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Editorial on the Research Topic

Editor’s Pick 2021: Highlights in Cell Growth and Division

The section “Cell Growth and Division” of Frontiers in Cell and Developmental Biology was started
6 years ago with the aim to capture exciting research in the broadest possible term of cell and
developmental biology. This section has come a long way and after publishing approximately 900
manuscript, it is well established.

For the year 2021, we decided to launch a “research topic” named “Editor’s Pick 2021: Highlights in Cell
Growth and Division” to highlight some of the exciting manuscript that were published. The goal was to
capture and highlight some of the exciting manuscripts, which reflect this section’s goals in the broadest
sense. Therefore, you should not be surprised to find topics like neural (stem cell) differentiation (Ly and
Wang; Yan et al.), spermatogenesis (Rahman and Pang; Zheng et al.), hair development (Fukuda et al.),
neural development (Su et al.), genetic mouse engineering (Jang et al.), hearing loss (Zhong et al; Yang
etal.), cell cycle (Creff and Besson; Jang et al; Ly and Wang), cytokinins (Gibb et al.), gastric cancer (Jiang
et al.), cardiomyocyte regeneration (Bo et al.), and metabolism (Su et al; Bo et al.). Although all these
topics are exciting and are well reflected in our section, we seek manuscripts also in other emerging
research fields that are connected to cell and developmental biology.

I would like to thank all the authors of the manuscripts of the research topic “Editor’s Pick 2021:
Highlights in Cell Growth and Division” for their contribution to science, to their research field, and
to our section. At the same time, I should highlight the efforts of all the associate editors and review
editors without whom we could not run a successful journal.

Since we have now started a new year, I am looking forward to a lot of exciting research and hope
that some of it will be published in our section.
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New Biological Insights on Xand Y
Chromosome-Bearing Spermatozoa

Md Saidur Rahman and Myung-Geol Pang*

Department of Animal Science and Technology and BET Research Institute, Chung-Ang University, Anseong, South Korea

A spermatozoon is a male germ cell capable of fertilizing an oocyte and carries genetic
information for determining the sex of the offspring. It comprises autosomes and an X
(X'spermatozoa) or a'Y chromosome (Y spermatozoa). The origin and maturation of both
X and Y spermatozoa are the same, however, certain differences may exist. Previous
studies proposed a substantial difference between X and Y spermatozoa, however,
recent studies suggest negligible or no differences between these spermatozoa with
respect to ratio, shape and size, motility and swimming pattern, strength, electric
charge, pH, stress response, and aneuploidy. The only difference between X and Y
spermatozoa lies in their DNA content. Moreover, recent proteomic and genomic studies
have identified a set of proteins and genes that are differentially expressed between X
and Y spermatozoa. Therefore, the difference in DNA content might be responsible for
the differential expression of certain genes and proteins between these cells. In this
review, we have compiled our present knowledge to compare X and Y spermatozoa
with respect to their structural, functional, and molecular features. In addition, we have
highlighted several areas that could be explored in future studies in this field.

Keywords: X spermatozoa, Y spermatozoa, sperm function, proteome, genome

INTRODUCTION

A spermatozoon is a male reproductive cell that is produced in testis by highly orchestrated
processes called spermatogenesis and spermiogenesis. During spermatogenesis, undifferentiated
spermatogonia (stem cells) transform into type Aj spermatogonia (differentiated cells). Eventually,
by the process of several mitotic cell divisions, type A; spermatogonia become type B
spermatogonia (Leblond and Clermont, 1952; Oakberg, 1956). Type B spermatogonia subsequently
undergo a final round of mitosis to form the primary spermatocytes (only two cells are
shown) that further proceed to meiosis (Figure 1). Through the first meiotic cell division,
the primary spermatocyte yields two secondary spermatocytes, which then enter the second
meiotic division and divides into four round spermatids that contain either the X or Y
chromosomes (Leblond and Clermont, 1952). Finally, the haploid round spermatids differentiate
to elongated spermatids and ultimately into spermatozoa by the process of spermiogenesis
(Hendriksen, 1999). During this entire process, the spermatogenic cells migrate from the
basement membrane toward the center of the seminiferous tubule and released into the lumen.
It has been reported that cytokinesis is not complete during mitotic and meiotic divisions
of these processes (Hendriksen, 1999). As shown in Figure 1, spermatogenic cells from the
same type of A} spermatogonium form a syncytium and are connected by intercellular bridges
that persist until the end of spermatogenesis (Braun et al., 1989). This intercellular bridge
permits free cytoplasmic communication among the cells with different genotypes. Because ions
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and molecules (including genes and proteins) readily pass
through these intercellular bridges, each cell containing either X
or Y chromosome are matured synchronously (Braun et al., 1989;
Jasin and Zalamea, 1992). Therefore, the origin, maturation, and
functions of both X and Y chromosome-bearing spermatozoa are
mostly identical.

Subsequently mature spermatozoa are released in semen
during ejaculation, and is capable of fertilizing an oocyte,
followed by contributing half of the genetic material to the
offspring (Clapham, 2013; Rahman et al., 2013). Based on the
chromosomal content, spermatozoa are of two types, that is, those
bearing the X chromosome (X spermatozoa) and Y chromosome

(Y spermatozoa) (Shettles, 1960; Gellatly, 2009). If the X
spermatozoon combines with the mother’s X chromosome, the
resulting offspring is a baby girl (XX), whereas if Y spermatozoon
fertilizes the mother’s oocyte, the resulting offspring is a baby
boy (Gellatly, 2009). Certain preliminary studies reported several
morphological differences between the X and Y spermatozoa
using phase-contrast microscopy (Shettles, 1960; Cui and
Matthews, 1993; Cui, 1997); however, most of the recent studies
indicate that no major differences exist between the two sperm
types (Hossain et al, 2001; You et al, 2017) except their
DNA content. The discrepancy in these results, from the early
and recent studies, is presumably due to relatively non-specific
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methods used by the early investigators to differentiate between
the X and Y spermatozoa (Hossain et al.,, 2001). Therefore, to
understand the real differences between the two sperm types,
a thorough discussion of both cells needs to be emphasized.
In the present review, we summarized the existing scientific
evidence to compare the X and Y spermatozoa considering their
morphophysiological and molecular characteristics. In addition,
we have highlighted the proteomics and genomics aspects of
both cells, and investigated their clinical significance, in order to
predict whether this difference could explain the occurrence of
particular diseases in a sex-specific-manner.

SEARCH SCHEME AND ARTICLE
SELECTION

PubMed search engine was used to thoroughly search the
MEDLINE database for literature on X and/or Y spermatozoa
using the following search terms: ratio, shape, size, gender
selection, motility, swimming pattern, velocity, CASA, FISH,
flow cytometric analysis, Percoll gradient, albumin gradient,
swim-up method, viability, electrophobicity, electronegativity,
pH tolerance, surface properties, Y-specific antigen, HY antigen,
stress response, oxidative stress, endocrine disruptors, pesticide
exposure, environmental toxicants, heat stress, DNA damage,
chromosomal abnormality, aneuploidy, XX aneuploidy, XY
aneuploidy, YY aneuploidy, proteomics, disease, gender-specific
disease, and genomics. Full-text articles and abstracts in English
language on X and Y spermatozoa published before December,
2019, were included in the review after screening their content.
All article types such as original articles, reviews, letter to the
editor, editorials, opinions, and debates were included in the
review. Retracted papers were excluded by thoroughly checking
the corresponding journal websites.

MORPHOPHYSIOLOGICAL
CHARACTERISTICS OF X AND Y
SPERMATOZOA

A mature mammalian spermatozoon comprises three distinct
parts, namely, head, mid-piece, and tail (containing genetic
material, mitochondria, and axial filament, respectively). Due to
their unique organization, spermatozoa are different from the
other cells. In this section, we will compare X and Y spermatozoa
based on their morphological and physiological characteristics.

Ratio

During mammalian spermatogenesis, meiosis produces 50:50
ratio of X and Y spermatozoa according to Mendelian
segregation. Therefore, the natural sex ratio during
spermatogenesis is expected to be 1:1 (Umehara et al,
2019). An intensive literature search produced three major
findings on the ratio of X and Y spermatozoa: (1) proportion
of X spermatozoa was higher than that of Y spermatozoa
(Martin et al., 1983; Bibbins et al., 1988), (2) proportion
of Y spermatozoa was higher than that of X spermatozoa

(Landrum and Shettles, 1960; Shettles, 1960; Quinlivan and
Sullivan, 1974), and (3) no difference existed in the proportion of
the two sperm types (Van Kooij and Van Oost, 1992; Goldman
etal., 1993; Han et al., 1993a).

It has been reported that an uncharacterized (unidentified)
gene controlled the ratio of X and Y spermatozoa such that
men with more brothers had a higher probability of having
sons and those with more sisters had a higher probability
of having daughters (Gellatly, 2009); however, these findings
are mostly hypothetical, and presence of such a gene has
not yet been confirmed. Moreover, a non-significant increase
of Y spermatozoa in men with only sons (>3) or the X
spermatozoa in men with only daughters (>3) has been
reported in another investigation (Irving et al,, 1999). Several
previous studies from 1970 to 1980 suggested that paternal age
differentially affected the ratio of X and Y spermatozoa, thus
altering the secondary sex ratio of the offspring in a particular
population (Erickson, 1976; James and Rostron, 1985; Ruder,
1985). Nevertheless, this finding was also proven to be imprecise
by other contemporaries (Curtsinger et al., 1983; Martin et al,,
1995a,b). Apart from the debate, it has been reported that an
active gene transcription occurs selectively in the chromosomes
(including sex chromosomes) of haploid round spermatids
(Hu and Namekawa, 2015). Therefore, if the composition
of sex chromosomes has changed due to the post-meiotic
modifications in the gene expression and differential survival of
spermatozoa during epididymal maturation, these may affect the
expected ratio (Bean, 1990). In a recent study, Umehara et al.
(2019) reported that ligand activation of Toll-like receptors 7/8
(TLR7/8), selectively encoded by the X chromosome, significantly
suppress the motility of X spermatozoa without altering their
ability of fertilization. This procedure allows producing over
90% of the male embryos following in vitro fertilization using
ligand-selected highly motile spermatozoa. In another study
using knockout (KO) mice model, Rathje et al. (2019) reported
that partial deletions of the Y chromosome (Yqdel) in males
produce an equal number of X and Y spermatozoa. Although
both sperm types are equally capable of fertilizing oocytes once
at the site of fertilization, they exhibit a functional (motility and
morphology) difference from each other that potentially skewed
offspring sex ratio. Consistent with these findings, Kruger et al.
(2019) also showed that complete deletion of the X-linked Slxl1
gene produced more male offspring by regulating post-meiotic
germ cells transition (round spermatids to elongated spermatids).

An increased incidence of Y aneuploidy in spermatozoa was
reported in another study, which selectively eliminated the Y
spermatozoa and increased the proportion of X spermatozoa
in mice and humans (Chaudhary et al, 2014). In accordance
with this finding, we also reported that the viability of human
Y spermatozoa is lower than that of X presumably due to the
increased expression of apoptotic proteins in the live Y cells
under stressful conditions, in vitro, thus, subsequently leading to
shifts in the Y-to-X ratio (You et al., 2017). These findings indicate
that functional properties of X and Y spermatozoa differ under
certain in vivo/in vitro conditions due to the transcription of
specific genes in particular cell types subsequently leading to the
altered sex ratio at birth. Therefore, several factors, particularly
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TABLE 1 | Summary of the ratio of mammalian X and Y spermatozoa.

Cells Hybridization
References Species (spermatozoa) analyzed Methods Outcome measure efficacy Xy
Han et al., 1993b Human (21-45 years) 813,066 Multicolor FISH Fluorescence microscopy NM 1.07:1
Mouse (6-8 weeks) 10,390 1.24:1
Eisenberg et al., 2012 Human NM Multicolor FISH Epifluorescence microscopy NM 1:1.06
(Zeiss Axiophot)
Oligospermic man 1:1.08
Smith et al., 2004 Human (cryopreserved) ~1000 Multicolor FISH Epifluorescence microscopy 99 ~1:1
(Zeiss Axiophot)
Hossain et al., 2001 Human 3300 Multicolor FISH Fluorescence microscopy >98 ~1:1
Recio et al., 2001 Human (18-47 years) 9944-10,250 Multicolor FISH Epifluorescence microscopy 99 1:1.03
(Zeiss Axiophot)
Szyda et al., 2000 Bull 2122 1.156: 1
Irving et al., 1999 Man with only sons (>3) NM Multicolor FISH Leitz Laborlux Ploemopak NM 1.102:1 (NS)
fluorescence microscopy
Man with only daughters (>3) 1:1.17 (NS)
Hassanane et al., 1999 Bull >10,000 Multicolor FISH Fluorescence microscopy NM ~1:1
Chandler et al., 1998 Bull ~100,000 PCR UVNVIS spectrophotometer 1#1
Halder and Tutscheck, Human 4506 Multicolor FISH Epifluorescence microscopy 1.18:1
1998 (Zeiss Axiophot)
Samura et al., 1997 Human >6000 Multicolor FISH and Epifluorescence microscopy 99.8 ~1:1.02
Percoll separation (Zeiss Axiophot)
Multicolor FISH and ~1:1
swim-up/glass
wool method
Martin et al., 1996 Human (21-52 years) ~5000 Multicolor FISH Epifluorescence microscopy 1.02:1
(Zeiss Axiophot)
Griffin et al., 1996 Human >300,000 Multicolor FISH Epifluorescence microscopy NM ~1:1
(Zeiss Axiophot)
Spriggs et al., 1996 Human (27-39 years) 50,000 Multicolor FISH Epifluorescence microscopy 98 XY
(Zeiss Axiophot)
Chevret et al., 1995 Human 94,575 Multicolor FISH and Epifluorescence microscopy NM 1.08:1
Percoll separation (Zeiss Axiophot)
Martin et al., 1995a Human (21-52 years) >10,000 Multicolor FISH Epifluorescence microscopy NM 1.02:1
(Zeiss Axiophot)
Martin et al., 1995b Lymphoma patient (human, >10,000 Multicolor FISH Epifluorescence microscopy ~1:1
32 years) (Zeiss Axiophot)
Williams et al., 1993 Human 2544-3860 Multicolor FISH Epifluorescence microscopy 99 1:1.01
(Zeiss Axiophot)
Cui and Matthews, Human 233 PCR Direct microscopy 93.1 1.06:1
1993
Lobel et al., 1993 Human gPCR ~1:1
Goldman et al., 1993 Human 60,000 Multicolor FISH ~1:1
Han et al., 1993a Human ~1263 Multicolor FISH Epifluorescence microscopy ~1:1
(Leitz microscope)
Benet et al., 1992 Human 505 Leishman staining Analyzing zona-free 1.02:1

hamster oocytes

FISH, fluorescence in situ hybridization; NM, not mentioned; qPCR, real-time polymerase chain reaction; NS, non-significant.

genetic and environmental factors or both may differentially
affect the ratio of X and Y spermatozoa by making one sperm
type more sensitive to the external stress than that of the other.
The ratio of X and Y spermatozoa in several animal species along
with the methods used for differentiating between the two sperm
types are summarized in Table 1. For some responses, there is a
significant difference in means, but the difference is so small as to
be of little or no biological significance because the distributions

overlap almost completely. This overlap, for example, is so great
as to make the mean difference useless for sexing sperm.

Shape and Size

Despite the immense advancement in the field of developmental
biology research, the basic idea of the spermatozoal structure
remains unclear. As such, it is also unclear whether X and Y
spermatozoa vary in their shape and size. By direct microscopic
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examination, two distinct types of spermatozoa: one type with
a small, round head (presumably Y spermatozoa) and other
type with a comparatively larger, elongated head (presumably X
spermatozoa) were proposed by the early studies (Shettles, 1960,
1961). Both X and Y spermatozoa possess identical autosomes
and an X or a Y chromosome. Thus, the difference in the
size of X and Y spermatozoa may be due to the variations
between X and Y chromosomes. Nevertheless, several researchers
have suggested that the size of a sperm is not exclusively
associated with its chromosomal content and may also be
associated with its cytoplasmic content, which may vary in a
specific sperm population during spermatogenesis (Shannon and
Handel, 1993; Lankenau et al., 1994; Cui, 1997). In addition,
Hossain et al. (2001) suggested that variations in the cytoplasmic
content of X and Y spermatozoa introduced by meiosis and/or
spermatogenesis were greater than those introduced by the sex
chromosomes itself.

Although the preliminary hypothesis that X and Y
spermatozoa were different based on their size and shape
(Shettles, 1960, 1961) was supported by other researchers (Cui
and Matthews, 1993; Cui, 1997), they were refuted with forceful
arguments by the findings of several recent studies that used
more specific methods for differentiating between X and Y
spermatozoa (Hossain et al., 2001; Grant, 2006; Zavaczki et al.,
2006). In an important study, Carvalho et al. (2013) used atomic
force microscopy (AFM) and demonstrated that no differences
existed in the shape and size of bovine X and Y spermatozoa even
though 23 structural features between X and Y spermatozoa were
assessed. AFM is highly specific as it provides detailed three-
dimensional information of cells and is suitable for imaging
the cell surface. Therefore, it is tempting to speculate that no

or non-significant differences exist in the shape and size of X
and Y spermatozoa. Previous studies mostly used non-specific
comparative methods such as identification of Barr bodies and
F bodies, which have low sensitivity in differentiating between
X and Y spermatozoa, thus making the findings of these studies
(i.e., X spermatozoa are larger than Y spermatozoa) less reliable.
The findings of different studies on the shape and size of X and Y
spermatozoa are summarized in Table 2.

Motility and Swimming Pattern

Owing to the high demand of sex preselection in animal
reproduction, several studies have attempted to differentiate
between X and Y spermatozoa over the past decades. Several
researchers have used different methods to evaluate sex selection
based on sperm motility; however, the efficacy of these
methods is debatable. Additionally, it is unclear whether Y
spermatozoa move faster than X spermatozoa. As an example,
if Y spermatozoa move faster than X spermatozoa, a man
should have a son, with an almost zero chance of having a
daughter. Spermatozoa start swimming during the epididymal
transition (Chang, 1951). Human spermatozoa travel at the rate
of up to 3000 pwm/min (Smith and Braun, 2012); however, some
spermatozoa move slowly at the rate of 1000/min. Thus, a 55
pm long spermatozoon efliciently covers 1000-3000 pm. During
this journey, the morphology and chemotaxis of spermatozoa
and ionic factors, protein phosphorylation (especially tyrosine),
ATP, cyclic adenosine monophosphate, protein kinase-A (PKA),
enzymatic factors, seminal plasma factors, and calcium ions
present in spermatozoa play a dynamic role in keeping the
spermatozoa motile (Kwon et al, 2014b; Rahman et al,
2017b, 2018). Simultaneously, certain fascinating physiological

TABLE 2 | Findings of several studies on the size and shape of X and Y spermatozoa of human and domestic animals.

Cells Enrichment Outcome
References Spermatozoa analyzed Parameters technique(s) measured Main findings
Carvalho et al., 2013 Nellore bull 400 Sperm head shape and Flow cytometry Atomic force No difference
size microscopy
Zavaczki et al., 2006 Healthy, oligozoospermic, >2000 Sperm head, perimeter, FISH Phase-contrast No difference
and normozoospermic long and short axis, long microscopy
man or short axis, and tail
length.
Hossain et al., 2001 Human 3300 Head length and width FISH Fluorescence No difference
and tail length microscopy
520 Cell size and diameter No difference
Van Munster et al., 1999 Bull >1298 Sperm head volume Flow cytometry DIC microscopy X>Y
Geraedts, 1997 Human NM Sperm surface Feulgen staining of Fluorescence X(7%)>Y
the Y chromosome microscopy
Cui, 1997 Human 895 Length, head perimeter, PCR identification of Light microscopy X>Y
and length of the neck the Y chromosome
and tail
Cui and Matthews, 1993 217
Chandler et al., 1998 Hereford bull 2214 Head areas DIC microscopy X>Y
Landrum and Shettles, Human NM Head size and nuclear Dried unstained Phase-contrast X>Y

1960; Shettles, 1960

morphology

sperm observed
directly

microscopy

FISH, fluorescence in situ hybridization; DIC, differential interference contrast; NM, not mentioned.
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processes such as capacitation and the acrosome reaction occur
in spermatozoa (Visconti, 2009; Battistone et al., 2013; Rahman
et al, 2017b). The difference in the ability of the X or Y
spermatozoon to respond to these factors and processes will make
it more active and motile than the other sperm type. Human
X spermatozoa comprises 2.8% more genetic material (DNA)
than Y spermatozoa; this difference is 3-4.2% between the X and
Y spermatozoa of domestic livestock (Hendriksen et al., 1996).
Several researchers have concluded that the variation in DNA
content between X and Y spermatozoa may affect their motility
and swimming pattern (Johnson et al., 1989; Johnson, 1994),
however, the results of these studies are not conclusive.

Ericsson et al. (1973) used albumin gradient method
and demonstrated that human Y spermatozoa (stained with
quinacrine fluorochrome) reached the bottom of the gradient
before X spermatozoa. These researches claimed that their
method could identify >85% Y spermatozoa, of which 90-95%
were motile. This finding was the first evidence of the difference
in the swimming behavior of X and Y spermatozoa. The albumin
gradient method has several advantages over other sperm sex
preselection (methods for sperm selection along with their
reliability status have been summarized in Table 3); however,
detection of Y spermatozoa using quinacrine fluorochrome
staining, as performed by Ericsson et al. (1973) was later proven
to be non-specific (Flaherty and Matthews, 1996; Cui, 1997),
thus leading to inappropriate results. In another study, Sarkar
et al. (1984) reported that human X spermatozoa move slower
(angular velocity decrease) than Y spermatozoa in the flow
stream, however, the movement of both cells are similar in the
stationary fluid.

The controversy regarding the motility of X and Y
spermatozoa was mainly provoked in 1998, when Penfold and

coworker described their finding using flow cytometry and
computer-assisted sperm analysis (CASA) for differentiating X
and Y spermatozoa and measuring their motility parameters,
respectively. They demonstrated that bull Y spermatozoa could
not swim faster than X spermatozoa in a simple salt solution
(Penfold et al., 1998). In accordance with the aforementioned
findings, Alminana et al. (2014) reported a non-significant
difference in the motility of X and Y spermatozoa. These findings
indicate that no evidence is available that can help conclude
whether Y spermatozoa are faster than X spermatozoa. This
paradox becomes even more complex after considering the effect
of oviductal fluid on the motility of X and Y spermatozoa (Zhu
et al.,, 1994). In contrast, it has been confirmed that motility of X
and Y spermatozoa vary under the certain condition in vitro (and
presumably in vivo). For example, low pH, high temperature, and
increased oxidative stress retarded motility in Y spermatozoa,
whereas motility of X spermatozoa rapidly declined when
spermatozoa are incubated in a high-pH condition (Shettles,
1970; Oyeyipo et al, 2017). In a recent study, Umehara et al.
(2019) reported that ligand activation of TLR7/8 significantly
decreased the motility of X spermatozoa (by altering ATP
production) than that of Y. In addition, using the KO mice model,
Rathje et al. (2019) reported that Yqdel males (XYRIIIqdel)
produced less motile Y spermatozoa compared to X.

Viability

Sperm viability is the ability of spermatozoa to sustain an
intact plasma membrane and acrosomal membrane and to
survive during passage through the oviduct in order to
reach and fertilize the egg. Shettles (1960) suggested that X
spermatozoa were stronger and more robust than Y spermatozoa
because they had higher DNA content than Y spermatozoa.

TABLE 3 | Acceptability of various methods for distinguishing between X and Y spermatozoa based on the difference in their motility, swimming pattern, and DNA

content.
Sample Enrichment Target Sperm
References (spermatozoa) techniques Base of separation sperm sorted (%) Reliability
Erickson, 1976 Human Discontinuous Y sperm has higher forward Y 85 Unreliable
albumin gradients velocity than X sperm
Evans et al., 1975 50 Unreliable
Ross et al., 1975 50 Unreliable
Quinlivan et al., 1982 52-74 Unreliable
Brandriff et al., 1986 50 Unreliable
Ueda and Yanagimachi, 1987 36.0-59.1 Unreliable
lizuka et al., 1987 Human Percoll gradients Different motility of X and Y X 94 Unreliable
sperms
Wang et al., 1994 551 Unreliable
Van Kooij and Van Oost, 1992 50 Unreliable
Check et al., 1989 Human Swim-up method Difference in swimming X 81 Unreliable
pattern

Han et al., 1993b X 50 Unreliable
Lobel et al., 1993 X 41.9-56.7 Unreliable
Yan et al., 2006 XandY 50 Unreliable
Johnson et al., 1993 Human Flow cytometry Difference in DNA mass XandY X=80,X=75 Reliable
Johnson, 2000 Livestock X =90 Reliable
Umehara et al., 2019 Mice Swim-up method TLR7/8 ligand activation Y =90X=81 Reliable
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This preliminary hypothesis is supported by other investigators
(Cui and Matthews, 1993; Flaherty and Matthews, 1996; Carvalho
et al., 2013). Carvalho et al. (2013) reported that in addition
to higher DNA content, larger size and longer length of the
X chromosome made X spermatozoa more viable than Y
spermatozoa. Recently, we demonstrated that when spermatozoa
were incubated at different temperatures/culture conditions (You
etal, 2017) or in a media containing 2,3,7,8-tetrachlorodibenzo-
p-dioxin (an endocrine disruptor) (You et al, 2018), the Y
spermatozoa represent a compromised viability compared to X.
Moreover, the similar effects of other endocrine disruptors, such
as dibromochloropropane and diazinon (Diaz) on the viability of
Y spermatozoa were reported in another study (Song et al., 2018).
The decreased viability of Y spermatozoa was mostly associated
with the increased expression of apoptotic proteins in live Y
spermatozoa (You et al., 2017), which subsequently affects the
overall lifespan (You et al., 2018).

In particular, viability of spermatozoa is also related to
female investment. The environment in the female reproductive
tract (mostly fluid composition, pH and ionic concentration,
and transcriptomic responses) affects the viability of X and
Y spermatozoa and helps in selecting the best spermatozoa
for fertilization (Dominko and First, 1997; Holt and Fazeli,
2010). Van Dyk et al. (2001) performed in vitro experiments
mimicking the in vivo setting in the female reproductive
tract and reported that Y spermatozoa survived for a longer
duration than X spermatozoa, and that Y spermatozoa were
more proficient to bind with zona pellucida than X spermatozoa
(binding ratio, Y:X = 1.15:1.02). Other studies have suggested
that higher expression of certain proteins (such as those involved
in energy metabolism, e.g., ATP synthase subunit) provides
more energy to Y spermatozoa, thus increasing their viability
(Chayko and Martin-Deleon, 1992; Aranha and Martin-Deleon,
1995; Hendriksen, 1999; Chen et al, 2012). Based on the
aforementioned findings, two different hypotheses can be drawn:
(1) due to higher DNA content, X spermatozoa are more
stable/viable than Y spermatozoa at least in the in vitro condition
or (2) certain properties of Y cells may ensure that their
prolonged viability in the female reproductive tract (in vivo)
subsequently affects the lifespan of both cells in a distinct manner.

Electrophobicity

Identification of subtle differences between X and Y spermatozoa
is the only way to assess the preselection of a baby’s sex.
Various studies have attempted to identify the difference in the
electrical charge between X and Y spermatozoa. Epididymal
epithelium secretes sialic acid (glycoprotein) that provides a
net negative surface charge to the spermatozoa (Hoffmann and
Killian, 1981). The difference in cell surface charge between
the two sperm types is due to the difference in their exposed
sialic acid content (Kaneko et al., 1984). These findings
suggest that X and Y spermatozoa may exhibit differences
in their electrophobicity. Results of free-flow electrophoresis
indicated that the electrophoretic mobility of human X
spermatozoa was higher than that of Y spermatozoa, suggesting
that X spermatozoa exhibited higher negative charge than
Y spermatozoa (Kaneko et al, 1984; Kaneko etal, 1993).

In contrast, Engelmann etal. (1988) reported that human
spermatozoa differentiated into X and Y fractions as they moved
toward the anode, with the faster-moving and slower-moving
fractions mainly comprising Y and X spermatozoa, respectively.
The findings of Engelmann et al. (1988) were supported by
those of another research group that used bovine spermatozoa
(Blottner et al., 1994). The major limitation of these studies was
the use of non-specific and unreliable quinacrine fluorescent
staining to identify Y spermatozoa (F bodies) (Windsor et al.,
1993), which led to inappropriate results. Recently, Ainsworth
etal. (2011) observed that the use of CS-10 electrophoretic sperm
isolation device did not skew the ratio of X and Y spermatozoa
after their PCR-based differentiation. In particular, the device
only isolated functional spermatozoa but was unable to specify
their genotype. Thus, the movement of spermatozoa toward the
anode might mainly depend on their surface sialic acid content,
which allows them to comigrate with other spermatozoa during
electrophoresis. Therefore, the findings of Ainsworth et al.
(2011) clarified the unclear findings of the previous studies that
reported a considerable difference in X and Y spermatozoa based
on their electrophobicity.

pH Susceptibility

Mammalian spermatozoa are immotile in the testis and become
motile in response to several external factors that are initiated
during their transfer through the epididymis. Of these factors,
ionic concentration, particularly pH, plays an integral role in
regulating the functional maturation of the spermatozoa. During
sperm storage in the cauda epididymis, a slightly acidic pH is
maintained. In the domestic animals, this acidic pH in the cauda
epididymis inhibits sperm motility (Hamamah and Gatti, 1998).
The association between pH and sperm functions becomes more
complicated once the spermatozoa are released into the female
reproductive tract. An equilibrium is required between the pH
of the medium/female reproductive tract and intracellular pH of
spermatozoa for successful fertilization (Blomqvist et al., 2006).
In this section, we will discuss whether X and Y spermatozoa
present differential pH susceptibility.

The preliminary findings indicated that X spermatozoa are
larger and stronger than Y spermatozoa, suggesting that they are
more stable in an acidic pH than Y spermatozoa (Landrum and
Shettles, 1960; Shettles, 1960). Limited studies have supported
this preliminary hypothesis. Muehleis and Long (1976) reported
that insemination of an ovulated female rabbit with semen diluted
with buffers of pH 5.4, 6.9, and 9.6 produced 48, 63, and 49%
male offspring, respectively. This result partly supports Shettles’
hypothesis, which states that acidic pH (5.4) has deleterious
effects on Y spermatozoa, thus affecting the probability (low
probability of 48%) of conceiving male offspring; however, it is
unclear whether an alkaline pH of 9.6 decreased the percentage
(49%) of male offspring conceived particularly in comparison
with the spermatozoa diluted with a buffer at pH 6.9. Pratt et al.
(1987) reported a significant negative correlation between the
vaginal pH and percentage of male offspring conceived in golden
hamsters. Diasio and Glass (1971) reported that human X and
Y spermatozoa could not be differentiated based on their pH
affinity during their passage through a capillary tube containing
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media of varying pH. By examining 58489 human spermatozoa,
recently we demonstrated that incubation of human spermatozoa
in different pH conditions, including 6.5, 7.5, and 8.5 for 0-5 days
were incapable in altering the ratio of Y:X chromosome (You
et al, 2017). Thus, majority of the recent findings do not
provide any logical explanation for X and Y spermatozoa acting
differently at various pH conditions.

Surface Properties (HY Antigen)

HY antigen is a male tissue-specific antigen. It is a fundamental
part of the membrane of most male cells and is a specific antigen
that controls the Y sperm-specific genes (Ohno and Wachtel,
1978). Here, we report evidence for the hypothesis that X and
Y spermatozoa can be differentiated based on their surface HY
antigen content.

Since the identification of a Y-linked histocompatibility
antigen, scientists have believed that an immunological approach
can be considered to control the sex ratio in mammals. This
was initially demonstrated in a study by Bennett and Boyse
(1973). They reported that the sex ratio of male offspring
is significantly decreased (45.4%) when the female mice are
inseminated with the spermatozoa treated with an anti-HY
antibody compared with the untreated spermatozoa (53.4%).
This study supported the hypothesis that the HY antigen could be
used to distinguish between the X and Y spermatozoa; however,
a minor shift in the male sex ratio after insemination with
spermatozoa treated with the anti-HY antibody indicated only
a small difference in the concentration of HY antigen between
the two sperm types. Krco and Goldberg (1976) performed a
2-step cytotoxicity assay and identified the HY antigen in 8-
celled mouse embryos, thus providing additional evidence of
Y-chromosome expression of the HY antigen. Similar findings
were obtained by other researchers by using several laboratory
and domestic animal models (Silvers and Wachtel, 1977; Utsumi
et al., 1993). Nevertheless, some researchers have found that the
anti-HY antibody does not specifically bind to Y spermatozoa
(Hoppe and Koo, 1984; Hendriksen et al., 1993; Sills et al., 1998).
Sills et al. (1998) reported that the anti-HY antibody also binds to
X spermatozoa and thus cannot be used to differentiate between
X and Y spermatozoa. Besides, studies involving significant
sex differentiation of human spermatozoa by using the surface
antigen did not provide conclusive results (Jeulin et al., 1982;
Sills et al., 1998).

MOLECULAR INSIGHTS OF X AND
Y SPERMATOZOA

This section compares the molecular characteristics and
biological activities of X and Y spermatozoa, with a
special emphasis on the differences in their stress response,
chromosomal abnormalities, and genomic/proteomic content.

Response to Stress

Several studies have examined the etiology of male infertility
in the context of oxidative stress (Agarwal et al, 2014) and
physical, environmental, and occupational stress (Aitken, 2014;

Barazanietal,, 2014). Spermatozoa are the first cells that
presented stress response (Gharagozloo and Aitken, 2011). In
the MEDLINE database, the term “oxidative stress” has been
mentioned in over 200,000 articles published between 2001 and
to date, of which >1800 articles have focused on spermatozoa.
Mechanisms underlying the response of X and Y spermatozoa
during stress remain unclear. As X and Y spermatozoa differ
in their genetic content, their response to stress may differs.
Alminana et al. (2014) reported a non-significant difference
while generating intracellular reactive oxygen species (ROS) by
mitochondrial DNA in X and Y spermatozoa, and concluded that
the tiny variations in DNA content between X and Y spermatozoa
are unable to respond to stress differentially. A similar conclusion
was drawn by other researchers (Ward and Coftey, 1991).
Mammalian spermatozoa cannot fertilize the oocyte before
they are appropriately conditioned in the female reproductive
tract even though they are motile and morphologically normal
(Kwon et al., 2014b; Rahman et al., 2017b, 2019). Different parts
of the female reproductive tract, such as the uterus, uterotubal
junction, and oviduct, are specifically programmed to select
only a functionally mature spermatozoon for fertilization (Holt
and Fazeli, 2010). Once the spermatozoa reach the oviduct,
they temporarily attach to the isthmus epithelium to undergo
capacitation before ovulation (Rahman et al, 2015, 2016).
Capacitation is a process during which complex molecular,
biochemical, and physiological changes occur in spermatozoa in
the female reproductive tract or in in vitro specialized media
and is a prerequisite for fertilization (Salicioni et al,, 2007;
Visconti, 2012; Kwon et al., 2015). Therefore, preincubation
of spermatozoa before fertilization is essential as capacitation
duration might differ between X and Y spermatozoa depending
on their genetic composition. Perez-Crespo et al. (2008) reported
that mouse X and Y spermatozoa were differentially affected by
elevated temperature. Moreover, they demonstrated that female
mice mated with male mice that were exposed to scrotal heat
stress on the day of mating produce more female pups. Altered
sex ratio (i.e., increased number of female offspring) was also
observed when the bovine spermatozoa incubated at 40°C for
4 h were used for insemination compared with those incubated at
38.5°C (Hendricks et al., 2009). Similarly, Lechniak et al. (2003)
reported a significant increase in female blastocysts when bovine
spermatozoa were preincubated for 24 h. In accordance with
these findings, recently using an in vitro experimental design,
we also demonstrated that human Y spermatozoa are more
susceptible to stress then X in vitro, induced by variation of
culture condition (You et al., 2017). In contrast, Iwata et al. (2008)
reported that incubation of bovine spermatozoa with hyaluronic
acid for 1 and 5 h produced 56.4 and 67.3% male embryos,
respectively, thus skewing the expected 1:1 ratio. Therefore, it can
be hypothesized that exposure of spermatozoa to external stress
results in their differential survival; however, it is unclear whether
stress provides selective survival advantage to X or Y sperms.
Recent studies have reported alterations in the sex ratio of
human offspring exposed to increased levels of environmental
chemicals, specifically endocrine-disrupting chemicals (EDs)
(Van Larebeke et al., 2008; Mcdonald et al., 2014; Song et al.,
2018; You et al., 2018). EDs interfere with the hormone
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biosynthesis and metabolism and may affect cellular physiology
and reproduction (Anway et al., 2005). Mocarelli et al. (2000)
reported that an increase in the concentration of 2,3,7,
8-tetrachlorodibenzo-p-dioxin (TCDD or dioxin) in the paternal
serum elevated the probability of female births. Exposure
of mice spermatozoa to TCDD in vitro also decreased the
viability of Y spermatozoa (You et al,, 2018), by potentially
altering the embryonic male to female ratio. These findings
were in accordance with another study (Ryan et al, 2002),
where increased female births to men are documented following
exposed to significantly high levels of TCDD. A similar effect of
different EDs has been reported by several studies on humans and
animals (Garry et al., 2002; Ikeda et al., 2005; Ishihara et al., 2007;
Terrell etal,, 2011). Despite few exceptions, for example, exposure
to polychlorinated biphenyl was associated with an increase in the
male births (Bonefeld-Jorgensen et al., 2001), the majority of the
findings suggest that men exposed to a stressful environment are
more likely to have girls (XX) than boys (XY) due to the higher
DNA content in X spermatozoa than that in Y spermatozoa.
Nevertheless, the particular stress response machineries between
the two cell types remain unclear and need further investigation.

Difference in Chromosomal Content of

X and Y Spermatozoa

Molecular characteristics of spermatozoa including the
chromosomal content/abnormalities play a pivotal role in
inducing infertility (Pang et al, 1999; Schmidt et al., 2000).
Briefly, chromosomal abnormality is defined as the loss of or
presence of an extra or irregular portion of a chromosome
that results in atypical number of chromosomes or a structural
abnormality in one or more chromosomes (Jurewicz et al., 2014).
In general, chromosomal abnormalities in embryos are thought
to be acquired from eggs (Hassold et al., 1996), however, these
abnormalities in spermatozoa may also substantially affect the
embryos (Tesarik and Mendoza, 1996; Bonduelle et al., 2002).
Abnormalities in the sex chromosomes contribute to >5% of
major chromosomal errors in embryos, with ~80% cases being
of paternal origin (Hassold et al., 1996; Hassold and Hunt,
2001). In’t Veld et al. (1995) and Hoegerman et al. (1995) were
the first to report an increased risk of de novo chromosomal
errors, particularly in the sex chromosomes, in spermatozoa.
The frequency of sex chromosome aneuploidy in healthy human
spermatozoa is 0.13-1.20% (Egozcue et al., 1997). Templado
et al. (2005) reviewed 23 studies and found that the average
sex chromosome disomy (presence of an extra chromosome in
a haploid state) in human spermatozoa was 0.26%. Of the 23
chromosomes in human spermatozoa, chromosomes 13, 18, 21,
X, and Y are important because higher incidence of abnormalities
in these chromosomes can to lead miscarriages or live births
(Pang et al., 1999, 2005, 2010; Rubio et al., 2001). In this section,
we review the evidence of sex chromosome abnormalities or
aneuploidy, which leads to male reproductive dysfunction.

A combination of recently developed FISH and multicolor
chromosome-specific probes can be used to investigate the
chromosomal content of spermatozoa in order to establish
a relative aneuploidy rate (Chevret et al, 1995). A higher

percentage of sex chromosomal aneuploidy has been reported
in oligoasthenoteratozoospermic patient spermatozoa compared
to the autosomal aneuploidy in same individual, as well as
sex chromosomal aneuploidy in healthy Y spermatozoa (Pang
et al, 1999, 2010). In accordance with the aforementioned
finding, Van Opstal et al. (1997) reported significantly higher
errors in chromosomes X and Y than in chromosome 18
(autosome) in spermatozoa of azoospermic patients. In contrast,
Pfeffer et al. (1999) reported higher incidence of chromosome
18 aneuploidy (0.7-10%) than sex chromosome aneuploidy
(0-4.3%) in the swim-up sperm fraction of 10 infertile men with
severe oligoasthenoteratozoospermia. Interestingly, the same
study also reported higher sex chromosome aneuploidy, however,
the aneuploidy was observed in the entire sperm pellet (Pfeffer
et al., 1999). Therefore, different methods of sperm enrichment
might also influence the incidence of aneuploidy.

Several studies have investigated the incidence of aneuploidy
in X and Y chromosomes in human spermatozoa (Chevret et al.,
1995; Martin et al., 1995a,b, 1996). Chevret et al. (1995) reported
comparatively higher incidence of disomy in the X chromosome
(0.04%) than that in the Y chromosome (0.009%) in normal male
interphase spermatozoa, however, other studies have reported
minute differences in the incidence of disomy in the X and
Y chromosomes (Martin et al., 1995a,b; Samura et al., 1997).
In contrast, Williams et al. (1993) reported higher incidence of
disomy in the Y chromosome (YY, 0.11%) than that in the X
chromosome (XX, 0.08%). This finding was further supported by
another study that presented 0.18% (YY) and 0.07% (XX) disomy
in the Y and X chromosomes, respectively (Martin et al., 1996).
The difference between the reported aneuploidy rate in X and
Y chromosomes remains unclear even though aneuploidy was
detected using similar methods (i.e., 3-color FISH coupled with
chromosome-specific probes and epifluorescence microscopy) in
all the cases. Therefore, difference in the X and Y spermatozoa
based on the frequency of aneuploidy in X and Y chromosomes
remains unclear, which is in accordance with the other reported
differences between these sperm types.

Recent studies have reported that exposure to certain
EDs and pesticides induce sex chromosome abnormalities
in spermatozoa (Smith et al., 2004; Xia et al, 2005; Perry,
2008). Epidemiological study revealed a significant association
between exposure to two organochlorine chemicals and sex
chromosome disomy in the spermatozoa collected from men
who underwent infertility assessment at the Massachusetts
General Hospital between January 2000 and May 2003 (Mcauliffe
et al., 2012). They observed that higher serum levels of
p-p’-dichlorodiphenyldichloroethylene (p,p’-DDE) significantly
increased the frequency of XX (X sperm disomy), XY, and
total sex chromosome disomy. Interestingly, men with higher
serum levels of polychlorinated biphenyls (PCBs) presented a
significant increase in the frequency of YY (Y sperm disomy),
XY, and total sex chromosome disomy, however, this study did
not provide further explanation of their findings, specifically
on the mechanism by which the increased exposure to PCBs
exerted protective effects against XX disomy and that in which
the increased exposure to p,p’-DDE increased XX disomy.
Therefore, possible mechanism(s) underlying the association
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between exposure to toxic chemicals, including EDCs (for
example PCBs and p, p>-DDE), and sex chromosome disomy
should be investigated. Moreover, similar epidemiological studies
are warranted to identify the effects of various environmental
chemicals and their association with chromosomal aberrations in
the spermatozoa.

Genomic and Proteomic Contents of

X and Y Spermatozoa

Identification and quantification of genes/proteins in a cell
provides fascinating insights regarding their cellular functions.
Genomics deals with the structure, function, evolution, and
mapping of genomes (Bader et al., 2003), whereas proteomics
involves novel approaches for characterizing proteins by
performing qualitative and quantitative analyses (Rahman et al.,
2016, 2017a, 2018). A spermatozoon provides half of the
nuclear genetic material to the diploid offspring via fertilization.
Thus, examination of the genes and protein content in
spermatozoa might provide potential insights on their functions.
It has been reported that haploid spermatids are capable of
active chromosomal (including sex chromosomes) transcription
important for their growth and survival (Braun et al, 1989).
As X and Y chromosome-bearing-spermatids express distinct
genes encoded by each sex chromosome (Hendriksen, 1999),
it might result in the proteomics difference between X and Y
spermatozoa. Although the majority of the genes are shared
between X and Y spermatids via the intracellular bridge (Braun
et al., 1989), complete sharing has not occurred for all gene
products (Hendriksen, 1999). Therefore, X and Y spermatozoa
can be differentiated based on their gene/protein content. In
this section, we review studies on the genomic and proteomic
characteristics of X and Y spermatozoa and have elucidated their
association with the morphophysiological characteristics of the
two sperm types.

To date, very limited studies have identified and characterized
genes that are differentially expressed in X and Y spermatozoa.
Spermatozoa contain a minute amount of total RNA (human
spermatozoon, 0.015 pg; bovine spermatozoon, 1.8 x 1074 pg)
compared to that in the somatic cells (1-3 pg). This small
amount of RNA per spermatozoon is the major drawback for
research on gene expression in these cells. Chen et al. (2014)
used comprehensive genomic approaches and identified 31
differentially expressed genes in bovine X and Y spermatozoa
(27 and 4 genes upregulated in X and Y spermatozoa,
respectively). Using the RNA sequencing technology, it has been
reported that the X chromosome encodes 492 genes, whereas the
Y chromosome encodes only 15 genes in mouse spermatozoa.
Some of these genes (particularly receptors) are also shown to
be related to the growth, survivability, and functions of specific
sperm types (Umehara et al., 2019). Therefore, differentially
expressed genes might help in identifying the genetic background
of stable differences between X and Y spermatozoa. Alminana
etal. (2014) observed that spermatozoa revealed sex-specific gene
expression in the oviduct of female pigs inseminated with either
X or Y spermatozoa. When insemination was performed using
Y spermatozoa, 271 transcripts were downregulated and 230

transcripts were upregulated in the oviduct. Thus, the oviduct
might have special biological sensors for screening spermatozoa.
Bermejo-Alvarez et al. (2010) reported significant differences in
the mRNA levels of GSTM3, DNMT3A, and PGRMCI between
bovine blastocysts produced by in vitro fertilization with X
spermatozoa and those produced by in vitro fertilization with Y
spermatozoa. This indicates that the oocyte might also regulate an
identical mechanism for reorganizing the different spermatozoa.
Recent advances in genomic studies have provided several
improved techniques that allow complete lysis of spermatozoa
and isolation of total RNA (Kirley, 1990; Meng and Feldman,
2010; Chen et al., 2014). Therefore, further studies are warranted
to identify the genes expressed in the sexed spermatozoa of
different species.

Mature spermatozoa undergo minimal transcription (there
are few ribosomes, so translation is not possible) as well
as protein synthesis (Kwon et al, 2014a, 2015). Therefore,
these cells are extremely suitable for performing proteomic
analysis. Direct comparison of protein levels in various cells
can identify the markers responsible for differences between
these cells (Park et al., 2013; Kwon et al.,, 2014a). Literature
searches indicated that limited studies have been performed
to evaluate the proteomic blueprint of X and Y spermatozoa
to date. Hendriksen et al. (1996) reported a non-significant
difference in the concentration of plasma membrane proteins
in porcine X and Y spermatozoa. This study indicated that
sexing of spermatozoa cannot be performed based on their
surface properties. Chen et al. (2012) used two-dimensional
electrophoresis along with mass spectrometry (2DE-MS/MS) and
identified 42 differentially expressed proteins between X and Y
spermatozoa. Of these, 11 proteins were upregulated and 4 were
downregulated in X spermatozoa compared with those in the
Y spermatozoa (P < 0.05). This finding was partly supported
by other investigators (De Canio et al., 2014; Scott et al., 2018).
Using label-free shotgun nUPLC-MS/MS De Canio et al. (2014)
found that 15 and 2 proteins were upregulated in X and Y
spermatozoa, respectively. In another recent study, Scott et al.
(2018) identified the differential expression of eight proteins
between X- and Y-bearing spermatozoa. Of these, the protein
related to the embryo development (EF-hand domain-containing
protein 1) was expressed abundantly in the Y spermatozoa,
whereas majority of other detected proteins were abundant in
the X spermatozoa. Since abundant proteins in Y spermatozoa
help in post-fertilization embryo development and further in the
survivability of male baby over female, which also support lightly
higher males (105) than female (100) babies at birth. Despite
differential expression of particular proteins between the two cell
types, zinc ion binding structure of bovine heart cytochrome
¢ (2EIN_R) is the only protein reported by Chen et al. (2012)
with the characteristics unique expression in only X spermatozoa.
Therefore, 2EIN_R could be considered as a novel biomarker
for differentiating the two cell types/sex preselection purpose. In
contrast, majority of these proteomics studies identified limited
identical proteins despite the samples being collected from the
same animal species (bull). Moreover, Chen et al. (2012) reported
increased levels of tubulin isoforms a3 and 4B in X spermatozoa.
In contrast, De Canio et al. (2014) reported different expression
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TABLE 4 | List of differentially expressed proteins in X and Y chromosome bearing spermatozoa.

Accession XY Proteomic Related pathways
Proteins (symbol) no (intensity) technique (P > 0.05) References
Upregulated proteins in X spermatozoa
Seminal plasma protein PDC-109 (BSP1) P02784 1.92 nUPLC-MS/MS De Canio et al., 2014
Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) P10096 1.69 Glucose metabolism,
glycolysis
Outer dense fiber protein 2 (ODF2) Q2T9U2 1.63
Tubulin beta 4A (TUBB4A) Q3zBU7 1.58
L-Lactate dehydrogenase A (LDHA) P19858 1.56 Glucose metabolism
Outer dense fiber protein 1 (ODF1) Q29438 1.68
A kinase anchor protein 3 (AKAP3) Q77797 1.561
L-Asparaginase (ASRGL1) Q32LE5 1.44
Tubulin beta 4B (TUBB4B) Q3MHM5 1.42
Tubulin alpha 3 (TUBASE) QB2KN8 1.42
QOuter dense fiber protein 3 (ODF3) Q2TBHO 1.42
Glyceraldehyde 3-phosphate dehydrogenase, testis specific Q2KJE5 1.40 Glucose metabolism
(GAPDHS)
Sperm acrosome membrane associated protein 1 (SPACAT) Q2YDG7 1.36
Triosephosphate isomerase (TPI1) Q5E956 1.36 Glucose metabolism,
mTOR signaling
Calmodulin (CALM) P62157 1.36
FUN14 domain-containing protein 2 (FUNDC2) NP_776763 2.612 SWATH-MS Scott et al., 2018
Acetyl-CoA carboxylase, type beta (ACACB) CAIB4638 2.149
NADH dehydrogenase [ubiquinone] iron-sulfur protein 7, NP_001033111 1.502
mitochondrial (NDUFS7)
Sorting and assembly machinery component 50 homolog NP_001040088 1.491
(SAMM50)
Cytochrome ¢ oxidase subunit 2 (COX2) QBH99117.1 1.399 mTOR signaling, TCA
cycle, oxidative
phosphorylation
Protein FAN NP_001179158 2.72 MALDI-TOF-MS Chen et al., 2012
Oxidase heme a, cytochrome T7T1727A 1.71
Cytochrome b—c1 complex subunit 1, mitochondrial P31800 217 mTOR signaling, TCA
(UQCRCH1) cycle, oxidative
phosphorylation
3-Hydroxyisobutyrate dehydrogenase (HIBADH) AAIO5544 1.68
Tubulin alpha-3 chain (TUBA3) QB2KN8 1.68
Isocitrate dehydrogenase [NAD] subunit alpha, mitochondrial P41563 1.83
(IDH3A)
Chain A, the structure of crystalline profilin-beta-actin 2BTF_A 1.69
A Chain A, episelection: Novel Ki ~ nanomolar inhibitors of 1BTW_A 1.8 LC-MS
serine proteases
R Chain R, zinc ion binding structure of bovine heart 2EIN_R Only in X
cytochrome ¢
Tubulin beta-4B chain (TUBB4B) NP 001029835 1.51
Isocitrate dehydrogenase 3 (NAD +) alpha (IDH3A) AAI18260 1.50
Upregulated proteins in Y spermatozoa
Tubulin alpha 8 (TUBAS) Q2HJB8 0.43 nUPLC-MS/MS  Guanylate cyclase, and De Canio et al., 2014
notch
Tubulin beta 2B (TUBB2B) Q6B856 0.26
EF-hand domain-containing protein 1 (EFHC1) NP_001179173.1 0.05 SWATH-MS Scott et al., 2018
Pyruvate dehydrogenase protein X component (PDHX) NP_001069219.1 0.393

(Continued)
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TABLE 4 | Continued

Accession XY Proteomic Related pathways

Proteins (symbol) no (intensity) technique (P > 0.05) References
Dynein intermediate chain 2, axonemal (DNAI2) XP_027374681.1 0.457
Chain A, crystal structure of bovine heart mitochondrial Bc1 2FYU_A 0.52 MALDI-TOF-MS Chen et al., 2012
with Jg144 inhibitor
ATP synthase subunit beta, mitochondrial (ATP5B) P00829 0.48
F-actin-capping protein subunit beta (CAPZB) P79136 0.50 Guanylate cyclase, notch,

and actin cytoskeleton

assembly
lutathione S-transferase, mu 3 (brain) (GSTM3) AAI12492 0.51 LC-MS Glutathione metabolism

Differentially expressed proteins in X and Y sperms were entered in the Pathway Studio program (Elsevier®) to identify the significantly correlated (P < 0.05) signaling
pathways in these sperms. Briefly, protein names (symbols) were entered into the program to determine significantly matching pathways for each differentially expressed
protein based on the information extracted from the NCBI PubMed database. Signaling pathways associated with the differentially expressed proteins were confirmed
using a PubMed Medline hyperlink that was embedded in each node. Fisher’s exact test was used to determine whether a pathway was statistically correlated with the

target protein. P < 0.05 was considered as statistically significant.
ety e
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FIGURE 2 | Signaling pathways associated with highly differentiated proteins in X spermatozoa. The illustration was prepared using Pathway Studio (Elsevier®,
Ariadne Genomics, Inc.) after performing a literature search in the PubMed database.

profiles of two tubulin isoforms a8 and B2B. Use of different differences. Based on these findings, it is essential to speculate
proteomic approaches (i.e., 2DE-MS/MS, nUPLC-MS/MS, and  that X and Y spermatozoa can at least be different based on
SWATH-MS analysis) in these studies might have led to these their protein content; however, further studies are warranted
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FIGURE 3 | Signaling pathways associated with highly differentiated proteins in Y spermatozoa. The illustration was prepared using Pathway Studio (Elsevier®,
Ariadne Genomics, Inc.) after performing a literature search in the PubMed database.
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to identify the validated markers that could differentiate these
two cell types appropriately. In addition, proteomic analysis
of X and Y spermatozoa from different animal species should
be conducted for their practical application particularly for
immunosexing techniques.

Proteins that are differentially expressed in X and Y
spermatozoa are summarized in Table 4 (data collected from
published studies). We used the Pathway Studio program
and found that proteins that were highly expressed in X
spermatozoa were significantly (P < 0.05) correlated with five
major canonical pathways/signaling, whereas proteins that were
highly expressed in Y spermatozoa were correlated with four
pathways/signaling (Table 4). The differences in the protein
content and associated signaling pathways between X and Y
spermatozoa might provide a theoretical basis to distinguish
between these sperm types. Nevertheless, it is uncertain whether
these differences are correlated with the biological aspect of X
and Y spermatozoa. By using the same program, we determined
the associated disease processes that were regulated by the
differentially expressed proteins in X and Y spermatozoa.
By using this simple illustration (Figures 2, 3), one may
have a hypothetical presumption regarding the occurrence of
specific diseases in men and women. For example, L-lactate

dehydrogenase A and testis-specific glyceraldehyde 3-phosphate
dehydrogenase, which are highly expressed in X spermatozoa,
are found to be functionally associated with breast neoplasm
and cervical carcinoma (Figure 2). Both the cancers are the
leading cause of cancer deaths in women (Siegel et al., 2015).
In accordance, epidemiological investigation in humans revealed
relatively higher incidence of anemia (Malhotra et al., 2004;
Alvarez-Uria et al., 2014), Alzheimer’s disease (Vina and Lloret,
2010), Huntington’s disease (Panas et al., 2011), and trypanosoma
(Pepin et al., 2002) in women. These diseases were also found
to be associated with proteins that were highly expressed in
X spermatozoa (Figure 2). Similarly, abundant proteins in Y
spermatozoa, that is TUBA8 and GSTM3, were found to be
associated with hepatic cancer and renal cancer, respectively,
and the prevalence of both diseases were reported to be high
in men compared to the women (Woldrich et al,, 2008; Wu
et al., 2018). However, few other diseases that are found to be
related with the differentially expressed proteins either in the X
and Y spermatozoa represent different results compared to the
epidemiological data (Figure 3). For example, heart failure was
found to be related with CAPZB that was highly expressed in Y
spermatozoa, however, its incidence is lower in men than that in
women. Consistently, tuberculosis was found to be related with
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the altered functionality of TPI1 that was more highly expresses
in X spermatozoa than in Y spermatozoa. However, the incidence
of this disease is high in men than women. These inconsistencies
presumably due to the Pathway Studio program, generated
protein pathways by using information present in the PubMed
database, which are incapable to explain every disease condition
precisely. In addition, despite the differential expression of
a particular protein between two cell types, the existence of
majority of the proteins is constant between them. Therefore,
the increased expression of a protein in the particular cell
may not always represent their functional activation. Another
major drawback of this hypothesis is that minor proteomic
alterations (<2-fold) between X and Y spermatozoa may
not necessarily display any significant differences in protein
expression in the resulting offspring, and thus could predispose
alternative sconclusion.

CONCLUSION

Nature has developed many mechanisms to make genetically
different sperm phenotypically identical within a male to avoid
a fertilization advantage of one allele over another. Mendel’s
law of independent assortment would not be true if some
alleles had a fertilization advantage. An example (very rare)
where different alleles affect fertility is the T allele system on
Chromosome 17 in mice, in which great infertility occurs (Colaco
and Modi, 2018). Among the mechanisms employed by nature
are intercellular bridges of clutches of 32 or more spermatagonia
and spermatids so that RNA and proteins are exchanged in
the clutches of the developing sperm with different genotypes,
thus homogenizing the cytoplasm, cell membranes, and so on.
Another mechanism is extremely limited post-meiotic gene
expression during spermatogenesis/spermiogenesis. The Sertoli
nurse cells take over many essential cellular molecular functions
during this period to compensate. Additional mechanism
is coating sperm with surface molecules during epididymal
maturation to make sperm look alike. These mechanisms explain
why sperm are so identical, including X and Y sperm (within a
male). Indeed, differentiation between X and Y spermatozoa has
been of immense interest to researchers, physicians, and breeders,
since the beginning of recorded history. Various methods have
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How stem cells and progenitors balance between self-renewal and differentiation is a
central issue of stem cell biology. Here, we describe a novel and essential function
of Drosophila Fzr/Cdh1, an evolutionary conserved protein, during the differentiation
of neural stem cell (NSC) lineages in the central nervous system. We show that Fzr,
a known co-activator of Anaphase Promoting Complex/Cyclosome (APC/C) ubiquitin
ligase, promotes the production of neurons from neural progenitors called ganglion
mother cells (GMCs). However, knockdown of APC/C subunit /da or another APC/C
co-activator CDC20 does not similarly impair GMC-neuron transition. We also observe a
concomitant loss of differentiation factor Prospero expression and ectopic accumulation
of mitotic kinase Polo in fzr mutant clones, strongly supporting the impairment of GMC
to neuron differentiation. Besides functioning in GMCs, Fzr is also present in NSCs to
facilitate the production of intermediate neural progenitors from NSCs. Taken together,
Fzr plays a novel function in promoting differentiation programs during Drosophila NSC
lineage development. Given that human Fzr is inactivated in multiple types of human
cancers including brain tumors and that Fzr regulates neurotoxicity in various models
of neurodegenerative diseases, our study on the role of Fzr in turning off proliferation
in neuronal cells may provide insights into how Fzr deficits may contribute to human
neurodegenerative diseases and tumors.

Keywords: NSC, neuroblast, GMC, differentiation, Fzr/Cdh1

Abbreviations: APC/C, anaphase promoting complex/cyclosome; aPKC, atypical protein kinase C; Ase, asense; a-tub, alpha-
tubulin; BAC, bacterial artificial chromosome; Baz, bazooka; BDSC, Bloomington Drosophila Stock Center; Bed, bicoid; B-gal,
B-galactosidase; Brm, Brahma; Cdc20, cell division cycle 20; Dcr2, Dicer 2; Dpn, deadpan; Elav, embryonic lethal abnormal
visual system; EGFP, enhanced green fluorescent protein; Erm, Earmuff; Fzr, fizzy and cell division cycle 20 related; GFP, green
fluorescent protein; GMC, Ganglion Mother Cell; Ida, imaginal discs arrested; INP, intermediate neural progenitor; Insc,
inscuteable; Lola, longitudinals lacking; MARCM, mosaic analysis with a repressible cell marker; Mira, Miranda; Nerfin-1,
nervous fingers 1; NSC, neural stem cell; ns, statistically non-significant; Phall, phalloidin; PH3, phospho-Histone H3; Polo,
polo kinase; Pros, prospero; Repo, reversed polarity; Rcal, regulator of cyclin Al; RNAi, RNA interference; UAS, upstream
activating sequence; VDRC, Vienna Drosophila Resource Center; Wor, Worniu.
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INTRODUCTION

Understanding how stem cells maintain their self-renewal
capacity and how their progeny differentiate into specific fates
are essential to comprehend developmental processes as well as
to exploit the therapeutic potential of stem cells for regenerative
medicines and cancer treatments. The Drosophila larval brain
NSCs, or neuroblasts, have emerged as a fertile model for
studying stem cell self-renewal and differentiation in vivo (Li
et al., 2014). In the Drosophila central nervous system, type
I NSCs divide asymmetrically to self-renew and to generate a
smaller daughter cell called the GMC that only divides once
to give rise to two terminally differentiated neurons or glial
cells (reviewed in Homem et al., 2015). Besides type I NSCs,
8 type II NSCs located bilaterally in the central brain divide
asymmetrically to self-renew and generate intermediate neural
progenitors (INPs), which can divide 4-6 times to give rise to
GMCs and neurons (Bello et al., 2008; Boone and Doe, 2008;
Bowman et al., 2008). Newly generated INPs need to differentiate
into mature INPs before division. The transcription factor
Earmuff (Erm), a homolog of the vertebrate Forebrain embryonic
zinc-finger family, is required for INP maturation (Bowman
et al., 2008; Weng et al, 2010). Erm works together with
the SWI/SNF chromatin-remodeling complex Brahma (Brm)
in immature INPs to restrain the developmental potential of
INPs (Eroglu et al, 2014; Koe et al, 2014; Janssens et al,
2017; Liu et al., 2017). Several studies in both mammals and
Drosophila have indicated that neuronal differentiation is actively
maintained. To date, only a few factors have been implicated in
maintaining Drosophila neuronal differentiation. These factors
include the homeodomain transcription factor Prospero (Pros,
human homolog Prox1) (Caussinus and Gonzalez, 2005; Choksi
et al., 2006; Maurange et al., 2008), RNA splicing factor Midlife
Crisis (Mlc) (Carney et al., 2013), BTB-zinc finger transcriptional
factor longitudinals lacking (Lola) (Southall et al., 2014), and
the zinc finger transcription factor Nervous fingers 1 (Nerfin-1)
(Froldi et al., 2015). In the absence of Pros, GMCs revert to NSCs
instead of committing to differentiation (Betschinger et al., 20065
Chobksi et al., 2006; Lee et al., 2006). Mlc regulates expression and
splicing of Pros and the loss of Mlc leads to the accumulation of
ectopic NSC-like cells originating from dedifferentiated neurons,
but these NSC-like cells are stalled during cell cycle and do not
form tumors (Carney et al., 2013). Lola, on the other hand,
acts redundantly with Pros. The loss of Lola is associated with
neuron-to-NSC reversion and tumorigenesis in the optic lobes,
but not in the central brain due to the compensatory functions
of Pros (Southall et al., 2014). Recently, Nerfin-1 has been
shown to function downstream of Pros to maintain neuronal
differentiation. Neurons in nerfin-1 mutants first increase their
cellular size, then switch off neuronal program and start to
express the NSC-identity program (Froldi et al., 2015). However,
it remains elusive whether other cellular factors play a role in
differentiation of NSC lineages.

Fzr (fizzy-related) or Rap (retina aberrant in pattern)
or Cdhl, the Drosophila homolog of mammalian FZRI,
is an evolutionarily conserved protein that functions as a
positive regulator of Anaphase-Promoting Complex/Cyclosome

(APC/C), which regulates cell-cycle progression via ubiquitin-
mediated proteolysis (Pines, 2011). While APC/C interacts with
CDC20/Fizzy (Fzy) to mediate chromatid separation during
metaphase-to-anaphase progression and drive mitotic exit,
APC/C binds to Fzr/Cdhl during mitotic exit and G1 phase to
conclude mitotic exit as well as to participate in non-mitotic
functions such as endoreplication, quiescence, and differentiation
(Eguren et al., 2011). In Drosophila, Fzr has also been shown
to promote mitotic exit (Meghini et al., 2016) and to regulate
various non-mitotic functions, including glial migration (Silies
and Kldmbt, 2010) and glial cell number (Kaplow et al., 2008),
synapse size and activity at neuromuscular junctions (van Roessel
et al., 2004), terminal mitosis (Reber et al., 2006), endocycle and
endoreplication (Sigrist and Lehner, 1997; Schaefter et al., 2004;
Narbonne-Reveau et al., 2008; Djabrayan et al., 2014), and in
retinal differentiation (Martins et al., 2017). However, how Fzr
functions in NSC lineages remains unknown.

Here, we describe a novel and essential role for Drosophila
Fzr in GMC-to-neuron transition in both type I and type II
NSC lineages of the developing larval brains. In fzr~ mutant
clones, GMC population expands at the expense of neurons.
We also observe a concomitant loss of Pros expression and
ectopic accumulation of Polo in mutant clones, suggesting the
impairment of GMC to neuron differentiation. The localization
of EGFP-FzrPAC in late GMCs is consistent with its novel
function in GMCs. Moreover, Fzr also regulates NSC to INP
transition, through genetic interaction with Brm and Erm.

MATERIALS AND METHODS

Fly Stocks and Genetics

FRT19A, fzr®  (#52384), FRT19A, fzr® (#52385), and
Dp(1;3)DC120 (#30265) were obtained from BDSC. FRT19A,
fzrS9418 (#111943) was obtained from Kyoto Stock Center. UAS-
Fzr-HA (#F000893) was obtained from FlyORF. UAS-HA-Rcal is
a gift from Dr. Frank Sprenger (Grosskortenhaus and Sprenger,
2002) and FRT19A,f.zr8F3 (P{neoFRT}19A/FM7) was a gift from
Dr. Christian Klambt. EGFP-FzrPAC was generated in this study.

RNAi lines used in this study: erm_RNAi (BDSC
#26778), fzr_RNAi (GD#25553), cdc20_RNAi_1 (GD#40500),
cdc20_RNAi_2  (GD#44834), ida_RNAi (BDSC#34522);
brm_RNAi (GD#37720), P-gal RNAi (BDSC#50680), and
bed_RNAi (GD#48966).

Neural stem cell drivers included insc-Gal4 (BDSC#8751;
1407-Gal4) or wor-Gal4 (BDSC#56553). Glial driver was repo-
Gal4 (BDSC#7415). Type I NSC driver (ase-Gal4; UAS-mCD8-
GFP, T. Lee). Type II NSC driver (w; UAS-Dicer2, wor-Gal4,
ase-Gal80; UAS-mCD8-GFP) (Bowman et al., 2008). INP driver
(erm-Gal4/CyO) (Pfeiffer et al., 2008). Other drivers used in
this study are: nerfin-1-Gal4, UAS-mCD8-GFP (Louis Y. Cheng),
pros-Gal4 (BDSC#80572), and elav-Gal4 (BDSC#458). UAS-Dcr2
(BDSC#24650) or/and UAS-CD8-GFP (BDSC#32186) was used
together with various Gal4 drivers or RNAi stocks.

Experiments with mutants were performed at 25°C, and
experiments for RNAi-mediated knockdown or overexpression
were carried out at 29°C.
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Clonal Analysis
MARCM clones were generated as previously described (Lee
et al,, 1999). Briefly, the larvae were heat-shocked twice at 37°C
for 2 hours (h) each, shortly after larval hatching (ALH) and at
10-16 h after the first heat shock. Larvae were further aged for
another 3 days at 25°C before dissection.

MARCM driver used is w hsFLB, FRT19A, tubP-Gal80; UAS-
nlsLac, UAS-mCDS8-GFP; tub-Gal4 (Lee et al., 1999).

Immunochemistry

Wandering third instar larval brains were dissected in cold
PBS and fixed in 4% EM-grade formaldehyde in PBS at room
temperature (RT) for 22 minutes (min), following by three
washes in 0.3% Triton-X in PBS (PBST). The sample was
incubated with blocking buffer (3% BSA in PBST) for 45 min
at RT, followed by incubation with primary antibody mixture
overnight at 4°C. After three washes in PBST, larval brains
were incubated with secondary antibody mixture for 90 min at
RT, followed by two washes, and mounted in a glycerol based
mounting medium (10 mg/ml of p-Phenylenediamine in PBS,
1:10 dilution with glycerol). For staining of DNA, additional
incubation of the sample with diluted Topro-3 in PBST was
performed just before adding mounting medium. Samples were
imaged with Zeiss LSM 710 confocal microscopy and images were
processed with Zeiss black software.

The following antibodies were used in this study: guinea pig
anti-Dpn (1:1000, J. B. Skeath), rabbit anti-Ase (1:1000, Y. N.
Jan), rabbit anti-Repo (1:500, W. Chia), rat anti-CD8 (1:250, Life
technologies, Cat#MCD0800), rabbit anti-PH3 (1:200, Sigma,
Cat#H9908-25UL: AB_260096), rat anti-Elav (1:40, DSHB,
Cat#Rat-Elav-7E8A10), guinea pig anti-Nerfin-1 (1:1000, Louise
Y. Cheng), mouse anti-Miranda (1:40, F. Matsuzaki), rabbit
anti-aPKC ¢ C20 (1:100, Santa Cruz Biotechnology Cat# sc-
17781), guinea pig anti-Baz (1:500; A. Wodarz), mouse anti-Pros
[1:10, DSHB, Cat# Prospero (MR1A)], rabbit anti-Polo (1:100,
C. Sunkel), rabbit anti-GFP (Molecular Probes, Cat#A21311,
1:500), mouse anti-a-tub (1:200, Sigma-Aldrich, Cat#T6199-
200UL), rabbit anti-B-gal (1:100, Invitrogen, A-11132), mouse
anti-B-gal (1:1000, Promega, Cat#Z3781), rat anti-HA (1:2000;
Roche, Cat #11867423001, Clone 3F10), rabbit anti-PntP1 [1:500,
J. B. Skeath (Alvarez, 2003)]. DNA was labeled by ToPro-3
(1:5000, Invitrogen, Cat#T3605).

The secondary antibodies (Alexa 647, Alexa 568, and Alexa
488 or Alexa 405) were obtained from Jackson Immuno
Research Laboratories, Inc. and used at 1:500 dilution. Phalloidin
488 (1:500, Invitrogen™, A12379), was added together with
secondary antibodies.

Generation of Transgenic Flies

BAC line (CH321-61L05) was used to generate EGFP-FzBAC
genomic construct according to the method described previously
(Zhang et al., 2019). Briefly, a fragment containing enhanced GFP
(EGFP) tag and Kanamycin-resistant gene was amplified from
PL-452 EGFP vector and inserted to the N-terminus of fzr coding
sequence by recombination using SW102 electrocompetent cells.
The resulting cassette was then electroporated into ara-inducible

Cre carrying SW106 electrocompetent bacteria to remove the
Kanamycin resistant gene. The correct clone carrying EGFP-
FzrBAC was electroporated into EPI300 cells for amplification
and the BAC DNA was purified using BACMAX kit (Epicentre
Biotechnologies Cat# BMAX044). The EGFP-Fzr®AC was sent
to BestGene, Inc. for injection into y! w%c?%; P{CaryP}attP40
(estimated cytosite 25C6) background. The primers used for
recombination are listed in Supplementary Table 1.

Statistical Analysis

GraphPad Prism 6 software was used for statistical analysis. All
data were presented as mean £ SD. Unpaired two-tail ¢-tests
were used for two sample comparisons and one-way ANOVA
for comparison of more than two groups. In ANOVA, Dunnett’s
post hoc test was used to obtain the P-values for pairwise
comparison. In this work, comparisons were performed against
wild-type or control, unless otherwise indicated by a line between
two genotypes. A value of P < 0.05 was considered as statistically
significant, * indicated P < 0.05, ** indicates P < 0.01, ***
indicates P < 0.001, and **** indicates P < 0.0001. P > 0.05 was
considered as statistically non-significant (ns).

RESULTS

Loss of Fzr in NSC Lineages Results in
Ectopic Progenitor GMCs

In order to evaluate the possible function of Fzr in NSC
lineage development, we generated mosaic analysis with a
repressible cell marker (MARCM) clones for two known mutant
alleles of fzr, named fzr® and fzr®, which were isolated by
ethyl methanesulfonate (EMS) mutagenesis on X-chromosome
(Yamamoto et al, 2014). Both alleles failed to complement
fzr99328 the hypomorphic allele with a PflacZ} element inserted
in the first intron of fzr, and were rescued by Dp(1;3)DC120
duplication regarding lethality (this study and Yamamoto et al.,
2014). We have tried but failed to characterize the precise
lesion of fzr® and fzr®. Whereas all the control type I NSC
lineages (n = 40) contain a single Dpn™ Ase™ NSC and 4-5
Dpn~ Ase™ GMCs that undergo terminal division, fzr® and
fzr® (collectively called fzr~) mutant clones contain a single
NSC but a large number of ectopic GMCs (17.8 £ 6.38 and
19.6 + 8.20, respectively) (Figures 1A,B). The ectopic GMC
phenotype observed in fzr~ mutants were fully rescued by
expressing an UAS- Fzr-HA transgene driven by tub-Gal4 from
MARCM driver as well as by the insertion of Dp(1;3)DC120, a
genomic fragment containing the fzr locus (Figures 1A,B).

Next, we assessed whether ectopic GMCs were also observed
in type II NSC lineages in fzr~ mutants. There are 8 type II
NSC lineages in each larval brain lobe. The defining characteristic
of type II NSC clones is that they produce INPs, which can
divide 4-6 times to generate GMCs. Within type II lineages,
the NSCs can be recognized by their large size (10-14 pm in
diameter) and positive for Dpn but negative for Ase. INPs can
be identified by their small size (3-4 pm in diameter) and are
either Dpn™ Ase™ (mature INPs) or Dpn~Ase™ and Dpn™ Ase™
(immature INPs). We further analyzed the number of immature
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FIGURE 1 | Ectopic GMCs are generated upon Fzr deletion. (A) Type | NSC clones of MARCM driver control (FRT19A), fzr®, fzr8, 2873, fzr + Dp(1;3)DC120,
fzr® + Dp(1;3)DC120, f2r8F3 + Dp(1;3)DC120, fzr™ + tub > Fzr-HA, fzr® + tub > Fzr-HA, and fzr®F3 + tub > Fzr-HA were labeled with Dpn, Ase and CD8.

tub > Fzr-HA refers to UAS-Fzr-HA driven by tub-Gal4 from MARCM driver, so Fzr-HA is expressed only in MARCM clones that lose tub-Gal80 upon mitotic
recombination. (B,C) Quantifications of GMC number (B) per type | MARCM clones and the percentage of MARCM clones with two or more NSCs (C) for (A).
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FIGURE 1 | Continued

Control, n = 40; fzr*, n = 46; fzr®, n = 46; 2873, n = 24; fzr® + Dp(1;3)DC120, n = 23; fzr® + Dp(1;3)DC120, n = 20; 283 + Dp(1;3)DC120, n = 16;

fzr® + tub > Fzr-HA, n = 31; fzr® + tub > Fz-HA, n = 23; 2873 + tub > Fzr-HA, n = 29. (D) Type | NSC lineages of wild-type and hemizygous fzr2%418/Y larvae were
labeled with Dpn, Ase, and Mira. Each genotype, n > 30 clones in at least five different brain lobes. (E) Type | NSC lineages of control (B-galfNAl), £z NAT or
UAS-Fzr-HA with NSC-driver (wor-Gal4; UAS-Dcr2) were labeled with Dpn, Ase, Phall (Phalloidin, cortical actin), and PH3. (F,G) Quantifications of the number of
GMCs (F) and mitotic GMCs (G) per type | clones for (E). For (F), control, n = 20; fzr"NA n = 50; UAS-Fzr-HA, n = 56. For (G), control, n = 50; fzrNA n = 50;
UAS-Fzr-HA, n = 41. Data are presented as mean £ SD. ***P < 0.0001. Asterisks, NSCs; white arrowheads, GMCs; yellow arrowheads, mitotic GMCs; white
dotted lines, clone outline. Scale bars: 5 wm. n, number of quantified clones. Ase, Asense; Dcr2, Dicer 2; Dpn, Deadpan; Fzr, Fizzy and cell division cycle 20 related;
GMC, Ganglion Mother Cell; MARCM, mosaic analysis with a repressible cell marker; Mira, Miranda; ns, statistically non-significant; NSC, neural stem cell; Phall,
Phalloidin; PH3, phospho-Histone H3; UAS, upstream activating sequence; Wor, Worniu.

INPs in fzr~ type II clones by examining Ets domain-containing
transcription factor Pointed P1 (PntP1), which is expressed in
both type II NSCs and immature INPs (Zhu et al., 2011). The
population of immature INPs are positive for PntP1 and can
therefore be distinguished from GMCs. Similar to ectopic GMCs
in fzr~ type I clones, the ectopic Dpn~ Ase™ cells, which include
GMCs and immature INPs, are also observed in fzr~ mutant
type II clones (Supplementary Figures 1A,B). Since we did not
detect any change in the number of mature and immature INPs
(Supplementary Figures 1C,E-G), ectopic Dpn~ Ase™ cells
observed in type II fzr~ clones are most likely GMCs. Together,
these results suggest that Fzr regulates the homeostasis of GMCs
in both type I and type II NSC lineages.

Consistently, the knockdown of Fzr in NSCs (and their
immediate progenies due to perdurance of Gal4 in progenies)
using RNA interference (RNAi) with pan-NSC driver (wor-
Gal4;UAS-Dcr2) resulted in ectopic GMCs (Figures 1E,F) that
are often undergoing cell division (Figures 1E,G). Similarly,
the knockdown of Fzr specifically in type I or type II NSCs
(and immediate progenies of NSCs due to Gal4 protein
perdurance) also leads to an increased number of GMCs
(Supplementary Figures 1H-K).

Moreover, we also observed ectopic GMCs phenotype in
clones from another fzr~ mutant, fzr3F3 as well as hemizygous
mutant fzr**18/Y (Figures 1A-D). The EMS fzr®"3 mutant
contains a nonsense mutation (Trp214 > Stop) for fzr and
likely produces short unstable peptides (Silies and Klambt,
2010). The fer0418 has the P{lacW} element inserted in
the 5 end of fzr gene, and is hypomorphic allele of fzr
(Jacobs et al., 2002). Besides having ectopic GMCs, a few
fzr® clones also contained ectopic small Dpn* Ase™ NSC-
like cells (Figure 1C). Similarly, in fzr3'3 mutant clones,
458% (n = 24) and 80% (n = 20) of mutant type I and
type II clones also contained ectopic NSCs (Figures 1A,C
and Supplementary Figures 1A,D). While the ectopic GMC
phenotype observed in fzr¥¥? clone was completely rescued by
the insertion of genomic fragment Dp(1;3)DC120, the ectopic
NSC phenotype was only partially rescued (Figures 1A,C
and Supplementary Figures 1A,D), suggesting an additional
background mutation present in the fzrSF® mutant might
partially contribute to the ectopic NSC phenotype. Hereafter we
focus on the function of Fzr in regulating GMC population in
type I NSC clones.

In conclusion, Fzr plays an important role in NSC lineage
progression in developing larval brains and that the Fzr loss
results in the formation of ectopic GMCs.

Fzr— Neural Lineages Do Not Display Any
Disturbance of NSC Asymmetric Division
or Neuronal Dedifferentiation

To further characterize the cell fate of GMCs accumulated
upon the loss of Fzr, we examined the expression of Nerfin-1,
which is expressed in late GMCs and newly generated
neurons. Whereas each control type I NSC clone contains
only on average 1.09 & 0.702 Ase™ Nerfin-1T late GMCs
and around 12.2 + 4.82 Ase™ Nerfin-1" early neurons, there
were 25.7 £ 852 and 24.0 £ 7.31 Ase™ Nerfin-1* late
GMCs and 2.26 + 2.47 and 2.65 4+ 3.42 Ase” Nerfin-1T
early neurons in fzr* and fzr® mutant clones, respectively
(Figures 2A-C). Wild-type neurons express Embryonic lethal
abnormal vision (Elav) but not Asense (Figure 2D). Strikingly,
we observed a population of Elavt Ase™ cells in fzr~
mutants with a concomitant reduction of Elav™ Ase™ neurons
(Figures 2D-F). Consistently, upon the loss of Fzr in type I
MARCM clones, some of the Elav™ Ase™ cells are undergoing
mitosis, as judged by the presence of phosphor-Histone 3
(PH3) (Figures 2D,G). Altogether, these results indicate that
loss of Fzr in NSC lineages results in the accumulation
of dividing GMCs at the expense of generating neurons
undergoing differentiation.

There are three non-mutually exclusive possibilities that
could contribute to this interesting phenotype: (1) an ectopic
production of GMCs from disrupted asymmetric divisions or
extended NSC division; and/or (2) dedifferentiation of neurons to
GMCs; and/or (3) failures during GMC differentiation that lead
to their ectopic cell divisions.

To address the first possibility that the disturbance in NSC
division results in production of excess GMCs, we examined
the localization of polarity proteins that are essential for NSC
division. We observed that the cellular localization of apically
localized aPKC and basally localized Miranda (Mira) in fzr3F3
dividing NSCs are intact and similar to that of the control
NSCs (Figure 2H). Similarly, Mira in both control as well
as fzr® and fzr® NSCs are correctly localized (Supplementary
Figure 2A). The localization of another apically localized
protein Bazooka (Baz, Drosophila homolog of mammalian
Par3) are also intact in fz*F® mutant NSCs (Figure 2I). In
addition, the localization of mitotic kinase Polo in dividing
NSCs seems unaffected in fzr* and fzr® NSCs (Supplementary
Figure 2B). Besides, the number of progeny cells from a
single NSC remains similar upon Fzr loss (Supplementary
Figure 1L) and that no elevated cell-death, as judged by the
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FIGURE 2 | Depletion of Fzr does not impair NSC division nor promote neuronal dedifferentiation. (A) Type | MARCM clones of MARCM driver control (FRT19A), fzr
and fzr® were labeled with Ase, Nerfin-1 and GFP. (B,C) Quantifications of the number of Aset Nerfin-17 cells (B, late GMCs) and Ase~ Nerfin-1* (C, early neurons)
for (A). For (B,C), control, n = 35; fzr, n = 23; fzr®, n = 20. (D) Type | MARCM clones of MARCM driver control (FRT19A), fzr* and fzr® were labeled with Ase, Elav,
PH3, and GFP. (E-G) Quantifications of the number of Ase™ Elav* cells (E), Ase™ Elav* (F, neurons), and motitic PH3* Ase* Elav* (G) for (D). For (E,G), control,
n=22; fzr", n = 21; 28, n = 23. For (F), control, n = 21; fzr*, n = 20; fzr®, n = 21. (H) Mitotic NSCs in control (FRT19A MARCM control) and fzr8F3 MARCM clones
(Continued)
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FIGURE 2 | Continued

PH3, phospho-Histone H3; UAS, upstream activating sequence.

were labeled with DNA, Mira, aPKC, and GFP. Control, n = 20; fzr373, n = 20. (I) Mitotic NSCs in control (FRT19A MARCM control) and 2873 MARCM clones were
labeled with Baz, a-tub, PH3, and GFP. Control, n = 5; %73, n = 7. (J) Type | NSC lineages of control (3-galf™NA' + Dcr2) or fzr"NAT + Der2 with pan neuronal driver
(elav-Gal4) were labeled with Dpn, Ase, and Phall. (K) Quantification of the number of Dpn~ Ase™ cells (GMCs) for (J) control, n = 31; fzrNA 4 Dcr2, n = 15. (L)
Type | NSC lineages of fz"NAT + UAS-Der2 with late-GMC and neuronal driver (nerfin-1-Gal4, UAS-CD8-GFP) was labeled with Dpn, Ase and GFP. Enlarged views of
the white dotted boxes in the right panel is shown in left panel. (M) Quantifications of GMC number found within GFP* neuron-clones for (L) control

(B-gal®™NAT 4 Der2), n = 50; fzrFNAT 4 Der2, n = 50. Data are presented as mean + SD. ****P < 0.0001. Asterisks, NSCs; yellow arrows, GMCs; yellow arrowheads,
mitotic GMCs; white dotted lines, clone outline. Scale bars: 5 wm. n, number of quantified clones. aPKC, atypical protein kinase C; Ase, Asense; a-tub,
alpha-tubulin; Baz, Bazooka; Dcr2, Dicer 2; Dpn, Deadpan; Elav, embryonic lethal abnormal visual system; Fzr, Fizzy and cell division cycle 20 related; GMC,
Ganglion Mother Cell; MARCM, mosaic analysis with a repressible cell marker; Mira, Miranda; Nerfin-1, Nervous finger 1; NSC, neural stem cell; Phall, Phalloidin;

staining of cleaved caspase 3, was observed in fzr* clones
(Supplementary Figure 2C). Together, these results suggest
that NSC division seems normal upon loss of Fzr and
that disturbances in NSC division are unlikely the cause of
GMC accumulation.

To test whether neuronal dedifferentiation accounts for the
ectopic GMCs, we knocked down Fzr in different populations
of NSCs lineages with fzr"NAl with different Gal4 drivers.
While the loss of Fzr in whole NSC lineage using elav-Gal4
or pros-Gal4 drivers resulted in ectopic GMCs (Figures 2J,K
and Supplementary Figure 2D), the loss of Fzr in late GMCs
and early neurons by nerfin-1-Gal4 driver did not result in
ectopic GMCs within nerfin-1 expressing clones (labeled by GFP)
(Figures 2L,M). Moreover, using an enhancer trap in which beta-
galactosidase (B-Gal) is inserted at fzr locus (ferO‘“S), we did not
detect the expression of Fzr in Elavt neurons (Supplementary
Figure 2E), suggesting that Fzr does not function in neurons
to maintain neuronal differentiation. In summary, our results
indicate that neuronal dedifferentiation is unlikely the cause of
GMC accumulation.

Interestingly, we observed a high expression of Fzr in glial cells
(Supplementary Figure 2F). However, upon the knockdown of
Fzr in glial cells by fzrRNA! with glial driver (repo-Gal4), GMC
number remains unchanged (Supplementary Figures 2G-I),
indicating that GMC number is not regulated by Fzr in glial cells.

In summary, our results suggest that ectopic GMC
accumulation upon the loss of Fzr is likely caused by the failed
differentiation of GMCs that leads to ectopic GMC divisions.

Fzr~ Neural Lineages Display Defects in

GMC-to-Neuron Transition
To test if there are any defects during the transition of GMCs
to neurons, we assessed the expression of differentiation factor
Prospero (Pros) (Chu-Lagraff et al., 1991; Choksi et al., 2006) in
fzr™ NSC clones. In most fzr~ clones, the expression of Pros is
substantially reduced in comparison to those of control clones
(Figure 3A). Moreover, the expression of Polo kinase, which
promotes cell division and stemness (Sunkel and Glover, 1988;
Glover, 2005), remained high in ectopic GMCs of fzr~ clones
(Figure 3B). All these results suggest that the ectopic mutant
GMCs maintain their undifferentiated states and are unable to
differentiate into neurons.

In addition, Fzr displayed moderate staining in wild-type
NSCs and weak staining in GMCs (Figure 3C, asterisks and
yellow arrows, respectively), consistent with our model that Fzr

functions within GMCs to promote the transition of GMCs
into neurons. To further characterize the expression pattern of
endogenous Fzr in the nervous system, we attempted to generate
anti-Fzr antibodies for immunostaining without success (data not
shown). Next, we turned to labeling Fzr protein with enhanced
GFP (EGFP) within its endogenous locus, hereafter called EGFP-
FzrBAC, Consistent with the localization of Fzr shown by the
enhancer trap, EGFP-FzrPAC displayed strong staining in glial
cells, as judged by their glial morphology and cortical location
(Figure 3D, white arrows) as well as being positive for the glial
marker Repo (Supplementary Figure 3A). Besides, EGFP-FzrBAC
also displayed strong localization in late GMCs (Figure 3E,
yellow arrows), minimal level in early GMCs (Figure 3E, blue
arrows, as judged by their small size, being Aset Mira™*®¥ cells,
and their immediate proximity to the big Ase™ Mira™ type I
NSCs) and weak level in NSCs (Figure 3E, white asterisks).

Moreover, Fzr is known for its function as an activator of the
ubiquitin ligase complex APC/C to promote the ubiquitination
and degradation of various substrates during G1 (Sigrist and
Lehner, 1997; Jacobs et al., 2002; Schaeffer et al., 2004). We
wondered whether Fzr functions in NSC lineages might be
mediated by APC/CF complex. To test this, we knocked down
ida, a subunit of APC/C, in type II NSC driver. However,
upon ida knockdown, no ectopic GMCs was observed, although
other defects such as loss of NSCs, loss of NSC identity and
mitotic arrest were observed (Supplementary Figure 3B). These
phenotypes were also observed upon knockdown of cdc20, the co-
activator of APC/C during mitosis (Supplementary Figure 3B).
These phenotypes were consistent with known functions of
APC/C in dividing cells and in agreement with the mitotic
defects reported for ida and cdc20 mutants (Dawson et al., 1993;
Bentley et al., 2002), indicating the RNAi-mediated knockdown
were efficient. Furthermore, upon the overexpression of HA
tagged Rcal, the negative regulator of Fzr-dependence APC/C
activity (Grosskortenhaus and Sprenger, 2002), no ectopic
GMCs were observed in both type I and type II lineages
(Supplementary Figures 3D-H), although HA-Rcal protein
was successfully over-expressed in type II NSCs and their
immediate progenies (Supplementary Figure 3C). These results
highlight a possibility that Fzr might function independently
of APC/C in regulating GMC-to-neuron transition. Because
the loss of function of APC/C blocks the mitotic progression
of NSCs to generate GMCs, we are unable to completely
rule out the potential involvement of APC/C in GMC-to-
neuron differentiation.
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FIGURE 3 | Fzr promotes the transition from GMCs to neurons. (A) Type | MARCM clones of MARCM driver control (FRT19A), fzr, fzr8, and fzr®F3 were labeled
with Ase, Pros, and CD8. Control, n = 22; fzr*, n = 32; fzr3, n = 27; zr*F3, n = 20. (B) Type | MARCM clones of MARCM driver control (FRT19A), &z and fzr® were
labeled with Ase, Polo, PH3, and GFP. Control, n = 30; fzr*, n = 50; fzr®, n = 50. (C) NSC lineages in third instar larval brain of heterozygous fzr30418

(fzr-lacZ)/ + were labeled with Dpn, Ase, and B-Gal, product of lacZ gene that is inserted in fzr locus. n = 10 brain lobes. Yellow arrows, GMCs. (D,E) Larval brains
expressing genomic EGFP-FzrBAC were co-stained with Ase and Mira. n = 10 brain lobes. Yellow arrows, late GMCs; blue arrows, early GMCs; white arrows, glial
like cells; yellow arrowhead, centrosome-like punctate; yellow dotted lines indicate boundary between the optic lobe and the central brain. Asterisks, NSCs; white
dotted lines, clone outline. Scale bars: 5 um. Ase, Asense; B-gal, B-galactosidase; Dcr2, Dicer 2; Dpn, Deadpan; EGFP, enhanced green fluorescent protein; Fzr,
Fizzy and cell division cycle 20 related; GFP, green fluorescent protein; GMC, Ganglion Mother Cell; MARCM, mosaic analysis with a repressible cell marker; Mira,
Miranda; NSC, neural stem cell; PH3, phospho-Histone H3; Polo, Polo kinase; Pros, Prospero.
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FIGURE 4 | Fzr genetically interacts with Brm and Erm to regulate NSC-INP transition. (A) Larval brains of control (B-gal®NA| + UAS-CD8-GFP), fzriNAi

(+ UAS-CD8-GFP), brmfNAT (+ B-galiNAl) or fzrRNAT 1 brmRNAT with insc-Gal4; UAS-Dcr2 were labeled with Dpn, Ase, Mira, and CD8. Note that to balance the
number of UAS elements across different genotypes, additional control UAS line, p-ga/fNA' or UAS-CD8-GFP, were added to various RNAI lines, resulting in weaker
phenotype in RNAI lines compared with those without additional UAS control shown earlier in this study. (B) Quantifications of type II NSC number per brain lobes for
(A). Control, n = 10; fzr"NAT n = 10; brmRNA 1 = 5; and fzrBNAT 4+ prmPNAT 0 = 6. (C) Larval brains of ermPNAT (+ g-galfNAY) | fzrRNAT o grmBNAT omBNAT | Fzr HA
erm"NAT L HA-RCA1 or bed™NAT + ermPNAT with insc-Gal4, UAS-Der2 were labeled with Dpn, Ase, and Mira. (D) Quantification of type Il NSC number per brain lobes
for (C). ermPNA 0 = 11; fzrfNAL L ermPNAT 0 = 20, erm™NAT 1 Fzr-HA, n = 21; ermfNAT + HA-RCAT1, n = 10 and bed™NA + ermPNAT 1 = 10, (E) INP clones of driver
control (B-gal™A) or fzriNAI under control of INP driver (erm-Gal4, UAS-CD8-GFP; UAS-Dcr2) were labeled with Dpn, Ase, and CD8. Control, n = 90; fzrRNA

n = 105. White dotted lines, INP clone outline. The middle and right panels displayed two different clones of fzrINA under the control of INP driver. Respectively, one
large and several small type-Il NSCs were found within INP clones. Data are presented as mean + SD. ***P < 0.0001; ns for P > 0.05. White arrows, type Il NSCs
(~10-12 pwm in diameter and Dpn* Ase ™). Scale bars: 10 pm. Ase, Asense; B-gal, B-galactosidase; Bed, bicoid; Brm, Brahma; Dcr2, Dicer 2; Dpn, Deadpan; Erm,
Earmuff; Fzr, Fizzy and cell division cycle 20 related; GFP, green fluorescent protein; GMC, Ganglion Mother Cell; INP, intermediate neural progenitor; Insc,
Inscuteable; Mira, Miranda; ns, statistically non-significant; NSC, neural stem cell; UAS, upstream activating sequence.

II NSCs (15.2 & 1.92 NSC, n = 5). However, knockdown of Fzr
dramatically enhanced dedifferentiation defects associated with
Brm loss to 81.8 & 12.8 NSCs per brain lobe (Figures 4A,B).
Similarly, the knockdown of Fzr using NSC-specific driver (insc-

Fzr Loss Enhances Ectopic Type Il NSCs
Resulted From Downregulation of
Differentiation Factors Erm or Brm

Our data shows that the loss of Fzr also results in the formation
of ectopic NSCs in addition to excess GMCs (Figures 1A-C
and Supplementary Figures 1A-D). Brahma (Brm) and Earmuft
(Erm) are important to suppress dedifferentiation of INPs, and
the loss of either Brm or Erm results in the reversion of INP
to type IT NSCs. Next we wondered if Fzr genetically interacted
with Brm or Erm to suppress INP dedifferentiation. While Fzr
knockdown alone using NSC-specific driver did not cause ectopic
type II NSCs (8 type II NSCs per brain lobe similar to a control
brain lobe, Figures 4A,B), the loss of Brm resulted in ectopic type

Gal4) substantially enhanced the ectopic type II NSCs of Erm
knockdown (Figures 4C,D, 78.7 £ 7.30 NSCs, n = 11 BLs in
ermfNAT 1 control™NAT vs. 3119 + 169.6 NSCs, n = 20 BLs
in erm®™NAl 1 fzRNAD The overexpression of Rcal, negative
regulator of Fzr-dependent functions of APC/C complex, as well
as Fzr overexpression did not affect the severity of Erm loss,
suggesting Fzr might function independent of APC/C complex
in the regulation of INP-NSC homeostasis (Figures 4C,D).
Interestingly, the knockdown of Fzr using INP driver (erm-Gal4,
UAS-CD8-GFP) resulted in ectopic type II NSCs from 9.5% of

Frontiers in Cell and Developmental Biology | www.frontiersin.org

February 2020 | Volume 8 | Article 60


https://www.frontiersin.org/journals/cell-and-developmental-biology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles

Ly and Wang

Fzr Promotes Neuronal Differentiation

INP clones (n = 105), while none of the control INP clones
contained any type II NSCs (Figure 4E). Due to the unavailability
of independent RNAI lines targeting different fzr sequences and
the lethality of homozygous fzr mutants in the early embryonic
or larval stages, we were unable to confirm genetic relationship of
Fzr and Brm or Erm in NSC-INP transition with additional RNAi
lines or mutants. Moreover, knockdown of the potential off-target
of ferNAi (GD#25553), bicoid (bcd), by RNAi under the control of
the same NSC- specific driver (insc-Gal4) did not lead to as strong
enhancement of INP dedifferentiation associated with Erm loss,
in comparison to the effect of fzrRNA! (Figures 4C,D), suggesting
that loss of fzr partially contributed to the genetic enhancement
observed in the double knockdown fzrRNAT and erm®NAL,

Altogether, these results suggest that beside its roles in
regulating GMC-to-neuron transition, Fzr genetically interacts
with Brm and Erm to promote NSC-INP transition.

DISCUSSION

Here, we show that Fzr/Cdhl, an established co-activator of
APC/C ubiquitin ligase known for its roles in regulating cell cycle
or post-mitotic functions in terminally differentiated neurons
or glial cells, promotes the commitment of neural progenitor
GMCs to the production of terminally differentiated neurons
(Figures 5A,B). In this study, we present multiple lines of
evidence to support the function of Fzr in regulating GMC-to-
neuron differentiation: (1) the presence of Fzr in late GMCs; (2)
the accumulation of GMCs at the expense of neurons in fzr~
mutant NSC clones; and (3) the loss of differentiation factor
Pros and ectopic accumulation of mitotic Polo kinase in NSC
progenies upon loss of fzr. Beside functioning in GMCs, Fzr
is also present in low level in NSCs to regulate NSC-to-INP
transition of type I NSC lineages (Figures 5A,C).

In this study, we observed a strong expression of EGFP-Fzr
in the optic lobe (Figure 3D). However, the function of Fzr in
optic lobes is currently unclear. Recently, the APC/CF" complex
has been reported to promote retinal differentiation in Drosophila
eye imaginal discs and thus the formation of adult eyes (Martins
et al, 2017). In eye discs, Fzr modulates Wingless Signaling
via Nek2 degradation, which is essential for progenitor cells to
differentiate. As such, it would be interesting to examine if Fzr
might regulate GMC differentiation in NSC lineages of the central
brain through a similar mechanism.

In this study, we provide putative evidence that Fzr interacts
with Erm and Brm to regulate NSC-INP balance. Interestingly,
Ets2, the mammalian homolog of the master regulator of type
IT lineages PntPl, is stabilized upon Cdhl deficiency and is
proposed to be substrate of APC/C®4M! complex (Li et al., 2008).
However, it remains to be determined how Fzr, Erm, or Brm
cooperate to regulate NSC-INP transition in type II NSC lineages
and if the underlining mechanisms for Fzr’s function in GMC-
neuron and NSC-INP transitions are shared.

In mammals, Cdhl/Fzr and several core components of
APC/C complex are highly expressed in post-mitotic neurons
(Giefters et al., 1999) and Cdh1/Fzr participates in the regulation
of neuronal axonal and dendritic growth, synapses, metabolism

B
Type | NSC lineage
Wild-type

Type Il NSC lineage

%

brmRNAi / ermRNAI

%

FIGURE 5 | A working model illustrating the mechanism by which Fzr
promotes GMC-neuron differentiation. (A) A presentation of larval central
nervous system with type-I and type-Il NSC lineages. (B) In wild-type
Drosophila larval brains, the neural progenitor cells called GMCs are
generated from the division of NSCs or intermediate neural progenitor cells
INPs in type | and type Il lineages, respectively. GMCs then divide once to
generate differentiated neurons or glial cells. Loss of fzr in NSC lineages
impairs GMC-to neuron differentiation and thus the accumulation of GMCs at
the expense of neurons. (C) Knockdown of the INP maturation factors Brm or
Erm results in ectopic NSCs originating from the dedifferentiated INPs in
type-Il NSC lineages. Fzr loss enhances the ectopic type Il NSCs induced by
Brm or Erm downregulation.
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and survival of neurons (Eguren et al., 2011). Besides, Fzr/Cdh1
functions to prevent replicative stress and p53-dependent cell
death in neural progenitors (Eguren et al., 2013). In this study,
we uncover a new role of Fzr in Drosophila nervous system:
ensuring the commitment of neural progenitors to differentiation
cascade. Large scale human cancer tissue arrays and prognostic
analyses have indicated that loss of APC®M! function correlates
with various human carcinogenesis, including brain tumors
(reviewed in Qiao et al., 2010). Besides, inactivation of Cdh1 has
been implicated in excitation-mediated neuronal cell death in
neurological disorders such as Alzheimer disease (Maestre et al.,
2008). Our study on the role of Fzr in turning off proliferation
in neuronal cells may provide insight into how Fzr deficit may
contribute to human neurodegenerative diseases and tumors.
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Androgenetic alopecia (AGA) is the most common type of hair loss, and is mainly
caused by the biological effects of testosterone on dermal papilla cells (DPCs). In vitro
culturing of DPCs might be a useful tool for the screening of target molecule of AGA.
However, primary DPCs cannot continuously proliferate owing to cellular senescence
and cell culture stress. In this study, we introduced mutant cyclin-dependent kinase
4 (CDK4), Cyclin D1, and telomerase reverse transcriptase (TERT) into DPCs. We
confirmed protein expression of CDK4 and Cyclin D1, and enzymatic activity of TERT.
Furthermore, we found the established cell line was free from cellular senescence.
We also introduced the androgen receptor gene using a recombinant retrovirus, to
compensate the transcriptional suppressed endogenous androgen receptor in the
process of cell proliferation. Furthermore, we detected the efficient nuclear translocation
of androgen receptor into the nucleus after the treatment of dihydrotestosterone,
indicating the functionality of our introduced receptor. Our established cell line is a useful
tool to identify the downstream signaling pathway, which activated by the testosterone.

Keywords: dihydrotestosterone, dermal papilla cells, immortalization, androgen receptor, nuclear localization

INTRODUCTION

Hair plays an important role in protecting the skin from mechanical damage. The hair follicle
regulates hair growth through complex interactions between hormones, neuropeptides, and
immune cells. The hair follicle consists of multiple cell types, including dermal papilla cells (DPCs),
matrix cells, and melanocytes (Driskell et al., 2011). The process of hair growth can be classified into
three stages: the growth stage (anagen), the regression stage (catagen), and the rest stage (telogen)
(Milner et al., 2002). Hair growth occurs throughout the duration of the anagen phase until the hair
enters the catagen phase, in which the hair follicle shrinks, and apoptosis occurs. During the telogen
phase, the hair follicle remains dormant while new hair growth begins, eventually causing hair loss
or “shedding” of the old hair. This hair growth and replacement process is known as the hair cycle
(Davis, 1962). Hair growth and proliferation is mainly due to the hair matrix cell proliferation and

Abbreviations: AGA, Androgenetic alopecia; DPCs, dermal papilla cells; CDK, 4cyclin-dependent kinase 4; TERT,
telomerase reverse transcriptase; DHT, dihydrotestosterone; TGFp, transforming growth factor p; Dkk1, Dickkopf-related
protein 1; DAPI, 4,6-diamidino-2-phenylindole; SA-B-Gal, senescence-associated B-galactosidase; AP, alkaline phosphatase.
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differentiation into the hair shaft (comprising three layers: the
medulla, cortex, and hair cuticle) and the inner root sheath (IRS,
comprising three layers: the cuticle, Huxley’s layer, and Henle's
layer) (Detmar et al., 1993). The proliferation of hair matrix
cells is regulated by growth stimulation from DPCs via insulin
growth factor I (IGF-I) (Danilenko et al., 1996) and fibroblast
growth factors 5 and 7 (FGF5 and FGF7) (Hébert et al., 1994;
Guo et al., 1996).

Androgenetic alopecia (AGA) is the most common type of
hair loss in men. Fifty eight percent of the 30-50-year-old men
suffer from AGA (Shankar et al., 2009). AGA is characterized
by hair loss from the top and front of the head. Although
the molecular mechanisms of AGA are not fully understood,
testosterone and its metabolic form, dihydrotestosterone (DHT),
are considered to be the major causes of AGA (Kwack et al,
2008). DHT is produced from enzymatic catalysis of testosterone
via the enzyme 5a-reductase (Miinster et al., 2003). DHT has a
stronger affinity for the androgen receptor than does testosterone,
and forms a DHT-androgen receptor complex, which then moves
from the cytoplasm into the nucleus. Nuclear localization of
the DHT-androgen receptor complex enhances the secretion of
hair growth-suppressive factors from DPCs, such as transforming
growth factor B (TGFB) or Dickkopf-related protein 1 (Dkk1)
(Kwack et al., 2010). As a result, the duration of the hair growth
period decreases, resulting in the loss of hair from the top and
front of the head, which is characteristic of AGA.

The standard pharmaceutical product used to treat AGA
is Finasteride (Gupta and Charrette, 2014). Finasteride is an
inhibitor of the 5a-reductase enzyme. By inhibiting the enzymatic
activity of 5a-reductase, Finasteride reduces the concentration
of DHT, which prevents the progression of AGA and hair loss
(Kaufman and Dawber, 1999). Although Finasteride is effective
in preventing the progression of AGA, there are several major
side effects. One example of the adverse effects of Finasteride
is sexual dysfunction, such as erectile dysfunction or decreased
libido (Coskuner et al., 2019). In addition to negative side effects,
the cost of Finasteride therapy is relatively high. Consequently,
the screening of new molecular target for the treatment AGA
is worth investigating to reduce potential side effects and cost.
Furthermore, owing to the large population of AGA patients, the
discovery of new anti-AGA drugs could be very profitable.

In general, cell culture is more advantageous than traditional
experimental animal models from view point of animal welfare
and cost. As described previously, DPCs are the control center for
regulating hair growth and are target cells for the biological effect
of DHT (Kwack et al., 2008). Therefore, in vitro culture of DPCs
would be useful to find out the molecular target and the screening
of pharmaceutical products to treat AGA. DPCs can be prepared
from primary cultures of human cells, but sampling and primary
cell culture can produce wide variability depending on cell
preparation (Topouzi et al., 2017). Furthermore, primary DPCs
cannot continuously proliferate because of cellular senescence
and the Hayflick limit. Owing to this limitation, the number of
passages of primary DPCs could affect the results obtained.

Our research group previously reported that combined
expression of R24C mutant cyclin-dependent kinase 4 (CDK4),
Cyclin D1, and telomere reverse transcriptase (TERT) allowed

us to efficiently immortalize human- (Shiomi et al., 2011), cattle
and pig- (Donai et al.,, 2014), prairie vole- (Katayama et al.,
2016, 2017), monkey- (Kuroda et al., 2015a), midget buffalo-
(Fukuda et al., 2016), and mega bat- (Tani et al., 2019), Tsushima
wildcat-derived cells (Gouko et al., 2018). Furthermore, growth
acceleration with mutant CDK4 and Cyclin D1 is conserved even
in sea turtles, suggesting that the underlying cell cycle mechanism
was well-conserved throughout animal evolution (Fukuda et al.,
2018). Cells immortalized using this method maintain the cell
differentiation and chromosome patterns of the original cells
(Shiomi et al., 2011). In this study, we introduced an expression
cassette of R24C mutant CDK4, Cyclin D1, and TERT into
human DPCs via lentivirus. Immortalized DPCs could be shared
with scientists worldwide as research materials, which would
contribute to experimental reproducibility. Establishment of an
immortalized cell line can also reduce the necessity for primary
cell culture if the original nature of the cells is preserved. Owing
to the nature of DPCs, the expression of androgen receptors
decreases with increasing passage number. To overcome this
limitation, we also introduced an androgen receptor expression
cassette through retroviral expression. This study is the first to
describe the establishment of immortalized DPCs with intact
chromosome condition and androgen receptor expression.

MATERIALS AND METHODS

Cell Culture

Human follicle DPCs were obtained from PromoCell (C-12072,
Heidelberg, Germany) through the local distributor, Takara
Bio (Shiga, Japan). DPCs were cultured in follicle dermal
papilla cell medium (cat. no, C-26500, PromoCell) supplemented
with: a supplement mix containing 0.04 mL/mL fetal calf
serum, 0.004 mL/mL bovine pituitary extract, 1 ng/mL basic
fibroblast growth factor, and 5 pg/mL insulin; and 1% antibiotic
antimycotic mixed stock solution (cat. no, 09366-44, Nacalai
Tesque, Kyoto, Japan). The cell culture conditions were as
follows: DPCs were seeded in a six-well plate with 2 mL of
medium per well. The cells were cultured at 37°C in a humidified
atmosphere with 5% CO5.

Preparation of Recombinant Viruses and

Genetic Introduction

To immortalize primary DPCs, we prepared recombinant
lentiviruses expressing mutant CDK4, Cyclin D1, and TERT. We
made a mixture of lentivirus solution expressing mutant CDK4,
Cyclin D1, and TERT. The packaging of recombinant lentiviruses
was carried out via transient expression of CSII-CMV-hTERT,
CSII-CMV-Cyclin D1, and CSII-CMV-hCDK4R24C using
packaging plasmids (pCAG-HIV-gp, pCMV-VSV-G-Rsv-Rev,
kindly provided by Dr. Hiroyuki Miyoshi, Keio University, Japan)
in 293T cells. As a surrogate marker to monitor the efficiency
of infection, we used pCSII-CMV-EGFP, which expresses a
fluorescent marker. The preparation and recombination of
lentiviruses was previously described in our past study (Fukuda
et al., 2017). We named the cells transfected with R24C mutant
CDK4, Cyclin D1, and TERT as K4DT cells, in reference to the
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modified genes (Katayama et al., 2019). We similarly named the
recombinant cells with R24C mutant CDK4 and Cyclin D1 as
K4D cells. The recombinant cells were automatically selected by
the growth advantage, we carried out the cell analysis based on
the pooled cell population.

To express the androgen receptor in our established K4DT
cells, we chemically synthesized an expression cassette of the
androgen receptor, including hemagglutinin (HA) at the amino
terminal end. HA was used as a tag for convenient detection
of the introduced androgen receptor protein. We inserted the
cDNA fragment encoding the androgen receptor with an HA
tag into the multiple cloning site of QCXIN, a retroviral vector
(Takara Bio). As a surrogate marker to monitor the efficiency
of infection, we used QCXIN-EGFP, which expresses EGFP.
The packaging of retrovirus was carried out in 293T cell under
the transient expression of QCXIN-AR or QCXIN-EGFP, and
packaging plasmids, pCL-gag pol, and pCMV-VSV-G-RSV-Rev
(Dr. Hiroyuki Miyoshi, RIKEN BioResorce Center, Tsukuba,
Japan). The detailed packaging procedure was described in our
previous report (Fukuda et al., 2018). We named immortalized
DPCs with androgen receptor expression K4DT-AR, and
immortalized DPCs with control EGFP expression K4DT-EGFP.

Western Blotting

We carried out western blotting to detect the expression of
proteins encoded by the introduced genes, i.e., CDK4, Cyclin D1,
and the androgen receptor. The cells were lysed in a solution
containing 50 mM Tris-HCI (pH 7.4), 0.15 M NaCl, 1% Triton
X-100, 2.5 mg/mL sodium deoxycholate, and a protease inhibitor
cocktail. A detailed protocol for western blotting is described in
our previous study (Fukuda et al., 2017).

A rabbit anti-human Cyclin D1 antibody (1:5000, code no.
553, Medical & Biological Laboratories Co., LTD., Nagoya,
Japan), a mouse anti-human CDK4 antibody (1:200, cat. no. sc-
56277, Santa Cruz Biotechnology, Dallas, TX, United States), and
a mouse anti-o-tubulin antibody (1:1000, cat. no. sc-32293, Santa
Cruz Biotechnology) were used as primary antibodies. An anti-
HA high affinity antibody (cat. no. 11867423001, clone 3F10, 100
pg/mL solution, Sigma Aldrich, St. Louis, MO, United States)
was used for the western blotting at a finale concentration
of 100 ng/mL. A sheep anti-mouse IgG-linked horseradish
peroxidase (HRP) (1:2000, code no. NA931V, GE Healthcare,
Buckinghamshire, United Kingdom), a donkey anti-rabbit IgG-
linked HRP (1:2000, code no. NA934V, GE Healthcare), and an
anti-rat IgG-linked HRP (1:2000, code no. 31470, Thermo Fisher
Scientific, Waltham, MA, United States) were used as secondary
antibodies. Signals from the target proteins were detected using
Signal Enhancer HIKARI for Western Blotting and ELISA (code
no. 02270-81, Nacalai Tesque), and the images were detected
using an ImageQuant LAS-4000 Mini system (GE Healthcare).

Immunofluorescence Staining of HA Tag

To examine the localization of the androgen receptor in our
established cells, we carried out immunofluorescence staining.
Cells were cultured on a chamber slide (cat. No. 177473, Thermo
Fisher Scientific). Forty-eight hours after seeding, we fixed the
cells with 4% paraformaldehyde in phosphate-buffered saline

(PBS) (cat. no, 09154-85, Nacalai Tesque). Permeabilization was
performed by incubating cells in PBS with 0.5% Triton X-100 for
15 min (cat. no, 35501-15, Nacalai Tesque). After washing with
PBS with 0.1% Tween 20 for 5 min (lot. no, M8M7587, Nacalai
Tesque), we incubated the cells in a 1% bovine serum albumin
blocking solution (BSA, cat. no, 01863-06, Nacalai Tesque) on a
rotary shaker (NR-2, TAITEC, Saitama, Japan) for 45 min. After
blocking, cells were exposed to the primary antibody overnight.
The anti-HA high affinity antibody (cat. no. 11867423001,
clone 3F10, 100 pg/mL solution, Sigma-Aldrich, St. Louis, MO,
United States) was diluted at 1:20 in PBS with 1% BSA. After
primary antibody incubation, cells were incubated with the
second antibody, which acts as a fluorescent marker. A goat
anti-rat IgG conjugated with Alexa Fluor 568 (cat. no. A11077,
Thermo Fisher Scientific) was used as a secondary antibody to
detect the HA-tag. DAPI (4',6-diamidino-2-phenylindole) was
used as a counterstaining reagent.

Senescence-Associated p-Galactosidase
(SA-p-Gal) Staining

At passage number 13, we carried out staining of senescence-
associated B-galactosidase (SA-B-Gal) in K4DT cells, K4D cells,
and primary DPCs. We conducted staining procedures based on
the protocol described by Debacq-Chainiaux et al. (2009).

Genomic PCR

To extract genomic DNA from cells, we used the NucleoSpin
Tissue Kit (cat. no. 740952, Takara Bio). PCR was performed
with 100 ng of template DNA, 1X KOD-FX neo PCR buffer
(KFX- 201; Toyobo, Osaka, Japan), 0.4 mM dNTPs (KFX-201,
Toyobo), 0.5 U KOD-FX neo (KFX-201, Toyobo), and 0.3 mM
of each primer, in accordance with the manufacturer’s protocol.
PCR was carried out under the following conditions for 40 cycles:
pre-denaturation at 94°C for 2 min, denaturation at 98°C for
10 s, and extension at 68°C for 1 min (two-step PCR). Tuberous
sclerosis type II (TSC2) was used as an internal control since
TSC2 does not have any pseudogenes in its genome. We analyzed
the PCR products by electrophoresis in 0.8% agarose/Tris-
acetate—-EDTA (ethylenediaminetetraacetic acid) gels and stained
with ethidium bromide (14603-64, Nacalai Tesque). We used the
same forward primer for the detection of the Cyclin D1, CDK4,
and TERT expression cassettes: 5-GGCACCAAAATCAA
CGGGACTTT-3'. The reverse primer for the detection
of Cyclin D1 was 5-TTCCTCGCAGACCTCCAGCA-
3. The reverse primer for the detection of CDK4 was
TF808,  5-ACGAACTGTGCTGATGGGAAGGC-3'.  The
reverse primer for the detection of TERT was TF809, 5'-
AGCTCCTTCAGGCAGGACACCT-3". To detect TSC2, the
forward primer 5-AAACCGAGCCCCATTTGACC-3’ and
the reverse primer 5-TGGTCGTAGCGGAATCGAGGAT-
3’ were used.

Cell Cycle Analysis

We performed cell cycle analysis of primary, K4D, and K4DT
cells at passage number 5 using a Muse Cell Cycle Assay Kit
(cat. no. MCH100106, Merck Millipore Corporation, Billerica,
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MA, United States) and a Muse Cell Analyzer (cat. no. 0500-
3115, Merck Millipore Corporation). The fixation and analysis
procedures are described in the protocol provided by the
manufacturer. The statistical significance of each cell cycle stage
was evaluated using the non-parametric multiple comparison
method (Steel test). A p-value < 0.05 was considered statistically
significant (n = 6).

Alkaline Phosphatase Staining

Cells were fixed with 4% paraformaldehyde in phosphate-
buffered saline (PBS) (09154-85; Nacalai Tesque) for 3 min and
then incubated with an alkaline phosphatase staining solution
at 37°C for 10-15 min. The staining solution consisted of
0.6 mg/mL Fast Red TR Salt [hemi(zinc chloride) salt, F8764;
Sigma-Aldrich, St. Louis, MO, United States], 0.1 mg/mL
naphthol phosphate (23821-24; Nacalai Tesque), 0.7 mM N,N-
dimethylformamide (13016-65; Nacalai Tesque), 0.2 mM MgCl,
(20908-65; Nacalai Tesque), and 0.1 mM Tris-HCI (pH 8.5). The
staining reaction stopped after ~15 min due to fixation with the
4% paraformaldehyde solution. More details are described in our
previous reports (Donai et al., 2013).

Population Doubling Assay

Primary, K4D, and K4DT cells were seeded at densities of 5 x 10%
cells/well in 35 mm diameter dishes (Thermo Fisher Scientific).
Experiments were carried out in triplicate. When the cells in one
of the wells reached confluence, all the cells were passaged, and
then the total number of cells in each well was counted using
an automated cell counter (Countess, Thermo Fisher Scientific).
Population doubling (PD) was a measure of cell growth rate.
PD was calculated with the following formula: PD = log,(a/b),
where a is the total number of cells in the current passage
and b is the number of seeded cells (Qin et al.,, 2012). The
averages and standard deviations (SD) were calculated from
triplicate samples.

Karyotype Analysis

Karyotype analysis was carried out in K4DT cells. K4DT
cells were treated with 0.02 mg/mL colcemid (Sigma-Aldrich)
overnight. After trypsinization, cells were exposed to a hypotonic
solution and fixed in Carnoy’s fluid. After fixing, cells were
stained with Giemsa solution (Fukuda et al, 2012b). The
chromosome number was determined from 50 mitotic cells,
and the detailed chromosomal condition was evaluated using
G-banding in 20 mitotic cells.

Detection of Endogenous Androgen
Receptor Gene With Real Time PCR

To address the expression level of androgen receptor in cells,
we carried out the detection of mRNA level of endogenous
androgen receptor gene with real time PCR analysis. Total
RNAs were extracted from cells at 80% confluent condition
in 35 mm dishes. Total RNAs were obtained from wild type
DPCs at passage 8, DPCs with K4DT expression at passage
12, human embryonic fibroblasts HE16 (RIKEN BioResource
Research Center, Tsukuba, Japan) with NucleoSpin RNA

Plus (Takara Bio). As the positive control for detection, we
purchased human prostate total RNA (Takara Bio, Z6550N). Five
microgram of total RNAs were used for the reverse transcription
reaction with PrimeScript RT reagent Kit with gDNA Eraser,
Perfect Real Time (Takara Bio, RR047A) with random hexamer
primer in 25 pL of volume. One microliter of cDNAs were
applied into the real time PCR reaction with specific primers for
androgen receptors (TF1007; 5'-CCAGCAGAAATGATTGCAC-
3, and TF1008; 5-ATTACCAAGTTTCTTCAGCTTC-3')
with Thumderbird Sybr qPCR mix (Toyobo) and Thermal
Cycler Dice® Real Time System II (Takara Bio, TP960). The
expression level of androgen receptor was adjusted with the
level of house keeping gene, glyceraldehyde-3-phosphate
dehydrogenase (GAPDH) detected with specific primers (TF999;
5- GAGGTGCACCACCAACTGCTTAGC-3' and TF1000;
5-TCGGCATGGACTGTGGTCATGAG-3').  The  average
expression level and standard error of each samples were
calculated from six replicates for each group.

F-Actin Distribution Detected by

Fluorescence Phalloidin

We carried out the cell culture of wild type, K4DT, and AR
expressing K4DT DPCs in 35 mm glass base dish (code 3970-
035, Iwaki, Shizuoka, Japan) after the collagen treatment. Around
1.0 x 10° cells of wild type, K4DT, AR expressing K4DT
DPCs cells were seeded into each glass base dish. After 2 days
later, the cells were washed by 1X PBS, then fixed with 4%
paraformaldehyde solution. After the permeabilized treatment
with Triton X-100, we stained the cells with X40 diluted
Rohodamine X conjugated Phalloidin solution (code 165-2164,
FUJIFILM Wako Pure Chemical, Osaka, Japan, powder was
dissolved into 1.5 mL of dimethylformamide, final concentration
is 6.6 wmol/L). We detected the intensity of fluorescence images
with image] software. The intensity was detected from the
cytoplasm of 15 randomly selected cells.

Immunostaining of «-Smooth Muscle

Actin (SMA)

For the characterization of DPCs, a-smooth muscle actin (SMA)
is one of the marker genes. To detect the immune-staining,
we used primary antibody against SMA (sc-32251, Santa Cruz
Biotechnology, Dallas, TX, United States). The seeding condition
is identical with that of F-actin in the previous section. Cells
were washed by 1X PBS, then fixed with 4% paraformaldehyde
solution. After the permeabilized treatment with Triton X-100,
we did the blocking with 1% bovine serum albumin in PBS
for 10 min. Next, X100 diluted primary antibody was exposed
to the cell overnight at 4°C. After the wash with 1X PBS
wash, the secondary antibody, Goat anti-Mouse I1gG (H + L)
with Alexa 488 (Thermo Fisher Scientific) was exposed to
the cells with X 200 dilution for 1 h. DAPI (4',6-diamidino-
2-phenylindole) was used as a counterstaining reagent. We
detected the intensity of fluorescence images with image]
software. The intensity was detected from the cytoplasm of 15
randomly selected cells.

Frontiers in Cell and Developmental Biology | www.frontiersin.org

March 2020 | Volume 8 | Article 157


https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles

Fukuda et al.

Immortalized Dermal Papilla Cell

CSII-CMV-EGFP Wild type w

contrast (DIC), and merge images are shown.

Fluoresence

FIGURE 1 | The morphologies of wild type, EGFP-expressing, mutant CDK4 and Cyclin D (K4D cell)-expressing, and mutant CDK4, Cyclin D, and telomere reverse
transcriptase (TERT)-expressing cells (K4DT cells). (A) Cell morphology of wild type (upper left), EGFP (upper right), CDK4 and Cyclin D (lower left), and mutant
CDK4, Cyclin D, and TERT-expressing cells. (B) Detection of EGFP fluorescence after infection of DPCs with EGFP-expressing lentiviruses. Fluorescent, difference in
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Protocol for DHT Treatment and Real
Time PCR Detection of Dkk1 and TGFf1

For the dihydrotestosterone treatment, cell culture medium for
cell growth has replaced into DMEM/F12 medium (code 048-
29785, FUJIFILM Wako Pure Chemical) without serum, with
antibiotics for 48 h. The dihydrotestosterone (DHT) (Stanolone,
code A0462, Tokyo Chemical Industry, Tokyo, Japan) was
dissolved in Dimethyl sulfoxide at 100 LM concentration. 1/1000
volume of DHT solution was added to DMEM/F12 without
serum and exposed to the cells for 48 h. We obtained total
RNA with NucleoSpin RNA Plus (Takara Bio). Five microgram
of total RNAs were used for the reverse transcription reaction
with PrimeScript RT reagent Kit with gDNA Eraser, Perfect
Real Time (Takara Bio, RR047A) with random hexamer primer
in 25 pL of volume. One microliter of cDNAs were applied
into the real time PCR reaction with specific primers for
Dkkl (TF1041; 5-GCGGGAATAAGTACCAGAC-3/, TF1042;
5'-CGCAGTACTCATCAGTGCC-3/, Tagman probe; 5FAM-
AACTACCAGCCGTACCCGTGC-3'BHQ) with Thumderbird
Probe qPCR mix (Toyobo) and Thermal Cycler Dice Real
Time System II (Takara Bio, TP960). The expression level
of Dkkl was adjusted with the level of housekeeping gene,
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) detected
with specific primers. The average expression level and
standard error of each samples were calculated from six
replicates for each group. For the detection of expression
level of TGFp1, specific primers were used for the detection
(TF1075; 5'-CCGAGCCCTGGACACCAAC-3" and TF1076; 5'-
CACTTCCAGCCGAGGTCCTT-3) with Thumderbird Syber
qPCR mix (Toyobo).

The Detection of Nuclear Translocation

of AR After the DHT Treatment

Presence and absence of DHT, we stained AR expressing K4DT
DPCs with HA antibody. We obtained 16 cell images from each
group. Based on the staining feature, we counted the number
of cells, which is both positive for nuclear and cytoplasm.
Furthermore, the number of cells, which is positive only within
the nuclear was also counted in 16 images. Based on the number
of positive cells, the ratio of cells, which both positive for nuclear

and cytoplasm, the ratio of cells, which only positive for nuclear,
were calculated. MDV3100 (code 11596, Cayman Chemical, Ann
Arbor, MI, United States) was dissolved in DMSO at 10 mM
solution. The cell was exposed at 10 pM sokution under the
presence of 100 nM DHT.

Statistical Analysis

To evaluate statistical differences, we used the non-parametric
method, Steel’s test or Mann-Whitney U-test. P-values that were
less than 0.05 were considered statistically significant.

RESULTS

Transduction With CDK4, Cyclin D1, and

TERT Resulted in Immortalized DPCs

We transduced EGFP or human CDK4, Cyclin D1, and TERT
into primary DPCs using lentiviruses. We named the cells
transfected with R24C mutant CDK4, Cyclin D1, and TERT
as K4DT cells, in reference to the modified genes (Katayama
et al., 2019). We similarly named the recombinant cells with
R24C mutant CDK4 and Cyclin D1 as K4D cells. As shown
in Figure 1A, we did not observe any differences among the
cell morphologies of primary, K4D, K4DT, and EGFP cells,
indicating that transduction of human CDK4, Cyclin D1, and
TERT via lentiviruses did not cause any toxicity in these cells. We
monitored the gene delivery efficiency of the lentiviruses in DPCs
using the recombinant lentivirus CSII-CMV-EGEFP as a surrogate
marker. As shown in Figure 1B, cells transduced with EGFP-
expressing lentiviruses showed a high level of green fluorescence,
whereas wild type (uninfected control) DPCs did not. From these
results, we estimated that transduction of these genes into DPCs
by lentiviruses has an efficiency of 70-80%.

Detection of the Genomic Expression
Cassettes With PCR, and Detection of
Protein Expression

First, we carried out polymerase chain reaction (PCR) to
detect integration of the genomic expression cassettes - CDK4,
Cyclin D1, and TERT, introduced by lentiviral infection - into
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FIGURE 2 | Detection of integration of the expression cassette into DPC
genomes with PCR, and detection of protein expression of the introduced
genes. (A) PCR detection of the expression cassettes of CDK4, Cyclin D, and
TERT in the genomic DNA of DPCs. PCR products from Tuberous sclerosis
type 2 (TSC2) were used as a control. (B) Western blot analysis of wild type,
K4D, and K4DT cells. The results obtained from CDK4, Cyclin D, and
a-tubulin antibodies are shown.

the genomic DNA of primary DPCs. We analyzed four cell
populations: wild type, EGFP, K4D, and K4DT cells. The results
of the PCR are shown in Figure 2A and Supplementary Figure
S2. As expected, although the primary and EGFP cells (Lanes 1
and 2) did not show any product, K4D and K4DT cells (Lanes
3 and 4) showed a strong band. We used TSC2 as a control.
The results of control PCR amplification showed that all genomic
DNA produced sufficient amplification products, indicating that
the recovery of genomic DNA and the amplification reaction
worked properly.

Next, we carried out western blotting to detect the expression
of CDK4 and Cyclin D1 proteins with specific antibodies
(Figure 2B and Supplementary Figure $3). K4D and K4DT cells
showed specific bands at the expected molecular weight (Lanes 2
and 3), whereas primary cells showed a weak signal, which could
be attributed to endogenous human-derived CDK4 protein (Lane
1). We used a-tubulin as a positive control. Taken together, these
data show that exogenous genes were inserted into the genomic
DNA of DPCs by lentiviral transduction, and the expression
cassettes produced functional proteins.
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FIGURE 3 | Detection of the alkaline phosphatase activity and the
chromosome conditions of established DPCs. (A) Detection of alkaline
phosphatase activity using Fast Red in wild type (upper left), K4DT (upper
right), and rat-derived fibroblasts (lower right, negative control).

(B) Chromosome analysis of K4DT cells. Left panel, a representative mitotic
chromosome pattern from a K4DT cell. Right panel, an aligned G-banding
chromosome pattern obtained from a K4DT cell. Sexual chromosomes are
labeled as X and .

K4DT Cells Retain the Characteristics of

Primary Cells

To elucidate whether established K4DT cells retained the
characteristics of primary cells, we assayed the activity of alkaline
phosphatase (AP), one of the biological markers of dermal papilla
cell, at around passage 5. As shown in Figure 3A, primary cells
showed positive staining for AP (Figure 3A, upper left). In
addition to primary cells, we also found that K4DT cells stained
positive for AP activity (Figure 3A, right panel). We confirmed
the negative staining of AP in rat-derived fibroblasts, supporting
the specificity of the AP staining (Figure 3A, lower left). These
results showed that K4DT cells retained characteristics of the
original primary cells.

Karyotype Analysis

As shown in Figure 3B, we analyzed the chromosomal condition
of K4DT cells at around passage 13 using the G-band method.
We evaluated the number of chromosomes in 50 dividing K4DT
cells. The karyotyping results revealed that K4DT cells were
complete, normal 46XY diploids (100%, Table 1). In G-banding
analysis, 19 cells showed a complete normal pattern of human
chromosomes (95%), but one sample exhibited a chromosomal
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TABLE 1 | Karyotype analysis of our established immortalized human follicle
dermal papilla cells.

Cell line Total cell counts Chromosome Number
45 46 47
K4DT 50 0 50 0

abnormality in chromosome 1 at the P36 position. Thus, we
concluded that the expression of CDK4, Cyclin D1, and TERT
allows for cellular immortalization of DPC cells with an intact
chromosomal pattern.

K4DT Cells Were Immortalized and

Overcame Cellular Senescence

To evaluate the cell proliferation rate and measure the population
doubling (PD) of the established cell lines, we carried out
sequential passaging. As shown in Figure 4A, although primary
cells showed a gradually decrease in cell proliferation ability, K4D
and K4DT cells continued to proliferate without a decrease in
cell growth. However, K4D cells tended to display slower rates
of proliferation at around passage 12, which could be explained
by cellular senescence. As shown in Figure 4B, we detected
cellular senescence in each cell line at passage 14, after serial
passage, using SA-B-Gal staining. While almost all the primary
cells showed intense positive staining (Figure 4B, upper left),
staining signals were much weaker in K4DT cells (Figure 4B,
lower left). In K4D cells, although some cells showed positive
staining, the incidence of positive cells was much lower than that
in primary cells (Figure 4B, upper right). The cell size of primary
cells at passage 14 became much larger than that of K4DT or
K4D cells, indicating that K4DT cells do not exhibit an increase
in cytoplasm, which is one of the characteristics of aged cells.

Cell Cycle Analysis

To compare the cell cycle distribution of cells, we performed
cell cycle analysis using a Muse Cell Cycle Assay Kit (Merck
Millipore Corporation) and a Muse Cell Analyzer (Merck
Millipore Corporation). As shown in Figure 4C, while about
70% of primary cells exhibited and arrested at GO/G1phases, the
percentage of K4D and K4DT cells in GO/G1 phases was about
50% less. The representative histogram of wild type, K4D, and
K4DT cells is shown in Figure 4C. The ratio of S and G2/M
phases in K4D and K4DT cells was about 20% higher than in
primary cells, which had around 15% S and G2/M phase cells.
The results of the cell cycle analysis are summarized in Table 2,
and the statistical difference was evaluated. As shown in Table 2, a
decreased ratio of GO/G1 and increased ratio of S phase and G2/M
phase cells were detected. From the results of cell cycle analysis,
we concluded that K4DT cells showed accelerated turnover of the
cell cycle due to the expression of CDK4 and Cyclin D1.

Real-Time PCR Detection of Androgen

Receptor Expression
In our previous study, we showed that expression of the
androgen receptor in DPCs was suppressed after several

passages, even in primary culture. Kwack et al. (2010) reported
that the mRNA expression level of the androgen receptor
dramatically decreases after passage six compared to the original
cell culture. To determine whether our immortalized DPCs
exhibited suppression of the androgen receptor, we used real-
time PCR to detect the endogenous expression level of the
androgen receptor. As shown in Figure 4D, total RNA from
normal prostate tissue was used as a positive control. The
human embryonic fibroblast line HE16 was used as a negative
control. When the expression level of the androgen receptor
in wild type DPCs at passage eight was set to 1.0, the relative
expression level in HE16 cells was close to 1.0, while the
relative expression level in normal prostate-derived RNA was
more than 42. The expression level in immortalized K4DT
DPCs at passage 12 was almost the same as that in primary
DPCs and HE16 fibroblasts. Amplification plots of AR was
shown in Supplementary Figure S7. These data indicated
that primary DPCs exhibited suppression of the androgen
receptor, probably due to the several passages performed
during manufacturing. From these data, we concluded that
our established immortalized DPCs are negative for androgen
receptor expression.

Retroviral Introduction of the Androgen

Receptor Into Immortalized DPCs

As shown in Figure 4D, original DPCs and immortalized DPCs
showed low expression of the androgen receptor. To estimate
the efficiency of gene introduction via retrovirus, retroviruses
expressing EGFP were used to infect K4DT cells. As shown
in the upper panels of Supplementary Figure S1, a small
percentage of K4DT cells were infected. There was no obvious
cell toxicity after infection with androgen receptor-expressing
retroviruses (Supplementary Figure S1, lower panels), and we
did not detect any morphological changes in infected cells.
The efficiency of infection was not as high as described in
the previous section. Due to the presence of a neomycin-
resistance gene downstream of the EGFP or androgen receptor-
expressing retrovirus (QCXIN retrovirus, Takara Bio, Shiga,
Japan), we were able to perform selection using G418 antibiotics
to purify the EGFP or androgen receptor-expressing cells.
As shown in Figure 5A, DPCs expressing K4DT with no
additional infection showed complete cell death after G418
selection (700 pg/mL) (Figure 5A, upper panels). However, the
K4DT DPCs successfully infected by QCXIN-EGFP or QCXIN-
AR showed resistance to G418 selection (Figure 5A, middle
and lower panels). Furthermore, after infection with QCXIN-
EGFP, the surviving cells selected for by administration of
700 pg/mL of G418 were all positive for EGFP expression
(Figure 5A, middle panel), indicating that antibiotic selection
worked properly. To verify androgen receptor expression in
DPCs with K4DT, we carried out western blotting using an
HA antibody. As shown in Figure 5B, although a-tubulin
did not show any difference in signal intensity (Figure 5B,
right panel and Supplementary Figure S4), DPCs infected
with QCXIN-AR showed a specific signal at 100 kDa in the
western blot for HA antibody (Figure 5B, Left panel, lane 2
and Supplementary Figure S4). From these data, we concluded
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TABLE 2 | Cell cycle analysis of wild type, K4D and K4DT cells.

Cell line Cell cycle phase
G0/G1 S G2/M Debris
Wild type 70.7 £1.4 3.4+ 0.1 165 +0.9 61.5+4.0
K4D 48.8 +£ 0.8 5.4+ 0.2* 19.7 £ 0.3 27.2 £1.4*
K4DT 51.0 £ 0.5 6.3+ 0.1* 21.0+0.2" 26.1 £ 1.2
**p < 0.01.
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FIGURE 5 | Retroviral introduction of the androgen receptor into immortalized
DPCs with K4DT. (A) G418 selection of wild type DPCs (no infection),
QCXIN-EGFP-infected DPCs, and QCXIN-AR-infected DPCs. Note that wild
type (no infection) cells exhibited complete cell death upon addition of 700
ng/mL G418. (B) Western blot analysis of QCXIN-EGFP (lane 1) and
QCXIN-AR (lane 2) probed with HA protein tag antibody (Left panel), and
a-tubulin antibody (Right panel). Note that the HA positive band was observed
at around 100 kDa in the left panel.

that we successfully established K4DT DPCs expressing the
androgen receptor.

Visualization of Cellular Localization of

the Androgen Receptor
After stable introduction of the androgen receptor into K4DT
DPCs, we detected the cellular localization of the androgen

AR K4DT DPCs

AR K4DT DPCs

HA antibody

EGFP K4DT DPCs EGFP K4DT DPCs

—

‘| HA antibody ferge. ™

EGFP K4DT DPCs

S~ EGFP-K4DT'DPCs
—

HA antibody

FIGURE 6 | Immunohistochemical detection of the androgen receptor using
an HA antibody. (A) Immunohistochemical detection of androgen
receptor-expressing DPCs immortalized with expression of mutant CDK4,
Cyclin D, and TERT. EGFP (left panels), androgen receptor detected using an
HA antibody (middle panels), and a merged image with EGFP, androgen
receptor staining, and nuclear counterstaining with DAPI (Right panels). Upper
panels are low magnification. Lower panels are high magnification. Note that
nuclear and cytoplasmic localization of androgen receptor detected with HA
antibody. (B) Detection of fluorescence in immortalized DPCs expressing
QCXIN-EGFP. EGFP fluorescence (Right panels), HA antibody staining (middle
panels), and a merged image with EGFP, HA antibody staining, and nuclear
counterstaining with DAPI (Right panels). Lower panels are high magnification.

receptor. As shown in Figure 6B, K4DT DPCs with QCXIN-
EGFP (control) did not show any reactivity with the HA
antibody (Figure 6B, Middle upper panel), indicating the
specific binding of the antibodies. Interestingly, K4DT DPCs
with QCXIN-AR showed positive staining in the cytoplasm
and nuclear (Figure 6A, Upper middle panel). As shown in
the merged picture with 4’,6-diamidino-2-phenylindole (DAPI)
(upper right panel of Figure 6A), staining for the androgen
receptor via the HA tag revealed cytoplasmic and nuclear
localization, in agreement with the previous manuscript (Fang
etal., 1996). From these results, we concluded that we successfully
established immortalized DPCs with constant expression of the
androgen receptor.

Cellular Distribution of F-Actin

The cytoskeletal F-actin has critical role for the cell migration,
and cell division and proliferation (Debacq-Chainiaux et al.,
2009). We detected the cellular distribution of F-actin among
wild type, K4DT, androgen receptor (AR) expressing K4DT
DPCs. In the fluorescence images, we could not observe
significant difference of F-actin in these three types of cells
(Figure 7A). Furthermore, we measured the fluorescence
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expressing K4DT DPCs. Staining with phalloidin, DAPI, and merged pictures
were presented. (B) The quantitation of fluorescence intensity from the
cytoplasm of 15 randomly selected cells. Average and standard error were
shown in the graph. No significant difference.

intensity of randomly selected 15 cytoplasm (Supplementary
Figure S5). As shown in Figure 7B, we did not observe
any statistical difference among wild type, K4DT, and AR
expressing K4DT DPCs.

Expression of AR in K4DT DPCs Induces
the Expression of Downstream Gene,
Dkk1

Before and after the introduction of AR, we also exposed 100
nM of dihydrotestosterone to the cells. After the exposure, we
detected the expression of Dkk1, which is known to locate the
downstream of gene network of testosterone signaling. We used
Tagman probe method for the accurate quantitation of Dkk1. In
Figure 9A, we showed the amplification plots of Dkkl mRNA
in AR expressing DPCs and EGFP expressing DPCs with and
without treatment of 100 nM of dihydrotestosterone. From the
amplification curve, we showed the relative expression of Dkk1
has dramatically elevated after the exogenous introduction of
AR (Figure 9B and Supplementary Figure S9). Interestingly,
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FIGURE 8 | Detection of a-smooth muscle actin (SMA) in wild type, K4DT, AR
expressing K4DT DPCs. (A) Staining feature of wild type, K4DT, and AR
expressing K4DT DPCs. Note that there is no staining signal of SMA in the
absence of primary antibody. Staining signals of SMA, DAPI, and Merged
pictures were shown. (B) The quantitation of fluorescence intensity from the
cytoplasm of 15 randomly selected cells. Average and standard error were
shown in the graph. No significant difference.

expression level was around 70% after the treatment of
dihydrotestosterone.

Furthermore, Inui et al. reported that TGFB1 is upregulated
by androgen in DPCs of AGA, suggesting that TGFB1 is the
potential downstream of testosterone signaling pathway (Inui
et al, 2002). To evaluate this possibility, we detected the
expression level of TGFB1 in EGFP expressing DPCs, and AR
expressing DPCs, under the absence and presence of DHT. As
shown in Supplementary Figures S8A,B, although we observed
marginal increase after the introduction of AR into K4DT
DPCs, but its upregulation was not so evident. Furthermore,
the expression difference of TGFB1 was not apparent between
absence and presence of AR, when it compared with that
of Dkkl. Amplification plots of GAPDH for TGFB1 showed
almost no difference among the samples, indicating that slight
increase of TGFB1 expression is not due to the sample quality
(Supplementary Figure S10). From this situation, we explained
that TGFP1 might be mainly regulated by various types of

Frontiers in Cell and Developmental Biology | www.frontiersin.org

March 2020 | Volume 8 | Article 157


https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles

Fukuda et al.

Immortalized Dermal Papilla Cell

A 6 Dkk1 Amplification Plots

°
2 50 - EGFP K4DT DPCs
5 (DHT-0nM)
9 o EGFP K4DT DPCs
g (DHT-100nM)
E 59 AR K4DT DPCs
£ 30 1 — (DHT-0nm)
o AR K4DT DPCs
® 20 (DHT-100nM)
c
]
© 10 -
(]
S
(=] 0 b
2 e
& -
-10

1 6 11 16 21 26 31 36 41 46 Cycles

Dkk1 relative quantification

W

100
90 -
80 -
70 -
60 -
50 -
40 -
30 -
20 -
10 -

Relative quantity (Crossing Point)

0 *-EGrp

EGFP AR AR
K4DT DPCs K4DT DPCs K4DT DPCs K4DT DPCs
(DHT-0nM) (DHT-100nM) (DHT-OnM) (DHT-100nM)

FIGURE 9 | Detection of Dkk1 expression before and after the exogeneous
introduction of androgen receptor (AR), and absence and presence of
dihydrotestosterone (DHT). (A) Amplification plots of endogenous Dkk1 in
EGFP expressing K4DT DPCs and AR expressing K4DT DPCs. (B) The
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signaling pathways, although testosterone signaling pathway
would be one of the factors of them.

Nuclear Translocation Is Accelerated by

the Treatment of Dihydrotestosterone

To detect the functionality of exogenous introduced AR, we
detected localization of nuclear and cytoplasm localization of AR
with HA tag antibody. As shown in Figure 10A, AR expressing
K4DT DPCs showed pale positive staining in the cytoplasm
and nuclear staining, before DHT treatment. However, to be
noted, the pale positive staining in the cytoplasm has disappeared
(Figure 10A, lower left), and the localization of AR becomes

only limited within the nuclear (Figure 10A, lower right). The
incidence of the nuclear + cytoplasm cell becomes significantly
lower after the DHT treatment (Figure 10B). Furthermore, the
incidence of cells which showed the positive staining only within
the nuclear significantly increased after the DHT treatment
(Figure 10B). From these observations, we concluded that
our introduced AR with HA tag works properly against DHT
ligand treatment.

Anti-testosterone Reagent, MDV3100,
Partially Inhibit the Nuclear Translocation
of AR

In previous section, we showed that our established AR
expressing K4DT DPCs detect the nuclear translocation of AR
with HA antibody after the DHT treatment. These results guided
us to build the hypothesis that our established cell might be
useful to detect the anti-testosterone effect. We evaluated the
effects of MDV3100, which is distributed as anti-testosterone
compound, Enzalutamide in clinical stage of prostate cancer
treatment. MDV3100 (Enzalutamide) is authorized as the anti-
prostate cancer drug (Gibbons et al, 2015), and inhibits
nuclear translocation of AR, and coactivator recruitment (Tran
et al, 2009). Based on these clinical data, we exposed the
10 M of MDV3100 to the cell culture medium under the
existence of 100 nM DHT. As shown in Figure 11, although
treatment of DHT completely erased the positive signal of
the cytoplasm as upper right panel of Figure 11A, addition
of MDV3100 showed existence of pale positive cells for their
cytoplasm (Figure 11A, lower right). For the accurate evaluation,
we counted the cell count of cells, which both positive for
cytoplasm and nuclear (blue bar in Figure 11B), or cells, which
only positive within the nuclear (orange bar in Figure 11B).
Based on the counting data, we summarized the percentage
of cells, which both positive for cytoplasm and nuclear (blue
bar) or cells, which only positive within the nuclear (orange
bar), absence and presence of MVD3100, in Figure 11C. As
the results of statistical difference, we concluded that the
MDV3100 treatment significantly increases the cell incidence
which positive both for nuclear and cytoplasm (Figure 11C, blue
bar). Furthermore, MDV3100 treatment significantly decreased
the incidence of cells, which only positive nuclear (Figure 11C,
orange bar). From these data, we concluded that treatment
of MDV3100 partially inhibit the translocation of AR from
cytoplasm to nuclear.

DISCUSSION

In this study, we established the first immortalized human follicle
dermal papilla cells expressing mutant CDK4, Cyclin D1, and
TERT, and we showed that immortalized DPCs retained the
characteristics of primary cells as well as an intact chromosomal
karyotype. In the previous manuscript, DPCs with SV40 were
reported (Kim et al, 2003). However, as shown in swine
embryonic fibroblasts, even at passage 8 these cells already
exhibited polyploid abnormalities at a rate of 16.4%, indicating
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that SV40-expressing cells frequently experience chromosomal
abnormalities (Fukuda et al., 2012a).

The combined expression of mutant CDK4, Cyclin D1, and
TERT enables us to efficiently immortalize various cell types,
as mentioned previously. The basic principle of this K4DT
immortalization method is bypassing the negative feedback signal
from the senescence protein pl6 (Fukuda et al, 2018). Once
cells reach the senescence phase, pl6 accumulates in the cells
(Shiomi et al., 2011). p16 proteins bind to CDK4 and negatively
regulate the kinase activity of the CDK4-Cyclin D1 complex,
resulting in a slowdown of cell cycle turnover. The R24C mutant
of CDK4 is resistant to negative regulation via pl6 due to an
amino acid alteration at the p16 binding site. Co-expression of
Cyclin D1 forms a functional enzymatic complex, resulting in
continuous cell growth. However, expression of mutant CDK4
and Cyclin D1 is not enough, since these genes are not able
to prevent shortening of the telomere sequence at the end
of chromosomes. The addition of TERT expression allows for
extension of the telomere sequence, resulting in immortalization.
We previously reported that this K4DT method can be applied
to various cell types, such as fibroblasts (Katayama et al., 2016)
and intestinal epithelial cells (Kuroda et al., 2015b). In this
study, we showed that expression of mutant CDK4, Cyclin D,
and TERT allows us to efficiently establish immortalized cells
from human DPCs.

We showed that immortalized K4DT cells retain the original
nature of primary cells. We observed positive staining for
alkaline phosphatase, a surrogate marker, suggesting that our
established K4DT DPCs retained the original nature of the
primary cells. In agreement with this result, a previous study
showed that K4DT cells derived from the human skeletal
muscle cells of patients with myotonic dystrophy type 1
(DM1) retained the original pathogenic condition, such as the
abnormal splicing of exon 11 of BIN1 (bridging integrator-
1) and exon 5 of MBNLI1 (muscle-specific splicing factors
muscle blind-like protein 1) (Pantic et al., 2016). However,
for a more precise classification of the nature of the original
cells, global transcriptome analysis would be necessary. As
the supportive evidences of original nature, we detected the
cellular distribution of F-actin and SMA (Figure 8 and
Supplementary Figure S6). We also detected the fluorescence
intensity of F-actin and SMA in randomly selected area, we
did not detect any difference among wild type, K4DT, and
AR expressing K4DT DPCs. These data suggest that K4DT
method would be more advantageous to keep the nature of
the original cells.

Through chromosome analysis, we observed that 100% of cells
exhibited perfect normal condition, 46 + XY. However, in the
G-banding analysis, one sample out of 20 mitotic cells possessed
an abnormality in chromosome 1. We previously showed
that around 6.5% of cells exhibited abnormal chromosome
patterns even in normal swine fibroblasts (Fukuda et al,
2012a). Therefore, approximately 5% of observed chromosome
abnormalities can be attributed to an artifact caused by sample
preparation for chromosome analysis.

Through senescence-associated p-gal staining, we observed
that several K4D cells showed intense staining, but the majority

of cells did not. Though not confirmed, the estimated efficiency
of gene introduction was around 80-85% based on the results
from enhanced green fluorescence protein (EGFP)-expressing
lentivirus (Figure 1B). Since efficient cell growth requires
double infection with mutant CDK4 and Cyclin D1-expressing
lentiviruses, an estimated 64% of cells would be doubly-infected,
while the rest (~36%) would have a single transgene, mutant
CDK4 or Cyclin D1. There is a possibility that the SA-positive
cells described above are cells infected with a single transgene.

When considering the biology of DPCs and their relationship
with AGA, we must note the importance of the androgen
receptor, since DHT is classified as one of the major causes
of the progression of AGA. Hormone dependency must be
implemented when using cultured DPCs as a research tool for
studying AGA (Kwack et al., 2008, 2010). Upon recognizing
this issue, we determined the endogenous expression level of
the androgen receptor in immortalized DPCs, as shown in
Figure 4D. Based on the results in Figure 4D, we concluded
that the endogenous expression level of the androgen receptor
was already suppressed during the cell culture period of the
provider, which is good agreement with the previous finding that
expression level of androgen receptor was strongly suppressed
in primary rat derived DPCs. In brief, Kwack et al. (2008)
showed that the expression level of the androgen receptor gene
dramatically decreased after passage 6. Although the detailed
mechanism for the gene silencing of the androgen receptor
is not understood, we decided to introduce the androgen
receptor gene under an artificial promoter. Furthermore, we
introduced an HA protein tag to facilitate detection of the
introduced androgen receptor. Western blot analysis revealed
high expression of the androgen receptor via its expression
cassette in our established immortalized DPCs. Furthermore, we
also detected beautiful localization of the androgen receptor in
the nuclear and cytoplasm of our established cells. Furthermore,
we showed that downstream gene, Dkkl, is highly activated
after the introduction of AR. The elevated mRNA level of
DKkk1 indicate that our established AR expressing K4DT DPCs
involves the gene network related to testosterone. Interestingly,
we detected the expression level of TGFP, which previously
identified as elevated gene after the DHT treatment. However, we
did not observe any significant change in the expression level of
TGEp even after the expression of AR and existence of DHT. The
biological significance of TGFf in DPCs would be necessary to be
addressed in further investigation.

Furthermore, owing to the introduction of an HA protein
tag, we successfully detected the translocation of introduced
AR into the nucleus after the DHT treatment. The sensitivity
of the high affinity HA antibody is so high that a cytoplasm-
to-nucleus transition could be effectively detected by this
system. Furthermore, we showed that MDV3100 (Enzalutamide)
partially inhibits the nuclear translocation of AR. MDV3100
(Enzalutamide) is authorized drug for prostate cancer, and
has anti-testosterone activity. To develop more specific and
efficient anti-testosterone drugs, various types of compounds
are under development. As one of the candidates, CH5137291
has reported to have more strong effect to inhibit the nuclear
translocation of AR. Although CH513791 is not distributed yet in
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the market, we are planning to test the effect of CH513791 to AR
translocation as next study. The established immortalized DPC
line with androgen receptor expression described in this study is a
beneficial tool for the screening of anti-testosterone compounds,
which would be useful for the prevention of AGA and other
testosterone-related diseases, such as prostatic hypertrophy and
prostate cancer. We plan to share our established DPCs with
scientists worldwide to facilitate further research using this
innovative cell line.
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The proliferation and differentiation of neural progenitor lay the foundation for brain
development. In neural progenitors, activation of Signal Transducer and Activator of
Transcription 3 (STAT3) has been found to promote proliferation and astrocytogenesis
while suppressing neurogenesis. However, our study found that Stat3 conditional
knockout in neural progenitors (Stat3 cKO) also results in increased proliferation and
suppressed neurogenesis. To investigate how STAT3 regulates these processes, we
attempted to identify potential STAT3 target genes by RNA-seq profiling of the control
(CTL) and Stat3 cKO neural progenitors. We found that STAT3 promotes the expression
of genes involved in the mitochondrial oxidative phosphorylation (OXPHOS), and
thereby promotes mitochondrial respiration and negatively regulates reactive oxygen
species (ROS) production. In addition, we demonstrated that Stat3 loss-of-function
promotes proliferation via regulation of mitochondrial metabolism and downstream
signaling pathways. Our study provides novel insights into the relation between STAT3,
mitochondrial metabolism and the process of embryonic neurogenesis.

Keywords: neural progenitor, neurogenesis, proliferation, STAT3, mitochondria, OXPHOS

INTRODUCTION

Neural development is a complex, orchestrated process consists of multiple elements, including
the self-renewal and differentiation of neural progenitors. Neural progenitors divide to self-renew
and give rise to neurons in the early embryonic stage, and they become gliogenic in the later
stages (Bayer and Altman, 1991; Kriegstein and Alvarez-Buylla, 2009). The self-renewal and
differentiation of neural progenitors are fine-tuned by transcriptional factors and other pathways
(Martynoga et al., 2012). Dysregulation of these processes could lead to severe developmental
defects such as microcephaly and lissencephaly (reduced neurogenesis), or megalocephaly and
autism spectrum disorder (overproduction of neurons) (Mochida, 2009; Fang et al., 2014).

Signal transducer and activator of transcription 3 (STAT3) plays an important role in neural
progenitor self-renewal and differentiation. As a member of the STAT family, STAT3 responds to
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cytokines and growth factors, and is then phosphorylated at
tyrosine 705 residue by gpl30/LIFR-associated JAK kinase,
translocates into the nucleus and activates transcription of its
target genes (Fu et al, 1990, 1992; Schindler et al, 1992;
Darnell et al., 1994; Levy and Darnell, 2002). In addition, STAT3
also promotes gene expression in a tyrosine-phosphorylation-
independent manner (Yang et al., 2005, 2007).

In embryonic neural progenitors, STAT3 has been found to
be sufficient and necessary for astrocytogenesis: activation of
STAT3 by IL6 family cytokines promotes the astrocyte marker
GFAP expression, which is diminished in the Stat3 conditional
knockout (Bonni et al., 1997; Nakashima et al., 1999; Hong and
Song, 2014). Mechanistically, activated STAT3 form a complex
with SMAD1 and p300 and bind to the GFAP promoter to induce
its expression (Nakashima et al., 1999). During the neurogenesis
phase, activation of STAT3 also promotes cell proliferation and
negatively regulates neurogenesis (Gu et al., 2005; Yoshimatsu
et al., 2006; Cao et al., 2010; Chen et al., 2013; Hong and Song,
2015). However, knockout of STAT?3 in astrocytes also resulted in
a decreased proliferation rate (de la Iglesia et al., 2008).

STAT3 has been shown to be involved in mitochondrial
metabolism in the central nervous system, which might play
an important role in cell survival and axon outgrowth (Guo
et al., 2008; Sarafian et al., 2010; Luo et al., 2016), but the causal
mechanism remained unclear. It has also been shown that STAT3
could be translocated into mitochondria, and then promotes
respiration by binding to protein complexes such as Complex
I, or by regulating mitochondrial transcription (Wegrzyn et al,,
2009; Macias et al,, 2014; Carbognin et al., 2016; Xu et al,
2016). However, whether mitochondrial STAT3 could regulate
mitochondrial metabolism was still controversial (Phillips et al.,
2010). Furthermore, our previous report found that STAT3
does not localize in mitochondria, but in the mitochondria
associated membranes (Su et al, 2019). Thus, STAT3 might
regulate mitochondrial metabolism via other pathways.

In this study, we found that conditional knockout of STAT3
in neural progenitors also leads to increased proliferation and
deteriorated neurogenesis. In addition, we found that STAT3
is not necessary for astrocyte differentiation, but instead only
required for the expression of GFAP. To investigate the role
of STAT3 in neural progenitor, we used RNA-seq analysis to
uncover STAT3-dependent genes. We demonstrated that STAT3
promotes expression of genes that involve in the oxidative
phosphorylation pathway and thereby promotes mitochondrial
respiration. We demonstrated that this regulation is critical for
Stat3-mediated neurogenesis. Our findings provide novel insights
into the link between mitochondrial metabolism and the process
of neurogenesis in brain development.

MATERIALS AND METHODS

Animals

The generation of mice with a conditional KO of Stat3 has been
described (Welte et al., 2003; Moh et al., 2007). Exons 18-20,
which contain the SH2 domain of STAT3, were flanked by two lox
P sites. Nestin-Cre transgenic mice [The Jackson Laboratory mice

database: B6.Cg(SJL)-TgN(Nes-cre)1Kln] expressing Cre under
the control of a rat Nestin promoter/enhancer were described
(Tronche et al,, 1999). The Nestin-Cre Stat3-flox/flox (Stat3-
f/f) mutant mice, designated as Stat3 cKO, were generated
by mating Nestin-Cre Stat3-f/+ mice with Stat3-f/f mice.
The genotype was determined by PCR as described (Welte
et al, 2003). The genotyping primers sequence is listed in
Supplementary Table S1. The sample result of genotyping
is shown in Supplementary Figure S1. As the transgenic
Nestin-Cre expression has been reported to cause metabolic
changes (Harno et al, 2013), here we use Nestin-cre; Stat3-
flox/+ embryos as control (C; F/+) to account for the possible
confounding effects. In addition, the control (C; F/+) mice are
born in Mendelian ratios without observable growth defects. All
experiments were done in a C57BL6 background. All procedures
were performed in accordance with the National Institutes of
Health Guide for the Care and Use of Laboratory Animals
and under the approval of the NUS Institutional Animal Care
and Use Committee.

The Cell Culture of Primary Embryonic

Neural Progenitors

The primary neural progenitor culture was achieved according
to an established protocol (Pacey et al, 2006) with some
adjustment. In brief, pregnant mice were sacrificed by CO;
overdose at the designated pregnancy stage. Embryonic brains
were dissected and subjected to digestion with Accutase (Thermo
Fisher Scientific) to isolate neural progenitors. The cells were then
subjected to suspension culture in serum-free medium (SFM)
supplemented with EGF and FGF at the density of 2 x 10°
cells/ml. Fresh medium was replenished every other day. Cells
grown into neurospheres were collected on the 3rd day for
RNA/protein sample preparation. For differentiation assay in
attachment culture, neurospheres were dissociated and cells were
seeded onto poly-D-lysine and laminin (Sigma-Aldrich) coated
coverslip at the density of 1 x 10° cells/ml in SFM with EGF/FGF
(Sigma-Aldrich) supplement. To differentiate neural progenitors
into neurons and glial cells, EGF and FGF were withdrawn on
the 1st day after attachment. Half of the SFM was changed
every other day, and the cells were collected for immunostaining
or RNA/protein sample preparation. The detailed components
of SFM and their source can be found in Supplementary
Table S2.

RNA-seq

Neural progenitors isolated at E11 and E14 wild-type or Stat3
cKO embryos were collected after culture for 3 days and
were lysed directly by Trizol (Thermo Fisher Scientific) and
total RNA was isolated according to manufacturers protocol.
cDNA was obtained using the M-MLV Reverse Transcriptase
kit from Promega according to the manufacturer’s protocol.
RNA-seq experiment was carried out using Illumina Hiseq
2000 Sequencing System. The sequence files obtained were
then undergone a quality check by FastQC, then processed
and analyzed using the Tuxedo pipeline (Trapnell et al., 2012).
Differentially expressed genes were then clustered using Database
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for Annotation, Visualization and Integrated Discovery (DAVID)
analysis (Huang da et al., 2009a,b) for data mining.

RNA-Extraction and RT-qPCR

Neural progenitors were lysed directly by RNAzol (Sigma-
Aldrich) and total RNA was isolated according to the
manufacturer’s protocol. Reverse transcription was carried
out with the M-MLV Reverse Transcriptase kit from Promega
according to the manufacturer’s protocol. qPCR experiment was
carried out using SYBR green qPCR kit from KAPA and Applied
Biosystems 7500 Real PCR System. qPCR primers used in the
experiment can be found in Supplementary Table S3. Samples
were assayed in duplicate and normalized to endogenous Gapdh.

Neurosphere Assay

Neural progenitors isolated from embryonic brains were seeded
in 24-well plate at 2 x 10° cells/ml in SFM with growth factors.
After 5 days, the neurospheres were imaged using an inverted
microscope. The neurosphere diameter was measured using
Image]J software.

CFSE Assay

CFSE assay was carried out using the CellTrace CFSE Cell
Proliferation Kit according to the manufacturer’s protocol
(Thermo). Briefly, neural progenitors isolated from embryonic
brains were stain with 5 WM CFSE for 20 min, washed with SFM
once, and cultured for 48 h. Subsequently, cells were digested
with trypsin and fixed with 2% paraformaldehyde and subjected
to flow cytometry analysis.

BrdU Incorporation Assay

BrdU was added to the primary neural progenitor cell culture at
10 pg/ml. cells were cultured for another 2 h before collected for
staining and flow cytometry analysis.

Intracellular Indirect Immunostaining for
Flow Cytometry Analysis

Cells were collected by trypsinization and fixed with 2%
paraformaldehyde at 4°C overnight and washed once with
intracellular staining buffer (ICSB, 1% FBS in PBS with 0.01%
sodium azide). Cells were then permeabilized by 90% ice-cold
methanol and washed once with ICSB. (For staining of BrdU,
cells were then treated with DNase for 1 h at 37°C to expose
the antigen, and washed once with ICSB.) Subsequently, cells
were incubated with primary antibody diluted in ICSB for lhr
at room temperature, washed once, followed by fluorophore-
conjugated secondary antibody incubation for 30 min. cells were
then stained with DAPT or TO-PRO, washed once and subjected
to flow cytometry analysis.

Chromatin Immunoprecipitation Assay

Wild-type neurospheres were crosslinked with formaldehyde at
a final concentration of 1% for 10 min followed by quenching
with Glycine. Chromatin extracts were fragmented by sonication
and precleared with protein G Dynabeads, and subsequently
precipitated with anti-STAT3 antibody (Santa Cruz, C20) or

normal rabbit IgG (Santa Cruz) overnight at 4°C. After washing
and elution, crosslink reversal was done by incubating at 65°C
for 8 h. The eluted DNA was purified and analyzed by qPCR
with primers specific to the predicted STAT3 binding site. qPCR
experiment was carried out using SYBR green qPCR kit from
KAPA and Applied Biosystems 7500 Real PCR System. Primer
sequences for Chip-qPCR could be found in Supplementary
Table S4. Samples were assayed in duplicate.

Dual-Luciferase Reporter Assay

Promoters of genes of interest were cloned into pGL4.17 vector
(Promega) and transfected into Neuro2A cells along with the
pRL-TK vector (Promega). Sixteen hours after transfection,
cells were treated with DMSO or STAT3 inhibitor STATTIC at
2 pg/ml. After 48 h, cells were lysed with Passive lysis buffer
(Promega) and subjected to luciferase assay in a 96-well format
in plate readers according to the manufacturer’s protocol. Primer
sequences for the generation of reporter vector could be found in
Supplementary Table S5.

Complex | Activity Assay

Complex I activity was measured using the Complex I activity
kit from Cayman Chemistry, according to the manufacturer’s
protocol. In brief, neurospheres cultured for 4 days were
homogenized in Mitochondrial Homogenization Buffer
(Cayman) and were mixed with Complex I Activity Assay Buffer,
NaN3, FF-BSA reagent and loaded into the test 96-well plate.
A mix containing NADH and Ubiquinone was added into each
well. The plate was immediately placed in a plate reader to
measure absorbance at the wavelength of 340 nm every 30 s for
15 min at 25°C. The decrease rate of absorbance, which reflects
the decrease in NADH concentration, was determined to be the
activity of Complex I. After the experiment, cells from different
groups were lysed to analysis the protein level.

Mitochondrial Membrane Potential and

ROS Measurement

Neurospheres cultured for 4 days were dissociated into
single cells with Accutase (Thermo Fisher Scientific) and was
resuspended in SFM containing 5 pM Mitotracker CMXRed
(Thermo Fisher Scientific), or 5 uM Mitosox Red (Thermo Fisher
Scientific) or 5 WM CM-DCFDA (Thermo Fisher Scientific),
respectively, and incubated in 37°C CO, incubator for 30 min.
Cells were then stained with 1 pg/ml Topro-3 as a live-dead
indicator, followed by flow cytometry analysis. For microscopic
imaging, neural progenitors cultured on poly-D-lysine and
laminin coated coverslips were stained with Mitosox Red or
DCEFDA for 30 min, washed once with PBS, fixed with 4% PFA
and mounted with Prolong Gold DAPI mounting media before
subjecting to imaging.

Seahorse OCR/ECAR Assay

Neurospheres cultured for 4 days were dissociated into single
cells and seeded into the Seahorse 24-well test plate coated
with the cell-tak reagent at the density of 1 x 10° cells/well.
Cells were then centrifuged at 200 g for Imin to achieve cell
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attachment. After equilibrated at 37°C incubator (no CO;)
for 1 h, oxygen consumption rate (OCR) and extracellular
acidification rate (ECAR) of cells were analyzed using Seahorse
XFe24 machine. The assay medium was SFM supplemented with
sodium pyruvate. For Mito-stress assay, OCR and ECAR of cells
were measured three times at basal state and after addition of
1 wM oligomycin, 2 WM of FCCP, and a mix of 1 WM Rotenone
and 1uM Antimycin A, respectively. After the experiment, cells
from different groups were lysed and subjected to western blot
experiment to confirm the same seeding density between groups.
For glycolysis assay, the ECAR of cells were measured 3 times at
basal level and after the addition of 20 mM of Glucose, 1 uM
oligomycin, and 50 mM 2DG, respectively.

ADP/ATP Ratio Assay

ADP/ATP ratio assay was conducted using the ADP/ATP ratio
assay kit from Sigma Aldrich (MAKI135) according to the
manufacturer’s protocol. Briefly, ~10* cells were seeded in each
well of the 96-well plate. After culture for 1 day, the medium
was removed and the ATP reagent containing substrate, co-
substrate, and ATP enzymes was added to the plate, and luciferase
activity was measured (RLU,) after 1 min incubation. The
luciferase activity was measured again (RLUg) after another
10 min incubation to get the basal luminesce before adding
the ADP enzymes. Therefore, the ADP enzymes were added
to the plate, and the luciferase activity was measured (RLU¢)
after 1min incubation. The ADP/ATP ratio were determined as
(RLUC-RLUp)/RLU 4.

Mitochondrial DNA Copy Number

Measurement

Neurospheres cultured for 4 days were lysed with RIPA buffer.
The lysate was then subjected to qPCR experiment using
primer pairs targeted to mitochondrial DNA or genomic DNA.
The experiment was carried out with SYBR Green qPCR kit
from KAPA and Applied Biosystems 7500 Real PCR System.
The mitochondrial DNA copy number was normalized to the
genomic DNA copy number. Samples were assayed in duplicate.

Western Blot

Cells were lysed with RIPA buffer (50 mM Tris-HCI pH7.4,
150 mM NaCl, 1% NP-40, 0.25% Na-deoxycholate and 1 mM
EDTA), centrifuged at 20000 g for 10 min and supernatant
were collected. Protein concentrations were measured and
20 pg of total protein were loaded into each well in SDS-PAGE.
Samples were then transferred to PVDF membrane(Thermo)
and immunoblotted with anti-NDUFS3 (Invitrogen), anti-
NDUFA13(Invitrogen), anti-SDHA(CST), anti-beta-actin (Santa
Cruz), anti-GAPDH (Sigma), anti-STAT3 (CST), anti-pAMPK
(CST), AMPK (CST), anti-pS-AKT(CST), anti-AKT(CST),
anti-CASP3(CST)  anti-p-p38(CST), anti-p38(CST), anti-
mTOR(CST),  anti-pS-STAT3(CST),  anti-pY-STAT3(CST),
anti-LC3(CST), anti-GFAP(SCBT), anti-ALDHI1L1(Abcam)
followed by HRP-conjugated secondary antibody (Thermo)
incubation and the SuperSignal West Femto Maximum
Sensitivity Substrate (Thermo) was used to detect signal.

Immunofluorescence

Tissues were isolated and fixed in 4% paraformaldehyde (PFA)
in PBS overnight at 4°C. Fixed tissues were dehydrated by
incubation in a series ethanol gradient and Xylene, then
embedded in paraffin wax for sectioning at the thickness of 5 um.
Slices obtained were rehydrated and boiled in Sodium Citrate
solution at 120°C for 20 min for antigen retrieval. Slices were
washed in PBS once before the blocking step. Cells cultured on
the coverslip were fixed in 4% paraformaldehyde (PFA) in PBS
overnight at 4°C. Subsequently, coverslips were washed in PBS
three times before blocking.

The brain slices or coverslips were incubated for 1 h in
blocking solution containing 5% bovine serum albumin (BSA,
Sigma) and 0.1% Triton X-100 (Sigma) in PBS. They were then
incubated with primary antibody overnight at 4°C, followed by
washing three times in PBS before incubation with fluorophore-
conjugated secondary antibodies. After secondary antibody
incubation, they were stained with DAPI, washed three times and
mounted with Prolong Gold Mounting Medium (Thermo) for
imaging. Images were captured using a Zeiss Axio Imager M2
fluorescence microscope. Image analysis was done using Image].
The mitochondria morphology was analyzed by Image] plugin
MiNA (Valente et al., 2017).

Transfection

Overexpression or knockdown of STAT3 and the OXPHOS genes
in cell lines were done by transfection using Lipofectamine
3000 (Thermo Fisher Scientific) according to the manufacturer’s
protocol. Briefly, 2.0 g of plasmid DNA were used for each well
of a 6-well plate. DNA was mixed with 7.5 Ll of P3000 reagent and
5 ul Lipofectamine3000 in OptiMEM (Thermo Fisher Scientific),
incubated for 5 min and added to the cells. The backbone
of the overexpression vectors was pMX vector from Addgene,
while the shRNA vectors were constructed from pLVX-shRNA2
(Clonetech). The shRNA sequences were obtained from Sigma
Aldrich database. The primers for shRNA vectors generation
were listed in Supplementary Table S6.

Lentivirus Preparation and Neural

Progenitor Infection

The lentivirus was produced using the 3rd generation system.
The virus envelope plasmid and the packaging plasmids, as well
as the pLVX-shRNA2 plasmids, were transfected into 293T cell
lines. Six hours after transfection, media were changed to the
fresh ones. The lentivirus containing media were collected after
24 h and then subjected to ultracentrifugation at 100,000 g for 1 h
to concentrate the lentivirus particle. The lentivirus particles were
then resuspended in SFM and stored at 4°C before used. To infect
the neural progenitors, the primary neural progenitors were
dissociated from neurospheres via multiple pipetting. Cells were
then seeded in the lentivirus-containing SFM at 2 x 10° cells/ml.

Drug Treatment
For the STA-21 treatment of neural progenitors, STA-21
was added to cell culture at 2 pg/ml. After 48 h, neural
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progenitors were collected for RNA extraction or subjected to cell
differentiation.

For the investigation of the effect of ROS on proliferation,
neural progenitors were treated with 10 uM H,0O,, or 20 mM
NAC or DMSO control. To investigate the effect of AMPK
and autophagy pathway, neural progenitors were treated with
4 mM 2-deoxyglucose (2DG), 1 pM Metformin, 2 mM 3 mA, or
2.5 w M Compound C.

Statistics

Statistical significance was determined by Student’s t-test
or Mann-Whitney test using GraphPad Prism 6.01. The
p-value < 0.05 was considered significant. Unless otherwise

specified, data were presented as mean and the standard deviation
(mean =+ SD).

RESULTS

Stat3 Deletion in Neural Progenitors
Resulted in Faster Proliferation and

Reduced Neurogenesis

In this study, we investigated the function of STAT3 in neural
progenitors using the Nestin-cre; Stat3-flox mice, which achieves
Stat3 conditional KO in neural progenitors by E14 (Tronche
et al,, 1999; Moh et al, 2007) (Supplementary Figure S1). To
determine the effect of STAT3 on neural progenitor proliferation,
we carried out the primary neurosphere growth assay on
neural progenitors isolated from E15.5 embryos. Intriguingly,
we found that deletion of Stat3 in neural progenitor cells
leads to an increase of neurosphere size compared to the
control (CTL), indicating a faster cell growth (Figure 1A).
In addition, the CFSE proliferation assay further confirmed
an accelerated mitosis pace in Stat3 cKO neural progenitors
(Figure 1B) compare to control neural progenitors, suggesting
a potential role of STAT3 as a negative regulator of neural
progenitor proliferation. Consistently, we found that the
developing cortex of Stat3 cKO contains higher numbers of
Sox2+ and Ki-67+ cells compared to the CTL, indicating that
Stat3 deletion promotes self-renewal and proliferation in vivo
(Figures 1ELJ).

To examine how Stat3 deletion affects the differentiation
potential of neural progenitors, we quantified the MAP2™T
neurons and the GFAPT astrocytes in the differentiated CTL
and Stat3 cKO neural progenitors. We found that conditional
deletion of Stat3 resulted in fewer MAP2" neuron generation and
abolished astrocyte differentiation associated GFAP expression
(Figures 1C,D). Immunostaining experiment of postnatal day 1
brain slices also demonstrated that Stat3 cKO leads to decreased
neuronal differentiation, as was shown by the decreased NeuN+
cell percentage (Figures 1G,K).

To examine if astrogenesis is indeed inhibited in Stat3
cKO, we analyzed the expression of the pan-astrocyte
marker ALDHILI, along with GFAP, in differentiated
neural progenitors. Interestingly, ALDHIL]1 expression
was not affected by Stat3 cKO, while that of GFAP was

abolished (Figure 1E). Similarly, we found that Stat3
cKO generated a higher percentage of ALDHILI+ cells
compared to the CTL (Figures 1H,L). This suggested
that STAT3 is not necessary for astrogenesis but negatively
regulates it instead.

Expression Profile Analysis of Stat3 cKO

in Neural Progenitor Cells

To gain insight into the downstream pathway of STAT3 in
neural progenitors, we performed RNA-Seq analysis on the
CTL and Stat3 cKO neural progenitors isolated from E11 or
E14 embryos. For the expression analysis, the RNA-seq data
were processed using the Tophat-Cufflinks workflow (Trapnell
et al, 2012), then clustered according to their expression
level differential in the CTL and Stat3 c¢KO populations
at the E11 and E14 stages. To filter for potential direct
target genes of STAT3, the genes that were differentially
expressed were cross-referenced with the DECODE database
to identify those with the potential STAT3 binding sites
(Figures 2A,B). Genes that were uniquely upregulated in
control cells from El1 to E14 compare to that of Stat3 cKO
cells are potentially STAT3 target genes, which were further
analyzed using the gene-set enrichment tool, DAVID, for gene
annotation and pathway enrichment analysis (Huang da et al,,
2009a,b) (Figure 2C).

Functional annotation of the potential STAT3 target genes
by cellular compartment (GO_CC) localized a significant set of
enriched genes to the mitochondria. Consistent with this finding,
annotation with Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway revealed that the putative STAT3 target
genes are mainly enriched in the Oxidative phosphorylation
(OXPHOS) pathway, and to a lesser extent in other pathways
such as purine metabolism, pyrimidine metabolism, and one
carbon pool by folate. These genes were also enriched in pathways
associated with neurodegenerative diseases such as Huntington’s
disease, Parkinson’s disease and Alzheimer’s disease (Figure 2C).

Given our findings that STAT3 is required for the
differentiation of neurons and astrocytes, we next examined
the expression of marker genes of different cell types, such as
radial glia, intermediate progenitor cells (IPCs), neurons and
astrocytes. We found that compared to the CTL, Stat3 cKO
neural progenitors showed increased expression of radial glia
markers such as Sox2, Pax6, and Sfrp2, and decreased expression
of most IPC and neuronal markers (Supplementary Figures
S$2A-C). The majority of glial markers such as Agp4, Aldh1l1, and
Mfge8 were upregulated in Stat3 cKO progenitors, while Gfap
expression was suppressed (Supplementary Figure S2D). These
results support our in vitro findings that Stat3 loss-of-function
led to decreased neuron differentiation.

Interestingly, Stat3 cKO also resulted in the increased
expression of upper layer (layer II-IIT) neuron markers such as
Cuxl, Cux2, but decreased expression of deeper layer (layer IV-
VII) markers such as Ctip2 and Tbrl. This result is consistent
with previous reports by Hong et al. that Stat3 cKO resulted in
a larger number of upper layer neuron generation, suggesting
a possibility that STAT3 might function to regulate layer
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FIGURE 1 | Continued

represent mean =+ standard deviations. (E) Western blot of differentiated neural progenitor samples showed that Stat3 cKO led to the loss of GFAP expression, but
the ALDH1L1 expression was not altered. (F) Immunostaining of radial glia marker SOX2 and proliferation marker Ki67 in E17 mouse brain. Scale Bar: 100 pm.
(G) Immunostaining of NeuN in P1 mouse brain. Scale bar: 250 pm. (H) Immunostaining of GFAP and ALDH1L1, both astrocyte markers, in the P1 mouse brain.
Scale bar: 20 um. (I-L) Cell counts and percentages obtained from (F-H). The cell numbers were quantified from five images, respectively. Error bars represent

mean =+ standard deviations. ***p < 0.001, *p < 0.05.
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specification during cortical development (Hong and Song, 2015)
(Supplementary Figure S2E).

STAT3 Promotes the Expression of
Oxidative Phosphorylation (OXPHOS)

Genes in Neural Progenitor Cells

RNA-seq analysis revealed a group of putative STAT3 targets
that not only involves in the OXPHOS pathways, but is
also implicated in neurodegenerative diseases (Figures 2C,
3A). Previous studies have demonstrated that OXPHOS genes
are highly expressed in the VZ in EIl4.5 mouse brain
(Visel et al., 2004), suggesting the governing of OXPHOS
genes expression may be critical during brain development
(Supplementary Figure S3A).

To validate our RNA-seq results showing differential
expression of OXPHOS genes, we performed quantitative
reverse-transcription PCR (RT-qPCR) to compare expression
of selected genes, including complex I genes (Ndufal, Ndufb5,
Ndufb7, Ndufcl and Ndufsl), complex III genes (Cycl and
Ugqcrh), as well as complex V genes (Atp5b, Atp5gl1, Atp5h, and
Atp50), in CTL and Stat3 cKO neural progenitors at E12 and
E14. In agreement with the RNA-seq analysis, we found that the
expression of these putative STAT3 target OXPHOS genes was
significantly upregulated in E14 CTL neural progenitors, and
significantly downregulated in E14 Stat3 cKO neural progenitors
(Figure 3B). However, the protein level of OXPHOS genes
was not altered in Stat3 cKO neural progenitors at E14. We
speculated that the change in the protein level might become
evident in the later stage due to delayed response of protein
turnover. Indeed, the OXPHOS protein level was downregulated
in Stat3 cKO neural progenitors at E17 (Figure 3C).

To further confirm that STAT3 regulate the OXPHOS gene
expression, we examined the expression of OXPHOS genes
in neural cells with drug/genetic-modulated STAT3 activity.
Expression of these OXPHOS genes was downregulated under
treatment of STA-21 in E14 neural progenitors (Supplementary
Figure S3B). In addition, the deletion of Stat3 with CRISPR in
ESC-derived mouse neural stem cells led to the downregulation
of OXPHOS genes, while overexpression of STAT3 in Neuro2A
cells upregulated OXPHOS gene expression (Supplementary
Figures S3C,D). Taken together, these results strongly support
that STAT3 is indispensable for the transcription regulation of
OXPHOS genes during neurogenesis.

Next, we investigated whether STAT3 directly regulates
the expression of the OXPHOS genes. By performing ChIP-
qPCR assays using E14 WT neural progenitors, we found
that STAT3 bound to the promoter or enhancer loci of a
significant proportion of the target OXPHOS genes (Figure 3D).
In addition, unphosphorylated STAT3 has a higher affinity to
some of these loci and promotes gene expression, compared to
the tyrosine-phosphorylated STAT3 (Supplementary Figure $4).
Luciferase reporter assays with selected promoter/enhancer
regions in Neuro2A cells further demonstrated that treatment of
STATS3 inhibitor Static or mutation of the putative STAT3 binding
sites in those regions significantly attenuates the reporter activity
(Figure 3E). Taken together, these results support the hypothesis

that STAT3 promotes the expression of OXPHOS gene via direct
transcriptional regulation.

STAT3 Promotes Mitochondria

Respiration in Neural Progenitors

Given that OXPHOS genes are involved in mitochondrial
respiration, we next examined whether Stat3 loss-of-function
would alter the oxygen consumption rate (OCR). We found that,
at E14, the basal OCR of Stat3 cKO and CTL neural progenitors
remains indistinguishable. However, at E17, the increment of
basal OCR, Maximum OCR and Proton Leak in Stat3 cKO neural
progenitors is significantly hindered when compare with that of
the CTL cells (Figures 4A-E). These results suggest that there is
a demand for energy metabolic increases in neural progenitors
from E14 to E17, and STAT3 is a critical drive during this process.

As several of the candidate STAT3 target OXPHOS genes
are components of complex I, we examined the complex I
activity and found that Stat3 loss-of-function decreased the
activity of complex I at E17 (Figure 4F). In addition, we
found that this impaired complex I activity was associated
with a decrease in mitochondrial membrane potential (MMP)
(Figures 4G,H). To exclude the possibility that the decrease
of mitochondrial complex I activity was due to mitochondrial
functional alternation, we examined the mitochondrial copy
number by qPCR, and found that there were no significant
differences between the CTL and Stat3 cKO cells (Figure 4I).

As mitochondrial respiration is crucial for cellular energy
balance, we next examined the ADP/ATP ratio and the related
signaling pathways in Stat3 cKO and control neural progenitors.
We found that Stat3 cKO cells had an elevated ADP/ATP ratio
(Figure 4]), which correlated with increased activation of AMPK,
the energy balance sensor (Figure 40). Concomitantly, we found
that the phosphorylation of mTOR was decreased in Stat3 cKO
cells. This suggested that the change in mitochondria energy
production altered signaling pathways linked to energy and
nutrient sensing.

Finally, we found that Stat3 cKO neural progenitors showed
decreased glycolytic flux, which is in line with the observation
of the decrease expression of the majority of glycolytic genes
(Supplementary Figures S5A-D). Accordingly, we noted a
decrease in the expression of pentose phosphate pathway
genes that are closely linked with glycolysis (Supplementary
Figure S5F). Conversely, the expression of genes involved
in fatty acid beta-oxidation was increased suggesting
a possible remodeling of metabolic fluxes in Stat3 cKO
(Supplementary Figure S5E).

STAT3 Negatively Regulates Reactive
Oxygen Species (ROS) Production in
Neural Progenitors

Whereas abnormal OXPHOS complex activity and MMP can
affect mitochondrial ROS production (Murphy, 2009), we next
sought to investigate whether the deletion of Stat3 affects ROS
production. We found that the deletion of STAT3 promoted
the production of mitochondrial superoxide and cellular ROS
level (Figures 4K-N and Supplementary Figures S6D,E).
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FIGURE 3 | STAT3 promotes the expression of OXPHOS genes in neural progenitors. (A) One group of potential STAT3 targets was involved in the mitochondrial
oxidative phosphorylation as well as the neurodegenerative diseases. (B) RT-gPCR confirmed the expression of these genes was upregulated during neural
progenitor development and downregulated in Stat3 cKO. (C) Western blot showed that the expression of complex | proteins was downregulated in Stat3 cKO
neural progenitors isolated at E17. (D) ChIP-gPCR showed that STATS3 directed bind to the promoter or enhancer of the OXPHOS genes such as Ndufat, Ndufb7,
Ndufc1, Ndufs1, Atpsb, Atp5o. (E) Dual luciferase reporter assay showed that STAT3 binds to the promoter of OXPHOS genes and activate their transcription.
Treatment of STATTIC or mutation of the STAT3 binding site downregulated the reporter activity. Socs3 promoter was used as the positive control, while the empty
reporter vector was used as the negative control. #p < 0.08, “p < 0.05, *p < 0.01, **p < 0.005, n.s. not significant. Error bars represent mean + standard
deviations.

Interestingly, Mitosox-Red-stained mitochondria were elongated As ROS signaling can activate different signaling pathways
in Stat3 cKO cells, compared to the CTL cells, suggesting a fusion-  including PI3K/AKT (Lee et al., 2002; Leslie et al., 2003; Lim and
fission defect in Stat3 cKO neural progenitors (Supplementary Clement, 2007), we next sought to determine the activation status
Figures S6A-C). of key signaling pathways linked to ROS. We found that the AKT
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pathway was activated in Stat3 cKO neural progenitors, as well
as the p38 MAPK (MAPK14) pathway (Figure 4P). Similarly,
Stat3 cKO led to a higher level of cleaved Caspase3 (Figure 4P).
However, Stat3 cKO did not result in increased apoptosis in
neural progenitors (Supplementary Figure S7).

Knockdown of Putative STAT3-Target
OXPHOS Genes Mimics the Phenotypes
of Stat3 cKO

We previously showed that Stat3 loss-of-function can
downregulate target OXPHOS genes and this correlated
with a decrease in mitochondrial function. To determine
whether the defects in mitochondrial respiration in STAT3
cKO neural progenitors are mediated primarily by the
downregulation of OXPHOS gene expression, we attempted
to knockdown several of the target genes (including Ndufcl,
Ndufb5, Ndufb7, Ndufsl, and Atp5b) in E15 neural progenitors
using a lentiviral ShRNA system. We found that knockdown
of the selected target genes led to decreased mitochondrial
OCR and increased mitochondrial ROS production, suggesting
that downregulation of the target OXPHOS genes primarily
mediates the mitochondrial metabolic change observed in Stat3
loss-of-function (Figures 5A-C). Consistently, knockdown of
the OXPHOS genes led to the activation of the AMPK pathway
and increased autophagy (Figure 5D).

The results above demonstrate that STAT3 is necessary to
promote nuclear-encoded OXPHOS gene expression and thereby
mitochondria respiration in neural progenitors. To examine
another possibility of whether STAT3 regulates the OXPHOS
genes expression via mitochondria metabolism, we used 2DG or
H,0, intervention to mimic the metabolic stress in Stat3 cKO
cells. We found that the OXPHOS genes expression was increased
as a result of the drug treatment, in contrast to that in Stat3
cKO (Supplementary Figure S9). This suggested that in Stat3
cKO neural progenitors, downregulation of the OXPHOS genes
expression leads to the disruption of mitochondrial metabolism,
not vice versa.

We next sought to determine whether the downregulation of
OXPHOS genes mediates the proliferation and differentiation
phenotype of Stat3 cKO neural progenitors. We found that
knockdown of these OXPHOS genes led to increased cell
proliferation, suggesting that the proliferative phenotype of
Stat3 cKO neural progenitors could be directly mediated by
decreased expression of OXPHOS genes (Figures 5E,F). In
addition, we found that knockdown of the OXPHOS genes
in neural progenitor cells led to significantly lower neuronal
differentiation, except that of Atp5b (Figures 5G,H). However,
knockdown of the selected OXPHOS genes other than Ndufs1 did
not alter the astrogenesis of neural progenitors (Figures 5G,I).

In summary, knockdown of OXPHOS genes was able to
reproduce several phenotypes of Stat3 cKO neural progenitor
cells, including reduced OCR, increased ROS production, and
activation of the AMPK pathway. In addition, the knockdown
of OXPHOS genes resulted in an increased proliferation rate
and reduced neurogenesis, similar to the Stat3 c¢KO neural
progenitors. These findings support the hypothesis that the

regulation of OXPHOS genes mediates the phenotypic changes
observed in Stat3 loss-of-function neural progenitors.

Activation of AMPK and ROS Pathways

Promotes Neural Progenitor Proliferation
As mitochondria dysfunction in Stat3 cKO activated the AMPK
and ROS pathway, we wondered if these pathways mediated the
hyperproliferative phenotype of Stat3 cKO neural progenitors.

To investigate the role of AMPK in neural progenitor
proliferation, we treated E15 neural progenitors with AMPK
agonists 2DG and Metformin as well as AMPK suppressors
Compound C and inhibitor of downstream autophagy 3 maA.
Treatment of 2-deoxyglucose (2DG) and Metformin in CTL
neural progenitors induced a starvation state similar to that of
Stat3 cKO, as was dictated by the ADP/ATP ratio (Figure 6A).
2DG and Metformin treatment resulted in increased neurosphere
size and BrdU incorporation in CTL neural progenitor, while
treatment of Compound C and 3mA decreased the neurosphere
size and BrdU incorporation (Figures 6B,C), suggesting that
AMPK pathway activation is both sufficient and necessary for
neural progenitor proliferation. To investigate whether ROS
signaling regulates neural progenitor proliferation, H,O, and
ROS scavenger N-acetylcysteine (NAC) was added to the CTL
neural progenitors. Treatment of H202 led to increased BrdU
incorporation and neurosphere growth, while NAC treatment
decreased them, suggesting that ROS signaling is also sufficient
and necessary for neural progenitor proliferation (Figure 6D).
Modulation of AMPK pathway and ROS downstream pathway
AKT by drug treatment was verified by western blot analysis
(Figures 6E,F).

DISCUSSION

STAT3 has been shown to play an important role in neural
progenitor development, but its function and downstream
pathways are not fully understood. Our study discovers a
new role of STAT3 and sheds light on the downstream
regulatory network. We found that STAT3 is necessary for
controlling the proliferation rate and promoting neurogenesis via
a mitochondria-dependent pathway.

Previous studies found activation of STAT3 by cytokines
promotes neural progenitor proliferation and negatively regulates
neurogenesis (Hong and Song, 2015). However, the effect of
cytokines could be independent of the JAK-STAT3 pathway.
For instance, CNTF treatment induced neural progenitor
proliferation and suppressed neurogenesis in both CTL and Stat3
cKO neural progenitors (data not shown). Our study showed
that loss of STAT3 also results in increased proliferation and
reduced neurogenesis. This is consistent with previous report
that Stat3 cKO astrocytes resulted in increased proliferation
(de la Iglesia et al., 2008).

Additionally, we found that STAT3 is not necessary for
astrocytogenesis. Previous studies showed that STAT3 is
necessary for astrocyte marker GFAP expression (Hong and
Song, 2014; Kanski et al, 2014). Several STAT3 binding
sites were found in Gfap promoter (Bonni et al, 1997;
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Nakashima et al., 1999), and their interaction with STAT3 is
critical for Gfap expression. However, GFAP is merely a marker
of a subset of astrocytes (Zeisel et al., 2015). Lack of GFAP+
cells in Stat3 cKO suggests that it leads to potentially functional
tampered astrocytes, but not the reduction of the astrocyte cell
number. On the contrary, expression of other astrocyte markers
was even increased in Stat3 cKO, which might due to increased
proliferation of astrocyte precursors.

Our RNA-seq data showed that expression of upper layer
neuronal marker was increased in Stat3 cKO neural progenitors,

which was concomitant with the observation in previous study
that Stat3 cKO yielded significantly increased number of upper
layer (layer II-III) neurons (Hong and Song, 2015). Upper
layer neurons are generated after E14, when Stat3 cKO neural
progenitors start to show defect of mitochondrial respiration
and increased proliferation rate (Gao et al., 2014). Therefore,
increased upper layer neuron generation might result from
the increased proliferation of neural progenitors. In addition,
whether mitochondria respiration correlates with different layer
neuron specification remains to be studied. Electron microscopic
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study suggested that layer II-III neurons contain less volume
of mitochondria compared to layer IV (Santuy et al.,, 2018),
implying that neurons in different cortical layers might have
different mitochondrial metabolism requirement.

In the canonical JAK-STAT pathway, STAT3 is tyrosine
phosphorylated, undergoes nucleus import and activates gene
expression (Fu et al., 1990, 1992; Schindler et al., 1992; Darnell
et al., 1994; Levy and Darnell, 2002). However, STAT3 without
tyrosine-phosphorylation (U-STAT3) could also promote gene
expression. It has been reported that U-STAT3 could be imported
into nucleus by Importin (Liu et al., 2005; Cimica et al., 2011).
In addition, U-STAT3 could accumulate in the nucleus after
prolonged IL6 treatment (Yang et al., 2005). U-STAT3 could
interact with DNA and promote gene expression by forming
homodimer, or in a complex with RELA (Yang et al., 2007;
Timofeeva et al., 2012; Nkansah et al., 2013; Okada et al., 2018).
Similarly, our data showed that overexpression of STAT3-CYE,
a dominant negative mutant of STAT3 that mimic U-STATS3,
could bind to the regulatory element of Ndufcl and promote its
expression, while the overexpression of STAT3-CA, a constitutive
active form of STATS3, could not. However, it remains unclear
if other post-translational modifications of STAT3 regulate
these genes expression. Furthermore, it was speculated that
U-STAT3 might also function as a chromatin scaffold protein
due to the long distance of their adjacent binding sites. Indeed,
bisulfite sequencing revealed that the global DNA methylation
level was decreased in Stat3 cKO neural progenitors at E14.
STATS3 activation could promote cell proliferation and suppress
neurogenesis, while absence of STAT3 also leads to similar
outcome, suggesting that the STAT3 activation or inactivation
might be one of the molecular switch of neural progenitor fate.

It has been shown that STAT3 could be translocated
into mitochondria, and that mitochondrial STAT3 promotes
respiration by binding to protein complexes such as Complex
I, or by regulating mitochondrial transcription (Wegrzyn et al,,
2009; Macias et al., 2014; Carbognin et al., 2016; Xu et al,
2016). However, we have previously reported that STAT3
does not locate within mitochondria, but in mitochondria-
associated ER membrane instead (Su et al., 2019), which
is neglected by prior studies. Even if STAT3 is present in
mitochondria, it is unlikely to directly regulate mitochondrial
respiration, due to the stoichiometric difference between STAT3
and the OXPHOS complexes or the mitochondrial genome
(the molecular ratio of Complex I and STAT3 is ~10° by
estimation; and that of the mitochondrial genome and STAT3
is ~10%) (Bogenhagen and Clayton, 1974; Shmookler Reis
and Goldstein, 1983; Phillips et al., 2010). Thus, STAT3 might
regulate mitochondrial respiration via other pathways. Our
study showed STAT3 can promote mitochondrial respiration
and limit ROS production by regulating the expression of
nuclear-encoded OXPHOS genes during neural progenitor
development. Similarly, it was shown that STAT3 regulates
citrate synthase expression so as to promote mitochondrial
metabolism in lymphocytes (MacPherson et al, 2017).
Taken together, our results suggest a STAT3-regulated
nuclear-transcription-dependent ~ pathway that modulates
mitochondrial metabolism.

Mitochondrial metabolism is closely associated with neural
progenitor self-renewal and differentiation. Our data showed
downregulation of OXPHOS genes in Stat3 cKO leads to a
disruption of mitochondrial metabolism, which promotes the
proliferation of neural progenitors while negatively regulates
neurogenesis, consistent with a previous study (Bartesaghi
et al, 2015). In addition, mitochondrial metabolism could
regulate neural progenitor proliferation and differentiation
via activation of AMPK signaling or ROS-AKT signaling
(Dasgupta and Milbrandt, 2009; Le Belle et al., 2011; Williams
et al, 2011). Consistently, we found overactivation of both
AMPK and AKT pathways in Stat3 cKO neural progenitors.
Though both are necessary for promoting neural progenitor
proliferation, the AMPK and AKT signaling has an antagonistic
effect on mTOR activation and the downstream response.
(Gwinn et al, 2008; Zhao et al, 2017). The downregulated
mTOR pathway in Stat3 cKO neural progenitors we show
here suggests the negative regulation by AMPK pathway
might play a dominant role which is consistent with the
proliferation phenotype, given that activation of mMTOR complex
1 pathway negatively regulates neural progenitor self-renewal
and promotes differentiation (Magri et al, 2011; Hartman
et al., 2013). However, further study is required to understand
how these metabolic-related pathways converge onto the neural
progenitor cell fate.

In summary, we discovered a STAT3-mitochondria
metabolism axis that regulates neural progenitor proliferation
and differentiation.
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Background: Cell proliferation is a fundamental event during development, disease,
and regeneration. Effectively tracking and quantifying proliferating cells and their
derivatives is critical for addressing many research questions. Cell cycle expression
such as for Ki67, proliferating cell nuclear antigen (PCNA), or aurora kinase B (Aurkb),
or measurement of 5-bromo-2’-deoxyuridine (BrdU) or 3H-thymidine incorporation have
been widely used to assess and quantify cell proliferation. These are powerful tools for
detecting actively proliferating cells, but they do not identify cell populations derived from
proliferating progenitors over time.

Aims: We developed a new mouse tool for lineage tracing of proliferating cells by
targeting the Aurkb allele.

Results: In quiescent cells or cells arrested at G1/S, little or no Aurkb mRNA is
detectable. In cycling cells, Aurkb transcripts are detectable at G2 and become
undetectable by telophase. These findings suggest that Aurkb transcription is restricted
to proliferating cells and is tightly coupled to cell proliferation. Accordingly, we generated
an Aurkb®7 €6/ mouse by targeting a tamoxifen inducible Cre cassette into the start
codon of Aurkb. We find that the AurkbE? ©¢/+ mouse faithfully labels proliferating cells
in developing embryos and regenerative adult tissues such as intestine but does not
label quiescent cells such as post-mitotic neurons.

Conclusion: The Aurkbt? ©¢/+ mouse faithfully labels proliferating cells and their
derivatives in developing embryos and regenerative adult tissues. This new mouse
tool provides a novel genetic tracing capability for studying tissue proliferation
and regeneration.

Keywords: cell proliferation, aurora kinase B, mouse model, lineage tracing, regeneration, development

INTRODUCTION

Cell proliferation is a fundamental biological event in all multicellular organisms (Nasmyth, 2001).
Identification or quantification of proliferating cells is essential to understanding organogenesis,
morphogenesis, tumorigenesis, and regeneration. Replicating cells can be identified based on
expression of cell-cycle markers, such as Ki67, proliferating cell nuclear antigen (PCNA), aurora
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AurkbER Cre/+ Mouse Model for Proliferation

kinase B (Aurkb), or the incorporation of thymidine analogs,
such as *H-thymidine, 5-bromo-2’-deoxyuridine (BrdU), or 5-
ethynyl-2’-deoxyuridine (EdU) (Mitchison and Salmon, 2001).
Incorporation of 5-iodo-2’-deoxyuridine (IdU) has been used to
analyze proliferation in human tissue (Pan et al., 2013). These
assays are suitable for detecting actively proliferating or label-
retaining cells. However, retrospective lineage tracing is often
desired when proliferating cells must be tracked for their growth
pattern or quantity under certain biological conditions such as
tissue morphogenesis or regeneration.

Genetic engineering in the mouse allows lineage tracing
mouse models to track the derivatives of proliferating cells.
One model is the mosaic analysis with double markers
(MADM) mouse model, which labels dividing cells through
interchromosomal recombination (Zong et al., 2005), although
its application is limited due to low labeling efficiency. More
recently, a Ki67™RESCreER/+ mouse was generated and used to
track proliferating cells in brain or heart (Basak et al., 2018;
Kretzschmar et al., 2018). However, Ki67 is expressed throughout
the cell cycle including G1, and some non-proliferative cells such
as adult cardiomyocytes can poise at G1 for an extended period
of time without cell division (Alvarez et al., 2019).

Aurkb, a key component of the chromosomal passenger
complex, localizes to the centromeres to ensure precise
chromosome segregation during mitosis and to the midbody to
assist cytoplasmic separation during cytokinesis (van der Waal
et al., 2012). Knockdown or inhibition of Aurkb in vitro inhibits
cell proliferation (Yu et al., 2015; Helfrich et al., 2016), while
knockout of Aurkb in mice results in mitotic defects in the inner
cell mass (Fernandez-Miranda et al., 2011). Increased expression
of Aurkb is associated with tumorigenesis and inhibition of
Aurkb may be an effective cancer therapeutic target (Tang
et al, 2017; Tischer and Gergely, 2019). Aurkb has been
widely used to identify mitotic cells using immunofluorescence
or immunohistochemical methods with anti-Aurkb antibodies
(Vader and Lens, 2008; Liu and Lampson, 2009; van der
Waal et al, 2012; Tian et al., 2015; Nakada et al., 2017;
Yu et al., 2019).

In order to track cell proliferation retrospectively, we have
generated Aurkb"R €r¢/+ mice by targeting a tamoxifen inducible
Cre cassette into the start codon of Aurkb. By characterizing the
Aurkb®R €€ allele in vitro and in vivo, we show that Aurkb®R ¢re/+
mice faithfully label proliferating cells and their derivatives
during development and regeneration.

MATERIALS AND METHODS

Mice

AurkbPR Cre/+ mice generated by homologous
recombination in embryonic stem cells targeting a Cre-
Ert2-V2A-tdTomato-Frt-PGK-neo-Frt cassette into the start
codon of the Aurkb locus. Thus, the insertion of this cassette
will lead to the ablation of endogenous Aurkb expression
in the target allele. The PGK-Neo cassette was removed by
breeding the initial progeny to mice expressing ubiquitous

were

FIpE recombinase (Rodriguez et al., 2000). Southern blot
confirmed the expected homologous recombination and germ
line transmission of the targeted allele. The Aurkb™R ¢¢ allele
is detected by PCR using the following primers: Forward:
5-GTGGGCTCTATGGCTTCTGA-3/, Reverse (common):
5'-CAAATTCTTGAGGCCCACAC-3'; product size: 501 bp.
The wild-type allele is detected by using the following primers:
Forward: 5'-ATGGACCTAGAGCGGGAGAT-3' and Reverse
(common); product size: 264 bp. The V2A-tdTomato included
in the targeting construct potentially provides a means to
fluorescently label Aurkb-expressing cells without disrupting
Cre-Ert2 function. However, although we were able to detect
tdTomato protein expression by immunofluorescence using
antibodies on fixed intestinal crypts (Supplementary Figure 1),
the spontaneous tdTomato fluorescence was below levels
of detection. B6.129 x 1-Gt (ROSA) 26Sor™1(EYFP)Cos/+
(abbreviated as R26R°YfP) mice were purchased from The
Jackson Laboratory (stock number: 006148). All mice were
maintained on a mixed genetic background. All animal protocols
were approved by the University of Pennsylvania Institutional
Animal Care and Use Committee (IACUC #: 803396) and the
University of Maryland Baltimore Institutional Animal Care and
Use Committee (IACUC #: 0118005).

Administration of Tamoxifen and
5-Bromo-2'-Deoxyuridine (BrdU) in vivo
Tamoxifen (Sigma-Aldrich, St. Louis, MO, United States)
(10 mg/ml) was dissolved in corn oil. Tamoxifen [2 or 100 or
150 mg/kg body weight (BW)] was given to Aurkb®R Cre/+;
R26R®YFP/+  mice by either intraperitoneal injection or
gavage. BrdU (Sigma-Aldrich, St. Louis, MO, United States)
(10 mg/ml) was dissolved in phosphate-buffered saline (PBS)
and intraperitoneally delivered to Aurkb®R ¢r¢/+; R26REVFP/+
mice (100 mg/kg BW).

Histology, Immunofluorescence and
RNAscope

All specimens for paraffin sections were fixed in 4% (w/v)
paraformaldehyde (PFA) overnight, dehydrated through an
ethanol series, paraffin embedded, and sectioned (6-7 pm).
Primary antibodies (Supplementary Table 1) were incubated
at 4°C overnight and secondary antibodies (Alexa 488, 555,
or 647, Life Technologies, Grand Island, NY, United States)
were incubated at room temperature for 1 h. The Aurkb
RNAscope probe (173-1483 bp of the Mus musculus Aurkb
mRNA sequence) was designed and provided by Advanced Cell
Diagnostics (Hayward, CA, United States). RNAscope in situ
hybridizations (Ikpa et al., 2016) were performed according to the
protocol provided by manufacturer.

Image Analysis and Quantification

Image] software was used for quantification of GFP+ and/or
BrdU+ cells on histology slides. Samples from 3-6 mice each
were counted at any given time point or condition. The reported
values represent the mean score.
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Live Cell Imaging

Time-lapse phase-contrast and GFP immunofluorescence images
of mouse embryo fibroblasts (MEFs) were taken for 22 h after
4-OH tamoxifen induction (final concentration: 1 pg/ml) by
using the IncuCyte live-cell culture system (Essen Bioscience).
The images were then analyzed and converted to movie format
by using IncuCyte software.

Fluorescence-Activated Cell Sorting
(FACS) Analyses

MEFs were isolated and cultured as previously described (Li
et al., 2011). MEFs were treated with either control vehicles or
designated cell cycle inhibitors, then digested and collected as
single cell suspensions. The cell suspension was washed with PBS
and then fixed with intracellular fixation buffer (eBiosciences).
For intracellular FACS analyses, cells were permeabilized with
permeabilization buffer (eBiosciences) and then incubated with
GFP antibodies (see Supplementary Table 1) for 2 h at room
temperature, followed by incubation with secondary antibodies
(Alexa fluor, Life Technologies) for 1 h at room temperature.
Samples were run and analyzed using a BD FACS Canto II
instrument and software (BD Biosciences).

Quantitative Real-Time PCR (qRT-PCR)

Heart, brain, and embryonic tissues were microdissected in
cold PBS and snap frozen in liquid nitrogen. TRIzol reagent
(Life Technologies, Grand Island, NY, United States) was used
to extract total RNA and complementary DNA (cDNA) was
generated with the Superscript IIT kit (Life Technologies, Grand
Island, NY, United States). SYBR Green quantitative RT-PCR
was performed using the StepOne Plus Real-Time PCR System
(Applied Biosystems, Foster City, CA, United States). Primers for

Aurkb: P1F (forward): 5-TCGCTGTTGTTTCCCTCTCT-
3, PIR (reverse): 5-TTCAGGCCAGACTGAGACG-3/;
P2F (forward): TCGCTGTTGTTTCCCTCTCT, P2R

(reverse): TTCAGGCCAGACTGAGACG. Primers for Gapdh:
Forward: 5-TCTTGCTCAGTGTCCTTGCTGG-3/, Reverse:
5-TCCTGGTATGACAATGAATAC GGC-3'.

Western Blotting

E12.5 embryos were minced in cold lysis buffer (50 mM Tris-
HCI (pH 7.4), 150 mM NaCl, 1 mM EDTA-Na,, 1 mM EGTA,
1% Triton X-100, 0.5% Sodium Deoxycholate and 0.1% SDS with
Protease inhibitor cocktail (Roche); 1 mM phenylmethylsulfonyl
fluoride was added before use). Protein samples were resolved
on 4-12% SDS-PAGE acrylamide gel before transferring to
PVDF membranes. We used primary antibodies to Aurkb
(1:1000), Cre (1:1000) and GAPDH (1:5000). Primary antibodies
were visualized by chemiluminescence using HRP-conjugated
secondary antibodies.

Statistical Analysis

Data are presented as mean £ SEM. Statistical significance
between two groups was determined using two-tailed Student’s
t-test or chi square test. If significance is to be tested between

multiple groups, an analysis of variance is performed, followed
by Bonferroni post hoc test. P < 0.05 was considered significant.

RESULTS

Aurkb Is Expressed in Proliferating but

Not in Quiescent Cells

In cultured MEFs, Aurkb protein is undetectable at G1 phase,
but expression becomes prominent at G2 and it is localized to
the nucleus. Aurkb reaches and maintains a strong expression
level throughout M phase. Aurkb re-localizes to the midbody
at telophase (Supplementary Figure 2). These findings are
consistent with previous observations (Crosio et al., 2002; Li
et al., 2015). Aurkb mRNA is not detectable at G1 but is
detectable by G2. Message is present through M phase but
becomes undetectable at telophase (Figure 1). These results
suggest that Aurkb transcript expression is correlated with the
phase of the cell cycle and is largely restricted to mitotic cells.
To further test this association, we forced MEFs to arrest at
G1/S phase by exposure to hydroxyurea or mimosine (Park
et al,, 2012) and then assessed the presence of Aurkb transcripts.
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FIGURE 1 | The expression of Aurkb transcripts during the cell cycle. Double
staining of RNAscope and immunofluorescence in MEFs. Bar, 10 pm.
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Aurkb transcriptional levels were significantly decreased in these data suggest that Aurkb transcription is coupled with cell
hydroxyurea- and mimosine-treated groups as compared to the  proliferation in vitro and in vivo. Accordingly, we generated
control group (Figure 2A). Both brain and heart experience ~Aurkb®R ¢¢/* mice by targeting a Cre-Ert2 cassette into the
a proliferation transition from being highly proliferative at start codon of the Aurkb locus (Figure 3A). As expected,
embryonic stage to being mostly proliferatively inert in adulthood ~ Aurkb mRNA was reduced to about 50% in AurkbER Cre/+
(Brooks et al., 1998). Aurkb transcription significantly declines heterozygous mice as compared to their wildtype littermate
from being high at embryonic day (E) 14.5 to being almost controls (Figure 3C). In contrast, Aurkb protein expression was
undetectable in adult heart and brain (Figure 2B). Altogether, similar between AurkbER C¢/* heterozygous mice and wildtype
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FIGURE 2 | Aurkb transcription is coupled with cell proliferation. (A) MEFs were cultured for 48 h with normal media (control), or treated with hydroxyurea (2 mM), or
mimosine (1 mM). The transcriptional levels of Aurkb were quantified by gRT-PCR. Gapdh was used as a cDNA loading control. Three independent biological
samples were used in each condition. *P < 0.05 when compared to the control condition analyzed by ANOVA followed by Bonferroni post hoc test; VEH, vehicle
control; HU, hydroxyurea; MIM, mimosine; (B) The relative transcriptional levels of Aurkb in heart and brain at E14.5, postnatal day O (P0), postnatal day 7 (P7), and
2 months (2M). Gapdh was used as a cDNA loading control. n = 3 in each group. *P < 0.05 when compared to E14.5 analyzed by ANOVA followed by Bonferroni
post hoc test.
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FIGURE 3 | Aurkb gene targeting. (A) Schematic of the generation of the Aurkbt? C' allele; (B) Southern blot of DNA extracted from Aurkb®F C¢/+ MEFs. DNAs
were digested by EcoRV (RV). The 32P-radiolabeled 5' DNA probe used (~500 bp) is located upstream of the 5’ arm but downstream to the 5’ RV enzyme site. P1F,
P1R, P2F, and P2R are primer sets for detecting Aurkb transcripts; (C) Aurkb mRNA expression in wildtype (WT) and heterozygous (HET) E12.5 embryos. n = 4 in
each group. **P < 0.001 by a Student’s t-test; (D) Aurkb protein expression in WT and HET E12.5 embryos. GAPDH was used as a protein loading control.
Densitometric quantification of Aurkb was shown on the right. N.S., not significant.
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controls (Figure 3D). AurkbPR ¢¢/* heterozygous mice are
phenotypically normal and fertile. The total knockout of Aurkb
resulted in early post-implantation lethality by E9.5 (Fernandez-
Miranda et al., 2011). Consistently, we did not recover any
AurkbER Cre/ER Cre embryos at E10.5 (0/21).

AurkbER Cre | abels Proliferating Cells

in vitro

To characterize the labeling of Aurk in vitro and test
whether it is associated with cell proliferation, we generated
AurkbFR €re/+; R26RYFP/+ MEFs and tracked AurkbER Cr
labeling by following the YFP reporter activities after 4-OH
tamoxifen induction. YFP signal was detectable in proliferating
MEFs about 16 h after 4-OH tamoxifen induction, became
strong immediately prior to cell division, and maintained
expression in daughter cells (Supplementary Video 1). In
contrast, there was no YFP signal in non-dividing AurkbER Cre/+;
R26R*YFP/+ MEFs. Note that YFP signal is well recognized
by GFP antibodies. Hereafter, we use GFP antibodies to
measure YFP expression when referring to Aurkb®R €r¢/* fate-
mapped cells. There was negligible R26R®YFP/+ reporter activity
in AurkbER Cre/+; R26RYFP/+ MEFs without 4-OH tamoxifen
induction (Figure 4A), indicating that there is little to no
leakiness of the AurkbER ¢/ allele. According to the expression
profile of Aurkb, we expected to see AurkbER C'/* labeling
cells as they enter G2 phase. To further analyze the association
between AurkbPR €7¢/+ labeling and cell proliferation, we arrested
MEFs at G1/S phase by either hydroxyurea or mimosine
treatment, as evidenced by the absence of BrdU incorporation
(Figure 4A). R26R°YTP/+ reporter activities were significantly
lower for cell cycle inhibitor-treated Aurkb®R €¢/+; R26REYFP/+
MEFs compared to those under normal culture conditions
(Figures 4A,B). This lineage tracing result mirrors the Aurkb
transcription profile when wild-type MEFs are arrested at G1/S
phase (Figure 2A). These results suggest that AurkbER ¢ labels
proliferating but not non-dividing cells in vitro.

bER Cre

AurkbER Cre | apels Proliferating Cells

During Embryonic Development

Next we sought to determine whether AurkbER € labels highly
proliferative cells during embryonic development in vivo. We
confirmed that Aurkb heterozygosity did not grossly affect
embryonic morphogenesis or cellular growth (Supplementary
Figure 3), validating the use of Aurkb®RC¢/* as a lineage
tracing tool during embryonic development. When E8.5
AurkbFR €re/+; R26°YFP/+ embryos were induced with tamoxifen,
extensive labeling of the embryo was observed. Importantly,
there was no leakiness of AurkbPR ¢ labeling when corn
oil but not tamoxifen was administered (Supplementary
Figure 4). When we labeled developing embryos with both
AurkbFR €€ and BrdU, we found that about 85% of embryonic
cells are labeled by both systems (Figure 5). Further, we
performed double immunofluorescence staining of GFP and
PCNA on these embryos. We found that nearly 93% of
embryonic cells are double positive (Supplementary Figure 5).
Altogether, these data indicate that AurkbPR €™ is a sensitive
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FIGURE 4 | AurkbER Cre/+ labeling of MEFs. AurkbtR Cre/+; RogReYP/+
MEFs were cultured in 10% FBS standard medium. MEFs were treated with
cell cycle blockers for a total of 48 h. 24 h after the treatment, BrdU (10 nM)
and 4-OH tamoxifen (1 wM) were added in the medium and maintained for
24 h before cell harvest. YFP immunosignal was detected by GFP antibody.
(A) Representative micrographs of BrdU and GFP immunofluorescence
staining of AurkbER Cre/+ Ro6REYFP/+ MEFs under various culture conditions.
Scale bar, 50 um; (B) The Aurkb®? Ce/+ labeling percentage was quantified
by flow cytometric analysis. The percentage was calculated as the number of
GFP + cells under each treatment condition as divided by the number of
GFP + cells in the control condition. VEH, vehicle control; HU, hydroxyurea

(2 mM); MIM, mimosine (1 mM). n = 3 for each condition, “P < 0.05 when
compared to the control group by ANOVA followed by Bonferroni post hoc
test.

and reliable system for lineage tracking of proliferating
embryonic cells.

Tamoxifen Activation of AurkbER Cre
Labels Proliferating Adult
Stem/Progenitor Cells but Not

Post-mitotic Cells in vivo

Next, we assessed AurkbER ¢ labeling in adult regenerative
tissues. Two-month-old AurkbPR C¢/+; R26°YFP/+ mice were
given a single dose of tamoxifen (100 mg/kg BW) and we
followed the labeling pattern of the YFP reporter over time
in the intestine. The labeling displayed a dynamic expansion
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FIGURE 5 | AurkbtR €re/+ |abels proliferating cells in developing embryos. Tamoxifen (150 mg/kg BW) was given to pregnant mice at E8.5 by gavage. BrdU
(100 mg/kg BW) was intraperitoneally given to pregnant mice for four consecutive days (E8.5, E9.5, E10.5, and E11.5, one injection/day). (A and A1) Representative
immunofluorescence micrographs of an E12.5 AurkbtR Cre/+: Ro6REYFP/+ embryo (sagittal section). Scale bars, A, 500 pm; A1, 50 pm; (B) Labeling quantification

of AurkbER ©¢/+ and/or BrdU (n = 4).

from the initial crypt (6 h after tamoxifen administration)
to the entire crypt-villus structure over a course of 3 days
(Figure 6A), greatly resembling the lineage tracking pattern of
intestinal stem cells (ISCs) and progenitors, which are known
to be highly proliferative (Barker, 2014). In the crypt zone
where Ki67-positive ISCs and progenitors reside, AurkbER ¢re
labeling colocalizes with Ki67. In the villi where derivative,
Ki67-negative intestinal epithelial cells reside, Aurkb®R Cre/+
labeling colocalizes with derivatives of the crypt ISCs that
appear over time (Figure 6A). Further, administration of low
doses of tamoxifen (2 mg/kg BW) in adult AurkbER Cre/+;
R26R®YFP/* mice revealed that single earlier Aurkb-labeled
intestinal progenitor cells (PCNA+) expanded to form clusters of
enterocytes after 7 days (Supplementary Figure 6). Altogether,
these data indicate that Aurkb®R ¢¢/* labels proliferating
progenitor cells in the intestine. In brain, neuronal nuclei

(NeuN)-positive post-mitotic neurons were not promptly labeled
after tamoxifen exposure but eventually became labeled (70 days
after the initial tamoxifen induction). This occurred presumably
through transit amplifying mini-chromosome maintenance
proteins (MCM2)-positive progenitors (Figure 6B). This is
consistent with NeuN-positive neurons as terminally quiescent
cells, renewing through neural stem cells and progenitors with
prolonged kinetics.

DISCUSSION

Assessment of cell proliferation in vivo generally relies on the
use of BrdU incorporation or “snapshots” of cell cycle marker
expression such as PCNA or Ki67. Both approaches are important
complementary methods for detecting actively proliferating
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6 hours

FIGURE 6 | Tamoxifen activation of AurkbE ©¢/+ |abels proliferating stem
cells/progenitor cells in adult intestines and brain. (A) AurkbER €¢/+ |abeling in
adult intestines. A single dose of tamoxifen (100 mg/kg BW, i-iii) was
intraperitoneally given to AurkbER ©re/+: Ro6REYFP/+ mice at the age of

2 months. Dotted lines delineate the crypts below from their associated villus
above. Bars, 25 um; (B) AurkbER Ce/+ |abeling in adult brain. Tamoxifen

(100 mg/kg BW) was intraperitoneally given daily to AurkbtR Cre/+;
R26ReYFP/+ mice for four consecutive days at the age of 2 months. Green
arrows point to GFP+ only cells; yellow arrows point to GFP+; PCNA+ (i),
GFP+; MCM2+ (i) or GFP+; NeuN+ (iv) cells. GL, granular layer. Bars, 20 um.

cells. However, increased focus on adult tissue regeneration
calls for new tools to enable the detection of tissues and cell
lineages derived from proliferating adult progenitor cells under
various conditions. The MADM mouse can be used for tracking
populations derived from proliferative progenitors. However,
its application is limited due to its low detection sensitivity
(Zong, 2014). A Ki67RESCreER mouse tracks proliferating cells
based on Ki67 expression (Basak et al., 2018). However, Ki67
is transcribed broadly throughout the cell cycle, a feature that
appears a critical factor in its reliability as a proliferation marker
(Miller et al., 2018). In this report, we describe a new genetic
mouse tool, Aurkb®R ¢¢/* which can label cells based on Aurkb
transcription. We found that Aurkb®R € labels proliferating
cells in vitro and in vivo. In developing embryos, Aurkb®R ¢
labeling overlaps well with cell proliferation markers such as

BrdU and PCNA but it does not label quiescent cells. We
notice that the overlap between Aurkb®R ¢¢ labeling and BrdU
or PCNA seems quite high during development, even though
AurkbER ¢ labeling was induced by a short pulse of tamoxifen.
This is primarily due to the high proliferative characteristics of
developing embryos: both earlier proliferating embryonic cells
and their later derivatives are all mitotic.

Since AurkbER € labeling is based on Aurkb transcription,
which turns on at G2 phase, Aurkb"R €' labeling should not be
interpreted as an absolute cell division or cytokinetic marker.
For instance, certain cells such as bi- or multinucleated adult
cardiomyocytes and hepatocytes can undergo karyokinesis
without cytokinesis under physiological or pathological
conditions (Gentric et al., 2012; Derks and Bergmann, 2020).
These cells may be labeled by Aurkb®R €7 in the absence of cell
division. In these specific instances, Aurkb protein expression
and other cytokinetic events should be analyzed instead.

Since Aurkb®R €r¢/+ is built by a knock-in strategy, the Aurkb
transcript is disrupted in the targeted allele. In contrast, Aurkb
protein expression level in Aurkb®R ¢¢/* heterozygous mice
was quite similar to their wildtype controls (Figure 3D). This
is consistent with other reports that heterozygous knockout
mice can express similar or more than half of the proteins
relative to wildtype control mice in the target genes (Gineste
et al, 2013; Zhou et al., 2015; Arkhipov et al., 2019). It is
reported that an Aurkb knockout mouse in which exons 2-6
were excised is embryonic lethal, older Aurkb heterozygous mice
approximately 12-24 months of age show decreased survival
due to susceptibility for tumorigenesis, and a fraction of Aurkb
heterozygous males suffer from oligospermia by 12 months of
age (Fernandez-Miranda et al., 2011). In our current study, we
used much younger mice less than 3-months of age. We did not
observe reproductive defects or spontaneous cancer development
in young Aurkb®R €"/+ mice. Nonetheless, it is possible that
AurkbER €r¢/+ mice may develop aforementioned pathologies
over time, due to genome or chromosomal instability, even
though we did not observe such problems in our colony. On the
other hand, by intercrossing Aurkb®R €"/* heterozygous mice,
the progeny with genotype of Aurkb®R Cr¢/ERCre cap be used to
study the phenotype of Aurkb depletion or requirement of Aurkb
expression in cell division and cytokinesis.

The AurkbER €r¢/+ mouse is an important new tool for lineage
tracing proliferating cells during embryonic development and
adult tissue regeneration. For instance, when crossed to multi-
color reporters such as the confetti mouse strain (Snippert
et al., 2010), the Aurkb®R €"/+ mouse can be used to study the
clonogenicity of neurons or other cell types in the developing
embryos or tissue regeneration (e.g., whether cells are derived
from multiple progenitor cells or from rare dominant clones).
Similarly, the Aurkb®R ¢/ mouse can be used to track tissue
regeneration such as occurring from those rare stem cells whose
derivatives forming over long periods of time will be more
readily detected with this tool. The Aurkb™R €¢/* mouse allows
the ability to track how tissues with low rates of proliferation
such as brain, lung and heart are regenerated over time in
various physiological or pathological conditions. We anticipate
the coupling of Aurkb knockout with inducible Cre-mediated
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capability will be a powerful reagent for the investigation of cell
proliferation in the context of Aurkb expression.
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Background: Children who are exposed to anesthesia multiple times may undergo
cognitive impairment during development. The underlying mechanism has been
revealed as anesthesia-induced cognitive deficiency in young rodents and monkeys.
However, the molecular mechanism of sevoflurane-induced neural development toxicity
is unclear.

Methods: By combining RNA sequencing analysis of macaques’ prefrontal cortex and
human neural differentiation, this study investigates the mechanism of sevoflurane-
induced neurotoxicity in primates.

Results: The level of dual specificity protein phosphatase 4 (Dusp4) was significantly
downregulated in non-human primates after sevoflurane treatment. We further
uncovered the dynamical expression of Dusp4 during the human neural differentiation
of human embryonic stem cells and found that knockdown of Dusp4 could significantly
inhibit human neural differentiation.

Conclusion: This study indicated that Dusp4 is critically involved in the sevoflurane-
induced inhibition of neural differentiation in non-human primate and the regulation of
human neural differentiation. It also suggested that Dusp4 is a potential therapeutic
target for preventing the sevoflurane-induced neurotoxicity in primates.

Keywords: anesthesia, sevoflurane, DUSP4, neural differentiation, primate

INTRODUCTION

For young children, the safety of general anesthesia exposure is a critical health issue, which
receives widespread attention (Rappaport et al., 2011; Vutskits and Xie, 2016). The U.S. Food and
Drug Administration (FDA) issued an official warning that repeated or long-term management of
general anesthetic may affect children’s brains development (FDA Safety Announcement December
14, 2016). Until now, three well-known clinical studies evaluate the effects of general anesthesia
on neurodevelopment, which are the General Anesthesia compared to Spinal anesthesia (GAS)
trial, the Mayo Anesthesia Safety in Kids (MASK) study, and the Pediatric Anesthesia Neuro
Development Assessment (PANDA). By using the Behavior Rating Inventory of Executive Function
(BRIEF) and the Child Behavior Checklist (CBCL), the results indicate that anesthesia causes
specific neurobehavioral changes in infants. What needs to be mentioned is that the MASK study
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(Warner et al, 2018; Ing and Brambrink, 2019; Zaccariello
et al.,, 2019) assesses the association between multiple general
anesthetic exposures and neurodevelopmental deficit, which
reveals that the processing speed, fine motor, motor coordination,
and visual-motor integration capabilities dampen in multiple but
single exposure.

Sevoflurane, the most commonly used anesthetic in children,
is reported to induce neurotoxicity and cognitive impairment in
non-human primates and rodents (Shen et al., 2013; Zhang et al,,
2013; Yi et al., 2016). Aberrant neural differentiation is ascribed
to cognitive impairment in young rodents (Cho et al., 2015).
Recently, one study even demonstrated that sevoflurane inhibited
neural differentiation (Zhang et al., 2019b). Nevertheless, the
mechanism is still unknown (Zhang et al., 2015; Wang et al,,
2016; Yietal., 2016; Liu et al., 2020). In addition, in consideration
of the different developmental specificity and timing between
primates and rodents (Xue et al, 2013), the mechanism of
the sevoflurane upon neural differentiation requires further
elucidation in primates.

Dual specificity protein phosphatase 4 (Dusp4) is a key
gene in neural differentiation (Kim et al, 2015), which is
proved to regulate many genes involved in neural differentiation
network, such as extracellular signal-regulated kinases (ERKs)
(Guan and Butch, 1995; Chu et al., 1996; Ichimanda and
Hijiya, 2018), c-Jun N-terminal kinases (JNKs) (Cadalbert et al.,
2005), and p38 (Engstrom et al, 2015; Kim et al, 2015;
Odaka et al., 2016). Dusp4 is also critical for the endoderm
specification (Brown et al, 2008) and cardiac specification
(Liu et al,, 2007). Irregular expression of Dusp4 might induce
carcinoma (Sieben et al., 2005; Venter et al., 2005; Wang et al,,
2007; Hasegawa et al., 2008). However, whether sevoflurane-
induced neural development toxicity is mediated by dusp4
remains unclear. Thus, in the present study, we aim to explore
the effects of sevoflurane on neural differentiation and the
underlying mechanisms in primates. By combining the RNA
sequencing analysis of macaque’s prefrontal cortex and human
neural differentiation, we found that Dusp4 was associated
with sevoflurane-induced neurotoxicity. Moreover, sevoflurane
treatment-caused Dusp4 downregulation was specifically in non-
human primates but mice. Finally, our findings identified that
Dusp4 was a target in terms of the prevention and treatment of
postoperative cognitive decline in children.

MATERIALS AND METHODS

Rhesus Macaque and Mice Anesthesia

The animal studies were performed according to the guidelines
of the Institute of Laboratory Animal Science, Peking Union
Medical College, and Chinese Academy of Medical Sciences
(Peking, China). The use of rhesus macaque in this research
was approved by the Institutional Animal Care and Use
Committee (protocol Number XC17001). The control group
has three female rhesus macaques, and two female and one
male rhesus macaques in the anesthesia group. In this study,
the rhesus macaques received 6-8% anesthetic sevoflurane
with 100% oxygen for the induction (2-4 min) of the

general anesthesia, and then received 2.5-3% sevoflurane and
100% oxygen with endotracheal intubation for 4 h for the
maintenance of the general anesthesia. The rhesus macaques
received the sevoflurane anesthesia on postnatal day 7 (P7)
and then on P21 and P35 days. All the animals returned
to their mothers in the cages after the anesthesia. The
temperatures of the rhesus macaques were maintained by placing
the rhesus macaques in a warm box (37°C). We harvested
the prefrontal cortex immediately after the third time of
sevoflurane treatment.

C57BL/J6 mice at P6 (Shanghai SLAC Laboratory Animal,
Zhangjiang, Shanghai, China) were used in the studies. The
animal protocol was approved by the Standing Committee on
Animals at Shanghai Ninth People’s Hospital, Shanghai, China.
The mice were housed in a temperature- and humidity-controlled
environment (20-22°C; 12-h light/dark on a reversed light
cycle) with free access to water and food. The mice received
sevoflurane anesthesia as described in previous studies (Shen
et al,, 2013; Lu et al,, 2017). The mice in the anesthesia group
were exposed to 3% sevoflurane with 60% O, for 2 h daily
with 3 days on P6, P7, and P8. The mice in the control group
received 60% O,. We use a warm box to maintain the rectal
temperature of all the mice at 37°C. The prefrontal cortex
tissues of mice were harvested at the end of the sevoflurane
anesthesia administration.

Construction of Dusp4 Knockdown

HESCs
To downregulate the Dusp4, three Dusp4 shRNA were
constructed inside the pGMLV-SC5 vectors. The human
embryonic stem cells (hESCs) were cultured in mTeSR 1
medium (EMCELL Technologies, Canada) and Y27632 (1:1000)
on Matrigel-coated plates. Cells were digested by Accutase
Cell Detachment Solution (Thermo, United States) for passage
cultivation. Three shRNAs were mixed to infect the cells. After
48-h infection, mTeSR 1 and 1 pg/ml (final concentration)
puromycin were used to screen the transfected hESCs.

The Dusp4-shRNA oligo sequences are as follows:

shRNA Oligomeric single-stranded DNA sequence 5’ to 3’

Control — forward gatcTGTTCTCCGAACGTGTCACGTTTCAAGAGAACGTGA

CACGTTCGGAGAATTTTTTc

Control - reverse aattgAAAAAATTCTCCGAACGTGTCACGTTCTCTTGAAAC
GTGACACGTTCGGAGAACa

shRNA1 —forward ~ gatccGGAGGCCTTCGAGTTCGTTAATTCAAGAGATTAAC
GAACTCGAAGGCCTCCTTTTTTg

shRNA1 —reverse  aattcAAAAAAGGAGGCCTTCGAGTTCGTTAATCTCTTGAA
TTAACGAACTCGAAGGCCTCCy

shRNA2 —forward ~ gatccGCATCACGGCTCTGTTGAATGTTCAAGAGACATTC
AACAGAGCCGTGATGCTTTTTTg

shRNA2 —reverse  aattcAAAAAAGCATCACGGCTCTGTTGAATGTCTCTTGAA
CATTCAACAGAGCCGTGATGCyg

shRNAS3 —forward ~ gatccGCCATAGAGTACATCGATGCCTTCAAGAGAGGCAT
CGATGTACTCTATGGCTTTTTTg

shRNAS - reverse aattcAAAAAAGCCATAGAGTACATCGATGCCTCTCTTGAA

GGCATCGATGTACTCTATGGCg
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Quantitative RT-PCR (qPCR)
The whole RNA was extracted by using RNAiso Plus (TaKaRa,
China). cDNA inverse transcription was performed by using
cDNA Synthesis Kit (TaKaRa, China). GAPDH is used for
reference gene for normalize q-PCR. Detailed qPCR primer
information are placed after the references.

Primers for the qPCR detection are listed as follows:

Pax6 PF: 5'-AACGATAACATACCAAGCGTGT-3'
PR: 5-GGTCTGCCCGTTCAACATC-3
Oct4 PF: 5'-CTTGAATCCCGAATGGAAAGGG-3'
PR: 5’-GTGTATATCCCAGGGTGATCCTC-3
Sox2 PF: 5'-TACAGCATGTCCTACTCGCAG-3’
PR: 5’-GAGGAAGAGGTAACCACAGGG-3
Nestin PF: 5'-CTGCTACCCTTGAGACACCTG-3

PR: 5-GGGCTCTGATCTCTGCATCTAC-3'
Tuj1 PF: 5'-TTTGGACATCTCTTCAGGCC-3
PR: 5’-TTTCACACTCCTTCCGCAC-3'

Dusp4 PF: 5-GGCGCTATGAGAGG CC-g
PR: 5-TGGTCGTGTAGTGGGGTCC-3
GAPDH PF: 5'-GGAGCGAGATCCCTCCAAAAT-3'

PR: 5-GGCTGTTGTCATACTTCTCATGG-3'

PFE, primer forward; PR, primer reverse.

Neural Differentiation of hESCs in vitro

Neural differentiation analysis by using hESCs was performed
as described in a previous study (Wattanapanitch et al., 2014).
Briefly, the H9 cells were seeded in mTESR 1 medium on
Matrigel-coated plates to obtain 80% confluency after seeding.
Then the medium was changed to neural induction medium,
which contains a 1:1 mixture of DMEM/F12 and neurobasal
medium, 1 x N2 supplement, 1 x B27 supplement, 5 pg/ml
insulin, 1 mM L-glutamine, 0.1 mM non-essential amino acids,
0.1 mM 2-mercaptoethanol, and supplemented with 1 pM
dorsomorphin and 10 pM SB431542. The medium was changed
every day for 9 days. Ten days post-differentiation, the NPCs
were cultured in the neural maintenance medium, which contains
a 1:1 mixture of DMEM/F12 and neurobasal medium, 1 x N2
supplement, 1 x B27 supplement, 5 pg/ml insulin, 1 mM
L-glutamine, 0.1 mM non-essential amino acids, 0.1 mM 2-
mercaptoethanol, and supplemented with 20 ng/ml bFGF. We
also detected the expressions of neural progenitor marker Pax6
on day 12 and the expressions of neuron marker Tjul on day 25.

Immunofluorescence Staining

Cells were fixed with 4% paraformaldehyde (Sigma-Aldrich,
United States) for 18 min and washed with PBS solution. Then
all the cells were treated with 0.2% Triton X-100 (Sigma-Aldrich,
United States) for 8 min. Cells were then blocked with 3% bovine
serum albumin (BSA) (Sigma-Aldrich, United States) in PBS
solution for 1 h. Then incubated cells with primary antibodies,
anti-Pax6 antibody (Abcam, ab5790, United States) or anti-
TUJ1 antibody (Abcam, ab78078, United States), were diluted
in 1% (w/v) BSA in PBS solution overnight at 4°C. After the

incubation, cells were washed with PBS three times and stained
with secondary antibodies for 2 h at room temperature.

Western Blot

Every 50 mg tissues of mouse brain was lysed by the mixture
of 0.5 ml RIPA plus 5 nl PMSF on ice. Then the samples were
centrifuged at 12,000 rpm for 5 min at 4°C. Cells were lysed by
using an SDS buffer (Beyotime, China) to obtain the protein for
electrophoresis.

Then all the protein was transferred into PVDF membrane
(Bio-Rad, United States). Primary antibodies were used
in incubation, including anti-GAPDH (Abcam, ab9485,
United States) antibody, anti-DUSP4 antibody (Abcam,
ab216576, United States), anti-TUJ1 antibody (Abcam,
ab78078, United States), anti-PAX6 antibody (Abcam, ab195045,
United States), anti-p-ERK antibody (CST, #8544, United States),
anti-ERK antibody (CST, #4695, United States), anti-p-p38
antibody (CST, #4511, United States), anti-p38 antibody
(CST, #8690, United States), anti-p-JNK antibody (CST,
#9251, United States), and anti-JNK antibody (CST, #9252,
United States). Protein expression signaling was visualized
through enhanced chemiluminescence (ECL) substrate
(Thermo, United States).

Statistics

The data were presented as mean =+ standard deviation (SD).
The significance of statistics was analyzed by Student’s ¢-test, one-
way ANOVA and two-way ANOVA (* and # p < 0.05, ** and
## p < 0.01, *** and ### p < 0.001). The study employed two-
tailed hypothesis and statistically significant p values were < 0.05.
Each experiment was repeated three times. We used GraphPad
(GraphPad Software) to analyze all of the study data.

RESULTS

Sevoflurane Decreased the Expression
of Dusp4 in Prefrontal Cortex of Rhesus

Macaque

Alvarado et al. (2017) and us demonstrated that sevoflurane
induced myelination damage of the central nervous system and
caused behavior changes (e.g., anxiety and visual recognition
memory) in infant rhesus macaques (Zhang et al, 2019a).
Here, we performed multiple sevoflurane exposures in infant
rhesus macaques on postnatal day 7 (P7), P14, and P28
repetitively, with each exposure lasting for 4 h per time as
shown in a previous study (Alvarado et al, 2017). After the
anesthesia, we collected brain tissues from prefrontal cortex
and performed the RNA sequencing to examine the gene
expression. As a result, there were 78 upregulated genes
and 98 downregulated genes in sevoflurane exposure group
(Figure 1A). Neural differentiation is involved in the early
state in the infants brain development and characterized
by rapid structural and functional changes (Vasung et al,
2018). The influence of neural differentiation during early
development could result in significant physiological and
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FIGURE 1 | Dusp4 was downregulated by sevoflurane in macaque prefrontal cortex and mediates the human neural differentiation. (A) Microarray studies revealed
the decrease of Dusp4 expression in brain of macaque treated by sevoflurane compared with the control group. (B) Volcano plot of Dusp4 expression upregulated
during human neural differentiation (n = 3, p < 0.05) base on scRNA-seq. (C) Dusp4 was downregulated after sevoflurane treatment in rhesus macaques’ prefrontal
cortex and upregulated during human neural differentiation. (D) gPCR further confirmed the downregulation of Dusp4 expression after sevoflurane treatment in
macaque. Data are represented as mean + SD (n = 3). *p < 0.05. (E) Steady-state and phosphorylated ERK, p38, and JNK activity was assessed in rhesus
macaques’ prefrontal cortex by western blot. Only JNKs, but not p38 or ERK1/2, were consistently phosphorylated in prefrontal cortex of rhesus macaques after
sevoflurane exposure. (F-H) Qualification of (E). The ratio of phosphor-ERK relative to the total ERK is shown in (F). The ratio of phosphor-p38 relative to the total
p38 is shown in (G). (H) confirmed the upregulation of phosphor-JNK relative to the total JNK after sevoflurane treatment. Data are represented as mean + SD
(n=23). "o < 0.05.

cognitive impairment (Di Lullo and Kriegstein, 2017; Presumey
et al., 2017). Sevoflurane inhibited neural differentiation of
mouse embryonic stem cells (ESCs) into neural progenitor
cells (NPCs) (Zhang et al., 2019b). To determine the effects
of sevoflurane on neural differentiation in primate and
clarify the underlying mechanisms, we performed the human
neural differentiation with H9 hESCs and detected the whole
genome expression by using bulk-RNA sequencing analysis.
Interestingly, we combined the results of these two RNA

sequencing earlier and found that Dusp4 was downregulated
after sevoflurane treatment in rhesus macaque’s prefrontal
cortex and upregulated during human neural differentiation
(Figures 1B,C). Dusp4 could promote neural differentiation in
mice, which is, however, unclear in human neural differentiation
(Kim et al., 2015). So, our results indicated its possible
function in sevoflurane-induced neurotoxicity. Then we
confirmed the downregulation of Dusp4 in prefrontal cortex
of rhesus macaques after sevoflurane treatment by qPCR
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(Figure 1D). To explain the underlying molecular mechanisms,
we tested the Dusp4-related classic downstream target genes
or signal pathway by using rhesus macaque samples. As a
result, we found that JNKs were consistently phosphorylated
in prefrontal cortex of rhesus macaques after sevoflurane
exposure (Figures 1E-H). Sevoflurane had only effects
on JNK phosphorylation in primate (Figures 1EH). It is
consistent with a previous work where induced DUSP4
reduction enhanced c-Jun N-terminal kinase (JNK) activity
(Denhez et al., 2019).

Sevoflurane Has No Effect on the
Expression of Dusp4 in Prefrontal Cortex
of Mice

Anesthetics can induce neuronal apoptosis which causes
cognitive impairment in rodents and rhesus macaques (Vutskits
and Xie, 2016). So, we exposed mice model to sevoflurane
repeatedly, but failed to find similar results. In opposition,
the protein level of Dusp4 was not altered in the prefrontal
cortex of C57 after sevoflurane exposure (Figures 2A,B). This
suggested that mice and rhesus macaques had different gene
regulation manners when exposed to sevoflurane. The results
indicated that Dusp4 could be the possible sevoflurane-related
downstream. In terms of the proximity between human and
rhesus macaque, Dusp4 might be still involved in the potential
mechanism of sevoflurane-induced neurotoxicity in primates.
In addition, it further hinted that the results in rodent model
could not fully explain the phenotype in primate due to the
differences in species.

Dusp4 Mediates Neural Differentiation of
HESCs Into NPCs

A previous study showed that Dusp4 regulated retinoic acid-
treated neural differentiation in mouse ESCs (Kim et al., 2015).
However, whether Dusp4 was involved in the regulation of
human neural differentiation remains unknown. Our results
showed that Dusp4 was significantly upregulated during the
human neural differentiation, especially on day 12 (Figure 3A).
Vis-a-vis, sevoflurane downregulated the Dusp4 level which also

indicated its potential role in neurotoxicity. To explore the
mechanisms further, we downregulated the Dusp4 expression
by using three different ShRNA mixed viruses (Figure 3B) in
H9 hESCs. The results failed to show any influences upon
the ability of self-renewal in hESCs (Figures 3C,D). However,
the human neural differentiation in hESCs was significantly
repressed after downregulation of Dusp4 (Figure 3E). The
formation of rosette structure detected by Pax6 was interrupted
after downregulating Dusp4, which indicated the repression of
neural induction (Figure 3F). The reduction of neuronal class
I B-tubulin (Tujl) (Sullivan and Cleveland, 1986; Caccamo
et al, 1989), a marker of mature neuron, further indicated
the neurogenesis repression after the downregulation of Dusp4
(Figures 3G,I). In addition, we found that the expression
of neural progenitor marker Nestin and Pax6 (Figure 3H)
were descended by Dusp4 downregulation. In conclusion,
Dusp4 plays an important role in the progress of human
neural differentiation.

DISCUSSION

In the current study, we found that sevoflurane downregulated
the Dusp4 expression in prefrontal cortex of rhesus macaque
but not in mice. Also, Dusp4-mediated neural differentiation
from hESCs into NPCs may be involved in sevoflurane-
induced neurotoxicity.

Neural differentiation is ascribed to cognitive impairment in
young rodents (Cho et al., 2015). Abnormal neural differentiation
results in neurological and psychiatric disorders, serious behavior
disorders, and some other nervous system diseases (Goncalves
et al., 2016). Neural progenitor cells exist right after infants’
birth for further brain neural development (Rolando and
Taylor, 2014). In this study, by combining the RNA sequencing
analysis of macaque’s prefrontal cortex and human neural
differentiation, we found that Dusp4 may work as a key gene in
sevoflurane-induced neurotoxicity. By using the in vitro human
neural differentiation system, we knocked down the Dusp4
to mimic the Dusp4 downregulation caused by sevoflurane
exposure to check the inhibition of neural differentiation.
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FIGURE 3 | Dusp4 mediates neural differentiation of hESCs. (A) gPCR detection of the Dusp4 expression trend during the neural differentiation of hESCs from O to
22 days. Data are represented as mean + SD (n = 3). *p < 0.05, **p < 0.01. (B) Downregulation of Dusp4 expression by Dusp4 shRNA compared with the control
group detected at day 5 during the neural differentiation of hESCs. Data are represented as mean + SD (n = 3). **p < 0.01. (C) There was no significant difference in
clone formation assay between the Dusp4 knockdown group and control group. Ctrl: hESCs with empty pGMLV-SC5 vector. Scale bar represents 200 wm. (D) The
results of gPCR showed that there is no significant difference of stemness markers (Oct4 and Sox2) expression between the Dusp4 knockdown group and control
group. Data are represented as mean + SD (n = 3). (E) Morphology of neural differentiation of two different groups. Scale bar represents 100 pm.

(F) Immunofluorescence staining of Pax6 indicated that neural differentiation of hESCs was inhibited by Dusp4 knockdown at day 6. Scale bar represents 100 wm.
(G) Immunofluorescence staining of TUJ1 showed that neurogenesis was further repressed by Dusp4 knockdown at day 28. Scale bar represents 100 wm.

(H) gPCR analysis showed that dusp4 knockdown repressed the expression of neural progenitor genes (Nestin and Pax6) on days 5, 12, and 18 during the neural
differentiation. Data are represented as mean + SD (n = 3). *p < 0.01. (I) Results of western blot indicated that the expression of mature neuron gene TUJ1 was
downregulated by dusp4 knockdown on day 28.
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The level of Dusp4 was specifically downregulated after
sevoflurane treatment in non-human primates. However, there
was no statistical difference of Dusp4 expression in rodents. Our
results demonstrated that the mechanisms of neurodevelopment
toxicity caused by sevoflurane were different between primate
and rodent due to various neurodevelopment. We further
uncovered the dynamical expression of Dusp4 during the
human neural differentiation by using hESCs. The human
neural differentiation could be significantly inhibited after Dusp4
is knocked down.

There are several limitations in the present study. First, we
did not monitor the hypoxia and hypotension during general
anesthesia in rhesus macaque model. However, the protocol
of anesthesia management was the same as in the previous
study (Alvarado et al., 2017), which did not show hypoxia and
hypotension. Second, the sample size of rhesus macaques (3:3)
may not be sufficient enough in the current study; thus, adding
the sample size should be performed in the future.

In conclusion, this study indicated that Dusp4 may
be involved in the sevoflurane-induced neurotoxicity in
non-human primates, which regulated the human neural
differentiation in priority.
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Aminoglycoside-induced hair cell (HC) loss is one of the most important causes of
hearing loss. After entering the inner ear, aminoglycosides induce the production of
high levels of reactive oxygen species (ROS) that subsequently activate apoptosis in
HCs. Citicoline, a nucleoside derivative, plays a therapeutic role in central nervous
system injury and in neurodegenerative disease models, including addictive disorders,
stroke, head trauma, and cognitive impairment in the elderly, and has been widely
used in the clinic as an FDA approved drug. However, its effect on auditory HCs
remains unknown. Here, we used HC-like HEI-OC-1 cells and whole organ explant
cultured mouse cochleae to explore the effect of citicoline on aminoglycoside-induced
HC damage. Consistent with previous reports, both ROS levels and apoptosis
were significantly increased in neomycin-induced cochlear HCs and HEI-OC-1 cells
compared to undamaged controls. Interestingly, we found that co-treatment with
citicoline significantly protected against neomycin-induced HC loss in both HEI-OC-
1 cells and whole organ explant cultured cochleae. Furthermore, we demonstrated
that citicoline could significantly reduce neomycin-induced mitochondrial dysfunction
and inhibit neomycin-induced ROS accumulation and subsequent apoptosis. Thus, we
conclude that citicoline can protect against neomycin-induced HC loss by inhibiting
ROS aggregation and thus preventing apoptosis in HCs, and this suggests that citicoline
might serve as a potential therapeutic drug in the clinic to protect HCs.
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INTRODUCTION

Sensorineural hearing loss remains a serious sensory disorder
worldwide. Once the hair cells (HCs) of the inner ear are
damaged, sensorineural hearing loss is permanent due to the
inability of mammalian HCs to regenerate. The causes of
hearing loss include many factors, such as noise, age, and
ototoxic drugs, all of which can induce apoptosis in HCs
(Prasad and Bondy, 2020). Damage caused by aminoglycosides,
which are the most commonly used ototoxic drugs, is a
major cause of HC death (Waguespack and Ricci, 2005).
Therefore, it is important to investigate the molecular mechanism
behind aminoglycoside-induced auditory sensory cell damage
and to seek effective drugs for preventing and treating
aminoglycoside-induced deafness. Several studies have suggested
that aminoglycosides induce intrinsic apoptosis of HCs through
oxidative stress (Mangiardi et al., 2004; Coffin et al, 2013;
Sun et al., 2014, 2015; Liu et al., 2016), while others have
reported that the accumulation of reactive oxygen species
(ROS) plays an important role in the death of HCs (Clerici
et al, 1996; Choung et al, 2009). ROS can be cleared by
physiological cellular processes; however, they are harmful
when their concentration exceeds the cell’s capacity to remove
them (He et al., 2020). Thus, the survival of HCs requires a
balance between oxidative stress and anti-oxidation (Franco and
Cidlowski, 2009; Filomeni et al., 2015), suggesting that preventing
the accumulation of ROS might be a potential treatment for
preventing ototoxicity.

Citicoline, a nucleoside derivative, is an essential endogenous
intermediate in phosphatidylcholine biosynthetic pathways.
Citicoline is widely distributed in the body, and it can easily
cross the blood-brain barrier and penetrate brain cells to
provide neural protection (Secades and Lorenzo, 2006). It
has been widely demonstrated that citicoline can activate the
biosynthesis of phospholipids in neuronal membranes, and this
stimulates brain metabolism and the neurotransmitter system
(Secades and Lorenzo, 2006). It also plays an important role
in promoting the recovery of brain function and in awakening
from sleep (Adibhatla et al., 2002). When used as a long-term
medication, citicoline is a safe and well-tolerated drug without
significant systemic side effects. Citicoline can be used to treat
addictive disorders (Wignall and Brown, 2014), stroke, head
trauma (Saver, 2008), and cognitive impairment in the elderly
(Cotroneo et al., 2013), and it is also effective in the treatment
of glaucoma (Parisi et al., 2008). In addition, citicoline has
anti-apoptotic effects by disrupting mitochondria-dependent cell
death mechanisms and promoting the regeneration of nerve
axons, and it can protect retinal ganglion cells from damage
(Oshitari et al., 2002).

There have been no reports on whether citicoline can protect
auditory HCs from aminoglycoside-induced injury up to now.
In our study, we used the HC-like House Ear Institute Organ of
Corti 1 (HEI-OC-1) cell line along with explant cultured cochlear
HC:s to establish an in vitro neomycin-induced damage model in
auditory HCs with the aim to investigate the potential protective
effect of citicoline in auditory HCs.

MATERIALS AND METHODS

Animals

All  animal procedures were performed according to
protocols approved by the Animal Care and Use Committee
of Southeast University, and all efforts were made to
minimize the number of animals used and to prevent
their suffering.

Cell Cultures and Tissue Cultures

Consistent with previous studies, we used HEI-OC1 (House
Ear Institute-organ of Corti 1) cells derived from long-term
cultures of Immortomouse cochleae. HEI-OCI1 cells express
Atohl, Prestin, Myo7a, and other cellular markers specific for
auditory sensory HCs when cultured either under permissive or
non-permissive conditions. The cells were cultured in DMEM
containing 10% fetal bovine serum and 100 IU/ml penicillin
(A0166, Sigma-Aldrich, St. Louis, United States) at 37°C and
5% CO, (Kalinec et al., 2003; He et al., 2020) and sub-cultured
at 80% confluency using 0.25% trypsin/EDTA (25200056, Life
Technologies, Waltham, MA, United States). Neomycin (N6386,
Sigma-Aldrich) was used at a final concentration of 10 mM
to damage the HEI-OC-1 cells. Citicoline (C0256, Sigma-
Aldrich) was used at a final concentration of 10 WM to treat
the HEI-OC-1 cells.

Cochleae were dissected from postnatal day (P)3 mice and
cultured as previously reported (Chen et al., 2013), The explant
cultured tissue was pretreated with 10 pM citicoline for 12 h,
then 0.5 mM neomycin was added for 12 h to damage the
HCs. After removal of the neomycin, the tissues were recovered
in serum-free medium for an additional 12 h together with
10 pM citicoline. Animal experiments were conducted in
accordance with the guidelines of the Committee of Animal
Protection and Utilization of Southeast University and were
approved by the Animal Experimental Ethics Committee of
Southeast University.

Real-Time PCR

Total RNA was extracted from HEI-OC-1 cells or whole cochleae
with Trizol reagent (PR910, Protein Biotechnology, Beijing,
China), and the integrity of the RNA samples was evaluated
by OD260/280 measurements. cDNA was obtained using the
Revertaid First Strand ¢cDNA Synthesis Kit (K1622, Thermo
Fisher Scientific) according to the manufacturer’s protocol. Real-
time PCR was performed on a Biosystems CFX96 real-time
PCR system (Bio-Rad, Hercules, CA, United States) using SYBR
Green qRT-PCR Master Mix (4913850001, Roche Life Science,
Basel, Switzerland). The primer sequences are listed in Table 1.
The qRT-PCR conditions were as follows: initial denaturing
for 15 s at 95°C followed by 40 cycles of denaturation at
95°C for 15 s, annealing at 60°C for 60 s, and extension at
72°C for 20 s. The mRNA expression values of the genes of
interest were normalized to the mRNA expression of Gapdh.
The results were calculated using the comparative cycle threshold
(A ACt) method.
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TABLE 1 | PCR sequences used in the experiments.

Gene Forward sequence Reverse sequence
Caspase-3 ~ AATCATGCCATTTGCCCAGC CTCAAGTGTGTAGGGGGAGG
Caspase-8  AGCCTATGCCACCTAGTGAT GGAGAGCTGTAACCTGTCGC
Bcl-2 GGTGAACTGGGGGAGGATTG  AGAGCGATGTTGTCCACCAG
Caspase-9  CCTAGTGAGCGAGCTGCAAG  ACCGCTTTGCAAGAGTGAAG
Bax TGAAGACAGGGGCCTTTTTG AATTCGCCGGAGACACTCG
Alox15 TCGGGACTCGGAAGCAGAAT  CCCATCGGTAACAGGGGAAC
Gsr TGCACTTCCCGGTAGGAAAC GATCGCAACTGGGGTGAGAA
Sod1 GGAGCAAGGTCGCTTACAGA  AGTGACAGCGTCCAAGCAAT
Glrx AGTCTGGAAAGGTGGTCGTG ~ CCATTAGCATGGCTGGACGA
GADPH GCAAGAGAGAGGCCCTCAG TGTGAGGGAGATGCTCAGTG

Cell Number Analysis

HEI-OC-1 cells were incubated in 96-well plates for 24 h
at a concentration of 2,000 cells/well in three replicates, and
different drugs were added (controls received a similar volume
of DMEM). The Cell Counting Kit (CCK-8; CC201, Protein
Biotechnology, Beijing, China) was used to determine the cell
viability at different time points after incubation or at different
concentrations. After exposing the cochleae to citicoline and/or
neomycin, the immunostained cells were quantified per 100 pm
in all three turns of the cochlea. The numbers of positive cells
were counted in equal lengths from the apical to the basal
turns of the cochlea.

Western Blot

The HEI-OC-1 cell line and cochlear tissue were lysed with
ice-cold RIPA lysis buffer (PP109, Protein Biotechnology)
plus Phosphatase Inhibitor Cocktails (04693132001, Roche) for
30 min at 4°C. Protein concentrations were determined using a
BCA Protein Quantification Kit (PP202, Protein Biotechnology)
according to the manufacturer’s instructions. Equal amounts of
protein were loaded onto a 12% Tris-glycine SDS-PAGE gel,
separated at 120 volts for 1.5 to 2 h, and then transferred
to a nitrocellulose membrane and blocked with 5% milk in
PBST [1 x PBS with 0.1% Triton X-100 (Solarbio, 1109F0521)]
buffer. Cleaved caspase 3 was evaluated using anti-cleaved
caspase 3 rabbit monoclonal antibody (1:1,000 dilution, 9664S,
Cell Signaling Technology), and p-actin was measured using a
mouse monoclonal antibody (1:5,000 dilution, ab119716, Abcam,
Cambridge, United Kingdom). Peroxidase-conjugated goat anti-
rabbit or anti-mouse immunoglobulin G (ab6789 and ab6721,
Abcam) was used as the secondary antibody. The proteins
were detected using a SuperSignal West Dura chemiluminescent
substrate kit (34075, Thermo Scientific) according to the
manufacturer’s instructions. Semi-quantification of the western
blot results was done by measuring the intensities of the
bands using Image].

Immunofluorescence

Anti-cleaved caspase 3 antibody (1:400 dilution, 9664S,
Cell Signaling Technology), MitoSOX Red (M36008, Life
Technologies), tetramethylrhodamine ethyl ester perchlorate

(TMRE, Sigma-Aldrich), anti-Myo7A antibody (1:1,000 dilution,
25-6790, Proteus Bioscience), anti-voltage dependent anion
channell (VDAC1) polyclonal antibody (1:200 dilution,
10866-1-AP, Proteintec), and DAPI (1:1,000 dilution, C0060,
Solarbio) were used to analyze apoptotic cells, measure ROS,
stain HCs, measure mitochondrial number, and stain nuclei,
respectively. Briefly, cells and cochlear tissues were fixed in
4% paraformaldehyde (158127, Sigma-Aldrich) for 1 h then
washed three times with PBST [1 x PBS with 0.1% Triton
X-100 (Solarbio, 1109F0521)] and incubated for 1 h in blocking
medium (PBS with 10% heat-inactivated donkey serum, 1%
Triton X-100, 1% BSA, and 0.02% sodium azide at pH 7.2) at
room temperature. The samples were marked with primary
antibody diluted in PBT-1 (PBS with 10% Triton X-100, 5%
heat-inactivated donkey serum, 1% BSA, and 0.02% sodium azide
at pH 7.2) for overnight at 4°C. After washing three times with
PBST, the samples were marked with the secondary antibody
diluted in PBT-2 (PBS with 1% BSA and 0.1% Triton X-100 at
pH 7.2) for 1 h. The samples were washed again three times and
were imaged by confocal fluorescence microscopy (Leica SP5,
Heidelberg, Germany).

The TUNEL Kit (11684817910, Roche, Indianapolis, IN,
United States) was used to detect apoptotic cells following the
manufacturer’s instructions. TMRE was used for measuring the
mitochondrial membrane potential (MMP), and Mito-SOX Red
was used to analyze ROS levels. Briefly, the culture medium was
removed from the dish and the samples were washed with PBS.
The samples were then cultured in DMEM containing Mito-SOX
Red or TMRE at 37°C for 30 min. The samples were then washed
in pre-warmed PBS and imaged with a confocal microscope
(LSM700; Zeiss, Heidenheim, Germany).

Flow Cytometry

Annexin V-FITC and propidium iodide (C1062, Beyotime)
were used for apoptosis analysis following the manufacturer’s
instructions. After treating the HEI-OC-1 cells with citicoline
and/or drugs, the cells were trypsinized and collected and then
washed twice with PBS and resuspended in binding buffer at
a concentration of 1 x 10° cells/ml. Annexin V-FITC and
propidium iodide were added and gently mixed with the cells
and incubated at room temperature for 10-20 min in the dark.
Cells were analyzed as quickly as possible by flow cytometry
(FACSCanto, BD, San Jose, CA, United States).

Mito-SOX Red and TMRE were used to analyze ROS
production and to measure the MMP, respectively. After
treating the HEI-OC-1 cells with citicoline and/or neomycin,
the cells were trypsinized, collected, and resuspended in pre-
warmed solution containing Mito-SOX Red or TMRE for
10 min. Following this, the cells were washed with PBS and
analyzed by flow cytometry. All experiments were repeated at
least three times.

Statistical Analysis

All data are shown as mean =+ standard deviation (SD), and all
experiments were repeated at least three times. Statistical analyses
were performed using Microsoft Excel and GraphPad Prism 6
software (La Jolla, CA, United States). For the cochlear tissue
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culture experiments, “n” represents the number of independent
cochleae, and for all HEI-OC-1 cell culture experiments “n”
represents the number of replicates. When comparing two
groups, a two-tailed, unpaired Students f-test was used to
determine statistical significance. When comparing more than
two groups, one-way ANOVA was used followed by Dunnett’s
multiple comparison test. A p-value < 0.05 was considered to be
statistically significant.

RESULTS

The Survival of HEI-OC-1 Cells Is
Affected by Neomycin and Citicoline

Treatment

To select the proper conditions to induce cell death in HEI-OC-1
cells, we exposed HEI-OC-1 cells to different doses of neomycin
(1-20 mM) for different times (0-24 h). We found that the
viability of HEI-OC-1 cells decreased gradually with increasing
neomycin doses and time, and 50-60% of the HEI-OC-1 cells
were alive after being treated with 10 mM neomycin for 24 h.
Thus we chose this condition to induce HEI-OC-1 cell damage
(Supplementary Figures S1A,B). Because there are no reports
of using citicoline to protect against ototoxic drug-induced HC
loss, we first determined the appropriate dose and treatment time
of citicoline in HEI-OC-1 cells before neomycin exposure. We
pre-treated the HEI-OC-1 cells with different concentrations of
citicoline (1, 10, 100 wM, 1 mM, and 2 mM) for different times (6,
12, and 24 h, respectively) and then treated the cells with 10 mM
neomycin together with citicoline (the same concentration as
pre-treatment) for 24 h. The CCK8 results showed that there
was no protective effect of citicoline when added 6 h in advance,
but there was a clear protective effect when citicoline was
added 12 or 24 h in advance. Additionally, the viability of
HEI-OC-1 cells gradually increased with low concentrations of
citicoline, but once the concentration of citicoline was higher
than 10 pM the viability of HEI-OC-1 cells began to decrease.
We also found that there was no significant difference in cell
viability with the different pretreatment times (12 and 24 h).
Therefore, we chose 10 WM citicoline pretreatment for 12 h as
the optimal treatment condition in this study (Supplementary
Figures S1C-F).

Citicoline Treatment Protects HCs in
Whole Organ Cultured Cochleae Against
Neomycin Injury

Cochleae from P3 mice were used to investigate the role of
citicoline in cochlear HCs after neomycin treatment (Figure 1A).
We first used Myo7A and DAPI staining to observe the
changes in the numbers of HCs in the apical, middle, and
basal turns of the cochlea after different treatments. We found
that the number of Myo7A and DAPI double-positive cells per
100 pm of cochlear length of the apical, middle, and basal
turns was significantly lower in the neomycin-only group than
in the undamaged controls (Figures 1B,C). In contrast, the
number of double-positive cells was significantly increased in

the citicoline-treated group compared with the neomycin-only
group (Figures 1B,C).

Citicoline Reduces Apoptosis in

Cochlear HCs After Neomycin Exposure
Next, we explored the role of citicoline in neomycin-induced
HC injury. Previous studies have shown that cleaved caspase
3 and TUNEL can be used as markers for apoptosis induced
by aminoglycosides (Matsui et al., 2002; Coffin et al., 2013;
He et al., 2014). Therefore, immunofluorescence staining was
used to evaluate the expression of cleaved caspase 3 and
TUNEL in cochlear HC:s after citicoline pretreatment. The results
showed that the numbers of cleaved caspase 3-positive cells
and TUNEL-positive cells per 100 mm of the cochlea in the
middle turn were significantly increased in the neomycin-treated
group compared with the undamaged controls (Figures 2A-D).
Moreover, the citicoline-pretreated cochleae showed significantly
lower numbers of caspase 3-positive cells and TUNEL-positive
cells than the neomycin-only group (Figures 2A-D). Western
blot results also showed that the expression levels of cleaved
caspase 3 in the neomycin-only group were higher than in the
undamaged controls (Figures 2E,F), while they were significantly
decreased in the citicoline-treated group compared with the
neomycin-only group (Figures 2E,F).

We also performed quantitative real-time polymerase chain
reaction (QRT-PCR) to investigate the expression of apoptosis-
related genes in the cochlea after citicoline treatment. Compared
with the undamaged controls, the expression of the intrinsic
and extrinsic pro-apoptotic genes Casp3, Casp8, and Casp9
was significantly increased in the neomycin-only group, while
the expression of the anti-apoptotic gene Bcl2 was significantly
decreased and expression of the pro-apoptotic gene Bax was not
significantly different (Figure 2G). Notably, citicoline treatment
significantly downregulated the expression of the pro-apoptotic
genes Bax, Casp3, Casp8, and Casp9 after neomycin exposure
(Figure 2G). Together, these results suggest that citicoline
reduces apoptosis in cochlear HCs after neomycin exposure.

Citicoline Reduces Apoptosis in
HEI-OC-1 Cells After Neomycin Exposure

To investigate the role of citicoline in neomycin-induced death in
HEI-OC-1 cells, the cells were pretreated with 10 wM citicoline
for 12 h and then treated with 10 mM neomycin along with
citicoline for 24 h and allowed to recover in culture medium
for another 12 h together with citicoline (Figure 3A). We
labeled the dead cells with propidium iodide and labeled the
cells undergoing apoptosis with Annexin V. The percentage of
apoptotic cells was significantly higher after neomycin treatment
compared to the undamaged group, while the percentage was
significantly reduced in the citicoline-treated group compared
with the neomycin-only group (Figures 3B,C). To verify this
result, we performed TUNEL staining to further detect apoptosis
in HEI-OC-1 cells. TUNEL staining showed that the proportion
of TUNEL-positive cells in the neomycin-induced group was
significantly higher than in the undamaged group, while the
citicoline-treated group showed significantly lower percentages of
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FIGURE 1 | Citicoline protects against apoptosis in cochlear HCs after neomycin injury. (A) Schematic diagram of drug addition in tissue culture.
(B) Immunofluorescence staining with Myo7A (green) and DAPI (blue) in the apical, middle, and basal turns of the cochlear explant cultures with different treatments.
(C) Quantification of the numbers of Myo7A and DAPI double-positive cells in (B). Data are shown as mean + SD. *p < 0.05, **p < 0.01, **p < 0.001. Scale
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FIGURE 2 | Citicoline reduces the expression of apoptotic factors in cochlear HCs after neomycin exposure. (A) Immunofluorescence staining with TUNEL and
Myo7A in the middle turn of the cochlea after different treatments. (B) Quantification of the numbers of TUNEL and Myo7A double-positive cells in (A).

(C) Immunofluorescence staining of cleaved caspase 3 and Myo7A in the middle turn of the cochlea after different treatments. (D) Quantification of the numbers of
cleaved caspase 3 and Myo7A double-positive cells in (C). (E) Western blot showing that the amount of cleaved caspase 3 in the neomycin-only group was higher
than in the undamaged control. The amount of cleaved caspase 3 induced by neomycin was significantly reduced by pretreatment with citicoline. (F) Quantification
of the western blot in (E). (G) The mRNA levels of five apoptosis-related genes were analyzed by gRT-PCR after neomycin and citicoline treatment normalized to
GAPDH and presented as the fold change compared to control levels. Data are shown as mean + SD. *p < 0.05, **p < 0.01, **p < 0.001. Scale bars = 20 pm.
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TUNEL-positive cells compared with the neomycin-only group
(Figures 3D,E). Together, these results show that citicoline
decreases apoptosis in HEI-OC-1 cells after neomycin exposure.

Citicoline Reduces the Expression of
Apoptotic Factors in HEI-OC-1 Cells
After Neomycin Injury

We further studied the impact of citicoline on the expression
of pro-apoptotic and anti-apoptotic factors in HEI-OC-1 cells
after neomycin injury. Immunofluorescence staining indicated
that the percentage of cleaved caspase 3-positive cells was
significantly higher in the neomycin-only group compared
with the undamaged controls (Figures 4A,B), but citicoline-
treated cells showed a significantly reduced percentage of cleaved
caspase 3-positive cells compared to the neomycin-only group
(Figures 4A,B). Consistent with these results, we found that
the protein levels of cleaved caspase 3 in HEI-OC-1 cells was
significantly increased after neomycin treatment compared with
the undamaged controls, and the protein levels were significantly
reduced by citicoline pretreatment (Figures 4C,D). Furthermore,
qRT-PCR analysis showed that the anti-apoptotic factor Bcl-2
was significantly decreased in the neomycin-only group, while
the expression of intrinsic and extrinsic pro-apoptotic marker
genes, including Bax, Casp3, Casp8, and Casp9, was significantly
higher compared to the undamaged controls (Figure 4E).
In the citicoline-treated group, the expression levels of these
intrinsic and extrinsic pro-apoptotic factors were significantly
decreased, and expression of the anti-apoptotic factor Bcl-2
was significantly higher compared to the neomycin-only group

(Figure 4E). Together, our results suggested that citicoline is
involved in neomycin-induced HEI-OC-1 apoptosis by inhibiting
the expression of both intrinsic and extrinsic apoptotic factors.

Citicoline Attenuates Oxidative Stress in
Cochlear HCs After Neomycin Injury

In this experiment, we sought to determine the relationship
between citicoline and oxidative stress in cochlear HCs. We
dissected and cultured the basilar membranes from P3 mice
and treated them with neomycin together with citicoline, and
Mito-SOX Red was used to measure mitochondrial ROS levels
in the cochleae. Quantification of Mito-SOX Red colocalization
with Myo7A showed that the ROS levels were increased
in the cochlea after neomycin treatment compared with the
undamaged group, and the citicoline-treated cochleae showed
significantly lower ROS levels compared to the neomycin-only
group (Figures 5A,B).

We next performed qRT-PCR to measure the mRNA
expression of redox-related genes in cochlear HCs after neomycin
treatment. We found that the expression of the antioxidant genes
Gsr, Sodl, and Glrx was significantly decreased in cochlear HCs
after neomycin exposure compared with undamaged controls,
and the pro-oxidant factor Alox15 was significantly increased
in the neomycin-only group (Figure 5C). We then measured
the expression of these genes after treatment with citicoline. We
found that the expression of the antioxidant genes Gsr, Sodl,
and Glrx was significantly increased and the pro-oxidant factor
Alox15 was significantly reduced compared with the neomycin-
only group (Figure 5C).
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FIGURE 3 | Citicoline protects against apoptosis in HEI-OC-1 cells after neomycin exposure. (A) Schematic diagram of citicoline (Cit) and neomycin addition in cell
culture. (B) Apoptosis analysis by flow cytometry after different treatments. The upper right quadrants, lower right quadrants, and lower left quadrants of the images
represent late apoptotic cells, early apoptotic cells, and live cells, respectively. (C) Flow cytometry results showing that the percentages of apoptotic cells after
neomycin treatment were significantly higher compared with the undamaged controls. The amount of apoptosis induced by neomycin was significantly reduced by
pretreatment with citicoline. (D) TUNEL and DAPI double staining showing the apoptotic HEI-OC-1 cells after different treatments. (E) The number of TUNEL/DAPI
double-positive cells after neomycin exposure was significantly reduced by treatment with citicoline. Data are shown as mean + SD. *p < 0.05, *p < 0.01,
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Citicoline Increases the Mitochondrial
Membrane Potential of HEI-OC-1 Cells
After Neomycin Exposure

To further explore the mechanism behind the role of citicoline
in neomycin-induced apoptosis of HEI-OC-1 cells, we used
TMRE kits to measure changes in the MMP in HEI-OC-1
cells using immunofluorescence staining and flow cytometry
analysis. The TMRE intensity was significantly decreased after
neomycin treatment compared to the undamaged control
group (Figures 6A-C), and the citicoline-treated cells showed

a significantly greater TMRE intensity than the neomycin-
only group (Figures 6A-C). These results demonstrated that
citicoline protects HEI-OC-1 cells from apoptosis by inhibiting
MMP dysfunction.

Citicoline Inhibits Neomycin-Induced
Oxidative Stress in HEI-OC-1 Cells

We used Mito-SOX Red to evaluate mitochondrial ROS levels in
HEI-OC-1 cells after neomycin treatment. Immunofluorescence
and flow cytometry results showed that the ROS levels were

Frontiers in Cell and Developmental Biology | www.frontiersin.org

August 2020 | Volume 8 | Article 712


https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles

Zhong et al.

Citicoline Protects Auditory Hair Cells

Hl Control (n=3)
E Neo(n=3)

3+ s sk % B Neo+Cit(n=3)
- X
3 P Y I
N
S 821" i
c
X g
E o e
05 N
> 9 4
= O
85 B
04:) hot
0-
~ag L] e > v
2
¢ F F F P

A Cleaved Caspase 3 DAPI Merge B g Il Control (n=3)
15 Neo(n=3)

% ok - B Neo+Cit(n=3)
S PR —
+ T
10

Control z
Q.
@
(&) 5
o
[
>
(]
@
o

C S O
N N o 3
eo Qé‘ & ¢
19KD = o“ Cleaved Caspase 3
42KD W ——— (-Actin
D c Il Control (n=3)

5 . Neo(n=3)
A —_— B Neo+Cit(n=3)
@ -

Neo+Cit 0]
12}
©
Q
7]
©
(6]
el
9]
>
©
o
(@]

FIGURE 4 | Citicoline reduces the expression of apoptotic factors in HEI-OC-1 cells after neomycin exposure. (A) Cleaved caspase 3 and DAPI double staining
confirmed the apoptotic cells after different treatments. (B) Quantification of the numbers of cleaved caspase 3 and DAPI double-positive cells in (A). (C) Western
blot showing that the amount of cleaved caspase 3 in the neomycin-only groups was higher than in the undamaged controls. The amount of cleaved caspase 3
induced by neomycin was significantly reduced by pretreatment with citicoline. (D) Quantification of the western blot in (C). (E) The mRNA levels of five
apoptosis-related genes were analyzed by qRT-PCR normalized to GAPDH and presented as the fold of control levels. Data are shown as mean + SD. *p < 0.05,

**p < 0.01, **p < 0.001. Scale bars = 20 um.

significantly increased after neomycin treatment compared with
the undamaged group and were significantly reduced in the
citicoline-treated group compared with the neomycin-only group
(Figures 7A-C).

To further verify our findings, we analyzed the mRNA
expression of four redox-related genes by qPCR. The expression
of the pro-oxidant factor Aloxl5 increased after neomycin
treatment compared with the undamaged controls, while the
antioxidant genes Gsr, Sodl, and Glrx were significantly
decreased in the neomycin-only group (Figure 7D). In addition,
treatment with citicoline significantly upregulated the expression
of the antioxidant genes Gsr, Sodl, and Glrx and reduced the
expression of the pro-oxidant factor Alox15 compared with the
neomycin-only group (Figure 7D). Our results indicated that
citicoline increased the expression of antioxidant genes and

decreased the expression of pro-oxidant genes and thus reduced
mitochondrial ROS levels in the cells and prevented apoptosis
after neomycin injury.

Citicoline Downregulates the Expression
of VDAC1 in HEI-OC-1 Cells After

Neomycin Exposure

VDACI1 is a major channel protein located in the outer
mitochondrial membrane, and it plays an important regulatory
role in the communication between the mitochondria and
other parts of the cell. Compared with the undamaged group,
the neomycin-only group was characterized by the obviously
enhanced VDACI-positive staining; however, treatment with
citicoline significantly downregulated the mitochondrial
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fluorescence intensity (Figures 8A,B). The VDACI staining
further confirmed that citicoline inhibits neomycin-induced
oxidative stress by reducing mitochondrial ROS levels.

DISCUSSION

Ototoxic drugs are a common cause of sensorineural hearing
loss, and aminoglycosides are the most commonly used ototoxic
drugs. Cochlear HCs are susceptible to aminoglycoside-mediated
cytotoxicity and cannot be regenerated once damaged, and
thus aminoglycoside ototoxicity is usually associated with
permanent sensorineural deafness (Nadol, 1993; Lazarou et al.,
2015; Correia-Melo et al., 2017). Recent studies have reported
that HCs in the mouse cochlea have a very limited ability
to regenerate during the neonatal period, but this limited
spontaneous HC regeneration is not sufficient to restore hearing
ability once HCs are destroyed by aminoglycosides, and all
regenerative ability is lost a few days after birth (Li et al,
2016; Ni et al., 2016; Waqas et al.,, 2016; Lu et al., 2017). To
explore the mechanisms through which ototoxic drugs cause
auditory sensory cell injury and to take appropriate control
measures, it has become especially urgent to prevent and
treat such diseases. Previous studies have shown that the toxic
effects of aminoglycosides on auditory sensory cells are clearly
associated with oxidative stress-induced cellular damage and the
induction of apoptosis.

Citicoline, a nucleoside derivative, is an indispensable
endogenous  intermediate  in  the  biosynthesis  of
phosphatidylcholine, which has been widely demonstrated
to play a therapeutic role in the development of central nervous

system injury and neurodegenerative diseases, and citicoline
has specific effects on promoting brain function recovery
and in promoting wakefulness (Wignall and Brown, 2014).
Citicoline is a safe and well-tolerated drug without significant
systemic side effects, and it has been shown that 100 M of
citicoline is not harmful to retinal cells (Davinelli et al., 2017),
and even up to 1000 pM citicoline is not harmful to retinal
neuroglial cells in vitro (Matteucci et al., 2014). We found that
the protective effect of citicoline is dose dependent, and the
viability of HEI-OC-1 cells was highest when the concentration
of citicoline was 10 pM. We still observed the protective effect
at a concentration of 100 WM, but the protective effect began to
decline significantly when the concentration of citicoline reached
1 mM. Taken together, these results confirm that citicoline
is safe for HEI-OC1 cells in vitro, which is consistent with
the good tolerability profile for citicoline in clinical studies
(Supplementary Figure S1).

Citicoline is an old drug, and we often ignore its other
functions, such as whether it also protects HCs. Previous studies
focusing on nerve cells found that citicoline plays a protective role
through anti-oxidation and anti-apoptosis activities (Barrachina
et al, 2002; Park et al, 2006), and we hypothesized that
citicoline might also have an important protective effect against
aminoglycoside-induced HC injury. In this study, we investigated
the role of citicoline in both neomycin-induced injury in HEI-
OC-1 cells and in cochlear HCs, and we found that citicoline
significantly decreased apoptosis after neomycin injury in both
contexts (Figures 1, 3).

Apoptosis occurs via both intrinsic and extrinsic pathways
(Rybak and Kelly, 2003). The aminoglycosides are believed to
induce apoptosis by releasing the apoptotic enzyme activation
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FIGURE 6 | Citicoline increases the MMP of HEI-OC-1 cells after neomycin exposure. (A) The three groups of HEI-OC-1 cells were labeled using the TMRE staining
kit. (B) Flow cytometry data confirmed the results in (A). (C) Quantification of the flow cytometry results in (B). The TMRE intensity was significantly decreased after
neomycin exposure compared to the undamaged controls. In addition, the TMRE intensity was significantly increased in the citicoline treatment group compared to
the neomycin-only group. Data are shown as mean + SD. *p < 0.05, *p < 0.01, **p < 0.001. Scale bars = 20 um.

factor that subsequently activates caspases (Karasawa and
Steyger, 2011). In this study, we found that cell death
and apoptosis dramatically increased in both HEI-OC-1 cells
and in cochlear HCs after neomycin injury, while citicoline
significantly reduced the neomycin-induced cell death and
apoptosis (Figures 2, 4). Furthermore, qRT-PCR analyses
indicated that the expression of intrinsic and extrinsic pro-
apoptotic genes (Bax, Casp3, Casp8, and Casp9) was significantly
decreased in the citicoline-treated group after neomycin
exposure, while the expression of the anti-apoptotic gene Bcl-2
was significantly increased (Figures 2, 4). These results suggest
that citicoline plays a critical anti-apoptotic role.

Bcl-2 family proteins regulate the integrity of the
mitochondrial outer membrane and play an important role
in determining mitochondria-mediated apoptosis. Pro-apoptotic
proteins such as Bax translocate to the mitochondrial outer
membrane to form oligomeric complexes when they encounter
apoptotic signals, resulting in increased mitochondrial outer
membrane permeabilization, Cytochrome-C release, and
Caspase activation, while anti-apoptotic proteins such as Bcl-2
prevent this process (Martinou and Youle, 2011). Citicoline

inhibits apoptosis in nerve cells by promoting the expression
of anti-apoptotic factor Bcl-2 and reducing the expression of
the pro-apoptotic factor Bax (Levites et al., 2002). In addition,
citicoline was also reported to protect the retina by increasing
Bcl-2 expression (Schuettauf et al., 2006). Our results show that
the expression of the anti-apoptotic gene Bcl-2 was significantly
increased and the expression of the pro-apoptotic gene Bax was
significantly decreased after citicoline treatment. This suggested
that citicoline can inhibit neomycin-induced HC injury by
affecting the expression of Bax and Bcl-2.

Ototoxic drugs cause hearing loss by inducing HC apoptosis,
primarily by altering the MMP of the mitochondria (Huang et al.,
2000; Wu et al,, 2002; Sun et al,, 2015; Guan et al,, 2016; He et al,,
2016; Yu et al.,, 2017). Mitochondria play an important role in
cell metabolism, and aminoglycoside-induced apoptosis is closely
related to mitochondrial dysfunction, which leads to decreased
MMP and increased ROS (Joza et al., 2001; Chipuk et al., 2004;
Coffin et al., 2013; Sun et al., 2014, 2015; Mei et al., 2015).
The accumulation of ROS in the mitochondria is an important
trigger of apoptosis, and it has been reported that ROS play an
important role in noise-induced and ototoxic drug-induced HC
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damage and hearing loss (Sun et al., 2014, 2015; Chen et al., 2015).
Previous studies have shown that ROS accumulation triggers
mitochondrial depolarization, changes mitochondrial membrane
permeability, and induces apoptosis (Rybak et al., 2007; Nemec
and Khaled, 2008; Chen et al., 2015; Sun et al., 2015). In
the present study, we demonstrated that citicoline significantly

increased the MMP of HEI-OC-1 cells and decreased ROS levels
in HEI-OC-1 cells and in cochlear HCs after neomycin exposure
(Figures 5-7), suggesting that citicoline alleviates mitochondrial
dysfunction in both cell types after neomycin exposure.

In response to aminoglycoside-induced ROS accumulation,
antioxidant genes are upregulated to counteract this
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accumulation. Therefore, the balance between oxidant and
antioxidant gene expression is critical for the rate of ROS
accumulation, and many genes coordinate with each other to
regulate the balance between the production and scavenging
of ROS. Administration of ROS-scavenging antioxidants (Sha
and Schacht, 2000; Kawamoto et al., 2004; Kim et al., 2009;
Ding et al., 2013), as well as inhibition of oxidase (Kim et al.,
2010), can reduce the ROS production, thus attenuating the
subsequent HC death in ototoxic drug-treated cochleae. In this
study, the expression of antioxidant genes was significantly
decreased and the expression of pro-oxidation factors was
significantly increased after neomycin exposure compared with
undamaged controls. We also found that citicoline significantly
increased the expression of several key antioxidant genes such
as Gsr, Sodl, and Glrx and decreased the expression of the
pro-oxidation factor Alox15 (Figures 5, 7). Overall, these results
indicate that citicoline increases the expression of antioxidant
genes, thus leading to decreased ROS levels and preventing
neomycin-mediated mitochondrial dysfunction and apoptosis in
HEI-OC-1 cells and cochlear HC:s.

In our study, the expression of antioxidant genes was
significantly downregulated after neomycin exposure. We
consider that increased ROS activates the cell defense mechanism
in the early stage of cell damage, thus activating the cell
antioxidant mechanism and up-regulating antioxidant factors to
clear the ROS. However, with the aggravation of cell damage,
aminoglycoside exposure induces large increases of ROS in the
cochlear HCs that overwhelm the cellular defense mechanisms
(Joza et al, 2001; Esterberg et al., 2016). This leads to the
imbalance between intracellular oxidation and antioxidation
resulting in a significant down-regulation of antioxidant factors
and a significant increase in oxidant factors. Because we also
previously found that the expression of antioxidant genes
decreased after neomycin damaged hair cells (Chen et al., 2015;
He et al, 2017), we hypothesize that the downregulation of
antioxidant factors is related to the special sensitivity of HCs to
aminoglycoside antibiotics, but this still needs further study.

VDAC is a major channel protein located in the outer
mitochondrial membrane. It is well recognized that VDAC is
involved in many physiological and pathophysiological processes,
including Ca2+ homeostasis (Shoshan-Barmatz et al., 2006,
2010), energy metabolism (Shoshan-Barmatz et al., 2006; Saks
et al, 2010), and cell apoptosis (Tsujimoto and Shimizu,
2002; Shoshan-Barmatz et al., 2010). VDAC has three isoforms
(VDACI1-3), and VDACI is the main isoform mediating cell
functions (De Stefani et al, 2012) and plays an important
role in regulating intracellular ROS generation and subsequent
apoptotic events (Chen et al., 2014). It is necessary for ROS to
cross the outer mitochondrial membrane when released from the
mitochondria to the cytoplasm, and this process is mediated by
VDACI. Increased intracellular ROS generation can be mostly
suppressed by VDACI inhibitors, and thus VDAC1 appears
to play a dominant role in regulating ROS generation (Chen
et al, 2014). In our study, we demonstrated that citicoline
significantly downregulated VDACI1 in HEI-OC-1 cells after
neomycin exposure (Figure 8), thus leading to decreased ROS
levels and inhibition of apoptosis.

Sirtuin 1 (SIRT1), the most conserved member of the
NADC-dependent protein deacetylase family, has been shown
to have protective effects in various common neurodegenerative
disorders (Herskovits and Guarente, 2014). Citicoline has been
recently shown to increase SIRT1 protein expression, and this is
strongly related to its neuroprotective activities (Hurtado et al.,
2013). A previous study showed that increased SIRT1 protects
against cisplatin-induced damage to HCs (Xiong et al.,, 2019).
Therefore, we will further study whether the protective effect
of citicoline on neomycin-induced HC damage works through
SIRT1 activation.

In summary, we first used citicoline on hair cells and
clarified the importance of the drug on ear hair cells for the
first time. Our study provides the first report that citicoline
protects auditory HCs against neomycin injury by preventing
mitochondrial dysfunction and the upregulation of antioxidant
genes, thus leading to decreased ROS levels and preventing
apoptosis. This study therefore provides experimental evidence
for the potential clinical application of citicoline to prevent
aminoglycoside-induced auditory HC damage.
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FIGURE S1 | Citicoline promotes HEI-OC1 cells survival after neomycin exposure.
(A) The CCK-8 kit measured the cell viability after treatment with different
neomycin concentrations (1-20 mM) for 24 h. (B) The cell viability was measured

REFERENCES

Adibhatla, R. M., Hatcher, J. F., and Dempsey, R. J. (2002). Citicoline:
neuroprotective mechanisms in cerebral ischemia. J. Neurochem. 80, 12-23.
doi: 10.1046/j.0022-3042.2001.00697.x

Barrachina, M., Secades, J., Lozano, R., Gémez-Santos, C., Ambrosio, S., and
Ferrer, 1. (2002). Citicoline increases glutathione redox ratio and reduces
caspase-3 activation and cell death in staurosporine-treated SH—SY5Y human
neuroblastoma cells. Brain Res. 957, 184-190.

Chen, H., Gao, W., Yang, Y., Guo, S., Wang, H., Wang, W, et al. (2014). Inhibition
of Vdacl Prevents Ca?*-mediated oxidative stress and apoptosis induced by
5-aminolevulinic acid mediated sonodynamic therapy in Thp-1 macrophages.
Apoptosis 19, 1712-1726. doi: 10.1007/s10495-014-1045-5

Chen, Y., Li, L., Ni, W., Zhang, Y., Sun, S., Miao, D, et al. (2015). Bmil regulates
auditory hair cell survival by maintaining redox balance. Cell Death Dis.
6:¢1605. doi: 10.1038/cddis.2014.549

Chen, Y., Yu, H,, Zhang, Y., Li, W, Lu, N, Ni, W,, et al. (2013). Cotransfection of
Pax2 and Math1 promote in situ cochlear hair cell regeneration after neomycin
insult. Sci. Rep. 3:2996.

Chipuk, J. E., Kuwana, T., Bouchier-Hayes, L., Droin, N. M., Newmeyer,
D. D., Schuler, M., et al. (2004). Direct activation of bax by p53 mediates
mitochondrial membrane permeabilization and apoptosis. Science 303, 1010-
1014. doi: 10.1126/science.1092734

Choung, Y. H., Taura, A., Pak, K, Choi, S. J., Masuda, M., and Ryan, A. F.
(2009). Generation of highly-reactive oxygen species is closely related to hair
cell damage in rat organ of Corti treated with gentamicin. Neuroscience 161,
214-226. doi: 10.1016/j.neuroscience.2009.02.085

Clerici, W. J., Hensley, K., DiMartino, D. L., Buttrfield, D. A. (1996). Direct
detection of ototoxicant-induced reactive oxygen species generation in cochlear
explants. Hear. Res. 98, 116-124. doi: 10.1016/0378-5955(96)00075-5

Coffin, A. B., Rubel, E. W., and Raible, D. W. (2013). Bax, bcl2, and p53
differentially regulate neomycin- and gentamicin-induced hair cell death in
the zebrafish lateral line. J. Assoc. ResOtolaryngol. 14, 645-659. doi: 10.1007/
$10162-013-0404-1

Correia-Melo, C., Ichim, G., Tait, S. W. G., and Passos, J. F. (2017). Depletion of
mitochondria in mammalian cells through enforced mitophagy. Nat. Protocols
12, 183-194. doi: 10.1038/nprot.2016.159

Cotroneo, A. M., Castagna, A., Putignano, S., Lacava, R., Fanto, F., Monteleone,
F., et al. (2013). Effectiveness and safety of citicoline in mild vascular cognitive
impairment: the IDEALE study. Clin. Interv. Aging 8, 131-137.

Davinelli, S., Chiosi, F., Di Marco, R., Costagliola, C., and Scapagnini, G. (2017).
Cytoprotective effects of citicoline and homotaurine against glutamate and
high glucose neurotoxicity in primary cultured retinal cells. Oxidat. Med. Cell.
Longev. 2017:2825703.

De Stefani, D., Bononi, A., Romagnoli, A., Messina, A., De Pinto, V., Pinton,
P., et al. (2012). VDACL1 selectively transfers apoptotic Ca2+ signals to
mitochondria. Cell Death Differ. 19, 267-273. doi: 10.1038/cdd.2011.92

Ding, D., Qi, W., Yu, D., Jiang, H., Han, C., Kim, M. ], et al. (2013). Addition
of exogenous NAD+ prevents mefloquine-induced neuroaxonal and hair cell
degeneration through reduction of caspase-3-mediated apoptosis in cochlear
organotypic cultures. PLoS One 8:€79817. doi: 10.1371/journal.pone.007
9817

Esterberg, R., Linbo, T., Pickett, S. B, Wu, P, Ou, H. C, Rubel, E. W,
et al. (2016). Mitochondrial calcium uptake underlies ROS generation during
aminoglycoside-induced hair cell death. J. Clin. Invest. 126, 3556-3566. doi:
10.1172/jci84939

by the CCK-8 kit after treatment with 10 mM neomycin for different times (0, 6, 12,
24, 48 h). (C) The cell viability after neomycin exposure was measured with the
CCK-8 kit after pretreatment with different citicoline concentrations (1, 10,

100 uM, 1 mM, 2 mM) for different times (6, 12, 24 h). (D) CCK-8 result of
HEI-OC1 cells pre-treated with different citicoline concentrations for 6 h after
neomycin exposure. (E) CCK-8 result of HEI-OC1 cells pre-treated with different
citicoline concentrations for 12 h after neomycin exposure. (F) CCK-8 result of
HEI-OC1 cells pre-treated with different citicoline concentrations for 24 h after
neomycin exposure. Data are shown as mean + SD. *p < 0.05,

**p < 0.01, **p < 0.001.

Filomeni, G., De Zio, D., and Cecconi, F. (2015). Oxidative stress and autophagy:
the clash between damage and metabolic needs. Cell Death Differ. 22, 377-388.
doi: 10.1038/cdd.2014.150

Franco, R., and Cidlowski, J. A. (2009). Apoptosis and glutathione: beyond an
antioxidant. Cell Death Differ. 16, 1303-1314. doi: 10.1038/cdd.2009.107

Guan, M., Fang, Q., He, Z., Li, Y., Qian, F., Qian, X, et al. (2016). Inhibition of
ARC decreases the survival of HEI-OC-1 cells after neomycin damage in vitro.
Oncotarget 7, 66647-66659. doi: 10.18632/oncotarget.11336

He, Y., Yu, H,, Cai, C., Shan, S., Chai, R., and Li, H. (2014). Inhibition of H3K4me2
demethylation protects auditory hair cells from neomycin-induced apoptosis.
Mol. Neurobiol. 52, 1-10.

He, Z., Guo, L., Shu, Y., Fang, Q., Zhou, H,, Liu, Y., et al. (2017). Autophagy
protects auditory hair cells against neomycin-induced damage. Autophagy 13,
1884-1904. doi: 10.1080/15548627.2017.1359449

He, Z., Sun, S., Waqas, M., Zhang, X., Qian, F., Cheng, C,, et al. (2016). Reduced
TRMU expression increases the sensitivity of hair-cell-like HEI-OC-1 cells to
neomycin damage in vitro. Sci. Rep. 6:29621.

He, Z. H,, Zou, S. Y., Li, M., Liao, F. L., Wu, X., Sun, H. Y., et al. (2020). The
nuclear transcription factor FoxG1 affects the sensitivity of mimetic aging hair
cells to inflammation by regulating autophagy pathways. Redox Biol. 28:101364.
doi: 10.1016/j.redox.2019.101364

Herskovits, A. Z., and Guarente, L. (2014). SIRT1 in neurodevelopment and brain
senescence. Neuron 81, 471-483. doi: 10.1016/j.neuron.2014.01.028

Huang, T., Cheng, A. G., Stupak, H., Liu, W., Kim, A., Staecker, H., et al. (2000).
Oxidative stress induced apoptosis of cochlear sensory cells: otoprotective
strategies. Int. J. Dev. Neurosci. 18, 259-270. doi: 10.1016/s0736-5748(99)
00094-5

Hurtado, O., Hernandez-Jiménez, M., Zarruk, J. G., Cuartero, M. L, Ballesteros, I.,
Camarero, G., et al. (2013). Citicoline (CDP-choline) increases Sirtuinl
expression concomitant to neuroprotection in experimental
J. Neurochem. 126, 816-819.

Joza, N., Susin, S. A., Daugas, E., Stanford, W. L., Cho, S. K., Li, C. Y., et al. (2001).
Essential role of the mitochondrial apoptosis-inducing factor in programmed
cell death. Nature 410, 549-554. doi: 10.1038/35069004

Kalinec, G. M., Webster, P., Lim, D. J., and Kalinec, F. (2003). A cochlear cell line as
an in vitro system for drug ototoxicity screening. Audiol. Neurotol. 8, 177-189.
doi: 10.1159/000071059

Karasawa, T. and Steyger, P. S. (2011). Intracellular mechanisms of
aminoglycoside-induced cytotoxicity. Integr. Biol. (Camb) 3, 879-886.

Kawamoto, K., Sha, S. H., Minoda, R., Izumikawa, M., Kuriyama, H., Schacht, J.,
et al. (2004). Antioxidant gene therapy can protect hearing and hair cells from
ototoxicity. Mol. Ther. 9, 173-181. doi: 10.1016/j.ymthe.2003.11.020

Kim, H. J., Lee, J. H,, Kim, S. J., Oh, G. S., Moon, H. D., Kwon, K. B,, et al.
(2010). Roles of NADPH oxidases in cisplatin induced reactive oxygen species
generation and ototoxicity. J. Neurosci. 30, 3933-3946. doi: 10.1523/jneurosci.
6054-09.2010

Kim, S. J., Park, C., Han, A. L., Youn, M. ], Lee, J. H,, Kim, Y., et al. (2009).
Ebselen attenuates cisplatin-induced ROS generation through Nrf2 activation
in auditory cells. Hear. Res. 251, 70-82. doi: 10.1016/j.heares.2009.03.003

Lazarou, M,, Sliter, D. A, Kane, L. A, Sarraf, S. A., Wang, C., Burman, J. L., et al.
(2015). The ubiquitin kinase PINKI1 recruits autophagy receptors to induce
mitophagy. Nature 524, 309-314. doi: 10.1038/nature14893

Levites, Y., Amit, T., Youdim, M. B., and Mandel, S. (2002). Involvement of
protein kinase C activation and cell survival/ cell cycle genes in green tea
polyphenol (-)-Epigallocatechin 3-gallate neuroprotective action. J. Biol. Chem.
277, 30574-30580. doi: 10.1074/jbc.m202832200

stroke.

Frontiers in Cell and Developmental Biology | www.frontiersin.org

August 2020 | Volume 8 | Article 712


https://www.frontiersin.org/articles/10.3389/fcell.2020.00712/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fcell.2020.00712/full#supplementary-material
https://doi.org/10.1046/j.0022-3042.2001.00697.x
https://doi.org/10.1007/s10495-014-1045-5
https://doi.org/10.1038/cddis.2014.549
https://doi.org/10.1126/science.1092734
https://doi.org/10.1016/j.neuroscience.2009.02.085
https://doi.org/10.1016/0378-5955(96)00075-5
https://doi.org/10.1007/s10162-013-0404-1
https://doi.org/10.1007/s10162-013-0404-1
https://doi.org/10.1038/nprot.2016.159
https://doi.org/10.1038/cdd.2011.92
https://doi.org/10.1371/journal.pone.0079817
https://doi.org/10.1371/journal.pone.0079817
https://doi.org/10.1172/jci84939
https://doi.org/10.1172/jci84939
https://doi.org/10.1038/cdd.2014.150
https://doi.org/10.1038/cdd.2009.107
https://doi.org/10.18632/oncotarget.11336
https://doi.org/10.1080/15548627.2017.1359449
https://doi.org/10.1016/j.redox.2019.101364
https://doi.org/10.1016/j.neuron.2014.01.028
https://doi.org/10.1016/s0736-5748(99)00094-5
https://doi.org/10.1016/s0736-5748(99)00094-5
https://doi.org/10.1038/35069004
https://doi.org/10.1159/000071059
https://doi.org/10.1016/j.ymthe.2003.11.020
https://doi.org/10.1523/jneurosci.6054-09.2010
https://doi.org/10.1523/jneurosci.6054-09.2010
https://doi.org/10.1016/j.heares.2009.03.003
https://doi.org/10.1038/nature14893
https://doi.org/10.1074/jbc.m202832200
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles

Zhong et al.

Citicoline Protects Auditory Hair Cells

Li, W., You, D., Chen, Y., Chai, R,, and Li, H. (2016). Regeneration of hair cells
in the mammalian vestibular system. Front. Med. 10, 143-151. doi: 10.1007/
s11684-016-0451-1

Liu, L., Chen, Y., Qi, J., Zhang, Y., He, Y., Ni, W, et al. (2016). Wnt activation
protects against neomycin-induced hair cell damage in the mouse cochlea. Cell
Death Dis. 7:¢2136. doi: 10.1038/cddis.2016.35

Lu, X,, Shan, S., Qi, J., Li, W,, Liu, L., Zhang, Y., et al. (2017). Bmil regulates
the proliferation of cochlear supporting cells via the canonical wnt signaling
pathway. Mol. Neurobiol. 54, 1326-1339. doi: 10.1007/s12035-016-9686-8

Mangiardi, D. A., Katherine, M. L. W., May, K. E., Messana, E. P., Mountain, D. C.,
and Cotanche, D. A. (2004). Progression of hair cell ejection and molecular
markers of apoptosis in the avian cochlea following gentamicin treatment.
J. Comp. Neurol. 475, 1-18. doi: 10.1002/cne.20129

Martinou, J. C., and Youle, R. J. (2011). Mitochondria in apoptosis: Bcl-2 family
members and mitochondrial dynamics. Dev. Cell 21, 92-101. doi: 10.1016/j.
devcel.2011.06.017

Matsui, J. I, Ogilvie, J. M., and Warchol, M. E. (2002). Inhibition of caspases
prevents ototoxic and ongoing hair cell death. J. Neurosci. Official ]. Soc.
Neurosci. 22, 1218-1227. doi: 10.1523/jneurosci.22-04-01218.2002

Matteucci, A., Varano, M., Gaddini, L., Mallozzi, C., Villa, M., Pricci, F., et al.
(2014). Neuroprotective effects of citicoline in in vitro models of retinal
neurodegeneration. Int. J. Mol. Sci. 15, 6286-6297. doi: 10.3390/ijms1504
6286

Mei, H., Sun, S, Bai, Y., Chen, Y., Chai, R., and Li, H. (2015). Reduced mtdna copy
number increases the sensitivity of tumor cells to chemotherapeutic drugs. Cell
Death Dis. 6:¢1710. doi: 10.1038/cddis.2015.78

Nadol, J. B. (1993). Hearing loss. N. Engl. ]. Med. 329, 1092-1102.

Nemec, K. N., and Khaled, A. R. (2008). Therapeutic modulation of apoptosis:
targeting the bcl-2 family at the interface of the mitochondrial membrane.
Yonsei Med. J. 49, 689-697.

Ni, W., Zeng, S., Li, W., Chen, Y., Zhang, S., Tang, M., et al. (2016). Wnt activation
followed by Notch inhibition promotes mitotic hair cell regeneration in the
postnatal mouse cochlea. Oncotarget 7,66754-66768. doi: 10.18632/oncotarget.
11479

Oshitari, T., Fujimoto, N., and Adachi—Usami, E. (2002). Citicoline has s
protective effect on damaged retinal ganglion cells in mouse culture retina.
Neuroreport 13,2109-2111. doi: 10.1097/00001756-200211150-00023

Parisi, V., Coppola, G., Centofanti, M., Oddone, F., Angrisani, A. M., Ziccardi,
L., et al. (2008). Evidence of the neuroprotective role of citicoline in
glaucoma patients. Prog. Brain Res. 173, 541-554. doi: 10.1016/s0079-6123(08)
01137-0

Park, C. H., Kim, Y. S., Cheon, E. W., Noh, H. S., Cho, C. H., Chung, I. Y., et al.
(2006). Action of citicoline on rat retinal expression of extracellular-signal-
regulated kinase (ERK1/2). Brain Res. 1081, 203-210. doi: 10.1016/j.brainres.
2005.12.128

Prasad, K. N., and Bondy, S. C. (2020). Increased oxidative stress, inflammation,
and glutamate: potential preventive and therapeutic targets for hearing
disorders. Mech. Ageing Dev. 185:111191. doi: 10.1016/j.mad.2019.111191

Rybak, L. P., and Kelly, T. (2003). Ototoxicity: bioprotective mechanisms. Curr.
Opin. Otolaryngol. Head Neck Surg. 11, 328-333. doi: 10.1097/00020840-
200310000-00004

Rybak, L. P., Whitworth, C. A., Mukherjea, D., and Ramkumar, V. (2007).
Mechanisms of cisplatin-induced ototoxicity and prevention. Hear Res. 226,
157-167. doi: 10.1016/j.heares.2006.09.015

Saks, V., Guzun, R, Timohhina, N., Tepp, K., Varikmaa, M., Monge, C., et al.
(2010). Structure-function relationships in feedback regulation of energy fluxes
in vivo in health and disease: mitochondrial interactosome. Biochim. Biophys.
Acta 1797, 678-697. doi: 10.1016/j.bbabio.2010.01.011

Saver, J. L. (2008). Citicoline: update on a promising and widely available agent for
neuroprotection and neurorepair. Rev. Neurol. Dis. 5, 167-177.

Schuettauf, F., Rejdak, R., Thaler, S., Bolz, S., Lehaci, C., Mankowska, A, et al.
(2006). Citicoline and lithium rescue retinal ganglion cells following partial
optic nerve crush in the rat. Exp. Eye Res. 83, 1128-1134. doi: 10.1016/j.exer.
2006.05.021

Secades, J. J., and Lorenzo, J. L. (2006). Citicoline: pharmacological and clinical
review. Methods Find Exp. Clin. Pharmacol. 28, 1-56.

Sha, S. H., and Schacht, J. (2000). Antioxidants attenuate gentamicin-induced free
radical formation in vitro and ototoxicity in vivo: D-methionine is a potential
protectant. Hear Res. 142, 34-40. doi: 10.1016/s0378-5955(00)00003- 4

Shoshan-Barmatz, V., De Pinto, V., Zweckstetter, M., Raviv, Z., Keinan, N.,
and Arbel, N. N. (2010). VDAC, a multi-functional mitochondrial protein
regulating cell life and death. Mol. Aspects Med. 31, 227-285. doi: 10.1016/j.
mam.2010.03.002

Shoshan-Barmatz, V., Israelson, A., Brdiczka, D., and Sheu, S. S. (2006). The
voltage-dependent anion channel (VDAC): function in intracellular signalling,
cell life and cell death. Curr. Pharm. Des. 12, 2249-2270. doi: 10.2174/
138161206777585111

Sun, S., Sun, M., Zhang, Y., Cheng, C., Waqas, M., Yu, H., et al. (2014). In vivo
overexpression of x-linked inhibitor of apoptosis protein protects against
neomycin-induced hair cell loss in the apical turn of the cochlea during the
ototoxic-sensitive period. Front. Cell. Neurosci. 8:248. doi: 10.3389/fncel.2014.
00248

Sun, S., Yu, H., Honglin, M., Ni, W., Zhang, Y., Guo, L., et al. (2015). Inhibition
of the activation and recruitment of microglia-like cells protects against
neomycin-induced ototoxicity. Mol. Neurobiol. 51, 252-267. doi: 10.1007/
s12035-014-8712-y

Tsujimoto, Y., and Shimizu, S. (2002). The voltage-dependent anionchannel: an
essential player in apoptosis. Biochimie 84, 187-193. doi: 10.1016/s0300-
9084(02)01370-6

Waguespack, J. R, and Ricci, A. J. (2005). Aminoglycoside ototoxicity: permeant
drugs cause permanent hair cell loss. J. Physiol. 567, 505-521.

Wagqas, M., Zhang, S., He, Z., Tang, M., and Chai, R. (2016). Role of Wnt and
Notch signaling in regulating hair cell regeneration in the cochlea. Front. Med.
10, 237-249. doi: 10.1007/s11684-016-0464-9

Wignall, N. D., and Brown, E. S. (2014). Citicoline in addictive disorders: a
review of the literature. Am. J. Drug Alcohol. Abuse 40, 262-268. doi: 10.3109/
00952990.2014.925467

Wu, W. ], Sha, S. H., and Schacht, J. (2002). Recent advances in understanding
aminoglycoside ototoxicity and its prevention. Audiol. Neurotol. 7, 171-174.
doi: 10.1159/000058305

Xiong, H., Chen, S., Lai, L., Yang, H., Xu, Y., Pang, ], et al. (2019). Modulation of
miR-34a/SIRT1 signaling protects cochlear hair cells against oxidative stress and
delays age-related hearing loss through coordinated regulation of mitophagy
and mitochondrial biogenesis. Neurobiol. Aging 79, 30-42. doi: 10.1016/j.
neurobiolaging.2019.03.013

Yu, X, Liu, W.,, Fan, Z,, Qian, F., Zhang, D., Han, Y., et al. (2017). c-Myb
knockdown increases the neomycin-induced damage to hair-cell-like HEI-OC1
cells in vitro. Sci. Rep. 7:41094.

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Zhong, Fu, Li, Chen, Wang, Gao, Zhang, Cheng, Zhang, Li, Zhang,
Qian, Shu, Chai and Gao. This is an open-access article distributed under the terms
of the Creative Commons Attribution License (CC BY). The use, distribution or
reproduction in other forums is permitted, provided the original author(s) and the
copyright owner(s) are credited and that the original publication in this journal
is cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

Frontiers in Cell and Developmental Biology | www.frontiersin.org

August 2020 | Volume 8 | Article 712


https://doi.org/10.1007/s11684-016-0451-1
https://doi.org/10.1007/s11684-016-0451-1
https://doi.org/10.1038/cddis.2016.35
https://doi.org/10.1007/s12035-016-9686-8
https://doi.org/10.1002/cne.20129
https://doi.org/10.1016/j.devcel.2011.06.017
https://doi.org/10.1016/j.devcel.2011.06.017
https://doi.org/10.1523/jneurosci.22-04-01218.2002
https://doi.org/10.3390/ijms15046286
https://doi.org/10.3390/ijms15046286
https://doi.org/10.1038/cddis.2015.78
https://doi.org/10.18632/oncotarget.11479
https://doi.org/10.18632/oncotarget.11479
https://doi.org/10.1097/00001756-200211150-00023
https://doi.org/10.1016/s0079-6123(08)01137-0
https://doi.org/10.1016/s0079-6123(08)01137-0
https://doi.org/10.1016/j.brainres.2005.12.128
https://doi.org/10.1016/j.brainres.2005.12.128
https://doi.org/10.1016/j.mad.2019.111191
https://doi.org/10.1097/00020840-200310000-00004
https://doi.org/10.1097/00020840-200310000-00004
https://doi.org/10.1016/j.heares.2006.09.015
https://doi.org/10.1016/j.bbabio.2010.01.011
https://doi.org/10.1016/j.exer.2006.05.021
https://doi.org/10.1016/j.exer.2006.05.021
https://doi.org/10.1016/s0378-5955(00)00003-4
https://doi.org/10.1016/j.mam.2010.03.002
https://doi.org/10.1016/j.mam.2010.03.002
https://doi.org/10.2174/138161206777585111
https://doi.org/10.2174/138161206777585111
https://doi.org/10.3389/fncel.2014.00248
https://doi.org/10.3389/fncel.2014.00248
https://doi.org/10.1007/s12035-014-8712-y
https://doi.org/10.1007/s12035-014-8712-y
https://doi.org/10.1016/s0300-9084(02)01370-6
https://doi.org/10.1016/s0300-9084(02)01370-6
https://doi.org/10.1007/s11684-016-0464-9
https://doi.org/10.3109/00952990.2014.925467
https://doi.org/10.3109/00952990.2014.925467
https://doi.org/10.1159/000058305
https://doi.org/10.1016/j.neurobiolaging.2019.03.013
https://doi.org/10.1016/j.neurobiolaging.2019.03.013
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles

'.\' frontiers

in Cell and Developmental Biology

REVIEW
published: 07 October 2020
doi: 10.3389/fcell.2020.584590

OPEN ACCESS

Edited by:
Lisa Porter,
University of Windsor, Canada

Reviewed by:

Philipp Kaldis,

Lund University, Sweden
Adriana Borriello,

University of Campania “Luigi
Vanvitelli”, Italy

*Correspondence:
Arnaud Besson
arnaud.besson@univ-tise3.fr

Specialty section:

This article was submitted to

Cell Growth and Division,

a section of the journal

Frontiers in Cell and Developmental
Biology

Received: 17 July 2020
Accepted: 17 September 2020
Published: 07 October 2020

Citation:

Creff J and Besson A (2020)
Functional Versatility of the CDK
Inhibitor p57KiP2,

Front. Cell Dev. Biol. 8:584590.
doi: 10.3389/fcell.2020.584590

Check for
updates

Functional Versatility of the CDK
Inhibitor p57KiP2

Justine Creff and Arnaud Besson*

Centre National de la Recherche Scientifique, Laboratoire de Biologie Cellulaire et Moléculaire du Contréle de la Prolifération,
Centre de Biologie Intégrative, Université de Toulouse, Toulouse, France

The cyclin/CDK inhibitor p57XP2 belongs to the Cip/Kip family, with p21°P1 and p27KiPt,
and is the least studied member of the family. Unlike the other family members, p57KiP2
has a unique role during embryogenesis and is the only CDK inhibitor required for
embryonic development. p57KiP2 is encoded by the imprinted gene CDKN1C, which
is the gene most frequently silenced or mutated in the genetic disorder Beckwith—
Wiedemann syndrome (BWS), characterized by multiple developmental anomalies.
Although initially identified as a cell cycle inhibitor based on its homology to other
Cip/Kip family proteins, multiple novel functions have been ascribed to p57<P2 in
recent years that participate in the control of various cellular processes, including
apoptosis, migration and transcription. Here, we will review our current knowledge
on p57KiP2 structure, regulation, and its diverse functions during development and
homeostasis, as well as its potential implication in the development of various
pathologies, including cancer.

Keywords: p57KiP2, CDK inhibitor, cell cycle, development, transcription, stem cells, CDKN1C

INTRODUCTION

The cell division cycle is the fundamental process by which a cell duplicates its cytoplasmic and
nuclear contents and divides in two genetically identical daughter cells. Cell cycle progression is
driven by specific combinations of heterodimeric cyclin/CDK (cyclin-dependent kinase) complexes
that license progression from one cell cycle phase to the next. In these complexes, the CDK is
the catalytic subunit that has serine/threonine kinase activity and the cyclin subunit allows CDK
activation and determines substrate specificity (Malumbres and Barbacid, 2005; Suryadinata et al.,
2010). These actors are finely regulated at the level of transcription, localization, post-translational
modifications (mainly phosphorylation) and protein degradation. Another level of regulation is
their association with inhibitory partners called CKIs (Cyclin-dependent Kinase Inhibitor). CKIs
are divided in two families according to their structure, CDK binding specificity and evolutionary
origin: the INK4 family and the Cip/Kip family (Sherr and Roberts, 1999; Besson et al., 2008;
Suryadinata et al., 2010).

The INK4 family (Inhibitors of CDK4) is composed of four proteins, pl6/NK4A 1 5INK4B
p18™K4AC "and p19™NK4D that specifically bind to CDK4 and CDK6 and inhibit their interaction
with D-type cyclins, thus preventing their activation (Sherr and Roberts, 1999; Besson et al., 2008).
In contrast, members of the Cip/Kip family, p21°P1/Wafl (p21) (Harper et al., 1993), p27XiP! (p27)
(Polyak et al., 1994; Toyoshima and Hunter, 1994) and p57Kipz (p57) (Lee et al., 1995; Matsuoka
et al., 1995) bind to both CDK and cyclin subunits and have the ability to inhibit all cyclin/CDK
complexes (Sherr and Roberts, 1999; Besson et al., 2008). Cip/Kip proteins share a conserved
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cyclin/CDK interaction domain in their N-terminal part, but
diverge in their C-termini, suggesting that they play specific
roles (Yoon et al., 2012). By inhibiting CDK activity, CKIs block
proliferation and they are considered as tumor suppressor.

More recently, the characterization of the CKI interaction
networks indicates that Cip/Kip family members plays multiple
functions in the cell and that their roles are not restricted to cell
cycle control but also extends to the regulation of other cellular
processes (Besson et al., 2008).

In this review, we focus on the least studied Cip/Kip family
member, p57, and give an overview of its regulation, multiple
functions in physiology and implication in pathology.

THE CDKN1C GENE

p57 is encoded by CDKNIC, located in the telomeric region of
chromosome 11 at 11p15.5 in human (Matsuoka et al., 1995), and
in the distal region of chromosome 7 in mice (Hatada and Mukai,
1995). CDKNIC contains four exons and three introns and p57 is
encoded only from exons 2 and 3 (Tokino et al., 1996).

CDKNIC is a paternally imprinted gene, with preferential
expression from the maternal allele (Matsuoka et al., 1996). The
11p15.5 locus contains a cluster of genes submitted to genomic
imprinting. Parental or genomic imprinting is a process required
for normal embryonic development that involves epigenetic
modifications of a gene causing its monoallelic expression in
a parental-dependent manner (Monk et al., 2019). Imprinted
genes are commonly found in clusters, which contain imprinting
control regions (ICRs) that are enriched in CpG islands and
are differentially methylated on each allele. These regions also
often include non-coding antisense RNAs that are essential for
maintaining imprinting (Reik and Walter, 2001). Interestingly,
the region homologous to 11p15.5 on murine chromosome 7 has
the same gene cluster arrangement, highlighting the importance
of this organization for the regulation of these genes. This locus
covers about 1 Mb and is organized in two domains controlled by
two regulatory centers, ICR1 and ICR2 (Figure 1).

ICRI in the telomeric domain controls the reciprocal
expression of H19 (maternal expression) and IGF2 (paternal
expression). The expression of these two genes depends on
the same pair of enhancers whose access is regulated by ICR1
(Leighton et al,, 1995). On the maternal allele, unmethylated
ICR1 is bound by CTCF (CCCTC-binding factor), a zinc-finger
protein with insulating activity, preventing the interaction of
the enhancers with the IGF2 promoter, but allowing activation
of the H19 promoter, which is expressed. Conversely, on the
paternal allele, CTCF does not recognize the methylated ICR1,
allowing the interaction of the enhancers with the IGF2 promoter
and its expression, while H19 is repressed (Hark et al., 2000;
Eggermann et al., 2014b).

The centromeric domain is approximately 800 kb in size and
contains several ubiquitously imprinted genes, including KCNQ]I,
KCNQIOT1 (KCNQI Opposite strand/antisense transcript 1, a.k.a.
LIT1 [Long QT intron transcript 1]), CDKNI1C, SLC22A18, and
PHLDA2, whose expression is regulated by ICR2. ICR2, located in
intron 10 of KCNQI corresponding to the KCNQIOT1 promoter,

is methylated on the maternal allele, which represses KCNQ1OT1
expression and thereby allows maternal expression of all the other
genes of the domain. Conversely, ICR2 is unmethylated on the
paternal allele, allowing KCNQ1OT1 expression. KCNQ1OT1
is a non-coding antisense RNA that represses in cis the other
genes of the domain (Fitzpatrick et al., 2002; Eggermann et al.,
2014b) (Figure 1). KCNQIOT1 directly binds to chromatin
at the promoters of the imprinted genes and recruits histone
methyltransferase complexes such as EZH2 (Enhancer of Zeste
2 Polycomb Repressive Complex 2 Subunit) and EHMT2
(Euchromatic Histone Lysine Methyltransferase 2), resulting in
a repressive chromatin state (Pandey et al., 2008). In addition,
KCNQI1OT1 recruits DNMT1 (DNA methyltransferase 1) to
these promoters, causing their hypermethylation and reinforcing
paternal repression (Mohammad et al., 2010). Imprinting defects
in this locus are one of the most frequent cause of development
of several syndromes (see below). Some genes in this locus are
imprinted only in the placenta in mice (Ascl2, CD81, and Tssc4)
(Shmela and Gicquel, 2013).

REGULATION OF CDKN1C EXPRESSION

p57 expression is finely regulated by many signals and
transcription factors. CDKNIC promoter analysis revealed the
presence of several consensus sites for various transcription
factors, including several SP1 (Stimulatory protein-1) sites, a
Glucocorticoid response element (GRE) site, and a TATA box.
The transcription factors E47, E2F1 and EGRI1 (Early growth
response gene 1), Tcf4, Hifl-a, as well as MyoD, via a p73
dependent mechanism, all promote p57 expression (Samuelsson
et al, 1999; Rothschild et al., 2006; Vaccarello et al.,, 2006;
Ma and Cress, 2007; Roeb et al., 2007; Wierenga et al., 2014).
Stimulation with glucocorticoids or BMPs also induce p57
expression (Samuelsson et al., 1999; Gosselet et al., 2007; Shi and
Liu, 2011; Zhang et al., 2015). Conversely, p57 transcription is
repressed by the Notch effectors Hesl and Herp2, as well as Id2
and PAX3-FOXO1 (Rothschild et al., 2006; Jia et al., 2007; Roeb
et al., 2007; Riccio et al., 2008). TGF-p signals have antagonistic
roles depending on cell type. Indeed, the TGF-p/Smad pathway
stimulates p57 expression in hematopoietic stem cells, whereas
it induces its degradation in osteoblasts (Urano et al., 1999;
Scandura et al, 2004). The CDKNIC promoter is strongly
regulated by methylation on the numerous CpG islands located
upstream and downstream of the transcription start site, which
appears to play a critical role in mediating p57 silencing in
cancers (see below).

In carcinomas, multiple micro-RNAs have been shown
to repress p57 expression. For example, p57 is targeted
by miR221/222 in gastric, lung and hepatocellular cancers,
promoting cell proliferation and tumor growth (Fornari et al.,
2008; Kim et al, 2009; Wang et al, 2013). Similarly, p57
expression is down-regulated by miR25 in glioma and gastric
cancer (Kim et al, 2009; Zhang et al., 2015) and by miR21
in prostate cancer (Mishra et al, 2014). In the context of
stem cells, p57 is regulated by miR92. In human embryonic
stem cells, miR92-b targets p57, promoting G;/S transition and
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FIGURE 1 | Imprinting control of the 11p15.5 locus. The 11p15.5 locus is organized in two domains, telomeric and centromeric, each controlled by an imprinting
control region (ICR). Imprinting of the telomeric region is controlled by ICR1, which allows repression of H79 and expression of IGF2 on the paternal allele, and
reciprocal expression on the maternal allele. ICR2 controls imprinting of the centromeric domain. Methylation of ICR2 leads to the suppression of the LIT1 antisense
RNA of the KCNQ1OT1 locus, allowing the expression of p57 from the maternal allele.

stem cell proliferation (Sengupta et al., 2009). Conversely, in
pancreatic cancer p57 is targeted by miR92-a, and miR92-a is
downregulated in chemoresistant cancer stem cells, leading to
p57 upregulation, which promotes cancer stem cell quiescence
and treatment resistance (Cioffi et al., 2015). Recently, Long Non-
Coding RNAs (IncRNAs) other than KCNQ1OT1 have also been
identified as regulators of p57 expression. LncRNAs may regulate
gene expression by several mechanisms, either acting as scaffolds,
guides or by interacting with chromatin modifying proteins
(Fatica and Bozzoni, 2014). Several IncRNAs overexpressed
in cancer, notably SNHGI17 in colorectal and gastric cancer,
SH3PXD2A-AS1 in colorectal cancer, or LncRNA00511 in non-
small cell lung carcinoma, were shown to downregulate p57
via their interaction with EZH2, the catalytic subunit of the
Polycomb Repressive Complex 2 (PRC2), a methyltransferase
that causes chromatin condensation (Sun et al, 2016; Ma
et al., 2017, 2018; Zhang et al.,, 2019a). Inversely, LINC00628
is downregulated in colorectal cancer, which is associated with
poor prognosis, and its interaction with EZH2 leads to p57
upregulation (Zhang et al., 2020). Other mechanisms have
been identified, for instance in gastric cancer, the LncRNA
ARHGAP27P1 activates p57 expression through binding to
JMJD3 (Jumonji-Domain containing 3), causing demethylation
of the p57 promoter (Zhang et al., 2019b).

Over the past few years, RNA modifications were shown
to play an important role in RNA stability and translation
and it appears that aberrant modifications are involved
in tumorigenesis (Chen et al, 2019). NSUN2 (NOP2/Sun
RNA methyltransferase 2), the main enzyme catalyzing 5-
methylcytosine (m>C) formation, is upregulated in gastric cancer

and promote cell proliferation and tumorigenesis via m5C
methylation of the p57 mRNA, repressing p57 expression
(Mei et al., 2020).

Unlike other Cip/Kip family members, p57 exhibits a tissue-
specific expression pattern with marked variations of expression
from embryogenesis to adulthood. During embryogenesis, p57
is strongly expressed from E9.5 to birth, with peak expression
at key stages of differentiation in each organ. p57 is present
in all three embryonic germ layers (endoderm, mesoderm, and
ectoderm), and is found in the majority of organs: cartilage,
skeletal muscle, heart, nervous system, and parenchymal organs
(intestine, pancreas, lungs, adrenals, thymus, gonad, and kidney)
as well as in extra-embryonic tissues. After E13.5, its expression
strongly decreases in most tissues, but persists in skeletal muscle,
kidney, intestine, palate, and lens (Nagahama et al., 2001;
Westbury et al., 2001). In adults, p57 is expressed in post-mitotic
cells of a limited number of tissues (heart, brain, lungs, skeletal
muscle, placenta, kidney, gonads, intestine, and more weakly in
the liver and spleen), which distinguishes it from the ubiquitous
expression of p27 and p21 (Lee et al., 1995; Matsuoka et al., 1995).

p57 STRUCTURE AND REGULATION

p575iP2 is a protein of 316 amino acids in human and 335
in mice, with an apparent molecular weight of 57 kDa. The
murine p57 protein is organized into four domains (Figure 2):
domain I comprises the cyclin/CDK binding domain and has
high homology to p21 and p27. Domain II is a Proline-rich
region of 82 amino acids, followed by domain III of 107 amino
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FIGURE 2 | Structure of the p57KP2 protein. Cip/Kip proteins are highly conserved in their N-terminal domain that mediates binding to cyclins and CDKs, but diverge
in their C-terminal part. Nevertheless, the C-terminus of p57 presents some homology with p21 (PCNA binding domain) and p27 (QT motif). Murine and human p57
are conserved in their N- and C-terminal domains but the central domains (Il and Ill) in mice are substituted by a unique PAPA domain in human (Il). The N-terminal
CDK binding/inhibitory domain (KID) of p57 is subdivided in three domains: a cyclin binding domain (1), a CDK binding domain (2) and a 31 helix (3). The C-terminal
QT domain (238-316) of p57 presents strong homology to the p27 QT motif at amino acids 302-316. It also contains three other conserved motifs: a PCNA binding
domain (272-297) similar to p21, a nuclear localization signal (NLS, 278-281), and a CDK phosphorylation site (T310). Through its diverse domains p57 is able to
interact with multiple partners involved in numerous cellular process, such as MyoD, b-Myb, LIMK1, PCNA, or JNK.

acids rich in acidic residues (glutamic and aspartic acids). Finally,
domain IV comprises a conserved motif called the QT domain
presenting homology with p27 (QT motif) and p21 (PCNA
binding domain). Human p57 is conserved in the C- and
N-terminal parts, however, the central domains II and III are
replaced by a single distinct domain rich in Proline/Alanine
repeats, the PAPA domain (Figure 2) (Lee et al., 1995; Matsuoka
etal., 1995). It is important to note that, like other Cip/Kip family
proteins, p57 is an intrinsically unstructured protein that adopts
a tertiary conformation only after binding to its different partners
(Adkins and Lumb, 2002; Lacy et al., 2004).

The N-terminal domain I is necessary and sufficient for
cyclin/CDK complex inhibition. This domain is subdivided in
three regions: a cyclin binding domain, a CDK binding site and a
310 helix. The 3} helix is not required for binding to cyclin/CDKs
but allows inhibition of Cyclin A/CDK2 and Cyclin E/CDK2
activity by inserting into the catalytic pocket of CDK2, thus
blocking ATP hydrolysis, as reported for p27 (Russo et al., 1996;
Hashimoto et al., 1998). This N-terminal domain also mediates
the interaction with transcription factors such as b-Myb and
MyoD (Reynaud et al., 2000; Joaquin and Watson, 2003). The
PAPA domain is unique to p57 and may confer to p57 distinct
functionalities from p21 and p27 via the interaction with different
proteins. For example, this central region of p57 interacts with
the kinase LIMK1, a Rho effector involved in regulation of actin
polymerization (Yokoo et al., 2003). Finally, the C-terminal QT
domain of p57 shares homology with the C-termini of both
p27 (QT motif) and p21 (PCNA binding site). Importantly, the
PCNA binding site of p57 was found to participate in mediating
growth inhibition (Watanabe et al., 1998) and gain-of-function
mutations in this domain were later discovered to cause the
development of growth-restriction syndromes such as IMAGe

(intrauterine growth restriction, metaphyseal dysplasia, adrenal
hypoplasia congenita, and genital anomalies) and Silver Russell
(see below) (Arboleda et al., 2012; Brioude et al., 2013b). The
QT domain of p57 also mediates interaction with the stress-
activated protein kinase JNK1 (Chang et al., 2003). A putative
Nuclear Localization Sequence (NLS) consensus site has been
identified, at the C-terminus of p57 by homology with p27 (Lee
et al.,, 1995). Finally, the C-terminus of p57 contains a consensus
site for CDK2 phosphorylation on Thr310 in human (Thr329 in
mice) that allows degradation of p57, similarly to Thr187 on p27
(Kamura et al., 2003).

The degradation of p57 is mediated by the proteasome.
Phosphorylation of Thr310 by cyclin E/CDK2 complexes creates
a binding site for the F-box protein Skp2, leading to p57
ubiquitination by the Skp2-SCF (Skpl, Cullin, F-box) complex
and to its degradation by the proteasome (Kamura et al,
2003). A second F-box protein, FBL12, has been involved
in p57 degradation. In osteoblasts, TGFP1 stimulates FBL12
expression that interacts with p57 phosphorylated on Thr310
and causes its proteasomal degradation independently of Skp2
(Kim et al., 2008).

ANIMAL MODELS OF p57

Knockout of Cdknlc in mice (p57%®) causes embryonic
(approximately 10% of mutant embryos die between E13 and
E16) and perinatal lethality, with less than 10% of animals
surviving to adulthood (Yan et al,, 1997; Zhang et al., 1997).
p57XC embryos display numerous developmental abnormalities
that are mainly caused by defects in differentiation and
increased apoptosis. For example, p57%C mice frequently

Frontiers in Cell and Developmental Biology | www.frontiersin.org

October 2020 | Volume 8 | Article 584590


https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles

Creff and Besson

p57 Functions

exhibit cleft palate, abdominal wall closure defects (umbilical
hernia and omphalocele) associated with defective abdominal
muscle development, truncation or shortening of the intestine,
bone shortening and ossification delay due to defective
chondrocyte differentiation, adrenal hyperplasia, renal dysplasia,
and increased apoptosis in the lens (Table 1) (Yan et al., 1997;
Zhang et al., 1997; Susaki et al., 2009). Consistent with Cdknlc
imprinting, animals inheriting a null allele from their mother
(p57F/~™) exhibit a phenotype similar to homozygous p57~/~
animals. Importantly, a transgenic approach to insert a second
Cdknlc allele outside of the imprinted locus (i.e., two expressed
copies of Cdknlc) caused intrauterine growth restriction and
embryonic lethality (Andrews et al., 2007). Thus, these studies
have shown that unlike other CDK inhibitors, p57 is required for
embryonic development and that expression of a single Cdknlc
allele is required.

Indeed, mice lacking p21 develop normally and are tumor free
for the first 7 months (Deng et al., 1995), however aging mice
(~16 months) spontaneously develop tumors of hematopoietic,
endothelial or epithelial origin (Martin-Caballero et al., 2001).
Consistent with its CDK inhibitory function, p21 loss accelerates
the development of Ras-induced mammary and salivary tumors
(Adnane et al., 2000). Similarly, p27 loss does not cause overt
developmental defects, however p27X© mice are significantly
larger and present multiple organ hyperplasia due to increased
cell proliferation, and display retinal dysplasia and female sterility
(Fero et al., 1996; Nakayama et al., 1996). p27 deficient animals
spontaneously develop pituitary tumors within a few months and
are dramatically more susceptible to carcinogenesis induced by
genotoxic agents or oncogene activation (Fero et al., 1996, 1998;
Nakayama et al., 1996). Moreover, p27 acts as a haploinsuflicient
tumor suppressor, as p27 heterozygote mice also display a
predisposition to tumor development induced by carcinogens or
irradiation (Fero et al., 1998) or in conjunction with inactivation
of another tumor suppressor such as PTEN (Di Cristofano et al.,
2001). Finally, an inactivating mutation in p27 was discovered
in rats as the cause of MENX (Multiple Endocrine Neoplasia X)
syndrome. This mutation is a tandem duplication of eight

TABLE 1 | Summary of phenotypes observed in p57C, p57P27Kl and

p57°K~ mice.

p57K0 p57P27KI p57CK- Interpretation

o Neonatal death (90%) Rescue Phenocopy CDK dependent

o Lens defect (60%) Rescue Phenocopy CDK dependent

e Bone shortening (100%) Rescue Phenocopy CDK dependent

e Bone shortening (100%) Rescue Phenocopy CDK dependent

e Abdominal wall defect (95%) Phenocopy Phenocopy CDK dependent,
but p27 cannot
rescue?

o Intestine shortening (30%) Rescue Rescue CDK independent,
common with p277?

o Kidney dysplasia (80%) Phenocopy Rescue CDK independent

o Cleft palate (50%) Rescue Increase (76%) CDK dependent

and independent

CDK dependent
and independent

e Adernal hyperplasia (70%)  Rescue 50% Increase

nucleotides causing a frameshift leading to rapid degradation
of p27 and decreased p27 protein level (Pellegata et al., 2006).
Subsequently, six germline mutations of p27 have been identified
as the origin of a rare MEN syndrome in humans called MEN4
(Pellegata et al., 2006; Marinoni and Pellegata, 2011).

A number of functional redundancies and compensatory
mechanisms between CKIs have been highlighted by the
generation of double or triple mutants, as well as knock-in
mutants (Tables 1, 2). Interestingly, double p27~/~/p57X© or
p21~/=/p57%© knockout in mice exacerbate certain phenotypes
of p57X© mice. There is worsening of placental and lens defects,
and increased embryonic lethality in p27~/~/p57%© animals
(Zhang et al., 1998). On the other hand, p21~/~/p57X© double
mutation aggravates skeletal defects, and causes the appearance
of phenotypes not observed in the single mutants, such as
impaired lung and skeletal muscle development (Zhang et al.,
1999). Triple p21~/~/p27~/~/p57XC knockout animals exhibit
phenotypes similar to p27~/~/p57X° mice and die between E11.5
and E15.5 (Tateishi et al., 2012) (Table 2) (for detailed review see,
Ciemerych and Sicinski, 2005).

In addition, a p57P?’Kl knock-in mouse model, where the
coding sequence of p27 was inserted in the p57 locus, revealed
significant functional redundancy between p27 and p57 when
compared with p57%© mice, as p27 corrects certain phenotypes
caused by the absence of p57, highlighting the importance of
CDK inhibition by p57 during development (Table 1) (Susaki
et al., 2009). Nevertheless, several phenotypes of p57XC mice,
such as kidney dysplasia, abdominal wall defects or adrenal
hyperplasia, are not restored in p57P*’Kl mutants, indicating
that p57 plays specific functions during development (Table 1)
(Susaki et al., 2009). Generation of another knock-in mutant,
p57°K~, in which p57 no longer binds to cyclin/CDK complexes
due to four point mutations, provided genetic evidence of

TABLE 2 | Phenotypes associated with loss of Cip/Kip proteins in mice.

Genotypes Phenotypes References
21-/~ Viable D tal., 1995
P No major developmental anomalies eng eta,
Viable Nak tal., 1996
P27/~ Organomegaly, female sterility, akayama et al.,
. ) Fero et al., 1996
increase body size
57-/— Lethal at birth Yan et al., 1997
P Multiple developmental anomalies Zhang et al., 1997
1=/ po7=/- Viable, similar to p27~/~ with more ~ Tateishi et al., 2012
P P pronounced ovarian hyperplasia Jirawatnotai et al., 2003
Lethal at birth, similar to p57~/~ with
p21~/= p57%0  new phenotypes (impaired lung and  7hang et al., 1999
skeletal muscle development)
Embryonic lethal (E12-E16.5), similar
p27—/= p57<0 1o p57KO with more pronounced Zhang et al., 1998
phenotypes (placenta, lens)
p21~/~ p27~/~ Embryonic lethal (E11.5-E15.5), Tateishi et al. 2012
p57K0 similar to p27-/~ p57K0 ateishretat,
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cyclin/CDK independent functions of p57 during development
(Duquesnes et al., 2016). Indeed, some phenotypes of p57X©
mice are completely absent in p57°K~ mice, such as kidney
dysplasia and intestinal shortening (Table 1). Surprisingly, others
phenotypes, including adrenal hyperplasia and cleft palate, were
aggravated or more frequent in p57“K~ mice compared to p57X0,
suggesting that in these tissues p57 plays both CDK dependent
and independent roles (Table 1). A possible explanation for
these phenotypes is that CDK-dependent degradation of the
p57°K~ protein is partly defective, leading to increased levels of
the mutant protein, which could potentially exert a dominant
negative effect (Duquesnes et al., 2016).

FUNCTIONS OF p57

Canonical Function in Cell Cycle

Regulation

The role of Cip/Kip family proteins as CDK inhibitor is well-
established, and like p21 and p27, p57 causes a cell cycle arrest
in Gy (Sherr and Roberts, 1999; Besson et al., 2008). p57 is
able to bind and inhibit all cyclin/CDK complexes, however,
with a lower affinity for cyclin B/CDK1 and cyclin D2/CDK6
complexes (Matsuoka et al., 1995). p57 mediates cyclin/CDK
complex inhibition by blocking the substrate interaction domain
on cyclins and by insertion into the catalytic pocket of the CDKs,
thus preventing binding of ATP and catalytic activity (Russo et al.,
1996). Like other Cip/Kip proteins, p57 promotes the assembly of
Cyclin D1-CDK4/6 complexes, which may remain active (Labaer
etal,, 1997). Indeed, the CDK inhibitory activity of p27 and p21 is
regulated by phosphorylation on Tyr88 and Tyr77, respectively,
which relaxes the inhibitory conformation of the CKI, allowing
partial CDK activation (Chu et al., 2007; Grimmler et al., 2007;
James et al., 2008; Huang et al., 2015). This tyrosine is conserved
in p57 (Tyr91), thus, a similar regulation of its CDK inhibitory
activity by tyrosine kinases appears likely, although there is no
direct evidence for this yet.

p57 can also inhibit the cell cycle via binding and inhibition
of PCNA. Indeed, individual mutation of the CDK or PCNA
binding site only results in partial loss of the growth inhibitory
activity of p57 in vitro, whereas simultaneous loss of these two
interactions completely abolishes the cell cycle inhibitory activity
of p57 (Watanabe et al., 1998).

Finally, p57 also plays a role in trophoblast endoreplication.
Endoreplication is a succession of G; and S phases without
intervening mitosis, leading to formation of giant polyploid
cells. This phenomenon is observed during trophoblast
differentiation to allow placenta implantation. p57 levels oscillate
during endoreplication, decreasing before S phase entry and
accumulating after S phase and in G; (Hattori et al., 2000). p57X©
mice exhibit placental defects and it was shown in vitro that
P57 is required to trigger mouse trophoblast endoreplication by
inhibiting CDK1 activity (Ullah et al., 2008; Susaki et al., 2009).

Non-canonical Functions of p57
In addition to cell cycle control, an increasing number of studies
have described non-canonical functions of p57. The ability of

p57 to regulate various cellular processes probably stems from its
multi-domain structure and ability to interact with many protein
partners. Indeed, a protein interactome has identified 183 direct
potential partners of p57 involved in various cellular functions,
including regulation of transcription, cytoskeleton and apoptosis
(Duquesnes et al., 2016).

Cytoskeleton Regulation

All Cip/Kip family members have been shown to regulate
cytoskeleton organization and cell migration by acting at different
levels of the Rho/ROCK/LIMK/Cofilin pathway (Besson et al.,
2004, 2008). In vivo, shRNA-mediated silencing of p57 delays
neuronal migration in the cortex during development (Itoh
et al., 2007) and p57 overexpression promotes radial migration
of neural precursors (Tury et al., 2011). p57 is able to interact
with LIMKI via its unique central domain (Yokoo et al., 2003).
LIMKI1 is a serine/threonine kinase that promotes actin stress
fiber assembly via phosphorylation of Cofilin, which inhibits its
actin severing activity. LIMKI is activated by the effectors of
RhoA, ROCK1/2 (Rho-kinases) (Bernard, 2007). Binding of p57
to LIMKI1 results in nuclear translocation and sequestration of
LIMKI1, which prevents Cofilin inhibition, resulting in decreased
actin stress fiber formation (Yokoo et al., 2003). In agreement
with these observations, p57 transfection into Schwann cells
results in nuclear sequestration and inhibition of LIMKI1, and
a lack of Schwann cell differentiation (Heinen et al., 2008b).
However, in HeLa cells the p57/LIMKI interaction did not
induce LIMKI1 relocation in the nucleus, but increased its
kinase activity, resulting in an increased number of stress
fibers and decreased cell migration (Vlachos and Joseph, 2009).
Similar findings were reported in hepatocellular carcinoma
cells and decreased p57 levels in hepatocellular carcinoma
samples correlated with the presence of metastases (Guo et al.,
2015). In glioblastoma cells, p57 expression was also reported
to inhibit cell migration and invasion (Sakai et al., 2004).
Therefore, the role of p57 on cytoskeleton remodeling and
migration appears to be mediated via its interaction with
LIMK1 and to be dependent of the cellular context and
subcellular location.

p57 and Apoptosis
Several phenotypes observed in p57X© mice can be attributed
to an increase of apoptosis caused by hyperproliferation and/or
differentiation defects. Interestingly, p57 has the ability to
modulate apoptosis by different mechanisms, and both pro and
anti-apoptotic roles have been reported depending on the cellular
context, the signaling pathway involved and the stress to which
cells are submitted (Rossi and Antonangeli, 2015).

p57 protects against apoptosis indirectly by inhibiting CDKs.
In response to stress, p38 phosphorylates p57 on Thr143, which
increases its affinity for CDK2 and results in G; cell cycle
arrest (Joaquin et al., 2012). p38 or p57 deficient MEFs (Mouse
Embryonic Fibroblasts) exhibit decreased viability in response
to osmotic or oxidative stress and UV exposure (Joaquin et al.,
2012). Overexpression of p57 in HEK293 or Hela cells can
also protect against apoptosis independently of CDK inhibition
by regulating the JNK/SAPK signaling pathway. In this model,
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p57 interacts with JNK1 via its QT domain, preventing its
interaction with c-Jun and thus inhibiting its kinase activity.
Expression of the QT domain is sufficient to block JNK/SAPK
mediated apoptosis in response to UVs or MEKK overexpression
(Chang et al., 2003).

Conversely, in a HeLa Tet-On derived cell line that
overexpresses p57 after induction, p57 potentiates apoptosis in
response to different stresses. p57 sensitized cells to apoptosis
induced by genotoxic agents such as staurosporine, cisplatin
or etoposide, but had no effect on Fas-mediated apoptosis
(Samuelsson et al., 2002; Vlachos et al., 2007). The pro-apoptotic
effect of p57 in response to these drugs is CDK-independent
and involves activation of the mitochondrial apoptosis
pathway. In response to staurosporine, p57 relocates to
mitochondrial membranes and promotes Bax activation and
a decrease of mitochondrial membrane potential, resulting
in cytochrome-c release in the cytosol and activation of
caspases 9 and 3 (Vlachos et al, 2007). The specificity of
the mitochondrial pathway was confirmed by overexpression
of Bcl-2, which prevented the pro-apoptotic effect of p57
(Vlachos et al., 2007). The mechanism by which p57 activates
the mitochondrial pathway is dependent on its ability to
interact and stimulate LIMKI activity. LIMKI1-induced
stabilization of actin fibers causes the displacement of hexokinase
1 (HK-1), a regulatory enzyme of the VDAC (Voltage-
dependent Anion Channel) mitochondrial channel, allowing
mitochondrial membrane depolarization and thus activation of
the mitochondrial apoptotic pathway (Kavanagh et al., 2012).
Finally, in H1299 non-small cell lung carcinoma cells, p57
transfection promoted p73B-mediated apoptosis in response
to cisplatin, although the mechanism was not investigated
(Gonzalez et al., 2005).

Regulation of Transcription by p57

Like other Cip/Kip family members, p57 can repress
transcription indirectly via the inhibition of cyclin/CDK
complexes, which prevents phosphorylation of Rb proteins and
E2F transcription factors activation (Sherr and Roberts, 1999;
Besson et al., 2008). p57 also negatively regulates the activity of
RNA polymerase II via its interaction with E2F1. The interaction
with E2F1 allows the recruitment of p57 to DNA, where it inhibits
CDK?7 and CDKO, resulting in decreased phosphorylation of the
C-terminal domain (CTD) of RNA polymerase II and leading to
a decrease of global transcription (Ma et al., 2010). In addition to
this CDK-dependent regulation, p57 may also directly regulate
the activity of transcription factors.

Indeed, p57 binds directly to b-Myb and inhibits its
transcriptional activity independently of CDKs (Joaquin and
Watson, 2003). p57 is also involved in regulating the stability
of the bHLH transcription factor MyoD. p57 promotes
MyoD stability and muscle differentiation by inhibiting CDK2,
preventing MyoD phosphorylation by CDK2 on Ser200, which
destabilizes the protein (Reynaud et al., 1999). p57 also stabilizes
MyoD in a CDK-independent manner by interacting directly
with MyoD via its N-terminal 3, Helix region, protecting MyoD
from degradation and promoting transactivation of muscle genes
(Reynaud et al., 2000).

Similarly, p57 can interact directly with other bHLH
transcription factors, including Ascll (Achaete-scute-like 1),
NeuroD1 and Math2/NeuroD6 in neural progenitors. p57 then
acts as a transcriptional repressor by directly inhibiting Ascll
activity at target promoters, independently of CDKs (Joseph
etal., 2009). Similarly, p57 can inhibit the transcriptional activity
of Nurrl independently of CDKs in vitro, and thus regulates
dopaminergic neuron maturation (Joseph et al., 2003).

Finally, it was shown recently that p57 may also positively
regulate transcription (Kullmann et al,, 2020). p57 binds to
and activates FHL2 (four-and-a-half LIM only protein 2), a
multifunctional LIM domain only protein, which binds to and
modulates the activity of several transcription factors, such as AP-
1, B-catenin or the androgen receptor, by acting as a coactivator
(Muller et al., 2000; Tran et al., 2016). FHL2 is inhibited by
HDACs, and by binding to FHL2, p57 competes with HDACI
and HDAC3 for FHL2 binding and prevents its inhibition
(Kullmann et al., 2020).

Moreover, an interactome revealed that p57 has multiple
partners involved in transcriptional regulation, including many
transcription factors and HDAC7 (histone deacetylase 7),
suggesting that p57 plays a major role in the regulation of
transcription (Duquesnes et al., 2016).

p57 and Differentiation

p57 plays a key role in the differentiation of many cell types
by inhibiting CDKs, promoting cell cycle exit, or via CDK-
independent mechanisms. Several phenotypes observed in p57X©
mice are caused by a delay or defect of differentiation (Yan et al.,
1997; Zhang et al., 1997).

Several studies have shown that p57 regulates various aspects
of neurogenesis, notably by controlling cell differentiation in the
central and peripheral nervous system. p57 is present in neural
stem cells and controls their fate by promoting differentiation
into astrocytes at the expense of the oligodendrocyte lineage
(Jadasz et al, 2012). In the peripheral nervous system, p57
inhibits Schwann cell differentiation and its silencing by
shRNA results in cell cycle exit, cell growth and differentiation,
as well as an increase of myelin production (Heinen et al,
2008a). Similarly, in the central nervous system, p57 inhibits
oligodendrocyte differentiation (Kremer et al., 2009). However,
other reports found that p57 promotes differentiation of
oligodendrocyte progenitors in rat primary cells in vitro,
as well as in vivo in zebrafish (Park et al, 2005; Dugas
et al, 2007). In the nucleus, p57 interacts and inhibits
Ascll, a transcription factor promoting oligodendrocyte
differentiation (Nakatani et al., 2013; Gottle et al., 2015).
During oligodendrocyte differentiation, p57 relocates to
the cytoplasm, promoting the export and inhibition of the
transcriptional repressor Hes5 and relieving Ascll inhibition,
enhancing differentiation (Gottle et al., 2015). In this study,
p57 regulated the localization of LIMK1 and CDK2, which
contributed to oligodendrocyte differentiation (Gottle et al.,
2015). Thus, the effect of p57 on oligodendrocyte differentiation
appears dependent on its subcellular localization. In addition
to these cell types, p57 is involved in cell cycle exit of neural
progenitors and in the specification of amacrine retinal
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interneurons (Dyer and Cepko, 2000), as well as in the
differentiation of dopaminergic neurons (Joseph et al., 2003).
In the latter, the transcription factor Nurrl up-regulates
p57 expression, and in turn, p57 binds to and inhibits
Nurrl transcriptional activity, promoting differentiation
(Joseph et al., 2003).

p21 and p57 cooperate and are required in vivo for terminal
differentiation of skeletal muscle cells. p21~/~/p57XC mice
exhibit altered skeletal muscle differentiation due to increased
proliferation, myoblast apoptosis, causing defects in myotube
formation (Zhang et al, 1999). Expression of p57 increases
during muscle differentiation and is induced indirectly by MyoD,
via p73. In turn, p57 stabilizes MyoD in a positive feedback loop,
promoting myogenesis (Vaccarello et al., 2006). MyoD can also
directly stimulates p57 expression epigenetically by binding a
negative regulatory cis-element, causing chromatin remodeling
and lifting the inhibition of p57 expression (Busanello et al.,
2012). The transcription factors Spl and Egrl also participate
in induction of p57 during myogenic differentiation (Figliola
etal., 2008). In rhabdomyosarcomas, the chimeric protein PAX3-
FOXOL1 indirectly inhibits p57 transcription via destabilization
of Egrl, which prevents myoblasts differentiation. Re-expressing
p57 in these cells is sufficient to restore myogenic differentiation
(Roeb et al., 2007).

p57 also participates in chondrocyte differentiation.
Chondrocytes hypertrophic differentiation is required for
ossification. Differentiated chondrocytes are characterized by
high collagen X expression, strong alkaline phosphatase activity,
and increased cell volume (Stewart et al., 2004). p57KO mice
exhibit bone shortening and an ossification delay caused by
delayed chondrocyte differentiation associated with increased
proliferation and decreased collagen X expression (Yan et al.,
1997; Zhang et al, 1997). In chondrocytes, p57 expression is
stimulated by C/EBPP during differentiation, leading to cell cycle
arrest (Hirata et al., 2009) and p57 also potentiates the induction
of collagen X expression mediated by BMP2 (Stewart et al., 2004).

Finally, in several tissues, the Notch/Hes1 signaling pathway
inhibits p57 expression to promote proliferation of progenitors
and prevent cell cycle exit and thus precocious differentiation,
notably in the intestine (Riccio et al., 2008), lens (Jia et al.,
2007), and pancreas (Georgia et al., 2006). Indeed, loss of p57
expression in human is associated with hyperinsulinism during
infancy due to increased production of B-islet cells (Kassem et al.,
2001; Avrahami et al., 2014). Conversely, bi-allelic expression of
p57 or gain-of-function mutations associated with the IMAGe
syndrome lead to reduced f-islet cell number and predisposition
to diabetes (Kerns et al., 2014; Asahara et al., 2015). In fact, p57
appears to be a target of choice to promote the regeneration of
pancreatic p-islets (Avrahami et al., 2014; Ou et al., 2019).

p57 in the Regulation of Stem Cell Fate and
Maintenance
Several studies have revealed a crucial role of p57 in maintaining
quiescence of resident adult stem cells in multiple tissues.

p57 is required for hematopoietic stem cell quiescence
and their maintenance. Indeed, in a conditional knockout
model, p57 ablation in adult mice results in a decreased

hematopoietic stem cell pool caused by an exit of quiescence
state (Go) and induction of apoptosis (Matsumoto et al., 2011b).
Reconstitution of the hematopoietic system after transplantation
is also reduced in absence of p57 (Matsumoto et al., 2011b).
These hematopoiesis defects are corrected by expression of p27
in the p57 locus (p57P?’X! knock-in mice) (Matsumoto et al.,
2011b). In hematopoietic stem cells of the fetal liver, p57 loss
is accompanied by an increase of p27 expression, nevertheless
neither p21 nor p27 knockout causes any defect, confirming that
p57 is the primary CKI required for hematopoietic stem cell
maintenance (Zou et al., 2011). Consistently, TGF-B1 induces
quiescence of hematopoietic stem cells and increases p57 levels
(Yamazaki et al., 2009). Conversely, increased Skp2 expression,
which induces p57 degradation, is necessary for cell cycle
reentry of hematopoietic stem cells (Rodriguez et al., 2011). The
role of p57 in controlling hematopoietic stem cell quiescence
involves its interaction with the chaperone Hsc70, which results
in cytoplasmic sequestration of Hsc70/Cyclin D1 complexes,
inhibiting cell cycle entry. Similarly, p27 may also interact with
Hsc70 to compensate for the loss of p57 (Zou et al., 2011).

In the lung, homeostasis and tissue regeneration are supported
by resident pulmonary stem cells called BASCs (Bronchioalveolar
Stem Cells) (Kim et al., 2005; Liu et al., 2019; Salwig et al., 2019).
The self-renewal of these stem cells requires a precise regulation
of p57 expression levels. Indeed, either loss or increase of p57
expression in BASCs causes a lack of self-renewal, leading to
defective tissue regeneration (Zacharek et al., 2011). These results
highlight the importance of p57 imprinting and monoallelic
expression. In the lung, Bmil controls the expression of p57 and
other imprinted genes, however, no overt methylation changes
at individual promoters or ICRs were observed in absence of
Bmil, suggesting that Bmil regulates imprinted gene expression
by another mechanism (Zacharek et al., 2011). How p57 controls
BASC maintenance has not yet been investigated.

In the adult hippocampus, p57 is expressed in quiescent
neural stem cells and absent in proliferative progenitors. The
presence of p57 is critical for maintaining neural stem cell
quiescence and while p57 ablation initially leads to an increase
in stem cell proliferation and stimulates neurogenesis, it results
over time in the exhaustion of the neural stem cell population
and impairs neurogenesis in aged mice (Furutachi et al., 2013).
Similarly, Nestin®"-driven deletion of p57 in the developing
brain causes a decrease of Pax2t interneuron progenitor
number due to massive p53-dependent apoptosis, resulting in
hydrocephalus (Matsumoto et al., 2011a). In contrast, during
cortical development, p57%C embryos exhibit macrocephaly
caused by an increased proliferation of neural progenitors
and stem cells (Mairet-Coello et al., 2012). p57 appears to
play a key role in timing cell cycle exit of specific neural
progenitor populations, and p57 deregulation leads to abnormal
development of specific neuron layers, especially during late
neurogenesis (Mairet-Coello et al., 2012). A recent study using
the MADM (mosaic analysis with double markers) system
revealed that p57 regulates cortical neurogenesis by distinct
mechanisms (Laukoter et al., 2020). p57 controls neural stem
cell proliferation in a non-cell autonomous manner, with a
complete knockout causing macrocephaly (Laukoter et al., 2020).
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However, conditional deletion of p57 in radial precursor (Emx1*
cells) causes microcephaly due to p53-mediated apoptosis,
in this case p57 exerts a cell-autonomous growth-promoting
function by promoting survival of maturing cortical projection
neurons (Laukoter et al., 2020), consistent with the Nestin®e-
driven phenotype previously observed (Matsumoto et al., 2011a).
Interestingly, there is some contribution of the paternal allele
during mouse brain development since Nestin®"-driven deletion
of the paternal allele results in reduced adult brain size due to
increased apoptosis of neural progenitors and a slight reduction
of proliferation (Imaizumi et al, 2020). These findings are
consistent with earlier observations that p57 exhibits biallelic
expression in the developing brain (Matsuoka et al, 1996).
Finally, p57 was recently involved in neural stem cell fate
determination. In Drosophila, neural stem cells can enter a
quiescence state either in Go or Gz (25 and 75%, respectively)
that determines their fate, as G, blocked cells can be rapidly
activated to divide in response to nutritional stimuli, while
Gy cells respond more slowly (Otsuki and Brand, 2018). The
choice between these two types of quiescence is determined at
the embryonic stage and depends on the presence of the p57
homolog, Dacapo, which favors entry in the Gy quiescent state
at the expense of the G, one (Otsuki and Brand, 2019). Dacapo
deletion leads to a change in the fate of the neural stem cells,
which are then preferentially oriented toward a G, quiescence
state (Otsuki and Brand, 2019).

In the developing skeletal muscle, p57 inhibition is required
for maintenance of certain stem/progenitor cells. Notch inhibits
p57 expression in Pax3T/7t muscle progenitors via Hesl,
allowing amplification of the progenitor pool (Zalc et al., 2014).
Loss of Notch signaling leads to an increase of p57 expression
in muscle progenitors, which is associated with precocious
differentiation and progenitor depletion (Zalc et al., 2014). In
adult muscle, satellite cells, the resident stem cells, derive from
Pax37/7" progenitors and are mobilized in case of damage to
regenerate muscle fibers. Surprisingly, p57 is not expressed in
quiescent satellite cells but is induced during their mobilization
(Mademtzoglou et al., 2018). In addition, loss of p57 in vivo
increases proliferation and self-renewal of progenitors and
myoblasts at the expense of their differentiation, and in case of
damage, p57 absence causes satellite cell depletion and delays
muscle regeneration (Mademtzoglou et al., 2018).

Finally, the presence of p57 was reported in other quiescent
adult tissue stem cells, such as hair follicle stem cells (Leishman
etal.,, 2013) as well as in Mex3a'8" quiescent intestinal stem cells
(Barriga et al., 2017), suggesting that p57 plays a general role in
the maintenance of resident stem cells.

p57 IN HUMAN PATHOLOGIES

Deregulation of imprinting of the 11p15.5 locus, as well as
loss of heterozygosity (LOH) or point mutations of CDKNI1C
are responsible for the development of several hereditary
pathologies and may contribute to cancer development and
progression. Alterations that cause loss of p57 function lead to
the development of the Beckwith—-Wiedemann syndrome, while

p57 gain of function leads to the development of Silver-Russell
and IMAGe syndromes.

Beckwith-Wiedemann Syndrome
Beckwith-Wiedemann syndrome (BWS) (OMIM # 130650) is
a rare genetic disorder with a prevalence of 1/13700 births,
characterized by excessive growth, developmental anomalies
and tumor predisposition during childhood. BWS has a
highly variable presentation and patients usually display only
a subset of phenotypes. Diagnosis is based on the presence
of at least three major criteria (macrosomia, macroglossia,
abdominal wall defects, hemihyperplasia, embryonal tumors,
renal abnormalities, anterior ear lobe creases) or the association
of two major criteria with at least one minor phenotype
(neonatal hypoglycemia, characteristic facies, diastasis recti,
cardiomegaly/structural cardiac anomalies. ..) (Weksberg et al,,
2010). A molecular anomaly, of epigenetic or genetic origin, in
the 11p15.5 region is identified in approximately 80% of BWS
patients. Most epigenetic abnormalities are mosaic, meaning
that only a fraction of the cells carry the molecular defect. The
severity and penetrance of the phenotypes therefore depends
on the underlying molecular mechanism and the percentage of
mosaicism (Brioude et al., 2013a).

The majority of BWS patients present epigenetic
abnormalities. Loss of ICR2 methylation on the maternal
allele is the most common form and is observed in 50% of
patients (Eggermann et al., 2014b). This anomaly results in
biallelic expression of KCNQIOT1 and thus in loss of CDKN1C
expression (Figure 1) (Eggermann et al, 2014b). Patients
with anomalies of this centromeric region have a more severe
phenotype and exhibit macroglossia and abdominal wall defects.
Gain of methylation on ICR1 is observed in 5% of cases,
resulting in biallelic expression of IGF2. Patients with this defect
display a higher risk of developing tumors and organomegaly
(Weksberg et al., 2010; Brioude et al., 2013a). Several genetic
alterations are also responsible for BWS development. Among
genetic anomalies, paternal isodisomies (UPD = Uniparental
Disomy) are found in approximately 20% of patients. UPDs
correspond to the duplication of the paternal 11p15.5 locus, with
no maternal contribution for this region, thus leading to biallelic
IGF2 expression and loss of CDKNIC expression (Weksberg
et al., 2010). Patients with UPDs have an increased risk of
hemihyperplasia (Brioude et al., 2013a). Other chromosomal
rearrangements have also been reported in rare (2-3%) cases,
including extensive paternal duplications, carrying both ICR1
and ICR2 regions (1%), translocations/inversion (1%), which are
usually transmitted by the mother, as well as ICR microdeletions
(<1%) (Weksberg et al, 2010; Eggermann et al., 2014a).
Finally, maternally inherited point mutations in CDKNIC are
observed in 5% of sporadic cases and are responsible for the
majority of familial cases (50%) of BWS (Eggermann et al.,
2014b). Patients with CDKNIC mutations have particular
phenotypes: almost all of them display abdominal wall defects
(umbilical hernia or omphalocele) and have an increased
incidence of cleft palate, genital anomalies and polydactyly
(Romanelli et al., 2010). Mutations of CDKNIC described in
BWS cover the entire coding region. They are mostly nonsense
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mutations leading to truncation of the protein or mutations
causing a frameshift, which strongly alters the structure of the
protein. Some missense mutations have also been described
in the cyclin/CDK binding domain (Eggermann et al., 2014b;
Brioude et al., 2015).

Silver Russell and IMAGe Syndromes

In opposition to BWS, p57 gain of function mutations
are associated with two very rare disorders, Silver-Russell
syndrome (SRS) (OMIM # 180860) (1/100,000 birth) (Brioude
et al, 2013b) and IMAGe syndrome (Intrauterine Growth
Retardation, Metaphyseal dysplasia, Adrenal insufficiency,
Genital abnormalities) (OMIM # 614732) (only a few dozen
cases reported worldwide) (Arboleda et al, 2012). These
pathologies cause opposite phenotypes to BWS and share a
number of features, notably intrauterine growth retardation
(Eggermann et al., 2014b).

The study of a familial form of IMAGe syndrome led to
the identification of five missense mutations located in the
PCNA binding domain of p57 (Arboleda et al., 2012). Expression
of a transgene carrying these mutations in Drosophila caused
decreased eye, wing and vascular network size, consistent with
a gain of function in p57 (Arboleda et al, 2012). In vitro,
these mutations were found to decrease binding to PCNA and
to impair p57 ubiquitination, leading to p57 stabilization and
inhibition of proliferation (Arboleda et al., 2012; Borges et al.,
2015). Interestingly, mutation in DNA polymerase € were recently
identified in 15 cases of IMAGe syndrome (Logan et al., 2018).
Given the impact of p57 mutations found in IMAGe on its
interaction with PCNA, it would be interesting to investigate
further their effect on PCNA function, DNA replication and S
phase progression.

The most frequent molecular anomalies in SRS patients
are loss of ICRI methylation (60% of cases), which result in
biallelic expression of HI9 and thus loss of IGF2 expression.
Chromosomal rearrangements with maternal duplications of
the centromeric domain, containing ICR2, or of both domains
have also been observed (Wakeling et al., 2017). Nevertheless,
point mutations in CDKNIC causing a gain of function in
p57 were recently found to cause SRS. Indeed, a gain of
function mutation in the PCNA binding domain of p57 was
identified in a familial form of SRS (Brioude et al., 2013b).
Interestingly, the residue mutated (Arg279Leu) is also mutated
in IMAGe syndrome (Arg279Pro). Tissue culture experiments
suggest that this mutation in p57 does not affect the cell cycle
but leads to stabilization of the protein, consistent with the
ubiquitination defect previously observed in IMAGe syndrome
(Brioude et al., 2013b).

p57 and Cancer

Like other CKIs, p57 is a putative tumor suppressor. However,
the lethality of p57XC mice has so far prevented to test this
formally in vivo and the involvement of p57 in cancers remains
to be addressed in animal models. Nevertheless, several lines of
evidence indicate that p57 plays a role in carcinogenesis. For
instance, BWS patients are predisposed to tumor development
(Weksberg et al., 2010) and decreased p57 expression is observed

in many types of tumors, including in gastric, colorectal,
pancreatic, pulmonary, and mammary carcinomas, as well as in
leukemia (Li et al., 2003; Pateras et al., 2009; Borriello et al.,
2011; Kavanagh and Joseph, 2011; Weis et al., 2015). Moreover,
decreased p57 expression correlates with aggressiveness in several
types of tumors and is associated with poor prognosis (Kavanagh
and Joseph, 2011; Qiu et al, 2018). Interestingly, CDKNIC
mutations are not frequently observed in cancers (Pateras et al.,
2009). Loss of p57 expression in human carcinomas is caused
predominantly by loss of heterozygosity of the 11p15.5 locus,
methylation of the CDKN1C promoter, and histone methylations
(Kikuchi et al., 2002; Pateras et al., 2006; Weis et al., 2015).
In fact, loss of imprinting of KCNQIOT1 has been observed
in colorectal cancer samples, but did not necessarily correlated
with p57 expression (Nakano et al., 2006). However, loss of p57
expression has been observed in colorectal cancer, mainly due
to promoter hypermethylation (Kikuchi et al., 2002) and it was
shown that the expression of the methyltransferase DNMT3a
is strongly increased in colorectal tumors (Weis et al., 2015).
Consistently, DNMT3a deletion inhibits tumor formation in vivo
at least in part by increasing p57 expression (Weis et al., 2015).
Moreover, several miRNAs and LncRNAs have also been shown
to repress p57 in various cancers, as described earlier (Kavanagh
and Joseph, 2011; Stampone et al., 2018). Finally, loss of p57
may also be due to increased degradation caused by Skp2
overexpression (Pateras et al., 2006).

CONCLUSION

p57X1P2 has the particularity of being the only CDK inhibitor
required for embryonic development. Since its discovery as
a cyclin/CDK inhibitor, a growing number of studies have
shown that p57 is a multifunctional protein involved in the
regulation of other cellular processes such as cell migration,
differentiation, apoptosis, transcriptional regulation or stem cell
specification and fate. The generation of a p57“%~ knock-in
mouse model has provided genetic evidence that some of its
functions are independent of cyclins/CDKs during development,
yet the underlying mechanisms remain largely unknown. How
p57 is regulated also remains largely unclear. In view of its
multiple functions, a better understanding of p57’s functions
and regulation would improve our comprehension of normal
development and of the etiology of several genetic disorders and
cancers. The fact that p57 is subjected to paternal imprinting
makes it particularly vulnerable to genetic alterations leading
to loss (BWS, cancer) or gain (IMAGe and SRS) of function
of the only active allele. In addition to complex developmental
growth disorders, p57 down-regulation is associated with the
development of cancers and its decreased expression is correlated
with aggressiveness in several tumor types. For example,
decreased p57 expression correlates with poor clinical outcome in
breast cancer (Yang et al., 2009). Similarly, p57 levels are inversely
related to tumor growth and cancer stage in non-small cell lung
cancer, hepatocellular and pancreatic carcinomas and others (Ito
et al., 2001a,b; Pateras et al., 2006). Interestingly, in colorectal
cancer, p57 levels are increased in low grade adenomas and
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finally decrease in primary carcinomas (Li et al., 2003), perhaps
reflecting a mechanism to initially limit tumor progression.
Similarly, in Wilm’s tumor, loss of heterozygosity of the 11p15.5
locus is associated with the reactivation of the paternal allele of
p57, possibly to limit cell proliferation and cancer progression
(Overall et al., 1996; Taniguchi et al., 1997). To conclude, several
lines of evidence indicate a prominent role for p57 during
tumorigenesis and stem cell regulation, and a significant number
of studies suggest that p57 is a pertinent prognostic marker
and that it may hold therapeutic potential both for anticancer
treatment and to manipulate tissue progenitor/stem cells for
regenerative medicine.
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Cytokinins (CKs) are a group of adenine-derived, small signaling molecules of crucial
importance for growth and multiple developmental processes in plants. Biological roles
of classical CKs: isopentenyladenine (iP), trans and cis isomers of zeatin ({Z, ¢Z), and
dihydrozeatin, have been studied extensively and their functions are well defined in many
aspects of plant physiology. In parallel, extensive knowledge exists for genes involved
in tRNA modifications that lead to the production of tRNA-bound methylthiolated CKs,
especially in bacterial and mammalian systems. However, not much is known about
the origins, fates, and possible functions of the unbound methylthiolated CKs (2MeS-
CKs) in biological systems. 2MeS-CKs are the free base or riboside derivatives of iP
or Z-type CKs, modified by the addition of a thiol group (-SH) at position 2 of the
adenine ring that is subsequently methylated. Based on the evidence to date, these
distinctive CK conjugates are derived exclusively via the tRNA degradation pathway. This
review summarizes the knowledge on the probable steps involved in the biosynthesis of
unbound 2MeS-CKs across diverse kingdoms of life. Furthermore, it provides examples
of CK profiles of organisms from which the presence of 2MeS-CKs have been detected
and confirms a close association and balance between the production of classical
CKs and 2MeS-CKs. Finally, it discusses available reports regarding the possible
physiological functions of 2MeS-CKs in different biological systems.

Keywords: 2MeSZ, 2MeSiP, methylthiolated cytokinins, methylthiotransferase, tRNA degradation pathway

INTRODUCTION

Cytokinins (CKs) are a group of adenine-derived, small signaling molecules, that comprise a
class of phytohormones that are of crucial importance for multiple growth and developmental
processes in plants (Spichal, 2012; Kieber and Schaller, 2018). Plant CKs play a significant role
in regulating cell proliferation and differentiation, control of shoot/root balance, transduction of
nutritional signals (source/sink distribution), delaying senescence, and increasing crop productivity
(Sakakibara, 2006). Cytokinins exist in two main structural forms, depending on the chemistry of
the side chain attached at N° position to the adenine ring - isoprenoid or aromatic. Regarding the
structure of their side chain, classical, isoprenoid CKs include isopentenyladenine (iP), zeatin (trans
and cis isomers; tZ, ¢Z), dihydrozeatin (DZ), and their various derivatives and conjugates (Kisiala
etal., 2019) that often strongly differ in their biological activity (Spichal, 2012).

In plants, isoprenoid CKs can be synthesized via two metabolic pathways, the de novo pathway,
and the tRNA degradation pathway. In de novo CK biosynthesis, specific isopentenyltransferase
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Methylthiolated CKs Among Kingdoms

(IPT) enzymes (adenylate IPTs) add the isopentenyl sidechains
(originating mainly from the methylerythritol phosphate
pathway; MEP) to adenosine tri- di- or monophosphates (ATP,
ADP, AMP). The de novo pathway, that is often a main source
of plant CKs, is localized mainly in cell plastids and results
predominantly in the production of iP- and tZ-type CKs that
typically demonstrate high biological activity (Sakakibara, 2006).

The other known CK production pathway involves a
modification of the adenine base at position 37 of tRNA
molecules with the isopentenyl sidechain obtained primarily via
the mevalonate pathway (MVA). Production of CKs through
tRNA degradation is localized mainly in the cytosol. Generally,
tRNA modifications contribute to an increased adaptation to
environmental conditions through the control of translational
efficiency and fidelity, in addition to reading frame maintenance
(Dabravolski, 2020; Liaqat et al., 2020). Following the degradation
of the modified tRNA molecules, cZ-type CKs are produced.
Although the tRNA degradation pathway is thought to play only
aminor role in overall CK production, it contributes significantly
to the levels of ¢Z-CKs in certain plant species (Emery et al., 1998;
Frébort et al., 2011; Gajdosova et al., 2011).

The presence of CK metabolites, or the genetic mechanisms
required for CK production, have been reported in all kingdoms
of life (Bjork, 1995; Mayaka et al., 2019). Cytokinin biosynthesis
involves conserved mechanisms even among evolutionary distant
organisms, and the formation of CKs in bacteria, fungi, plants,
or mammals all involve specific gene homologs and their
corresponding enzymes, including IPT, adenosine kinase (AK),
LONELY GUY (LOG) and a CK-degradation enzyme, cytokinin
oxidase/dehydrogenase (CKX; Sakakibara, 2006; Chanclud et al.,
2016; Trda et al., 2017; Daudu et al., 2019). Genes encoding
enzymes responsible for subsequent steps of CK metabolism exist
in a variety of different organisms, although not all genes have
been fully characterized or discovered.

Since the end of the 20th century, significant discoveries
in plants have been made; from not even knowing if plants
synthesized their own CKs (Holland, 1997), to having nearly
comprehensively defined CK pathways, leading to identification
of the active CKs and their corresponding conjugates (e.g.,
cis and trans-zeatin, iP, DZ and nucleotide, riboside, glucoside
conjugates) (Kieber and Schaller, 2018). Unknown CK pathways
are now rare and include those that may produce aromatic side
chain CKs (Frébort et al, 2011) and the seldomly observed
conjugates such as lupinic acid, a zeatin metabolite isolated
from Lupinus angustifolius seedlings (Guern and Peaud-Lenoel,
2012), mono- and dimethylated isopentenyladenine CKs found
in virulent Rhodococcus fascians strains (Jameson, 2019) or
discadenine, iP derivative unique for slime mold Dictyostelium
discoideum (Aoki et al., 2020). Another curious case is that of
the hydrophobic, methylthiolated CKs (2MeS-CKs) (Figure 1).
2MeS-CKs are iP- or Z-type CKs modified by addition of a
thiol group (-SH) at the position 2 of the adenine ring and
its subsequent methylation (Tarkowski et al., 2010). Based on
the evidence to date, these unique CK conjugates are derived
exclusively via the tRNA degradation pathway (Koenig et al.,
2002; Morrison et al., 2015a, 2017). 2MeS-CKs are commonly
observed, yet they are poorly understood in terms of their origins,

biological activity and functions. Due to their low quantities
in plant tissues, the development of analytical methods with
adequate sensitivity to detect these compounds is essential in
order to elucidate their biological function (Tarkowski et al.,
2010). A survey of CK review literature has yet to offer a place
for 2MeS-CK production in the overall CK pathway schemes
(Spichal, 2012; Morrison et al., 2015a, 2017).

This review will summarize the knowledge on the probable
steps involved in biosynthesis of the unbound 2MeS-CKs.
Furthermore, it will provide examples of CK profiles for
organisms from which 2MeS-CKs were previously detected and
confirm a close association and balance between production of
classical CKs and 2MeS-CKs. Finally, it will discuss available
reports regarding any possible physiological functions of 2MeS-
CKs in different biological systems.

THE STEPS OF 2MeS-CK PRODUCTION
VIA THE tRNA DEGRADATION PATHWAY

The Biosynthesis of the Initial CKs via
tRNA Modification: tRNA
Dimethylallyltransferase (EC 2.5.1.75):

MiaA/MOD5/AtIPT2 and 9/TRIT1

The first step toward 2MeS-CK production involves the initial
formation of a CK in the tRNA degradation pathway. It
involves the addition of an isopentenyl group to an adenine at
position 37 of tRNA molecules, which is known to read codons
beginning with uridine (Figure 2). This isopentenyl addition
occurs via the tRNA-isopentenyltransferase enzyme (tRNA-
IPT) and it creates a tRNA-bound N®-isopentenyladenosine
phosphate (iPRP). It also represents the rate limiting step of CK
biosynthesis. To date, tRNA-IPT homologs have been identified
in bacteria, fungi, plants, insects, and mammals (Pertry et al,
2009; Dabravolski, 2020).

In bacteria, the enzyme responsible for tRNA isopentenylation
is MiaA (Buck and Ames, 1984; Gray et al., 1996; Koenig
et al, 2002). A deletion of the miaA gene in Salmonella
typhimurium, a pathogenic, Gram-negative bacterium, caused
extensive pleiotropic effects, including a temperature-sensitive
growth phenotype (Blum, 1988). miaA mutant strain of
Bradorhizobium spp. displayed a significant reduction in CK
production but was also characterized by more intense growth
in CK-free media (Podlesakovd et al., 2013). The isopentenyl
side chain of the tRNA-bound iP can be further modified via
cis-hydroxylase, forming a tRNA-bound cis isomer of Zeatin
(tRNA-cZ) and, upon tRNA degradation, iP- or cZ-type CKs are
released (Cherayil and Lipsett, 1977; Morris et al., 1981; McGaw
and Burch, 1995). tRNA-derived ¢Z-CKs are often thought to
have significantly reduced biological activity, compared to the
de novo synthesized, highly active tZ-type CKs (Sakakibara,
2006; Wang et al., 2020); however, recent studies suggested
cZ is strongly involved in plant stress alleviation (Gajdosova
et al., 2011; Schifer et al., 2015; Silva-Navas et al., 2019).
trans-zeatin secretion in plant symbiotic Methylobacterium was
previously linked to a tRNA source since the presence of Z
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FIGURE 1 | Chemical structures of methylthiolated cytokinins (2MeS-CKs). The attachment of the ~S-CHjz group (red) at C» position of the adenine ring of
tRNA-bound CKs is regulated by methylthiotransferase-like enzymes. 2MeS-CK forms differ based on the modifications to their isoprenoid side chain (blue) and
include: 2-methylthio-transZeatin (2MeStZ), 2-methylthio-cisZeatin (2MeScZ), and 2-methylthio-isopentenyladenine (2MeSiP), and their riboside derivatives:

2MeStZR, 2MeScZR