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Editorial on the Research Topic

The application of artificial intelligence in diagnosis, treatment and
prognosis in urologic oncology
Artificial intelligence (AI) is reshaping and improving traditional decision-making

patterns. Although the further integration of AI into clinical practice will take time,

research in this field has been producing promising results. AI has the capability to aid in

several aspects of disease management. In the specialty of oncology, for example, AI can

assist in disease diagnosis, classification, treatment optimization, therapeutic response

evaluation, prognosis prediction, and follow-up scheduling. The greatest strength of AI is

its capability to extract and interpret information from a large amount of medical data,

which is included in images, pathological films, and the electronic reporting system. AI

can process and analyze clinical data, but the technology cannot be fully utilized by

clinicians in an advanced, efficient, and intelligent manner in order to aid in clinical

decision-making.

This edition of Frontiers in Oncology seeks to assist physicians in completely

comprehending and accepting AI’s critical role and great potential in solving actual

clinical problems, as well as to accelerate the clinical translation of relevant scientific

findings. This issue consists of 10 manuscripts (including 8 original papers and 2 reviews)

on the application of AI to urologic oncology and benign disease. Liu et al. develop a

diagnostic tool utilizing deep learning systems (DLSs) to detect malignant cells in urine

cytopathological images and then predict the histopathological results. The DLSs model

achieves good predictive performance in both the internal set and extra set with an area

under the curve (AUC) of 0.90 and 0.93, respectively. The model is expected to enhance

the efficacy of urine biopsies and aid in the early detection and risk classification of
frontiersin.org01
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patients with UC. The prediction model based on a large sample

database can estimate the prognosis of patients more precisely

and aid in the establishment of individualized treatment plans

and follow-up care. Zhang et al. created a nomogram based on

the SEER database to predict cancer-specific survival (CSS) and

overall survival (OS) among the elderly PCa group. This model

offers precise predictions for CSS and OS in both the training

and validation sets. Deng et al. develop five different machine

learning (ML) models to predict the presence of prostate cancer

(PCa) in patients with PSA ≤ 20 ng/mL. The random forest (RF)

model performs the best among five models, with an AUC of

0.871 in the training cohort and 0.78 in the validation cohort.

The research conducted by Chen et al. also focuses on the PCa

prediction. Based on traditional clinical variables, five different

ML models are developed and compared in terms of their

predictive performance. In the test dataset, the multivariate

univariate logistic regression (LR) model exhibited the best

discrimination (AUC=0.918). The predictive model built by

Zhang and Chen can be utilized for preliminary screening of

individuals with suspected PCa, potentially reducing the number

of unnecessary biopsies and missed PCa diagnoses.

Radiomics is the integration of AI with image data. The

extraction and interpretation of image data expands the

clinician’s insight beyond the visible conventional information

like lesion size, location, and shape. The acquisition of the region

of interest (ROI) is a crucial step in the radiomics workflow.

Manually drawing ROI is the most common method, but it is

laborious and time-consuming. Chen et al. present a radiomics

model based on auto-segmentation of ultrasound images to detect

diabetic kidney disease (DKD) patients in three centers.

DeepLabV3+ network, a DL-based anatomical-level

segmentation system, demonstrates a good segmentation ability

with mean pixel accuracy in the three centers of 0.890 ± 0.004,

0.870 ± 0.002 and 0.893 ± 0.007, respectively. The radiomics

model delivers a fair ability for DKD recognition (AUC: 0.674 ±

0.074) and a good discriminative capability for DKD stage (AUC:

0.803 ± 0.037). Zhu et al. establish a cascaded DL model to

automatically segment the whole prostate gland, the anatomic

zones, and the csPCa region step by step based on biparametric

MRI. The model employing cascaded convolutional neural

networks (CNNs) could automatically detect and segment the

suspicious csPCa lesions with excellent performance

(sensitivity=95.6%, specificity=91.5%, accuracy= 92%) on MR

images without any human intervention.

Ultrasound is another important imaging method for PCa

diagnosis. Wang et al. propose a ML model based on 14 features

extracted from transrectal ultrasound video clips of the whole

prostate gland. The support vector machine (SVM) and random

forest (RF) algorithms were used to establish radiomics models

based on those features. The SVM model exceeds radiologist’s

diagnostic ability based on MRI. Imaging provides information

regarding the heterogeneity and microenvironment of a tumor.

Yang et al. develop and externally validate a Transformer-based
Frontiers in Oncology 02
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DL algorithm with CT images to predict the Fuhrman nuclear

grade of clear cell renal cell carcinoma (ccRCC). TransResNet, a

framework network integrating CNNs, self-attention

mechanisms and nonl inear c lass ifier , outperforms

conventional DL algorithms for ccRCC grade prediction with

an AUC of 91.2%. This work presents a non-invasive approach

for predicting the pathological grade of ccRCC, hence avoiding

the complications associated with puncture biopsy.

Zhang et al. investigated the diagnostic performance of CT-

radiomics in adrenal mass using a systematic review and meta-

analysis. The quantitative analysis of nine studies shows that CT-

based radiomics may help identify malignant adrenal tumors

from benign ones with pooled sensitivity, specificity, and AUC

of 0.80, 0.83, and 0.88, respectively. A mini-review by Huang

et al. contains 12 articles concerning the use of radiomics in the

prediction of muscle-invasive bladder cancer (BC). Radiomics

utilizing CT or MRI images has the potential to detect

muscle invasion.

The powerful combination of AI and medical data has

yielded significant achievements in the last twenty years. Some

achievements have been clinically transformed and accepted by

clinicians. Studies with prospective design is required to expedite

the clinical translation of AI-related findings. AI researchers

should not only concentrate on the optimization of algorithms

and the performance of models but also explore when and how

to actualize the clinical utility of AI’s achievements.
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Background: Although deep learning systems (DLSs) have been developed to diagnose
urine cytology, more evidence is required to prove if such systems can predict
histopathology results as well.

Methods: We retrospectively retrieved urine cytology slides and matched histological
results. High-power field panel images were annotated by a certified urological
pathologist. A deep learning system was designed with a ResNet101 Faster R-CNN
(faster region-based convolutional neural network). It was firstly built to spot cancer cells.
Then, it was directly used to predict the likelihood of the presence of tissue malignancy.

Results: We retrieved 441 positive cases and 395 negative cases. The development
involved 387 positive cases, accounting for 2,668 labeled cells, to train the DLS to spot
cancer cells. The DLS was then used to predict corresponding histopathology results. In
an internal test set of 85 cases, the area under the curve (AUC) was 0.90 (95%CI 0.84–
0.96), and the kappa score was 0.68 (95%CI 0.52–0.84), indicating substantial
agreement. The F1 score was 0.56, sensitivity was 71% (95%CI 52%–85%), and
specificity was 94% (95%CI 84%–98%). In an extra test set of 333 cases, the DLS
achieved 0.25 false-positive cells per image. The AUC was 0.93 (95%CI 0.90–0.95), and
the kappa score was 0.58 (95%CI 0.46–0.70) indicating moderate agreement. The F1
score was 0.66, sensitivity was 67% (95%CI 54%–78%), and specificity was 92% (95%CI
88%–95%).

Conclusions: The deep learning system could predict if there was malignancy using
cytocentrifuged urine cytology images. The process was explainable since the prediction
of malignancy was directly based on the abnormal cells selected by the model and can be
verified by examining those candidate abnormal cells in each image. Thus, this DLS was
not just a tool for pathologists in cytology diagnosis. It simultaneously provided novel
histopathologic insights for urologists.

Keywords: cyto-histo correlation, deep learning, urothelial carcinoma, urine cytology, convolutional neural network
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Liu et al. Deep Learning to Predict Malignancy
INTRODUCTION

Urothelial carcinoma (UC) is one of the most common cancers
worldwide (1). UCs are often multifocal and tend to recur. Thus,
thorough screening and frequent surveillance are mandatory.
The diagnosis of UC typically relies on the histopathological
assessment of tissue resected by cystoscopy, yet it is an invasive
approach and not easily accessible.

Urine cytology has played an important role in the screening
and surveillance of UCs for many years for its effective,
inexpensive, noninvasive nature (2–4). However, in the context
of urine cytology, there is currently no gold standard for cyto-
histo correlation in urine (5).

One possible solution could be to use the deep learning
systems (DLSs) to build such links. DLSs have demonstrated a
capacity superior to manual workflows in shifting through
massive images to retrieve similar patterns and establish
associations with novel traits in many medical data analysis
tasks (6–8). Three studies have successfully automated the urine
cytology diagnosis through the use of DLSs (9–11). One of these
previous studies has further proven that DLSs might be able to
determine the malignant potential of tumors more accurately
than classical cytology (11). Researchers used a 16-layer
convolutional neural network (CNN). Weights trained for
initial UC cell detection were reused for the first 7 layers.
New training with histopathological data started at the eighth
layer. The DLS determined the presence of stromal invasion and
performed a nuclear grading of tumor cells in the corresponding
histological specimens. Therefore, DLSs have become a method
that could potentially link cytopathology findings with
histopathology results.

In this study, we hypothesized that routine urine cytology
images contain information about the presence of malignant
tissue in urinary tracts. The rationale for this cyto-histo
correlation is that malignant tissues in urinary tracts undergo
constant exfoliation, which sheds tumor cells and influences
tumor cell morphology in urine. Building on those previous
studies, we systematically investigated the presence of such
correlation and aimed to capture it through our DLS. We
trained and tested the DLS to spot UC cells in cytology images
before using it to predict if a case would get malignant surgical
pathology within the next 1 year. The results demonstrated that
the DLS could predict the presence of malignancy and display
such associations between cytopathology and histopathology
through likelihood even without further training with
histopathology data. Thus, DLS cytology can be used as not
only a pathological tool to assist cytopathological diagnosis but
also a novel risk-stratification tool to predict histopathology.
This could help urologists make therapeutic decisions.
MATERIALS AND METHODS

Data Acquisition
All images were obtained from the archival glass of hematoxylin
and eosin-stained urine cytocentrifugation cytology from
Frontiers in Oncology | www.frontiersin.org 29
consecutive patients who underwent examination, surgery, or
both at Peking University First Hospital from 2014 to 2020
(Figure 1, Table 1). Urine cytology was routinely diagnosed
using Papanicolaou’s classification at our institute (12). Classes
III, IV, and V were defined as positive; class I and II (atypical)
were defined as negative.

Among the 441 positive cases (patients diagnosed with
UC based on cytologic examination), 211 received surgery
(surgery within the next 1 year, if not otherwise clarified), all
of which were diagnosed with UC based on histological
examination (Table 2).

Among the 395 negative cases (patients diagnosed with
benign diseases based on cytologic examination), all received
surgery, of which 333 were diagnosed with UC based on
histological examination and the rest 62 were diagnosed with
benign disease based on histological examination (Table 2). For
the above 333 cases with contradicted cytopathological and
histopathological results, a blinded pathologist’s review was
carried out to check for overlooked cancer cells. As a result, 63
cases actually had cancer cells in their cytology images confirmed
by a pathologist and should be deemed as positive cases.

From the original slides, 1,280×960-pixel, Joint Photographic
Experts Group (jpeg) format images were exported: 466 images
from positive cases and 417 images from negative cases.
Subsequently, the training–validation set and preliminary test
set, internal test set, and extra test set were defined by the
different cytopathological and histopathological diagnoses. The
training–validation set and preliminary test set were allocated by
8:1 stochastically. This study was approved by the institutional
review board of Peking University First Hospital.

Deep Learning System
We built our DLS on a ResNet101 Faster-RCNN (Figure 2).
ResNet101 is a 101-layer Reidual Network proposed on the 2016
IEEE Conference on Computer Vision and Pattern Recognition
by He et al. (13). Deeper and restructured, ResNet101 has shown
a high performance in many contexts of use including skin lesion
detection and brain disease detection in magnetic resonance
images (14, 15).

Faster-RCNN, short for faster region-based convolutional
neural network, is a CNN that combines object detection and
classification into one network (16). It extracts features, makes
detections through these features, and quantifies the degree of fit
at each detection using a value of possibility ranging from the
worst of 0 to the optimum of 100. Evidence has shown that
Faster-RCNN is especially good at detecting objects at multiple
scales and aspect ratios, such as abnormal cervical cells in
cytology images and cancer regions in colorectal biopsies
(17, 18).

The model was implemented in Python 3.8 using TensorFlow
(1.12.0) and Keras (2.0.3). Malignant cells with remarkable
atypia in the jpeg images were annotated by a certified
urological pathologist using the open-source software LabelMe
(19). The images were then divided into 175 × 200-pixel panel
subimages automatically, which were used for the training of
the DLS.
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ResNet101 was pretrained on the ImageNet database
consisting of 1.2 million training images, with 1,000 classes of
objects (20). The weight pretrained with ImageNet was used to
initiate the weights of all convolutional layers, and all weights
were trained with cytology images afterwards. The images passed
through 33 convolution blocks and then through 1 dense layer.
The SoftMax function was used as the activation function.
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The training set and validation set were further allocated by 5:1
stochastically, for early stopping during network training to
suppress overfitting. Spatial augmentation, including 90°
rotation and vertical and horizontal flip, was applied in network
training.We set 80 as the maximum epoch and stopped training if
validation loss did not improve after 15 epochs.

For the prediction of malignancy, an additional classifier was
added at the end of the initial DLS. The function of the classifier
was to select the highest value of the possibilities in an image and
to make a binary classification (benign or malignant) by
comparing this value to the threshold (Figure 2). More details
were provided in the Supporting Materials (Supporting File 1).

Evaluation Metrics
Performance was evaluated based on the testing results.

For the detection of UC cells, the annotations served as the
reference standard. We used sensitivity, accuracy, and average
false-positive cells per image. Sensitivities and accuracies were
calculated using following formulas:

Sensitivity =
True Positives

Total Annotations
 ; Accuracy =

True Positives
True Positives  +  False Positives

For the prediction of the malignancy, the surgical results
served as the reference standard. We used sensitivity, specificity,
the F1 score, and kappa score for evaluation. Cohen kappa
TABLE 1 | Baseline characteristics.

Training
and

Validation

Preliminary
Test

Negative Cytology
with Benign

Histopathology

Negative Cytology
with Malignant
Histopathology

Age
<60 79 10 26 26
≥60 308 44 36 307
Sex
Female 260 11 23 95
Male 127 43 43 238
Cytology diagnosis1

I 0 0 57 248
II 0 0 5 85
III 260 40 0 0
IV 127 14 0 0
V 0 0 0 0
1Cytology was diagnosed following Papanicolaou classification.
FIGURE 1 | The data acquisition process is illustrated here. We collected the cytology images retrospectively and consecutively from Sep 2014 to Jan 2020 and
built a series of data sets for training, validation, and tests. For those who underwent surgeries within the next 1 year, surgical results were also followed. The
preliminary test set was only used for cancer cell detection, while the internal and extra test sets were used for both cancer cell detection and malignancy prediction.
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scores reflect the agreement of the DLS with the pathologist
reference standard (21). F1 scores were calculated using the
following formula:

F1 Score =
2� Precision� Recall
Precision + Recall
RESULTS

Development of the Deep Learning System
The first step of our model is to detect just cancer cells.
Therefore, we only annotated the cancer cells in the jpeg
images for training and validation purposes, and treated all the
other cells in the same image as background (Supporting File1).
In total, 1,364 cells from 411 1,280×960-pixel images were
labelled. A total of 1953 subimages were obtained. Each
subimage contained at least one label in it. Sub-images were
subsequently randomly allocated into the training and validation
sets by the ratio of 5:1, and subjected to the pretrained DLS, as
mentioned inMaterials and Methods. Both the total loss and the
system accuracy stabilized after 45–50 epochs for the validation
set. A final model was chosen at 48 epochs when the total loss for
the validation set hit the lowest point of 1.6. It was also where
the classification accuracy for the validation set hit the highest
point of 0.77.
Frontiers in Oncology | www.frontiersin.org 411
Deep Learning System Performance to
Detect Cancer Cells
We evaluated the ability of the DLS to detect cancer cells in the
three test sets (Figure 3). We took advantage of the value of
possibility generated by the DLS and adopted it as the threshold
for cell detection.

For all sets, sensitivities increased at the cost of more cells
mistakenly spotted as malignant by the DLS (Figure 4A). The
accuracy initially increased with the thresholds for cell detection,
and the rate of increase slowed down by approximately 50–55
(Figure 4B). Such a trend was observed in both preliminary and
internal tests. Therefore, we chose 55 as the optimal threshold.
Under this threshold, the sensitivity is 41% for the preliminary
test at the cost of an average of 3.09 false-positive cells per image,
36% for the internal test at the cost of an average of 0.72 false-
positive cells per image, and 41% for the extra test at the cost
of an average of 0.31 false-positives cell per image (Figure 4A).
The accuracy of cancer cell detection was 50.0, 50.3, and
14.5 for the preliminary test, internal test, and extra test,
respectively (Figure 4B).

For the subgroups of the extra test set, results are also
calculated under the optimal threshold of 55: for the positive
64 images, sensitivity is 41% with an average of 0.95 false-positive
cells per image; for the 281 negative images, the average false-
positive cell per image is 0.16 while the sensitivity is not available
due to no true positive (cancer cell).
TABLE 2 | Surgical follow-up.

Training and Validation Set1 Positive Cytology with Malignant Histology Negative Cytology with Benign Histology Extra Test Set

N 188 23 62 333
Sex
Female 63 5 19 95
Male 125 18 43 238
Age
<60 26 3 26 74
≥60 162 20 36 259
Surgery2

TUR-Bt or biopsy 102 16 48 310
nephroureterectomy 100 6 13 34
Radical cystectomy 9 1 1 20
Tumor
Negative 0 0 62 0
upper urinary tract 89 6 0 15
Lower urinary tract 92 17 0 301
Synchronous U&L 7 0 0 17
tumor grade
Low grade 24 7 117
High grade 164 16 213
NA3 0 0 3
Tumor stage
Muscle non-invasive 104 16 277
Muscle invasive 82 6 52
NA4 2 1 4
May 2022 | Volume 12
Cytology was diagnosed following Papanicolaou criteria. Cancer grade was diagnosed using WHO2004. Tumor stage was diagnosed using TNM staging AJCC UICC 8th edition.
Synchronous U&L, synchronous tumors in both upper and lower urinary tract. NA, not available.
1Only cases in the training and validation set who underwent surgery were listed here.
2Many cases undertook more than 1 procedure, either at one time or many times.
3Tumor grades were missing due to the following: a case reported as unable to rule out for low grade (n = 1); grade not reported for a case with in situ carcinoma (n = 1); a case reported as
Grade 2 using WHO 1999 but not using WHO 2004 (n=1).
4Tumor stages were missing for those undertaken biopsies with no further operation available (n = 2 + 1 + 4).
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Deep Learning System Performance to
Predict Malignancy
We evaluated whether the exact same DLS can predict malignancy
with no further transfer learning. Because the gold standard of
malignancy is histopathology, we paired cytology with its
corresponding surgical pathology. A total of 97 1,280×960-pixel
images in the internal test set and 345 1,280×960-pixel images in
the extra test set that could be paired with corresponding
histopathological specimens were used. Here, we proposed a
Frontiers in Oncology | www.frontiersin.org 512
hypothesis that a case with positive cytology was more likely to
have malignant surgical pathology. Therefore, the maximal value
of possibility (the threshold for cell detection) in each image was
adopted as the threshold for malignancy prediction.

Notably, the DLS was able to predict malignancy through
cytology images. For the internal test, the AUC was 0.90 (95%CI
0.84–0.96) (Figure 5A). The highest kappa score is 0.71 at the
threshold of 57 for malignancy prediction, and the highest F1
score is 0.78 at the threshold of 58 (Table 3). For the extra test,
FIGURE 3 | The examples of snapshot images from positive cases and the results by the deep learning system were provided. The malignant cells detected were
labeled by the Faster-RCNN, and the possibilities of each detection were also shown.
FIGURE 2 | The overall design of the deep learning system. The ResNet 101 Faster-RCNN detected the UC cells while assigning a possibility to each of the cell,
and an additional classifier picked the maximal possibility and predicted the histopathological malignant state according to the set threshold.
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the AUC was 0.93 (95%CI 0.90–0.95) (Figure 5A). The highest
kappa score is 0.60 at the threshold of 52 for malignancy
prediction, and the highest F1 score is 0.69 at the threshold of
52 (Table 4).

Under the optimal threshold (threshold=55), the DLS also
achieved good performance. For the internal test, 4 images that
scored higher than 55 have benign histologic results (Figure 5B).
Thus, sensitivity is 71% (95%CI 52%–85%); specificity is 94% (95%
CI 84%–98%); the F1 score is 0.76; and there was a substantial
agreement with the reference standard (kappa = 0.68 [95%CI 0.52–
0.84]). For the extra test, 22 images that scored higher than 55 have
benign histologic results (Figure 5C). Thus, sensitivity is 67% (95%
CI 54%–78%); specificity is 92% (95%CI 88%–95%); the F1 score is
0.66; and there was a moderate agreement with the reference
standard (kappa = 0.58 [95%CI 0.46–0.70]).
DISCUSSION

In this study, we developed a DLS to predict the likelihood of the
presence of tissue malignancy through urine cytopathology.
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Notably, the system achieved an AUC of 0.90 for the internal
test and of 0.93 for the extra test. Under the optimal threshold,
sensitivity is 71%, and specificity is 94% for the internal test;
sensitivity is 67%, and specificity is 92% for the extra test. These
results proved that the DLS was able to predict the presence of
malignant tissue merely from urine cytology images.

It has been fully demonstrated that deep learning models can
be used to establish a cytology diagnosis system. Vaickus et al.
were the first to show that the analysis of urine cytology specimens
could be reliably automated. They achieved an accuracy of more
than 90% using a hybrid deep-learning and morphometric
algorithm (9). Pantanowitz et al. further proved this idea using a
much larger data set. They used a pure neural network to exploit
and integrate both slide-level and cell-level features and achieved a
sensitivity of 79.5% and a specificity of 84.5% for cytopathological
diagnosis (10). For both studies, features were carefully engineered
to ensure biological interpretability and reproducibility. Features
such as the nuclear-cytoplasm ratio, chromatin quality, and the
quantity of cells were included (Figure 6). Such a design made the
system explainable and enables it to fulfill the aim to assist
pathologists in cytology reading.
A B C

FIGURE 5 | The DLS performance to predict malignancy is illustrated. (A) The receiver operating characteristics curve for the performance to predict malignancy for
the internal and extra tests. (B) The distribution of maximal possibilities in the internal test set. Most images from benign histology were scored below 55. (C) The
distribution of maximal possibilities in the extra test set. Most images from negative cases were also scored below 55 (highlighted by the dashed line).
A B

FIGURE 4 | The DLS performance to detect malignant cells is illustrated. (A) As the system tried to find more malignant cells (to achieve higher sensitivity), it made
more mistakes classifying benign cells as malignant. The sensitivities at the optimal threshold for three sets were marked. (B) The accuracy at different thresholds.
Thresholds were represented by their middle value (for example, x = 52.5 represented the interval of 50–55 points). Higher thresholds tend to have better detection
accuracy. The performance at the optimal threshold of 50–55 points is highlighted by the dashed line. At this point, the increasing rates began to slow down.
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Although the principal indications for the use of cytology
include the diagnosis, follow-up, and monitoring of patients with
urothelial tumors, the gold standard for the diagnosis of tumor is
still histopathology. Therefore, the cyto-histo correlation has
become the bottleneck for the use of cytology in clinical
settings. Previous studies have shown that deep learning
techniques could discern subtle differences in image features
that are not readily noticeable to pathologists between tissues
from patients with different genetic subtypes, cancer grades,
and survival (6–8). Thus, it was reasonable to wonder if deep
learning could also distinguish differences in cytology images
with different histopathological results.

Fujita et al. were the first to observe that the DLS could not
only accurately detect UC cells but also distinguish
characteristics traditionally determined using histopathology.
They probed two specific characters: whether the lesions were
invasive and whether the lesions were high grade. For both, the
DLS achieved an AUC higher than 0.86 and F1 score higher than
0.82 (11). The study used a mixing-training model with the first
half trained with cytopathological data and the other half trained
with histopathological data (Figure 6). The results proved that at
least part of the features could be shared for cytopathology
diagnosis and histopathology prediction. This laid the
foundation for a complete cyto-histo correlation.

For the purpose of proving this correlation more stringently,
we improved the design of this study on the basis of previous
ones. First, we trained the system with only positive cytology
images instead of adding negative images as in previous studies.
Therefore, this design could insure all the features used by the
Frontiers in Oncology | www.frontiersin.org 714
DLS derived from malignant cases. Second, during malignancy
prediction, we did not train the initial DLS again. Instead, we
added an additional classifier at the end of the initial DLS. This
design rendered two models that shared a same set of
convolutional network and detector and, thus, a same set of
features. The additional classifier was designed based on the
biological meaning of the degree of fit calculated by the DLS.
During cancer cell detection, the degree of fit was the likelihood
of a cell to be a cancer cell. Therefore, the maximal degree offit in
a certain image represented the likelihood of a case to get
malignancy. There were no manually designed features in the
DLS. Therefore, the process was explainable since the prediction
of malignancy was directly based on the abnormal cells selected
by the model and can be verified by examining those candidate
abnormal cells in each image. Thus, the design made the DLS not
only possible to testify the hypothesis better but also explainable
in a unique way.

The test sets in this study included preliminary, internal, and
extra test sets. The extra test set came from patients whose
cytology was initially diagnosed as negative but later proved to
have malignant histopathological results. Overlooked cancer cells
TABLE 3 | Performance on the internal test set.

Threshold Sensitivity Specificity F1 Score Kappa Score

40.00 0.94 0.61 0.67 0.45
42.00 0.94 0.62 0.67 0.51
43.00 0.90 0.68 0.70 0.54
44.00 0.90 0.71 0.72 0.56
45.00 0.90 0.73 0.71 0.55
46.00 0.87 0.74 0.72 0.57
47.00 0.87 0.76 0.73 0.57
49.00 0.81 0.79 0.71 0.58
50.00 0.81 0.80 0.69 0.56
51.00 0.74 0.83 0.71 0.56
53.00 0.74 0.88 0.72 0.64
54.00 0.71 0.91 0.75 0.68
55.00 0.71 0.94 0.77 0.68
57.00 0.68 0.95 0.76 0.71
60.00 0.65 1.00 0.78 0.71
65.00 0.61 1.00 0.76 0.68
68.00 0.48 1.00 0.59 0.50
69.00 0.42 1.00 0.56 0.46
70.00 0.39 1.00 0.41 0.32
71.00 0.26 1.00 0.32 0.25
73.00 0.19 1.00 0.32 0.25
75.00 0.16 1.00 0.23 0.17
76.00 0.13 1.00 0.23 0.17
78.00 0.10 1.00 0.18 0.13
83.00 0.06 1.00 0.12 0.09
88.00 0.00 1.00 NA NA
NA, not available.
TABLE 4 | Performance on the extra test set.

Threshold Sensitivity Specificity F1 Score Kappa Score

40.00 1.00 0.56 0.52 0.35
41.00 1.00 0.59 0.54 0.37
42.00 0.98 0.62 0.57 0.42
43.00 0.98 0.67 0.58 0.44
44.00 0.97 0.69 0.60 0.47
45.00 0.97 0.72 0.62 0.50
46.00 0.94 0.75 0.63 0.51
47.00 0.91 0.78 0.67 0.56
48.00 0.91 0.81 0.68 0.58
49.00 0.88 0.84 0.68 0.59
50.00 0.86 0.85 0.68 0.60
51.00 0.83 0.86 0.68 0.60
52.00 0.80 0.88 0.69 0.60
53.00 0.77 0.89 0.66 0.58
54.00 0.72 0.90 0.67 0.59
55.00 0.67 0.92 0.66 0.58
56.00 0.63 0.94 0.64 0.57
57.00 0.59 0.94 0.61 0.54
58.00 0.55 0.95 0.58 0.51
59.00 0.48 0.96 0.55 0.48
60.00 0.45 0.96 0.53 0.45
61.00 0.42 0.96 0.52 0.45
62.00 0.41 0.96 0.53 0.47
63.00 0.39 0.98 0.50 0.44
64.00 0.36 0.98 0.49 0.44
65.00 0.34 0.99 0.47 0.41
66.00 0.31 0.99 0.37 0.32
67.00 0.23 0.99 0.24 0.20
68.00 0.14 1.00 0.24 0.20
70.00 0.13 1.00 0.19 0.16
71.00 0.11 1.00 0.14 0.11
72.00 0.08 1.00 0.09 0.07
73.00 0.05 1.00 0.06 0.04
74.00 0.03 1.00 NA NA
78.00 0.00 1.00 NA NA
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in these images were carefully revised in the blinded review at the
beginning of this study. Results showed that the extra test set had
higher AUC than the internal test set during malignancy
prediction. This indicated that the DLS had a good
performance for the extra test despite the fact that these cases
were among the most difficult to diagnose by traditional
cytology. However, the sensitivity and specificity for the extra
test under the optimal threshold were lower than that for the
internal test. Moreover, during cancer cell detection, the accuracy
for the extra test was also lower than that for the preliminary and
the internal tests under the optimal threshold, and the accuracy
for the extra test was still increasing after the threshold reached
the optimal threshold. This indicated that the current optimal
threshold using in this study, which was chosen based on the
preliminary and internal tests, might not serve as the optimal
threshold for the extra test. Future studies are needed for a better
strategy to find the optimal threshold for DLS application. At the
same time, it is also important to understand that pathologists
are not able to spot every true cancer cell since no
cytopathological scoring system used for cytology diagnosis at
present is perfect. A DLS learnt from pathologists’ annotations
inevitably inherited these bias and errors. Therefore, as
pathologists had failed to perform excellent in the extra test set
Frontiers in Oncology | www.frontiersin.org 815
themselves, the DLS would only detect cancer cells with
additional difficulties.

The results of the DLS performance to predict malignancy
showed a relatively high specificity. The sensitivity, however,
was not as good as the specificity. This indicated that most cases
predicted to have tissue malignancy were indeed patients with
UC, while some patients with UC were not successfully
identified. This may be attributed to the fact that the DLS still
needs further improvement or that some UCs do not present
morphologically abnormal cells in urine. Meanwhile, it was not
necessary to spot every cancer cell to make a prediction.
Instead, it was adequate to find most of the cancer cells while
mistaking as few normal cells as possible. These successfully
spotted cancer cells were likely to be among the most atypical
and, thus, gave the highest scores in an image. Biologically, it
was also the patients whose cells in cytology had a higher degree
of atypia who were more likely to get UC. Future studies are
needed to identify UC in those patients without abnormal cells
in urine.

There is currently no gold standard for cyto-histo correlation
in urine. Many argue that a negative cytology with a concurrent
positive surgical result is not a false negative. Similarly, a positive
urine followed by a negative surgical result is not a false positive.
FIGURE 6 | Different designs in between different DLSs. The current DLS could make both cytopathological diagnosis and histopathological prediction, yet it did not
need histopathological data in its training.
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However, results in this current study imply that when the DLS
predicts a malignant state, it might focus on characteristics that
are partially same with those used for UC cell detection. This
indicates that there are features on cytology images correlated to
histopathology results. Nevertheless, due to the lack of technical
maneuver to untangle representative features in Faster-RCNN,
we are not able to define each feature and apply them in classical
cytology. This is one of the limitations of this study. Another
limitation is that this is a retrospective study in a single center.
Multicentered prospective studies are warranted to further prove
these findings.

Collectively, the current results demonstrated that DLS
cytology could be used to predict the likelihood of a case to
have histological confirmed malignancy through a cyto-histo
correlation. If a DLS can serve as a risk-stratification tool to
distinguish clinically relevant malignancy at the time of cytology,
urologists can plan in time therapeutic strategies at lower cost
that benefit more patients.
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Research Laboratory of Pediatric Major Diseases, Kunming, China

Objective: Prostate cancer (PC) is the most common non-cutaneous malignancy in men
worldwide. Accurate predicting the survival of elderly PC patients can help reduce
mortality in patients. We aimed to construct nomograms to predict cancer-specific
survival (CSS) and overall survival (OS) in elderly PC patients.

Methods: Information on PC patients aged 65 years and older was downloaded from the
Surveillance, Epidemiology, and End Results (SEER) database. Univariate and multivariate
Cox regression models were used to determine independent risk factors for PC patients.
Nomograms were developed to predict the CSS and OS of elderly PC patients based on a
multivariate Cox regression model. The accuracy and discrimination of the prediction
model were tested by the consistency index (C-index), the area under the subject
operating characteristic curve (AUC), and the calibration curve. Decision curve analysis
(DCA) was used to test the clinical value of the nomograms compared with the TNM
staging system and D’Amico risk stratification system.

Results: 135183 elderly PC patients in 2010-2018 were included. All patients were
randomly assigned to the training set (N=94764) and the validation set (N=40419).
Univariate and multivariate Cox regression model analysis revealed that age, race,
marriage, histological grade, TNM stage, surgery, chemotherapy, radiotherapy, biopsy
Gleason score (GS), and prostate-specific antigen (PSA) were independent risk factors for
predicting CSS and OS in elderly patients with PC. The C-index of the training set and the
validation set for predicting CSS was 0.883(95%CI:0.877-0.889) and 0.887(95%
CI:0.877-0.897), respectively. The C-index of the training set and the validation set for
predicting OS was 0.77(95%CI:0.766-0.774)and 0.767(95%CI:0.759-0.775),
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respectively. It showed that the proposed model has excellent discriminative ability. The
AUC and the calibration curves also showed good accuracy and discriminability. The DCA
showed that the nomograms for CSS and OS have good clinical potential value.

Conclusions: We developed new nomograms to predict CSS and OS in elderly PC
patients. The models have been internally validated with good accuracy and reliability and
can help doctors and patients to make better clinical decisions.
Keywords: nomogram, old age, prostate cancer, CSS, SEER
BACKGROUND

Prostate cancer (PC) is the most common non-dermatological
tumor in men worldwide. In 2022, the number of new prostate
cancer patients in the United States will reach 268,490 (1). Most
prostate cancer can be diagnosed early due to the popularity of
prostate-specific antigen (PSA) screening and biopsy testing
techniques. The treatment of prostate cancer mainly includes
radical prostatectomy, androgen deprivation therapy (ADT),
radiotherapy, and chemotherapy, which dramatically improves
prostate cancer patients’ survival rate. At the same time, the total
number of prostate cancer patients is also increasing. As of 2020,
there were 3.65 million confirmed PC patients diagnosed in the
United States, and the number is expected to increase to 5.02million
by 2030 (2). It should be noted that mortality rates among prostate
cancer patients also rank second among cancer deaths worldwide
due to their high morbidity. Although most patients with PC have a
good prognosis, some patients still have a recurrence and distant
metastasis, making significant differences in the prognosis of PC. In
2022,34,500 people are expected to die from PC in the United States
or about 11% of male cancer deaths (1).

Previously, the US Joint Commission on Cancer (AJCC)
tumor-lymph node-metastatic (TNM) cancer staging system was
used for the effective management of a variety of cancers (3).
However, a growing number of studies have shown that the TNM
stage alone does not accurately predict patient outcomes because
of multiple factors clinically associated with PC prognosis (4–6),
especially the Gleason score(GS) and prostate-specific antigen
(PSA). GS is the most powerful tool for predicting outcomes of
PC (7), developed by Donald Gleason Joint Urology Research
Group between 1966 and 1974 (8) and revised in 2005 and 2014
(9, 10). PSA is mainly used for the screening of PC, causing a
significant increase in the detection rate of PC. It is well known
that PSA level is an essential factor in determining the
aggressiveness of prostate cancer (11), and some studies show
that PSA level is considered an essential prognostic factor in PC,
with a linear relationship between PSA and PC prognosis (12, 13).
However, some studies have shown that PSA screening does not
reduce all-cause mortality in patients with PC (14, 15). Although
the combination of PSA, histological grade, and TNM staging
system can establish prognostic models, refining the stratification
system can improve the discriminatory ability of prognostic
models (16, 17). However, this model still cannot evaluate the
impact of critical clinical variables, including age, marriage, race,
and treatment mode, on the prognosis of PC patients.
219
A nomogram is a digital graphical tool that can predict the
occurrence probability of a given event based on the data of known
variables. It is considered superior to the conventional TNM
staging system (18, 19). It has been widely used to predict the
prognosis of multiple cancers, including glioma, bladder cancer,
renal carcinoma, mammary cancer, and Colon cancer (20–24).
There are also some nomograms for PC, but primarily for distant
metastatic PC, PC with particular bone metastases, or patients
with nonmetastatic PC. There are also nomograms designed
specifically for PC patients with GS 3 + 4 and 4 + 3 scores (25–
28).Elderly patients are a group with high incidence and mortality
from PC, with a median age at diagnosis of 66 years (29).
Moreover, with the aging population, the base of the elderly is
also expanding, and the cancer health management of the elderly
has become a major problem that cannot be ignored (30). More
than 60 percent of PC patients are over the age of 65, and more
than 90 percent of PC deaths occur in this age group (6), but there
is no nomogram for PC patients more than 65 years old. Consider
that elderly PC patients lead to many non-cancer-specific deaths
due to comorbidities, affecting overall survival (OS). Therefore,
our study aims to identify independent prognostic factors for
elderly PC patients using the Surveillance, Epidemiological, and
End Results (SEER) database and develop and validate
nomograms for specific survival (CSS) and OS in elderly PC
patients, as well as to provide a reference basis for the clinical
diagnosis and treatment work.
PATIENTS AND METHODS

Data Source and Data Extraction
We downloaded patient data from the SEER database, including
patients aged 65 years and older diagnosed with PC between 2010
and 2018. The SEER database is a national cancer database
containing 18 cancer registries covering approximately 30% of
the population. Since the patient information in the SEER database
is anonymized and the data is publicly available, ethical approval
and patient informed consent were not required for our study. The
research methodology used in this study follows the research
guidelines published in the SEER database.

We collected clinicopathological information for all elderly
PC patients, including age, race, year of diagnosis, marital status,
histological tumor grade, TNM stage, surgery, radiotherapy,
chemotherapy, PSA, and biopsy GS. Patient follow-up results,
June 2022 | Volume 12 | Article 918780
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including survival status, cause of death, and survival time, are
also available from the SEER database. Inclusion criteria: (1)
patients age≥ 65;(2) with a pathological diagnosis of PC.
Exclusion criteria: (1) patients younger than 65 years old; (2)
tumor grade is unknown; (3) TNM stage is unknown; (4) surgical
method is unknown; (5) PSA is not clear; (6) survival time is less
than one month or survival time is unknown. The flowchart of
patient inclusion and exclusion is shown in Figure 1.

Patients were classified as white, Black, and other types
(American Indian/AK Native, Asian/Pacific Islander). The
histologica l c lass ificat ion of tumors includes high
differentiation (grade I), moderate differentiation (grade II),
low differentiation (grade III), and undifferentiated (grade IV).
According to the SEER surgical code, the surgical methods are
divided into non-surgical surgery (surgical code 0), local tumor
resection (surgical code 10-30), and radical prostatectomy
(surgical code 50-80).

Development and Validation of
the Nomograms
We first randomly divided the patients into two groups for the
development and internal validation of the nomogram. All data
were randomly divided into the training set (70%) and the
validation set (30%). In addition, the data of PC patients from
2016-to 2018 were externally validated in time. Univariate and
multivariate Cox proportional regression models were used to
identify independent risk factors affecting patients’ outcomes in
the training set. We constructed nomograms based on a
multivariate Cox regression model for predicting CSS and OS
at 3-,5-, and 8-year. The calibration curves for 1,000 bootstrap
samples were used to verify the accuracy of the nomograms. The
consistency index (c-index) and the area under the subject
operating characteristic curve (AUC) were used to test the
accuracy and discrimination of the models.
Frontiers in Oncology | www.frontiersin.org 320
Clinical Application
We use the decision analysis curve (DCA) to evaluate the clinical
value of the nomograms for predicting CSS and OS at 3-,5-, and 8-
years compared with the TNM staging system and D’Amico risk
stratification system. Furthermore, we also calculated the risk for
each patient from the nomograms. All patients were divided into
high-risk and low-risk groups based on the cutoff value of the
subject operating characteristic curve (ROC). The production
principle of the ROC curve is to set several different critical
values for the variable, calculate the corresponding sensitivity
(sensitivity) and specificity (specificity) at each critical value, and
then take the sensitivity as the ordinate and 1-specificity as the
abscissa to draw the curve. Our ROC curves are time-dependent
and are time-dependent. We used time-based ROC curves to test
the nonlinear relationship of CSS or OS with risk values in the
dataset and sought the closest risk score to HR=1 on the ROC
curve as the cutoff. The Log-rank test and Kaplan-Meier (K-M)
curves examined the differences in survival between high-risk and
low-risk patients. In addition, surgical differences among patients
in different risk groups were also analyzed.

Statistical Analysis
Continuous variables(age) were tested for normal distribution
and conform to the normal distribution, described by the mean ±
standard deviation. Chi-square or non-parametric U tests were
used for comparison between groups. Other categorical variables
were described by frequency (%), and the groups were compared
using the chi-square test. The Cox regression models analyzed
patient prognostic factors, and the log-rank test and K-M curves
analyzed the survival differences of patients. All statistical
methods were performed using R software version 4.1.0 and
SPSS26.0. The R packages including “DynNom”, “RMS”,
“Survival”, and “ggDCA” were used. A P value less than 0.05
was considered statistically significant.
FIGURE 1 | Flowchart for inclusion and exclusion of elderly patients with PC.
June 2022 | Volume 12 | Article 918780
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RESULT

Clinical Features
A total of 135,183 patients between 2010 and 2018 were included
in this study. All patients were randomly assigned to the training
set (N=94764) and the validation set (N=40419). The mean age
of both groups was 71.6 ± 5.1 years, and most of both groups
were white (79.4%) and married (67.8%). The tumors included
grade I (14.8%), II (40.3%), III (43.5%), and IV (1.44%).Patients
with stage T1 (45.7%), T2 (39.1%), T3 (13.4%), and T4
(1.73%).Most patients were in stage N0 (95.8%) and staged M0
(95.5%).Patients with Non-surgical treatment (65.0%), patients
who underwent local tumor resection (5.93%), and patients who
underwent radical prostatectomy (29.1%).99% of patients
received chemotherapy. 39.8% received radiotherapy, while
60.2% did not. Most patients had an unknown biopsy GS score
(71.1%), and biopsy GS7 was about 20%. PSA 4-10ng/ml(57.1%),
>10ng/ml(33.2%). The data did not show significant statistical
bias in both groups, and the results are shown in Table 1.

Univariate and Multivariate COX
Regression Analysis
Univariate Cox regression models were first used in training set
to analyze and screen for factors associated with patient survival.
The results showed that these factors, including age, race,
marriage, tumor grade, TNM stage, surgery, chemotherapy,
radiotherapy, PSA, and biopsy GS, could all affect patient
survival. Then, multivariate Cox regression models were used
to screen for independent risk factors associated with CSS and
OS of elderly PC patients. The results showed that age, race,
marriage, tumor grade, TNM stage, surgery, radiotherapy,
chemotherapy, PSA, and biopsy GS were prognostic factors
affecting patient CSS and OS. The analysis results are shown in
Tables 2 and 3.

Nomograms Development for the 3-Year,
5-Year, and 8-Year CSS and OS
We constructed nomograms that predicted CSS and OS at 3-
year,5-year, and 8-year in elderly PC patients based on
multivariate Cox regression models (Figure 2). From the
figure, age, TNM stage, tumor grade, surgery, PSA, and biopsy
GS were the most influential factors for predicting CSS and OS in
elderly PC patients. In addition, radiotherapy and chemotherapy
are also essential factors. However, marriage and race had little
effect on patient survival.

Validation of the Nomograms
Internal cross-validation was used to test the accuracy and
discriminability of models. The C-index of the training set and
the validation set for predicting CSS is 0.883(95%CI:0.877-0.889)
and 0.887(95%CI:0.877-0.897), respectively. The C-index of the
training set and the validation set for predicting OS was 0.77
(95%CI:0.766-0.774)and 0.767(95%CI:0.759-0.775), respectively.
It indicated that the nomograms for CSS and OS have good
recognition ability. In the training and validation set, the
calibration curve shows that the predicted value of the
nomograms for CSS and OS are highly consistent with the
Frontiers in Oncology | www.frontiersin.org 421
actual observed value (Figure 3). It shows that the nomograms
have good accuracy. The AUC at 3-, 5-, and 8-years was
89.6,87.2, and 85.1, respectively, in the training set for CSS,
and in the validation set for CSS, the AUC at 3-,5-, and 8-years
was 89.9,88.4, and 85.7, respectively. In the training set for OS,
the AUC at 3-, 5- and 8-years was 77.0,75.0, and 75.0,
respectively, and in the validation set for OS, the AUC at 3-, 5-
and 8-years was 77.4,75.4 and 74.5. The results show that the
nomograms are very discriminative (Figure 4). The external
validation set in time for predicting CSS was 0.903(95%CI:0.891-
0.915), and the external validation set in time for predicting OS
was 0.795(95%CI:0.785-0.805). The AUC at 1-and 2-year in the
external validation set in time for CSS was 89.2 and 90.3, and the
AUC in the external validation set in time for OS was 78.3 and
89.8 (Figure S1). Due to more than 75% of patients being
classified as unknown GS groups, thus to bias the results, so
we retrained the models after removing the unknown GS. The
results showed that the C-index of the training set for CSS after
removing the unknown GS is 0.785(95%CI:0.754-0.816), and the
C-index of the training set for OS is 0.675(95%CI:0.657-0.693).
The C-index of the validation set for CSS is 0.763(95%CI:0.708-
0.818), and the C-index of the validation set for OS is 0.665(95%
CI:0.640-0.690). Moreover, the AUC also showed that the model
readiness and reliability would be decreased significantly after
deleting the unknown GS (Figure S2).

Clinical Application of the Nomograms
In both the training set and the validation set for CSS and OS,
DCA suggested that the nomograms had good clinical potential
value (Figure 5). The nomograms for CSS at the 3,5,8-year
validation set showed the best clinical potential value, followed
by the D’Amico risk stratification and TNM staging systems. The
nomogram for CSS at 3,5-year also showed the best clinical
potential value in the training set. In contrast, the nomogram for
CSS at 8-year had no apparent advantages over the other two,
indicating that the nomogram is close to the other two models in
the long term and does not show apparent advantages. The
nomogram for OS at 3,5,8 years showed the best application
potential in both the training and validation set, followed by
D’Amico risk stratification and TNM staging. Based on the
nomogram, we calculated each patient’s risk value and the
optimal cutoff value using the ROC curve. Patients were
classified into the high-risk group (total score ≥293.59) and the
low-risk group (total score <293.59) for predicting CSS, and
patients were divided into the high-risk group (total score
≥184.88) and the low-risk group (total score <184.88) for
predicting OS. The K-M curve showed that the CSS and OS
rate of the patients in the high-risk group was significantly lower
than that in the low-risk group both in the training and
validation set (Figure 6). The 3-year, 5-year, and 8-year CSS
rates of the patients in the high-risk group were 93.2%, 89.6%,
and 84.7%, respectively. The low-risk group’s 3-year, 5-year, and
8-year CSS rates were 99.6%, 99.2%, and 98.2%, respectively. The
3-year, 5-year, and 8-year OS rates of the patients in the high-risk
group were 86.0%.0,76.7%, and 62.2%, respectively. The low-risk
group’s 3-year, 5-year, and 8-year OS rates were 96.8%, 93.9%,
and 87.8%, respectively. We found that patients in the high-risk
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group had the highest CSS and OS rate for undergoing radical
prostatectomy, but most patients did not receive surgery. Most
patients in the low-risk group underwent radical prostatectomy
or non-surgical treatment, with no significant difference in
patient CSS and OS rate (Figure 7).
DISCUSSION

This study developed a nomogram using a population-based
SEER database to predict CSS in elderly PC patients. With
Frontiers in Oncology | www.frontiersin.org 522
135,183 patients included in this study, we successfully
developed a nomogram to predict 3,5, and 8-year CSS in
elderly PC patients, while internal validation demonstrated
good calibration and discrimination of this nomogram. The
nomogram consists of multiple independent prognostic factors,
including age, marriage, Race, PSA, biopsy GS, radiotherapy,
chemotherapy, surgical, tumor grade, and TNM stage.

In the past 170 years, PC has evolved from a rare disease to
the most common non-cutaneous cancer; with the popularity of
PSA screening, more and more patients can be detected in the
early stages of the disease. PSA is the most common tumor
TABLE 1 | Clinicopathological characteristics of elderly patients with PCa.

All Training cohort Validation cohort p
N = 135183 N = 94764 N = 40419

Age 71.6 (5.51) 71.5 (5.48) 71.6 (5.53) 0.159
Race: 0.483
white 107381 (79.4%) 32025 (79.2%) 75356 (79.5%)
black 16005 (11.8%) 4826 (11.9%) 11179 (11.8%)
other 11797 (8.73%) 3568 (8.83%) 8229 (8.68%)

Marital: 0.331
No 43594 (32.2%) 13111 (32.4%) 30482 (32.2%)
Married 91590 (67.8%) 27308 (67.6%) 64282 (67.8%)

Grade: 0.252
I 20021 (14.8%) 5880 (14.5%) 14141 (14.9%)
II 54426 (40.3%) 16308 (40.3%) 38118 (40.2%)
III 58791 (43.5%) 17666 (43.7%) 41125 (43.4%)
IV 1945 (1.44%) 565 (1.40%) 1380 (1.46%)

T: 0.516
T1 61819 (45.7%) 18482 (45.7%) 43337 (45.7%)
T2 52878 (39.1%) 15889 (39.3%) 36989 (39.0%)
T3 18142 (13.4%) 5368 (13.3%) 12774 (13.5%)
T4 2344 (1.73%) 680 (1.68%) 1664 (1.76%)

N: 0.603
N0 129460 (95.8%) 38726 (95.8%) 90734 (95.7%)
N1 5723 (4.23%) 1693 (4.19%) 4030 (4.25%)

M: 0.501
M0 129046 (95.5%) 38560 (95.4%) 90486 (95.5%)
M1 6137 (4.54%) 1859 (4.60%) 4278 (4.51%)

Surgery: 0.351
No 87843 (65.0%) 26354 (65.2%) 61489 (64.9%)
Local tumor excision 8019 (5.93%) 2348 (5.81%) 5671 (5.98%)
Radical prostatectomy 39321 (29.1%) 11717 (29.0%) 27604 (29.1%)

Chemotherapy: 0.885
No 133822 (99.0%) 40015 (99.0%) 93807 (99.0%)
Yes 1361 (1.01%) 404 (1.00%) 957 (1.01%)

Radiation: 0.530
No 81407 (60.2%) 24288 (60.1%) 57119 (60.3%)
Yes 53776 (39.8%) 16131 (39.9%) 37645 (39.7%)

Gleason: 0.486
≤6 5141 (3.80%) 1549 (3.83%) 3592 (3.79%)
3+4 17182 (12.7%) 5185 (12.8%) 11997 (12.7%)
4+3 9542 (7.06%) 2819 (6.97%) 6723 (7.09%)
≥8 7217 (5.34%) 2102 (5.20%) 5115 (5.40%)
Unknown 96101 (71.1%) 28764 (71.2%) 67337 (71.1%)

PSA: 0.245
<4 13169 (9.74%) 3966 (9.81%) 9203 (9.71%)
4-10 77140 (57.1%) 23168 (57.3%) 53972 (57.0%)
>10 44874 (33.2%) 13285 (32.9%) 31589 (33.3%)

CSS: 0.680
Dead 6184 (4.57%) 1864 (4.61%) 4320 (4.56%)
Alive 128999 (95.4%) 38555 (95.4%) 90444 (95.4%)

Survival.months 46.2 (29.9) 46.3 (29.9) 46.1 (29.9) 0.146
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marker in PC screening, although high levels of PSA in benign
prostatic hyperplasia and prostatitis reduce PSA specificity as a
cancer marker. However, many studies show that high levels of
PSA are associated with a poor prognosis in prostate cancer
patients (31). However, a previous study reported that low levels
of PSA decreased the CSS in PC patients (32). Interestingly,
different predictive models have opposite conclusions on the
effects of PSA for the bone metastasis patients in PC, and the
Indonesian nomogram suggests that higher PSA levels are
associated with a worse prognosis (33). The SEER database
also confirmed that high PSA levels were associated with poor
prognosis (34). However, the Japanese nomogram suggests that
PC patients with higher PSA suggest a better prognosis (35).In
previous studies, PSA was generally divided into three grades:
Frontiers in Oncology | www.frontiersin.org 623
<4,4-10 and> 10 ng/ml (36, 37). This standard also graded our
study. We also confirmed that PSA> 10 ng/ml was associated
with a poor prognosis, consistent with most previous reports.
However, the patient prognosis of PSA< 4 ng/ml and PSA 4-
10ng/ml was inconsistent with the expression level of PSA.
Considering the particularity of elderly PC patients, the PSA of
most patients may be high, and the patients with PSA< 4 ng/ml
are very few, which may bias the results. Secondly, it is reported
that PSA 4-10 ng/ml itself is a “gray area” in PC (38), so the
previous PSA classification criteria for elderly PC patients can
not accurately respond to the actual situation. Moreover, we also
made the corresponding nomogram for predicting OS, which
showed the same conclusion that patients with PSA< 4 ng/ml
had worse OS than PSA 4-10 ng/ml. Considering that it is
TABLE 2 | Univariate and multivariate analyses of CSS in training cohort.

Univariate Multivariate

HR 95%CI P HR 95%CI P

Age 1.12 1.12-1.13 <0.001 1.055 1.051-1.059 <0.001
Race
white
black 1.29 1.18-1.41 <0.001 1.174 1.089-1.264 <0.001
other 0.8 0.71-0.89 <0.001 0.662 0.599-0.732 <0.001

Marital
No
Married 0.66 0.63-0.71 <0.001 0.849 0.807-0.895 <0.001

Grade
I
II 1.87 1.48-2.36 <0.001 1.521 1.262-1.835 <0.001
III 9.78 7.85-12.18 <0.001 3.963 3.307-4.749 <0.001
IV 20.3 13.63-30.22 <0.001 6.414 4.58-8.983 <0.001

T
T1
T2 1.13 1.05-1.21 0.001 1.196 1.127-1.27 <0.001
T3 1.43 1.3-1.57 <0.001 1.389 1.271-1.518 <0.001
T4 11.37 10.3-12.55 <0.001 2.216 2.019-2.432 <0.001

N
N0
N1 8.13 7.54-8.77 <0.001 1.365 1.269-1.468 <0.001

M
M0
M1 27.62 25.96-29.4 <0.001 7.254 6.773-7.769 <0.001

Surgery
No
Local tumor excision 2.25 2.06-2.45 <0.001 1.609 1.494-1.732 <0.001
Radical prostatectomy 0.24 0.21-0.27 <0.001 0.759 0.541-1.064 0.109

Chemotherapy
No
Yes 10.64 9.42-12.02 <0.001 1.41 1.268-1.567 <0.001

Radiation
No
Yes 0.64 0.6-0.68 <0.001 0.647 0.609-0.688 <0.001

PSA
<4
4-10 0.71 0.62-0.81 <0.001 0.798 0.711-0.895 <0.001
>10 4.16 3.66-4.73 <0.001 1.559 1.396-1.741 <0.001

Gleason
≤6
3+4 0.88 0.55-1.41 0.592 0.511 0.348-0.748 0.001
4+3 1.35 0.83-2.2 0.231 0.608 0.405-0.913 0.016
≥8 8.18 5.4-12.4 <0.001 2.419 1.711-3.422 <0.001

Unknown 10.43 7.04-15.45 <0.001 2.699 1.712-4.253 <0.001
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inconsistent with clinical practice, we also recommend
subsequent researchers adopt a new PSA classification
standard for elderly PC patients over 65 years of age: PSA <10
ng/ml,10-20 ng/ml,> 20 ng/ml, instead of 4 ng/ml as the
intermediate value, which may avoid outcome bias. SEER
database-based studies have divided PSA into three levels: <10
ng/ml,10-20 ng/ml, and> 20 ng/ml. Most prediction models
confirmed that PSA greater than 10 rather than 4 is associated
with a poor prognosis (28, 34).

GS as an essential tool for predicting the prognosis of patients
with PC has been revised multiple times since being proposed.
The most common risk stratification for prostate cancer is the
D’Amico classification, also used by the National Comprehensive
Cancer Network (39), which divides Gleason scores into three
Frontiers in Oncology | www.frontiersin.org 724
Gleason score groups (2 – 6,7 and 8 – 10). However, the current
GS system still has vast defects, especially with a total score of 7.
The patient prognosis of GS 3 + 4 and GS 4 + 3 is very different,
so the simple GS does not accurately predict the prognosis of PC
patients. Therefore, a study developed a nomogram for patients
with GS 4 + 3 and GS 3 + 4, which showed that patients with GS
4 + 3 had a worse prognosis than patients with GS 3 + 4 (28), and
our study reached the same conclusion.Meanwhile, our
nomogram showed that GS> 8 is associated with a worse
prognosis, consistent with previous reports, but patients with
GS<6 have a worse prognosis than those with GS7. We consider
that the majority of patients did not undergo a needle biopsy for
PC, resulting in more than 75% of cases being classified as biopsy
GS unknown group, thus bias the results. After removing the
TABLE 3 | Univariate and multivariate analyses of OS in training cohort.

Univariate Multivariate

HR 95%CI P HR 95%CI P

Age 1.12 1.11-1.12 <0.001 1.073 1.07-1.075 <0.001
Race
white
black 1.29 1.22-1.35 <0.001 1.245 1.192-1.301 <0.001
other 0.69 0.65-0.75 <0.001 0.632 0.595-0.672 <0.001

Marital
No
Married 0.66 0.64-0.68 <0.001 0.798 0.774-0.822 <0.001

Grade
I
II 1.24 1.14-1.36 <0.001 1.158 1.078-1.244 <0.001
III 2.57 2.37-2.79 <0.001 1.767 1.645-1.898 <0.001
IV 3.78 2.84-5.03 <0.001 2.487 1.966-3.146 <0.001

T
T1
T2 0.96 0.92-1 0.04 1.127 1.089-1.166 <0.001
T3 0.86 0.81-0.92 <0.001 1.217 1.147-1.292 <0.001
T4 4.41 4.07-4.77 <0.001 1.889 1.754-2.034 <0.001

N
N0
N1 3.51 3.31-3.74 <0.001 1.261 1.188-1.338 <0.001

M
M0
M1 8.82 8.42-9.24 <0.001 3.241 3.087-3.403 <0.001

Surgery
No
Local tumor excision 1.89 1.79-1.99 <0.001 1.373 1.308-1.44 <0.001
Radical prostatectomy 0.33 0.31-0.35 <0.001 0.635 0.519-0.776 <0.001

Chemotherapy
No
Yes 4.7 4.21-5.23 <0.001 1.393 1.269-1.529 <0.001

Radiation
No
Yes 0.85 0.82-0.88 <0.001 0.716 0.692-0.741 <0.001

PSA
<4
4-10 0.8 0.75-0.85 <0.001 0.884 0.837-0.935 <0.001
>10 2.25 2.11-2.4 <0.001 1.283 1.213-1.358 <0.001

Gleason
≤6
3+4 0.7 0.6-0.81 <0.001 0.582 0.512-0.662 <0.001
4+3 0.72 0.61-0.86 <0.001 0.597 0.515-0.691 <0.001
≥8 1.58 1.35-1.84 <0.001 0.918 0.799-1.055 0.228

Unknown 2.91 2.58-3.29 <0.001 1.155 0.93-1.435 0.192
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A B

FIGURE 2 | The nomograms for predicting 3-,5-,8-year CSS and OS in elderly patients with PC. (A) The nomogram for predicting CSS in elderly patients with PC.
(B) The nomogram for predicting OS in elderly patients with PC. ***P < 0.001 vs. reference.
A B

DC

FIGURE 3 | Calibration curve of the nomograms for predicting 3-,5-,8-year CSS and OS in elderly patients with PC. (A) Calibration curve of the nomograms for
predicting 3-,5-,8-year CSS in the training set. (B) Calibration curve of the nomograms for predicting 3-,5-, and 8-year CSS in the validation set. (C) Calibration curve
of the nomograms for predicting 3-,5-,8-year OS in the training set. (D) Calibration curve of the nomograms for predicting 3-,5-,8-year OS in the validation set. The
horizontal axis is the predicted value in the nomogram, and the vertical axis is the observed value.
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unknown GS, the model was trained again. The result showed
that deleting this part of the patients caused a significant decrease
in the accuracy and reliability of the model and, therefore,
poor availability.

PC treatment uses active monitoring, surgical resection, and
androgen deprivation (ADT), combined with radiotherapy and
chemotherapy. The surgical methods of PC mainly include:
radical prostatectomy (RP) and local tumor resection (LTR),
our prediction model showed that patients with RP had better
outcomes than patients treated without surgery, which is
consistent with previous reports (40, 41), and patients with
LTR had the worst prognosis, considering many low-risk
patients only need active monitoring rather than surgical
treatment can obtain good prognosis, and many elderly PC
patients who need RP but choose palliative surgery due to
inability of tolerating prolonged general anesthesia, life
expectancy is less than 10 years, etc. Therefore, our study
found that for elderly patients with PC, patients with local
tumor resection instead had a worse prognosis than those who
did not receive surgical treatment. Radiation therapy (RT) is a
conventional treatment method for PC patients, and it is mainly
used clinically to treat patients with medium-risk or high-risk
nonmetastatic prostate cancer (42, 43). RT is noninvasive and
Frontiers in Oncology | www.frontiersin.org 926
does not require considering the cardiorespiratory risks arising
from systemic or local anesthesia. Therefore, it can be used to
treat intolerable elderly patients with PC. At the same time, it
does not require hospitalization, improving patient compliance
while also reducing hospitalization costs. More importantly, RT
can avoid some side effects of surgery, such as urinary
incontinence. Our findings showed that elderly PC patients
with RT had better outcomes than patients without RT,
consistent with previous studies (44). Thus, RT is becoming a
key component of multimodal therapy at multiple stages of PC.
Unlike most solid tumors, chemotherapy (CT) is not the primary
treatment for PC. Almost all PC will eventually develop
metastatic castration-resistant prostate cancer (mCRPC), and
in the 1970s and 1980s, although many chemotherapeutic drugs
were tested in CRPC. Most drugs were tested in phase II clinical
trials, and although many seemed promising, none were
ultimately shown to prolong survival (45). As most of the
patients did not receive chemotherapy, our predictive model
also did not show a survival advantage of chemotherapy for
elderly PC patients.

Cancer is now commonly evaluated through the tumor-
lymph node-metastasis (TNM) system, which was previously
considered the “gold standard” for staging and a benchmark for
A B

DC

FIGURE 4 | AUC for predicting 3-, 5-, and 8-year CSS and OS in elderly patients with PC. (A) The AUC at 3-, 5-, and 8-year for CSS in the training set was
89.6,87.2, and 85.1. (B) The AUC for CSS in the validation set was 89.9,88.4, and 85.7. (C) The AUC at 3-, 5- and 8-year for OS in the training set was 77.0,75.0,
and 75.0. (D) The AUC at 3-, 5- and 8-year for OS in the validation set was 77.4,75.4, and 74.5.
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prognosis (46). Most nomograms of PC prognosis (28, 34)
included traditional TNM stages, showing that T4 has the
worst prognosis compared to other T stages, and patients with
distant and lymph node metastasis had a worse prognosis
compared to patients without distant and lymph node
metastasis, which is consistent with our findings.

The social support provided by marital relationships can
promote a healthy lifestyle and increase healthcare-seeking
behavior, so marriage is associated with favorable outcomes for
most cancer patients. Charlotte Salmon et al. emphasized the
elevated risk of PC in single men (47). Libby Ellis et al. also
demonstrated that marital status in prostate cancer patients is
associated with prognosis (48). Our prediction model also shows
the relationship between marital status and prognosis, proving
that married patients often indicate a good prognosis, which may
be related to the influence of marriage on mood, a medical
decisions, etc. In addition, it may be due to the responsibility of
married families. Married cancer patients can detect physical
abnormalities and actively cooperate with treatment (49).In
terms of race or ethnicity, previous studies showed that black
men had the highest PC incidence and mortality rates (50).
David A Siegel et al. reported 5-year survival (6) between 2001
and 2016, showing that 5-year survival was higher among other
ethnic men (84.4%) and white men (82.8%) than among black
men (79.1%). Our results showed that elderly Black and white
patients with PC had a worse prognosis than other races,
Frontiers in Oncology | www.frontiersin.org 1027
consistent with previous reports. Although survival rates of PC
patients of different ages vary by stage, however, compared with
younger patients, elderly patients likely secondary to the rapid
development of resistant PC, reduced ability to receive available
treatment, and the effects of comorbidities often have lower long-
term survival (51), which is also supported by our results.

Although the nomogram based on the SEER database has
good accuracy, there are potential limitations. First is the lack of
critical clinicopathological variables, such as smoking, alcohol
consumption, hemoglobin, etc. In addition, for PC patients, PSA
is an important indicator related to prognosis. However, it was
not included in the SEER database until 2010, so we can only
choose the data after 2010 for building the prediction model.
Meanwhile, ADT, as one of the non-surgical treatment options
for PC patients, is usually used for high-risk local or systemic
advanced disease that is not suitable for radical surgery.
However, it lacks ADT-related data in the SEER database, so
our model also lacks the relationship between ADT
and prognosis.

Furthermore, database-based studies are all retrospective,
which may risk selection bias. Further multi-center
prospective studies with a large sample are needed to
validate this nomogram. Finally, although our nomogram
did not consider all related prognostic variables, we still
included key variables and validated them, so there would
not be a significant deviation.
A B

DC

FIGURE 5 | DCA of the nomograms for predicting CSS and OS. (A) The nomogram for CSS at 3,5-year showed the best clinical potential value in the training set,
while the nomogram for CSS at 8-year had no apparent advantages over the other two. (B) In the validation set, the nomogram for CSS at the 3,5,8-year showed
the best clinical potential value, followed by the D’Amico risk stratification system and TNM staging system. (C, D) The nomogram for OS at 3-,5-,8-year showed the
best application potential in both the training and validation sets, followed by D’Amico risk stratification and TNM staging.
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A B
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FIGURE 6 | Kaplan-Meier curves of patients in the low-risk and high-risk groups. The K-M curve showed that the CSS rate of the patients in the high-risk group
was significantly lower than that in the low-risk group both in the training set (A) and validation set (B). The K-M curve showed that the OS rate of the patients in the
high-risk group was significantly lower than that in the low-risk group both in the training set (C) and validation set (D).
A B
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FIGURE 7 | Kaplan-Meier curves of patients with a different surgery. (A) The CSS rate of patients in the low-risk group underwent different surgery. (B) The CSS
rate of patients in the high-risk group underwent different surgery. (C) The OS rate of patients in the low-risk group underwent different surgery. (D) The OS rate of
patients in the high-risk group underwent different surgery.
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CONCLUSION

We explored the factors influencing CSS and OS in elderly patients
withPCand found that age, race,marriage, PSA,biopsyGS, surgical
approach, radiotherapy, chemotherapy, tumor grade, and TNM
stage were independent risk factors affecting patients’ CSS and OS.
We established nomograms to predict the CSS and OS in elderly
patients with PC. The models have been internally validated with
good accuracy and reliability, and they can helpmake better clinical
decisions for clinicians and patients.
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Supplementary Figure 1 | The AUC at 1-,2-year in the external validation set in
time. A: The AUC at 1-,2-year in the external validation set for CSS was 89.2 and
90.3. B: The AUC in the external validation set for OS was 78.3 and 89.8.

Supplementary Figure 2 | The AUC at 3-,5-,8-year for predicting CSS and OS
after deleting the unknown GS. A: The AUC at 3-,5-,8-year for predicting CSS after
deleting the unknown GS was 76.4,82.6, and 82.3.B: The AUC at 3-,5-,8-year for
predicting OS after deleting the unknown GS was 65.9,77.9 and 73.8.
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Auto-Segmentation Ultrasound-
Based Radiomics Technology to
Stratify Patient With Diabetic
Kidney Disease: A Multi-Center
Retrospective Study
Jifan Chen12.†, Peile Jin1,2†, Yue Song1,2†, Liting Feng3†, Jiayue Lu4, Hongjian Chen1,2,5,
Lei Xin1,2, Fuqiang Qiu1,2, Zhang Cong1,2, Jiaxin Shen1,2, Yanan Zhao1,2, Wen Xu1,2,
Chenxi Cai6, Yan Zhou7, Jinfeng Yang6, Chao Zhang1,2, Qin Chen3*, Xiang Jing7*
and Pintong Huang1,2,8*

1 Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang
University, Hangzhou, China, 2 Ultrasound in Medicine and Biomedical Engineering Research Center, The Second Affiliated
Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China, 3 Department of Ultrasound, Sichuan
Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China, 4 Department of Clinical
Laboratory, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China, 5 Post-Doctoral Research
Center, Hangzhou Supor South Ocean Pharmaceutical Co., Ltd, Hangzhou, China, 6 Department of Ultrasound, The People’s
Hospital of Yinshang, Anhui, China, 7 Department of Ultrasound, Tianjin Third Central Hospital, Tianjin, China, 8 Research Center
for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou, China

Background: An increasing proportion of patients with diabetic kidney disease (DKD) has
been observed among incident hemodialysis patients in large cities, which is consistent
with the continuous growth of diabetes in the past 20 years.

Purpose: In this multicenter retrospective study, we developed a deep learning (DL)-
based automatic segmentation and radiomics technology to stratify patients with DKD
and evaluate the possibility of clinical application across centers.

Materials and Methods: The research participants were enrolled retrospectively and
separated into three parts: training, validation, and independent test datasets for further
analysis. DeepLabV3+ network, PyRadiomics package, and least absolute shrinkage and
selection operator were used for segmentation, extraction of radiomics variables, and
regression, respectively.

Results: A total of 499 patients from three centers were enrolled in this study including 246
patients with type II diabetes mellitus (T2DM) and 253 patients with DKD. The mean
intersection-over-union (Miou) and mean pixel accuracy (mPA) of automatic segmentation
of the data from the three medical centers were 0.812 ± 0.003, 0.781 ± 0.009, 0.805 ± 0.020
and 0.890 ± 0.004, 0.870 ± 0.002, 0.893 ± 0.007, respectively. The variables from the renal
parenchyma and sinus provided different information for the diagnosis and follow-up of DKD.
The area under the curve (AUC) of the radiomics model for differentiating between DKD and
T2DM patients was 0.674 ± 0.074 and for differentiating between the high and low stages of
DKD was 0.803 ± 0.037.
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Conclusion: In this study, we developed a DL-based automatic segmentation, radiomics
technology to stratify patients with DKD. The DL technology was proposed to achieve fast
and accurate anatomical-level segmentation in the kidney, and an ultrasound-based
radiomics model can achieve high diagnostic performance in the diagnosis and follow-up
of patients with DKD.
Keywords: ultrasound, radiomics, deep learning, diabetic kidney disease, multicenter
INTRODUCTION

Diabetic kidney disease (DKD) is a common microvascular
complication in patients with diabetes and is the primary cause
of kidney failure in ∼40% of diabetic patients (1, 2). In China, an
increasing proportion of patients with DKD has been observed
among incident hemodialysis patients in large cities, which is
consistent with the continuous growth in diabetic patients in the
past 20 years (3). DKD diagnosis is based on estimated
glomerular filtration rate (eGFR), urinary abnormalities such
as proteinuria and microhematuria, and kidney biopsy, which is
often avoided in the early stages of DKD.

In patients with suspected kidney function injury, ultrasound
imaging is the first imaging technique to be performed for the
diagnosis and follow-up of its progression (4). Researchers have
demonstrated that certain parameters such as cortical
echogenicity and thickness in B-mode ultrasonography,
resistance index in color Doppler sonography (4, 5),
elastography scores (6) and time-intensity curve parameters in
contrast-enhanced ultrasound imaging (7) can effectively reflect
the kidney function in patients with chronic kidney disease
(CKD). Ultrasound is frequently applied as an available and
noninvasive technology for the diagnosis and follow-up of DKD
in patients suffering from type II diabetes mellitus (T2DM) for a
long duration. However, a conventional ultrasound examination
is limited owing to the visual grayscale image, which reduces its
potential for identifying a large amount of valuable information.
Furthermore, the interpretation of ultrasound images is variable
and unreliable owing to inexperienced sonographers, especially
in the diffused form of the disease.
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Radiomics is a rapidly growing discipline based on
quantitative image analysis that reflects image textures and
morphology using gray values, which provides a quantitative,
solid, and objective foundation for analytic standardization to
inform clinical decisions (8). In radiomics technology, a
delineated region of interest (ROI) is vital for extracting
radiomics variables; however, the accurate anatomical
segmentation of ROIs is a time-consuming and experience-
dependent process. Recent advances in image segmentation,
classification, and registration through deep learning (DL) have
considerably expanded the scope and scale of medical image
analysis (9). A state-of-the-art network “DeepLabV3+” was
reported for semantic image segmentation, which achieved
high accuracy when compared to other networks (10).

Therefore, this multicenter retrospective study aimed to
achieve an automatic anatomical-level segmentation of the
kidney in T2DM patients with/without DKD and to build an
ultrasound-image-based radiomics model for diagnosis and
follow-up of patients with different stages of DKD. This
method can extensively utilize the information contained in
conventional ultrasound images and achieve acceptable
accuracy, resulting in a quick process that uses easily available
resources and demonstrates the potential for further clinical use.
MATERIALS AND METHODS

Study Design and Patients
This study was registered at ClinicalTrials.gov No.
NCT05025540 and the informed consent requirement was
waived due to the retrospective study design. This multicenter
retrospective study was approved by the ethics consultant
committee of the Second Affiliated Hospital of Zhejiang
University School of Medicine (SAHZU), the People’s Hospital
of Yingshang (PHYS) and Tianjin Third Central Hospital
(TJTCH), and 162 DKD and 131 T2DM patients were
consecutively enrolled in this study between January 2016 and
December 2020 and January 2018 and December 2020,
respectively, as the control group from SAHZU. Moreover, 35
DKD and 52 T2DM patients from the People’s Hospital of
Yingshang (PHYS) and 56 DKD and 63 T2DM patients from
Tianjin Third Central Hospital (TJTCH) were also
enrolled consecutively.

The following parameters were used to define DKD: 1)
urinary albumin-to-creatinine ratio (UACR) > 30 mg/24 h,
with an increase greater than twice the original value in three
subsequent examinations conducted over 3-6 months; 2) eGFR
July 2022 | Volume 12 | Article 876967
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< 60 ml min-1 for more than three months; 3) pathological result
of kidney biopsy shows evidence of DKD.

Clinical Stage of Diabetic Kidney
Disease (DKD)
The clinical stage of DKD was defined based on the Chinese
guidelines for the diagnosis and treatment of DKD (11, 12). DKD
stage I, called as high-filtration stage, was defined as having normal
or a marginally elevated eGFR (> 90 mL/min/1.73 m2) and negative
microalbuminuria; DKD stage II, called as microalbumin stage, was
defined as having a urinary albumin excretion rate (UAER) of
approximately 20-200 mg/min or 30-300 mg/24 h and eGFR > 60
mL/min/1.73 m2; DKD stage III, called as massive albuminuria
stage, was defined as having normal UACR >300 mg/g, UAER
> 200 ug/min or >300 mg/24 h and eGFR > 15 mL/min/1.73 m2;
DKD stage IV, called as renal failure stage, was defined as having
eGFR < 15 mL/min/1.73 m2. In this study, we defined the low DKD
stage as the stage lower than stage II and high DKD stage as the
stage higher than stage III.

The low-stage DKD was defined as the DKD stage that is
lower than stage III; moreover, high-stage DKD was defined as
the DKD stage that is higher than or equal to stage III.

Kidney Ultrasound Scan
A 3-5 MHz convex probe was used for the adult kidney scans.
For the kidney, patients with left/right lateral or dorsal positions
were scanned in the coronal plane, and B-mode images were
recorded. The maximum longitudinal kidney images with the
renal sinus and parenchyma were saved. Both sides of the kidney
were recorded per patient.

Inclusive and Exclusive Criteria
Inclusive Criteria
Patients were enrolled according to the following criteria: 1)
patients with a clinical diagnosis of T2DM and DKD; 2) patients
with clear B-mode ultrasound images on both sides of the kidney
(left and right); 3) there were no missing values of the selected
clinical data such as eGFR and UACR in the electronic
medical records.

Exclusive Criteria
The following criteria were considered for excluding patients: 1)
patients with large kidney-space-occupying diseases, such as
kidney renal cysts and tumors; 2) ultrasound images with
severe shadows or incomplete kidney borders.

Data Extraction and Model Building
First, we manually and automatically delineated the ROI of the
renal parenchyma and sinus.

The radiologists for ROI are at least three years in ultrasound
diagnosis. Besides, the labelme software in python is used to
draw ROIs. Then, collected images was transformed into JPG
image format and imported into PyCharm software. Third, the
radiomics data were extracted using the Python package
PyRadiomics (13) and 1682 radiomics variables from each side
of the kidney (841 parenchyma and 841 sinus) were extracted in
this study. Moreover, we calculated the intraclass correlation
Frontiers in Oncology | www.frontiersin.org 333
coefficient (ICC) between the extracted data from the manually
and automatically delineated ROIs. The ICC values of variables
that were higher than 0.7 were selected for further model
building. Least absolute shrinkage and selection operator
(LASSO) regression was used to select the significant features
(14). Finally, the radiomics scores were calculated and the
diagnostic performance was compared using the receiver
operating characteristic (ROC) curve (Figure 1A).

Deep Learning (DL) Algorithm
DeepLabV3+ improves pyramid-shaped hole pooling, cascaded
multiple hole convolutions, and extensively uses batch
normalization. First, DeepLabV3+ uses an atrous spatial pyramid
pooling structure to mine multiscale contextual content
information. The decoding structure gradually reconstructs the
spatial information to capture object boundaries more effectively.
Second, a new decoding module was added to reconstruct the
boundary information. Third, we attempted to use MobileNet
module as the backbone of the network to reduce the number of
parameters and increase the speed of the network. The network
structure of DeepLabV3+ is shown in Figure 1B.

Data Enhancement
In the training set for DeepLabV3+, we first used the data
enhancement strategies to extensively use ultrasound images,
such as random horizontal flip, random scale change, and
random Gaussian blur. After data enhancement, a five-fold
increase in the number of pictures was achieved.

Experimental Environment
The DeepLabV3+ network was built using PyTorch version 1.9.0
with Compute Unified Device Architecture (CUDA) version 11.1
(15). NVIDIA GeForce RTX3070 Ti platform was used in a
Windows 10 operating system. Statistical modeling (LASSO) was
performed using R and RStudio.

Statistical Analysis
Continuous data with normal distribution are shown as mean ±
standard deviation, and data with a non-normal distribution are
shown as median (quartile interval). Categorical data are expressed
as a number (percentage). The distributions of our data were
measured using the Shapiro-Wilk test. In univariate analysis,
continuous data were compared using Student’s t-test, one-way
analysis of variance, Mann–Whitney U test, or Kruskal–Wallis H
test, and categorical variables were compared using the c2 test.
Multiple comparisons were performed using Tukey correction.
RESULTS

Baseline Characteristics Among the Three
Medical Centers
A total of 499 patients were enrolled in this study: 131 T2DM
patients and 53, 91, 18 patients with DKD stages II, III, IV,
respectively, from SAHZU; 63 T2DM patients and 25, 31
patients with DKD stages II, III, respectively, from TJTCH; 52
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T2DM patients and 13, 20, 2 patients with DKD stages II, III, IV,
respectively, from PHYS.

The average ages were 57 (51–64), 59 (48-65), 57 (46-69)
years for T2DM patients and 60 (51-68), 63 (51-75), 60 (49-70)
years for DKD patients among the three datasets, respectively.
Moreover, the percentages of male patients were 61.8, 57.1, and
25.0% among the T2DM patients and 59.3, 51.8, and 42.9%
among the DKD patients in the three datasets, respectively.

In addition, among the three datasets, the average fasting
blood glucose levels were 8.8 (6.4-12.2), 7.46 (5.72-9.99), 9.7 (7.0-
12.0) mmol/L in T2DM patients, 7.4 (5.6-10.1), 8.8 (5.6-12.1), 9.4
(7.4-11.9) mmol/L in DKD patients, respectively. Further, among
the three datasets, the eGFRs were 105.8 (94.8-115.8), 104.7
(85.7-123.8),100.2 (84.2-107.8) ml/min/1.73m2 in T2DM
patients, 69.0 (33.3-105.3), 83.9 (47.0-99.1), 83.4 (47.9-100.4)
ml/min/1.73m2 in DKD patients, respectively (Table 1).

DL-Based Anatomical-Level Segmentation
Two radiologists independently delineated the kidney border,
renal parenchyma, and renal sinus in ultrasound images,
Frontiers in Oncology | www.frontiersin.org 434
and the inconsistency was resolved through discussions. The
DeepLabV3+ network was applied as an automatic anatomical-
level segmentation technology, whose structure is illustrated in
Figure 1B. As shown in Figure 2, the trained DeepLabV3+
model showed good segmentation ability in patients with clear
ultrasound images (Patient Nos. 1 and 2). To further verify the
robustness and accuracy of DL technology, we tested the model
using the ultrasound images of patients with inferior ultrasound
images (Patient Nos. 3 and 4). The trained model showed that it
could compensate for the missing border caused by inferior
ultrasound windows and maintain high segmentation accuracy.

Moreover, we verified the segmentation ability of DeepLabV3+
on a separate test set (N=50) from SAHZU and two independent
test datasets from TJTCH and PHYS. From Figure 3,Table 2, it can
be observed that the mean intersection-over-union (Miou) and
mean pixel accuracy (mPA) of the SAHZU test set were 0.812 ±
0.003 and 0.890 ± 0.004, respectively. Moreover, theMiou andmPA
of the TJTCH dataset were 0.781 ± 0.009 and 0.870 ± 0.002,
respectively, and those of the PHYS dataset were 0.805 ± 0.020
and 0.893 ± 0.007, respectively (Table 2). These results demonstrate
A

B

FIGURE 1 | The scheme of this study. (A) Flowchart of the Study; (B) Network Structure of DeepLabV3+; L, left; R, right; GLCM, gray level co-occurrence matrix;
GLRLM, gray level run length matrix; GLSZM, gray level size zone matrix; First_order, first order statistics; NGTDM, neighboring gray tone difference matrix; GLDM,
gray level dependence matrix. Conv: Convolution layer; Hospital A: The Second Affiliated Hospital of Zhejiang University School of Medicine, SAHZU; Hospital B:
Tianjin Third Central Hospital, THTCH; Hospital C: The People’s Hospital of Yingshang, PHYS.
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that high robustness and accuracy can be achieved by DL-based
technology, thus providing a faster method for delineating the ROI.

Correlation Between Extracted Radiomics
Variables
In total, 3364 radiomics variables were extracted per patient,
including 841 from the renal parenchyma and 841 from the renal
sinus per kidney.

First, we calculated the correlation between the extracted
variables from the parenchyma and sinus. The extracted
variables were completely irrelevant, with ICC values of 0.236
(0.142-0.356) and 0.249 (0.133-0.374) in T2DM and DKD
patients, respectively (Figures 3A, B). These results demonstrate
that different parts of the kidney can provide different information.

Next, we calculated the ICC between radiomics variables
extracted using manual and DL-based automatic methods to
select robust variables for further analysis. As expected, the
variables extracted using manual and automatic methods were
highly correlated. Moreover, the median and interquartile range
of ICC in the parenchyma and sinus were 0.871 (0.728-0.937)
and 0.860 (0.779-0.927), respectively (Figures 3C, D). The
radiomics variables with ICC > 0.7 were selected in this study;
thus, 2066 radiomics variables, including 974 and 1092 variables
Frontiers in Oncology | www.frontiersin.org 535
extracted from parenchyma and sinus, respectively, were used in
the model building step.

Utilization of Radiomics Variables From
Parenchyma and Sinus for Stratifying DKD
Patients
The kidneys of patients with a high DKD stage tend to show
higher echogenicity in both the parenchyma and sinus
(Figure 4A), which can provide evidence that the radiomics
variables have the potential to stratify DKD patients.

To reduce the dimensions of the variables, the LASSO
procedure was performed. A total of 94 variables were selected,
including 24 from the feature class of gray level co-occurrence
matrix, 12 from gray level run length matrix, 12 from gray level
size zone matrix, 16 from first order statistics, 3 from neighboring
gray tone difference matrix, 6 from gray level dependence matrix,
and 21 from wavelet decompositions (Figure 4B, Table 3).

Note that 73 variables from parenchyma and 21 from sinus were
selected (Figure 4B), as illustrated in the density plot (Figure 4C),
and the value distribution of wavelet-H_Firstorder_Entropy
(WHFE) and gradient_glcm_lmc2 (GGL) from the parenchyma
were shifted to the left in the high DKD stage, whereas the value of
wavelet-H_glrlm_shortRunEmphasis (WHGS) was shifted to the
TABLE 1 | The Basic Characteristics of Study Patients in Three Medical Centers. SAHZU.

Variables SAHZU TJTCH PHYS P

T2DM 131 (44.7%) 63 (52.9%) 52 (59.8%) <
0.05

DKD Stage II 53 (18.1%) 25 (21.0%) 13 (14.9%)
DKD Stage III 91 (31.1%) 31 (26.1%) 20 (23.0%)
DKD Stage IV 18 (6.1%) 0 (0.0%) 2 (2.3%)
Demographics: T2DM DKD T2DM DKD T2DM DKD P
Age 57

(51-64)
60

(51-68)
59

(48-65)
64

(53-75)
57

(46-69)
61

(50-72)
P1

# P2*

Male (%) 81
(61.8%)

96
(59.3%)

36
(57.1%)

29
(51.8%)

13
(25.0%)

15
(42.9%)

P1* P2
#

BMI 24.5
(22.6-26.1)

25.3
(23.4-27.2)

25.9
(22.4-29.3)

26.1
(22.8-29.4)

25.6
(22.2-29.0)

25.7
(22.2-29.2)

P1* P2
#

Hypertension 56
(42.7%)

130
(80.2%)

36
(57.1%)

41
(73.2%)

20
(38.5%)

18
(51.4%)

P1
# P2*

DM duration 3285
(1825-5475)

3650
(2555-7118)

2555
(1095-4745)

3650
(1095-6388)

2920
(1095-3650)

3650
(1060-5475)

P1
# P2

#

Biochemical value T2DM DKD T2DM DKD T2DM DKD
HbA1c 8.9

(7.8-10.3)
8.4

(7.0-10.1)
8.3

(7.3-10.5)
9.1

(7.0-11.2)
9.7

(7.6-11.8)
8.8

(6.7-10.9)
P1* P2

#

FBG 8.8
(6.4-12.2)

7.4
(5.6-10.1)

7.5
(5.7-10.0)

8.6
(5.8-11.4)

9.7
(7.0-12.0)

9.3
(7.4-10.5)

P1* P2
#

Urea nitrogen 4.3
(5.1-6.2)

8.2
(5.2-12.2)

4.7
(4.0-5.4)

6.5
(4.7-8.5)

5.7
(4.4-7.1)

7.2
(4.9-10.5)

P1* P2*

Creatinine 59.5
(47-71)

94
(60.5-200)

62
(55.5-70.5)

76
(59-113)

59.2
(47.9-70.6)

75
(61-110)

P1
# P2

#

Uric acid 300
(257-350)

382
(307-449)

281
(229-331)

319
(200-437)

241
(161-322)

288
(236-364)

P1* P2*

ACR 13.5
(8.9-18.0)

429.0
(58.0-2653)

5.6
(3.8-13.1)

244.9
(72.1-1166.4)

10.6
(4.3-17.0)

411.1
(57.0-2070.3)

P1* P2
#

eGFR 105.8
(94.8-115.8)

69.0
(33.3-105.3)

104.7
(85.7-123.8)

83.9
(47.0-99.1)

100.2
(84.2-116.2)

83.4
(47.9-100.4)

P1* P2
#

July 2022 | Volume 12 | Article
*: P-value ≤ 0.05; #: P-value > 0.05; P1: P-value of three datasets in T2DM groups; P2: P-value of three datasets in DKD groups; SAHZU, The Second Affiliated Hospital of Zhejiang
University School of Medicine; TJTCH, Tianjin Third Central Hospital; PHYS, The People’s Hospital of Yingshang; T2DM, type 2 diabetes mellitus; DKD, Diabetic Kidney Disease; BMI, body
mass index; DM, diabetes mellitus; HbA1c, glycated hemoglobin A1c; FBG, fasting blood-glucose; ACR, Albumin-to-Creatinine Ratio; eGFR, estimated glomerular filtration rat.
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right in the high DKD stage. Moreover, the value of
glrlm_shortRunHighGrayLevelEmphasis (GSHGLE) was shifted
to the left in the high DKD stage, whereas the value of
glszm_GrayLevelNonUniformyNormalized (GGLNUN) was
shifted to the right in the high DKD stage. Further, the
distribution of the value of wavelet-H_gldm_GrayLevelVariance
(WHGGLV) in the high DKD stage was more spiculate than in the
low DKD stage.

These results demonstrated that the variables extracted from
both the parenchyma and sinus could provide positive diagnostic
value in the diagnosis and follow-up of DKD, particularly in the
low- and high-stage DKD (Figure 4).

Diagnostic Performance of Ultrasound-
Based Radiomics in Stratifying DKD
Patients
We randomly separated the data of the 499 patients from the
three medical centers into three parts: 424 (85%) patients were
Frontiers in Oncology | www.frontiersin.org 636
divided into training and validation datasets and 75 (15%)
patients were divided into independent test datasets. In the
model building step, a k-fold cross-validation method was
applied to the training and validation datasets to calculate the
area under the curve (AUC), and the differences between the
groups were compared. After the previous step, the best model
was tested using independent test datasets, and the ROC and
AUC were plotted and calculated.

While differentiating between DKD and T2DM patients, the
radiomics model achieved moderate diagnostic performance
with AUCs of 0.674 ± 0.074 in the parenchyma + sinus model,
0.6561 ± 0.0537 in the parenchyma model, and 0.6457 ± 0.0514
in the sinus model (Figure 5A). No statistical differences were
found among the three models (all P > 0.05). In the independent
test set, the AUCs of parenchyma + sinus, parenchyma, and sinus
were 0.6779, 0.6536, and 0.6593, respectively (Figure 5B).

When differentiating between the high (≥ stage III) and low (≤
stage II) DKD stages, the radiomics model that combined the
FIGURE 2 | Manual and Automatic Segmentation using Ultrasound Images of the Patients.
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information from parenchyma and sinus achieved the highest
diagnostic performance with AUC = 0.803 ± 0.037 (all P<0.05)
after k-fold validation. Moreover, the AUCs of the radiomics model
using only parenchyma and sinus variables were 0.75695 ± 0.038
and 0.716 ± 0.026, respectively (Figure 5C). In the independent test
set, the AUCs of the models using parenchyma + sinus,
parenchyma, and sinus variables were 0.8235, 0.7851, and 0.7304,
respectively (Figure 5D).

In this study, the T2DM patients were a mix of T2DM
patients without kidney function disorders and DKD stage I
patients. These results demonstrated that the ultrasound images
of patients in the early stage of DKD are similar to those of
T2DM patients, which results in a moderate diagnostic
performance of the radiomics model. However, the ultrasound-
based radiomics model demonstrates good potential in
differentiating between the low and high DKD stages, which is
more useful for the stratification of patients with DKD.
Frontiers in Oncology | www.frontiersin.org 737
Diagnostic Performance of DL-Based
Automatic Segmentation, Radiomics for
DKD
To further study the performance of the DL-based automatic
segmentation, radiomics model in identifying DKD patients, we
calculated and compared the AUC between the manual and
automatic methods.

After k-fold cross-validation, the AUCs of the manual and
automatic methods when differentiating between DKD and
T2DM patients were 0.6797 ± 0.058 and 0.6626 ± 0.0547,
respectively. Moreover, the AUCs of the manual and automatic
methods of differentiating between patients at high and low DKD
stages were 0.7967 ± 0.054 and 0.7732 ± 0.05478, respectively.
There was no statistically significant difference between the
AUCs of the manual and automatic methods (all P <0.05)
Further, the AUCs of T2DM/DKD and high/low DKD stage
while using manual and automatic methods were 0.692, 0.689,
0.8235, 0.7859, respectively, on the independent test set
(Figure 6). The results demonstrated that manual and
automatic segmentation, radiomics models achieved similar
diagnostic performance.
DISCUSSION

Ultrasonography is an ideal evaluation tool and is widely used for
the identification and analysis of several diseases (16). Although,
A B

DC

FIGURE 3 | Interclass Correlation Coefficients and Density Plots between Extracted Radiomics Variables. The Interclass Correlation Coefficients plot (A) and Density
Plots (B) between parenchyma and sinus in T2DM and DKD group. The Interclass Correlation Coefficients plot (C) and Density Plots (D) between manual and
automatic ROI drawing methods in T2DM and DKD group.
TABLE 2 | Mean Intersection-over-union and Mean Pixel Accuracy in Three
Medical Centers.

Dataset Miou mPA

SAHZU 0.812 ± 0.003 0.890 ± 0.004
TJTCH 0.781 ± 0.009 0.870 ± 0.002
PHYS 0.805 ± 0.020 0.893 ± 0.007
Miou, mean intersection-over-union; mPA, mean pixel accuracy; SAHZU, Second
Affiliated Hospital of Zhejiang University School of Medicine; TJTCH, Tianjin Third
Central Hospital; PHYS, People’s Hospital of Yingshang.
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researchers can identify abnormal renal echogenicity, renal size,
and other features in the diagnosis of kidney dysfunction
through ultrasonography (17–19), the interpretation of
ultrasound images by the naked eye is subjective and certain
Frontiers in Oncology | www.frontiersin.org 838
high-dimensional information can be missed; these problems
can be solved using radiomics technology. However, accurate
anatomical segmentation of the ROI, which is a time-consuming
and experience-dependent process, is vital for effective utilization
TABLE 3 | Class of Extracted variables.

Variables Class Sinus Parenchyma

GLCM 7 17
GLRLM 2 10
GLSZM 3 9
First_order 5 11
NGTDM 1 2
GLDM 0 6
Wavelet 3 18
July 2022 | Volume 12 |
GLCM, gray level co-occurrence matrix; GLRLM, gray level run length matrix; GLSZM, gray level size zone matrix; First_order, first order statistics; NGTDM, neighboring gray tone
difference matrix; GLDM, gray level dependence matrix.
A

C

B

FIGURE 4 | Variables extracted from Parenchyma and Sinus. (A) The ROI of parenchyma and sinus in two DKD stage patients. (B) The Mean-square error plot of
LASSO regression in parenchyma and sinus model. (C) The Density Plots between Extracted Radiomics Variables in parenchyma and sinus.
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of radiomics technology. Therefore, in this retrospective
multicenter study, we developed a DL-based automatic
segmentation, radiomics technology to evaluate the diagnostic
performance of radiomics technology for DKD patients and
evaluated its potential for clinical application.

Moreover, in underdeveloped regions or primary clinics, it
may be costly and challenging to train or recruit experienced
Frontiers in Oncology | www.frontiersin.org 939
doctors to fulfill the large medical demand. One of the solutions
is fifth generation communication technology, which can
achieve remote medical systems by connecting experienced
doctors with patients online. In addition, the DL-based
automatic segmentation, radiomics technology can perform
the role of an intelligent machine doctor, which is portable if
configured using a handheld ultrasound device and can quickly
A B

C D

FIGURE 5 | Diagnostic Performance of ultrasound-based radiomics to stratify DKD patients. The diagnostic performance to differentiate DKD and T2DM patient in
cross-validation datasets (A) and in independent test set (B). The diagnostic performance to differentiate high (≥ stage III) and low (≤ stage II) DKD stages in Cross-
validation datasets (C) and in independent test set (D). AUC, Area under curve; *P < 0.05, **P < 0.01, ***P < 0.001; ns, no significance.
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and effectively determine the results. This work demonstrates
significant potential for achieving automatic labor-free
diagnosis and follow-up of DKD, and is our further
research focus.

However, this study has certain limitations. First, the
retrospective nature of the study may have influenced the
accuracy of the diagnostic performance to a certain extent.
Second, the heterogeneity among the three medical centers
may affect the degree of accuracy. Third, patients with stage I
DKD were unavailable in this study. The clinical definition of
these patients is primarily defined by pathologic findings that are
difficult to access in clinical practice. This resulted in a mixture of
T2DM patients without kidney function injury and DKD stage I
patients in the dataset of T2DM participants.

In summary, we first verified the robustness of the automatic
segmentation method using the DeepLabV3+ network. This
result is supported by the research work of Yin et al. (20) the
DL-based classification network can achieve good segmentation
of the kidney. Moreover, we identified that the renal parenchyma
and sinus can provide different information to support the
classification model. Accurate anatomical-level segmentation
was achieved in this study. The automatic segmentation
network achieved superior performance in the segmentation of
ultrasonography images with both good and bad ultrasound
windows. The Miou and mPA of the automatic segmentation
method were high for the independent test set and the datasets
from the other independent medical centers. In fact, the DL-
based segmentation could reduce the time for hand annotation
from 1 h to lower than a few seconds for 100 images, which
significantly reduces labor costs. Second, we demonstrated that
the ultrasound-based radiomics model achieves a high diagnostic
value when differentiating between different DKD stages and has
the potential to stratify patients with DKD. The diagnostic
Frontiers in Oncology | www.frontiersin.org 1040
performance of artificial intelligence (AI) technology has been
supported by the work of Sudharson et al. (21) for certain kidney
disorders. Moreover, the work of Chin-Chi Kuo et al. also
supported our result (22) in which the authors reported that
the prediction of the eGFR and accuracy (85.6%) by an AI-based
model was higher than that by experienced nephrologists (60.3-
80.1%). The AUC of ROC in our study was 0.803 ± 0.037, which
is marginally lower than that reported by Chin-Chi Kuo et al.
This may be due to the different clinical definitions of DKD and
CKD and the relatively smaller number of patients with severe
kidney dysfunctions (eGFR < 30 mL/min/1.73 m2) in our study
(22). Li et al. reported that 3D ultrasound also has potential value
in the diagnosis of diabetic nephropathy (DN) and may act as an
auxiliary diagnosis for DN (23), which suggests that 3D
ultrasound radiomics can be considered in future studies.
CONCLUSION

In this study, we developed a DL-based automatic segmentation,
radiomics technology to stratify DKD patients, which could
reduce the time for hand annotation from few hours to less
than a few seconds for 100 images and could achieve satisfactory
diagnostic performance in the diagnosis and follow-up of
DKD patients.
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Purpose: PSA is currently the most commonly used screening indicator for prostate
cancer. However, it has limited specificity for the diagnosis of prostate cancer. We aim to
construct machine learning-based models and enhance the prediction of prostate cancer.

Methods: The data of 551 patients who underwent prostate biopsy were retrospectively
retrieved and divided into training and test datasets in a 3:1 ratio. We constructed five PCa
prediction models with four supervised machine learning algorithms, including tPSA
univariate logistic regression (LR), multivariate LR, decision tree (DT), random forest
(RF), and support vector machine (SVM). The five prediction models were compared
based on model performance metrics, such as the area under the receiver operating
characteristic curve (AUC), accuracy, sensitivity, specificity, calibration curve, and clinical
decision curve analysis (DCA).

Results: All five models had good calibration in the training dataset. In the training
dataset, the RF, DT, and multivariate LR models showed better discrimination, with AUCs
of 1.0, 0.922 and 0.91, respectively, than the tPSA univariate LR and SVM models. In the
test dataset, the multivariate LRmodel exhibited the best discrimination (AUC=0.918). The
multivariate LR model and SVM model had better extrapolation and generalizability, with
little change in performance between the training and test datasets. Compared with the
DCA curves of the tPSA LR model, the other four models exhibited better net
clinical benefits.

Conclusion: The results of the current retrospective study suggest that machine learning
techniques can predict prostate cancer with significantly better AUC, accuracy, and net
clinical benefits.

Keywords: prostate cancer, machine learning, prostate-specific antigen, prostate biopsy, prediction models
INTRODUCTION

Prostate cancer (PCa) is the second leading malignancy in men and the fifth leading cause of cancer
mortality in men worldwide (1). Although PSA is still the most commonly used screening tool for
prostate cancer, it has been controversial in recent decades (2). It is suggested that PSA screening
improves the detection rate of localized and less aggressive prostate cancers but also reduces the
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proportions of advanced PCa and PCa-specific mortality (3–5).
However, due to the obvious overlap of PSA levels in various
conditions, such as benign prostatic hyperplasia, prostatitis, and
prostate cancer, the specificity of PSA screening is low, which
leads to a plethora of unrelated diseases for prostate biopsy (2).
These unnecessary prostate biopsies result in not only a
significant waste of medical resources but also an increased
incidence of sepsis, which can be life-threatening to patients
(6). Therefore, there is a need for a new convenient method to
improve the diagnostic ability of PCa.

Machine learning is a branch of artificial intelligence (AI) in
which machines are programmed to learn patterns from data,
and the learning itself is based on a set of mathematical rules and
statistical assumptions. It is widely used in biology because of its
enormous advantages in dealing with large datasets (7, 8). It has
also been rapidly developed and applied in the medical field,
especially in the construction of predictive models (9). Therefore,
using machine learning to construct PCa prediction models
would be a feasible and promising approach.

In this study, we constructed generalizable machine learning
predictive models to improve the accuracy of PCa risk
assessment by using objective parameters present in electronic
medical records and then evaluated their performance.
METHODS

Data Sources
A total of 789 male patients in the First Hospital of Jilin University
who underwent transrectal ultrasound-guided prostate biopsy from
January 2013 to January 2021were included. Indications forprostate
biopsy included serum tPSA >4 ng/ml, abnormal digital rectal exam
(DRE), or imaging findings suggestive of suspected prostate cancer.
All patients underwent systematic biopsy with 10-12 cores. Patients
with one of the following criteria were excluded from the study:
takingmedications that couldaffect serumPSAlevels, unclear results
of the prostate biopsy, and significant abnormal values or missing
data. A final total of 551 patients were included in the study. All
patient data were collected through electronic medical records,
including age, BMI, hypertension, diabetes, total PSA (tPSA), free
PSA (fPSA), the ratio of serum fPSA to tPSA (f/tPSA), prostate
volume (PV), PSA density (PSAD), neutrophil-to-lymphocyte ratio
(NLR), and pathology reports of prostate biopsy. All examinations
were completedwithin oneweek before prostate biopsy. PSAD is the
ratio of tPSA to PV. The calculation of PV was calculated by the
following formula: maximal transverse diameter × maximal
anterior-posterior diameter × maximal superior-inferior diameter
× 0.52.

Model Development
R software (version 4.1.4, https://www.rproject.org/) was used to
developmachine learningmodels. A total offive prediction models
were constructed by dividing the data into a training dataset and a
test dataset at a ratio of 3:1. The pathologic type of PCa or other
benign disease was used as the dichotomous variable, and other
variables were all used as continuous variables. For logistic
regression (LR) model construction, the best predictive variables
Frontiers in Oncology | www.frontiersin.org 243
were first screened in the training dataset using stepwise regression,
associationplots between thevariablesweremade tounderstand the
magnitude of the association between the variables, and the
presence or absence of collinearity between variables was judged
according to the variance inflation factor (VIF). Then, LR models
were constructedusing the “lrm” function in the “rms”package. For
the decision tree (DT) model, we used the “rpart” package for
training, using two hyperparameters, the complexity parameters cp
and spilt. The initial cp value was set to 0.001, and then the best cp
value was found and pruned based on the best cp value. The input
variableswere obtained through the selection of important features,
and the best DT model was then output. The random forest (RF)
model screened the optimal input variables by significant feature
selection. The RF model was trained using the “randomForest”
package in R software, using two hyperparameters, ntree andmtry,
which were set at 500 and 6, respectively. The support vector
machine (SVM) model was filtered by the “caret” package for
important features. Training was performed using the “e1071”
package, using a Gaussian kernel function and setting the two
hyperparameters, cost and gamma, to 1 and 0.1, respectively.

Model Performance Evaluation
The performance of the developed models was validated using a
test dataset in a process that was completely independent of the
algorithm training. The performance of the five models was then
evaluated by comparing four metrics: the receiver operating
characteristic (ROC) curve and its corresponding area under
the curve (AUC) and the accuracy, sensitivity, and specificity.
The calibration curve was used to evaluate the calibration of the
model, the Brier score was used to assess the calibration, the
Hosmer–Lemeshow goodness-of-fit test was used to judge
whether there was a significant difference between the observed
and predicted values, and clinical decision curve analysis (DCA)
was used to assess the net benefit of the model.

Data Analysis
For comparative analysis between two samples, Student’s t test
was used for normally distributed continuous variables, and the
Mann–Whitney U test was used for categorical variables with
nonnormal continuous variables. Continuous variables in the
data were expressed as medians and IQRs or means and SDs,
categorical variables were expressed as frequencies and
percentages, and the bilateral significance level for the left-right
test was set at 5% (p<0.05).
RESULTS

Baseline Patient Characteristics
Table 1 shows the baseline characteristics of the patients. A total
of 302 (54.8%) of the 551 patients were diagnosed with PCa. The
PCa detection rate in patients ≥65 years old was higher than
patients <65. The mean levels of tPSA, fPSA, and PSAD were
significantly higher in the PCa group than in the non-PCa group.
When tPSA>4 ng/ml, the PCa detection rate increased with
increasing tPSA. In the subgroups of 4<tPSA<10, 10≤tPSA<20,
20≤tPSA<100, and tPSA≥100, the detection rates were 18.6%,
July 2022 | Volume 12 | Article 941349
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26.2%, 54.2%, and 97.2%, respectively. The mean neutrophil
count, PV, and BMI were lower in the PCa group than in the
non-PCa group. No significant differences in other variables were
found between two groups.

LR Algorithm-Based PCa Prediction Model
First, the tPSA univariate LR model was constructed in the
training dataset by including only one single factor, tPSA. This
model showed that tPSA was positively correlated with the
diagnosis of PCa (coefficient=0.034). Then, a multivariate LR
model was constructed by including all variables through a
stepwise regression method. When the VIC value reached the
minimum value, a total of seven best predictive variables were
selected, including age, tPSA, fPSA, PV, NLR, peripheral blood
neutrophil count and lymphocyte count. The two LR models are
shown in Supplementary Table 1. In the multivariate LR model,
age, tPSA, and fPSA were positively correlated with PCa, while
PV and neutrophil count were negatively correlated with PCa
(Supplementary Figure 1). In addition, there was a significant
association between peripheral blood neutrophil count and NLR,
tPSA and fPSA, suggesting their respective possible collinearity.
The variance inflation factor (VIF) was subsequently calculated
for verification, and all VIF values were less than 5, indicating no
collinearity between any of the variables.

DT Algorithm-Based PCa Prediction Model
The optimal cp value for the DT model was 0.008. Based on the
corresponding ranking of important features, the final input
variables for the DT model were age, tPSA, fPSA, PV, PSAD,
Frontiers in Oncology | www.frontiersin.org 344
NLR, f/tPSA, and biopsy results (Supplementary Figure 2A).
The process and results of model classification are shown in
Supplementary Figure 2B. This model correctly classified 87.7%
(363/414) of the cases in the training dataset.

RF Algorithm-Based PCa Prediction Model
After ranking the important features of the RF model, seven
features with the highest predictive accuracy were selected as
the input features, including age, tPSA, fPSA, PV, PSAD, NLR,
and peripheral blood neutrophil count (Supplementary
Figure 3A). The error of the model gradually decreased as
the number of decision trees increased, and the minimum error
value of the RF model was reached when the number of
decision trees was 313 (Supplementary Figure 3B).

SVM Algorithm-Based PCa Prediction Model
The best SVMmodelwas screened by the “rfe” function in the caret
package using a 10-fold cross-validation method. The number of
variables was screened one by one from 1 to 12, and the best model
was obtained when the number of variables was 5. The input
variables at this time were age, PSAD, tPSA, fPSA, and PV.

Performance of the Developed Models
In the training dataset, the RF and DT models performed
particularly well in differentiation with the AUCs of 1.0 and
0.922, respectively (Table 2). The model with the lowest AUC
was the tPSA univariate LR model (0.842). The calibration in all
five models was very good, which suggested that the predicted
values of the models were in high agreement with the actual
TABLE 1 | Characteristics of Patients, stratified by biopsy outcomes.

Total (n=551) Non-PCa (n=249) PCa (n=302) PCa detection (%) p value

Age,year(n,%) < 0.001
<65 157 (28.5) 96 (38.6) 61 (20.2) 38.9
≥65 394 (71.5) 153 (61.4) 241 (79.8) 61.2

BMI,kg/m2(SD) 23.6 ± 3.2 24.0 ± 3.0 23.3 ± 3.4 0.013
Hypertension,(n,%) 0.059

No 416 (75.5) 178 (71.5) 238 (78.8) 57.2
Yes 135 (24.5) 71 (28.5) 64 (21.2) 47.4

Diabetes,(n,%) 0.603
No 511 (92.7) 233 (93.6) 278 (92.1) 54.4
Yes 40 (7.3) 16 (6.4) 24 (7.9) 60.0

Neutrophil count, 109/L(IQR) 3.7 (2.9-4.8) 4.0 (3.1-5.0) 3.7 (2.8-4.6) 0.024
Lymphocyte count, 109/L(SD) 1.8 ± 0.7 1.8 ± 0.6 1.8 ± 0.7 0.798
NLR,(IQR) 2.1 (1.5-3.0) 2.1 (1.5-3.3) 2.0 (1.5-2.9) 0.150
Median tPSA, ng/ml(IQR) 32.0 (14.5-100.0) 16.2 (10.6-26.1) 88.8 (34.0-123.2) < 0.001
tPSA, ng/ml,(n,%) < 0.001

≤4 13 (2.4) 10 (4) 3 (1) 23.1
4<tPSA<10 59 (10.7) 48 (19.3) 11 (3.6) 18.6
10≤tPSA<20
20≤tPSA<100

122 (22.1)
212 (38.5)

90 (36.1)
97 (39)

32 (10.6)
115 (38.1)

26.2
54.2

≥100 145 (26.3) 4 (1.6) 141 (46.7) 97.2
fPSA,ng/ml(SD) 13.6 ± 31.3 3.3 ± 5.8 22.2 ± 39.9 < 0.001
f/tPSA,(n,%) 0.280

<0.16 390 (70.8) 170 (68.3) 220 (72.8) 56.4
≥0.16 161 (29.2) 79 (31.7) 82 (27.2) 50.9

PV,cm3(IQR) 55.3 (37.2-79.0) 65.2 (44.7-91.5) 48.9 (34.3-70.3) < 0.001
PSAD,ng/ml/cm3(IQR) 0.6 (0.3-1.6) 0.3 (0.2-0.4) 1.5 (0.7-2.7) < 0.001
J
uly 2022 | Volume 12 | Article
PV, prostate volume; PSAD, prostate-specific antigen density; BMI, body mass index; NLR, neutrophil-to-lymphocyte ratio; tPSA, total prostate specific antigen; fPSA, free prostate
specific antigen; PCa, prostate cancer; Non-PCa, non-prostate cancer.
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values (Figure 1A). The Brier scores of the multivariate LR, DT,
RF, SVM and tPSA LR models were 0.119, 0.122, 0.121, 0.118
and 0.154, respectively. The p values for the Hosmer–Lemeshow
test were all greater than 0.05, indicating that there was no
statistical bias in the near-perfect fit between the predicted and
actual values. Therefore, the models we constructed were valid
and reliable.

All characteristics of samples were comparable in the training
and test datasets (Supplementary Table 2). In the test dataset,
the specificity of the tPSA LR model was highest, reaching 93.2%;
however, the sensitivity and accuracy were relatively low, at
63.9% and 77.1%, respectively (Table 2). The sensitivity and
accuracy of the multivariate LR model were improved
significantly in the test dataset compared with the training
dataset, although there was a slight decrease in specificity. The
diagnostic performance of the SVM model was not outstanding
in either the training or the test dataset, but most outcomes were
improved in the test dataset. Thus, the multivariate LR model
exhibited the best discrimination, and the extrapolation and
generalization abilities of the multivariate LR and SVM models
were relatively strong. In contrast, although the DT and RF
models performed well in the training dataset, their
performances in the test dataset decreased significantly. The
corresponding ROC curves for the five models are shown in
Figure 1B. To further evaluate the potential clinical benefits of
these prediction models, we performed DCA curves using the
test dataset (Figure 1C). All models demonstrated significant net
benefits. Compared with the tPSA LR model, the other four
models showed significantly higher net clinical benefits.
Frontiers in Oncology | www.frontiersin.org 445
To evaluate the performance of constructed models in the
subgroups of PSA of 4-10 ng/ml and 4-20 ng/ml, we used these
two subgroups as the test datasets, and evaluated their AUCs,
sensitivities, specificities, and accuracies (Supplementary
Tables 3, 4). The diagnostic performances of the RF
algorithm-based machine learning prediction model showed
best in both subgroups. The AUCs were 0.856 and 0.94
respectively. Although the sensitivity decreased compared with
it in the training dataset, the specificity and accuracy were still
relatively high. The performance of other algorithms-based
developed models were not outstanding.
DISCUSSION

In the past decade, PSA has been widely used as the most
valuable diagnostic and prognostic marker for PCa (10).
However, some studies have shown that less than 30% of
men with PSA levels in the gray zone (4-10 ng/ml) have
pathologically confirmed PCa, indicating that a large
proportion of patients have undergone unnecessary biopsies
and been overdiagnosed (11). In our study, the detection rate of
PCa with tPSA in the gray zone was only 18.6%. Similar
detection rates were reported in other studies (12–15). Even if
PSA is not in the gray zone, for example, between 10 and 20 ng/
ml, the detection rate in our study was only 26.2%. In recent
years, DRE, PSAD, PSAV, 4Kscore, f/tPSA ratio, prostate
health index (PHI) and age-specific PSA have been proposed
TABLE 2 | Diagnostic performance of different machine learning models.

Outcome Dataset tPSAlogisticregression Multivariate logisticregression Decision Tree Random Forest SupportVectorMachine

AUC Training 0.842 0.910 0.922 1.00 0.884
Test 0.846 0.918 0.886 0.898 0.895

Sensitivity(%) Training 69.2 70.5 91.2 100 86.8
Test 63.9 88.0 86.7 84.0 86.7

Specificity(%) Training 88.8 95.2 83.4 100 70.6
Test 93.2 87.1 69.4 79.0 85.5

Accuracy(%) Training 78.0 81.6 87.7 100 79.5
Test 77.1 87.6 78.8 81.8 86.1
July 2022 | Vo
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FIGURE 1 | Performance of machine learning models. (A) Calibration curves of five prediction models in the training dataset. The predicted probabilities are plotted
on the X-axis, and the actual probabilities are plotted on the Y-axis. (B) The ROC curves of the tPSA LR, multivariate LR, DT, RF, and SVM models in the test
dataset. (C) Clinical decision curve analysis (DCA) of the five models in the test dataset.
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as predictors for PCa (3, 16–18). However, it may be difficult to
achieve good predictive results with any single factor.

In this study, we constructed prediction models of PCa based
on machine learning algorithms. Four algorithms were used, and
a total of five models were constructed. First, we constructed a
univariate logistic regression model using tPSA. As shown in
Table 2, in the test dataset, although the specificity of the tPSA
LR model reached 0.932, its sensitivity was decreased to only
0.639. The AUC of this model was only 0.846, which was
significantly lower than that of the other models, showing the
limitations of using tPSA alone as a predictor of PCa. Among
them, the multivariate LR model had higher specificity,
sensitivity, accuracy, and AUC in the test dataset, showing
good predictive ability. Therefore, the shortcomings of low
sensitivity and accuracy of the tPSA LR model were
complemented very well by the inclusion of more variables. In
our study, the multivariate LR model also had outstanding
extrapolation and generalization ability due to the small
number of changes between the training and test datasets. As a
model similar to traditional statistical analysis methods, the
results of the LR model had strong interpretability, which
could help clinicians predict PCa based on relevant factors.
The output of the DT model was similar to the clinical
pathway. It is a clinician- and patient-friendly model and has
strong clinical operability. Anyone can follow the predicted
model from the root node to the leaf node to make decisions.
However, in our study, the performance of the constructed DT
model decreased significantly when it was validated in the test
dataset and had very low specificity. The RF and SVM models
had average diagnostic performance in our study, and their
“black box” style reduced the clinical interpretability slightly.

The PCa detection rate in patients with PSA<20 ng/ml was
relatively low in our study. Thus it is important to predict PCa in
this population. The RF model performed best in both subgroups
PSA of 4-10 ng/ml and 4-20 ng/ml. This suggested that the
machine learning models we constructed based on overall
population might also be applicable in patients with PSA
ranged 4-10 or 4-20 ng/ml. In the training dataset, the RF
model outperformed other models with the AUC of 1.0, while
its performance decreased significantly in the test dataset. But in
these two PSA subgroups, about 72% of samples overlapped with
the samples in the training dataset, and were involved in the
construction of models. That may lead to the outperformance of
RF model rather than other models in PSA subgroups. Future
study should focus on this population and develop more accurate
machine learning models.

In recent years, some studies on the prediction of PCa by
machine learning models have been published. In the study of
Peter Ka-Fung Chiu et al., four variables, PSA, DRE, PV and
transrectal ultrasound findings, were included, and SVM, LR,
and RF models were constructed. All models were shown to have
better prediction for PCa and clinically significant PCa than PSA
and PSAD alone (19). Similarly, Nitta et al. suggested that
compared to the AUCs of the PSA level, PSAD, and PSAV
alone, the AUCs of artificial neural network (ANN), RF, SVM
machine learning models were all improved when age, PSA level,
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PV, and white blood cell count in urinalysis were incorporated
(20).In a study including patients with tPSA<10 ng/ml, a PSA-
based machine learning model was constructed based on dense
neural network with an AUC of 0.72, which was improved
compared to PSA alone, age, fPSA and f/tPSA alone (21). In
another study, multiparametric MRI (mpMRI) combined with
other characteristics of patients was included to construct a
machine learning model. The SVM and RF yielded similar
diagnostic accuracy and net benefit and spared more biopsies
at 95% sensitivity for the detection of clinically significant PCa
compared with logistic regression (15).

Recently, a meta-analysis showed that the performance of
selectMDx test in urine was comparable to that of mpMRI with
regards to PCa detection. The AUC of selectMDx only was 0.854,
and the AUC of one or both positive finding with selectMDx
and/or mpMRI could reach 0.909. However, the multivariate LR
model in our study still shows strength with AUC of 0.918 in test
dataset (22). The integrative machine learning model was
constructed to predict negative prostate biopsy utilizing both
radiomics and clinical features. Although that model got high
performance with negative predictive value of 98.3%, the AUC,
sensitivity, and specificity were 0.798, 83.3%, and 75.2%,
respectively, which were relatively lower compared with those
in our models (23). Considering that all variables in our models
are objective indicators, reducing possible errors of manual
evaluation, we believe that the advantages of our models are
more obvious.

Although machine learning-based models for PCa prediction
have been constructed and validated, there are several limitations
in our study. First, our study is retrospective in nature and may
be potentially biased, and the sample size may not be adequate
for some machine learning algorithms. Second, both the training
and test datasets were from the same hospital, so further external
validation at other centers is needed to confirm the findings.
Third, some important factors or variables were not included in
our models. For example, it has been shown that mpMRI
provides more imaging information than conventional
ultrasound, not only improving the detection of PCa but also
helping to distinguish clinically significant PCa (24). Limited by
insufficient data, mpMRI and its PI-RADS data were not
included in our study. It is hoped that incorporating mpMRI
into machine learning models may help to further improve the
diagnostic performance of models in the future.
CONCLUSION

In conclusion, by retrieving electronic medical records, we
developed, validated, and compared machine learning models
to predict PCa in the biopsy population. All models showed
clinical benefits based on DCA. Multivariate LR, DT, RF, and
SVM models were better than tPSA univariate LR. Among these
models, multivariate LR performed best, with an AUC of 0.918 in
the test dataset. Constructing machine learning-based models
and predicting PCa is feasible. This could enhance the detection
of PCa and help to avoid unnecessary prostate biopsy.
July 2022 | Volume 12 | Article 941349
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Bladder cancer is a commonmalignant tumor in the urinary system. Depending on

whether bladder cancer invades muscle tissue, it is classified into non-muscle-

invasive bladder cancer (NMIBC) and muscle-invasive bladder cancer (MIBC). It is

crucial to accurately diagnose the muscle invasion of bladder cancer for its clinical

management. Although imaging modalities such as CT and multiparametric MRI

play an important role in this regard, radiomics has shown great potential with the

development and innovation of precision medicine. It features outstanding

advantages such as non-invasive and high efficiency, and takes on important

significance in tumor assessment and laor liberation. In this article, we provide an

overview of radiomics in the prediction of muscle-invasive bladder cancer and

reflect on its future trends and challenges.

KEYWORDS

bladder cancer, radiomics, machine learning, muscle-invasive, CT, MRI
1 Introduction

Bladder cancer (BC) is the second most common cancer among urological

malignancies, with an estimated 573,200 people diagnosed with BC worldwide in

2020 (1). The rates of bladder cancer increase with age. The risk of BC is

multifactorial, with smoking (2) being the most important risk factor.

Uroepithelial carcinoma accounts for approximately 90% of bladder cancer cases

and typically presents as multifocal and recurrent; other subtypes are squamous cell

carcinoma (6-8%) and adenocarcinoma (3).

Determining the invasion of the tumor into the muscle layer of the bladder wall is

probably the most critical step in clinical management, as it directly affects the

patient’s treatment strategy. Bladder cancers are classified into non-muscle-invasive

bladder cancer (NMIBC) (≤ T1 stage) and muscle-invasive bladder cancer (MIBC) (≥
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T2 stage) according to whether they invade muscle tissue or

not. NMIBC is mostly in the early stages of the disease, with a

5-year probability of recurrence and progression of 78% and

45%, respectively (4), while MIBC has a poor prognosis, with

approximately 50% (5) of patients developing metastases

within 2 years after radical cystectomy(RC). NMIBC is

usually treated by transurethral resection of bladder tumors

(TURBT) with or without intravesical chemotherapy (6).

Whereas MIBC is usually treated with radical cystectomy

(RC), radiotherapy, chemotherapy, or combination therapy

(5). Currently, pathological examination of TURBT

specimens is the gold standard for identification of MIBC.

However, according to previous studies, the error rate is

about 20-80% due to problems such as differences in

resection (7). Even though the error rate can be reduced by

repeating TURBT, underestimation of staging and delayed

treatment of the condition may lead to disease progression

and worse prognosis, and this invasive operation also carries

some safetyoperational risks. Faced with the above problems,

scholars have searched for an alternative, non-invasive and

efficient diagnostic tool to accurately predict muscle-invasive

bladder cancer, so they have turned their attention to

“radiomics” - a hot and promising diagnostic technology.

Radiomics is the extraction and analysis of quantitative

imaging features from imaging tools (CT, MRI, PET-CT,

etc.) for the development of descriptive and predictive

models (8). Machine learning (ML), a branch of artificial

intelligence, is a typical approach used in radiomics model

generation (9). Through the inferential training of datasets,

ML aids in the development of highly accurate and effective

predictive models based on radiomics analysis (10). In this

paper, we review the current existing research related to our
Frontiers in Oncology 02
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topic, summarize the results of using machine learning to

accurately predict muscle-invasive bladder cancer, and reflect

on the future directions and challenges of the topic.

2 Search criteria

A comprehensive review of current literature was performed

using the PubMed-Medline and Web of Science database up to

April 5, 2022 using “bladder cancer”, combined with one of the

following terms: “radiomics”, “machine learning”, and “artificial

intelligence” in combination with “muscle invasive”.
The exclusion criteria for the articles were as follows:

(1) Published in a language other than English.

(2) The purpose of the article study was not to predict

muscle invasion of bladder cancer.

(3) The article was not studied with imaging tools.

(4) Reviews, conference abstracts, and editorials were

excluded.

The inclusion criteria for the article were as follows:

(1) Background introduction of radiomics, machine

learning, deep learning or artificial intelligence and

bladder cancer.

(2) The purpose of the article study was to predict muscle

invasion of bladder cancer.

(3) The article was studied with imaging tools(CT, MRI,

PET-CT, SPECT e.g.).

In accordance with the PRISMA criteria, Figure 1 was

included to delineate our article

selection process.
FIGURE 1

PRISMA flowchart of included studies.
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3 Results

The final collection of 12 relevant publications found that the

first study started in 2017, reflecting the fact that radiomics is a

relatively new concept in the field of BC. The literature related to

machine learning for predicting muscle-invasive bladder cancer is

summarized in Table 1 (11–22). For studies in this field, four were

based on enhanced CT and the remaining eight were related to

MRI. Only 16.7% (2/12) of the studies were multi-center studies.
Frontiers in Oncology 03
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4 Discussion

4.1 Traditional diagnostic imaging

In current clinical practice, medical imaging techniques

including CT, MRI and other non-invasive and safe diagnostic

modalities are increasingly recognized for their performance in

predicting muscle invasion and staging of bladder cancer. MRI has

mainly been found to play a crucial role in the early localization and
TABLE 1 Studies included in the systematic review.

Study characteristics Patient characteristics Imaging characteristics

Author Year Study
design

Number
of cases

Number of
selected
lesions

Surgical
technique

Pathological
stage NMIBC:

MIBC

Imaging
modality

Scanner

1 Xu 2017 Single-
center
retrospective

78 118 NA 34:84 T2WI 3.0T GE

2 Garapati 2017 Single-
center
retrospective

76 84 Cystectomy 43:41 CTU NA

3 Tong 2018 Single-
center
retrospective

65 65 Cystectomy 31:34 T2WI 1.5-3.0T

4 Xu 2019 Single-
center
retrospective

54 54 NA 24:30 T2WI、
DWI、
ADC

3.0T GE

5 Zheng 2019 Single-
center
retrospective

199 199 RC or TURBT 130:69 T2WI 3.0T MR scanner (Intera Achieva, Philips
Medical Systems)

6 Xu 2020 Single-
center
retrospective

218 218 Both TURBT
and RC

131:87 DWI 3.0T MR scanner (Ingenia;Philips
Healthcare)

7 Wang 2020 Mult-center
retrospective

106 106 RC or partial
cystectomy or
TURBT

64:42 T2WI、
DWI、
ADC

3.0T MR system (MAGNETOM Trio,
Siemens Healthineers)

8 Hammouda 2021 Single-
center
retrospective

42 NA T2WI、
DWI、
ADC

3.0T Ingenia Philips MRI scanners

9 Zhang 2021 Mult-center
retrospective

441 441 RC or TURBT 183
(development):110

(tuning )
:73(internal
validation)
:75(external
validation)

Enhanced
CT

NA

10 Zheng 2021 Single-
center
retrospective

185 185 NA 129:56 T2WI、
DCE

3.0T MRI scanner(Magnetom Verio:
Siemens, Erlangen, Germany)

11 Zhou 2021 Single-
center
retrospective

100 100 NA 70:30 Enhanced
CT

Siemens 64-row spiral CT

12 Cui 2022 Single-
center
retrospective

327 188 RC or partial
cystectomy or
TURBT

120:68 CECT GE Dis covery CT750HD, GE LightSpeed
VCT, Philips ICT 256, and Siemens
Somatom Definition Flash.
ADC, apparent diffusion coeffificient; CECT, contrast-enhanced computed tomography; CT, computed tomography; CTU, CT Urography; DCE, dynamic contrast enhanced; DWI,
diffusion-weighted imaging; MIBC, muscle-invasive bladder cancer; MR, magnetic resonance; MRI, magnetic resonance imaging; NA, not available; NMIBC, non–muscle-invasive bladder
cancer; RC, radical cystectomy; TURBT, transurethral resection of bladder tumor; T2WI, T2-weighted imaging.
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invasive diagnosis of BC. T2-weighted imaging(T2WI) is able to

illustrate detailed structural information of the lesion and bladder

wall, thus potentially reflecting the depth of invasion of the bladder

wallofBC.The lowsignal lineof thedetrusormuscle is interruptedby

MIBC,whereas thedetrusormuscle is complete inNMIBC.Diffusion

Weighted Imaging(DWI)andApparentDiffusionCoefficient(ADC)

have a good ability to reflect signal intensity differences between

muscle, peritumoral inflammation and fibrosis (23, 24). The

significance of dynamic contrast enhanced MRI(DCE-MRI) in

assessing tumor aggressiveness depends on the neoangiogenesis of

the tumor, which is an important factor in tumor growth; the more

neovascularization there is, thehigher the tumorstageandgrade (25).

In studies on dynamic enhancement sequences, the tumor, bladder

mucosa and submucosa show early enhancement, but the bladder

wall muscle maintains its low signal and delays enhancement. As

early as 2000, Hayashi et al. observed that image signs of submucosal

linear enhancement (SLE) at the base of the tumor were frequently

seen on DCE images of NMIBC patients (26). This discovery is

unquestionably a watershed moment in imaging-based BC staging

and muscle-invasive status (MIS) diagnosis. Takeuchi et al (27)

followed up by reporting an important feature found in most

NMIBC on DWI, the tumor stalk, which improved the accuracy

and robustness of imaging-based BC staging andMIS diagnosis. The

accuracy of staging based on tumor stalk was 91.3% in Wang et al.

study, while the accuracy of SLE staging was 91.3% (23). Panebianco

et al (28) proposed Vesical Imaging-Reporting and Data System

(VI-RADS) to quantify these signs on Multi-Parametric Magnetic

Resonance Imaging (mpMRI) and to standardize the diagnostic

procedure for image-based MIS prediction based on these features.

This scoring system has effective diagnostic performance. In the

Ueno et al. study, for example, the combined area under the curve

(AUC) of five radiologists diagnosingMIBCwas as high as 0.90 (29).

Another prospective study also demonstrated the high diagnostic

reliability of the VI-RADS score (AUC value of 0.94), especially for

scores 1-2 and 3-5 (sensitivity 91.9%, 95%; specificity 91.1%, 95%)

(30).TheVI-RADSscoringmethodreliesonexpert visualperception

judgment, yet it is still semi-qualitative. As a result, research into the

objective and accurate radiomic detection of bladder cancer muscle

invasion is required.
4.2 Radiomics

Radiomics is a relatively young concept, and Prof. Lambin

originally described it in 2012 (31). Radiomics refers to the high-

throughput extraction of image features from the region of interest

(ROI) of radiological imaging techniques (CT, MR, but also PET,

etc.) for automated analysis, using machine and deep learning

techniques to extract critical information for accurate quantitative

assessment of lesions, and ultimately for aiding in the diagnosis,

classification, or grading of diseases. Radiomics inherits the

technological benefits of reproducible, non-invasive radiological
Frontiers in Oncology 04
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imaging over biopsy, making patient status monitoring and

prognosis safer and more reliable.

Radiomics techniques can be classified into two groups:

those using manual radiomics features and those using deep

learning radiomics (32, 33) Traditional manual radiomics has

the following four main processing tasks: image acquisition and

preprocessing; image segmentation; feature extraction and

quantification; and model building. The difference is that

segmentation is not a necessity in the automated radiomics

pipeline (33).. Radiomics has been increasingly studied in

medical field for lung cancer, breast cancer, glioma, prostate

cancer and other disorders (34–37). One of the current topics in

bladder cancer research is the radiomics prediction of MIBC.

The pertinent radiomics literature is described below in

terms of modality selection, volumes of interest (VOIs)

segmentation, feature selection, model construction, and

integration of clinical features, respectively.

4.2.1 Input modality
Itmainly based on enhancedCT,MRI, withMRI accounting for

(8/12) of the included literature. Since CT is weaker than MRI in

discriminating soft tissues and the borders and bases of lesions are

rarely distinguishable in discriminating MIS (38), there is a greater

preference forMRI,mainly aroundT2WI, DWI andADC andDCE

sequences. In 2017, Garapati (11) and Xu et al. (12)established a

precedent for using radiomics to predict MIS using CT and MRI,

respectively, and inspired readers to combine additional MRI

sequences to improve the possibility of differentiation task

performance. As a result, extensive research on the precise

differentiation of NMIBC and MIBC using radiomic methods with

multi-parametric MRI images started to be conducted. Xu et al.

obtainedmean accuracies of 79.63%, 81.37%, and 91.22% for T2WI,

DWI, and the combined of both sequences, with AUCs of 0.8828,

0.8884, and 0.9756, respectively (14). The superiority of DWI

sequences over T2WI sequences in reflecting heterogeneous

differences between NMIBC and MIBC (14, 16) has been

repeatedly demonstrated. This might be because muscle-infiltrating

tumors have a propensity to impede water molecule diffusion by

shrinking extracellular space (39–41), which is better captured by

DWIandthe relatedADCmaps.Andmulti-sequenceMRIwasmore

helpful to predict themuscle invasion conditionofBCpreoperatively

compared with single sequence T2WI and DWI, which was

consistent with previous knowledge.

4.2.2 Volumes of interest segmentation
The three basic methods of delineating the area of interest are

manual, semi-automated, and automatic. Even with computerized

techniques, radiologists still need to examine and manually adjust

them to assure the correctness of ROI descriptions because the

majority of them are still primarily manual, which takes time and is

tiresome. Initially, academics mostly concentrated on the overall

tumor volume. As research developed, it was generally
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acknowledged that the information in the region around the tumor

also held a lot of relevant information. The body of literature

suggests that the determination of muscle invasiveness is related to

bladder tumors as well as the tumor’s base (15) and adjacent

bladder tissue (13). In addition, most of the relevant experiments

have been conducted so far at the 3D level. Compared to 2D system

analysis, 3D has higher precision and AUC (95.24% and 0.9864 vs.

92.86% and 0.9705) (18) which reflects the importance of 3D

processing as it provides a comprehensive BC assessment with full

descriptive information and details.

4.2.3 Feature extraction and quantization
Currently, there are mainly shape and intensity features

based on histogram, texture features including gray level co-

occurrence matrix (GLCM), gray Level run length matrix

(GLRLM), gray-level size zone matrix (GLSZM), gray level

dependence matrix (GLDM), neighborhood gray-tone

difference matrix (NGTDM), and higher-order feature

wavelet features. The global, local and regional distribution

features of image grayscale can be comprehensively described.

Although there are a large number of features available for

analysis, redundancy of features can seriously affect

prediction performance. So feature selection is essential for

developing optimal prediction models. Combined with other

advanced selection strategies for statistical analysis, such as

support vector machine (SVM)-based recursive feature

elimination (SVM-RFE), the least absolute shrinkage and

selection operator

(LASSO), max-relevance and min-redundancy(mRMR),

these methods are widely used to reduce the impact of

feature redundancy, and other methods such as Boruta are

also used. After feature selection, Xu et al. found that the run

length matrix (RLM) features accounted for a greater

proportion of 13/19 in the optimal subset (14), better

reflecting the regional heterogeneity differences between

NMIBC and MIBC. The Co-occurrence matrices(CM), RLM

and GLSZM features were found to be favorable feature classes

for predicting BCa muscle invasion condition by Wang

et al. (16).

4.2.4 Model construction
Different machine learning classifiers can be employed

with the chosen features to create predictive models.

Classifiers that are typically used include LASSO, SVM,

random forest (RF), logistic regression, etc. Convolutional

neural networks (CNN) are the most commonly used

artificial neural networks for deep learning. SVM-RFE was

the most commonly used machine learning method (7/12),

among all the methods used for the classification task. Table 2

demonstrates how different models’ prediction efficacy varies.

NN, SVM, and RF classifier diagnostic performance were

tested by Hammouda et al. in descending order (18).
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Garapati et al. observed that the AUC for morphological

and texture features was roughly 0.90 (11); for various other

mri-based radiomics models, the AUC ranged from 0.87 to

0.98 (14–17). However, all of the preceding experiments have

the disadvantage of lacking independent external validation,

so the true validity of the diagnostic performance of these

models must be confirmed further. In contrast, so far, the

prediction model developed by Zhang et al. is the only

experiment with external validation results. But the AUC

(0.791-0.936) of the study by Zhang et al. was slightly lower

(19). This may be the risk of misclassification of some models

influenced by tumor size, which may lead to a decrease in the

diagnostic performance of the model, and therefore tumor

size is one of the critical features to determine the muscle

invasion condition of BC.

4.2.5 Integration of other clinical factors
It has become a trend to include clinical risk factors in the

prediction model in order to better predict MIS and improve

clinical diagnostic performance and application value. These

include tumor size (15), tumor stalk (16), proteinuria and

multiple sclerosis (21), as well as VI-RADS (20) and TURBT

(14).The radiomic model incorporating clinical factors performed

significantly better than the conventional MRI examination and

simply radiomic model in terms of calibration and discrimination.

Radiomic-clinical nomogram can be used as a reliable and non-

invasive adjunct to differentiate MIBC from NMIBC

preoperatively (15).

4.2.6 Method for validating results
83.3 percent (10/12) of the retrieved literature were

single-center studies (11–15, 17, 18, 20–22), and the

internal validation method was primarily used for model

validation. Only two paper performing external validation

of the results (16, 19). Because of the lack of externally

validated results, the reliability of the remaining articles’

results in terms of diagnostic efficacy is questionable. The

sensitivity, specificity, and AUC of the internal validation

cohort in Zhang’s prediction model were 0.733, 0.810, and

0.861, respectively, while those of the external validation

cohort were 0.710, 0.773, and 0.791, respectively (19).
5 Future and prospects

Of these 12 studies, all were retrospective, subject to

selection bias and prone to data loss. Because the sample

size was insufficient, cross-validation was essentially required

to make up for it. Additionally, only two of the results were

externally validated using radiomics models, with the rest

being single-center, internally validated results that were not

convincing. The current radiomics models are mainly based
frontiersin.org
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on single-modality or dual-modality MRI, and there is no

multi-modality study combining the three sequences of

“T2WI, DWI and DCE” , which needs to be further

validated to improve the differentiation performance.

Therefore, investigations should be planned in a more

thorough and subtle manner for a variety of therapeutic

applications to increase the reliability of the results. To

completely understand the diagnostic usefulness of machine

learning in predicting MIBC, more prospective multi-center

and various machine trials will be required in the future. In

addition, for future optimization of this new approach, more

studies are needed to test the potential of optimizing

predictive models by combining imaging biomarkers with

other non-imaging biomarkers, such as urine and serum

biomarkers. Although there have been significant advances

in a number of s tudies , f rom fundamental tumor

identification to precise staging and grading, recent research

has also been gradually moving toward the prediction of

treatment outcomes. The needs of the clinical market can

no longer be met by illness diagnosis alone. After a bladder

cancer diagnosis, increasing focus will be placed on how well

machine learning predicts the response to treatment and

prognosis outcome of the disease In the future.
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9. Tătaru OS, Vartolomei MD, Rassweiler JJ, Virgil O, Lucarelli G, Porpiglia F,
et al. Artificial intelligence and machine learning in prostate cancer patient
management-current trends and future perspectives. Diagnostics (Basel) (2021)
11(2):354. doi: 10.3390/diagnostics11020354

10. Ge L, Chen Y, Yan C, Zhao P, Zhang P, A R, et al. Study progress of
radiomics with machine learning for precision medicine in bladder cancer
management. Front Oncol (2019) 9:1296. doi: 10.3389/fonc.2019.01296

11. Garapati SS, Hadjiiski L, Cha KH, Chan HP, Caoili EM, Cohan RH, et al.
Urinary bladder cancer staging in CT urography using machine learning.Med Phys
(2017) 44(11):5814–23. doi: 10.1002/mp.12510

12. Xu X, Liu Y, Zhang X, Tian Q, Wu Y, Zhang G, et al. Preoperative prediction
of muscular invasiveness of bladder cancer with radiomic features on conventional
MRI and its high-order derivative maps. Abdom Radiol (NY) (2017) 42(7):1896–
905. doi: 10.1007/s00261-017-1079-6

13. Tong Y, Udupa JK, Wang C, Chen J, Venigalla S, Guzzo TJ, et al. Radiomics-
guided therapy for bladder cancer: Using an optimal biomarker approach to
determine extent of bladder cancer invasion from t2-weighted magnetic
resonance images. Adv Radiat Oncol (2018) 3(3):331–8. doi: 10.1016/
j.adro.2018.04.011

14. Xu X, Zhang X, Tian Q, Wang H, Cui LB, Li S, et al. Quantitative
identification of nonmuscle-invasive and muscle-invasive bladder carcinomas: A
multiparametric MRI radiomics analysis. J Magn Reson Imaging (2019) 49
(5):1489–98. doi: 10.1002/jmri.26327

15. Zheng J, Kong J, Wu S, Li Y, Cai J, Yu H, et al. Development of a
noninvasive tool to preoperatively evaluate the muscular invasiveness of bladder
cancer using a radiomics approach. Cancer (2019) 125(24):4388–98. doi:
10.1002/cncr.32490

16. Wang H, Xu X, Zhang X, Liu Y, Ouyang L, Du P, et al. Elaboration of a
multisequence MRI-based radiomics signature for the preoperative prediction of
the muscle-invasive status of bladder cancer: a double-center study. Eur Radiol
(2020) 30(9):4816–27. doi: 10.1007/s00330-020-06796-8

17. Xu S, Yao Q, Liu G, Jin D, Chen H, Xu J, et al. Combining DWI radiomics
features with transurethral resection promotes the differentiation between muscle-
invasive bladder cancer and non-muscle-invasive bladder cancer. Eur Radiol (2020)
30(3):1804–12. doi: 10.1007/s00330-019-06484-2

18. Hammouda K, Khalifa F, Soliman A, Ghazal M, El-Ghar MA, Badawy MA,
et al. A multiparametric MRI-based CAD system for accurate diagnosis of bladder
cancer staging. Comput Med Imaging Graph (2021) 90:101911. doi: 10.1016/
j.compmedimag.2021.101911
Frontiers in Oncology 08
55
19. Zhang G, Wu Z, Xu L, Zhang X, Zhang D, Mao L, et al. Deep learning on
enhanced CT images can predict the muscular invasiveness of bladder cancer.
Front Oncol (2021) 11:654685. doi: 10.3389/fonc.2021.654685

20. Zheng Z, Xu F, Gu Z, Yan Y, Xu T, Liu S, et al. Combining multiparametric
MRI radiomics signature with the vesical imaging-reporting and data system (VI-
RADS) score to preoperatively differentiate muscle invasion of bladder cancer.
Front Oncol (2021) 11:619893. doi: 10.3389/fonc.2021.619893

21. Zhou Q, Zhang Z, Ang X, Zhang H, Ouyang J. A nomogram combined with
radiomics features, albuminuria, and metabolic syndrome to predict the risk of
myometrial invasion of bladder cancer. Transl Cancer Res (2021) 10(7):3177–91.
doi: 10.21037/tcr-21-426

22. Cui Y, Sun Z, Liu X, Zhang X, Wang X. CT-based radiomics for the
preoperative prediction of the muscle-invasive status of bladder cancer and
comparison to radiologists' assessment. Clin Radiol (2022) 77(6):e473–82. doi:
10.1016/j.crad.2022.02.019

23. Wang HJ, Pui MH, Guo Y, Yang D, Pan BT, Zhou XH, et al. Diffusion-
weighted MRI in bladder carcinoma: the differentiation between tumor recurrence
and benign changes after resection. Abdom Imaging (2014) 39(1):135–41. doi:
10.1007/s00261-013-0038-0

24. Wang HJ, Pui MH, Guan J, Li SR, Lin JH, Pan B, et al. Comparison of early
submucosal enhancement and tumor stalk in staging bladder urothelial carcinoma.
AJR Am J Roentgenol (2016) 207(4):797–803. doi: 10.2214/AJR.16.16283

25. Abouelkheir RT, Abdelhamid A, Abou El-Ghar M, El-Diasty T. Imaging of
bladder cancer: Standard applications and future trends.Medicina (Kaunas) (2021)
57(3):220. doi: 10.3390/medicina57030220

26. Hayashi N, Tochigi H, Shiraishi T, Takeda K, Kawamura J. A new staging
criterion for bladder carcinoma using gadolinium-enhanced magnetic resonance
imaging with an endorectal surface coil: A comparison with ultrasonography. BJU
Int (2000) 85(1):32–6. doi: 10.1046/j.1464-410x.2000.00358.x

27. Takeuchi M, Sasaki S, Ito M, Okada S, Takahashi S, Kawai T, et al. Urinary
bladder cancer: Diffusion-weighted MR imaging–accuracy for diagnosing T stage
and estimating histologic grade. Radiology (2009) 251(1):112–21. doi: 10.1148/
radiol.2511080873

28. Panebianco V, Narumi Y, Altun E, Bochner BH, Efstathiou JA, Hafeez S,
et al. Multiparametric magnetic resonance imaging for bladder cancer:
Development of VI-RADS (Vesical imaging-reporting and data system). Eur
Urol (2018) 74(3):294–306. doi: 10.1016/j.eururo.2018.04.029

29. Ueno Y, Takeuchi M, Tamada T, Sofue K, Takahashi S, Kamishima Y, et al.
Diagnostic accuracy and interobserver agreement for the vesical imaging-reporting
and data system for muscle-invasive bladder cancer: A multireader validation
study. Eur Urol (2019) 76(1):54–6. doi: 10.1016/j.eururo.2019.03.012

30. Del Giudice F, Barchetti G, De Berardinis E, Pecoraro M, Salvo V, Simone G,
et al. Prospective assessment of vesical imaging reporting and data system (VI-
RADS) and its clinical impact on the management of high-risk non-muscle-
invasive bladder cancer patients candidate for repeated transurethral resection.
Eur Urol (2020) 77(1):101–9. doi: 10.1016/j.eururo.2019.09.029

31. Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, van Stiphout RG,
Granton P, et al. Radiomics: extracting more information from medical images
using advanced feature analysis. Eur J Cancer (2012) 48(4):441–6. doi: 10.1016/
j.ejca.2011.11.036

32. Bera K, Braman N, Gupta A, Velcheti V, Madabhushi A. Predicting cancer
outcomes with radiomics and artificial intelligence in radiology. Nat Rev Clin Oncol
(2022) 19(2):132–46. doi: 10.1038/s41571-021-00560-7

33. Goldenberg SL, Nir G, Salcudean SE. A new era: artificial intelligence and
machine learning in prostate cancer. Nat Rev Urol (2019) 16(7):391–403. doi:
10.1038/s41585-019-0193-3

34. Smith CP, Czarniecki M, Mehralivand S, Stoyanova R, Choyke PL, Harmon
S, et al. Radiomics and radiogenomics of prostate cancer. Abdom Radiol (NY)
(2019) 44(6):2021–9. doi: 10.1007/s00261-018-1660-7

35. Tagliafico AS, Piana M, Schenone D, Lai R, Massone AM, Houssami N.
Overview of radiomics in breast cancer diagnosis and prognostication. Breast
(2020) 49:74–80. doi: 10.1016/j.breast.2019.10.018

36. Choi YS, Bae S, Chang JH, Kang SG, Kim SH, Kim J, et al. Fully automated
hybrid approach to predict the IDH mutation status of gliomas via deep learning
and radiomics. Neuro Oncol (2021) 23(2):304–13. doi: 10.1093/neuonc/noaa177
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Machine learning model for
the prediction of prostate
cancer in patients with low
prostate-specific antigen
levels: A multicenter
retrospective analysis

Xiaobin Deng1,2, Tianyu Li1,2,3, Linjian Mo1,2,3, Fubo Wang1,2,3,
Jin Ji4, Xing He4, Bashir Hussein Mohamud1,2,
Swadhin Pradhan1,2 and Jiwen Cheng1,2,3*

1Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China,
2Institute of Urology and Nephrology, The First Affiliated Hospital of Guangxi Medical University, Nanning,
China, 3Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China,
4Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, China
Objective: The aim of this study was to develop a predictive model to improve

the accuracy of prostate cancer (PCa) detection in patients with prostate

specific antigen (PSA) levels ≤20 ng/mL at the initial puncture biopsy.

Methods: A total of 146 patients (46 with Pca, 31.5%) with PSA ≤20 ng/mL who

had undergone transrectal ultrasound-guided 12+X prostate puncture biopsy

with clear pathological results at the First Affiliated Hospital of Guangxi Medical

University (November 2015 to December 2021) were retrospectively evaluated.

The validation group was 116 patients drawn from Changhai Hospital(52 with

Pca, 44.8%). Age, body mass index (BMI), serum PSA, PSA-derived indices,

several peripheral blood biomarkers, and ultrasound findings were considered

as predictive factors and were analyzed by logistic regression. Significant

predictors (P < 0.05) were included in five machine learning algorithm

models. The performance of the models was evaluated by receiver operating

characteristic curves. Decision curve analysis (DCA) was performed to estimate

the clinical utility of the models. Ten-fold cross-validation was applied in the

training process.

Results: Prostate-specific antigen density, alanine transaminase-to-aspartate

transaminase ratio, BMI, and urine red blood cell levels were identified as

independent predictors for the differential diagnosis of PCa according to

multivariate logistic regression analysis. The RandomForest model exhibited

the best predictive performance and had the highest net benefit when

compared with the other algorithms, with an area under the curve of 0.871.

In addition, DCA had the highest net benefit across the whole range of cut-off

points examined.
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Conclusion: The RandomForest-based model generated showed good

prediction ability for the risk of PCa. Thus, this model could help urologists in

the treatment decision-making process.
KEYWORDS

prostate cancer, prostate-specific antigen, diagnosis, machine learning, predictive model,
real-world study
Introduction

Prostate cancer (PCa) remains the most common malignancy

in men. According to the latest cancer statistics published in 2022,

PCa accounts for 27% of newly diagnosed malignancies in males,

and is also the second leading cause of death among men with

cancer (1). Serum total prostate-specific antigen (tPSA) is a

specific tumor biomarker of PCa in the clinical setting. It has

high tissue specificity, but is also associated with missed diagnoses

and misdiagnoses (2, 3). A variety of benign diseases of the

prostate, including benign prostatic hyperplasia and prostatitis,

can lead to elevated serum tPSA levels (4, 5). In particular, tPSA

levels in the range of 4 to 20 ng/mL are associated with a PCa

incidence of less than 25%. In addition, patients with serum tPSA

levels ≤4 ng/mL still carry the risk of PCa, and the detection rate in

these patients may reach up to 20% (6, 7). Prostate puncture

biopsy is currently the standard modality for diagnosing PCa, but

as an invasive procedure, it carries a risk of infection. Moreover,

the PCa detection rates on initial prostate puncture biopsies range

from 23% to 42%. These limitations have greatly restricted its

clinical use (8–11).

Given the limitations of the currently used diagnostic methods,

a large number of studies are currently devoted to identifying new

predictors of PCa. For example, PSA-derived indices, such as free-

to-total PSA (F/T) values and prostate-specific antigen density

(PSAD), have been found to exhibit greater diagnostic accuracy

than PSA alone (12–14). In addition, several inflammatory and

neurotrophic markers, including neutrophil-to-lymphocyte ratio,

platelet-to-lymphocyte ratio, monocyte-to-lymphocyte ratio (15,

16), gamma-glutamyl transpeptidase-to-lymphocyte count ratio

(17, 18), red cell distribution width-to-platelet ratio (19, 20), and

alanine transaminase-to-aspartate transaminase ratio (21, 22), have

previously been shown to have predictive value not only as

inflammatory markers but also as indicators for the diagnosis and

prognosis of malignancies. To date, studies focusing on the role of

these composite indicators in the differential diagnosis of PCa

are limited.

Machine learning (ML), as an important branch of artificial

intelligence, can continuously optimize the performance of

predictive or diagnostic models by learning and analyzing
02
58
data, and can handle non-linear relationships better than

traditional statistical scores. As a result, ML-based models

have great potential for the diagnosis and prognosis of diseases

(23–25). Therefore, our goal was to develop a new decision-

support ML model based on real-world data for diagnosing PCa

in patients with PSA levels ≤20 ng/mL.
Materials and methods

Ethics statement

This study was approved by the institutional review board of

the First Affiliated Hospital of Guangxi Medical University.

Written informed consent was obtained from all patients for

the storage of their information for the purpose of research. All

the research procedures were conducted in accordance with the

Declaration of Helsinki.
Data collection

Data from patients with PCa or benign prostatic hyperplasia

who underwent systematic prostate puncture biopsy at our

hospital between November 2015 and December 2021 were

collected and retrospectively analyzed. We included adult

patients with tPSA levels ≤20 ng/ml who underwent

transrectal ultrasound (TRUS)-guided prostate puncture

biopsy for at least systemic 12 cores with clear pathological

results. The exclusion criteria were (1) a history of prostate

cancer, prostate surgery, or 5-alpha-reductase inhibitor/drug for

the treatment of endocrine dyscrasia in prostate cancer; (2) a

diagnosis of prostatitis; (3) digital rectal examination (DRE),

transrectal ultrasonography, or cystoscopy within two weeks

before PSA detection (as these examinations may affect serum

PSA levels); and (4) missing hematological data prior to

puncture biopsy. Serum PSA concentrations (tPSA and fPSA)

were measured before DRE and TRUS by enzyme-linked

immunoassay. Prostate volume (PV) was calculated using the

following formula:
frontiersin.org
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PV = 0.52 × anterior/posterior diameter (cm) × left/right

diameter (cm) × upper/lower diameter (cm)

TRUS was performed by experienced ultrasonologists.
Statistical analysis

Continuous variables were converted into categorical

variables. The optimum cutoff values obtained from ROC

curve analysis were determined by maximizing the Youden

index. Logistic regression analysis was applied to calculate the

odds ratio (OR) with 95% confidence interval (CI). P < 0.05 was

considered to indicate statistical significance. We used five

different ML algorithms to analyze our data: logistic regression

(LR), XGBoost (XGB), RandomForest (RF), multilayer

perceptron (MLP), and k-nearest neighbor (kNN). After

training, the model with the highest average AUC was chosen

as the best algorithm. Furthermore, the ML-based model was

tuned to avoid overfitting, and the accuracy of the algorithm was

tested using the ten-fold cross-validation method. All variables

were tested for Spearman correlations, and the results are

presented as a heat map.
Results

Demographic features

A total of 146 eligible patients were included in this study.

The optimal cut-off value of tPSA was 8.47 ng/mL, and the

optimal cut-off value of BMI was 23.6 kg/m2. The detailed

clinical characteristics of all the patients are presented in

Table 1. Among the evaluated clinical characteristics, PSA, F/

T, BMI, alanine transaminase-to-aspartate transaminase ratio

(LSR), red cell volume distribution width (RDW), alkaline

phosphatase (ALP), and urine RBC level were correlated with

the risk of PCa. Based on the correlation heat map (Figure 1),

eight highly correlated features were chosen as predictors.

Weight is inextricably linked to BMI and, to a lesser degree,

height. Therefore, we used BMI instead of height or weight,

since it is a better indicator of obesity. The external validation

cohort was screened based on inclusion and exclusion criteria

consistent with the training cohort. Most of the externally

validated variables did not differ statistically from the

training cohort.
Univariate and multivariate logistic
regression analyses

According to univariate logistic regression analysis

(Table 2), tPSA, PSAD, F/T, BMI, LSR, RDW, and blood

glucose level were significant predictors of the occurrence of
Frontiers in Oncology 03
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PCa in the overall population (P > 0.05). PSA and PSAD are

significantly correlated, and the univariate analysis indicated

that PSAD was more statistically significant as a predictor

than PSA. Therefore, we only included PSAD in the

multivariate analysis. The significant characteristics

identified from the univariate analysis above were included

in multivariate logistic regression analysis (Table 3). The odds

ratios (ORs) calculated indicated the relative risk of PCa. The

results showed that PSAD (OR = 11.539, 95% CI = 4.388–

33.993), LSR (OR = 0.189, 95% CI = 0.059–0.561), BMI (OR =

2.638, 95% CI = 1.067–6.871), and urine RBC level (OR =

0.136, 95% CI = 0.018–0.620) were independent predictors of

PCa. In addition, ALP (OR = 6.00, 95% CI = 1.052–34.212)

was also identified as a significant independent predictor (P =

0.044) in univariate logistic regression analysis, but it was not

included in further analysis as there were too many missing

values (n = 31), Supplementary Tables 2, 3.
Performance of ML algorithms

To compare the predictive performance of the six ML

algorithm models, ten-fold cross validation and decision curve

analysis was applied (Figure 2). As shown in the figure, the RF

model exhibited the best performance in the differential diagnosis

of PCa, with an average AUC of 0.871 (95% CI = 0.808–0.933).

The ML algorithm-based models outperformed PSA and its

derivatives F/T and PSAD individually by a significant margin

(AUC of PSA = 0.589, AUC of F/T = 0.599, AUC of PSAD =

0.737). Therefore, the RF model was finally regarded as the

preferred prediction model. In the external validation group

(Figure 3), RF (AUC = 0.780, 95% CI = 0.691–0.869), LR (AUC

= 0.781, 95%CI = 0.692–0.871) and XGB (AUC = 0.780; 95% CI =

0.692–0.868) showed good AUC values of 0.780. Based on the

findings for the training cohort and the external validation cohort

together, we finally choose the RF algorithm model as the best

model and used it for further analysis.
Relative importance of the
analyzed variables

The importance of the included features based on the RF

algorithm differed from each other, and PSAD was identified as

the most important variable. They were arranged as follows in

descending order of importance: PSAD, LSR, urine RBC level,

and BMI (Figure 4).
Discussion

One of the main topics of research on urological prostate

cancer is the improvement of prediction accuracy before
frontiersin.org
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TABLE 1 Clinical characteristics of patients in the training cohort.

Variables, n (%) Level Total BPH PCa P-value

PSA;ng/mL <8.47 59 (40.411) 46 (46.000) 13 (28.261) 0.042

≥8.47 87 (59.589) 54 (54.000) 33 (71.739)

fPSA;ng/mL <1.89 98 (67.123) 63 (63.000) 35 (76.087) 0.118

≥1.89 48 (32.877) 37 (37.000) 11 (23.913)

F/T <0.103 31 (21.233) 15 (15.000) 16 (34.783) 0.007

≥0.103 115 (78.767) 85 (85.000) 30 (65.217)

PV;mL <38.1 52 (35.616) 20 (20.000) 32 (69.565) <0.001

≥38.1 94 (64.384) 80 (80.000) 14 (30.435)

PSAD <0.24 95 (65.068) 80 (80.000) 15 (32.609) <0.001

≥0.24 51 (34.932) 20 (20.000) 31 (67.391)

Age;years <73 118 (80.822) 85 (85.000) 33 (71.739) 0.059

≥73 28 (19.178) 15 (15.000) 13 (28.261)

BMI;kg/m² <23.62 75 (51.370) 57 (57.000) 18 (39.130) 0.045

≥23.624 71 (48.630) 43 (43.000) 28 (60.870)

NLR <1.46 29 (19.863) 16 (16.000) 13 (28.261) 0.085

≥1.46 117 (80.137) 84 (84.000) 33 (71.739)

PLR <131.01 87 (59.589) 62 (62.000) 25 (54.348) 0.381

≥131.01 59 (40.411) 38 (38.000) 21 (45.652)

MLR <0.336 84 (57.534) 55 (55.000) 29 (63.043) 0.361

≥0.336 62 (42.466) 45 (45.000) 17 (36.957)

GLR <13.21 60 (41.096) 37 (37.000) 23 (50.000) 0.138

≥13.21 86 (58.904) 63 (63.000) 23 (50.000)

LSR <0.684 32 (21.918) 16 (16.000) 16 (34.783) 0.011

≥0.684 114 (78.082) 84 (84.000) 30 (65.217)

RPR <0.00063 66 (45.205) 40 (40.000) 26 (56.522) 0.062

≥0.00063 80 (54.795) 60 (60.000) 20 (43.478)

WBC;*10⁹
/L

<4.89 25 (17.123) 13 (13.000) 12 (26.087) 0.051

≥4.89 121 (82.877) 87 (87.000) 34 (73.913)

Hb;g/dl <146.2 120 (82.192) 78 (78.000) 42 (91.304) 0.051

≥146.2 26 (17.808) 22 (22.000) 4 (8.696)

RDW; % <0.15 125 (85.616) 81 (81.000) 44 (95.652) 0.019

≥0.15 21 (14.384) 19 (19.000) 2 (4.348)

Plt;*10⁹
/L

<207 71 (48.630) 52 (52.000) 19 (41.304) 0.23

≥207 75 (51.370) 48 (48.000) 27 (58.696)

Neutrophil count;*10⁹
/L

<4.14 84 (57.534) 54 (54.000) 30 (65.217) 0.203

≥4.14 62 (42.466) 46 (46.000) 16 (34.783)

Lymphocyte count;*10⁹
/L

<1.5 38 (26.027) 23 (23.000) 15 (32.609) 0.219

≥1.5 108 (73.973) 77 (77.000) 31 (67.391)

Monocyte count;*10⁹
/L

<0.44 32 (21.918) 19 (19.000) 13 (28.261) 0.209

≥0.44 114 (78.082) 81 (81.000) 33 (71.739)

Eosinophil count;*10⁹
/L

<0.17 69 (47.260) 42 (42.000) 27 (58.696) 0.061

≥0.17 77 (52.740) 58 (58.000) 19 (41.304)

Blood glucose;mmol/L <5 62 (42.466) 37 (37.000) 25 (54.348) 0.049

≥5 84 (57.534) 63 (63.000) 21 (45.652)

(Continued
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prostate puncture biopsy in order to reduce unnecessary patient

pain without compromising on early intervention in patients

with a confirmed diagnosis. The study variables included in this

study were non-invasive, and data on these variables were

readily available prior to biopsy. Therefore, obtaining the data

for these variables did not involve any unduly demanding

conditions or excessive medical overhead. Previous studies

have mostly been limited to PSA and its derivatives, and there

are not enough studies on the differential value of other

inflammatory markers (26–28). Further, the currently used
Frontiers in Oncology frontiersin.org05
61
prediction nomogram based on the conventional algorithm also

has room for further improvement.

The clinical application of ML algorithms may facilitate a

paradigm shift in the medical field, as these algorithms are

efficient, objective, and reproducible when it comes to large

amounts of nonlinear data (24, 29–32). They also have the

potential to improve the quality of early diagnosis, identify

disease progression, and increase the likelihood of predicting

patient-specific outcomes (25, 33, 34). These advantages can

facilitate the sharing of information for decision-making
TABLE 1 Continued

Variables, n (%) Level Total BPH PCa P-value

g-glutamyl transpeptidase;U <33.2 98 (67.123) 72 (72.000) 26 (56.522) 0.064

≥33.2 48 (32.877) 28 (28.000) 20 (43.478)

Creatinine;mmol/L <88 86 (58.904) 62 (62.000) 24 (52.174) 0.262

≥88 60 (41.096) 38 (38.000) 22 (47.826)

ALP;U <90 21 (67.742) 18 (78.261) 3 (37.500) 0.034

≥90 10 (32.258) 5 (21.739) 5 (62.500)

Urine WBC Negative 116 (79.452) 75 (75.000) 41 (89.130) 0.05

Positive 30 (20.548) 25 (25.000) 5 (10.870)

Urine RBC Negative 121 (82.877) 77 (77.000) 44 (95.652) 0.005

Positive 25 (17.123) 23 (23.000) 2 (4.348)

Ultrasound hypoechoic nodules Negative 46 (31.507) 30 (30.000) 16 (34.783) 0.563

Positive 100 (68.493) 70 (70.000) 30 (65.217)

Prostatic calculi Negative 66 (45.205) 45 (45.000) 21 (45.652) 0.941

Positive 80 (54.795) 55 (55.000) 25 (54.348)
FIGURE 1

Heat map depicting the correlations between the examined variables.
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TABLE 2 Univariate logistic regression in the differential diagnosis of prostate cancer in the whole data cohort.

Variables OR 95%CI P-value

PSA;ng/mL

<8.47 1
(reference)

≥8.47 2.162 [1.019,4.590] 0.045

fPSA;ng/mL

<1.89 1
(reference)

≥1.89 0.535 [0.243,1.179] 0.121

F/T

<0.103 1
(reference)

≥0.103 0.331 [0.146,0.750] 0.008

PV;mL

<38.1 1
(reference)

≥38.1 0.109 [0.049,0.243] <0.001

PSAD

<0.24 1
(reference)

≥0.24 8.267 [3.761,18.169] <0.001

Age;years

<73 1
(reference)

≥73 2.232 [0.959,5.194] 0.062

BMI;kg/m²

<23.62 1
(reference)

≥23.62 2.062 [1.011,4.204] 0.046

NLR

<1.46 1
(reference)

≥1.46 0.484 [0.210,1.115] 0.088

PLR

<131.01 1
(reference)

≥131.01 1.371 [0.676,2.779] 0.382

MLR

<0.336 1
(reference)

≥0.336 0.716 [0.350,1.467] 0.362

GLR

<13.21 1
(reference)

≥13.21 0.587 [0.290,1.190] 0.14

LSR

<0.684 1
(reference)

≥0.684 0.357 [0.159,0.802] 0.013

RPR

<0.00063 1
(reference)

(Continued)
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TABLE 2 Continued

Variables OR 95%CI P-value

≥0.00063 0.513 [0.253,1.040] 0.064

WBC;*10⁹
/L

<4.89 1
(reference)

≥4.89 0.423 [0.176,1.020] 0.055

Hb;g/dl

<146.2 1
(reference)

≥146.2 0.338 [0.109,1.045] 0.06

RDW; %

<0.15 1
(reference)

≥0.15 0.194 [0.043,0.871] 0.032

Plt;*10⁹
/L

<207 1
(reference)

≥207 1.539 [0.760,3.119] 0.231

Neutrophil count;*10⁹
/L

<4.14 1
(reference)

≥4.14 0.626 [0.304,1.290] 0.204

Lymphocyte count;*10⁹
/L

<1.5 1
(reference)

≥1.5 0.617 [0.285,1.337] 0.221

Monocyte count;*10⁹
/L

<0.44 1
(reference)

≥0.44 0.595 [0.264,1.343] 0.212

Eosinophil count;*10⁹
/L

<0.17 1
(reference)

≥0.17 0.51 [0.251,1.035] 0.062

Blood glucose;mmol/L

<5 1
(reference)

≥5 0.493 [0.243,1.002] 0.05

g-glutamyl transpeptidase;U

<33.2 1
(reference)

≥33.2 1.978 [0.955,4.097] 0.066

Creatinine;mmol/L

<88 1
(reference)

≥88 1.496 [0.739,3.028] 0.263

ALP;U

(Continued)
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between clinicians and patients and promote efficient planning

and visualization of the use of healthcare services. In addition,

the model can be actively retrained over time to continuously

improve its own predictive accuracy.
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The AUC value of our RF algorithm was 0.871 in the

training cohort, and this value is significantly higher than the

individual AUC values of PSA (AUC = 0.589), F/T PSA

(AUC = 0.599), and PSAD (AUC = 0.737). The RF-based
TABLE 2 Continued

Variables OR 95%CI P-value

<90 1
(reference)

≥90 6 [1.052,34.212] 0.044

Urine WBC

Negative 1
(reference)

Positive 0.366 [0.130,1.028] 0.056

Urine RBC

Negative 1
(reference)

Positive 0.152 [0.034,0.676] 0.013

Ultrasound hypoechoic nodules

Negative 1
(reference)

Positive 0.804 [0.382,1.688] 0.564

Prostatic calculi

Negative 1
(reference)

Positive 0.974 [0.483,1.964] 0.941
fron
TABLE 3 Multivariate logistic regression in the differential diagnosis of prostate cancer in the whole data cohort.

Variables OR 95%CI P-value

PSAD

<0.24 1(reference)

≥0.24 11.539 (4.388,33.993) <0.001

F/T

<0.103 1(reference)

≥0.103 0.848 (0.294,2.515) 0.762

LSR

<0.684 1(reference)

≥0.684 0.189 (0.059,0.561) 0.004

BMI;kg/m²

<23.62 1(reference)

≥23.62 2.638 (1.067,6.871) 0.04

RDW; %

<0.15 1(reference)

≥0.15 0.259 (0.036,1.156) 0.111

Blood glucose;mmol/L

<5 1(reference)

≥5 0.501 (0.192,1.269) 0.148

Urine_RBC

Negative 1(reference)

Positive 0.136 (0.018,0.62) 0.022
t
iersin.org

https://doi.org/10.3389/fonc.2022.985940
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Deng et al. 10.3389/fonc.2022.985940
model performed well in the external validation cohort, with an

AUC value of 0.78, a sensitivity of 0.712, and a specificity of

0.85. Decision curve analysis was used to validate the efficacy

and potential benefits of our novel model. This ML-based

model can be used as a screening tool for prostate biopsy

and has the potential to avoid missed diagnosis of PCa. Four
Frontiers in Oncology 09
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independent predictors for PCa diagnosis were identified in

our analysis: PSAD, BMI, LSR, and urine RBC level. Previous

studies have suggested that obese patients have a higher risk of

developing prostate cancer. This is probably because

periprostatic fat is biologically active and can secrete factors

that promote cancer growth. However, it is unclear whether
A B D
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FIGURE 2

ROC and decision curve analyses of the five ML algorithms. (A–F) ROC curve analysis of a ten-fold cross-validation of five machine learning
algorithms for predicting the risk of PCa in the training cohort. (G) Decision curve analysis demonstrating the net benefit associated with the use
of the models for the prediction of upstaging.
FIGURE 3

ROC curve analysis of five machine learning algorithms for predicting the risk of PCa in the external cohort.
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reversing obesity can mitigate the progression of prostate

cancer (35–38). The presence of a visible hematuria is a

common sign of prostatic disease. We believe that urine RBC

level emerged as a predictive factor in this study because there

was a high percentage of patients with benign lesions, and

prostatic hyperplasia is associated with a lower incidence of

urinary tract symptoms. Difficulty in urination can cause

damage to the microvasculature of the urinary system, and

this can manifest as urine occult blood. In contrast, PCa in its

early clinical stage is often insidious, and most patients only

seek treatment when elevated PSA is detected during routine

physical examination. In previous studies, LSR has been

applied in the evaluation of gestational diabetes (21),

diagnosis of cirrhosis (22), and prognosis of different cancers

(39, 40). The levels of alanine aminotransferase and aspartate

aminotransferase may be affected by obesity (41, 42), and

fluctuations in these two indicators may influence the

diagnosis of PCa in a similar way that BMI influences PCa.

Although ALP was not further analyzed in the current study

due to missing data, ALP may still be a promising indicator for

the diagnosis of prostate cancer. Further, it has been suggested

that prostate cancer may exhibit overexpression of tumor-

derived ALP, but this needs to be validated in further

studies (43)

Our study has several limitations. First, the small sample size

may affect the conclusions of the statistical analysis. Second, our

study was a single-center retrospective analysis, so there is a

possibility of a selection bias that may have affected the accuracy

of our model. Future external validation is needed to assess the

clinical application of our ML model by using data from other

institutions. Finally, some meaningful indicators may not have been

included in our analysis because of the absence of some

hematological data, and this may have affected the efficacy of the

model. Therefore, these findings need to be confirmed in future

investigations on larger patient samples.
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Conclusion

We established an efficient ML model for the differential

diagnosis of PCa. Our model exhibited excellent predictive

accuracy and practical clinical utility, and may help guide the

decision-making process of the urologist, avoid unnecessary

prostate puncture biopsy, and increase the detection rate

of PCa.
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prostate cancer from transrectal
ultrasound video clips

Kai Wang1†, Peizhe Chen2†, Bojian Feng3,4†, Jing Tu1,
Zhengbiao Hu1, Maoliang Zhang1, Jie Yang1, Ying Zhan1,
Jincao Yao3,4,5* and Dong Xu3,4,5,6*

1Department of Ultrasound, The Affiliated Dongyang Hospital of Wenzhou Medical University,
Dongyang, China, 2College of Optical Science and Engineering, Zhejiang University,
Hangzhou, China, 3Department of Ultrasound, Cancer Hospital of the University of Chinese
Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China, 4Institute of Basic Medicine and
Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China, 5Key Laboratory of Head & Neck
Cancer Translational Research of Zhejiang Province, Hangzhou, China, 6Zhejiang Provincial
Research Center for Cancer Intelligent Diagnosis and Molecular Technology, Hangzhou, China
Objective: To build a machine learning (ML) prediction model for prostate

cancer (PCa) from transrectal ultrasound video clips of the whole prostate

gland, diagnostic performance was compared with magnetic resonance

imaging (MRI).

Methods:We systematically collated data from 501 patients—276 with prostate

cancer and 225 with benign lesions. From a final selection of 231 patients (118

with prostate cancer and 113 with benign lesions), we randomly chose 170 for

the purpose of training and validating a machine learning model, while using

the remaining 61 to test a derived model. We extracted 851 features from

ultrasound video clips. After dimensionality reduction with the least absolute

shrinkage and selection operator (LASSO) regression, 14 features were finally

selected and the support vector machine (SVM) and random forest (RF)

algorithms were used to establish radiomics models based on those features.

In addition, we creatively proposed a machine learning models aided diagnosis

algorithm (MLAD) composed of SVM, RF, and radiologists’ diagnosis based on

MRI to evaluate the performance of ML models in computer-aided diagnosis

(CAD). We evaluated the area under the curve (AUC) as well as the sensitivity,

specificity, and precision of the MLmodels and radiologists’ diagnosis based on

MRI by employing receiver operator characteristic curve (ROC) analysis.

Results: The AUC, sensitivity, specificity, and precision of the SVM in the

diagnosis of PCa in the validation set and the test set were 0.78, 63%, 80%;

0.75, 65%, and 67%, respectively. Additionally, the SVM model was found to be

superior to senior radiologists’ (SR, more than 10 years of experience) diagnosis

based on MRI (AUC, 0.78 vs. 0.75 in the validation set and 0.75 vs. 0.72 in the

test set), and the difference was statistically significant (p< 0.05).

Conclusion: The prediction model constructed by the ML algorithm has good

diagnostic efficiency for prostate cancer. The SVM model’s diagnostic
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efficiency is superior to that of MRI, as it has a more focused application

value. Overall, these prediction models can aid radiologists in making

better diagnoses.
KEYWORDS

artificial intelligence, prostate cancer, ultrasound, machine learning, support
vector machine
Introduction

Prostate cancer (PCa) is one of the most common cancers in

males, and its prevalence has increased at an alarming rate over

the last several decades (1). According to GLOBOCAN 2020, in

2020 there were approximately 1,414,259 new cases of PCa and

375,304 PCa-related deaths worldwide, with a particularly high

prevalence in developed countries (2). The early clinical

manifestations of prostate cancer are sufficiently nonspecific that

patients often ignore it in its early phases and therefore only seek

treatment when it has already developed. Therefore, early

diagnosis of PCa is crucial. Prostate-specific antigen (PSA)

testing, digital rectal examinations (DRE), and transrectal

ultrasonography (TRUS) guided prostate system biopsies are the

most used PCa screening methods in clinics (3, 4), but these

diagnostic tools may still lead to a certain degree of

overdiagnosis (5).

In the past decade, the role of MRI in the diagnosis of

prostate cancer stages has significantly developed. The

introduction of coil imaging in the rectum and the advent of

some basic techniques, such as magnetic resonance spectrum

imaging, dynamic contrast-enhanced MRI, and diffusion-

weighted imaging (DWI), have improved the diagnostic

accuracy of MRI and its potential to improve the treatment

decision-making process (6). However, it must be emphasized

that multiparametric magnetic resonance imaging (mpMRI) has

been evaluated only in patients in whom the risk of clinically

significant PCa was judged sufficiently high to warrant biopsy.

Therefore, a prebiopsy mpMRI must not be used as an initial

screening tool. Indeed, based on its low specificity, mpMRI in

very low-risk patients would result in an increase in false-
ancer; MRI, magnetic

; RF, random forest;

is algorithm; CAD,

R, senior radiologist;

ion operator; DWI,

curve; ROC, receiver

y; TRUS, transrectal

efficients; ROI, region
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positive findings and subsequent unnecessary biopsies (5).

Another classical imaging diagnosis of PCa has largely relied

on ultrasonography (US), including transrectal ultrasound

(TRUS), contrast-enhanced ultrasonography (7), and

ultrasound elastography (8). However, sonologists’ evaluations

of tumor tissue have primarily relied on semantic features from

the visual perspective, which is an approach that misses many

image features that represent tumor heterogeneity. Therefore,

early accurate diagnosis of prostate cancer remains a

clinical challenge.

As a new frontier, ML-based radiomics could extract many

quantitative features from encrypted digital images, which could

then be used to deeply mine the biological information of tumors

and analyze the heterogeneity of tumors, thus aiding clinical

decision making (9). However, it has been reported that the ML

ultrasound diagnostic model is rarely used to evaluate PCa

because prostate cancers located in the central zone are often

difficult to detect visually—they are confused with the

hypoechoic endoglandular background tissue. Plus, the

application of ML methods on prostate cancer prediction is

mostly based on static transrectal images, which cannot fully

display the patient's tissue information, meaning that the

application of ML methods for prostate cancer prediction

based on transrectal video clips remains problematic.

Accordingly, we adopted ML models based on whole

prostate transrectal ultrasound video clips on PCa prediction.

The ML algorithms were better at forming predictions because

they could use the ultrasound video clips to make a prediction

based on global information from whole prostate transrectal

tissue. To test the performance of the ML algorithms, we

compared their diagnostic results with radiologists’ diagnosis

based on MRI, finding that the SVM algorithm adopted in this

paper had better performance in terms of PCa prediction. In

addition, we creatively proposed a machine learning models

aided diagnosis algorithm (MLAD) to evaluate the performance

of ML models in computer-aided diagnosis (CAD).
Materials and methods

Local ethics committees approved the study (2022-YX-047).
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Study participants

We obtained the ultrasound video clips data from

Dongyang Hospital, which is affiliated with Wenzhou

Medical University. From January 2021 to December 2021,

we recruited 276 patients with PCa and 225 patients with

benign lesions of the prostate, which included benign prostatic

hyperplasia, fibromuscular tissue, atypical glandular tissue, and

chronic prostatitis.

The inclusion criteria were as follows: (a) was an elderly male

(aged above 55); (b) had solid prostate masses found by digital

rectal examination, TRUS, or MRI; (c) had undergone prostate

biopsy or surgery and obtained the pathological diagnosis

results; and (d) had not received treatment for prostate

diseases before TRUS. In addition, we excluded patients with

rectal malformation or rectal surgery who could not be

examined by transrectal ultrasound.

Finally, of the 231 patients—113 having PCa and 118 benign

lesions—we randomly selected 170 for the purpose of training
FIGURE 1

The flowchart of inclusion and exclusion of the study population.
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and validating anMLmodel, while using the remaining 61 to test

derived models. The processes underlying the inclusion and

exclusion of study participants are shown in Figure 1.
Video clips acquisition

We collected all ultrasound data related to the prostate

using the Esaote MyLab™ ClassC ultrasound machine (Esaote,

Genoa, Italy) with the TRT33 Transrectal Biplane Transducer

(frequency range 3–13MHz). Four sonologists, each with over

ten years of experience in transrectal ultrasound, performed all

ultrasound scans. First, they placed a condom on the TRT33

probe, then inserted it into the rectum, adjusted the probe

depth, and rotated the probe for multidirectional prostate

examination. Second, they scanned the entire transverse

section of the prostate grayscale ultrasound, before scanning

the prostate from top to bottom and storing 10 seconds of

video clips.
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Manual segmentation

For manual segmentation, we loaded the video clips into the

3D Slicer v.4.11. Two sonologists (S1 and S2, each with more

than five years of TRUS prostate diagnosis experience) manually

segmented the region of interest (ROI) from the prostate. They

were blinded to the MRI and pathological results. We drew the

entire prostate gland as an ROI from every video frame and used

intra- and inter-class correlation coefficients (ICCs) to evaluate

the reproducibility of radiomics feature extraction. First, S1 and

S2 separately segmented video clips of 30 randomly selected

patients, and then, two weeks later, S2 segmented images of the

30 patients once more. After that, S1 performed the remaining

video clip segmentation. We only included the features with an

ICC value equal to or higher than 0.8 that indicated excellent

reproducibility in the other feature selection process.
Feature extraction and selection

We performed extractions of radiomics features by using a

radiomics extension of a 3D Slicer software, SlicerRadomics

(Version 3.0.1) (10). For this, we extracted 851 radiomics

features from each patient, including shape features (14), first-

order statistical features (18), gray-level co-occurrence matrix

features (24), gray-level dependence matrix features (14), gray-

level run-length matrix features (16), gray-level size zone matrix

features (16), neighborhood gray-tone difference matrix features

(5), and wavelet-based features (744).

We performed feature selection using programs written

in Python (Version 3.8.8, Python Software Foundation). First,

according to pathological results, we divided all data into benign

and malignant groups and inserted labels 0 and 1 into the data.

Second, we used the two independent samples t-test and Mann-

WhitneyU test to test all the features, before deleting the features in

the benign and malignant groups that failed to meet either of the

first two tests. Third, the least absolute shrinkage and selection

operator (LASSO) regression selected features in the training and

validation set.Weexcluded the featureswithzerovarianceusing the

variance filtering method. Fourth, we performed the LASSO

method for further dimensionality reduction of the features and

selected the most valuable features (11). We then repeated the 10-

fold cross-validation on training and validation set process 100,000

times to obtain the optimal value of parameter l, which we

introduced into the LASSO method to calculate the regression

coefficients of each feature. Finally, we selected the features with

non-zero coefficients.
Machine learning

Python scikit-learn 0.24.2 package (12) was used to support

vector machine modeling and evaluation. We randomly divided
Frontiers in Oncology 04
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the training and validation set into the training set and the

validation set at a ratio of 8:2. First, we used a Gaussian kernel

support vector machine (SVM) model and a random forest (RF)

model to classify features in the training set and established two

nonlinear classifiers. In the SVM classifier, kernel size

parameters (g, gamma) and regularization parameters (C, cost)

of the SVM kernel function were optimized. We then selected

the parameters with the best performance through 10-fold cross-

validation on the training set. In the RF classifier, the number of

estimators (n_estimator) was optimized through 10-fold cross-

validation on the training set. Finally, we applied the SVMmodel

and RF model to the validation set and test set.
MRI results collection

Participants underwent prostate MRIs with a 1.5T Siemens

Magnetom Avanto magnetic resonance scanner (Erlangen,

Germany), including the standard T2-weighted MRI, T1-

weighted MRI, and diffusion-weighted MRI. We included the

MRI results of the validation and test set in the analysis. Two

junior radiologists (each with less than 5 years of experience) and

two senior radiologists (eachwithmore than10years of experience)

reviewed each case in order to provide an independent diagnosis.
Machine learning models aided
diagnosis algorithm

Using the SVM model and RF model, we can obtain the

probabilities of PCa separately. To evaluate the performance of

ML models in CAD, we proposed a machine learning models

aided diagnosis algorithm (MLAD) (Equation 1) which

integrates the prediction performance of SVM, RF, and

radiologists’ diagnosis. In this algorithm, we chose SVM as the

main model and RF as the sub model.

SSVM =   0:5 − PSVMj j
SRF =   0:5 − PRFj j

SMLAD =   SSVM0:5 *PSVM +   0:5−SSVM0:5 *  
SRF
0:5 *PRF +   0:5−SRF  0:5 *VR

� �
 

8>><
>>:

(1)

PSVM: probability of PCa from SVM model; PRF: probability

of PCa from RF model; VR: result value of PCa from radiologists’

diagnosis (0: benign, 1: malignant); SSVM: prediction confidence

score of SVM; SRF: prediction confidence score of RF
Statistical analysis

WeusedSPSS 25.0 software to conduct a statistical analysis and

tested the normality of continuous variables using the Levene test.

Weanalyzedcontinuous variables obeyinganormaldistributionby
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using the independent samples t-test and analyzed those not

obeying a normal distribution by using the Mann-Whitney U

test. We then compared categorical variables using the chi-square

test. Unless otherwise specified, we expressed the continuous

variables as median (standard deviation, SD) and the categorical

variables as n (%). We also evaluated the area under the curve

(AUC) as well as the sensitivity, specificity, and precision of the

SVMmodel and MRI in diagnosing prostate cancer by employing

receiver operator characteristic curve (ROC) analysis. P< 0.05

indicated a significant difference. The overall flowchart of the

study is outlined in Figure 2.

Results

Clinicopathological features of
the patients

The clinicopathological features in the training set,

validation set, and test set are shown in Table 1. The average

ages of patients in the training set, validation set, and test set

were 72.02, 71.21, and 69.64, respectively, while the respective

mean PSA values were 19.91, 22.77, and 46.98. The number of

benign lesions were 83 (48.8%), 15 (44.1%), and 30 (49.2%). The

number of PCa were 87 (51.2%), 19 (55.9%), and 31 (50.8%). We

found no significant differences between the validation and test

set in terms of age, PSA, or pathological results (p > 0.05).
Feature selection

From each patient, we extracted 851 features from the

ultrasound video clips using the LASSO regression model in
Frontiers in Oncology 05
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the training set. In the LASSO model, we repeated the 10-fold

cross-validation process 100,000 times in order to generate the

optimal penalization coefficient lambda (l).
Finally, we chose a l value of 0.029470517025518096. After

dimensionality reduction with LASSO regression, 14 features

were selected, consisting of original (3) and wavelet features (11).

The subset of features ultimately selected by the LASSO

algorithm is shown in Table 2. Figure 3, meanwhile, shows the

selection of significant parameters in features in the training set

and the definition of the linear predictor, while Figure 4 shows

the generation of the optimal penalization coefficient lambda.
Modeling and effectiveness

We first selected the SVM algorithm to establish the

radiomics model based on the selected 14 features.

Traditionally, the prediction performance has been optimized

for the following parameters: C, gamma, and the shape of the

kernel. We then constructed a pipeline with two steps: a scaling

step and an SVM step. It is best to scale data before passing them

to an SVM. Next, we varied the relevant RBF parameters, C and

gamma, logarithmically, varying by one order of magnitude at a

time. We used a 10-fold cross-validation scheme. Finally, we

identified the best SVM estimator (C=45.20, gamma=0.001) and

stored it as an SVM model. As with the SVM model, in the RF

algorithm, we varied the number of estimators by one order of

magnitude at a time in order to obtain the best RF model

(n_estimators=10000). The AUC, sensitivity, specificity, and

precision of the SVM and RF model in the diagnosis of PCa in

the validation set and the test set were as follows: (1) SVM

results: 0.78, 63% (95%CI: 0.38–0.83), 80% (95%CI: 0.51–0.95),
FIGURE 2

Overall flow chart of the study, including image acquisition and segmentation, feature extraction, feature selection, machine learning, and evaluation.
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80% (0.51–0.95); 0.75, 65% (95%CI: 0.45–0.80), 67% (95%CI:

0.47–0.82), 67% (95%CI: 0.47–0.82); (2) RF results: 0.77, 63%

(95%CI: 0.39–0.83), 87% (95%CI: 0.58–0.98), 86% (95%CI:

0.56–0.97); 0.69, 45% (95%CI: 0.28–0.64), 93% (95%CI: 0.76–

0.99), 88% (95%CI: 0.60–0.98). For comparison, two junior

radiologists (each with less than 5 years of experience) and

two senior radiologists (each with more than 10 years of

experience) respectively gave their independent diagnosis of

PCa based on MRI results. The AUC, sensitivity, specificity,

and precision of two radiologists in the diagnosis of PCa based

on MRI were as follows: (1) JR results: 0.65, 63% (95%CI: 0.39–

0.83), 67% (95%CI: 0.39–0.87), 71% (95%CI: 0.44–0.87); 0.65,

71% (95%CI: 0.52–0.85), 60% (95%CI: 0.41–0.77), 65% (95%CI:
Frontiers in Oncology 06
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0.46–0.80); (2) SR results: 0.75, 63% (95%CI: 0.39–0.83), 87%

(95%CI: 0.58–0.98), 86% (95%CI: 0.56–0.97); 0.72, 61% (95%CI:

0.42–0.78), 83% (95%CI: 0.65–0.93), 0.79 (95%CI: 0.57–0.92)

(Table 3). According to the statistical results, the SVM model

was superior to radiologists’ diagnosis based on MRI (AUC, 0.78

vs. 0.65/0.75 and 0.75 vs. 0.65/0.72) (Figure 5), and the results of

the SVMmodel and SR were statistically significant (p< 0.05). To

evaluate the performance of ML models in CAD, we integrated

the SVMmodel and RF model with JR and SR diagnosis through

MLAD separately (SVM+RF+JR and SVM+RF+SR). The AUC,

sensitivity, specificity, and precision of the MLAD model in the

diagnosis of PCa in the validation set and the test set were as

follows: (1) SVM+RF+JR: 0.8, 74% (95%CI: 0.49–0.90), 87%
TABLE 1 Characteristics of patients in the training, validation and test datasets.

Training set Validation set Test set P value

Age(y)* 72.02±8.721 71.21±6.246 69.64±8.262 0.161

PSA(ng/mL)* 19.91±44.56 22.77±65.51 46.98±114.89 0.065

Pathology 0.871

No.of Benign(-)(%) 83(48.8%) 15(44.1%) 30(49.2%)

BPH 68(40%) 13(38.3%) 25(41%)

BPH & prostatitis 11(6.4%) 1(2.9%) 3(4.9%)

BPH & BCH 1(0.6%) 0 2(3.2)

BPH & LGIN 3(1.8%) 1(2.9%) 0

No. of Pca(+)(%) 87(51.2%) 19(55.9%) 31(50.8%)

GS6 30(17,6%) 9(26.5%) 14(23%)

GS7 38(22.4%) 7(20.6%) 8(13.1%)

GS8 10(5.9%) 2(5.9%) 6(9.8%)

GS>=8 9(5.3%) 1(2.9%) 3(4.9%)
front
BPH, benign prostatic hyperplasia; BCH, basal cell hyperplasia; LGIN. low-grade intraepithelial neoplasia.
*Data are expressed as mean ± standard deviation.
p< 0.05 indicates significant differences in patients’ clinicopathological features in the validation and test sets.
TABLE 2 The subset of radiomics features ultimately selected by the LASSO algorithm.

Feature Image type Feature Class Feature Name LASSO coefficients

1 Original Firstorder Range 0.049561

2 Original glcm ClusterProminence 0.004193

3 Original glszm ZoneEntropy 0.011709

4 Wavelet-LHL firstorder Skewness -0.055034

5 Wavelet-LHL glcm ClusterShade -0.025479

6 Wavelet-LHL glcm Correlation 0.010685

7 Wavelet-LHH gldm LargeDependenceLowGrayLevelEmphasis 0.018646

8 Wavelet-HLL glszm GrayLevelNonUniformity -0.073279

9 Wavelet-HHH firstorder Median -0.050800

10 Wavelet-HHH glcm ClusterShade 0.025124

11 Wavelet-HHH gldm LargeDependenceLowGrayLevelEmphasis 0.039665

12 Wavelet-LLL glszm LargeAreaHighGrayLevelEmphasis -0.026230

13 Wavelet-LLL glszm SizeZoneNonUniformityNormalized 0.021580

14 Wavelet-LLL glszm SmallAreaHighGrayLevelEmphasis 0.056598
First-order features describe the distribution of voxel intensities within the image region defined by the mask through commonly used and basic metrics. GLCM features describe the
second-order joint probability function of an image region constrained by the mask. They are defined as P. GLDM features quantify gray-level dependencies in an image, and GLSZM
features quantify gray-level zones in an image.
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(95%CI: 0.58–0.98), 88% (95%CI: 0.60–0.98); 0.72, 68% (95%CI:

0.49, 0.83), 70% (95%CI: 0.50, 0.85), 70% (95%CI: 0.50, 0.85); (2)

SVM+RF+SR: 0.86, 74% (95%CI: 0.49–0.90), 93% (95%CI: 0.66–

0.99), 93% (95%CI: 0.66–0.99); 0.81, 81% (95%CI: 0.62, 0.92),

80% (95%CI: 0.61–0.92), 81% (95%CI: 0.62–0.92). According to

the statistical results, the MLAD model with senior radiologists’

diagnosis (SVM+RF+SR) was superior to senior radiologists’

diagnosis based on MRI and the SVM model (AUC, 0.85 vs.

0.75/0.78 and 0.81 vs. 0.72/0.75) (Figure 5), and the results were

statistically significant (p< 0.05). The results thus demonstrated

that the SVM model and RF model can improve the predictive

performance of PCa through MLAD.
Frontiers in Oncology 07
75
Discussion

ML-based radiomics transforms visual image information

into in-depth feature quantitative data, extracts a large amount

of image characteristic information from medical images, and

constructs pre-measurement models based on feature

information (13, 14). In this study, we carried out feature

extraction of the prostate creatively from ultrasound video

clips. The prediction model constructed by the ML algorithm

has good diagnostic efficiency in PCa, and, compared with the

SVM model with an MRI, the diagnostic efficiency is better and

has a more specific application value.
B

A

FIGURE 3

Selection of significant parameters in features in the training set and definition of the linear predictor. (A) Spearman’s correlation coefficients
were calculated for the fourteen selected features. (B) Characters classification weight of the features.
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TRUS is widely used in clinical practice because it is safe,

radiation-free, inexpensive, and easy to perform (15, 16). The

outline of the prostate is usually clearly displayed, and the

boundary between the isoechoic peripheral and hypoechoic

central zone is demarcated. Approximately 70% of PCa is located

in the peripheral area, and most PCa is hypoechoic. However,

tumors in the central location are often difficult to detect because

they are confused with the low-echoic endoglandular background

tissue. Thus, TRUS has only moderate accuracy in PCa detection in

the general population (17). Therefore, we used the video clips of

the prostate to serve as the feature extraction data in order to avoid

losing a key portion of the information.
Frontiers in Oncology 08
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By extracting high-throughput data and establishing an

efficient and stable prediction model, radiomics can provide an

auxiliary diagnosis for clinical practice. Features selection is the

key to ML research. However, data redundancy and over-fitting

will occur if the high-throughput feature extraction is not

selected (18–20). Jin et al. used the ML method to predict

lymph node metastasis of early cervical cancer and extracted

106 imaging omics features from lymph node ultrasound

images. Through a combination of LASSO and ridge

regression, they selected the key features from the high-

dimensional features to avoid overfitting. They then selected

six features for classification research, which represented the
BA

FIGURE 4

Generation of the optimal penalization coefficient lambda. (A) Ten-time cross-validation for tuning parameter selection in the LASSO model.
(B) LASSO coefficient solution path for the 14 features.
TABLE 3 Diagnostic performance of machine learning model and MRI on a per-lesion basis.

Dataset and Method Sensitivity (95% CI) Specificity (95% CI) Precision (95% CI) AUC P Value Kappa

SVM Model

Validation 0.63 (0.38-0.83) 0.80 (0.51-0.95) 0.80 (0.51-0.95) 0.78 0.012 0.42

Test 0.65 (0.45-0.80) 0.67 (0.47-0.82) 0.67 (0.47-0.82) 0.75 0.015 0.312

RF Model

Validation 0.63 (0.37-0.83) 0.87 (0.58-0.98) 0.86 (0.56-0.97) 0.77 0.003 0.481

Test 0.45 (0.28-0.64) 0.93 (0.76-0.99) 0.88 (0.60-0.98) 0.69 0.001 0.382

MRI-JR

Validation 0.63 (0.39-0.83) 0.67 (0.39-0.87) 0.71 (0.44-0.87) 0.65 0.084 0.294

Test 0.71 (0.52-0.85) 0.60 (0.41-0.77) 0.65 (0.46-0.80) 0.65 0.015 0.31

MRI-SR

Validation 0.63 (0.39-0.83) 0.87 (0.58-0.98) 0.86 (0.56-0.97) 0.75 0.003 0.481

Test 0.61 (0.42-0.78) 0.83 (0.65-0.93) 0.79 (0.57-0.92) 0.72 0.0003 0.445

SVM+RF+JR

Validation 0.74 (0.49-0.90) 0.87 (0.58-0.98) 0.88 (0.60-0.98) 0.8 0.000464 0.591

Test 0.68 (0.49-0.83) 0.70 (0.50-0.85) 0.70 (0.50-0.85) 0.72 0.003 0.377

SVM+RF+SR

Validation 0.74 (0.49-0.90) 0.93 (0.66-0.99) 0.93 (0.66-0.99) 0.85 0.00009 0.652

Test 0.81 (0.62-0.92) 0.80 (0.61-0.92) 0.81 (0.62-0.92) 0.81 0.000002 0.606
frontie
SVM model, support vector machine model; RF model, random forest model; MRI-JR, junior radiologists’ (less than 5 years of experience) diagnosis based on MRI; MRI-SR, senior
radiologists’ (more than 5 years of experience) diagnosis based on MRI. p< 0.05 indicates a significant difference in the discrimination of the SVM model and MRI diagnosis.
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texture complexity of tumors and correlated with the high

degree of tumor heterogeneity (21). By contrast, in our study,

we extracted a total of 851 features. We used the LASSO

algorithm to filter all the features and retained only the 14

non-zero features with a solid correlation with PCa. The results

show that the AUC of the prediction model in the PCa of the

training set, validation set, and test set were respectively 0.82,

0.78, and 0.75. The difference was not statistically significant (p

>0.05) and it has been shown that the feature selection method

used in this study can effectively restrain data overfitting.

Out of 14 selected image omics features (22), one was taken

from the first-order range, i.e., the range of gray values in the

ROI; one was from the gray-level co-occurrence matrix (GLCM),

which describes the second-order joint probability function of

an image region constrained by the mask; one was from the

gray-level size zone matrix (GLSZM), which quantifies gray level

zones in an image; and the remaining 11 were taken from

wavelet (23), subsets of texture features. Among the selected

radiomics features, texture features based on wavelet account for

the majority, which indicates that texture features have a good

classification function. Furthermore, they are related to the

composition of heterogeneous cells with noticeable molecular

and microenvironmental differences in malignant tumors,

indicating that the texture characteristics of tumors are highly

correlated with heterogeneity (21).

The commonly used modeling methods of radiomics are

mainly divided into statistical and ML-based methods. ML

approaches are then typically subdivided into supervised and

unsupervised learning, with SVM and RF being the most widely

used approaches in supervised learning (24–28). Previous

literature has reported that both SVM and RF show good

stability. Specifically, SVM and RF show good diagnostic

efficiency in constructing a small sample prediction model

(29). The basic principle of SVM is to divide a hyperplane into

a given training queue space to distinguish different types of

samples (30). In this study, we used SVM and RF to construct a
Frontiers in Oncology 09
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radiomics prediction model. The AUC of SVM in the validation

and test set was 0.78 and 0.75, respectively, showing that the

model had high diagnostic efficiency and stability.

To evaluate the diagnostic efficacy of the ML prediction

SVM model in PCa, we compared the SVM model with MRI

diagnosis. In Rosenkrantz et al.’s study, it was reported that the

sensitivity, specificity, and precision of PCa detection using a

fusion of T2-weighted images and diffusion-weighted images

were 60.8%, 80.3%, and 71.0%, respectively (31). The results of

Katahira et al.’s study, meanwhile, which used T2WI and DWI

to detect prostate cancer, showed that the sensitivity, specificity,

and AUC were 61.2%, 82.6%, and 0.755, respectively (32). In our

study, the AUC, sensitivity, specificity, and precision of two

radiologists in the diagnosis of PCa based on MRI were 0.65/

0.75, 63%/63%, 67%/87%, 71%/86%; 0.65/0.72, 71%/61%, 60%/

83%, 65%/79% (the former is the diagnosis results of JR, and the

latter is the diagnosis results of SR). The diagnostic power of

MRIs in this study was similar to that observed in previous

studies. The results show that the SVM model had higher

diagnostic efficiency than a diagnosis based on MRI (AUC,

0.78 vs. 0.65/0.75 and 0.75 vs. 0.65/0.72). In the extended

experiment, the MLAD model with SR diagnosis (SVM+RF

+SR) showed the best performance in statistics, which means

the SVM model and RF model can improve radiologists’

diagnosis performance.

In spite of its findings, it must be acknowledged that this

study suffers from some limitations. The most obvious limitation

is that it was a retrospective study with a small sample size,

limiting its power and precluding firm statistical conclusions.

For example, the CI of AUC sensitivity, specificity, and precision

has a large range. The second limitation is that it was a single-

center study, and thus we cannot exclude single-centered effects.

Finally, we carried out ROI segmentation manually, which is

inefficient and may lead to bias among different delineators, thus

resulting in the reduced diagnostic capability of the prediction

model. Although the radiomics model performed well in this
BA

FIGURE 5

Comparison of ROC between the ML models and MRI in the validation set and test set. (A) shows the ROC curves of the validation set. (B) shows
the ROC curves of the test set. (MRI-JR: junior radiologists’ diagnosis based on MRI, MRI-SR: senior radiologists’ diagnosis based on MRI).
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study, future studies must combine clinical factors closely related

to PCa to build a more robust model.

It is rare to use the ML ultrasound diagnostic model to

evaluate PCa. Therefore, we aimed to build an ultrasound

diagnostic prediction model based on ML to provide a solid

theoretical basis for the accurate and individualized treatment

of PCa.
Conclusions

In our study, we innovatively used ultrasound video clips

instead of images to form a dataset on which we could build an

ML model. The ML-based prediction models have good

diagnostic efficiency in PCa. In the SVM model, the precision,

sensitivity, and specificity are better than that seen in diagnosis

based on MRI. Thus, based on our MLAD, the SVM model and

RF model can contribute to improve radiologists’ diagnosis

performance based on MRI; indeed, the MLAD model in

conjunction with senior radiologists’ diagnosis shows the best

performance among all models. In our future work, we intend to

combine the ultrasound transverse and longitudinal video clips

of the prostate to build a better ML model and use deep learning

and neural networks in the ultrasonic diagnosis of prostate

cancer. The model developed in our study could contribute to

reducing barriers and providing a convenient way for

community hospitals to improve PCa diagnosis.
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meta-analysis

Hao Zhang, Hanqi Lei and Jun Pang*

Department of Urology, Kidney and Urology Center, Pelvic Floor Disorders Center, The Seventh
Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
Objectives: (1) To assess the methodological quality and risk of bias of

radiomics studies investigating the diagnostic performance in adrenal masses

and (2) to determine the potential diagnostic value of radiomics in adrenal

tumors by quantitative analysis.

Methods: PubMed, Embase, Web of Science, and Cochrane Library databases

were searched for eligible literature. Methodological quality and risk of bias in the

included studies were assessed by the Quality Assessment of Diagnostic Accuracy

Studies 2 (QUADAS-2) and Radiomics Quality Score (RQS). The diagnostic

performance was evaluated by pooled sensitivity, specificity, diagnostic odds

ratio (DOR), and area under the curve (AUC). Spearman’s correlation coefficient

and subgroup analysis were used to investigate the cause of heterogeneity.

Publication bias was examined using the Deeks’ funnel plot.

Results: Twenty-eight studies investigating the diagnostic performance of

radiomics in adrenal tumors were identified, with a total of 3579 samples.

The average RQS was 5.11 (14.2% of total) with an acceptable inter-rater

agreement (ICC 0.94, 95% CI 0.93–0.95). The risk of bias was moderate

according to the result of QUADAS-2. Nine studies investigating the use of

CT-based radiomics in differentiating malignant from benign adrenal tumors

were included in the quantitative analysis. The pooled sensitivity, specificity,

DOR and AUC with 95% confidence intervals were 0.80 (0.68-0.88), 0.83

(0.73-0.90), 19.06 (7.87-46.19) and 0.88 (0.85–0.91), respectively. There was

significant heterogeneity among the included studies but no threshold effect in

themeta-analysis. The result of subgroup analysis demonstrated that radiomics

based on unenhanced and contrast-enhanced CT possessed higher diagnostic

performance, and second-order or higher-order features could enhance the

diagnostic sensitivity but also increase the false positive rate. No significant

difference in diagnostic ability was observed between studies with machine

learning and those without.

Conclusions: The methodological quality and risk of bias of studies

investigating the diagnostic performance of radiomics in adrenal tumors

should be further improved in the future. CT-based radiomics has the
frontiersin.org01
80

https://www.frontiersin.org/articles/10.3389/fonc.2022.975183/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.975183/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.975183/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.975183/full
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2022.975183&domain=pdf&date_stamp=2022-09-02
mailto:pangjun2@mail.sysu.edu.cn
https://doi.org/10.3389/fonc.2022.975183
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2022.975183
https://www.frontiersin.org/journals/oncology


Zhang et al. 10.3389/fonc.2022.975183

Frontiers in Oncology
potential benefits in differentiating malignant from benign adrenal tumors. The

heterogeneity between the included studies was a major limitation to obtaining

more accurate conclusions.

Systematic Review Registration: https://www.crd.york.ac.uk/PROSPERO/

CRD 42022331999 .
KEYWORDS

adrenal tumor, radiomics, machine learning, diagnostic performance, radiomics
quality score
Introduction

Due to the increasing use of abdominal imaging, the

discovery of adrenal incidentalomas has kept rising. It is

reported that adrenal incidentalomas account for 4-5% of

patients without malignancy (1). Although most adrenal

masses are benign and non-functional, their functional status

and malignant potential should be evaluated when they are

detected, according to the latest recommendations (2). However,

it is challenging for radiologists to accurately diagnose adrenal

masses via conventional imaging assessments (3, 4). To begin,

imaging features of pitfalls and mimics that are related to various

abnormalities and aberrant appearances may potentially lead to

misdiagnosis (3). For example, large adenomas usually present

as heterogeneous masses on computed tomography (CT) images

can not be easily differentiated from adrenocortical carcinoma

visually (5, 6). Secondly, conventional imaging assessments

depend largely on the experience and knowledge level of the

radiologist. Consequently, exploring better approaches to

improve the diagnostic value of adrenal imaging is crucial,

considering that inappropriate diagnosis can lead to increased

treatment costs or unnecessary examination (7).

Radiomics, first pioneered by Philippe Lambin, generally aims

to extract quantitative and reproducible data that are

imperceptible to the human eye from biomedical images for a

series of medical purposes (8, 9). Extracted features, divided into

shape-based, first-, second-, and higher-order statistics, can be

translated into high-throughput and quantitative data for analysis

(10, 11). The features that contribute the most to the objective will

be selected for constructing the model via statistical approaches

and artificial intelligence. Furthermore, radiomics features may

achieve complementarity and improve accuracy when combined

with clinically acquired, treatment-related, and genomic data (12).

As artificial intelligence advances by leaps and bounds, radiomics

has been extensively tested and applied in various aspects of

oncology, including diagnosis, classification, and prognosis

prediction (10). Recently, an increasing number of studies also

established that radiomics could offer a risk-free and efficient
02
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method to increase the value of diagnostic imaging of adrenal

masses. Nakajo et al. investigated the diagnostic performance of

standardized uptake value (SUV)-related and texture parameters

of F-18-fluorodeoxyglucose positron emission tomography/

computedtomography (FDG PET/CT) between benign and

metastatic adrenal tumors (13). In one study, texture analysis

was applied to evaluate CT-abnormal adrenal glands in order to

differentiate between malignant and benign tumors in patients

with lung cancer (14). Moreover, Kong et al. designed a radiomic-

based nomogram for pheochromocytoma diagnosis and achieved

robust performance (15).

Although radiomics offers a relatively objective and

quantitative diagnostic pattern, it is also subjected to data

collection, radiomics characteristics processing, and modeling

methods. Considering that the quality and results of published

studies are mixed, diagnostic performance and feasibility of

radiomics in adrenal masses remain elusive. Hence, the aim of

the present review was to assess the methodological quality and risk

of bias of radiomics studies investigating diagnostic performance in

adrenal masses and to determine the potential diagnostic value of

radiomics in adrenal tumors by quantitative analysis.
Materials and methods

This review followed the Cochrane Handbook for Systematic

Reviews of Interventions and was conducted in accordance with

the PRISMA-DTA (Preferred Reporting Items for Systematic

Reviews and Meta-analysis for Diagnostic Test Accuracy)

statement (16, 17). The protocol of this review is available

through PROSPERO (CRD 42022331999).
Literature search

PubMed, Embase, Web of Science, and Cochrane Library

databases were searched by two independent observers to

identify eligible studies in May 2022. Additionally, the
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reference lists of the included studies were manually searched for

studies that might meet the inclusion criteria.
Study selection

The titles and abstracts of potentially relevant studies were

screened by two reviewers (HZ and HL) independently. Then,

the same two reviewers analyzed the full texts of eligible studies

and determined the pieces of literature that met the inclusion

criteria. Discrepancies between the two investigators were

resolved by consensus with a third reviewer (JP).

All single, comparative studies, and primary studies that met

the following PICO criteria were selected:
Fron
P (patients): Patients with benign or malign adrenal tumors;

I (interventions): Radiomics or texture analysis;

C (comparison): Standard-of-care imaging including

computed tomography (CT) and magnetic resonance

imaging (MRI), and positron emission tomography/

computedtomography (PET/CT);

O (outcome): Histologic typing (including differentiation

between different adrenal masses and differentiation

between benign and malign adrenal tumors).
The exclusion criteria were as follows: (a) letters, reviews,

editorials, expert opinions, case reports, meeting abstracts and

comments; (b) non-human research; (c) the study was not

written in English. The full search terms are outlined in Table S1.
Quality assessment

The Radiomics Quality Score (RQS) and Quality Assessment

of Diagnostic Accuracy Studies 2 (QUADAS-2) tools were utilized

to assess the methodological quality and risk of bias of the included

studies, respectively (18, 19). RQS comprises a total of 16 criteria,

and the score of each item corresponds to the importance of the

methodological quality of the study. The total score ranges from -8

to +36 points, with -8 to 0 points defined as 0% and 36 as 100%

(16). The QUADAS-2 tool includes four evaluation criteria: (a)

patient selection; (b) index test; (c) reference standard; and (d) flow

and timing. Two independent reviewers (HZ and HL) performed

the quality assessment, and disagreements between the two

reviewers were resolved by consensus with a third reviewer (JP).
Meta-analysis

A meta-analysis may be performed only when a sufficient

number of studies attempt to answer a similar question. In this

study, we performed a meta-analysis of all studies investigating

the diagnostic performance of CT-based radiomics between
tiers in Oncology 03
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malign and benign adrenal tumors. Data from all the eligible

studies were extracted by two independent reviewers (HZ and

HL). Discrepancies were resolved by consensus with a third

reviewer (JP). Only studies from which a two-by-two

contingency table could be extracted or reconstructed were

included. If there were multiple models in the study, only the

one with the highest area under the curve (AUC) was extracted.

Moreover, the data from the model with the highest Youden’s

Index was selected if AUC was not reported. When multiple

publications were from the same research, only the study with

the higher methodological quality was included.
Statistical analysis

Pooled sensitivity, specificity, diagnostic odds ratio (DOR),

positive likelihood ratio (PLR), and negative likelihood ratio (NLR)

with 95% confidence intervals (CIs) were employed to quantify the

diagnostic performance. In addition, diagnostic accuracy was

outlined by the summary receiver operating characteristic curve

(SROC) and area under the curve (AUC). The heterogeneity of

studies was assessed by calculating the I 2 index, where an I 2 value

of 0–25% represents insignificant heterogeneity, >25–50%

indicates low heterogeneity, >50–75% indicates moderate

heterogeneity, and >75% indicates high heterogeneity (20). A p <

0.05 was considered statistically significant. A random-effects

model was employed to evaluate effect size and pool studies.

Forest plots were constructed for visualization of the results.

Spearman’s correlation coefficient was used to assess the

threshold effect between sensitivity logit and (1-specificity) logit.

In order to investigate the source of heterogeneity, a subgroup

analysis was also conducted with the following covariates: (a) CT

Type; (b) CT Feature Type; (c) Machine Learning; (d) Reference.

The sensitivity analysis was performed by eliminating the included

studies one after another. Publication bias was explored using the

Deeks’ funnel plot, and statistical significance was assessed by

Deeks’ asymmetry test. Clinical utility was examined using a Fagan

plot, which provided the posttest probability when pretest

probabilities were calculated (21).

Stata software (Stata Corporation, College Station, TX, USA,

version 16.0) and the Open Meta-analyst (a completely open-

source, cross-platform software) were used to conduct the meta-

analysis. The interclass correlation coefficient (ICC), which

described inter-rater agreement for the RQS and QUADAS-2

and Spearman’s correlation coefficient, was determined by SPSS

software (IBM, Armonk, NY, USA, version 25.0).

Results

Included studies

The PRISMA flow-chart of the literature search of this

systematic review and meta-analysis is presented in Figure 1.
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613 studies were screened following the removal of 316 duplicate

records. Then, 574 articles were excluded by evaluating the

abstract and title. After thoroughly screening the full-text, 3

studies were excluded for being reviews or meta-analyses; 6 for

being meeting abstracts; one for being a letter; and one for being

in a non-English language. Eventually, 28 studies were enrolled

in this research. Table 1 summarizes the characteristics of the

included studies.

All 28 studies were retrospective cohort studies, and the

sample size (number of lesions) ranged from 19 to 377. Most

objectives of the included studies were differentiation between

benign and malignant adrenal neoplasms by radiomics, followed

by the differentiation between pheochromocytoma and

adenoma. Other studies distinguished adrenal adenomas from

non-adenomas or identified subtypes of adrenal adenomas. The

majority of studies focused on the diagnostic performance of

radiomics using CT imaging (n=19), while a quarter was based

on magnetic resonance imaging (n=7). Additionally, one study

explored the use of radiomics based on a combination of CT and

MR and one based on FDG PET/CT. More than 78% (22/28) of

studies used manual segmentation. Radiomics feature types used

by different studies varied. Interestingly, over half of the included

studies (n=17) extracted second or higher-order features for

analyses. As for the modeling method, 12 studies conducted

logistic regression, eight studies did not provide relevant

information and the remainder employed other algorithms

such as support vector machine, random forest, extra trees
Frontiers in Oncology 04
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classifier and so forth. More than half studies utilized

histopathology as the gold reference (n=15). Ten studies

combined histopathology and follow-up imaging. Two articles

exclusively considered clinical and imaging follow-ups, and one

study failed to report the reference standard. Outcomes of the

included studies are summarized in Table 2.
Data quality assessment

The included studies achieved an mean ± standard deviation

RQS of 5.11 ± 7.70, a median of 3.5, interquartile range 14, and a

range of -5 to 25. The mean RQS proportion was 14.2%, with a

maximum of 69.4%. The mode scores for the 16 dimensions are

summarized in Table 3. The individual scores of each study and

final scores of RQS are presented in Tables S2 and

S3, respectively.

The majority of studies provided details about the imaging

scheme, applied discrimination statistics and achieved their

potential clinical utility. Conversely, none of the included

studies employed phantoms, considered biological correlates

or assessed the repeatability of radiomics analysis at multiple

time points. Moreover, feature reduction or adjustment of

multiple tests were performed in 16/28 (57%) studies, and

non-radiomics features were applied in 3/28 (11%) studies.

Only a few studies conducted model calibration, assessed the

cost-effectiveness and publicly shared segmentations or code.
FIGURE 1

Flow diagram of study selection.
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TABLE 1 Characteristics of the included studies.

Study ID Ref Study Diagnostic Subject Sample Image Modality Segmentation Method Feature Extraction Features Type Modeling method Reference Standard Validation

igher-order Binary logistic regression Histopathology NR

-order and Support vector machine, radial

basis function network (ML)

Histopathology Internal

validation

-order and Logistic regression, boruta

random forest

Histopathology Internal

validation

-order and Logistic regression Histopathology NR

-order,

higher-

Logistic regression Histopathology Internal and

external

validation

-order,

higher-

Bounded particle swarm

optimisation-neural network

NR Internal

validation

Bayesian spatial gaussian

process classifier

Histopathology NR

Support vector machine (ML) Histopathology Internal

validation

NR Clinical and imaging follow-ups NR

-order,

higher-

Random forest (ML) Histopathology Internal

validation

NR Histopathology or follow-up

imaging

NR

econd-order J48 classifier, Weka software

(ML)

Histopathology Internal

validation

Logistic regression Histopathology or follow-up

imaging

NR

igher-order Logistic regression, support

vector machin (ML)

Histopathology or follow-up

imaging

Internal

validation

econd-order Logistic regression Histopathology Internal

validation

-order,

higher-

Extra trees classifier (ML) Histopathology or follow-up

imaging

Internal

validation
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Design Size (Software/Algorithm)

Andersen

et al. (2021)

(14) Retrospective Adrenal metastases/Benign lesions 160 Contrast-enhanced CT Semi-automatic (Philips

Intellispace Tumor

Tracking)

TexRAD First-order and h

Chai et al.

(2017)

(22) Retrospective Aldosterone-producing adenomas/

Pheochromocytomas/Cushing adenomas

218 Unenhanced

and contrast-enhanced CT

Automatic (Multiscale

sparse representations)

NR Shape-based, firs

second-order

Elmohr

et al. (2019)

(23) Retrospective Adrenocortical carcinomas/Adrenocortical

adenomas

54 Unenhanced

and contrast-

enhanced CT

Manual (Amira Software) PyRadiomics Shape-based, firs

second-order

Ho et al.

(2019)

(24) Retrospective Adrenal malignancy/Lipid-poor adenoma 23 Unenhanced and contrast-enhanced CT,

MRI 3T or 1,5T T1 in- and opposed-phase

Manual (Seg3D) Lesion Tool (software

developed by the

authors)

Shape-based, firs

second-order

Kong et al.

(2022)

(15) Retrospective Pheochromocytoma/Other adrenal lesions 309 MRI 3T T2w Semi-automatic (3D Slicer) 3D Slicer Shape-based, firs

second-order and

order

Koyuncu

et al. (2019)

(25) Retrospective Adrenal malignant/Benign lesions 114 Contrast-enhanced CT Semi-automatic

(AbSeg)

MATLAB Shape-based, firs

second-order and

order

Li et al.

(2018)

(26) Retrospective Adrenal malignant/Benign lesions 210 Unenhanced and contrast-enhanced CT Manual (NR) NR Second-order

Liu et al.

(2021)

(27) Retrospective Adrenal Adenoma/Pheochromocytoma 60 MRI 3T T1 in- and opposed-phase, T2w Manual (Mazda) MaZda First-order

Nakajo et al.

(2017)

(13) Retrospective Adrenal metastases/Benign lesions 35 FDG PET/CT Semi-automatic (Advantage

Windows Workstation)

Python First-order

Moawad

et al. (2021)

(28) Retrospective Adrenal malignant/Benign lesions 40 Unenhanced and contrast-enhanced CT Manual (Amira Software) PyRadiomics Shape-based, firs

second-order and

order

Rocha et al.

(2018)

(29) Retrospective Adrenal adenomas/Malignant lesions 108 Unenhanced CT Manual (OsiriX Software) OsiriX First-order

Romeo et al.

(2018)

(30) Retrospective Lipid-rich/Lipid-poor/Nonadenoma

adrenal lesions

60 MRI 3T T1w, T2w Manual (ITK-SNAP) 3D Slicer First-order and s

Schieda

et al. (2017)

(31) Retrospective Adrenal metastases/Adrenal adenoma 44 MRI 1.5T or 3T T1 in- and opposed-phase,

T2w, GRE

Manual (Image J) Image J First-order

Shi et al.

(2019)

(32) Retrospective Adrenal metastases/Benign lesions 265 Unenhanced and contrast-enhanced CT Manual (NR) TexRAD First-order and h

Shoemaker

et al. (2018)

(33) Retrospective Adrenal malignant/Benign lesions; Adrenal

functioning/Non-functioning lesions

377 Unenhanced CT NR NR First-order and s

Stanzione

et al. (2021)

(34) Retrospective Adrenal malignant/Benign lesions 55 MRI 3T T1w, T2w Manual (ITK-SNAP) PyRadiomics Shape-based, firs

second-order and

order
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TABLE 1 Continued

Study ID Ref Study

Design

Diagnostic Subject Sample

Size

Image Modality Segmentation Method

(Software/Algorithm)

Feature Extraction Features Type Modeling method Reference Standard Validation

Manual (Advantage

Windows workstation)

“Volume Histogram”

tool

First-order NR Histopathology NR

Manual (PMOD) PMOD First-order and second-order K-means clustering technique

(ML)

Histopathology or follow-up

imaging

NR

Manual (ImageJ) Image J First-order Logistic regression Previously described imaging

thresholds or follow-up imaging

NR

Manual (Image J) Image J First-order Logistic regression Histopathology or follow-up

imaging

Internal

validation

Manual (Advantage

Windows workstation)

“Volume Histogram”

tool

First-order NR Histopathology or follow-up

imaging

NR

Manual (Synapse Vincent

software)

Synapse Vincent software First-order NR Histopathology or follow-up

imaging

NR

Manual (PACS software) PACS software First-order NR Histopathology or follow-up

imaging

NR

Manual (MaZda) MaZda First-order, second-order and

higher-order

Logistic regression (ML) Histopathology NR

Manual (MaZda) MaZda First-order, second-order and

higher-order

Lasso, logistic regression Histopathology Internal

validation

Manual (TexRAD) TexRAD First-order and higher-order NR Histopathology or follow-up

imaging

NR

Manual (TexRAD) TexRAD First-order and higher-order NR Histopathology NR

Manual (ITK-SNAP) NR Shape-based, first-order Lasso, logistic regression (ML) Histopathology Internal

validation
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Szász et al.

(2020)

(35) Retrospective Adrenal adenomas/Non-adenomas 233 Unenhanced CT

Torresan

et al. (2021)

(36) Retrospective Adrenocortical carcinomas/Adenoma 19 Unenhanced and contrast-enhanced CT

Tu et al.

(2018)

(37) Retrospective Adrenal metastases/Adenomas 76 Contrast-enhanced CT

Tu et al.

(2020)

(38) Retrospective Adrenal Metastases/Lipid-poor adenomas 63 MRI 1.5T or 3T T1w, T2w, GRE

Tüdös et al.

(2019)

(39) Retrospective Adrenal lipid-poor adenomas/Non-

adenomas

163 Unenhanced CT

Umanodan

et al. (2017)

(40) Retrospective Pheochromocytomas/Adrenal adenomas 52 MRI 3T ADC

Wu et al.

(2020)

(41) Retrospective Adrenal adenoma/Nonadenoma 94 Unenhanced CT

Yi et al.

(2018)

(42) Retrospective Pheochromocytomas/Adrenal lipid-poor

adenomas

110 Unenhanced CT

Yi et al.

(2018) (2)

(43) Retrospective Pheochromocytoma/Adrenal lipid-poor

adenoma

265 Unenhanced and contrast-enhanced CT

Yu et al.

(2020)

(44) Retrospective Adrenal malignant/Benign lesions 125 Contrast-enhanced CT

Zhang et al.

(2017)

(45) Retrospective Pheochromocytomas/Lipid-poor

adrenocortical adenoma

164 Unenhanced and contrast-enhanced CT

Zheng et al.

(2020)

(46) Retrospective Aldosterone-producing/Cortisol-producing

functional adrenocortical adenomas

83 Unenhanced and contrast-enhanced CT

Ref, reference; NR, not report; ML, machine learning; PACS, picture archiving and communication system.
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The inter-reader agreement was found to be moderate to

excellent for radiomics features in 39% (11/28) of the included

studies. Nevertheless, validation of more than half of the

included studies was missing (15/28, 50%). Only one study

(28) compared the diagnostic performance of the classifier

with an expert radiologist, but no significant differences were

noted. In general, the quality of included articles was acceptable,

and the assessment of the risk of bias and applicability of the 28

included studies are illustrated in Figure 2. The detail of the

individual and final evaluation of the risk of bias and

applicability concerns are presented in Tables S4 and

S5, respectively.

Inter-rater agreements of RQS and QUADAS-2 were also

assessed by the ICC. The ICC for the RQS was 0.94 (95% CI

0.93–0.95). Six criteria of RQS reached a moderate agreement,

while ten items achieved substantial or almost perfect agreement

(Table 4). The ICC for the QUADAS-2 was 0.96 (95% CI 0.95–

0.97). Except for two dimensions reaching a moderate

agreement, the others exceeded 75% agreement (Table 5).
Frontiers in Oncology 07
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Meta-analysis

We performed a meta-analysis investigating the use of CT-

based radiomics in differentiating malignant from benign

adrenal tumors and enrolled nine eligible studies, from which

a two-by-two contingency table could be extracted or

reconstructed. As shown in Table 6, the mean values and 95%

CIs of the pooled sensitivity, specificity, PLR, NLR, and DOR for

the radiomics signature based on CT in differentiating malignant

adrenal tumors from benign tumors were 0.80 (0.68-0.88), 0.83

(0.73-0.90), 4.70 (2.80-8.00), 0.25 (0.15-0.41) and 19.06 (7.87-

46.19) respectively. The summary receiver operating

characteristic curve showed an overall pooled AUC of 0.88

(95% CI 0.85–0.91) (Figure 3). Significant heterogeneity in

sensitivity (I 2 = 87.09%) and specificity (I 2 = 72.1%) were

noted, as depicted in Figure 4. Consequently, diagnostic

threshold analysis was carried out, which revealed that there

was no threshold effect, given that the Spearman’s correlation

coefficient was -0.036 and the p-value was 0.932. In order to
TABLE 2 Outcomes of the included studies.

Study ID P N TP FP TN FN Sensitivity, % Specificity, % Accuracy, % AUC 95%CI

Andersen et al. (2021) 71 89 41 20 69 30 58 77 68 0.730 –

Chai et al. (2017) – – – – – – – – 81.8 ~ 95.4 – –

Elmohr et al. (2019) – – – – – – 81 83 82 0.890 –

Ho et al. (2019) 8 15 – – – – – – 80 – –

Kong et al. (2022) – – – – – – 85.7 75 84 0.906 0.841-0.971

Koyuncu et al. (2019) 12 45 9 8 37 3 75 82.2 80.7 0.786 –

Li et al. (2018) 96 114 91 37 77 5 94.8 67.5 80 – –

Liu et al. (2021) – – – – – – – – 85 0.917 –

Nakajo et al. (2017) 22 13 22 2 11 0 100 84.6 94.3 0.970 0.840-0.990

Moawad et al. (2021) 19 21 16 6 15 3 84.2 71.4 77.5 0.850 –

Rocha et al. (2018) 88 20 77 1 19 11 87.5 95 88.9 – –

Romeo et al. (2018) – – – – – – – – 80 – –

Schieda et al. (2017) 15 29 14 4 25 1 93.3 86.2 88.6 0.970 0.930-1.000

Shi et al. (2019) 101 164 78 37 127 23 77 77 77.4 0.850 0.800-0.890

Shoemaker et al. (2018) – – – – – – – – – 0.780~1.000 –

Stanzione et al. (2021) 18 37 – – – – – – 0.91 0.970 0.870-1.000

Szász et al. (2020) 123 110 – – – – – – – 0.919 –

Torresan et al. (2021) 8 10 7 1 9 1 87.5 90 88.9 – –

Tu et al. (2018) 40 36 19 9 27 21 47.5 75 60.5 0.650 0.520-0.770

Tu et al. (2020) 40 23 30 0 23 10 75 100 84.1 0.950 0.910-0.990

Tüdös et al. (2019) 83 80 44 1 79 39 53 98.8 75.5 – –

Umanodan et al. (2017) 39 13 37 1 12 2 94.9 92.3 94.2 0.920 –

Wu et al. (2020) 58 36 51 16 20 7 87.9 55.6 75.5 0.740 –

Yi et al. (2018) 29 79 25 2 77 4 86.2 97.5 94.4 0.952 0.897-1.000

Yi et al. (2018) (2) 67 145 64 14 131 3 95.5 90.3 92 0.957 –

Yu et al. (2020) 81 44 66 0 44 15 81 100 88 0.970 0.940-0.990

Zhang et al. (2017) 98 66 78 11 55 20 79.6 83.3 81.1 0.860 0.810-0.910

Zheng et al. (2020) – – – – – – 91.5 92.8 92.2 0.902 0.822-0.982
fron
P,condition positive; N, condition negative; TP, true positive; FP, false positive; TN, true negative; FN, false negative; AUC, area under the receiver operating characteristic; CI, confidence interval.
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further explore the cause of heterogeneity, subgroup analysis was

also performed, as outlined in Table 6.

Four studies with radiomics based on unenhanced and

contrast-enhanced CT demonstrated higher sensitivity (0.87

vs. 0.66) but lower specificity (0.74 vs. 0.80) than studies using

only contrast-enhanced CT. Studies (n=2) that only included

first-order features had lower sensitivity (0.72 vs. 0.81) but

higher specificity (0.86 vs. 0.77) compared to those that

combined with second-order or higher-order features.

Interestingly, the studies (n=3) that applied machine learning

gained equivalent sensitivity (0.79 vs. 0.78) as well as specificity

(0.77 vs. 0.79) compared to those did not use (n=6). Four studies

that considered histopathology or follow-up imaging as a

reference had higher specificity (0.91 vs. 0.72) and equivalent

sensitivity (0.82 vs. 0.83) than studies (n=3) using only

histopathology. The corresponding forest plots for sensitivity

and specificity are delineated in Figures S1–S4.
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As shown in Table S6, we can hardly identify significant

changes in the pooled effect value when eliminating studies one

by one. There was no publication bias based on the Deeks’ funnel

plot (p=0.77), as presented in Figure 5. Furthermore, the clinical

utility was also evaluated using a Fagan plot. Using a CT-based

radiomics model would increase the posttest probability to 54%

from 20% with a PLR of 5 when the pretest was positive and

reduce the posttest probability to 6% with an NLR of 0.25 when

the pretest was negative, as depicted in Figure S5.
Discussion

Radiomics has recently attracted the attention of oncology

researchers, given that it can noninvasively and effectively reflect

tumor heterogeneity, treatment response, prognosis, and other

information (47–49). Published studies involving radiomics for
TABLE 3 Elements of the RQS and average rating achieved by the studies included in this systematic review.

RQS scoring item Interpretation Mode

Image Protocol +1 for well documented protocols, +1 for publicly available protocols 1

Multiple Segmentations +1 if segmented multiple times (different physicians, algorithms, or perturbation of regions of interest) 1

Phantom Study +1 if texture phantoms were used for feature robustness assessment 0

Multiple Time Points +1 multiple time points for feature robustness assessment 0

Feature Reduction −3 if nothing, +3 if either feature reduction or correction for multiple testing 3

Non Radiomics +1 if multivariable analysis with non-radiomics features 0

Biological Correlates +1 if present 0

Cut-off +1 if cutoff either pre-defined or at median or continuous risk variable reported 0

Discrimination and
Resampling

+1 for discrimination statistic and statistical significance, +1 if resampling applied 1

Calibration +1 for calibration statistic and statistical significance, +1 if resampling applied 0

Prospective +7 for prospective validation within a registered study 0

Validation −5 if no validation/+2 for internal validation/+3 for external validation/+4 two external validation
datasets or validation of previously published signature/+5 validation on ≥3 datasets from >1 institute

-5

Gold Standard +2 for comparison to gold standard 2

Clinical Utility +2 for reporting potential clinical utility 2

Cost-effectiveness +1 for cost-effectiveness analysis 0

Open Science +1 for open-source scans, +1 for open-source segmentations, +1 for open-source code, +1 open-source representative
segmentations and features

0

frontier
FIGURE 2

The risk of bias and concerns regarding applicability of 28 included studies.
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adrenal tumors mainly focused on the differentiation of benign

and malignant tumors and the differentiation of histological

types of adrenal masses, but no clinical transformation or

practical application has been described so far. Considering

that the research of radiomics remains in its infancy, there are

a host of problems to be addressed, such as the lack of a robust

workflow based on standardized and strict methods to ensure

the stability and reliability of the results (50, 51).

It is well-established that the quality of reporting of existing

predictive models is poor (52). Lambin et al. proposed a

comprehensive and clear standard to evaluate all aspects of

predictive models in the field of radiomics to enhance their

qualities (18). In our systematic review, the overall quality was

relatively low (mean RQS of 5.11, ranging from -5 to 25). The

primary causes impacting the RQS score included the absence of

feature reduction, scarcity of open science and source, deficiency

in internal or external validation and prospective data support,

minimal consideration of cost-effectiveness, and so on. Reducing
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features that are poorly reproducible is crucial for reducing the

risk of overfitting when the number of radiomics features

exceeds the number of patients (53). 43% of studies did not

conduct feature reduction or adjustment in our review owing to

specific diagnostic algorithms or processing, which may partially

undermine the stability of the models. Following internal and

external validation, the diagnostic performance of the model can

be confirmed. Furthermore, the practical application of

radiomics in clinical practice also requires multi-center

validation and prospective testing (54, 55). Regrettably, over

half of the included studies failed to process validation

attributable to the limited sample size. Most of the remaining

studies merely conducted internal validation in a single center.

Furthermore, only one study performed validation with multiple

data sets and tested prospectively (15). Furthermore, comparing

the diagnostic performance with the radiologist is also a pivotal

step in verifying the performance of the model. Because only

when the diagnostic effect is better than that of the radiologist

can the superiority of radiomics be demonstrated. However,

most studies did not compare the diagnostic performance with a

radiologist. The choice of scanner manufacturer and model, 2D

or 3D segmentation of the region of interest, acquisition, and

reconstruction parameters all lead to the heterogeneity of

imaging data. Most studies (25/28) provided image acquisition

parameters in our review, but values varied considerably.

Zwanenburg et a l . des igned the Image Biomarker

Standardization Initiative (IBSI) to enhance the reproducibility

of radiomics research, including establishing general feature

naming, definition, general radiological image processing

scheme, and so on (56). Thus, open science and the source of

radiomics is the premise to realizing reproducibility. In the

present review, only three included studies publicly shared

segmentations or code. The challenge of open science and

validation based on a sufficient sample size may hinder further

development and practice of radiomics in the diagnosis of

adrenal masses. Besides, the cost-effectiveness analyses of

radiomics cannot be overlooked because it may boost the

superiority of this technology.

Although radiomics studies differ methodologically from

conventional trials, and there may be potential unsuitability of

the QUADAS-2 tool, the results that reflected the risk of bias and

applicability of included studies is advisable to some extent. The

results of QUADAS-2 exposed that the risk of bias needs to be

minimized in terms of patient selection, index test, and reference

standards. The concerns regarding applicability are excellent

except for the reference standard. The reliablity of individual

ratings needs to be assessed by inter-rater agreement analysis. In

this review, the ICC was applied to describe the inter-rater

agreement of RQS and QUADAS-2. The fact that most items

achieved substantial or almost perfect agreement while others

had moderate agreement demonstrates that the scores accurately

reflect the quality of the included studies.
TABLE 4 Inter-rater agreement in RQS assessment.

RQS scoring item ICC (95% CI)

Image Protocol 0.52 (0.19-0.75)

Multiple Segmentations 0.93 (0.86-0.97)

Phantom Study 1.00 (1.00–1.00)

Multiple Time Points 1.00 (1.00–1.00)

Feature Reduction 0.86 (0.72-0.93)

Non Radiomics 0.79 (0.59-0.90)

Biological Correlates 1.00 (1.00–1.00)

Cut-off 0.63 (0.34-0.81)

Discrimination and Resampling 0.52 (0.19-0.75)

Calibration 1.00 (1.00–1.00)

Prospective 1.00 (1.00–1.00)

Validation 1.00 (1.00–1.00)

Gold Standard 0.54 (0.22–0.76)

Clinical Utility 0.61 (0.32-0.80)

Cost-effectiveness 1.00 (1.00–1.00)

Open Science 0.79 (0.59-0.90)
CI: confidence interval, RQS: Radiomics Quality Score.
TABLE 5 Inter-rater agreement in QUADAS-2 assessment.

RQS scoring item ICC (95% CI)

Risk of Bias - Patient Selection 0.79 (0.60-0.90)

Risk of Bias - Index Test 0.94 (0.87-0.97)

Risk of Bias - Reference Standard 1.00 (1.00–1.00)

Risk of Bias - Flow and Timing 1.00 (1.00–1.00)

Applicability Concerns- Patient Selection 0.52 (0.19-0.75)

Applicability Concerns- Index Test 0.66 (0.39-0.83)

Applicability Concerns- Reference Standard 1.00 (1.00–1.00)
CI: confidence interval, QUADAS-2: Quality Assessment of Diagnostic Accuracy
Studies-2.
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Since there are few pieces of literature included in the meta-

analysis, the results should be treated with caution. In our meta-

analysis, radiomics technology showed promise for

differentiating malignant from benign adrenal tumors, with a

pooled sensitivity, specificity, and AUC of 0.8, 0.83, and 0.88,

respectively. Nonetheless, it cannot be ignored that there was

distinct heterogeneity between the studies. The threshold effect is

one of the chief causes of heterogeneity in DTA studies (57). A
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threshold effect will result in a correlation coefficient between

sensitivity and a false positive rate of 0.6 or higher (58). The

result of the Spearman correlation coefficient showed no

threshold effect in this meta-analysis. Consequently, we

attempted to determine the causes of heterogeneity via

subgroup analysis. Our results demonstrated that the

radiomics group based on unenhanced and contrast-enhanced

CT had a higher DOR than studies using contrast-enhanced CT
FIGURE 3

Summary receiver operating characteristic (SROC). AUC, area under the curve.
FIGURE 4

Forest plots of the sensitivity and specificity of CT-based radiomics in differentiating malignant from benign adrenal tumors. I2 >50% indicates
substantial heterogeneity among included studies.
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only. This is likely due to the fact that unenhanced CT provides

additional features for analysis and bring higher sensitivity.

Different levels of radiomics features contain distinct

dimensions of information regarding the lesion. First-order
Frontiers in Oncology 11
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statistics features describe the distribution of voxel values

without concern for their spatial relationships (11). Second-

order statistics, which describe spatial relationships between

voxels with similar gray levels within a lesion, can provide a

measure of intralesional heterogeneity (11, 59). Higher-order

statistics are obtained after imposing filter grids on an image,

and the processing can confirm repetitive or non-repetitive

patterns, suppress image noise, highlight details, and so on

(60). According to our results, studies that only included first-

order features had lower sensitivity but higher specificity

compared to those that combined second-order or higher-

order features. This finding signals that more complex and

deeper texture features analyses can improve diagnostic

sensitivity while also increasing the false positive rate. Since

deeper texture features analyses inevitably yield a large number

of unstable and unrepeatable features, advanced features have

higher requirements for feature selection and modeling

algorithms. Machine learning is a broad term for a class of

statistical analysis algorithms that can iteratively improve the

predictive performance of a model by “learning” from data (61).

Reliable machine-learning approaches can drive the success of

radiomic applications in clinical care (62). In our subgroup

analysis, studies with machine learning achieved equivalent

diagnostic performance to those without. However, the
TABLE 6 The results of subgroup analysis.

Analysis No. of study Sensitivity Specificity PLR NLR DOR

CT Type

Contrast-enhanced CT 4 0.66(0.47-
0.80)

0.80(0.70-
0.88)

3.15(1.69-5.89) 0.50(0.35-
0.72)

9.02(2.59-31.43)

Unenhanced and contrast-enhanced CT 4 0.87(0.72-
0.95)

0.74(0.66-
0.80)

3.15(2.60-3.82) 0.17(0.07-
0.41)

18.89(8.96-39.85)

Unenhanced CT 1 0.88(0.79-
0.93)

0.95(0.72-
0.99)

17.50(2.59-
118.41)

0.13(0.02-
0.89)

133.00(16.16-
1094.59)

CT Feature Type

With second-order or higher-order features 7 0.81(0.69-
0.89)

0.77(0.70-
0.83)

3.21(2.55-4.04) 0.23(0.11-
0.47)

16.97(7.56-38.12)

Only first-order 2 0.72(0.25-
0.95)

0.86(0.51-
0.97)

4.77(0.56-40.72) 0.39(0.08-
1.86)

16.91(0.38-761.14)

Machine Learing

Not use machine learing 6 0.78(0.60-
0.89)

0.79(0.69-
0.87)

3.20(2.12-4.82) 0.26(0.09-
0.76)

18.80(5.37-65.75)

Use machine learing 3 0.79(0.71-
0.85)

0.77(0.71-
0.83)

3.41(2.59-4.50) 0.28(0.21-
0.37)

12.54(7.28-21.59)

Reference

Histopathology 3 0.83(0.46-
0.97)

0.72(0.65-
0.78)

2.83(2.28-3.52) 0.21(0.05-
0.81)

12.93(3.08-54.26)

Histopathology or follow-up imaging 4 0.82(0.76-
0.86)

0.91(0.72-
0.98)

9.33(2.60-33.52) 0.28(0.21-
0.38)

59.05(9.39-371.52)

Previously described imaging thresholds or follow-up
imaging

1 0.48(0.33-
0.63)

0.75(0.59-
0.86)

1.90(0.99-3.65) 0.70(0.36-
1.35)

2.71(1.02-7.21)

Overall 9 0.80(0.68-
0.88)

0.83(0.73-
0.90)

4.70(2.80-8.00) 0.25(0.15-
0.41)

19.06(7.87-46.19)
PLR, positive likelihood ratio; NLR, negative likelihood ratio; DOR, diagnostic odds ratio; The 95% confidence intervals are shown in parentheses.
FIGURE 5

Deeks funnel plot reveals the possibility of publication bias is low
with a p value of 0.77. ESS, effective sample size.
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number of studies (n=3) is insufficient to represent the true

impact of machine learning. We recommend that further studies

be conducted to determine whether machine learning is

beneficial to the diagnosis of adrenal tumors using radiomics.

Some studies included in this meta-analysis enrolled patients

without histopathology results and regarded follow-up imaging

as the diagnostic reference (29, 32, 36, 37, 44). On the one hand,

these studies may lower selection bias, as potential bias will be

generated if studies only include patients who underwent

surgeries (those with high suspicion of malignancy are more

likely to be operated on). On the other hand, the diagnostic

accuracy of this method based on follow-up images remains to

be determined. The 2017 American College of Radiology white

paper (63) suggests that stability for 1 year or more indicates that

uncertain adrenal nodules are benign, whereas enlarged nodules

are suspected to be malignant. However, benign tumors can also

grow, and the threshold growth rate to consider malignancy

remains unknown. Studies that regarded histopathology or

follow-up imaging as the reference had higher diagnostic

specificity than studies using histopathology only. The reason

may be that the true negative ratio was overestimated since some

follow-up imaging failed to detect potential malignancies.

Additionally, the possibility that heterogeneity was caused by

other factors that have not been considered cannot be ruled out.

To the best of our knowledge, there are two previous reviews

related to similar topics. One study systematically reviewed the

diagnostic accuracy of CT texture analysis in adrenal tumors

(64). In another review, Stanzione et al. summarized the

application of radiomics in adrenal cross-sectional imaging

and assessed the methodological quality by RQS (65).

Generally, more comprehensive and in-depth analyses of

diagnostic performance of radiomics in adrenal masses were

done in our study. First of all, we focused on diagnostic

performance of radiomics in various radiological imaging of

adrenal tumors. Secondly, RQS and QUADAS-2 of the included

studies were independently evaluated by two reviewers. Besides,

inter-rater agreement for RQS and QUADAS-2 were also

assessed, which can reflect the true quality of the included

studies better. In addition to a systematic review of the

included studies, we also conducted a meta-analysis

investigating the role of CT-based radiomics in differentiating

malignant from benign adrenal tumors. Although the

heterogeneity was significant, it reflected the diagnostic value

of radiomics in differentiating benign and malignant adrenal

masses to some extent.

There are several limitations of this review that warrant

consideration. To begin, grey literature was not included in this

review since it was limited to special circulation channels, which

might have led to publication bias. Secondly, the overall quality

of the included studies was not optimal (mean RQS 14.2%),

which may have partly influenced the quality of the subsequent

analysis. Thirdly, it is worthwhile mentioning the heterogeneity

of studies included in the quantitative synthesis. Except for CT
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type, CT feature type, machine learning, and diagnostic

reference, the heterogeneity may be pertinent to diversity in

pathological types, methods of image segmentation and

reconstruction, and feature extraction and modeling

algorithms. However, because the subgroup distribution was

scattered, we were unable to analyze these detailed features.

Hence, the results of the quantitative analysis should be

interpreted with caution. Fourthly, the diagnostic performance

of radiomics between specific adrenal histologic types could not

be assessed because of a lack of studies for the same objective.

Lastly, given that only a few studies compared the diagnostic

performance with a radiologist, the added value of radiomics in

comparison to the accuracy of human assessment could not

be explored.
Conclusion

In conclusion, we systematically reviewed studies investigating

the diagnostic performance of radiomics in adrenal masses and

conducted a meta-analysis. Collectively, the results of quantitative

synthesis outline the potential benefits of CT-based radiomics in

differentiating malignant from benign adrenal tumors. However,

the existing limitations of relevant studies, including the lack of

validation and prospective tests, the lack of comparison with a

radiologist, and the absence of a standardized radiomics

process, hinder the further development of radiomics. We

postulate that the translational gap between radiomics research

and clinical applications in the field of adrenal tumors

diagnosis will be overcome in the future by addressing the

aforementioned shortcomings.
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CT-based transformer model
for non-invasively predicting the
Fuhrman nuclear grade of clear
cell renal cell carcinoma

Meiyi Yang1,2†, Xiaopeng He3†, Lifeng Xu5, Minghui Liu2,
Jiali Deng2, Xuan Cheng2, Yi Wei4, Qian Li4, Shang Wan4,
Feng Zhang5, Lei Wu2, Xiaomin Wang2, Bin Song4*

and Ming Liu5*

1Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of
China, Quzhou, China, 2School of Computer Science and Engineering, University of Electronic
Science and Technology of China, Chengdu, China, 3Department of Radiology, Affiliated Hospital
of Southwest Medical University, Luzhou, China, 4Department of Radiology, West China Hospital,
Sichuan University, Chengdu, China, 5Quzhou Affiliated Hospital of Wenzhou Medical University,
Quzhou People’s Hospital, Quzhou, China
Background: Clear cell Renal Cell Carcinoma (ccRCC) is the most common

malignant tumor in the urinary system and the predominant subtype of

malignant renal tumors with high mortality. Biopsy is the main examination

to determine ccRCC grade, but it can lead to unavoidable complications and

sampling bias. Therefore, non-invasive technology (e.g., CT examination) for

ccRCC grading is attractingmore andmore attention. However, noise labels on

CT images containing multiple grades but only one label make prediction

difficult. However, noise labels exist in CT images, which contain multiple

grades but only one label, making prediction difficult.

Aim: We proposed a Transformer-based deep learning algorithm with CT

images to improve the diagnostic accuracy of grading prediction and to

improve the diagnostic accuracy of ccRCC grading.

Methods: We integrate different training models to improve robustness and

predict Fuhrman nuclear grade. Then, we conducted experiments on a

collected ccRCC dataset containing 759 patients and used average

classification accuracy, sensitivity, specificity, and AreaUnderCurve as

indicators to evaluate the quality of research. In the comparative

experiments, we further performed various current deep learning algorithms

to show the advantages of the proposed method. We collected patients with

pathologically proven ccRCC diagnosed from April 2010 to December 2018 as

the training and internal test dataset, containing 759 patients. We propose a

transformer-based network architecture that efficiently employs convolutional

neural networks (CNNs) and self-attention mechanisms to extract a persuasive

feature automatically. And then, a nonlinear classifier is applied to classify. We

integrate different training models to improve the accuracy and robustness of
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the model. The average classification accuracy, sensitivity, specificity, and area

under curve are used as indicators to evaluate the quality of a model.

Results: The mean accuracy, sensitivity, specificity, and Area Under Curve

achieved by CNN were 82.3%, 89.4%, 83.2%, and 85.7%, respectively. In

contrast, the proposed Transformer-based model obtains a mean accuracy

of 87.1% with a sensitivity of 91.3%, a specificity of 85.3%, and an Area Under

Curve (AUC) of 90.3%. The integrated model acquires a better performance

(86.5% ACC and an AUC of 91.2%).

Conclusion: A transformer-based network performs better than traditional

deep learning algorithms in terms of the accuracy of ccRCC prediction.

Meanwhile, the transformer has a certain advantage in dealing with noise

labels existing in CT images of ccRCC. This method is promising to be

applied to other medical tasks (e.g., the grade of neurogliomas

and meningiomas).
KEYWORDS

tumor grading, ensemble learning, clear cell renal cell carcinoma, transformer
network, deep learning
1 Introduction

Renal cell carcinoma (RCC) is the most common kidney

tumor (1, 2). Clear cell RCC (ccRCC) is the predominant

hypotype of RCC, accounting for about 75-80 (3). With the

background of population aging, kidney cancer, especially RCC,

keeps rising. When ccRCC progresses to intermediate and

advanced stages, lymph node metastasis or distant organ

metastasis probably occurs, which leads to dangerous clinical

symptoms and a poor prognosis (4, 5). At present, one of the

most important pieces of clinical evidence for judging the

malignancy degree of ccRCC is given by the Fuhrman grading

system, which defines four pathological grades based on nuclear

size, shape, staining, and nucleoli (5). Generally, tumors with low

invasiveness are classified as grades I–II, and those with high

invasiveness are classified as grades III–IV (6).

The preoperative biopsy is the gold standard for evaluating

the grade of ccRCC. However, patients undergoing biopsy are at

risk of complications, e.g., hematuria (with more than 80%

incidence), perirenal hematoma (with about 60%–90%

incidence), and infection (7). The procedure of preoperative

biopsy is complex and invasive. Besides, biopsy cannot reflect the

Fuhrman grade of the whole tumor (8) because of the high

spatial and temporal heterogeneity. Thus, preoperative

evaluation of ccRCC using a noninvasive procedure for clinical

diagnosis is urgently needed. CT examination is the most

commonly used non-invasive technique for preoperative

diagnosis and follow-up and plays an essential role in
02
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diagnosing and treating renal carcinoma, e.g., detection,

localization, characterization, and grading of lesions. In some

studies, it has been used to evaluate the preoperative ccRCC

classification, such as (9–12).

Preoperative noninvasive prediction of ccRCC is conducive

to delivering an individualized treatment. Previous studies (12,

13), using radiation characteristics based on multiphase CT,

investigated the predictive performance of different machine

learning models for discriminating ccRCC. Beyond that (14–17),

have shown that convolutional neural networks based on single

or multiphase CT images are beneficial for evaluating ccRCC

grading. However, the biggest challenge of CT image grading is

the existence of noise labels in the image (8). What is a “noise

label?”One CT image may contain multiple grades but may have

only one label. For example, the grade III–IV grade CT image

contains grade I–II tumor areas because the label was obtained

from the biopsy of the most severe tumor area of the whole

kidney. When encountering noise labels, convolutions

uniformly process all tumor regions regardless of their

importance, which leads to the inefficiency of classification.

CNN makes decisions based on the convolution kernel, which

only focuses on the local pixel subset, resulting in the network

tending to learn the local mode rather than the global context.

The transformer network, a branch of deep learning, is

considered a promising technology for analyzing medical

images because it can capture global representations and

establish long-distance relationships within the image (18, 19).

Therefore, the transformer is suitable for handling CT images
frontiersin.org
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with noise labels. We propose a transformer classifier,

TransResNet, to predict high-grade ccRCC using CT images.

To the best of our knowledge, there have been no investigations

about discriminating the low and high nuclear grade ccRCC by

combining transformer network and radiological features.

As a result, this research aims to investigate an efficient

transformer classifier for predicting the Fuhrman grading of

ccRCC based on three-phased CT images.
2 Materials and methods

2.1 Data preparation

Patient cohort: This diagnostic and observational study was

approved by the institutional review board (West China

Hospital, Sichuan University), and written informed consent

was obtained from all patients. Consecutive patients were

collected from April 2010 to December 2018 in one hospital.

We cleaned the original data according to the following rules: (1)

there is no obvious noise in the image of the patient; (2) the

patient image has no apparent artifacts. Specifically, all of the

pathologically proven ccRCC grades are reconfirmed by

experienced radiologists. This work uses the Fuhrman nuclear

grading system as the standard grading system. Finally, 759

patients were included in this work.

CT images: All patients underwent a multi-slice CT scan

with three phases, including unenhanced, arterial, and portal

venous phases, using the following systems: LightSpeed VCT

(GE Healthcare), Sensation 64 CT (Siemens), or Sensation 16 CT

(Siemens). The PCP, CMP, and NP of the MDCT (multidetector

CT) examination were acquired for each patient with the

following protocol. By using a high-pressure injector at a rate

of 3.5 ml/s, 70–100 ml of contrast agents were injected into the

antecubital vein. The CMP is the corticomedullary phase

contrast-enhanced scan starting 30 s after the contrast agent

injection. The NP is the nephrographic phase contrast-enhanced

scan starting 90 s after the contrast materials injection. Spiral

scanning and thin-slice reconstruction were used for all three

phases. The CT scanning parameters of the phases were as

follows: the tube voltage was 120 KV; the reconstruction

thickness was 1 mm to 5 mm, and the matrix was 512 × 512.

All CT scans of patients are converted to color-scale images and

reviewed by experienced radiologists in abdominal imaging. The

ccRCC images collected from the CMP phase are used

in experiments.

CT Processing: Medical CT slices are diverse and complex.

If CT slices are selected to be the input of the classification

model, the results are imperfect and require further

optimization. To make a more accurate diagnosis, we

preprocess the original CT image by detecting the organ or

lesion area from medical scanning. We utilize a tumor detection
Frontiers in Oncology 03
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network to quickly and efficiently obtain the rectangular region

of interest of the tumor in each phase image. As shown in

Figure 1, to reduce the complexity of direct tumor segmentation,

the detection frame is divided into two stages: (1) renal organ

detection: this detection module is composed of VGG16 (20)

without the classification layers (pre-trained on ImageNet (21)),

aiming to find the rectangular region of kidneys to mitigate the

influence of background of CT scans and reduce the search space

of tumors; (2) tumor detection: aims to regress the rectangular

region of the tumor accurately and predict the possibility of

the tumor.

Because medical data are scarce and difficult to label, large

deep learning models rely on data augmentation to improve

performance. To study the impact of data enhancement, we will

consider several common enhancements here. There are two

types of data augmentation in the vision computer domain. One

is appearance transformation, such as sharpness, brightness,

contrast, saturation, gray processing, Gaussian blur, and

elast ic i ty (22), another involves spat ia l geometric

transformation, such as horizontal flipping, rotation, cropping,

and resizing (23). Every enhancement strategy can transform

data stochastically with internal parameters (e.g., rotation

degree, noise level). Our model adopted strategies including

random clipping, Affine, Gaussian blur, and Gaussian noise.

Figure 2 visualizes the augmentations that we study in this work.
2.2 ccRCC classification network

To make the features extracted from the ccRCC dataset

correspond to the label as much as possible, we introduced a

transformer module into convolutional networks to improve

performance. We illustrate the overall diagram in Figure 3A.

Firstly, the input image is processed with several convolution

blocks, and then the processed feature map is provided to the

transformer block. At the end of the network, the class tokens

are applied for the prediction of ccRCC. Our insights into taking

advantage of convolutions and transformers are: (1) in the early

network, using convolution to learn densely distributed and low-

level features requires less computational cost than the

transformer; and (2) in the later network, applying the

transformer to learn higher-level semantic concepts and long-

range dependencies in the image.

The network framework, termed TransResNet, is composed

of convolution blocks, transformer blocks, and classifier (one FC

layer). The convolution block adopts a pyramid structure, in

which the resolution of feature mapping decreases with the

increase in network depth while the number of channels

increases. It consists of four phases: the first phase is a 3 × 3

convolution with stride 1 and padding 1, which is used to extract

initial local features. In the last three stages, we refer to the first

three layers of ResNet, in which the output channels of each
frontiersin.org
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layer are 16, 32, and 64, respectively. The Transformer block

contains 12 repeated transformers. As shown in Figure 3B, each

transformer consists of a multi-head self-attention (MSA)

module and a multi-layer perceptron (MLP) block.

In the Transformer, we consider the input feature map

X∈Rc×h×w with c channels and the feature shape of h × w.

Self-attention estimates the relationship between one part of a

feature map and other parts (e.g., which tumor masses are likely

to come together into a complete tumor mass with maximum

grade). Therefore, the feature map is divided into a sequence X=

{x1,x2,…,xn} (x ∈ Rc�h
n�w

n ) with n patches. The goal of self-
Frontiers in Oncology 04
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attention is to capture the interaction among all n patches by

encoding each patch in terms of global contextual information.

The output of the MSA layer is computed with the feature map X

using the following equation:

Z = MSA LN softmax
QKT

ffiffiffiffiffi
dk

p
 !

V + Xclass + Xposition

 ! !

+ X (1)

where Queries WQ , Keys WK, and Value Wv are learnable

weights to automatically learn the importance of each patch. The
B C D E FA

FIGURE 2

Illustrations of the results using various data augmentation (A) shows the original CT image; (B) is the CT image after 180° rotation; (C) is the CT
image after Affine transformation; (D) shows the CT image after crop and resize transformation; (E) is the CT image with Gaussian blur; (F) is the
CT image with Gaussian noise.
B

A

FIGURE 1

(A) shows the flow frame of data processing, in which stage one is the kidney detection network and stage two is a tumor detection network.
(B) shows the details of the detection network.
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input sequence X is projected onto these weight matrices to get

Q=XWQ , K=XWK and V=XWV . The dk is the dimension of key

vector k, providing an appropriate normalization to make the

gradient more stable. LN represents the linear normalization,

Xclass and Xposition are randomized parameters representing

classification and position information, respectively. To

capture the structure of object image, position and

classification information are merged into the self-attention

feature map for training.

After the self-attended feature map Z passes through the linear

layer, we put it into a MLP including two linear transformations

and a GELU activation to perform the same operation on the

vector of each position. The output can be obtained:

Y = MLP LN Zð Þð Þ + Z (2)
Frontiers in Oncology 05
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Referring to ViT (24), we take the classification information

Xclass instead of extracted image features as the input of the

classifier FC to classify directly. We train our network using the

cross-entropy (CE) loss between prediction and ground truth,

which can be written as:

LCE = −o (y log  ŷ + 1 − yð Þ log  (1 − ŷ )) (3)

where the y is the real label and ŷ is the predicted probability.

The loss function represents the difference between the real label

and the predicted probability.

We constructed TransResNet with three residual blocks and

12 transformer blocks. The major hyper-parameters are as

follows: the optimizer is Stochastic Gradient Descent (SGD)

with an initial learning rate of 0.01, momentum of 0.9, and

weight decay of 5e−4. The batch size is 100 per worker. For the
B

A

FIGURE 3

A simple network framework for TransResNet. (A) represents the overall architecture, mainly including the CNN structure and the transformed
structure. (B) shows the details of TransResNet. The network framework contains 12 transformer blocks (i.e., L = 12).
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epochs, the learning rate is scaled linearly from 0.01 to 0.00001,

and then it is divided by 10 at epochs 50, 100, and 150. The

proposed model is implemented using Pytorch 1.0.1. We ran the

experiments on an Ubuntu 16.04.3 server with four NVIDIA

GeForce GTX 1080 cards. Specific details of the code can be seen

at: https://github.com/yangmeiyi/ccRCC_project.git.
2.3 Model ensembles

To a certain degree, ensemble learning can improve

prediction accuracy. To achieve a strong classifier, we train

multiple different classifiers. We selected the following five

networks as sub-networks of the integration model:
Fron
TransResNet: In medical, ResNet (25) is the preferred

model because it is simple and efficient. The most

common model, ResNet50, is ineffective on our dataset

due to serious over-fitting. Finally, we decided to pair

Transformer and resnet34.

TransDenseNet: DenseNet (26) found that some layers are

randomly lost at each step in the training process, which

can significantly improve the general ization

performance of ResNet. Similarly, we chose to

combine Transformer and DenseNet-121 with the

smallest model parameters as our sub-network.

TransInception: Compared with the structure of ResNet,

Inception (27) not only increases the width of the

network but also embeds features of different scales.

Similarly, Inception-V3 was selected by us.

TransSENet: Different from the previously mentioned

networks, improving the performance through spatial

latitude, SENet (28) establishes the interdependence

between feature channels.

TransRegNet: RegNet (29) proposes a new design paradigm

that estimates the overall network design space (depth

and width) to obtain the best design. Similarly, we chose

RegNetY-200MF with the minor model parameters.
We combine them through the average method. These

classifiers and TransResNet are constructed in the same way.

The difference lies in the construction of convolution blocks,

such as TransDenseNet uses a dense convolutional network and

TransInception adopts an inception network.

Suppose we have got N trained different classifiers. Facing a

test sample x (x ∈ test dataset), the prediction results of the

integrated model are a N-dimensional vector {S1,S2,…,Sn} . The

final score using averaging is formulated as follows:

Final _ score = o
N
i=1Si
N

(4)
tiers in Oncology 06
99
3 Results

3.1 Clinical characteristics

This study included 759 patients, which comprised 477 low-

grade [grade I (n = 25, 5.24%) and II (n = 452, 94.76%)] ccRCC

patients and 282 high-grade [grade III (n = 232, 82.27%) and IV

(n = 50, 17.73%)] ccRCC patients. Male and female patients are

equally represented, accounting for 64% and 46%, respectively.

The patient characteristics of the training and testing cohorts are

shown in Table 1.
3.2 Performance of proposed algorithm

To validate this model, we choose Accuracy (ACC), Area

Under Curve (AUC), Sensitivity (SE), and Specificity (SP) as

evaluation criteria.

Performance with data enhancement: To comprehend the

role of enhancement strategy in detail, the individual and

different combinations of them are discussed. With

inconsistent images of the ccRCC, cropping as the basic data

processing is applied. Figure 4 shows the evaluation results

under single and combined transformations. Even though

Affine is a very effective enhancement for the model, any

single transformation is insufficient for representation learning.

One augmentation composition stands out: random Affine and

random Gaussian noise. The best combination is more than two

enhancements, such as random Rotate, random Affine, and

random Crop, making the model obtain 87% ACC and

91% AUC.

Performance on different architectures. This section shows

the effect of the transformer on ResNet (25), DenseNet (26),

Inception (27), SENet (28), and RegNet (29). Each model has its

own unique advantages. We present the ACC, AUC, SE, and SP

of TransResNet, TransDenseNet, TransInception, TransRegNet,

and TransSENet on the ccRCC dataset in Table 2. Each

architecture was performed under the enhancement method of
TABLE 1 The demographic and clinical statistics of patients with
ccRCC.

Attribute Training cohort Testing cohort

Age (years) 56 ± 12 (589) 54 ± 11 (170)

Male 374 112

Female 215 58

Grade I 21 4

Grade II 371 81

Grade III 165 67

Grade IV 32 18
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Crop, random Horizontal Flip, random Rotation, and

random Affine.

Table 2 shows the experimental results of different network

architectures. The Receiver Operating Characteristic (ROC)

curve is a metric that can provide a pure index of accuracy,

which has been accepted by every researcher and applied in

medical studies. We show the ROC curve in Figure 5.

Ensemble results: Ensemble learning is a popular way

to improve robustness and accuracy by training a group

of heterogeneous models. These heterogeneous models

are combined by different strategies such as voting,

averaging, stacking, and blending. This study analyzes

various ensemble strategies, and the results are shown in

Table 3. The integrated model consists of a single model:

TransResNet, TransDenseNet, TransInception, TransRegNet,

and TransSENet.
Frontiers in Oncology 07
100
3.3 Comparison with SOTA methods

Does our proposed solution lead to better performance than

pure transformers? To answer this question, we compared pure

transformer networks ViT (24) and CaiT (30) with the smallest

parameters and a hybrid network Conformer (31) trained in

parallel by convolution and transformer in Table 4. In the

training process, ViT-Small and CaiT-Small are suitable for

our dataset, but the results are still unsatisfactory. In

particular, the hybrid structure Conformer with huge model

parameters is difficult to train on small dataset ccRCC, resulting

in the worst performance, although its classification results on

ImageNet are better than ViT and CaiT.

Does the transformer improve performance compared to

CNN? For CNN, we have done a series of experiments with

ccRCC for comparison. The experiments included Data
FIGURE 4

Illustrations of data augmentation operators.
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Enhancement, CNN architecture, Transfer Learning, and the

Regularization Method. The experimental results are shown in

Figure 6. In the experiment of data enhancement, the

performance of the CNN model has definite improvements

after random Affine. However, other data enhancement

methods are not effective for the dataset. We found that the

CNN architectures have little effect on the Fuhrman Grade of

ccRCC, although the advantages of each structure are

different. From various experimental results, the model

based on CNN is difficult to break through the bottleneck of

AUC (e.g., 85 AUC). Our method, TransResNet, easily

surpasses CNN algorithms using various tricks in ACC

and AUC.
Frontiers in Oncology 08
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3.4 Comparison with transfer learning

Transfer learning is widely used in medical image

processing, such as type 2 diabetes (32), 3D genome folding

(33), and papillary thyroid carcinoma (34), etc. Many factors

make it impossible to establish large-scale datasets such as

ImageNet in the medical field, so the limited data restricts the

performance of deep neural networks. Some studies reckon that

the pre-trained model obtained on ImageNet can be fine-tuned

on the medical dataset to acquire high performance. The

experiment by Shin et al. proved that although there are

differences between natural images and CT images, CNN fully

trained on large-scale well-annotated datasets may still be
TABLE 2 The impact of transformer on different network structures. .

Model ACC AUC SE SP

ResNet-34 82.3 ± 2.5 85.7 ± 2.3 89.4 ± 1.7 83.2 ± 1.2

TransResNet 87.1 ± 2.3 90.3 ± 2.5 91.3 ± 1.4 85.3 ± 1.5

DenseNet-121 81.5 ± 2.3 85.5 ± 2.4 80.0 ± 0.5 84.3 ± 1.2

TransDenseNet 83.9 ± 2.1 90.5 ± 2.2 80.6 ± 0.6 86.8 ± 1.0

Inception-V3 80.0 ± 2.0 83.7 ± 2.0 76.5 ± 1.2 78.8 ± 1.3

TransInception 84.3 ± 2.0 89.4 ± 2.0 83.4 ± 1.3 85.8 ± 1.6

SENet 81.8 ± 2.5 84.2 ± 2.8 76.8 ± 1.5 85.1 ± 1.4

TransSENet 85.1 ± 2.3 89.2 ± 2.5 89.1 ± 1.3 82.1 ± 1.1

RegNet 81.9 ± 2.1 84.3 ± 2.5 82.5 ± 1.5 80.0 ± 1.0

TransRegNet 82.3 ± 2.0 87.7 ± 2.5 84.7 ± 1.0 80.0 ± 0.5
front
We report the average accuracy and standard deviation of five time runs.
ACC, AUC, SE, and SP are the accuracy, the Area Under Curve, the sensitivity and the specificity of the model on the testset, respectively.
FIGURE 5

Receiver operating characteristic (ROC) curves for the task of tumor classification using a positive ratio feature.
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transmitted to make the medical image recognition task more

effective (35). Therefore, we compared the performance of our

method and transfer learning on ccRCC. We transferred the

ResNet, DenseNet, and ViT trained with ImageNet to ccRCC for

fine-tuning, respectively. In transfer learning, to make the

network training more thorough, we follow the method of

(35): all CNN layers are fine-tuned with a learning rate 10

times lower than the default learning rate, except for the last

layer. The last fully connected layer is randomly initialized and

newly trained to adapt to the new object categories in the ccRCC

application. Its learning rate remains at the original 0.01. The

results are shown in Table 5.

In the experiment, we found that although transfer learning

can speed up convergence early in training, it does not improve

final accuracy. As shown in Table 5, the accuracy of our

proposed method can quickly catch up with the best of

transfer learning and stay higher.
3.5 Analysis of noise labels

Previous articles (15, 17) studied the impact of CNN-based deep

learning on ccRCC. These studies prove that the features from CT

images extracted by CNN can be effectively used for ccRCC grading

and obtaining the SOTA performance. Due to the inconsistency

between extracted features and labels, some data are always

misclassified by the CNN-based algorithm. For example, 21 CT

images in our test set couldnot be classified correctly, including three

low-grade images and 18 high-grade images. This phenomenon is
Frontiers in Oncology 09
102
consistent with the fact that high-grade images contain more noise

information. In other words, the features extracted from tumor

images scanned by high-grade ccRCC CT scans are not always

related to Fuhrman nucleus grades III and IV, and some of the

features are related to Foreman nucleus grades I and II. Figure 7

shows the case of misclassification data, in which Figure 7A is a

positive sample, but it is classifiedas anegative example. Figure7B is a

negative example sample of classification error. Figure 7C is a class

activation map of a positive example sample of classification error.

Figure 7D is a class activation map of a positive example sample of

classification error. We found that: (1) similar CT images with

different categories are difficult to distinguish (e.g., Figures 7A, B),

and (2) some CT images are not activated correctly (e.g.,

Figures 7C, D).

The Transformer offers many advantages over traditional CNN

algorithms for ccRCC grading. For example, Transformer can

capture the representation of global images and establish long-

distance relationships in CT images, reflecting the microscopic

heterogeneity changes of tumors more comprehensively and

providing a more accurate diagnosis than all CNN algorithms. In

addition, the complementary strengths between CNN and

Transformer can be adapted to the requirements of specific clinical

environments. After the optimized classifier TransRsenet, 14 CT

images in our test set could not be correctly classified, including two

low-grade images and 12 high-grade CT images. Figure 8 shows the

class activationmap of these error data to show the shift of attention

of the model during training. Compared with the convolutional

network, themodel with the proposedmethodmakes objects clearer

and more accurate than the original ones.
frontiersin.org
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TABLE 3 Ensemble results under different strategies.

Model ACC AUC SE SP

TransResNet 85.8 90.3 91.3 85.3

TransDenseNet 83.9 90.5 80.6 86.8

TransInception 84.3 89.4 83.4 85.8

TransRegNet 82.3 87.7 84.7 80.0

TransSENet 85.1 89.2 89.1 82.1

Ensemble(voting) 85.8 90.5 91.4 89.8

Ensemble(averaging) 86.5 91.2 92.1 89.5

Ensemble(stacking) 86.1 90.8 89.1 91.1

Ensemble(blending) 86.1 90.0 90.0 85.5
ACC, AUC, SE, and SP are the accuracy, the Area Under Curve, the sensitivity and the specificity of the model on the testset, respectively. The averaging strategy of ensemble shows the best
results (the seventh column, highlighted in bold).
TABLE 4 Comparison with the state-of-the-art transformer.

Model ACC AUC SE SP

TransResNet 85.8 90.3 91.3 85.7

ViT-Small 78.6 83.5 88.5 81.3

CaiT-Small 79.4 83.2 89.1 82.0

Conformer 76.4 79.3 83.5 65.7
ACC, AUC, SE, and SP are the accuracy, the Area Under Curve, the sensitivity and the specificity of the model on the testset, respectively. Our model TransResNet obtains the best result
(the first column, highlighted in bold).
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In addition to the comparison of convolution algorithms, we also

compared the network architecture of SOTA, such as the

transformer-based ViT, CaiT, and Conformer, obtaining the

best grading results under ACC, SE, SP, and AUC. In conclusion,

we demonstrated the effectiveness of the Transformer module

over ccRCC grading. Furthermore, the combination of CNN and

Transformer mitigates the noise label problem in ccrRCC.
Frontiers in Oncology 10
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3.6 External validation

We evaluate our model based on one external validation

dataset, the Cancer Genome Atlas-Kidney Renal Clear Cell

Carcinoma (TCGA-KIRC) (36, 37). The TCGA-KIRC focused

on connecting cancer phenotypes to genotypes by providing

clinical images matched to subjects from The Cancer Genome
FIGURE 6

A series of experimental results about CNN.
TABLE 5 The comparison results of our method and transfer learning.

Transfer Model ACC AUC SE SP

ResNet18 80.6 86.0 83.3 78.8

ResNet34 80.2 85.6 86.3 78.2

DenseNet121 81.2 85.6 78.9 89.4

TransResNet 85.8 90.3 91.3 85.3

ViT-tiny 74.7 75.6 64.7 84.7
frontiersin
The comparison models are ResNet, DenseNet, and ViT-tiny parameterized by pre-training using the ImageNet dataset. Our model is trained from random initialization.
ACC ,AUC ,SE, and SP are the accuracy, the Area Under Curve, the sensitivity and the specificity of the model on the testset, respectively. Our model TransResNet obtains the best results
(the seventh column, highlighted in bold).
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B CA

FIGURE 8

Visualization of the class activation map generated by the last transformer layer on images from the ccRCC. The yellow box indicates the lesion
area. The color red denotes higher attention values, and the color blue denotes lower. (A) is the original image; (B) shows the class activation
map of the CNN model; and (C) is the class activation map of the TransResNet model.
B C DA

FIGURE 7

The demonstration of error classification. It mainly includes four categories. (A) shows the the CT image of positive samples; (B) shows the the
CT image of negative samples; (C) shows the CT image of positive samples and corresponding class activation map; (D) shows the CT image of
negative samples and corresponding class activation map.
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Atlas (TCGA). Clinical, genetic, and pathological data resides in

the Genomic Data Commons (GDC) Data Portal, while the

radiological data is stored in The Cancer Imaging Archive

(TCIA). Here we just use the CT radiological data. We

selected 20 patients (e.g., 10 low-grade samples and 10 high-

grade samples) from 227 patients as our external validation data.

The results of our model TransResNet on the data are: 81.9%

ACC, 85.4% AUC, 76.6% SE, and 87.2% SP.
4 Discussion

This retrospective study comprehensively investigates the pros

and cons of different deep learning models based on two-phase

CT images for discriminating low- and high-grade ccRCC.

According to data scarcity and noise labels, a transformer-based

deep learning model, TransResNet, is proposed. After a thorough

comparison, the proposed discriminative model, TransResNet,

achieved satisfactory performance. In addition, we find that this

model can effectively alleviate the impact of noise labels.

At present, the analysis of radiomics is a common paradigm

to predict the ccRCC. Previous studies analyzed the texture of

non-enhanced CT through machine learning to obtain universal

features for higher accuracy. For example, Coy et al. have shown

that high-grade ccRCC lesions are significantly larger and have

more calcifications, necrosis, aggregation system infiltration, and

unclear tumor margins than low-grade ccRCC lesions (38). In

addition, several studies (39, 40) have proved that high-grade

tumors tend to be larger than low-grade. However, our

experiment found high-grade lesions are not significantly

different from low-grade CT images. This is consistent with

the findings of (12) and (13). The performance of image-based

quantitative indicators varies on different datasets, and their

adequacy needs further verification. In this study, we use deep

learning to analyze the CT images, which can automatically

discover pixel-level features, supporting a more powerful model.

In ccRCC, some high-grade lesions have low-grade features

due to unavoidable sampling bias. It was also interesting to find

that convolution-based networks focus on local pixel subsets,

which results in a tendency to learn local patterns so that the

relationships within images are ignored. As a result, in the

complex samples, the convolution kernel cannot effectively

make decisions, which leads to unsatisfactory grading accuracy.

CNNs uniformly process CT images regardless of their

importance. In contrast, the transformer uses a self-attention

mechanism instead of a CNN, which can establish long-range

dependencies in images. The Transformer has been widely used

for medical tasks with high accuracy, e.g., prostatic segmentation

(41), delineating the epicardium and endocardium (42), multi-

modal medical image classification (18), etc. The Transformer can

not only be used for segmentation but also carries an advantage in

processing images with noisy labels due to its way of capturing

image features. However, transformer networks require a large-
Frontiers in Oncology 12
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scale dataset for training because the transformer lacks inductive

bias (24). Thus, scarce medical data leads to severe over-fitting,

which may further reduce the reliability of the classifier.

Therefore, we take advantage of the CNN and a transformer to

extract the features of CT images. The introduced transformer

module can help CNN obtain the relationship between the pixel

blocks inside the image. We find that this hybrid classifier is

superior to a single classifier, with ACC increasing from 83% to

87% and AUC increasing from 85% to 90%.

Correctly grading complex samples is one of the significant

indicators for evaluating the strength and stability of a deep

learning model, which reflects the ability to extract general

features. Our method shows some advantages when faced with

noise samples and difficultly graded examples (see Analysis of

noise labels section). As is known to all, different models have

respective preferences for data, and the features learned from a

single model are not necessarily reliable. This paper trains a set

of heterogeneous models to improve robustness and accuracy by

integrating their extracted features, with ACC increasing from

85.8% to 86.5% and AUC increasing from 90% to 91.2%. This

study shows that our method can effectively reduce the difficulty

of grading caused by noise labels. This method can be widely

applied to other medical grading tasks, e.g., the grade of

neurogliomas and meningiomas.

Our study has several limitations. First, Fan et al. (12) found

that the classifier based on a three-phase CT image is better than

that based on a single-phase CT image. Theoretically, non-

enhanced CT images can provide additional information for

diagnosis. However, this study only used the data from the

arterial and portal vein phases due to fewer non-enhanced CT

images and inapparent texture information. Additionally, we did

not collect additional validation sets because the original

DICOM data of the ccRCC are difficult to obtain. However,

the superiority of the transformer in the feature extraction can be

reflected in the training and testing.
5 Conclusion

This paper studies the application of transformer

architecture to ccRCC classification. We first collected a high-

quality ccRCC CT scan dataset containing more than 759

patients with pathological proven. Then, a hybrid structure,

termed TranResNet, is proposed, which compromises the

merits of CNN and Transformer. Unlike other transformer

models, TranResNet does not require pre-training on large-

scale datasets. Finally, we conducted extensive experiments on

ccRCC datasets to verify our method. TransResNet achieves

good performance over ConvNets and other related transformer

architectures, demonstrating promising results in ccRCC

classification. We hope it will help future research on this

subject, and it can cooperate with radiologists to classify the

ccRCC in an actual clinical situation.
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Purpose: To develop a cascaded deep learning model trained with apparent

diffusion coefficient (ADC) and T2-weighted imaging (T2WI) for fully automated

detection and localization of clinically significant prostate cancer (csPCa).

Methods: This retrospective study included 347 consecutive patients (235

csPCa, 112 non-csPCa) with high-quality prostate MRI data, which were

randomly selected for training, validation, and testing. The ground truth was

obtained using manual csPCa lesion segmentation, according to pathological

results. The proposed cascaded model based on Res-UNet takes prostate MR

images (T2WI+ADC or only ADC) as inputs and automatically segments the

whole prostate gland, the anatomic zones, and the csPCa region step by step.

The performance of the models was evaluated and compared with PI-RADS

(version 2.1) assessment using sensitivity, specificity, accuracy, and Dice

similarity coefficient (DSC) in the held-out test set.

Results: In the test set, the per-lesion sensitivity of the biparametric (ADC + T2WI)

model, ADC model, and PI-RADS assessment were 95.5% (84/88), 94.3% (83/88),

and 94.3% (83/88) respectively (all p > 0.05). Additionally, the mean DSC based on

the csPCa lesions were 0.64 ± 0.24 and 0.66 ± 0.23 for the biparametric model

and ADC model, respectively. The sensitivity, specificity, and accuracy of

the biparametric model were 95.6% (108/113), 91.5% (665/727), and 92.0% (773/

840) based on sextant, andwere 98.6% (68/69), 64.8% (46/71), and 81.4% (114/140)

based on patients. The biparametric model had a similar performance to PI-RADS

assessment (p > 0.05) and had higher specificity than the ADCmodel (86.8% [631/

727], p< 0.001) based on sextant.
frontiersin.org01
108

https://www.frontiersin.org/articles/10.3389/fonc.2022.958065/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.958065/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.958065/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.958065/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.958065/full
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2022.958065&domain=pdf&date_stamp=2022-09-29
mailto:wangxiaoying@bjmu.edu.cn
https://doi.org/10.3389/fonc.2022.958065
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2022.958065
https://www.frontiersin.org/journals/oncology


Zhu et al. 10.3389/fonc.2022.958065

Frontiers in Oncology
Conclusion: The cascaded deep learning model trained with ADC and T2WI

achieves good performance for automated csPCa detection and localization.
KEYWORDS

deep learning, prostatic neoplasms, magnetic resonance imaging, detection, localization
Introduction

Prostate cancer (PCa) is one of the most common malignant

tumors in men worldwide. The clinical behavior of PCa ranges

from low-grade indolent that is generally considered to be non-

life-threatening to high-grade aggressive tumors with a Gleason

of Score 7–10, i.e. clinically significant PCa (csPCa), that may

progress rapidly to metastatic disease and may be life-

threatening (1). Multiparametric magnetic resonance imaging

(mpMRI) has adopted an increasingly significant role in the

detection and localization of csPCa, as well as in guiding targeted

biopsy (2). Recent large-scale clinical trials have demonstrated

that the use of mpMRI before biopsy increases the detection of

csPCa, while reducing the detection of those deemed clinically

insignificant (3, 4). Furthermore, using mpMRI to triage male

patients may enable a quarter to half of them to avoid the need

for biopsy (3, 5). To standardize and improve the interpretation

of prostate mpMRI, the use of the Prostate Imaging Reporting

and Data System (PI-RADS) has been recommended and

updated (2, 6). However, the interobserver agreement for

subjective evaluation using PI-RADS (version 2) is moderate

and influenced by the readers’ experience (7, 8). Additionally,

PI-RADS (version 2.1) has shown no significant improvements

in overall diagnostic performance compared to PI-RADS

(version 2.0) (9, 10). As there is arguably a trend in more

people with clinically suspected csPCa undergoing prostate

mpMRI, it is clinically desirable to develop more accurate and

automated methods for prostate mpMRI interpretation.

In the recent years, artificial intelligence (AI) methods,

particularly deep learning, have achieved promising results in

automated csPCa diagnosis of mpMRI (11–14). A range of

proposed deep learning algorithms were trained based on

prior annotated regions of interest (ROIs) to classify them as

cancerous or noncancerous lesions (11, 15), or slices, in which

each individual image was classified as cancerous or not (16, 17).

These methods were unable to precisely detect and locate csPCa,

and such predicted results may not be directly applied to clinical

practice. Some computer-aided diagnosis (CAD) systems

developed for csPCa were based on the manual or semi-

automatic segmentation of the prostate gland (13, 18), which

also limits their direct clinical use. With the development of the

deep convolutional neural network (CNN), some approaches for
02
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csPCa detection have been fully automatic with an area under

the receiver operator characteristics curve of 0.75–0.86 (12, 19,

20). More studies are needed to improve and optimize these

models. Although many generalized AI models have been

developed, few studies have reported on how to integrate AI-

based prediction into the clinical workflow. More explorations

are demanded to move the prostate AI systems from the

laboratory to the clinic with perfect output.

Our study aimed to develop a fully automated cascaded deep

learning model for the detection and localization of csPCa using

apparent diffusion coefficient (ADC) maps and T2-weighted

imaging (T2WI), as well as to seamlessly integrate these AI

predictions into the radiological workflow using the

structured report.
Materials and methods

Study subjects

Our institute’s review board approved this retrospective

study and waived the need for informed consent. The

inclusion criteria for the study were mpMRI scans performed

on a GE 750 3.0T MRI scanner at Peking University First

Hospital from March 2017 to February 2020 on consecutive

patients who underwent mpMRI before a biopsy, with a clinical

suspicion of PCa due to an elevated serum prostate-specific

antigen (PSA) level, abnormal digital rectal examination (DRE),

and/or abnormal transrectal ultrasound (TRUS) results.

Exclusion criteria were patients without a subsequent biopsy

performed within 3 months after mpMRI examination, a

negative biopsy for csPCa without clinical follow-up >1 year,

or showing potential csPCa during the clinical follow-up

(progression of PSA or MR findings), as well as images with

severe artifacts or incomplete pathology results which could not

be matched with MR images. In total, 347 patients were

included. Figure 1 displays the flow diagram for the inclusion

of patients in the study. In this study, csPCa was defined as the

International Society of Urological Pathology Gleason grade

group ≥2, i.e., Gleason Score ≥7. The characteristics of the 235

patients with csPCa included are shown in Table 1. The other

112 patients without csPCa (labeled non-csPCa with a mean age
frontiersin.org
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of 64.1 ± 7.5 years) had a median PSA level of 8.0 ng/ml, with an

interquartile range of 6.6–13.1 ng/ml. The patients were

randomly selected to populate the datasets for training (145

csPCa, 35 non-csPCa), validation (21 csPCa, 6 non-csPCa), and

testing (69 csPCa, 71 non-csPCa).
MRI sequences

All of the mpMRI examinations were performed on a 3-T

MR machine (Discovery MR750, GE Medical Systems). A 32-

channel abdominal phased array coil was used as the receiving

coil. All patients were scanned following the unified prostate

mpMRI protocol. The main sequence parameters are

summarized in Table 2. The ADC map was automatically

generated by the MR vendor software based on diffusion-

weighted imaging (DWI) data with different b values.

Concerning the patients included in this study, anonymized

images were exported in the Digital Imaging and

Communication in Medicine (DICOM) format.
PI-RADS assessment

All of the mpMRI cases in the dataset of the test were

retrospectively interpreted according to PI-RADS (version 2.1)
Frontiers in Oncology 03
110
by a urogenital radiologist with 10 years of experience in prostate

MRI diagnosis. The radiologist was informed of the clinical

information of the patients, such as age, biopsy history, PSA, etc.,

but was blinded to the pathology results and the previous MRI

reports. The lesions detected were delineated on a prostate

sector map.
Reference standard and annotation

All of the patients in this study underwent TRUS-guided

systematic and targeted biopsy using 12- or six-core needles. For

cognitive targeting, lesions suspected of malignancy on mpMRI

had been marked on a prostate sector map (6) using structured

reports by five dedicated urogenital radiologists during the

clinical routine. Before the biopsy, MR images would be

reviewed by at least one urogenital radiologist and one

urologist at a multidisciplinary meeting to ensure the accuracy

of suspicious lesions localization. The urologists obtained

additional needle cores (two- to five-core needles) for each of

the suspicious lesions during the TRUS-guided biopsy.

Histopathology analysis of each specimen was performed by a

urogenital pathologist with 11 years of experience.

Two experienced urogenital radiologists (X and Y with 7 and

13 years of experience in prostate MRI diagnosis, respectively)

retrospectively reviewed all csPCa cases and mapped the detailed
FIGURE 1

Flow diagram for inclusion of patients into the study.
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pathology results of the csPCa foci to the MR images with

consensus. The ground truth of the csPCa lesion segmentation

was obtained using manual delineation by the urogenital

radiologist (X), in consensus with and under the supervision

of the other urogenital radiologist (Y), using the open-source

segmentation software ITK-SNAP (version 3.6 2015; available at

www.itksnap.org) (21). The format of ADC and T2WI was

converted from DICOM to NIFTI. Three-dimensional

volumes of interest (VOIs) were manually drawn along the

boundaries of the csPCa lesions on consecutive axial sections

of ADC images.
Image preprocessing

After collecting the mpMRI data, the first step of image

preprocessing is T2WI and DWI/ADC image registration.

Patient motion is minimal and the two sequences are

temporally close to each other during the scanning. T2WI and

DWI/ADC images were registered via rigid transformation
Frontiers in Oncology 04
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using the coordinate information stored in the DICOM image

headers. B-spline interpolation to the third order was employed

for all MR image interpolation tasks, while Gaussian label

interpolation was used for the csPCa and prostate

segmentation masks. Following this, a coarse segmentation of

the prostate was obtained by K-means clustering in DWI high b

value images to localize the prostate region. Once the prostate

region was identified, the images were cropped to a patch of size

128 × 128. The prostate region of interest was then normalized

into the range of [0, 1]. We augmented the data in the training

set by mirroring, random rotation (rotation angle within 10°),

and adding noise (within 0.001, which means each pixel value

randomly fluctuates within one thousandth).
Deep learning framework

The base architecture for the deep learning framework used

in this study is a CNN inspired by the 2D U-Net (22) and Res-

Net (23) architectures and is termed Res-UNet. U-Net is one of

the end-to-end methods of deep learning, which is also a pixel-

to-pixel method and, with long skip connections, considers

feature maps of the encoder path to obtain good segmentation

performance in medical images. Res-Net (23) proposed a

residual connection architecture to make the network deeper

and avoid gradient vanishing and take advantage of strengths

from both architectures by modifying the original U-Net

architecture and adding residual blocks into the contracting

and symmetric expanding paths of the U-Net architecture. In

building the Res-UNet, we define a basic convolution operator

by a 3 × 3 convolution (Conv) followed by a batch normalization

(BN) and a rectified linear unit (ReLu). The residual block was

designed by using a 1 × 1 Conv layer, plus an addition operation

and ReLU function. Figure 2 depicts the Res-UNet architecture.

Following McNeal’s criterion (24), the prostate is typically

partitioned into two distinct zones: the Central Gland (CG,

including both the transition zone and the central zone) and the

Peripheral Zone (PZ). PCa lesions vary in frequency and

malignancy depending on the zone, and there are different

evaluation criteria for different regions in the PI-RADS.
TABLE 1 Characteristics of patients with csPCa.

Characteristics Patients with csPCa (n = 235)

Mean age (years) 70.2 ± 8.6

Median PSA (ng/mL) 16.3 (9.7–32.6)

Per-patient maximum Gleason score

3 + 4 76

4 + 3 59

3 + 5, 5 + 3, 4 + 4 46

4 + 5, 5 + 4 54

No. of csPCa lesions per patient

One lesion 173

Two lesions 49

Three lesions 10

Four lesions 3

Zone distribution of csPCa lesions

Peripheral zone 212

Transition zone 101
csPCa, clinically significant prostate cancer; PSA, serum prostate-specific antigen.
TABLE 2 The main sequence parameters in this study.

T2WI DWI DCE

Field of view (mm) 240 × 240 240 × 240 260 × 260

Acquisition Matrix 320 × 256 96 × 96 320 × 192

Repetition time (ms) 3200 3000 4

Echo time (ms) 85 60 1.3

Flip angle (degrees) 111 90 13

Slice thickness (mm) 4 4 3

Additional information … b values: 0–1400 s/mm2 Temporal resolution = 13 s;18 phases
T2WI, T2-weighted imaging; DWI, diffusion-weighted imaging; DCE, dynamic contrast material enhancement.
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Therefore, just like a radiologist, a model for automated PCa

detection and classification will invariably benefit from having

both CG and PZ mask priors provided as inputs, in addition to

the mpMRI. Accordingly, a cascading system of a three-

segmentation Res-UNet which was previously developed in

our institution (25) was developed for automatic prostate CG

and PZ segmentation and PCa lesion segmentation. The cascade

is designed to decompose the multi-task segmentation problem

into a sequence of three smaller binary segmentation problems

according to the subregion hierarchy. As can be seen in Figure 2,

the first Res-UNet model takes prostate MR images (T2WI +

ADC or only ADC) as inputs and produces a prostate

segmentation mask as an output. Then, the second model

takes the MR images and the prostate segmentation mask

which were obtained in the previous step as inputs and

produces a PZ segmentation mask. The CG segmentation

mask can be computed by subtracting the PZ mask from the

prostate mask. Finally, the last model takes the MR images, the

PZ mask, and the CG mask as inputs and segments to the csPCa.
Training setup

All of the training steps were performed using a GPU

NVIDIA Tesla P100 16G at Peking University First Hospital,

using the operating system Ubuntu 16.04. The software and

packages used included Python 3.6, Pytorch 0.4.1, Opencv

3.4.0.12, Numpy 1.16.2, and SimpleITK 1.2.0. The input data

were 128 × 128 images of ADC alone and ADC combined with

T2WI, respectively, with an annotation of the csPCa lesions. The

automated segmentation of the whole prostate gland and its
Frontiers in Oncology 05
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different zones was completed using the previously developed

and described method (25). For training the architectures for

csPCa segmentation, the batch size was set as 20 with a learning

rate of 0.0001. The networks were trained for 120 epochs. The

pixel classification threshold was 0.5, while Adam was used as a

training optimizer. The Dice similarity coefficient (DSC) was used

to evaluate the performance of the networks in the segmentation

of the csPCa, which is calculated as

DSC =
2=X ∩​ Y=
  =X= + =Y=

here X is the pixel set of csPCa segmented manually as the

ground truth and Y is the pixel set of csPCa prediction by

the model.
Prediction results integrated into the
structured report

Initially, the prediction results were “csPCa” or “non-

csPCa” depending on the patient concerned. When “csPCa”

was the output, the three-dimensional diameter of the

suspicious csPCa lesions and the whole prostate gland would

be filled into the structured report, as well as the key image of

the suspicious csPCa lesions (Supplementary Figure S1).

Furthermore, sextant localization of the suspicious csPCa

lesions would be labeled in the prostate sector map. The

prostate sextant is defined according to the standard sextant

biopsy (26), based on the automatic segmentation of the

prostate gland.
FIGURE 2

The briefarchitecture of the proposed weighted Res-Unet and the overall pipeline of our approach.
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Statistical analysis

Statistical analysis was carried out using SPSS 20.0 and

MedCalc 15.8. We evaluated the performance of the

biparametric (ADC + T2WI) model, ADC model, and PI-

RADS assessment using the testing set. For PI-RADS

assessment, PI-RADS ≥3 was considered positive for csPCa.

For per-lesion analysis, to limit the influence of very small

overlap regions, only the predicted lesions of the model

overlapping ≥50% of the manual csPCa segmentation lesions

in at least one slice were considered as true positive. Otherwise,

the predicted lesions were considered to be false positives. For

sextants analysis, only sextants overlapping at least 50% of an

MRI lesion, or being occupied at least 50% by an MRI lesion,

were considered to contain the MRI lesion (13). For per-patient

analysis, if a patient had one or more than one csPCa lesions, the

prediction of the model or PI-RADS assessment, was considered

as true positive when at least one csPCa lesion was detected. On

the other hand, for a patient without csPCa, the prediction was

considered as false positive as long as one lesion was predicted.

The performance of the models and PI-RADS assessment for

csPCa detection and localization were evaluated based on the

lesions, sextants, and patients, respectively. The sensitivity,

specificity, and accuracy of the models and PI-RADS were

evaluated and compared using the McNemar test. A p value of

less than 0.05 was considered statistically significant.
Results

Based on lesions

In the test set, 88 csPCa lesions were included and the mean

greatest dimension was 1.6 ± 0.7 cm. Table 3 depicts the

sensitivity of the models and PI-RADS assessment on the per-

lesion analysis. The per-lesion sensitivity of the biparametric

model, ADC model, and PI-RADS assessment was 95.5% (84/

88), 94.3% (83/88), and 94.3% (83/88), respectively, with all p >

0.05. For the csPCa lesions with the greatest dimension ≥1.5cm,

the sensitivity of the biparametric model was 100%, and the

sensitivity of the ADC model and PI-RADS assessment was

97.6% (40/41, with p > 0.05). The sensitivity showed no
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significant difference between the models and PI-RADS

regardless of whether the csPCa lesions were in the PZ or the TZ.

In addition, the mean DSC based on csPCa lesions in the test

were 0.64 ± 0.24 and 0.66 ± 0.23 for the biparametric model and

the ADC model, respectively. Figure 3 demonstrates examples of

the csPCa segmentation of the biparametric model.
Based on sextants

A total of 840 sextants from the test set were analyzed,

including 113 sextants of csPCa and 727 sextants of non-csPCa.

The diagnostic efficacy and comparisons of the models and the PI-

RADS assessment based on sextants are summarized in Tables 4

and 5. The biparametric model and PI-RADS assessment both

had relatively high sensitivity, specificity and accuracy, i.e., 95.6%

(108/113) vs. 92.9% (105/113), 91.5% (665/727) vs. 92.2% (670/

727), and 92.0% (773/840) vs. 92.3% (775/840), respectively, all

with p > 0.05. The ADC model demonstrated a comparable

sensitivity of 91.2% (103/113) when compared with the

biparametric model where p = 0.125, while the ADC model had

a specificity of 86.8% (631/727) and accuracy of 87.4% (734/840),

which were both lower than the biparametric model (all p< 0.001).

Considering all the mpMRI sequences and detailed pathological

results, 61.5% (59/96) of the false-positive sextants from the ADC

model were hyperplastic nodules and asymmetric central zone,

which is shown in Figure 4, while the ratio was 45.2% (28/62) for

the biparametric model.
Based on patients

For the 140 patients (csPCa, 69; non-csPCa, 71) in the test

set, the performance and comparisons of the models and the PI-

RADS assessment based on patients are shown in Tables 4 and 5.

Biparametric model and PI-RADS assessment had comparable

per-patient sensitivity, specificity, and accuracy, i.e. 98.6% (68/

69) vs. 98.6% (68/69), 64.8% (46/71) vs. 66.2% (47/71) and 81.4%

(114/140) vs. 82.1% (115/140), respectively (all p > 0.05). ADC

model had a similar sensitivity of 97.1% (67/69) compared with

the combined model and PI-RADS assessment. The specificity
TABLE 3 Per-lesion sensitivity of the models and PI-RADS assessment.

Biparametric model (%) ADC model (%) PI-RADS (%) p

Total 95.5 (84/88) [88.8, 98.8] 94.3 (83/88) [87.2, 98.1] 94.3 (83/88) [87.2, 98.1] >0.05

Peripheral zone 95.0 (57/60) [86.1, 99.0] 93.3 (56/60) [83.8, 98.2] 96.7 (58/60) [88.5, 99.6] >0.05

Transition zone 96.4 (27/28) [81.7, 99.9] 96.4 (27/28) [81.7, 99.9] 89.3 (25/28) [71.8, 97.7] >0.05

Dimension 0.4-1.5cm 91.5 (43/47) [79.6, 97.6] 91.5 (43/47) [79.6, 97.6] 91.5 (43/47) [79.6, 97.6] >0.05

Dimension ≥1.5cm 100.0 (41/41) [96.4, 100] 97.6 (40/41) [87.1, 99.9] 97.6 (40/41) [87.1, 99.9] >0.05
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and accuracy of the biparametric model were slightly higher

than those of the ADC model (specificity, 54.9%; accuracy,

75.7%); however, the statistical significance was not reached

(p = 0.118, 0.077).
Discussion

Our approach using cascaded CNNs could automatically

detect and segment the suspicious csPCa lesions on MR images
Frontiers in Oncology 07
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without any human intervention. The whole prediction process

could be completed within a few seconds per case, which was

much faster than human interpretation using PI-RADS, which

normally takes several minutes. There are several benefits of

using a cascaded framework for the segmentation of hierarchical

structures. First, many proposed methods try to solve the

segmentation problem using a single neural network.

Considering the great variability in the shape, size, texture,

and appearance of the prostate gland and PCa, we suggest

using cascaded CNNs for the segmentation task to improve
TABLE 4 Performance of the models and PI-RADS assessment based on sextants and patients.

Sensitivity (%) Specificity (%) Accuracy (%)

Based on sextant

Biparametric model 95.6 (108/113) [90.0, 98.6] 91.5 (665/727) [89.2, 93.4] 92.0 (773/840)

ADC model 91.2 (103/113) [84.3, 95.7] 86.8 (631/727) [84.1, 89.2] 87.4 (734/840)

PI-RADS 92.9 (105/113) [86.5, 96.9] 92.2 (670/727) [90.0, 94.0] 92.3 (775/840)

Based on patient

Biparametric model 98.6 (68/69) [92.2, 99.9] 64.8 (46/71) [52.5, 75.8] 81.4 (114/140)

ADC model 97.1 (67/69) [89.9, 99.7] 54.9 (39/71) [42.7, 66.8] 75.7 (106/140)

PI-RADS 98.6 (68/69) [92.2, 99.9] 66.2 (47/71) [54.0, 77.0] 82.1 (115/140)
PI-RADS, Prostate Imaging Reporting and Data System.
Data in brackets are 95% CIs.
A B

D E F

C

FIGURE 3

(A–F) Examples of the csPCa lesion segmentation performance of the biparametric model. The prediction results (A–F), yellow line on the ADC
map were highly consistent with the manual annotation (A–F), blue line on ADC map by experienced urogenital radiologists according to
pathological results.
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the segmentation accuracy, and each network can focus on one

segmentation problem. Thus, they are easier to train and can

reduce over-fitting. Second, in consideration of the PCa lesions,

these can vary in frequency and malignancy depending on the

zone; the hierarchical pipeline follows the anatomical structures

of the prostate and uses them as spatial constraints. Thus, the

model for automated csPCa detection and classification will

likely benefit.
Frontiers in Oncology 08
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The results demonstrated that the biparametric model had

high sensitivity (95.5%, 95.6%, and 98.6% based on lesions,

sextants, and patients respectively) and acceptable specificity

(64.8%, 91.5%; based on patients and sextants) and had

comparable performance to PI-RADS evaluation by an

experienced radiologist, which is consistent with Schelb’s

findings (13). The preliminary results of our study add to the

evidence that fully automated deep learning models for csPCa
A B

D E F

C

FIGURE 4

(A–C) Axial MR images obtained in a 56-year-old patient with a PSA level of 4.2 ng/ml and with negative biopsy findings. T2WI (A) showed a
heterogeneous encapsulated nodule in the left transition zone (arrow) and the ADC map (B) showed hypointensity (arrow). The ADC model (C)
appeared false positive (red region). (D–F) Axial MR images obtained in a 64-year-old patient with a PSA level of 5.9 ng/ml and with negative
biopsy findings. T2W (D) and ADC (E) showed a normal left central zone, while the ADC model (F) appeared false positive in this area (red mark).
The biparametric model gave negative predictive values for both cases.
TABLE 5 Comparisons of the models and PI-RADS assessment based on sextants and patients.

Sensitivity Specificity Accuracy

Based on sextants

Biparametric model vs. ADC model 0.125 <0.001 <0.001

Biparametric model vs. PI-RADS 0.508 0.630 0.910

ADC model vs. PI-RADS 0.754 <0.001 <0.001

Based on patients

Biparametric model vs. ADC model 1.000 0.118 0.077

Biparametric model vs. PI-RADS 1.000 1.000 1.000

ADC model vs. PI-RADS 1.000 0.077 0.064
fro
PI-RADS, Prostate Imaging Reporting and Data System.
Bold characters indicate that the difference was statistically significant (p< 0.05).
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detection have now even reached the level of an experienced

radiologist (13, 27). Further prospective studies based on large

consecutive data are needed for clinical validation. Furthermore,

our model could also determine the boundary of csPCa precisely.

The DSC based on csPCa lesions was 0.64 and 0.66 for the

biparametric model and ADC model, respectively, which was

higher than that in similar studies on csPCa detection that

reported 0.35–0.58 (13, 28, 29). The good segmentation

performance would facilitate the 3D prostate MRI-TRUS

fusion targeted biopsy. Additionally, a 3D model for the

visualization of csPCa and the adjacent vital structures, based

on accurate segmentation, may be helpful for the urologist in the

surgery, as well as for patient education (30). However, DSC as a

voxel-level metric remains limited for lesion-level PCa detection

and can misrepresent the accuracy for evaluating the localization

of multifocal PCa (31, 32). Therefore, our study based on the

actual clinical practice mainly used sensitivity and specificity at

the lesion, sextant, and patient levels to comprehensively

evaluate the performance of the model.

T2WI and ADC derived from DWI are recommended by PI-

RADS as the most important sequences for the evaluation of TZ

and PZ lesions, respectively. Many studies demonstrated that the

diagnostic performance of biparametric MRI without DCE was

similar to those of mpMRI (33, 34). Therefore, this study mainly

used those two parameters to develop the model. Additionally,

the ADC of DWI is considered to be the current best

monoparametric sequence of prostate MRI assessment, which

is reported to have a strong relationship with the Gleason scores

(GS) of PCa and is even superior to TRUS-guided prostate

biopsy for the assessment of PCa aggressiveness (35–37). For this

reason, the proposed model trained with monoparametric ADC

was evaluated specifically. The results of our study demonstrated

that the monoparameter ADC model had a high sensitivity for

csPCa detection (94.3% [83/88] and 97.1% [67/69], based on

lesions and patients, respectively), which showed no significant

difference (p > 0.05) with the biparametric model and PI-RADS

assessment, regardless of whether the csPCa lesions were located

on the PZ or TZ. Zabihollahy et al.’s study also showed that deep

learning using only ADC was highly sensitive and could even

reach a 100% sensitivity at the level of dominant PZ tumor

detection (12), which is slightly higher than ours. The reason

may be that their study only considered the most dominant

lesion on PZ, which was easily identifiable, while our study

detected all the csPCa on the MR images. Further research with

larger volumes of testing data is needed to verify the performance

of the ADC model. The specificity of the biparametric model in

our study was higher than that of the ADC model based on

sextants (p< 0.001). When compared with the ADC model, the

biparametric model outputted fewer false-positive lesions such as

hyperplastic nodules and the central zone. Nevertheless, the high

sensitivity of the ADC model using a single parameter instead of

time-consuming mpMRI may facilitate the promotion of prostate

MRI screening.
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In contrast with studies that were trainingmodels using public

data (15, 38), the data in our study were collected consecutively

based on real-world clinical scenarios, which would allow the

model to be more easily integrated into a clinical setting. The

amount of data in the training and validation sets (145 and 21

csPCa cases, including 1204 slices and 173 slices, respectively, after

automatic prostate segmentation) was comparable to that used in

some studies (11, 12), and was larger than that in other studies (19,

20). Therefore, we put more data in the testing set (69 csPCa, 71

non-csPCa cases) to better evaluate and verify the generalization

ability of the model. Our proposed biparametric model yielded

high sensitivity of 98.6% for csPCa detection based on patients, as

well as other studies with the sensitivity ranging from 82.9% to

97% (13, 14, 39–41). However, it is worth noting that the

specificity was not as high as expected in our study (64.8%) and

in other studies (47%–76%) (12–14, 39). That is to say, the success

of the AI came at the cost of a high false-positive rate of even 50%

(42). Yu et al. (43)proposed a cascaded approach to reduce the

false positive for PCa detection, where the second-stage classifier

was able to reduce false positives at the expense of nearly an 8%

decrease in detection sensitivity. Saha et al. (29) present a multi-

stage 3D CAD model for csPCa localization in biparametric MRI

with the addition of a residual patch-wise 3D classifier to improve

the model specificity. The results demonstrated that up to 12.89%

less false positives were generated per patient, while retaining the

same sensitivity (92.29%) as before. Min et al. (44) explored the

feasibility of controlling the false positives/negatives during

training by incorporating the cost-sensitive classification losses.

More studies are needed to further explore how to improve the

specificity of the prostate CAD.

An optimal AI model should not only have good

performance for csPCa diagnosis but should also have a

perfect output form facilitating clinical practice. One

advantage of the proposed approach is that it had a perfect

output and added AI into the radiological workflow seamlessly

by automatically integrating the prediction results into

structured reports, which makes this approach more

convenient for clinical application. At present, our model can

output whether a patient has csPCa or not and the size of the

prostate gland. If csPCa lesions were found, it would further

output the size of csPCa lesions and also mark the area of csPCa

on MR images. These prediction results could be automatically

transferred into a structured report before radiologists open the

reporting system. However, a complete structured report

includes many other contents, such as whether the csPCa

lesions invade the prostate capsule and adjacent structures, as

well as lymph node condition, bone metastasis, etc. Our

institution is now exploring each of the above, and some of

them have achieved good performance (45). Our ultimate goal

was to develop a fully automatic intelligent structured report,

thereby freeing radiologists from heavy clinical paperwork.

When radiologists open structured reports, they just need to

check the accuracy of each item.
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Several limitations of our study were as follows. First, all of

the images were from a single MR machine in a single

institution. Multi-center and multi-machine data functionality

should be added to improve the generalization ability of the

model in further studies. Secondly, this U-Net model was trained

only using ADC and T2WI. Future research involving the

addition of more MRI sequences and/or clinical information

may be investigated to improve the performance of the model.

On the other hand, the model in this study achieved good results

with biparametric MRI, so streamlining MRI sequences with an

advanced algorithm may be another possible research direction.

Thirdly, even though the reference standard using TRUS-guided

systematic and targeted biopsy had high sensitivity for csPCa, it

still has a false-negative rate when compared with radical

prostatectomy. Nevertheless, our cohorts may be optimal, for

radical prostatectomy cohorts would exclude many patients who

only had a prostate biopsy and could lead to bias. Finally, this

model was only applicable to the detection and localization of

csPCa instead of staging and active surveillance.
Conclusion

In conclusion, our study demonstrated that a cascaded deep

learning model trained with ADC and T2WI achieved good

performance for the fully automated detection and segmentation

of csPCa and demonstrated comparable performance with an

experienced radiologist using PI-RADS (version 2.1). The

proposed approach can automatically integrate prediction

results into the radiological workflow seamlessly by using a

structured report. As a preliminary exploration, this study

provided a reference for future AI clinical implementation.

Further studies are needed to explore the optimal paradigm of

AI clinical integration.
Data availability statement

The datasets presented in this article are not readily available

because the datasets are privately owned by Peking University

First Hospital and are not made public. Requests to access the

datasets should be directed to XYW, wangxiaoying@bjmu.edu.cn.
Ethics statement

The studies involving human participants were reviewed and

approved by Peking University First Hospital. Written informed
Frontiers in Oncology 10
117
consent for participation was not required for this study in

accordance with the nat ional leg i s la t ion and the

institutional requirements.
Author contributions

LZ and XYW designed the study. CH, XL, and DL

contributed to acquisition of data. LZ and XYW annotated the

images data. YZ, WL, XPW, and JZ designed the model and

implemented the main algorithm. LZ and GG analyzed the data.

LZ wrote the paper. XYW and XZ reviewed the paper. All

authors contributed to the article and approved the

submitted version.
Acknowledgments

The authors would like to acknowledge Xin Yue and Suisui

Zhang from the Beijing Smart Tree Medical Technology Co.,

Ltd., for their help in constructing the structured report.
Conflict of interest

Authors WL, XPW and JZ are employed by Beijing Smart

Tree Medical Technology Co. Ltd.

The remaining authors declare that the research was

conducted in the absence of any commercial or financial

relationships that could be construed as a potential conflict

of interest.
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/

fonc.2022.958065/full#supplementary-material
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fonc.2022.958065/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fonc.2022.958065/full#supplementary-material
https://doi.org/10.3389/fonc.2022.958065
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhu et al. 10.3389/fonc.2022.958065
References
1. Johnson LM, Turkbey B, Figg WD, Choyke PL. Multiparametric MRI in
prostate cancer management. Nat Rev Clin Oncol (2014) 11:346–53. doi: 10.1038/
nrclinonc.2014.69

2. Turkbey B, Rosenkrantz AB, Haider MA, Padhani AR, Villeirs G, Macura KJ,
et al. Prostate imaging reporting and data system version 2.1: 2019 update of
prostate imaging reporting and data system version 2. Eur Urol (2019) 76:340–51.
doi: 10.1016/j.eururo.2019.02.033

3. Ahmed HU, El-Shater Bosaily A, Brown LC, Gabe R, Kaplan R, Parmar MK,
et al. Diagnostic accuracy of multi-parametric MRI and TRUS biopsy in prostate
cancer (PROMIS): a paired validating confirmatory study. Lancet (2017) 389:815–
22. doi: 10.1016/S0140-6736(16)32401-1

4. Kasivisvanathan V, Rannikko AS, Borghi M, Panebianco V, Mynderse LA,
Vaarala MH, et al. MRI-Targeted or standard biopsy for prostate-cancer diagnosis.
N Engl J Med (2018) 378:1767–77. doi: 10.1056/NEJMoa1801993

5. van der Leest M, Cornel E, Israel B, Hendriks R, Padhani AR, Hoogenboom
M, et al. Head-to-head comparison of transrectal ultrasound-guided prostate
biopsy versus multiparametric prostate resonance imaging with subsequent
magnetic resonance-guided biopsy in biopsy-naive men with elevated prostate-
specific antigen: A Large prospective multicenter clinical study. Eur Urol (2019)
75:570–8. doi: 10.1016/j.eururo.2018.11.023

6. Weinreb JC, Barentsz JO, Choyke PL, Cornud F, Haider MA, Macura KJ,
et al. PI-RADS prostate imaging - reporting and data system: 2015, version 2. Eur
Urol (2016) 69:16–40. doi: 10.1016/j.eururo.2015.08.052

7. Rosenkrantz AB, Ginocchio LA, Cornfeld D, Froemming AT, Gupta RT,
Turkbey B, et al. Interobserver reproducibility of the PI-RADS version 2 lexicon: A
multicenter study of six experienced prostate radiologists. Radiology (2016)
280:793–804. doi: 10.1148/radiol.2016152542

8. Byun J, Park KJ, Kim MH, Kim JK. Direct comparison of PI-RADS version 2
and 2.1 in transition zone lesions for detection of prostate cancer: Preliminary
experience. J Magn Reson Imaging (2020) 52:577–86. doi: 10.1002/jmri.27080

9. Rudolph MM, Baur ADJ, Cash H, Haas M, Mahjoub S, Hartenstein A, et al.
Diagnostic performance of PI-RADS version 2.1 compared to version 2.0 for
detection of peripheral and transition zone prostate cancer. Sci Rep (2020)
10:15982. doi: 10.1038/s41598-020-72544-z

10. Linhares Moreira AS, De Visschere P, Van Praet C, Villeirs G. How does PI-
RADS v2.1 impact patient classification? a head-to-head comparison between PI-
RADS v2.0 and v2.1. Acta Radiol (2021) 62:839–47. doi: 10.1177/
0284185120941831

11. Aldoj N, Lukas S, Dewey M, Penzkofer T. Semi-automatic classification of
prostate cancer on multi-parametric MR imaging using a multi-channel 3D
convolutional neural network. Eur Radiol (2020) 30:1243–53. doi: 10.1007/
s00330-019-06417-z

12. Zabihollahy F, Ukwatta E, Krishna S, Schieda N. Fully automated
localization of prostate peripheral zone tumors on apparent diffusion coefficient
map MR images using an ensemble learning method. J Magn Reson Imaging (2020)
51:1223–34. doi: 10.1002/jmri.26913

13. Schelb P, Kohl S, Radtke JP, Wiesenfarth M, Kickingereder P, Bickelhaupt S,
et al. Classification of cancer at prostate MRI: Deep learning versus clinical PI-
RADS assessment. Radiology (2019) 293:607–17. doi: 10.1148/radiol.2019190938

14. Cao R, Mohammadian Bajgiran A, Afshari Mirak S, Shakeri S, Zhong X,
Enzmann D, et al. Joint prostate cancer detection and Gleason score prediction in
mp-MRI via FocalNet. IEEE Trans Med Imaging (2019) 38:2496–506. doi: 10.1109/
TMI.2019.2901928

15. Song Y, Zhang YD, Yan X, Liu H, Zhou M, Hu B, et al. Computer-aided
diagnosis of prostate cancer using a deep convolutional neural network from
multiparametric MRI. J Magn Reson Imaging (2018) 48:1570–7. doi: 10.1002/
jmri.26047

16. Yoo S, Gujrathi I, Haider MA, Khalvati F. Prostate cancer detection using
deep convolutional neural networks. Sci Rep (2019) 9:19518. doi: 10.1038/s41598-
019-55972-4

17. Wang Z, Liu C, Cheng D, Wang L, Yang X, Cheng KT. Automated detection
of clinically significant prostate cancer in mp-MRI images based on an end-to-End
deep neural network. IEEE Trans Med Imaging (2018) 37:1127–39. doi: 10.1109/
TMI.2017.2789181

18. Lemaitre G, Marti R, Rastgoo M, Meriaudeau F. Computer-aided detection
for prostate cancer detection based on multi-parametric magnetic resonance
imaging. Annu Int Conf IEEE Eng Med Biol Soc (2017) 2017:3138–41.
doi: 10.1109/EMBC.2017.8037522

19. Seetharaman A, Bhattacharya I, Chen LC, Kunder CA, Shao W, Soerensen
SJC, et al. Automated detection of aggressive and indolent prostate cancer on
magnetic resonance imaging.Med Phys (2021) 48:2960–72. doi: 10.1002/mp.14855
Frontiers in Oncology 11
118
20. Sanyal J, Banerjee I, Hahn L, Rubin D. An automated two-step pipeline for
aggressive prostate lesion detection from multi-parametric MR sequence. AMIA Jt
Summits Transl Sci Proc (2020) 2020:552–60.

21. Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC, et al. User-
guided 3D active contour segmentation of anatomical structures: significantly
improved efficiency and reliability. NeuroImage (2006) 31:1116–28. doi: 10.1016/
j.neuroimage.2006.01.015

22. Ronneberger O, Fischer P, Brox T. (2015). U-Net: Convolutional networks
for biomedical image segmentation. In: Navab N, Hornegger J, Wells, W, Frangi A.
(eds). in: Medical image computing and computer-assisted intervention – MICCAI
2015. MICCAI 2015. Lecture notes in computer science. Cham: Springer (2015)
9351:234–41. doi: 10.1007/978-3-319-24574-4_28

23. Nah S, Kim TH, Lee KM. (2017). Deep multi-scale convolutional neural
network for dynamic scene deblurring, in: Proceedings of the IEEE conference on
computer vision and pattern recognition. pp. 3883–91. doi: 10.48550/
arXiv.1612.02177

24. McNeal JE. Anatomy of the prostate: an historical survey of divergent views.
Prostate (1980) 1:3–13. doi: 10.1002/pros.2990010103

25. Zhu Y, Wei R, Gao G, Ding L, Zhang X, Wang X, et al. Fully automatic
segmentation on prostate MR images based on cascaded fully convolution network.
J Magn Reson Imaging (2019) 49:1149–56. doi: 10.1002/jmri.26337

26. Presti JC. Prostate biopsy: current status and limitations. Rev Urol (2007)
9:93–8.

27. Hosseinzadeh M, Saha A, Brand P, Slootweg I, de Rooij M, Huisman H.
Deep learning-assisted prostate cancer detection on bi-parametric MRI: minimum
training data size requirements and effect of prior knowledge. Eur Radiol (2022)
32:2224–34. doi: 10.1007/s00330-021-08320-y

28. Vente C, Vos P, Hosseinzadeh M, Pluim J, Veta M. Deep learning regression
for prostate cancer detection and grading in bi-parametric MRI. IEEE Trans
BioMed Eng (2021) 68:374–83. doi: 10.1109/TBME.2020.2993528

29. Saha A, Hosseinzadeh M, Huisman H. End-to-end prostate cancer detection
in bpMRI via 3D CNNs: Effects of attention mechanisms, clinical priori and
decoupled false positive reduction. Med Image Anal (2021) 73:102155.
doi: 10.1016/j.media.2021.102155

30. Wake N, Rosenkrantz AB, Huang R, Park KU, Wysock JS, Taneja SS, et al.
Patient-specific 3D printed and augmented reality kidney and prostate cancer
models: impact on patient education. 3D Print Med (2019) 5:4. doi: 10.1186/
s41205-019-0041-3

31. Carass A, Roy S, Gherman A, Reinhold JC, Jesson A, Arbel T, et al.
Evaluating white matter lesion segmentations with refined sørensen-dice
analysis. Sci Rep (2020) 10:8242. doi: 10.1038/s41598-020-64803-w

32. Yan W, Yang Q, Syer T, Min Z, Punwani S, Emberton M, et al. The impact
of using voxel-level segmentation metrics on evaluating multifocal prostate cancer
localisation. arXiv preprint arXiv (2022) 2203:16415. doi: 10.48550/
arXiv.2203.16415

33. Choi MH, Kim CK, Lee YJ, Jung SE. Prebiopsy biparametric MRI for
clinically significant prostate cancer detection with PI-RADS version 2: A
multicenter study. AJR Am J roentgenol (2019) 212:839–46. doi: 10.2214/
AJR.18.20498

34. Tamada T, Kido A, Yamamoto A, Takeuchi M, Miyaji Y, Moriya T, et al.
Comparison of biparametric and multiparametric MRI for clinically significant
prostate cancer detection with PI-RADS version 2.1. J Magn Reson Imaging (2021)
53:283–91. doi: 10.1002/jmri.27283

35. Bonekamp D, Kohl S, Wiesenfarth M, Schelb P, Radtke JP, Gotz M, et al.
Radiomic machine learning for characterization of prostate lesions with MRI:
Comparison to ADC values. Radiology (2018) 289:128–37. doi: 10.1148/
radiol.2018173064

36. Kim TH, Kim CK, Park BK, Jeon HG, Jeong BC, Seo SI, et al. Relationship
between Gleason score and apparent diffusion coefficients of diffusion-weighted
magnetic resonance imaging in prostate cancer patients. Can Urol Assoc J Nov-Dec
(2016) 10:E377–82. doi: 10.5489/cuaj.3896

37. Li C, Chen M, Wang J, Wang X, Zhang W, Zhang C. Apparent diffusion
coefficient values are superior to transrectal ultrasound-guided prostate biopsy for
the assessment of prostate cancer aggressiveness. Acta Radiol (2017) 58:232–9.
doi: 10.1177/0284185116639764

38. Yuan Y, Qin W, Buyyounouski M, Ibragimov B, Hancock S, Han B, et al.
Prostate cancer classification with multiparametric MRI transfer learning model.
Med Phys (2019) 46:756–65. doi: 10.1002/mp.13367

39. Yang X, Liu C, Wang Z, Yang J, Min HL, Wang L, et al. Co-Trained
convolutional neural networks for automated detection of prostate cancer in multi-
frontiersin.org

https://doi.org/10.1038/nrclinonc.2014.69
https://doi.org/10.1038/nrclinonc.2014.69
https://doi.org/10.1016/j.eururo.2019.02.033
https://doi.org/10.1016/S0140-6736(16)32401-1
https://doi.org/10.1056/NEJMoa1801993
https://doi.org/10.1016/j.eururo.2018.11.023
https://doi.org/10.1016/j.eururo.2015.08.052
https://doi.org/10.1148/radiol.2016152542
https://doi.org/10.1002/jmri.27080
https://doi.org/10.1038/s41598-020-72544-z
https://doi.org/10.1177/0284185120941831
https://doi.org/10.1177/0284185120941831
https://doi.org/10.1007/s00330-019-06417-z
https://doi.org/10.1007/s00330-019-06417-z
https://doi.org/10.1002/jmri.26913
https://doi.org/10.1148/radiol.2019190938
https://doi.org/10.1109/TMI.2019.2901928
https://doi.org/10.1109/TMI.2019.2901928
https://doi.org/10.1002/jmri.26047
https://doi.org/10.1002/jmri.26047
https://doi.org/10.1038/s41598-019-55972-4
https://doi.org/10.1038/s41598-019-55972-4
https://doi.org/10.1109/TMI.2017.2789181
https://doi.org/10.1109/TMI.2017.2789181
https://doi.org/10.1109/EMBC.2017.8037522
https://doi.org/10.1002/mp.14855
https://doi.org/10.1016/j.neuroimage.2006.01.015
https://doi.org/10.1016/j.neuroimage.2006.01.015
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.48550/arXiv.1612.02177
https://doi.org/10.48550/arXiv.1612.02177
https://doi.org/10.1002/pros.2990010103
https://doi.org/10.1002/jmri.26337
https://doi.org/10.1007/s00330-021-08320-y
https://doi.org/10.1109/TBME.2020.2993528
https://doi.org/10.1016/j.media.2021.102155
https://doi.org/10.1186/s41205-019-0041-3
https://doi.org/10.1186/s41205-019-0041-3
https://doi.org/10.1038/s41598-020-64803-w
https://doi.org/10.48550/arXiv.2203.16415
https://doi.org/10.48550/arXiv.2203.16415
https://doi.org/10.2214/AJR.18.20498
https://doi.org/10.2214/AJR.18.20498
https://doi.org/10.1002/jmri.27283
https://doi.org/10.1148/radiol.2018173064
https://doi.org/10.1148/radiol.2018173064
https://doi.org/10.5489/cuaj.3896
https://doi.org/10.1177/0284185116639764
https://doi.org/10.1002/mp.13367
https://doi.org/10.3389/fonc.2022.958065
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhu et al. 10.3389/fonc.2022.958065
parametric MRI. Med Image Anal (2017) 42:212–27. doi: 10.1016/
j.media.2017.08.006

40. Wong T, Schieda N, Sathiadoss P, Haroon M, Abreu-Gomez J, Ukwatta E.
Fully automated detection of prostate transition zone tumors on T2-weighted and
apparent diffusion coefficient (ADC) map MR images using U-net ensemble. Med
Phys (2021) 48:6889–900. doi: 10.1002/mp.15181

41. Netzer N, Weißer C, Schelb P, Wang X, Qin X, Görtz M, et al. Fully
automatic deep learning in bi-institutional prostate magnetic resonance imaging:
Effects of cohort size and heterogeneity. Invest Radiol (2021) 56:799–808.
doi: 10.1097/RLI.0000000000000791

42. Padhani AR, Turkbey B. Detecting prostate cancer with deep learning for
MRI: A small step forward. Radiology (2019) 293:618–9. doi: 10.1148/
radiol.2019192012
Frontiers in Oncology 12
119
43. Yu X, Lou B, Shi B, Winkel D, Szolar D. (2020). False positive reduction
using multiscale contextual features for prostate cancer detection in multi-
parametric MRI scans, in: 2020 IEEE 17th International Symposium on
Biomedical Imaging (ISBI). Iowa City, IA, USA: IEEE. pp. 1355–9. doi: 10.1109/
ISBI45749.2020.9098338

44. Min Z, Bianco FJ, Yang Q, Rodell R, Yan W, Barratt D, et al. (2021).
Controlling false Positive/Negative rates for deep-Learning-Based prostate cancer
detection on multiparametric MR images, in: 25th UK Conference on Medical
Image Understanding and Analysis. Switzerland: Springer Nature. pp. 56–70.
doi: 10.48550/arXiv.2106.02385

45. Liu X, Han C, Cui Y, Xie T, Zhang X, Wang X. Detection and segmentation
of pelvic bones metastases in MRI images for patients with prostate cancer based on
deep learning. Front Oncol (2021) 11:773299. doi: 10.3389/fonc.2021.773299
frontiersin.org

https://doi.org/10.1016/j.media.2017.08.006
https://doi.org/10.1016/j.media.2017.08.006
https://doi.org/10.1002/mp.15181
https://doi.org/10.1097/RLI.0000000000000791
https://doi.org/10.1148/radiol.2019192012
https://doi.org/10.1148/radiol.2019192012
https://doi.org/10.1109/ISBI45749.2020.9098338
https://doi.org/10.1109/ISBI45749.2020.9098338
https://doi.org/10.48550/arXiv.2106.02385
https://doi.org/10.3389/fonc.2021.773299
https://doi.org/10.3389/fonc.2022.958065
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


+41 (0)21 510 17 00 
frontiersin.org/about/contact

Avenue du Tribunal-Fédéral 34
1005 Lausanne, Switzerland
frontiersin.org

Contact us

Frontiers

Advances knowledge of carcinogenesis and 

tumor progression for better treatment and 

management

The third most-cited oncology journal, which 

highlights research in carcinogenesis and tumor 

progression, bridging the gap between basic 

research and applications to imrpove diagnosis, 

therapeutics and management strategies.

Discover the latest 
Research Topics

See more 

Frontiers in
Oncology

https://www.frontiersin.org/journals/Oncology/research-topics

	Cover
	FRONTIERS EBOOK COPYRIGHT STATEMENT
	The application of artificial intelligence in diagnosis, treatment and prognosis in urologic oncology
	Table of contents
	Editorial: The application of artificial intelligence in diagnosis, treatment and prognosis in urologic oncology
	Author contributions
	Funding
	Acknowledgments

	A Deep Learning System to Predict the Histopathological Results From Urine Cytopathological Images
	Introduction
	Materials and Methods
	Data Acquisition
	Deep Learning System
	Evaluation Metrics

	Results
	Development of the Deep Learning System
	Deep Learning System Performance to Detect Cancer Cells
	Deep Learning System Performance to Predict Malignancy

	Discussion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

	Development and Validation of Nomograms to Predict Cancer-Specific Survival and Overall Survival in Elderly Patients With Prostate Cancer: A Population-Based Study
	Background
	Patients and Methods
	Data Source and Data Extraction
	Development and Validation of the Nomograms
	Clinical Application
	Statistical Analysis

	Result
	Clinical Features
	Univariate and Multivariate COX Regression Analysis
	Nomograms Development for the 3-Year, 5-Year, and 8-Year CSS and OS
	Validation of the Nomograms
	Clinical Application of the Nomograms

	Discussion
	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References

	Auto-Segmentation Ultrasound-Based Radiomics Technology to Stratify Patient With Diabetic Kidney Disease: A Multi-Center Retrospective Study
	Introduction
	Materials and Methods
	Study Design and Patients
	Clinical Stage of Diabetic Kidney Disease (DKD)
	Kidney Ultrasound Scan
	Inclusive and Exclusive Criteria
	Inclusive Criteria

	Exclusive Criteria
	Data Extraction and Model Building
	Deep Learning (DL) Algorithm
	Data Enhancement
	Experimental Environment
	Statistical Analysis

	Results
	Baseline Characteristics Among the Three Medical Centers
	DL-Based Anatomical-Level Segmentation
	Correlation Between Extracted Radiomics Variables
	Utilization of Radiomics Variables From Parenchyma and Sinus for Stratifying DKD Patients
	Diagnostic Performance of Ultrasound-Based Radiomics in Stratifying DKD Patients
	Diagnostic Performance of DL-Based Automatic Segmentation, Radiomics for DKD

	Discussion
	Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Supplementary Material
	References

	Machine Learning-Based Models Enhance the Prediction of Prostate Cancer
	Introduction
	Methods
	Data Sources
	Model Development
	Model Performance Evaluation
	Data Analysis

	Results
	Baseline Patient Characteristics
	LR Algorithm-Based PCa Prediction Model
	DT Algorithm-Based PCa Prediction Model
	RF Algorithm-Based PCa Prediction Model
	SVM Algorithm-Based PCa Prediction Model
	Performance of the Developed Models

	Discussion
	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References

	The role of radiomics with machine learning in the prediction of muscle-invasive bladder cancer: A mini review
	1 Introduction
	2 Search criteria
	3 Results
	4 Discussion
	4.1 Traditional diagnostic imaging
	4.2 Radiomics
	4.2.1 Input modality
	4.2.2 Volumes of interest segmentation
	4.2.3 Feature extraction and quantization
	4.2.4 Model construction
	4.2.5 Integration of other clinical factors
	4.2.6 Method for validating results


	5 Future and prospects
	Author contributions
	Funding
	References

	Machine learning model for the prediction of prostate cancer in patients with low prostate-specific antigen levels: A multicenter retrospective analysis
	Introduction
	Materials and methods
	Ethics statement
	Data collection
	Statistical analysis

	Results
	Demographic features
	Univariate and multivariate logistic regression analyses
	Performance of ML algorithms
	Relative importance of the analyzed variables

	Discussion
	Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Supplementary material
	References

	Machine learning prediction of prostate cancer from transrectal ultrasound video clips
	Introduction
	Materials and methods
	Study participants
	Video clips acquisition
	Manual segmentation
	Feature extraction and selection
	Machine learning
	MRI results collection
	Machine learning models aided diagnosis algorithm
	Statistical analysis

	Results
	Clinicopathological features of the patients
	Feature selection
	Modeling and effectiveness

	Discussion
	Conclusions
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	References

	Diagnostic performance of radiomics in adrenal masses: A systematic review and meta-analysis
	Introduction
	Materials and methods
	Literature search
	Study selection
	Quality assessment
	Meta-analysis
	Statistical analysis

	Results
	Included studies
	Data quality assessment
	Meta-analysis

	Discussion
	Conclusion
	Data availability statement
	Author contributions
	Funding
	Supplementary material
	References

	CT-based transformer model for non-invasively predicting the Fuhrman nuclear grade of clear cell renal cell carcinoma
	1 Introduction
	2 Materials and methods
	2.1 Data preparation
	2.2 ccRCC classification network
	2.3 Model ensembles

	3 Results
	3.1 Clinical characteristics
	3.2 Performance of proposed algorithm
	3.3 Comparison with SOTA methods
	3.4 Comparison with transfer learning
	3.5 Analysis of noise labels
	3.6 External validation

	4 Discussion
	5 Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	References

	Fully automated detection and localization of clinically significant prostate cancer on MR images using a cascaded convolutional neural network
	Introduction
	Materials and methods
	Study subjects
	MRI sequences
	PI-RADS assessment
	Reference standard and annotation
	Image preprocessing
	Deep learning framework
	Training setup
	Prediction results integrated into the structured report
	Statistical analysis

	Results
	Based on lesions
	Based on sextants
	Based on patients

	Discussion
	Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Acknowledgments
	Supplementary material
	References

	Back Cover


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




