3–5). Although CMR offers higher spatial
resolution and tissue contrast for the assessment of
cardiac mass and volume, transthoracic echocardiography
remains at the frontline of cardiac imaging as the most
widely used and readily accessible modality for screening,
diagnosis, and management of cardiovascular disease.
Technological advances in ultrasonography have enabled
three-dimensional echocardiography (3DE), consequently
removing the dependency on accurate plane positioning and
geometric assumptions required for standard two-dimensional
echocardiography (2DE). As a result, several studies have
shown that 3DE-derived measurements are generally superior
to 2DE in terms of chamber quantification accuracy (6, 7),
reproducibility (8), and prognostic power (9). Despite these
advantages, 3DE has not yet been universally integrated into
clinical practice for the assessment of cardiac function due to
limitations in image quality, and increased costs associated with
acquisition and long analysis times compared with 2DE.

In comparison to other cardiac imaging modalities, analysis
of 3DE is particularly challenging owing to the limited spatial
resolution, low contrast-to-noise ratio (CNR), complex noise

characteristics (speckle in combination with common artifacts),
and image anisotropy. Several factors can influence the image
quality of 3DE including, but not limited to, sonographer
experience, vendor-specific processing, acquisition settings, and
patient body habitus. Discrepancies in the delineation of
important cardiac structures, such as the left ventricle (LV),
compared to those from a reference modality such as CMR,
have been shown to be observer- and software-dependent, as
well as exhibit regional variability in terms of the magnitude of
differences in geometry (10). In particular, acoustic shadowing
and signal dropout further compromise local image quality,
leading to greater inter- and intra-observer variability in manual
annotations at these locations. To address this, statistical shape
priors (or atlases) can be used to provide suitable estimates in
regions where image information is corrupted or missing (11–
14). However, these approaches are ultimately limited by the
generalizability of such templates and may be ill-suited in cases
of atypical anatomy.

The primary challenge associated with the development
of automated methods for 3DE analysis is the prerequisite
of a sufficiently large training dataset. Historically, reference
annotations have been difficult to obtain due to the high degree
of variability associated with manual 3DE segmentation, thus,
limiting the scope of ML-based solutions. Currently, the dataset
belonging to the Challenge on Endocardial Three-dimensional
Ultrasound Segmentation (CETUS)1 (15), organized as part of

1 https://www.creatis.insa-lyon.fr/Challenge/CETUS/
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the 2014 Medical Image Computing and Computer Assisted
Interventions (MICCAI) conference, remains the only publicly
available resource. This dataset consists of expert-annotated
3DE images from 45 subjects, for which data from 15
subjects are made publicly available for training. Due to the
lack of clear guidelines for endocardial contouring in 3DE,
considerable effort was expended in establishing a consistent
analysis regime amongst three expert observers. Despite this,
large inter-expert variability was reported and an agreement
was only reached after several revisions and consensus
discussions (16). Nevertheless, efforts in providing a publicly
accessible benchmark such as the CETUS platform represent
an important step toward the development of automated 3DE
analysis methods.

Alternative approaches for generating training data
involve producing synthetic 3DE images via in silico
simulations (17, 18) or generative adversarial networks
(19, 20). While these methods do not require additional
segmentation (as the underlying anatomy is known in such
cases), synthetic datasets are often unable to adequately
capture all features found in real images. Unsupervised
domain adaptation strategies have also gained interest in
medical imaging applications, enabling knowledge gained
from higher-resolution images or data to improve the
segmentation of lower-resolution or degraded images (21–
23). However, as with unsupervised methods in general,
it cannot be certain that the model is optimized for
the target domain.

Alongside the ongoing advances in 3DE acquisition systems,
more accurate and efficient analysis methods will substantially
benefit patient care and management. Having acknowledged the
lack of expert consensus in obtaining reference annotations,
and the limitations associated with population shape priors and
synthetic data, we instead leveraged subject-specific labels from
CMR acquired in a heterogenous population of 134 subjects.
Here, we present MITEA (MR-Informed Three-dimensional
Echocardiography Analysis): an annotated 3DE dataset for
the segmentation of the LV myocardium and cavity for
quantification of systolic function and mass, and subsequently
show how this data can be used to train a deep learning model
for automated 3DE analysis. The full annotated 3DE dataset
and trained model can be accessed as part of the Cardiac
Atlas Project2 (24). To date, this represents the largest publicly
available 3DE dataset, and the first which uses labels derived
from subject-specific CMR analyses.

2. Materials and methods

Non-invasive multimodal 3DE and CMR imaging were
performed within two hours in 144 prospectively recruited

2 https://www.cardiacatlas.org/

participants (87 healthy subjects with no existing or history
of cardiac disease; and 57 patients with acquired, non-
ischemic cardiac disease), of which 134 (82 healthy subjects;
and 52 patients with cardiac disease) were included in the
study. Ethical approval for this research was granted by the
Health and Disability Ethics Committee of New Zealand
(17/CEN/226). Written informed consent was obtained from
each participant.

Multimodal data belonging to 70 of these subjects
have been previously presented as part of an investigation
into systematic measurement biases between 3DE and
CMR (10). The present study extends upon this work
by: inclusion of additional disease cases for improved
generalizability; inclusion of scan-rescan 3DE images to
assess repeatability; and utilization of paired multimodal
data for the development of automated 3DE segmentation
techniques. An overview of the method for data generation
is illustrated in Figure 1, and detailed in the following
subsections.

2.1. Multimodal image acquisition

Transthoracic real-time (single-cycle) 3DE images were
acquired using a Siemens ACUSON SC2000 Ultrasound
System and a 4Z1c matrix array transducer (Siemens Medical
Solutions, Mountain View, CA, USA) with 36 × 48 (1,728)
elements. Targeted images of the LV were acquired from the
apical window in a steep left lateral decubitus position during
breath-holds. Parameters (including choice of fundamental
or harmonic imaging, depth, gain, compression, and width
of the volumetric dataset) were optimized by an experienced
sonographer on a per-subject basis to maximize the image
volume sampling rate, while maintaining adequate spatial
resolution for analysis. To measure scan-rescan repeatability,
two 3DE clips were acquired per subject (producing a total
of 268 3DE datasets across the 134 included participants).
All acquisitions were reconstructed into 3D Cartesian
image volumes (with a rectangular bounding box and
zero-values outside the pyramidal volume) using 1 mm
isotropic voxels.

Multi-planar cine CMR imaging was performed on either
a Siemens Magnetom 1.5T Avanto Fit (n = 77) or 3T Skyra
(n = 57) scanner (Siemens Healthcare, Erlangen, Germany)
with an 18-channel body matrix coil, using a retrospectively
gated balanced steady-state free precession sequence under
breath-holds. Acquired planes included three long-axis slices
(standard two-, three-, and four-chamber views) and a short-
axis stack of 6–10 slices (spanning the length of the LV from
mitral valve to apex) over one cardiac cycle, with the following
typical imaging parameters: TR = 3.7 ms, TE = 1.6 ms,
flip angle = 45◦, field of view = 360 mm × 360 mm,
in-plane resolution = 1.4 mm × 1.4 mm, and slice
thickness = 6 mm, in keeping with standard protocols.
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FIGURE 1

Method overview for generation of the MR-Informed Three-dimensional Echocardiography Analysis (MITEA) dataset, showing paired
multimodal imaging using 3D echocardiography (3DE) and cardiac magnetic resonance (CMR) imaging. The registration of CMR-derived left
ventricular geometries was performed at end-diastole (ED) and end-systole (ES) to produce subject-specific labels for the myocardium and
cavity.

With these settings, an average of 29 ± 4 (range 20–44)
frames per cardiac cycle were obtained for the included
study population.

2.2. Image analysis

Patients were subjectively graded on a five-point 3DE image
quality scale (poor, suboptimal, adequate, good, excellent) by
a single expert (independent of the sonographer who acquired
the images). This subjective score was based on a combination
of perceived endocardial border definition (i.e., the overall
sharpness of the LV cavity due to ultrasound attenuation, choice
of harmonics, and selection of gains and compression), and the
visibility of wall segments (relating to signal dropout and LV
coverage due to probe alignment and selection of an adequate
pyramidal volume size). After qualitative grading, the ratio
between the mean difference and variance in signal intensity
between the LV myocardium and cavity were calculated to
provide a quantitative measure of CNR (25), given by:

CNR =

∣∣µmyocardium − µcavity
∣∣√

σmyocardium2 + σcavity2

where µmyocardium and µcavity are the mean signal intensities
in the regions belonging to the myocardium and cavity,

respectively, and σmyocardium and σcavity are the corresponding
standard deviations.

To generate subject-specific labels from CMR, time-varying
geometric models of the LV over one cardiac cycle were
constructed semi-automatically by guide-point modeling (26)
using Cardiac Image Modeler (CIM, Version 8.1, University
of Auckland, New Zealand), by a single analyst. To create
an initial coarse geometry and to establish the LV position
and orientation, fiducial landmarks (i.e., the base of the
myocardium in the long-axis slices; apical and basal centroids
in the corresponding short axis slices, and insertion points
of the right ventricle (RV) along the LV epicardial border in
the short-axis slices, where visible) were manually identified.
This was subsequently refined by interactively fitting contours
to the endocardial and epicardial borders on both the long-
and short-axis slices, and manually correcting in-plane breath-
hold mis-registrations using the image intersections. Papillary
muscles and trabeculations were included within the LV
cavity (Figure 2A). This analysis generated a bicubic Hermite
and linear finite element model of the LV (27), with the
origin positioned at one-third of the distance from base
to apex, with the LV long axis parallel to the x-axis, and
the center of the RV directed toward the orthogonal y-axis.
From the model, 145 unique points were sampled per surface
(for the endocardium and epicardium) to produce a mesh
consisting of 290 3D rectangular Cartesian (x, y, z) vertices
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FIGURE 2

Image analysis and 3D left ventricle (LV) geometry extraction from cardiac magnetic resonance (CMR) using Cardiac Image Modeler (CIM,
Version 8.1, University of Auckland, New Zealand) at end-diastole (ED) and end-systole (ES). (A) Contour examples of the endocardium (white)
and epicardium (blue) on a 4-chamber long axis slice and mid-ventricular short axis slice, showing exclusion of trabeculae and papillary
muscles from the myocardium. (B) 3D surface meshes (dimensions in mm) sampled from the LV finite element model. (C) Volume-time curve
generated from CMR image analysis, indicating frame indices of interest.

representing the LV myocardium. Static 3D LV geometries were
extracted at end-diastole (ED) and end-systole (ES) (Figure 2B),
corresponding to the first CMR image frame, and the image
frame associated with the smallest cavity volume, respectively
(Figure 2C).

2.3. Multimodal registration and label
generation

For each subject, registration of CMR with 3DE was
performed in two steps, comprising an automated coarse
alignment of the global LV position, followed by a manual
refinement of the LV model within the 3DE image volume.
To establish the initial transform at ED, the B-spline Explicit
Active Surfaces (BEAS) algorithm (14) was used to create
a fully automated segmentation of the LV from 3DE, from
which a vector connecting the apex and basal centroid was
extracted to represent the LV long axis orientation and
position with respect to each 3DE acquisition. To differentiate
between the circumferential wall segments, the direction of
the RV center from the central axis was approximated as
being 70 degrees from the inferior RV insertion [automatically
detected based on image features as part of the BEAS
segmentation (28)], as the anterior insertion is generally not
well visualized in 3DE. The resultant axes were subsequently
registered to the cardiac coordinate system used in the
finite element model of the LV in Section “2.2 Image

analysis,” yielding a transformation matrix representing the
rigid mapping between the 3DE image LV model coordinate
systems. This transformation was subsequently applied to
initially align the CMR-derived LV model to the 3DE image for
each subject.

The initial alignment was refined by manually applying
rigid translations and rotations using an open-source data
analysis and visualization application (ParaView 5.8.0) (29)
(Figure 3), by the same expert that carried out subjective 3DE
image quality grading and CMR analysis. Manual registrations
were performed at two frames only, representing ED and ES.
For CMR, the relevant static LV geometries were extracted
according to the method described in Section “2.2 Image
analysis” and Figure 2C. For 3DE, ED and ES image frames were
manually selected corresponding to when the cavity appeared
largest and smallest. The manual refinement was performed
independently for the ED frame, and further adjusted at ES,
as required, to account for any changes in relative transducer
angle and position over the cardiac cycle during acquisition.
All manual alignments were carried out by a single observer,
resulting in 536 (134 included subjects × 2 clips × 2 frames)
independent alignments.

The closed meshes were subsequently converted into 3D
masks of equal dimensions to the corresponding Cartesian 3DE
images, containing two foreground label classes (representing
the cavity and myocardium). Of note, foreground label regions
were not constrained to the pyramidal volume, as shown in
Figure 4.
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FIGURE 3

Registration of 3D echocardiography (3DE) with subject-specific geometries of the left ventricle (LV) derived from cardiac magnetic resonance
(CMR) at end-diastole, showing an example 3DE image volume (visualized with an opacity transfer function on a blue-to-red colormap) and
corresponding 2D mid-ventricular image slice and contours of the endocardium (endo) and epicardium (epi), viewed longitudinally and axially.
Labels denote anatomical LV aspects: B-A, base-to-apex; S-L, septal-lateral; A-I, anterior-inferior. All dimensions are in mm.
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FIGURE 4

Example of an annotated 3D echocardiography (3DE) image sliced longitudinally at end-diastole (ED) and end-systole (ES), showing portions of
labeled regions and corresponding contours for the left ventricular cavity (white) and myocardium (blue) falling outside the acquired 3DE
pyramidal volume (as indicated by the arrows).

2.4. Deep learning segmentation
experiment

To demonstrate the application of the dataset for deep
learning, nnU-Net (30), a self-configuring network for semantic
segmentation was employed for automated 3DE analysis. An
80/20 split was used for training and testing, with images
from the same acquisition (i.e., ED and ES from the same
cycle) and clips from the same participant (i.e., scan and
rescan) grouped together. This resulted in data from 107 unique
participants being included in the training set (a total of 428
paired images and labels), and data from 27 participants in
the testing set (108 paired images and labels). The network
was trained using fivefold cross-validation with a further
80/20 split for training and validation, producing five model
instances (each trained using data from 85 or 86 participants),
which were ensembled (by averaging softmax probabilities)
for inference.

Using the 3D full-resolution U-Net configuration with
no cascade, each fold was trained for 200 epochs (chosen
empirically based on stable validation loss curves), where each
epoch consisted of 250 iterations over shuffled batches of
size two. Stochastic gradient descent with a large Nesterov
momentum (31) (µ = 0.99) and a high initial learning rate
of 0.01 [reduced by (1 − epochcurrent/epochmax)0.9] using the
polyLR schedule (32), producing an almost-linear decrease to
zero, was used for optimization, with the sum of cross-entropy
and Dice as the loss function. To diversify the data and increase
model robustness, on-the-fly data augmentations including
rotation, scaling, mirroring, and low-resolution simulation (by
means of downsampling followed by upsampling), were applied
during training. Training time was approximately 170 s per
epoch on an NVIDIA Tesla V100 GPU with 32GB memory.
With the exception of a reduction in the number of epochs
(set to 1,000 by default) to reduce overfitting, the model was

deployed with all other out-of-the-box parameters for pre-
processing, network architecture selection, training, and post-
processing. The self-configured architecture for the present
dataset is shown in Figure 5.

2.5. Validation and performance

Model performance was evaluated on the testing set
(n = 27 subjects, 54 acquisitions) in terms of segmentation
accuracy at ED and ES using the Dice coefficient, mean surface
distance (MSD), and Hausdorff distance (HD); as well as
the agreement in routine clinical cardiac indices including
LV end-diastolic volume (EDV), end-systolic volume (ESV),
mass (LVM) (calculated as the average of mass at ED and
ES), and ejection fraction (EF). Clinical measurements were
also compared with those derived from conventional manual
analysis using TOMTEC 4D LV-ANALYSIS 3 (TOMTEC
Imaging Systems GmbH, Unterschleißheim, Germany), a
commercially available, vendor-neutral software platform for
3DE quantification, performed by a single expert for the 27 test
subjects (including rescans).

2.6. Statistics

Paired-sample t-tests were used to identify statistically
significant measurement biases (calculated as index3DE–
indexCMR) in cardiac indices derived from 3DE (either by
nnU-Net or manually) with respect to those obtained from
corresponding CMR analyses, and Bland-Altman plots were
used to visualize the agreement between paired variables. The
f -test of equality of variances was used to assess the significance
of the reduction in the standard deviation of errors when
using nnU-Net instead of expert manual analyses in terms of
measurement accuracy (with respect to CMR), as well as scan-
rescan repeatability. Finally, to assess the reliability between
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FIGURE 5

Network architecture configured by nnU-Net for 3DE segmentation. Each 3D convolution (conv) block consists of a plain convolution, followed
by instance normalization (norm), leaky ReLU (LReLU), and dropout. Downsampling is achieved using strided convolutions (stride two), and
upsampling by transposed convolutions. Numbers indicate the number of channels corresponding to each convolution block.

paired measurements, an intraclass correlation coefficient (ICC)
using a two-way, mixed effects model for absolute agreement,
was calculated for each index. Based on established guidelines
(33), threshold values of <0.5, ≥0.5, ≥0.75, and ≥0.9,
represented poor, moderate, good, and excellent reliability,
respectively. For the quantification of absolute scan-rescan
variability due to random measurement error (34), repeatability
coefficients with 95% confidence (35) were also computed.
All statistical tests were two-tailed and deemed significant for
p-values < 0.05, and analyses were performed using IBM SPSS
Statistics for Windows (Version 26.0, IBM Corp., Armonk, NY,
USA).

3. Results

3.1. Population summary

Demographics (including age, sex, and body surface area)
and CMR-derived LV indices for the included population
are summarized in Table 1. The disease group comprised
14 patients with LV hypertrophy, 12 patients with cardiac
amyloidosis, 10 patients with aortic regurgitation, eight
patients with hypertrophic cardiomyopathy, six patients
with dilated cardiomyopathy, and two heart transplant
recipients.

3.2. Image characteristics

Images of at least suboptimal quality (n = 134) were
included for analysis, leaving 10 datasets that were excluded due
to poor quality. Figure 6 shows examples of 3DE images ranging

from poor to excellent quality, as well as the distribution of
image quality across the population. Of the 10 excluded cases,
five were healthy controls, and five were patients with cardiac
disease. A summary of 3DE image dimensions and acquired
frames per cycle is presented in Table 2.

TABLE 1 Summary of participant demographics including age, sex,
body surface area (BSA) calculated using the Mosteller formula (36),
and body mass index (BMI); and indices derived from cardiac
magnetic resonance imaging including left ventricular end-diastolic
volume (EDV), end-systolic volume (ESV), mass (LVM), and ejection
fraction (EF), for the included dataset.

Control
(n = 82)

Disease
(n = 52)

Total
(n = 134)

Age (years) 37± 16
(18–74)

62± 15
(18–84)

47± 20
(18–84)

Male sex [frequency (%)] 42 (51%) 39 (75%) 81 (60%)

BSA (m2) 1.83± 0.21
(1.39–2.25)

2.01± 0.25
(1.46–2.72)

1.90± 0.24
(1.39–2.72)

BMI (kg/m2) 24.0± 3.6
(16.9–34.2)

28.3± 5.5
(16.7–48.9)

25.7± 4.9
(16.7–48.9)

EDV (ml) 139± 31
(74–220)

166± 44
(101–314)

150± 39
(74–314)

ESV (ml) 53± 16
(19–103)

74± 38
(29–235)

61± 29
(19–235)

LVM (g) 110± 30
(58–171)

170± 51
(88–314)

133± 49
(58–314)

EF (%) 62± 5
(51–74)

57± 12
(25–78)

60± 9
(25–78)

HR difference (bpm) −1± 7
(−22–25)

−1± 6
(−13–38)

−1± 6
(−22–38)

The difference in heart rate (HR) between 3DE and CMR acquisitions (calculated as
HR3DE–HRCMR) is provided as an indication of HR variability between modalities.
Continuous variables are presented as mean± standard deviation (range).
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FIGURE 6

Examples of reconstructed 3D echocardiographic image volumes (visualized with an opacity transfer function on a blue-to-red colormap) and
corresponding 2D mid-volume longitudinal slices (grayscale), showing variable quality (subjectively scored from poor to excellent). A total of 10
subjects were excluded from the study due to poor image quality.

TABLE 2 Summary of 3D echocardiography (3DE) image parameters including Cartesian image dimensions in X (elevation), Y (azimuth), Z (depth,
i.e., apex-to-base) directions, the number of frames acquired per cycle, and the contrast-to-noise-ratio (CNR) associated with subjective quality
scores across the included study population.

Dimensions (mm) Frames per cycle CNR (dB)

n = 268 X Y Z Suboptimal Adequate Good Excellent

Mean 167 168 132 36 0.526 0.649 0.831 0.930

SD 25 26 14 12 0.110 0.144 0.148 0.146

Min. 106 117 101 12 0.346 0.209 0.480 0.675

Max. 243 243 172 69 0.726 0.920 1.128 1.377

Presented values include the mean, standard deviation (SD), minimum (min.), and maximum (max.) for each parameter.

3.3. Segmentation accuracy

Figure 7 illustrates the distribution of segmentation
accuracy scores obtained by the ensembled nnU-Net model with
respect to the cavity and myocardium, evaluated on the training
set (n = 428, consisting of data from 107 subjects × 2 clips × 2
frames) and testing set (n= 108 images, consisting of data from
27 subjects × 2 clips × 2 frames). Mean test scores were Dice
coefficient = 0.766, MSD = 1.6 mm, and HD = 9.1 mm for the
myocardium; and Dice coefficient= 0.871, MSD= 1.8 mm, and
HD = 8.0 mm, for the cavity. Segmentation metrics for each of
the five separate model instances evaluated on the testing set
is provided in the Supplementary material. For comparison,
corresponding mean scores (averaged between the reported

values for ED and ES) obtained by the most accurate method
for LV cavity segmentation in the fully automatic category by
Barbosa et al. (37) and Queirós et al. (38) of the 2014 MICCAI
CETUS challenge were Dice coefficient= 0.878, MSD= 2.4 mm,
and HD= 8.2 mm.

From visual assessment, nnU-Net produced reasonable
myocardium and cavity segmentations for all test images at
both ED and ES. Mis-segmentations occurred most frequently
where LV boundaries were missing from the image, with one
such example illustrated in Figure 8A. Here, the reference
annotations show that a substantial portion of the cavity
and myocardium falls outside the acquired pyramidal volume.
Where the pyramidal volume adequately encompassed the
LV, segmentations were generally accurate, as shown in
Figures 8B, C.
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FIGURE 7

Violin plots showing the distribution and quartiles of segmentation scores in terms of Dice coefficient, mean surface distance (MSD), and
Hausdorff distance (HD), evaluated on (A) the training set (n = 428 images) and (B) the testing set (n = 108 images). For each metric,
distributions are split into the two foreground classes (i.e., myocardium and cavity), with the central box plot derived from the data of both
classes as an estimate of the overall score.

3.4. Agreement in cardiac indices

Agreement and reliability in clinical cardiac indices between
CMR and 3DE (calculated from nnU-Net segmentations
and expert manual analyses using TOMTEC) are presented
in Table 3. Higher ICC values (representing measurement
reliability with respect to CMR) were observed across all cardiac
indices, with significant reductions in the magnitude of bias
for EDV, ESV, and LVM when using nnU-Net in place of
expert manual analyses for recovering CMR-derived cardiac
indices. Bland-Altman analyses revealed narrower 95% limits of
agreement in all cardiac indices for nnU-Net compared to expert
manual analyses, with no apparent proportional bias (Figure 9).

3.5. Scan-rescan repeatability

The variability in repeated 3DE measurements is
summarized in Table 4. Both expert manual analyses and
nnU-Net exhibited excellent reliability between scan-rescan
measurements (ICC > 0.9), with the reliability of nnU-Net being
higher for all cardiac indices. Similarly, nnU-Net outperformed

the expert human observer in terms of significantly smaller
magnitudes of variance in scan-rescan biases (again for all
cardiac indices), suggesting that measurements obtained using
nnU-Net were more consistent.

4. Discussion

Guidelines and recommendations for LV chamber
quantification using echocardiography state 3DE as the
preferred method of volumetric assessment (over conventional
2DE), where available and feasible (39), in keeping with
the advantage of 3DE in being able to circumvent the need
for geometric assumptions. Recently published normative
values stratified by age, sex, and ethnic groups by the World
Alliance Societies of Echocardiography (WASE) (40) further
endorses the use of 3DE for the assessment of LV chamber
size and function. Nevertheless, 3DE has not yet been
universally incorporated into standard clinical routine due
to requiring specialized expertise in both acquisition and
analysis, resulting in higher costs compared to 2DE. Likewise,
the generation of large amounts of expert manual annotations
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FIGURE 8

Comparison of left ventricular (LV) segmentations by nnU-Net
(yellow) against reference labels (blue) derived from cardiac
magnetic resonance (CMR) imaging for test images at
end-diastole, representing the: (A) worst, (B) median, and (C)
best model performances. For visualization purposes, 3D masks
have been converted to contours representing the LV
myocardium corresponding to longitudinal (top row) and axial
(bottom row) slices. The resulting Dice coefficients for the
myocardium and cavity were: 0.440 and 0.754, respectively, for
the worst case; 0.741 and 0.924, respectively, for the median
case; and 0.856 and 0.950, respectively, for the best case.

for the development of automated 3DE analysis methods
has historically been a tedious and complex task. Having
recognized the inter-expert variability in manual analysis (such
as was experienced during the organization of the CETUS
challenge), we sought to instead leverage the higher resolution
and contrast of CMR in a supervised manner, to provide
more objective reference labels for 3DE. Furthermore, the use
of CMR-derived labels provides an implicit advantage over
manual 3DE segmentations in terms of reducing intermodality
measurement bias.

Using 536 annotated 3DE images from a heterogeneous
population of 134 human subjects comprising healthy controls
and patients with cardiac disease, the dataset was used to train a
self-configuring 3D U-Net to provide automated segmentations
of the LV cavity and myocardium at ED and ES. This automated
nnU-Net model subsequently outperformed an expert human

observer in terms of accuracy against CMR reference values,
as well as scan-rescan repeatability, whilst exhibiting increased
measurement reliability (in terms of ICC) for all measured
indices. Compared to volumes obtained using conventional
manual analyses, nnU-Net had a lower magnitude of bias
between 3DE and CMR, by 12 ml for EDV, and 10 ml for
ESV. Most markedly, myocardial mass estimates using nnU-
Net were far superior to those obtained by manual analyses.
The automated method produced a bias that was seven times
smaller in magnitude (5 g nnU-Net bias compared to 35 g
manual bias in Table 3) for LVM, and excellent reliability with
respect to CMR (where previously only moderate reliability was
attained using the manual method). While there were indeed
statistically significant differences in mean EDV and EF values
between nnU-Net and CMR, these differences (i.e., 9 ml and
2%, for EDV and EF, respectively) are clinically acceptable (41),
and unlikely to influence diagnostic outcomes or treatment
pathways. In terms of segmentation accuracy, nnU-Net achieved
a comparable Dice coefficient for the LV cavity with lower MSD
and HD scores compared to the highest-ranking method trained
and evaluated on the CETUS dataset. However, it should be
noted that these comparisons are indicative only, as results were
obtained from evaluation on a different dataset.

Signal dropout [particularly at the anterior wall (10)]
remains a major challenge in 3DE analysis. Furthermore, highly
anisotropic speckle properties and decreasing lateral resolution
(being inversely proportional to transducer proximity) obscures
the boundary between the myocardium and cavity toward the
base of the LV when imaged from the apical window. By
leveraging subject-specific geometries from CMR, our approach
provides reliable reference annotations in such regions that
are otherwise unavailable. Compared to the use of population
priors, subject-specific information is more likely to produce
labels closer to the true LV geometry for a given image instance,
which may be leveraged by computational classifiers such as
convolutional neural networks, despite not being apparent to
human observers. Although this is possible in the presence
of low contrast or poor resolution, it remains a challenge for
the ML model to predict labels in regions where image data
is entirely absent, such as that illustrated in Figure 8A. This

TABLE 3 Left ventricular end-diastolic volume (EDV), end-systolic volume (ESV), mass (LVM), and ejection fraction (EF) for the testing set (n = 54
clips) derived from cardiac magnetic resonance (CMR), corresponding 3D echocardiography (3DE) measurement biases [mean ± standard deviation
(SD)], and single measures intraclass correlation coefficients (ICC) with 95% confidence intervals in squared brackets.

CMR nnU-Net Expert (manual) Comparison

N = 54 Mean ± SD Bias ICC Bias ICC t-test f-test

EDV (ml) 153± 52 *−9± 16 0.936 [0.855, 0.968] *−21± 19 0.864 [0.301, 0.953] <0.001 0.189

ESV (ml) 66± 44 −1± 10 0.975 [0.957, 0.985] *−11± 13 0.927 [0.680, 0.972] <0.001 0.104

LVM (g) 127± 55 5± 23 0.897 [0.830, 0.939] *35± 43 0.532 [0.110, 0.754] <0.001 <0.001

EF (%) 60± 10 *−2± 5 0.889 [0.795, 0.938] 2± 6 0.825 [0.714, 0.895] <0.001 0.069

Values in bold in the Comparison column represent statistically significant differences (p < 0.05) between the means (t-test) and variances (f -test) of measurement biases for the expert
manual and nnU-Net analyses. Asterisks (*) indicate statistically significant differences between 3DE and CMR using a paired t-test.
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FIGURE 9

Bland-Altman plots showing biases and 95% limits of agreement between cardiac magnetic resonance (CMR) and 3D echocardiography (3DE)
when analyzed by an expert and with nnU-Net. The horizontal axis represents the mean of measurements obtained from 3DE and CMR, against
differences (calculated as 3DE–CMR) on the vertical axis, for end-diastolic volume (EDV), end-systolic volume (ESV), left ventricular mass (LVM),
and ejection fraction (EF). Blue shaded regions represent the magnitude of bias from zero.

highlights the importance of image quality in terms of both
texture as well as the selection of an appropriate pyramidal
volume width during acquisition, the latter of which may result
in a total lack of image information, and subsequent inability to
recover geometric information.

The use of CMR-derived labels for 3DE relies on the
assumption that there is no change in LV geometry (and
associated hemodynamic status) between modalities. Although
paired datasets were acquired with minimal time between
CMR and 3DE scans, multimodal imaging was nevertheless
performed asynchronously, with participants subject to natural

physiological (e.g., heart rate) and positional (i.e., supine during
CMR and lateral during 3DE) variability. Furthermore, different
lung volumes during the breath-hold requirements for imaging
may also influence venous return and consequently cardiac
output (42). Thus, the assumption that LV volumes are identical
for the same subject between scans consequently remains a
limitation of the described method for the utilization of labels
from a different modality. As the registration between CMR
and 3DE only accounts for the rigid transformation component
between imaging coordinate systems, it may be appropriate to
incorporate affine components (such as scaling) to account for
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TABLE 4 Scan-rescan variability in left ventricular end-diastolic volume (EDV), end-systolic volume (ESV), mass (LVM), and ejection fraction (EF) for
the testing set (n = 27 patients) in terms of measurement biases (calculated as randomized first measurement–second measurement), average
measures intraclass correlation coefficients (ICC) with 95% confidence intervals in squared brackets, and 95% confidence repeatability coefficients
(RC), derived from expert manual analyses and nnU-Net segmentations.

nnU-Net Expert (manual) Comparison

n = 27 Bias ICC RC Bias ICC RC f-test

EDV (ml) 1± 9 0.991 [0.980, 0.996] ±18 2± 17 0.968 [0.930, 0.985] ±34 0.002

ESV (ml) −1± 5 0.997 [0.994, 0.999] ±9 1± 10 0.982 [0.962, 0.992] ±20 <0.001

LVM (g) 1± 12 0.984 [0.965, 0.993] ±24 1± 24 0.944 [0.877, 0.975] ±47 0.001

EF (%) 1± 3 0.987 [0.971, 0.994] ±5 −1± 4 0.957 [0.907, 0.980] ±9 0.005

Values in bold in the Comparison column represent statistically significant differences (p < 0.05) between the variances of the biases.

changes in LV geometry as a result of acquisition conditions.
However, such changes are typically subtle for subjects at rest
(43–45).

From a practical perspective, there are several advantages
of using ML for 3DE analysis, including the reduction in
the time required for analysis (with network inference time
being approximately six seconds per 3DE image) and scan-
rescan variability when compared with conventional methods,
as exemplified in this study. The use of CMR in the
creation of training data for automated 3DE analysis methods
not only removes the measurement bias between the two
modalities, but also provides more accurate and reproducible
measurements (compared to manual analysis methods) to
facilitate integration of 3DE into clinical practice. Lastly, the
methodology surrounding the derivation of subject-specific
labels from an alternative imaging modality is not limited to
the LV, and similar approaches may be taken for other cardiac
structures, such as the RV and cardiac atria, to enable more
comprehensive examinations using 3DE.

4.1. Limitations and future work

While this work represents the largest publicly available
3DE dataset in terms of the number of labeled images,
it currently stands as a single-center, single-vendor study
(unlike CETUS, which includes data from three institutions
and three ultrasound vendors). Similarly, reference geometries
were obtained by a single observer, who performed both the
CMR analysis [although interobserver variability is generally
low (46)] as well as the manual refinement of CMR-to-3DE
alignment. The reliance on a single observer consequently
remains a limitation of this study, and further validation using
an independent dataset is needed to assess the reproducibility
of the label generation framework and overall robustness of
the proposed method. Contributions from other institutions
may also help to provide additional data variability to improve
the generalizability and performance of the ML workflow
presented here.

Although the use of 3D Cartesian images with isotropic
spacing provides a standard format for input into most ML

architectures, it is worth noting that in the case of 3DE,
approximately two-thirds of the image consists of zero-values
outside the pyramidal volume as a result of the rectangular
bounding box. This redundancy warrants investigation into
more efficient image representations and potential analysis
on un-interpolated radiofrequency data, which may improve
model performance.

As the present dataset is inclusive of ED and ES images only,
this method may be extended to include intermediary frames
and leverage temporal information (47) to enable automated
full-cycle analysis. Such data would enable more in-depth
analysis of cardiac motion or the assessment of diastolic function
for added clinical value.

5. Conclusion

In light of the ongoing efforts in developing and evaluating
automated 3DE analysis methods, we present here an annotated
3DE dataset comprising images of varying quality acquired
across a range of patient demographics, representing the
largest publicly available 3DE dataset to date, and the
first of which leverages subject specific labels from CMR.
Using this dataset, a state-of-the-art deep learning model
applied to unseen 3DE images was capable of reproducing
measurements derived from CMR, while outperforming
an expert human observer in terms of accuracy and
scan-rescan repeatability. As 3DE becomes increasingly
widespread, the provision of a novel benchmark represents a
critical step toward enabling the development of automated
tools for enhanced efficiency and accuracy of non-invasive
cardiac image analysis.
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Objectives: We developed and tested a deep learning (DL) framework applicable
to color Doppler echocardiography for automatic detection and quantification
of atrial septal defects (ASDs).
Background: Color Doppler echocardiography is the most commonly used non-
invasive imaging tool for detection of ASDs. While prior studies have used DL to
detect the presence of ASDs from standard 2D echocardiographic views, no
study has yet reported automatic interpretation of color Doppler videos for
detection and quantification of ASD.
Methods: A total of 821 examinations from two tertiary care hospitals were
collected as the training and external testing dataset. We developed DL models
to automatically process color Doppler echocardiograms, including view
selection, ASD detection and identification of the endpoints of the atrial septum
and of the defect to quantify the size of defect and the residual rim.
Results: The view selection model achieved an average accuracy of 99% in
identifying four standard views required for evaluating ASD. In the external
testing dataset, the ASD detection model achieved an area under the curve
(AUC) of 0.92 with 88% sensitivity and 89% specificity. The final model
automatically measured the size of defect and residual rim, with the mean
biases of 1.9 mm and 2.2 mm, respectively.
Conclusion: We demonstrated the feasibility of using a deep learning model for
automated detection and quantification of ASD from color Doppler
echocardiography. This model has the potential to improve the accuracy and
efficiency of using color Doppler in clinical practice for screening and
quantification of ASDs, that are required for clinical decision making.

KEYWORDS

artificial intelligence, deep learning, echocardiography, atrial septal defects, congenital

heart disease
Abbreviations

ASD, Atrial septal defect; AUC, Area under the curve; A4C, Modified apical four-chamber view; CDI, Color
Doppler imaging; CHD, Congenital heart disease; CNN, Convolutional neural networks; DL, Deep learning;
PSAX, Parasternal short-axis view; ROC, Receiver operating characteristic; SC2A, Subxiphoid sagittal view;
SC4C, Subxiphoid four-chamber view; TTE, Transthoracic echocardiography.
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Introduction

It is estimated that in 2017, nearly 1.8 cases per 100 live births

are diagnosed with congenital heart disease (CHD) worldwide (1).

Atrial septal defect (ASD) is the second most common type of

CHD, accounting for approximately 6%–10% of cases (2). Most

patients with ASD are asymptomatic and may be identified as

an incidental finding during routine echocardiographic

examinations. Early detection of appropriately sized defects

known to lead to problems later in life can prompt timely

intervention and improve cardiovascular outcomes, avoiding

substantial disability and mortality (3, 4).

Transthoracic echocardiography (TTE) with Doppler flow

imaging is currently the most widely used noninvasive tool for

detecting the presence of an ASD, especially in children (5). TTE

cannot only be used to detect and quantify the size and shape of

the septal defect, but can also be used to measure the degree and

direction of shunting, changes of the size and function of the

cardiac chambers and detect abnormal pressures and flows

through the pulmonary circulation (6). However, accurate

detection and quantification of ASD features relies on

experienced, highly trained physicians which are in short supply,

especially in rural areas (7). Furthermore, the low prevalence of

disease and variability of image quality, number of acquired

views and interpretation of TTE images causes low sensitivity

and specificity of ASD detection (4), all of which hinder referral

for treatment. Therefore, an effective solution for efficient,

accurate and objective detection and grading of ASDs is critically

needed.

Deep learning (DL) models have been applied for automated

detection and assessment of cardiovascular diseases based on

echocardiographic images and videos. Such models can complete

a variety of tasks such as, image quality assessment, view

classification, boundary segmentation, disease diagnosis and

automatic quantification (8–12). However, there is no prior study

investigating the effectiveness of a DL model for detecting ASD

based on color Doppler images. Accordingly, we developed and

validated a DL model for automated detection and quantification

of ASDs (Figure 1).
Methods

Study population

This study involved algorithm development and initial testing

based on a retrospective data set, and final testing from a

prospective, real-world data set of consecutively acquired

echocardiographic studies. 396 TTE examinations obtained

between July 2020 and April 2021 from Anzhen hospital served

as our training dataset. A total of 425 consecutively obtained

examinations between May 2020 and Dec 2020 from the Chinese

PLA General Hospital were collected as the external testing set,

which including 48 ASD cases and 377 cases without ASD. The

age of all cases in both training and testing datasets was less than
Frontiers in Cardiovascular Medicine 02194
18. ASD diagnostic criteria were based on the 2015 ASE

guideline (6), as detailed below. The ground truth for the

presences of an ASD was based on the diagnosis present in the

electronic medical record and echocardiographic clinical report

which were provided by experienced echocardiography readers

and reviewed by cardiologists who authorized the final reports.

Other hemodynamically significant cardiac lesions (such as

tetralogy of fallot and valvular heart disease) were excluded.
Echocardiography

Each echocardiographic study was acquired through standard

methods. Four standard views were suggested by ASE guideline

for detection and quantification of ASDs (6): (1) the modified

apical four-chamber view (A4C); (2) the parasternal short-axis

view (PSAX); (3) the subxiphoid sagittal view (SC2A); and (4)

the subxiphoid four-chamber view (SC4C). These images were

acquired from a diverse array of echocardiography machine

manufacturers and models including Phillips iE-elite and 7C

with transducer S5-1 and X5-1 (Phillips, Andover, MA, USA),

Vivid E95 (General Electric, Fairfield, CT, USA), Mindray M9cv

with transducer SP5-1s (Mindray, Shenzhen, Guangdong, China),

Siemens SC2000 with transducer 4V1c (Siemens, Munich,

Germany). All images were downloaded and stored with a

standard Digital Imaging and Communication in Medicine

(DICOM) format according to the instructions from each

manufacturer.
View selection

We labeled 3,404 images to develop a method to classify 29

standard views, and then selected the 4 views required for

detection and quantification of ASD detailed above. View

selection was performed using a Xception Net neural network

model according to methods that were similar to those described

previously (8, 10, 13).
Segmentation

We selected 792 videos inclusive of the four standard color

Doppler views required for segmentation from among the ASD

cases. However, not every case had all four standard views,

restricted by the limitation of retrospective data and the

improper body position during examination. The atrial septum

and margins of the defects were annotated with the LabelMe

(Figure 2). In the modified apical four-chamber and subxiphoid

four-chamber views, we labelled the atrial septum from

atrioventricular valve to the roof of the atria (boundaries

indicated by the dots in Figure 2). In the parasternal short-axis

view, we labelled the atrial septum from aortic adventitia to the

roof of the atria. In the subxiphoid sagittal view, we labelled the

atrial septum from the bottom to the roof of the atria. We

labelled the defect based on the width of the shunt jet detected
frontiersin.org
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FIGURE 1

Work flow of the ensemble model. Step 1: raw echocardiographic videos are separated for classification of views (red box). Step 2: disease detection
models use different views to detect the presence of ASD (orange rectangles). Step 3: if ASD is present (denoted by “yes”), metrics associated with
severity of ASD are assessed (blue rectangles). DL, deep learning; ASD, atrial septal defect.

FIGURE 2

Example of manual segmentation. Green dots were manually labeled as the endpoints of atrial septum and defect with the open-source program
LabelMe. (A) Modified apical four-chamber view (A4C). (B) Parasternal short-axis view (PSAX). (C) Subxiphoid sagittal view (SC2A). (D) Subxiphoid four-
chamber view (SC4C).
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on color Doppler flow images and the anechoic area of atrial

septum in each view.
Detection of atrial septal defect

For the ASD detection task, videos were labelled as either ASD

or normal based on the electronic medical record and

echocardiographic clinical report. Each frame was resized to

240 × 320 pixels from 600 × 800 DICOM-formatted images. The

pixel value was normalized to between 0 and 1. No clipping or

interpolation operations were performed on frame numbers;

therefore, the number of frames used for the analysis differed

from video to video. To effectively increase the number of videos

for training, we employed affine transformations including

RandomShift (10%), RandomScale (10%) and RandomRotation

(20°). The batch size was set to 1 because of the difference of

frame number. Finally, we adopted the Adam optimizer with a

weight decay of 1e-5. The learning rate was set to 3e-5. All

models were trained on an Nvidia Tesla P100 GPU.

The ASD detection network architecture was shown in

Figure 3A. The model was based on the ResNet architecture

with modifications (14). First, we used a frame-based max pool

to fuse blood flow information in each frame. Second, we used

Atrous Spatial Pyramid Pooling (ASPP) to increase the visual

field of the convolution feature extractor. ASPP consisted of a

global average pool layer and four convolution layers with

dilation coefficients of 1, 4, 8 and 12 respectively. Third, we used

GroupNorm to replace BatchNorm since the batch size was

1. The loss function was binary cross-entropy. Finally, the model

could provide the ASD probability of each frame in the video.

Therefore, the frame with the highest probability would be

selected as the keyframe of model diagnosis. We have made our

code available at GitHub (15).
Quantification of atrial septal defect

For the quantification tasks, each frame was labelled with 4

points, two of which were the edges of the ASD, and the other

two were the ends of the septum. Each frame was resized to

240 × 320 pixels. The pixel value was normalized to between 0

and 1. For the training stage, we randomly clipped 16

consecutive frames as an input from the video. Because of the

large number of training epochs, we believed that the model had

fully learned the entire information for each training sample. For

validation and testing stage, each video was clipped into multiple

segments. According to the majority voting principle, we made

the prediction from those of segments. Each prediction took into

account all the video information and did not receive the impact

of randomness. We adopted the same affine transformation

described above. In this case, the batch size was set to 2. We

adopted Adam optimizer with a weight decay of 1e-5. The

learning rate was set to 3e-5. All models were trained on an

Nvidia Tesla P100 GPU.
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The quantification network architecture was shown in

Figure 3B. The networks architecture adopted UNet-style design

(16). There were two dilemmas in using deep learning to fulfil

the ASD quantification task.

Firstly, measuring the length of ASD was defined as a

segmentation task, so we also adopted the structure of 3D-UNET

(16). However, the performance was far less than expected.

Segmenting the area of atrial septal defect was not a routine

segmentation task. The common segmentation task assumes a

segmentation boundary in the image, but the atrial septal defect

was a disappearing region. Experienced doctors need to annotate

the region based on sequent images. Therefore, we defined the

task of quantifying ASD as key point detection since each key

point exists in the image. We continued 3D-Unet-style and

applied it to the task of key point detection.

The second point was how to make the neural network

perform similarly to the senior physician. We have made two

improvements: we have added different scales of auxiliary loss so

that the model was from coarse to fine for key point

identification; we found that the temporal convolution was

unsuitable for the ASD key point detection task in

echocardiography and therefore replaced it with a temporal

transformer to overcome the long-range dependence dilemma of

the frame dimension. The dependency dilemma can be described

as follows: the key point detection of unclear video frames

depends on the information obtained from the previous and next

video frames. Such unclear video frames were present in human

pose detection (17), for example, in the form of occlusion or

overlap. However, this occlusion or overlap exists for a short

period of time, usually no more than 3 consecutive frames. In

echocardiography, most of the frames were not clear enough.

Therefore, an experienced sonographer will prioritize the key

points in clear video frames and then identify key points in other

frames that were not clear enough. Convolution was a natural

local attention mechanism and was not global, so using

convolution to extract features will suffer long-range forgetting

dilemma. As a simple example, suppose we use a 3 × 3 × 3

convolution kernel for 3D convolution and we want the features

of frame i to fuse the features of frame j. If ji� jj � 1, then the

features of i and j were ready for fusion in the 1st convolutional

layer. If ji� jj � 3, then the features of i and j need to go to the

3rd convolutional layer before they can be fused with each other.

If the distance between frame i and frame j was long, the long-

range forgetting dilemma will occur. In order to allow the

features of clear video frames to be efficiently propagated

throughout the whole video, we use the temporal transformer

module. The structure of temporal transformer was shown in

Figure 3C. Firstly, CNN-based extractor extracted the feature

from each frame. In each temporal transformer module, the

feature was transferred to three parts, query (q), key (k) and

value (v). We calculated the correlation between q and k, which

was called self-attention. We had 16 frames (tokens) so that the

correlation map was 16 × 16. This map represented the

correlation between any two frames. Finally, we used the

correlation map processed by softmax as the weight, and sum the

value. For the whole model, we only downsampled in the spatial
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FIGURE 3

Detailed description of model architecture. (A) ASD detection neural network architecture, based on Resnet-18, combined with ASPP to increase visual
field. The output of the model is the probability of ASD between 0 and 1. (B) ASD quantification neural network architecture, combining spatial
convolution and temporal transformer, had three auxiliary outputs and one output from coarse to fine. Each auxiliary output is added to the feature
map as an additional feature. (C) Structure diagram of temproal transformer. Each frame is encoded into a feature token by CNN. Self-attention
could realize the long-distance dependence between frames. q, query; k, key; v, value.
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dimension, and did not downsample in the temporal dimension so

that for each temporal transformer block, the token number was

always 16.

In addition, we have made the following adjustments:

considering the cost of computation and time, we used the 2D

spatial convolution and temporal transformer to replace the 3D

convolution. Second, we used GroupNorm to replace BatchNorm

since the batch size was small. Video x [ RW�H�F (W means

width, H means height and F means frame) goes through

convolutional layers for feature extraction in W and H spatial

dimensions. Then the W and H dimensions were merged into

token T so feature map can be writen as f [ RW 0�H0�F or

f [ RT�F . The token of each frame was spliced with the

corresponding position code, and then can be used as the input

of the temporal transformer. The self-attention mechanism

follows the design of ViT (18). The model can be divided into 4

stages, each containing a spatial downsampling layer, spatial

convolution layers and a temporal transformer module.

The model provided an index of the “confidence” with which

the septal length was estimated. Confidence was calculated as the

percent of “stable frames” contained in the entire video. A frame

was designated as “stable” if the absolute difference of the AI-

predicted septal length from that of the prior frame divided by

the average length of the 2 frames was less than 0.5. The model
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only calculated defect size and septal length based on the stable

frames. Specifically, septal length was calculated as the average

value of the lengths on all stable frames. ASD defect size was

calculated the largest value among all stable frames. Accuracy of

measurements of atrial septal lengths and defect sizes were

compared to those made by expert echocardiographers using

Bland & Altman analysis.
Statistical analysis

Analyses were performed using algorithms written in Python

3.6 from the libraries of Numpy, Pandas, and Scikit-learn.

Continuous variables were expressed as mean ± standard

deviation, median and interquartile range, or counts and

percentage, as appropriate. Comparisons of reports and machine

algorithm performances were performed using one-way analysis

of variance (ANOVA), followed by the least significant difference

(LSD) t-test. Results were regarded as statistically significant

when P < 0.05. The models were assessed according to the area

under the receiver operating characteristic (ROC) curves which

plotted sensitivity vs. 1-specificity derived from the model’s

prediction confidence score. All calculations were performed by

using IBM SPSS version 23.0.
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Results

Characteristics of study population

A total of 821 patients with transthoracic echocardiographic

examinations were included. The clinical and echocardiographic

characteristics of included cases were summarized in Table 1. In

the training dataset, patients with ASD had a median age of 3

years (IQR: 1, 10), 34.3% were male, and EF had a mean value

of 70.0 ± 5.0. In the external testing dataset, patients with ASD

had a median age of 1 years (IQR: 0, 9), 52.0% were male, and

ejection fraction (EF) had a mean value of 64.7 ± 5.3.
Model for view selection

As summarized in Supplementary Figure S1, the deep-

learning model identified four standard color Doppler views with

an average accuracy of 0.99, including apical four-chamber view

(0.97), parasternal short-axis view (0.99), subxiphoid frontal view

(0.99) and subxiphoid sagittal view (1.0).
Model for detection of atrial septal defect

For each echo-Doppler video, the ASD detection model

provided a probability level for the presence of an ASD; the

frame with the highest probability was tagged as the keyframe of

the video (examples shown in Supplementary Figure S2). The

ROCs for the detection of an ASD in each of the 4 views for the

external validation dataset were shown in Figure 4. The AUROC

for ASD detection ranged from 0.901 to 0.956 for the individual

views. The final diagnosis was made by the composite classifier

model, which had an AUROC= 0.92. Youden’s Index was used

to evaluate model performance, which yielded sensitivities of

87.8% and specificities of 89.4% (Figure 4 and Table 2).
TABLE 1 Baseline characteristics of the training and testing dataset.

Training dataset Testing dataset

ASD Control ASD Control
N 198 198 48 377

Age (years) 3 (1,10) 3 (1,6) 1 (0,9) 5 (1,13)

Male patients (%) 68 (34.3) 105 (53.0) 25 (52.0) 238 (63.1)

Height (cm) 112.6 ± 34.8 107.4 ± 28.3 88.6 ± 35.5 125.2 ± 35.2

Weight (kg) 26.9 ± 21.3 22.2 ± 14.7 16.5 ± 20.5 30.0 ± 22.5

Echo parameters
LV EF (%) 70.0 ± 5.0 70.0 ± 5.3 64.7 ± 5.3 65.6 ± 3.5

LV EDD (mm) 30.8 ± 7.4 34.6 ± 6.8 23.4 ± 9.8 33.4 ± 8.4

LV ESD (mm) 19.1 ± 6.5 21.0 ± 4.6 14.5 ± 6.9 20.7 ± 5.8

LA AD (mm) 21.8 ± 7.3 21.0 ± 5.0 16.4 ± 7.2 22.1 ± 5.6

E/A 1.7 ± 1.5 1.7 ± 0.5 1.6 ± 0.5 1.7 ± 0.5

ASD, atrial septal defect; LVEF, left ventricular ejection fraction; LV EDD, left

ventricular end-diastolic dimension; LV ESD, left ventricular end-systolic

dimension; LA AD, left atrial anteroposterior dimension.
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Model for quantification of atrial septal
defect

Examples of segmentation model outputs were shown in the

still image of Figure 5. As shown, the blue dots show where the

DL model identified the ends of the atrial septum, while the

orange dots show the model-identified edges of the ASD.

Examples of frame-by-frame segmentation throughout entire

videos, along with the model-derived measurements of the defect

size and rim lengths compared to those measured by the expert

physicians were shown in the videos provided in with online

supplement material. These videos show results obtained from

different echocardiographic views and different image qualities.

As detailed in Methods, the model provided an index of the

“confidence” with which the septal length was estimated.

Examples of results with different confidence levels were shown

in Figure 6. The quantification model had greater performance

in videos with higher confidence values; the relationships

between the absolute difference between AI- and expert-

determined septal length and ASD lengths as a function of the

confidence values were shown in Supplementary Figure S3.

Results of the Bland & Altman analysis comparing values

provided by the AI algorithm and experts’ measurements were

summarized in Figure 7. The mean bias for the measurement of

defect size and septum length were 1.9 and 2.2 mm. We also

recruited three experts to measure defect size and septum length

in the test dataset. As shown in Supplementary Figure S4, the

mean biases of defect size were respectively 1.5 mm, 2.3 mm,

0.3 mm, and the mean biases of septum length were respectively

0.8 mm, 2.1 mm, 1.2 mm. Despite the fact that inter-expert

variability was lower than the AI model bias, the difference was

insignificant. Therefore, we believed that the bias of algorithm is

comparable to that encountered in current clinical practice.

Applying these automatic measurements to the indications and

contraindications detailed in the 2015 ASE guidelines, we used the

model to predict whether a given patient should be referred for

transcatheter intervention (6). The results of the prediction were
FIGURE 4

The performance of ASD detection model in the external dataset. The
performance of composite classifier model (red curve) had an AUROC
of 0.92. Abbreviations as in Figure 1.
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TABLE 2 Model performance for ASD detection in different views.

AUC Sensitivity Specificity
Composite 0.921 87.8% 89.4%

A4C 0.901 85.0% 84.4%

PSAX 0.952 95.7% 91.9%

SC2A 0.952 91.3% 83.8%

SC4C 0.956 92.5% 92.3%

Abbreviations as in Figure 1.
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compared with the recommendations provided by an expert

physician, who applied his own manual measurements to the

guideline recommendations. The accuracy of model to predict

the expert’s conclusion was 85.4% (Supplementary Table S1).
Discussion

Echocardiography is the primary method for confirming the

diagnosis of an ASD, for defining its anatomic and physiological

characteristics and for deciding upon the need for and approach

to treatment. However, accurate interpretation of

echocardiograms for each of these purposes is in many respects

subjective and time-consuming, requiring highly skilled clinicians

which are not readily available in all hospitals. With the

advantages of objectivity, efficiency, accuracy and consistency,

deep learning (DL) models have been shown to be helpful in

interpreting medical images in many fields of medicine (19–21),

including echocardiography (8–12). However, ours is the first

study to employed DL model for accurate detection and

quantification of ASD through automated interpretation of color

Doppler videos.

As in most DL models applied to echocardiography, the first

step in our pipeline was echocardiographic view classification

(22–24). However, newly introduced in our study is a
FIGURE 5

The output of quantification model in different views. The first row, one exampl
and SC4C view; orange and blue dots are the endpoints of defect and septum
the variation of defect and septum in the video. Abbreviations as in Figure 1.
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classification model that includes color Doppler views. This

model automatically selected the guideline-recommended

echocardiographic views required for the detection and

quantification of ASD with a high degree of accuracy.

The next step was implementation of a DL model to detect the

presence of an ASD based on interpretation of the color Doppler

views. This model also proved to be accurate, with high levels of

sensitivity and specificity for disease detection. Similar degrees of

detection accuracy were reproduced in all four echo-Doppler

views examined and the AUC of the composite classifier model

reached to 0.92. In addition, to address the “black box” problem

and improve the interpretability, our model also automatically

identified the key frame which can be provided to the clinician

as a reference for final diagnosis and manual verification.

Accordingly, the model has the potential to be used as a

screening tool to aid doctors in identifying patients with an ASD,

particularly in geographies where access to expert clinicians is

limited.

Following view selection and disease detection, the final step

was automated quantification of ASD size and the length of the

residual rim; these are critical for determining the need for, and

choice of treatment: transcatheter intervention or cardiothoracic

surgery. To make these measurements, the quantification model

automatically located the endpoints of the atrial septum and of

the defect. In order to ensure the stability and reliability of

automated quantification, the model generated an index of

“confidence” with which the septal length was estimated.

Naturally, the quantification model had greater performance in

videos with higher confidence values. The performance of the

algorithm was assessed by the bias of measurement of defect size

and septum length, which provided a quantitative index of the

degree of concordance between the DL model and expert

physicians. Values of bias achieved by the model were low.

Because the model explicitly detected and displayed the location

of endpoints of the septum and defect, physicians can readily
e test image of patients with ASD is shown respectively in A4C, PSAX, SC2A
predicted by DL model. The second row, corresponding curves showing
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FIGURE 6

The output of quantification model with different confidence levels. The first row, one example test image of A4C view is shown respectively with the
confidence of 0.9, 0.7, 0.5 and 0.3. The second row, corresponding curves showing the variation of defect and septum in the video.
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verify the accuracy of the DL algorithm on a case-by-case basis. All

these features are illustrated in the videos provided on the online

supplemental material.

Finally, we note that whereas the metrics of defect and rim size

are helpful for deciding between use of a transcatheter or surgical

intervention, such decisions are not made based on these metrics

alone. According to society guidelines (6) such decisions should

be made based on additional metrics and other imaging

approaches, such as transesophageal echocardiography and three-

dimensional imaging. While this tool has potential utility in

areas where access to expert physicians is limited, the method

was trained and validated on images acquired by experts. So its

translation to resource-limited environments might require

additional adaptations to give real-time feedback on image

quality if datasets are acquired by individuals with limited

specialization in echocardiography of congenital defects.
FIGURE 7

Comparisons of quantitative metrics derived from the deep learning (DL) algori
compare automated and manual measurements for septum length and defec
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Related work

Recent studies have shown remarkable performance of deep

learning models in diagnosing ASDs (25–28). Wang et al.

proposed an end-to-end framework which automatically analyzed

multi-view echocardiograms and selected keyframes for disease

diagnosis. As a result, the framework differentiated ASD, VSD

and normal cases with an accuracy of 92.1% (25). Rima et al.

used fetal screening ultrasound to train a DL model for these

tasks, including view selection, segmentation and complex

congenital heart disease detection. In the test of 4,108 fetal

sonograms, the model achieved an AUC of 0.99 in distinguishing

normal from abnormal hearts, which was comparable to expert

clinicians’ performance (26). Zhao et al. developed a variant of

U-Net architecture to segment the structure of the atrial septum

in magnetic resonance images of pre- and post-occlusion ASD
thm and physician based on bland and altman analysis. Bland-Altman plots
t size in A4C, PSAX, SC2A and SC4C view. Abbreviations as in Figure 1.
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patients, with mean Dice index of 0.81 (27). Mori et al. proposed a

DL model that used electrocardiograms (ECGs) to detect the

presence of ASDs. This model outperformed 12 pediatric

cardiologists in diagnosing ASD from ECG interpretations, with

an accuracy of 0.89 (28). However, ours is the first study to detect

the presence of an ASD based on multiple color Doppler views

and to automatically identify the margins of the atrial septum and

the margins of the ASD in order to provide quantitative

measurements of ASD size and rim size. These represent

significant advances since quantification of these anatomic features

of an ASD are critical for determining treatment. Specifically,

according to the 2015 ASE guideline (6), echocardiography

provides important information for deciding on whether or not to

treat an ASD and whether the defect is most suitably treated by

transcatheter or surgical techniques. In this regard, studies have

shown that ASD diameter measured directly at surgery is most

accurately estimated by color flow Doppler echocardiography,

while significant errors can arise if measurements are estimated

from standard 2D echocardiograms alone (29).
Limitations

The results of our study need to be considered within the

context of several limitations. First, all of the images were

acquired by transthoracic echocardiography (TTE) rather than

transesophageal echocardiography (TEE), as most of the included

population were children who cannot tolerate TEE examination.

Additionally, patients did not undergo cardiac computed

tomography or magnetic resonance imaging, which can provide

more detail information of ASD anatomy. Second, the training

and testing dataset is based on images obtained from children.

Despite the low prevalence, the algorithm performed very well to

identify and quantify the sizes of these ASDs. This indicates that

the absolute size of the heart does not influence accuracy of the

model since the images are ultimately scaled to the same pixel

dimensions with adequate special resolution. Third, limited by

the retrospective nature, the study included a relatively small

number of patients. Although our model achieved good

performance in the external test set, testing of the model in a

prospective multi-center cohort is warranted. Finally, the “black

box” problem of our DL algorithm poses an inherent

impediment to acceptance into clinical practice because of the

opaqueness on how diagnoses are made. To overcome this

limitation, we implemented an algorithm which provided

keyframe selected by the DL model and identified the endpoints

of defect and the septum on the images. This is intended to

promote physician confidence in the model-based diagnoses and

measurements. Even then, it is emphasized that the algorithm is

intended to assistant, not replace, physician decision making.
Conclusion

We developed and validated a novel deep learning model

applicable to color Doppler echocardiography for automatic
Frontiers in Cardiovascular Medicine 09201
detection and quantification of atrial septal defect and rim sizes.

This model has the potential to improve the accuracy and

efficiency of color Doppler echocardiographic screening and

quantification of ASDs.
Perspectives

Competency in patient care and procedural
skills

Echocardiography is the most commonly used non-invasive

imaging tool for detection and quantification of atrial septal

defects. Manual evaluations of echocardiographic videos required

highly skilled clinical experts and is a time-consuming process.
Translational outlook

Algorithms based on deep learning approaches have the

potential to automate and increase efficiency of the clinical

workflow for detecting atrial septal defects and measuring the

size of defect and the residual rim.
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