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Editorial on the Research Topic
Bone and metabolic activities
1. Introduction

Substantial progress has been made in defining genes and proteins involved in the

development, maintenance and regeneration of teeth and bones. This knowledge has

improved strategies for both the diagnosis and treatment of mineralized tissue diseases.

Existing data provide credence for these genes/proteins to have roles beyond those attributed

to mineralized tissues, including acting as endocrine factors, and altering metabolic activity

at distant sites (1). However, there remains substantial uncertainty as to what extent bone

itself functioning as an endocrine organ, and/or factors secreted by bone, modulate

metabolic activity. This Research Topic was developed to advance our understanding of the

effect of hard tissues on metabolic activity, to provide information of value in considering

clinical strategies to prevent and treat disorders of mineralized tissue and metabolic activity.

This Research Topic is comprised of original research articles, reviews, mini-reviews and

perspectives that support the influence of mineralized tissues on metabolism.
2. Original articles (4)

There is strong evidence supporting bidirectional effects of chronic periodontal disease

and diabetes mellitus on overall health status (2). Further, diabetes is associated with higher

risk of long bone and jaw fractures. Two original articles focus on diabetes. In the

manuscript by Heikkilä et al., in a ten year follow up study using an impressive cohort of

68,273 compromised patients, they provide additional data in support of an association

between chronic oral diseases and diabetes. The inability of individuals with diabetes to

regulate insulin levels and related glucose abnormalities is known to compromise the

health of numerous tissues of the body including teeth and bones, plus downstream

effects on whole body metabolic activity.
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In the article by Alharbi and Graves, they induced diabetes in

mice with a targeted FOX01 deletion in chondrocytes vs. controls.

The results emphasize the important role of FOX01 in modulating

a variety of factors associated with a diabetic profile. In another

study by Zebrowitz et al., using a mouse model of periodontal

disease, periodontally diseased teeth were treated with a timed-

release formulation of a small molecule inhibitor of

prolylhydroxylases (PHDi; 1,4-DPCA), previously shown to

induce epimorphic regeneration of soft tissue in non-regenerating

mice. PHDi induces high expression of HIF-1α, a target gene for

1,4-DPCA, and is able to shift the cellular metabolic state from

oxidative phosphorylation to aerobic glycolysis, an energetic state

used by mesenchymal stem cells and embryonic tissue. The

authors showed evidence of metabolic reprograming by increased

expression of HIF-1α, as well as metabolic genes Glut-1, Gapdh,

Pdk1, Pgk1 and Ldh-a in periodontal tissues.

The data provided in the manuscript by Nagasaki et al., using a

mouse model where the arginine-glycine-aspartic acid (RGD)

region of bone sialoprotein is replaced by the nonfunctional

sequence of lysine, alanine, glutamic acid (KAE knockin),

reported that KAEKI mice vs. control mice developed mild

obesity, an increase in body weight, adipocyte hypertrophy in

white epididymal fat and interscapular brown fat, dyslipidemia

and hyperleptinemia but no significant changes in glucose

metabolism suggesting that the RGD region of BSP affects energy

metabolism by regulating food intake.
2.1. Reviews (1)

In a comprehensive review by Franceschi et al. on the role of

discoidin domain receptors in controlling bone development,

regeneration and metabolism, they provide evidence that in

addition to the know interactions of specific β1 integrins and

collagen receptors in bone, a second, more primordial collagen

receptor family, the discoidin domain receptors also play a

critical role in mineralized tissue development as well as

related functions in abnormal bone formation, regeneration

and metabolism.
2.2. Mini Reviews (2)

Two mini reviews center on periodontal tissues, including one

by Tazawa et al. on the role of IL-1 signaling in development of

apical periodontitis (AP) and the other by Abdalla and Van

Dyke on the effect of the soluble expoxide hydrolase (eHS)

cascade on periodontal tissues. Tazawa et al. review evidence in

support of previous data linking increased alkaline phosphatase

enzyme (AP) with obesity and specifically the role of IL-1RA in

regulating IL-1 signaling and modulating apical lesion

progression in obesity. Abdalla and Van Dyke discuss the

mechanism by which eHS inhibitors enhance the production of

pro-resolving mediators to affect periodontitis, and further that

such knowledge may inspire novel approaches to prevent and

treat periodontal diseases.
Frontiers in Dental Medicine 025
2.3. Perspectives (2)

Nagaski et al. discuss the mounting evidence of the role

mineralized tissues and associated factors in controlling whole-

body metabolism, including metabolic disorders such as diabetes

and obesity, while Fraser and Ganesan provide new insights as to

the significance of interactions between oral and gut microbiome,

and alveolar bone and associated metabolites in health and

disease. They highlight that the advances in metabolomics,

transcriptomic and metagenomic technologies should assist in

identifying novel metabolites affecting the health of

mineralized tissues.

Together, this diverse set of articles invites the reader to

consider their own research areas and to rethink, if not already

reimagining, the potentially significant role of bones and teeth in

influencing metabolic activity in health and in diseased states.

We welcome additional articles in this field for publication in

FMED or FOH.
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A better understanding of the role of mineralized tissues and their associated

factors in governing whole-body metabolism should be of value toward

informing clinical strategies to treatmineralized tissue andmetabolic disorders,

such as diabetes and obesity. This perspective provides evidence suggesting

a role for the arginine-glycine-aspartic acid (RGD) region, a sequence

identified in several proteins secreted by bone cells, as well as other

cells, in modulating systemic metabolic activity. We focus on (a) two of

the SIBLING (small integrin-binding ligand, N-linked glycoprotein) family

genes/proteins, bone sialoprotein (BSP) and osteopontin (OPN), (b) insulin-like

growth factor-binding protein-1 & 2 (IGFBP-1, IGFBP-2) and (c) developmental

endothelial locus 1 (DEL1) and milk fat globule–EGF factor-8 (MFG-E8).

In addition, for our readers to appreciate the mounting evidence that a

multitude of bone secreted factors a�ect the activity of other tissues, we

provide a brief overview of other proteins, to include fibroblast growth factor

23 (FGF23), phosphatase orphan 1 (PHOSPHO1), osteocalcin (OCN/BGLAP),

tissue non-specific alkaline phosphatase (TNAP) and acidic serine aspartic-rich

MEPE-associated motif (ASARM), along with known/suggested functions of

these factors in influencing energy metabolism.

KEYWORDS

bone, mineralized tissues, arginine-glycine-aspartic acid (RGD), metabolic activity,

endocrinology, obesity

Introduction

Existing data provide credible evidence that proteins produced by mineralized

tissues affect the activity of tissues at distant sites (1–4). However, the specific

role of these proteins at distant sites has been elusive, with supportive evidence

that factors secreted by skeletal tissues may modulate metabolic activity. A better

understanding of the role of mineralized tissues and their associated factors in governing

whole-body metabolism should be of value toward informing clinical strategies

to treat mineralized tissue and metabolic disorders, such as diabetes and obesity.
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This perspective provides evidence suggesting a role for

the arginine-glycine-aspartic acid (RGD) region, a sequence

identified in several proteins secreted by bone cells, as well

as other cells, in modulating systemic metabolic activity. We

focus on a) two of the SIBLING (small integrin-binding

ligand, N-linked glycoprotein) family genes/proteins, bone

sialoprotein (BSP) and osteopontin (OPN), (b) insulin-like

growth factor-binding protein-1 & 2 (IGFBP-1, IGFBP-2)

and (c) developmental endothelial locus 1 (DEL1) and milk

fat globule–EGF factor-8 (MFG-E8) (Table 1 and below).

In addition, for our readers to appreciate the mounting

evidence that a multitude of bone secreted factors, not

just those with RGD regions, affect the activity of other

tissues, we provide a table (Table 2) to include the proteins,

fibroblast growth factor 23 (FGF23), phosphatase orphan 1

(PHOSPHO1), osteocalcin (OCN/BGLAP), tissue non-specific

alkaline phosphatase (TNAP) and acidic serine aspartic-rich

MEPE-associated motif (ASARM), along with known/suggested

functions of these factors, with an emphasis on their role in

monitoring metabolic activity. This latter table provides a brief

review with references provided for more detailed information.

Known factors and candidates for
regulating metabolic activity

Current understanding of
factors/environments influencing
systemic metabolic activity

Nutrient metabolism is essential for the survival, growth,

and development of all living systems. The whole-body

metabolic homeostasis of higher organisms relies on precise

sensing of the energy state of the body and coordinated

response of multiple organs to nutritional demands and

environmental changes. The central nervous system plays

an important role in regulating all aspects of metabolism,

including energy intake, absorption, utilization, and storage

(50, 51). One-way key metabolic tissues, such as the liver,

muscle, adipose tissue, pancreas, and gut, communicate with

the brain and each other is via secreted factors, including

protein hormones, cytokines, small molecules, metabolites, and

extracellular vesicles (52–57). Dysregulation of these inter-organ

communications contributes to the pathogenesis of metabolic

diseases, including obesity, type 2 diabetes, dyslipidemia, fatty

liver disease, and cardiovascular diseases.

Increasing evidence suggests that adipose tissues play a

central role in systemic metabolism, providing storage and

release of energy from white fat, expending energy to generate

heat in brown and beige fat, and secreting a diverse group of

bioactive mediators, collectively called “adipokines” (53, 58, 59).

Adipose tissue dysfunction in genetic and high-fat diets induced

obesity or in lipodystrophy causes toxic lipid accumulation in

the liver, skeletal muscle, and other tissues, leading to systemic

insulin resistance (60, 61). Adipose tissue inflammation and

misbalance between secretion of pro- and anti-inflammatory

adipokines also contribute to the pathogenesis of metabolic

dysfunction in obesity (62, 63).

Many studies have shown that alterations of glucose and

lipidmetabolism influence bone homeostasis (64). Skeletal tissue

growth and remodeling are energy consuming processes tightly

coupled with the regulation of systemic energy metabolism

and reproduction (65). Numerous hormones, such as estrogen,

testosterone, parathyroid hormone, insulin, adipokines (e.g.,

leptin, resistin, adiponectin, TNFα), vitamin D, as well as

neuropeptides modulate bone metabolic activity (4, 54, 64,

66–70). Recent studies have emphasized the role of the

bone marrow adipose tissue, located in close proximity to

skeletal lineage cells, in bone metabolism (71–74). Expansion

of this depot, observed in aging, obesity, diabetes, anorexia

nervosa, is often inversely associated with bone mineral

density. As bone marrow adipocytes and osteoblasts share a

common precursor, mesenchymal stem cells, imbalance between

adipogenesis and osteogenesis may contribute to bone loss

under pathological conditions. This broad overview underscores

the complex interactions between tissues required to modulate

metabolic activity including mineralized tissues, the focus of

this perspective.

Known and proposed functions of the
RGD region in proteins

Before moving forward with the major focus of this

perspective, the potential role of the tripeptide motif, RGD,

in regulating metabolic activity, a brief review of the activities

known and proposed for RGD-integrin-binding mediated cell

functions is provided for contextual purposes. The readers are

referred to a few of many excellent reviews, and references

therein: (75–77).

The interest in defining the functions of RGD peptides

and associated integrins was spurred on by early studies

suggesting that such molecules may serve as therapeutic

targets for numerous diseases. These studies demonstrated

that the RGD region of proteins via interactions with

their selective cell surface integrins promotes cell migration,

adhesion, and signal transduction, with changes in cell

proliferation and differentiation over a life span. Further

investigations have proposed roles for RGD-integrin binding

to include but not limited to modulating cancer cells e.g.,

progression, metastasis, angiogenesis, to controlling diseases

such as sepsis, fibrosis, neurological disorders, cardiovascular

diseases, and viral infections, to monitoring disease progression

(diagnostic/imaging tools) and controlling wound healing. At

a mechanistic level, studies have shown that in addition
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TABLE 1 RGD proteins and metabolic activity.

Protein Tisssue/cell expression Known function Proposed metabolic function Integrin receptor References

BSP Bones and teeth

(osteoblasts, cementoblasts,

osteoclasts) Tumors (breast,

prostate, lung cancer cells)

Promotes mineralization.

Promotes cell migration and

adhesion. Promotes cancer

progression and

bone-metastasis.

Regulates food intake and

energy metabolism.

αvβ3 Ballahcène et al. (5),

Ballahcène et al. (6), Foster

et al. (7), Wu et al. (8), Chen

et al. (9)

OPN Bones and teeth (osteoblasts,

cementoblasts, osteoclasts)

Kidneys (tubular

epithelial cells) Adipose tissue

(activated macrophages)

Dendritic, lymphoid,

mononuclear cells Tumors

(breast, prostate, lung,

colorectal cancer) Endothelial

cells, Smooth muscle cells,

Epithelial cells

Inhibits mineralization.

Promotes osteoclastogenesis.

Promotes cell migration and

adhesion.

Promotes cancer progression

and metastasis.

Promotes adipose tissue

macrophage infiltration.

Affects insulin responsiveness.

αvβ3, αvβ5, αvβ1

α4β1, α8β1, α9β1

Foster et al. (10), Nomiyama

et al. (11), Kiefer et al. (12),

Dai et al. (13), Zhao et al. (14)

IGFBP-1 Liver, Kidney, Decidua

Subcutaneous adipose tissue

Inhibits IGF action.

Regulates insulin sensitivity.

Modulates insulin-sensitizing

actions.

α5β1, α5β3 Hoeflich et al. (15), Haywood

et al. (16)

IGFBP-2 Embryonic and fetal tissues

Multiple tumors (glioma,

pancreatic, ovarian, breast,

prostate, lung, liver cancer)

Adipose tissue

Regulates IGF function.

Regulates embriogenesis.

Regulates tumorigenesis.

Regulates glucose clearance.

Regulates GLUT4

translocation in the muscle.

Regulates blood

glucose metabolism.

αvβ3, α5β1 Hoeflich et al. (15), Li

et al. (17), Reyer et al. (18),

Zhang et al. (19)

MFG-E8 Ubiquitous pattern of

expression in different cells

and tissues; first identified in

mammary gland, also

expressed in spleen, gut, lung

and adipose tissue

Promotes efferocytosis.

Promotes mucosal tissue

healing. Inhibits

osteoclastogenesis.

Mitigates endoplasmic

reticulum stress.

Promotes fatty acid uptake. αvβ3, αvβ5 Aziz et al. (20), Bu et al. (21),

Abe et al. (22),

Khalifeh-Soltani et al. (23),

Ren et al. (24)

DEL-1 Restricted pattern

of expression, e.g., endothelial

cells, MSCs, certain

macrophage subsets, brain,

lung, gingiva, adipose tissue;

no expression in liver

and spleen

Inhibits neutrophil

recruitment.

Inhibits osteoclastogenesis.

Promotes osteogenesis.

Promotes efferocytosis.

Regulates Treg cell stability

and function.

Might regulate metabolism in

a manner similar to MFG-E8

based on similar structure and

engagement of the same

integrins.

αvβ3, αvβ5, αLβ2, αMβ2 Hajishengallis &

Chavakis (25), Kourtzelis

et al. (26), Li et al. (27), Yuh

et al. (28), Shin et al. (29)
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TABLE 2 Non-RGD proteins and metabolic activity.

Protein Tisssue/cell expression Known function Proposed metabolic function Receptor/Substrate References

TNAP Expressed in many tissues;

Bone, Teeth, Growth plate

cartilage, Liver, Bile, Kidney,

Intestinal lumen, Brain,

Adipose tissue

Promotes mineralization by

generating Pi from PPi and

other factors.

Mutations in the gene (Alpl)

encoding TNAP lead to

hyphosphatasia (HPP), of

variable severity from lethal to

odontohyphosphatasia

(effects limited to

teeth/periodontium).

Controll metabolic syndrome

(MetS) and associated with

enhanced cardiovascular

mortality by exacerbating

vascular calcification.

Modulate bone marrow

mesenschymal progenitor cell

differentiation

toward adipocytes. Promotes

purinergic signaling.

Modulate

inflammatory pathways.

Adipocyte-TNAP plays a role

in thermogenesis.

Pyrophosphate Pyridoxal

5-phosphate (PLP)

Phosphoethanolamine (PEA)

LRP6/GSK3beta complex

Phosphocreatine

OPN

Lipopolysaccharides (LPS)

Polynucleotides

Toll-like receptor ligands and

others

Goettsch et al. (3), Millán

et al. (30), Briolay et al. (31),

Sun et al. (32), Bessueille

et al. (33), Krishnamurthy

et al. (34), Graser et al. (35)

FGF23 Osteocytes, Osteoblasts FGF23, a known hormone,

acts (as a complex with

FGFR/α-Klotho) in the renal

proximal tubules to regulate

phosphate reabsorption and

1,25(OH)2D3 metabolism

and in the distal tubules to

modulate sodium and calcium

reabsorption.

Propsed functions include

suppression of osteiblast

differentiation and matrix

minerlaization. As stated

under know functions, as a

hormone it effects overall

metabolic activity.

KLOTHO (a co-receptor)

FGF receptor 1 (FGFR1)

Bacchetta et al. (36),

Bhattacharyya et al. (37),

Minisola et al. (38)

OCN Osteoblasts, Cementoblasts A marker of osteoblast

differentiation.

Monitors bone formation.

Regulates energy metabolism

(glucose regulation and

insulin signaling) via effects

on adipocytes, hepatocytes

and pancreatic beta cells.

LRP5

Leptin

DMP1-ASARM

PHEX/IR (insulin receptor)

Wei et al. (1), Confavreux

et al. (2), Fulzele et al. (4), Wei

et al. (39), Ferron et al. (40),

Ferron et al. (41), Ducy

et al. (42)

(Continued)
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TABLE 2 Continued

Protein Tisssue/cell expression Known function Proposed metabolic function Receptor/Substrate References

PHOSPHO1 Chondrocytes, Osteoblasts,

Odontoblasts, Cementoblasts

Modulates skeletal, dentin

and cellular cementum

mineralization.

Initiates deposition of

hydroxyapatite inside

cell-derived

membrane-limited matrix

vesicles (MVs) by generating

Pi from hydrolysis of MV

membrane products.

Regulates insulin

responsiveness and obesity

(acting in an endocrine

fashion).

Phosphoethanolamine

Phosphocholine

Suchacki et al. (43), Zweifler

et al. (44), Houston et al. (45),

McKee et al. (46)

ASARM Osteoblasts, Odontoblasts Inhibits mineralization.

The MEPE (matrix

extracellular

phosphoglycoprotein)-

ASARM is a known substrates

for PHEX, with data

suggesting that the ASARM

motif regulates expression of

FGF23, a key factor in

monitoring levels of

phosphate in the blood.

Defective regulation of

ASARM affects energy

metabolism, resulting in

changes in fat mass, weight,

insulin sensitivity, levels of

leptin, serotonin and

aldosterone, sympathetic tone

and vascularization.

FGF23

MEPE

DMP1

OCN

Rowe et al. (47), Rowe

et al. (48), Salmon et al. (49)
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to RGD-integrin binding mediating adhesion to extracellular

matrix molecules, this interaction results in bidirectional

signaling across membranes thus functioning as controllers

of cellular processing (78, 79). Some interactions result in

multiprotein clustering, forming focal adhesions, the sites of

integrin-facilitated cell signaling. This elicits a cascade of

phosphorylating events of downstream molecules, most notably

focal adhesion kinase (FAK), mitogen-activated protein kinase

(MAPK), phosphoinositide kinase (PI3K)/Akt, and extracellular

signal regulated kinase (ERK) (76, 77). This brief synopsis,

demonstrating the varied mechanistic aspects of RGD-integrin

mediated cell behavior, sets the stage for the discussion below,

to consider how specific proteins and linked integrins, may

influence metabolic activity, both locally and at distant sites.

Belowwe consider six RGD containing proteins and their known

and proposed functions in modulating metabolic activity,

summarized in Table 1 (8, 9, 14, 19).

RGD containing proteins selective to
mineralized tissues proposed as
modulators of local and systemic
metabolic activity

OPN and BSP

In the late 1900s the role of the RGD region of proteins,

specifically OPN and BSP, found in high concentrations in

mineralized tissues and their associated receptors, primarily

integrins, was receiving notable attention. Since these early years

there have been considerable advances in defining the function

of the RGD region in proteins of mineralized tissues, as well as

other tissues.

As members of the SIBLING family, OPN and BSP contain

several highly conserved functional motifs, including a C-

terminal RGD-integrin binding domain known to promote

cell adhesion, migration and signaling (5, 6, 80, 81). OPN

and BSP, first identified in bone, were proposed to modulate

mineralization, where OPN is considered to act as an inhibitor

of nucleation and BSP as the crystal nucleator (10, 82–89). It is

now recognized that the expression of these genes/proteins is not

limited to mineralized tissues, as discussed below.

OPN: In addition to OPN’s role via the RGD region

in modulating cell behavior, OPN’s inhibitory effect on

mineralization has been ascribed to its negatively charged

phosphorylated serine residues, to its modulation of osteoclasts,

and to its ability to regulate pyrophosphate metabolism (90, 91).

Soon after the discovery of OPN it was found to be expressed

ubiquitously and to exhibit a variety of functions dependent on

the specific cells/tissues/organs expressing OPN. Relevant to this

perspective, OPN has been shown to have a role within bone as

a regulator of bone mass (92), as well as a role in modulating

systemic metabolic activity as described below.

OPN, also considered as a pro-inflammatory cytokine,

has been shown to modulate immune cell responses, with

an important role in advancing inflammation within many

tissues including adipose, cardiovascular and renal tissues, and

associated with obesity, insulin resistance and type 2 diabetes

(11, 12, 93–96). In this regard Dai and co-workers provided

data revealing the intricacies in defining the role of OPN as

a regulator of bone metabolic activity vs. systemic metabolic

activity (13). Data from their mouse studies demonstrate

that OPN is secreted by adipose tissue (epididymal white

adipose tissues) macrophages and selectively circulates to bone

marrow, activating osteoclasts to degrade bone and modulating

bone marrow-derived macrophages. In the latter case, the

macrophages engulf lipid deposits released from adipocytes in

the bone marrow and through a complex array of elegantly

designed studies the authors showed that OPN-neutralizing

antibodies ameliorated high fat diet assisted bone loss in these

mice. Mouse studies focused on determining OPN’s role in

metabolic dysregulation in the liver found that OPN regulated

cross talk between cholesterol (CHOL) and phosphatidylcholine

(PC) metabolism via enhancing expression of cholesterol 7

alpha-hydroxylase (CYP7A1). This finding suggested that OPN,

by disrupting PC and CHOL metabolism, may contribute to

non–alcoholic fatty liver progression in non-obese patients

(97). Further studies by other groups confirmed a role for

OPN in modulating age-related non–alcoholic fatty liver disease

(98). These studies provide evidence that OPN, regardless of

where expressed, affects metabolic activity via pro-inflammatory

events, and in many cases through integrin signaling pathways;

however, a specific role of the RGD region in mediating

these events was not discussed. In a study by Chen et al.,

focused on determining the factors involved in differentiation

of mesenchymal precursor cells along an adipogenesis vs.

osteogenesis pathway, the authors provided evidence that OPN-

integrin links (via αvβ1) may be involved in this process (99).

They further showed that the ratio of total fat weight to body

weight was significantly higher in OPN-deficient mice at 5 weeks

and 12 months vs. wild-type mice, reinforcing a role for OPN in

modulating systemic metabolic activity and confirming results

of other researchers related to the role of OPN in modulating

obesity (100, 101).

Collectively, impressive data exists supporting a role for

OPN in affecting systemic metabolic activity, although further

studies are warranted to determine if the RGD region of OPN

is involved.

BSP: BSP is more selective to mineralized tissues and

most studies have focused on defining the mechanisms

controlling BSP function in mineralized tissues. Data

from studies using BSP-deficient mice reveal that BSP is a

modulator of mineralization. The reader is refereed to several

articles and references thereof for details on tooth/bone

phenotype of BSP-deficient mice (7, 102–106). In brief,

BSP-deficient mice have alteration in bone homeostasis and
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mineralization (hypomineralized) and defects in the region

of the periodontium, to include impairments in formation

of cementum and surrounding alveolar bone, resulting in a

disorganized periodontal ligament (PDL) region, malocclusion

and exfoliation of teeth, similar to mice and humans with

alkaline phosphatase mutations (30). To define the role of the

RGD domain of BSP in controlling periodontal tissues, Nagasaki

et al. generated BSP-KAE knock-in (KI) mice, substituting a

non-function KAE (lysine-alanine-glutamic acid) sequence for

the RGD. The results emphasized the importance of the RGD

region for forming and maintaining the PDL region, but not for

promoting mineralization (107).

To the surprise of Nagasaki et al. the BSP-RGD non-

functionalized mice exhibited increased body weight and energy

intake with age (after 13 weeks postnatal) vs. wild-type mice.

Accordingly, weight of epididymal fat pad and size of white and

brown adipocytes were increased (108).

Brief reviews of metabolic functions of other RGD

containing proteins, insulin-like growth factor-binding proteins

1 and 2 (IGFBP-1, IGFBP-2), developmental endothelial locus-

1 (DEL-1) and milk fat globule–EGF factor-8 (MFG-E8) are

provided below, with references to reviews for more extensive

reports on their various roles.

Other RGD-containing proteins proposed
to a�ect systemic metabolic activity

IGFBP-1, 2

Insulin-like growth factor-binding proteins 1 and 2 (IGFBP

1 and 2) aremembers of a highly conserved family of six IGFBPs,

numbered IGFBP1 through 6 in vertebrates, that modulate the

actions of insulin growth factors (IGFs) and play vital roles in

regulating several cellular processes (15, 17, 109, 110). The IGFs

act as both endocrine hormones and autocrine/paracrine growth

factors, binding to the IGFBPs or IGF-1 receptor. While the

IGFBPs share about 50% homology with each other, each has

specific structural features and plays distinct roles locally and

systemically. In addition to the role in modulating circulating

and local levels on IGF via IGF-IGFBP binding, IGFBPs also

have activities independent of IGF binding. IGFBP-1 and 2 are

the smallest in size, 25kDa and 31kDa respectively, and are the

only IGFBPs that have RGD sequences. Interestingly, IGFBP1

and 2 are reported to serve as markers of autoimmune diseases

such as Type 1 diabetes mellitus and rheumatoid arthritis (110).

For IGFBP 1 and 2, their RGD region allows them to

influence cell adhesion, migration and signaling (18, 111, 112).

Data from mouse studies suggest that the RGD motifs of both

IGFBP1 and 2, signaling through specific integrins to include

α5β1, affect energy metabolism (111, 112). Further studies by

Haywood et al., using both in vitro and in vivo models (the

latter, metabolic profiling of obese mice), evaluated whether the

RGD domain of IGFBP1 could affect insulin sensitivity, insulin

secretion and whole-body glucose regulation (16). Their results

suggest that the RGD-integrin binding domain via cell signaling

enhanced insulin sensitivity and secretion and administration

of RGD synthetic peptide to obese mice could improve glucose

clearance and insulin sensitivity. The authors conclude that the

RGD domain of IGFBP-1 may hold promise as a therapeutic

approach to insulin resistance. In another study, using IGFBP-2

transgenic mice (female), Reyer et al. showed that an IGFBP-

2-RGD dependent mechanism was associated with impaired

glucose clearance and regulation of GLUT4 translocation in

muscle (18).

DEL1 and MFG-E8

Developmental endothelial locus-1 (DEL-1) and milk

fat globule–EGF factor-8 (MFG-E8) are structurally related

proteins consisting of N-terminal EGF-like repeats and C-

terminal discoidin I-like domains (20, 25). An RGD motif

present in the second EGF-like repeat enables both proteins

to interact with integrins such as αvβ3, αvβ5, although

DEL-1 has also been shown to bind to non-RGD-binding

integrins (αLβ2, αMβ2). DEL-1 and MFG-E8 generally behave

as anti-inflammatory and pro-resolving proteins, in large

part due to their capacity to promote efferocytosis (26,

113). Additionally, DEL-1 inhibits inflammation by regulating

neutrophil recruitment and T regulatory cell function (27,

114). DEL-1 and MFG-E8 have been shown to promote tissue

healing (21, 28) and bone homeostasis through effects on both

osteoblasts and osteoclasts (22, 28, 29, 115, 116). In this regard,

local administration of recombinant DEL-1 or MFG-E8 in the

gingiva of non-human primates inhibits periodontal bone loss

(29, 117). Despite sharing several functions, DEL-1 and MFG-

E8mediate non-redundant roles in in vivo experimental models,

presumably owing to their expression in different tissues, often

by different cell types, and/or their regulation by distinct

transcription factors (20, 26, 113, 118). It is also possible that

these “cousin” proteins may be involved in metabolic regulation.

MFG-E8 was reported to enhance the uptake of fatty acids

by adipocytes and this function required an intact RGD motif

since the effect was mediated by MFG-E8 interaction with

αvβ3 or αvβ5 integrins (23, 24). In the same study, MFG-

E8-deficient mice were protected from diet-induced obesity

(23). It is currently uncertain whether DEL-1 shares a similar

metabolic function, although its ability to interact with RGD-

binding integrins warrants relevant investigation. Interestingly

in that regard, EDIL3, the gene encoding DEL-1, has been

associated with susceptibility to childhood obesity (119) and is

overexpressed in diet-induced obesity in mice as well as in obese

humans (120).

Coupled with the above evidence providing a role for the

RGD region of proteins being involved in modulating energy

metabolism are studies highlighting that RGD-binding integrins
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may serve as therapeutic targets for controlling metabolic

activity and diseases, such as diabetic retinopathy (121), sepsis

(122) and inflammatory disorders (123).

Non-RGD containing proteins, associated
with mineralized tissues, purported to
influence systemic metabolic activity:

While this perspective highlights the RGD motif of

proteins and their role in controlling metabolic activity, the

fact that many genes/proteins associated with mineralized

tissues have been reported to affect systemic metabolic

activity provides additional support for the concept that

mineralized tissues, through direct or indirect mechanisms,

are important players in controlling whole-body homeostasis.

Table 2 provides a brief overview of some of these factors,

with additional references within these tables (31–49), for more

detailed information.

Discussion/Conclusion

This perspective provides data from studies over decades

clearly showing that factors secreted by mineralized tissues

as well as other tissues influence bone metabolic activity and

also systemic metabolic activity. Yet, there remain missing

pieces of the puzzle related to the mechanistic aspects for

the genes and associated proteins affecting bone/systemic

metabolic activity. Featured in this perspective is the need to

consider the role of RGD-associated proteins in monitoring

metabolic activity locally and systemically, with more answers

to be forthcoming as investigations continue along this line

of research. Such studies are important to better understand

whether therapeutics targeting specific proteins and/or the

specific RGD region may be attractive treatments for controlling

obesity and associated diseases.
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Apical periodontitis (AP) develops as a result of an immune response to pulpal
bacterial infection, and various cytokines are involved in the pathogenesis of
AP, with Interleukin (IL)-1 being considered a key cytokine. The role of IL-1 in
the pathogenesis of AP has been well studied. It is known that IL-1
expression in periapical lesions correlates closely with the development of
AP. IL-1 is a potent bone-resorptive cytokine that induces osteoclast
formation and activation. Hence, inhibiting its signaling with IL-1 receptor
antagonist (IL-1RA) results in a reduction in periapical lesion size. On the
other hand, IL-1 is also a central cytokine that combats bacterial infection by
activating innate immune responses. Therefore, a complete loss of IL-1
signaling leads to a failure to limit bacterial dissemination and consequently
exacerbates AP. In vivo, IL-1 expression is tightly regulated and its signaling is
modulated to optimize the immune response. Obesity causes systemic low-
grade chronic inflammation and increases the risk of cardiovascular, renal,
and other disorders. In experimentally induced AP, obesity significantly
increases periapical bone loss, albeit the underlying mechanism remains
unclear. Recent technological innovations have enabled more
comprehensive and detailed analyses than previously, leading to new insights
into the role of IL-1RA in regulating IL-1 signaling, and modulating apical
lesion progression in obesity. In this review, we provide a brief overview of
the function of IL-1 in AP development, with special emphasis on the latest
findings in normal weight and obese states.

KEYWORDS

obesity, diabetes, apical periodontitis, cytokines, interleukin-1 signaling, immune

response
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interleukin-17 receptor type A; MyD88, myeloid differentiation factor 88; NK cell, natural killer cell;
OAF, osteoclast-activating factor; RANKL, receptor activator of NF-κB ligand; Treg cell, regulatory T
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Introduction

Apical periodontitis (AP) involves chronic inflammation
and alveolar bone loss. Kakehashi et al. demonstrated for the
first time that AP is caused by pulpal infection. Rats
maintained in a conventional microbial environment
developed pulp necrosis and periapical inflammation after
pulp exposure; In a germ-free environment, the pulps
remained vital without periapical bone destruction, and
dentin bridges formed over the exposed pulp, demonstrating
the capacity for tissue regeneration in the absence of
infection (1).

In response to infection, complexly mixed immune cells
migrate to the infected site. First neutrophils infiltrate, a
followed by monocytes/macrophages, and subsequently by
lymphocytes [T, B, and natural killer (NK) cells] (2, 3). These
cells play critical roles in innate and adaptive immunity.
Innate immunity comprises nonspecific responses that do not
require prior sensitization to an antigen. Phagocytes are key
to innate responses; neutrophils and macrophages engulf
bacteria, and NK cells eliminate infected cells. Innate cells also
produce inflammatory cytokines, which mediate immune and
connective tissue cell activity (4–6). To eliminate pathogens
and establish immune memory, the adaptive response
activates antigen-specific CD4 + helper and CD8 + cytotoxic T
cells, as well as B cells and plasma cells that produce
antibodies (7, 8). The innate immune system lastly eliminate
bacteria, apoptotic/dead cells, and debris. These responses are
precisely regulated by the complex cytokine network.

Cytokines thus primarily protect the pulp and periodontal

tissue from infection; however, cytokine-activated immune

and inflammatory responses induce tissue destruction,

particularly bone resorption (9, 10). Regarding bone

resorption, Horton et al. firstly reported that immune cells

can influence osteoclast activity in 1972. Osteoclast-activating

factor (OAF), a powerful stimulator of osteoclastic bone

resorption, was released from human peripheral blood

leukocytes stimulated by the mitogen phytohemagglutinin, or

by antigenic material present in human dental plaque (11). In

1985, OAF was subsequently purified to homogeneity and

sequenced, and shown to be identical to interleukin-1-beta

(IL-1β). It was later shown that macrophage-derived IL-1 is a

prominent mediator in developing bone destructive periapical

lesions (12–15). These and other basic studies on the

interactions between the immune system and bone following

pulpal infections have been important in establishing the field

of osteoimmunology. These basic studies have provided a

rationale of clinical research on IL-1/IL-1 signaling in AP and

foundation for interpreting their outcomes (16–22).

Obesity is one of the most prevalent non-communicable

diseases and predisposes to various disorders, including

hypertension, type 2 diabetes mellitus (DM), dyslipidemia,

and coronary heart disease (23, 24). The increased morbidity
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associated with obesity is a worldwide public health issue

(25). Besides, obese people are more susceptible to infections

than their non-obese counterparts as well to developing

serious complications from common infections (26). AP is

one of the most prevalent oral infectious diseases. In DM

subjects, where obesity is the greatest risk factor, the success

of root canal treatment is decreased, in teeth with AP (27,

28). Moreover, studies in the rodent diet-induced obesity

(DIO) model have revealed that obesity promotes the

progression and severity of experimental AP (29–31).

However, the underlying mechanism(s) by which obesity

alters the immune response in AP remain unclear.

As the background for future basic and clinical research,

this mini review aims first to reaffirm the role of IL-1

signaling in the development of AP in the lean state, and then

to provide new insights into the possible mechanisms

underlying the expansion of periapical bone destruction

associated with obesity, based on the latest experimental

findings.
IL-1 signaling is the central pathway
in periapical lesion development

The IL-1 family comprises 11 cytokines: 7 pro-

inflammatory mediators (IL-1α, IL-1β, IL-18, IL-33, IL-36α,

IL-36β, and IL-36γ), and 4 anti-inflammatory cytokines [IL-1

receptor antagonist (RA), IL-36RA IL-37, and IL-38] (32).

Each family member binds to a specific primary receptor

which combines with co-receptors to transduce pro-

inflammatory or anti-inflammatory activity. The primary

receptors include IL-1 receptor type 1 (IL-1R1), IL-1R2, IL-

1R4, IL-1R5, and IL-1R6. The co-receptors include IL-1R3,

IL-1R7, IL-1R8, IL-1R9, and IL-1R10 (32, 33). IL-1α, IL-1β,

and IL-1RA are the primary members that regulate the

progression of periapical lesions, and their roles have been

well studied. In contrast, the role of the other family members

in the development of AP has not been systematically evaluated.

IL-1α and IL-1β are encoded by IL1A and IL1B respectively

in humans (34). Both isoforms bind to IL-1R1 and show similar

biologic activities, including immune cell activation (33, 35). IL-

1 is also closely involved in both bone formation (36) and

resorption (12, 15). IL-1 inhibits nodule formation by

osteoblasts in a dose-dependent manner (36). IL-1 strongly

promotes osteoclast differentiation indirectly by inducing the

expression of receptor activator of NF-κB ligand (RANKL;

Tumor necrosis factor ligand superfamily member 11) in

osteoblasts (37). IL-1 directly induces the fusion of

mononuclear pre-fusion osteoclasts and enhances osteoclast

function (resorption pit-forming activity) (38–40). Moreover,

activation of NF-κB promoted by IL-1 prolongs osteoclast

survival (41, 42). However, IL-1α and IL-1β differ in several

ways. First, species differences are found in their expression in
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periapical lesions. In rodent lesions, the predominant isoform is

IL-1α rather than IL-1β (43, 44). In contrast, the protein level of

IL-1β in human periapical exudate is double that of IL-1α (45).

Furthermore, the bone resorption potency of IL-1β is 13-fold

that of IL-1α in a rat assay system (10). Second, the

expression level after root canal treatment is different.

Following treatment, the level of IL-1β in the periapical

exudates decreased, while the level of IL-1α increased. This

suggests that IL-1α and IL-1β may play different biological

roles in the healing process (45, 46). In this regard, a finding

that bacteria-induced IL-1β and IL-1RI-myeloid differentiation

factor 88 (MyD88) signaling are necessary and sufficient for

efficient wound healing and tissue regeneration (47) is

interesting. Third, the IL-1β cannot bind to IL-1R1 unless it is

cleaved into its biologically-active mature form. Conversely,

IL-1α precursor can bind to and activate the IL-1 receptor

without proteolysis (48).

The expression level of IL-1 positively correlates to the

extension of bone destruction and severity of AP. IL-1α

mRNA and protein expression was identified in murine

periapical lesions from the early stage of development, with

increased levels found on day 7 after pulp infection (43, 44,

49). Higher levels of IL-1α and IL-1β were detected in human

periapical lesions with severe inflammation than mild

inflammation (50, 51). In periapical lesions, IL-1 is produced

by various cells, including macrophages, fibroblasts,

polymorphonuclear leukocytes, endothelial cells, osteoblasts,

and osteoclasts in response to infection (44, 49). Among these

cells, macrophages are the major source of IL-1. Macrophage-

derived IL-1 plays a critical role in the periapical immunity.

IL-1β and IL-1α are respectively 1000- and 75-fold more

potent in stimulating bone resorption than TNFα or TNFβ

(lymphotoxin) respectively in vitro (10). Besides, IL-1

neutralization significantly reduced bone resorptive activity in

extracts from periapical tissue explants, whereas TNF-α

neutralization had no effect (13, 15).

These studies focused on the bone-destructive effects of IL-

1, but IL-1 also protects the host early after bacterial challenge.

Antibody-mediated neutralization of both IL-1α and IL-1β

leads to a failure to contain pulpal infection in male but not

female mice, resulting in orofacial abscesses and sepsis (52).

Ovariectomized mice also developed sepsis, but were

protected by an estrogen implant. Accordingly, IL-1 signaling

synergizes with estrogen signaling to prime phagocytic cells

for enhanced anti-microbial activity resulting in infection

localization. IL-1R1 deficient mice identically showed severe

bone destruction and sepsis after pulpal infection (53, 54).

Taken together, a severe deficiency of IL-1 signaling leads to

poor infection control, dissemination of infection, and

elevated bone destruction.

Subsequent studies using IL-1RA have confirmed the

correlation between IL-1 and bone resorption. IL-1RA,

produced by macrophages and monocytes (55), competitively
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blocks the action of IL-1. IL-1RA binds to IL-1R1 with equal

or greater affinity than IL-1α and IL-1β but does not activate

downstream signaling (34, 55, 56). IL-1RA has a significant

impact by suppressing periapical lesion development.

Stashenko et al. demonstrated a 14-day IL-1RA treatment

inhibited lesion development by approximately 60% (57).

Maintaining IL-1 and IL-1RA in balance prevents excess

inflammation and bone destruction. Once this balance is

upset, inflammation and tissue damage may deteriorate (58).

To block IL-1-mediated bone resorption ex vivo, rat fetal long

bones and mouse newborn calvariae require approximately

10-fold and 100–1000-fold IL-1RA to IL-1, respectively (59).

In periapical lesions, the level of IL-1RA is more abundant

than IL-1 (mean IL-1RA: IL-1β ratio = 128: 7). Interestingly,

exudates from symptomatic human lesions contained a

significantly lower ratio of IL-1RA to IL-1β than exudates

from asymptomatic human lesions (22). Taken together, the

local balance of IL-1 and IL-1RA is crucially important in the

periapical lesion development.
The cytokine network in periapical
lesions centered on IL-1 signaling

Macrophages are major players involved in the cytokine

network, and secrete various immunoregulatory mediators,

including IL-1 (35, 60). TNF-α is another pro-inflammatory

cytokine expressed by macrophages (61) and increased in

periapical lesions (44, 49). TNF-α promotes IL-1 secretion

from murine resident peritoneal macrophages in vitro (62)

and increases osteoclastogenesis by upregulating RANKL (63,

64). However as noted above, TNF-α itself is not much bone

resorptive as IL-1 isoforms, and TNF-α deficient mice

exhibited similar periapical lesion size to wild-type controls

(65).

The role of type-1 T-helper (Th1) cytokines [Gamma

interferon (IFN-γ), IL-12, IL-18] and Th2 cytokines (IL-4, IL-

6, IL-10) on periapical bone destruction has also been

evaluated. IFN-γ, IL-12, and IL-18 potentiate pro-

inflammatory signaling (66–68) and their expression is

increased in periapical lesions (43, 69, 70). IFN-γ modulates

macrophage-derived IL-1 expression, but its effect is not

consistent. IFN-γ promotes secretion of IL-1 from LPS-

stimulated human macrophages in vitro (71), whereas

suppresses IL-1 in mouse RAW 264.7 macrophages (72). IL-

12 induces Th1 cell development, and IL-18, with IL-12,

activates established-Th1 cells to produce IFN-γ. Thus, IL-12

and IL-18 are considered pro-inflammatory cytokines that

facilitate type-1 responses (67, 73). However, previous studies

demonstrated that gene knockouts of IL-12, IL-18, and IFN-γ

all exhibited similar lesion sizes as wild-type controls (65, 74).

Recombinant IL-12-infused wild-type mice also showed

similar bone resorption to controls. The findings with IFN-γ
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TABLE 1 The effect of deficiency/neutralization of each cytokine or
receptor on periapical lesion.

Cytokine/
receptor

Effect on
lesion
size/

abscess

IL-1 level
in lesion

References

Neutralization IL-1βa Down (95)
IL-1α and IL-
1β

Abscess
formation

N.S. (52)

Deficiency IL-1R1 Up (53, 54)
TNF-α N.S. (65)
IL-17A Drastically

down
(65)

IL-17RA Up Up (95)
IFN-γ N.S./up N.S. (65, 74, 75)
IL-12 N.S. N.S. (74)
IL-18 N.S. N.S. (74)
IL-6 Up Up (69, 85)
IL-4 N.S. Down (75, 91)
IL-10 Drastically

up
Drastically
up

(75, 91)

aThe effect of IL-1β neutralization was evaluated in IL-17RA−/− model.Blank, not

evaluated; N.S, no significant.
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were not confirmed in another study which reported that IFN-

γ-deficient(−/−) mice presented with periapical lesions larger

than those in wild-type animals (75). The expression level of

IL-1 in periapical lesions was unchanged in these mice (74).

Taken together, these results indicate that none of these

cytokines has a non-redundant function in mediating

periapical bone resorption.

IL-6, another macrophage-derived cytokine, was also

detected in inflamed periapical tissue (76, 77). Its expression

was found to be transiently increased on day 14 after

infection and decreased in the chronic phase (43). IL-6 is a

well-known pro-inflammatory cytokine, promoting bone

resorption via osteoclastogenesis (78–80). Recent research has

demonstrated that IL-6 also has anti-inflammatory effects by

promoting macrophage IL-1RA secretion (81) and bone-

forming effects by enhancing osteoblast differentiation (82–

84). Previously, the protective role of IL-6 in periapical lesions

was showed in vivo. Bone destruction was significantly

increased in IL-6−/− mice versus in wild-type mice (69, 85).

IL-6 antibody-mediated neutralization also increased bone

resorption compared to untreated controls. In IL-6−/− mice,

increased bone resorption importantly correlated with

osteoclast count and IL-1 expression in periapical lesions, and

inversely with anti-inflammatory IL-10 expression (69).

Both IL-4 and IL-10 are increased in periapical lesions (69).

IL-4 is an anti-inflammatory cytokine playing pleiotropic roles

in inflammation (86, 87). IL-10, a potent anti-inflammatory

cytokine produced by regulatory T cells (Treg), macrophages,

dendritic cells, Th 2 cells, and Th1 cells, among other

immune cells (88–90). However, IL-4 and IL-10 have different

anti-inflammatory effects on macrophages. In macrophages

stimulated by oral pathogens, recombinant IL-10 inhibited IL-

1α production, whereas recombinant IL-4 had no significant

suppressive effect (91). Consistent with these in vitro findings,

IL-10−/− mice exhibited significantly greater infection-

stimulated bone resorption than wild-type mice, as well as

markedly elevated IL-1 production in periapical inflammatory

tissues (91). In contrast, there was no difference in periapical

lesion size between IL-4−/− and wild-type mice (75, 91).

IL-17 is a pleiotropic cytokine produced by Th17 cells that

induces a myriad of pro-inflammatory mediators (92). The

expression of IL-17 was increased in infection-induced

periapical lesions (65) and was significantly higher in

symptomatic versus asymptomatic lesions (93). IL-17 induces

human macrophages to produce and secrete pro-inflammatory

cytokines IL-1β and TNF-α in vitro (94). IL-17A−/− mice

were resistant to periapical lesions versus wild-type controls

(65). However, IL-17 receptor type A-deficient (IL-17RA−/−)

mice conversely exhibited significantly increased bone

destruction and inflammation. The expression of IL-1 was

significantly upregulated in IL-17RA−/− lesions in vivo and

IL-17RA−/− macrophages in vitro. The lesion size of IL-

17RA−/− mice was decreased by IL-1β neutralization (95). IL-
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17A utilizes two IL-17 receptors, and IL-17RA has four

ligands (96), therefore, this system must be meticulously

dissected to comprehend these data. Nevertheless, IL-17RA

signaling likely plays a protective role in periapical lesions via

IL-1 signaling and neutrophil priming.

Table 1 Summarizes the effect of cytokine or receptor

deficiency/neutralization on periapical lesions. Although it is

difficult to evaluate the effect of each cytokine because of

their complex interactions (97), above reviewed experimental

models suggest that anti-inflammatory cytokines such as IL-

10 and, to a lesser extent, IL-6, are dominant and have non-

redundant functions, compared to inflammatory cytokines in

the immunomodulation of AP. In addition, the positive

correlation between the IL-1 level and lesion size implies IL-1

is a principal cytokine in periapical lesion expansion and a

useful biomarker for assessing inflammation.
The impact of obesity and diabetes
mellitus on periapical lesions

It is now widely accepted that obesity causes systemic low-

grade chronic inflammation (98). As noted above, obesity

increases the risk of severe inflammation (26), and

predisposes to the development of postoperative and

nosocomial infections, as well as serious complications of

common infections (98, 99). Obesity also increases the risk

for severe symptoms and poor prognosis in viral infections,

including coronavirus disease 2019 (100). In the oral cavity,

obesity correlates with the prevalence and severity of

periodontitis (101). Deshpande et al. reported that obesity
frontiersin.org

https://doi.org/10.3389/fdmed.2022.985558
https://www.frontiersin.org/journals/dental-medicine
https://www.frontiersin.org/


Tazawa et al. 10.3389/fdmed.2022.985558
worsens all gingival index, probing depth, gingival recession,

and clinical attachment levels than non-obese patients (102).

Diabetes, as an obesity complication, also has negative

effects on AP. Diabetes decreases the success rate of

endodontic treatment in teeth with AP preoperatively, and

increases the risk of post-treatment tooth loss (27, 28, 103–

105). According to previous in vivo rodent studies, obesity

significantly increases bone destruction in experimentally-

induced AP (29–31). As discussed in the following section,

several potential mechanisms underlying obesity-induced

inflammation have been proposed, but the actual mechanism

is not yet fully understood.
Potential mechanism of obesity-
exacerbating periapical bone
destruction

Many studies provide evidence that obesity alters immune

responses. In obesity, macrophages significantly accumulate

in the white adipose tissue (106, 107); and the phenotype of

accumulated macrophages possess a pro-inflammatory M1-

polarized state, whereas resident macrophages in lean mice

have a pro-resolving M2 phenotype (108–111). The M1-

dominant adipose macrophages likely develop an

inflammatory milieu (112). The circulating levels of pro-

inflammatory cytokines, including TNF-α, IL-6, and IL-1β
FIGURE 1

(A) Representative microCT images and periapical lesion size in phosphate b
endodontic infection. Values are mean and SD; *p < 0.05. Arrow: periapical
infection. Representative images of hematoxylin and eosin (HE) staining for
bone; R, dental root; Scale bars = 200 µm.
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was elevated in obese subjects (113, 114). Chronic exposure

to these cytokines potentially causes insulin resistance

resulting in hyperglycemia (115, 116). In addition, the serum

levels of adipose tissue-derived cytokines, adipokines and

adiponectin are also altered in the obese state. Obese adipose

tissue increases inflammatory adipokines, including leptin,

resistin, visfatin, IL-6, TNF-α, and monocyte chemoattractant

protein-1, while decreasing anti-inflammatory adipokines,

including adiponectin, omentin, IL-10, and IL-4. The

dysregulation of adipokine production may alter cellular

immune function and contribute to chronic low-grade

inflammation and disease pathology (117–119). Obesity also

increases the populations of activated CD4+ and CD8+ T

cells in adipose tissue (120) and significantly reduces

circulating Treg cells (121–123) which may sustain low-grade

chronic inflammation. Furthermore, obesity induces thymic

involution and convergent T cell repertoire, impairing

impaired immune responses and increasing the risk and

severity of infections (124).

As noted above, the effects of obesity on immune function

are manifold. However, it remains unclear how obesity is

associated with the expansion of periapical bone destruction.

Therefore, our group examined possible pathways involved in

bone loss in obesity using bulk-mRNA next-generation

sequencing analysis. Comprehensive gene expression analysis

revealed that, among a total 15,029 expressed genes, only 51

were differentially expressed in periapical lesions in DIO-B6
uffered saline (PBS)-control and IL-1RA administration on day 42 after
lesion. (B) Histology of periapical lesions on day 42 after endodontic
each group are shown. PBS, phosphate buffered saline; AB, alveolar
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mice versus lean controls. Among them, Il1rn encoding IL-1RA

was remarkably down-regulated (Log2 fold change =−1.18,
False Discovery Rate (q-value) = 0.0002). At the same time,

Il1a, but not Il1b, was also decreased (−0.994-fold, q = 0.046)

(31). These results suggest DIO impairs IL-1RA-dependent

homeostatic suppression of IL-1 signaling, at least in the local

environment.

Systemically, significantly increased IL-1 serum levels (114,

125) likely contribute to worsening of insulin resistance under

obese conditions (116). However, given the lack of significant

changes in the expression of IL-1 signaling genes, including

NF-κB, in AP (31), systemically increased IL-1 may have little

effect on AP. Interestingly, IL-1RA serum levels are also

elevated in obesity (126). However, the concentration of IL-

1RA is likely insufficient to block the effects of elevated IL-1.

Indeed, administration of IL-1RA improves insulin sensitivity

in animal models of obesity (116), suggesting IL-1RA-

dependent homeostatic regulation of IL-1 signaling is not fully

functional in obesity. We therefore examined if a decrease or

loss of IL-1RA contributes to obesity-associated periapical

inflammation by IL-1RA administration in infected DIO-B6

mice. Remarkably, periapical bone destruction was inhibited

by 41.2% by IL-1RA (Figure 1A, p < 0.05). Histological

analysis revealed that IL-1RA-treated mice showed less

inflammatory cell infiltration and well-developed fibrosis

(Figure 1B). These results indicate that inflammation was

down-regulated by IL-1RA, and that the lesion was composed

mainly of mature granulation tissue compared to the immune

granulomas in controls. Therefore, immunomodulation by IL-

1RA is likely important for the control of AP, even in obesity.

Appropriate regulation of IL-1 signaling according to the

host and infection status may lead to an optimal immune/

inflammatory response in terms of timely onset/resolution

and adequate host defense. In the first section, we explained

that excessive IL-1 and its signaling cause exacerbation of AP

in the non-obese state. At the same time, IL-1RA

homeostatically regulates IL-1 signaling, suppressing excessive

IL-1-mediated responses. In the second section, we described

that obesity dysregulates IL-1RA-dependent homeostatic IL-1

signaling regulation and causes chronic elevation of

inflammation, tissue destruction, and prolonged healing.

Endodontic infection in DIO may exacerbate bone destruction

in the long term via chronically elevating IL-1 signaling at a

low level due to downregulation of Il1rn. However, the role of

IL-1 signaling is diverse and complex. The impact of IL-1

signaling on both systemic and local conditions has not been
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fully understood. Thus, further studies are essential for the

changes in IL-1 signaling associated with various systemic

conditions, the underlying mechanisms, and infection-

stimulated bone destruction.
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Introduction: Oral infectious diseases are common chronic oral diseases

characterized by a chronic inflammatory condition. We investigated chronic

oral diseases as potential risk factors for systemic chronic diseases,

diabetes mellitus, connective tissue diseases, seropositive rheumatoid arthritis,

ulcerative colitis, and Crohn’s disease, as well as severe psychotic and other

severe mental disorders.

Methods: The cohort comprised 68,273 patients aged ≥ 29 years with at

least one dental visit to the Helsinki City Health Services between 2001 and

2002. The cohort was linked to the data on death (Statistics Finland), cancer

(Finnish Cancer Registry), and drug reimbursement (Finnish Social Insurance

Institution) and followed until death or the end of 2013. The outcomes of

interest were the incidences of chronic diseasesmeasured starting with special

refund medication, which means Social Insurance Institution partly or fully

reimburses medication costs. Outcomes of interest were diabetes mellitus,

connective tissue diseases, seropositive rheumatoid arthritis, ulcerative colitis

and Crohn’s disease, and severe mental disorders.

Results: The mean follow-up time was 9.8 years. About 25% of the study

population had periodontitis, 17% caries, over 70% apical periodontitis, and 9%

<24 teeth at the start of follow-up. Diabetes was the only chronic systemic

condition associated with oral health variables. Having 24 to 27 teeth was

associated with a higher incidence rate ratio (IRR) (1.21, 95% confidence

interval 1.09–1.33) compared to having 28 or more teeth; the IRR for having 23

or lesswas 1.40 (1.22–1.60). Having periodontitis (1.10, 1.01–1.20), caries (1.12,

1.01–1.23), or apical periodontitis (1.16, 1.04–1.30) is also associated with a

higher risk of diabetes.

Conclusion: Our epidemiological 10 years follow-up study suggests that the

association exists between chronic oral diseases and diabetes, warranting close

collaboration among patient’s healthcare professionals.
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Introduction

The two major oral infectious diseases, dental caries and

periodontitis, are common chronic oral infectious diseases

characterized by a chronic inflammatory condition, and

their progressions are influenced by multiple factors [1].

Severe periodontitis affects 10% to 15% of the global adult

population [2]. Periodontitis is associated with an increased

risk for several chronic systemic diseases such as diabetes [2],

inflammatory bowel disease [3], cancer [4], and cardiovascular

diseases through systemic often low-grade inflammation as the

etiopathogenic link [5–7]. Caries can lead to the formation

of apical periodontitis (AP), also capable of promoting and

affecting the course of various systemic diseases. The prevalence

of AP in Europe has been reported to affect 61% of individuals

and 14% of teeth and increase with age [8]. There may be a

moderate risk and correlation between some systemic chronic

diseases and endodontic pathologies. AP has also been related to

cardiovascular diseases and diabetes [9].

Low-grade systemic and tissue inflammations precede

diabetes onset and are often linked to insulin resistance and the

development of diabetes and its complications [10, 11]. Since

effective therapy and management of the periodontal disease are

well-established, it is important to know for future prevention

and control of diabetes whether periodontitis indeed plays a

role in the development of diabetes and its potentially fatal

complications [12]. However, evidence from clinical trials and

observational studies is still scarce, and more follow-up studies

are required [13]. A review of the effect of periodontal disease on

diabetes with four studies, in total 22,230 individuals, reported

significant adverse effects of periodontal disease on glycaemic

control, diabetes complications, and development of type 2 (and

possibly gestational) diabetes [2]. Because the evidence was

scarce and partly not generalizable, we called for large-scale

studies with long follow-ups.

In a recent review of inflammatory bowel disease (IBD) and

oral health, we found a higher risk of periodontal disease and

worse oral health in IBD patients than in non-IBD ones. This

meta-analysis included only case-control studies. We stated that

longitudinal studies are needed to establish a link between IBD

and periodontal disease [3].

Abbreviations: AGE, advanced glycation end-products; AP, periodontitis;

CPI, periodontal treatment need index; DMTF decayed/missing/filled

teeth; DT, decayed teeth; FCR, Finnish Cancer Registry; IBD, inflammatory

bowel disease; ICD-10, International Classification of Diseases; I, primary

caries; IRR, incidence rate ratios; MMP, matrix metalloproteinases; NNH,

number needed to harm; SII, Finnish Social Insurance Institution; SES,

socioeconomic status.

Evidence from systematic reviews supports the association

between PD and a higher risk of rheumatoid arthritis [14–

16]. However, most epidemiologic outcomes derive from case-

control studies with relatively small sample sizes. Additionally,

some evidence from animal models suggests the connection

between PD and rheumatoid arthritis [17, 18].

We hypothesized that oral health abnormalities could

precede and/or promote tissue inflammation related to chronic

systemic conditions. We, therefore, investigated the associations

between oral health and the incidence of the following

systemic conditions: diabetes, IBD, connective tissue disease,

and psychosis. The rationale for choosing these diseases were

that they are relatively common in the general population,

and thus in the registered studies, the diagnosis is reliable and

readily assessed. These disorders are also distinct clinical entities,

but as a matter of fact, all these disorders may have some

common origins, for example, tissue inflammation seems to

characterize these all, even mental disorders. Further, patients

withmental disorders are usually also socially disadvantaged and

have poorer somatic health in general, therefore the inclusion of

this diagnostic category serves also as an internal control of the

findings making the results more robust in supporting the close

relationship between glucose metabolism and periodontitis.

The setting is a population-based follow-up observational

register study where the initiation of drug medication

measures incidence for specific studied chronic conditions with

documented reimbursement.

Methods

Study population

We used the data from the patient register of the Public

Dental Service of the City of Helsinki to identify all individuals

aged 29 years or more with at least one primary dental

healthcare visit between 1 January 2001 and 31 December 2002.

For these patients, follow-up data on deaths and causes of

death were obtained from the register of deaths of Statistics

Finland [19] through a computerized register linkage using the

unique personal identification codes assigned to every resident

in Finland. Along with the date of death, mortality data also

included the cause of death coded according to the 10th revision

of the International Classification of Diseases (ICD-10). In

addition, data on socioeconomic status and education were

obtained from Statistics Finland. The dental care data were also

linked to the Drug Reimbursement Register of the Finnish Social

Insurance Institution (SII). These drug prescription records,

except for institutionalized patients, cover the entire study

population. In Finland, patients with chronic or severe diseases,

such as diabetes, are granted special reimbursement rights for

outpatient medical treatment based on a physician’s statement

on their condition and need for medication [20]. The cancer
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diagnosis data, date of diagnosis, and ICD-O-3 code [21] were

obtained from the Finnish Cancer Registry (FCR). The FCR

database contains data on virtually all cancers diagnosed in

Finland since 1953. The coverage and accuracy of the Finnish

Cancer Registry data are excellent [22, 23].

Altogether 71,200 patients visited the Public Dental Service

of Helsinki from 2001 to 2002. We restricted the study

population to those who had no history of cancer at the first visit,

who were alive 2 years after the first visit, and were with data on

the number of teeth and other information on dental status. The

dentist has done full mouth examinations, including cariological

status and periodontal status (probing, bleeding on probing)

and panoramic radiographs/intraoral radiographs. Malignant

diseases can promote and modify the development and courses

of systemic inflammatory diseases [24–27]. The size of the final

study population was 48,609 individuals. The follow-up started 2

years after the first visit and continued until the occurrence of the

outcome, 31 December 2013, or death, whichever occurred first.

Outcomes

The outcomes of interest were the incidence of several

chronic diseases measured by starting a special refund right for

medication. Special reimbursements of drug expenses are given

to patients who have a statement from their doctor attesting to

their condition and need for medication [20]. We used both SII

refund groups and specific ICD10 codes included in SII groups

(Supplementary Table 1) as outcomes. The following diseases

were included: diabetes mellitus (SII code 103), connective

tissue diseases (202), seropositive rheumatoid arthritis (M05),

ulcerative colitis and Crohn’s disease (208), Crohn’s disease

(K50), ulcerative colitis (K51), and severe psychotic and other

severe mental disorders (112). Severe mental disorders were

included as negative outcome control [28]. Any individuals

with prevalent refund rights were excluded when incidence

was studied.

The measure of exposure and potential
confounders

We utilized data from dental visits in the follow-up period

starting 2 years after the first visit. Dentists use the classification

of the Finnish SSI to record treatment measures provided, and

these codes were used here. These data include procedure codes

of dental treatment (gingivitis, periodontitis, caries, endodontic,

surgery, and prosthesis), and information on dental status

presented by a number of teeth and oral health indices,

such as primary caries (I), number of decayed teeth (DT),

decayed/missing/filled teeth (DMFT), and need for periodontal

treatment due to periodontal pockets (CPI = the Community

Periodontal Index). Exposure to periodontitis was defined as

a binary variable (no/yes) based on periodontitis treatment

procedure codes [24, 25].

Among potential confounders in this study were socio-

demographic characteristics, such as age, sex, statins at baseline,

and socioeconomic status, which were available for the

entire study population. Statistics Finland’s professions were

categorized into eight broader categories, including unknown, to

represent socioeconomic status (SES). Statin (ATC code C10A)

use in baseline was determined from prescription data of SII.

To account for dental status other than periodontitis, we used

number of teeth (0–23, 24–27, 28–32), indices I (0, 1–2, 3–

4, ≥5), DT (0, 1–2, 3–4, ≥5), DMFT (0–13, 14–18, 19–23,

≥24 according to quartiles), and CPI (0–1, 2, 3–4), number of

healthy sextants (0, 1, 2–4, 5–6), number of toothless sextants

(0, 1–6), and indicators of different dental treatments (yes/no)

[29, 30]. I, DT, DMFT, and CPI indices were defined by taking

the maximum value of those recorded during the dental visits

within 2 years after the first visit. The number of healthy sextants

was specified according to the first visit, and the number of

toothless sextants was selected by the minimum value. For

part of the study population, however, health indices were not

available because it is not routinely recorded at every visit; these

appointments were defined as follow-up visits. We excluded

these individuals from the study population.

Statistical method

Incidence was described with incidence rates and modeled

with the Poisson regression model, and results were reported as

incidence rate ratios (IRR). The following explanatory variables

were included: sex, age, socioeconomic status, usage of statins in

baseline (no, yes), number of teeth, I index, D index, DMF index,

CPI, periodontitis (no, yes), caries (no, yes), and endodontic

caries (no, yes). All calculations were carried out using the R

language [31].

Patient involvement and ethical
considerations

No patients were involved in setting the research question

or the outcome measures, nor were they involved in the study’s

recruitment, design, or implementation. Patients were not asked

to interpret or disseminate results. The Ethical Committee of the

Faculty of Medicine, University of Helsinki, Finland (01/2014),

reviewed the protocol. Data permits were received from the

Social Insurance Institute (SII) (68/522/2014), the National

Institute for Health and Welfare (THL/1295/5.05.05/2014), and

Statistics Finland (TK-53-1290-14). According to Finnish law,

this is a register-based study with anonymous data and no

patient contact; thus no consent from anonymized patients

were required.
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FIGURE 1

Flow chart of the study population construction.

Results

The size of study cohorts varied between 46,998 for diabetes

and 48,223 for IBD (ulcerative colitis and Crohn’s disease;

Figure 1 and Table 1). The mean follow-up time of diabetes

mellitus was 9.7 years, connective tissue diseases 9.8, seropositive

rheumatoid arthritis 9.9, ulcerative colitis and Crohn’s disease

9.8, Crohn’s disease 9.9, ulcerative colitis 9.8, and for severe

psychotic and other severe mental disorders 9.8 years. The

reason for different population sizes is that the prevalence of

chronic conditions varies, being the highest for diabetes. About

25% of the study population had periodontitis, 17% caries, over

70% apical periodontitis, and 9% <24 teeth at the start of

follow-up. The socioeconomic status of the study population

and the general population of the City of Helsinki were quite

similar (Supplementary Table 2). Diabetes was the only chronic

condition associated with oral health variables (Table 2 and

Figure 2). It turned out that having 24 to 27 teeth was associated

with a higher incidence rate ratio (IRR) (1.21, 95% confidence

interval 1.09–1.33) compared to having 28 or more teeth; IRR

for having 23 or less was 1.40 (1.22–1.60). Having periodontitis

(1.10, 1.01–1.20), caries (1.12, 1.01–1.23), or apical periodontitis

lesions (1.16, 1.014–1.30) were also associated with a higher risk

of diabetes (Table 2 and Supplementary Table 2). We observed a

higher association between statin use and incidence of diabetes

(2.49, 2.10- 2.94). There was also a relatively strong association

between the number of decayed teeth (DT) and the incidence

of diabetes. The IRR for DT 3–4 was 1.25 (1.10–1.42) compared

to zero (Supplementary Table 3). We did not detect any other

associations between oral health variables and the incidence of

other chronic diseases.

We calculated the number needed to harm (NNH) for new-

onset diabetes in 1 year for three oral health variables (Table 3).

NNH for PD was 1,736 (95% confidence interval 903–22,103),

for caries 1,342 (709, 12,497), and NNH for having <24 teeth

compared to having 28 or more teeth was 262 (190–420).

Discussion

We collected these from the largely presentative population

(N = 68,273) observational register study with a long follow-

up (10 years). The incidence is measured by the initiation

of drug treatment for specific conditions verified by special
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TABLE 1 Baseline characteristics of the study population.

Outcomes

Diabetes Connective

tissue

diseases

Seropositive

rheumatoid

arthritis

Ulcerative

colitis or

Crohn

disease

Crohn

disease

Ulcerative

colitis

Severe

psychosis

All (N) 46,998 47,681 47,681 48,223 48,223 48,223 47,096

Age (29, 40] 23,832 (50.7%) 23,914 (50.2%) 23,914 (50.2%) 23,951 (49.7%) 23,951 (49.7%) 23,951 (49.7%) 23,623 (50.2%)

(40, 50] 14,892 (31.7%) 15,036 (31.5%) 15,036 (31.5%) 15,146 (31.4%) 15,146 (31.4%) 15,146 (31.4%) 14,773 (31.4%)

(50, 60] 5,755 (12.2%) 5,969 (12.5%) 5,969 (12.5%) 6,126 (12.7%) 6,126 (12.7%) 6,126 (12.7%) 5,877 (12.5%)

(60, 70] 1,016 (2.2%) 1,112 (2.3%) 1,112 (2.3%) 1,208 (2.5%) 1,208 (2.5%) 1,208 (2.5%) 1,124 (2.4%)

(70, Inf] 1,503 (3.2%) 1,650 (3.5%) 1,650 (3.5%) 1,792 (3.7%) 1,792 (3.7%) 1,792 (3.7%) 1,699 (3.6%)

Gender Male 18,531 (39.4%) 19,076 (40.0%) 19,076 (40.0%) 19,191 (39.8%) 19,191 (39.8%) 19,191 (39.8%) 18,728 (39.8%)

Female 28,476 (60.6%) 28,605 (60.0%) 28,605 (60.0%) 29,032 (60.2%) 29,032 (60.2%) 29,032 (60.2%) 28,368 (60.2%)

Statin No 46,144 (98.2%) 46,524 (97.6%) 46,524 (97.6%) 47,008 (97.5%) 47,008 (97.5%) 47,008 (97.5%) 45,932 (97.5%)

Yes 854 (1.8%) 1,157 (2.4%) 1,157 (2.4%) 1,215 (2.5%) 1,215 (2.5%) 1,215 (2.5%) 1,164 (2.5%)

SES Upper-level employees 10,086 (21.5%) 10,145 (21.3%) 10,145 (21.3%) 10,162 (21.1%) 10,162 (21.1%) 10,162 (21.1%) 10,179 (21.6%)

Self-employed or employers 1,425 (3.0%) 1,439 (3.0%) 1,439 (3.0%) 1,444 (3.0%) 1,444 (3.0%) 1,444 (3.0%) 1,437 (3.1%)

Lower-level employees 15,254 (32.5%) 15,315 (32.1%) 15,315 (32.1%) 15,416 (32.0%) 15,416 (32.0%) 15,416 (32.0%) 15,398 (32.7%)

Manual workers 8,423 (17.9%) 8,547 (17.9%) 8,547 (17.9%) 8,601 (17.8%) 8,601 (17.8%) 8,601 (17.8%) 8,540 (18.1%)

Unemployer 3,993 (8.5%) 4,087 (8.6%) 4,087 (8.6%) 4,124 (8.6%) 4,124 (8.6%) 4,124 (8.6%) 4,007 (8.5%)

Students 1,486 (3.2%) 1,487 (3.1%) 1,487 (3.1%) 1,500 (3.1%) 1,500 (3.1%) 1,500 (3.1%) 1,439 (3.1%)

Pensioners 3,868 (8.2%) 4,156 (8.7%) 4,156 (8.7%) 4,458 (9.2%) 4,458 (9.2%) 4,458 (9.2%) 3,640 (7.7%)

Unknown 2,463 (5.2%) 2,505 (5.3%) 2,505 (5.3%) 2,518 (5.2%) 2,518 (5.2%) 2,518 (5.2%) 2,456 (5.2%)

No of teeth 28–32 33,515 (71.3%) 33,657 (70.6%) 33,657 (70.6%) 33,823 (70.1%) 33,823 (70.1%) 33,823 (70.1%) 33,307 (70.7%)

24–27 9,173 (19.5%) 9,378 (19.7%) 9,378 (19.7%) 9,522 (19.7%) 9,522 (19.7%) 9,522 (19.7%) 9,267 (19.7%)

0–23 4,319 (9.2%) 4,646 (9.7%) 4,646 (9.7%) 4,878 (10.1%) 4,878 (10.1%) 4,878 (10.1%) 4,522 (9.6%)

I index 0 12,290 (26.2%) 12,584 (26.4%) 12,584 (26.4%) 12,813 (26.6%) 12,813 (26.6%) 12,813 (26.6%) 12,430 (26.4%)

1–2 14,455 (30.8%) 14,614 (30.6%) 14,614 (30.6%) 14,777 (30.6%) 14,777 (30.6%) 14,777 (30.6%) 14,529 (30.8%)

3–4 8,664 (18.4%) 8,764 (18.4%) 8,764 (18.4%) 8,840 (18.3%) 8,840 (18.3%) 8,840 (18.3%) 8,655 (18.4%)

>5 11,589 (24.7%) 11,719 (24.6%) 11,719 (24.6%) 11,793 (24.5%) 11,793 (24.5%) 11,793 (24.5%) 11,482 (24.4%)

D index 0 18,511 (39.4%) 18,621 (39.1%) 18,621 (39.1%) 18,845 (39.1%) 18,845 (39.1%) 18,845 (39.1%) 18,573 (39.4%)

1–2 16,815 (35.8%) 16,997 (35.6%) 16,997 (35.6%) 17,191 (35.6%) 17,191 (35.6%) 17,191 (35.6%) 16,866 (35.8%)

3–4 6,222 (13.2%) 6,351 (13.3%) 6,351 (13.3%) 6,420 (13.3%) 6,420 (13.3%) 6,420 (13.3%) 6,231 (13.2%)

>4 5,450 (11.6%) 5,712 (12.0%) 5,712 (12.0%) 5,767 (12.0%) 5,767 (12.0%) 5,767 (12.0%) 5,426 (11.5%)

DMF index 0–13 13,401 (28.5%) 13,463 (28.2%) 13,463 (28.2%) 13,477 (27.9%) 13,477 (27.9%) 13,477 (27.9%) 13,309 (28.3%)

14–18 11,592 (24.7%) 11,698 (24.5%) 11,698 (24.5%) 11,751 (24.4%) 11,751 (24.4%) 11,751 (24.4%) 11,583 (24.6%)

19–23 11,168 (23.8%) 11,333 (23.8%) 11,333 (23.8%) 11,448 (23.7%) 11,448 (23.7%) 11,448 (23.7%) 11,229 (23.8%)

>24 10,837 (23.1%) 11,187 (23.5%) 11,187 (23.5%) 11,547 (23.9%) 11,547 (23.9%) 11,547 (23.9%) 10,975 (23.3%)

CPI1 0–1 6,184 (13.2%) 6,251 (13.1%) 6,251 (13.1%) 6,322 (13.1%) 6,322 (13.1%) 6,322 (13.1%) 6,171 (13.1%)

2 30,177 (64.2%) 30,388 (63.7%) 30,388 (63.7%) 30,676 (63.6%) 30,676 (63.6%) 30,676 (63.6%) 30,127 (64.0%)

3–4 10,637 (22.6%) 11,042 (23.2%) 11,042 (23.2%) 11,225 (23.3%) 11,225 (23.3%) 11,225 (23.3%) 10,798 (22.9%)

Periodontitis No 35,030 (74.5%) 35,436 (74.3%) 35,436 (74.3%) 35,817 (74.3%) 35,817 (74.3%) 35,817 (74.3%) 35,013 (74.3%)

Yes 11,977 (25.5%) 12,245 (25.7%) 12,245 (25.7%) 12,406 (25.7%) 12,406 (25.7%) 12,406 (25.7%) 12,083 (25.7%)

Caries No 39,165 (83.3%) 39,621 (83.1%) 39,621 (83.1%) 40,076 (83.1%) 40,076 (83.1%) 40,076 (83.1%) 39,236 (83.3%)

Yes 7,842 (16.7%) 8,060 (16.9%) 8,060 (16.9%) 8,147 (16.9%) 8,147 (16.9%) 8,147 (16.9%) 7,860 (16.7%)

Apical periodontitis No 12,265 (26.1%) 12,371 (25.9%) 12,371 (25.9%) 12,483 (25.9%) 12,483 (25.9%) 12,483 (25.9%) 12,249 (26.0%)

Yes 34,733 (73.9%) 35,310 (74.1%) 35,310 (74.1%) 35,740 (74.1%) 35,740 (74.1%) 35,740 (74.1%) 34,847 (74.0%)

Population sizes for each outcome include only non-prevalent individuals. Age groups are mutually exclusive, for example (29,40], means that interval is open on the left (29 not included)

and closed on the right (40 included).
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TABLE 2 The number of events, event rates per 10,000 person-years with 95% confidence intervals, and unadjusted and adjusted incidence rate

ratios (IRR) with 95% confidence intervals.

Events Incidence rate

(1/10 000)

IRR,

univariate

IRR, adjusted

Diabetes N. teeth 28–32 1,412 42.37 (40.19, 44.64) (Reference) (Reference)

24–27 650 74.17 (68.57, 80.09) 1.75 (1.60, 1.92) 1.21 (1.09, 1.33)

0–23 471 139.88 (127.53, 153.10) 3.30 (2.97, 3.66) 1.40 (1.22, 1.60)

Periodontitis No 1,702 50.06 (47.71, 52.50) (Reference) (Reference)

Yes 831 72.55 (67.70, 77.65) 1.45 (1.33, 1.57) 1.10 (1.01, 1.20)

Caries No 1,949 51.39 (49.13, 53.72) (Reference) (Reference)

Yes 584 77.60 (71.44, 84.16) 1.51 (1.38, 1.66) 1.12 (1.01, 1.23)

Apical periodontitis No 478 40.48 (36.93, 44.28) (Reference) (Reference)

Yes 2,055 61.09 (58.48, 63.79) 1.51 (1.37, 1.67) 1.16 (1.04, 1.30)

Connective tissue diseases N. teeth 28–32 338 9.97 (8.94, 11.10) (Reference) (Reference)

24–27 129 14.07 (11.75, 16.72) 1.41 (1.15, 1.73) 1.21 (0.97, 1.50)

0–23 43 11.36 (8.22, 15.30) 1.14 (0.83, 1.56) 1.00 (0.68, 1.47)

Periodontitis No 372 10.67 (9.61, 11.81) (Reference) (Reference)

Yes 138 11.52 (9.68, 13.61) 1.08 (0.89, 1.31) 1.09 (0.88, 1.34)

Caries No 419 10.77 (9.76, 11.85) (Reference) (Reference)

Yes 91 11.48 (9.24, 14.09) 1.07 (0.85, 1.34) 0.97 (0.76, 1.24)

Apical periodontitis No 119 9.89 (8.19, 11.83) (Reference) (Reference)

Yes 391 11.23 (10.15, 12.40) 1.14 (0.93, 1.40) 0.93 (0.73, 1.18)

Seropositive rheumatoid arthritis N. teeth 28–32 67 1.97 (1.53, 2.50) (Reference) (Reference)

24–27 29 3.15 (2.11, 4.52) 1.60 (1.03, 2.47) 1.30 (0.81, 2.07)

0–23 16 4.21 (2.41, 6.84) 2.14 (1.24, 3.69) 1.78 (0.89, 3.57)

Periodontitis No 81 2.31 (1.84, 2.88) (Reference) (Reference)

Yes 31 2.58 (1.75, 3.66) 1.11 (0.74, 1.68) 1.03 (0.66, 1.59)

Caries No 91 2.33 (1.88, 2.86) (Reference) (Reference)

Yes 21 2.64 (1.63, 4.03) 1.13 (0.70, 1.82) 1.01 (0.61, 1.68)

Apical periodontitis No 29 2.40 (1.61, 3.45) (Reference) (Reference)

Yes 83 2.37 (1.89, 2.94) 0.99 (0.65, 1.51) 0.77 (0.47, 1.27)

Ulcerative colitis and Crohn disease N. teeth 28–32 141 4.13 (3.48, 4.87) (Reference) (Reference)

24–27 36 3.85 (2.70, 5.33) 0.93 (0.65, 1.35) 1.18 (0.80, 1.74)

0–23 11 2.76 (1.38, 4.94) 0.67 (0.36, 1.23) 1.35 (0.63, 2.90)

Periodontitis No 137 3.88 (3.26, 4.59) (Reference) (Reference)

Yes 51 4.19 (3.12, 5.51) 1.08 (0.78, 1.49) 1.36 (0.97, 1.91)

Caries No 159 4.03 (3.43, 4.71) (Reference) (reference)

Yes 29 3.61 (2.41, 5.18) 0.89 (0.60, 1.33) 0.95 (0.62, 1.45)

Apical periodontitis No 52 4.27 (3.19, 5.60) (Reference) (reference)

Yes 136 3.85 (3.23, 4.56) 0.90 (0.65, 1.24) 0.89 (0.61, 1.31)

Crohn disease N. teeth 28–32 28 0.82 (0.54, 1.18) (Reference) (Reference)

24–27 9 0.96 (0.44, 1.83) 1.17 (0.55, 2.49) 1.52 (0.68, 3.42)

0–23 1 0.25 (0.01, 1.40) 0.31 (0.04, 2.25) 0.59 (0.06, 5.32)

Periodontitis No 29 0.82 (0.55, 1.18) (Reference) (reference)

Yes 9 0.74 (0.34, 1.40) 0.90 (0.43, 1.90) 1.12 (0.51, 2.45)

Caries No 34 0.86 (0.60, 1.20) (Reference) (reference)

Yes 4 0.50 (0.14, 1.27) 0.58 (0.20, 1.63) 0.57 (0.19, 1.71)

Apical periodontitis No 14 1.15 (0.63, 1.93) (Reference) (reference)

Yes 24 0.68 (0.43, 1.01) 0.59 (0.31, 1.14) 0.71 (0.32, 1.57)

(Continued)
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TABLE 2 Continued

Events Incidence rate

(1/10 000)

IRR,

univariate

IRR, adjusted

Ulcerative colitis N. teeth 28–32 113 3.31 (2.73, 3.98) (Reference) (reference)

24–27 27 2.89 (1.90, 4.20) 0.87 (0.57, 1.33) 1.10 (0.70, 1.71)

0–23 10 2.51 (1.20, 4.61) 0.76 (0.40, 1.45) 1.53 (0.67, 3.48)

Periodontitis No 108 3.06 (2.51, 3.69) (Reference) (reference)

Yes 42 3.45 (2.49, 4.67) 1.13 (0.79, 1.61) 1.42 (0.98, 2.07)

Caries No 125 3.17 (2.64, 3.78) (Reference) (reference)

Yes 25 3.11 (2.01, 4.59) 0.98 (0.64, 1.51) 1.06 (0.67, 1.67)

Endo. caries No 38 3.12 (2.21, 4.28) (Reference) (reference)

Yes 112 3.17 (2.61, 3.82) 1.02 (0.70, 1.47) 0.96 (0.62, 1.49)

Severe psychosis N. teeth 28–32 28 0.82 (0.54, 1.18) (Reference) (reference)

24–27 9 0.96 (0.44, 1.83) 1.17 (0.55, 2.49) 1.15 (0.93, 1.41)

0–23 1 0.25 (0.01, 1.40) 0.31 (0.04, 2.25) 0.86 (0.60, 1.21)

Periodontitis No 29 0.82 (0.55, 1.18) (Reference) (reference)

Yes 9 0.74 (0.34, 1.40) 0.90 (0.43, 1.90) 1.04 (0.86, 1.25)

Caries No 34 0.86 (0.60, 1.20) (Reference) (reference)

Yes 4 0.50 (0.14, 1.27) 0.58 (0.20, 1.63) 1.12 (0.91, 1.38)

Apical periodontitis No 14 1.15 (0.63, 1.93) (Reference) (reference)

Yes 24 0.68 (0.43, 1.01) 0.59 (0.31, 1.14) 1.19 (0.95, 1.48)

Adjusted using Poisson regression for sex, age, socioeconomic status, usage of statins in baseline, i-index, D-index, and CPI.

reimbursement. Our main finding was that oral health indices

were related to diabetes but not to other chronic conditions.

Thus, our findings support the close association of oral health,

especially PD, to metabolic deterioration of glucose metabolism.

Strengths and limitations of this study

The study population consisted of patients with at least one

visit to dental healthcare in the City of Helsinki in 2 years

period. This means that individuals without any dental visits

were not eligible for the study. In principle, this non-eligible

population includes people without any dental visits and those

utilizing only the private sector dental healthcare. Usage of

private healthcare may have caused some selection of the study

population because about 36% of dental care was covered by it in

the study period. As private care is most likely more commonly

used by higher socioeconomic groups, this could imply that the

selection process is drifted to lower socioeconomic groups. Still,

as we had access to SES, we could also verify that higher SES

were using the public health sector to a large extent (Table 1 and

Supplementary Table 2). Among the potential confounders in

this study were socio-demographic characteristics, such as age,

sex, and SES status, available for the entire study population.

The study was limited by the lack of information on smoking,

alcohol use, and dietary habits, whichmay confound the findings

because both are known risk factors for chronic diseases [30].

Our predecessor article found a strong positive association

between periodontitis at baseline and subsequent risk of fatal

pancreatic cancer. However, at the same time, we did not detect

any association between periodontitis and lung cancer, which

may be interpreted to indicate that confounding by smoking

is probably not strong [32]. Altogether, additional studies are

needed with more detailed measurements of confounders such

as smoking and alcohol use to confirm these results. The diabetes

diagnosis was based on the information reimbursement for

the drug treatment for diabetes. This covers in practice all

the subjects with drug treatment and the practice is to start

medication already at the time of diagnosis [33]. However, it

does not include the subjects with undiagnosed diabetes and

asymptomatic hyperglycemia, and unfortunately HbA1c level

information is not available from these registers. This is a

weakness of the study, but if anything these shortcomings are

likely to weaken the associations found in this study.

We also addressed statin medication, which certain

but few studies have revealed with a low increased risk for

the development of diabetes. Still, the risk is low both in

absolute terms and when related to the reduction in coronary

events. Clinical practice in patients with moderate or high

cardiovascular risk or existing cardiovascular disease is well-

documented [34], while statins are known to benefit the

treatment and course of chronic periodontitis. Apart from their

established LDL-cholesterol lowering effects, statins have shown

additional secondary effects, including anti-inflammatory,
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FIGURE 2

Incidence of diabetes and indicators of oral health. Kaplan–Meier curves with 95% confidence intervals. Number of teeth (A), periodontitis (B),

caries (C), endo/caries (D).

immunomodulatory, antioxidant, antithrombotic, and

endothelium stabilization effects, and promote angiogenesis

[35]. Recent retrospective studies have demonstrated that

patients with chronic periodontitis treated with simvastatin

or atorvastatin had lower indexes of periodontitis than those

not receiving statins [36, 37]. Atorvastatin can also restore

endothelium-dependent vasodilation in normocholesterolemic

cigarette smokers independent of changes in the lipids

[38, 39]. Statins have recently been recorded to have beneficial

effects on chronic periodontitis among smokers [40]. In

our study, people with statin therapy were at higher risk of

diabetes with IRR 2.49 (2.10-2.94). However, this number

should be interpreted with great caution because it may

contain the so-called “table two” fallacy. Table two fallacy

is present when effects other than primary exposure are

interpreted [41]. The main potential confounding factors

between oral chronic infections and diabetes are tobacco,

alcohol, socioeconomic status, age and sex, and genetic

and dietary factors. Among the potential confounders in

this study were socio-demographic characteristics, such as
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TABLE 3 Incidence of diabetes, number needed to harm (NNH) based

on the additive Poisson regression model.

NNH (95% confidence interval)

N. teeth 28–32 (Reference)

24–27 1,004 (625, 2,561)

0–23 262 (190, 420)

Periodontitis No (Reference)

Yes 1,736 (903, 22,103)

Caries No (Reference)

Yes 1,342 (709, 12,497)

Apical periodontitis No (Reference)

Yes 2,052 (1,029, 349,261)

Adjusted for gender, age, socioeconomic status, usage of statins in baseline, i-index,

D-index, and CPI.

age, sex, and socio-economic status, available for the entire

study population.

We measured our outcomes as starting of new special

reimbursement. This means that the diagnosis of the condition

has taken place earlier. This lag may vary between the diagnosis

and between individuals considerably. This means that results

may be biased if the lag between diagnosis and the start of

reimbursement is affected by oral health status. We tried to

control this source of bias by starting a follow-up after 2

years of the first dental visit recorded. We could assess the

type of diabetes only by the kind of therapy. However, those

treated only with insulin comprise type 1 diabetic patients

and some long-standing type 2 diabetic patients whose disease

can be classified as insulin-requiring. The demarcation between

specific types of new-onset diabetes in adults in individual

cases may also be somewhat arbitrary in clinical practice.

It is also possible regarding diabetic subjects treated with

lifestyle only. However, as lifestyle interventions are difficult

to implement and may delay unnecessarily the start of drug

treatment, the Finnish Current Care guideline (original version

published in 2007 and updated several times) recommended

that drug treatment with metformin should be initiated if not

contraindicated concomitantly with lifestyle interventions [42].

We have previously shown that the implementation of these

guidelines has been successful, [43] and thus, nearly all the

subjects with a clinically verified diagnosis of diabetes were

included making this population representative.

The main strength of the exposure measurements is that

they contained detailed clinical information about oral health

and dental procedures. Our primary exposures—periodontal,

cariological status, and apical periodontitis—were determined

by procedure codes, which means that the number of false

positives is very low. Studies investigating the association

between periodontal disease and diabetes and other chronic

diseases have used various measures to define the periodontal

disease and how disease progression is ascertained. There is

no standardized definition or clinical criteria for periodontal

disease in periodontal epidemiological research, hindering

comparisons of studies examining the association between

periodontal disease and chronic diseases [44]. Periodontal

disease is generally diagnosed by probing and measuring

alveolar bone height with radiographs. In this study, we used

the information on dental status presented by the number of

teeth. Dental infections, caries, or periodontitis can potentially

be assumed as the reason for the extracted teeth. Earlier

studies have hypothesized thatmissing teeth reflect an individual

lifetime accumulation of oral inflammation. In the national

FINRISK 1997 study Finnish population-based survey of 8,446

subjects with 13 years of follow-up, Liljestrand et al. revealed that

missing teeth predict incident cardiovascular events, diabetes,

and death, and periodontitis was the main cause of tooth

loss in the middle-aged and elderly [45]. While, other studies

like Chauncey et al. and Jovino-Silvera et al. showed caries

complications to be the primary reason for tooth extraction. In

these studies, the size of the studied population is less than one

thousand [46, 47]. Caries can lead to dental pulp necrosis with

subsequent infection spread in the apical area and beyond. It can

leave chronic inflammation to persist in the apical area, apical

periodontitis [48].

In this study, we used the division into three teeth groups

due to a lack of consensus. The groups with the number of

teeth overlap with each other concerning the evident causes due

to which individual teeth are extracted, but hypothetical cause

grouping may aid in the interpretation of results: the first group

with teeth 28 to 32 represent periodontally healthy subjects or

lack of or extractions of third molars; those with teeth 24 to

27 may have additionally lost them due to orthodontic reasons,

periodontitis, or caries; and those with teeth 0 to 23 most likely

suffer from chronic periodontitis [45]. Thus, these groups with

fewer teeth eventually represent ongoing or treated advanced

oral disease with a plausible systemic inflammatory burden.

We used reported history of procedure codes and dental

status represented by the number of teeth, oral health

indices, initial caries, decayed/missing/filled teeth, and need for

periodontal treatment according to the involvement of gingival

pockets. Furthermore, we defined periodontitis as a binary

variable (no/yes) based on the procedure codes of periodontitis

treatment in the years 2001 and 2002, when we collected

data on patients’ oral health status. Overall, the collected data

support the association between periodontitis, caries, apical

periodontitis, and diabetes.

Comparisons with other studies

Many previous studies investigated biological connections

between periodontitis and diabetes-focused on the impact of

diabetes on periodontal pathogenesis. There is evidence for
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the bidirectional connection between these two diseases with

associated feedback effects. A dysregulated immune system is

essential to the pathogenesis of diabetes and its complications.

Systemic changes in cytokine and matrix metalloproteinase

(MMP) levels impact the pathogenesis of type 2 diabetes,

associated with physiological, nutritional, and metabolic

changes, including hyperglycemia, production of advanced

glycation end-products (AGE), hyperlipidemia, and increased

adiposity [44, 49]. These mechanisms can affect by weakening

the individual’s immune response and periodontal condition.

Proteins are glycated and eventually converted to AGE products

in persistent hyperglycemia. These irreversible glycation

processes of proteins have several consequences, including

immune and proinflammatory dysregulation manifested by a

pronounced, long-lasting inflammatory state and weakened

self-limitation resolution of immune responses [44, 49]. These

processes mediate pathophysiological mechanisms promoting

the development and progression of periodontitis in diabetes,

interfering with the physiologic tissue repair and wound healing.

When AGE products bind to signaling receptors of several cell

types, one of the results is the production and release of reactive

oxygen species, proinflammatory mediators, and MMPs. The

reactive oxygen species, cytokines, and proteases promote

inflammation and ultimately exacerbate periodontal tissue

destruction through an exaggerated inflammatory response

and limited tissue repair [50]. Concerning the potential impact

of periodontitis on the disease processes of diabetes, there is

little biological evidence available. The periodontal microbiota

appears unaltered by diabetes, and there is little evidence that

it may influence glycemic control. The systemic inflammation

triggered by periodontitis can affect the regulation of the serum

glucose level through an increase in the levels of inflammatory

mediators, such as tumor necrosis factor-alpha and interleukin-

6, MMPs, oxygen radicals, and acute-phase proteins, which

interfere with the glucose control mechanism, inhibit and

inactivate the insulin receptors, and reduce the uptake of

glucose into the cell. In the presence of severe periodontitis,

serum glucose levels can become elevated over the years in a

clinically significant manner, even without diabetes. MMP-8

can proteolytically process insulin receptors [11]. If diabetes is

already present with the simultaneous presence of untreated

severe periodontitis, proper glycemic control is probably

more challenging, and the risk for diabetes complications is

increased [51].

Some former studies have found that the risk of systemic

disease can be decreased with periodontal therapy. The

various clinical trials demonstrated that periodontal treatment

prevented or modified the progression of systemic diseases. All

of the studies conducted were limited by a small sample size and

inconsistent outcome measures across studies, and the limited

duration of follow-up [52, 53]. In Sabharwal et al.’s review

article, the majority of 23 randomized clinical trials revealed

consistent and moderate effects of periodontal treatment on

serum glycemic control in type 2 diabetic individuals. The

treatment of periodontitis may thus contribute to improvements

in the mouth and throughout the body, with a reduction of

the concentrations of inflammatory mediators and MMPs in the

blood resulting in the reduction of the average serum glucose

levels and improvements in the demonstrated lipid profiles, in

general, improving the control of diabetes [52]. A recent study

by D’Aiuto et al. showed that periodontitis treatment reduced

0.6% HbA1c in patients (N = 264) with type 2 diabetes and

moderate-to-severe periodontitis after 12 months [13].

This study comprises a large unselected population with

representative cohorts of patients with periodontitis and apical

periodontitis followed up over 10 years. Despite the limitations

inherent in this type of study, the results are likely to be

generalizable to similar populations of individuals with chronic

oral diseases. The association exists between chronic oral

diseases and diabetes, which warrants close collaboration among

each patient’s healthcare professionals, especially amongmedical

and dental care providers.
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Prolyl-hydroxylase inhibitor-
induced regeneration of alveolar
bone and soft tissue in a mouse
model of periodontitis through
metabolic reprogramming
Elan Zebrowitz1†‡, Azamat Aslanukov1‡, Tetsuhiro Kajikawa2,
Kamila Bedelbaeva1, Sam Bollinger1†, Yong Zhang1†,
David Sarfatti1, Jing Cheng3†, Phillip B. Messersmith3,4,
George Hajishengallis2 and Ellen Heber-Katz1*
1Lankenau Institute for Medical Research, Wynnewood, PA, United States, 2Department of Basic and
Translational Sciences, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, United
States, 3Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United
States, 4Department of Bioengineering and Materials Science and Engineering, UC Berkeley, Berkeley,
CA, United States

Bone injuries and fractures reliably heal through a process of regeneration
with restoration to original structure and function when the gap between
adjacent sides of a fracture site is small. However, when there is significant
volumetric loss of bone, bone regeneration usually does not occur. In the
present studies, we explore a particular case of volumetric bone loss in a
mouse model of human periodontal disease (PD) in which alveolar bone
surrounding teeth is permanently lost and not replaced. This model
employs the placement of a ligature around the upper second molar for
10 days leading to inflammation and bone breakdown and closely
replicates the bacterially-induced inflammatory etiology of human PD
to induce bone degeneration. After ligature removal, mice are treated
with a timed-release formulation of a small molecule inhibitor of
prolylhydroxylases (PHDi; 1,4-DPCA) previously shown to induce
epimorphic regeneration of soft tissue in non-regenerating mice. This
PHDi induces high expression of HIF-1α and is able to shift the metabolic
state from OXPHOS to aerobic glycolysis, an energetic state used by stem
cells and embryonic tissue. This regenerative response was completely
blocked by siHIF1a. In these studies, we show that timed-release 1,4-DPCA
rapidly and completely restores PD-affected bone and soft tissue with
normal anatomic fidelity and with increased stem cell markers due to
site-specific stem cell migration and/or de-differentiation of local tissue,
periodontal ligament (PDL) cell proliferation, and increased vascularization.
In-vitro studies using gingival tissue show that 1,4-DPCA indeed induces
de-differentiation and the expression of stem cell markers but does not
exclude the role of migrating stem cells. Evidence of metabolic
01 frontiersin.org
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reprogramming is seen by the expression of not only HIF-1α, its gene targets, and
resultant de-differentiation markers, but also the metabolic genes Glut-1, Gapdh,
Pdk1, Pgk1 and Ldh-a in the periodontal tissue.

KEYWORDS

alveolar bone, GAPDH, GLUT-1, HIF-1α, ldh-a: micro-CT, mice, oct3/4, periodontal disease,

periodontal ligament, PGK1, PDK1, PHDI, pulp, 1, 4-DPCA
Introduction

Humans, like virtually all mammals, heal tissue and organ

injuries by the process of scarring with limited restoration of

normal anatomical integrity and functionality. This is in

contrast to species such as newts, salamanders and other

vertebrates which heal perfectly through the process of

regeneration. In these examples, bone and soft tissues are

replaced creating indistinguishable replicas of lost or damaged

tissues (1–3). There are several routes to mammalian

regeneration being actively considered for regenerative

therapies, usually involving the use of stem cells with or

without bioscaffolds (4–9). In a dental context, pulp stem cells

as an autologous graft and the use of compounds such as

high molecular weight hyaluronic acid can affect periodontal

bone healing (10–12). However, the possibility of a

systemically-acting drug which alone could induce

regeneration in multiple tissues would be an intriguing therapy.

The path to identifying such a drug began with the

serendipitous observation that the MRL mouse strain, long

employed in autoimmunity studies, possessed an unusual

capacity for tissue regeneration. Through-and-through ear

pinna wounds used as life-long mouse identifiers healed by

fully closing without scarring within 30 days. All tissue types

found in the ear including epidermis, dermis, blood vessels,

nerve, glands, cartilage and hair follicles were restored (13,

14). Furthermore, multiple studies showed that this

regenerative phenotype extended to MRL cornea, tendon,

cartilage, muscle, fat, and other tissues (15–18). However,

bone injuries were largely unexplored.

Insight into the biological basis of the regenerative phenotype

of the MRL mouse came from the fact that the adult MRL

employs a strongly aerobic glycolytic metabolism in the basal

state also seen in embryos and stem cell niches. This metabolic

state was enhanced during regenerative wound healing but not

normal wound repair (16, 19, 20). One well-known molecule

that regulates aerobic glycolysis is hypoxia-inducible factor

(HIF-1α; 21, 22) which was highly up-regulated in the MRL

upon initiation of injury (23). Blocking HIF-1α using siHIF1a

completely blocked the regenerative response (23).

The term “metabolic reprogramming” has been generally used

to describe the metabolic state of tumor cells relative to normal

cells (24–27). However, it has also been used to describe

changes in metabolism necessary for proliferating cells in
02
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general. Here, glycolysis, with increased lactic acidosis, glucose

consumption, and amino acid and nucleic acid synthesis, is

preferred over oxidative phosphorylation. By transiently

increasing the level of HIF-1α, a major positive regulator of

aerobic glycolysis, through blocking prolyl hydroxylases (PHDs)

that negatively control HIF-1α levels, the PHD inhibitor (PHDi),

1,4-DPCA, was employed as a regeneration activator.

In the current set of studies, we explored the possibility that

1,4-DPCA, (28) could also have a positive effect on the

regeneration of bone and soft tissue of the jaw in mice. The

use of 1,4-DPCA delivered in a hydrogel or coupled to PEG

was previously shown by our laboratories to lead to a

regenerative healing response resulting in closure of ear holes

and replacement of soft tissue in mice (16, 23, 29)

indistinguishable from that seen in MRL mice. This outcome

was also seen in a second soft tissue target, enhanced DPCA-

induced liver regeneration (30). We employed a mouse model

of periodontal disease induced by placing a ligature around

the upper second molar for 10 days, leading to an oral

bacterial accumulation and bone degeneration, followed by

removal of that ligature (31–33). 1,4-DPCA coupled to a PEG

gel was then administered systemically followed by a second

dose of drug administered 8 days later. After 20 days post-

ligature removal and administration of drug, we saw full

replacement of alveolar bone and gingival soft tissue.

Using Micro-CT analysis of bone damage and regeneration

combined with immunohistochemistry and gene expression, we

explored the DPCA effect (23, 29) for over 220 days in

longitudinal studies to determine if full regeneration was

achieved and maintained. In addition to the rapid recovery of

alveolar bone architecture and gingival soft tissue there was

significant regeneration of periodontal ligament (PDL) which

attaches tooth to bone, and in the pulp of the teeth. Here, we

found increased cell proliferation, HIF-1α levels, bone-PDL

interactions, vascularization, and stem cell markers. These

included 1) scleraxis, a transcription factor expressed in

tendon progenitor populations, mature tendon and PDL

fibroblasts (34–37) and 2) neurofilament, a structural protein

of mature nerve fibers, seen in the pulp and PDL (38). The

known pulp markers of progenitor cell populations shown to

be mesenchymal stem cells (MSC), alpha smooth muscle actin

(aSMA) and CD44 (39–42), were also increased after drug

treatment. Furthermore, the possibility of tissue de-

differentiation followed by re-differentiation into mature
frontiersin.org
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tissue, a hallmark of classic epimorphic regeneration with the

expression of Oct3/4, Nanog, Pax7, Sox2, and CD34, was

supported by these results and had previously been noted in

ear pinna regeneration (1–3, 23, 29).

In the broadest sense, bone is the biological “bioscaffold”

which structurally supports the soft tissues of the body. The

ability to regenerate bone through the up-regulation of HIF-

1α by a systemically acting drug extends the range of

possibilities of regenerative therapies.
FIGURE 1

Degeneration of the mouse jawbone in the presence of ligature followed by
ligature-induced periodontitis model. 5–0 silk suture was passed through t
and third molar using Dumont forceps. Suture was tied firmly using a triple
cartoon (a) and photomicrograph (b). Taken from Ref. (31). (Ba–c) Micro-CT
0, 5, and 10. The control group image is representative of the group (n= 3)
group image is representative of the group (n= 3) that will receive drug (exp
molars with bone degeneration extending to the adjacent 1st and 3rd m
mandible top, maxilla bottom). (C) The area of degeneration was determine
placement. The y-axis is: Area of bone loss (mm2); (n= 7); error bars repre
7.33084 × 10−11; and for days 5–10, p= 3.60818 × 10−7. (**) Represents p <
ligature but not given drug (no drug control) vs. mice given drug (DPCA-P
and 8 after ligature placement and removal. MicroCT scans were obtained o
20 post-ligature). Here, a statistical analysis of the area of bone growth (m
control mice (n= 10) and DPCA-PEG-treated mice (p= 0.00253) on day 15
treated mice showed highly significant differences from non-drug-treated
described in the Materials and Methods. The Y-axis = Area of bone regrow
represented as (*) = p < 0.05; (**) = p < 0.01. Mouse jaws analyzed were n= 1
data shows a representative mouse maxilla which had ligature removed at
compared to a representative mouse maxilla receiving ligature and DPCA-P
the drug-treated group shows an almost, if not complete, return to what is
no change in bone histology approximately 6 months later. Mice injected
aged. Over six months after the da 30 scan, mice were rescanned (upper p
scans on da 30 and da 220 (lower panel). The black line is the da 30 scan a
are exactly overlapping. This result is representative of three mice.
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Results

Ligature-induced bone degeneration

Micro-CT scanning was performed on C57BL/6 (B6) female

mice 2 days prior to placement of ligature (day minus 2) around

the upper (maxillary) left 2nd molar (Figure 1Aa,b, ref. 31).

Mice were re-scanned on day 5 (with ligature present) and

again on day 10 (immediately after ligature removal). Image
regeneration of the jawbone post-ligature and post-drug. (Aab) The
he interdentium between the maxillary first molar, the second molar
-knot and excess suture was cut using spring scissors as seen in the
scans of jaws from mice during the 10 day ligature period for days
that will not receive drug (control, upper row) and the experimental
erimental, lower row). The red arrows show the maxillary left second
olars. For visual clarity, the images are inverted 180 degrees (now:
d for all animals tested and shown for day 5 and day 10 after ligature
sent standard errors; for days 0–5, p= 0.00289; for days 0–10, p=
0.01. In (D), a graph of area of bone growth is seen for mice post–
EG). Mice were injected with DPCA-PEG subcutaneously on days 0
n day 15 of the experiment (day 5 post-ligature) and on day 30 (day
m2) is seen. Significant differences are found between the no drug
(blue bars) (n= 12). The same is true on day 30, where DPCA-PEG-
controls (p= 0.00612) (red bars). Area analysis was performed as

th (mm2); the error bars represent standard errors; and p values are
0 for ligature, no drug; n= 12 for ligature/plus drug. In (E) micro-CT
day 10, scanned on day 10 and then re-scanned on day 30 (Ea,b) as
EG drug seen on day 10 and day 30 (Ec,d). The level of regrowth in
seen before the start of the experiment (da0) (Ed,e). In (F), there was
with DPCA-PEG drug were kept for additional observation as they
anel) and then compared to the day 30 scan by overlaying the two
nd the red line is the da 220 scan. Though shown as two lines, they
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analysis showed significant bone degeneration within 5 days

continuing to day 10 (Figure 1Ba–c). The ligature was well

tolerated with no obvious ill effects such as reduced chow

ingestion. Graphed values of bone loss are seen in Figure 1C.
Changes in bone regrowth in mice given
DPCA-containing drug

At day 10, ligature was removed and mice were separated

into two groups: 1) the control group treated no further; and

2) a group injected twice (days 10 and 18) with DPCA-PEG

(29). Mice were then Micro-CT-imaged on days 15, 21, and

30 (Supplementary Figure S1).

Three separate experiments were carried out, and Micro-CT

results quantified. The key measure of alveolar bone loss and

subsequent bone regeneration is derived by calculating changes

in bone area assessed from lateral images using the cementum-

enamel junction (CEJ) and crest of the buccal alveolar bone as

anatomic landmarks (Figures 1D,E and Supplementary

Figure S1) to determine changes in each jaw. Statistical analyses

were performed and statistically significant differences in bone

area of treated and control groups were seen. These differences

demonstrate the efficacy of DPCA-PEG in reversing induced

periodontal disease in this mouse model. In Supplementary

Figure S1, jaws are also shown digitally overlaid and aligned on

top of one another to show changes in bone growth. In

Figure 1D, treatments and degree of increase/decrease in area in

mm2 is seen with highly significant changes after drug treatment.

Thus, DPCA-PEG induced rapid and significant bone

regrowth. Comparing jaw from the day ligature is removed

where extreme jawbone degeneration is seen by day 10

(Figure 1Ea,c), one can see dramatic bone re-growth

(Figures 1D,Ed, Day 20 after ligature removal). Regrowth of

alveolar bone in mice given DPCA-PEG is nearly, if not

completely, recovered compared to images taken before ligature

and drug treatment, day 0 (Figure 1Ee). Not only does bone

length and apparent bulk volume return to normal within 30

days, but morphology of regenerated bone is indistinguishable

from normal alveolar bone. Thus, the thickened boney alveolar

ridge adjacent to the crowns is fully restored in drug-treated mice.

It should also be noted that control bone itself does grow

back, albeit to a significantly less extent, consistent with

earlier observations (43, 44). This is not surprising since it has

been long established that many rodent species continually

wear down tooth crowns with subsequent regrowth of tooth

roots and surrounding alveolar bone (see Discussion).

Finally, three ligature plus DPCA-PEG-injected mice were

examined for any long-term effects or reversal of healed

injury. After approximately six months, bone morphology was

still stable. As seen in Figure 1F, no reversal of healing nor

adverse effects of drug on the health of the mice were seen.
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Soft tissue changes post-ligature and
post-drug

Bone loss in PD is preceded by bacterially-induced

inflammatory changes in soft tissue (gingiva) characterized

often by swelling and bleeding on probing. As bone loss

continues, the inflammatory state is intensified with

breakdown of attachment fibers between supporting alveolar

bone and roots of the teeth. The combination of direct bone

loss and breakdown of periodontal (PDL) fibers leads to tooth

mobility and eventual tooth loss. It was thus important to

observe whether drug-induced regenerative therapy restored

not only bone, but also soft tissue integrity.

In Figures 2Aa–c,Da, normal tissue histology around the tooth

is shown with rete pegs in the epidermis, un-inflamed dermis,

rich cellular pulp, and a PDL surrounding the full tooth root.

In Figure 2Ba–c, tissue from ligature-only-treated mice is

seen on day 30. There is ablation of PDL root-bone attachment

down to the root apex (green arrows). Furthermore, there is

increased porosity of the surrounding alveolar bone

(Figure 2Db). The human clinical correlate might be extreme

PD with tooth extraction indicated. Compared to some alveolar

bone recovery seen by micro-CT (Figure 1Ea,b), soft tissue

recovery is poor by day 30 (Figures 2Ba,c,E).

Figure 2Ca–c shows tissue after ligature plus drug (day 30).

Cell-rich reattached PDL fully surrounding the root

(Figures 2Cc,E), alveolar bone with less porosity

(Figure 2Dc), and a highly vascularized pulp (Figure 2Cb) is

found. PDL fibers have returned (Figures 2Cc,Dc).
Vascular changes in pulp and increases in
stem cell markers post drug

Twenty days after drug initiation (day 30), there was an

almost 8-fold increase in cellularity and vascularity in B6 pulp

after drug vs. no drug control (Figures 2Cb, 3A).

Neurofilament IHC, used to measure nerve in highly innervated

pulp showed increases in B6 mouse jaws after ligature plus drug

(Figure 3E). Increases in early stem cell markers such as OCT3/

4 and PAX7 (Figures 3C,D) and the mesenchymal stem cell

marker aSMA (Figure 3F) were also seen. Two markers, SOX2

and CD34 showed no differences with or without drug.
Changes in PDL markers

A closer examination of B6 PDL showed that after ligature

plus drug, the number of PDL fibroblasts increased two-fold

compared to ligature alone. This was carried out examining

longitudinal cross-sections (Figure 4A) and transverse cross-

sections (Supplementary Figure S2), both giving the same

result.
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FIGURE 2

Histological analysis of normal and 20 days post-ligature +/- drug treated jaw tissue. In figure, H&E-stained lateral jaw sections of a maxillary second
molar are seen. The scale bar = 1mm for (A-Ca). The scale bar = 0.4 mm for all other photomicrographs, marked and unmarked. In row A, a normal
mouse maxilla is seen (Aa-c). In row B, a maxilla from a +ligature/-drug-treated mouse is seen (Ba-c); and in row C, a maxilla from a +ligature/
+DPCA-PEG-treated mouse (Ca-c) is seen on experimental day 30 (day 20 post ligature) and all samples are representative of 3 different mice
for each condition. (a’s) show tooth and surrounding tissue; (b’s) show pulp; (c’s) show PDL. (D) shows a high magnification of bone from a
normal maxilla (Da), from a maxilla of a +ligature/-drug-treated mouse (Db), and from a maxilla of a +ligature/+DPCA-PEG-treated mouse (Dc).
In the normal control mouse (Aa) is seen a thick gingival dermis and epidermis with Rete pegs, a rich periodontal ligament attachment extending
from root tip to cemento-enamel junction (CEJ), with periodontal ligament fibers and fibroblasts attached from tooth to normal bone (Da), along
with pulp chamber and its rich cellular composition. The pathology induced from a silk ligature around the root adjacent to the crown is seen in
(Aab). (B,C). In the +ligature-treated/-drug-treated mouse (Bac), a space between PDL and tooth extending to both sides of the tooth apex
(green arrows, stars) is seen. Breakdown of dermis and epidermis surrounding the tooth crown with obvious dis-attachment of PDL to root
surface results in a deep invagination extending > 60% of the length of the CEJ to tooth APEX. PDL is totally eliminated on the right of (Bac) and
partially obliterated on the left side. Epidermis and dermis are tattered and edematous. Bone shows porous changes (Db) and clinically this tooth
would be highly mobile within the tooth socket and correspond in humans to advanced PD involvement within an indication for extraction. The
jaw in (Ca) is from a +ligature/+drug-treated (2 doses DPCA-PEG, da0, da8 post-ligature) mouse. Here, PDL is attached to bone (Dc) and tooth,
dermis is richer than without drug-treatment. Pulp shows higher levels of blood cells and vessels. A higher magnification of pulp shows
differences with different treatments (Ab,Bb,Cb). After drug treatment, the pulp is richer with higher levels of red cells and angiogenesis
compared to both normal and ligature alone-treated mice (pink/red).
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FIGURE 3

Stem cell marker expression in pulp after ligature and drug-treatment. In (A), a graph of the level of angiogenesis in the pulp on day 30 (Figures 2Bb–
Cb) is presented. The level of red in the pulp was determined by determining the number of pixels of red (IHC staining) using Photoshop as compared
to the number of pulp area pixels (blue, DAPI) and is shown as a graph of the level of red in (A). The Y-axis is the vessel area/pulp area in the control
and drug-treated mice; n= 4; the error bars are standard errors; the p= 0.0027127 and (**) represents p < 0.01. Stem cell or de-differentiation marker
expression for PAX7, OCT3/4, aSMA (SMA1), SOX2, and CD34 was determined by IHC (red) in the pulp and is seen in (B–H). The anti-Ig control is
lower in drug-untreated than treated samples. The scale bar = 200 um for all photomicrographs. The pulp was also examined for expression
levels of neurofilament (NF), an intermediate nerve fiber filament and marker of innervation (E). Quantitative staining using Photoshop CS6
determined the # red pixels over the total number of pixels in the pulp giving % positive staining; (n = 4) and percentage of red pixels to total
pixels determined. For (B–H), the no drug control vs. plus drug experimental is seen for (B) (0.7% vs. 6%); (C) (14% vs. 38%); (D) (9% vs. 21%); (E)
(17.5% vs. 27%); (F) (19% vs. 38%); (G) (12.5% vs. 13%); and (H) (18% vs. 18%). Two markers, SOX2 and CD34, did not show a difference with and
without drug on day 30.
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Given that 1,4-DPCA blocks PHDs and leads to HIF-1α

stabilization, we noted high HIF-1α expression levels in PDL

(Figure 4B). High expression levels of scleraxis, a marker of

activated PDL (Figures 4C,C′), was observed post ligature

plus drug in the pulp chamber and canal. In previous studies

(23, 29), after DPCA-PEG treatment of ear pinna wounds and
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a regenerative response, we noted expression of de-

differentiation and immature cell markers. Here, we saw in

both PDL and pulp including the apical pulp canal, all of

which contain stem cell progenitors, an increased

immunostaining for stem cell markers PAX7 and OCT3/4

(Figures 4E,F), and MSC markers aSMA, SOX2, and CD34
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FIGURE 4

Stem cell marker expression in PDL after ligature and drug-treatment. In figure, PDL analysis was carried out in B6-treated mice. In (A), in B6 mice, the
number of PDL fibroblast nuclei were counted from Figures 2Bc,Cc and are two-fold greater in the drug-treated B6 mice. The Y-axis is the number of
nuclei/unit area; error bars are standard errors; n= 4; *p < 0.01. In (B,C,C'), longitudinal jaw cross-sections from ligated-plus-drug (upper panels) vs.
ligated only (lower panels) respectively were stained with antibody to HIF-1α (green) and scleraxis (red) with PDL staining levels higher in sections from
drug-treated vs. no drug mice (for scleraxis, 11% vs. 4% red pixels; as described in Figure 3) (C). The scale bar = 100 um. In (E–I), antibodies to the stem
cell or de-differentiation markers PAX7, OCT3/4, aSMA, SOX2, and CD34 stained more highly in the drug-treated PDL (upper panels) compared to the
non-drug treated PDL (lower panels). Anti-Ig controls showed no staining in the PDL except in the root canal (D). The scale bar = 100 um for all
photomicrographs except Fig 4d where the scale bar = 200 um.
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FIGURE 5

In-vitro nuclear expression of stem cell or de-differentiation markers. In figure, gingival fibroblast-like cells from normal B6 female mice were grown
on coverslips, treated without (A,A') or with 1,4-DPCA (100 uM) (B,B') overnight in culture, and stained with antibody to OCT3/4 (red) and the nuclei
stained with DAPI (blue). OCT3/4 staining is seen in the cytoplasm in DPCA-untreated cells and seen increased in the cytoplasm but now also found
in the nucleus in DPCA-treated cells. The scale bars = 50um.
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(Figures 4G–I). Interestingly, SOX2 and CD34 showed no

changes in the pulp (Figures 3G,H).

The cellular location of stem cell markers (cytoplasm vs.

nucleus) could not be determined using tissue sections.

Therefore, in-vitro analysis of stem cell marker OCT ¾

location in cell culture was examined pre and post

addition of 1,4-DPCA (Figure 5). Using gingival cells in

the absence of DPCA (Figures 5A,A′), we found OCT3/4

expression in the cytoplasm but not nucleus. After

treatment with DPCA (100 uM) in-vitro, all cells showed

both nuclear and cytoplasmic localization of OCT3/4

(Figures 5B,B′). The amount of OCT3/4 staining

increased after DPCA treatment.
Metabolic reprogramming

Treatment of mice with DPCA-PEG also led to gene

expression changes in jaw tissue in molecules related to the

aerobic glycolysis metabolic state (Figure 6). Gapdh, Glut1,

Pdk1, Pgk1, and Ldha showed increased mRNA expression

levels in ligature + plus drug-treated mouse jaw tissue (da 30)
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obtained from isolated paraffin-embedded tissue sections as

seen in Figure 2 containing bone, tooth, gingiva, and PDL.

All genes showed the same expression patterns with high

levels after ligature plus drug but low expression levels with

ligature or drug alone.
Discussion

Induced periodontal disease as a model
for bone and soft tissue regeneration

Experimental bone injuries in vivo generally require surgical

incisions through overlaying skin, fascia and muscle.

Periodontal disease, however, arises from a bacterial

overgrowth of resident intra-oral micro-organisms external to

soft tissues (the gums) of the oral cavity with subsequent host

inflammatory responses leading to massive lesions of

underlying alveolar bone. An induced periodontal disease

model is therefore attractive from the perspectives of both

basic bone regeneration biology and as a translational

stepping stone in the treatment of a common human disease.
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FIGURE 6

Metabolic gene expression in jaw tissue. In figure, mRNA was extracted from 2 sets of jaw tissue as seen in Figure 2. QPCR was carried out and results
show that for all metabolic genes associated with aerobic glycolysis, high expression levels were seen in tissue frommice treated with both 1,4-DPCA
and with ligature placed round the 2nd molar. These results were done in triplicate (n= 3). The p-value differences between ligature with DPCA (3rd
bar) and without DPCA (1st bar) were for LDHa, p= 0.0439*; Pdk1, p= 0.0095**; Glut1, p= 0.0922 !; Gapdh, p= 0.0103*; and Pgk1, p= 0.0001**.
These values were (a) highly suggestive (!), (b) significant (*), and (c) highly significant (**).
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With declining incidence of caries, periodontal disease (PD)

has emerged as the most common cause of tooth loss affecting

30%–60% of the adult population, presenting a major clinical

challenge (45, 46) with the loss of supporting alveolar bone

around the roots of teeth as well as the destruction of

adjacent soft tissues (47) and can involve a single tooth or the

entire dentition. PD etiology is due to a number of identified

periodontopathic organisms found in the gingival crevice (31–
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33, 47) combined with host susceptibility factors such as

diabetes (48, 49).

The challenge in advanced PD, where bone loss may exceed

50%–80% of the length of the tooth root, is to halt further

progression and achieve a functionally and esthetically

acceptable outcome. Thus, a primary goal is to restore lost

alveolar bone and soft tissues to the original state without loss

of teeth (50, 51). It is for this reason that we have explored
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PHDi-based regenerative drug-induced bone and soft tissue

regeneration in a PD model.
The role of HIF-1α and changes in
vascularization

The biphasic high expression of HIF-1α and its target genes

was shown to be a critical molecular tissue regeneration

pathway as determined from previous soft-tissue studies (16,

23, 29). These target genes include Pdk, and Ldha, Pkm2, and

Gapdh, and Pgk1, all glycolytic enzymes (Figure 6) which

lead to metabolic remodeling or reprogramming (21, 22, 24–

27). These molecules required two signals for elevated

expression, drug + injury (ligature). HIF-1α was identified as

the molecule responsible for the broad regenerative ability of

the MRL mouse from multiple directions. First, in genetic

mapping studies of MRL mice, a reduced level of the gene

RNF7, part of the ubiquitin ligase complex, necessary for

proteolysis and lowered protein expression levels of HIF-1α

(52), proved to be a candidate gene associated with

regenerative healing (53). Furthermore, MRL mice were found

to be metabolically more embryonic using aerobic glycolysis

regulated by HIF-1α target genes (19, 20). Finally, siHIF1a

completely suppressed ear hole closure both in the MRL and

non-regenerative mice treated with 1,4-DPCA-hydrogel (23).

One of the many intriguing aspects of HIF-1α elevation is

the de-differentiation of mature cell populations to an

immature state determined by changes in molecular markers

such as Nanog and Oct ¾ regulated by HIF-1α and aerobic

glycolysis (54–61). This state characterizes cells in the

amphibian regenerative blastema and is thought to be key to

the regenerative response (62). Also, HIF-1α is responsible for

an enhanced vascularization response, producing molecules

such as VEGF and HMOX1. It is clear in the tooth pulp that

vascular tissue is significantly increased 15–20 days after

DPCA-PEG administration (Figures 2Cb, 3A). This change in

vascularity could lead to an increased number of stem cells

migrating into the tooth as noted by stem cell marker increase

(Figures 3B–F). On the other hand, DPCA-PEG could lead to

de-differentiation with increased stem cell markers and

growth as seen in the ear accompanying regenerative ear hole

closure (23, 29).
Induction of stem cell markers

Many molecular and cellular markers of regeneration

observed in spontaneously regenerating species such as the

newt and axolotl (1–3) and in the MRL mouse (19) were

indistinguishable from those seen in DPCA-PEG-treated mice

(23, 29, 16). Our previous studies largely focused on soft tissue,
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specifically in the ear pinna and included regrowth of hair

follicles and cartilage (23, 29). In the PD model studied here,

not only soft tissue but also bone is affected by the drug.

Multiple early impacts (5 days post-ligature) using a different

form of the drug, DPCA-hydrogel, included increased Treg

FOXP3 + populations and lowered inflammatory cytokines (63).

In the current study using DPCA-PEG, between 20 days and as

long as 220 days post -ligature, the PDL, which is key to

supporting the teeth and securing them to the bone, showed

complete re-attachment to the teeth. Increased numbers of

PDL fibroblasts in the drug group are also seen. PDL also

showed increased levels of scleraxis, a transcription factor

considered to be a PDL marker (34–37) associated with

osteocytes and cementoblasts (36).

Another dental soft tissue target, the pulp, is considered to

be a source of stem cells and contains dentinoblasts which re-

line the inside of the tooth dentin. We noted after drug that

the pulp vasculature as well as stem cell markers were

increased. As mentioned above, whether this is due to a de-

differentiation process in the pulp or to increased numbers of

stem cells in the over-abundant vasculature is not clear. We

also noted an increase of neurofilament (38), a nerve marker,

which is present in normal pulp and increased after drug.

Stem cell populations have been identified that are associated

with teeth in the pulp chamber, at the base of growing roots, and

in the PDL (40). Progenitor cell populations have been identified

previously in periodontal tissue and express mesenchymal stem

cell markers such as STRO-1, CD146, CD44, and αSMA (30–

33, 64–66). These progenitors exhibit many stem-cell-like

features, including small size, responsiveness to stimulating

factors, slow cycle time and the ability to generate multiple

mesenchymal lineages (67–69). In addition, neural crest-derived

cells have been identified in the periodontal ligament and the

pulp chamber using markers such as Slug, AP2 alpha, HNK-1,

p75NTR and Nestin (70–74).

Alpha SMA has been found in stem cells and regenerating

tissue and in blood vessel pericytes and myoepithelial cells

involving force-generating function. During mandible

development, aSMA was found in the dental follicle, in the

periostin-positive area along with RUNX2 positive cells, and

localizes to the alveolar bone region suggesting involvement in

bone formation (75).

We tested multiple stem cell markers such as OCT3/4,

PAX7, SOX2, CD34 and aSMA in the jaw. These de-

differentiation markers were found in pulp and PDL and

increased after DPCA-PEG. Again, these markers could be

due to the dedifferentiation of mature cells (1–3, 23, 30, 54–

61) or could be markers of stem cell populations in the pulp

and PDL as discussed above (76). Cross talk between the

pulp and periodontal ligament should not be ruled out since

pulp and PDL are anatomically connected via the apical root

vasculature.
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Although stem cell markers were increased in PDL with

DPCA- PEG, it was difficult to see cellular sub-structure and

intra-cellular location of these stem cell markers. We grew

gingival-derived fibroblast-like cells to analyze the staining of

OCT ¾ with and without addition of DPCA. Here, we found

that cells before DPCA showed staining in the cytoplasm, but

after DPCA, staining was seen in the nucleus where Oct ¾

acts as a transcription factor and is key to self-renewal of

undifferentiated embryonic stem cells and is a specific marker

for dedifferentiation (51).

Taken together, our present work has shown the ability of

systemic DPCA-PEG administration to regenerate severely

degraded alveolar bone and soft tissue with remarkable

anatomic fidelity within 20 days post drug.

It should be noted that in humans, regenerative recovery of

bone is seen, but is usually limited to bone fractures which are

aligned with a gap of less than 1 mm (77, 78). On the other

hand, it is also known that both the maxillary and

mandibular incisor teeth of rodents kept in animal colonies

on soft chow often elongate (33, 34) and we are seeing a

background growth effect. In studies reported here however,

the regenerative contribution of the drug is clearly

distinguishable from background.

In conclusion, this study extends our previous work on

drug-mediated stabilization of HIF-1α to achieve soft tissue

regeneration in mice (16, 23, 29, 59) in new directions. First,

systemic DPCA-PEG rapidly reverses severe bone loss in an

anatomically complex structure, alveolar bone of the maxilla,

leading to a nearly perfect replica of healthy bone and

associated soft tissue such as PDL with long-term

maintenance. This induced bone loss occurs in an

experimental system which emulates the bacterial etiology of

the human disease, periodontitis.
FIGURE 7

Timeline of treatments.
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Materials and methods

Study design

We used the inbred mouse strain, C57BL/6 female, to study

the effect of a small-molecule inhibitor of PHDs on the in-vivo

expression of HIF-1α and the impact on quantitative

regenerative maxillary bone growth (63) and soft tissue

regeneration including PDL and pulp. A 5.0 silk ligature

model was used to induce periodontitis in the mice and

DPCA–PEG was tested and subcutaneously implanted in the

back of the neck at multiple time points (Figure 7). End

points of the study were previously determined to be a

minimal of 30 days and up to 220 days after injury and

included key indices of tissue regeneration such as bone

regrowth as measured by Micro-CT scanning, soft tissue

regrowth after H&E histological analysis including epidermis,

gingiva, PDL attachment and cell number, and markers of

regeneration determined by immunohistochemistry of jaw

tissue for stem cell markers, and HIF-1α, neurofilament, and

scleraxis and RT-PCR analysis of gingiva. These parameters

involved physical measurements of growth and gene

expression at the RNA and protein levels. Tissue was coded

and different laboratory personnel were involved in doing

ligatures, scanning, tissue preparation, and data analysis.
Animals

C57BL/6 female mice, 9 weeks of age, were obtained from

Taconic Laboratories. The experiment was done with 2 groups

of 3–4 mice based on the previous work of Hajishengallis
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et al. (31, 63) and was repeated twice for a total of 10 mice in

each group.

Food and water were provided ad libitum. All animal

experiments were reviewed and approved by the Institutional

Animal Care and Use Committee of LIMR and were performed

in compliance with institutional, state, and federal policies.
Tissue culture

Primary fibroblast-like cell lines from gingival tissue were

established from B6 female mice by plating in dispase and then

collagenase and then grown in DMEM-10% FBS supplemented

with 2 mM L-glutamine, 100 IU/ml penicillin streptomycin and

maintained at 37 °C, 5% CO2, and 21% O2. The cells were

washed and only adherent fibroblasts maintained. Cells were

split 1 : 5 as needed to maintain exponential growth and avoid

contact inhibition. Passage numbers were documented and cells

from early passages (<P20) frozen in liquid nitrogen and used

in the described experiments.

For immunohistochemical staining, primary gingival

fibroblasts were grown on coverslips in DMEM with 10%

FBS at 37 °C in a humidified 5% CO2 incubator. Before

staining, cells were incubated with DPCA overnight. The

coverslips were rinsed with 1× PBS, the cells were fixed in

cold methanol (−20 °C) for 10 min, rinsed with 1× PBS,

treated with 0.1% Triton-X100, and then incubated with

the appropriate primary and secondary antibodies

(Supplementary Table S1). Photomicrographs were

produced using the fluorescent microscope (Olympus AX70)

and a DP74 camera with CellSens Standard software for

image analysis.
Drug application

DPCA-PEG was synthesized as described (29) and was

injected subcutaneously on day 0 and day 8 using 25 ul of gel

#10/injection or 50 ug of DPCA. The time course of injections

and scans performed during longitudinal experiments can be

seen in Figure 7.
Preparation and immunohistochemistry
of jaw tissue

Tissue from upper jaws was fixed in Prefer fixative (the

active ingredient is glyoxal) (Anatech) for 5 days and then

washed in H20. Jaw tissue was then decalcified using

UltraPure 0.5 M EDTA, pH 8.0 for 5 weeks with changes in

EDTA solution twice a week. Tissue was put in ETOH and

then embedded in paraffin and 5-μm thick sections cut.
Frontiers in Dental Medicine 12

50
Before staining, slides were dewaxed in xylene and rehydrated.

Tissue sections were then treated with 3% H2O2 and

nonspecific binding was blocked with 4% BSA (A7906; Sigma)

for 1 h. Primary antibodies and matched secondary antibodies

used for IHC are shown in Supplementary Table S1.

Photomicrographs were produced using the fluorescent

microscope (Olympus AX70) with an Olympus D74 Color

Camera using CellSens imaging software.

For histological stains, tissue sections were treated as above

and stained with Hematoxylin (Leica Microsystems, #3801562)

and Eosin (Leica Microsystems, #3801602). The slides were

washed, rehydrated, cleared with Xylene and coverslipped

with Permount mounting media (Fisher, SP15-500). Staining

was visualized using an Olympus (AX70) microscope in

bright field for H&E and fluorescence.
Induction of periodontal disease

For ligature placement, mice were anesthetized with

Ketamine/Xylazine, a 5–0 silk ligature was placed around the

upper left second molar of the maxilla according to an

established procedure (31) generating a dental plaque-

retentive milieu that reliably and quantitatively produces a

periodontal bone lesion. Importantly, this ligature procedure

induces not only bacterial over-growth but also selective

expansion of periodontopathic microorganisms, mimicking

quantitative and qualitative (dysbiotic) microbiome alterations,

the same etiology as that in human disease (32, 33). Upon

placement of the ligature, the 5–0 silk ligation accumulates

dental plaque and oral bacteria creating a local inflammatory

state in the surrounding gums and bone of the tooth.

Ketamine/Xylazine was used to remove the ligature and mice

were re-scanned. Mice were subsequently scanned for further

analysis. During this time, mice were kept on a normal diet of

mouse chow and were monitored daily for any signs of

physical discomfort in accordance with the Lankenau Institute

for Medical Research (LIMR) Animal Care Policies and

Procedures Manual. At each time point, animals were imaged

and analyzed with the area analysis described below. On four

occasions the ligature model was not completed due to the 5–

0 silk ligation falling off of the tooth. These mice were

excluded from the study and the remaining mice were

randomly distributed before any DPCA-PEG injections.
Ketamine/xylazine mixture

Stock solutions of Ketamine (100 mg/ml, Hanna) and

Xylazine (20 mg/ml, Hanna) are prepared using PBS as a

diluent, respectively at a ratio of 3:1:16, and is vortexed and

used immediately.
frontiersin.org

https://doi.org/10.3389/fdmed.2022.992722
https://www.frontiersin.org/journals/dental-medicine
https://www.frontiersin.org/


Zebrowitz et al. 10.3389/fdmed.2022.992722
Micro-CT scanning

For scanning, mice were anesthetized using isoflurane

(Henry Schein) 2%–4% concentration in 100% O2 for 3 min

in an anesthesia chamber. Upon establishing anesthesia, mice

were placed into the microCT FX (Perkin Elmer; ref 80) tray

with the isoflurane nose cone. 3D images were collected and

rendered with a voltage of 90 kV, a CT current of 160 μA and

a live current of 80 μA for 17 s for a total dose of 11milliGY

(79, 80). This constitutes the pre-intervention baseline.

Buccal images were analyzed unlike original experiments

done by measuring the palatal side without Micro-CT (31,

63). They were normalized to the Micro-CT HA D4.5

phantom from QRM (Quality Assurance in Radiology and

Medicine GmbH).
Micro-CT analysis

An analytical method to quantitate longitudinal changes in

bone morphology was designed and implemented. 3D

renderings were obtained using Quantum software (Perkin

Elmer) and subsequently converted to 2D images, which were

then superimposed in Photoshop (CC 2019) for quantitation

of bone morphological changes.
RNA isolation and quantitative qPCR

Total RNA isolation from paraffin-embedded jaw samples was

performed using RNeasy DSP FFPE Kit (Qiagen), according to the

manufacturer’s protocol. cDNA was synthesized from 500 ng of

total RNA using Invitrogen SuperScript IV First-Strand Synthesis

System (Thermo-Fisher Scientific) according to the manufacturer’s

instructions. qPCR was performed with Applied Biosystems SYBR

green PCR Master Mix (Thermo-Fisher Scientific). In brief, a 10 μl

mixture was used containing 5 μl SYBR Green PCR master mix,

0.5 μl forward and reverse primer, 2.5 μl sterile water, and 2 μl of

complementary DNA template. The real-time PCR was performed

using Applied Biosystems QuantStudio 3 Real-Time PCR System

(Thermo-Fisher Scientific) according to the manufacturer’s

instructions. Gene-specific primers (Supplementary Table S2) for

detection and quantification of murine genes investigated in this

study were purchased from Integrated DNA Technologies. All data

were normalized to 18S rRNA and quantitative measurements

were obtained using the ΔΔCt method.
Statistical analysis

For multiple-group comparisons, data were analyzed by one-

way ANOVA followed by Tukey’s multiple comparison test. A

two-tailed Student’s t-test was used for two-group comparisons.
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P values <0.05 were considered to be statistically significant and

values <0.01 were considered highly significant. All statistical

analyses were performed using RStudio (version 1.1.463) with

the stats and stats4 packages (versions 3.5.1).
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The oral microbiome (OM) is a diverse and dynamic collection of species,
separated from alveolar bone by the oral mucosa. Pathogenic shifts in the
OM (dysbiosis) during periodontitis are associated with an inflammatory
response in the oral mucosa that drives alveolar bone resorption. Alveolar
bone is also affected by metabolic disorders such as osteoporosis.
Accumulating evidence has linked another microbial community, the gut
microbiome (GM), to systemic bone metabolism and osteoporosis.
Underlying this connection is the biologic activity of metabolites, byproducts
of host and bacterial activity. Limited evidence also suggests that metabolites
in the oral cavity signal between the OM and immune system, influencing
both alveolar bone homeostasis and pathologic bone destruction in
periodontitis. While the oral cavity and gut are connected through the
gastrointestinal tract, dissimilar roles for known metabolites between these
two niches exemplify the difficulty in translating knowledge on gut-derived
metabolites and bone metabolism to alveolar bone. Integrated metabolomic,
transcriptomic, and metagenomic approaches hold promise for resolving
these challenges and identifying novel metabolites which impact alveolar
bone health. Further interrogation through mechanistic testing in pre-clinical
models and carefully controlled clinical studies have potential to lead toward
translation of these discoveries into meaningful therapies.

KEYWORDS

alveolar bone, oral microbiome, gut microbiome, metabolites, periodontitis,

osteoporosis

Introduction

The human body is colonized by trillions of microbes (1). Recent advances,

including the Human Microbiome Project and the development of next generation

sequencing technologies, have convincingly demonstrated that distinct microbial

communities colonize different body sites and interact with host cells to modulate

health and disease (2, 3). It is further established that maintenance of health requires

a state of homeostasis between the microbiome and immune system across different

body sites, also known as niches (4, 5). Two distinct niches, the gut and oral cavity,

are characterized by a complex relationship between the host and gut microbiome

(GM) and oral microbiome (OM), respectively (6, 7). Disturbances in these

homeostatic interactions drive dysbiosis and inflammation and are associated with
01 frontiersin.org
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several chronic diseases, including inflammatory bowel disease

(IBD), type 2 diabetes (T2D), obesity, metabolic syndrome,

osteoporosis, rheumatoid arthritis, Alzheimer’s disease,

periodontal disease, dental caries, and various cancers (8, 9).

The role of the OM in driving alveolar bone destruction is

well established (10), and a role for the GM in regulating

systemic bone health has become increasingly appreciated

(11, 12). Accordingly, the nature of the microbial-host

interrelationships that regulate bone metabolism in health and

disease are active areas of investigation.

Alveolar bone is the specialized portion of the mandible and

maxilla which houses, supports, and protects the root structures

of teeth (13). Formation and remodeling of alveolar bone is

shaped by local factors, such as the eruption of teeth into the

oral cavity and ongoing masticatory forces, and systemic

regulation through hormonal and metabolic signaling (14, 15).

Distinct from other skeletal structures, alveolar bone lies in

close proximity to OM biofilms and undergoes resorption

during the course of periodontitis, a chronic and widespread

disease (16). The periodontitis-associated OM is characterized

by dysbiotic biofilms on tooth and root surfaces containing

several pathogenic species such as P. gingivalis, Treponema

denticola, Tannerella forsythia, and A. actinomycetemcomitans

(17). Concurrently, a heavy immune cell infiltration is present

in the gingiva, the oral mucosal tissue surrounding the teeth,

which drives osteoclast activity in the underlying alveolar

bone (18, 19). Diseases that affect bone metabolism, such as

osteoporosis, also affect alveolar bone health (20). Thus, an

interplay between OM, the associated immune response, and

local and systemic factors affecting bone shape the

pathogenesis of alveolar bone loss.
Metabolites, the currency of
bacterial-host crosstalk

Metabolites are the byproducts of microbial or host

metabolism specific to the environment, modulating health by

signaling to host cells and influencing bacterial community

interactions (21). Host amino acids (22) and byproducts from

glucose-related pathways (e.g., glycolysis and gluconeogenesis)

(23) and mitochondrial metabolism (e.g., tricarboxylic acid

cycle metabolites succinate, fumarate, and aconitate) (24) have

well known roles in signaling within and between immune and

bone cell populations. Microbial metabolite production, best

characterized in the gut environment, is heavily driven by

dietary intake, with fermentation of complex carbohydrates and

proteins leading to production of short- and branched-chain

fatty acids, and metabolism of proteins and peptides producing

amines, phenols, and indoles from amino acids (25, 26).

Interactions between microbially-derived metabolites and host

cells are increasingly recognized as drivers of human health and

disease (21, 27). Extensive research in the gut has identified
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roles for microbially derived metabolites, including secondary

bile acids, short-chain fatty acids (SCFAs), trimethylamine-N-

oxide (TMAO), polysaccharide A, 4-ethyl phenyl sulfate, and

catecholamines, in systemic diseases affecting bone (28–31). In

contrast, there is currently a narrower understanding of the

scope and nature of OM-derived metabolites and their role in

alveolar bone health (Figure 1).

The emerging field of metabolomics has enabled cataloging

of both well-known and novel metabolites using an array of

platforms and techniques (32). The number of metabolite

entries in the Human Metabolome Database, the most

comprehensive collection of human metabolites, has

burgeoned from 2,180 entries in 2007 to 217,920 annotated

metabolite entries and 1,581,537 unannotated entries (33).

These technologic advances in unbiased metabolomics have

significant potential to (1) uncover the net biological activity

in the oral cavity, (2) expand our knowledge of the

pathogenesis of alveolar bone destruction beyond identifying

specific bacterial species, and (3) identify novel targets for

disease diagnosis, prognosis, and treatment.
Lessons learned from the gut
microbiome

The microbiome colonizing the human intestine, known as

the gut microbiome (GM), is the largest microbial niche in the

human body and comprises a complex ecosystem with

established roles in human health and disease (34). Initially

formed in utero or at birth, the GM rapidly develops between

ages 1–4 and continues to evolve in response to intrinsic and

environmental factors such as geographic location, gender,

diet, and antibiotic use (35). The intestinal mucosal

epithelium serves as the interface between host and the

microbiome, controlling interactions through the coordinated

activities of mucus, epithelial cell junctions, immunoglobulin

A, antimicrobial peptides, and immune cells (36, 37).

Nutrients and metabolites also pass through this barrier to

interact with local cells or enter the circulation (38).

Bone remodeling and homeostasis are regulated by a

network of systemic hormones, including parathyroid

hormone (PTH), calcitonin, FGF23, 1,25-dihydroxyvitamin D3

(Vitamin D), and estrogen. The GM is considered an

endocrine organ (39) and animal models show that altering

or preventing GM development influences skeletal bone mass

and osteoclast activity (40–42). Gut microbes synthesize

vitamin K2 which stimulates osteoblast activity and is a

cofactor for post-translational modification of osteocalcin (12).

Disruption of the ecosystem with antibiotics inhibits Vitamin

K2 synthesis and reduces bone quality (43). Enzymes secreted

by gut microbiota can metabolize or re-activate estrogen,

altering circulating or excreted levels (44). GM dysbiosis can

also mediate estrogen deficiency-related bone loss through
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FIGURE 1

A multitude of studies have explored the connections between the gut and/or oral microbiomes, the host immune system, and bone cells (i.e.,
osteoblasts, osteocytes, and osteoclasts). Recent work suggests that metabolites are key signaling factors in these pathways (represented by
black bidirectional arrows), acting directly or indirectly (i.e. via the immune system – gray dashed arrow) to influence pathologic bone disorders
like osteoporosis. A significant challenge is translating knowledge gained from studies of the gut and osteoporosis to the oral cavity to
understand if metabolites play similar or distinct roles in the metabolism of alveolar bone. Underlying this challenge are differences in mucosal
barrier structures, microbiome populations, and immune cells between the gut and oral mucosa. Figure created with BioRender.com.
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increases in mucosal permeability, immune cell numbers, and

inflammatory cytokines (45, 46).

The GM can enable serotonin production by

enterochromaffin cells (47) and deconjugate bile acid

compounds and further metabolize them to secondary bile

acids such as lithocholic and deoxycholic acid (48). Gut-

derived serotonin may inhibit bone formation (49) and

lithocholic acid can bind vitamin D receptor (VDR), leading

to inactivation of vitamin D and decreased intestinal calcium

absorption (50). Bile acids can also signal enteroendocrine

cells to release GLP-1 which promotes bone formation and

inhibits bone resorption (51). Hydrogen sulfide (H2S) is

produced by gastrointestinal cells and the GM (52). Loss of

H2S results in osteopenia in mice (53) and administration of

an H2S donating compound in ovariectomy-treated mice

improves bone formation (54).

Emerging evidence points to gut-derived short-chain fatty

acids (SCFAs) as modulators of systemic health and bone

maintenance [see reviews (11, 12, 55, 56)]. In brief, SCFAs,

including butyrate, propionate, and acetate, are primarily

produced by microbial fermentation of non-digestible

polysaccharides and are rapidly absorbed through intestinal

mucosa, acting as a source of energy for both host and

microbiota (56). While SCFAs can directly suppress osteoclast
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activity and promote osteoblast differentiation (57, 58),

signaling between SCFA and endocrine organs or immune

cells may underly the connection between GM and bone. Gut

microbial colonization or SCFA supplementation is associated

with the production of insulin-like growth factor 1 (IFG-1),

an important hormone for skeletal growth and bone mass

maintenance (59). SCFAs, including butyrate, promote

proliferation and differentiation of regulatory T cells (Treg)

(60) which may reduce bone absorption by interfering with

osteoclast development and activity (61). Butyrate can increase

Treg numbers in the intestine and bone marrow which signals

to CD8+ T cells to produce WNT10b, a bone anabolic

signaling factor (62). Butyrate produced by GM may also

regulate PTH-mediated bone formation through signaling in

dendritic cells and Tregs (63).

Probiotics have been widely studied as a means to target

osteoporosis via manipulation of the GM (64). A clinical

study showed Lactobaciillus reuteri probiotics increased BMD

and elevated butyrylcarnitine, which can act as pool and

transporter of butyrate (65). Prebiotics are non-digestible

oligosaccharides that are selectively fermented in the colon

and support growth of specific bacterial species. Positive

results for prebiotics in animal models, including increased

calcium absorption and improved BMD and bone strength,
frontiersin.org
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have been primarily attributed to fermentation of prebiotics to

SCFAs by GM (66). Clinical trials have further indicated that

prebiotics can increase intestinal calcium absorption (67).

Altogether, the GM plays a critical role in regulating

systemic bone metabolism, in part, through production of

metabolites. GM-derived metabolites act both locally and

systemically on host cells to drive immune responses that

shape bone metabolism. Improved understanding of GM

metabolites and their role in shaping bone health have led to

development of therapeutic interventions, including probiotics

and prebiotics, suggesting that probing the connection

between the oral cavity and gut and identifying similar

pathways in the oral cavity has promise for improving

alveolar bone health.
The oral-gut-bone connection

Ingested saliva, food, and drink directly connect the OM

and GM (68, 69). Patients with conditions characterized by

GM inflammation and dysbiosis, such as inflammatory bowel

disease, have an altered OM, increased numbers of OM-

derived species in the gut, and higher rates of periodontitis

(70, 71). Studies in mice suggest that ingested OM bacteria

can reach the gut and induce an inflammatory immune

response (72), and immune cells exposed to OM can reach

the gut to interact with OM-derived gut microbes (73). Gut

colonization with specific bacterial species can also influence

T cell development in alveolar bone marrow and increase

alveolar bone osteoclast activity, further illustrating the

potential bidirectional mechanisms whereby microbial

populations in both gut and oral cavity can help disrupt or

maintain bone homeostasis (74).

Studies probing the oral-gut connection have shown that

adminstering oral P. gingivalis modifies the GM and alters

serum and gut metabolite profiles (75, 76), including

increasing gut lactic acid and reducing succinic acid and

butyrate levels (77). Additional evidence connecting GM,

metabolites, and alveolar bone has been provided by animal

studies of probiotic administration or diet alterations. In

ovariectomized rats, probiotics increased levels of butyrate-

producing GM and reduced osteoclast and Th17 cell numbers

while increasing Treg cells and minimizing maxillary bone

loss during ligature-induced periodontitis (78).

Transplantation of fecal contents from high fat diet (HFD)

obese mice altered host GM and gut and serum metabolite

compositions with little change in the OM while increasing

Th17 cells in submandibular and mesenteric lymph nodes and

aggravating alveolar bone loss in experimental periodontitis

(79). One metabolite of purine degradation, uric acid, was

increased in serum with HFD fecal transplant and induction

of periodontitis, and administration of allopurinol suppressed

alveolar bone destruction in uremic mice (79).
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Overall, these findings lend support to the concept that the

oral health is connected to systemic health and highlight distinct

molecular pathways connecting the gut and oral microbiomes

and the immune system through metabolites. Whether such

mechanisms identified in mouse models can be translated to

meaningful interventions in humans is still unknown.

Nevertheless, such studies provide further motivation for

studying the role of metabolites in bone health and, in

particular, within the oral niche.
Oral metabolites and alveolar bone

The oral cavity is rich in byproducts of host and OM

metabolism (80). Saliva and gingival crevicular fluid (GCF)

show distinct profiles of metabolite compositions between

health and periodontitis (81–83) with clinical studies showing

specific associations between periodontitis and increased levels

of arachidonic acid, purine, pyrimidine, glutathione, and

amino acid metabolites (84–87). Accordingly, various

metabolites have been explored as predictors of gingival

inflammation or periodontitis (88) or as factors that regulate

the disruption or maintenance of the gingival epithelial

barrier (junctional epithelium) (89). However, clear evidence

is lacking for how specific metabolites or metabolic pathways

act to help maintain alveolar bone in oral health or aggravate

bone destruction during periodontitis.

Existing studies on oral metabolites and alveolar bone have

focused on butyrate, and contrary to the gut, have ascribed it a

pathogenic role in periodontitis (Figure 2). This distinction

may be due to several factors, including differences in butyrate

concentrations, mucosal tissue structure, and microbial

populations between GM and OM environments (90, 91).

Periodontitis-associated oral bacteria, P. gingivalis and F.

nucleatum, produce butyrate (92). Further, butyrate can

stimulate heme production which supports growth of

periodontal pathogens like P. gingivalis (90). Butyrate

concentrations in periodontal pockets can reach up to 14 mM

(93) with levels correlating to periodontal disease severity (94)

and decreasing in GCF after periodontal treatment (95). While

butyrate levels may be similar or higher in the colon compared

to the oral cavity, a much lower concentration may actually

reach colonic epithelial cells after penetrating through the thick

colon mucous layer (96). A recent animal study found that

butyrate could disrupt the periodontal junctional epithelial

barrier (97). This finding, coupled with in vitro studies showing

a negative effect of butyrate on different oral cell types (90, 91),

and in particular, epithelial cells (98), suggests that differences

in the mucosal barrier anatomy between gut and periodontal

tissues could account for some of the opposing effects of

butyrate on alveolar vs. other bone sites.

Conceivably, OM-derived butyrate and other SCFAs signal

to immune, epithelial, and stromal cells in periodontal tissues
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FIGURE 2

Graphical summary of evidence for butyrate’s role in periodontitis. Periodontitis-associated bacteria found within the OM (e.g., P. gingivalis and F.
nucleatum) produce butyrate, which in turn can support their growth. Clinical studies have shown an association between butyrate levels and
periodontitis and found that butyrate levels decrease after periodontal treatment. Experimental studies indicate butyrate may disrupt the
junctional epithelial barrier and can signal to immune and bone cells. However, the exact mechanisms connecting butyrate and its possible
biologic effects to periodontitis and alveolar bone are still unknown. Figure created with BioRender.com.
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which could then interact with osteoblasts and osteoclasts.

SCFAs appear to affect the ability of neutrophils to respond

to the periodontal pathogen A. actinomycetemcomitans (99).

Mice deficient in the SCFA receptor FFAR2 showed increased

alveolar bone loss and decreased maxillary bone density, with

the latter partially rescued by a high fiber diet (100). While

osteoclasts derived from FFAR2-deficient mice showed

increased in vitro differentiation, the only SCFA which could

inhibit this activity was butyrate, indicating that butyrate

acted independently of the FFAR2 receptor.

Clearly, further work is needed to identify how metabolites

beyond SCFAs affect alveolar bone and to better understand how

butyrate and other metabolites modulate alveolar bone

metabolism through the oral mucosal immune response to OM

biofilms. Additional questions inspired by the role of GM

metabolites in bone health may provide insight. Do metabolites

produced in the oral cavity act on the oral mucosal immune

system similar to how the GM indirectly influences bone health?

Do differences or similarities between the oral and gut niches

underly the impact of oral metabolites on alveolar bone? Answers

to these and other questions, aided by advances in scientific

techniques, may provide new options for diagnosing, treating, or

preventing periodontitis and the associated loss of alveolar bone.
The path forward

The bulk of studies on periodontitis and alveolar bone thus

far continue to focus on OM characterization through either

16S or whole genome shotgun sequencing approaches and

interrogating the host immune response. Work investigating

the biologically active small compounds that determine the

net functional activity in the oral environment remains scarce.

However, such investigations are beginning to emerge,
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enabled by technological advances in metabolomics. Indeed,

recent studies have demonstrated that combining

metabolomics with transcriptomics, 16S DNA genomics, and

other unbiased techniques has potential for identifying new

molecular pathways and therapeutic targets for periodontitis

and alveolar bone loss (101–103).

In parallel, rigorous studies are required for determining the

mechanisms behind oral metabolites and alveolar bone. The

majority of existing studies on oral metabolites utilize in vitro

models of homogeneous cells and/or bacterial populations.

Such approaches have significant limitations in their ability to

recapitulate the complex environment of subgingival biofilms,

oral mucosal tissues, and underlying alveolar bone. Thus,

carefully controlled animal studies should be designed to

investigate the mechanisms behind host and bacterial

metabolites and alveolar bone health.

The translation of findings on known or novel oral

metabolites to effective therapies for maintaining alveolar

bone face specific challenges in study design and analysis.

Characterization and validation of possible targets for therapy

will entail clinical studies with rigorous study design, careful

cohort stratification, and inclusion and exclusion criteria to

ensure application and reproducibility. Data integration and

analysis with multi-omics approaches is challenging due to

heterogeneity in the data format from each -omics

technologies, discrepancies in annotation, and non-uniform

missing data from different data. Additionally, the

computational complexity and lack of standardization for

analytical and bioinformatic pipelines may hinder

reproducibility across studies. Thus, the introduction of

standardized protocols for clinical studies and computational

approaches, along with techniques to accommodate for data

heterogeneity and missing data, are critical for the success of

future work. With these tools in hand, an integrative multi-
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omics approach combining metabolomics, metagenomics,

transcriptomics, and other -omics techniques may be able to

resolve the interconnected roles of the OM and immune

response in alveolar bone health and disease.
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Periodontitis is a chronic inflammatory disease with complex pathogenesis. Uncontrolled
inflammation is driven by the immune system in response to accumulation of oral biofilm
that leads to alveolar bone loss, bleeding, increased periodontal probing depth with loss
of attachment of the connective tissues to the tooth, and ultimately, tooth loss. Soluble
epoxide hydrolase (sEH) is an enzyme that converts epoxy fatty acids (EpFAs) produced
by cytochrome P450 (CYP450) to an inactive diol. It has been shown that EpFAs display
important features to counteract an exaggerated inflammatory process. Based upon this
observation, inhibitors of sEH have been developed and are being proposed as a strategy
to regulate proinflammatory inflammatory lipid mediator production and the chronicity
of inflammation. This mini review focuses on the impact of sEH inhibition on
periodontal tissues focusing on the mechanisms involved. The interaction between
Specialized Pro-Resolving Mediators and sEH inhibition emerges as a significant
mechanism of action of sEH inhibitors that was not formerly appreciated and provides
new insight into the role SPMs may play in prevention and treatment of periodontitis.

KEYWORDS

periodontitis, inflammation, lipid mediator, soluble epoxide hydrolase (sEH), soluble epoxide

hydrolase (sEH) inhibitors

Introduction

Periodontitis is a chronic inflammatory disease with a complex pathogenesis, which

encompasses the host immune system and oral microbiome dysbiosis (1–3). The uncontrolled

inflammation in the periodontium leads to the destruction of hard and soft tissues and,

eventually, tooth loss (4). The unwanted excessive inflammatory reaction in periodontitis is

due to failure of endogenous inflammation resolution pathway activation (5). The cessation of

the inflammatory process occurs when a balance between pro-inflammatory and pro-

resolution mediators is achieved that determines health or disease (6, 7).

Inflammation is a natural and physiological reaction to injury or infection in all biological

systems. This biochemical response is finely orchestrated and well-organized to fight

pathogens and to restore homeostasis. It is generally accepted as a vital process for our

existence. In an ideal scenario, an inflammatory reaction is self-limiting, characterized by a

local increase of protein mediators (cytokines, chemokines) and lipid mediators (LMs) (e.g.,

prostaglandins and leukotrienes), vascular dilation and enhanced capillary permeability, and

leukocyte trafficking and activation (8). The initiation or resolution of inflammation is

dictated in large part by the metabolism of polyunsaturated fatty acids (PUFA) by

cyclooxygenases (COX), lipoxygenases (LOX), or cytochrome P450 (CYP450) (9, 10).

Eicosanoids, a group of LMs, are oxidized derivates from the metabolism of arachidonic acid

(ARA) by oxidative pathways, the COXs, LOXs, or CYP450 enzymes (8, 11). The resulting

bioactive molecules, prostanoids, leukotrienes, hydroxyeicosatetraenoic acids (HETEs),

epoxyeicosatrienoic acids (EETs), and hydroperoxyeicosatetraenoic acids (HPETEs) are largely
01 frontiersin.org
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generated in inflammation, with distinct biological functions (12).

Although much is known about the metabolism of polyunsaturated

fatty acids by the cyclooxygenases and lipoxygenases enzymatic

pathways and the activities of their downstream metabolites (13),

the cytochrome P450 pathways are less understood, and are the

center of this mini review. Notably, the EETs, as well as epoxides

of other long-chain polyunsaturated fatty acids (EpFA) generated

by cytochrome P450 pathway, are important bioactive lipids with

immunomodulatory actions in inflammation (14, 15). Most of

these LMs are short-lived due to their rapid metabolization into

inactive diols in the presence of soluble epoxide hydrolase (sEH),

losing their ability to resolve inflammation (16). Worst, some of

their diols contribute to inflammatory cytokine storm and block

the initiation of the resolution phase (17). The sEH enzymes are

largely found in liver, brain, spleen, kidney, intestine, and joints

(18–20), and high sEH expression was detected in chronic

osteolytic inflammatory disorders, such as periodontitis and

arthritis (19, 21–23).

Here, this mini review dissects the mechanisms uncovered to date

explaining how sEH inhibition impacts the inflammatory process in

periodontal tissues, protects against alveolar bone resorption, and

speculates possible interactions/synergism between metabolites

derived from sEH inhibition and the resolvent lipid mediators

(lipoxins, resolvins) in periodontal tissues.
Periodontitis

Periodontitis is a chronic inflammatory and infectious disease

culminating in a dysbiotic dental biofilm that disrupts the

homeostasis of the subgingival environment (24). It is the sixth

most prevalent disease among inflammatory osteolytic disorders

worldwide, representing a significant public health problem (1, 2,

25). Clinically, periodontitis manifests as loss of clinical

attachment, alveolar bone resorption, bleeding on probing, and

periodontal pockets, and unlike gingivitis, these clinical symptoms

are usually permanent. Individual periodontal susceptibility

encompasses genetic, behavioral, and environmental factors that

regulate the host immune response and generate ideal conditions

for pathogenic biofilm microbial colonization (24, 26). Although

microbial pathogens are associated with disease progression and

severity, the molecular and biological basis of periodontitis is now

realized to be the result of an excessive and uncontrolled

inflammatory response rather than a classic infection with an

exogenous organism(s) (7, 27). This shift in the periodontal disease

paradigm began when increased levels of prostaglandin E2 (PGE2)

were found in crevicular fluid of children and adults, and the levels

of PGE2 were correlated with disease severity. What caught the

researcher’s attention was that children had higher levels of PGE2
than adults, and the capacity of PGE2 to provoke periodontal tissue

destruction (28–30). In this sense, the inflammation is an essential

component of periodontal disease genesis; the tissues are destroyed

by the host, not the bacteria.

As a chronic inflammatory disease, periodontitis stimulates a wide

range of immune cells, from residents to infiltrating and patrolling cells,

that disrupt tissue homeostasis and is characterized by a change in the

immune cell composition (31). Additionally, the communication
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between the osseous and immune systems are intimately

interconnected and responsible for bone destruction or remodeling

(32–34). Alvarez and colleagues elegantly describe the spatiotemporal

profile of the main gingival immune cell composition in ligature

induced experimental periodontitis (35). Initially, neutrophils

(CD45+LY6GhighLY6CmidCD11b+/−) are the most abundant leukocyte

cell in the gingiva, reaching their peak 24 h after ligature placement,

indicating the activation of the innate immune response. This intense

infiltration is accompanied by an over-expression of inflammatory

cytokines (IL-1β, IL-6, IL-8, IL-12, and TNF-α), giving birth to a

hyper-inflammatory phenomenon (36, 37). The transition between

innate immunity to adaptive immune response begins on day 3 when

tissue-resident macrophages are expanded, and circulating monocytes

are recruited to be differentiated into M1-like macrophages

(CD45+CD64+CD11b+MHCII+) (35). Macrophages are highly plastic

cells that can exhibit dual roles in tissue repair or destruction,

depending on their microenvironment (36, 38). Particularly,

macrophage phenotypes, M1-like (pro-inflammatory subtype) or M2-

like subsets (pro-resolving), are temporally associated with the

different stages of experimental periodontitis progression (39).

Although M1 macrophages are usually associated with an exacerbated

inflammatory response, their presence and activation are needed to

fight against pathogen invasion during the acute phase. They are

implicated in producing several protein and lipid mediators

(cytokines, chemokines, lipids mediators), which are fundamental to

orchestrating the inflammatory response and guiding the return to

tissue homeostasis, in a normal, self-limiting acute inflammatory

response (40). On the other hand, resolving macrophages (M2-like)

coordinate the resolution process of inflammation by removing dead

cells through efferocytosis, producing anti-inflammatory cytokines

(e.g., IL-10, IL-4, and TGF-β), counteracting osteoclast activity and

boosting osteoblastic functions by augmented cystatin C (39, 40).

Moreover, resolving macrophages are well-known synthesizers of

Specialized Pro-resolving Mediators (SPMs), a fundamental lipid

mediator class switching that defines inflammation termination and

resolution stimulation (9, 41).

Failure of the acute response to resolve normally leads to

chronicity and chronic inflammatory disease, which include

periodontal disease. In experimental periodontitis, T cells

(CD45+CD3+) represent roughly 70% of all cell populations in the

gingiva, reaching the peak at day 10 post-ligature (35). Specifically,

alveolar bone resorption relies on the imbalance between T-helper

type 17 and regulatory T cells (Treg) (40, 42). Although Th17 cells

have a physiological immune-protective role in the oral mucosa,

their exaggerated activation establishes an interaction with the

osteoclast by directly inducing RANKL expression by osteoblasts and

periodontal ligament fibroblasts through IL-17A and IL-17F

synthesis, with ultimately bone loss (34). The CD4+ Th17 cells were

first described in the early 2000s (43–45). This abnormal reaction is

associated with augmented IL-23 levels, from the IL-12 cytokine

family (46). Further, transforming growth factor-beta (TGF-beta)

primes IL-23R, enhancing the Th17 responsiveness to IL-23 (45),

culminating in intense neutrophil transmigration to inflamed sites

and RANK/RANKL axis incitement (47). To the contrary, another

subset of T cells, Tregs, are regulators of exaggerated inflammatory

reactions, maintaining humoral tolerance and reestablishing

homeostasis (48). The mainly immunosuppressive Treg features are
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linked with the release of inhibitory cytokines, such as IL-10, TGF-beta

(48), and IL-35 (49), and by dampening dendritic cells via the

interaction between cytotoxic T-lymphocyte antigen 4 (CTLA4) and

cluster of differentiation (CD) 80/86 (48). Curiously, in experimental

periodontitis, Tregs from cervical lymph nodes lose their capacity to

counteract osteoclastogenic activity, presenting lower expression of

Foxp3, and show a Th17-type response (increased IL-17 gene

expression) without fully transdifferentiating into Th17-like cells (50).

Endorsing the immunological aspects of periodontal disease

progression, inflammatory lipid mediators are dramatically elevated in

periodontal tissues and crevicular fluid, such as leukotriene B4 (LTB4)

and prostaglandin E2 (PGE2) (28–30). Apart from inflammatory lipid

mediators, differences in the Specialized Pro-Resolving Mediators

(SPMs) and other lipids mediator profiles are associated with the

stages of periodontal inflammation (51, 52). Gingival samples from

healthy and periodontitis subjects showed distinct lipid profiles in

PCA (Principal Component Analysis) of metabolipidomics (51).

Notably, none of the SPMs are found to be higher in periodontitis

than in healthy subjects, albeit several pathway markers for omega-6

driven SPMs (e.g., 5-HETE and 15-HETE), D-series resolvins (e.g., 4-

HDHA and 7-HDHA), and E-series resolvins [15(S)-HEPE] were

higher in periodontitis. Moreover, the resolvin E1 receptor (BLT1)

was lower in periodontitis than in healthy subjects’ samples (51).

These findings suggest that in periodontitis, there is an effort by the

body to re-establish homeostasis and initiate the resolution process

through SPM synthesis; however, even though essential pathways

seem to be activated, none of the final SPM metabolites were found

at physiological levels, enough to exert cell function, and SPM

receptor expression was decreased.
Soluble epoxy hydrolase and its
inhibition

John Casida’s group led the discovery of soluble epoxide

hydrolase in the 1970s, when they described an unknown epoxide

hydrolase activity in the soluble fraction of liver homogenates (53–55).

Interestingly, the fundamental biological role of sEH is proved by its

conservation among species, from chordates to mammalians’ (56),

and it is mostly expressed in the liver, kidney, intestine, brain, and

endothelial cells (57).

Soluble epoxide hydrolase was found to be essential for the hydrolysis

of the epoxy fatty acids. The epoxy fatty acids are generated by

polyunsaturated fatty acid metabolism [including ARA, linoleic acid

(LA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA),

docosapentaenoic acid (DPA)] through the enzymatic activity of

cytochrome P450, resulting in lipid mediators with a broad spectrum of

biological functions at the systemic and cellular levels (58). The

epoxidized metabolites are primarily anti-inflammatory and resolution

lipids mediators, such as epoxyeicosatrienoic acids (EETs) from omega-

6 ARA, epoxyeicosatrienoic acids (EEQs) from omega-3 EPA, and

epoxydocosapentaenoic acids (EDPs) from omega-3 DHA (Wagner

et al., 2017). However, in the presence of sEH (their principal regulatory

enzyme), these epoxy metabolites are rapidly transformed into inactive

diols, which could also possess pro-inflammatory functions (59).

In this regard, targeted inhibition of sEH during the

inflammatory process, and consequently, enhancement of epoxy
Frontiers in Dental Medicine 03
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fatty acids bioavailability, offers an attractive strategy for

inflammation control. The first inhibitors designed were too

unstable for in vivo experiments (60). With the advent of

crystallographic studies and the discovery of dicyclohexyl urea as a

reversible inhibitor of soluble epoxide hydrolase (61), the next

generation of inhibitors was produced with higher efficacy,

stability, pharmacokinetics, and minor off-target activity (62). Since

then, many studies have been carried out in several inflammatory

models with promising results. Below, we summarize the findings

on soluble epoxide hydrolase inhibition in periodontal tissues.
Inhibition of soluble epoxy hydrolase in
periodontal tissues and in vitro assays

The pharmacological inhibition of soluble epoxide hydrolase and

its impact on inflammatory, autoimmune, and pain disorders has

been widely explored (63–66). Nevertheless, its application in

periodontitis or other orofacial conditions is new (18, 21–23, 67).

There are only a few studies involving the inhibition of the soluble

epoxide hydrolase enzyme in periodontal disease (21–23);

therefore, we will address them in detail. Still, in our bibliographic

search, we found only one article that shows the impact of EETs

on osteoclasts (68) and another on fibroblasts (69), although both

are not focused on oral tissues.

Trindade-da-Silva and colleagues initially demonstrated the

protective effect of soluble epoxide hydrolase inhibitors (TPPU) on

alveolar bone resorption in experimental periodontitis induced by

Aggregatibacter actinomycetemcomitans (Aa), as exemplified in

Figure 1 in a ligature-induced periodontitis model (21). The

potential bacteriostatic effect of the sEH inhibitor was discarded

when no changes in Aa’ growth was found in the presence of

TPPU. Subsequently, by measuring the distance between the

cemento–enamel junction and the alveolar bone crest, the

researchers showed that by inhibiting soluble epoxide hydrolase,

lower bone loss in infected animals was detected, altering the

phenotype of experimental periodontitis. Interestingly, treatment

with EETs, one of the CYP450 metabolite branches that is

inactivated by sEH, did not prevented bone loss. Additionally, the

treatment with sEH and EETs concomitantly, did not result in a

greater prevention of bone loss. Corroborating, evidence was

provided by genetic inhibition of soluble epoxide hydrolase by

gene KO showing reduced bone loss, recapitulating the previous

observations from the pharmacological inhibition by TPPU (21).

Mechanistically, pharmacological inhibition and genetic ablation

decreased activation of the RANK/RANKL/OPG axis in gingival

tissue. In agreement, the reduced protein expression of MCP-1

(monocyte chemotactic protein 1), a vital monocyte recruiter

associated with lower levels of F4/80 (EGF-like module-containing

mucin-like hormone receptor-like 1) in the gingiva, endorses that

the protective effect of sEH inhibition is related to the regulation

of the exaggerated inflammation and the immune system response

(21). The decreased inflammatory process was tracked by two

essential downstream stress kinases, mitogen-activated protein

kinase phosphorylation (p38 and JNK 1/2), which ultimately lead

to nuclear factor kappa B (NFκB) activation (70). Animals treated

with TPPU, TPPU and EETs, or in sEH KOs, showed greatly
frontiersin.org

https://doi.org/10.3389/fdmed.2023.1129371
https://www.frontiersin.org/journals/dental-medicine
https://www.frontiersin.org/


FIGURE 1

Inhibition of soluble epoxide hydrolase prevents alveolar bone loss in experimental periodontitis in mice. (A) Representative images from a palatal view of
maxillary molars. TPPU was used as the soluble epoxide hydrolase inhibitor. (B) Bone loss was quantified as the area between the cementum-enamel
junction and the alveolar bone. PD, periodontal disease; EETs, epoxyeicosatrienoic acids. ****P < 0.0001. The data are expressed as mean ± S.D; n= 5
animals per group.
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reduced phosphorylation of p38 and JNK 1/2. Finally,

pharmacological sEH inhibition and knockout animals (sEH−/−)

showed inhibition of phosphorylation of the ER stress sensor

(PERK, protein kinase RNA-like ER kinase); eIF2α, eukaryotic

initiation factor 2α; IRE1, inositol-requiring enzyme 1; sXBP1,

spliced X-box binding protein 1 and associated apoptosis (c-

Caspase-3 and immunoglobulin binding protein) (21).

Napimoga and collaborators, in a succeeding study by the same

research group, showed that inflamed gingival tissue induced by

experimental periodontitis expressed higher levels of sEH than control

animals. Pharmacological inhibition of sEH dampened this

expression, and correlated with lessening disease severity (22). Using

an RNA array to explore the innate and adaptive immune systems,

sEH inhibition diminished the expression of toll-like receptors 1 and

9 (Trl1 and Trl9), which play a crucial role in inflammatory cytokine

release upon triacylated lipopeptide recognition (71) and activation of

osteoclastic functions (72). T cells were also affected. The expression

of Cd8 and Cd4 was diminished, as well as Cd40l, interferon-alpha2

(Ifnα2), and interferon-beta (Ifnβ) (21). Downregulation of Cd40l

impairs B-cell activation and, therefore, the production of IL-2, IL-6,

and TNF-alpha (73). The signal transducer and activator of

transcription 4 (Stat4) is a factor that contributes to IL-12, IL-23, and

IFN-1 production, in addition to differentiating Th1 and Th17 cells

(74), which was also reduced by sEH inhibition. These findings

reinforce the concept that by inhibiting sEH, the unwanted

lymphocyte response is managed, as also demonstrated in a collagen-

induced model of arthritis (19), preventing osteoclastogenic activity in

the periodontium (21) and knee joint (19).

Recently, Abdalla and coworkers thoroughly characterized the

impact of the sEH/EET axis on gingival macrophage plasticity in

experimental periodontitis in mice. The work revealed for the first

time that pharmacological inhibition of sEH fosters communication

between epoxy fatty acid metabolites, increasing the levels of

Specialized Pro-Resolving Mediators [e.g., resolvin (Rv) E-series and

lipoxins] in saliva, as well as their respective receptors in the

gingival tissues (23).
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Mechanistically, pharmacological sEH inhibition suppressed

alveolar bone loss via actions on inflammatory osteolytic factors,

such as Il17a and RANKL. In metabolipidomic analyses, soluble

epoxide hydrolase inhibitor treated animals showed lipid profiles

that were distinct from experimental periodontitis and control

animals in two-dimensional and three-dimensional Principal

Component Analyses. The foremost lipid mediators enhanced by

sEH inhibition were RvE1, RvE2, and LXA4, well-known SPMs with

robust immunoresolvent features that guide healing. Moreover, 20-

hydroxy LTB4 was enhanced, inferring an inactivation of LTB4, a

critical inflammatory lipid mediator. Further, the Specialized Pro-

Resolving Mediator receptors (LTB4R1, CMKLR1/ChemR23, and

ALX/FPR2) were also found to increase in gingival tissue, suggesting

greater effectiveness SPM activity at the site of inflammation. In

macrophages, the pharmacological inhibition of soluble epoxide

hydrolase stimulated a dynamic transcriptional reprogramming of

inflammatory macrophages toward resolving macrophages

(characterized by CD11c+/CD206+ double-positive cells in the

CD45+/CD11b+/CD64+ macrophage population), associated with

reduced expression of Il1β, TNFα, Il12, and Nos2. Finally, in vitro

assay revealed that sEH inhibition and EET treatment triggered SPM

release in bone marrow derived macrophages (BMDMs) in both

inflammatory and resolvents macrophages (23). These findings are

summarized in Figure 2.

The direct influence of the EETs/sEH/DHET axis on osteoclast

differentiation and activity was explored in vitro using BMMCs (Bone

marrow mononuclear cells) and RAW264.7 murine cells (68).

Authors showed that DHETs, the inactive diol form of EETs, could

not reduce TRAP-positive cells, but increased their number.

Differently, treatment with EETs or sEH inhibitor (TPPU)

significantly diminished the number of multinucleated TRAP-positive

cells. Likewise, bone resorption pits were hardly impaired by EETs

and sEH inhibition, as well as expression of RANK, TRAP, cathepsin

K (CK), and matrix metalloproteinase (MMP)-9. Further, in an

osteoblast precursor cell line (MC3T3), EETs reduced the ratio

between RANKL:OPG (68). In TGF-β1-induced activation of murine
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FIGURE 2

Immune modulation and lipid mediator synthesis induced by sEH inhibition in experimental periodontitis. During periodontitis, the immune system drives an
unwanted and uncontrolled inflammatory reaction, leading to an intense release of inflammatory cytokines, chemokines, and lipid mediators, ultimately
leading to alveolar bone loss, gingival tissue damage, and increased probing depth (left panel). Pharmacological inhibition of sEH improves the
bioavailability of epoxy fatty acids (EpFAs), shifting polyunsaturated fatty acid (PUFA) metabolism and favoring production of Specialized Pro-Resolving
Mediators. Further, macrophages undergo phenotypic reprogramming towards resolving and repairing features associated with releasing anti-
inflammatory cytokines. Innate immunity is controlled and well-orchestrated. Finally, inhibition of sEH prevents osteoclastic activation, preventing alveolar
bone loss.
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fibroblasts (NIH3T3), EETs attenuate cell activation by impairing the

expression of collagen, smooth muscle alpha-actin (α-SMA), and

proliferating cell nuclear antigen (PCNA) in a peroxisome

proliferation activated receptor γ (PPARγ) dependent-manner (69).
Conclusions and perspective

The pharmacological inhibition of sEH has shown impressive

results in inflammatory diseases and has been the subject of extensive

research. Concerning the dental medicine area, including painful

orofacial conditions and periodontal disease, a few studies have been

conducted, revealing promising findings. As a note, sEH inhibitors

are in the clinical development phase, making them a promising

forthcoming therapeutic strategy. Nevertheless, a profound molecular

mechanistic analysis of how sEH inhibition acts through the immune

system must be carried out. Future research should deeply analyze

the impact of sEH inhibition on immune system cells and how they

respond in its absence. Nevertheless, recent findings demonstrate that

the inhibition of sEH influences the production of SPMs (omega-3

and -6 fatty acids metabolites from CYP450), which paves the way

for a new perspective on its mechanism of action, as well as
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pharmacological implications, as they boost resolution pathways of

inflammation rather than silencing them.
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Introduction: Bone sialoprotein (BSP) is a key regulator of mineralized tissue
formation. Previously, we generated BSP-KAE knock-in mice (KAEKI mice) by
substituting a non-function KAE (lysine-alanine-glutamic acid) for the integrin-
binding RGD (arginine-glycine-aspartic acid) sequence and reported a vital role
of the BSP-RGD motif in modulating the periodontal ligament (PDL).
Specifically, histologically a disorganization of the PDL was noted, resulting in a
weakened function of the PDL as measured by dynamic mechanical analysis.
Intriguingly, also noted was a weight gain as KAEKI mice aged. While several
proteins associated with mineralized tissues are reported to affect energy
metabolism, the metabolic role of the BSP-RGD region has yet to be elucidated.
Here we focus on defining the role of the BSP-RGD region in metabolic activity.
Methods: Body weight, body composition, and caloric intake were measured in
wild type (WT) and KAEKI mice. Energy expenditure was estimated using energy
balance technique. Epididymal fat, interscapular fat, and liver were harvested for
histological analysis. Systemic metabolic phenotype was assessed by sera
analyses, insulin tolerance and glucose tolerance tests.
Results: The results showed that KAEKI mice developed mild obesity starting from 13
weeks postnatal (wpn). The increase in body weight correlated with an increase in lean
mass and visceral adiposity. Histological examination revealed adipocyte hypertrophy
in white epididymal fat and interscapular brown fat in KAEKI vs. WT mice at 17 wpn.
Metabolic profiling indicated that KAEKI mice had dyslipidemia and hyperleptinemia
but no significant changes in glucose metabolism. Energy balance analyses revealed
that hyperphagia preceded weight gain in KAEKI mice.
Conclusion: These data suggest that the RGD region of BSP affects energy
metabolism by regulating food intake, with further studies warranted to uncover the
underlying mechanisms.

KEYWORDS

mineralized tissues, arginine-glycine-aspartic acid (RGD), bone sialoprotein, metabolic

activity, obesity, endocrinology, hyperphagia, extracellular matrix protein

Introduction

Accumulated data suggest that several proteins associated with mineralized tissues,

including proteins containing arginine-glycine-aspartic acid (RGD) region, affect energy

metabolism (1). For instance, osteocalcin, a bone secretory protein, has been reported to

act in an endocrine capacity to regulate energy metabolism within adipocytes,

hepatocytes, and pancreatic beta cells (2, 3), and osteopontin, a bone associated RGD
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containing secretory glycoprotein, has been reported to affect

insulin tolerance (4, 5). As a member of the SIBLING (small

integrin-binding ligand, N-linked glycoprotein) family, bone

sialoprotein (BSP) contains several highly conserved functional

motifs, an N-terminal collagen-binding domain, a poly-glutamic

acid (poly-E) sequences that nucleate hydroxyapatite, and a C-

terminal RGD-integrin binding domain known to promote cell

adhesion, migration, and signaling (6). Data from studies using

BSP-deficient mice reveal that BSP is a modulator of mineralization

(7–13). In brief, BSP-deficient mice have tooth/bone phenotype

with alterations in bone homeostasis and mineralization

(hypomineralized) and defects in the region of the periodontium, to

include impairments in formation of cementum and surrounding

alveolar bone, resulting in a disorganized periodontal ligament

(PDL) region, malocclusion and exfoliation of teeth, similar to mice

and humans with alkaline phosphatase mutations (14–16). To

define the role of the RGD domain of BSP in controlling

periodontal tissues, we generated BSP-KAE knock-in (IbspKAE/KAE,

hereafter KAEKI) mice by substituting a non-function KAE (lysine-

alanine-glutamic acid) sequence for the RGD motif. The results

showed an important role of the RGD region of BSP in forming

and maintaining the PDL but not in promoting mineralization (6).

During our studies with these mice, we noted that the KAEKI mice

gained more weight than controls as they aged. This was an

unexpected finding as the BSP-deficient mice had lower body

weight and size than their wild type (WT) counterparts with no

difference in percentage of fat mass between the two genotypes (8).

Thus, it appeared that, beyond bones and teeth, the BSP-RGD

region may play a role in systemic metabolic activity.

This observation led us to initiate studies to further elucidate

the role of the RGD region of BSP in modulating metabolic

activity. Importantly, obesity is a major health problem

worldwide as it is associated with a number of chronic diseases,

including type 2 diabetes, dyslipidemia, cardiovascular diseases

and other disorders (17). The fundamental cause of obesity is a

long-term energy imbalance between caloric intake and energy

expenditure. Alterations of glucose and lipid metabolism have

also been reported to influence bone homeostasis (18). Skeletal

tissue growth and remodeling are energy consuming processes

tightly coupled with the regulation of systemic energy

metabolism and reproduction (19). Numerous hormones, such as

estrogen, testosterone, parathyroid hormone, insulin, adipokines

(e.g., leptin, resistin, adiponectin, tumor necrosis factor-α),

vitamin D, as well as neuropeptides modulate bone metabolic

activity (18, 20–26). Further, bone marrow adipose tissue, located

in close proximity to skeletal lineage cells, has been shown to

affect bone metabolism (27–30). Specifically, expansion of this

depot, observed with aging, obesity, diabetes, and anorexia

nervosa, is often inversely associated with bone mineral density.

Bone marrow adipocytes and osteoblasts share a common

precursor, mesenchymal stem cells, and thus an imbalance

between adipogenesis and osteogenesis, such as a consequence of

pathological conditions, may contribute to bone loss.

Added to the growing evidence that specific factors control cell

fate toward an adipocyte vs. osteoblast pathway, there exists credible

evidence that proteins produced by mineralized tissues, including
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several RGD containing proteins, affect the activity of tissues at

distant sites (1, 20, 31–34). However, the specific role of these

proteins at distant sites is not fully understood. Therefore, in this

study we utilized a KAEKI mouse model to examine the role of

the BSP-RGD region in systemic metabolic activity.
Materials and methods

Mice

Animal studies were approved by the NIAMS and NIDDK

Animal Care and Use Committees (NIH, Bethesda, MD). KAEKI

mice (previously reported as IbspKAE/KAE mice) were generated by

CRISPR/Cas9 as reported previously (6). WT and KAEKI mice

were maintained on a C57BL/6 background as described previously

(6). Mice were housed at ∼22°C with a 12–12 h light-dark cycle

and fed soft gel (DietGel® 31M, 1.91 kcal/g, ClearH2O, Inc,

Westbrook, ME) and normal chow (NIH-07, 3.1 kcal/g, Envigo

Inc, Madison, WI) diet to ensure that malocclusion, attributable to

the impaired periodontal complex reported in global BSP knockout

mice, did not occur and thereby affect food intake (35). For

consistency, male mice were used for all experiments. A cross-

sectional study was performed to measure body weight from 1 to

17 weeks postnatal (wpn), using group housed mice, which were

randomly selected throughout the 17 weeks (n = 4 per genotype for

each time point). A separate cohort of group-housed mice was

used for measuring body weight, body length, fat pad and liver

weights at 17 wpn, as well as for histological analysis of epidydimal

and brown fat. Another cohort of singly housed mice was used for

measuring energy balance, insulin tolerance and glucose tolerance.
Measurement of body composition, body
length, food intake and energy expenditure

WT (n = 5) and KAEKI (n = 6) mice were singly housed from 6

till 15 weeks postnatal (wpn). Body weight, body composition, and

caloric intake were measured once a week. Total metabolizable

caloric intake was calculated from the combined intake of chow

and soft gel diets. Body composition (fat mass and fat-free mass)

was measured by time domain EchoMRI 3-in-1 (Echo Medical

Systems, Houston, TX). Energy expenditure was estimated from

the metabolizable caloric intake, corrected for the change in

caloric content of the mouse (from the change in body

composition over the measurement interval using caloric

equivalents of fat mass 9.4 kcal/g and fat-free mass 1.0 kcal/g)

(36). Body length (nose-to-anus distance, mm) was assessed

immediately after euthanasia at 17 wpn. Body mass index (BMI)

was calculated as body weight (kg)/body length2 (m2).
Insulin and glucose tolerance tests

Insulin Tolerance Test (ITT) was performed at 16 wpn by

injecting nonfasted mice with insulin (HumulinR, EliLily,
frontiersin.org
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Indianapolis, IN, 0.75 u/kg, i.p.). Tail blood glucose concentrations

were measured at 0, 15, 30, 45, 60 min using glucose meter

Contour (Ascensia, Parsippany, NJ). Glucose Tolerance Test

(GTT) was conducted at 17 wpn by injecting mice with 20%

glucose (2 g/kg, i.p.), following an overnight (16 h) fast, with

blood glucose measured at 0, 15, 30, 60, 120 min. ITT and GTT

tests were performed on the cohort of mice used for body

composition and energy balance analyses. HOMA-IR

(Homeostasis Model Assessment of Insulin Resistance) index was

calculated as described previously (37).
Tissue/blood collection and analyses

Another cohort of mice was prepared for blood and tissue

analyses. Nonfasted mice were euthanized at 17 wpn by cervical

dislocation, followed by collection of blood directly from the

heart. Epididymal fat pad (white fat; WT n = 6, KAEKI n = 6),

interscapular brown fat (WT n = 5, KAEKI n = 5), and liver (WT

n = 6, KAEKI n = 6) were harvested after blood collection.

Percent (%) epididymal fat pad and % liver were calculated by

dividing tissue weight by body weight per mouse (WT n = 6,

KAEKI n = 6).

Plasma chemistry tests: glucose (WT n = 11 KAEKI n = 12),

triglycerides (WT n = 10, KAEKI n = 12), and cholesterol (WT n

= 10, KAEKI n = 12) were performed by the Department of

Laboratory Medicine, NIH Clinical Center. Insulin (WT n = 8,

KAEKI n = 10) and leptin (WT n = 7, KAEKI n = 8) levels in sera

were measured by Enzyme-Linked Immunosorbent Assay

according to the manufacture’s protocol (Mouse Leptin ELISA

Kit, RAB0334, Sigma-Aldrich; Ultra-sensitive mouse insulin

ELISA, #90080, Crystal Chem).
Histology

Tissues were fixed in 10% neutral buffered formalin for 24 h

and paraffin embedded for serial 5μm sections. Hematoxylin and

eosin (H&E) staining was conducted with Harris’ Hematoxylin

and Eosin Y 1% Alcoholic solution (Thermo Fisher Scientific,

Waltham, MA) as described previously (38). For measurement of

white adipocyte size, 20 ×magnification H&E staining images of

epididymal fat pat were measured manually using Rebel Hybrid

Microscope (ECHO, San Diego, CA) and cell size was expressed

in mm2 (n = 4). For measurement of intrascapular brown

adipocyte size, 60 ×magnification H&E staining images were

analyzed using ImageJ (NIH) and data were expressed as percent

of area filled with lipid (n = 5).
Statistical analysis

Results are expressed as mean ± standard deviation. Data were

analyzed using t-test (Prism v.7.04, GraphPad Software, La Jolla,

CA). For all tests, α = 0.05.
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Results

Mice lacking BSP-RGD region exhibit
obesity with age

To examine the role of the BSP-RGD in systemic metabolic

activity we first followed body weight changes in KAEKI and

WT mice during development (Figure 1A). Growth rates were

similar in both genotypes up to 13 wpn. However, beyond that

point, KAEKI mice gained weight more rapidly and by 17 wpn

were approximately 17% heavier than controls with no difference

in body lengths between genotypes (Figures 1B, D). Consistent

with significantly increased body weight, KAEKI mice developed

more visceral fat (Figure 1C), had higher BMI (Figure 1F), and

displayed significantly larger (56%) epididymal fat pats

(Figures 1G–I) than WT mice. Liver weight was not significantly

different between genotypes (Figures 1J–L). Taken together,

these data indicate that KAEKI mice develop mild obesity with

age. We also noted a difference in body weight of WT mice

depending on the cohort used (see Figure 1A vs. Figure 1D),

however, this did not alter the significant difference in body

weight between WT vs. KAEKI mice.
KAEKI mice display adipocyte hypertrophy

Expansion of adipose tissue occurs through an increase in

adipocyte cell size (hypertrophy) and/or cell number

(hyperplasia), with hypertrophic expansion of white fat

associated with more severe metabolic dysfunction (39).

Therefore, we next examined the histological appearance of white

fat (energy storage tissue) and brown fat (thermogenic tissue).

The size of both white and brown adipocytes was increased in

KAEKI mice compared to WT mice (Figures 2A, B). There were

also notable differences in the appearance of brown adipocytes.

Typically, wild-type brown adipocytes contained multiple small

lipid droplets. In contrast, the KAEKI brown fat adipocytes

appeared heterogeneous in size, containing predominantly large

fat droplets, a phenotype often observed in obese mice with

reduced cold-induced thermogenesis (40) (Figure 2B).
KAEKI mice display dyslipidemia and
hyperleptinemia

The observed obesity, along with hypertrophy of white

adipocytes in KAEKI mice, led us to hypothesis that lack of the

BSP-RGD region affects systemic metabolism. Sera analyses

revealed that circulating levels of triglycerides and cholesterol

were significantly increased in KAEKI mice, indicating a

dysregulation of lipid metabolism (Figures 3A, B). Levels of

leptin, an adipokine produced in proportion to fat mass and a

regulator of energy balance by inhibiting food intake, were also

significantly increased (Figure 3C). However, nonfasted serum

glucose and insulin levels, HOMA-IR (insulin resistance index),
frontiersin.org
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FIGURE 1

Mice lacking the BSP-RGD region develop obesity as they grow. (A) Body weights of WT (n= 4) and KAEKI (n= 4) mice from 1 to 17 wpn. Data were
collected from a cross-sectioned study (n= 4/genotype/time point). (B) Dorsal view of representative WT and KAEKI mice at 17 wpn. (C) Ventral view
of representative WT and KAEKI mice at 17 wpn after removal of abdominal walls. (D–E). Body weight and body length measured in a different set of
mice (n= 6/group). (F) BMI at 17wpn (n= 6/group). (G–I) Appearance, weight, and % weight of epidydimal fat pads at 17 wpn (n= 6/group). (J–L)
Appearance, weight, and % weight of liver at 17 wpn (n= 6/group). Results are expressed as mean ± standard deviation. *P < 0.05; **P < 0.01; ***P <
0.001; ns = not significant by t-test. Male mice were used for all experiments.
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FIGURE 2

KAEKI mice display adipocyte hypertrophy. Histological appearance (H&E staining) of white (epidydimal) fat (A) and interscapular brown fat (B) in WT and
KAEKI mice at 17 wpn. For brown fat, relative cell size is expressed as % area filled with lipid. Results are expressed as mean ± standard deviation. *P < 0.05;
**P < 0.01 by t-test. Scale bar:100 µm for white fat and 20 µm for brown fat. Male mice were used for all experiments.
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insulin tolerance and glucose tolerance were not significantly

different between genotypes (Figures 3D–H). Thus, mice lacking

BSP-RGD signaling display dyslipidemia and hyperleptinemia

with no significant changes in systemic glucose metabolism.
KAEKI mice display hyperphagia

Obesity results from an imbalance between energy intake and

energy expenditure. To gain further insight into the cause of

obesity in KAEKI mice, we analyzed energy balance in a separate

cohort of mice by monitoring caloric intake and changes in body

composition over a period of 9 weeks. Consistent with previous

findings, KAEKI mice showed significantly increased body weight

(Figure 4A); however, the noted increase in fat mass did not

reach significance due to a large variation in individual mice (p

= 0.15, Figures 4B, C). KAEKI mice also had significantly higher

lean mass volume vs. WT mice, although % lean mass, a

proportion of lean mass to total body weight, in KAEKI mice

tended to be lower than controls (Figures 4C, D), suggesting

that both fat and lean mass contribute to the increased weight

gain in mice lacking BSP-RGD signaling.

To calculate total caloric intake, we measured cumulative

consumption of soft gel diet and chow diet. Both KAEKI and

WT mice obtained most of their calories from the soft diet (81%

and 86%, respectively, at 15 wpn) with no significant difference

between genotypes (Figure 5A). In contrast, the intake of chow

was 58% higher in KAEKI mice compared to controls by 15 wpn
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(Figure 5B), leading to 16% higher total caloric intake by 15

wpn (Figure 5C). This difference was noted early on, 7 wpn,

where KAEKI mice had a 12% higher total caloric intake vs.

controls. Further, estimated total energy expenditure was slightly

higher in the KAEKI mice than WT mice, consistent with their

increased lean mass (Figure 5D). Taken together, these data

suggest that hyperphagia, but not hypometabolism, was the

primary cause of obesity in KAEKI mice.
Discussion

An intriguing finding of accelerated weight gain in aging KAEKI

mice spurred us to examine the role of the BSP-RGD region in

metabolic activity. When we first made this observation, we noted

increased body weight in both male and female mice, however

decided to focus on male mice at this time. Here we show that

male mice lacking BSP-RGD signaling develop mild, adult-onset

obesity associated with hyperphagia, increased lean mass and

visceral adiposity, and adipocyte hypertrophy. Although obesity is

commonly associated with metabolic syndrome, including

hyperglycemia, insulin resistance and abnormal circulating

cholesterol or triglyceride levels, KAEKI mice displayed only a

small elevation of serum cholesterol and triglyceride levels and no

significant changes in glucose metabolism, consistent with the

relatively mild obesity observed in KAEKI mice.

The body weight phenotype of KAEKI mice is strikingly

different from the phenotype of BSP null mice, which exhibit
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FIGURE 3

KAEKI mice display dyslipidemia and hyperlipidemia. (A–E) Blood samples were obtained by cardiac puncture at 17 wpn fromWT and KAEKI mice. (A) Total
triglyceride: WT (n= 10) and KAEKI (n= 12). (B) Total cholesterol: WT (n= 10) and KAEKI (n= 12). (C) Leptin:WT (n= 7) and KAEKI (n= 8). D. Glucose:WT (n
= 11) and KAEKI (n= 12). E. Insulin:WT (n= 8) and KAEKI (n= 10). F. HOMA-IR performed at 17 wpn: WT (n= 4) and KAEKI (n= 6). (G) Insulin tolerance test
(ITT) performed at 16 wpn: WT (n= 5) and KAEKI (n= 6). H. Glucose tolerance test (GTT) performed at 17 wpn: WT (n= 5) and KAEKI (n= 6). Results are
expressed as mean ± standard deviation. *P < 0.05; **P < 0.01; ns = not significant by t-test. Male mice were used for all experiments.
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lower body weight and size than their WT littermates under

standard chow conditions, with no difference in percentage of fat

mass between the genotype (8). Feeding BSP null mice a soft diet
Frontiers in Dental Medicine 0674
improved malocclusion, attributed to a severe periodontal

phenotype, and normalized their body weight and long bone

length, suggesting that malocclusion might be the primary reason
frontiersin.org
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FIGURE 4

Lack of the BSP-RGD region alters body composition. Body weight (A), fat mass (B), % fat mass (C), lean mass (D), and % lean mass (E) were measured
weekly in a cohort of WT (n= 5) and KAEKI (n= 6) mice. Results are expressed as mean ± standard deviation. *P < 0.05 by t-test. Male mice were used for
all experiments.
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for the reduced weight gain in the BSP deficient mice maintained

on a hard diet (35). Therefore, since we did not have any prior

knowledge of the role of the BSP-RGD in maintaining normal

occlusion, all mice in this study were given ad libitum access to

a soft diet and a regular rodent chow, although we recognize

that the texture of the diet may affect preference for chow vs.

soft gel diet. As we reported previously (6), compared to the

BSP null mice (10), the KAEKI mice had a mild periodontal
Frontiers in Dental Medicine 0775
phenotype including a disorganized and dysfunctional PDL

and increased osteoclasts along the alveolar bone surface,

without disruption of the tooth and bone formation. Even the

mild PDL phenotype exhibited in KAEKI mice may affect the

response to occlusal loads during mastication (41), however we

do not believe this is the case since KAEKI mice consumed

equal amounts of the soft diet and more chow diet vs. WT

mice without developing malocclusion. For future studies,
frontiersin.org

https://doi.org/10.3389/fdmed.2023.1124084
https://www.frontiersin.org/journals/dental-medicine
https://www.frontiersin.org/


FIGURE 5

KAEKI mice exhibit hyperphagia. Intake of soft gel (A) and chow (B) diets was measured weekly in the cohort of WT (n= 5) and KAEKI (n= 6) mice used for
body composition analysis (see Figure 4). Data are expressed as cumulative caloric intake. (C) Total caloric intake is a combined intake of soft gel and
chow diets. (D) Total energy expenditure estimated from total caloric intake, corrected for the change in caloric content of the mouse. Results are
expressed as mean ± standard deviation. *P < 0.05; **P < 0.01; ns = not significant by t-test. Male mice were used for all experiments.
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standard chow diet will be considered as the diet for both

genotypes.

Obesity results from a long-term imbalance between energy

intake and energy expenditure, which may be caused by a

combination of overconsumption of highly caloric and

palatable foods, low physical activity and reduced basal

metabolism (17). Studies in mice and humans showed that

obesity and aging are also associated with reductions in

amount and activity of thermogenic adipose tissue (42). The

histological appearance of brown fat in KAEKI mice, including

adipocyte hypertrophy, is consistent with the appearance of

dormant brown fat observed in obese mice deficient in cold-

induced thermogenesis (40). In mice housed at room

temperature (22°C), cold induced thermogenesis (mainly

mediated by brown fat) accounts for about 30% of total energy

expenditure (40). Thus, impaired brown fat thermogenesis can

potentially reduce total energy expenditure and lead to weight

gain in a mouse. However, the estimated total energy

expenditure was slightly higher, not lower, in KAEKI mice

than in WT mice, consistent with their increased lean mass. In
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contrast, KAEKI mice showed significantly increased caloric

intake as early as 7 wpn, weeks before detectable changes in

body weight gain. Interestingly, the increase of total caloric

intake observed in KAEKI mice was mainly driven by higher

consumption of a chow diet, which has ∼60% higher caloric

density than a soft gel diet. In designing future studies, it

would be of value to explore how KAEKI mice respond to high

fat or high sugar diets. Taken together, our data suggest that

hyperphagia, but not hypometabolism, is the primary cause of

obesity in mice lacking BSP-RGD signaling.

One outlier in concluding a KAEKI hyperphagia phenotype is

our sera analyses, which revealed that KAEKI mice had

significantly increased leptin levels. Leptin, a hormone produced

by adipocytes in proportion to fat mass, regulates energy balance

primarily by inhibiting food intake (43, 44). Elevated serum

leptin in the presence of obesity could be a marker of reduced

leptin sensitivity (45) and may contribute to the obesity

phenotype of KAEKI mice. However, since these mice displayed

hyperphagia prior to detectable changes in fat mass, it is unlikely

that hyperleptinemia is a primary cause of obesity in this model.
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Skeletal tissue growth and remodeling are energy consuming

processes tightly coupled with regulation of energy metabolism

and reproduction (19). Osteopontin, another bone secreted RGD

containing protein, is considered to be associated with obesity,

insulin resistance and type 2 diabetes with a reported vital role

in modulating inflammation within many tissues including

adipose tissue (4, 5, 46). Moreover, osteocalcin, a protein

specifically expressed by osteoblasts, has been reported to

regulate energy metabolism via effects on adipocytes,

hepatocytes, and pancreatic beta cells (2, 3). While further

studies are needed to better understand the influence of the RGD

region of BSP on metabolic activity, the results reported here add

to existing evidence that proteins within mineralized tissues

influence metabolic activity at other sites (1). The metabolic

homeostasis of higher organisms relies on precise sensing of the

energy state of the body and a coordinated response of multiple

organs to nutritional demands and environmental changes. The

central nervous system plays an important role in regulating all

aspects of metabolism, including energy intake, utilization, and

storage (47–49). One-way peripheral tissues communicate with

the brain is via secreted factors, including proteins, hormones,

cytokines, and metabolites (26, 39, 50–53). BSP is a

multifunctional extracellular matrix protein abundant in bone,

cementum, and dentin (54–56). Although low levels of Ibsp

mRNA have been detected in the mouse brain (https://www.ncbi.

nlm.nih.gov/gene/3381, http://www.informatics.jax.org, https://

www.ebi.ac.uk), there is no evidence of BSP expression in the

areas of the brain regulating energy metabolism. A small amount

of BSP is found in the circulation (57) but it is likely to be just a

marker of bone turnover as BSP is not known to have an

endocrine function. Thus, the metabolic phenotype of KAEKI

mice is more likely caused by impaired BSP-RGD signaling

within mineralized tissues rather than its direct effect at distal

sites. For example, by affecting the levels of proteins within

mineralized tissues, reported to affect energy metabolism (1, 20,

31, 32).

In this regard, as mentioned above, existing data provide

credible evidence that proteins produced by mineralized tissues,

including several RGD containing proteins, affect the metabolic

activity of tissues at distant sites, including regulation of body

weight, energy expenditure, insulin secretion and insulin

sensitivity (1, 20, 31–33). To date, the osteoblast-derived

lipocalin-2 is the only known bone-derived factor that has been

shown to regulate food intake directly by activating melanocortin

4 receptor-dependent anorexigenic pathway in the hypothalamus

(58). Further studies are needed to determine if expression of

lipocalin 2 and other known bone-derived factors is altered in

mice lacking BSP-RGD signaling.

Taken together, our data suggest that, beyond its role in bones

and teeth, the RGD region of BSP contributes to systemic

metabolic activity by controlling food intake, consequently

increasing caloric storage within adipocytes, resulting in white

and brown fat hypertrophy and overall gain of fat and lean mass.

Further studies are warranted to determine the mechanisms by

which the RGD region of BSP, as well as other RGD containing

proteins, modulate systemic metabolic activity.
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Discoidin domain receptors;
an ancient family of collagen
receptors has major roles in bone
development, regeneration and
metabolism
Renny T. Franceschi*, Shawn A. Hallett and Chunxi Ge

Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI,
United States

The extracellular matrix (ECM) niche plays a critical role in determining cellular
behavior during bone development including the differentiation and lineage
allocation of skeletal progenitor cells to chondrocytes, osteoblasts, or marrow
adipocytes. As the major ECM component in mineralized tissues, collagen has
instructive as well as structural roles during bone development and is required
for bone cell differentiation. Cells sense their extracellular environment using
specific cell surface receptors. For many years, specific β1 integrins were
considered the main collagen receptors in bone, but, more recently, the
important role of a second, more primordial collagen receptor family, the
discoidin domain receptors, has become apparent. This review will specifically
focus on the roles of discoidin domain receptors in mineralized tissue
development as well as related functions in abnormal bone formation,
regeneration and metabolism.

KEYWORDS

extracellular matrix, collagen receptor, differentiation, stem cell, bone, cartilage

1. Introduction to collagen receptors

As the most abundant class of ECM proteins, collagens provide structural support for

connective tissues, skin and, most importantly, bones and teeth, and can convey

information about the extracellular mechanical environment via their interaction with

cells using specific collagen receptors. The importance of collagen to bone development is

well established; collagen synthesis is necessary for differentiation of skeletal progenitors

to osteoblasts (1–4) and conditions that interfere with collagen synthesis or structure

in vivo such as vitamin C deficiency or osteogenesis imperfecta severely disrupt bone

development (5–8).

Until recently, it was generally assumed that bone cells interacted with the collagenous

ECM exclusively through integrins, the best-known ECM receptors. Through their linkage

with the cytoskeleton, integrins are major force transducers linking the ECM

microenvironment with cellular functions including nuclear transcription (9). The collagen-

binding integrins all have a common β1 subunit and four different alpha subunits to

produce α1β1, α2β1, α10β1 and α11β1 integrins, which are all detected in bone (10–13).

Disruption of integrin-collagen binding in cell culture using blocking antibodies to specific

integrin subunits inhibits osteoblast differentiation of skeletal progenitor cells including

preosteoblast cell lines and primary bone marrow cell cultures (12, 14–16). Because of their

shared β1 subunit, the overall requirement for collagen-binding integrins in bone was
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assessed in vivo using conditional inactivation of the β1 integrin gene

(Itgb1). Using this approach, bone phenotypes of varying severity

were observed with the strongest effects of Itgb1 inactivation being

associated with expression of Cre recombinase early in the bone

lineage and milder phenotypes seen at later stages. For example,

Itgb1 inactivation in embryonic mesenchymal progenitors using

Twist2-Cre was associated with severe bone phenotypes and

perinatal lethality (17). Disruption at later stages using Osx-Cre

(preosteoblast stage) reduced skeletal growth, mineralization and

mechanical properties, effects that became progressively milder

with age while disruption of Itgb1 with Bglap-Cre had only minor

effects on skeletal development (17, 18). Similarly, Itgb1

inactivation in cartilage using Col2a1-Cre resulted in perinatal

lethality in most pups, stunted cartilage growth and disruption of

chondrocyte proliferation and polarity (19). Although in some

cases loss of Itgb1 function severely retarded bone development, in

no case was bone formation and mineralization completely

disrupted. This shows that some degree of bone formation can

occur in the absence of collagen-binding integrins and suggests the

involvement of other collagen receptors.

Interestingly, the collagen-binding integrins appeared relatively

late in evolutionary history, being first seen with the emergence of

chordates (20). In contrast, collagen-like proteins are present in all

metazoan species (21). The discoidin domain receptors (DDRs) are

a more ancient class of cell-surface collagen binding proteins than

integrins. Like collagens, they are present in most invertebrate

metazoans including Caenorhabditis elegans, Drosophila

melanogaster, and Hydra vulgaris and so could function as

collagen receptors before the collagen-binding integrins appeared

on the scene. Although functions of DDRs in invertebrates have

not been extensively examined, in C. elegans, specific DDR

functions have been described related to axonal guidance which

also requires collagen. Since DDRs have likely functioned as

collagen receptors over a much longer period of time than

integrins, they may have more primordial functions related to

collagen signaling [for review, see reference (22)].

As will be discussed, DDRs are very different from integrins in

terms of their interaction with collagens, structure, mechanism of

action, tissue distribution and activity in specific cell populations.

This review will specifically focus on roles of DDRs in

mineralized tissues. However, it should be noted that DDRs also

have non-skeletal functions in epithelial and connective tissues

and have been linked to several diseases including cancer,

fibrosis, and kidney disease that will not be discussed here. The

reader is referred to several excellent reviews for a comprehensive

treatment of these diverse DDR activities (23–26).
2. DDR structure and function

Unlike integrins, which lack intrinsic kinase activity, the DDRs

are collagen-activated receptor tyrosine kinases (RTKs) that share

homology in their kinase domain with growth factor receptors

such as the neurotrophin receptor, TrkA (25, 27, 28). DDRs are

named for their homology to the Dictyostelium discoideum lectin,

discoidin. In mammals, there are two DDR proteins, DDR1 and
Frontiers in Dental Medicine 0281
DDR2, which show different preferences for binding to fibrillar

and non-fibrillar collagens. Both DDR1 and 2 bind type I, II, III

and V fibrillar collagens. In contrast, DDR1 selectively binds

basement membrane type IV collagen while DDR2 binds type X

collagen (27–29). The overall structural features of DDR1 and 2

are summarized in Figure 1. Starting from the N-terminus, both

proteins have an extracellular DS domain, the region of homology

with discoidin, a DS-like domain, a juxtamembrane domain, a

single pass transmembrane domain, an intracellular

juxtamembrane domain and an intracellular kinase domain. DS

and DS-like domains and the kinase domain are highly conserved

between DDR1 and DDR2. The DS domain distinguishes the

DDRs from other RTKs and contains the binding site for triple-

helical collagens (31, 32). DDR1 exists in 5 different spliced forms

while only a single DDR2 protein has been described. In DDR1,

the extracellular and transmembrane domains are shared between

all 5 isoforms while there are several differences in the cytoplasmic

domains. Two of the 5 DDR1 splice variants lack a functional

kinase domain and could potentially act as decoy receptors for the

kinase-containing isoforms (25).

Like the collagen-binding integrins, the DDRs only bind to

native triple-helical collagens [i.e., thermally denatured collagen

cannot serve as a binding substrate (21, 28, 31)]. DDR1 and 2

both bind a 6 amino acid sequence present in fibrillar collagens I-

III, GVMGFO, where O is hydroxyproline (33, 34). This same

sequence is also recognized by two other collagen-binding

proteins, Secreted Protein Acidic and Rich in Cysteine (SPARC)

and von Willebrand Factor that have functions in collagen

mineralization and the blood coagulation cascade, respectively

(35, 36). The GVMGFO sequence is distinct from the motif

recognized by collagen-binding integrins which has the consensus

sequence, GxOGEx (e.g., GFOGER or GAOGER in fibrillar

collagens) (37, 38). Interestingly, in the COL1A1, COL2A1 and

COL3A1 chains of types I–III collagen, the O of GVMGFO and

the G of GFOGER/GAOGER are separated by 96 amino acid

residues, a finding with possible implications concerning coupling

between DDRs and integrins (see Section 6). The interaction

between the DDR2 DS domain and a triple-helical peptide

containing the GVMGFO sequence has been examined at atomic

resolution using x-ray crystallography (39). These studies identified

an amphiphilic binding pocket for the GVMGFO sequence that is

conserved between DDR2 and DDR1. One side of this pocket

contains apolar amino acid residues (Trp52, Thr56, Asn175,

Cys73-Cys177) while the other side contains polar residues

forming a salt bridge (Arg105-Glu113, Asp69) (39).

Like other RTKs, the DDRs are ligand-activated tyrosine

kinases. However, instead of responding to soluble molecules

such as growth factors, the DDRs have high molecular weight

triple-helical collagen as a ligand. They differ from classic RTKs

in other ways as well. Instead of existing as monomers that

dimerize with ligand binding, DDRs are homodimers in the

unactivated state (40, 41). Also, instead of being activated by

their ligands and undergoing autophosphorylation within

seconds to minutes like other RTKs, DDR phosphorylation takes

hours and can often persist for days after binding collagen

(27, 28). No truly satisfactory explanation for this phenomenon
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FIGURE 1

Structures of DDR1 and DDR2. DDR1 has 5 different spliced variants (DDR1a-e) while DDR2 exists only as a single protein. N-terminal DS (discoidin) and
DS-like (discoidin-like) globular domains are shared by all DDR1 spliced variants and share high homology with the same domains in DDR2. Other regions
are an extracellular juxtamembrane domain (EJXM), a transmembrane domain (TM), an intracellular juxtamembrane domain (IJXM), a kinase domain (KD)
and a short C-terminal tail. The collagen-binding pocket is contained within the DS domain. Adapted from Rammal et al. (30).
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has been advanced although the involvement of secondary cellular

processes such as oligomerization or internalization may be

important (40, 42). Since DDRs are activated with similar

kinetics by small triple-helical peptides containing the GVMGFO

core binding sequence, higher order fibrillar structure of native

collagen is not required for this unusual behavior (33, 34).

Once activated, DDRs stimulate several downstream signals

including ERK1/2 and p38 mitogen-activated protein kinase,

phosphatidylinositol-3-kinase/AKT and NF-Kβ pathways. DDRs

may also have functions separate from their kinase activities,

possibly related to the control of collagen fibrillogenesis and/or

orientation (43, 44). It is not the purpose of this review to

provide a comprehensive discussion of DDR2 signaling

mechanisms as these have been thoroughly reviewed by others

[see ref (23, 25)].
3. Tissue distribution of DDR1 and
DDR2 in mineralized tissues

Initial evaluation of Ddr1 and Ddr2 mRNA distribution

suggested that Ddr1 is predominantly expressed in epithelial
Frontiers in Dental Medicine 0382
tissues, smooth muscle and immune cells while Ddr2 is in

connective tissues (45). More recently, tissue distribution was

assessed by immunohistochemistry and in situ hybridization as

well as by using a LacZ knock-in Ddr2 mutant where a bacterial

β-galactosidase gene was inserted into the Ddr2 locus. The

following discussion will emphasize DDR distribution in

mineralized tissues.
3.1. DDR1

Although an early study that measured DDR1 binding sites in

mice using DDR1 extracellular domain fused with alkaline

phosphatase showed binding to all skeletal structures, skin and

the urogenital tract because of their high collagen content (46),

studies that actually measured the tissue distribution of DDR1

protein or mRNA are quite limited. In neonatal and adult mice,

DDR1 was localized by immunohistochemistry to proliferating

and hypertrophic chondrocytes of long bone growth plates,

cortical and trabecular bone osteocytes, periosteum, and articular

chondrocytes (47–49). In situ hybridization analysis was

conducted in oral tissues using a Ddr1 probe (50). Consistent
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with an epithelial pattern of expression, highest Ddr1 mRNA levels

were detected in oral epithelium including enamel organs of

developing molars and basal cell layers of the oral epithelium,

but low expression in ectomesenchymal tissues.
3.2. DDR2

Early in situ hybridization studies localized Ddr2 expression to

tibial growth plates (51). Subsequent more detailed analysis using

Ddr2+/LacZ mice stained for β-galactosidase activity, first detected

Ddr2 expression in bone rudiments at E11.5 (52, 53). Analysis

from E13.5 through adulthood showed strong staining in all

developing skeletal elements in the appendicular, axial and

cranial skeletons including growth plate cartilage, metaphyses,

periosteum, cranial sutures and cranial base synchondroses. In

general, expression was higher in cells representing earlier stages

of each skeletal lineage. For example, in growth plates and

synchondroses, expression was higher in resting and proliferating

zone cells and lower in hypertrophic layers. Also, while Ddr2

was detected in marrow and periosteal/preosteoblast layers near

forming trabecular and cortical bone surfaces, no expression was

detected in osteocytes. Similar periosteal localization was

reported using immunohistochemistry where DDR2 colocalized

with alkaline phosphatase, a preosteoblast marker (54). Notably,

this distribution is very different from most of the collagen-

binding integrins (α1β1, α2β1, α11β1) that are broadly expressed

in connective tissues [reviewed in ref (55)]. However, there may

be some overlap with integrin α10β1 which shows preferential

expression in chondrocytes (11, 56). Ddr2+/LacZ mice were also

used to examine Ddr2 expression during tooth development (57)

and in the temporomandibular joint (TMJ) (58). Ddr2 was

widely expressed in non-epithelial tooth structures including

dental follicle and dental papilla during development and

odontoblasts, alveolar bone osteoblast and periodontal ligament

fibroblasts of adults. In contrast to the Ddr1 mRNA distribution

described above, it was conspicuously absent from epithelial

structures including ameloblasts and Hertwig’s epithelial root

sheath. Strong Ddr2 expression was also detected in the TMJ

articular surface of adult mice. Interestingly, at this age, Ddr2

expression in the articular surface of the knee joint was quite low

suggesting differences between the fibrocartilage of the TMJ and

hyaline cartilage of the knee (58).
3.3. Localization of DDR2 in skeletal
progenitor cells

To gain further insight into the lineage of Ddr2-expressing cells,

Ddr2mer−icre−mer; ROSA26LSLtdTomato mice were developed (52, 53).

After tamoxifen-induced recombination, Ddr2-expressing cells are

labelled with tdTomato fluorescent protein, thereby allowing these

cells to be followed over time. Mice were injected with tamoxifen

from P1-P4 and tdTomato+ cells were lineage-traced for up to

2 months. Initially, tdTomato+cells had a similar distribution to

that seen in Ddr2+/LacZ mice with labelling in growth plate and
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synchondrosis resting zone, cranial sutures, perichondrium,

trabeculae, and periosteum, but absent in more differentiated cells.

Over time, tdTomato+ cells appeared in proliferating and

hypertrophic chondrocytes, osteoblasts and, eventually, osteocytes.

Osteoclasts were not labelled. This result is what would be

expected if Ddr2 was expressed in skeletal progenitor cells (SPCs)

whose progeny became the mature cells of each skeletal lineage

(hypertrophic chondrocytes for the cartilage lineage, osteocytes for

the osteoblast lineage). Consistent with this concept, a high degree

of colocalization between DDR2 and the skeletal progentitor/stem

cell marker, GLI1 (59, 60), was observed by immunofluorescence

in cranial sutures, synchondroses and tibial growth plates (52, 53).

Also, CD140α+/CD51+ SPCs purified from bone marrow by FACS

were enriched in Ddr2 mRNA (52).

Further evidence for DDR2 being a marker for skeletal stem

cells comes from a recent study published in preprint form

where DDR2 was detected in a unique cranial suture cell

population (61) that could be distinguished from previously

described CTSK+ suture stem cells (SSCs) (62). These DDR2+

cells have several stem cell properties including long cycling time,

capacity for self-renewal after in vivo implantation, potential to

differentiate to osteoblasts, adipocytes and chondrocytes,

expression of several SC markers including GLI1 and capacity to

generate all DDR2+ cells present in the native suture.

Interestingly, conditional ablation of Ctsk-labeled SSCs using

diphtheria toxin administration to iDTR; Ctsk-Cre mice led to

increased expansion of DDR2+ suture cells and suture fusion via

an endochondral mechanism. The authors postulate that DDR2+

suture stem cells contribute to a novel form of endochondral

ossification without hematopoietic recruitment; a third potential

mechanism of bone formation.
3.4. Regulation of Ddr2 transcription

The transcriptional control mechanisms regulating DDR2

levels in bone cells are not well understood. To date they have

only been examined in cell culture where Ddr2 is upregulated

during osteoblast differentiation (63–65). One possible factor

controlling this upregulation is ATF4 which, together with

C/EBPβ, interacts with a C/EBP binding site at −1,150 bp in the

Ddr2 promoter to stimulate Ddr2 expression and subsequent

increases in osteoblast marker mRNAS (65). However, it is not

known if these control mechanisms function in vivo or if other

factors participate in this regulation.
4. Genetic models for understanding
DDR functions in mineralized tissues

Experiments of nature (i.e., human genetic diseases) as well as

gene inactivation mouse models have been described that, taken

together, provide considerable insight into how DDRs function

in bone, cartilage and the dentition.
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4.1. Human loss-of-function mutations in
DDR2 are associated with severe skeletal
and craniofacial defects while gain-of-
function mutations cause fibrosis and skull
abnormalities

To date, no human mutations in DDR1 have been identified.

In contrast, genetic disorders have been described associated

with both loss and gain-of-function mutations in DDR2.

Spondylo-meta-epiphyseal dysplasia with short limbs and

abnormal calcifications (SMED, SL-AC) is a rare autosomal

recessive genetic disorder first described in 1993 that is

associated with dwarfism, short limbs, reduced bone mass,

abnormal skull shape including mid-face hypoplasia and

hypertelorism, open fontanelles, micrognathia and tooth

abnormalities (66). This disorder was subsequently mapped to

chromosome 1q23, the locus of DDR2, and shown to be

caused by loss-of-function mutations in the DDR2 tyrosine

kinase domain as well as mutations affecting intracellular

trafficking (67–70). Unfortunately, individuals with this

disorder rarely survive beyond childhood; atlantoaxial

instability and resulting spinal cord damage is the most

common cause of death (71, 72). The short lifespan of SMED,

SL-AC patients compounded with the rarety of this disorder

have limited studies in humans.

A second disorder, designated as Warburg-Cinotti Syndrome,

was described in 2018 and associated with putative activating

mutations in the DDR2 kinase domain (73). Fibroblasts from

patients exhibited high levels of DDR2 phosphorylation in the

absence of collagen stimulation, suggesting that receptor

activation was ligand-independent. This disorder, which is

inherited in an autosomal dominant manner, is associated with

progressive fibrosis, corneal vascularization, skull abnormalities

and osteolysis. In view of the deleterious effects of DDR2 loss-

of-function mutations on bone formation in SMED, SL-AC

pateints, it is not clear why activating mutations would lead to

an osteolytic phenotype. However, since only 6 patients with

Warburg-Cinotti Syndrome have been described, the

phenotypic variation within this disorder cannot be currently

assessed.

DDR2 may also be a determinant of bone mineral density

(BMD) and fracture risk in human populations. Analysis of a

Chinese Han population and an American Caucasian

population identified 28 SNPs in DDR2. Of these, 3 were

significantly associated with hip BMD in the Chinese, but not

American population (74). Although this preliminary finding

suggests that certain polymorphisms in DDR2 may be risk

factors for osteoporosis, more studies are needed, particularly

in diverse populations to assess the significance of these

findings.

As will be described below, the phenotypic similarities

between SMED, SL-AC patients and Ddr2-deficient mice

indicate that mouse models are an appropriate model for

studying this disease.
Frontiers in Dental Medicine 0584
4.2. Global Ddr1 and Ddr2 knockout
models suggest roles in bone and
tooth development

As shown in early studies, global knockout of either Ddr1 or

Ddr2 resulted in dwarf phenotypes, particularly for

Ddr2-deficient mice (46, 51). However, different bases for the

observed growth deficits were proposed. In Ddr1 deficient mice,

all organs were proportionally smaller suggesting an overall

growth defect (46). However, no differences in growth plate size,

chondrocyte proliferation or apoptosis were noted.

In contrast, initial analysis of globally Ddr2 deficient mice

showed prominent growth retardation that was attributed to

decreased proliferation of growth plate chondrocytes in the

absence of changes in apoptosis resulting in shortened growth

plates (51). A similar phenotype was subsequently observed in

Ddr2slie/slie mice, which have a spontaneous 150 kb deletion in

Ddr2 that encompasses exons 1–17 to produce an effective null

allele (75). A more detailed analysis of the bone phenotype of

Ddr2slie/slie mice revealed that skeletal growth defects were

accompanied by large reductions in trabecular bone volume,

trabecular thickness and number, changes that were attributed to

reduced bone formation rate rather than stimulation of

osteoclastic bone resorption (65). Similar changes in vertebral

trabecular bone were also seen. However, cortical bone was only

slightly affected. Interestingly, the reduction in bone mass with

Ddr2 deficiency was accompanied by an increase in marrow fat.

Consistent with these changes, bone marrow stromal cells

(BMSCs) or calvarial preosteoblasts cultured from Ddr2slie/slie

mice exhibited defective osteoblast differentiation while

differentiation of BMSCs to adipocytes was enhanced.

Changes in craniofacial morphology in Ddr1 and Ddr2-

deficient mice have been compared using a machine learning

approach that was able to clearly discriminate between skulls

from wildtype, Ddr1 and Ddr2-deficient mice (76). Although

Ddr1-deficient skulls are somewhat smaller than wild type

controls, they have no substantial alterations in relative skull

dimensions. In contrast, skulls from Ddr2-deficient mice are

dramatically shorter in the anterior-posterior direction with a

more spherical skull shape associated with increased anterior

skull width as well as reduced nasal bone length. Subsequent

analysis of this phenotype identified a defect in proliferation of

synchondrosis chondrocytes, particularly in the intersphenoid

synchondrosis, in the absence of changes in apoptosis (53).

These changes were associated with a characteristic expansion of

the synchondrosis resting zone, possibly related to the defective

conversion of these cells into proliferating chondrocytes.

Ddr2-deficient skulls also have open fontanelles at birth, thinning

of frontal bones and defects in frontal suture fusion that persist

into adulthood (53, 65).

Effects of global Ddr1 and Ddr2 inactivation on the dentition

were also examined. Ddr1-deficient mice had normal teeth, but

age-dependent periodontal degeneration including alveolar bone

loss was noted (50). In contrast, teeth from Ddr2slie/slie mice had
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smaller roots and reduced crown/root ratio resulting in

disproportionate tooth size (57). These mice also exhibited

gradual alveolar bone loss over a 10-month period due to

increased osteoclast activity as well as atypical periodontal

ligament collagen fibrils.
4.3. Conditional Ddr1 and Ddr2 inactivation
studies in bone

In addition to affecting the skeleton, global Ddr1 deficiency

inhibits uterine development and embryo implantation as well as

mammary epithelium development leading to defective milk

production (46). Likewise, Ddr2 deficiency reduces fertility by

inhibiting female and male gonadal function and steroid

hormone production leading to partial sterility and interferes

with certain metabolic activities (75) (see Section 8). Because

effects of global inactivation of Ddr1 or Ddr2 are not restricted

to the skeleton, specific cell-autonomous functions of these

collagen receptors in bone cannot be inferred from global

knockout studies. Although several early studies with osteoblast

and chondrocyte cell lines and primary cultures suggested direct

functions for DDR1 and 2 in bone cells (48, 63, 64), this issue

was not resolved until recently when results of tissue-specific

Ddr1 and Ddr2 knockouts were reported.

4.3.1. Ddr1
Chondrocyte or osteoblast-selective inactivation of Ddr1 was

achieved by crossing Ddr1fl/fl mice with Col2a1CreERT or

Col1a1CreERT mice (47–49). Chondrocyte-selective knockout of

Ddr1 in tamoxifen-treated Col2a1CreERT; Ddr1fl/fl mice led to a

10–20 percent decrease in body weight and length and delayed

formation of a secondary ossification center (47). In contrast to

early reports with global Ddr1 knockouts (46), decreases in

chondrocyte proliferation, apoptosis and hypertrophy were

reported (47). These changes were accompanied by an

approximately 20 percent change in trabecular bone volume

while cortical thickness was unchanged. In addition, the

chondrocyte hypertrophy markers (ColX, MMP13, RUNX2) and

hedgehog pathway intermediate, IHH, all decreased. These results

suggest that inactivation of Ddr1 in chondrocytes preferentially

affects endochondral ossification. Results with Col1a1CreERT;

Ddr1fl/fl mice, where Ddr1 was preferentially inactivated in

osteoblasts/osteocytes were markedly different from chondrocyte-

selective knockouts (48). In this case, minimal changes in

endochondral ossification or trabecular bone parameters were

noted while cortical thickness was reduced by approximately 50

percent. These changes were accompanied by a loss of

mechanical properties and inhibition of osteoblast markers such

as RUNX2, ALPL, BGLAP and COLIA1. In a second study with

Col1a1CreERT; Ddr1fl/fl mice, the same group examined the

consequences of Ddr1 inactivation in adults over extended

periods (49). In this case, modest changes in trabecular

parameters were noted together with reductions in cortical

thickness, osteoblast differentiation markers and cortical bone

formation rate. These changes were accompanied by increased
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apoptosis and autophagy markers. No craniofacial changes were

described in any of these studies.

4.3.2. Ddr2
Conditional knockout studies with Ddr2 were informed by

results of localization and lineage tracing experiments showing

preferential expression of this gene in GLI1+ skeletal progenitor

cells, chondrocytes, and osteoblasts (see Sections 3.2, 3.3). To

determine functions of Ddr2 in these cells, Ddr2fl/fl mice were

crossed with Gli1CreERT, Col2a1Creor BglapCre mice and resulting

long bone and craniofacial phenotypes examined (52, 53).

Inactivation of Ddr2 in Gli1-expressing cells, induced by injecting

neonatal Gli1CreERT; Ddr2fl/fl mice with tamoxifen, resulted in

essentially the same phenotype seen in Ddr2slie/slie mice.

Dwarfism was observed in both males and females, and this was

associated with an approximately 12 percent reduction of growth

plate length at P14. In addition, severe defects in endochondral

bone formation were observed, particularly in males where

trabecular BV/TV was reduced by approximately 50 percent.

Associated reductions in trabecular number and thickness and

increased trabecular spacing were also seen at 3 months.

However, cortical BV/TV was not affected. The craniofacial

phenotype of Gli1CreERT; Ddr2fl/fl mice was also essentially

identical to Ddr2slie/slie mice; anterior-posterior skull length was

reduced with an associated increase in anterior skull width.

Mutants also exhibited frontal bone thinning and shortened

nasal bones (53). Also like global knockouts, the anterior portion

of frontal sutures failed to mineralize in most mice.

The phenotype of Col2a1Cre; Ddr2fl/fl mice was similar to

Gli1CreERT; Ddr2fl/fl and Ddr2slie/slie mice with the important

exception that no defects in suture fusion were observed.

Although it has been proposed that changes in growth of the

cranial base can affect suture fusion (77), this is clearly not an

adequate explanation for effects of Ddr2 inactivation on frontal

sutures since Col2a1Cre; Ddr2fl/fl mice had the same cranial base

growth defects seen in Gli1CreERT; Ddr2fl/fl mice. Based on this

result, it was concluded that functions of Ddr2 in synchondrosis

endochondral bone formation are independent from its functions

in cranial sutures. Consistent with the observed reduction in

tibial bone formation, mRNA levels of osteoblast and

hypertrophic chondrocyte markers were all reduced in Col2a1Cre;

Ddr2fl/fl mice. These changes were accompanied by decreased

mRNA levels of the hedgehog pathway intermediates, Ihh and

Gli1. Since defects in Hh signaling were also noted with

conditional Ddr1 knockout (47) (Section 4.3.1), this pathway

may be a common target for DDRs.

Although Ddr2 was expressed in osteoblasts on trabecular and

periosteal surfaces, it probably does not have a major function in

mature osteoblasts since BglapCre; Ddr2fl/fl mice were essentially

identical to wild type control mice. Because this Cre is mainly

active in mature osteoblasts and, possibly, osteocytes, it is still

possible that Ddr2 may have functions in earlier stages of the

osteoblast lineage.

Overall, Ddr2 conditional knockout studies support the

concept that this gene functions in earlier stages of bone

formation (i.e., in Gli1CreERT-positive skeletal progenitor cells and
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Col2a1Cre-positive resting zone and proliferative chondrocytes)

rather than in terminally differentiated osteoblasts or

hypertrophic chondrocytes. Two cell culture studies reinforce this

conclusion (52). In the first, E12.5 limb buds from Ddr2fl/fl mice

were used to prepare micromass cultures enriched in chondro-

osteo progenitors that were treated with control or Cre

adenovirus before growth in chondrogenic medium. Ddr2

inactivation strongly inhibited chondrogenesis as measured by

Alcian blue staining or expression of chondrocyte markers. In

the second study, CD140α+/CD51+ SPCs were prepared from

Ddr2fl/fl mice and grown in osteogenic medium after treatment

with Cre adenovirus. In this case, Ddr2 inactivation strongly

inhibited osteoblast differentiation (mineralization and expression

of osteoblast markers).

4.3.3. Possible functions of Ddr2 in osteoclasts
The studies described above all focused on functions of Ddr2 in

chondro-osteo lineage cells which form chondrocytes, osteoblasts

and osteocytes. However, there is still some controversy

regarding possible Ddr2 functions in osteoclasts. On one hand,

lineage tracing studies with Ddr2mer−icre−mer; ROSA26LSLtdTomato

mice did not show colocalization of the tdTomato label with

TRAP-positive osteoclasts (Section 3.3) and globally Ddr2

deficient mice (Ddr2slie/slie mice) did not have any detectable

changes in bone resorption markers or osteoclast differentiation

capacity (Section 4.1). On the other hand, evidence was

presented that DDR2 has a suppressive effect on osteoclast

formation in cell culture models (78). DDR2 protein and mRNA

were detected at low levels in the RAW264.7 macrophage cell

line and primary cultures of bone marrow macrophage and these

levels were further reduced with in vitro induction of osteoclast

formation. Also, overexpression of Ddr2 in RAW264.7 was

shown to inhibit osteoclast induction while shRNA knockdown

of Ddr2 further stimulated this process. Furthermore, adenovirus-

mediated overexpression of Ddr2 in the femur marrow cavity

partially reversed osteoporosis in ovariectomized mice, a

phenotype that is largely due to osteoclast activation. These

studies suggest that Ddr2 can function in the monocytic lineage

to suppress osteoclastogenesis. Lastly, in a recent study Ddr2fl/fl

mice were crossed with LysMCre mice to conditionally inactivate

Ddr2 in myeloid lineage cells (79). The resulting animals had a

hyperinflammatory phenotype after exposure to either collagen

antibody-induced arthritis or a high-fat diet. After arthritis

induction, mice had increased ankle inflammation, elevation of

inflammatory markers, increased bone resorption and increased

osteoclast surface per bone surface as well as an approximately

15 percent decrease in bone mineral density. Also, evidence was

presented that loss of DDR2 increased macrophage repolarization

from an M2 to M1 phenotype resulting in enhanced

inflammation. However, this study did not look for changes in

bone density in the absence of an inflammatory stimulus.

Nevertheless, this work supports a role for DDR2 in the

suppression of osteoclastogenesis through its inhibitory actions

on monocytic osteoclast precursors. However, it is still not clear

why, in previous studies, changes in bone resorption markers

were not detected in Ddr2slie/slie mice or why osteoclasts were not
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detected as part of the DDR2 lineage (52, 65). It is possible that

effects on bone resorption in the absence of induced

inflammation may not be large enough to affect bone mass or,

alternatively, that in globally Ddr2 deficient mice, interference

with other DDR2 dependent processes may compensate for

effects on osteoclastogenesis. Another possibility would be that

DDR2 is not expressed in the osteoclast lineage and does not

have a direct function in these cells, but rather modulates effects

of macrophage on osteoclastogenesis. Studies where Ddr2 is more

selectively inactivated only in osteoclasts (for example, using

Ctsk-Cre or TRAP-Cre) may be necessary to resolve this issue (80).
4.4. DDR2-dependent changes in
osteoblast gene expression

A consistent finding from Ddr2 knockout studies is that

osteoblast differentiation and associated expression of osteoblast

marker genes is suppressed. A limited number of studies have

investigated the basis for this suppression. Because of its central

role as a master transcriptional regulator of bone formation,

studies to date have focused on RUNX2. This transcription factor

is expressed at early times during bone development coincident

with the formation of cartilage condensations and has roles in

both hypertrophic cartilage formation as well as osteoblast

differentiation [for review (81)]. RUNX2 activity is subject to

several controls including phosphorylation by ERK1/2 and p38

mitogen-activated protein kinases (MAPKs) (82). Both MAPKs

are important for bone formation as demonstrated by in vivo

gain and loss-of-function studies (83, 84). Once activated,

MAPKs translocate to the nucleus where they bind and

phosphorylate RUNX2 on the chromatin of target genes (85).

MAPKs phosphorylate RUNX2 on several serine residues, the

most important being Ser301 and Ser319 (86). Phosphorylated

RUNX2 recruits specific histone acetyltransferases and

methylases to chromatin resulting in increased H3K9 and H4K5

acetylation and H3K4 di-methylation, histone modifications

associated with transcriptional activation, as well as decreased

H3K9 mono-, di and tri-methylation, histone marks associated

with repression (85). These changes open chromatin structure to

allow RNA polymerase II to bind and initiate transcription of

osteoblast-related genes. RUNX2 phosphorylation and MAPK

activity are obligatory for these changes since transfection of cells

with a phosphorylation-resistant S301,319A mutant RUNX2 or

treatment with MAPK inhibitors blocks transcription.

Since both ERK1/2 and p38 MAPKs are known downstream

responses to DDR2 activation (25), it was hypothesized that this

pathway could explain the observed stimulatory effects of DDR2

on osteoblast gene expression. This concept has been tested in

cell culture studies with osteoblast cell lines as well as in

osteoblasts from Ddr2-deficient mice (64, 65). In early studies

with osteoblast cell lines and primary BMSC cultures, DDR2 was

shown to stimulate osteoblast differentiation through a pathway

involving ERK/MAPK activation and RUNX2 phosphorylation

(64). Ddr2 shRNA inhibited differentiation while overexpression

was stimulatory. These changes were paralleled, respectively, by
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increased or decreased ERK/MAPK activity, RUNX2

phosphorylation and transcriptional activity. Significantly, effects

of Ddr2 shRNA knockdown could be overcome by transfecting

cells with a phosphomimetic Runx2 S301,319E mutant where

replacement of alanine with glutamate mimics a phosphate

group. In separate studies referenced in Section 4.1 (65), calvarial

preosteoblasts or BMSCs isolated from Ddr2slie/slie mice were found

to be deficient in ability to undergo osteoblast differentiation while

BMSCs from these mice exhibited enhance adipogenic

differentiation. The reduced osteoblast differentiation in Ddr2-

deficient cells was directly related to reduced ERK/MAPK activity

and RUNX2-S319 phosphorylation and was rescued by

transfection with the RUNX2 S301/319E mutant described above.

The ability of DDR2 to stimulate ERK/MAPK activity may also

explain the increase in marrow fat observed in Ddr2slie/slie mice. In

addition to phosphorylating RUNX2, ERK1/2 can phosphorylate

the adipogenic transcription factor, PPARγ, on Ser112. In this

case, however, phosphorylation inhibits transcriptional activity. By

preventing this inhibitory phosphorylation, Ddr2 knockout would

be expected to restore PPARγ activity to permit formation of

marrow fat. Consistent with this interpretation, transgenic mice

containing a phosphorylation-resistant S112A PPARγ mutant have

increased marrow fat and reduced bone mass (87).
5. Requirement for DDR2 in bone
regeneration

Consistent with the marked effects of Ddr2 deficiency on bone

development, inactivation of this gene was also shown to inhibit

bone regeneration. Two regeneration models were examined, a

calvarial bone defect and a tibial fracture (88, 89). For the calvarial

model, a 0.5 mm burr hole defect was generated in wild type or

Ddr2slie/slie mice and regeneration was examined for increasing

times up to 12 weeks. In wild type mice, this type of defect was

completely healed after 4 weeks while no bone bridging was seen

in mutant mice even after 12 weeks. Ddr2, which was expressed in

sutures and periosteal cells before injury, was detected in the

injury site within 3 days and expanded during the healing process.

Also, inactivation of Ddr2 in calvarial cells in culture reduced

osteoblast differentiation. For the fracture model, a mid-shaft tibial

fracture was created in wild type or Ddr2slie/slie mice and fracture

healing was monitored for 3 weeks. In this case, Ddr2-deficient

mice were unable to form complete unions at the fracture site as

measured by Radiographic Union Score Tibia (mRUST) (90).
6. Functions of DDR2 in cartilage
matrix organization and relationship to
ECM stiffness

In the studies described above, the reduced linear growth of

long bones and skulls in Ddr2-deficient mice was attributed to

proliferation defects in growth plate and synchondrosis

chondrocytes in the absence of changes in apoptosis (52, 53).

Interestingly, an examination of chondrocyte morphology
Frontiers in Dental Medicine 0887
revealed that the normal organization of these cells into columns

was disrupted with Ddr2 inactivation. This effect was seen in

long bone growth plates but was particularly striking in cranial

base synchondroses where the central resting zone was greatly

expanded with widely separated disorganized cells (52, 53). In

some cases, chondrocytes actually shifted their orientation by 90

degrees to form an ectopic hypertrophic zone at right angles to

the normal plane of synchondrosis organization. These changes

were accompanied by loss of chondrocyte polarity as measured

by disruption of the normally consistent orientation of GM130, a

Golgi apparatus marker, relative to the nucleus and anterior-

posterior axis of the skull. This may explain the proliferation

defect seen in chondrocytes of Ddr2-deficient mice since

disruption of GM130 orientation is known to impair spindle

assembly and cell division (65). The relevance of these findings

to human physiology is emphasized by the observation that

collagen matrix distribution is also disrupted in growth plate

cartilage from SMED, SL-AC patients (66).

How might DDR2 affect chondrocyte polarity? One possibility is

that it is necessary for collagen matrix organization and fibril

orientation which would subsequently affect chondrocyte

orientation. Examination of the type II collagen distribution in

both growth plates and synchondroses by immunofluorescence

microscopy revealed a shift from a uniform distribution in the

territorial matrix next to chondrocytes and the extraterritorial

matrix between cell clusters in wild type mice to an uneven

distribution restricted to the pericellular space adjacent to

chondrocytes in mutants (53). These changes were accompanied

by loss of type II collagen fibril orientation as measured by second

harmonic generation (SHG) microscopy. This analysis detected a

dramatic shift from a highly oriented matrix (high anisotrophy) in

synchondroses of wild type mice to a disorganized matrix (low

anisotropy) in mutants where fibrils had a randomized orientation

(53). Although primary cilia have been related to cell polarity and

collagen orientation in other systems (91), regulation of this

important organelle by DDR2 has not been reported.

Another consequence of DDR2 maintaining collagen fibril

orientation is an increase in overall ECM stiffness. Although this

has not been examined during bone development, there are

several examples in other experimental systems. For example,

DDR2 in breast cancer-associated fibroblasts (CAFs) increases

tumor stiffness by organizing type I collagen fibrils (92). Also, at

sites of trauma-induced heterotopic ossification, DDR2 increases

collagen fibril orientation as measured by SHG (93) (also see

Section 7.3). In both cases, evidence was presented that DDR2

functioned in concert with collagen-binding β1 integrins to

stimulate, on one hand, tumor metastasis to the lungs or, on the

other, ectopic bone formation. As noted in Section 2, fibrillar

collagens I–III contain binding sites for both DDRs and integrins

always separated by 96 amino acid residues. This characteristic

spacing may allow collagen to simultaneously regulate both these

receptors. For example, in breast tumor metastasis, DDR2 was

found to stimulate CAF-mediated mechanotransduction by

increasing integrin activation in response to collagen. This was

accomplished by stimulating RAP1-mediated Talin1 and Kindlin2

recruitment to integrins in focal adhesions (92). Also, in trauma-
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induced heterotopic ossification, DDR2 was necessary for full

activation of integrin-dependent signals such as focal adhesion

kinase (FAK) activation as well as nuclear levels of the Hippo

pathway intermediate, TAZ, and its downstream targets (93).
7. Involvement of DDRs in abnormal
ossification

Given the involvement of DDRs in normal bone formation, it is

not totally surprising that they are also involved when this process

goes awry. It this section, DDR involvement in vascular calcification,

osteoarthritis and heterotopic ossification will be discussed.
7.1. Vascular calcification

Initiated by insults such as high levels of circulating LDL

cholesterol, diabetes or chronic kidney disease, vascular

calcification is a key event in advanced atherosclerosis. Calcium

phosphate crystals can be deposited either in the subepithelial

intima of blood vessels (intimal calcification) or in the smooth

muscle-rich media (medial calcification) (94). This latter process

shares many similarities with normal bone formation. It is

initiated by differentiation of vascular smooth muscle cells or SMC

progenitors into osteochondroprogenitor cells which form bone-

like structures in arteries through a process that mimics

endochondral bone formation as indicated by formation of

cartilage that subsequently is converted into a bone-like structure

(95). Like normal bone formation, this process requires

interactions of progenitor cells with type I collagen and is

mediated by the master transcriptional regulator of bone

formation, RUNX2 (96, 97). Vascular calcification can be induced

in mice by feeding LDL receptor-deficient animals (Ldlr−/− mice)

a high fat, high cholesterol diet. Breeding a Ddr1-null allele into

Ldlr−/− mice resulted in animals that were resistant to developing

vascular calcification (97). Subsequent analysis showed that

calcification was inhibited via a mechanism involving suppression

of phosphatidyl inositol-3-kinase/AKT and p38/ERK MAP kinase

signaling and inhibition of RUNX2 phosphorylation and activation

(98). More recent studies extended this work by showing that

DDR1 up-regulates its own synthesis in response to the stiffness of

the matrix environment around VSMCs. This is accomplished by

stimulating the nuclear translocation of the Hippo pathway

intermediates, YAP and TAZ, to increase Ddr1 transcription and

subsequent mineralization (99). This may explain the known

relationship between arterial stiffening and acceleration of vascular

calcification (100).
7.2. Osteoarthritis

Osteoarthritis (OA), a primary indicator for joint degeneration,

is characterized by cartilage degradation, osteophyte formation and

joint mineralization (101). OA can occur in fibrocartilage of the

temporomandibular joint (TMJ) or in hyaline cartilage of major
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joints such as the knee. OA in hyaline cartilage generally

increases with age. In contrast, TMJ OA has an earlier onset

(102, 103). Interactions between chondrocytes and the ECM of

hyaline cartilage and fibrocartilage may be key factors for

understanding OA pathogenesis in these two tissues. TMJ

fibrocartilage extracellular matrix mainly contains type I collagen

while type II collagen predominates in hyaline joints (104). Both

DDR1 and DDR2 are involved in OA etiology although they

may function through different mechanisms. Unlike DDR1,

which is broadly but weakly activated by collagens I to IV,

DDR2 is strongly activated by types I and III collagen of TMJ

fibrocartilage but is less responsive to type II collagen (28). Ddr2

is expressed at low levels in healthy adult hyaline cartilage joints

but is abundant in TMJ fibrocartilage (58). Thus, Ddr2 is

normally expressed at highest levels in an ECM environment that

is conducive to its activation. Consistent with its distribution,

Ddr2 is required for normal TMJ formation; global Ddr2

inactivation disrupts TMJ development beginning in neonates

which show an initial delay in condyle mineralization that persist

in adults leading to eventual joint degeneration and subchondral

bone loss (58). In contrast, knee joints, which are composed of

hyaline cartilage, are not affected by Ddr2 deficiency. Ddr1 global

knockout mice, in contrast, exhibit a spontaneous rapid-onset

TMJ OA that is seen by 9 weeks without involvement of other

joints (105). The authors of this study proposed that induction

of TMJ OA is related to the observation that loss of DDR1 was

accompanied by a compensatory up-regulation of DDR2. This is

then activated by the type I collagen in TMJ fibrocartilage to

induce OA. It is not known if these changes are seen in Ddr1-

deficient neonates although a separate study reported TMJ

abnormalities in mice as young as 4 weeks (50).

DDR2 has also been related to OA in hyaline cartilage joints. In

this case, the normally low levels of DDR2 in adults are increased

with injuries such as trauma or surgical destabilization of the

medial meniscus, which subsequently induce OA (106). In this

case, globally Ddr2-deficient mice or mice where Ddr2 in

selectively inactivated in articular cartilage are resistant to

surgically-induced OA indicating that DDR2 is required for OA

induction in this tissue (107, 108). However, overexpressing Ddr2

in hyaline cartilage does not lead to spontaneous OA formation

unless hyaline cartilage ECM is altered by trauma (106, 108). It

has been proposed that trauma-induced damage to the ECM

may disrupt the pericellular matrix around chondrocytes and

allow them to interact with type II collagen fibrils resulting in

DDR2 activation and OA (107).
7.3. Heterotopic ossification

Heterotopic ossification (HO) is a debilitating condition that

occurs after many traumatic injuries. In HO, PDGFRα+

connective tissue cells present in soft tissue adjacent to the injury

site change their differentiation trajectory to form ectopic

cartilage and bone (109). Ddr2 has been recently shown to play a

role in the pathogenesis of HO (93). Using single cell RNA

sequencing, Ddr2 was discovered to be highly expressed by
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PDGFRα+ cells, that form the major cell lineages involved in HO

formation. In HO, both DDR2 and phospho-DDR2, a marker of

active DDR2, were shown to be significantly upregulated in

PDGFRα+ cells within the tendon, peritendon, and soft tissue

areas surrounding the HO site. Interestingly, DDR2 mediates HO

formation after injury, as both Ddr2slie/slie mice (global knockout)

and tamoxifen-treated Pdgfa-CreER; Ddr2fl/fl mice (conditional

knockout in progenitor cells) display significant reductions in

Sox9 expressing chondrocytes, safranin O labeled cells and

reductions in ectopic bone formation due to extracellular matrix

disorganization and FAK/YAP/TAZ dysregulation (described in

Section 5). This study highlights how extracellular matrix

alignment can have profound effects on HO progression and

how DDR2 is an important regulator of this process.
8. Metabolic effects of Ddr2 deficiency
and relationship to bone metabolism

In addition to inhibiting skeletal growth, global Ddr2 deficiency

also affects metabolism. For example, Ddr2slie/slie mice have elevated

blood glucose levels, reduced body fat and increased lean body

mass (75), elevated levels of circulating adiponectin and

decreased serum leptin (65). It is not known if there is a

relationship between these metabolic changes and the bone

phenotype of these mice. However, as discussed in Sections 4.1,

4.3, the decrease in bone mass in Ddr2slie/slie mice is paralleled by

an increase in marrow fat, a change that may be related to the

reduced ERK/MAPK activity in mutant mice. The consequences

of this reduced MAPK activity would include suppression of

RUNX2 and PPARγ phosphorylation, decreased osteoblast and

increased marrow adipocyte gene expression and differentiation.

Since marrow adipocytes are a major source of serum

adiponectin (110), the increase in marrow adipocytes in

Ddr2slie/slie mice may explain the observed increase in serum

adiponectin. However, specific knockout of the Adipoq gene in

marrow adipocytes using a recently described double

recombination strategy (111) would be necessary to definitively

test this hypothesis.

Interestingly, Ddr2 is expressed in adipocytes. Early studies

suggested possible direct effects of DDR2 on these cells such as

suppression of insulin stimulated tyrosine phosphorylation of the

insulin receptor in the 3T3-L1 adipocyte cell line (112). More

recently, direct effects of DDR2 on adipocytes in vivo were

examined using AdipoCre; Ddr2fl/fl mice, where Ddr2 is

inactivated in peripheral as well as marrow fat (113). In this

study, mutant mice were protected from high fat diet-induced

weight gain, a response that was attributed to decreased

adipocyte size. Significantly, these animals also had a high bone

mass phenotype accompanied by increases in both bone

formation rate and resorption. These changes were explained by

a DDR2-specific repression of adenylate cyclase 5 (Adcy5) in

adipocytes that is removed in mutant mice leading to increased

cAMP production and lipolysis in marrow adipocytes. The

released fatty acids in the marrow cavity then promote increased

oxidative metabolism in osteoblast leading to increased osteoblast
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and osteoclast activity. Therefore, by modulating lipolysis in

adipocytes, DDR2 can indirectly control bone formation. This

mechanism may complement the more direct effects of DDR2 on

skeletal progenitor cells described in Section 4.3.2.
9. Summary and future perspectives

The study of DDR functions in bone is a relatively new research

area and many questions remain about what these collagen

receptors do and how they do it. As shown in this review, both

DDR1 and DDR2 have functions in mineralized tissues with

DDR2 perhaps having a greater role under physiological

conditions. However, clear functions for DDR1 are also seen,

particularly in pathological conditions such as vascular

calcification.

Although tissue distribution studies, particularly for DDR1, are

incomplete, the original conclusion that DDR1 functions in

epithelia while DDR2 is in connective tissues may need revision,

particularly for DDR1, which has clear functions in connective

tissues like cartilage and bone. More detailed DDR1 localization

and lineage tracing studies will be required to more fully

understand where this collagen receptor functions. The

observation that DDR2 is present in GLI1-positive skeletal

progenitor cells of cranial sutures and, possibly, cartilage where it

controls cell proliferation and differentiation to chondrocytes and

osteoblasts is of particular interest. These studies suggest that

DDR2, together with collagen binding integrins, allows certain

classes of skeletal progenitor/stem cells to sense their ECM

environment and modulate their differentiation state according

to ECM stiffness and mechanical loads. As the more ancient of

the two collagen receptors, the DDRs were likely complemented

by the newly emerging collagen-binding integrins when the

vertebrate skeleton first evolved so that these two receptors now

work in concert. Another intriguing area is the possible function

of DDR2 in osteoimmunology where it may modulate activities

of various myleloid lineages to control inflammation and bone

resorption.

Although conditional knockout studies showed that DDR2

functions in skeletal progenitor cells and chondrocytes, little is

known about its actual mechanism of action in these tissues.

Current, albeit incomplete, knowledge in this area is summarized

in Figure 2. Some of its activities may be explained by

modulation of MAP kinases which subsequently control

osteogenic and adipogenic transcription factors through

phosphorylation. However, this is likely only part of the story.

The dramatic effects of DDR2 on collagen fibril orientation,

matrix stiffness and cell polarity may also be an important part

of an overall mechanism that still needs to be discerned. By

modulating matrix stiffness-associated pathways including the

Hippo pathway, DDR2 and integrins may work together to

control stiffness-associated nuclear changes and transcription.

These matrix signals may also modify the response of cells to

soluble signals coming from growth factors or morphogens. All

these topics are clearly fruitful areas for future investigations.
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FIGURE 2

DDR2 signaling mechanisms in bone and potential interactions with collagen-binding integrins. DDR2 (green) and integrins (pink) bind and are activated
by the specific sequences in fibrillar collagens indicated. Downstream signals arising from DDR2 and integrin activation are indicated as are nuclear
changes in RUNX2 and HIPPO pathway intermediates, YAP and TAZ, resulting in transcriptional changes necessary for chondrocyte proliferation,
osteoblast differentiation and mineralization (see Sections 4.4). Also shown are DDR-dependent changes in collagen matrix organization and cell
polarity described in Section 6.

Franceschi et al. 10.3389/fdmed.2023.1181817
Recent discoveries on DDR function may also have important

implications for the treatment of disease. For example, the

demonstrated role of DDR1 in vascular calcification and of

DDR2 in osteoarthritis and heterotopic ossification suggest that

specific DDR2 inhibitors already under development could be

used to treat these disorders (114). Also, the recent discovery

that DDR2 is required for skeletal regeneration may open new

directions for therapy through the development of either DDR-

activating tissue engineering scaffolds or other treatments that

modify DDR activity.

Clearly, the study of DDRs in bone will continue to be a

growing area of musculoskeletal research that holds much

promise for exciting future discoveries.
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FOXO 1 deletion in
chondrocytes rescues diabetes-
impaired fracture healing by
restoring angiogenesis and
reducing apoptosis

Mohammed A. Alharbi1,2 and Dana T. Graves2*

1Department of Endodontics, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia,
2Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia,
PA, United States
Introduction: Diabetes mellitus is associated with higher risks of long bone and jaw

fractures. It is also associatedwith a higher incidence of delayed union or non-union.

Our previous investigations concluded that a dominant mechanism was the

premature loss of cartilage during endochondral bone formation associated with

increased osteoclastic activities. We tested the hypothesis that FOXO1 plays a key

role in diabetes-impaired angiogenesis and chondrocyte apoptosis.

Methods: Closed fractures of the femur were induced in mice with lineage-

specific FOXO1 deletion in chondrocytes. The control group consisted of mice

with the FOXO1 gene present. Mice in the diabetic group were rendered diabetic

by multiple streptozotocin injections, while mice in the normoglycemic group

received vehicle. Specimens were collected 16 days post fracture. The samples

were fixed, decalcified, and embedded in paraffin blocks for immunostaining

utilizing anti cleaved caspase-3 or CD31 specific antibodies compared with

matched control IgG antibody, and apoptosis by the TUNEL assay.

Additionally, ATDC5 chondrocytes were examined in vitro by RT-PCR,

luciferase reporter and chromatin immunoprecipitation assays.

Results: Diabetic mice had ~ 50% fewer blood vessels compared to

normoglycemic mice FOXO1 deletion in diabetic mice partially rescued the

low number of blood vessels (p < 0.05). Additionally, diabetes increased

caspase-3 positive and apoptotic chondrocytes by 50%. FOXO1 deletion in

diabetic animals blocked the increase in both to levels comparable to

normoglycemic animals (p < 0.05). High glucose (HG) and high advanced

glycation end products (AGE) levels stimulated FOXO1 association with the

caspase-3 promoter in vitro, and overexpression of FOXO1 increased caspase-

3 promoter activity in luciferase reporter assays. Furthermore, we review

previous mechanistic studies demonstrating that tumor necrosis factor (TNF)
Abbreviations: AKT, Ak strain transformin; BSA, Bovine Serum Albumin; DMEM, Dulbecco's modified

Eagle's medium; EDTA, Ethylenediaminetetraacetic acid; ECM, Extracellular matrix; FOXO1, Forkhead box

01; IL-, Interleukin; Prg, Proteoglycan; RANKL, Receptor Activator of NFkB Ligand; STZ, Streptozocin;

TNF-a, Tumor Necrosis Factor; VEGFA, Vascular Endothelial Growth Factor A.
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inhibition reverses impaired angiogenesis and reverses high levels of

chondrocyte apoptosis that occur in fracture healing.

Discussion: New results presented here, in combination with recent studies,

provide a comprehensive overview of how diabetes, through high glucose levels,

AGEs, and increased inflammation, impair the healing process by interfering with

angiogenesis and stimulating chondrocyte apoptosis. FOXO1 in diabetic

fractures plays a negative role by reducing new blood vessel formation and

increasing chondrocyte cell death which is distinct from its role in normal

fracture healing.
KEYWORDS

animal model , bone, inflammation, neovascular izat ion, FOXO, T1DM,
cartilage, apoptosis
1 Introduction

Fracture healing is a complex process that requires well-

orchestrated and coordinated events that involve various cell

types (1). An early and critical step in healing is the proliferation

and recruitment of mesenchymal stem cells and their differentiation

to chondrocytes, osteoblasts, and other cell types. Chondrocytes lay

down cartilage to support and stabilize the fracture site (2). Our lab

has recently shown that chondrocytes modulate osteoclastogenesis

by producing receptor activator of nuclear factor kappa-b ligand

(RANKL), which stimulates the removal of cartilage during the

early stages of endochondral bone formation (3). This process

coincides with neovascularization, which is essential for healing to

progress and is negatively modulated by diabetes (4, 5). Consistent

with this observation is significantly improved fracture healing with

vascular endothelial growth factor (VEGF) stimulated angiogenesis

(6). The formation of new blood vessels during fracture healing

provides essential nutrition to the callus, helps recruit osteoclast

precursors to resorb the cartilage and endothelial cells produce

mediators to modulate the healing process (7). Cartilage resorption

and chondrocyte apoptosis are critical steps in the transition from a

cartilaginous callus to a hard bony callus needed for fracture healing

(2, 3, 8).

Diabetes significantly interferes with the fracture repair process

(9). Type 1 diabetes mellitus (T1DM) and T2DM are serious

concerns worldwide as the incidence of both chronic diseases has

increased in the past 20 years. Today it is estimated that 415 million

people worldwide are diagnosed with diabetes (10). Diabetes is

characterized by high blood glucose levels (hyperglycemia) due to

insulin deficiency or due to the inability to respond to insulin.

Several animal and human studies demonstrate that T1DM has an

impact on bone with a 2-fold increase in fractures compared to non-

diabetics (11), and T2DM patients have a 5-fold greater risk of

vertebral fracture (12). Moreover, T1DM and T2DM impair the

fracture healing process in humans and in diabetic animals (11, 13–

15) and increases the risk of bone fracture (16–18). Furthermore, it

delays, impairs, and increases the incidents of non-unions in both
0295
animals and humans (13, 19). Diabetes delays fracture healing in

the jaw bones and is associated with increased mandibular fracture

healing complications and increased recurrence of fractures

(20, 21).

FOXO1 is a forkhead transcription factor box O family member,

which regulates various cellular events, including proliferation,

differentiation, apoptosis, and the response to oxidative stress (22).

FOXO1, compared to the three other FOXO family members is more

highly expressed in cartilage and bone and has a more dramatic impact

on these tissues when deleted (23). FOXO1 has several important

functions in chondrocytes. It has been recently shown that FOXO1

regulates chondrocyte homeostasis in a FOXO1 loss of function mouse

(Agc1- CreERT2;FoxO1f/f) model. These mice exhibit histologic

changes collectively indicative of an increased catabolic state (24).

FOXO1 also maintains articular chondrocyte homeostasis through the

induction of anabolic and autophagy-related gene expression. FOXO1

has a paramount role in protecting chondrocytes against oxidative

stress via the ALK5–SMAD3 pathway (25). Additionally, FOXO1

regulates the expression of interleukin 6 (IL-6) in chondrocytes,

which is a potent inflammatory mediator regulating (26). Animals

with FOXO1 knockout in chondrocytes initially had more cartilage

produced and later had greater loss of cartilage. The latter was

associated with increased IL-6. These findings suggest that FOXO1

limits the early expansion of cartilage and prevents its loss at a later

stage. Additionally, FOXO1 regulates proteoglycan4(Prg4) expression

which is crucial fo rmaintaining cartilage integrity (27). Prg4KO mice

showed a significan tincrease in chondrocytes apoptosis and cell loss

(28, 29).

In the oral cavity, FOXO1 has been reported to play a pivotal

role in temporomandibular joint (TMJ) osteoarthritis. When

FOXO1 is inhibited by protein kinase B also known as Ak strain

transformin (Akt), there is greater extracellular matrix (ECM)

degradation as well as increased chondrocyte apoptosis in a TMJ

osteoarthritis model (30). This findings suggests that Foxo1 plays a

protective role in TMJ osteoarthritis.

We have shown that FOXO1 plays a positive role in promoting

chondrocyte function to facilitate normal fracture healing. When
frontiersin.org
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FOXO1 is deleted in chondrocytes (Col2a1.Cre+.FOXO1L/L) in

normal conditions, there is a reduction in blood vessel formation

and a reduction in the capacity of chondrocytes to induce

microvascular endothelial cell tube formation in vitro (31). This

can be mechanistically explained by the significant reduction in the

VEGFA expression by chondrocytes upon FOXO1 deletion in these

cells. The results are further supported by evidence that FOXO1

binds to the VEGFA promoter in chondrocytes and FOXO1

induces VEGFA transcriptional activity (31).

In vivo results point to the importance of FOXO1 activity in

chondrocytes in stimulating normal fracture healing and ultimately

endochondral bone formation in adult animals. However, in diabetic

fracture healing, FOXO1 plays a negative role in the healing process

(3, 32). The goal of this report is to identify mechanisms by which

FOXO1 can have a negative role in fracture repair through its

detrimental impact on chondrocyte function.
2 Materials and methods

2.1 Animals and diabetes induction

All animal studies were carried out with approval from the

University of Pennsylvania.

Institutional Animal Care and Use Committee (IACUC) (Protocol

# 803894) and the Guide for the care and use of laboratory animals,

eighth edition (2011), were followed. FOXOL/L mice were provided by

R.A. DePinho (MD Anderson Cancer Center, Houston, TX) and

created as previously described (33). The experimental group

included mice with lineage-specific FOXO1 deletion in chondrocytes

(Col2a1Cre+.FOXO1L/L) and results were compared with Col2a1Cre-

.FOXO1L/L littermate controls. All animals were monitored daily by

University Laboratory Animal Services (ULAR) and cages were

changed weekly with 5001 Rodent Diet. (Purina Lab Diet, St. Louis,

MO). Every cage contained two to five mice under standard conditions

with 14-hours light/10-hours dark cycles. Prior to starting the

experiment, genotyping was performed via PCR using both Cre and

FOXO1 primers using genomic DNA extracted from the mice’s tails/

ears. The results were also verified at the end of the experiment. Type-1

diabetes was induced as described by us (34) and developed originally

by Like and Rossini (35). Intraperitoneal (IP) streptozotocin (STZ)

injections (40 mg/kg; Sigma-Aldrich, St. Louis, Missouri, US) in 10mM

citrate buffer were given once every day for five consecutive days.

Vehicle alone was used for control mice. Ten days after the last

injection, blood glucose levels were measured weekly from small

lacerations in the mice tails from both groups. Mice with two

consecutive blood glucose readings of >220 mg/dl were considered

diabetic. The mice had been diabetic for at least three weeks prior to

starting the experiment.
2.2 Fractures induction and
sample preparations

At 12-14 weeks old, a simple transverse fracture was induced. as

previously described (36). Briefly, an incision was made in the knee
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and a 30-gauge spinal needle was inserted for fixation. A controlled,

closed, simple, transverse fracture was created by blunt trauma to

the middle of the femur at the mid-diaphyseal region. There was no

change in the animal behavior noticed between the different groups.

Animals were euthanized, and femurs were harvested 16 days after

fracture. All the sites were evaluated radiographically and physically

at euthanasia. Fractures that were not mid-diaphyseal or that were

grossly comminuted were excluded from the experiment. Less than

5% of the samples were excluded. Fractured samples were fixed for

24 hours in cold 4% paraformaldehyde. Decalcification was

achieved by incubating the samples at room temperature in 10%

ethylenediaminetetraacetic acid (EDTA) solution for five weeks

before embedding them in paraffin blocks. Transverse sections

were prepared as described by us and initially by Gerstenfeld

et al. (14, 36).
2.3 Immunofluoresence

After dewaxing and hydration, a pressure cooker (2100-

Retriever Aptum, Southampton, UK) was used at 120°C for 20

minutes with 10mM of citric acid with a pH of 6.0 for antigen

retrieval followed by non-specific binding blocking for 55 minutes,

using nonimmune serum matching the secondary antibody. Slides

were incubated overnight with CD-31 specific antibody (Abcam,

ab28364), anti-cleaved caspase 3 antibody (Cell Signaling

Technology 96615) or the appropriate isotype-matched negative

control IgG (Vector, I-1000, Burlingame, CA). The primary

antibody was localized by a biotinylated secondary antibody

(Vector, BA-1000). To localize the antibody complex, Alexa Fluor

546–conjugated streptavidin (Invitrogen S-11225, Carlsbad, CA)

was used. Nuclei were counterstained with DAPI (Sigma-Aldrich,

St. Louis, MO). Images were captured at different magnifications

(40x, 200x, and 400x magnification) using a fluorescence

microscope (ECLIPSE 90i; Nikon). The exposure time was set so

that the IgG control had no signal. The quantification was

performed with the aid of NIS Elements AR image analysis

software. The unit of measure was the animal. Each value was

calculated by examining six to eight animals in each group.
2.4 TUNEL assay

Apoptotic cells were detected by DeadEnd™ Colorimetric

TUNEL System (Promega, WI, USA), which detects apoptotic

cells by labeling and detecting DNA strand breaks by the TUNEL

method. To distinguish apoptotic chondrocytes from other cells, the

images were combined with a bright-field channel to confirm the

cell morphology. In addition, the TUNEL-positive cells were

compared with a safranin-o/fast green stain to verify the location

of chondrocytes and define the entire region of interest. Slides were

first deparaffinized and hydrated in the same manner mentioned.

Slides were then incubated at room temperature for 15 minutes in

diluted proteinase K solution and then rinsed with phosphate-

buffered saline (PBS). This was followed by 5 minutes of incubation

in endogenous oxidation-blocking solution, 3% hydrogen peroxide,
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at room temperature and then rinsed in PBS. After that, slides were

incubated at room temperature for 30 seconds in equilibration

buffer, then in working strength TdT enzyme for an hour at 37°C.

Slides were then incubated in working strength stop/wash buffer for

10 minutes at room temperature, and they were then rinsed in PBS

and incubated in anti-digoxigenin conjugate for 30 minutes at 37°C.

Slides were rinsed again in PBS and mounted with DAPI to stain the

nuclei. The mean number of immunopositive cells was calculated

for each group examining six to eight animals per group. The

number of immunopositive cells was divided by the area or as a

percentage of the total number of cells in the region of interest.
2.5 Cell culture, RNA extraction, qPCR

ATDC5 chondrocytes obtained from the American Type

Culture Collection (ATCC) (Manassas, VA, USA) were used for

in vitro experiments. Cells were cultured in 50% Dulbecco’s

modified Eagle’s medium (DMEM) (Gibco, Gaithersburg, MD,

USA) and 50% F12 (Gibco) with 5% fetal bovine serum (FBS)

and 1% Antibiotic-Antimycotic (Anti-Anti) (Thermo Fisher

Scientific, Waltham, MA, US). Hypertrophic differentiation

induction was performed using ascorbic acid (50mg/mL) for 6

days with increasing concentrations of NaH2PO4 0.5mM, 1mM,

and 2mM (37). All cell cultures were maintained in a 5% CO2

humidified incubator at 37°C.

Quick-RNA MicroPrep kit (Zymo Research, Irvine, CA, USA)

was used according to the manufacturer’s instructions to isolate

RNA. RNA was converted to cDNA using an ABI High- Capacity

RNA-to-cDNA kit (Applied Biosystems; cat# 4387406). caspase3

mRNA levels were measured by qPCR in ATDC5 chondrocytes

cultured in low glucose (5mM d-glucose) and high glucose (25mM

d-glucose) for 5 days and transfected with FOXO1 siRNA or

scrambled siRNA. qPCR was performed using ABI Fast SYBR

Green Master Mix (cat# 4385612) and a StepOne Plus real-time

PCR system (Applied Biosystems). Relative amounts were

calculated using the DDCt method. Data are expressed as percent

input after quantitative amplification of equivalent amounts of

DNA. Experiments were performed with triplicate replicates and

carried out three times with similar results.
2.6 Dual-luciferase reporter

siRNA transfections with ATDC5s were performed at

approximately 60-70% confluence in 6-well plates with 10nM

siFOXO1 or scramble control (Dharmacon, Lafayette, CO) using

GenMute transfection reagent (Rockville, MD) according to the

manufacturer’s instructions. Plasmid transfections were performed in

OptiMEM (Gibco) medium with 1250ng plasmid in 3.75ul of

Lipofectamine 3000 transfection reagent per well and following

manufacturer’s instructions with ATDC5s at approximately 60-70%

confluence for 4.5 hours before being replaced with full media. To

quantify caspase-3 expression, cells were co-transfected with treatment

vectors: empty, ADA [Threonine 24 to Alanine (A) and Serine 253 to

Aspartate (D) andSerine 316 toAlanine (A)],ADA+6KQ(K242,K245,
Frontiers in Endocrinology 0497
K259, K262, K271, and K291 were replaced with glutamine on ADA),

ADA + 6KR (K242, K245, K259, K262, K271, and K291 were replaced

with arginine on ADA), KQ(K242, K245, K259, K262, K271, and K291

were replaced with glutamine) or KR(K242, K245, K259, K262, K271,

and K291 were replaced with arginine) mutants (Addgene, Cambridge,

MA. pCMV5 backbone) along with a caspase-3 luciferase reporter

(pGL4) as described and generously provided by Dr. Estrov (38). Co-

transfection utilized the same transfection protocol with an expression

vector, and the reporterwas added at a 1:1 ratio of 150ngperwell in a 48-

well plate. Expression values were normalized using a Renilla control

(pGL4) containing the CMV promoter at a 1:20 ratio. Results were

quantified using a Dual-Luciferase Reporter Assay Kit from Promega

(Madison, WI, cat# - E1960) and quantified on a Tecan Infinite M200.

Experiments were performed with triplicate replicates and carried out

three times with similar results.
2.7 Chromatin immunoprecipitation

Chromatin immunoprecipitation (ChIP) assays were performed

with the ChIP-IT Kit (Active Motif, Carlsbad, CA) using

approximately 1.5 x107 ATDC5 cells. The cells were cultured using

multiple conditions, including 1) hypertrophic differentiation for 6 days

using differentiation media as mentioned earlier; 2) cells at 70–80%

treated with CML-BSA (200 mg/mL), an AGE, for 3 days or

unmodified BSA (200 mg/mL) for a similar period; and 3) cells

grown in High glucose (HG) (25 mmol/L) media for 5 days.

Formaldehyde was used to fix the cells and nuclei obtained following

Dounce homogenization. ChIP was performed following the

manufacturer’s instructions using an anti-FOXO1 antibody (5 mg)

(SC-11350X; Santa Cruz Biotechnology) or control polyclonal non-

specific IgG (Cell Signaling Technology). Protein G-coupled beads

were used to purify the chromatin–antibody complexes. Three

quantitative real-time PCR reactions for the caspase-3 promoter

region, which contains FOXO1 consensus response elements, were

done with similar results. Experiments were performed with triplicate

replicates and carried out three times with similar results.
3 Statistics

All data were analyzed by one-way analysis of variance and

differences between groups determined using Tukey’s post-hoc tests

unless otherwise stated. Student’s t-test was used in some in vitro

experiments where only two groups were compared. P < 0.05 was

consideredstatisticallysignificant.Dataareexpressedasthemean±SEM.
4 Results

4.1 Diabetes and vascularization

We have previously examined the effect of diabetes on

angiogenesis during fracture healing by identifying blood vessels

with an antibody to Factor VIII or CD31 (39). As shown in Table 1,

which was adapted from (39), there was a 65%–80% increase in the
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number of blood vessels between day 10 and day 16 in

normoglycemic mice (p < 0.05) (Table 1). Diabetes reduced the

number of Factor VIII+ small and moderate-sized blood vessels by

almost half (p >0.05) (Table 1). Mechanistically, this was related to

the level of inflammation as shown by the rescue of diabetes-

reduced neovascularization when a TNFa-specific inhibitor,

pegsunercept (PEG), was applied.

Sincewehad shown that someof the effects ofTNFcould be directly

related to the transcription factor FOXO1 (40), we examined the

hypothesis that FOXO1 is a key factor in regulating angiogenesis in

diabetic animals. Thiswas accomplished by studyingneovascularization

in healing fractures in animals with chondrocyte-specific FOXO1

deletion in diabetic experimental (Col2a1Cre+.FOXO1L/L) compared

to diabetic control (Col2a1Cre–.FOXO1L/L) littermates. Diabetes

resulted in a ~ 50% reduction in the number of both small and

moderately sized vessels compared to the WT (Figure 1, P > 0.05).

Conditional FOXO1 deletion in chondrocytes in diabetic animals

resulted in a partial and significant rescue of diabetes-inhibited

formation of small and moderate-sized blood vessels (P<0.05).
4.2 Diabetes increases chondrocytes
apoptosis via FOXO1-
dependent mechanism

We have previously examined apoptotic cells in fracture healing

using a TUNEL assay (40). Table 2, adapted from (40), demonstrated

that the number of apoptotic chondrocytes was 5.4-fold higher in the
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diabetic group compared to the normoglycemic (P<0.05; Table 2).

Insulin treatment significantly reduced most of this increase (P<0.05).

When the entire callus was examined, the diabetic group showed a 2.5-

fold increase in the total number of apoptotic cells compared to the

normoglycemic, which was largely rescued by insulin treatment

(P<0.05; Table 2). The increase in apoptosis was directly linked to

the effect of TNF-a as demonstrated by a complete rescue when TNF-

a was inhibited by pegsunercept. There was also no significant

difference in the number of apoptotic chondrocytes between the

diabetic and the normoglycemic group on day 10. Chondrocyte

apoptosis increased further on day 16 post-fracture in the diabetic

animals, and the increase was rescued to normal levels upon PEG

treatment (P<0.05; Table 2).

We then examined whether the transcription of FOXO1

mediated apoptosis in diabetic fracture healing using the

experimental animals described above. There was a ~ 50%

increase in TUNEL-positive chondrocytes in the hypertrophic

and the mixed zone that contains both cartilage and bone

(Figures 2A–E, p<0.05). This increase was completely rescued to

normal levels upon specific FOXO1 deletion in chondrocytes in

diabetic animals (Figure 2F, p<0.05).
4.3 FOXO1 regulates caspase-3 under
diabetic conditions

To further examine how diabetes could increase chondrocyte

apoptosis, we measured the levels of cleaved caspase-3. In vivo
TABLE 1 Diabetic-induced reduced angiogenesis is restored to normal levels upon insulin treatment and TNF a inhibition in diabetic fracture healing.

A

Factor V111 + small Vessels per mm2

Day 10
Normoglycemic Diabetic Diabetic + insulin

518 265* 447+

Day 16 896 497* 764+

Factor V111 + Moderate Vessels per mm2

Day 10
Normoglycemic Diabetic Diabetic + insulin

214 110* 199+

Day 16 364 179* 322+

B

CD31 + small Vessels per mm2

Day 16
Normoglycemic Diabetic Diabetic + PEG

107 58* 94+

CD31 + Moderate Vessels per mm2

Day 16
Normoglycemic Diabetic Diabetic + PEG

47 29* 53+
(1A) Factor VIII positive blood vessels were evaluated at Day 10 and 16 post-fracture by IHC in areas of new bone formation in normoglycemic, diabetic, and insulin-treated diabetic mice
*Indicates a significant difference between normal and diabetic (P<0.05). + Indicates a significant difference between insulin-treated and untreated diabetic animals (P<0.05). (1B) CD31
immunopositive blood vessels were counted 16 days post fractures in areas of bone formation in normoglycemic, diabetic, and TNFa-specific inhibitor pegsunercept treated diabetic mice.
*Indicates a significant difference between normal and diabetic (P<0.05). +Indicates a significant difference between PEG-treated and untreated diabetic animals (P<0.05). Original data found in
ref (39).
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TABLE 2 Diabetes upregulated the number of apoptotic chondrocytes.

A

Apoptotic chondrocytes/mm2 of cartilage

Normoglycemic Diabetic Diabetic + insulin

0.5 2.7* 1+

Total Apoptotic cells/mm2 of callus
Normoglycemic Diabetic Diabetic + insulin

1.8 4.2* 2+

B

Day 10 Apoptotic chondrocytes/mm2 of cartilage
Normoglycemic Diabetic

0.89 0.93*

Day 16 Apoptotic chondrocytes/mm2 of cartilage
Normoglycemic Diabetic Diabetic + PEG

1.17 2.43* 0.74+
F
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(2A) Quantitative analysis of apoptotic cell numbers in normoglycemic, diabetic, and insulin-treated diabetic mice measured in TUNEL stained sections combined with safranin-O/fast green
stain to distinguish chondrocytes. (2B) Sections from fracture calluses were examined by the TUNEL assay and counterstained with safranin-O/fast green to identify apoptotic chondrocytes in
the cartilage area. Quantitative analysis of TUNEL-positive cells in diabetic mice, matched normoglycemic control mice, and diabetic mice were treated with pegsunercept (PEG) which was
started 10 days after fracture. *Indicates a significant difference between normal and diabetic (P<0.05). + Indicates a significant difference between insulin-treated or pegsunercept-treated and
untreated diabetic animals (P<0.05). Original data is found in ref (14).
Insulin treatment and TNFa inhibition rescued it to normal levels.
FIGURE 1

FOXO1 deletion in chondrocytes partially rescues diabetes impaired angiogenesis. Photmicrographs of histologic sections 16 days post fracture from
(A) normoglycemic; (B) diabetic WT; and (C) diabetic FOXO1-deleted mice (Cre+.FOXO1LL). Immunofluorescence was carried out with CD31
specific-antibody to detect endothelial cells. No immunofluorescence was detected with control primary antibody (not shown). (D) Quantitative
analysis of CD31 positive blood vessels in the transition zone. Blood vessels containing 2-4 CD31 positive cells were considered as small vessels
while moderate-sized vessels contained 5-8 CD31 positive cells. Data are expressed as mean ± SEM. *indicates a significant difference between
specimens from study group and matched normoglycemic animals. + indicates signficant difference between diabetic Cre-.FOXO1LL and diabetic
Cre+.FOXO1LL groups. Significance was determined by ANOVA followed by Tukey’s post-hoc test (P<0.05).
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immunofluorescence with an antibody specific for cleaved caspase-

3 showed that diabetes increased caspase-3 positive chondrocytes

by ~50% compared to fracture healing in normoglycemic animals

(Figure 2D, p<0.05). FOXO1 deletion in chondrocytes in diabetic

animals reduced the over-expression of caspase-3 to levels similar to

that of the normal group (Figure 2D, P>0.05).

We then directly assessed the role of FOXO1 in regulating

caspase-3 expression by transfecting chondrocytes with FOXO1

siRNA or scrambled siRNA in low-glucose (LG) and high-glucose-

containing media (HG). HG media resulted in a 2.7-fold increase in

caspase-3 expression (Figure 3A, p<0.05). Silencing FOXO1 with

siRNA significantly downregulated the increase in caspase-3

expression induced by HG. ChIP assays were undertaken to

measure FOXO1 interaction with the caspase-3 promoter. HG

stimulated an ~ 8-fold increase in FOXO1 binding to the caspase-

3 promoter (Figure 3B, p<0.05). Treatment of chondrocytes with an

advanced glycation end product (AGE), carboxymethyl lysine

modified BSA, stimulated a similar increase. Luciferase reporter
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assays were undertaken to examine the direct effect of HG and AGE

on caspase-3 promoter activity. Transfection of chondrocytes with a

FOXO1 expression vector increased caspase-3 transcriptional

activity 4-fold in the presence of HG compared to standard (LG)

media and 6-fold in the presence of AGE compared to unmodified

BSA (Figure 3C, p<0.05). Interestingly, the combination of HG or

AGE with FOXO1 transfection was greater than the effect of

FOXO1 transfection alone.
5 Discussion

Diabetic fracture healing is characterized by increased

inflammation and oxidative stress, which reduces osteoblast

proliferation and differentiation and interferes with the production of

the osteoid matrix to limit the healing response (41). However, the role

of chondrocytes in the healing has not been investigated as thoroughly.

To better understand the mechanisms of how diabetes alters the
FIGURE 2

Diabetes significantly increases chondrocytes apoptosis, which is rescued by FOXO1 deletion in diabetic mice. Fracture sites were examined by a
fluorescent TUNEL assay 16 days post fracture from (A) normoglycemic; (B) diabetic WT; and (C) diabetic FOXO1-deleted mice (Cre+.FOXO1LL). (D,
E) Quantitative analysis of TUNEL positive cells in the cartilage area and transitional area containing both cartilage and bone, respectively. (F)
Quantitative analysis of caspase-3 positive chondrocytes. Data are expressed as mean ± SEM. *indicates a significant difference between specimens
from diabetic and matched normoglycemic animals; + indicates a significant difference between specimens from diabetic animals with FOXO1
deletion compared to littermate diabetic control animals. Significance was determined by ANOVA followed by Tukey’s post-hoc test (P<0.05).
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healing, we examined the effect of diabetes on vascularization and

apoptosis. We specifically looked at the regulatory role of the

transcription factor FOXO1in chondrocytes in this process.

It is well known that diabetes impairs angiogenesis and wound

healing (42). Our results indicate that diabetes significantly reduces

the number of vessels in the fracture callus, as shown by the reduction

in CD31-positive small and moderately-sized vessels studied in

histologic samples (39). The impact of diabetes was directly related

to the level of inflammation as inhibition of TNF rescued this effect.

We add to this information by showing that FOXO1 also plays an

important role in interfering with diabetic fracture healing. Reduced

angiogenesis is clinically important since it can lead to delayed repair,

as shown in an animal model with an ischemic fracture that impairs

healing. (43). These results were unexpected since in normal healing,

FOXO1 expression in chondrocytes leads to enhanced angiogenesis

through the production of VEGFA (31). The downstream

mechanisms that may account for the improvements in

angiogenesis when FOXO1 is deleted in chondrocytes may be

explained by a recent finding that FOXO1 deletion leads to
Frontiers in Endocrinology 08101
increased inflammation in the fracture callus in diabetic animals

(26). Thus, in normal fracture healing, FOXO1 may promote

angiogenesis through the production of VEGFA, as shown in both

soft tissue and hard tissue healing responses (26, 44). In contrast,

FOXO1 in diabetic conditions has a shift in downstream targets

manifested by a reduction in growth factors and an increase in

inflammatory mediators that interfere with healing responses (45).

Diabetes also has a significant impact on apoptosis. A mechanism

through which diabetes inhibits the early steps of fracture repair is due

to the loss of mesenchymal stem cells to apoptosis caused by diabetes-

enhanced inflammation (46). The increased apoptosis in bone linked to

diabetes is significant since inhibiting apoptosis with a caspase-3

inhibitor or a TNF inhibitor results in significantly enhanced tissue

formation in diabetic animals (9, 47, 48). FOXO1 deletion in

chondrocytes reversed the effect of diabetes on apoptosis to normal

levels. The apoptosis phase of the hypertrophic chondrocytes is a

critical phase during fracture repair (2, 40, 49). There is a direct

relationship between the vasculature, rate of apoptosis, and resorption

of cartilage. It has been proposed that this process is mediated in part
A

B

C

FIGURE 3

High glucose and an AGE modulate FOXO1 regulation of caspase-3. (A) Chondrocytes (ATDC5) were incubated in standard media (LG) or media
supplemented with high glucose (HG) (25mM) for five days or 200ug/ml carboxymethylysine-modified BSA, an AGE or unmodified BSA for three
days. Chromatin immunoprecipitation (ChIP) assays were performed by pull down with FOXO1 antibody or matched IgG. (B) Chondrocytes were co-
transfected with a FOXO1 expressing plasmid and a caspase-3 luciferase reporter construct and incubated in standard media, HG media, and an AGE
containing media. Luciferase activity was measured. (C) Chondrocytes were incubated in HG and transfected with siFOXO1 and or scrambled siRNA
(siSCR). Caspase-3 mRNA level were analyzed by qPCR. Results are expressed as the mean ∓SE. *indicates p <0.05 compared to control IgG group.
+indicates p <0.05 compared to matched FOXO1 non-mutant. #Indicates p <0.05 compared to LG group. ##indicates p <0.05 compared to siRNA
control group.
frontiersin.org

https://doi.org/10.3389/fendo.2023.1136117
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Alharbi and Graves 10.3389/fendo.2023.1136117
by the tumor necrosis factor alpha (TNF-a). TNF-a enhances the

apoptosis of chondrocytes and upregulates the levels of pro-resorptive

cytokines that regulate the remodeling phase by osteoclasts (50). Since

FOXO1 is downstream of TNF-a, it is likely that activation of FOXO1

in diabetic fracture healing through FOXO1 activation leads to a

dysregulation that impairs the healing process. Diabetes significantly

upregulated more than 13 apoptotic pathways, including the caspase

pathway (Table 3). Our findings here support the concept that FOXO1

upregulates caspase-3 activity in diabetic fractures and that it is

transcriptionally regulated by increased FOXO1 binding to the

caspase-3 promoter when chondrocytes are exposed to high levels of

advanced glycation end products or high glucose levels. Additionally,

the transcriptional activity of caspase-3 was directly enhanced by

transfection with a FOXO1 expression vector that was significantly

enhanced when chondrocytes were incubated in media supplemented

with high glucose or AGEs. Apoptosis of chondrocytes may not only

limit the formation of the cartilage matrix but lead to greater matrix

degradation (51). The increased apoptotic activities may also lead to

premature cartilage removal, which has been shown to impair the

healing process. And lastly, chondrocyte transdifferentiation into

osteoblasts may be inhibited by a loss of chondrocytes through

apoptosis, which could ultimately reduce the formation of a bony

callus during the endochondral process (52, 53). Based on those

observations, the upregulated apoptotic activities can indirectly retard

the healing by a number of different mechanisms.

To answer whether FOXO1 activities in chondrocytes represent

crucial mechanisms for impaired diabetic long-bone healing, we

tested mice with lineage-specific FOXO1 deletion. FOXO1 deletion

rescues reduced callus formation caused by diabetes measured by

microCT and histologically (3). The mechanical properties of the

calluses followed the same pattern. The maximum torque was

reduced due to diabetes by ~ 70%, stiffness by 56%, toughness by
Frontiers in Endocrinology 09102
74%, and shear modulus by 60%. FOXO1 deletion restored these

parameters of mechanical strength to normal levels in

diabetic fractures.

In summary, we report here for the first time the important role

of FOXO1 and chondrocytes in diabetic fracture healing by

inhibiting angiogenesis during the fracture healing process. This

contrasts with the positive role that FOXO1 has in promoting

angiogenesis in normal animals (31). In addition, we show that

FOXO1 in diabetic fracture healing also has a negative effect on

increasing chondrocyte apoptosis.
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TABLE 3 Apoptosis-related pathways upregulated in diabetic fracture
healing.

Apoptotic gene sets Upregulated by Diabetes

Passerini apoptosis Yes

Apoptosis Kegg Yes

Apoptosis Yes

Death pathway Yes

Vanasse BCL2 targets Yes

NF-kB pathway Yes

TNF and FAS network Yes

TNFA NF-kB dep up Yes

ST FAS signaling pathway Yes

Caspase pathway Yes

PKC pathway Yes

Passerini oxidation Yes

JNK up Yes
Gene set enrichment analysis (GSEA) identified apoptosis-related pathways that were
significantly upregulated. Original data is found in ref (40).
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