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Editorial on the Research Topic
Advances and applications of distributed optical fiber sensing (DOFS) in
multi-scales geoscience problems

Introduction

Distributed optical fiber sensing (DOFS) has drawn a lot of attention in the geoscience
community, taking advantage of easy-to-deploy, dense-spacing, and multi-physical
measurements (temperature and strain), In contrast with traditional sensors, the optical
fiber itself is used as both a sensing element and a means of data transfer. Sensing fibers
can be easily deployed in harsh environments such as high-pressure and high-temperature
downhole settings.

Previous studies have demonstrated the capability of DOFS in multi-scale geoscience tasks
related to resource exploration and environmental hazard monitoring. While DOFS shows
promise to enhance our capabilities of tackling geoscience problems, there are still challenges
and problems associated with its development and applications. This Research Topic reviews
many of the recent advances and applications of DOFS and shows how the technology can be
improved. We hope this Research Topic may motivate more DOFS developments regarding
solving geoscience problems.

Presented below is a short review of the accepted
papers in this Research Topic:

a) Distributed acoustic sensing (DAS) demonstrates the robustness of subsurface imaging
across different scales. Shao et al. utilize DAS to record traffic-generated seismic data in
urban cities. The authors obtain the near-surface shear-wave velocity profile below the DAS

OPEN ACCESS

EDITED AND REVIEWED BY

Derek Keir,
University of Southampton,
United Kingdom

*CORRESPONDENCE

Yibo Wang,
wangyibo@mail.iggcas.ac.cn

SPECIALTY SECTION

This article was submitted
to Solid Earth Geophysics,
a section of the journal
Frontiers in Earth Science

RECEIVED 17 December 2022
ACCEPTED 21 December 2022
PUBLISHED 06 January 2023

CITATION

Wang Y, Zhao Y, Jin G, Chen X, Zhan G,
Wang B and Zeng X (2023), Editorial:
Advances and applications of distributed
optical fiber sensing (DOFS) in multi-scales
geoscience problems.
Front. Earth Sci. 10:1126105.
doi: 10.3389/feart.2022.1126105

COPYRIGHT

© 2023 Wang, Zhao, Jin, Chen, Zhan,
Wang and Zeng. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that
the original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Earth Science frontiersin.org01

TYPE Editorial
PUBLISHED 06 January 2023
DOI 10.3389/feart.2022.1126105

5

https://www.frontiersin.org/articles/10.3389/feart.2022.1126105/full
https://www.frontiersin.org/articles/10.3389/feart.2022.1126105/full
https://www.frontiersin.org/articles/10.3389/feart.2022.1126105/full
https://www.frontiersin.org/articles/10.3389/feart.2022.1126105/full
https://www.frontiersin.org/researchtopic/31204
https://www.frontiersin.org/researchtopic/31204
https://www.frontiersin.org/articles/10.3389/feart.2022.943424/full
https://crossmark.crossref.org/dialog/?doi=10.3389/feart.2022.1126105&domain=pdf&date_stamp=2023-01-06
mailto:wangyibo@mail.iggcas.ac.cn
mailto:wangyibo@mail.iggcas.ac.cn
https://doi.org/10.3389/feart.2022.1126105
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/journals/earth-science#editorial-board
https://www.frontiersin.org/journals/earth-science#editorial-board
https://doi.org/10.3389/feart.2022.1126105


cable through surface wave dispersion inversion using a Bayesian
Markov Chain Monte Carlo method, which demonstrates the
effectiveness of using DAS-recorded urban traffic noise for
near-surface characterization. Song et al. investigate the
performance of the three-station interferometry method for
improving ambient-noise cross-correlation functions of a linear
DAS array. The authors enhance the surface-wave signals while
suppressing the non-casual signals retrieved from the data
recorded by an urban internet cable, and provide high-
resolution images of shallow structures in the built-up areas.
Yang et al. present a case study of two survey lines with
armored optical fiber cables in the Yigong Lake area of the
Tibetan Plateau. Ambient noise interferometry and
multichannel analysis of surface waves are performed to obtain
the 2D shear-wave velocity profiles below the installed fibers. The
results validate the robustness of temporary DAS monitoring in
areas with extreme environments.

b) Machine learning proves its effectiveness for large-scale DAS data
processing. Cong et al. propose an attention-guided denoising
convolutional neural network (ADNet) to denoise seismic images
and retrieve weak signals. The network adapts different kinds of
convolution layers to enlarge the receptive field size and extract the
global feature of the input signal. Meanwhile, the attention
mechanism is introduced to extract the hidden noise from the
complex background. Wang et al. propose a multi-scale
interactive convolutional neural network (MSI-Net) to denoise
DAS data. The proposed MSI-Net incorporates both coarse-scale
and fine-scale features to advance inherent serial convolution to
multi-scale parallel convolution. As demonstrated by field examples,
the MSI-Net can effectively attenuate a variety of unique DAS
background noise and also effectively recover weak signals. Dong
et al. develop a novel multi-scale dense-connection denoising
network (MDD-Net) to achieve high-accuracy processing of
complex DAS-VSP background noise. MDD-Net utilizes a
widened convolution block to capture the multi-scale features of
the analyzed data. Both synthetic and field DAS-VSP records are
processed to verify the effectiveness of MDD-Net, even for the weak
upgoing signals. Tang et al. establish a rank reduction U-net (RRU-
net), an integration of an encoding structure for down-sampling and
a decoding structure for up-sampling, to reconstruct and denoise the
DAS-VSP seismic data simultaneously. Zheng et al. propose a deep-
learning approach for DAS signal extraction from the borehole-flow
noise during hydraulic fracturing. The authors utilize a combination
of Convolutional Neural Networks (CNNs) and Bidirectional Long
Short-Term Memory Networks (BiLSTM) to extract the spatial and
temporal features from the DAS data. The field data results prove its
robustness for intelligent monitoring and real-time evaluation for
hydraulic fracturing. Ye et al. develop a deep-learning method based
on the YOLOv5 object-detection algorithm to estimate traffic flow
and vehicle speed from the DAS signals acquired via a 500 m fiber
segment in suburban Beijing. The authors evaluate the temporal
traffic trend of the road section and explore vehicle classification via
the fast-beamforming technique.

c) The Research Topic also includes a number of DAS case studies.
Staněk et al. focus on reflected S-waves and use microseismic
events as sources to image induced hydraulic fractures, which act as
reflectors close to events and monitoring fiber. The proposed
algorithm is capable of real-time fracture mapping and tracking
fracture evolution in space and time. Nakajima et al. present a case
study of a walk-away DAS-VSP survey applied to monitor
geological CO2 storage at a pilot site in Japan. The authors
obtained DAS data using a single-mode fiber via a casing
installation. The authors apply conventional VSP processing
workflows to the acquired DAS data and obtain promising
images. Zhang et al. develop optimized algorithms for accurate
tracking of the train position, speed, and number of trains
traversing the position of the DAS system. The authors
transform a 6-day set of continuous DAS data sensed by a 2-
km cable into the time-velocity domain using beamforming and
automatically extract train position and velocity from the time-
beampower curves. It serves a supplementary role to conventional
temporally and spatially discrete monitoring systems in railway
traffic monitoring.
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Fracture Imaging Using
DAS-Recorded Microseismic Events
František Staněk*, Ge Jin and James Simmons

Department of Geophysics, Colorado School of Mines, Golden, CO, United States

Hydraulic fracturing enables hydrocarbon production from unconventional reservoirs.
Mapping induced seismicity around newly created fractures is crucial for
understanding the reservoir response and increasing the efficiency of operations.
Distributed acoustic sensing (DAS) provides a large amount of high spatial resolution
microseismic data acquired along the entire length of horizontal wells. We focus on the
observed reflected S-waves and develop a new methodology using microseismic events
as sources of energy to image induced fractures acting as reflectors in the media
surrounding the events and monitoring fiber. The workflow consists of DAS data
preprocessing, event location, wavefield separation, raytracing-based imaging, and
image post-processing. The comparison of the resulting images with low-frequency
DAS signals of fracture hits corroborates that the reflections are from fractures created
by stimulation. The proposed algorithm can be used for real-time mapping of fractures and
tracking fracture changes in space and time. Fracture imaging leads to a better
understanding of the reservoir response to hydraulic fracturing stimulation.

Keywords: hydraulic fracturing, microseismic monitoring, fiber-optic sensing, DAS, microseismicity, fracture,
reflected wave, imaging

1 INTRODUCTION

Microseismic monitoring of hydraulic fracturing has been employed to understand the reservoir
response and increase the efficiency of subsurface operations (Grechka and Heigl, 2017). Similarly,
induced seismicity monitoring has been used during waste-water injection (e.g., Zoback, 2012),
mining (e.g., Mendecki et al., 2010), enhancing geothermal systems (e.g., Kwiatek et al., 2014), storing
gas underground (e.g., Carannante et al., 2020), and CO2 sequestration (e.g., Williams-Stroud et al.,
2020) to mitigate seismic hazard.

A commonly provided result of hydraulic fracturing microseismic monitoring is a catalogue of
detected microseismic events with their origin time, location of hypocenter, magnitude, and, if
possible, a description of source mechanism. The main goals are to describe fracture geometry and
orientation, and connectivity between individual fractures and to estimate the area of the rock
volume having increased permeability. The interpretation is mostly done with discrete fracture
network (Williams-Stroud et al., 2013), stimulated rock volume (Rahimi Zeynal et al., 2014), and
geomechanical models (e.g., Staněk and Eisner, 2017). However, due to uncertainties in event
locations and inverted fault planes, and a lack of understanding of what microseismicity really
represents, more accurate knowledge of induced fracture systems is still in need.

Another technique to map induced fractures, instead of connecting located events, is reflection
imaging, using microseismic events as sources of energy. Grechka et al. (2017), Reshetnikov et al.
(2010), or Lin and Zhang (2016), observed reflected waves in data acquired by 3C geophone arrays
and used them for microseismic imaging. Such imaging is not common, probably because it is
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difficult to see reflected waves in the microseismic data acquired
by sparse and distant geophone arrays.

Recently, distributed fiber-optic sensing technology (Hartog,
2017) providing dense monitoring data has started to be
employed as an alternative to the traditional seismic arrays in
industry (e.g., Karrenbach et al., 2017; Byerley et al., 2018; Binder
and Tura, 2020; Lellouch et al., 2020; Stork et al., 2020; Titov et al.,
2021) as well as in global seismology (Zhan, 2019; Lindsey and
Martin, 2021). Fiber-optic-based monitoring is a quickly
developing technology that has been used for measuring
vibrations, temperature, and strain for many different
purposes (Baldwin, 2018). Specifically, distributed acoustic
sensing (DAS) is being utilized for long-term seismic
monitoring. The fiber working as a sensor can be installed
along the whole length of the stimulated well (in-well
monitoring) or offset wells (cross-well monitoring). The best
practice seems to be cementing fiber behind casing for permanent
monitoring, although it can also be installed temporarily. Such
monitoring geometry allows detection of a high number of weak
(i.e., low magnitude) microseismic events due to proximity to the
stimulated area. DAS offers other advantages compared to
borehole geophone arrays, such as broadband response (from
mHz to tens of kHz), long aperture (several km long fiber), and
dense spatial sampling (channel spacing can be < 1 m). The main
downside of fiber-optic-based monitoring is a single-component
axial strain measurement only in the direction along the fiber
(Baird et al., 2019). This causes critical problems when locating
and inverting the source mechanism of microseismic events
detected by a single fiber. However, there are ways to
overcome this issue using multi-component, so-called, helical
optical fibers (Lim Chen Ning and Sava, 2018), monitoring
carried out by a deviated or L-shaped array Verdon et al.
(2020), or monitoring with two or more nearby fiber wells
(e.g., Cole et al., 2018).

DAS provides high spatial resolution recordings, enabling
detailed analyses of wavefields and development of new
processing methods, leading to improved interpretations and
better insight into the reservoir response. In passive seismic,
we rely on induced microseismic events around the monitoring
wells at a reasonable distance to detect them. Recorded waves
(i.e., arrival times and amplitudes) contain information about
event location relative to a monitoring array, radiation pattern
due to source processes, and about the media between source and
fiber. It also includes the structural features represented by
reflected/refracted/diffracted waves arriving later after the
direct P-wave arrival (Lellouch and Biondi, 2021). Moreover,
in some DAS-based microseismic data, one may observe not only
far-field but also near-field signals (Luo et al., 2021a) which can be
used for more precise source description, and dispersive guided
waves, providing properties of anomalous velocity layers and
helping identification of events located inside or outside the
reservoir layer (Luo et al., 2021b). While all the phenomena
are recorded with high resolution, we can not only map fracture
propagation based on microseismic events located along fractures
but also image fractures making use of reflected waves.

Another type of fiber-optic-based measurement during
hydraulic fracturing used to describe fractures is of low-

frequency (< 1 Hz) DAS (LFDAS). LFDAS measures strain
changes (i.e., works as hybrid distributed strain sensing, DSS)
induced by hydraulic fractures (Jin and Roy, 2017; Richter et al.,
2019; Ugueto et al., 2019; Ichikawa et al., 2020; Zhu and Jin,
2021). The detected strain signals represent fractures which were
initiated at the offset treatment well and reached the monitoring
fiber well, so-called fracture hits or frac-hits. Therefore, frac-hits
are clear proof that the fractures have a half-length longer than
the spacing between treatment and monitoring well. Besides the
times when fractures hit the monitoring well, LFDAS data also
show the time intervals when the fractures open (extension at the
fractures and compression zone around) and when they close
(extension zone around the fractures) due to the leak-off after
injection.

In this study, we analyze selected examples of field DAS-
recorded microseismic data acquired during multi-well hydraulic
fracturing, focus on observed reflected S-waves, and propose a
new method for imaging fractures in the vicinity of induced
microseismic events. Imaged fractures are compared to LFDAS
frac-hits to corroborate that the imaged waves are reflected from
newly created hydraulic fractures.

2 DATA AND METHODOLOGY

2.1 DAS Data and Observations
We analyze data from the Chalk Bluff project in the Denver-
Julesburg (DJ) Basin in Colorado, USA. Figure 1 shows a map of
the study area with the position of the pad of horizontal wells
drilled in a N-S direction through the target unconventional
reservoir formations Codell and Niobrara at depths of around
7,400–7,700 ft (TVD). The reservoir was hydraulically fractured
in hundreds of stages along the lateral parts of all the horizontal
wells. DAS microseismic and LFDAS monitoring of the studied
area was carried out by two fibers permanently installed outside
the casing of the red wells in Figure 1. The channel spacing was
1 m along the fiber, and the gauge length was set to 5 m.

We have analyzed several strong microseismic events visible
in the continuous DAS data. The waveforms of most of the
events are relatively simple with symmetrical moveouts of direct
P- and S-waves, where S-wave signals are usually of higher
amplitude than P-waves. In this study, we focus on events that
have more complex wavefields, and demonstrate our
methodology on three selected example events. DAS data and
initial spatial locations (taken from the catalogue of events
located from a surface array provided by the data owner) of
the three example events are shown in Figure 1 (yellow stars).
Events A and C have both clear direct P- and S-waves (marked
as PD, SD), event B has only an S-wave visible, probably because
of the lower magnitude. All three events have reflected S-waves
(marked as SR) but event C has also clearly converted S to
P-waves (marked as SP) and a very complex wavefield following
the S-wave arrival. We also notice secondary, similarly looking,
weaker events coming after and before the main event in the
data of the events A and B, respectively (see SD2, SR2 in
Figure 1). These repeated events most likely occurred at the
same locations as the main events but at slightly different times.
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The observed reflected waves could represent either a fault,
fracture, or velocity interface, acting as a reflector in the medium
around the event location at the time when the microseismic
event occurred. However, in our case, we can exclude the
possibility of reflections from near-horizontal interfaces
(i.e., bedding planes) based on travel time moveout. Reflection
from a horizontal interface would be recorded by most of the
channels along the fiber and be symmetric around the apex with a
moveout similar to the direct P- and S-waves. Our observed
reflected S-wave moveouts are asymmetrical and parallel to the
direct S-wave moveouts. Therefore, we interpret them as
reflections from approximately near-vertical faults or near-
vertical fractures perpendicular to the horizontal fiber.
Furthermore, the reflectors are most probably either very close
to or directly intersecting the fiber, as we see that the arrivals of
reflected S-waves and direct S-waves merge into the same
channels where the reflectors likely intersect with the fiber well.

2.2 Fracture Imaging––Methodology
The reflected S-waves observed in the DAS data indicate the
presence of reflectors in the area between the microseismic event
locations and the recording fiber. From their moveouts, we may
expect that the reflector orientation is near-vertical and
perpendicular to the horizontal well. Our first attempt to
explain the reflected S-waves was a simple traveltime modeling

(Stanek and Jin, 2021).We were able to fit manually picked arrival
times of P-, S-, and reflected S-waves sufficiently well with
synthetic traveltimes using a homogeneous isotropic velocity
model (velocity taken from an available sonic log) with a
vertical reflector perpendicular to the monitoring fiber well.
However, such a method is not optimal as it may require
testing of many different positions, orientations, and lengths of
reflector until synthetics fit the arrival times.

Here, we propose an imaging technique converting DAS
microseismic data in time domain to an image with reflector
position in space. The raytracing-based method is similar to that
used forDASVSP processing (Schultz, 2019). Our imaging procedure
is incorporated into the seven-step workflow (see Figure 2):

(1) Input cut-out 0.3 s long chunk of DAS data containing a
detected event (as shown in Figure 1) is preprocessed. We
down-sample data from 10 to 1 kHz sampling rate in
order to minimize data size and then apply a band-pass
filter to preserve the signal of interest between 10 and
300 Hz.

(2) We manually pick (P- and) S-wave arrivals and relocate the
event using a standard grid-search location algorithm,
minimizing the L1-misfit. This way, we improve the origin
time and initial location taken from the surface catalogue,
specifically, the event location along the fiber and the

FIGURE 1 | Upper left: A map of the studied area with horizontal wells (running N-S) and their relative positions. Wells with permanently installed fiber are shown in
red. The diagonal NW-SE wells shown in gray are previously drilled production wells in the Niobrara. The yellow stars represent examples of strong microseismic events
(A, B, C). The seismic coherencymap in the backgroundmay indicate potential faults in the Niobrara formation. Upper right and bottom: Examples of three representative
microseismic events with direct P-waves (PD), direct S-waves (SD), converted S- to P-waves (SP), and reflected S-waves (SR) recorded by DAS array. The events A
and B are accompanied by other weaker events with very similar moveouts (SD2, SR2) indicating similar location but slightly different origin time. Event C shows more
complicated reflections after the direct S-wave.
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perpendicular distance from the fiber. We cannot fully
control the depth when locating events using one-well
DAS data due to the single-component nature of DAS.

(3) In this step, the data are converted to the f-k domain and the
workflow splits into two parallel branches. In (3a) and (3b), f-k
filtering is used to separate wavefields and remove the toe-ward

going and heel-ward going waves, respectively. It means that in
(3a) all heel-ward going and in (3b) all toe-ward going energy
(including reflected waves) is preserved and energy coming
from the opposite direction (including direct P- and S-waves) is
filtered out. Such splitting into two branches allows us to image
reflectors on both sides of the apex.

FIGURE 2 | Proposed 7-step workflow of reflector imaging using reflected S-waves recorded by DAS with an illustration of raytracing-based reflector imaging
methodology.
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(4) To get rid of the remaining part of direct arrival body waves’
moveouts, we mute all the data below (4a) and above (4b) the
line going through the apex with the slope equal to S-wave
velocity (muted areas are highlighted by transparent orange
triangles in Figure 2). This line needs to be slightly shifted
relative to the apex to make sure that we fully mute the direct
S-waves and do not deteriorate the final image. After the
latter step, we should see only heel-ward going or toe-ward
going reflected waves.

(5) The idea of imaging in (5a) and (5b) of the workflow is that
every point between the fiber at x = 0 and the event location
[xs, 0] acts as a potential reflection point [xf, yf]. With an
assumption that the reflector is almost vertical and
perpendicular to the fiber, we follow Snell’s law and
compute the raytracing-based travel time of the reflected
S-wave tt in a homogeneous isotropic velocity model with
S-wave velocity vs:

tt � xs

vs cos α( ), (1)

where cos(α) � (xs − xf)/
�������������
(xs − xf)2 + y2

f

√
. The channel yr

along the fiber where the ray of reflected S-wave arrives is:

yr � yf − xfyf

xs − xf
. (2)

The DAS data amplitude from the channel yr at the time tt is
then assigned to the tested reflection point in space. After

going through all the potential reflection points along the fiber
and between the fiber and the event location (we use a regular
grid with 1 m spacing), the imaging is done. The imaging
result projects the signal amplitude into the imaging spatial
grids without amplitude correction. The directional sensitivity
of the fiber and the source radiation pattern determines the
image amplitude.
The final two steps are (6) merging the two images of toe-ward
going and heel-ward going reflected waves to form a complete
image and (7) image post-processing. Here, we calculate signal
envelopes and apply a low-pass filter to the merged image to
further enhance the visibility of the reflector(s). An example of
the resulting image is shown at the bottom of the workflow,
where the dark color means no reflection or data coverage, and
coherent near-horizontal bright spots represent positions of near-
vertical reflectors approximately perpendicular to the fiber.

3 RESULTS

3.1 Imaged Reflectors
We demonstrate the processing results for two example
microseismic events (Events A and B displayed in Figure 1)
using the above-described methodology. Figure 3 shows input
DAS microseismic waveforms and the resulting images of
reflectors in space in two columns on the left. Each image is a
2D plane connecting the event location and the part of the fiber
from which we have DAS data.

FIGURE 3 | Input DAS data, reflector images, and LFDAS data for two example events. The green dashed-line arrows highlight the positions of reflectors in the
images. The yellow stars represent the location and origin time (only in the LFDAS data) of microseismic events.
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The bright spots elongated in the direction approximately
perpendicular to the fiber indicate the imaged reflectors. The
length of imaged reflectors is proportional to the length of the
reflected wave visible in the DAS data. The imaged reflectors
usually do not intersect with the fiber (at the distance 0) because
of the mute window around the direct arrivals (including a few
wavelengths of high-amplitude S-wave coda). The muting must
be done to avoid distortion of the final image around the apex.
However, we realize that we also mute part of the reflected S-wave
signal mixed with S-wave coda and thus lose information about
the reflector in the vicinity of the fiber. The imaged reflectors fade
out with distance from the fiber similar to the high-amplitude
signal of the reflected wave in the DAS data. It does not mean that
the actual reflectors cannot be longer, we image only the sections
between hypocenter and fiber illuminated by the S-wave of the
individual microseismic event. The signal-to-noise ratio (SNR) of
reflected waves depends on event magnitude, distance of the
event from the fiber (attenuation and geometrical spreading), and
noise in the data.

The black color at a far distance from the fiber means no data
coverage, i.e., there are no points reflecting energy back to the part
of the fiber we have data from. Whereas the black spaces in a
narrow zone around the apex line results from muting the direct
S-wave in the input data (steps (4a) and (4b) of the workflow). All
the other spaces with dark colors represent media without
reflectors.

The image of Event A shows one very clear horizontal bright
spot, representing a reflector within 50 m from the fiber. In the
DAS data, the position of the imaged reflector along the fiber
corresponds to the channel where both direct S- and reflected
S-waves intersect (highlighted by green dashed-line arrow in the
Figure 3). There is another reflector in the image which is weaker
and shorter (visible within 20 m from the fiber) than the main
reflector but still has coherent brightness in the approximately
perpendicular direction from the fiber. The matching reflected
S-wave in the DAS data is of proportionally low SNR and its
amplitude quickly attenuates away from the fiber. The remaining
randomly located bright spots are too small and probably result
from coherent noise in the input data. Meanwhile, Event B has
one approximately 30 m long reflector visible in its image.

3.2 Comparison With LFDAS and
Interpretation
Up to this point, we have referred to bright spots in images as
reflectors because we had no clear indication of whether they can
be interpreted as newly created fractures due to hydraulic
fracturing or pre-existing vertical faults in the area. To inspect
whether we have imaged one or the other, we compared the
images with LFDAS data. The LFDAS data are the same recorded
raw DAS data as the analyzed DAS microseismic data but in a
very low-frequency band (< 0.1 Hz). Figure 3 shows DAS
microseismic data in the left column, images for both
microseismic events in the middle, and LFDAS data from the
corresponding stage in the right column. The yellow stars placed
in the LFDAS data are at the events’ origin time and location
along the fiber. Note that the DAS microseismic data of each

event and consequently the image of reflector(s) is a snapshot of
the medium around the event location at the time when event
happened, whereas the LFDAS data show the evolution of
measured strain during the entire stage.

The LFDAS data around the origin time and location of Event
B show a very clear signal characteristic of frac-hits. The first
fracture started to open (zone of compression in blue around the
extensive opening zone in red) shortly before 12 a.m. Later on,
other fractures hit the fiber approximately 80 m away from the
first frac-hit and started to open. A few minutes later, the changes
in the reservoir induced Event B, recorded by the DAS array. The
comparison with LFDAS provides undeniable evidence that the
observed S-wave is back-scattered from the newly created fracture
to the monitoring fiber–position of the fracture in our image
aligns with the position of frac-hit in the LFDAS data (see the
green dashed-line arrow). The explanation of why we identified
only one fracture in the image while the LFDAS shows three
existing fractures at the event origin time is unclear. It is less likely
to be a resolution issue as the thickness of the imaged fracture is
smaller than the entire fractured zone. The first open fracture (at
the top in the LFDAS) is most likely not imaged due to its
narrower width or because the fracture was already closed and did
not create enough seismic impedance. The third fracture (at the
bottom in the LFDAS) lies in the muted zone of our image (too
close to the apex of the microseismic event).

The LFDAS data for the stage of hydraulic fracturing when
Event A occurred is of low quality, not allowing detection of frac-
hits. The source of abnormally high low-frequency noise was an
injection operation taking place in the monitoring well. This
caused a large temporal change in temperature conditions in a
short time before the LFDAS data were acquired. Note that the
low-frequency noise does not affect the DAS microseismic data
while we look at much higher frequencies where the sensitivity to
temperature is negligible. As the image of Event B has been
proven to be showing induced fracture(s), we may expect that the
similarly looking reflectors in the image of Event A are also
fractures. However, we cannot prove it by comparison with frac-
hit due to the noisy LFDAS.

4 DISCUSSION

4.1 Methodology
Our methodology relies on recorded signals reflected from the
fractures. We have used reflected S-waves; but analogically,
reflected P-waves might be used. Visibility of reflected waves
in data depends on sensitivity of the DAS monitoring system,
magnitude of microseismic event, impedance contrast related to
fracture geometry, width, and volume of fluids in the fracture, and
relative geometry between the source, fiber, and fracture. If the
fracture width is narrow and the impedance contrast in the
medium is not strong enough to reflect enough energy to be
detected above background noise level, we cannot see it in the
image, of course. If the microseismic event is located too close to
the induced fracture (relative to the distance of the event from the
fiber), most of the energy is reflected to far offset channels (far
from the apex line in the DAS data), and the signal of the reflected
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wave arrives shortly after the direct body wave and has almost the
same moveout. Therefore, in our workflow, the reflected wave
may be filtered out or muted together with the body wave signal,
and information about fracture is lost. Remaining energy
reflected from the fracture appears close to the apex where it
is usually mixing with high SNR body-wave coda which we also
mute. This means that fracture imaging using reflected waves is
hardly possible when the event-fracture-fiber geometry does not
lead to a reflected signal clearly distinguishable from the signal of
direct body waves.

Our fracture imaging methodology is based on several
assumptions. The raytracing is done only for reflections from
vertical fractures oriented approximately perpendicular to the
fiber in a homogeneous isotropic velocity model. These
assumptions appear to be valid only if the fractures are near
vertical. Perpendicularity of fractures to a well is expected when
lateral parts of both treatment and monitoring wells are drilled in
parallel and perpendicularly to the maximum horizontal stress
direction in the area. In our case, the observed reflected S-waves
with asymmetrical moveout parallel to the moveout of direct
S-wave can be explained only with a near-vertical fracture, near-
perpendicular to the fiber. The fact that microseismic events and
monitor well are in the same horizontal formation allows us to
assume a single velocity structure. We were able to fit both P- and
S-wave moveouts with the homogeneous velocity model,
i.e., without the need to use more complicated models. Similar
conditions might be found in many other fields but, in general, to
be able to image fractures with arbitrary orientation in a complex
velocity model, we would need to use more sophisticated
raytracing or advanced imaging methods such as Kirchhoff
migration or reverse time migration (e.g., Li et al., 2020).
However, that would require more accurate event locations
and stacking of many microseismic events (sources) to get a
reasonable image.

One of our first steps in the workflow is manual picking and
event (re-)location as we wanted to improve the initial event
locations obtained from the surface microseismic catalogue.
Without the known initial location, we would still locate the
event but have only very accurate information about the event
position along the fiber and the relatively accurate distance from
the fiber when located from one fiber only. The event location
would have uncertainty of 360o around the axis of the horizontal
well because of the axial sensitivity of DAS. Therefore, we would
not know the correct orientation of the imaged fractures. Note
that the image is always in the plane connecting the event location
and the fiber. We have not thoroughly tested the effect of
uncertainty in event distance from the fiber on the imaged
fracture as the uncertainty in horizontal location for our
selected events is in the order of a few meters and the changes
in images were negligible. Of course, P- and S-wave arrivals
needed for location do not have to be picked manually if an
efficient auto-picking algorithm is employed.

4.2 Application
The most obvious application of fracture imaging is the
processing of continuous cross-well DAS microseismic data
acquired during hydraulic fracturing to map created fractures

around stimulated wells. Such detailed map can have a big impact
on the precision of DFN and its reliability. With fracture imaging,
we may potentially map the dynamic evolution of the fracture if
several microseismic events are induced and detected during the
same stage around the fracture reflecting energy. The
microseismic events provide snapshots of the surrounding
reservoir at their origin times. If we are able to image
fractures, it means that the fracture is already open and wide
enough to reflect energy emitted by nearby microseismic events.
With several microseismic events following each other in time, we
may see fracture growth, i.e., dynamic changes of the reflected
wave visible in DAS data, and thus the lateral extent of the imaged
fractures. When the fracture starts closing, seismic impedance
decreases, and the fracture disappears from the image. Fracture
closing was shown in LFDAS data by Jin and Roy (2017) as well as
in time-lapse DAS VSP. Compared to the 4D inter-stage DAS
VSP (Binder et al., 2020; Titov et al., 2021), our fracture imaging
provides a better resolution due to higher frequency content
(microseismic event as a source is closer to the fiber than the
surface source used for VSP) and can image fractures in 3D if the
event location is known.

While the fracture visibility in the images depends on
impedance contrast in the medium, fracture images might be
used for estimation of fracture width or volume of fluids in the
fracture. However, such impedance dependency on the
mentioned parameters is not known at this time. We plan to
study the effect of uncertain microseismic event location on the
image, perform AVO analyses on the reflector for more
quantitative analyses of the imaging results, and estimate
fracture properties using reflected S-wave.

Due to the above-described assumptions and limitations of
the methodology, we do not claim that we are imaging all
possibly existing fractures. The presented fracture imaging can
be understood as a very powerful method providing important
but only additional information about the whole fracture
system induced by hydraulic fracturing, which may be
integrated with available results of other methods mapping
fractures. For example, location of microseismic events, fault
planes of inverted source mechanisms (size of planes is
proportional to magnitudes), or frac-hits also provide
information about fracture propagation and geometry. In
this study, we used LFDAS data showing frac-hits.
Unfortunately, as shown in the example in Figure 3,
LFDAS can be contaminated by noise due to temperature
effects induced by injection operations in the monitor well.
In such cases, fracture imaging using DAS microseismic data
may provide complementary information to results from
LFDAS. Furthermore, the LFDAS can detect frac-hits or
strain changes only in the close vicinity of the monitoring
fiber. Our fracture imaging is also able to map these frac-hits
and, moreover, it has the capability to map fractures which
does not intersect monitoring fiber well, as the imaging space is
located between the event and the monitoring fiber. From such
images, we can estimate the fracture geometry of fractures with
half-length shorter than well spacing. Of course, the
disadvantage is that fracture imaging is dependent on
induced microseismic events, whereas LFDAS is not.
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5 CONCLUSION

We have shown examples of microseismic events recorded by
DAS fiber in a horizontal well during hydraulic fracturing of an
unconventional reservoir. Besides direct P- and S-waves, the
events have visible signals of S-waves reflected at hydraulic
fractures. We developed a new processing workflow to image
the fracture using the reflected waves and demonstrated the
conversion of DAS-based microseismic data in time to fracture
image in space. The resulting images were compared to frac-hit
signals in corresponding LFDAS data, supporting that the imaged
reflectors are newly created hydraulic fractures. The fracture
imaging can be further developed with a potential to be used
for a real-time 3-D hydraulic fracture development mapping
when DAS monitoring is employed and induced microseismic
events are detected in abundance.
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The recently developed fiber-optic distributed acoustic sensing (DAS)

technology has attracted widespread attention in engineering applications,

oil exploration, and seismological research. Compared with the conventional

geophones, DAS can acquire high-resolution data due to a dense sampling and

can be deployed conveniently in the complex acquisition environment. These

advantages of DAS make it promising for near-surface characterization in the

urban city. In this study, a DAS line was utilized to record traffic noise seismic

data in the urban city and to investigate the near-surface characterization.

Seismic surface waves were reconstructed from the acquired traffic noises

using seismic interferometry. Thereafter, we obtain the near-surface shear

wave velocity profile below the DAS line by surface wave dispersion curve

inversion using a Bayesian Markov Chain Monte Carlo method. The results

demonstrate the effectiveness of DAS-based urban traffic noise in near-surface

characterization.

KEYWORDS

fiber-optic distributed acoustic sensing, near-surface characterization, urban traffic
noise, seismic interferometry, Surface wave

Introduction

The urban underground space is increasingly being developed and utilized with the

advancement of urbanization. Various underground facilities have been built and put into

use in many countries, such as subways, underground parking spaces, underground

shopping malls, and so on (Bobylev and Sterling, 2016). However, there are uncertainties

in the construction and operation of underground engineering due to the complexity and

instability of near-surface structures. Therefore, accurate near-surface characterization is

important for understanding the underground condition better and reducing the

potential safety risks (Von der Tann et al., 2020).

Compared with the near-surface surveys in resource exploration, near-surface

characterization in the urban city presents additional challenges, which require high

spatial and temporal resolution, efficient data acquisition, low cost, and minimal
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disruption to urban life. Different from the destructive active

sources in the conventional near-surface surveys, the urban

traffic noise provides a readily available and clean source to

obtain the near-surface structure (Zhang et al., 2019; Ma and

Qian, 2020). The newly developed fiber-optic distributed acoustic

sensing (DAS) has emerged as a promising seismic data

acquisition technology. Different from the particle

displacement or velocity measurements of conventional

geophones, DAS measures the strain rate or strain caused by

vibrations using a fiber-optic cable (Zhan, 2020; Song et al.,

2021a). Compared with the geophone, DAS can acquire high-

resolution data with sampling frequencies from kHz to MHz and

spatial sampling of several meters (Parker et al., 2014; Paitz et al.,

2021). In addition, DAS can be deployed conveniently in the

complex acquisition environment and enable long-term

monitoring. The potential and advantages of DAS have been

validated recently in seismic exploration (Daley et al., 2016; Lei

et al., 2021; Wang et al., 2021), regional and teleseismic

earthquake observations (Williams, et al., 2019; Shinohara

et al., 2022), and microseismic monitoring (Walter et al.,

2020). In terms of near-surface structure characterization,

Fang et al. (2020) used blast signals from quarry sites to

obtain the near-surface velocity changes. They picked travel

times from virtual source gathers on each day and estimated

the velocities by least-squares linear regression. Song et al.

(2021b) analyzed the traffic noise distribution using the

ambient noise from an urban city. The data were recorded by

urban telecommunication fiber-optic cables. The fundamental-

mode dispersion curves were extracted from the reconstructed

Rayleigh surface waves in the virtual source gathers and then

were inverted for the near-surface velocity structure using the

ambient noise tomography with a neighborhood algorithm.

In this study, we acquired traffic noise using a DAS line

deployed along a busy road in an urban city. We analyzed the

recorded seismic wavefield and reconstructed seismic surface

wave from 1 hour of continuous data. Then dispersion curves

were extracted and inverted for the near-surface velocity below

the DAS line. The inverted velocity agrees well with the prior

geological knowledge. The results confirm the reliability of near-

surface characterization using urban traffic noise recorded by a

DAS line.

Data and preprocessing

The study site is located in an urban city (Beijing) in

Northeast China, as shown in Figure 1A. The near-surface

stratigraphy in this area mainly consists of horizontal layers.

Data in this study were continuously acquired using a fiber-optic

distributed acoustic sensing (DAS) line with a length of 402.5 m.

The DAS line was installed along the road (Figure 1B) to ensure

that the recorded data contained rich traffic noise. The gauge

length is 5.0 m. The trace interval of acquired data is 0.5 m and

the sampling frequency is 4,000 Hz.

We first analyzed the acquired urban traffic seismic noise

collected by the DAS line. Figures 2A,B shows examples of

10 min recording when there are many vehicles and when no

vehicles pass across the entire DAS line. As shown by the black

arrows in Figure 2A, there are clear vehicle-related seismic data

when vehicles pass through the DAS line. These vehicle-related

seismic signals show linear events with different slopes,

indicated by the green dashed lines in Figure 2A. They are

excited by vehicles with different running speeds and

directions. A zoomed-in view of a vehicle-related seismic

event indicated by a rectangle labeled A in Figure 2A is

shown in Figure 2C. The blue lines in Figure 2C indicate

linear events with positive and negative slopes excited by a

vehicle passing through the DAS line. The slopes of these blue

FIGURE 1
(A) Location of the data acquisition area in Beijing, China. (B) A
zoomed-in view of the field acquisition layout. The dashed gray
line indicates the DAS line along the road.
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lines represent the propagation velocity of the wavefield excited

by the vehicle. Figures 2E,F shows the zoomed-in views of

background noise indicated by the rectangle labeled B in

Figure 2A and labeled C in Figure 2B. The two background

noises are extracted from the records with and without vehicles

to compare the effect of urban traffic. The waveforms and

amplitude spectra of data indicated by the arrows in Figures

2C,D,E are shown in Figure 3. The vehicle-related seismic data

in Figure 3A presents strong amplitude vibrations compared

with the background noise in Figures 3B,C. The amplitude

spectrum is distributed in a frequency range of 0–30 Hz,

indicated by the blue line in Figure 3D. The red line in

Figure 3D represents the amplitude spectrum of background

noise extracted from a period in the vicinity of the vehicle-

FIGURE 2
(A) Seismic data recorded by DAS line during 10 min of heavy road traffic. The black arrows indicate the vehicle-related seismic event and the
green dashed lines indicate their slopes. (B) Seismic data recorded by DAS line during 10 min without road traffic. (C–E) The zoomed-in view of data
indicated by the rectangles labeled A-B in (A) and labeled C in (B). The color arrows indicate the locations of seismic waveforms and amplitude
spectra in Panel 3. The blue lines in (C) represent the propagation velocity of wavefield excited by the vehicle.
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related seismic data. It shows a similar frequency band

(0–30 Hz) to the vehicle-related seismic data (the blue line)

but with weaker energy. In comparison, the amplitude

spectrum of background noise extracted from a quiet period

without vehicles has a lower frequency range of 0–10 Hz and

the smallest energy. Therefore, the noise sources of urban traffic

can provide a broadband frequency data than the common

ambient noise. The F-K analyses of data in Figures 2C,D,E are

shown in Figure 4. The energy bands in all the three F-K spectra

distribute in an almost similar slope range defined by the red

lines in Figure 4, indicating the similar apparent velocities of

these waves.

Based on the analysis, surface waves are reconstructed by

seismic interferometry using 1 h of continuous records, during

which busy vehicles were moving along the road. The raw noise

data are first preprocessed by a series of methods summarized in

Bensen et al. (2007). They are then cut into segments with a

length of 1 minute. Then, all the 1-min segments are removed

mean and linear trend and are bandpass filtered to 5–25 Hz,

followed by the one-bit normalization and spectral whitening

Figure 5.

FIGURE 3
(A–C) Normalized waveforms of the traces at the locations
indicated by the color arrows in Panel 2C-E. (D) Amplitude spectra
of the traces in (A–C).

FIGURE 4
(A–C) F-K analyses of the DAS data in Panel 2C-E.
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Methods

Surface waves reconstruction using
seismic interferometry

Seismic interferometry is used to reconstruct surface waves

from continuous records, which has attracted wide attention in

active and passive seismic data processing and imaging (Wang

et al., 2009, 2010; Halliday et al., 2015; Shao et al., 2021; Zeng

et al., 2022). Based on the reciprocity theorem of correlation type,

the basic equation for seismic interferometry in the time domain

is given as follows (Wapenaar, 2004):

G(B,A, t) + G(A,B,−t) ≈ ∫
S0

G(B, x, t) ⊗ G(A, x, t)d2x (1)

where ⊗ represents the cross-correlation operation. The Green’s

functions G(A, x, t) and G(B, x, t) are excited by a source at x ,

and received by sensors at A and B , respectively. The far-field

approximation is considered in Eq. 1. According to Eq. 1, traces

recorded at two different locations, e.g.,G(A, x, t) andG(B, x, t) ,
are cross-correlated. The overlapping paths with the same ray

parameters will be canceled, as shown in a ray diagram in

Figure 6. Then all the cross-correlated responses over all

source locations are summed to reconstruct a virtual trace

received at B with a virtual source at A (Schuster, 2009;

Wapenaar et al., 2010).

Shear wave velocity inversion using
surface waves

After surface waves are reconstructed by seismic

interferometry, dispersion analysis is implemented by the

phase shift method due to its advantages in robustness and

computational efficiency (Dal Moro et al., 2003). Then

dispersion curves are extracted. Finally, the shear wave

velocity is calculated by dispersion curves inversion using a

Bayesian Markov Chain Monte Carlo (MCMC) method

(Malinverno, 2002). The inversion problem is recast as a

problem of statistical inference in the MCMC method. The

Bayesian posterior probability density of the shear velocity

model p(m|d) is proportional to the product of a

prior probability density p(m) with a likelihood function

p(d|m) with:
p(m|d)∝p(m)p(d|m) (2)

where m denotes the shear velocity model and d denotes the

extracted dispersion curves characterized by surface wave phase

velocities at different frequencies.

The construction of the likelihood function and the prior

probability density are the main components of the Bayesian

inversion. The former measures how well the forward data fits

the observed data, and the latter expresses the current prior

FIGURE 5
Ray diagram sketch of surface waves reconstruction by seismic interferometry.

FIGURE 6
Workflow of shear wave velocity inversion using traffic noise.
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knowledge about the model. The likelihood function p(d|m) in
this study is defined by the L2 misfit between the observed

and forward surface wave phase velocities, and is given as follows:

p(d|m)∝ exp[ − (dobs − c(m))2] (3)

where dobs is the observed phase velocity and c(m) is the forward
phase velocity using the propagator-matrix method (Wathelet,

2005).

Assumed that the shear wave velocity model is uniformly

distributed in a fixed range, the prior probability density is given

as follows:

p(m)∝
⎧⎪⎨
⎪⎩

∏
M

i�1
(m+

i −m−
i )−1 m+

i ≤mi ≤m−
i , i � 1, . . . ,M

0 otherwise
(4)

where m+
i and m−

i are the upper and lower boundary of ith

velocity mi.

Finally, the posterior probability density is obtained by

combining Eqs 3, 4 in Eq.2. The task of Bayesian inversion

then is to evaluate the complete posterior probability density

p(m|d). The MCMC algorithm is used, which is an iterative

method for generating samples from a probability density. The

initial model is selected randomly from the prior. Then a series of

models are generated in a chain according to the posterior

probability density. Each model is a perturbation of the last

one. The generated models are examined with an acceptance

ratio which is defined as:

α � min⎡⎣1, p(m′)p(d
∣∣∣∣m′)q(m

∣∣∣∣m′)
p(m)p(d|m)q(m′

∣∣∣∣m)
⎤⎦ (5)

FIGURE 7
The virtual shot gather with a virtual source at (A) 2.5 m, (B) 77.5 m, (C) 152.5 m, (D) 227.5 m, (E) 302.5 m, and (F) 377.5 m.
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where m′ represents the generated new model from the existing

model m, q represents the probability density of moving from m

to m′. If the acceptance ratio α is larger than a random number

u ~ U[0, 1], the generated new model is accepted and added to

the chain. The current model is then updated. Otherwise, the

generated new model is rejected and the existing model is

retained as the current model.

Results

The processing workflow of shear wave velocity inversion

using traffic noise is summarized in Figure 6. The reconstructed

wavefields by seismic interferometry show surface waves with

clear dispersive effects, as shown in the virtual shot gathers at

different locations in Figure 7. Because the virtual traces at the far

offset have a low signal-to-noise ratio (SNR), a window function

is applied to the virtual shot gathers to extract the high SNR data

at the near offset. Thereafter, dispersion spectra are calculated

from the windowed data, and the multi-mode dispersion curves

can be picked, as shown in Figure 8. However, the picked first-

order mode dispersion curves in some virtual shot gathers are not

reliable, as shown in Figures 7A,E,F. In addition, the picked

surface wave dispersion curves from the virtual shot gathers at

different positions show similar shapes, especially for the

fundamental mode. This verifies the correct identification of

multi-mode surface waves.

Different from a commonly used 2D array in the passive

survey, a linear array was implemented in this study considering

the limited space in the urban city. This regular 1D acquisition

geometry may cause artifacts in the phase velocity maps inverted

by a surface wave tomography method because of the

FIGURE 8
(A–F) Dispersion spectrum and the extracted dispersion curve from data in Figures 7A–F. The picked fundamental and first-order mode
dispersion curves are respectively indicated by circles and rectangles.
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nonuniform ray coverage related to the acquisition layout

(Barone et al., 2021). In addition, the subsurface structure in

the study area mainly consists of horizontal layers. Therefore, we

invert the 2D velocity profile using a 1D inversion scheme of

multichannel analysis of surface wave (Park et al., 2007; Morton

et al., 2021). This method inverts a 1D velocity from the

dispersion curve picked from a virtual shot gather. Then 1D

velocities inverted from all the virtual shot gathers are assembled

to build a 2D velocity. We consider only the fundamental mode

for the dispersion curve inversion due to the unreliability of first-

order mode. Figure 9 shows the dispersion curve inversion results

of the fundamental mode in Figure 8. The forward dispersion

curves shown by the blue lines in Figure 10 are calculated using

the best inverted velocities in Figure 9, which fits well with the

picked dispersion curves (shown by the solid circles in Figure 10).

The final 2D velocity profile along the DAS line is shown in

Figure 11. We compared the final velocity profile with the prior

geological information in the study site to validate the result. The

previous study shows that the quaternary deposits in the study

area include the Holocene and Pleistocene sequences (Zhao et al.,

2019). Boundaries of the Holocene-Upper Pleistocene, the

Upper-Middle Pleistocene, and the Middle-Lower Pleistocene

are respectively located at depths of 17.35, 57.20 and 75.60 m.

These stratigraphic boundaries are approximately consistent

with those in the inverted velocity, as shown in the color bar

in Figure 11.

Discussion

We have demonstrated the feasibility of near-surface

characterization using urban traffic noise recorded by DAS.

FIGURE 9
(A–F) The inverted 1D shear wave velocities using the fundamental mode dispersion curves in Figures 8A–F.
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FIGURE 10
(A–F) The fit of the forward fundamental-mode dispersion curve using the inverted velocity in Figures 9A–F to the picked one in Figures 8A–F.

FIGURE 11
The 2D shear wave velocity profile along the DAS line. The color bar indicates the depths of key horizons according to the prior geological
information in the study area.
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Compared with the conventional geophones, DAS has obvious

advantages in high-density sampling, which can provide a high-

resolution subsurface structure. In addition, the convenient

deployment of DAS makes it stand out in the near-surface

characterization of urban cities and other harsh environment.

However, different from the particle displacement or velocity

measurement of geophones, DAS measures the strain or strain

rate. This leads to the difference between the interferometric

wavefield obtained from the geophone and DAS data according

to the representation theorem defined by different physical

quantities (velocity and strain) (Paitz, et al., 2019). Therefore, the

dynamic information (waveform) of velocity and strain wavefield

are obviously different. This difference should be considered for

near-surface characterization using a full waveform inversion

method for velocity wavefield. On the other hand, the kinematic

information of the velocity and strain wavefield are similar.

Therefore, the dispersion curves extracted from the two

wavefields may reveal similar near-surface velocity (Martin, et al.,

2015; Song, et al., 2021b). The dispersion curve inversionmethod for

geophone data is applicable to DAS data.

Conclusion

We present the near-surface characterization in this study

using traffic noise seismic data acquired by a DAS line deployed

along the road in the urban city. Seismic surface waves are

extracted from the traffic noise data using seismic

interferometry. Compared with the common natural sources,

the traffic noise source exhibits strong energy and can provide a

wider frequency range. Finally, the near-surface shear wave

velocity structure along the DAS line is obtained by surface

wave dispersion curves inversion using a Bayesian Markov Chain

Monte Carlo method. The inverted velocity agrees well with the

geological structure in the study area. The results demonstrate

that traffic noise can be regarded as a powerful and effective tool

for high-resolution near-surface characterization in the urban

city, especially when combining the DAS technique with the

unused telecommunication networks in the city.

Data availability statement

The datasets presented in this article are not readily available

because it is still being used for scientific research. Requests to

access the datasets should be directed to the corresponding

author.

Author contributions

JS and YW studied the method, processed the data and wrote

the manuscript. YZ, YY, SW, ZY, and QX acquired the data

underlying this study. All authors discussed the results and

contributed to the final manuscript.

Funding

This study was funded by the CAS Project for Young

Scientists in Basic Research (Grant No. YSBR-020) and the

National Key R&D Program of China (Grant No.

2021YFA0716800).

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

Barone, I., Kästle, E., Strobbia, C., and Cassiani, G. (2021). Surface wave
tomography using 3D active-source seismic data. Geophysics 86 (1),
EN13–EN26. doi:10.1190/geo2020-0068.1

Bensen, G. D., Ritzwoller, M. H., Barmin, M. P., Levshin, A. L., Lin, F., Moschetti,
M. P., et al. (2007). Processing seismic ambient noise data to obtain reliable broad-
band surface wave dispersion measurements. Geophys. J. Int. 169 (3), 1239–1260.
doi:10.1111/j.1365-246x.2007.03374.x

Bobylev, N., and Sterling, R. (2016). Urban underground space: A growing
imperative. Tunn. Undergr. space Technol. 55, 1–4. doi:10.1016/j.tust.2016.
02.022

Dal Moro, G., Pipan, M., Forte, E., and Finetti, I. (2003). Determination of
Rayleigh wave dispersion curves for near surface applications in unconsolidated
sediments. Seg. Tech. Program Expand. Abstr. 22, 1247–1250. doi:10.1190/1.
1817508

Daley, T. M., Miller, D. E., Dodds, K., Cook, P., and Freifeld, B. M. (2016). Field
testing of modular borehole monitoring with simultaneous distributed acoustic
sensing and geophone vertical seismic profiles at Citronelle, Alabama. Geophys.
Prospect. 64 (5), 1318–1334. doi:10.1111/1365-2478.12324

Fang, G., Li, Y. E., Zhao, Y., and Martin, E. R. (2020). Urban near-surface seismic
monitoring using distributed acoustic sensing. Geophys. Res. Lett. 47 (6),
e2019GL086115. doi:10.1029/2019gl086115

Halliday, D., Bilsby, P., West, L., Kragh, E., and Quigley, J. (2015). Scattered
ground-roll attenuation using model-driven interferometry. Geophys. Prospect. 63
(1), 116–132. doi:10.1111/1365-2478.12165

Lei, Y. H., Yin, F., Hong, H. T., Li, Y. L., and Wang, B. S. (2021). Shallow
structure imaging using higher-mode Rayleigh waves based on FJ transform in
DAS observation. Chin. J. Geophys. 64 (12), 4280–4291. doi:10.6038/
cjg2021P0438

Frontiers in Earth Science frontiersin.org10

Shao et al. 10.3389/feart.2022.943424

25

https://doi.org/10.1190/geo2020-0068.1
https://doi.org/10.1111/j.1365-246x.2007.03374.x
https://doi.org/10.1016/j.tust.2016.02.022
https://doi.org/10.1016/j.tust.2016.02.022
https://doi.org/10.1190/1.1817508
https://doi.org/10.1190/1.1817508
https://doi.org/10.1111/1365-2478.12324
https://doi.org/10.1029/2019gl086115
https://doi.org/10.1111/1365-2478.12165
https://doi.org/10.6038/cjg2021P0438
https://doi.org/10.6038/cjg2021P0438
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.943424


Ma, Z., and Qian, R. (2020). Overview of seismic methods for urban underground
space. Interpretation 8 (4), SU19–SU30. doi:10.1190/int-2020-0044.1

Malinverno, A. (2002). Parsimonious Bayesian Markov chain Monte Carlo
inversion in a nonlinear geophysical problem. Geophys. J. Int. 151 (3), 675–688.
doi:10.1046/j.1365-246x.2002.01847.x

Martin, E., Ajo-Franklin, J., Lindsey, N., Daley, T., Freifeld, B., Robertson, M.,
et al. (2015). Applying interferometry to ambient seismic noise recorded by a
trenched distributed acoustic sensing array. SEP 158, 247–254.

Morton, S. L., Ivanov, J., Peterie, S. L., Miller, R. D., and Livers-Douglas, A. J.
(2021). Passive multichannel analysis of surface waves using 1D and 2D receiver
arrays. Geophysics 86 (6), EN63–EN75. doi:10.1190/geo2020-0104.1

Paitz, P., Edme, P., Gräff, D., Walter, F., Doetsch, J., Chalari, A., et al. (2021). Empirical
investigations of the instrument response for distributed acoustic sensing (DAS) across
17 octaves. Bull. Seismol. Soc. Am. 111 (1), 1–10. doi:10.1785/0120200185

Paitz, P., Sager, K., and Fichtner, A. (2019). Rotation and strain ambient noise
interferometry. Geophys. J. Int. 216 (3), 1938–1952. doi:10.1093/gji/ggy528

Park, C. B., Miller, R. D., Xia, J., and Ivanov, J. (2007). Multichannel analysis of
surface waves (MASW) - active and passive methods. Lead. edge 26 (1), 60–64.
doi:10.1190/1.2431832

Parker, T., Shatalin, S., and Farhadiroushan, M. (2014). Distributed Acoustic
Sensing - a new tool for seismic applications. First break 32 (2), 61–69. doi:10.3997/
1365-2397.2013034

Schuster, G. T. (2009). Seismic interferometry. Cambridge: CambridgeUniversity Press.

Shao, J., Wang, Y. B., and Chang, X. (2021). Radon domain interferometric
interpolation of sparse seismic data.Geophysics 86 (5),WC89–WC104. doi:10.1190/
geo2020-0878.1

Shinohara, M., Yamada, T., Akuhara, T., Mochizuki, K., and Sakai, S. I. (2022).
Performance of seismic observation by distributed acoustic sensing technology
using a seafloor cable off Sanriku, Japan. Front. Mar. Sci. 466, 844506. doi:10.3389/
fmars.2022.844506

Song, Z. H., Zeng, X. F., and Thurber, C. H. (2021a). Surface-wave dispersion spectrum
inversion method applied to Love and Rayleigh waves recorded by distributed acoustic
sensing. Geophysics 86 (1), EN1–EN12. doi:10.1190/geo2019-0691.1

Song, Z. H., Zeng, X. F., Xie, J., Bao, F., and Zhang, G. B. (2021b). Sensing shallow
structure and traffic noise with fiber-optic internet cables in an urban area. Surv.
Geophys. 42, 1401–1423. doi:10.1007/s10712-021-09678-w

Von der Tann, L., Sterling, R., Zhou, Y., andMetje, N. (2020). Systems approaches
to urban underground space planning andmanagement–A review.Undergr. Space 5
(2), 144–166. doi:10.1016/j.undsp.2019.03.003

Walter, F., Gräff, D., Lindner, F., Paitz, P., Köpfli, M., Chmiel, M., et al.
(2020). Distributed acoustic sensing of microseismic sources and wave
propagation in glaciated terrain. Nat. Commun. 11 (1), 2436. doi:10.1038/
s41467-020-15824-6

Wang, B. S., Zeng, X. F., Song, Z. H., Li, X. B., and Yang, J. (2021). Seismic
observation and subsurface imaging using an urban telecommunication optic-fiber
cable. Chin. Sci. Bull. 66, 2590–2595. doi:10.1360/tb-2020-1427

Wang, Y. B., Dong, S., and Xue, Y. W. (2009). “Surface waves suppression using
interferometric prediction and curvelet domain hybrid L1/L2 norm
subtraction,”the 2009 SEG Annual Meeting, Houston, Texas, October 25 2009,
3292–3296.

Wang, Y., Dong, S., and Luo, Y. (2010). Model-based interferometric
interpolation method. Geophysics 75 (6), WB211–WB217. doi:10.1190/1.
3505816

Wapenaar, K., Draganov, D., Snieder, R., Campman, X., and Verdel, A. (2010).
Tutorial on seismic interferometry: Part 1—basic principles and applications.
Geophysics 75 (5), 75A195–75A209. doi:10.1190/1.3457445

Wapenaar, K. (2004). Retrieving the elastodynamic Green’s function of an
arbitrary inhomogeneous medium by cross correlation. Phys. Rev. Lett. 93 (25),
254301. doi:10.1103/physrevlett.93.254301

Wathelet, M. (2005).Array recordings of ambient vibrations: Surface-wave
inversion. PhD Diss. Belgium: Liége University, 161.

Williams, E. F., Fernández-Ruiz, M. R., Magalhaes, R., Vanthillo, R., Zhan, Z.,
González-Herráez, M., et al. (2019). Distributed sensing of microseisms and
teleseisms with submarine dark fibers. Nat. Commun. 10 (1), 5778. doi:10.1038/
s41467-019-13262-7

Zeng, X., Thurber, C. H., Wang, H. F., Fratta, D., and Feigl, K. L. (2022).
“High-resolution shallow structure at Brady Hot Springs using ambient noise
tomography (ANT) on a trenched distributed acoustic sensing (DAS) array,”
in Distributed Acoustic Sensing in Geophysics: Methods and Applications.
Editor Y. Li (New York, NY: John Wiley & Sons), 101–110.

Zhan, Z. (2020). Distributed acoustic sensing turns fiber-optic cables into
sensitive seismic antennas. Seismol. Res. Lett. 91 (1), 1–15. doi:10.1785/
0220190112

Zhang, Y. H., Li, Y. E., Zhang, H., and Ku, T. (2019). Near-surface site
investigation by seismic interferometry using urban traffic noise in Singapore.
Geophysics 84 (2), B169–B180. doi:10.1190/geo2017-0798.1

Zhao, Y., Li, R. J., Wei, B., Wang, C. J., Sun, Y. H., and Fang, T. M. (2019).
Magnetostratigraphy of borehole PGZ05 in southern daxing Uplift, Beijing Plain.
Geoscience 33 (01), 56.

Frontiers in Earth Science frontiersin.org11

Shao et al. 10.3389/feart.2022.943424

26

https://doi.org/10.1190/int-2020-0044.1
https://doi.org/10.1046/j.1365-246x.2002.01847.x
https://doi.org/10.1190/geo2020-0104.1
https://doi.org/10.1785/0120200185
https://doi.org/10.1093/gji/ggy528
https://doi.org/10.1190/1.2431832
https://doi.org/10.3997/1365-2397.2013034
https://doi.org/10.3997/1365-2397.2013034
https://doi.org/10.1190/geo2020-0878.1
https://doi.org/10.1190/geo2020-0878.1
https://doi.org/10.3389/fmars.2022.844506
https://doi.org/10.3389/fmars.2022.844506
https://doi.org/10.1190/geo2019-0691.1
https://doi.org/10.1007/s10712-021-09678-w
https://doi.org/10.1016/j.undsp.2019.03.003
https://doi.org/10.1038/s41467-020-15824-6
https://doi.org/10.1038/s41467-020-15824-6
https://doi.org/10.1360/tb-2020-1427
https://doi.org/10.1190/1.3505816
https://doi.org/10.1190/1.3505816
https://doi.org/10.1190/1.3457445
https://doi.org/10.1103/physrevlett.93.254301
https://doi.org/10.1038/s41467-019-13262-7
https://doi.org/10.1038/s41467-019-13262-7
https://doi.org/10.1785/0220190112
https://doi.org/10.1785/0220190112
https://doi.org/10.1190/geo2017-0798.1
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.943424


Using the three-station
interferometry method to
improve urban DAS ambient
noise tomography

Zhenghong Song1,2, Xiangfang Zeng1*, Benxin Chi1, Feng Bao1

and Abayomi Gaius Osotuyi2

1State Key Laboratory of Geodesy and Earth’s Dynamics, Innovation Academy for Precision
Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China, 2School of
Earth and Space Sciences, University of Science and Technology of China, Hefei, China

Distributed acoustic sensing (DAS) is a novel seismological observation

technology based on the fiber-optic sensing method, and can transform

existing urban fiber-optic cables into ultra-dense array for urban

seismological researches, thus opening abundant opportunities for resolving

fine details of near surface structures. While high frequency ambient noise

recorded on DAS has been applied in surface wave tomography, it is often

difficult to extract a clear dispersion curve for the data recorded by urban

internet cable because of the effect of precursor signals on noise correlation

functions due to uneven distribution of noise sources, and weak coupling

between the cable and the solid earth. In this study, we investigate the

performance of the three-station interferometry method for improving the

noise cross-correlation functions of the linear array. We applied this method to

a DAS dataset acquired in an urban area, suppressed the precursor signal,

improved the measurement of the dispersion curve, and constructed a 2D

S-wave profile that reveals the hidden fault beneath the city. We also observed

that the convergence of noise cross-correlation functions with weak coupling

was significantly accelerated using this method. We employed this method to

improve the signal quality of surface waves at far offset for the long segment,

thus obtaining a more accurate dispersion curve. In conclusion, the three-

station interferometry is an effective method to enhance the surface wave

signal and suppress the precursor signal retrieved from the data recorded by

urban internet cable, which could help in providing high resolution images of

shallow structures in built-up areas.

KEYWORDS

distributed acoustic sensing, urbanfiber-optic cable, ambient noise tomography, noise
cross-correlation function, three-station interferometry
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Introduction

High-resolution imaging of subsurface structures plays an

important role in urban construction planning (e.g.,

underground space utilization, (Bobylev, 2010)), and

geological disaster prevention (e.g., sinkhole detection

(Cueto et al., 2018) and earthquake intensity estimation

(Chen et al., 2009)). The seismic method is an effective tool

to achieve high-precision subsurface imaging by analyzing the

seismic wave signals generated from controlled active sources

or natural sources. Subsurface anomalies can be identified

using active sources with high signal-to-noise ratio (SNR)

ratio and desirable observation system (Zandomeneghi et al.,

2013). At the same time, reliable results have also been

achieved using passive source imaging from ambient noise

which is due to human activity (e.g., Lin et al., 2013; Zeng

et al., 2021; Mi et al., 2022). Moreover, thickness and shear

velocity structure in the top dozens of meters beneath

permanent seismic stations have been resolved from

modeling converted high frequency seismic phases from

local earthquakes (Li et al., 2014; Ni et al., 2014), and their

studies demonstrate a few times of ground motion

amplification due to near surface low shear velocity

structures. Obtaining a high-resolution subsurface structure

relies on short seismic wavelength requiring denser

observations, which is a huge challenge in seismic data

acquisitions using traditional seismometers. Distributed

acoustic sensing (DAS) is a recently developed novel

seismic observation system, which measures the seismic

signals by analyzing the phase shift of the backscattered

pulse in the optical fiber (Zhan, 2020). It is noteworthy to

mention that DAS can easily be incorporated with existing

urban fiber-optic cables, thereby turning the fiber-optic

networks into dense seismographic networks with meter-

scale spacing (Parker et al., 2014). DAS has found broad

applications and has demonstrated to be a valuable tool in

seismological studies such as in signal detection (e.g., Lindsey

et al., 2017; Zhu and Stensrud 2019; Wang et al., 2020) and

near-surface characterization (e.g., Ajo-Franklin et al., 2019;

Spica et al., 2020).

Ambient noise tomography, widely used for urban

subsurface structure detection, is achieved via calculating

the cross-correlation of continuous ambient noise records

(noise cross-correlation function, NCF) and stacking them

to extract surface wave signals for inversion (Bensen et al.,

2007). However, the precursor signals produced by

heterogeneous noise distribution in urban areas seriously

affect the quality of NCF and the results of ambient noise

tomography (Galetti and Curtis, 2012; Retailleau and Beroza

2021). The noise excited by vehicles traveling along the fiber-

optic cable is contributive, while the noise generated by

vehicles across the cable and persistent localized human

activities are adverse for ambient noise tomography (Song

et al., 2021). Furthermore, the urban existing fiber-optic cables

are packaged with different structures and deployed in a

variety of ways, so the transfer function of the coupling is

influenced by many factors and needed to be further studied

(e.g., Lindsey et al., 2020b). We assumed that the coupling of

the fiber-optic cables lying in the same polyvinyl chloride pipe

is uniform but the coupling of pipeline to soil is various and

the changes in phase response are ignorable. As a result of

weak coupling, the amplitude response is low, which decreases

the SNR of effective noise signals, and it would require a

longer time span stacking to obtain a stable NCF (Lin et al.,

2021). However, long-time span stacking may not obtain the

correct NCF when the traffic signal is too weak to exceed the

instrument’s self-noise level.

Therefore, it is necessary to enhance the surface wave and

suppress the precursor signals for the NCF. Stehly et al. (2008)

reconstructed the surface wave signal between two stations by

calculating the cross-correlation of the coda waves of the NCF

between the stations with a third station (C3). Froment et al.

(2011) demonstrated that C3 can well suppress the effects

caused by distributions of non-isotropic sources by analyzing

150 continuously recording stations. Curtis and Halliday

(2010) proposed three-station interferometry for direct

wave (TSI), which used the entire NCF rather than the

coda wave of the NCF. The convolution of the entire NCFs

was calculated when the third station lies between the two

stations, while the cross-correlation was calculated when the

third station is located outside the two stations. Zhang et al.,

(2020a) compared the surface wave signals extracted from

C3 and TSI, and suggested there are small biases in the

dispersion curve. The biases arise from the geometry of the

stations, which assumes the distance difference equal to 0

(distance difference is the difference between the distance of

two stations and the sum/difference of the distances from the

third station to the two stations when the third station lie in/

out the two stations). The influence of distance difference

might be negligible for a nearly straight linear array (Lin et al.,

2008). Qiu et al. (2021) successfully enhanced the surface wave

signals extracted from the NCF of a linear array using the TSI

method, thereby making the method potentially applicable to

improve ambient noise tomography results for urban linear

DAS array.

In this study, we adopted the TSI method on a real-world

DAS dataset and analyzed its improvement in ambient noise

tomography. First, we showed a set of NCFs retrieved from the

data recorded by urban internet cable in a built-up area and

estimated the noise intensity and distribution around the

fiber-optic cable. Then, we introduced the TSI method and

used this method to denoise the precursor signals. The surface

wave signals were enhanced significantly, and clear dispersion

curves can be obtained to construct the subsurface structure.

Finally, we demonstrate that the TSI method can effectively

improve the temporal and spatial resolution of ambient noise
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tomography by discussing the coupling and length of the

segment.

Data and methods

The experiment was carried out in Binchuan county,

Yunnan Province, southwest of China (Figure 1). A 5.2 km

long internet fiber-optic cable lying in a polyvinyl chloride

(PVC) pipe, which was buried at about 30 cm beneath two

streets (Taihe Road and Jinniu Road, Wang et al., 2021a), was

used in the experiment. The Helios Theta DAS Interrogator

was connected to one end of the fiber-optic cable, with a

spacing of 7.5 m (gauge length is set at 10.9 m), for 16-h

continuous strain data acquisition. A previous study suggested

that the noise source in the Taihe Road is distributed along the

fiber-optic cable, which benefits for imaging, and the 2D S

wave velocity profile has been constructed to reveal the low

velocity zone along the road (Song et al., 2021). However, it is

difficult to obtain clear dispersion curves along the Jinniu

Road for ambient noise tomography, and we suspect this is

due to the heterogeneous distribution of noise.

For instance, we choose three segments along the Jinniu

Road for our analysis (segment 1, CH340-400, segment 2,

CH500-560, and segment 3, CH610-670, in Figure 1). The first

channel of each segment was used as the virtual source, and

the other channels were virtual receivers to calculate the NCF.

Song et al. (2021) suggested that the frequency range of

ambient noise is 1–30 Hz and a stable NCF can be obtained

with 4-h ambient noise data during the daytime. Therefore,

for every channel, we resampled a 4-h continuous dataset

from 500 to 100 Hz to reduce computing time and bandpass

filtered it into 1–30 Hz. The dataset was cut into 30 s time

windows, and normalized in time and frequency domains.

Then, we calculated the cross-correlation function for each

window of the virtual source and virtual receiver. The final

NCF was obtained by stacking all the cross-correlation

functions. The combination of the NCFs of all the virtual

receivers and the virtual source is a common virtual-shot

gather. Figures 2A–C are the common virtual-shot gathers of

the previous three segments. For segment 1, the surface wave

appears in the negative lag of the NCFs, indicating that the

noise mainly comes from the direction of Taihe Road.

However, the precursor seismic phases appear before the

direct surface wave for segments 2 and 3 (Figure 2), and it

is produced by complex traffic activities. We stacked the

positive and negative lags to reduce the effects of the

asymmetric noise source distribution and employed the

multi-channel analysis of the surface wave method

(MASW, Park et al., 1999) to extract the corresponding

dispersion curve (Figures 2D–F). A low frequency (1–5 Hz)

dispersion curve was achieved for segment 1, but it is difficult

to obtain a continuous dispersion curve for segments 2 and 3.

To analyze the generation of the precursor signals, we

estimated the noise intensity distribution around the fiber-

optic cables by the back projection method (e.g., Li et al., 2020;

Rabade et al., 2022). To estimate the noise intensity, we

establish a 600 by 600 m2 area where we set up the location

FIGURE 1
The location of the experiment. The red line is fiber-optic cable, which is distributed along two streets (Taihe Road and Jinniu Road). The
numbers around the red circles are the channel indexes. The segments framed by the solid and dashed lines are used for analysis in the later section.
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FIGURE 2
The example of common virtual-shot gathers and the dispersion spectra. (A–C) are the NCF waveform for segments 1, 2, and 3 in Figure 1,
respectively. The black dashed lines in (A–C) represent a velocity of 250 m/s. (D–F) are the dispersion spectra of the three segments, respectively.
The red circles indicate the maximum energy at each frequency.

FIGURE 3
The ambient noise intensity around the fiber-optic cable. (A–C) are the noise intensity of segment 1, 2, and 3, respectively in Figure 1. The red
lines indicate the fiber-optic cable. The black crosses in (B,C) are the road intersections, while the red circles are the local maxima of noise intensity.
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of the virtual source as the origin and the direction of the cable

as the y-axis. For any particular location within this area, the

difference between the distance from such location to the

virtual source and the virtual receiver was calculated. The

difference in arrival time was obtained according to the

velocity of the surface wave (about 250 m/s, Figure 2). We

used a 0.2 s time window centered around the time shift in the

NCF (time shift equals the value of arrival time difference),

and subsequently calculated the root mean square of the

waveform within the time window. The noise intensity of

this particular location was obtained by the summation of all

the root mean squares of the common virtual-shot gather. The

ambient noise intensity distribution was derived by

calculating all the locations in this area, and the results are

shown in Figure 3. As mentioned earlier, the noises of segment

1 are concentrated in the direction of Taihe road. The noise

intensity on the left and right sides of the fiber-optic cables

cannot be distinguished because of the linear array. The noise

around segment 2 comes from different directions controlled

by multiple location noise sources, especially, near the two

crossings (Figure 3). In contrast, the noise of segment 3 is

dominated by the persistent localized noise source in the

array.

To suppress the precursor seismic phases and enhance the

surface waves, the TSI method was employed in this study.

Figure 4 is a simplified schematic showing the processing flow

as follows: First, for the two channels (Si and Sj) whose NCF is

to be enhanced, a third channel (Sk) was selected to calculate

the NCFs with these two channels, respectively. Then, we

stacked the positive and negative lags and computed the

convolution of the two NCFs to obtain the interferometry

waveform if Sk lies between Si and Sj (inner-source zone),

otherwise, we computed the cross-correlation (outer-source

zone) (Eq. 1). The denoised NCF of the two stations (Si and Sj)

is obtained by looping all third channels and stacking the

interferometry waveforms (Eq. 2). We arrived at the enhanced

NCF between all stations by changing the channels of Si and Sj,

and by this, an iteration is completed. The same cycle is

repeated until a stable result is achieved. It is worth noting

that there is a pi/4 phase shift between the calculated NCF and

true NCF when the source and receiver are linearly distributed

(Halliday and Curtis, 2008; Lin et al., 2008; Qiu et al., 2021).

The MASW method, however, measures the phase difference

of the multi-channel surface wave signals to determine the

phase velocity dispersion curve, so the effect of the pi/4 phase

difference could be eliminated.

Ik,tij (ω) �
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Gt
ik(ω) · Gt

jk(ω), k< i
Gt

ik(ω) · Gt
jk(ω), i< k< j

Gt
ik(ω) · Gt

jk(ω), j< k

(1)

where the Gt
ik(ω) and Gt

jk(ω) are the frequency domain NCF at

tth iteration between Si and Sk and Sj and Sk, respectively. Gt
ik(ω)

and Gt
jk(ω) represent the conjugate of Gt

ik(ω) and Gt
jk(ω),

respectively. t=0 represents the raw NCFs, while t=1 is the

NCFs via one TSI. Ik,tij (ω) is the interferometry waveform

with tth iteration.

FIGURE 4
Sketch of the TSImethod. The red triangles (Si and Sj) indicate the channel pair whose NCF is to be enhanced, and the black triangles are the third
channel.
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Gt+1
ij (ω) � ∑N

k�1I
k,t
ij (ω) (2)

where the Gt+1
ij is the frequency domain NCF between Si and Sj

after the TSI. N represents the number of channels.

Results

Figure 5A shows the variation of the iterated waveforms of a

common virtual-shot gather, when the virtual source is located at

CH630. The raw NCF waveforms were tapered within a range of

100–800 m/s to decrease the unwanted body waves or noise

signals. The signals at far offset were enhanced significantly and

the surface waves dominated in the NCFs after 2 iterations. The

improvement becomes little after several iterations and the signals

converge to a stable result. The SNR, which is defined as the ratio of

the maximum amplitude of the signal windows and the root mean

square of the noise windows, increases up to 6 as the iteration

increases (Figure 5A). The L1-norm of the difference in the model

update is as low as 0.3% while the average of the correlation

coefficient before and after model update of all virtual-shot gathers

is up to 99.7% after 5 iterations (Figure 5B). The denoised

waveforms of the three segments are shown in Figure 6. For

segment 1, even if it is not affected by the noise source distribution,

the random noise in the NCF was suppressed significantly. The

surface wave in high frequency was improved and the frequency

band of the dispersion curve was also extended to provide a higher

resolution of shallow structure. For the other segments, the

precursor seismic phases were removed and the surface waves

were enhanced. The 1–10 Hz clear Rayleigh wave phase velocity

dispersion curve was extracted to construct the S-wave velocity

structure.

FIGURE 5
(A) The variation of thewaveformof segment 3with the iteration using the TSImethod. The virtual source is located at CH630. The blue lines are
the waveforms of CH640 andCH660, the black and red lines represent noise and signal windows, respectively. (B) The variation ofmodel correlation
coefficient and model difference with iteration. The blue and red shading represent 95% confidence intervals for the correlation coefficient and
model difference, respectively.
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The TSI method was utilized to enhance the surface wave

along the Jinniu Road for ambient noise tomography. The array

was divided into 70 segments and each segment consists of

40 channels (about 300 m) while the overlap between two

consecutive segments is 35-channel long (about 262.5 m).

70 dispersion curves were extracted for 1D substructure

inversion after the calculation and reconstruction of the

surface wave. Typically, the maximum inversion depth is less

than half of the maximum wavelength (Song et al., 2021), and in

this study, the maximum wavelength is about 300 m according to

the dispersion curve (Figure 6), which reveals the top 100 m

subsurface structure. For the inversion, the model consists of five

layers, including two 20-m layers, two 30-m layers, and a half

space. Due to the lack of accurate P-wave velocity structure for

this region and that the surface wave dispersion curve is not very

sensitive to the P-wave velocity structure and density (Song et al.,

2018), the P-wave velocity and density were determined by an

empirical relationship (Brocher, 2005, Equation (3) and (4), and

only the S-wave velocity was inverted.

Vp(km/s) � 0.9409 + 2.0947Vs − 0.8206V2
s + 0.2683V3

s

− 0.0251V4
s (3)

ρ (g/cm3) � 1.74V0.25
p (4)

where the Vp and Vs are the P-wave and S-wave velocity,
respectively. ρ represents the density.

The neighborhood algorithm (Sambridge 1999), a global

search method was utilized for the inversion, and the forward

modeling of the dispersion curve was conducted with the

Computer Programs for Seismology (Herrmann 2013). The

2D profile beneath the Jinniu Road was obtained by

assembling all 1D models (Figure 7A). The shallow structure

(<20 m) along the Jinniu Road is homogeneous, indicating the

sediment coverage is evenly distributed in the shallow layer. But,

FIGURE 6
Thewaveform and dispersion spectra after the TSI method. (A–C) are the waveforms of segment 1, 2, and 3, respectively. The black lines are the
symmetric to the positive lag of the raw NCFs while the red lines are the denoised NCFs. (D–F) are the dispersion spectra of the denoised waveforms
of (A–C), respectively. In (D–F), the red circles represent the maximum energy at each frequency and the red lines are the picked dispersion curves.
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the deep structure (>20 m) changes greatly in the lateral

direction, and the velocity on the east side is lower, which is

consistent with the result of Taihe Road (Song et al., 2021). The

dispersion curves fitted well (Figures 7B–E) and suggested that

the phase velocity at low frequency on the east side is lower than

that on the west side. The north-south trending mountains on

both sides of the Binchuan county cause significant velocity

differences in the east-west direction. Zhang et al., 2020b

suggested that there may be a hidden fault in the west of the

county, which is consistent with our results. This result indicated

that the combination of urban internet fiber-optic cables with

DAS technology, using the TSI method for ambient noise

tomography, is highly plausible for achieving ultra-high-

density observations, which can be used to produce high-

precision images of urban subsurface structures.

Discussion

In addition to the distribution of ambient noise, the

coupling of the fiber-optic cables is also an important

factor that influence ambient noise tomography in urban

areas. Most of the urban fiber-optic cables are laid in the

PVC pipe, and some parts are directly buried in the soil or

hung in the air. It often takes stacking of data acquired over a

long time span to obtain a clear surface wave signal on the

NCF because of the weak coupling between the cable in the

casing pipe and the solid earth (Lin et al., 2021), which

decreases the temporal resolution of ambient noise

tomography. Furthermore, we discussed the effect of the

TSI method on the enhancement of the coherence surface

wave signals in the case of weak coupling. The ambient noise

in the vicinity of Taihe Road is distributed along the fiber-

optic cable, and the clear surface wave signals emerged on the

NCF for a 4-h data (Song et al., 2021). Assuming that the

responses of all channels are the same, weak coupling reduces

the SNR of the NCF for the same time span stacking. We

selected a section of the fiber-optic cable (CH160-210,

segment 4 in Figure 1), and used the NCF calculated with

4-h and 30-s data to simulate the results of good and weak

coupling for the same time span stacking, respectively. The

coherent surface wave signals cannot be seen for the weak

coupling, and a continuous and accurate dispersion curve

cannot be obtained (Figures 8A,D). We used the TSI method

to further process the 30-s NCF result, and the surface wave

signal was enhanced significantly (Figure 8C). The dispersion

FIGURE 7
(A) The S-wave structure beneath the Jinniu Road. (B–E) are the dispersion curves fitting, corresponding to the positions of the four triangles in
(A). The black lines and red lines indicate the observed dispersion curves and the theoretical dispersion curves predicted by the inverted models,
respectively.
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curve of the 30-s NCF was observed to be consistent with the

results obtained from the 4-h data (Figures 8E,F). This result

indicated that the TSI method is suitable for an imperfectly

coupled cable setup and can improve the temporal resolution

of ambient noise tomography by accelerating the convergence

of the NCF.

Forbriger et al. (2003) demonstrated that the resolution of

the dispersion spectrum is related to the frequency and the

length of the segment used for MASW (Eq. 5). That is, with a

fixed length segment, the resolution of high frequency is

significantly higher than that of low frequency, which has

been demonstrated in the previous results (Figure 6).

Therefore, increasing the length of the segment is beneficial

to improving the accuracy of the dispersion curve in the low

frequency range. However, due to the effect of coupling and

ambient noise attenuation, the SNR at far offset is low in the

real data (CH100-200, ~750 m, black dashed box in Figure 1),

which limits the extraction of the dispersion curve (Figure 9).

We processed this dataset with the TSI method and

successfully enhanced the surface wave signal at far offset

(Figure 9D). The uncertainty of the dispersion curve decreases

significantly as the length of the segment increases (Figures

9E,F). Due to MASWmeasures the average dispersion curve of

the segment, there is a tradeoff between the lateral resolution

of subsurface structure and the resolution of dispersion

spectrum. We can use the long segment combined with the

TSI method to obtain a dispersion curve that provides a

reference for the short segments. Thereby, this improves

the accuracy of dispersion curve extraction without

reducing the spatial resolution.

d � 1/fL (5)

where d represents the relative value of resolution in the

dispersion curve, which is expressed as the width of 90%

maximum energy of the dispersion spectrum in this paper; f is

the frequency and L is the length of the segment.

The dispersion curve extracted by the MASW method

represents the average velocity beneath the investigated

segment, hence, the dispersion curve cannot be obtained

when there are significant variations in the subsurface

structure. However, surface wave signals with high signal-

to-noise ratio are useful for other seismological imaging

methods such as full waveform inversion (e.g., Liu et al.,

2017). The imaging result of the short segments shows that

FIGURE 8
Speed-up convergence of NCF via the TSI. (A,B) are the common virtual-shot gather of segment 4 calculated with 30-s and 4-h data,
respectively. (C) is the denoised result of (A), and the negative lag of (C) is symmetric to its positive lag. The black dashed lines represent a velocity of
250 m/s. (D–F) are the dispersion spectra of (A–C), respectively. The red and black lines are the picked dispersion curves of (E,F), respectively.
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there are obvious differences in the subsurface structure

beneath the Jinniu Road (Figure 7A), at the same time, the

SNR of the surface wave is also lower than that in the Taihe

Road (Figure 10A). Furthermore, we selected a long segment

in the Jinniu Road (CH400-650, ~1875 m, gray dashed box in

Figure 1) to establish whether the TSI method is effective in

the case of uneven subsurface structure. We observed a

significant improvement on the raw data, revealing that the

surface wave signals at the far offset are well reconstructed via

the TSI method (Figure 10B). Because the velocity on the east

side of the profile (channel index < CH500) is lower than that

on the west side (channel index > CH500), we calculated the

dispersion curve for the waveform of the sub-segments.

Between CH400-500 (sub-segment i in Figure 10B) and

CH500-600 (sub-segment ii in Figure 10B), we arrived at

the respective corresponding dispersion curves shown in

Figures 10C,D. The relative magnitude of the phase velocity

is consistent with the previous result (Figure 7A). To verify the

reliability of the results, we first separated CH400-500 and

CH500-600 into different segments and thereafter utilized the

TSI method to process each of the segments, individually, and

extracted their dispersion curves (Figures 10E–H). The

dispersion curves are very close to the previous results in

Figures 10C,D, thus indicating that the TSI method is

effective in resolving the uneven subsurface structure below

the array.

We successfully suppressed the influence of the noise

source distribution on ambient noise tomography using

the TSI method. However, the characteristics of noise

sources are also a common concern in seismological

research (e.g., McNamara and Buland, 2004; Retailleau and

Beroza, 2021; Song et al., 2021). Determining the properties

and distribution of noise sources enables non-intrusive

monitoring of human activities and helps to understand

the signals that emerge on the NCF. In the past,

researchers have analyzed traffic signals recorded by the

FIGURE 9
The improvement of the resolution of dispersion spectra of the long segment with the TSI method. (A) The NCFs of a long segment (black
dashed box in Figure 1). (B) The dispersion spectrum is calculated using thewaveforms of CH100-150, the red bars are the picked uncertainties which
is defined as the zone with 90% of the maximum energy of each frequency. (C) is same as (B) but for CH100-200. (D–F) same as (A–C) but for the
denoised waveforms using the TSI method.
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urban internet cables in application to traffic flow monitoring

(e.g., Martin et al., 2018; Lindsey et al., 2020a; Wang et al.,

2021b) and vehicle classification (e.g., Liu et al., 2019). High

resolution subsurface structures can now better serve in the

study of noise sources. Also, an inversion of the distribution

of noise sources and the shallow structure can be conducted at

the same time (Lehujeur et al., 2016).

Conclusion

In this study, we analyzed the ambient noise data

recorded by an urban internet fiber-optic cable. The

estimation of the noise intensity near the fiber-optic

cable indicates significant influence from crossing traffic.

Affected by the uneven noise source distribution and

imperfect coupling, it is difficult to extract clear surface

wave dispersion for conventional ambient noise

tomography with inter-station correlation. We adopted

the TSI method to this dataset and successfully

suppressed the precursor seismic phases, enhanced the

surface wave signals leading to better measurement of

dispersion, constructed the shallow shear velocity

structure, and revealed a hidden fault. Furthermore, we

demonstrated that the TSI method is effective for imperfect

coupling, and substantially improved the convergence of

the NCF, which enhanced the temporal resolution of

ambient noise tomography. For a long segment, the SNR

of surface wave signals at far offset is weak due to the effect

of coupling and ambient noise attenuation, which limits the

accuracy of the dispersion curve extraction. The TSI

method can enhance the surface wave signal at the far

offset, even though there are significant differences in the

subsurface structure. The TSI can improve the ambient

noise tomography to construct high resolution structure,

which in turn can be used for the study of noise source

FIGURE 10
The feasibility test of the TSI method in the heterogeneous subsurface structure. (A) The raw common virtual-shot gather of the long segment
(gray dashed box in Figure 1). (B) The NCFs after the TSI method. The red dashed lines divided the long segment into sub-segments i (CH400-500)
and ii (CH500-600) for dispersion curve calculation. (C,D) are the dispersion spectra of the sub-segment (i) and (ii) cut from (B). (E,F) are the denoised
waveforms of the segments of (i) and (ii), respectively. (G) and (H) are the dispersion spectra of (E,F), respectively. The red lines in (C,G) are the
dispersion curves extracted from (C), while the red lines in (D,H) are the dispersion curves extracted from (D).
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intensity and distribution, as well as a better understanding

of the effect of the noise source distribution on the NCF. In

conclusion, the TSI method is an effective method to

suppress the effects of uneven noise distribution and

enhance the surface wave. Using existing fiber-optic

cable in combination with the TSI method for urban

ambient noise tomography can produce high-resolution

imaging, thus providing helpful information on

subsurface structures for civil engineering construction

and disaster prevention.
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The importance of railway safety cannot be overemphasized; hence it requires

reliable traffic monitoring systems. Widespread trackside telecommunication

fiber-optic cables can be suitably deployed in the form of dense vibration

sensors using Distributed Acoustic Sensing technology (DAS). Train-induced

ground motion signals are recorded as continuous “footprints” in the DAS

recordings. As the DAS system records huge datasets, it is thus imperative to

develop optimized/stable algorithmswhich can be used for accurate tracking of

train position, speed, and the number of trains traversing the position of the DAS

system. In this study, we transform a 6-days continuous DAS data sensed by a 2-

km cable into time-velocity domain using beamforming on phase-squeezed

signals and automatically extract the position and velocity information from the

time-beampower curve. The results are manually checked and the types of the

trains are identified by counting the peaks of the signals. By reducing the array

aperture and moving subarrays, the train speed-curve/motion track is obtained

with acceptable computational performance. Therefore, the efficiency and

robustness of our approach, to continuously collect data, can play a

supplementary role with conventional periodic and time-discrete monitoring

systems, for instance, magnetic beacons, in railway traffic monitoring. In

addition, our method can also be used to automatically slice time windows

containing train-induced signals for seismic interferometry.

KEYWORDS

distributed acoustic sensing, railway traffic monitoring, trackside monitoring,
telecommunication fiber-optic cable, beamforming

Introduction

The growing freight volume conveyed by railway systems and the increase of high-

speed trains demand more reliable train dynamics monitoring. Currently, railway traffic

monitoring in use require the integration of both onboard and wayside measurement as

well as data transfer in between them (Ulianov et al., 2018). Conventionally, in the aspect
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of large-scale railway position monitoring, onboard satellite-

based positioning systems such as Global Positioning Satellite

(GPS) play a fundamental role. However, when trains go through

tunnels or mountains, GPS positioning could be less accurate, or

even unreceivable (Sasani et al., 2015). For more stable and real-

time monitoring purposes, on a small-scale aspect, magnetic

beacons are deployed on railway sleepers as counters to

determine if a train has passed (Bruni et al., 2007).

Nonetheless, magnetic beacons may suffer from

Electromagnetic Interference and lead to missed or wrong

messages (Yüksel et al., 2018). Onboard speedometers or

accelerometers can measure precise velocity information and

need wireless transmission conditions, which could be disrupted

due to wireless interference (Baldini et al., 2010).

Recently, Distributed Acoustic Sensing (DAS) technology

has been extensively used in the seismological community (Dou

et al., 2017; Zeng et al., 2017; Martin et al., 2018; Ajo-Franklin

et al., 2019; Zhan, 2019; Lindsey et al., 2017; Spica et al., 2020).

When a DAS interrogator is connected to a fiber-optic cable, laser

pulses are sent. Subsequently, Rayleigh back-scattered phase

shifts are measured and converted to axle strain or strain rate,

thereby, the sensing cable becomes a dense array withmeter-scale

spatial resolutions (Parker et al., 2014). With the use of the dense

array features, DAS records high-fidelity seismic wavefields and

can be applied in event monitoring, such as aftershock detection

(Li et al., 2021; Lv et al., 2022), icequake detection (Walter et al.,

2020; Hudson et al., 2021), and urban traffic monitoring (Lindsey

et al., 2020). Another advantage of DAS is in its convenient mode

of deployment, whereby, widespread existing telecommunication

cables can be utilized as dense array sensors, especially in highly-

built cities (Lindsey et al., 2020; Song et al., 2021). It is worth

noting that urban-scale DAS applications are not limited to

vehicle traffic monitoring (Chambers, 2020; van den Ende

et al., 2021) and interferometry studies (Dou et al., 2017; Song

et al., 2021), but other moving sources like subways (Ferguson

et al., 2020) and railway trains (Cedilnik et al., 2018; Wiesmeyr

et al., 2020). The trackside cables connected to an interrogator

can provide researchers with the opportunity to record train-

induced signals, and monitor the location and speed of trains,

towards enhancing the train control system.

In previous seismological studies on train-induced signals,

the characteristics of the signal itself have attracted extensive

attention (Fuchs and Bokelmann, 2017; Lavoué et al., 2020; Jiang

et al., 2022). Another idea is to utilize train-induced signals as

strong noise source in ambient noise tomography (Quiros et al.,

2016; Brenguier et al., 2019; Liu et al., 2021; Sager et al., 2022).

Compared to the aforementioned, railway traffic monitoring

(i.e., train detection and speed estimation) using DAS could

help select proper noise windows for seismic interferometry

applications using noise generated from moving trains as

source. Trackside DAS recordings require a lot of man-hour

inspection/observation to extract the locations of moving trains;

this necessitates the need to develop automatic methods for

monitoring railway traffic using the high-volume original

waveform data. Given that the train-induced signals are

spatially continuous, and leave data “footprints” as linear

features in the DAS recordings, the Kalman filter has been

suggested to be an effective approach to extracting the tracks

of individual trains (Wiesmeyr et al., 2020), yet the method may

not achieve stable track predictions when it comes to significant

speed variant cases. In addition, the method may not accurately

extract/predict the locations from cross superimposed signals

(Iswanto and Li, 2017), which could be the case when two trains

from opposite directions move and pass each other. Train-

induced signals in the “waterfall diagram” can be cut out and

the signal front over time can be aligned, thereby the speed

change could be extracted using spectral shifts (Cedilnik et al.,

2018), yet the method requires accurate alignment of the train-

induced signal fronts and the calculation of speeds are not in an

automatic manner. Similar issues also apply to vehicle

monitoring studies where array beamforming technique has

been tested and proven to be effective in investigating traffic

patterns, and dealing with heavy traffic scenarios (Chambers,

2020; Ende, 2021; van den Ende and Ampuero, 2021).

In this study, we use time-domain beamforming procedure to

estimate the short-term average over long-term average traces

(STA/LTA; Allen, 1978) of DAS waveform data, to extract the

location and speed of individual trains, and demonstrate the

effectiveness and stability of our method. In addition, our

method can extract the footprint of speed variant trains by

constantly moving the subarrays with acceptable real-time

performance. Therefore, we first introduce the observation

system and further show several typical signals induced by

different kinds of trains. Thereafter, the detection and speed

estimation are done by the beamforming method. In a bid to

demonstrate the reliability of our method, we compare the

detection results with the train schedules. Finally, we test the

impacts of different signal-to-noise ratio levels and array

apertures on beamforming performance, and discuss the

applicability of our method.

Data

The experimental site for our study is located ~5 km north of

Hangzhou Railway Station, Hangzhou, Eastern China. Towards

the North, the rail tracks run directly underneath NE-SW

trending Desheng expressway, while in the south lies the

maintenance Depot for Electric Multiple Unit (EMU) trains

(Figure 1). We connect the interrogator (HiFi-DAS provided

by Puniutech) with an existing trackside telecommunication

cable set at a 2-m channel spacing, and calibrate the cable

into 1001 sensors. The cable is protected by polyvinyl chloride

conduits underground. The data is acquired at a sampling rate of

50 Hz and the gauge length is 10 m. Strain data are continuously

recorded over a period of 6 days in 2 different stages, starting
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FIGURE 1
Map showing the location of the fiber-optic cable (black line) 5 km north of Hangzhou station (https://lbs.amap.com/demo/javascript-api/
example/map/map-english/). Grey shade denotes the Depot. The numbers in black are the start and end channel numbers. The alternating grey and
white lines are railway roads (Hanghang Line, Zhegan Line). The blue arrow indicates the direction of the train station. The yellow solid lines denote
expressways, and Desheng Expressway is marked where the cable segment from channel 1 to channel 200 lies. Hangzhou (red triangle) and
other major cities (black star) are also marked on the inset map.

FIGURE 2
One-hour DAS data records under a heavy railway traffic scenario. The reverse blue triangles mark three typical train events shown in Figure 3
(corresponding to (A–C) from left to right).
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from 23rd to 26th in August 2021 and 2nd to 3rd in September

2021, respectively.

A 1-h DAS record for a heavy-traffic period is shown in

Figure 2. We could easily identify the train-induced, quasi-static

deformation signals, leaving the “footprint” of passing trains

across the array. The slope of the track can be considered as the

speed of individual trains, and in total, there are 13 identical slant

lines which demonstrate that the trains pass our array at near

constant speeds. From ~ Ch1-130, there are persistent noises that

could have been generated by high-frequency vehicle traffic on

Desheng expressway, yet the train-induced signals are still visible.

At 11:30, there is an indication that a train moves at low-speed

comes from north to south at ~5 km/h, and fades away at ~

Ch400. This is conceived to be an EMU parking event for

maintenance to the Depot in the south.

Trains passing through the site include 8 or 16-wagon EMUs

which is powered by each unit (~26 m in length), and the

conventional or locomotive-hauled trains which typically

consist of −18—21 wagons powered by the locomotive,

individually. Figures 3A–C show raw waveforms recorded at

Ch500 due to wagon 8, wagon 16 (from the EMU), and a

conventional train, respectively. We then compute their

spectrograms (Figures 3D–F) and observe that the signals

cover the entire frequency band. In all the 3 cases earlier

mentioned (Figure 3), no main frequency is identical and the

equal-distance spectral lines observed using seismometers (in the

work of Fuchs and Bokelmann, 2017) are also clear in our DAS

observations. The distance in-between the spectral lines was

suggested to be related to the train speed and the length of

bogies (Lavoué et al., 2020). Previous studies have shown that

the peaks of train-induced signals correspond to the number of

bogies, usually the number of wagons plus 1 (Kowarik et al.,

2020; Lavoué et al., 2020). To reduce the influence of high-

frequency noise, we apply a 5 Hz lowpass filter on the three

waveform signals, thereby enhancing the relatively long-

period train-induced signals. After filtering, we could

observe clearer periodic signals and peaks (Figures 3G–I),

where the peaks correspond to the 9th (8-wangon EMU),

17th (16-wagon EMU), and 21st (20-wagon conventional

train) bogies.

Materials and method

Though we could manually identify trains “footprints”

from raw waveform DAS data, however, it is still a challenge to

detect train-induced events and estimate their speeds

automatically. In our experiment, trackside cables are

FIGURE 3
Typical train-induced signals of CH500 (A–C), their spectrograms (D–F), and lowpass filtered signals (G–I). The blue circles denote peaks.
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linearly distributed, and as an ultra-dense array, so it is

suitable to use the beamforming approach to transfer the

raw data to the time-velocity domain whose results are

known as vespagram (eg., Rost and Thomas, 2002). The

method shifts the phase of each waveform with respect to a

range of velocities and then stack the time-shifted waveforms

as a beam, whereby the vespagram is the result of all beams

calculated all over the speed range (Meng and Ben-Zion, 2018;

Nayak and Ajo-Franklin, 2021; van den Ende and Ampuero,

2021). Among the beams, the maximum value of the

beampower corresponds to the apparent velocity and event

detection time. The beamforming approach has been applied

in the vehicle traffic monitoring fields (Chambers, 2020; van

den Ende and Ampuero, 2021).

The waveforms are relatively not coherent in the DAS

recordings (Figure 4A). Researchers would like to do some

pre-processing on the raw data, such as median filter

(Chambers, 2021; Nayak and Ajo-Franklin, 2021), or some

kind of normalization and smoothing like what Chambers

(2020) did by measuring the signal envelopes. Instead of that,

we use STA/LTA traces to squeeze signal phases and enhance/

equalize the amplitude. The time-domain beamforming

technique stacks all the channel data, because the

amplitude of the train-induced signals is so high that even

the recordings with large noise levels still can help. We didn’t

find the data suffer from non-linear behaviors or spiking.

Furthermore, we have tested a 7-channel time-domain median

filter on our data (Nayak and Ajo-Franklin, 2021), and we

didn’t find differences on the results. Compared to signals

generated by vehicle, train-induced signals are relatively more

complex, which is mainly due to longer periods (vehicle

signals with 1 period, trains at least more than 8 periods)

and duration of the signal (vehicle less than 1 s, trains longer

than 10 s in our study). We use the whole array data to

beamform the signals generated from the EMU, having a

speed ranging from 10 to 150 km/h, with speed interval of

1 km/h. Typical vespagrams generated from a set of raw and

processed signals are shown in Figures 4C,D. A long duration

FIGURE 4
Comparison of beamforming results derived from raw signals and STA/LTA traces. (A) Signals extracted from the entire array every 50 channels;
(B) STA/LTA traces of the signals shown in (A); (C) Vespagram calculated with the whole-array raw data; (D) Same as (C) but derived from STA/LTA
traces; (E,F) Time-beampower curves of (C,D).
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of the train-induced signals could lead to low resolution on the

vespagram. While after exploiting the STA/LTA algorithm on

the raw data, the resolution on the vespagram is improved. To

increase the sensitivity of arrivals, the STA is set as 0.1 s, while

the LTA is set as 50 s, longer than the duration of the slowest

train. After the processing, the signals are better enhanced and

centered at arrivals, while the phases are squeezed. Next, we

beamform the STA/LTA traces and the vespagram results

show a better temporal resolution. The detection time is

around the estimated maximum beampower at the centre

of the array. We further extract the maximum value along

the time axis and build the time-beampower curve (Figures

4E,F). We could observe that the curve becomes smoother and

the peak becomes more prominent after the STA/LTA

calculation. We select two threshold parameters namely,

prominence and distance, to constrain the find-peak

algorithm to estimate the maximum beampower (Virtanen

et al., 2020). The prominence is used to constrain the

maximum difference between the peaks and saddles, and

the distance is the time difference to constrain the

corresponding time of the peaks and saddles within the

time distance (van den Ende and Ampuero, 2021; Virtanen

FIGURE 5
Beamforming results for a 1-h data (shown in Figure 2.). (A,B) Vespagrams for S-N and N-S trains and local power maximums detected from (C);
(C) Time-beampower curve derived from (A,B), detected peaks denoted as circles.
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et al., 2020). When we select a small time-distance parameter,

three detection results appear in the time-beampower curve of

computed from the raw data (Figure 4E). Meanwhile, after

calculating the STA/LTA, the signals are squeezed as sharp

impulses like generated by point sources, we then obtain a

more stable detection performance result from the time-

beampower curve (Figure 4F).

To avoid missed detection while processing long

continuous data, we choose to select a small prominence

parameter (usually could be 3 times the average of the

noise amplitude). Similarly, to avoid false detection, we

select a time-distance parameter that is larger than the

signal duration of a slow train (set as 40 s). Figure 5 shows

the detection and speed estimation results of the 1-h data

earlier shown in Figure 2. From the observations, the train

events are localized on the vespagrams and are successfully

detected from the time-beampower curve. Also, we extract the

speed after obtaining the corresponding local maximum

beampower. In general, the higher the speed, the higher

the beampower is and the better the automatic detection

process performs. For the crossing and superimposed

signals, our method also retrieves reliable results which

demonstrates that our method can suitably be applied to

heavy railway traffic monitoring.

Result

In Figure 6, we show the data detection result over a 6-day

period, where it is observed that each detection time corresponds

to the time the train passes the array center at Ch500. We

qualitatively verify the detection results by visually inspecting

the “footprints”, and categorize the types of trains by counting

the number of peaks of the lowpass filtered waveforms (typical

examples are shown in Figure 3). Due to the proprietary and

sensitive nature of train itinerary records, we could not determine

the exact train registration number of each passing/transiting

train but constrained the type of trains by observing each passing

train using their scheduled departure or arrival time (https://

kyfw.12306.cn/otn/queryTrainInfo/init). From these records, we

observe that the activity of railway traffic is somewhat irregular

throughout the 6 days. Considering that the observation site is

5 km north of the railway station, the traffic pattern may not be

an exact reflection of the exact time the train departed or arrived

FIGURE 6
Detections, train speeds, and train types extracted from 6-days data. Negative and positive speed values correspond to N-S and S-N,
respectively. Orange, blue vertical lines mark the time on the train timetable (the arrival time for N-S cases, and departure time for S-N). Orange and
blue circles represent detected conventional trains and EMU trains, respectively; the hollow squares denote non-scheduled trains.
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at the station. We also find out that some detected trains do not

match the schedule, which could be either temporary or

emergency scheduled trains or the trains that transits through

the station without stopping. These scenarios are especially

observed during between 23:00 to 7:00 (UTC+8), typical of

the duration when non-scheduled trains operate. More so, we

observe some signals with only one period which are believed to

be generated by a single locomotive.

We count the detections based on the direction, speed, and

type of trains (Figures 7A,B). Generally, we observe that the

average speed of the trains from the north to the south is higher

than those from the south to the north. This implies that at a

distance of ~5 km to the station, the deceleration time from the

North to the South is shorter than the acceleration time from the

South to the North. The speed is limited from block to block by

the train control system (Ouyang et al., 2010; Zhang, 2008),

which in practice, the train drivers adjust the speed while

approaching or moving out of the train stations according to

actual situations (CRC, 2004). Hence, there is no statistically

significant difference in the speed of different types of trains in

this case. The hourly detection histograms (Figures 7C,D) show

similar railway traffic patterns on the both directions. The

railway traffic becomes heavy during the morning and

evening as similarly suggested in Figure 6, while turns out to

be silent during the midnight.

Discussion

The cable is 2 km in length, as the cable cannot be perfectly

straightened up, the real spatial distribution is theoretically

shorter than the length of the cable. The estimated speed of

our beamforming method is the apparent velocity along the

cable, so we wish we could have the exact locations of each

channel or some of them to correct this effect, however, we were

not allowed to do it in the field work due to safety regulations of

railways. Nevertheless, we observe that the trains pass our

experimental site as constant speeds, which could be inferred

from that the slope of the “footprints” is relatively constant. If the

spatial distribution of the cable is complex, we could have seen

twisted footprints and the beamforming results could be biased.

From this point of view, we accept the shape of the cable causes

FIGURE 7
Histograms of speed distribution and hourly detections from N-S and S-N. (A,B) Speed distribution of all detected trains; (C,D) Hourly
detections derived from the results shown in Figure 6.
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minor effect in our study. In fact, the estimated speeds depend on

the tolerance towards requirements if in real use, and we could

correct the location of every channel by multiplying coefficients

for the cable, thus we could exact more accurate speed of the

trains passing our experimental site.

For an event generated by an individual train, an efficient way

to evaluate its speed is to calculate the slope of the “footprint”,

which implies, fitting linear regression on the arrival time of all

the traces to verify the accuracy of the estimated speed retrieved

through the beamforming method. Influenced by uneven

coupling and possible orientation variations of the cable,

simply utilizing STA/LTA algorithm across a dataset with

equal threshold may not efficiently pick the arrival time.

Considering the consistent duration of train-induced signals,

we construct signal envelopes to reduce the complexity of

waveforms (i.e., high-frequency noise, polarity reversals etc.),

and calculate relative arrivals by conducting cross-correlation on

Ch1 and the rest of the 1000 channels signal envelopes. We then

apply the bootstrapping method (10,000 times) to quantify the

variability of the linearly regressed velocities from the arrival

times (Tichelaar and Ruff, 1989). To reduce the impact of the

outliers on the regression calculation, we use the random

sampling consensus algorithm (RANSAC; Fischler and Bolles,

1981; Yoo et al., 2020) to automatically exclude the outliers

during each regression. Figure 8 shows the results from the linear

regression of an EMU and a conventional train, respectively, as

well as their bootstrapping histograms. The arrival times derived

from the former have better convergence along with the signals

than in the latter, thus indicating that the signals due to the EMU

train are relatively more coherent. The outliers are identified and

isolated by the RANSAC regressor (Figures 8B,E). The mean

speed of the EMU and the conventional train are

96.18 and −25.69 km/h, respectively, whereas the standard

deviations (STD) are 1.52 and 0.43 km/h, showing that the

robust regression results are close to the beamforming

estimations (96 and −26 km/h). Based on the STD of the

speeds, the uncertainty of the EMU scenario is larger than

that of the conventional train, which implies that the former

has a larger speed variance. In general, themean speeds of the two

regression estimates are both within 1 km/h of the beamforming

results, demonstrating that our method could achieve stable and

accurate speed estimations with the DAS data.

In actual situations, the length and coupling of the cable make

the recorded DAS data impacted by different level of noise (Song

et al., 2021). Therefore, we test the performance of our method on

two typical train-event signals (Figure 8) with different noise levels.

Before the start time of the signal window (40 and 50 s shown in

Figures 8A,D; as zoomed in section in Figure9A,C), we slice the

noise window into equal size with the signal window, and multiply

the noise with factors ranging from 0 to 30. Thereafter, we impose

FIGURE 8
Examples of RANSAC linear regression on the relative travel times for EMU train and conventional train cases. (A) EMU train case and relative
travel times (blue dots) picked by cross-correlation of signal envelopes; (B) RASAC regressor fitting the inliers, outliers excluded automatically; (C)
Histogram of bootstrapped speeds, the red and blue dotted lines denote the beamformed speed obtained by our method and mean speed,
respectively; (D–F) Same as (A–C), but for a conventional train case.
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the noise windows on the signal windows to obtain synthetic

datasets with different noise levels and define the average signal-

to-noise ratio (SNR) as the array energy (sum of the squared

amplitude of all samples) ratio of the signal and noise windows

(Lv et al., 2022). The initial SNR of the EMU and conventional train

are 34.90 and 6.94 dB, respectively. As the SNRs decrease, the

beampower values also decrease, and the false detections are not

triggered until the SNRs fall as low as 0.81 dB for the EMU and

0.43 dB for the conventional train, corresponding to false peaks or

multiple same-level peaks in the time-beampower curve (Figures

9B,D). In addition, we note that the least SNR required by the

conventional train is less than that of the EMU, which could be due

to its speed distribution that is assumed to be relatively more stable

(Figures 8C,F).

For trains running at constant speed, the larger the array, the

higher the beampower is and the more prominent the peak

stands in the time-beampower curve. To ensure the reliability of

results for actual railway traffic monitoring, using a smaller

aperture will better enhance real-time monitoring. Moving

small-aperture subarrays contribute to effectively monitor the

change in speed of trains and update the track as the trains pass.

However, smaller aperture will reduce the speed resolution on the

vespagram (Nayak and Ajo-Franklin, 2021; Schweitzer et al.,

2012). Moreover, the amplitude and duration of train-induced

signals distinctively vary according to the type and speed of

trains. Meanwhile, telecommunication cables suffer from

coupling issues and varying noise levels or distributions (Song

et al., 2021), so it is necessary to make adjustments on array

aperture in compliance with real-time requirements and speed

resolution. Figure 10 shows the beamforming results of an EMU

train and a conventional train (same cases as shown in Figure 9)

at different array apertures for the fiber-optic cable used in our

FIGURE 9
Examples of the beamforming performance influenced by different SNR levels. (A) Collection of time-beampower curves with different SNRs
for an EMU train (sliced from the segment shown in Figure 8A), the red contour line marks the lowest beampower value leading to false detection. (B)
Time-beampower curves under high SNR (blue line) and low SNR (red line), the latter leads to false detection. (C) Same as (A), but sliced from the
segment shown in Figure 8D; (D) Same as (B), but extracted from (C).
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FIGURE 10
Array aperture test for an EMU train and conventional train. (A) EMU train case with different apertures/channels sliced as denoted by black
squares; (B) Detection results with different apertures as shown in (A); (C) Detection results of moving arrays with 60 and 100-channel aperture;
(D–F) Same as (A–C), but for a conventional train case.

FIGURE 11
Speed and motion track estimation for a variable-speed train case. (A) Train-induced signals; (B) Detection results and speed distribution. Red
circles denote the speed results estimated by moving subarrays with 149-channel overlapping, while green triangles denote the results with 100-
channel overlapping. The black curve is the smoothed result of the green triangles.
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experiment. We estimate the uncertainty by measuring 70% of

the width of the detected peak amplitude in the time-beampower

curve. With the increase of the array aperture, the results become

more stable with less uncertainty (Figures 10B,E). To test the

suitability of a certain aperture for the entire cable, we modify the

aperture, move the array sequences every 50 channels, and

beamform the data. Thus, we obtain detection results and

velocity distributions as a function of array position along the

cable (Figures 10C,F). For the EMU train, the speeds estimated

from moving subarrays with a 60-channel aperture are sparser

distribution than that of a 100-channel aperture. In the case of

the conventional train, arrays with 150-channel aperture still lead

to discrete speed estimations, while the 175-channel aperture

produces more stable results. It is interesting to note that the

edges of the train heads shown in Figure 10D are more identical

than the rest wagons, which is often the case of low-speed

conventional trains. We believe this is caused by the

locomotive pulling the rest wagons. In practical or field

situations, depending on the coupling and noise level, varying

apertures can be used for different segments depending on the

increase in the overlap of subarrays to obtain a denser velocity

curve. Also, for seismological studies that utilize train-induced

signals as noise sources, the real-time requirement is not urgent,

in which case we could select a large array aperture.

Though most of the trains pass our experiment site at constant

speeds, there are still individual cases where the speed changes

significantly. Figure 11 shows the detection results of such a case

with 150-channel moving subarrays from which the acceleration

process of the train can be identified. From ~ Ch1—Ch200, the time

duration of signals covers ~70 s. From–Ch200—Ch600, the duration

decreases gradually to ~20 s and thereafter remain constant till the

end. We obtain the speed curve/motion track by smoothening the

speed values, and the change in speed shown in the curve is consistent

with the observation-based analysis shown above. Both 149 and 100-

channel overlapping subarrays detect results with smooth and

consistent velocity curves, which show that our methods also have

good applicability in detecting trains moving at varying speed. In an

extreme case, a high-speed trainmoving at a design speed of 350 km/

h would take 3.09 s to cover a 150-channel array with 2 m channel

spacing. In terms of computational efficiency, a NumPy 2D array

npz file with a size of 1001 × 150000 (2 km and 300 s) can be

loaded on an 8 G ram M1 chip MacBook Air within 0.2 s, and

computation can be completed for a 150-channel aperture

subarray matrix within 0.88 s. Such computational performance

implies that our method is suitable for near real-time railway

traffic monitoring. In addition, the Kalman filter is another

approach to smooth the train trajectories (Ferguson et al., 2020;

Wiesmeyr et al., 2020), and it would be interesting to test extended

and adaptive Kalman filters (Terejanu, 2008; Vullings et al., 2010)

on arrival picks and the detection results beamformed by

subarrays. We could delve deeper into this in the future work.

Conclusion

In this study, we conduct an investigation on railway

traffic monitoring using DAS data acquired by a 2-km

trackside telecommunication fiber-optic cable. We utilize

the beamforming technique on STA/LTA traces to

automatically detect the train induced events, to extract

their speed and direction. From the results, we identify the

type of trains by counting the number of peaks from the

lowpass filtered signal. Using beamforming technique, we

process the 6-days continuous data to quantify and

characterize the results using the speed, direction, and

types of trains. By reducing the aperture of the array and

moving subsequent subarrays, we obtain the train speed

curve/motion track. The method we propose can provide a

supplementary approach and play a synergetic role with other

existing railway traffic monitoring systems. Moreover, our

method can be used to conduct seismic interferometry

investigation along the railroad using train-induced ground

motions, whereby the noise windows containing or excluding

train-induced signals can be automatically determined.
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Full-cycle and real-time monitoring of the wellbore flow during hydraulic

fracturing is challenging in unconventional oil and gas development. In the

past few years, distributed acoustic sensing (DAS) provides opportunities to

measure the acoustic energy distribution along the entire horizontal well. It is a

promising tool for real-timemonitoring and understanding of the fluid injection

process. However, the signal identification of effective flow in thewellbore from

DAS data is cumbersome and prone to error. We propose a deep learning

approach to solve this problem. The neural network is a combination of

Convolutional Neural Networks (CNNs) and Bidirectional Long Short-Term

Memory Networks (BiLSTM) to extract the spatial and temporal features

from the DAS data. The trained model is applied to the field data collected

in the horizontal well. The results demonstrate its capability for intelligent

monitoring and real-time evaluation for hydraulic fracturing.

KEYWORDS

distributed acoustic sensing, deep learning, signal identification, convolutional neural
networks, bidirectional long short-term memory

Introduction

Hydraulic fracturing operation in horizontal wells has become the most effective

stimulation technology for unconventional, low-permeability reservoirs. Real-time

evaluation of the fracturing process provides important information to design the

unconventional-reservoir completion and improve production (Montgomery et al.,

2010). The conventional monitoring methods, such as microseismic, time-lapse

seismic, and pressure monitoring, are limited to coverage and resolution. Recently,

distributed acoustic sensing (DAS) is emerging as a real-time downhole sensing
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technology. The fiber cable is installed permanently on the

outside of a casing string and measures the vibration along

the wellbore. In the DAS system, the interrogator unit

transmits laser pulse along the cable, and the

interferometer measures the changes in the Rayleigh back-

scattering pattern associated with any deformation on the

cable caused by incident waves (Mateeva et al., 2014; Spica

et al., 2020). It is superior to other wellbore detection

methods for real-time measurement, high spatial

resolution and convenient deployment.

The high-density data recorded by the fiber cable in the

injection well can directly show the fluid migration in the

wellbore. Through the detailed surveillance of the fluid in the

stimulation process, the design of commonly used plug-and-perf

completion can be optimized. The operation parameters are

chosen to achieve low-lost, high-efficiency production, such as

fluid type, pumping method, injection volume, and adjustment of

sand concentration (Jin et al., 2017; Richter et al., 2019).

However, the manual analysis of DAS data is inefficient and

prone to error. Applying machine learning or deep learning to

this problem is an attractive solution. Jin et al. (2019) propose the

artificial neural network (ANN) algorithm to identify fracture-hit

signals from the DAS data recorded at offset monitor wells.

Binder and Tura (2020) use convolutional neural networks

(CNNs) to detect microseismic events in the downhole DAS

data. Stork et al. (2020) shows the successful application of CNNs

to microseismic event detection in DAS data. The purpose of this

study is to identify the signal related to fluid injection in the

borehole. The CNN is combined with Bidirectional Long Short-

Term Memory Networks (BiLSTM) to extract the spatial and

temporal features from the DAS data. The results demonstrate

the feasibility and effectiveness of the proposed framework for

large DAS data volume.

Methods

Convolutional Neural Networks (CNNs) is a class of

feedforward neural networks that include convolution

computation and non-linear activation operators (O’Shea and

Nash, 2015). It is one of the representative algorithms of deep

learning. CNNs are commonly used to analyze visual images.

They are also known as motion-invariant or space-invariant

FIGURE 1
The schematic structure of the proposed network.

TABLE 1 The parameters used in the proposed network architecture.

Layer type Parameter

INPUT LAYER 100 × 128 × 128

CONVOLUTION LAYER 64@5 × 5 (filter)

CONVOLUTION LAYER 32@3 × 3 (filter)

POOLING LAYER 2 × 2 (filter)

BILSTM LAYER 256

DROPOUT LAYER 0.5

BILSTM LAYER 128

DROPOUT LAYER 0.5

BILSTM LAYER 64

DROPOUT LAYER 0.5

FULLY-CONNECTED LAYER 100

FULLY-CONNECTED LAYER 1
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artificial neural networks (SIANN) and are based on a shared

weight structure of convolution kernels or filters that slide along

input features and provide translation-equivalent responses.

Counterintuitively, most CNNs are only equivariant to

translation, not invariant. They have applications in image

and video recognition, recommender systems, image

FIGURE 2
The geometry of the horizontal wells used to collect DAS data. The cable is deployed along Well 2 (blue line) and the red dots indicate the
position of the data used in the application.

FIGURE 3
The process to generate the training and testing data sets.
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classification, image segmentation, medical image analysis,

natural language processing, etc. (Gu et al., 2018).

As for the processing of time series data, such as the DAS

data, recurrent neural networks (RNNs) is a very classic structure

applied to data prediction (Medsker and Jain, 2001). It is used to

find the relation of the data volume and predict the data within

the corresponding context. However, due to its simple structure,

RNNs suffer from gradient disappearance and gradient explosion

when dealing with long-term sequence problems (Salehinejad

et al., 2017). The Long Short-Term Memory (LSTM) networks

are a type of neural network with stronger capability for time

series prediction, which is developed from the RNNs (Hochreiter

and Schmidhuber, 1997; Van Houdt et al., 2020). LSTM consists

of one or more functional unit modules with forgettable and

memory functions. This model is proposed to solve the problem

that the traditional RNNs have the disappearance of

backpropagation gradient in the long-term sequence. The core

components of LSTM networks include forget, input, and output

gates. LSTM networks are well suited for classification,

processing and forecasting problems for time series data.

Conventional RNN units and deep learning networks based

on LSTM units cannot save the value of the previous time

series due to the limitation of their basic structure, so they are

better at predicting the next time step data with current data but

lack the ability to predict a previous time step. For many

sequence prediction problems, the time series data are

bidirectional time-dependent. Thus RNNs and LSTM become

inefficient in prediction ability. To overcome this limitation,

bidirectional RNNs (BRNNs) make use of previous context by

processing the data in both directions with two separate hidden

layers, which are then fed forwards to the same output layer

(Schuster and Paliwal, 1997). Combining BRNNs with LSTM

gives bidirectional LSTM (BiLSTM), which can access long-range

context in both input directions (Graves et al., 2013).

CNNs is the well-known artificial neutral network and widely

applied in image recognition, classification and segmentation.

But it can only provide the mapping of spatial features from the

input to the output. The DAS data are time series, and the

temporal relations can not be learned and predicted by CNNs.

RNNs are able to extract temporal dynamic characteristics but

have limitations on memory cost. LSTM can be considered as an

improved version of RNNs and is suitable to learn long-term

dependencies. A Bidirectional LSTM (BiLSTM) is a model that

consists of two LSTMs to receive the forward and backward

information. It can effectively increase both preceding and

subsequent information available to the network. In the

processing of DAS data for signal identification, we combine

the CNNs and BiLSTM to extract both the spatial and temporal

features. The proposed model benefits from the advantages of

CNNs and BiLSTM. The image features are captured by CNNs

and the long-term dependency of the data is learned by the

BiLSTM. Figure 1 shows the detailed scheme of the network

architecture used in this study. The size of the input image is

FIGURE 4
The typical labeled result of the raw data.

TABLE 2 The performance of the trainedmodel on the testing dataset.

EDR Far F1 score Response time (s)

0.951 0.026 0.926 1.78
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128 x 128, as shown in Figure 1. 50% overlap is added to ensure

that the continuous segmentation does not miss valid signals.

The network model consists of CNN layers, BiLSTM layers

and fully connected layers. The implementation of the

proposed network is based on the Python deep learning

API, Keras, which uses Tensorflow as the backend. These

parameters are decided after we define the input and output,

and optimized after several tests. Table 1 describes the specific

structure and parameters of the network proposed in this

paper in detail. The CNN layer focuses on extracting spatial

feature information, the BiLSTM layer focuses on extracting

time series features, and the fully connected layer is used to

fuse the features extracted by the CNN layer and BiLSTM to

achieve classification and recognition. The DAS data are

divided into two types, effective injection signal and

background noise. The input is the sequential DAS data,

and the spatiotemporal characteristic is used to identify the

fluid injection information. Firstly, the original data are

segmented along the spatial and time axis to obtain the

image with the size of 128 × 128. Then each sequence with

100 images in time are collected and used as the input. As the

DAS response of fluid injection depends on the channel

number and temporal step of the input DAS monitoring

data, and the feature information obtained from different

channels and time steps is highly correlated, the proposed

network uses three BiLSTM layers successively to increase the

ability of time series prediction and reduce the error in

identification calculation. The problem involves the two-

dimensional dynamic recognition problem both in space

and time. The nonlinear conversion to linearization process

FIGURE 5
The raw DAS data with high (A) and low signal-to-noise ratio (B).
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in the fusion classification of space-time features is prone to

errors (Tang et al., 2021), thus we add a fully connected

network to improve the conversion performance. This

modification can optimize computational efficiency and

reduce the over-fitting phenomenon.

Training data

The DAS system is deployed along the injection well in the

shale gas field. The monitoring geometry is shown in Figure 2.

The length of the cable is approximately 2.5 km. The spatial

resolution is 1 m and the temporal interval is 0.25 ms. Figure 3

shows the processing steps of the raw data. The data is

segmented along the time and channel axis, respectively.

The datasets are selected from the recorded data of three

wells at the same site in about 1 month. With the recorded

data, the data are labeled manually by visual inspection to

generate the training dataset. Figure 4 shows the typical

labeled result of the data slice. After the manual labeling,

the dataset are separated into training dataset and testing

dataset with a ratio of 8:2.

Network training

The goal of signal detection for fluid injection in hydraulic

fracturing is to establish a rapid real-time evaluation and

response system with high accuracy and high sensitivity. The

following parameters are used to judge the performance of the

trained model.

1) Effective detection rate (EDR)

The ratio of the effective signal detected, which is equal to the

recall rate. It is calculated as follows:

FIGURE 6
The signals related to fluid injection identified from the data shown in Figure 5.
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EDR � TP

TP + FN

where TP is the true positives, which refers to the number of

correct detections for signals triggered by the trained network.

FN is the false negatives, which refers to the number of wrong

identifications for noise.

2) False alarm rate (FAR)

The ratio of false and correct identified signals of fluid

injection, which is

FAR � TP

TP + FP

where FP is the false positives, which refers to the number of

wrongly indication for effective injection signals.

3) F1 score

A measure that combines precision and recall, which is also

the harmonic mean of precision and recall

F1 � 2EDR (1 − FAR)
EDR + (1 − FAR)

4) Response time

This parameter is used to indicate the time consuming of the

proposed workflow. It is the time difference between the time of the

first sample and the output time of the first identified effective

injection signal.

Using the training dataset, we obtained the proposed model

and used the testing dataset to validate its performance. The

results are shown in Table 2. EDR is used to evaluate the

precision of the identification model, FAR is used to indicate

the missing of effective signals. F1 score is the overall evaluation

using evenly weighted recall and precision. The results shows the

trained model can effectively identify the signal from the raw data

and the processing time can meet the requirements for real-time

monitoring. On the computation node with four Nvidia Titan

(Pascal) GPUs, it took about 5 days for the training.

Application to field data

In the application, the collected data in different stages that

are not included in the training and testing datasets are used.

Figure 5 shows the data slices with relatively high and low signal-

to-noise ratio, respectively. Using the trained model for

identification, the results are shown in Figure 6. It can be

FIGURE 7
The comparison of the accumulation of DAS energy with the slurry rate curve of the well (blue line). The Red line denotes the results of the raw
DAS data, and the ochre line denotes the results of the identified signals using the proposed model.
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observed from the identification results that the signals related to

fluid injection are identified with high accuracy.

To further demonstrate the validity of the proposed model,

the accumulated energy (the square of amplitude) of the recorded

data is compared with the production curve. Figure 7 shows the

results. In the conventional method of directly accumulating

energy in the full record, the DAS response is inconsistent with

the slurry rate curve, which is mainly due to the continuous

background noise during the monitoring process. The results

based on the identified DAS response can accurately fit with the

slurry rate curve, as the extract DAS responses are directed

related to fluid injection procedure. The model works

effectively for the data collected at the same area as the

validate data are similar to the training data. But it may need

to be updated when the data have different characteristics. With

more DAS data, the performance of the trained model can be

further improved. The new deep learning algorithms developed

for action recognition in video signals can also be introduced to

improve the efficiency of the proposed method.

Conclusion

We propose a deep-leaning approach for real-time evaluation

of raw DAS data to identify the signals related to fluid injection in

hydraulic fracturing. The trained model demonstrates its

effectiveness and accuracy in application to field data. The

effective detection rate of injection signal is 95.1%, which

enables real-time evaluation of hydraulic fracturing operation

from downhole DAS data. The structure combing CNNs and

BiLSTM performs reasonably well in spatiotemporal signal

classification. The current models can be further improved in

practical applications with more DAS data and better action

recognition strategies.
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Case study on amplitude and
phase response comparison
between DAS and 3C geophone
VSP surveys at a test site in Japan
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Distributed acoustic sensing (DAS) is an effective tool for seismic surveys and is

widely used as the preferred sensor for acquiring dense Vertical Seismic Profile

(VSP). However, DAS has some disadvantages compared to conventional

geophone acquisition, such as single-component data, sensor directivity

pattern, low S/N, etc. To apply DAS data to VSP processing, it is important

to understand the characteristics of DAS measurements. This study first

examined DAS and geophone responses for a VSP survey in a 1D earth

model. The relationship of signal amplitude as a function of incident angle

and phase shift between wavelets was confirmed. Next, we validated this

relationship in a walk-away VSP survey, which was conventionally applied to

monitor geological CO2 storage. The survey was carried out at a test site in

Japan. We obtained both three-component (3C) geophone and DAS data using

a single-mode fiber installed behind a casing. The observed amplitudes of the

first P-waves by DAS and geophone showed very good agreement with the

theoretical expectations. Finally, we performed imaging using acquired DAS

data following the workflow for conventional VSP processing. These basic

behaviors of DAS are useful for designing further analyses, such as VSP in

deviated wells and full waveform inversion.

KEYWORDS

distributed acoustic sensing (DAS), DAS sensitivity, relationship between DAS and
geophone, walk-away VSP, monitoring by DAS

1 Introduction

Fiber-optic sensors (FOS) have been developed as advanced measurement tools.

Many findings in geophysical applications have been reported in the oil and gas industries,

as reviewed in Fenta et al. (2021). These applications include sensing pressure,

temperature, vibration, and strain. In particular, distributed acoustic sensing (DAS)

has been exploited for seismic exploration surveys during the past decade.

DAS utilizes optical time-domain reflectometry (OTDR) techniques to detect seismic

waves along a fiber-optic cable. A pulse of laser light is transmitted from one end of an

OPEN ACCESS

EDITED BY

Yibo Wang,
Institute of Geology and Geophysics
(CAS), China

REVIEWED BY

Yikang Zheng,
Institute of Geology and Geophysics
(CAS), China
Wuqun Li,
Innovation Academy for Precision
Measurement Science and Technology
(CAS), China

*CORRESPONDENCE

Takahiro Nakajima,
tnak06@rite.or.jp

†These authors have contributed equally
to this work

SPECIALTY SECTION

This article was submitted to
Solid Earth Geophysics,
a section of the journal
Frontiers in Earth Science

RECEIVED 12 July 2022
ACCEPTED 07 September 2022
PUBLISHED 03 October 2022

CITATION

Nakajima T, Miyoshi T, Hashimoto T and
Xue Z (2022), Case study on amplitude
and phase response comparison
between DAS and 3C geophone VSP
surveys at a test site in Japan.
Front. Earth Sci. 10:991964.
doi: 10.3389/feart.2022.991964

COPYRIGHT

© 2022 Nakajima, Miyoshi, Hashimoto
and Xue. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

Frontiers in Earth Science frontiersin.org01

TYPE Original Research
PUBLISHED 03 October 2022
DOI 10.3389/feart.2022.991964

63

https://www.frontiersin.org/articles/10.3389/feart.2022.991964/full
https://www.frontiersin.org/articles/10.3389/feart.2022.991964/full
https://www.frontiersin.org/articles/10.3389/feart.2022.991964/full
https://www.frontiersin.org/articles/10.3389/feart.2022.991964/full
https://crossmark.crossref.org/dialog/?doi=10.3389/feart.2022.991964&domain=pdf&date_stamp=2022-10-03
mailto:tnak06@rite.or.jp
https://doi.org/10.3389/feart.2022.991964
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/journals/earth-science#editorial-board
https://www.frontiersin.org/journals/earth-science#editorial-board
https://doi.org/10.3389/feart.2022.991964


optical fiber; coherent, back-scattered Rayleigh light is recorded

by an optical interrogator at the same end of the fiber. From the

observed time of arrival of the returning light, the points passing

the seismic waves can be determined (Molenaar, 2013). When a

second laser pulse is fired into the fiber, changes in strain are

evaluated by comparing the two records (Grindei 2019).

DASmeasurements have been applied in mining, geothermal

studies, natural earthquake detection, and hydraulic fracturing

(Ajo-Franklin et al., 2019; Bakku et al., 2014a; Bakku et al., 2014b;

Li and Zhan, 2018). DAS is now used for observation in marine

environments using fibers for telecommunications deployed on

the seabed (Spica et al., 2021). DAS technology is also popular for

seismic data acquisition, especially in wellbores (Lellouch and

Biondi, 2021). P-wave observation in less noisy environments

can be expected from fibers deployed in vertical wells. A Vertical

Seismic Profile (VSP) survey using DAS was assessed to possibly

replace conventional surveys with geophones (Mestayer et al.,

2011). Reports on VSP (Barberan et al., 2012; Willis et al., 2016;

Wu et al., 2017), CO2 plume imaging by DAS-VSP (Daley et al.,

2016; Miller et al., 2016; Harris et al., 2017; Cheraghi et al., 2018;

Correa et al., 2018), and micro-seismic monitoring (Maxwell,

2014; Molteni et al., 2017; Karrenbach et al., 2019) have recently

been published.

However, a large disadvantage of borehole DAS measurement

is that only a single component can be acquired along the fiber.

Moreover, DAS data on the strain or strain rate is the average over

the a gauge length (Dean et al., 2016). These disadvantages

introduce a sensitivity issue depending on the incident angle of

a wavefield. Theoretically, the amplitude ratio of DAS over a single

component of particle velocity exhibits cosine dependency as a

function of the incident angle. This relationship indicates a

drawback of DAS measurements of waves with large incident

angles. Furthermore, comparisons of DAS and single-component

geophone data have been reported in some field observations

(Willis et al., 2016; Correa et al., 2017; Wu et al., 2017). In these

comparisons, the basic trend followed the theoretical relationship;

however, amplitude ratios in field data were very noisy. These

results suggested that the relationship between DAS and geophone

amplitudes in field data has not yet been fully demonstrated.

Another problem is differences in interrogator design. While

some comparisons of DAS outputs among several vendors (Verliac

et al., 2015; Olfsson and Martinez, 2017; Sidenko et al., 2020).

Verliac et al. (2015) reported differing wavelets among three DAS

datasets acquired with equipment from various suppliers, Olfsson

and Martinez (2017) observed that differences among vendors

were small. Sidenko et al. (2020) confirmed that the dimensions of

interrogator output were deformation rate and dynamic strain,

which are the output designed by the vendors. Therefore, signal

directivity differed among interrogators.

Because of issues concerning differences in the averaged

values or point sources and dimensional differences between

DAS and conventional seismometers, it is critical to understand

what is measured, and what limitations apply to those DAS

measurements for a given interrogator unit. In further analysis,

data conversion might be necessary to adjust data dimensions.

The present study compared DAS and conventional

geophone data in a field survey conducted in Japan. In

Section 2, we examine the theoretical relationship between

strain rate and particle velocity that are observable by

conventional geophone. In Section 3, we compute a synthetic

wavefield at vertical observation points in layered models. We

then compared the wavefield of direct P-waves measured by Vz

and the vertical components of the strain rate. In Section 4, we

introduce a test field for DAS measurements in Japan. During a

walk-away VSP survey at this site, we collected both DAS and

three-component (3C) geophone data at a borehole. From these

data, we examined the sensitivity of the sensors against the

incident angles by comparing the signal amplitudes of the

direct P-waves. We also studied the resolution of imaging

results obtained by standard VSP data analysis.

2 Theory of DAS measurements

In strain rate measurements for DAS output, the output is

proportional to the strain rate averaged over a gauge length. This

is the same as Silixa’s iDAS (Willis et al., 2020). Bakku (2015)

reported that this type of output can be interpreted as the

difference in velocities measured by two separated geophones.

We followed their method to compute the theoretical strain rate

in this study.

As many have noted, DAS measurements depend on gauge

length (G) and pulse width (L) (Dean et al., 2016; Correa et al.,

2017). In the following analysis, we assume that the wavelength

of elastic waves is several times larger than the G and L. The DAS

output for an optical fiber installed in a vertical borehole is

represented by the difference in the strain at the internal

sampling interval (Parker et al., 2013; Daley et al., 2016).

[uz(z0 + G
2
, t0 + dt) − uz(z0 − G

2
, t0 + dt)]/G − [uz(z0

+ G
2
, t0) − uz(z0 − G

2
, t0)]/G (1)

where u(z0, t0) is the dynamic displacement of the fiber at the

location z0 and measurement time t0, respectively. When the

sampling interval and gauge length are sufficiently smaller than

the phenomena being considered, this output can be converted to

either the strain rate of the fiber

z

zt
(zuz

zz
)

z0 ,t0

� _εzz(z0, t0), (2)

or the spatial derivative of the dynamic displacement of the fiber

z

zz
(zuz

zt
)

z0 ,t0

� (zvz
zz

)
z0 ,t0

, (3)

Frontiers in Earth Science frontiersin.org02

Nakajima et al. 10.3389/feart.2022.991964

64

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.991964


where εzz is the axial strain, v is the particle velocity at a fixed

point, and the dot denotes its time derivative. Eqs 2, 3 show the

relationship between DAS measurements (strain rate) and

standard geophone measurements (particle velocity).

We consider a primary seismic plane wave propagating in the

z-direction with an apparent velocity c (or slowness s � 1/c) and

an angular frequency ω. Then the displacement and velocity field

of the seismic wave is written as

uz(z, t) � ue−i(ωt−kz z) � ue−iωteiωz/c , (4)
vz(z, t) � (−iω)ue−i(ωt−kz z) � (−iω)ue−iωt eiωz/c , (5)

where u is the constant displacement equal to uz(0, 0), and kz is

the vertical component of the wavenumber. From the equations

with wavenumber, the relationship between the strain rate and

particle velocity is represented as follows (Bakku, 2015),

_εzz � zvz
zz

� ikzvz � iω cos θ
V

vz . (6)

where V is the inherent velocity in the medium. Thus, the

amplitude of strain rate has a cosine dependency on the

incident angle of the seismic wave compared to geophone

data. In contrast, Daley et al. (2016) found that the dynamic

strain and particle velocity could be linked from the equations

with the apparent velocity:

εzz � −vz/c. (7)

This equation indicates that the strain rate amplitude

depends on the apparent velocity in the z direction. Daley

et al. (2016) applied this conversion to limited interval data,

where the apparent velocity is a constant. This relationship

suggests that the amplitude would be changed in layers

with different apparent velocities. Another point in the

comparison of Eqs 6, 7 is that time integration is needed as

the first step to convert strain rate data to an equivalent

geophone signal.

We can also derive the relationship between the strain rate and

the total amplitude of the particle velocity. The sine vz component

is proportional to |vr| cos θ; therefore, the relationship becomes

εzz � −|vr |cos 2 θ/V . (8)

A more sophisticated transformation between DAS and

geophone data was proposed by Bona et al. (2017) by

considering the effects of gauge length and pulse width. Their

evaluation is a kind of two-spatial averaging filter, and the

amplitude ratio between DAS and geophone depends on the

wavelength of the seismic field compared to the gauge length.

This filter was applied to field data by Correa et al. (2017).

Although the effect of gauge length is important in DAS

measurement, the present study does not consider gauge length

correction in its evaluation of the effect of depth-dependent

apparent velocity in the DAS—geophone data conversion.

3 Comparison of DAS and geophone
data using synthetic wave
computation

We compared geophone and DAS data by calculating the

seismic wavefield using a synthetic method. We first simulated

the wavefield from a point source on layered earth models.

Based on the observation points in a wellbore, the velocity

fields at 5-m depth intervals were calculated. From the

obtained velocity field, the strain rate _εzz along a borehole

was calculated as the difference in vz between two observation

points. We then compared the wavefields of the strain rates

and particle velocities.

To simulate a synthetic wavefield, we used “grpnt2”

developed by Hisada (1994); Hisada (1995). This code

calculates the strict Green’s function theoretically in layered

half-space and uses an efficient mathematical method for

wavenumber integrations. The wavefield excited by a Ricker

wavelet with a 20-Hz dominant frequency was obtained in the

frequency domain using this code. As the time domain wavefield

was a bit noisy due to the transformation from the frequency

domain to the time domain, we applied a bandpass filter to

reduce artificial vibrations.

We tested three earth models to compare DAS and geophone

responses: homogeneous, a layer model without an impedance

jump, and a layer model with an impedance jump. To simplify

the comparison among models, the parameters at the upper layer

were identical. The parameters of the synthetic model are

summarized in Table 1.

3.1 Homogeneous model

First, we computed the wavefield in a homogeneous half-

space model. Density was set to 1,400 m/s for Vp, 808 m/s for

Vs, and 2.1 kg/m3. We placed vertical sources at points 100 and

500 m horizontally from the wellbore. We introduced two

source points because we encountered difficulties in following

the first P-wave at shallower receivers (low incident angle).

The P- and S-waves become too close to separate and were also

affected by surface Rayleigh waves. These mixed waves cannot

be regarded as a simple plane wave. Therefore, we excluded

data from receivers shallower than 100 m in subsequent

analysis. Then, the range of incident angles became limited

at near offset (100 m) data. To cover the incident angle for the

comparison between DAS and geophone data, we added far

offset (500 m) results.

Figure 1 shows the wavefield in the synthetic homogeneous

model in the case of a 500-m offset. To clearly show the wavefield,

the time axis was shifted to 0.2 s using the grpnt2 function.

Figures 1A,B are shot gathers for particle velocity and strain rate,

respectively. The event starting about 0.55 s with a downward

bent is the direct P-wave, while that starting about 0.8 s
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corresponds to the direct S-wave. The line connecting direct P-

and S-waves represents the Rayleigh wave with a smaller

propagation velocity than that of the S-wave excited at the

surface. The directional dependency of amplitude is illustrated

in this figure. The amplitude of the direct P-wave at shallower

depths decreases since the wave path is close to the right angle to

TABLE 1 Summary of the synthetic models.

Layer Properties Homogeneous No impedance jump With impedance jump

1 Vp (km/s) 1,400 1,400 1,400

Vs. (km/s) 808 808 808

Density (kg/m3) 2.1 2.1 2.1

Thickness (m) — 252.5 252.5

2 Vp (km/s) — 1,500 1,500

Vs (km/s) — 866 866

Density (kg/m3) — 1.96 2.1

FIGURE 1
Characteristics of the synthetic wavefield in a homogeneous model. (A,B) show shot gather with the z components of the particle velocity and
the calculated strain rate, respectively. Overlapping red lines correspond to the first P-wave. (C) shows the wavefields around the P-wave arrival by
particle velocity (red) and calculated strain rate (blue) at a depth of 400 m. The amplitude was normalized with the maximum absolute value equal to
1. (D) represents the P-wave amplitude ratio of strain rate/particle velocity. The colored lines correspond to the difference in the source offset;
blue: 100 m, red: 500 m. The green line is the reference of the cos θ dependency.
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the measurement component. In contrast, the wavefield of the

S-wave is perpendicular to the propagating direction; thus, the

amplitude of the S-wave near the surface is larger than that of the

P-wave. Figure 1C represents wavefields around the first break of

the P-wave at a depth of 400 m for Vz and strain rate, although

the amplitudes of the wavefields were normalized so that the

maximum amplitude of the direct wave in the time domain is

equal to 1. As Eq. 6 suggests, the wavelet of the particle velocity is

close to the minimum phase, while that of the strain rate becomes

zero phase. Figure 1D is the ratio of strain rate to particle velocity

as a function of incident angle. The incident angle was simply

evaluated by geometrical arrangement, and the amplitude ratio

was normalized using the deepest point data to adjust the

theoretical relationship (cos θ). This figure shows clear cos θ

dependencies; thus, this synthetic approach can be used to

investigate the relationship between strain rate and particle

velocity.

3.2 A layer model without impedance
jump

Next, we computed the wavefield in a layer model

without a jump in impedance. We studied this artificial

case to consider the effects of differences in inherent

velocity without impedance jump. Therefore, we set the

parameters of the second layer to 1,500 m/s for Vp, 866 m/s

for Vs, and 1.96 kg/m3 for density at a boundary depth of

252.5 m. We also calculated the wavefield from the 100 and

500 m offsets.

Figure 2 shows the wavefields of this model for a 500-m

offset. Figures 2A,B illustrate shot gathers for particle

velocities and strain rates, respectively. The events in these

figures are almost the same as those in Figures 1A,B. However,

reflected and converted waves can be seen in Figure 2B at the

point of 252.5 m and 0.6 s. These waves correspond to

FIGURE 2
Characteristics of the synthetic wavefield in a layer mode without a difference in acoustic impedance. (A–D) use the same arrangement as in
Figure 1. In wavefields shown in (C), amplitude normalization is the same as in the homogeneous model. (E) shows the amplitude ratio modified by
the effect of apparent velocity. The colors in (E) are the same as in (D).
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converted P-S waves, where the properties of wave propagation

were not the same as in the homogeneous model. Figure 2C shows

normalized wavefields around the first P-wave (at 400 m) for strain

rate and particle velocity. The features of the two wavefields are the

same as those in Figure 1C. Figure 2D is the ratio of strain rate to

particle velocity as a function of incident angle. The incident angle

was evaluated by ray tracing between sources and receivers in the

velocity model. The ratios at the two offsets differ above and below

the layer boundary. From the part above the boundary, the ratios

were close to the theoretical dependency, cos θ. However, for the

parts below the boundary, the ratios became smaller. This difference

comes from the relationship represented in Eq. 7. Thus, wemodified

the change of apparent velocity (Figure 2E). After the modification,

the ratios were close to the theoretical dependencies.

3.3 A layer model with impedance jump

Finally, we computed the wavefield in a layer model with a

jump in impedance. In this model, the amplitude of the wavefield

decreased due to reflection at the layer boundaries. We used the

same values as in the previous model, except for the density of the

second layer (2.1 kg/m3, as in the top layer).

Figure 3 shows the wave fields of this model for a 500-m

offset. The shot gathers (A and B) show events similar to those in

the previous models. Moreover, apparent reflected waves,

especially S-S waves, appear at the point of 252.5 m and 0.9 s.

The reflection at the surface is also evident. Figure 3C shows the

normalized wavefields around the first P-wave (at 400 m) for

strain rates and particle velocities. Although this reflected wave

decreased the amplitude of the wavefield below the boundary, the

amplitude ratio between strain ratio and particle velocity was the

same, except for data near the boundary. Figures 3D,E are the

ratios of strain rates to particle velocities before and after the

modification of apparent velocity. The modification worked well

to adjust the amplitude ratio between strain rate and particle

velocity to the theoretical dependency of the incident angle.

The synthetic model confirmed the dependency of the

incident angle in the amplitude ratio by modification of the

apparent velocity. This was also noted by Daley et al. (2016).

FIGURE 3
Characteristics of the synthetic wavefield in a layer mode with impedance change. (A–E) show the same arrangement as in Figure 2. In the
wavefields shown in (C), amplitude normalization is the same as in the homogeneous model.
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However, many papers comparing the amplitude of DAS and

geophone data did not consider this dependency. The next

chapter introduces our field survey and shows the results

using DAS.

4 A walk-away VSP survey in chiba,
Japan

The results of a walk-away VSP survey at a site in Japan were

used to compare DAS and geophone data. Although there was no

expected subsurface change at this site, such as fluid injection, the

results are a good reference for understanding the characteristics

of DAS measurements and considering survey design using

DAS-VSP.

4.1 Overview of the field survey

To conduct field experiments for DAS measurements, we

have established a research site in Chiba Prefecture, Japan. This

site has an 880-m, deep-cased borehole with a single-mode and

single-end, straight, fiber-optic cable cemented behind the casing,

a 250-m well in which a straight and a helically wound cable are

cemented, and surface deployed cables buried in a shallow trench

(Figure 4). These installed fibers were connected as a one-stroke

sketch to measure the DAS signal with an interrogator located in

an observation shed. This study focused on DAS data from this

borehole to compare the sensitivity pattern against that of a

conventional geophone.

A walk-away VSP experiment was carried out in January

2021. Eleven shot points were selected for the survey

(Figure 5). Shot points up to 1,300 m away from the

borehole were employed (Figure 5). At each shot point, a

vibroseis truck was used, with an increased number of sweeps

at far-offset points. Particle velocity was acquired via a 3C

geophone tool with four downhole shuttles. The shuttle

interval was 15 m. Therefore, with 21 deployments, we

obtained data measurements every 7.5 m between depths of

100 and 700 m in the casing of the 880-m borehole. In

contrast, a Silixa iDAS v2 interrogator unit was used for the

DAS measurements. The data interval was set to ~1 m.

Furthermore, DAS was available for data acquisition at

every sweep of geophone measurements; thus, the total

number of stacks at each shot point was approximately 100;

5 (sweeps) x 21 (geophone deployments). The data acquisition

settings of the walk-away VSP survey are summarized in

Table 2.

4.2 Comparison of observed wave data
between DAS and geophone
measurements

We first examined the signal-to-noise ratios (SNRs)

between the DAS and geophone measurements. We simply

compared the root-mean-square (RMS) between the direct

P-wave signal and the duration before the first break. The

seismic signal at each sweep was clearer in the geophone

data. This noise floor of DAS data was higher than that of

the geophone data. Figure 6 shows the SNR of DAS against

stack numbers at SP121, offset 650 m, where the SNR of the

geophone data was obtained by stacking five sweeps. The SNR

of DAS increased when the stack number increased. When the

number of stacks reached 100 for DAS at a 650-m offset and a

700-m depth, the SNRs were comparable to those of geophone

data. This difference in the stack number was not

disadvantageous for DAS. The geophone tool must be

relocated to cover the entire length of the borehole, while

DAS data can be acquired at all depths in a single sweep.

FIGURE 4
Overview of a test field for DAS field measurement in Chiba,
Japan.

FIGURE 5
Positions of shot points and the observation site for a walk-
away VSP conducted in January 2021.
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Next, we compared the wavefields obtained with DAS and

geophone. Figure 7 shows the wavefield and spectrum around

the first P-wave at the SP121 shot point (offset 650 m) and

recorded at 700 m. Unlike the results of the synthetic model,

the wavelet at the direct P-wave of DAS and geophone data

was close to the zero-phase case. However, the apparent first

break time of the DAS data was earlier than that of the

geophone data. The synthetic results and field data

differences occurred due to the method of data

deconvolution. The source signal was a linear sweep with a

vibroseis, and the shot gathered was calculated by cross-

correlation or source deconvolution. This process produces

essentially zero-phase data. However, the difference in first

break time may reflect the phase difference of the wavelets. As

Daley et al. (2016) noted, the time integration procedure of

DAS data can reduce the difference between DAS and

geophone data.

After confirmation of the waveform of the direct P-wave, we

compared the amplitudes of DAS and geophone data. We first

evaluated the incident angle of the direct P-wave between shot

points and receivers using 3C geophone data (Figure 8). This

analysis did not use any special rock physics model to modify

the observed amplitude. The horizontal direction and amplitude at

each receiver potion were evaluated from particle motions of

horizontal components of the geophone records. The incident

angle was then calculated from the evaluated horizontal and

vertical components of the geophone. The general trend of the

TABLE 2 VSP survey settings.

Source information

Source type 12,000 lbf EnviroVibe

Source sweep 10–100 Hz, Linear up-sweep

Sweep duration 12 s

Listing time 4 s

Force 75%, 30% (at SP1, SP21)

Source operator OYO corporation

Number of shot points 11

Number of sweeps at one location 5, 10 (for geophone measurements)

DAS information

Interrogator unit Silixa iDAS v2

Fiber-optic cable Single-mode straight fiber

Laser pulse ping rate 20 kHz

Sampling frequency 1,000 Hz

Sampling interval 1.020952 m

Pulse width 5 m (5 ns in time axis)

Gauge length 10 m

Geophone information

Downhole tool DS-150 (Geospace Technologies Corporation) with 4 downhole shuttles

Components in a shuttle 3 (X, Y, Z)

Center frequency of the sensor 15 Hz

Sampling frequency 1,000 Hz

Receiver step 7.5 m

Cramp to contact the casing Magnetic

FIGURE 6
Comparison of SNR by geophone and DAS. Geophone data
were evaluated by a stack of five sweeps and the effect of stacking
to SNR is shown for DAS data.
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incident angle (Figure 8) became steeper, as expected. This step

provided a precise incident angle for the DAS amplitude trend

against the angle and also allowed the comparison of DAS

amplitude with both Vz and the total amplitude of the particle

velocity. We also compensated for the difference in apparent

velocity along the well, as shown in Eq. 7. Since the P-wave

velocity generally increases with depth, the amplitude ratio

without this modification increases at larger angles.

Figure 9 shows the ratios of DAS amplitude over Vz (A) and

over the total amplitude of the particle velocity (B) against the

incident angle. Dependencies are shown at all shot points against the

theoretical dependencies on the incident angle; i.e., cos θ for Vz and

cos 2 θ for the total velocity field. The results show fairly good

matching. At high incident angles (SP201), the data were smaller

than the theoretical relationship owing to difficulties in evaluating

small amplitude data from far offset data. Although there is a small

inconsistency in the far offset data, we believe that this relationship is

the most favorable result obtained in field DAS measurements.

4.3 Comparison of imaging results
between DAS and geophone data

We evaluated imaging from DAS and geophone data, where

only Vz components were used for geophone data processing.

First, we compared shot gathers of DAS and geophone

stacked data. Figure 10 shows the shot gathers collected at

each offset. In the near-offset geophone results, the noise was

FIGURE 7
Comparison of DAS and geophone data shot at a 650-m offset and a 700-m depth. (A)Wavefield in the time domain. (B) Amplitude spectrum.

FIGURE 8
Evaluation of the incident angle evaluated by the three geophone components when the vibrator is shot at SP61. The locus is obtained from the
time duration of the direct P-wave arrival.
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FIGURE 9
Incident angle dependency of DAS amplitude over the geophone amplitude evaluated by the direct P-wave. (A) Vz amplitude for geophone
data. (B) Geophone total amplitude. The colors and markers correspond to different shot points.

FIGURE 10
Shot gathers obtained by DAS (A) and geophone array (B) at each shot point.
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evenly aligned along the time axis because the sensitivity of the

Vz geophone array component was not even. This effect was

large in the near-offset survey. The quality of the shot gather was

good in both DAS and geophone, and the direct P- and S-waves

were clearly recognizable. From the first break time in the nearest

offset data, we evaluated a 1-D velocity model of the site for the

further analysis.

These results were used for image data processing. To image

DAS data, we utilized data at 7.5-m and 1-m intervals to compare

the effect of measurement density. The 7.5-m interval is the same

as that of the geophone, and 1 m is the resolution of the original

DAS data, although the SNR is inferior to the averaged data. The

peak position of source deconvolved data from DAS

measurement is about 5 ms ahead compared to that of

geophone data (Figure 7). This difference can be adjusted

with time integration of each trace. Signature deconvolution

(Isaenkov et al., 2020), would also be useful to adjust wavelets

and to obtain clear reflected events, although we did not do that

in this data analysis. After preconditioning, we followed the

general data processing flow for 2D-VSP. This workflow

includes wavefield separation and VSP-CMP transformation.

For wavefield separation, an FK-filter was used to isolate

primary PP reflections. This filter is also valid to exclude

diminishing S-waves. For time migration, we used normal

moveout (NMO) and common mid-point (CMP) stacking

techniques. Bins for migration were set at 5 m.

After time domain data processing, the time axis of the image

was converted to a depth domain (Figure 11). The white area in the

wide area view (upper raw) means that the reflection points cannot

be visualized by the configuration of this survey. The general

characteristics of the strong reflections were similar between the

DAS and geophone images. However, the results looked different in

the enlarged view. The reflections in geophone measurement were

not clear in the right (eastern) part shallower than 800 m, while the

continuity of reflections improved in DAS measurements, even in

7.5-m interval data. The coupling of the geophone at that shot point

may not have been not equal to that at other shots, as the geophone

tool must be relocated at each depth and shot point.

FIGURE 11
Migrated VPS images for 2-D walk away at a test site in Japan. Vz data [(A) 7.5-m intervals], averaged DAS data [(B) reduced to 7.5-m intervals],
and original DAS data [(C) 1-m intervals] were used for migration processing. The upper raw image represents a wide area, while the lower image is
the enlarged view around the well.
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Comparison of the results of DAS data at 7.5 and 1 m intervals

showed that the reflections were more clearly connected at smaller

intervals. This is because the number of traces at each bin for

migration was larger at 1 m intervals. This effect had advantages

despite the inferior SNR at each trace. This represents another

advantage of DAS-VSP with distributed sensing.

5 Discussion

To consider the observed characteristics of DAS data, we

computed synthetic wavefields from a point source excitation

using simple layered models. The calculated velocity field was

taken as the spatial derivative to obtain the strain rate. The

amplitude ratio between the strain rate and particle velocity of

the direct P-wave showed that the effect of inherent velocity is

more important than that of impedance, as previously suggested

in DAS papers (Daley et al., 2016; Isaenkov et al., 2020), but we

confirmed the compensation method for recovering the DAS

amplitude. Note that the determination of wavefield amplitude

near layer boundaries including the surface was difficult, even for

synthetic results. This difficulty occurs because some converted

waves are too close to separate near the boundaries. Therefore, we

considered two shot points to cover a wide range of incident

angles. This would be more severe in field surveys with

observation noise.

We demonstrated a walk-away DAS-VSP using a single-

mode fiber installed behind the casing of a borehole at a site in

Japan. During survey comparisons, DAS and 3C geophone data

were acquired at the same borehole. Using the survey data, we

performed two main analyses: we compared the amplitude ratio

of the direct P-wave as a function of the incident angle between

DAS and geophone data. To exclude the effect of surface waves,

we did not use shallow (<100 m) data. We also applied the same

compensation method as in a synthetic case, in which the

velocity trend was considered. Isaenkov et al. (2020)

discussed the effect of rock stiffness on the amplitude ratio.

This effect is essentially the same as our compensation method

since both methods consider changes in medium velocity. Our

results show very good agreement with the theoretical

relationship. We believe that the results are the best to date

among reported field results.

Field data were also imaged using DAS and geophone data.

The total time of data acquisition was the same except for the

wireline logging efforts to relocate the geophone array. Even

though the DAS data had a lower SNR compared to that for

geophone data at each trace and shot point, the connectivity of

the reflected waves was better in the DAS data. One reason for

this is the high-density data in DAS measurements. Many

traces was more important than the quality of individual traces

in the imaging analysis. Another reason is that the observation

points did not change in DAS measurements and the coupling

between DAS and the formation was invariant, illustrating the

advantages of DAS-VPS. In contrast, signal amplitudes with

high incident angles were weaker than those of the geophone

(Figure 7). This is the major limitation of DAS measurements.

Thus, it is better to design survey plans to exploit the

sensitivity of the DAS sensor. When data with a low-

sensitivity angle must be acquired, we should consider the

survey time to stack the data. These limitations are important

for cost-effective surveys, as in time-lapse monitoring of

subsurface CO2.

As many papers have indicated, DAS has lower sensitivity

than geophone (Figure 6). However, new interrogators with high

sensitivity are being developed. Moreover, the proper

combination of engineered fiber and interrogator reportedly

yields DAS sensitivity comparable to that of high-sensitivity

seismometers (Hartog et al., 2022; Shatalin et al., 2022). This

type of interrogator also has a larger dynamic range than that

used in the present study. Thus, the issue of sensitivity will

hopefully soon be solved.

6 Conclusion

We compared strain rates based on DAS and particle velocity

data using synthetically computed data and a field survey in

Japan. DAS amplitude depended on the incident angle of the

acoustic waves; however, we also confirmed its dependency on

the apparent velocity. The synthetic computations of artificial

layered models showed that the effect of the apparent velocity in

the layer is more important than that of the reflected waves. The

amplitude change due to reflection was automatically adjusted by

taking the ratio of the strain rate and the particle velocity, except

near the boundary zone. While the effect of apparent velocity has

already been suggested in the derivation of DASmeasurements, it

has been little discussed in the literature.

To examine the effectiveness and limitations of DAS

measurements in field surveys, we conducted a walk-away

VSP at a test site for DAS measurement in Japan. We

acquired DAS data using a combination of a single-mode

straight fiber installed behind the casing and a Silixa iDAS

v2 interrogator and also obtained a conventional geophone

array in the same wellbore. The amplitude ratio of DAS and

geophone as a function of the incident angle agreed well with the

theoretical relationship after modification of the effect of the

apparent velocity. Furthermore, we compared imaging results

obtained using a standard VSP analyzing workflow. The DAS

image was superior at near offset owing to the high-density data

and better repeatability compared to those for wireline logging.

These results will guide future survey designs, such as the offset

range of shot points, survey time, monitoring of small changes in

physical parameters, and surveys related to the incident angle of

the wavefield.
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Distributed acoustic sensing (DAS) is regarded as a novel acquisition technology

for seismic data. Compared with conventional electrical geophones, DAS has a

series of obvious advantages including low-cost, high spatial resolution, good

coverage, and strong resistance to the harsh environment. Noise attenuation is

an essential step in seismic data processing. However, there are two main

difficulties faced by the denoising task of DAS seismic data. On the one hand,

some background noise in DAS seismic data, such as optical low-frequency

noise, horizontal noise, and fading noise, is unique and not presented in the

conventional seismic data; on the other hand, the signal-to-noise ratio (SNR) of

DAS seismic data is relatively low. Recently, a convolutional neural network

(CNN) has shown superior denoising performance compared to the traditional

method. To follow this promising trend, we propose a multi-scale interactive

convolutional neural network (MSI-Net) and apply it to denoise the challenging

DAS seismic data. Different from most of the existing CNN architecture used in

seismic data denoising, theMSI-Net considers both coarse-scale and fine-scale

features by improving the inherent serial convolution to multi-scale parallel

convolution, which is beneficial to recover detailed information. Moreover, we

utilize some connections to achieve the information interaction between

different scales, which promotes the flow of information and enables the

network to extract more informative multi-scale features from the DAS

seismic data. Moreover, both synthetic and real examples demonstrate that

the proposed MSI-Net can effectively attenuate a variety of unique DAS

background noise and also completely recover the weak signals. Compared

with conventional CNN architecture, MSI-Net exhibits better performance in

global SNR and local details.

KEYWORDS

deep learning, multi-scale network, distributed acoustic sensing, DAS seismic data,
noise suppression, high-resolution
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Introduction

In the wake of developments in oil and gas exploration, the

quality requirements for seismic data have gradually increased,

finding a seismic data processing technology with higher

accuracy and resolution is also a difficult problem we must

face. Distributed acoustic sensing (DAS) is considered an

emerging acquisition technology in seismic exploration. DAS

uses changes in the phase information of the scattered optical

signal to record the wavefield (Spikes et al., 2019). Compared to

conventional electronic geophones, DAS has advantages in

acquisition geometry, such as low cost and high-density

observations. In recent years, DAS has been applied to vertical

seismic profile (VSP) data acquisition (Dong et al., 2022).

However, the scattered light signal with weak energy is

extremely susceptible to background noise, which negatively

affects the quality of the acquired seismic data (Binder et al.,

2020). In addition, the in-well acquisition environment also

brings new challenges to data processing, and some

disturbances are not present in conventional seismic surveys,

such as time-varying optical noise and coupling noise (Wang

et al., 2021). The seismic data collected in the field is mixed with a

wide variety of noise due to the underground geological

conditions, collection conditions and environmental factors.

Affected by the mixed noise, the quality of the real seismic

records decreases, and the signal-to-noise ratio (SNR) and

resolution of the data are relatively low, which brings

difficulties to subsequent inversion, imaging and

interpretation. Improving the SNR and resolution of data is of

great significance to the study of underground structures and the

exploration of oil, gas and mineral resources.

In seismic data processing, obtaining data with high SNR and

resolution is the goal. The noise can interfere with the effective

seismic information to cause a low SNR, at the same time,

narrowing the effective frequency band of the seismic data

and reducing the data resolution. It is a challenging problem

to reduce the noise in seismic data while taking into account the

resolution. Among the traditional noise reduction methods,

Band-pass filtering, Wiener filtering (Mendel, 1977) and F-X

deconvolution (Canales, 1984) was used earlier for seismic noise

suppression. Several time-frequency attenuation algorithms have

also been developed to improve the denoising capability of

seismic data, including short-time Fourier transform (Lu and

Li, 2013) and time-frequency peak filtering (TFPF) (Wu et al.,

2011). In general, the denoising principle of these methods is

based on the difference between the reflected signal and the

background noise in terms of physical characteristics or

frequency components to eliminate complex interference.

However, the above methods cannot handle the complex DAS

background noise. In addition, multi-scale denoising methods

use the features of the sparse decomposition results to construct

suitable filters for the purpose to suppress the noise to retain the

effective signal, and typical methods include wavelet transform

filtering (Mousavi et al., 2016; Anvari et al., 2017), Curvelet

transform filtering (Neelamani et al., 2008; Gorszczyk et al.,

2014), Shearlet transform filtering (Gan et al., 2015; Chen and

Fomel 2018), empirical mode decomposition (EMD) (Bekara and

van der Baan, 2009; Amezquita Sanchez et al., 2017) and

variational modal decomposition (VMD) (Kesharwani et al.,

2021). Unfortunately, when dealing with DAS recordings

containing complex noise, researchers have difficulty in

obtaining optimal filtering parameters, which leads to noise

residuals and loss of amplitude of the effective signal. In

addition, many other methods have been widely used in

seismic data processing including singular value

decomposition (SVD) (Oropeza and Sacchi, 2011), dictionary

learning methods (Chen et al., 2016; Yarman et al., 2018; Wang

and Ma, 2020), robust principal component analysis (RPCA)

(Cheng et al., 2015; Liu et al., 2021), but the application of these

methods in DAS data denoising is rarely reported. It is difficult

for conventional methods to provide a better processing effect

when the DAS data is seriously disturbed by noise, and give

consideration to SNR and resolution. Meanwhile, it involves the

manual selection of various parameters in data processing for

conventional methods introduced above, which greatly increases

the running time of the processing work and depends on artificial

experience heavily. For the sake of high-precision seismic

exploration, more intelligent and faster data processing

technology is urgently needed.

In recent years, deep learning methods have become popular

solutions to various seismic data processing problems. Deep

learning (DL) (Lecun et al., 2015) is considered an important

machine learning method that has started to be introduced into

seismic data processing. And there are already some successful

applications such as seismic data denoising (Chen et al., 2019;

Saad and Chen, 2020), arrival picking (Tsai et al., 2018; Yuan

et al., 2019; Zhang et al., 2020), fault identification (Wu et al.,

2019), lithology prediction (Zhang et al., 2018) and geologic

structure classification (Li, 2018). The deep learning algorithm

can automatically learn highly complex nonlinear features, and it

is applied to the suppression of background noise in pre-stack

seismic data to achieve automatic and efficient background noise

separation by automatically learning random noise features. Yu

et al. (2019) proposed an intelligent CNN-based denoising

method, which does not require precise modeling of signal

and noise, nor optimization of parameter tuning. Wang and

Chen (2019) used a deep CNN framework with residual learning

for 2-D post-stack seismic random noise attenuation. Treating

seismic signals as time series, Saad and Chen (2020) proposed a

deep denoising autoencoder (DDAE) to attenuate seismic

random noise. Li et al. (2022) proposed to leverage a deep

convolutional neural network (CNN) to achieve seismic image

super-resolution and denoising simultaneously. Jiang et al.

(2021) proposed an improved convolutional autoencoder

(CAE) method to achieve simultaneous reconstruction and

denoising of seismic data. Yang et al. (2021) proposed an
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improved ResNet to achieve seismic random noise attenuation.

Wang et al. (2022)) are applied to seismic noise attenuation tasks

(Creswell et al., 2017; Wang et al., 2021), and some successful

applications on ground record processing have been achieved.

Furthermore, transfer learning was introduced into the training of

denoising networks to enhance the generalization of the model to

process the real records (Li et al., 2022; Sun et al., 2022). Supervised

learning-based denoising methods need to label a large number of

clean seismic data to fit the network, which will increase labor and

computational costs. Therefore, some denoising models based on

unsupervised learning or self-supervised learning have been

proposed to address the lack of paired data in seismic signal

processing (Wang et al., 2022; Yang et al., 2021; Liu et al., 2021;

2022; Qiu et al., 2022). Meanwhile, deep learning-based algorithms

have also achieved good results in denoising DAS records (Zhao

et al., 2022;Wang et al., 2021). In general, these denoising networks

aim to establish a non-linear high-dimensional mapping

relationship between noisy records and desired signals. In the

training process, we can use training data to strengthen the learned

mapping, and the final denoising models are obtained after

training and have been proven to be effective in practical

application. Notably, unlike conventional methods, the

denoising network can be considered a “data-driven” approach

to adaptively accomplish complex seismic noise suppression

without parameter fine-tuning. If the training data is complete,

CNN-based networks can always achieve more advantageous

results than conventional methods. However, most of the

traditional networks, such as DnCNN (Zhang et al., 2017), are

based on single-scale information to extract potential features,

which has reduced effectiveness and generalization when dealing

with complex seismic data (Zhong et al., 2022). In addition, most

existing methods transmit input through a network and

reconstruct output at the last layer. Although the

characterization learned by this type of network can aggregate

local features with the increase of layers, it also has the

characteristics of coarse scale, that is, the resolution after

reconstruction is not fine enough and some detail features are

ignored. As a result, it is difficult to obtain accurate prediction

results in the task of seismic data processing, especially when the

data is disturbed by strong noise. The stronger noise can lead to a

rapid decrease in the sensitivity of the final output characterization

space, a decrease in the accuracy of the reconstruction, and even

some false seismic events.

Therefore, there has been an increasing interest in designing

efficient denoising networks to improve the processing capability

of DAS-VSP data. To solve the above problem, a multi-scale

interactive deep convolutional neural network (MSI-Net) is

constructed in this paper. The network builds a multi-scale

framework by gradually fusing sub-networks on the main

network, and repeated information interactions are performed

on parallel multi-scale sub-networks to complete the repetitive

information fusion between scales, which enhances the

generalization ability of the network. The network can learn

more abundant multi-scale characterization and reconstruct

high-resolution seismic data. The experiment results show that

the network can not only suppress noise effectively, but also

predict effective signals accurately, it can achieve processing

requirements of high SNR and resolution, and greatly reduce

false seismic events. We construct a high-quality training dataset

containing synthetic signals and actual DAS background noise to

train the network. We also process synthetic and field DAS data

to check the effectiveness of the proposed network. Compared

with traditional denoising methods and recently proposed

denoising networks, the proposed method in this paper has

advantages in DAS background noise attenuation and weak

signal amplitude retention.

Methods

DAS records often contain complex wave fields, including

incident down-going waves and reflected up-going waves. The

recovery of events in seismic records is very important,

however, it is difficult to identify seismic events with the

interference of noise, hence noise suppression is necessary.

The convolutional neural network can eliminate noise, and

also plays an important role in the high-resolution

reconstruction of signals. To make the signal recovery more

accurate, it is common practice to obtain exact semantic

information through down-sampling, and then perform an

up-sampling operation to restore high-resolution signal

details, such as U-Net (Ronneberger et al., 2015). However,

this practice leads to some loss of effective information in the

continuous upsampling and downsampling. If the high-

resolution transmission is maintained throughout the whole

process, such as DnCNN (Zhang et al., 2017), a wider range of

perceptions cannot be obtained, and some false events are often

generated in the results. In this paper, a wide range of semantic

information is obtained through parallel multiple resolution

sub-networks and continuous information interaction between

different network branches. And the proposed method achieves

the purpose of recovering signal details accurately while

suppressing noise effectively. To better denoise the actual

DAS data, we analyzed the wave fields and complex noise in

real DAS data. Then, we constructed a dedicated training set to

train the model. The following sections introduce the analysis of

wavefield and noise in the DAS record, the construction of the

dataset, the structure of the network and the denoising

principle.

Analysis of wavefield and noise in DAS-VSP

Figure 1 shows DAS-VSP data acquired from Xinjiang,

western China. The horizontal coordinate represents the

number of seismic traces and the vertical coordinate
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represents the time. The time sampling interval of the DAS data

shown is 400 μs and the spatial sampling interval is 1 m. From the

figure, we can observe that the data are heavily contaminated by

noise, and the effective signals such as the incident down-going

waves (as indicated by the blue line) and reflected up-going waves

(as indicated by the yellow line) are almost covered by noise. It can

be observed that the types of noise are also complex, such as

random noise (as shown in region A), background abnormal

interference (as shown in region B), fading noise (as shown in

region C), horizontal noise (as shown in region D) and

checkerboard noise (as shown in region E) and coupling noise

(as shown in region F). The characteristics and causes of these

noises are described as follows.

The random noise is common background noise in DAS-

VSP data, with a wide frequency band and strong energy, mainly

caused by vibration during data acquisition. The source of noise

may come from machine vibration, underground random

vibration, current disturbance, etc. Random noise is generally

more uniformly distributed and is the main factor affecting the

quality of DAS-VSP data.

The abnormal interference with low dominant frequency and

very strong energy may be caused by downhole temperature

anomalies. The abnormal interference tends to have large areas

and high amplitudes in the records. In the presence of abnormal

interference, the effective signal is completely covered and the

DAS-VSP data quality is seriously affected.

The fading noise is caused by the phase canceling interference of

randomly spaced backscattered light. Fading noise is mainly

manifested in long periods and high amplitude. In general, the

fading noise appears on the uppermost side of the record, less

affecting the effective signal below the first arrival wave. It is easy to

mix with horizontal noise to generate new types of noise.

The horizontal noise is caused by vibration during optical

measurements. Shaking the interrogator box is probably the

main trigger. The potential leakage of electronic equipment

can also be another cause of horizontal noise. The horizontal

FIGURE 1
DAS VSP data with several common noises. Areas (A–F) are marked with random noise, background abnormal interference, fading noise,
horizontal noise, checkerboard noise and coupling noise, respectively.
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noise usually appears as a short horizontal band with essentially

the same phase in all traces and decreasing in amplitude

over time.

The checkerboard noise is generally generated by a

mixture of horizontal noise and fading noise. The

checkerboard noise has approximately the same properties

as the horizontal noise. For example, both checkerboard noise

and horizontal noise have horizontal motion, and the

amplitude gradually decays over time. However,

checkerboard noise tends to have different phases in

different traces. In general, the checkerboard noise is also

more distributed before the first arrival.

The coupling noise is mainly caused by the poor coupling of

the fiber and the measurement line. It often accompanies the

reflected signal and is highly similar to the signal within the local

view. Conventional methods are generally more difficult to

distinguish between signal and coupled noise. At present,

there are three ways to deploy DAS systems in wells. The first

one is to permanently fix the fiber outside the casing. It

maximizes the coupling between the fiber and the formation,

resulting in less coupling noise in the acquired DAS data (Jiang

et al., 2016). The second one is to fix the fiber to the tubing and

there will still be a small amount of coupling noise. The third one

is to use weights to suspend the fiber in the casing. However, the

FIGURE 2
Construction of the dataset. (A) The velocity model. (B) The corresponding synthetic DAS-VSP record. (C) Samples of the signal dataset.
(D) Samples of the noise dataset. These patches are the random noise, the abnormal interference, the checkerboard noise, the fading noise, the
horizontal noise and the coupling noise from top to bottom.
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optical fiber is not in close contact with the borehole, which may

produce strong coupling noise (Constantinou et al., 2016).

Construction of training set

The purpose of deep learning is to learn the feature, which

can obtain hierarchical feature information adaptively through

the network, solving the problem of manually designing

operators for feature extraction in the past. Dataset is an

important basis for deep learning algorithms, and its

completeness determines the potential upper limit that the

method can touch. In seismic exploration, it is difficult to

obtain pure seismic signals. To obtain a more complete and

realistic training set, forward modeling is used to construct a pure

signal set as shown in Figure 2. For DAS-VSP, to obtain

subsurface information, we usually place artificial sources to

excite the seismic wave field and place receivers along the

longitudinal direction to record the seismic waves. In this

paper, the synthetic data are modeled based on the acoustic

wave equation in the time domain, as shown in the following

equation.

z2u(x, y, t)
zt2

� v(x, y)2(z
2u

zx2
+ z2u

zy2
) + s(x, y, t) (1)

where v represents the wave velocity and u represents the

acoustic wavefield. s(x, y, t) denotes the function of the

source. (x, y) denotes the spatial location and t denotes time.

We have built 100 velocity models with different stratigraphic

configurations. The detailed parameters of the model are shown

in Table 1. After preparing the velocity models, the shots of the

seismic data corresponding to each velocity model are generated

in the numerical simulation of the acoustic wavefield. We solve

the acoustic wave equations using a staggered-grid finite-

difference method in the time domain. The size of each grid

is defined as 10 m × 10 m. As for the observation of each velocity

model, we place a source as shown in Figure 2 to simulate the shot

gathers. The source is placed at (500, 0) m. The survey line is

placed along the vertical direction at x= 10 m. The recording

geometry consists of 2000 receivers. In Figures 2A,B, we show a

representative velocity model and the corresponding generated

seismic record. By solving the wave equation, 100 simulated pure

seismic records with a size of 2,000 × 2,000 are obtained, which

can be used as a part of the pure signal set for network learning.

To adapt to the network training, we divide the amplitude-

normalized synthetic seismic records into patches with a size

of 400 × 400 to obtain the pure signal setX � {x1, x2,/, xe}. Part
of the pure signal patch is shown in Figure 2C.

A large amount of noise data is needed to synthesize the noise

set. The noise in the training set should be as close as possible to

the noise in field seismic data. We have selected various types of

noise data collected from the actual DAS records to enrich the

noisy set. A complete noise set N � {n1, n2,/, ne} can be built,

and Figure 2D shows a portion of the noise patch. Similarly, the

noise data is divided into patches with a size of 400 × 400 and

superimposed with the pure signal patches to generate a noisy set

Y � {y1, y2,/, yg}.

The structure of network

In the denoising process, the higher the resolution of the local

structure, the more conducive to the reduction of the noise, but

the rich information brought by the high resolution will also

produce misjudgment in processing, resulting in some false

seismic events. Therefore, it is also important to grasp the

overall structure of data, which requires us to use data at

different resolutions. The lower-resolution data components

are more conducive to the recovery of the overall signal. It is of

great significance to improve the performance of the overall task

by analyzing and processing signals at different resolutions.

How to design a network with multi-resolution representation

is a key issue for us to consider. To make the network achieve

multi-scale feature extraction, the model gradually adds sub-

networks with low-resolution feature maps in parallel to the

main network with high-resolution feature maps to complete

the feature fusion between scales. The multi-resolution

interactive network shown in Figure 3A is used for noise

suppression and high-resolution reconstruction of seismic

data. The design idea of the proposed network takes

reference from HRNet (Sun et al., 2019). In Figure 3A, the

horizontal transfer process represents the representation

changes with the increase of processing layers, and the

vertical process represents the scale change of the feature

maps. The first level (which we called stage 1) shows the

main network, and its feature map is maintained at a high-

resolution standard. The signal is transmitted through the main

network in stage1, and more low-resolution sub-networks are

gradually added in parallel in subsequent stages. The resolution

of the parallel sub-network in the latter stage is composed of all

previous resolutions and a new resolution, that is, in the n-th

TABLE 1 The parameters of the forward modeling.

Parameter Value

Source number 1

The distance between the source and well 400–500 m

Receiver number 2000

Spatial sampling interval 1 m

Velocity model size (500,2000)

Sampling time interval 4 × 10−4 s

Seismic wavelet Ricker

Dominant frequency 50–70 Hz

Maximum traveltime 2 s
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stage, feature processing is performed in sub-networks of n

resolutions in parallel. Every time a lower resolution sub-

network is added, the resolution is reduced to half, and the

corresponding channels are doubled.

In addition to analyzing signals in a multi-scale manner, the

repeated exchange of information at various resolutions to

promote multi-resolution information fusion is also an

important reason for the network to maintain high

performance. Similarly, it enables the network to maintain

the accuracy of high-resolution reconstruction of signals

under the blessing of low-resolution features. As shown in

Figure 3B, taking a fusion at the 3-th stage as an example, it

can be seen that the output of each resolution is related to the

inputs at three different resolutions, namely

Rτ ′ � T1→τ(R1) + T2→τ(R2) + T3→τ(R3). At the same time, a

new output at a lower resolution is produced, that is,

R4′ � T1→4(R1) + T2→4(R2) + T3→4(R3), where Ri represents

the input feature map of different resolutions, R′
i represents

the output feature map of different resolutions, and Ti→τ is an

operator to process features between different resolutions. The

operator is a down-sampling operation from high to low

resolution, an up-sampling operation from low to high

resolution, and the identity during the same resolution,

respectively. In this way, while the parallel convolutional

operations move forward synchronously, the network also

carries out feature interaction between scales, to realize

multi-scale feature fusion and extraction. Among them, the

basic block adopts the structure of ResNet (He et al., 2016). The

detailed introduction of each module is shown in Figure 3C.

The introduction of each functional module can be obtained in

FIGURE 3
The architecture of the proposed network. (A) The architecture of MSI-Net. (B) The structure of a stage (Take the 3-th stage as an example)
(C) Detailed structure of each part in Figure 3B.

TABLE 2 The specific description of the layers or functions.

Layers Description Function

Conv 2d Convolution y � W*x + b

BN Batch Normalization Normalize all samples for the entire batch

ReLU Rectified Linear Unit y � max(0, x)
Upsample Upsample function Upsample feature maps
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Table 2. The designed network consists of four stages, and the

feature extraction of each resolution in every stage is completed

by four residual convolution operations. With the final

integration of the feature maps obtained on each resolution,

noise suppression and high-resolution signal reconstruction

can be completed.

The denoising principle

In this paper, the DAS-VSP record disturbed by noise can be

expressed as:

y � x + n (2)

among them, x refers to the potential pure seismic signal and n

refers to noise interference. In the proposed structure, the

constructed high-resolution reconstruction network aims to

learn the end-to-end mapping function between the noisy

signal y and the pure signal x, and the predicted pure signal

can be expressed as:

~x � H(y;Θ) (3)

In Equation 3, H represents the multi-scale interactive

reconstruction network, Θ � {W, b} is the network optimized

parameters with weights W and biases b.

Figure 4 shows the workflow of the DL-based denoising

algorithm. During the training process, we can calculate the

error between the network output ~x and the pure record x, and

update the network parameters by gradient backpropagation.

After several iterations, the error will converge to a small

enough value and the network parameters can be

determined. In the inference process, given the seismic data,

the denoised DAS data can be predicted by the network. In this

paper, the L2 loss function is used as the cost function to guide

the training process of the model, and the equation is given as

follows:

L � 1
2N

∑
N

i�1

����H(yi;Θ) − xi

����2F (4)

where H(yi;Θ) represents the denoising result of the training
sample yi, and xi represents the pure signal which we called

the label, that is, the output we expect from the network. i is

the index of the sample and N is the batch size. The gradient

descent method is used to minimize the loss function. To

improve the reconstruction ability for seismic signals, the

network adjusts the weight parameters reversely layer by

layer and performs frequent iterative training. Specifically,

TABLE 3 The details of training the proposed network.

Hyperparameter Value

Batch size 16

Epochs 200

Learning rate range [1 × 10−4; 1 × 10−3]

Patch size 400×400

Optimizer Adam

FIGURE 4
The flowchart of MSI-Net denoising procedures.
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we use Adam optimizer to optimize the network. More

network training parameters can be found in Table 3. After

the training, we use the trained network to process the noisy

DAS records.

Results

Experiment settings

Synthetic DAS-VSP data were generated by forward

modeling, and a seven-layer 2D geological model is shown in

Figure 5. The horizontal coordinates indicate the horizontal

distance and the vertical coordinates indicate the depth. The

velocities of the P-wave from the top to the bottom are 2,000,

2,250, 2,500, 2,750, 3,000, 3,250, and 3,500 m/s. And the media

densities from the top to the bottom are 2,050, 2,100, 2,150, 2,200,

2,250, and 2,300 kg/m3. Next, we set up the acquisition geometry.

As shown in Figure 5, the inverted triangle represents the source

and the vertical black line represents the measurement line

formed by the fiber optic sensor. The time sampling interval

is 400 μs, and the spatial sampling interval is 1 m. By solving the

elastic wave equation, we can obtain the synthetic clean DAS

-VSP data as shown in Figure 5B, where D1 is the direct wave,

R1-R5 are the reflected up-going wave, and D2-D5 are the

incident down-going waves. Common noises in DAS, such as

random noise (as shown in region A), background anomalous

interference (as shown in region B), fading noise (as shown in

region C), horizontal noise (as shown in region D), and

checkerboard noise (as shown in region E) are added as

shown in Figure 5C. Because the generation mechanism of

coupling noise is not yet clear, in the simulation experiment,

it is not considered to add coupling noise to the simulation DAS

record. The remade simulated pure signals and the noise

collected together form synthetic noisy records and are used

as a test. Figure 5D shows the synthesized noisy DAS-VSP data.

We synthesized 10 noise-bearing records as the test set. The effect

of the proposed method on the signal reconstruction task is

evaluated on the test data set. The data used for testing and the

data used for training are independent of each other.

Experiments were carried out by the Pytorch framework for

network training and testing in the Python environment and

deployed on a computer equipped with Inter Xeon CPU E5-2620

and double Nvidia GeForce GTX 1080Ti GPUs. The proposed

method is used to process synthetic and field noisy records.

Meanwhile, some competitive methods are also used to process

records, including the conventional method—band-pass

filtering, wavelet transform filtering, weighted nuclear norm

minimization (WNNM) and the deep learning common

models—DnCNN and U-Net. For the convenience of

description, the proposed method in this paper is calledMSI-Net.

Synthetic data denoising results

Taking a synthetic DAS-VSP record containing complex

noise as an example in Figure 5D, this paper shows the signal

reconstruction results and removed noise in Figure 6 of different

methods. The SNR of the synthesized noisy record is −0.5132 dB.

FIGURE 5
Construction of the noisy synthetic DAS-VSP record. (A) The
velocity model. (B) The theoretical pure DAS-VSP record. (C) The
added field noise. (D)The synthetic noisy record with the SNR of
-0.5132 dB.
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We can observe thatMSI-Net can suppress many common noises at

one time, and the denoising process is more efficient and faster. The

results are shown in Figures 6K,L, where Figure 6K is the denoising

result and Figure 6L is the difference between noisy input and the

predicted pure signal, which can also be considered as the noise

predicted by the method. From the quantitative analysis, on the

whole, the SNR of the results of the three deep learning methods is

much higher than that of the traditional methods. In deep learning

methods, the SNR of the result of the MSI-Net (19.0062 dB) is the

highest, which is higher than that of DnCNN (18.3209 dB) and

U-Net (18.4935 dB). From the point of view of signal recovery, all

kinds of signals in the wave field are recovered, and the direct wave,

reflected up-going wave and incident down-going waves which were

originally polluted by noise can be observed, which will be beneficial

to the subsequent inversion and imaging. From the point of view of

noise suppression, all noises are suppressed. In contrast, the

denoising effect of the conventional method for DAS-VSP

records does not meet the requirements of seismic exploration.

The analysis of the processing results shows that band-pass filtering

can only attenuate noise in a defined frequency band in Figure 6A,

which not only fails to suppress the noise but also damages the

signal. Wavelet transform filtering can only remove a part of

random noise, and most of the noise is still retained in the

denoised record in Figure 6C. The filtering effect of WNNM is

poor, only part of the noise can be removed mechanically, there is

still a large amount of noise residue in the record in Figure 6E, and

obvious signal leakage can also be observed in the removed noise

result in Figure 6F, which is unacceptable for reconstruction.

Compared with the three traditional methods, DnCNN, U-Net

and MSI-Net have better denoising effects, the noise suppression

is more uniform and thorough, and there is no obvious signal

leakage in the removed noise results.

The comparison results of the three deep learning methods

are more focused on the high-resolution reconstruction of the

signal structure. For MSI-Net, the idea of multi-scale analysis is

adopted, and the suppression effect of noise is better than that of

DnCNN (only at a single scale). At the same time, we can see that

MSI-Net has the highest resolution in denoised recovery, and the

recovery effect of weak signals is better than DnCNN and U-net,

which shows that MSI-Net is more suitable for the high-

resolution requirements of seismic exploration. We also

analyze the signals and differences of various methods in the

frequency domain as shown in Figure 7, and mainly expect to

observe whether the signals leaked by various methods through

the frequency spectrum. From the frequency domain, it can be

seen that the traditional method does not recover the signal well.

At the same time, there are different degrees of signal leakage in

their differences. In contrast, the results of the three deep learning

methods are closer to the original record. And it is difficult to see

the leakage of the signal in the difference between the three

methods. The three deep learning methods are not significantly

different in the frequency domain. The comparison of the three

kinds of deep learning relies more on quantitative analysis.

FIGURE 6
Comparisons for denoising results of different methods.
(A–B) The denoising result with the SNR of 1.9371 dB and
predicted noise of Band-pass filtering. (C–D) The denoising
result with the SNR of 1.0421 dB and predicted noise of
Wavelet transform filtering. (E–F) The denoising result with the
SNR of 0.5712 dB and predicted noise of WNNM. (G–H) The
denoising result with the SNR of 18.3209 dB and predicted
noise of DnCNN. (I–J) The denoising result with the SNR of
18.4935 dB and predicted noise of U-Net (K–L) The denoising
result with the SNR of 19.0062 dB and predicted noise of
MSI-Net.
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The signal-to-noise ratio (SNR) is one of the important

indexes to measure the quality of seismic data, and the

improvement of SNR is an important index to evaluate the

performance of denoising methods. According to the size of

the calculation, SNR can be divided into global SNR and local

SNR. Global SNR is usually used to measure the overall quality of

seismic data. Besides, mean absolute error (MAE), mean square

error (MSE) and structural similarity (SSIM) (Wang et al., 2004)

are commonly used measures. In this paper, SNR, MAE, MSE

and SSIM are used to quantitatively evaluate several methods.

Generally speaking, higher SNR, SSIM and smaller MAE,

MSE represent better denoising results. The denoising results of

different methods are shown in Table 4, fromwhich it can be seen

that MSI-Net has the highest performance in the evaluation of

four indexes. We also realize that the global SNR may not be

sensitive to the quality of local data. There may be some cases

FIGURE 7
F-K domain analysis for the denoising results of differentmethods. (A,B) F-K spectrumof the pure record and noise data. (C,D) F-K spectra of the
denoising results and predicted noise of Band-pass filtering. (E,F) F-K spectra of the denoising results and predicted noise of Wavelet Transform
filtering. (G,H) F-K spectra of the denoising results and predicted noise of WNNM. (I,J) F-K spectra of the denoising result and predicted noise of
DnCNN (K,L) F-K spectra of the denoising result and predicted noise of U-Net (M,N) F-K spectra of the denoising result and predicted noise of
MSI-Net.
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FIGURE 8
Local SNR analysis. (A) Local SNR of the synthetic noisy DAS-VSP data. (B–G) Local SNR of the denoised result of Band-pass filtering, Wavelet
transform filtering, WNNM, DnCNN, U-Net, MSI-Net, respectively.
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where the local data quality is poor, but the overall SNR is high,

which is unacceptable for DAS records with large differences in

global. The local SNR can describe the quality of local seismic

data in detail, so it is used to quantitatively analyze the denoising

performance of the proposed method. A moving window with a

size of 5 × 5 and a step of one is used to segment DAS-VSP data,

and the local SNR is calculated in the moving window. The local

SNR of the data at (t, x) can be expressed as

SNR(t, x) � 10log10
∑t+(w−1)/2

i�t−(w−1)/2∑
x+(w−1)/2
j�x−(w−1)/2(S(i, j) − �S(i, j))2

∑t+(w−1)/2
i�t−(w−1)/2∑

x+(w−1)/2
j�x−(w−1)/2(Dn(i, j) −Dn(i, j))2

(5)
where Sis the pure signal and Dnis the denoised data. �Sand Dn is

the mean of Sand Dn, respectively. And w is the window length.

The local SNR of the result of the MSI-Net and the methods for

comparison is shown in Figure 8, where the abscissa is the

number of seismic traces, the ordinate is the sampling point

and the number in the color bar is the SNR (dB). Figure 8A shows

the local SNR of synthetic noisy DAS-VSP data. We can see that

the local SNR of areas affected by different noises is low, which is

consistent with the actual situation. Figure 8G shows the local

SNR of the results processed by the proposed method. It can be

seen that the method proposed in this paper has the best

performance in improving the local SNR.

Denoising results of field DAS-VSP data

To verify the practicability and generalization performance

of the network, the field DAS-VSP data was processed through

the proposed method and other competitive methods. The time

sampling interval of the DAS data shown is 400 μs and the spatial

sampling interval is 1 m. The processing results are shown in

Figure 9. From the field seismic records, it can be observed that

there is a lot of noise in the records, and the SNR is generally low.

Some random noise interferes with the presentation of effective

signals seriously and even submerges the seismic events

completely. Traditional methods are less effective in denoising

the actual records. Band-pass filtering makes a rough distinction

between signal and noise, greatly destroying the valid signal in

Figure 10A. The reconstructed result of wavelet transform

filtering still retains some random noise, and the recovery of

the effective signal is also poor in Figure 10B. The suppression

effect ofWNNM on various kinds of noise is not obvious, and the

result after denoising still retains a large number of various kinds

of noise in Figure 10C. It can be seen that, compared with the

traditional denoising methods, the MSI-Net is effective for signal

recovery and noise suppression in actual records. As shown in the

blue area in Figure 10F, the reflected up-going wave and the

converted wave, which were originally seriously affected by noise,

become clearer and more continuous after denoising, which

proves that MSI-Net has a good ability to recover the signals

in DAS-VSP. As shown in the red area in Figure 10F, the reflected

up-going wave with weak energy can hardly be observed under

the influence of noise. After being treated by the MSI-Net, it is

obviously recovered. Compared with DnCNN and U-Net, the

amplified signal leakage of the method proposed in this paper is

obviously less. It proves that MSI-Net has a better ability to retain

valid signals. This makes the MSI-Net better meet the high

amplitude-preserving requirements of DAS-VSP data

processing. For the actual records after processing, we also

observe that the first arrival of the processed direct wave is

discontinuous. The first arrival wave in the original record may

be discontinuous due to the poor coupling of the optical fiber

during the data acquisition. The neural network not only

removes noise but also restores weak signals. This also causes

the discontinuity of the first arrivals to be more prominent. This

problem can be resolved during acquisition.

FIGURE 9
Field DAS-VSP data.

TABLE 4 Performance statistics of different denoising methods on the
test sets.

Metric MAE MSE SNR SSIM

The original record 0.18832 0.12074 −0.4005 0.0516

Bandpass filtering 0.0947 0.0728 1.8221 0.1495

Wavelet transform filtering 0.1565 0.0907 0.8423 0.0518

WNNM 0.1611 0.0991 0.4593 0.0881

DnCNN 0.0293 0.0016 18.3303 0.3641

U-Net 0.0278 0.0016 18.4876 0.4081

MSI-Net 0.0274 0.0014 19.0006 0.4127
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FIGURE 10
Comparisons for the denoising results of the field DAS-VSP record. (A–F) The denoising results for Band-pass filtering, Wavelet transform
filtering, WNNM, DnCNN, U-Net, and MSI-Net, respectively.
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FIGURE 11
Local enlargements for the denoising results of different methods. (A) Local enlargements of the field noisy DAS-VSP data. (B–G) Local
enlargements of denoising results by utilizing Band-pass filtering, Wavelet transform filtering, WNNM, DnCNN, U-Net, and MSI-Net, respectively.
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FIGURE 12
Comparisons for the predicted noise of different methods. (A–F) The predicted noise for Band-pass filtering, Wavelet transform filtering,
WNNM, DnCNN, U-Net, and MSI-Net, respectively.
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To further illustrate the denoising ability of different

methods, we selected a representative local enlargement to

evaluate them in detail in Figure 11. Though the interference

of random noise can be eliminated basically, the three deep

learning methods have different performances in the recovery of

signals. Observing the magnified partial processing results, it can

be found that the recovered signals recovered by DnCNN shown

in Figure 11E are not continuous due to the relatively small

receptive field. In DnCNN, the features are only based on single-

scale analysis, and the expansion of the receptive field can only

depend on the increase of the number of layers, which makes it

difficult to expand the receptive field of DnCNN too much.

The continuity of reconstructed signals by U-Net shown in

Figure 11F is relatively better, but some details of the signals are

still missing. On the whole, the MSI-Net has more advanced

effects on the high-resolution reconstruction of signals, whether

in the maintenance of events continuity or the recovery of signal

details as shown in Figure 11G. From the local view, the method

proposed in this paper is obviously better for signal recovery.

Specifically, DnCNN is always maintained in high-resolution

representation, so the prediction of the signal may be limited by

the local receptive field, which is often vague. U-Net adopts the

processing mode of downsampling before upsampling, and its

recovery effect for high resolution is not as good as that of MSI-

Net. The MSI-Net adopts a multi-scale processing method, and it

also frequently uses information exchange among scales, which

better fuses multi-scale signals, so it has a better effect on high-

resolution restoration.

In addition, the difference between each method is shown in

Figure 12. From the difference, we can observe that there is often

some residual signal in the results processed by the conventional

method. For example, the leakage of the signal can be clearly

observed in the difference in the band-pass filtering. In contrast,

it can be seen that the signal leakage in the difference between the

three deep learning-based methods is very small. Among them,

there is basically no signal leakage in the difference between the

MSI-Net. It proves that the method proposed in this paper

basically does not damage the effective signal.

FIGURE 13
The denoising result of another field DAS-VSP record. (A) The new field DAS-VSP data. (B) The denoising results for the proposed method.
(C) The predicted noise of the proposed method.
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The generalization ability is a crucial evaluation criterion

for a denoising network in practice applications. The main

purpose of training the network is to obtain capture features

and learns the laws from the training data. The model should

have the generalization ability that can make the trained

model perform well when processing different data with a

similar pattern. To test the generalization performance of

MSI-Net, we utilize MSI-Net to process more records.

Figure 13A shows other DAS records that contain various

types of noise. It was collected from other wells in the same

region as the record shown in Figure 9. Figure 13B shows the

result processed by MSI-Net, and Figure 13C shows the

difference after denoising. It can be seen that for each

DAS record, the effective signal has been completely

restored. The MSI-Net can still maintain good

performance in the denoising of other records, indicating

that our model has a good generalization ability for DAS

records. At the same time, the different kinds of noise in the

DAS-VSP record were completely predicted. In particular,

the trained network can also accurately predict the coupled

noise in the record. This is even more important for the high-

resolution reconstruction of the DAS record.

Conclusion

In this paper, we proposed a network for high-resolution

reconstruction of DAS-VSP records. With the help of multi-

scale feature learning and frequent information interaction

between scales, the network can successfully acquire abundant

multi-resolution characterizations. The low-resolution

information of different scales is used to supplement the

high-resolution information at the same time, to realize

accurate high-resolution reconstruction. The proposed

method achieves an excellent reconstruction effect in

processing synthetic and field DAS-VSP records, especially

improving the SNR and resolution. Benefiting from multi-

scale analysis, the network recovers local details better than

previous general network architectures. High-resolution

reconstructed records can have positive implications for

subsequent imaging. In addition, the multi-scale analysis

also inevitably increases the computational cost, so

more efficient multi-scale strategies will be explored in the

future.
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of distributed acoustic sensing
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In recent years, distributed optical fiber acoustic sensing (DAS) technology has

been increasingly used for vertical seismic profile (VSP) exploration. Even

though this technology has the advantages of high spatial resolution, strong

resistance to high temperature and pressure variations, long sensing distance,

DAS seismic noise has expanded from random noise to optical abnormal noise,

fading noise and horizontal noise, etc. This seriously affects the quality of the

seismic data and brings huge challenges to subsequent imaging, inversion and

interpretation. Moreover, the noise is more complex and more difficult to

simultaneously suppress using traditional methods. Therefore, for the

purpose of effectively improving the signal-to-noise ratio (SNR) of DAS

seismic data, we introduce a denoising network named attention-guided

denoising convolutional neural network (ADNet). The network is composed

of four blocks, including a sparse block (SB), a feature enhancement block (FEB),

an attention block (AB) and a reconstruction block (RB). The network uses

different kinds of convolutions alternately to enlarge the receptive field size and

extract global feature of the input. Meanwhile, the attention mechanism is

introduced to extract the hidden noise information in the complex background.

The network predicts the noise, and denoised data are obtained by subtracting

the predicted results from the noisy inputs. In addition, we uniquely construct a

large number of complex forward models for pure seismic data training set to

enhance the network suitability. The combination design improves the

denoising performance and reduces computational cost and memory

consumption. The results obtained from both synthetic- and field data

illustrate that the network has the ability to denoise the seismic images and

retrieve weak effective signals better than conventional methods and common

networks.

KEYWORDS

deep learning, convolutional neural network, distributed opticalfiber acoustic sensing,
attention mechanism, noise suppression
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1 Introduction

As an emerging signal detection technology, distributed

optical fiber acoustic sensing (DAS) has been used to detect

seismic signals. DAS records seismic waves using fiber optic

cables that are continuously distributed fromwell head to bottom

of the drill hole (Kobayashi et al., 2020). Compared to

conventional seismic geophones, DAS has many advantages

such as wide detection range, high spatial resolution, strong

resistance to harsh environments, convenient layout (Ma et al.,

2018). However, many challenges also result from the application

of the method when it is used in seismic exploration from wells.

The seismic data acquired by DAS technology have different

types of effective signals and high-level noise with complex

properties. The signals contain down-going direct waves, and

up- and down-going reflected waves, which frequently suffer

from a large amount of noise, including random noise, optical

abnormal noise, fading noise and horizontal noise (Mateeva

et al., 2014; Correa et al., 2017; Olofsson and Martinez, 2017).

The noise may seriously decrease the signal-to-noise (SNR) of

DAS seismic data, and subsequently leads to huge difficulties in

imaging, inversion and interpretation. Methods for suppressing

complex noise and improving SNR in geophysical data obtained

from DAS are therefore desired.

In the past years, many denoising methods have been

proposed and developed successively to suppress noise in

seismic data. Examples include wavelet transform (Alali et al.,

2018), band-pass filtering (Stein and Bartley, 1983), f-x

deconvolution (Gulunay, 2017), median filtering (Huo et al.,

2017; Chen et al., 2019), curvelet transform (Naghizadeh and

Sacchi, 2018; Li et al., 2020), empirical mode decomposition

(Gomez and Velis, 2016; Xue et al., 2019), variational mode

decomposition (Yu and Ma, 2018; Feng et al., 2022) and singular

value decomposition (Gan et al., 2015; Wang and Wang, 2021).

These methods are effective when dealing with some random

noise or Gaussian noise, but they all have limitations for DAS

noise. For instance, band-pass filtering cannot separate the

effective signals and noise in the same frequency bands. The

sparse representation methods such as wavelet transform and

curvelet transform depend on threshold functions and the need

for choosing the threshold value manually. In recent years, some

denoising methods have been proposed to suppress specific DAS

data noise. For example, optical abnormal noise can be

suppressed by median filtering and horizontal noise can be

removed by dip filtering (Binder et al., 2020). However, these

denoising methods have only achieved good denoising results for

one or two types of noise. In addition, their application is limited

by noise level and the effective signals are easy loss. When

multiple types of noise exist together, the denoising results are

usually unsatisfactory.

Deep learning has great potential and remarkable

performance in many fields owing to its flexible modular

architectures and strong representation capability. A common

deep learning algorithm, convolutional neural network (CNN), is

a feed forward neural network that has great feature extract

ability. Many CNN-based deep learning methods have been

applied for seismic exploration fields, such as seismic event

detection (Wu H. et al., 2019; Binder and Tura, 2020; Yang

et al., 2021), first-arrival picking (Wu Y. et al., 2019; Yuan et al.,

2020; Guo et al., 2021) and seismic inversion (Feng, 2020; Wang

et al., 2020; Aleardi and Salusti, 2021). Furthermore, it is also an

effective tool for seismic noise suppression. Zhao et al. (2019)

applied denoising convolutional neural networks (DnCNNs) to

suppress low-frequency random noise. Other recently proposed

noise suppressing algorithms include deep residual encoder-

decoder networks (Yao et al., 2022), deep-denoising

autoencoders (Saad and Chen, 2020), and the use of a CNN

framework with learned noise prior to random noise suppression

(Cui et al., 2022). However, the existing CNN-based denoising

methods still have drawbacks. The full convolution networks

ignore the connection between shallow layers and deep layers,

which is disadvantageous for sufficient feature extraction.

Furthermore, if networks are too deep, they cannot make full

use of the effects from the shallow layers on the deep layers. This

leads to increased difficulty in achieving proper training of the

network. Additionally, DAS data typically contain weak reflected

signals andmore complex multiple noise. Thus, the requirements

for proper noise suppression and signal recovery are higher.

Attention mechanism has attracted a lot of attention in the

current deep learning research field and the method is widely

applied to image denoising tasks. Tian et al. (2020) proposed

attention-guided denoising convolutional neural networks

(ADNet) for suppressing blind noise and real noise of images

and showed excellent deoising effect. However, the application of

attention mechanism in seismic data processing is limited.

Inspired by this, we apply ADNet for DAS seismic noise

suppression. The denoising network ADNet utilizes different

convolutions to learn noise and signal features from the noisy

input data. This allows for discrimination between the effective

signals and different types of noise, which improves the training

efficiency and the denoising performance. The network fuses

global and local features to enhance the expressive ability of

network. The complex noise background of the input DAS data

frequently hides features, which increases the difficulty of

training the network. Thus, we employ an attention

mechanism to extract noise information present in the

complex noisy data background. Additionally, to train the

network, we construct a great number of synthetic DAS

training sets through forward modelling using different

theoretical parameters, such as main frequency of the seismic

signals, well depth, trace interval, and so on. Both synthetic and

field experimental results show that the proposed network can

suppress different types of noise and recover the seismic signals

without almost any loss of DAS seismic data.

The structure of this paper is as follows. In Section 2 we

introduce the architecture of ADNet, the construction of training
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FIGURE 1
Architecture of ADNet (According to Tian et al. (2020), we modified Figure 1).

FIGURE 2
Architecture of the SB (According to Tian et al. (2020), we modified Figure 1).

FIGURE 3
Comparison of denoised results when training the network with different patch sizes. (A) SNR comparison of denoised results, (B) SSIM
comparison of denoised results.
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sets and optimization of network parameters. In Section 3 we

process the synthetic DAS seismic data and compared it with

data obtained via traditional methods and a common network

approach. Moreover, we process a field seismic record to verify

the denoising performance of the network. Finally, Section 4

includes a discussion and conclusion of the paper.

2 Theory and methodology

2.1 Network architecture

In this section, we introduce the architecture of ADNet

composed of 17 layers, and illustrated in Figure 1 It contains

a sparse block (SB), a feature enhancement block (FEB), an

attention block (AB) and a reconstruction block (RB). The SB is

used to extract features from the noisy data to learn and

distinguish between effective signals and noise. The FEB fuses

the global and local features to enhance the robustness of the

denoising model. The AB is used to mine noise information

hidden in the complex background. And the RB predicts noise

and constructs the denoised results.

The 12 forward layers are SB, and the architecture is shown

in Figure 2. It consists of standard and dilated convolutions

layers. The standard convolution layer contains convolution

(Conv), batch normalization (BN), and activation function for

a linear rectification function (Relu). BN can ensure that the

input of each layer has an approximate distribution and

accelerate the convergence speed of network loss function.

Relu can implement gradient descent and back propagation.

The standard convolution layers are set at the first, third,

fourth, sixth, seventh, eighth, tenth, and eleventh layer in

the SB. The dilated convolution layer includes dilated

convolution with a dilated factor of 2, BN, and Relu. The

dilated convolution layers are set at the second, fifth, ninth, and

twelfth layer. All the convolution filter sizes of the SB are 3 × 3.

The input channel of the first layer is 1, whereas other eleven

layers are 64. Dilated convolution can enlarge the receptive

field size and extract global input features, which is beneficial to

reduce the complexity of network. The combination of two

kinds of convolutions can improve the denoising performance

and cut down the computational cost and memory

consumption.

To reduce the influence of the shallow layers on the deep

layers and mine the robust features, an FEB is designed in the

network. It consists of three standard convolution layers, a Conv

and activation function Tanh. The standard convolutions are

installed from 13 to 15 layers and the filter sizes are 64 × 3 × 3 ×

64. The Conv is fitted at the sixteenth layer and its filter size is

64 × 3 × 3 × 1. The 4-layer FEB can enhance feature learning to

better restore weak effective signals. Additionally, a

concatenation operation is added to fuse the input noisy data

and the output of the sixteenth layer to enhance the

representation ability of the denoising model. It can merge the

FIGURE 4
2-D geological model.

TABLE 1Wave velocities andmedia densities of 2-D geological model.

Layer (from
top to
bottom)

1 2 3 4 5 6

P-wave velocity (m/s) 2,000 2,250 2,500 2,700 3,000 3,300

S-wave velocity (m/s) 1,000 1,125 1,250 1,350 1,530 1,800

Media density (kg/m3) 2,010 2,105 2,200 2,200 2,200 2,245
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features extracted from the input into new features for enhancing

the expressive ability of the denoising network. And Tanh is used

to convert the obtained features into nonlinearity.

As mentioned earlier, DAS data have complex noise. The

effective signals are frequently covered by noise and cannot be

identified. Distinguishing between noise and effective signals is a

prerequisite for noise suppression tasks. Therefore, an AB is

added to the network to guide the denoising model training. It

includes a Conv and the filter size is 2 × 1 × 1 × 1. This is used to

guide the previous stage for learning the noise information and to

better distinguish between noise and effective signals. The

convolution of size 1 × 1 from the seventeenth layer

compresses the obtained features into a vector as the weights

to adjust the previous stage. Then AB utilizes the obtained

weights to multiply the output of the sixteenth layer for

extraction of more noise features.

Finally, an RB predicts the residual data and reconstructs the

denoised data. The network adjusts network parameters by

predicted residual results and actual noise data when training.

2.2 Network denoising principle

The optimization of deep learning methods is principally

driven by the loss function. Noisy DAS data can be regarded as a

linear superposition of pure data and noise (Li et al., 2017).

y � s + n (1)

where y, s, and n stand for the noisy data, the pure data and noise.
All types of noise can be represented as n. The denoising model is

to recover the pure data s from the noisy data y. The ADNet

predicts the noise through residual learning to get the predicted

denoised data:

ŝ � y − n̂ � y − A(y; θ) (2)

where ŝ and n̂ are the predicted denoised data and predicted

noise, θ is a set of learnable parameters, and A(·) is the ADNet
model. We use the mean square error (MSE) (Ephraim and

Malah, 1984) to train the denoising model, so the loss function

can be expressed as

FIGURE 5
Synthetic DAS records. (A) Synthetic pure DAS record, (B) real noise record and (C) synthetic noisy DAS record.
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l(θ) � 1
2N

∑N

i�1
����A(yi; θ) − (yi − si)

����2F (3)

where yi and si are ith pair of noisy and pure training pairs.

2.3 Quantitative analysis of denoising
performance

SNR and structural similarity index (SSIM) (Wang et al.,

2004) are important indicators to measure the quality of seismic

data. To evaluate the denoising performance, we use SNR and

SSIM to analyze the denoised results. The formula for SNR is as

follows:

SNR � 10log10

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
∑M

i�1∑N
j�1(S(i, j) − �S(i, j))2

∑M
i�1∑N

j�1(D(i, j) − S(i, j))2
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(4)

where S represents the pure record, �S represents the mean of S,
and D represents the noisy record or denoised record. M and N
represents the trace number and the number of sampling points,

respectively. Lastly, i represents the ith trace and j represents the
jth sampling point. The definition of SSIM (Wang et al., 2004) is:

SSIM � [l(S,D)]α · [c(S,D)]β · [s(S,D)]γ (5)

here l(S,D) represents the luminance comparison function,

c(S,D) is the contrast comparison function, and s(S,D) is the
structure comparison function. The definition of l(S,D) is:

l(S,D) � 2�S �D + C1

�S2 + �D2 + C1

(6)

where �D represents the mean ofD. The constant C1 is included to

avoid instability when �S2 + �D2 is very close to zero. C1 � (K1L)2,
where L is the maximum value of the data matrix, K1 ≪ 1.

Furthermore, c(S,D) and s(S,D) are defined as:

FIGURE 6
Comparison of different methods for synthetic denoising. (A) Denoised result of VMD, (B) denoised result of band-pass filtering, (C) denoised
result of DnCNNs, (D) denoised result of ADNet.
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c(S,D) � 2�S �D + C2

�S2 + �D2 + C2

(7)

s(S,D) � σSD + C3

σSσD + C3
(8)

where σSD � 1
M × N−1∑M

i�1∑N
j�1[S(i, j) − �S(i, j)][D(i, j) − �S(i, j)],

and σS � ( 1
M × N−1∑M

i�1∑N
j�1[S(i, j) − �S(i, j)]2) 1

2. We also define

C2 � (K2L)2, K2 ≪ 1, C3 � C2/2. Larger SNR and SSIM

values indicate better denoising effect.

2.4 Training set construction and network
parameter optimization

Adequate and accurate training sets can improve the

performance of networks. The training sets of ADNet include

a pure data set and a noisy data set. As there are no existing

training sets for DAS data, we performed forward velocity

modelling with many types of layers (flat, inclined, concave,

convex, and so on) to generate ten models. The models were

obtained through an implementation of the elastic wave equation

utilizing seismic wavelet source functions. From the tenmodels, a

pure DAS data set was generated based on analysis of the signal

dominant frequency, apparent velocity, and wavelet type. The

dominant signal frequencies ranged from 40 Hz to 80 Hz. The

apparent velocities were 1,000 m/s–3,000 m/s and the velocities

increased with formation depth. The wavelet type was a standard

Ricker wavelet with a sampling frequency of 2,500 Hz and a

sampling interval of 1 m. A 256 × 256 moving window was used

to segment the records to generate 5,000 patches of the pure data

samples.

The noisy data set are made by adding DAS noise to

synthetic pure records randomly. To estimate noise

accurately, and to separate signals and noise well, noise in

the noisy data set must be as abundant as possible. Random

noise and fading noise were acquired from passive DAS data.

Horizontal noise and optical abnormal noise were taken from

some real noisy DAS records. We randomly added different

FIGURE 7
Difference maps from the four denoised results. (A) Difference map from VMD, (B) difference map from band-pass filtering, (C) difference map
from DnCNNs, (D) difference map from ADNet.
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types and levels of noise to the synthetic pure records. The

datasets were then divided into 5,000 patches noisy data

samples by a 256 × 256 moving window.

The network randomly takes noisy data samples as the

input and the corresponding pure data samples are regarded as

labels of the network. The initial learning rate was 1e-3 and the

number of epochs were 1,000. The learning rates of the

200th–500th epochs were 1e-4 and the learning rates of the

final 500 epochs were 1e-5. Additionally, an Adam optimizer

(Kingma and Ba, 2015) was implemented to optimize the

network.

In the experiment, we verified the influence of different patch

sizes for denoised results. The patch sizes were set to 16, 32, 64,

128, and 256, respectively, to train the network. We utilized a

synthetic noisy dataset to verify the denoising performance, and a

comparison of the results acquired through SNR and SSIM are

showed in Figure 3. From the results, we can see that the network

with patch size of 256 achieved the best denoising result. Thus, a

patch size of 256 is an optimal choice for DAS seismic data

denoising.

We applied Tensorflow 1.8.0 and Python 3.6.1 to train and

test the ADNet. All the experiments were conducted on a PCwith

Intel Core i5-7500 CPU at 3.40 GHz and an NVIDIA GeForce

GTX 1050 Ti GPU.

3 Experiment results

3.1 Denoised results comparison of
synthetic DAS data

In this section, we illustrate the results from the denoising

performance of ADNet by processing the synthetic DAS data

generated by a six-layer forward modeling. The 2-D geological

FIGURE 8
F-k spectra comparisons of denoised results. (A) F-k spectrum of Figure 5A, (B) f-k spectrum of Figure 5C, (C–F) f-k spectra of denoised results
in Figure 6.
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model is shown in Figure 4, where the horizontal distance is

2,000 m, the well depth is 4,000 m, the inverted triangle

represents the seismic source, and the vertical black line

represents the fiber optic sensor. And the detailed

parameters of the geological model are shown in Table 1.

We constructed a synthetic DAS record with 2,000 traces

and 1,000 ms, shown in Figure 5A. The wavelet type used is

a zero-phased Ricker wavelet with a dominant frequency of

50 Hz. The trace interval was set to 1 m and the sampling

frequency to 2,500 Hz.

The synthetic noisy record was constructed by adding noise

to the synthetic pure record. Figure 5B shows the real DAS noise

record and Figure 5C shows the synthetic DAS record with added

noise. We can see that most of effective signals are contaminated

by noise and cannot be identified easily.

To verify the denoising performance of our method, we

compare the ADNet-approach with variational mode

decomposition (VMD), band-pass filtering, and DnCNNs. The

denoised results are shown in Figure 6. VMD has four modes.

Band-pass filtering is from 20 Hz to 110 Hz. The DnCNNs used

the same network layers and basic parameters as the ADNet, as

well as the same training sets. As shown in Figures 6A,B, VMD

and band-pass filtering cannot suppress horizontal noise and

fading noise well, which is marked with red box. Compared to

conventional methods, DnCNNs has better noise suppression

ability. However, there is a reflected signal lost in part of the

image highlighted with the blue box, and some optical abnormal

noise remains, as seen in Figure 6C. By contrast, ADNet can

suppress almost all the noise, and the denoised result is closest to

synthetic pure record seen in Figure 5A.

FIGURE 9
F-k spectra of difference maps. (A) F-k spectrum of Figure 5B, (B–E) F-k spectra of the difference maps in Figure 7.
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To verify the signal recovery ability, we compared the

differences between the noisy record and the denoise results

obtained via the four denoising methods. The results are shown

in Figure 7. In Figures 7A,B, the direct waves are muted. The

difference map obtained from DnCNNs has a great number of

reflected waves, which is shown in Figure 7C. Thus, all three

methods lose effective signals, whereas in Figure 7D, we can see

that difference map obtained via ADNet has almost no effective

signal residual. This result is also closest to the noise example

illustrated in Figure 5B. That demonstrates that ADNet has better

noise suppression ability and stronger effective signals

restoration ability.

FIGURE 10
Local SNR comparison of denoised results. (A) Local SNR of Figure 5C, (B–E) local SNR of denoised results in Figure 6.

TABLE 2 Comparison of denoising performance of different methods.

Noisy record VMD Band-pass filtering DnCNNs ADNet

SNR (dB) −2.9260 2.3098 2.8239 11.9488 15.3275

SSIM 0.0286 0.1799 0.3406 0.6231 0.7864

Training time (hr) — — — 52.00 34.33
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Additionally, we analyzed the denoised results in the

frequency domain. The f-k spectra of the denoised results are

illustrated in Figure 8. From the f-k spectra shown in Figures

8C,D, we observe that the noise has a wide frequency band

compared to the effective signals. The denoised results from

VMD and band-pass filtering have plenty of noise residual. By

contrast, the f-k spectra in Figures 8E,F are closer to the pure

record spectrum. Furthermore, the f-k spectra of the difference

maps are plotted in Figure 9. We see here that part of effective

signals is left in Figures 9B,D. This again indicates the ADNet has

the best denoising effect.

To compare the denoising results in even more detail,

we show the local SNR in Figure 10. The local SNR and

global SNR have the same formula. From the results, we can

see that local SNR of ADNet is closer to yellow, which

indicates higher SNR. Additionally, to quantitatively

analyze the denoising performance, we compare SNR,

SSIM and training time in the Table 2. The denoised

results from ADNet increases approximately 18 dB. The

higher SNR and SSIM values indicate better denoising

performance than the results obtained with the three

other methods. In addition, the training time of ADNet

is shorter than that of DnCNNs.

3.2 Field DAS data denoised results

Next, we processed a field DAS record from the Tarim Basin

of Xinjiang located in the northwest China to test the denoising

performance of ADNet and compare the result with the denoised

results of VMD, band-pass filtering and DnCNNs. Figure 11

shows the real DAS record. The red arrow represents the direct

wave, and the yellow and blue arrows represent up-going

reflected waves and down-going reflected waves, respectively.

The record contains multiple types of noise and effective signals

cannot be easily identified.

FIGURE 11
Real DAS record.
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Figure 12 shows the denoised results from the four

methods, and Figure 13 displays the corresponding

difference maps. From Figure 12A, we can see that a large

amount of noise is suppressed, but horizontal noise can still be

seen, particularly within the yellow box. In Figure 12B, the

continuity of the effective signals is poor, and the difference

map obtained after band-pass filtering obtains many reflected

waves. The denoised result of DnCNNs still contains horizontal

noise and optical abnormal noise residual, which influences the

effective signal identification. Besides, the difference map has

plenty of effective signal loss, as illustrated in Figure 13C. On

the contrary, the denoised result from ADNet contains very

little noise residual, and the direct wave and reflected waves can

be seen clearly. This indicates that ADNet is more suitable for

DAS seismic data denoising and has better effective signal

recovery ability.

FIGURE 12
Field data: Denoising results. (A) Denoised result from VMD, (B) denoised result from band-pass filtering, (C) denoised result from DnCNNs, (D)
denoised result from ADNet.

Frontiers in Earth Science frontiersin.org12

Wang et al. 10.3389/feart.2022.986470

107

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.986470


4 Conclusion and discussion

DAS seismic data include multiple types of noise and this

affects the identification of effective signals, such as the direct

wave and reflected waves. In this paper we have introduced a

CNN denoising network with attention mechanism to

suppress DAS seismic noise. The ADNet can extract

effective signals and noise features. This allows for

accurate prediction of data noise. The attention block can

furthermore guide the network to learn more noise

information and adjust the training parameters of the

network. The results illustrate that ADNet can suppress

FIGURE 13
Differencemaps from denoised results in Figure 12. (A)Differencemap from real DAS record and denoised result from VMD, (B) difference map
from real DAS record and denoised result from band-pass filtering, (C) difference map from real DAS record and denoised result from DnCNNs, (D)
difference map from real DAS record and denoised result from ADNet.
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complex noise and recover weak reflected signals clearly.

Comparisons of denoised results obtained from ADNet

and DnCNNs, reveal that attention mechanism is vital to

DAS noise suppression. It enhances the denoising

performance and the quality of DAS seismic data.

However, the network cannot eliminate ringing noise

well due to the high similarity between ringing noise

and weak reflected noise. Future improvements in the

network architecture and training sets may mitigate this

problem.
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Simultaneous reconstruction and
denoising for DAS-VSP seismic
data by RRU-net

Huanhuan Tang, Shijun Cheng, Wuqun Li and Weijian Mao*

State Key Laboratory of Geodesy and Earth’s Dynamics, Research Center for Computational and
Exploration Geophysics, Innovation Academy for Precision Measurement Science and Technology,
Chinese Academy of Science, Wuhan, China

Distributed acoustic sensing in vertical seismic profile (DAS-VSP) acquisition

plays an important role in reservoir monitoring. But the field data can be noisy

and associated with missing traces which affects the seismic imaging and

geological interpretation. Therefore, the DAS-VSP seismic data

reconstruction with a high signal-to-noise ratio (SNR) is worth studying.

There are no exact relationships between signals and noise in the t-x

domain DAS-VSP seismic data, which means that reconstructing signals and

suppressing noise simultaneously by the deep neural network is difficult. We

develop a novel algorithm based on U-net in combination with the Hankel

matrix as input/output, rather than t-x domain seismic data. The frequency

domain Hankel matrix of the seismic data is proposed to facilitate the

reconstruction and denoising of DAS-VSP seismic data as a rank reduction

problem of the high-rank matrix. The Hankel matrices of incomplete data with

noise are high-rank ones while those of complete data without noise are low-

rank ones, which is beneficial to the network learning. In our proposed rank

reduction U-net (RRU-net), two-channel input/output layers are designed for

the real and the imaginary parts of the Hankel matrix in the frequency domain.

Thus, reconstructed data with high precision and high SNR could be obtained

using a trained RRU-net. Meanwhile, we tested our RRU-net algorithm on two

synthetic data and one field data, and the results show the effectiveness and the

feasibility of the method. Our algorithm performs better than both the U-net-

based method that uses t − x domain data as input/output and the rank

reduction approach.

KEYWORDS

DAS-VSP, reconstruction, denoising, RRU-net, Hankel matrix

Introduction

Recently, DAS has been used in vertical seismic profile (VSP) acquisition for

permanent reservoir monitoring due to its advantages of full vertical coverage, low

cost, repeatability, adaptability to high-temperature and high-pressure environment, and

long-term deployment (Miller et al., 2012). However, the quality of DAS seismic data is

poor for the following three reasons: first, the low sensitivity of DAS results in the weakly

received upward-reflected signal, worsened by a large amount of environmental noise,
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optical noise, and “ringing” noise. Second, the obstacles in the

acquisition area and the pressure of economic costs for long-term

monitoring result in low-density shot arrangement and sparsely

acquired data. Third, the perforation operation can easily destroy

the fiber in the well, making the signals hardly recordable at this

point. Additionally, the storage cost for time-lapse DAS-VSP

seismic data is usually measured in TB, which is a challenge for

data processing. Briefly, the DAS-VSP seismic data have the

characteristics of low SNR, sparseness, and big data. Therefore, it

is necessary to research the reconstruction and denoising of the

DAS-VSP seismic data in high precision and real time.

Thanks to the rapid development of deep learning technology in

the field of image processing in recent years (Krizhevsky et al., 2012;

Ronneberger et al., 2015; Liu et al., 2018), intelligent processing has

been widely used in the field of massive seismic data reconstruction

(Jia and Ma, 2017; Jia et al., 2018; Mandelli et al., 2018). Among

those methods, the convolutional neural network (CNN) is themost

widely used method. The local perception capability of the CNN

could extract more detailed intrinsic features of data. At the same

time, the number of CNN parameters could be reduced by weight-

sharing, which improves the training speed of the network. This

kind of method (deep learning methods, including the

aforementioned CNN) extracts the inherent high-dimensional

features of the data adaptively through massive datasets and does

not rely on prior conditions and artificial experience. Moreover, the

trained net takes less than a few milliseconds to predict 1024 × 112

data (Chai et al., 2020). Therefore, deep learning could be a potential

method to solve the problem of massive DAS-VSP seismic data

reconstruction. Currently, many researchers have applied deep

learning methods to seismic data reconstruction and denoising.

In these studies, seismic data reconstruction and denoising are

always discussed separately. For example, Liu et al. (2018)

proposed the use of partial convolution methods to improve the

blur problem of reconstructed images. Siahkoohi et al. (2019)

accomplished the accurate reconstruction of the common shot

records by the CNN, which is trained by the common receiver

records in the FK domain based on the reciprocity theorem. Chen

and Wang, (2021) proposed a method to enrich the training set by

sampling at different scales and image flipping to improve the

generalization ability of CNN in seismic data reconstruction.

Furthermore, different nets based on CNN, such as residual net

(ResNet) (Wang et al., 2019), generative adversarial neural network

(GAN) (Oliveira et al., 2018), andU-net (Chai et al., 2020; Fang et al.,

2021), were applied to data reconstruction. In the seismic data noise

suppression problem, learning data augmentation strategies are also

adopted to train the CNN (Wang et al., 2019). Dong et al. (2020)

combined the denoising convolutional neural network (DnCNN)

with robust principal component analysis to learn the noise

characteristics in the noisy desert seismic data and realized the

effective suppression of irregular random noise and regular surface

waves. Then, based on the CNN, an energy ratio factor is used to

adjust the energy ratio of the effective signal patch and noise patch in

the training process to improve the generalization ability of the CNN

denoising model to different SNRs (Dong et al., 2021). Feng and Li,

(2022) designed a denoising neural network based on spectral

decomposition analysis (SVDDCNN), and the net extracted

DAS-VSP data features from a singular spectrum instead of the

time-domain data, which can represent geophysical features more

accurately. In addition, cycle generative adversarial networks (Cycle-

GANs) and residual encoding–decoding neural networks (RED-

Nets) are also used in random noise suppression (Li and Wang,

2021; Zhong et al., 2021). The aforementioned methods achieved

high-precision reconstructed data and effective noise suppression

data, respectively. However, noise and missing data coexist in the

field records, and only a few studies have applied a simultaneous

reconstruction and denoising of seismic data by the deep learning

method (Wang, 2020; Jiang et al., 2021). In Wang’s research (2020),

the CNN-based 3D data reconstruction and denoising method first

trained the network for denoising and then trained the network for

reconstruction, separately. Jiang et al. (2021) proposed an improved

convolutional auto-encoder (CAE) method to achieve simultaneous

reconstruction and denoising of seismic data; however, the noise was

residual in the field data testing. For noisy incomplete DAS-VSP

seismic data, when the neural network is trained to implement one

of the tasks (reconstruction/denoising), the other factor (noise/

missing data) will adversely affect the neural network. Therefore,

it is a difficult problem to realize the simultaneous reconstruction

and denoising of DAS-VSP seismic data based on deep learning.

Among the traditional simultaneous reconstruction and

denoising methods of seismic data, the rank reduction based on

the Hankel matrix is one of the effective methods (Gao et al., 2011;

Oropeza and Sacchi, 2011; Chen et al., 2016). The principle is that

the seismic data will repeatedly record the information of the same

or adjacent underground locations, so that the seismic data have a

low-rank structure. The absence of data or the noise will increase the

rank; therefore, seismic data reconstruction and noise suppression

can be regarded as the rank reduction problem of the high-rank

matrix. However, the data in some columns are all zero in the

incomplete seismic data gather, which will lead to instability in the

rank reduction process. Generally, the incomplete seismic data need

to be transformed into a Hankel matrix and then the rank of which

will be reduced by singular value decomposition (SVD) (Cadzow,

1988; Trickett, 2008; Gao et al., 2011; Popa et al., 2021). The

disadvantage of the rank reduction method is that the SVD of

large Hankel matrices requires a huge amount of computational

cost, which makes it unsuitable for massive DAS-VSP monitoring

data. In addition, it is difficult to determine the number of retained

eigenvalues in the SVD process, which will lead to insufficient noise

suppression or signal leakage.

In this article, we propose a simultaneous reconstruction and

denoising method for DAS-VSP seismic data under the framework

of deep learning based on rank reduction. When using a U-net

instead of the SVDprocess of theHankelmatrix, theU-net is trained

to learn the mapping relationship between the high-rank Hankel

matrix (noisy missing data) and the low-rank Hankel matrix (noise-

free complete data) adaptively, which neatly avoids the

Frontiers in Earth Science frontiersin.org02

Tang et al. 10.3389/feart.2022.993465

112

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.993465


shortcomings of the rank reductionmethod. First, the t − x-domain

training data are transformed into the Hankel matrices in the

frequency domain. So, the two different tasks of data

reconstruction and noise suppression are unified into a reduced-

rank learning task, which could improve the reconstruction accuracy

and efficiency. Second, two-channel input/output layers are

designed for the real and imaginary parts of the frequency-

domain Hankel matrix. Meanwhile, different types of noise and

signal data with different missing percentages are added to the

training set to improve the generalization ability of the network. In

this article, synthetic examples and field data are provided to prove

the effectiveness of the proposedmethod. Furthermore, the results of

the rank reduction method, the U-net trained in the t − x domain,

and the RRU-net are compared to show the superiority of the RRU-

net in simultaneous reconstruction and denoising of DAS-VSP

seismic data.

Methodology

Rank reduction method

Fully sampled seismic data can be represented by a low-rank

matrix. Missing trace or noise will increase the rank of the data.

Therefore, the reconstruction and denoising of DAS-VSP seismic

data can be regarded as a rank reduction problem of a high-rank

matrix (Sacchi, 2009; Oropeza and Sacchi, 2011). When

approximated, seismic data are linear within the t − x

window, and then the seismic data d with one event can be

expressed as

d(t, xn) � w(t0 + pxn), (1)

where t is the time, t0 is the time intercept of the first trace in the

time–space window, xn is the offset of the nth trace, w is the

wavelet, and p is the dip of the event. In the frequency domain,

Eq. 1 becomes

D(ω, xn) � W(ω)eiωpxn . (2)

For regularly sampled seismic data, xn � (n − 1)Δx, where
n � 1, 2, ...,N, N is the number of geophones on a receiver line,

and Δx is the spacing of geophones within lines. The seismic data of

adjacent traces have the following recurrence relation in the

frequency domain:

D(ω, xn+1) � W(ω)eiωpxn+1 ,
� W(ω)eiωpnΔx,
� D(ω, xn)eiωpΔx,

(3)

where eiωpΔx is constant for seismic data with certain frequency ω

and dip p. By denoting eiωpΔx as λω and D(ω, xn) as Dn, Eq. 3 is

simplified to

Dn+1 � λωDn. (4)

The equation for constructing the Hankel matrix with

seismic data in the frequency domain is

H �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

D1 D2 / Dk

D2 D3 / Dk+1
..
. ..

.
1 ..

.

Dl Dl+1 . . . DN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (5)

where k + l − 1 � N. Based on Eq. 4, the Hankel matrix in Eq. 5

can be further expressed as

H �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

D1 λD1 / λ(k−1)D1

D2 λD2 / λ(k−1)D2

..

. ..
.

1 ..
.

Dl λDl . . . λ(k−1)Dl

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (6)

From Eq. 6, there is a linear relationship among the columns

of the Hankel matrix, that is, the rank of the matrix is 1. Similarly,

it can be proved that when the seismic data contain multiple dip

events, the rank of the Hankel matrix is equal to the number of

dips. Therefore, the Hankel matrix constructed with the seismic

data in the frequency domain is a low-rank Hankel matrix. When

there are missing traces or noise, Eq. 6 becomes non-linear; thus,

the rank of H will increase. The signal reconstruction and the

noise suppression can be effectively achieved by performing SVD

on the Hankel matrix H and reducing its rank. The SVD of the

Hankel matrix is

H � UΣVT. (7)

In Eq. 7,U and V are the unitary matrices with sizes l × l and

k × k, respectively, and they are the eigenvector matrices ofH. Σ

is a diagonal matrix, and its diagonal elements are the singular

values of H. Σ can be presented as

Σ � ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
σ1,1 / 0

..

.
1 ..

.

0 / σ l×k

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (8)

where σ1 ≥ σ2 ≥/σ i ≥ 0. We reduce the rank of the Hankel

matrix by keeping the first r eigenvalues:

Σ � [Σr 0
0 0

], (9)

where Σr � diag(σ1,/, σr). Then, the rank-reduced Hankel

matrix ~H is calculated as

~H � UrΣrV
T
r . (10)

Next, the elements along the anti-diagonal of the matrix ~H

are averaged to obtain ~Dn, and ~Dn is the reconstructed and

denoised seismic data in the frequency domain. There are two

shortcomings in the aforementioned process of simultaneous

reconstruction and denoising of seismic data based on rank

reduction. One, for field seismic data, the rank of seismic data

in different time–space windows is different, and it is difficult to

determine how many ranks are needed to be retained. The other
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problem is that both the SVD of the matrix H and the rank-

reduced matrices ~H require huge computations. Therefore, we

propose to use a U-net to adaptively learn the mapping

relationship between the high-rank Hankel matrix (noisy

missing data) and the low-rank Hankel matrix (noise-free

complete data), instead of relying on artificial experience to

determine the number of the retained rank. Moreover, once

the training of one net has been carried out, the prediction will be

highly efficient.

The architecture of the rank reduction
U-net

The architecture of the RRU-net proposed in this article is

shown in Figure 1. The main part of this network is a U-net with

27 layers, which is a symmetric structure based on CNNs (Falk

et al., 2019). The input of the RRU-net is the Hankel matrix of

seismic data in the frequency domain. Since the elements in the

Hankel matrix are complex, the real convolution neural network

cannot process the data directly. We design the U-net with two-

channel input/output layers, which correspond to the real and

imaginary parts of the Hankel matrix, respectively. In this way,

the RRU-net can extract signal features from both the real and

imaginary parts of the input data. The U-net has three important

components. One is the encoder (left side) composed of the

repeated operators of two 3 × 3 convolutions (purple arrow) that

are followed by batch normalization (BN), a rectified linear unit

(ReLU), and a 2 × 2 max-pooling (red arrow) for down-

FIGURE 1
Architecture of the RRU-net.

TABLE 1 Parameters setting of the RRU-net.

Parameter Value

Patch size 26 × 26

Convolution kernel size 3 × 3

Batch size 25

Learning rate 3 × 10−4

Optimizer Adam

Loss function MSE

Epochs 50
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sampling. After the down-sampling step, the effective receptive

field of the network increases as the size of the feature maps

decreases. Meanwhile, the amounts of feature channels are

generally doubled. For the simultaneous seismic data

reconstruction and denoising task, the encoding process is

responsible for extracting features in different scales of the

FIGURE 2
Two-dimensional profile of the SEAM model and the acquisition geometry.

FIGURE 3
(A) Synthetic noise-free complete signal data and the shot is located at x � 0 m. (B) Noise data from the field DAS-VSP records.
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input noisy missing data. The second component is the decoder

(right side) with an expansive path, in which the feature maps are

first up-sampled by bilinear interpolation (green arrow) to halve

the number of feature channels at each step. In the decoding

process, the size of the feature maps increases after each up-

sampling step, which leads to the reduction of the effective

receptive field of the network. The decoding process is used to

decode the low-dimensional features to the original size,

obtaining the location information. The last layer uses a 1 × 1

convolution to map the multi-channel features to the desired

number of classes. The third component is a skip connection

(black dotted arrows) combining the deep feature maps from the

decoder network with the shallow feature maps from the encoder

network, which is useful to learn the rank reduction theory of the

Hankel matrix with noisy missing data and then implement two

3 × 3 convolutions, each followed by BN and ReLU.

In Eq. 11, L is the loss function of the RRU-net, and it is

defined as

L(θ) � 1
M

∑
M

j�1
(f(θ, Hsample

j) −Hlabel
j)2, (11)

where M is the batch size in the training process, f is the U-net

described in Figure 1, θ represents the parameters of the

convolution kernel, Hsample
j is the Hankel matrix with noisy

missing data in the training set, andHlabel
j is the label (noise-free

complete data) in the training set. The RRU-net is trained to

minimize the loss function L to obtain the best value of θ under

FIGURE 4
(A) Synthetic noisy incomplete data based on Figure 3 and themissing trace percentage is 56.4%. (B)Hankel matrices in different frequencies of
the noise incomplete data in the red rectangle of Figure 4A; each Hankel matrix contains a real part (left side) and an imaginary part (right side). (C)
Hankelmatrices in different frequencies of the noise-free complete data in the red rectangle of Figure 3A; each Hankelmatrix contains a real part (left
side) and an imaginary part (right side).

FIGURE 5
Training loss and validation loss of the RRU-net.
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the framework of 1.7 PyTorch version. The other parameters of

the RRU-net such as convolution, max-pooling, and bilinear

interpolation are shown in Table 1. In addition, the patch size of

the training data, the layers of the net, and the convolution kernel

size all have an impact on the result of deep learning as

established in other research studies (Wang et al., 2019; Chai

et al., 2020; Feng and Li, 2022). Therefore, this article does not

repeat the analysis, but we refer to the relevant research in the

selection of these parameters.

Training datasets

We prepare the training data with the synthetic signals by

forwardmodeling and the noises from the field DAS-VSP seismic

data. The synthetic signals are simulated by forward modeling

using the finite difference method for a 2D profile of the SEAM

model (Figure 2). The model has 70 km width and 5 km depth,

and the velocity range is distributed from 1,490 m/s to 4,800 m/s.

The well is located at 3 km (the white stripe in Figure 2) and

FIGURE 6
Simultaneous reconstruction and denoising results of the threemethods on synthetic data generatedwith the SEAMmodel. (A) Synthetic noise-
free complete signal data and the shot is located at x � 6400 m. (B)Original gather with noise and the missing trace percentage is 63%. (C) Result by
rank reduction. (D) Result by U-net. (E) Result by RRU-net. (F–H) One-dimensional waveform comparison.

Frontiers in Earth Science frontiersin.org07

Tang et al. 10.3389/feart.2022.993465

117

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.993465


equipped with 401 receivers (the blue triangle in Figure 2) spaced

at 10-m intervals and has a depth range from 0 to 4,000 m. There

are 176 sources spaced at 40-m intervals (the red circle in

Figure 2) at the surface. A 30-Hz Ricker wavelet is used in the

simulation. The size of the synthetic data is 1905 × 401 × 176,

that is, the size of the time axis (0.004 s interval), receiver axis,

and shot axis, respectively. In the 176 common shot gathers,

150 shot gathers are randomly selected for training and the rest

for testing. One of the common shot gathers is shown in

Figure 3A. The noise records including the background noise

(arrow 1), ringing noise (arrow 2), and horizontal noise (arrow 3)

are obtained from the real DAS-VSP data as shown in Figure 3B.

Approximately, 40%–70% of the traces are randomly deleted in

different gathers. The noise records from the real data are added

to the incomplete signal records to obtain the noisy incomplete

data as shown in Figure 4A. So, the noisy incomplete data and the

noise-free complete data are transformed into the Hankel matrix

separately, before all the needed data are normalized to [−1, 1]
and windowed to patches with size 51 × 51. There are

266400 pairs of samples in the training dataset, each sample

with size 26 × 26, and parts of them are shown in Figures 4B,C.

The training environment is in the PyTorch framework with

GPU (8 cores) in the Linux system. The total training cost is

about 25 h, and the loss error in epochs is shown in Figure 5.

Numerical examples

The reconstruction and denoising effectiveness of the trained

RRU-net is validated by two synthetic datasets and one field dataset.

One of the synthetic datasets is modeled by the same velocity model

as the training dataset (Figure 4) with different source positions. The

other is from theMarmousi2 model. The field DAS-VSP records are

employed to test the generalization capacity of the RRU-net.

Moreover, to prove the superiority of the RRU-net in handling

simultaneous reconstruction and denoising of theDAS-VSP data, we

compare the results of the RRU-net with those of the rank reduction

method and U-net trained with t-x-domain data.

Synthetic records

There are 26 shot gathers in the first synthetic records to be

tested. One of the processed gathers by the rank reduction

method, U-net, and RRU-net is presented in Figures 6C,D,E,

respectively. The original data are shown in Figures 6A,B. These

figures show data with 65% missing traces. Figures 6C,D show

that the rank reduction method and U-net cannot suppress the

strong ringing noise as marked by the red arrows, while the RRU-

net is able to suppress it more entirely as seen in Figure 6E.

Meanwhile, the signals divided in the window with the strong

ringing noise also are suppressed by the rank reduction method

(Figure 6C) because in the SVD process for the near traces,

ringing noise dominates the eigenvalues. As we can see in Figures

6D,E, the RRU-net suppressed the horizontal noise (red

rectangle) more efficiently than the other two methods. In

addition, the RRU-net performs the best in suppressing the

background noise. For the missing signal reconstruction, the

near traces are barely reconstructed by the rank reduction

method as shown in Figure 6C, while the U-net method has

poor effectiveness for the big gap as marked by the yellow arrow

in Figure 6D. Contrary to the rank reduction method and U-net,

the reconstructed signal by the RRU-net is complete, and the

event continuity is the best as shown in Figure 6E.

To prove the accuracy of the reconstructed signals and to

confirm whether the studied method harms the signal in the

denoised results, we carry out a detailed 1D waveform

comparison. Three traces are shown in Figures 6F–H,

respectively. Figure 6F is the denoised results of the 18th trace

in Figure 6B. Figures 6G,H are the reconstructed signals of the

140th and 199th trace, respectively, which are in different gaps.

The 1D waveform comparison shows that the RRU-net method

best fits the single trace and yields fewer reconstruction errors.

Additionally, the SNR of the 26 shot gathers processed by the

three methods is presented in Figure 7. It is obvious that the SNR

of the proposed network is much higher than that of the other

two methods. To complete the processing of the 26 shot gathers,

the rank reduction method takes 44 s, and the U-net and RRU-

net take less than 5s, which demonstrates the efficiency of the

deep learning method. All these analyses affirm that the proposed

RRU-net can suppress the noise and reconstruct the missing

signal effectively. However, for weak signals below 4s, none of

these three methods can obtain satisfactory reconstruction

results as the weak signal is completely buried in the strong

background noise as shown in Figure 6B. In addition, the cross

term between the real part and imaginary part of the Hankel

FIGURE 7
SNRs of the 26 shot gathers processed by three methods.
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matrix in the frequency domain is ignored as we apply the real

neural network, which may affect the effectiveness of the

proposed method.

To test the effect of the trained network on other synthetic

data, we use the RRU-net to reconstruct and denoise the DAS-

VSP data generated using the Marmousi2 model. The data

include a total of 21 shots and 255 receivers per shot, and every

trace has 1,000 temporal sampling points. One of the

processed gathers by the three methods is presented in

Figure 8. As highlighted by the arrows and the boxes

(Figures 8B–E), the RRU-net yields the best denoising

results, and the 1D waveform comparison of different

traces (Figures 8F–H) shows the accuracy of the

reconstructed signals by our method. The average SNR

value of gathers with noise and 65% missing traces

is −17.09 dB, which is increased to 25.69 dB after

reconstruction by the RRU-net.

Field data application

To further prove the effectiveness of the proposed method,

two real DAS-VSP gathers are tested. The data contain

5001 samples along the time axis with a 1-ms time interval

and 204 receivers along the well with a 0.1-m space interval as

shown in Figures 9Ai,Ei. The signal in Figures 9Ai,Ei is

FIGURE 8
Simultaneous reconstruction and denoising results of the threemethods on synthetic data generated using theMarmousi2model. (A) Synthetic
noise-free complete signal data. (B) Original gather with noise and the trace missing percentage is 63%. (C) Result by rank reduction. (D) Result by
U-net. (E) Result by RRU-net. (F–H) One-dimensional waveform comparison.
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strongly contaminated by several types of noise, and nearly

50% of the traces are missing. The denoised and reconstructed

results by rank reduction, U-net, and RRU-net are presented

in Figures 9Bi–Di, Fi–Hi, respectively. The rank reduction

method in Figures 9Bi,Fi shows the ability to suppress the

background noise but fails to preserve the signal events. The

RRU-net could suppress the strong ringing noise (red arrows)

and the horizontal noise (red rectangles) in Figures 9Di,Hi,

while the other two methods could not (Figures 9Bi,Ci,Fi,Gi).

At the same time, the RRU-net method also performs very well

in recovering the missing signals. The FK spectrum in Figures

9Aii–Dii,Eii–Hii further illustrates the validity of this

algorithm.

Testing the trained RRU-net on both synthetic and field

data indicates its ability to reconstruct randomly missing data

with high accuracy on different datasets, which validates the

feasibility and generalization capacity of the proposed

method.

FIGURE 9
Simultaneous reconstruction and denoising results of the three methods in field DAS-VSP data. (Ai) Original field DAS-VSP data, shot1. (Bi)
Result of (Ai) by rank reduction. (Ci) Result of (Ai) by U-net. (Di) Result of (Ai) by RRU-net. (Aii–Dii) FK spectrum of (Ai–Di), respectively. (Ei)Original
field DAS-VSP data, shot1. (Fi) Result of (Ei) by rank reduction. (Gi) Result of (Ei) by U-net. (Hi) Result of (Ei) by RRU-net. (Eii–Hii) FK spectrum of
(Ei–Hi), respectively.
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Conclusion

We proposed the RRU-net to simultaneously pursue the

reconstruction and denoising of the massive DAS-VSP seismic

data. It is difficult for training the U-net directly with

t − x-domain data to extract the mapping relationship

between noisy incomplete data and noise-free complete data,

but the RRU-net proposed in this article can achieve this.

Compared with the traditional rank reduction method, the

RRU-net avoids the difficulties of selecting the rank

parameters and a large amount of computation for SVD.

These advantages enable the RRU-net to achieve better results

in simultaneous reconstruction and denoising of DAS-VSP

seismic data with higher efficiency. Both synthetic data and

real DAS-VSP seismic data demonstrate the effectiveness of

RRU-net in noise suppression (background noise, ringing

noise, and horizontal noise) and signal reconstruction.

There are still issues that require further investigation in the

simultaneous reconstruction and denoising of DAS-VSP seismic

data. Issues, such as preserving the weak signals, and the

application of the neural network with complex convolution

for seismic data in the frequency domain also need further

investigation.
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Distributed acoustic sensing (DAS) is an emerging technology that transforms a

typical glass telecommunications cable into a network of seismic sensors. DAS

may, therefore, concurrently record the vibrations of passing vehicles over tens

of kilometers and shows potential to monitor traffic at a low cost with minimal

maintenance. With big-data DAS recording, automatically recognizing and

tracking vehicles on the road in real time still presents numerous obstacles.

Therefore, we present a deep learning technique based on the unified real-time

object detection algorithm to estimate traffic flow and vehicle speed in DAS

data and evaluate them along a 500-m fiber length in Beijing’s suburbs. We

reconstructed the DAS recordings into 1-min temporal–spatial images over the

fiber section and manually labeled about 10,000 images as vehicle passing or

background noise. The precision to identify the passing cars can reach 95.9%

after training. Based on the same DAS data, we compared the performance of

our method to that of a beamforming technique, and the findings indicate that

our method is significantly faster than the beamforming technique with equal

performance. In addition, we examined the temporal traffic trend of the road

segment and the classification of vehicles by weight.

KEYWORDS

distributed acoustic sensing, traffic monitoring, vehicle flow, vehicle speed, real-time
object detection YOLO, slant stack, vehicle classification

Introduction

Traffic monitoring and management are essential links in the construction of smart

cities. Comprehensively monitoring the densely distributed urban road network is still a

challenging task. Surveillance cameras are the most intuitive monitoring method, but the

construction and maintenance costs are high. At the same time, video processing is

enormous, and monitoring coverage has dead spots and is also greatly affected by lighting

and meteorological factors. Using the cell phone signals of people on the road network is
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an innovation to track road congestion in real time. However,

both of the aforementioned methods have personal privacy

concerns, so developing new monitoring methods

complements the deficiencies of the existing observation systems.

The emergence of distributed acoustic sensing (DAS)

applications in the city can revolutionize the smart city’s

sensing abilities as lots of dark fibers existing in the city can

be transformed into vibration sensors. Because infrastructure

optical cables for communication or traffic surveillance would

cover almost every major road, building a DAS transport

management system over the whole city will be possible with

the benefits of fast construction and low maintenance cost.

Hence, DAS could be another new way to continuously

monitor the roads (Chambers, 2020).

Numerous examples have proved the effectiveness of the

roadside DAS for traffic surveillance. Using a wavelet threshold

method, Liu et al. (2019) identified the features of passing cars

from DAS recordings and then estimated the number and speed

ranges of the vehicles. In addition, automobiles were categorized

using a support vector machine classifier. Lindsey et al. (2020)

employed an automatic template-matching method to detect the

changes in Palo Alto, California, automobile traffic patterns

during the COVID-19 quarantine. They also effectively

observed traffic over a 2-month period, including significant

declines associated with the COVID-19 reaction. Chambers

(2020) provided an automated approach for predicting vehicle

counts and speeds at Brady Hot Springs, Nevada, United States,

utilizing DAS array velocity stacking. Wang et al. (2021)

monitored the number of cars and their average speed

between December 2019 and August 2020 in Pasadena,

California, using the slant stack method and analyzed the

changes in traffic patterns caused by the COVID-19

lockdown. Wang et al. (2020) identified the “heaviest” float

and the “loudest” band at the 2020 Rose Parade in Pasadena,

California, based on the amplitudes recorded by the Pasadena

DAS array. Weight estimation is a unique feature of DAS that

differentiates it from video traffic surveillance. Clearly, dense

DAS acquisition facilitates the processing of seismic arrays and

improves the precision of vehicle identification and dynamic

parameter estimations.

Although DAS has unparalleled advantages in continuous

roadside traffic monitoring, the massive data produced by DAS

are a barrier to mining. Traditional seismic array processing is

used to analyze the traffic parameters, which frequently needs

abundant computation and makes long-distance real-time

monitoring inappropriate. Applying various machine learning

algorithms on DAS waveforms or wavefield images is one of the

popular approaches to reduce the processing time. Narisetty et al.

(2021) introduced the SpeedNet model and used real-world and

simulated data to determine the average vehicle speed each

minute. In comparison to existing loop detector-based

sensors, their model obtained an accuracy of over 90%.

Wiesmeyr et al. (2021) utilized an image and signal

processing technique to compute the vehicle speed and

numbers for a highway DAS experiment and evaluate the

findings in comparison to reference data from roadside

sensors. Van den Ende et al. (2021) suggested a deconvolution

auto-encoder (DAE) model for deconvolving the typical

automobile impulse response from DAS data. The test on a

24-h traffic cycle using the DAEmodel demonstrates the viability

of potentially processing massive DAS volumes in near real time.

YOLO (You only look once: Unified, real-time object

detection, Redmon et al., 2016) is one of the fastest and most

accurate object identification AI frameworks (https://pjreddie.

com/yolo/). Stork et al. (2020) and Zhu and Shragge (2022)

demonstrated that YOLO can detect weaker microseismic event

signals with low signal-to-noise ratios and high average precision

over DAS data in near real time. Numerous YOLO-based systems

that rely on the road video network have been presented, and it

has been proven that the algorithm is effective and viable for

traffic monitoring in near real time (Cao et al., 2019; Ge et al.,

2020; Mandal et al., 2020; Al-qaness et al., 2021; Amitha and

Narayanan, 2021; Lin and Jhang, 2022; Zheng et al., 2022). To the

best of our knowledge, however, YOLO has not been

implemented for DAS traffic monitoring. Owing to the

processing performance advantages of YOLO, it is possible to

achieve a substantial advance in DAS traffic monitoring by

employing this algorithm.

In this research, we will, therefore, offer another recognition

model based on deep learning. This solution is mostly based on

the YOLOv5 framework for real-time object detection. We will

construct a collection of datasets, train them, then conduct a

system evaluation, and compare the outcomes to the

conventional method based on slant stacking (Wang et al.,

2021). We will also measure vehicle weights and attempt to

classify them in order to illustrate a second potential traffic

monitoring capability of DAS.

Data and methods

We conducted a 15-day DAS experiment near the Wenyu

River in the Changping area of Beijing in December 2021

(Figure 1). The fiber optical cable we utilized was 3.2 km in

length and was primarily installed along the river. A Silixa

iDAS interrogator was installed at the cable’s eastern end and

was let to continuously measure the strain rate changes along

the cable with a 2000-Hz time sampling rate and 4-m spatial

interval. Therefore, the experiment has about 800 channels in

total.

On the riverbank is a road that serves as the primary

transportation artery for the nearby residents. The passing

vehicles on the road would cause vibrations and generate

seismic waves that will propagate to nearby optical cables and

generate cable strain deformations. These deformations will

be densely recorded by the DAS array, and the movement of
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every vehicle appears as a trajectory in DAS temporal–spatial

recordings. According to the existence of the trajectory and

its pattern, we can judge the passing vehicle, its speed, and the

direction through traditional seismic array processing, image

recognition, or even direct visual inspection.

We utilized about 500 m of fiber in the east (channels

from 191 to 315, Figure 1) to monitor the traffic flow. This

section of the fiber is roughly parallel to the road but about

20 m apart (Figure 1). In addition, the eastern portion

contains a piece of cable (channel 91) that spans the road

and allows a direct measurement of the vehicle-caused road

vibration. The flows at the east and west may be different

since some vehicles may stop by a restaurant that is situated

between channels 91 and 191. The overall processing flow is

shown in Figure 2.

Distributed acoustic sensing data
preprocessing

We first downsampled the continuous DAS data on

channel 191–315 to 200 Hz and removed the linear trend,

the mean value, and the common-mode noise. As the spectrum

diagrams of two representative channels shown in

Supplementary Figure S1, the background ambient noises

are abundant at 1–20 Hz, while the vehicle signals above

20 Hz are easier to be separated from the background

noises. On the other hand, vehicle signals below 1 Hz are

only obvious for some heavy vehicles but not common for

all; therefore, we apply a 20–50 Hz bandpass filter to the DAS

data to improve the reliability of passing vehicle identification.

Passing vehicle detection and speed
estimation with YOLOv5

YOLOv5 is the most recent version of the YOLO series

(https://github.com/ultralytics/yolov5). One significant

improvement is the detection speedup by PyTorch (Paszke

et al., 2019), which can work with deeper networks for

applications on more extensive datasets and real-time cases.

The structure of YOLOv5 comprises four parts: the input,

backbone network, neck network, and prediction network.

The principle of object detection is to use an anchor to select

an image segment from the image and input it into the

convolutional neural network model to identify the object

category in the frame. By scanning the entire image with

anchors of different sizes, we recognize and locate the object

when the probability of the box-selected image segment

predicted as ground truth is greater than the set threshold.

The object detection algorithm is divided into two categories

according to the processing steps. The two-stage method

generates a series of region proposals through a particular

module. It then uses a convolutional neural network for

sample classification and regression positioning to detect

objects represented by Faster R-CNN (Ren et al., 2015). The

one-stage method directly extracts features from anchors to

predict the object category and location, as described by SSD

FIGURE 1
DAS array in Changping, Beijing. The yellow line is the optical cable, and the yellow circle indicates the location of the DAS interrogator. We used
data from the sub-array (No. 191–315, blue line) and No. 91 (one of the cross-road channels) for traffic monitoring.
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(Liu et al., 2016) and YOLO series (Redmon et al., 2016; Redmon

and Farhadi, 2017; Redmon and Farhadi, 2018). Two-stage

detection has high accuracy but slow detection speed. One-

stage detection accuracy is low but much faster than the two-

stage algorithm and is widely used in real-time object detection

tasks.

We preprocessed DAS continuous waveforms for channels

191–315 into 1-min segments without overlap. The 1-min

waveforms of 125 channels were converted to images in the

size of 1167*875, resulting in around 21,000 photographs over

the course of 15 days. To train a new

YOLOv5 model for vehicle detection and speed

estimation, we manually annotated a dataset of about

10,000 photographs.

For vehicle trace labeling in DAS images, LabelImg (2022)

is employed. LabelImg is a graphical image annotation tool

that labels object bounding boxes in images. These images are

manually categorized as automobiles with varying speeds or

noises without any car passing. First, we utilize bounding

boxes for each image to entirely contain the vehicle traces

with a predetermined size. One box represents an automobile

that has been labeled, and the car number is the sum of the

number of boxes. As the vehicle traces are contained within

the boxes, the height and width of the boxes correspond to the

driving distance and journey duration of the cars. Therefore,

it is possible to determine the speed ranges of vehicles by

calculating the aspect ratio of the bounding boxes. Once

vehicle traces have been tagged, the width, height, and

FIGURE 2
Overall data processing flow.
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center coordinates of the boxes are automatically recorded as

the ground-truth location for model training.

By counting the number of boxes and computing their

box aspect ratio, we can determine the number of cars and

their speed in each 1-min DAS image. In a ratio of 8:1:1, the

dataset is randomly divided into training, validation, and

testing sets. For training, we employ the SGD (Robbins and

Monro, 1951) optimizer with momentum and weight decay

coefficients of 0.937 and 0.0005, respectively. The learning

rate is 0.01, and the initial training epoch has been set to 300.

The deep learning processing flow of YOLOv5 is shown in

Supplementary Figure S2. Due to the early stop mechanism,

the training process on a server with two Nvidia GeForce RTX

3090 GPUs was terminated at epoch 228 after 10 h of

training (Figure 3). Currently, the best model is the No.

128 epoch, with training precision as high as 95.9%

(Figure 3).

Box loss, object loss, and class loss are the primary

evaluative factors for object detection algorithms. Given

that the length and width of the boxes are critical to the

distance and travel time of vehicle traces in DAS

photographs, the box’s dimensions are crucial in this

instance. The slight box loss provides a more precise

bounding box position and enhances the speed estimation

performance. YOLOv5’s box loss is a CIoU (complete

intersection over union) loss between the predicted and

ground-truth box (Zheng et al., 2020). IoU (intersection

over union) is computed in the following manner:

IoU � |B ∩ Bgt|
|B ∪ Bgt| , (1)

where Bgt = (xgt, ygt, wgt, and hgt) is the ground-truth bounding box

and B = (x, y, w, and h) is the predicted bounding box.

CIoU loss is defined as follows:

LCIoU � 1 − IoU + ρ2(b, bgt)
c2

+ αv , (2)

where b and bgt denote the central points of B and Bgt, ρ2

represents the square of the distance between the center

points of the prediction box b and the gt (ground-truth) box

bgt, and c2 represents the square of the diagonal length of the

smallest box that can just contain the prediction box and the

gt box.

α as a trade-off parameter is shown in Eq. 3:

α � v

(1 − IoU) + ] . (3)

Here, ν is used to measure the consistency of the aspect ratio

between the predicted box and the gt box, and its definition is

shown in Eq. 4:

v � 4

π2(arctan
wgt

hgt
− arctan

w

h
)

2

, (4)

where wgt and hgt, respectively, represent the width and height of

the gt box, and w and h, respectively, represent the width and

height of the prediction box.

FIGURE 3
Vehicle detection YOLOv5 model training. Box regression loss (box loss), object loss (obj loss), class loss (cls loss), training accuracy, and recall
are depicted in the top row, from the left to the right. Similar to the first row, the first three figures in the second row are loss functions for the
validation set instead. The next two figures represent the mean average precision for IoU thresholds greater than 0.5 and for the range (0.5, 0.55,
0.60, ..., 0.95).
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CIoU loss takes three geometric properties into account,

i.e., the overlap area, central point distance, and aspect ratio, and

leads to a faster convergence and better performance. It is

apparent in the first column of Figure 4 that the box

regression loss dropped rapidly within 10–20 epochs. Object

loss is the confidence loss of ground-truth and predicted

bounding boxes for determining the probability of whether

there are objects in the predicted bounding box. Object loss

uses BCE loss (binary cross-entropy loss) in YOLOv5. BCE loss is

defined in Eq. 5:

LBCE � { −log(p) y � 1,
−log(1 − p) Otherwise,

(5)

where p is the probability of the predicted bounding box

belonging to the gt box, y represents the value of the ground-

truth bounding box, and the value range of y is {1, 0}.

Class loss used in YOLOv5 is focal loss. Focal loss is defined

as follows:

Lfocal � −(1 − pt)γlog(pt) , (6)

where pt is the probability of the predicted class that belongs to

the true class and γ is the focusing parameter (γ ≥ 0).

We only identified one class of automobile trace in the DAS

photographs; hence, the class loss values of training and

validation are both zero. There are considerable fluctuations

in the first 100 epochs of the training precision and recall

curves, but after the first 100 epochs, the curves gradually

converge, and the accuracy is over 94%, and the recall is over

91%. In addition, the mean average accuracy with an IoU

threshold of more than 0.5 is greater than 95%, and the mean

average precision with an IoU threshold between 0.5 and 0.95 is

close to 83%.

After training the model, we applied it to all DAS data and

systematically recognized passing vehicles and their speed in the

15-day period. In a laptop with an Nvidia GeForce RTX

3060 Laptop GPU, the detection procedure only takes a total

of about 0.5 h.

Passing vehicle detection and speed
estimation by slant stacking

We also applied the slant stacking approach developed by

Wang et al. (2021) to detect the passing vehicle and its speed.

Similar to previous YOLOv5 processing, we segmented the

prepossessed continuous DAS time series from the same

125 channels (about 500 m, the blue line in Figure 1) at 2-

min intervals. The longer interval instead of 1 min can provide a

more stable estimation of vehicle speed but will be more time-

consuming during the slant stacking procedure. We used 2-min

intervals for accurate speed estimation and for speeding up the

computation. The 125 channels were further divided into sub-

arrays with 74 channels and overlapped by 24 channels (i.e., slide

with 50 channels). In each sub-array, we first performed data

quality control by deleting these channels with a cross-

correlation coefficient with adjacent channels smaller than 0.5.

We then stacked the waveforms in the sub-array with the fourth

root method (Rost and Thomas, 2002) by scanning the different

FIGURE 4
Cars across the cross-road fiber cable and their raw signals in the No. 91 DAS channel in the 4-min period. The cross-road fiber is beneath the
white line in pictures. The events are labeled with numbers by time order. Cars No. 3 and No. 4 passed the channel almost the same time, and their
waves are stacked together. Car No. 7 was not photographed since it turned to the restaurant as the yellow arrow indicates and did not have any
signals captured on channels 191–315 during that time. Cars No. 2 and No. 4 also did not go through channels 191–315, according to our
manual waveform inspection.
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vehicle trace slopes (p). The vehicle’s speed(c) can be determined

as follows:

c � mps

ppdt
, (7)

where m, s, and dt are the number of channels, the channel

interval, and the time sampling rate, respectively. In this study,

the values are 125, 4 m, and 0.05 s, respectively. We have

established a speed estimation range of over 25 km/h to

100 km/h based on road conditions. This indicates that the

slope p ranges from 28.8 to 115.2 in one direction

and −115.2 to −28.8 in the opposite direction. The sign of p

conveys information about the movement direction.

We shifted both sides of the middle channel of each

subarray’s p*dt samples in the opposite direction and then

stacked their energies. In addition, we utilized local maxima

analysis to identify the peaks in order to estimate the number

of vehicles and their speeds per 2 min. The results of the two

sub-arrays are mutually verified for reducing vehicle

detection and speed estimation errors by calculating the

mean values of the vehicle numbers and speed ranges,

respectively. All of the aforementioned DAS data slant

stack processing procedures require roughly 85 h serially

running on a Linux server with two AMD EPYC 7702 64-

Core processors.

Due to the proximity of the fiber cable to the road in

comparison to the measurement length, both the apparent

speeds determined by YOLOv5 and slant stacking are

considered to be the vehicle speed. Using the following

formula, we estimated the hourly average speed (vavg) as

follows:

vavg �
∑n

i�1vi
n

, (8)

FIGURE 5
Vehicle detection comparisons. The three planes from up to down correspond to the findings of peak detection, slant stacking, and YOLOv5.
Their respective detections are indicated by red dots, crosses, and boxes with correlation coefficients. The numbers in the circles are identical to
those in Figure 4, but their order has altered due to their differing movement orientations. Cars 2, 4, and 7 do not pass through the DAS array on
channels 191–315.

TABLE 1 Vehicle detection verification.

Method Ground truth Detection Missed detection False detection Repeat detection

Peak detection (array at No.91) 11 13 1 3 0

Slant stacking (array at No. 191–315) 8 7 1 0 0

YOLOv5 (array at No. 191–315) 8 9 0 0 1
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where vi is the individual vehicle speed detected by YOLOv5 or

the slant stacking method and n is the number of vehicles in

1 hour.

Detection of vehicles and analysis of their
weights by waveform amplitudes

Using transient fluctuations in waveform energy (amplitude)

is a conventional technique for detecting seismic events, and it

can also be utilized to detect passing cars. This detection can be

performed with a single sensor, which is simple and requires

minimal computational resources. But the method is difficult to

estimate the movement speed and is more likely to be falsely

triggered by pedestrians or other non-vehicle vibrations in the

vicinity.

The continuous waveforms in a piece of cross-road cable

(channel 91 in Figure 1) were independently used to count the

vehicle number. As shown in Figure 4, moving automobiles

caused obvious waveform changes, and their amplitudes may

be relative to the vehicle’s weight. The original

waveforms in this channel were downsampled,

detrended and mean value removed, then

transformed to waveform envelopes and smoothed with 2-s

windows.

We used local maximal analysis to detect the events. Through

several tests, the amplitude threshold and minimum event

interval are set to 2000 count and 2 s, respectively.

Results

Vehicle detection comparison and
verification

We begin by comparing the detections of the three

techniques. On channel 91, we use a 4-min window for peak

detection (Figure 4). During this time, we took photographs of

vehicles crossing the channel. Photographs and waveforms on

the channel confirm the passage of 11 vehicles within a 4-min

period. For slant stacking and YOLOv5 methods, we extend the

4-min window on channels 191–315 by 1 minute at both ends.

Due to the distance between the two observation sites

(approximately 400 m) and the time shifts caused by passing

vehicles, the 6-min window will ensure that the measurements

for the three methods overlap.

We visually inspect the DAS array records for 11 vehicles that

passed channel 91 and confirm that three of them (No.2, 4, and

7 in Figure 5) did not enter channels 191–315. Therefore, the

ground-truth passed vehicle numbers for channel 91 are 11 and

FIGURE 6
Daily variations in the traffic volume for event peak detection, YOLOv5, and slant stacking methods in 15 days. The zoom-in image in the lower
panel highlights daily and weekly periodic patterns.
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those for the DAS array on channels 191–315 are 8. Table 1

shows the vehicle detection verification of peak detection, slant

stacking, and YOLOv5 methods. The number detected by the

peak method is 13, and the three incorrectly detected signals are

likely the result of local vibrations, such as people walking or a

stopped car with its engine running. Supplementary Figure S3

shows more similar wrong detection cases, implying that the

single-channel detection approach is susceptible to both moving

vehicles and local events. The slant stacking and

YOLOv5 methods each identify seven and eight vehicles,

respectively. The absence of a detected vehicle in slant

stacking is primarily due to the fact that the event signals on

the different channels are split by the time window, and the

stacking energies in both windows are too weak to identify

(Figure 5). Two cars (Nos. 10 and 11) that are following

closely are correctly identified by either slant stacking or

YOLOv5. Unlike the slant stacking, a trace across two

windows may be detected twice by YOLOv5 (Figure 5), which

needs to remove duplicates by comparing their speeds and corner

coordinates at the adjacent boxes. Other strong vibrations on

FIGURE 7
Hourly traffic volumes of 15 days derived from three detection methods. Different colored lines correspond to each day, and the gray vertical
dot lines represent the rush hour.
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channels 191–315 that are unrelated to traffic can be efficiently

suppressed using both array-based methods, as shown in

Supplementary Figure S3.

Traffic flow estimation and analysis

We used YOLOv5, slant stacking, and event peak detection to

identify passing vehicles in about 2 weeks’ worth of DAS data

between 11/12/2021 00:00 (Saturday) and 25/12/2021 20:00

(Monday) for the investigation of traffic patterns. We

compared the variations in the number of automobiles per

hour detected by the aforementioned three independent

approaches. As seen in Figure 6, the three estimation methods

for traffic volume yield comparable traffic patterns but differ in

terms of the number of vehicles. The event peak detection

method predicts the greatest number of vehicles, whilst the

YOLOv5 method estimates a somewhat lower number, and

the slant stacking method estimates the smallest number.

Traffic volume estimations are affected by a number of

variables. One of the causes is the variance in the processing

time window. With shorter time windows, more vehicles would

be spotted, particularly during rush hour, but they would also be

identified many times because the signals may span two units of

FIGURE 8
Figures in the top row represent the daily and weekly variations of the average speed, as estimated by YOLOv5 and the slant stacking technique.
The figures in the second row represent hourly variations of the same methods. The gray dot line in the second row of figures divides each day into
three distinct time intervals with varying average speed trends.

FIGURE 9
Relationship between the traffic volume and mean speed derived from the detection results of YOLOv5 (left) and slant stacking (right). The
colors of the scatters represent the time of the day.
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data in continuous time series for array-based algorithms, such as

YOLOv5 or slant stacking. False identifications can be avoided to

a considerable extent with array-based approaches, which need

coherent signals over many channels. In contrast, we discovered

erroneous identifications in the peak detection method, where

the erroneous peaks were likely generated by the neighboring tree

swaying in windy conditions. In order to acquire more

dependable traffic patterns, it is necessary to improve the

detection algorithm, such as recognizing multiple objects

simultaneously in an array-based approach.

Similar daily and weekly fluctuations exist for each of the

three procedures. Each day’s traffic volume peaks in the

morning, lowers during the midday, reaches another peak

in the afternoon, and finally declines in the evening. We

emphasize the two traffic volume peaks that occur within a

certain time period for each technique, illustrating the

weekday peaks. On weekdays, the morning rush hour

occurs between 6 and 9 h, and the afternoon rush hour

occurs between 15 and 18 h. However, this tendency is not

appropriate on weekends, as depicted in the graph. From the

zoomed-in graph, we can note that the weekday traffic volume

peaks are quite narrow. We also find it intriguing that all

methodologies forecast Friday’s morning rush hour to have

significantly less traffic volume than other days. The weekly

variations with a regular pattern may be related to the

commute times of nearby neighbors.

We study the hourly traffic volume variations of event peak

detection, YOLOv5, and the slant stacking method in greater

detail (Figure 7). The majority of traffic volume accumulates

between the morning and afternoon rush hours. During

6–18 h, the traffic volume of the event peak detection

method ranges from 40 to 100 vehicles per hour, the

YOLOv5 method ranges from 30 to 80 vehicles per hour,

and the slant stacking method ranges from 20 to 60 vehicles

per hour. The traffic volume estimation of the

YOLOv5 approach is more accurate than that of the slant

stacking method as the results of event peak detections

represent the actual traffic volume. The hourly variance of

each day is divided into five time-groups based on the morning

and afternoon rush hours. From 0 to 6 h is the initial time

where the majority of traffic volume is less than 10 vehicles per

hour. The morning rush hour is the second interval between

6 and 9 a.m. Compared to 9–15 h, the third session has a

relatively lower but stable volume of traffic. The afternoon

rush hour is the fourth time between 15 and 18, characterized

by the biggest volume of traffic. The final phase, between

18 and 0 h, is characterized by a sharp decline in the traffic

volume.

FIGURE 10
Passing vehicles’ amplitudes over the time.

FIGURE 11
Hourly vehicle numbers and their mean amplitudes from
peak detection. The colors of scatters represent the hour of
the day.
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Vehicle speed estimation

Figure 8 depicts the average speed variation of YOLOv5 and

slant stacking. The YOLOv5 mean speed ranges between 30 km/

h and 80 km/h, while the slant stacking method ranges between

30 km/h and 90 km/h. In general, the mean speed predicted by

the slant stacking method is around 10 km per hour faster than

YOLOv5. A vehicle trace in a DAS image is a width-measured

line (the last panel in Figure 5). The slope of the middle section of

the line is more representative of the actual vehicle speed. When

the bounding box identified by YOLOv5 entirely encloses the

entire vehicle trail, the speed calculated by the aspect ratio of the

bounding box is always lower. The speed determined via slant

stacking is more accurate than that of YOLOv5. The

YOLOv5 technique speed range is upward and rises from

40 km/h to 60 km/h, whereas the slant stacking method speed

range rises from 50 km/h to 70 km/h during the day. Figure 8’s

top row depicts the daily and weekly fluctuations of the average

speed assessed using YOLOv5 and the slant stacking approach.

The fluctuations in the average speed over time for YOLOv5 and

slant stacking are comparable. During the interval between

midnight and dawn, the average speed of both the techniques

is very variable, and the period contains both the minimum and

maximum average speeds. In the second row of Figure 8, both the

methods exhibit a gradual decrease in the average speed from six

to eighteen o’clock, which corresponds to the rush hour periods

discussed in the previous section. The average speed decreases

from 60 km/h to 50 km/h for the YOLOv5 method and from

70 km/h to 50 km/h for the slant stacking method.

On the graphs of the hourly traffic volume and mean speed,

we compare the results of YOLOv5 and the slant stacking method

(Figure 9). For YOLOv5, there are less vehicles between midnight

and early morning with divergent average speeds between 30 km/

h and 80 km/h, while the majority of the vehicles are

concentrated during the day with convergent average speeds

between 40 km/h and 60 km/h. Slant stacking demonstrates the

same distribution as YOLOv5 but with greater mean speeds and

smaller traffic volume; the midnight and early morning period

mean speed range is over 30–90 km/h, and the daylight period

mean speed range is over 50–70 km/h.

Vehicles classified by amplitude

The DAS-measured vehicle-passing amplitude is roughly

proportional to the vehicle’s mass and load. In general, the

stronger the vibration, the greater the total mass is. Figure 10

depicts the distribution of amplitudes across time for all

identified events, while Figure 11 compares the vehicle

numbers and their average amplitudes during the daily

hours. Similar distributions are seen to those depicted in

Figure 9. On the basis of these distributions, we broadly

split the amplitudes into three categories: amplitudes

higher than 12,500 counts, amplitudes fewer than

5,000 counts, and amplitudes in between. Figure 12 shows

the vehicle counts over time for the three groups and their

respective totals, binned per hour. Similar time-distribution

features exist across the medium-amplitude bins and the

entire event volume. Generally, the high-amplitude and

low-amplitude distributions exhibit contrasting

characteristics. High-amplitude gears usually appear during

the morning rush hour, whereas low-amplitude values

FIGURE 12
Distributions of vehicle numbers per hour for different vehicle weights. The vehicles are categorized into three classes: amplitude over
12,500 counts (High amp), lower than 5,000 counts (Low amp), and between 5,000 and 12,500 counts (Middle amp). The origin line is for total
numbers.
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typically appear during the evening rush hour. These periods

include high and low vehicle speeds, respectively (Figure 8).

Figure 8 depicts that the average hourly velocity variation

during the morning rush is greater than that of the evening

rush, which is consistent with the high and low amplitudes

depicted in Figure 12. Consequently, we hypothesize that the

vehicle speed can influence the amplitude. Also, there is a link

between velocity and amplitude; the faster the velocity, the

greater the amplitude is.

Conclusion

In this study, we present a deep learning strategy based on

the YOLOv5 real-time object recognition framework for

recognizing the passage and velocity of automobiles in

DAS photographs. After training on a massive amount of

labeled data, our model’s precision is 95.9%. The new strategy

for vehicle detection and speed estimation yields comparable

results to the conventional slant stacking seismic array

processing method. Unlike slant stacking, its processing

speed for processing large DAS data is significantly faster,

and it can be implemented in near-real-time data processing

situations. With rapid data processing capacity, constructing

a city-wide DAS network for traffic monitoring will be viable

and operable using the city’s existing densely packed

communication optical fiber network. In addition to

augmenting the existing traffic video surveillance

network, the network will also help for the development of

smart cities.

Traditional seismic array processing, such as slant

stacking, can use wavefield attributes to reconstruct vehicle

motion parameters, such as driving directions, and is

immediately applicable in a number of contexts. Deep

learning requires the training of pertinent models. Because

we did not identify the driving direction to construct a

comparable training set, the system cannot discern the

driving direction of the car in this experiment. Currently,

we lack more comprehensive training for difficult situations,

such as multiple vehicles passing simultaneously. This area

must be expanded in the near future. In addition, the model’s

ability to generalize across diverse circumstances has not been

fully evaluated. In addition, integrating YOLOv5 with the

slant stacking technique may help calibrate YOLOv5’s

speed estimation and improve the performance of the

YOLOv5 algorithm.

Copyright © 2022 Ye, Wang, Wang, Yang, Peng, Yan, Kou,

and Yuan. This is an open-access article distributed under the

terms of the Creative Commons Attribution License (CC BY).

The use, distribution, or reproduction in other forums is

permitted, provided the original author(s) and the

copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with

accepted academic practice. No use, distribution, or

reproduction is permitted which does not comply with

these terms.

Data availability statement

The original contributions presented in the study

are included in the article/Supplementary Material;

further inquiries can be directed to the corresponding author.

Author contributions

ZY and WW conceived the main ideas, led the project, and

wrote the initial draft of the manuscript. XW provided the

code of the slant stacking method. All authors reviewed

the results and contributed to the writing of the final

manuscript.

Funding

This work was supported by the Project of Basic Scientific

Research Foundation of Institute of Earthquake Forecasting,

China Earthquake Administration (Grant Nos.

CEAIEF20220402 and 2020IEF0602) and the National

Natural Science Foundation of China (Grant Nos.

41574050 and 41674058) and was also supported by the

Young Elite Scientists Sponsorship Program by CAST (grant

2020QNRC001), and the Key Research Program of the

Institute of Geology & Geophysics, CAS (grant IGGCAS-

201904).

Acknowledgments

The authors thank the editor YW and two reviewers HQ and

SY for their constructive comments.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial

relationships that could be construed as a potential conflict

of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their

Frontiers in Earth Science frontiersin.org13

Ye et al. 10.3389/feart.2022.992571

135

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.992571


affiliated organizations, or those of the publisher, the editors,

and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by

its manufacturer, is not guaranteed or endorsed by the

publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/feart.2022.

992571/full#supplementary-material

References

Al-qaness, M. A. A., Abbasi, A. A., Fan, H., Ibrahim, R. A., Alsamhi, S. H., and
Hawbani, A. (2021). An improved YOLO-based road traffic monitoring system.
Computing 103 (2), 211–230. doi:10.1007/s00607-020-00869-8

Amitha, I. C., and Narayanan, N. K. (2021). “Object detection using YOLO
framework for intelligent traffic monitoring,” in Machine vision and augmented
intelligence—theory and applications. Editors M. K. Bajpai, K. Kumar Singh, and
G. Giakos (Singapore: Springer), 405–412. doi:10.1007/978-981-16-5078-9_34

Cao, C.-Y., Zheng, J.-C., Huang, Y.-Q., Liu, J., and Yang, C.-F. (2019).
Investigation of a promoted you only look once algorithm and its
application in traffic flow monitoring. Appl. Sci. 9 (17), 3619. doi:10.
3390/app9173619

Chambers, K. (2020). Using DAS to investigate traffic patterns at Brady Hot
Springs, Nevada, USA. Lead. Edge 39 (11), 819–827. doi:10.1190/
tle39110819.1

Ge, L., Dan, D., and Li, H. (2020). An accurate and robust monitoring method of
full-bridge traffic load distribution based on YOLO-v3 machine vision. Struct.
Control Health Monit. 27 (12), e2636. doi:10.1002/stc.2636

LabelImg (2022). heartexlabs. Available at: https://github.com/heartexlabs/
labelImg (Accessed August 10, 2022).

Lin, C.-J., and Jhang, J.-Y. (2022). Intelligent traffic-monitoring system based on
YOLO and convolutional fuzzy neural networks. IEEE Access 10, 14120–14133.
doi:10.1109/ACCESS.2022.3147866

Lindsey, N. J., Yuan, S., Lellouch, A., Gualtieri, L., Lecocq, T., and Biondi, B.
(2020). City-scale dark fiber DAS measurements of infrastructure use during the
COVID-19 pandemic. Geophys. Res. Lett. 47 (16), e2020GL089931. doi:10.1029/
2020gl089931

Liu, H., Ma, J., Xu, T., Yan, W., Ma, L., and Zhang, X. (2019). Vehicle detection
and classification using distributed fiber optic acoustic sensing. IEEE Trans. Veh.
Technol. 69 (2), 1363–1374. doi:10.1109/tvt.2019.2962334

Liu,W., Anguelov,D., Erhan,D., Szegedy, C., Reed, S., Fu, C. Y., et al. (2016). “Ssd: Single
shot multibox detector,” in European conference on computer vision (Cham: Springer),
21–37.

Mandal, V., Mussah, A. R., Jin, P., and Adu-Gyamfi, Y. (2020). Artificial
intelligence-enabled traffic monitoring system. Sustainability 12 (21), 9177.
doi:10.3390/su12219177

Narisetty, C., Hino, T., Huang, M. F., Ueda, R., Sakurai, H., Tanaka, A., et al.
(2021). Overcoming challenges of distributed fiber-optic sensing for highway traffic
monitoring. Transp. Res. Rec. 2675 (2), 233–242. doi:10.1177/0361198120960134

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., et al. (2019).
Pytorch: An imperative style, high-performance deep learning library. Adv. neural
Inf. Process. Syst. 32.

Redmon, J., Divvala, S., Girshick, R., and Farhadi, A. (2016). “You only look once:
Unified, real-time object detection,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 779–788.

Redmon, J., and Farhadi, A. (2017). “YOLO9000: Better, faster, stronger,” in Proceedings
of the IEEE conference on computer vision and pattern recognition, 7263–7271.

Redmon, J., and Farhadi, A. (2018). Yolov3: An incremental improvement. arXiv
preprint arXiv:1804.02767.

Ren, S., He, K., Girshick, R., and Sun, J. (2015). Faster r-cnn: Towards real-time
object detection with region proposal networks. Adv. neural Inf. Process. Syst. 28.

Robbins, H., and Monro, S. (1951). A stochastic approximation method. The
annals of mathematical statistics, 400–407.

Rost, S., and Thomas, C. (2002). Array seismology: Methods and applications.
Rev. Geophys. 40 (3), 2-1–2-27. doi:10.1029/2000rg000100

Stork, A. L., Baird, A. F., Horne, S. A., Naldrett, G., Lapins, S., Kendall, J.-M., et al.
(2020). Application of machine learning to microseismic event detection in
distributed acoustic sensing data. GEOPHYSICS 85 (5), KS149–KS160. doi:10.
1190/geo2019-0774.1

van den Ende, M. P. A., Ferrari, A., Anthony, S., and Richard, C. (2021). Deep
deconvolution for traffic analysis with distributed acoustic sensing data. hal-
03352810.

Wang, X., Williams, E. F., Karrenbach, M., Herraez, M. G., Martins, H. F.,
and Zhan, Z. (2020). Rose parade seismology: Signatures of floats and bands
on optical fiber. Seismol. Res. Lett. 91 (4), 2395–2398. doi:10.1785/
0220200091

Wang, X., Zhan, Z., Williams, E. F., Herráez, M. G., Martins, H. F., and
Karrenbach, M. (2021). Ground vibrations recorded by fiber-optic cables
reveal traffic response to COVID-19 lockdown measures in Pasadena,
California. Commun. Earth Environ. 2 (1), 160–169. doi:10.1038/s43247-
021-00234-3

Wiesmeyr, C., Coronel, C., Litzenberger, M., Döller, H. J., Schweiger, H. B., and
Calbris, G. (2021). “Distributed acoustic sensing for vehicle speed and traffic flow
estimation,” in 2021 IEEE international intelligent transportation systems conference
(ITSC) (IEEE), 2596–2601.

YOLO (2022). Real-time object detection. Available at: https://pjreddie.com/
darknet/yolo/ (Accessed July 10, 2022).

YOLOv5 framwork (2022). GitHub ultralytics. Available at: https://github.com/
ultralytics/yolov5 (Accessed July 10, 2022).

Zheng, Y., Li, X., Xu, L., andWen, N. (2022). A deep learning–based approach for
moving vehicle counting and short-term traffic prediction from video images.
Front. Environ. Sci. 10. doi:10.3389/fenvs.2022.905443

Zheng, Z., Wang, P., Liu, W., Li, J., Ye, R., and Ren, D. (2020). Distance-IoU
loss: Faster and better learning for bounding box regression.
Proc. AAAI Conf. Artif. Intell. 34 (07), 12993–13000. doi:10.1609/aaai.
v34i07.6999

Zhu, X., and Shragge, J. (2022). Toward real-time microseismic event detection
using the YOLOv3 algorithm. Retrieved from https://eartharxiv.org/repository/
view/2926/.

Frontiers in Earth Science frontiersin.org14

Ye et al. 10.3389/feart.2022.992571

136

https://www.frontiersin.org/articles/10.3389/feart.2022.992571/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/feart.2022.992571/full#supplementary-material
https://doi.org/10.1007/s00607-020-00869-8
https://doi.org/10.1007/978-981-16-5078-9_34
https://doi.org/10.3390/app9173619
https://doi.org/10.3390/app9173619
https://doi.org/10.1190/tle39110819.1
https://doi.org/10.1190/tle39110819.1
https://doi.org/10.1002/stc.2636
https://github.com/heartexlabs/labelImg
https://github.com/heartexlabs/labelImg
https://doi.org/10.1109/ACCESS.2022.3147866
https://doi.org/10.1029/2020gl089931
https://doi.org/10.1029/2020gl089931
https://doi.org/10.1109/tvt.2019.2962334
https://doi.org/10.3390/su12219177
https://doi.org/10.1177/0361198120960134
https://doi.org/10.1029/2000rg000100
https://doi.org/10.1190/geo2019-0774.1
https://doi.org/10.1190/geo2019-0774.1
https://doi.org/10.1785/0220200091
https://doi.org/10.1785/0220200091
https://doi.org/10.1038/s43247-021-00234-3
https://doi.org/10.1038/s43247-021-00234-3
https://pjreddie.com/darknet/yolo/
https://pjreddie.com/darknet/yolo/
https://github.com/ultralytics/yolov5
https://github.com/ultralytics/yolov5
https://doi.org/10.3389/fenvs.2022.905443
https://doi.org/10.1609/aaai.v34i07.6999
https://doi.org/10.1609/aaai.v34i07.6999
https://eartharxiv.org/repository/view/2926/
https://eartharxiv.org/repository/view/2926/
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.992571


Revealing the shallow soil
structure of the Yigong Lake in
the Tibetan Plateau using a
portable distributed acoustic
sensing interrogator

Jizhong Yang1,2, Jian Zhou3, Heng Zhang4*, Tuanwei Xu5,6,
Dimin Deng5 and Jianhua Geng1

1State Key Laboratory of Marine Geology, Tongji University, Shanghai, China, 2Shanghai Sheshan
National Geophysical Observatory, Shanghai, China, 3School of Ocean and Earth Science, Tongji
University, Shanghai, China, 4State Key Laboratory of Tibetan Plateau Earth System, Environment and
Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing,
China, 5State Key Laboratory of Transducer Technology, Institute of Semiconductors, Chinese
Academy of Sciences, Beijing, China, 6College of Materials Science and Opto-Electronic Technology,
University of Chinese Academy of Sciences, Beijing, China

The harsh and extreme environmental and near surface conditions of the

Tibetan Plateau have limited the conventional electrical-based seismic

instruments from obtaining high-quality seismic data through long-term and

continuous observations, setting challenges for environmental seismology

study and natural hazard monitoring in this area. Distributed acoustic

sensing (DAS) is an emerging technique based on optical fiber

communication and sensing. It provides a possible solution for subsurface

imaging in extreme conditions at high spatiotemporal resolution by converting

fiber-optic cables into dense seismic strainmeters. We deploy two survey lines

with armored optical fiber cables in the Yigong Lake area, Southeastern Tibetan

Plateau, to record ambient noise for a week. The DAS interrogator is specifically

designed in a portable size with very low power consumption (25 W/h). Hence,

we can use a 12V-DC battery for power supply to adjust the power limitation

during the field recording. Ambient noise interferometry and multichannel

analysis of surface waves are used to get 2D shear wave velocity profiles

along the fiber paths. The results highlight the great potential of DAS for

dynamic monitoring of the geological evolution of lakes and rivers in areas

of extreme environments as in the Tibetan Plateau.

KEYWORDS

distributed acoustic sensing, sedimentary thickness, Tibetan Plateau, ambient noise
tomography, seismic interferometry
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Introduction

Seismic data acquisition is the foundation of data processing

and interpretation in seismological research. High-quality

seismic data may significantly improve the accuracy of

geological understanding. Recently, seismologists have tried to

use denser and denser observational networks to obtain high-

spatiotemporal-resolution seismic data for a better knowledge of

the Earth’s dynamic processes and monitoring of natural hazards

(Karplus and Schmandt, 2018; Nishikawa et al., 2019; Kohler

et al., 2020). Although conventional electrical seismic

instruments can be deployed in most areas for seismological

research, it is very challenging to meet the aims of long-term

monitoring in harsh environments, such as the volcano, glaciers,

and plateaus due to the high cost of deployment andmaintaining.

Distributed acoustic sensing (DAS) is an emerging seismic

measurement technique that benefits from the development of

optical fiber communication and sensing. Typically, a DAS

system is composed of a standard optical fiber cable and an

interrogation unit (IU). The IU lights the fiber using short laser

pulses and measures Rayleigh back-scattering (RBS) along the

fiber through a form of coherent optical time domain

interferometry. A phase shift in the RBS is caused by the

compression or elongation along the fiber, which is

proportional to axial strain along the cable. Thus, DAS is

working as a dense network for dynamic strain measurements

(Parker et al., 2014; Hartog, 2017). DAS has initially been used for

downhole applications in oil and gas exploration (Mateeva et al.,

2014; Daley et al., 2016; Lellouch and Biondi, 2021). Currently, it

has been widely adapted to seismological investigations, such as

earthquake detection (Lindsey et al., 2017; Jousset et al., 2018;

Wang et al., 2018; Yu et al., 2019), near-surface characterization

(Dou et al., 2017; Fang et al., 2020; Spica et al., 2020; Shao et al.,

2022), observing oceanic and atmospheric phenomena (Lindsey

et al., 2019; Sladen et al., 2019; Williams et al., 2019; Zhu and

Stensrud, 2019; Shinohara et al., 2022), monitoring volcano and

glacier (Booth et al., 2020; Walter et al., 2020; Klaasen et al., 2021;

Nishimura et al., 2021), and so forth. For the most up-to-date

review of DAS application in seismology, we refer the readers to

Lindsey and Martin (2021).

In this study, we use DAS to record continuous ambient noise

in the Yigong Lake area in Tibetan Plateau. Yigong Lake is a

barrier lake in the Yigong village, Bome County, Nyingchi, Tibet,

characterized by a high altitude, a weak geological foundation,

and an active modern crustal movement. It is located in the

southeast of the Tibetan Plateau, about 2,600 m above sea level

and spanned about 20 square kilometers (Figure 1). The strong

uplift of the Earth’s crust makes it the heaviest and wettest region

on the Tibetan Plateau and prone to natural disasters such as

landslides, avalanches, and debris flows. Historic records show

that two giant landslides occurred in 1,900–2,000 resulting a

deposit of total volume about 5 × 108 m3 and 3 × 108 m3,

FIGURE 1
Geographic location and map overview.
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respectively (Shang et al., 2003; Zhou et al., 2016). A recent

study utilizing radiocarbon dating of detrital materials

provides pieces of evidence that there were at least eight

large landslide events in this area over the past 5,500 years

(Guo et al., 2020). As a result, these repeated landslides can

change the sedimentary structure and further influence the

development of river profiles. Revealing the sedimentary

thickness could help us to better understand the geological

evolution of the Yigong Lake. However, we should note that

most of the previous studies in this area were focused on using

satellite remote sensing technologies to study landslides, and

these methods were hard to detect the underground structures.

Due to the high content of water in the soil, it is infeasible to

use the traditional electronic seismic instruments for data

acquisition (Zhang et al., 2021). In addition, acquiring

drilling data is very expensive. As a result, there is no

previous study in this area for shallow structure

characterization using seismic data. The emergence of DAS

enables us to obtain field seismic data for the first time.

In the following parts, we first introduce the field

deployment of seismic data acquisition using DAS.

Thereafter, seismic interferometry is applied to the pre-

processed data to obtain the noise correlation functions

(NCFs) following the workflow of Bensen et al. (2007).

After extracting surface waves from NCFs, multichannel

analysis of surface waves (MASW) (Park et al., 1999) is

utilized to retrieve dispersion curves and invert the shear

wave velocity. According to the variations of the shear wave

velocity, the sedimentary thickness in the study area can be

inferred. These results confirm the reliability of DAS in

capturing data and performing near-surface

characterization in extreme environments.

DAS data acquisition and pre-
processing

The ambient noise data acquisition is located between a

highway and the Yigong Lake, as shown in Figure 2. In this area,

it is not readily available to get access to the industrial power

supply, and there is no facility room for equipment installation.

To perform seismic data acquisition under such an extreme

condition, the DAS IU is specially manufactured to have a

portable size of 150 mm × 300 mm × 110 mm (Figure 3A),

much smaller than the already commercialized IUs, such as

from Silixa (444 mm × 518 mm × 178 mm) or Schlumberger

(559 mm × 955 mm × 244 mm). The full-load power

consumption is 25 W, lower than an ordinary

laptop. Because of these adjustments, we are able to use a

12V-DC battery for the power supply, as shown in

Figure 3B. More details about the IU are referred to Xu T

et al. (2021) and Zhang et al. (2021).

DAS data were acquired during the local daytime from

10 a.m. to 7 p.m. on 28 October 2021 to 3 November 2021.

The maximum continuous recording length is 8 h because of

running out of battery power. We installed two trenched DAS

arrays. The surface trenches, which are 10cm–20 cm deep, are

dug with hand tools. The optical fiber cables were backfilled with

excavated soil to ensure coupling between DAS and the ground,

as shown in Figure 4A. Line I is 1.355 km long with 755 channels.

A 0.497 km-long session of the line was settled on the ground while

the rest of the line was deployed underwater across the Yigong Lake.

This line was originally installed in April 2021, when the Yigong

Lake is in the dry season so that we could easily get access to the lake

bottom to deploy optical fiber cables. During the data acquisition

time, the Yigong Lake is in thewet season and optical fiber cables are

FIGURE 2
Schematic layout of the trenched optical fiber cables.
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buried underwater. At the transition zone from the land to the

water, parts of optical fiber cables are suspended in the air, as shown

in Figure 4B. Consequently, the DAS data are discontinuously

recorded during the test stage. After realizing this, we buried the

suspended parts using the sand nearby, as shown in Figure 4C. Line

II is 0.66 km long with 410 channels. Most parts are located on land,

and only a small portion was across a water pool.

We select a 5-h DAS dataset in Line I and an 8-h DAS dataset

in Line II for analysis, respectively. The sampling rate is 1000 Hz,

and the gauge length is 10 m. The channel spacing is 1.6 m. We

drop the data in the first 10 channels of Line I and the first

50 channels of Line II because of the contamination by the

wandering man-walks.

Following Bensen et al. (2007), we process the DAS data

with the workflow as summarized in Figure 5. The long-time

raw data are split into short-time windows of 30-min long.

The two ends of the segmented time series became

discontinuous. We performed 10% tapering to reduce the

numerical oscillation known as the Gibbs effect when

filtering and performing Fourier transforms and to

minimize the impact of discontinuities at both ends of the

signal (Figure 6) (Xu Y et al., 2021). The influence of the DC

component and linear trend is removed by de-meaning and

de-trending. According to the spectrum of the original data in

Figure 6, the energy is mainly concentrated below 25 Hz. We

down-sample the data to 50 Hz to reduce the computational

time and the memory requirements. The corresponding

resampled waveform and its spectrum are shown in

Figure 7. When seismic data are collected in the field, it is

inevitable to be affected by environmental and human factors,

resulting in a high amplitude in the time-domain signal, as

shown in the red box in Figure 7.

FIGURE 3
Photos for the interrogator in a front view (A) and the battery connection during field data acquisition (B).

FIGURE 4
Field deployment of the optical fiber cables on land (A) and underwater across the Yigong Lake (B,C).
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The introduction of temporal normalization can eliminate

the effect of strong signals and improve the quality of the

correlation results (Bensen et al., 2007). By selecting a time

window of a certain length, the average of the absolute

amplitude value is obtained in the time window, which is

used as the weight of the center of the time window. The

weight of all data is calculated by sliding the window, and

then the original data is divided by the corresponding weight.

Finally, the normalized sequence in the time domain is obtained.

This procedure can be formulated as follows:

w(i) � 1
2N + 1

∑j�i+N
j�i−Nd(i), (1)

FIGURE 5
Data processing procedure to compute NCFs in this study.

FIGURE 6
(A) Waveform, and (B) corresponding spectrum of the 30-
min record of Channel 200 in Line II after tapering.

FIGURE 7
(A) Waveform, and (B) corresponding spectrum of the
resampled 30-min record of Channel 200 in Line II. The red box
denotes the high amplitude signal caused by environmental and
human factors.
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�d(i) � d(i)
w(i), (2)

in which d(i) is the seismograph that has been band-pass filtered

between 0.3 and 23Hz, �d(i) is the temporal normalized

seismograph, and 2N + 1 is the number of points in the

normalization window. Figure 8A shows that the strong

energy effect has been effectively reduced after the running-

absolute-mean normalization.

After the temporal normalization, the signal still has

unbalanced high and low-frequency energy, and the signal

spectrum is not flat, as shown in the red box in Figure 8B.

Therefore, it needs to be “flattened”, also called spectrum

whitening. The Hanning window W(f) with a 0.3–23 Hz

pass-band is applied to the smoothed complex spectrum

D(f) of the signal time series d(t):
Y(f) � W(f) × D(f)/

∣∣∣∣ �D(f)
∣∣∣∣, (3)

in which | �D(f)| is the smoothed amplitude spectrum. The

Fourier transform Y(f) is inversely transformed to the time

domain for subsequent data processing. Figure 9 shows the final

processed waveform and its spectrum. The resulting signal is

more like white noise with a “flat” spectrum in the frequency

domain.

Methods

Ambient noise interferometry for surface
wave reconstruction

Surface waves are reconstructed by using ambient noise

interferometry, which has been of great interests in variant

research areas (Claerbout, 1968; Weaver and Lobkis, 2001;

Shapiro et al., 2005). By cross-correlating the continuous

recorded ambient noise at two receiver locations, empirical

Green’s functions between these two receivers can be

obtained. After temporal stacking of the correlations in a long

range, coherent waveforms will emerge (Campillo and Paul,

2003; Shapiro and Campillo, 2004). In the frequency domain,

the cross-correlation can be formulated as:

CAB(ω) � 〈u*
A(ω)uB(ω)〉, (4)

where uA(ω) and uB(ω) denote the pre-processed wavefields in

the frequency domain recorded at receiver A and receiver B,

respectively, following the workflow in Figure 5. The symbol ω is

the angular frequency, * denotes complex conjugate, and 〈 · 〉
denotes temporal average.

Multichannel analysis of surface waves for
shear wave velocity inversion

After the surface wave reconstruction using ambient noise

interferometry, we apply MASW (Park et al., 1999) to extract

dispersion curves. First, the data in the time-offset domain are

slant-stack-transformed into the frequency-velocity domain as

follows:

E(ω, c) � ∫ e−i
ω
c x

U(x,ω)
|U(x,ω)| dx, (5)

FIGURE 8
(A) Waveform, and (B) corresponding spectrum of the 30-
min record of Channel 200 in Line II after temporal normalization.
The red box denotes that the signal still has unbalanced high and
low-frequency energy after the temporal normalization.

FIGURE 9
(A) Waveform, and (B) corresponding spectrum of the 30-
min record of Channel 200 in Line II after spectral whitening.
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in which E(ω, c) is the dispersion image, c is the phase velocity at the

angular frequencyω,U(x,ω) is the amplitude spectrum of the time-

domain data u(x, t) through Fourier transform. Next, the dispersion

curves are identified by picking themaximum value in the dispersion

image E(ω, c) at each frequency-velocity pair.

The extracted dispersion curves are further used to invert the

shear wave velocity. The misfit function is defined as minimizing

the difference between the picked dispersion curves and the

theoretical dispersion curves calculated using the fast delta-

matrix algorithm (Buchen and Ben-Hador, 1996). Considering

the non-linearity and non-convexity of the inverse problem, a

Mente Carlo-based global search method is used to potentially

escape from being stuck at the local minimum. Detailed

description of the software used in this study can be found in

Olafsdottir et al. (2018) and Olafsdottir et al. (2020).

Results

In Line I, data from Channel 11 to Channel 360 are used for

calculating NCFs. From Channel 11 to Channel 185, we select every

channel as a virtual source, and the other 175 channels on the right of

the virtual source are cross-correlated with the virtual source. From

Channel 186 to Channel 360, we select every channel as a virtual

source, and the other 175 channels on the left of the virtual source are

cross-correlatedwith the virtual source. In Line II, data fromChannel

51 toChannel 350 are used for calculatingNCFs. FromChannel 51 to

Channel 200, we select every channel as a virtual source, and the

other 150 channels on the right of the virtual source are cross-

correlated with the virtual source. FromChannel 201 to Channel 350,

we select every channel as a virtual source, and the other 150 channels

on the left of the virtual source are cross-correlated with the virtual

source. Next, we perform linear stacking of all the time segments for

each cross-correlation pair to average the effect of temporal noise and

spatial irregularity. Finally, we get 350 virtual gathers for Line I and

300 virtual gathers for Line II.

Figure 10 shows the NCFs in Line I at Channel 11

(Figure 10A) and Channel 175 (Figure 10B), and in Line II at

Channel 51 (Figure 10C) and Channel 200 (Figure 10D) as

virtual sources, respectively. From the reconstructed virtual

gathers, it can be seen that NCFs are bilateral time functions

divided into positive and negative half lags, representing positive

and negative wave propagation directions, respectively. There is

an obvious asymmetry that the dispersive Rayleigh-wave on the

positive lag is much stronger than that on the negative lag,

suggesting that the azimuth of the ambient noise is not

uniformly distributed. According to the schematic layout in

Figure 2, we can infer that the higher energy results from the

traffic noise on the highway. Similar asymmetry is also observed

by Zeng et al. (2017) from field DAS data.

Before the dispersion curve extraction, the positive and negative

half branches of NCFs are stacked in reverse order, and the positive

half lags are reserved for subsequent processing to improve the signal-

to-noise ratio (Huang et al., 2021). Such a procedure can help to

FIGURE 10
NCFs of the virtual source at Channel 11 (A), and Channel 175 (B) in Line I, and at Channel 51 (C), and Channel 200 (D) in Line II, respectively. The
red dashed lines show the apparent velocity.
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mitigate the influence of uneven energy distribution of noise sources

on surface wave velocity measurements.

The initial phase velocity picks are automatically chosen as

the maximum value of the dispersion image in each frequency

bin. Then, they are manually assigned with mode numbers and

spurious picks are removed.

For the inversion of each 1D dispersion curve, we set the

depth of the bottom of the interface to 90 m, and the whole

model is divided into six layers. The thickness of the first layer

is 8 m, the thickness of the second layer is 10 m, and the

thickness of all other layers is 18 m. Since both P-wave

velocity and density can affect the dispersion curve, the

empirical formula of Brocher (2005) is used to convert the

shear wave velocity into P-wave velocity and density. Finally,

we obtain the 2D shear wave velocity profiles using cubic

spline interpolation.

Figure 11 shows the dispersion images of NCFs at Channel 11

(Figure 11A) and Channel 175 (Figure 11B) in Line I, and at

Channel 51 (Figure 11C) and Channel 200 (Figure 11D) in Line

II, respectively. Although fundamental- and higher-mode surface

waves are visible, only the fundamental mode dispersion curves,

the black lines in Figure 11, are used for inversion.

Figure 12 shows the 1D dispersion curve inversion results

of the fundamental mode in Figure 11. The red lines denote

the best inverted velocities which have the lowest misfit values.

The other lines denote the top 2% best fitting models. To

evaluate the accuracy of the inverted velocity models, we

calculate the theoretical dispersion curves using the best

inverted velocities in Figure 12. The corresponding results

are shown in Figure 13 as the red lines, and they match well

with the picked dispersion curves marked by the blue circles in

Figure 13. Such a comparison suggests that the inverted

velocity models could interpret the observed data in a good

performance.

The final 2D shear wave velocity profiles are shown in

Figure 14. The shear wave velocity variation above 40 m

depth along the two survey lines is small. There is no

obvious velocity discontinuity interface, and the shear

wave velocity is between 100 and 320 m/s. When the depth

exceeds 40 m, the shear wave velocity gradually decreases

from west to east. The lateral velocity change in Line II is

greater than that in Line I. In Line I, the stratification is

obvious, and the shear wave gradually decreases in the

horizontal direction at the depth range of 50–70 m. In Line

FIGURE 11
Dispersion images from the virtual gathers at Channel 11 (A) and Channel 175 (B) in Line I, and at Channel 51 (C) and Channel 200 (D) in Line II,
respectively. The black curves with solid circles are the extracted fundamental model dispersion curves for inversion. The while open circles denote
the upper and lower boundaries by setting as 95% of the peak value.
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II, starting from the depth of 40 m, shear wave velocity

presents lateral variation, and the velocity is between

250 and 350 m/s. The lateral variation of shear wave

velocity increases with the gradual increase of depth, and

the shear wave velocity decreases in the horizontal direction

at a depth of 58–60 m.

The maximum velocity of the two profiles above the

depth of 80 m is only 700 m/s, which is smaller than the

velocity of the shear wave in the bedrock, so it can be inferred

that the thickness of the sedimentary layer in this area should

be greater than 80 m. In addition, the different features

between these two profiles suggest a strong lateral

variation of the sedimentary layer along the Yigong Lake.

Considering the location of the lake water (blue line in

Figure 2), the different shallow structures and increased

thickness of the sediments in the Yigong Lake can be

attributed to the accumulation of debris flow

alluvium from the surrounding mountains (Zhang et al.,

2021).

Discussion

We have demonstrated the feasibility of using DAS to

record ambient noise data in the Tibetan Plateau. By applying

the well-established seismic interferometry to the DAS data,

FIGURE 12
The inverted 1D shear wave velocities using the fundamental-mode dispersion curves in Figures 11A–D at Channel 11 (A) and Channel 175 (B) in
Line I, and at Channel 51 (C) and Channel 200 (D) in Line II, respectively. The red lines denote the best fitted models that have the lowest misfit, and
the other lines denote the top 2% best fitting models.

Frontiers in Earth Science frontiersin.org09

Yang et al. 10.3389/feart.2022.1018116

145

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.1018116


we can reveal the shallow sedimentary structure of the Yigong

Lake, which is very helpful to understand the dynamic

evolution of this area. Considering the extreme conditions

of the Tibetan Plateau, it is difficult, if not possible, to deploy

traditional geophones or portable nodes for environmental

seismology study, our method can be a promising alternative

for the interested readers.

We should note that since the surface wave inversion is

highly non-unique, further studies are needed to verify the

reliability of the inversion results by incorporating other

geological information, such as the drilling data. Due to

the limited recording time, we could not get enough low

frequency information below 1 Hz. Only when these low

frequency data are available, we can get access to the

FIGURE 13
The fitting of the theoretical fundamental-mode dispersion curve using the inverted velocity in Figures 12A–D to the picked ones in Figures
11A–D at Channel 11 (A) and Channel 175 (B) in Line I, and at Channel 51 (C) and Channel 200 (D) in Line II, respectively.

Frontiers in Earth Science frontiersin.org10

Yang et al. 10.3389/feart.2022.1018116

146

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.1018116


deeper parts to reveal the actual depth of the bedrock. In

addition, we only use the land data and a small portion of the

underwater data of Line I in this study. The noise

characteristics in the rest parts are more complex than

those used in this study, which need further processing

and evaluation. Future work with integration of the

complete DAS dataset might give chances for a better

interpretation of the geologic evolution history of the

Yigong Lake.

Conclusion

This study introduces a shallow sedimentary structure

imaging method in extreme conditions of the Yigong Lake in

the Tibetan Plateau using ambient noise data recorded by

DAS. By applying proper data pre-processing and seismic

interferometry to the ambient noise data, clear NCFs are

obtained and surface waves can be easily identified.

Dispersion curves are then extracted using MASW and are

inverted to get the shear wave velocity model of the study

area. The results show that the lateral variation is not evident

in the shallow subsurface layer, and the lateral inhomogeneity

of shear wave velocity increases with depth. Since the shear

wave velocity is smaller than conventional bedrock at depths

greater than 80 m, it can be assumed that the sedimentary

thickness is greater than 80 m in the Yigong Lake area. The

increased thickness is likely due to debris-flow deposits in the

surrounding mountains. The low-cost, high-density

acquisition and processing of DAS data demonstrate the

effectiveness and practicality of DAS in detecting shallow

sedimentary structures in extreme environments in the

Tibetan Plateau. We are expecting that DAS will be a

powerful tool for studies of remote and harsh

environments in the future.
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Due to high spatial resolution, low cost, and wide bandwidth, distributed optical

fiber acoustic sensing (DAS) is regarded as a potential tool for data acquisition in

vertical seismic profile (VSP) surveys. However, in real DAS-VSP records, desired

signals are often seriously plagued by various noise, which does not appear in

the conventional seismic data received by electronic geophones. Exploring a

high-performing attenuationmethod for the background noise can significantly

improve the quality of DAS-VSP records and has essential impacts on the

following imaging and interpretation. Deep-learning-based methods,

especially convolutional neural network (CNN), have shown remarkable

performance in seismic data denoising. However, the conventional CNN-

based methods may degrade when dealing with DAS-VSP records in low

signal-to-noise ratio. In this study, we propose a novel multi-scale dense-

connection denoising network (MDD-Net) to achieve high-accuracy

processing of the complex DAS background noise. Unlike conventional

multi-scale networks, MDD-Net utilizes widen convolution block to capture

the multi-scale features of the analyzed data. On this basis, dense connection

operations are employed to fuse the features and improve the network

efficiency. Meanwhile, an enhanced spatial attention (ESA) block is designed

to reinforce the features, which are helpful for noise suppression and weak

signal recovery. Both synthetic and field DAS-VSP records are processed to

verify the effectiveness of MDD-Net. Meanwhile, we also compare the

denoising results with other competing methods. The experimental results

demonstrate that MDD-Net can significantly attenuate the complex DAS

background noise and restore the desired signals, even for the weak

upgoing signals.

KEYWORDS

distributed optical fiber acoustic sensing, seismic exploration, deep learning, noise
suppression, vertical seismic profile, weak reflection
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1 Introduction

Distributed optical fiber acoustic sensing (DAS) is a novel

acquisition method that uses the phase information of the

scattered signals to receive the deformation induced by the

seismic wave field (Spikes et al., 2019; Dong and Li, 2020).

Compared with traditional geophones, DAS is superior in

terms of recording resolution and acquisition cost, such as

easy arrangement and high-observation density (Bellefleur

et al., 2020; Feng and Li, 2022). Due to its advantages, DAS

has begun to apply in seismic surveillance and seismic

exploration. Moreover, some successful applications are

reported in vertical seismic profile (VSP) data acquisition (Yu

et al., 2016). Nonetheless, the weak scatter optical signals tend to

be contaminated by the DAS background noise, resulting in a low

signal-to-noise ratio (SNR) for field DAS data (Binder et al.,

2020). In addition, rare studies focus on analyzing the properties

of DAS noise, which has become one of the obstacles to designing

effective attenuation methods. To our knowledge, DAS noise is

mainly composed of instrument noise and coupled interferences,

representing differently from the noise in the geophones-

acquired seismic records (Dong et al., 2020; Tian et al., 2022).

Notably, some types of background noise, such as time-frequency

variant noise and horizontal noise, uniquely exist in DAS records

(Zhong et al., 2022a). Thus, we can deduce that it is challenging

for the available denoising methods to deal with the DAS

background noise. Attenuating the seismic background noise

is significant for the following process, such as seismic inversion

and interpretation. Therefore, research on effective approaches to

suppress the DAS background noise has attracted increasing

attention in the seismic data processing.

To suppress the DAS background noise, some attempts are

put into practice to improve the data quality. However, due to the

short development time of DAS technology, only some simple

denoising methods, such as weighted-mean stack (Kobayashi

et al., 2020) and linear filtering techniques (Soto et al., 2016), are

applied to the issue of background noise suppression. In addition,

the denoising performance for these methods may degenerate

when confronted with complex DAS data. Although the

denoising issues for DAS data have not been extensively

studied, we still can get references from similar research in

conventional seismic data processing. The conventional

denoising methods can be roughly divided into five categories

according to the denoising principles, including classical

methods, time-frequency-based methods, decomposition

methods, sparse transform methods, and diffusion filtering.

Here, the classical methods refer to the methods derived from

Applied Mathematics and Physics, such as Wiener filtering

(Mendel, 1977), median filtering (Huang et al., 2017), band-

pass filtering (Stein and Bartley, 1983), and f-x deconvolution

(Canales, 1984). All these methods attempt to utilize the

differences between the signals and interferences in physical

properties, such as propagation velocity and frequency

components. To simplify the problem, these methods also

make some prior assumptions, such as the noise should be

stationary (Zhong et al., 2015). It means that these methods

will suffer from degraded performance if the assumptions are not

tally with the actual noise properties. Thus, the classical methods

fall short of expectations when dealing with complex seismic

data, although they are still widely used in the exploration

industry due to their stableness and efficiency. Inspired by the

classical methods, the denoising methods, which utilized the

features of time-frequency plate, have been employed to cope

with the seismic noise. The time-frequency-based attenuation

methods, such as S-transform (Stockwell et al., 1996), short-time-

Fourier-transform and time-frequency peak filtering (TFPF)

(Xiong et al., 2014; Zhuang et al., 2015), outperform the

classical methods in denoising capability. The good

performances of these methods are built on good separation

ability and appropriate threshold setting. However, the reflection

signals always overlap with the background noise in the

frequency domain, and these methods have very limited

effects on the spectral aliasing noise (Wu et al., 2014). Similar

to time-frequency-based methods, the noisy seismic data can also

be sparse decomposed, thereby reconstructing the desired signals

by leveraging the decomposition results. Typical decomposition

methods, such as wavelet transform (WT) (Chakraborty and

Okaya, 1995), empirical mode decomposition (EMD) (Bekara

and van der Baan, 2009), and ensemble empirical mode

decomposition (EEMD) (Gaci, 2016), can separate the

effective signals and unwanted noise into different intrinsic

modes or decomposition coefficients, then the noise-

dominated components are discarded to recover the desired

signals. Nonetheless, it is challenging to determine the optimal

reconstruction strategy for the seismic records in low-SNR

conditions, resulting in severe residual noise and signal

amplitude loss (Dong et al., 2020). Besides, sparse transform

methods, including but not limited to curvelet transform

(Herrmann et al., 2008), shearlet (Liu et al., 2019), seislet (Liu

et al., 2015), and dictionary learning method (Chen et al., 2016),

are proposed to suppress the complex seismic noise. The basic

principle for these methods is to take advantage of the differences

within the sparse properties to recover reflection signals from the

field noisy records. However, the huge computational cost

becomes an obstacle to the widespread use of the

corresponding methods, especially for the massive exploration

data processing. Moreover, due to the parameter selection

dilemma, some untrue information, such as false events, may

be restored and mistaken for effective signals, bringing negative

impacts on the subsequent processing of the seismic records

(Zhong et al., 2020). To further improve the denoising capability,

the diffusion filtering methods, such as fractal conservation law

(Meng et al., 2015), fractional anisotropic diffusion (Zhou et al.,

2016), and deep complex reaction-diffusion model (Zhang et al.,

2022), are gradually applied in the complex seismic data

processing. As we know, the denoising process has similarities
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to the thermal diffusion phenomenon, and the diffusion process

can be modified by a given partial differential equation (PDE).

Notably, we can control the noise attenuation and signal

preservation ability by amending the diffusion term and anti-

diffusion term of the PDE. Like time-frequency-based methods,

diffusion filtering always shows its downside when attenuating

spectral aliasing noise (Zhong et al., 2022b). Other denoising

methods, including singular value decomposition (Oropeza and

Sacchi, 2011), robust principal component analysis (RPCA)

(Cheng et al., 2015), and local-feature-based methods (Bonar

and Sacchi, 2012), are also introduced to suppress the complex

seismic noise, however, their applications in DAS data processing

are rarely reported. Overall, although the conventional denoising

methods can improve seismic data quality to a certain extent, it

still has an urgency to design powerful denoising methods to

meet the requirements of DAS data processing.

In recent years, convolutional neural networks (CNN) have

achieved significant breakthroughs with the development of

hardware and optimal algorithms (Sun et al., 2018). In

addition, some CNN-based denoising methods, such as

generative adversarial network (GAN) (Wang et al., 2020) and

feedforward denoising CNNs (DnCNNs) (Zhao et al., 2019), are

also introduced to cope with the complex seismic noise. Inspired

by these researches, deep learning networks are also utilized to

achieve the DAS noise attenuation (van den Ende et al., 2021).

On this basis, a series of important findings are obtained (Zhu

et al., 2019). These denoising networks aim to establish a non-

linear high-dimensional mapping relationship between desired

signals and noisy records. Meanwhile, we can use training data to

strengthen the learned mapping, and the final denoising models

are obtained after the training process. Notably, unlike

conventional methods, the denoising network can be

considered a “data-driven” approach to adaptively accomplish

complex seismic noise suppression without parameter fine-

tuning (Dong et al., 2022). It is always true that CNN-based

networks have advantages over conventional methods if

appropriate training data can feed into the networks.

Although CNN-based methods can provide excellent results,

the denoising performance can be further improved since

most networks only utilize single-scale information. Taking

DnCNN as an instance, it only uses a simple architecture with

unitary convolutional layers to extract the potential features of

the analyzed data, leading to the degeneration of trained models

for the seismic data with a low SNR (Ma et al., 2020). Another

important factor that hinders the improvement in denoising

capability is the generalization and authenticity of the training

dataset (Zhong et al., 2022c). It is known that we cannot separate

the clean signals from the real seismic records. Thus, finding an

FIGURE 1
The Architecture for MDD-Net: (A) the architecture, (B) widen convolution block, and (C) ESA block.

TABLE 1 Physical parameters for the forward models.

Parameters Specifications

Seismic wavelet Ricker, single, double, symmetrical wavelets

Central frequency of seismic wavelets 10–80 Hz

Well depth 500–5,000 m

Trace interval 1 m

Sampling frequency 2,000 Hz

Wave velocity 1,000–4,500 m/s

Density 1,272–2,500 kg/m3
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appropriate way to construct the training dataset is challenging,

having critical effects on the attenuation results.

To break through the predicament in DAS data processing,

we propose a multi-scale dense-connection denoising network

(MDD-Net) in this paper. Here, the multi-scale strategy for

MDD-Net is accomplished by applying the widen convolution

block. Compared with conventional convolution, widen

convolution block utilizes the convolution layers with different

kernel sizes to capture the multi-scale features of the analyzed

seismic data. It means that the features neglected by the

conventional networks, such as DnCNN, could be extracted

and used by MDD-Net, thereby improving the representability

of the effective features. On this basis, we employ dense

connections to guide feature extraction and promote feature

fusion. Meanwhile, we design an enhanced spatial attention

(ESA) block to improve denoising performance by reinforcing

discriminatory features. Furthermore, we combine the synthetic

data and field DAS noise records to construct a high-quality

training dataset to meet the network training requirements. For

investigating the denoising capability, a detailed comparison with

other popular methods is made, both for synthetic and field data

processing. The experimental results indicate that MDD-Net can

tell the desired signals from the complex DAS noise, even for the

weak upgoing signals.

2 Network architecture and training
process

2.1 Architecture for MDD-Net

Recently, multi-scale networks have achieved attention in

signal processing due to their excellent performance. However,

the feature interactions between different scales are time-

consuming, resulting in the low efficiency of the

corresponding networks. Here, a novel multi-scale strategy,

combing widen convolution block with dense connection

operations, is utilized in MDD-Net to ensure processing

accuracy and improve network efficiency. Figure 1A shows

the network architecture. Specifically, the widen convolution

block can significantly reinforce the feature extraction ability

and effectively reduce the elapsed time in the interaction

process. On this basis, the dense connection operations are

established to fuse the potential features. The feature extraction

capability for MDD-Net can be strengthened by changing the

connection fashion rather than stacking convolutional layers.

We can use fewer convolutional layers to obtain excellent

performance by applying dense connections, further

reducing the network size. Besides, the ESA block is also

applied to refine and enhance the effective features,

minimizing the impact of negative samples and secondary

features. The descriptions for the network components are

shown below:

2.1.1 Widen convolution block
As shown in Figure 1B, the widen convolution block is

composed of three convolutional layers with kernel sizes of

1×1, 3×3, and 5×5. Therefore, widen convolution block can

use different receptive fields to extract the multi-scale

features. Unlike conventional multi-scale networks, we

use novel convolutional layers to exact multi-scale

features, not through multi-scale network architectures.

Here, the output of the widen convolution block oi can be

expressed as:

FIGURE 2
The forward model and corresponding synthetic DAS record: (A) the forward model, and (B) the synthetic DAS data.

TABLE 2 Network parameters of MDD-Net.

Hyper-parameter Specification

Optimizer ADAM

Patch size 64×64

Batch size 64

Epoch number 50

Learning rate range [10–3,10–5]

Input channels 1

Total Layers 24

Convolution kernel size 3×3×64、1×1×64 or 5×5×64
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oi � ∑
k�1,3,5

wkxi + ∑
k�1,3,5

bk (1)

where xi is the input data, while ωk and bk are the weight and bias

parameters.

2.1.2 Dense connection block
The shallow features will have limited contribution on the deep

features with the increase of the network depth, resulting in the loss

of the features. Tomake full use of the features, the dense connection

operations have been applied inMDD-Net. Specifically, the input of

eachmodule is also connected to the subsequentmodules, serving as

the guide information, achieving great feature fusion results and

enhancing the accuracy of the captured features. In addition, a

1×1 convolutional layer, right after the widen convolution block, is

applied to maintain the channel number to a proper size, thus

further reducing the model complexity.

2.1.3.Enhanced spatial attention block
In this study, an ESA block is designed to refine the extracted

features and improve the denoising performance, while the detailed

architecture is depicted in Figure 1C. To minimize the computational

cost, a 1×1 convolutional layer is utilized to reduce the channel

number. On this basis, we use down-sampling and up-sampling

blocks to modify the feature map size, and then the detailed features

are captured by two 3×3 convolutional layers. Here, we use a sigmoid

function to obtain the probability distributions for different features.

Therefore, the attention mechanism is accomplished by multiplying

the input features with the probability distributions, thereby

enhancing the effective features. On the whole, the effects of the

ESA block can be denoted as follows:

AE(FI) � σ(W1(FI
avg(W3(FI

up(W3(W1))))) + 1)
Fo � AE(FI) ⊗ FI (2)

where FI and FO are the input and output of the ESA block. In

addition, W1 and W3 denote the 1×1 and 3×3 convolutional

layers, while σ represents the sigmoid function.

2.1.4 Denoising principle
In seismic data processing, we also assume that the noisy data

y can be regarded as the combination of effective signals x and

unwanted noise n, denoted as y=x+n (Zhong et al., 2022a). After

the training process, a non-linear mapping R is established

between the noisy record and desired signals, and the

estimated signals xest are represented as:

xest � R(y, θ) (3)

where network parameter θ={ω, b}is composed of weight ω and

bias b, respectively. For optimizing the learning process, a loss

function based on l2 norm is utilized, as shown below:

l(θ) � 1
2M

∑
M

i�1

����R(yi, θ) − xi

���� (4)

where ‖ · ‖ is the Frobenius norm, while xi and yi represent the

signal and noisy data patches in the training dataset. The optimal

parameters θopt can be obtained by minimizing the loss function.

On this basis, we can reconstruct the desired signal xopt.

xopt � R(y, θopt) (5)

2.2 Training process

2.2.1 Construction of the training dataset
As we know, the supervised network can derive the

potential features from the training dataset. Thus, the

FIGURE 3
The generation of the noisy DAS data: (A) the forward model, (B) the clean synthetic record, (C) the added field DAS background noise, and (D)
the noisy synthetic record.

TABLE 3 Network parameters of DnCNN, U-Net and RED-Net.

Hyper-parameter DnCNN U-Net RED-Net

Optimizer ADAM ADAM ADAM

Patch size 64×64 64×64 64×64

Batch size 64 64 64

Epoch number 50 50 50

Learning rate range [10–3,10–5] [10–3,10–5] [10–3,10–5]

Input channels 1 1 1

Total Layers 20 28 35

Convolution kernel size 3×3×64 3×3×64 3×3×64
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quality of training data has a significant impact on the

denoising performance of the trained models (Dong et al.,

2022). In MDD-Net, we need to construct two training

datasets, a signal set and a noise set, to support the

network training process. Meanwhile, it is unable to

separate pure signals from the field DAS records. To solve

the problem of clean signal scarcity, the synthetic data,

generated by forward modeling methods, is utilized to

constitute the signal set. Specifically, we generate

60 geological models, considering the pre-acquired profile

records. It can ensure that the geological models conform

to the actual characteristics and guarantee the rationality of

the generated synthetic data. By utilizing the elastic wave

equation, the corresponding forward models are excited by the

seismic wavelets with different dominant frequencies. On this

basis, a series of synthetic records are obtained. Table 1 lists

the detailed parameters for the forward models. Figure 2 gives

a typical forward model and the generated clean signal

records. We can observe that the synthetic record has

similar properties to the field DAS data. Finally, the clean

signal records are intercepted, and 17004 64×64 signal patches

are randomly selected to compose the signal set. Similarly, we

extract 19003 64×64 noise patches from the field DAS

background noise records to compose the noise set. Then,

both signal patches and noise patches are fed into the network,

and the signal patches are taken as the label data.

2.2.2 Training process and experimental
environment

The excellent performance of CNN-based methods

mainly relies on the hardware condition and

computational efficiency. In this study, the configuration

of the experimental environment can be concluded as

follows: a CPU (Intel i9-9990K, 3.6 Hz), an NVidia

GeForce GTX 1080Ti, and a RAM (16 GB). All the

experiments are conducted in Matlab 2016b, and the

CNN-based methods use the same training dataset. In

general, the batch size and the initial learning rate of the

network are set to 32 and [10–3, 10–5], respectively. Here, we

use ADAM algorithm to optimize the training process, and

the training process is composed of 50 epochs. Table 2 lists

the network parameters for MDD-Net.

FIGURE 4
The processing results for different methods: (A) the clean data and the added DAS noise, and (B–H) represent the processing results of TFPF,
BPF, RPCA, DnCNN, U-Net, RED-Net and MDD-Net, respectively.
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3 Processing results for synthetic data
and field DAS-VSP records

3.1 Synthetic data analysis

For investigating the denoising performance, a synthetic

record, shown in Figure 3B, is generated based on the forward

model in Figure 3A. The forward model contains four formations

with different geometric features. Notably, for a fair comparison,

the forward model and the synthetic record are not included in

the training dataset. On this basis, we add the field DAS noise

data (Figure 3C) to the clean synthetic record, then the noisy

record with an SNR of -5 dB (Figure 3D) is obtained. By

observing the figures, the effective signals are seriously

FIGURE 5
The enlargements for the results shown in the yellow blocks in Figure 4: (A) the enlargements for the clean data and the added DAS noise, and
(B–H) represent the enlarged processing results of TFPF, BPF, RPCA, DnCNN, U-Net, RED-Net, and MDD-Net, respectively.

TABLE 4 The comparisons of SNR and RMSE for different attenuation methods.

Original
record/
dB

TFPF BPF RPCA DnCNN U-Net RED-Net MDD-Net

SNR/
dB

RMSE SNR/
dB

RMSE SNR/
dB

RMSE SNR/
dB

RMSE SNR/
dB

RMSE SNR/
dB

RMSE SNR/
dB

RMSE

0 3.78 0.605 9.42 0.916 5.87 0.475 15.18 0.163 17.91 0.119 20.63 0.087 22.56 0.070

−2 2.06 0.737 7.31 0.403 4.19 0.577 12.02 0.234 14.37 0.178 17.66 0.122 19.98 0.094

−5 0.07 0.927 5.79 0.480 2.01 0.741 9.89 0.299 12.29 0.227 14.26 0.181 17.07 0.131

−7 −3.18 1.347 3.65 0.614 −1.56 1.182 7.76 0.382 11.01 0.263 11.99 0.235 14.37 0.179

−10 −7.88 2.315 1.07 0.826 −3.23 1.355 5.73 0.483 8.24 0.362 9.53 0.312 12.79 0.214

TABLE 5 The computational cost for different attenuation methods.

Specification TFPF BPF RPCA DnCNN U-Net RED-Net MDD-Net

Training time (hour) 0 0 0 6.10 12.21 9.87 6.56

Processing time (s) 3.71 0.101 1.378 0.165 0.314 0.267 0.171
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contaminated by the complex DAS noise. Thus, it is challenging

to recover effective signals, especially for the weak events buried

in the intense interferences.

3.1.1 Comparisons of denoising results
For getting compelling results, we choose some conventional

methods and classical denoising networks as the competing

methods to verify the effectiveness of MDD-Net. Here, the

conventional methods mainly include BPF, TFPF, and RPCA.

By analyzing the energy distribution of DAS data, the pass-band

for BPF is set to [30–70 Hz], and the window length for TFPF is

selected to 11. In addition, for RPCA, we set the weight on sparse

error term in loss function to 0.025. Besides, the classical

denoising network, including DnCNN, Residual Encoder-

Decoder Networks (RED-Net), and U-Net, are also taken as

the competing methods. Table 3 lists the corresponding network

parameters. To facilitate comparison, we train the competing

denoising networks with the same dataset, as MDD-Net used.

We use the aforementioned methods to process the noisy

record shown in Figure 3D, and the denoising results are

displayed in Figure 4. As shown in Figure 4B, TFPF fails to

attenuate the DAS noise and only suppress some high-frequency

components. Although BPF and RPCA, depicted in Figures

4C,D, can achieve better results, the recovered signals of BPF

are disordered, and plenty of residual interferences still severely

influence the recognition of the effective signals for RPCA results.

On the contrary, the CNN-based methods outperform the

conventional methods both in noise attenuation and signal

preservation, such as the recovery of the weak upgoing

signals. Overall, MDD-Net (Figure 4H) has the best

performance in complex DAS noise suppression, compared

with the results of competing CNN-based networks

represented in Figures 4E–G. On this basis, we also enlarge

the area marked by the yellow block for detailed comparisons.

Notably, the effective signals are seriously contaminated by the

time-variant noise, and no reflection events can be clearly

observed in the area of interest. By observing the results

shown in Figure 5, MDD-Net can recover the signals with

great continuity and smoothness.

3.1.2 Quantitative comparison and
computational cost analysis

In this study, we use SNR and root-mean-square error

(RMSE) to quantitatively evaluate the denoising results for

different methods (Zhao et al., 2019). In general, SNR is the

energy ratio of clean signals and residual noise, and RMSE is the

estimated errors between the clean signals and recovered results.

Thus, SNR can reflect the noise attenuation capability, while

small RMSE demonstrates that the corresponding method

performs well in signal amplitude preservation. The definition

equations for SNR and RMSE are shown below:

SNR(dB) � 10 log10
⎛⎜⎜⎜⎜⎝ ∑N

i�1∑M
j�1u(i, j)2

∑N
i�1∑M

j�1[u(i, j) − v(i, j)]2
⎞⎟⎟⎟⎟⎠ (6)

RMSE �
��������������������������
1

MN
∑N

i�1∑
M

j�1[u(i, j) − v(i, j)]2
√

(7)

where the v(i, j) and u(i, j) are the clean record and recovered

signals. Meanwhile,M and N represent the time samples and the

trace index, respectively. Here, we use the aforementioned

methods to process the noisy synthetic records with different

SNR. Table 4 shows the improved SNR and RMSE. By observing

the results, we can obtain that the CNN-based networks precede

the conventional methods in denoising capability since the

improved SNR for the denoising networks surpass the

conventional methods. Among these denoising methods,

MDD-Net can obtain the most significant improvement in

SNR, such as over 22 dB increment for the noisy DAS data.

Thus, we can conclude that MDD-Net is effective in DAS noise

attenuation and desired signal recovery. In addition, the

computational cost for different methods is also analyzed, as

listed in Table 5. Compared with conventional methods, the

training process for CNN-based methods is time-consuming,

such as that for U-Net is over 12 h. Among these denoising

FIGURE 6
The field DAS-VSP record.
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FIGURE 7
The processing results for the field DAS data in Figure 6: (A–G) are the denoising results (top subfigures) and filtered noise (bottom subfigures)
obtained by TFPF, BPF, RPCA, DnCNN, U-Net, RED-Net and MDD-Net.
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networks, MDD-Net has a similar backbone and number of

convolutional layers with DnCNN. Avoiding the sampling

operating in U-Net, their training costs are relatively small,

such as those for DnCNN and MDD-Net are 6.10 and 6.56 h.

Although the training time cannot be neglected, the processing

time for these networks is competitive by comparing with

conventional methods. Taking MDD-Net as an example, the

average processing time is only 0.171 s, only inferior to BPF.

Notably, CNN-based networks always have generalization

ability. The trained models can be applied to plenty of DAS

records with similar properties to the training datasets. From this

view, the high computational cost is acceptable, and the situation

will be relieved with the development of hardware and

optimization algorithms.

3.2 Field data processing results

In this subsection, we process some field DAS-VSP records to

verify the effectiveness of our proposed method. Figure 6

represents a field DAS-VSP record that contained 1400 trace

records with a sampling frequency of 2500 Hz. It is shown that

the field DAS data are affected by various types of interferences,

resulting the challenges in detecting the weak upgoing signals.

We apply the aforementioned methods to process the DAS

record, and the corresponding results are shown in Figure 7.

Here, for the CNN-based methods, we utilize the denoised

models, having the best performance in synthetic data

processing, to tell the desired signals from the unwanted

noise. As shown in Figures 7A,B, TFPF and BPF cannot offer

satisfactory denoising results. TFPF can only eliminate a small

quantity of noise, and the obvious horizontal noise leakage

(marked by the red arrows) remains in the denoising results

of BPF. Meanwhile, although RPCA (Figure 7C) can attenuate

the complex noise to some extent, the residual noise still

influences signal recognition and negatively impacts the DAS

data processing. Consistent with the synthetic data results, CNN-

based networks, shown in Figures 7D–G, can separate the weak

events from the intense interferences, representing better

performance by comparing them with conventional methods.

Notably, only MDD-Net can effectively suppress the horizontal

noise owing to its efficient multi-scale strategy. On this basis, a

comparison for the area of interest (the yellow block in Figure 6)

is also conducted, and the corresponding results are plotted in

Figure 8. It is shown that the conventional methods all have

limitations in DAS background noise attenuation, while the

denoising results, as shown in Figures 8A–C, suffer from the

apparent residual noise. In contrast, CNN-based methods,

plotted in Figures 8D–G, can almost eliminate the noise

impacts and recover the signals. Compared with other CNN-

based methods, MDD-Net has the best performance with the

smooth recovered signals and a clean background.

Meanwhile, another field DAS-VSP record (Figure 9A) is

processed to further investigate the generalization and denoising

capability of MDD-Net. Notably, the effective signals in the DAS

data are different from those in Figure 7. On this basis, the DAS

data is processed by MDD-Net and other competing methods.

Figures 9B–H give the denoising results. It is demonstrated that

TFPF and BPF fail to provide acceptable attenuation results,

similar to the finding reflected in Figure 7. Moreover, RPCA still

cannot eliminate time-variant noise, and the noise leakage

impedes the detection of weak events. Furthermore, although

the CNN-based methods can effectively suppress the DAS

background noise, the performances of the competing

networks also need further improvement in attenuating the

horizontal noise. By observing the results, MDD-Net

(Figure 9H) outperforms the other denoising networks, while

no conspicuous residual noise or signal leakage can be observed.

FIGURE 8
The enlargements for the results shown in Figure 7: (A–G) represent the enlarged denoising results obtained by TFPF, BPF, RPCA, DnCNN,
U-Net, RED-Net and MDD-Net.

Frontiers in Earth Science frontiersin.org10

Dong et al. 10.3389/feart.2022.991893

159

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.991893


FIGURE 9
The denoising results for another field DAS-VSP record: (A) is the field DAS data, and (B–H) are the attenuation results after TFPF, BPF, RPCA,
DnCNN, U-Net, RED-Net and MDD-Net, respectively.
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In summary, all the corresponding results demonstrate that

MDD-Net is a competent method to cope with complex DAS

background noise.

4 Conclusion

In this study, a novel denoising network, called MDD-Net,

is proposed for DAS-VSP data processing. In general, MDD-

Net use the multi-scale strategy, combined widen convolution

with dense connections, to accurately extract the potential

features in seismic data. At the same time, an ESA block is

also applied to fuse the features and enhance those beneficial to

the denoising task. To guarantee the denoising performance, we

generate high-quality training data according to DAS data

properties. On this basis, synthetic and field DAS-VSP

records are processed. We compare the denoising results

with other popular denoising methods. It is shown that

MDD-Net can achieve the best denoising performance with

an SNR increment over 22dB, reflecting the superiority over the

competing methods in complex DAS noise attenuation. Overall,

the experimental results prove the effectiveness of the proposed

methods, especially for the recovery of the desired signals

seriously contaminated by the intense interferences. It means

that the MDD-Net can significantly improve the quality of

seismic data, bringing convenience for the following procedure

of seismic data processing, such as imaging and inversion.

However, the denoising ability of MDD-Net is related to the

quality of the training data. The performance may degenerate if

the seismic data has different properties from the training

dataset.
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