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Editorial on the Research Topic

Adaptive immunity in local tissues
Traditionally, it has been thought that adaptive immune cells are activated in secondary

lymphoid organs andmigrate to peripheral tissues to perform their effect functions. However,

more and more evidence has demonstrated that there are also naïve or resident adaptive

immune cells in peripheral tissues (1, 2), and tissue immunology is beginning to reveal how

these resident adaptive immune cells are integrated with organ physiology during both tissue

development and disease evolution. Due to their unique microenvironment, with its own

composite of cytokines and metabolites, immune cells in these peripheral tissues might have

developed special immune characteristics that are different from those of immune cells in

secondary immune organs, and participate directly in the pathophysiological activities of the

local tissues (Figure 1). Since peripheral tissues may well be the direct site of infection or

inflammation, the behavior of the adaptive immune cells in the local tissues is more closely

related to the development of diseases than that in systematic lymphoid organs, especially at

early stages of the pathogenesis (3). Therefore, understanding the characteristics of adaptive

immunity in different peripheral tissues may be useful to identify novel therapeutic targets to

develop immediate and effective remedies for regional diseases.

Several reviews and original research articles on adaptive immunity in various

peripheral tissues are presented in this Research Topic. These cover the phenotype and

function of T or B cells in peripheral tissues, as well as their roles in disease and possible

therapeutic approaches.

T cells play an important role in maintaining homeostasis and inflammatory responses

as helper or effector cells in adaptive immunity, which are activated and regulated by

antigen-presenting cells (APCs) via cognate antigens presented and cytokines secreted

respectively. Depending on the different microenvironment in the peripherial tissues, T

cells can differentiate into different subtypes with different functions such as promoting

inflammation, mediating immune tolerance, supporting cellular immunity, or favoring

humoral immunity (4; Sun et al.; Sun et al.).

Barrier tissues are high-risk sites for infection and inflammation as the first line of defense

against pathogens, Neuwirth et al. reviewed the commonalities and differences of the

interactions between APCs and T cells in a variety of barrier tissues, including the skin,

intestine, and female reproductive tract, under both homeostatic and infectious conditions.

They pointed out that there are significant differences between T cells and the subsets of
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dendritic cells in different barrier tissues, controlling the balance

between immune tolerance and immune responses mediated by

regulatory T cells and other effector T cells respectively. Shirakawa

and Sano summarized the transformation of CD4+T cells in visceral

adipose tissue as a result of obesity. It was shown that the

functionalities of CD4+T cells were closely associated with

endocrine and metabolic homeostasis or dysfunction in visceral

adipose tissue as well as obesity-associated chronic inflammation.

Obesity-associated microenvironmental conditions could result in

CD4+ T cell depletion and accelerate CD4+T cell senescence.

Understanding these unique changes of CD4+T cells in specific

adipose tissues will assist in the development of drugs for obesity-

related diseases.

Murayama et al. found that CD4+CD8+ Tfh cells, as a

heterogeneous subpopulation of Tfh cells, were enriched in IgG4-

related disease lesions of palatine tonsils. These CD4+CD8+ Tfh

cells might regulate IgG4 production by memory B cells through

cytotoxic effects and are potential targets for regulating regional

humoral immunity.

Ma´rquez-Sa´nchez et al. summed up the functions of various

adaptive immune cells, together with their innate counterparts, in

abdominal aortic aneurysms, and concluded that there are special

roles for angiotensin II and microbiota in the activation of adaptive
Frontiers in Immunology 025
immune responses in the vasculature and perivascular adipose, as

well as in the regulation of this disease.

The results of Wang et al. led to the proposal that CARDS toxin

activates a positive feedback loop of type I immune responses in the

lung during M. pneumonia infection. This putative mechanism

could be useful in future approaches to investigate immune

interventions for M. pneumoniae pneumonia.

Liu et al. summarized recent advances in the insights on the role

of T cells and their products in type 2 diabetic kidney disease,

pointing out that T cells played protective or pathogenic roles

through various means such as inducing insulin resistance,

mediating podocyte injury, participating in fibrosis and regulating

proteinuria, and T cell- directed therapies in type 2 diabetic kidney

disease were established with preliminary results.

In addition to ab T cells, which are restricted by MHC-II, T

cells that play innate immune roles, such as gd T cells and natural

killer T cells, are prevalent in peripheral tissues and have been found

to have important roles in regulating adaptive immunity (2, 5, 6).

Chen et al. summarized the role of gd T cells present in the mucosa

and skin in a wide variety of vector-borne diseases. The paper

pointed out that gd T cells could secrete multiple cytokines for

immune regulation, formed immune memory and responded

rapidly by proliferation in secondary infections.
FIGURE 1

T and B cells residing in different peripheral tissues are involved in maintaining the homeostasis and disease development in different ways
depending on the different microenvironment.
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Understanding the characteristics of T cell responses in

different tissues may be useful in identifying new therapeutic

targets for translational gains. In this regard, studies and the

development of drugs targeting T cells in periphery tissues may

be of great interest. In a systematic review of the TCR-like

antibodies and their application in identifying autoantigen-

presenting APCs, Li et al. suggested that TCR-like antibodies

could play an important role in the study and treatment of

autoimmune diseases. Along the same line, Su et al. found that

the regulation of Th2/Th22 differentiation by the Galectin-9/T cell

immunoglobulin mucin-3 pathway in skin was closely associated

with the development of atopic dermatitis. Furthermore, Yan et al.

summarized the effects of platelets on various immune cells and

suggest that platelets could regulate the production of leukocyte

cytokines, depending on the severity of the disease.

In addition to T cells, tissue-resident B cells, the other arm of

adaptive immunity, are also mentioned in this Research Topic. Lee

and Oh reviewed the history, localization, origin, and markers of

tissue-resident memory B cells, and summarized the unique

characteristics of humoral immunity in peripheral tissues like

skin, intestine, and female reproductive tract.

Although the important roles of regional adaptive immunity in

disease have been recognized, there is still much to learn about the

regulation of diseases by the regional adaptive immunity. This

Research Topic makes timely selection of articles highlighting the

current understanding of adaptive immunity in such disease-

affected tissues as barrier tissue, visceral adipose tissue, and the

vascular walls, and discusses possible research and therapeutic tools

in these areas so that the better understanding of regional

immunopathophysiology in the diseased tissues can be achieved

for effective therapeutic intervention.
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Epithelial barriers, which include the gastrointestinal, respiratory, and genitourinary
mucosa, compose the body’s front line of defense. Since barrier tissues are
persistently exposed to microbial challenges, a rapid response that can deal with
diverse invading pathogens is crucial. Because B cells have been perceived as
indirectly contributing to immune responses through antibody production, B cells
functioning in the peripheral organs have been outside the scope of researchers.
However, recent evidence supports the existence of tissue-resident memory B cells
(BRMs) in the lungs. This population’s defensive response was stronger and faster than
that of their circulating counterparts and could resist heterogeneous strains. With such
traits, BRMs could be a promising target for vaccine design, but much about them
remains to be revealed, including their locations, origin, specific markers, and the
mechanisms of their establishment and maintenance. There is evidence for resident B
cells in organs other than the lungs, suggesting that B cells are directly involved in the
immune reactions of multiple non-lymphoid organs. This review summarizes the history of
the discovery of BRMs and discusses important unresolved questions. Unique
characteristics of humoral immunity that play an important role in the peripheral organs
will be described briefly. Future research on B cells residing in non-lymphoid organs will
provide new insights to help solve major problems regarding human health.

Keywords: resident memory B cells, respiratory infection, vaccine, humoral immunity, barrier tissues,
mucosal immunity
INTRODUCTION

Immune memory is an important component of our body’s immune system. It enables rapid and
strong responses to a pathogen by pathogen-specific memory cells. Another important protective
component is the barrier tissues of the body. Mucosal barrier tissues, including the lung, intestine,
skin, and female reproductive tract (FRT), etc., block pathogens from invading our body at its front
line. Secretory IgAs, broadly neutralizing antibodies and neutralizing antibodies are secreted to the
mucosa and bind to invading pathogens, thereby isolating these harmful organisms in the mucosa
and excluding them from infecting host cells. This effector mechanism is not only efficient but is also
safe because it causes less inflammatory response at the site of infection, while T cell-mediated
responses usually cause collateral damage to the host (1).
org July 2022 | Volume 13 | Article 95308817
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During infection, mature naïve B cells specific to the pathogen
can enter one of four differentiation fates (2, 3). In the earlier
stages of immune response, the extrafollicular response generates
short-lived antibody-secreting cells (ASCs) and germinal center
(GC)–independent memory B cells (MBCs) that have undergone
class-switch recombination but have minimal somatic
hypermutation. The extrafollicular response is in charge of the
early response against influenza virus, but it also the major
mechanism protecting against several pathogens, including
malaria and Salmonella (4). In the GC, a repetitive course of
affinity maturation produces plasmablasts (PBs) and MBCs that
synthesize high-affinity immunoglobulins. PBs migrate to the
bone marrow (BM) where they differentiate into long-lived
plasma cells (PCs), but MBCs circulate through the body until
they re-encounter the specific antigen. These MBCs have the
capacity to re-enter the GCs or generate ASCs, providing a rapid
and stronger immunity for defense upon secondary infection (5).

Since the major basis of B-cell immunity is circulating
antibodies, it was speculated that there is no need for resident
MBCs in the peripheral tissues. Moreover, for proper antibody
production, support from GC reactions should be provided. As
GCs is a complex system built on the collaborative interactions of
special types of stromal cells and immune cells, it is reasonable to
question whether B cells in the mucosal tissues have access to this
support. Therefore, in contrast to the research on T cells, there
are few studies considering the concept of tissue-resident B cells.

A recent study provided direct evidence for the existence of
resident memory B cells (BRMs) in the lungs, but no direct
evidence supporting BRMs in other organs has been reported (6).
In this review, we will skim through the history of the discovery
of BRMs and the humoral immunity of non-lymphoid barrier
tissues. The probability of the existence of BRMs in non-
lymphoid organs other than the lungs will be examined. Last,
in anticipation of identifying BRM-specific markers, markers for
MBCs and their tissue residency will be reviewed in comparison
with those of resident memory T cells (TRM).
TISSUE-RESIDENT MEMORY B CELLS

Evidence for Tissue-Resident Cells
It is now evident that some lymphocyte subsets are present in situ
in non-lymphoid tissues and do not recirculate. Multiple
experimental models have been used to demonstrate the
residency of various cell types, including subsets of innate
lymphoid cells, T cells, and recently B cells. Intravenous
antibody labeling (iv-labeling) is a method that captures cells in
circulation (7). Antibodies are injected intravenously into a
mouse a few minutes before euthanasia. Circulating cells are
captured by the antibodies but cells situated in the tissue are
protected from them, allowing cells in each compartment to be
distinguished from one another. The parabiosis model directly
demonstrates the residency of the sessile cells. It is created by
surgically joining two mice expressing distinct alleles. Circulating
cells reach an equilibrium in both parabionts through the
conjoined circulatory system, but the tissue-resident cells stay
in the tissue, demonstrating that they reside in the tissue and do
Frontiers in Immunology | www.frontiersin.org 28
not recirculate (8–10). When infected tissues containing primed
resident cells that express congenic markers are transplanted to
naïve organisms, the primed resident cells do not recirculate to
the recipient. Upon reactivation, local cells undergo secondary
restimulation exclusively in the grafts, without the involvement of
the recipient (11, 12). Models in which circulating lymphocytes
have been ablated with cell type-specific antibodies have also
been used (8, 13).

Based on studies using these experimental methods, the
paradigm of TRM was established and intensively investigated
over a decade. In contrast to TRMs, the history of BRMs is short
and began with direct experimental evidence for resident non-
circulating MBCs in the respiratory system (6). Since this
discovery, subsequent studies have elucidated the unique
characteristics of BRMs, and B cells in the human peripheral
organs with resident phenotypes have been reported as well.

Brief History of BRMs
Only recently was a subset of B cells acknowledged to be resident
in the lungs, but the notion of MBCs at the periphery that are
distinct from the circulating MBCs and that do not recirculate is
not new (Table 1). In 2008, an analysis of the dispersion of MBCs
after local influenza infection was reported (14). In the analysis,
after intranasal influenza virus infection, the distribution ofMBCs
in the blood, lung, and lymphoid tissues including mediastinal
lymph nodes (mLNs), Peyer’s patches, and spleen was examined.
Among multiple organs, MBCs were found in the lymphoid
tissues of the respiratory system, namely the mLNs and nasal-
associated lymphoid tissue. Interestingly, a number of MBCs
comparable to that in the mLNs were found in lungs 9 days
post-infection. These lung MBCs persisted for at least 84 days,
suggesting the establishment of peripheral MBCs in response to
local antigen encounters. The authors anticipated the existence of
mechanisms for tissue homing and delayed egress resembling
those of TRMs. A few years later, more focused examinations of
lung MBCs were performed. Cells situated in the lungs were
separated from circulating cells by perfusing the right ventricle
(RV) with PBS to clear the lungs of blood (15). Lungs harvested
from influenza-infected mice after 160 days of infection still
possessed MBC cells. When isolated MBCs were transferred
into scid mice, lung MBCs outperformed MBCs derived from
the mLN and the spleen in clearing the virus. These cells
expressed higher levels of CD69, CXCR3, and IgA compared
with MBCs in the mLNs and the spleen. These data suggest that
lung MBCs are imprinted to migrate to the lungs and stay there.
Next, the cross-reactive nature of lung MBCs was revealed, and it
was shown that local lung GCs were responsible for supplying
these cells (16). As antigenic drift is the main problem in
confronting influenza virus infection, this result shows the
importance of local lung mucosal immunity in defending
against the infection. These early studies demonstrated
interesting characteristics of a novel B-cell subset in the
periphery but did not provide direct evidence for MBCs that
are sessile in the lungs.

In 2019, through a parabiosis model and iv-labeling, lung
MBCs were identified as a resident subset of cells in the lungs (6).
In this study, resident lung MBCs were established upon local
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antigen infection, but not through systemic immunization, and
did not access the circulation of the parabiont. Also, this cell
population was preserved in situ when the provision of B cells
from the circulation was blocked by fingolimod (FTY720),
implying the independence of the subset from the circulation.
Functionally, these resident B cells differentiated rapidly into
ASCs during secondary infection, providing a rapid antibody
response against the pathogen. These results suggest that BRMs
are a key component in mucosal humoral immunity. Local
resident MBCs have also been shown to contribute to the
secretion of local IgA (17). Importantly, mice with these cells
showed superior protection against both the homologous and
heterologous strains of influenza virus, supporting the cross-
reactivity of local humoral immunity.

Following BRMs’ identification as resident lymphocytes,
diverse aspects of their biology have been investigated. First,
BRMs are not a pathogen-specific cell population: establishment
of BRMs in the lungs is detected in the S. pneumococcus–infected
model as well as influenza virus infection (18). Second, MBCs in
human lungs and gut with resident phenotypes have also been
described (18–20). IgD–CD27+ MBCs from the lungs and
draining LNs expressed higher levels of CD69, a representative
marker for tissue-resident lymphocytes, compared with the
spleen (20). When the phenotypes of CD27+ MBCs derived
from multiple human organs including the spleen, blood, BM,
LN, tonsil, and the gut were investigated, CD27+ MBCs in the gut
included a higher percentage of CD45RB and CD69 double-
positive cells (19). Also, an analysis of transcriptional profiles
showed that lung MBCs cluster discretely from MBCs in lung-
draining LNs or PBMCs, implying that lung BRMs have
Frontiers in Immunology | www.frontiersin.org 39
distinctive features other than the expression of CD69 (20).
Markers and phenotypes of BRMs will be further discussed below.

Recently, the fate of BRMs upon secondary challenge was
reported (21). In a live-imaging analysis, alveolar BRMs of
influenza-infected mice were attracted by CXCL9 and CXCL10
induced by alveolar macrophages and migrated to inflammation
foci to differentiate into PCs upon secondary challenge. The study
not only demonstrates how BRMs react upon secondary challenge
but also suggests that they interact with surrounding cells.
QUESTIONS ABOUT RESIDENT MEMORY
B CELLS

Location of Resident Memory B Cells
Besides their presence, many aspects of BRMs are not discovered
yet, including their location, markers, origin, the underlying
mechanism that triggers their generation, and the environment
that supports their maintenance (Figure 1). Regarding location,
two studies using different infection models, one influenza virus
and the other S. pneumoniae, have reported seemingly
contradictory results (18, 20). The study using the influenza
virus model showed that BRMs reside in the inducible bronchus-
associated lymphoid tissues (iBALTs) by demonstrating the
presence of antigen-specific B cells in the iBALTs beyond 110
days after infection. But BRMs were also present in an S.
pneumococcus-infected model, in which iBALTs do not form.
These are possibly complementary results, showing that BRMs
not only reside in the tertiary lymphoid organs where survival
TABLE 1 | Brief history of BRM research.

2008 2012 2015 2019 2020 2021 2022

MBCs are
distributed in
the lungs

Lung MBCs discovered Cross-reactive nature
of lung MBCs

Lung BRMs that
do not recirculate

Gut MBCs with
resident
phenotype

BRMs, a
common
feature of
infected lungs

BRMs, a
transcriptionally &
functionally distinct B
cell subset

MBCs
remained in the
lungs beyond
12 weeks post
infection.

Lung MBCs were isolated by
RV perfusion.

Many cross-reactive
lung MBCs originate
from lung GCs, which
show distinct selection
features.

Non-circulating
BRMs were
discovered through a
parabiosis model
and iv-labeling.

Majority of human
gut CD27+ MBCs
were CD45RB and
CD69 double
positive.

BRMs form in
S. pneumoniae
infection.

Human and murine BRMs
have a transcriptional
profile distinct from that of
MBCs in PBMC and
SLOs.

When transferred into scid
mice, the subset migrated to
the lungs and was superior in
resisting secondary viral
challenge.

BRMs are
independent from
their circulating
counterparts.

Gene sets of lung
CD4 and CD8
TRMs were
enriched in gut
MBCs.

BRMs are also
found in the
pneumococcal
pneumonia
patients.

BRMs are the main
source of respiratory IgAs.

BRMs are
established upon
encountering local
antigen.

BRMs migrate to sites of
inflammation and
differentiate into PCs.

Joo et al., 2008 Onodera et al., 2012 Adachi et al., 2015 Allie et al., 2019 Weisel et al., 2020 Barker al., 2021 Mathew et al., 2021
Oh et al., 2021
Tan et al., 2022
Maclean et al., 2022
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niches are provided but also can persist in the bare lung
parenchyma with minimum support.

A recent study reported that BRMs not situated in the
iBALTs, namely alveolar BRMs, relocate themselves to the
inflammatory foci upon secondary challenge in an influenza
virus infection model (21). In this study, aggregates of previously
activated B cells within iBALT that express tdTomato in Aicda
(AID)Cre/+ Rosa26tdTomato reporter mice expressed the GC B-cell
marker GL7 as well. The authors also showed that the cells within
iBALT-like structures display typical extensive but confined
motility behavior associated with GC B-cell characteristics,
suggesting that the cells in the iBALT are GC B cells, not
BRMs. As previous studies suggested BRMs residing within
iBALT, the question of the differences of BRMs located in each
locus remains. The mechanism that supports long-standing
BRMs in the lung requires further investigation, especially
alveolar BRMs minimally supported by adjacent cells. This
could resemble that of PCs in the gut lamina propria. A subset
of lamina propria PCs live for decades and their survival is
supported by surrounding cells (22). Cytokine profiling of biopsy
cultures has revealed the presence of IL-6 and APRIL, which are
B-cell survival factors (23). Production of these cytokines by gut
epithelium, eosinophils, macrophages, and DCs may provide the
survival niche for PCs (24, 25). The possibility that innate
immune cells and the induced stromal cells support the
survival of alveolar BRMs needs to be examined.
Frontiers in Immunology | www.frontiersin.org 410
Origin of Resident Memory B Cells
Given that the fate of B cells can be determined by signals provided
by the surrounding tissues, the environment where BRMs are
generated would affect the characteristics of BRMs (3). The GCs in
the mLNs or GC-like structures of the iBALTs have been
suggested as the sites for BRM generation in nasal influenza
virus infection (6, 16). BRM cells are proposed to be generated
in a T-cell-dependent manner at an early time point after infection
(6). IgM+ BRMs can be identified in the lungs at day 10, but
isotype-switched ones require a longer time, not exceeding 30
days. Given that GC B cells emerge earlier in the mLNs than in the
lungs, it is reasonable to think that early BRMs originate from the
mLNs (16). Still, specific labeling of the lungs with EdU revealed
that BRMs can also arise from the lymphoid structures in the lungs
(16). These results led to the proposal that early BRMs originate
from B cells that migrate from the draining lymph nodes and late
BRMs originate from the iBALTs (16). Questions remain as to
whether iBALT-originated MBCs can access the circulation and
whether B cells are determined to become BRMs during the GC
reaction or if any MBCs have the capacity to become resident cells
when proper conditions are provided.

Cells of different origins would have different features.
Lung-specific EdU labeling has also revealed that a larger
proportion of BRMs originating from the lungs are cross-
reactive, in comparison with BRMs derived from the draining
LN (16). This suggests that lung GC reactions are distinct from
FIGURE 1 | Overview of lung BRM. BRMs are established in sites exposed to local antigens. It is likely that early lung BRMs derive from the draining LNs and late cross-
reactive BRMs originate from lung GC reactions, which occur in iBALTs. Lung BRMs can be located within the iBALTs or reside throughout the lung parenchyma in close
contact with alveoli, independent of iBALTs. Upon secondary infection, alveolar BRMs migrate to the inflammation foci, which is mediated by alveolar macrophages, and
differentiate into PCs. The corresponding functional role of BRMs in iBALT has not been reported. The illustration of the BRM shows most of the surface molecules
described in published studies so far. The upregulation of CD69, which reduces surface expression of S1PR1, is consistently reported. Klf2 is a transcription factor that
mediates S1PR1 expression. The expression of genes encoding the LN homing molecules Sell and Ccr7 is downregulated. CXCR3 and CCR6 facilitate recruitment and/
or retention of BRM in the lung. In addition, CCR6 is related to BRM differentiation into PCs in recall response. The upregulation of CD44 and CD11a in BRM is also
reported. These may serve as an adhesion molecule for BRMs, but their functional role needs to be validated. Compared with circulating MBCs, lung BRMs have been
shown to express higher levels of FCRL5, CD80, and PD-L2.
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those of mLNs and that this may endow BRMs with different
features (26). Fate-mapping techniques that can distinguish
MBCs originating from different organs would be valuable in
elucidating the heterogeneous characteristics of BRMs in
the lungs.

Markers for Resident Memory B Cells
Elucidating the nature of BRMs urgently requires specific
markers. Although BRM-specific markers have not yet been
discovered, they can be identified by using gating schemes
combining MBC with resident markers. Classically, it has been
thought that MBCs are generated from the GCs in a T-cell-
dependent manner by which they lose the expression of IgM and
IgD and gain somatic hypermutation (27, 28). Therefore, in both
humans and mice, isotype-switched B cells have been widely
accepted as a surrogate population for MBCs. But this approach
can be misleading since studies have revealed that a large
compartment of MBCs is generated through a route
independent of GC reaction. It is evident that IgM-expressing
MBCs exist (29–34). Also, though in rare cases, the presence of
IgD-only and IgD/IgM double-positive MBCs has been
suggested in humans (35, 36).

In humans, CD27 is expressed by most MBCs and is
commonly accepted as a defining marker of this population,
but this is not true in mice (35, 37). In the absence of a definitive
surface marker that encompasses murine MBCs, B cells that
express CD38, a surface molecule downregulated in the PC and
GC B cells and have an isotype-switched phenotype are
considered to be MBCs (38–40).

Systematic analysis of MBC gene expression has suggested
CD80, PD-L2, and CD73 as MBC markers, and the combination
of these markers divides MBCs into three major subsets (41–43).
These subsets are CD80 PD-L2 double negative, PD-L2 single
positive, and CD80 PD-L2 double positive. These three subsets
differ in their general properties of B cells, such as isotype
switching and somatic hypermutation. Regarding antibody
isotypes, 95% of the CD80-PD-L2- subset express IgM, about
40% of CD80+PD-L2+ cells have IgM, and 90% of CD80-PD-L2+

cells express IgM (43). When the BCR mutation burden was
evaluated, CD80-PD-L2- cells were less mutated, whereas 80% of
CD80+PD-L2+cells had a mutated Vl1 gene segment, and CD80-

PD-L2+ cells were in between (43, 44). In line with these findings,
CD80-PD-L2- cells were found to be produced earlier in the GC
reaction, around day 5 post-infection, while the production of
CD80+ PD-L2+ cells dominated after 12 days, and this subset
required a stronger signal from CD40-CD40L interaction with T
cells. CD80-PD-L2+ MBCs peaked between these time points
(34). Functional studies have revealed that three MBC subsets
enter distinct routes of differentiation upon reactivation. CD80-

PD-L2- cells predominantly reenter the GC reaction and
generate most of the ASCs that appear later. CD80+PD-L2+

MBCs generate IgG ASCs at an earlier time point. Again, CD80-

PD-L2+ subsets are intermediate in that they can choose either
route (5). Analysis of RNA expression patterns also supports this
feature (5). Microarray data suggest that CD80-PD-L2- MBCs
display higher expression levels of genes encoding cell cycle–
Frontiers in Immunology | www.frontiersin.org 511
promoting molecules, and CD80+PD-L2+ MBCs express higher
levels of Zbtb32, which is related to PC differentiation (45).

MBCs of peripheral organs express these markers as well.
MBCs from the Peyer’s patches were isolated by gating CD138-

CD9-CD80+CD73+ B cells (46). These markers have also been
detected in BRMs in the lungs. Compared with MBCs in the
mLN and spleen, lung BRMs were found to express fewer CD73
but more PD-L2 (6). These markers are evidence of the
heterogeneous nature of MBCs.

Currently, iv-labeling is used to identify resident subsets of
MBCs. To find specific markers for BRMs, such as CD69 and
CD103 for CD8+ TRMs, transcriptional profiles of both murine
and human BRMs have been analyzed (17, 20, 47). From their
first appearance, lung MBCs showed higher expression of
CXCR3 and CD69 compared with their counterparts in the
mLN and spleen. Higher expression of these two molecules has
been consistently reported in subsequent studies on BRMs. This
expression pattern suggests the tendency of BRMs to head
toward peripheral tissues and the operation of a mechanism
delaying their egress, which is also observed in TRMs. Analysis of
TRM transcriptional profiles has revealed the downregulation of
S1PR1, the key receptor that recognizes the egression element
S1P (48–50). In the TRM the transcription factor KLF2, which
mediates the expression of S1PR1, is downregulated (49), and
CD69, which internalizes and degrades S1PR1, is expressed (51,
52). Similarly, in the mouse model, lung BRMs, which were iv-
labeling negative, were clustered discretely from iv-labeling-
positive lung MBCs and MBCs from the blood, spleen, and
mLN (20). The marked expression pattern of lung BRMs was the
downregulation of Ccr7, Sell, S1pr1, and Klf2, and upregulation
of Cxcr3, Ccr6, Ccr1, and Cd69. In addition, BRMs in a
pneumococcal pneumonia model upregulated CD11a and
CD44 but downregulated CD62L, a phenotype similar to that
of lung CD4 TRM cells (53, 54). A similar pattern is also
observed in human organs. Upregulation of CD69 and the two
chemokine receptors CXCR3 and CCR6 has been detected
in CD27+ B cells from human lungs (18, 20). At the transcript
level, downregulation of S1PR1, SELL, and CCR7 was observed.
Also, as mentioned above, MBCs in the gut are mostly CD69
positive (19). These results imply that BRMs share underlying
mechanisms that are in common among lymphocytes resident in
non-lymphoid organs.

Other surface markers or transcriptional regulators specific to
BRMs need to be identified. CD103, a marker for CD8+ TRMs, is
not expressed in lung BRMs (6). In the case of TRMs, several
transcription factors (TFs) that regulate the development and
maintenance of resident cells are known (10). Blimp-1, Hobit
(a homolog of Blimp-1), and AhR promote the generation and
maintenance of resident cells, while the expression of Klf2 and the
T-box TFs Eomes and T-bet oppose it. Some of these TFs have an
effect on B cells but in a cell-type-specific manner (3, 55, 56), and
studies testing these TFs on BRM formation have yet to be
reported. The fact that the transcriptional program that decides
the differentiation fate of MBCs is still not fully discovered is an
obstacle to identifying regulatory factors in BRM formation.
However, since rapid responsiveness and cross-reactivity make
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BRMs a promising cell type that can aid resistance to fatal
infection, the underlying transcriptional program should be
thoroughly revealed in order to utilize this cell population.
HUMORAL IMMUNE CELLS SITUATED IN
NON-LYMPHOID BARRIER ORGANS

Resident Memory B Cells and Antibody-
Secreting Cells in the Intestine
The intestine is a unique organ in the sense that it harbors
numerous lymphoid organs, the gut-associated lymphoid tissues
(GALT), from birth and is the site where active interaction with
the environment shapes the humoral immunity of the region.
The humoral immunity of the intestine is well described in other
reviews (57, 58). After pointing out several aspects of the gut
humoral immune system, this review will focus on the resident
memory B cells in the gut.

Factors that promote the dominance of IgA in the mucosa-
associated lymphoid tissues (MALTs) are fairly well investigated
in the gut. In T-cell-dependent class-switch recombination,
CD40 signaling and TGF-b play an important role. It appears
that NO produced by inducible nitric-oxide synthase-expressing
DCs induces the expression of TGFbRII (59). Also, DCs are
major players in the T cell-independent response. These cells
provide proliferation-inducing ligand (APRIL) and B cell-
activating factor (BAFF) that promote IgA-specific class
switching. These cells are activated by commensal microbiota
Frontiers in Immunology | www.frontiersin.org 612
through toll-like receptor signaling. Dietary factors also have an
effect on the production of IgA. Retinoic acid signaling is
suggested to be important in generating IgA, and short-chain
fatty acids produced by gut microbiota support antibody
production by controlling the metabolism of B cells (60, 61).
Collectively, these results show the tight relationship between the
microbiota and the humoral immunity of the gut.

Another interesting example of the interaction between the
environment and the immune system is the imprinting of
GALT-derived ASCs by gut-homing molecules (Figure 2A).
Retinoic acid secreted by DCs in the GALTs induces the
expression of these molecules, which are integrin a4b7 that
binds to mucosal addressin cell adhesion molecule 1
(MAdCAM-1) expressed on endothelial cells in the lamina
propria, and the chemokine receptors CCR9 and CCR10,
which respond to CCL25 and CCL28 produced by the
intestinal epithelium (62–64). ASCs expressing these molecules
home back to the gut lamina propria, where they secrete
antibodies. Human IgMhi transitional B cells expressing a4b7
tend to migrate to the intestine to enrich the GALTs (65). MBCs
are not an exception. These molecules have been suggested to be
essential for the recruitment of IgA+ MBCs to the intestine
(66, 67).

Returned MBCs are likely to recirculate between different
Peyer’s patches and re-enter the GC response, resulting in the
persistence and evolution of the IgA repertoire (46). BCR
repertoire analysis has revealed that PCs are more clonally
related to MBCs, suggesting that MBCs recirculate. New clones
FIGURE 2 | Overview of B cells in multiple peripheral organs. (A) The gut microbiota is a consistent stimulus to immune cells in the gut. MBCs and PCs that are
formed access the circulation and return to the gut; this migration is mediated by the chemokine receptors CCR9 and CCR10, and integrin a4b7. PCs reside in the
lamina propria and MBCs enter the GC reaction, which results in the evolution of BCR repertoires. (B) Several clues for the existence of skin-associated B cells are
provided. B cells that migrate to the skin have higher expression of MHCII, CD1, CD86, CD80, and IgM. The migration to the organ is mediated by CCR6 and CLA.
B cells in the skin produce antibodies locally and regulate the immune reaction directly by producing the pro-inflammatory cytokines such as IL-6 or the anti-
inflammatory cytokine, IL-10. (C) BRMs are not established in the lower FRT. Upon secondary infection, circulating MBCs rapidly migrate to the tissues in a CXCR3-
dependent manner. These cells show higher expression of MBC markers including PD-L2 and CD80. These cells could not stay long in the lower FRT tissues.
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were introduced upon new infection. The authors discussed this
observation and proposed that this mechanism is necessary for
stable interaction between the host and microbiota (46). In
humans, a clonal relationship between IgM+ MBCs and IgA+

MBCs and PCs has been observed, suggesting that gut IgM+

MBCs can switch to expressing IgA (68). Recently, a study
reported that the majority of CD19+CD27+ B cells in the
human gut are CD45RB CD69 double-positive, a distinguishing
feature of gut MBCs (19). CD4+ and CD8+ lung TRM gene sets
were found to be enriched in this double-positive subset. These
data imply the possibility that some unidentified portion of
recruited MBCs may reside in the gut for a long period and
operate in a unique manner.

Skin-Associated B Cells and
Their Function
The skin is the largest barrier tissue that faces a variety of daily
threats, including UV, injuries, pathogens, and commensals.
Traditionally, the skin was thought to lack B cells and contain
mostly T cells (69, 70). However, recent studies have reported the
presence of B cells with interesting functions, including antibody
production and antibody-independent function, in both healthy
and diseased skin (Figure 2B) (71).

Clonally restricted B cells have been observed in normal skin,
implying the existence of B cells specific for local skin antigens
(72). In normal skin of an ovine model, skin-associated B cells
were found to be a heterogeneous population that comprised a B-
1 B-cell–like phenotype, IgMhi and CD11bhi, and an activated
phenotype, expressing higher levels of MHC II and CD80/86
(73). IgM ASCs that reside in healthy mouse and human skin
have also been observed (74). The survival of ASCs was
dependent on APRIL and BAFF produced at the site. It was
suggested that these B cells migrate to the skin through a CCR6-
CCL20 axis (73). Cutaneous lymphocyte antigen is the molecule
that guides T cells into the skin. As parenteral immunization
induced its expression in ASCs, it appears that B cells are
recruited to the skin in a similar manner (75). Though direct
evidence of skin BRMs was not provided, these results imply
their possible existence. In addition, skin-associated B cells
appear to be directly involved in immune reactions in the skin.

The functions of B cells in the skin in pathologic conditions
are relatively well studied. One is local antibody production.
For example, pemphigus is characterized by circulating anti-
desmoglein 1/3 (Dsg1/3) autoantibodies that target the
desmosomal adhesion molecules anchoring epidermal
keratinocytes (76). It has been suggested that Dsg1/3-specific
B cells infiltrate the lesion and that autoantibodies can be
produced locally (77). B cells can secrete cytokines to promote
inflammation. A study using a bleomycin-induced scleroderma
model reported an accumulation of IL-6–producing B cells in the
inflamed skin, and the skin and lung fibrosis were attenuated in
IL-6 deficient mice (78). The result demonstrates the antibody-
independent function of B cells in the skin.

Regulatory B cells (Bregs) are capable of suppressing the
inflammatory response by producing the anti-inflammatory
cytokine IL-10. A subset of both mice and human skin–
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associated B cells with innate-like phenotypes, which are
CD1dhi CD5+ in mice and CD11b+ in humans, is reported to
produce IL-10 upon stimulation (79). Bregs have been found to
limit inflammation in several disease models. IL-10–deficient
mice show more severe fibrosis in the scleroderma model
mentioned above (78). Peritoneal B-1a cells display a
regulatory function in a contact hypersensitivity model, and
IL-10–producing CD1dhiCD5+ B cells can negatively regulate
inflammation in an imiquimod-induced psoriasis model (80, 81).

Given the diverse role of B-cell inflammatory skin disorders,
depleting pro-inflammatory B cell subsets while retaining the
regulatory subset would be a promising means for treating these
diseases, but the identity of Bregs is not fully elucidated. The
question of whether these cells are a specific lineage or if any B
cell subsets can become Bregs under certain conditions should be
answered first. If the latter is the case, the conditions should be
specified (82).

Memory B Cells in the Lower Female
Reproductive Tract
In terms of BRM, the lower FRT is the lungs’ opposite.
Circulating antibodies are unable to enter the tissue or reach
the lower FRT lumen (83, 84). Local immunization, however, can
increase the titer of antibodies in the vaginal lumen, with the
activity of these antibodies being higher than that of their
circulating counterparts (85, 86). Also, antibodies that are
passively transferred to the lumen are capable of controlling
infection (87). These findings imply that antibodies in the lower
FRT lumen are produced locally. This hypothesis is supported by
the presence of PCs in the lower FRT of mice locally immunized
with attenuated HSV type 2. These antibody-producing cells
appeared under the epithelium after secondary challenge with
wild-type viruses and lasted for 10 months. The increment of
IgG-producing cells was more than 10 times higher than the
increment of IgA-producing plasma cells, which explains why
IgG is the dominant antibody isotype in the lower FRT (86).
Similar results were found in a study of HIV-1: the level of
vaginal secretion of anti–HIV-1 antibodies was higher than that
in the serum (85). A study on SIVmac239Dnef vaccination also
showed that PCs appeared after vaccination, supporting the
presence of local antibody production (88).

Notably, tissues that compose the lower FRT do not permit
access by circulating B cells. Immunization with attenuated
HSV-2 is insufficient to establish PCs and MBCs in the tissue.
In the mouse genital herpes model, only after a secondary
challenge with wild-type virus were IgG+ circulating MBCs
recruited, and they contributed to the proper antibody
production (Figure 2C) (87). These cells express high levels of
CD80, PD-L2, and CXCR3. Their migration is mediated by
CXCR3-ligand chemokines induced by IFN-g produced from
CD4 TRM maintained in memory lymphoid clusters, which are
immune clusters composed mainly of CD4 TRMs and
macrophages (89). However, in contrast to the lung, in which
BRMs are embedded for at least 120 days, BRMs do not form in
the lower FRT (87). This discrepancy may result from the
different microenvironments the two organs provide to B cells.
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CONCLUDING REMARKS

In this review, we have briefly described the discovery of BRMs in
the lung. The timeline is short but several studies highlighting its
distinguishing features have been published recently. The rapid
response of BRMs upon secondary infection and their cross-
reactive potential make them a valuable target for vaccine design.
To control this cell population, several questions including their
location, origin, specific markers, and transcriptional regulators
must be answered. The different features of BRMs and their
survival niches in different locations should be identified.
Identifying the origin of BRMs and the cross-talk between
BRMs and the microenvironment will help to determine the
factors that regulate the generation and establishment of BRMs.
Although there is no direct evidence of BRM existence in other
barrier tissues rather than the lung, B cells and ASCs have diverse
properties and play important roles in multiple barrier tissues.
Further investigation is required to elucidate the characteristics
and the residency features of these cells. Understanding the
molecular pathways that regulate the interaction of these cells
Frontiers in Immunology | www.frontiersin.org 814
and their microenvironment could reveal the key factors that
determine tissue-specific immune properties.
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Galectin-9 contributes to the
pathogenesis of atopic
dermatitis via T cell
immunoglobulin mucin-3

Wenxing Su1,2,3†, Ji Zhang1†, Shun Yang1, Minhui Tang2,
Yu Shen4, Cuiping Liu4, Jiang Ji1*,
Marcus Maurer5,6* and Qingqing Jiao2*

1Department of Dermatology, The Second Affiliated Hospital of Soochow University, Su Zhou,
China, 2Department of Dermatology, The First Affiliated Hospital of Soochow University, Suzhou,
China, 3Department of Plastic and Burn Surgery, The Second Affiliated Hospital of Chengdu
Medical College (China National Nuclear Corporation 416 Hospital), Chengdu, China, 4Jiangsu
Institute of Clinical Immunology and Jiangsu Key Laboratory of Clinical Immunology, The First
Affiliated Hospital of Soochow University, Suzhou, China, 5Institute of Allergology, Charité –

Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität
zu Berlin, Berlin, Germany, 6Allergology and Immunology, Fraunhofer Institute for Translational
Medicine and Pharmacology ITMP, Berlin, Germany
Background: Atopic dermatitis (AD), a common type 2 inflammatory disease, is

driven by T helper (TH) 2/TH22polarization and cytokines.Galectin-9 (Gal-9), via

its receptor T cell immunoglobulin- and mucin-domain-containing molecule-

3 (TIM-3), can promote TH2/TH22 immunity. The relevance of this in AD is

largely unclear.

Objectives: To characterize the role of TIM-3 and Gal-9 in the pathogenesis of

AD and underlying mechanisms.

Methods:We assessed the expression of Gal-9 and TIM-3 in 30 AD patients, to

compare them with those of 30 healthy controls (HC) and to explore possible

links with disease features including AD activity (SCORAD), IgE levels, and

circulating eosinophils and B cells. We also determined the effects of Gal-9 on

T cells from the AD patients.

Results: Our AD patients had markedly higher levels of serum Gal-9 and

circulating TIM-3-expressing TH1 and TH17 cells than HC. Gal-9 and TIM-3

were linked to high disease activity, IgE levels, and circulating eosinophils and/

or B cells. The rates of circulating TIM-3-positive CD4+ cells were positively

correlated with rates of TH2/TH22 cells and negatively correlated with rates of

TH1/TH17 cells. Gal-9 inhibited the proliferation and induced the apoptosis of T

cells in patients with AD, especially in those with severe AD.
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Conclusion: Our findings suggest thatGal-9, via TIM-3, contributes to the

pathogenesis of AD by augmenting TH2/TH22 polarization through the

downregulation of TH1/TH17immunity. This makes Gal-9 and TIM-3

interesting to explore further, as possible drivers of disease and targets of

novel AD treatment.
KEYWORDS

T cell immunoglobulin- and mucin-domain-containing molecules-3 (TIM-3),
Galectin-9 (Gal-9), TH1 cells, TH2 cells, TH17 cells, TH22 cells, atopic dermatitis
Introduction

Atopic dermatitis (AD) is a common T-cell mediated skin

inflammatory disease, with abnormal activation of several

subpopulations of T helper (TH)cells (1–3). We and others

have shown that AD, in many patients, is characterized by

excess TH2/TH22 cell activity (4–8). The increased production

of TH2 cytokines such as interleukin (IL)-4 and IL-13 initiates a

complex immune cascade that includes the generation of

allergen-specific IgE-producing B cells and eosinophil

migration to AD skin lesions (9–14), two hallmark features of

AD. Furthermore, TH2 and TH22 cytokines inhibit skin barrier

protein-encoding genes such as filaggrin, loricrin, and involucrin

(15) and the production of antimicrobial peptides, both of which

are held to contribute to the increased susceptibility to skin

infections in patients with AD (16). The key role of TH2/TH22

cytokines in the pathogenesis of AD is supported by the efficacy

of treatment with the anti-IL-4 receptor antibody dupilumab

and an anti-IL-22 antibody (ILV-094) (17–19). As of now, it is

largely unclear what drives TH2/TH22 skewing in AD.

Galectin-9 (Gal-9) is a tandem-repeat type galectin with two

carbohydrate-recognition domains, and it was first identified as

an eosinophil chemoattractant and activation factor (20, 21). It is

universally expressed in a wide range of immune and non-

immune cells and is known to regulate different biological

functions, such as cell adhesion, differentiation, aggregation,

and cell death (22). Galectin-9 is a versatile immunomodulator

that has recently been shown to be associated with the

pathogenesis of AD. For example, the skin of AD patients

exhibits increased levels of Gal-9, especially in the epidermis,

and increased numbers of Gal-9 positive eosinophils and mast

cells (23). Blood levels of Gal-9, in patients with AD, were
TH 2; TIM-3, T cell

molecules-3; Gal-9,

unoglobulin mucin;

; AV/PI, Annexin
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reported to be significantly higher than in healthy controls (HC)

and correlated with disease activity (24).

Gal-9 exerts its biological functions via multiple receptors,

including CD44 and T-cell immunoglobulin and mucin

containing-protein 3 (TIM-3). TIM-3 is expressed by several

populations of immune cells including terminally differentiated

TH1, TH17, and Tc1 lymphocytes as well as NK, monocytes, and

myeloid cells, whereas TH2/TH22 cells do not express TIM-3

(25). Gal-9 signaling via TIM-3 is held to modulate immune

responses and diseases. For example, we have previously shown

upregulation of Gal-9 and TIM-3 in the serum and peripheral

blood mononuclear cells of patients with systemic lupus

erythematosus (SLE), and this was closely related to disease

activity (26). Gal-9, via TIM-3, induces apoptosis in TH1 and

TH17 cells (27, 28), is involved in tolerance induction and T cell

exhaustion (25, 27, 29, 30), and downregulates TH1/TH17-biased

immune responses resulting in TH2 polarization. Whether or not

TIM-3 plays a role in AD is currently unknown.

To address this question, we investigated patients with AD

and HC for their Gal-9 serum levels and rates of circulating

TIM-3-positive cells, we characterized the clinical relevance of

Gal-9 and TIM-3 in AD, and we explored potential mechanisms

that underlie their role in the pathogenesis of AD.
Materials and methods

Study conduct, patients, and control
subjects

Ethical approval from the Ethics Committee of The First

Affiliated Hospital of Soochow University (Suzhou, China, No.

2014809026) was obtained prior to the study. All patients

provided written informed consent in accordance with the

Helsinki Declaration of the World Medical Association. AD

was diagnosed in accordance with the criteria of Hanifin and

Rajka and disease severity was evaluated using the SCORing

Atopic Dermatitis index (SCORAD), with 0–24, 25-50, and

>50 points reflecting mild, moderate, and severe AD,
frontiersin.org
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respectively (31). At the time of the study and for one month

prior, none of the patients were treated with systemic steroids

or other immunosuppressant treatments, or potent topical

steroids, or topical corticosteroids as well as other

medications (e.g. antibiotics, light therapy ect.). Patients with

other allergic conditions, e.g., pollen allergy, food allergy, or

allergic asthma, et al. were excluded. Age-matched healthy

blood donors were recruited as controls, all of whom were

without any allergic conditions (n =30, female: 19; mean age:

10.4 ± 4.7 years).Pediatric allergy specialists and trained field

technicians performed the physical examinations, SCORAD

score assessments, and collected blood samples.

Laboratory investigation including blood routine

examination and IgE levels. Total and specific IgE levels

measured at the central laboratory (Central Labor, The Second

Affiliated Hospital of Soochow University) using Immuno CAP

System (Phadia Laboratory Systems, Thermo Fisher Scientific

Inc, Uppsala, Sweden).
Peripheral blood mononuclear cell
purification

PBMCs were immediately isolated and purified from drawn

blood as previously published (32). Briefly, PBMCs were isolated

from heparinized venous blood on Ficoll-Hypaque gradients

(Pharmacia, Uppsala, Sweden) and re-suspended in Roswell

Park Memorial Institute (RPMI) 1640 medium supplemented

with gentamicin (40mg/mL) and 10% pooled type AB normal

human serum (Sigma-Aldrich).
Flow cytometric analyses

T cells were stained with fluorescent-labeled monoclonal

antibodies against CD-4-FITC (300538, Clone: RPA-T4,

Biolegend), TIM-3-PE (345006, Clone: F38-2E2, Biolegend),

IFN-g-APC (502512, Clone: 4S.B3, Biolegend), IL-17A-APC

(512334, Clone: BL168, Biolegend), IL-4-APC (500812, Clone:

MP4-25D2, Biolegend), and IL-22-APC (366706, Clone:

2G12A41, Biolegend). Intracellular staining was performed as

follows: Surface staining was performed for 20 minutes with CD-

4-FITC and/or TIM-3-PE antibodies on ice. Cells were washed

and resuspended in fixation/permeabilization solution (420801/

421002, Biolegend) and stained with IFN-g-APC, IL-17A-APC,
IL-4-APC, and IL-22-APC. B cells were stained with CD19-

PerCP (392510, Clone: 4G7, Biolegend). Armenian hamster IgG

(400908, Clone: HTK88, Biolegend), mouse IgG1 (400108,

Clone: RTK2071, Biolegend), mouse IgG2a (400246, Clone:

MOPC-173, Biolegend), and mouse IgG 2b (400314, Clone:

MPC-11, Biolegend) were used as isotype controls. Cells were

analyzed with a Coulter Epics XL Flow cytometer (Beckman)

and a Coulter FC 500 ANALYZER (Beckman Coulter); the
Frontiers in Immunology 03
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relevant data were obtained and analyzed using FlowJo

software, version 7.6.
Gal-9, PBMC proliferation, apoptosis,
and cytokine production analysis

For analysis of the Gal-9 level, serum was obtained by

centrifuging peripheral blood samples (PBs) from patients with

AD; the level of expression of Gal-9 in serum was detected using

ELISA kits (AMS Biotechnology, UK), and the PBMC were

separated by density gradient centrifugation. Cells from the

interphase were collected and washed twice with Dulbecco’s PBS.

For analysis of proliferation, apoptosis, cytokine production, freshly

isolated PBMCs (1 × 105 cells/well) were cultured in RPMI 1640

medium (Gibco, USA) containing 10% human AB serum (Gibco)

with Recombinant Gal-9 (0.5µg/mL, 1µg/mL, 2µg/mL, and 4µg/mL,

ICA309Bo01, LMAI Bio) and LEAFTMPurified Anti-Human CD3

Antibody (100 ng/mL, BioLegend) in 96-well plates for 72 hours,

respectively. For analysis of cell proliferation, cell viability was

determined using a Cell Counting Kit-8 (CCK-8) assay kit

(Beyotime Institute of Biotechnology, Beijing, China). Cells were

stained with annexin V-FITC and PI to detect early apoptotic cells

(annexin V positive, PI negative) and late apoptotic cells (annexin V

positive, PI positive) by flow cytometry (BD PharMingen).
Statistical analysis

Statistical analysis and Figures were performed or made

using GraphPad Prism 5 (GraphPad Software, La Jolla, CA,

USA), respectively. The distribution of numerical variables were

analyzed with the Kolmogorov-Smirnov test. Nonparametric

tests were used for not normally distributed data. The relation

between TIM-3 or Gal-9 expression level and clinical and

laboratory characteristics was examined by Spearman’s or

Pearson’s correlation coefficient rank test. Comparison

analyses between the groups were carried out using the c2 test,
the Mann-Whitney U test, and the Friedman test. A P-value ≤

0.05 was considered statistically significant.
Results

Blood levels of Gal-9 and TIM-3-positive
T cells are markedly increased in patients
with AD

A total of 30 AD patients (female: 20; mean age: 11.1 ± 6.0

years; aged 1-3 years, n=2; aged 3-5 years, n=5; aged 5-12 years,

n = 10; aged 12-18 years, n=10; aged 18-20, n=3) were included

after informed consent. As was previously reported, patients

with AD had markedly higher serum levels of Gal-9, as
frontiersin.org
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compared to HC (3,030 ± 208 vs 1,330 ± 90 pg/ml, P<0.0001,

Figure 1A). In addition, AD patients showed significantly

higher rates of TIM-3-positive (TIM-3+) circulating CD4+ T

cells (27.2 ± 2.9%vs 11± 1.1%, P<0.0001, Figure 1B and S1).In

CD4+IFN-g+ cells(TH1 cells), rates of TIM-3 expression were

more than 3-fold higher in AD patients (17.7 ± 3.6% vs 4.9±

0.9%, P=0.003, Figure 1C, and S2), and rates in CD4+ IL-17A+

cells(TH17 cells) were twice as high, as compared to HC (12.5±

2.7%vs 6.1± 1.2%, P=0.033, Figure 1D and S3) (Table 1).

Furthermore, serum Gal-9 levels were strongly and

positively correlated with rates of circulating TIM-3+CD4+ T

cells (r=0.6364, P=0.0002, Figure 2A). AD patients with high

serum levels of Gal-9 had markedly higher rates of TIM-3+CD4+

T cells as compared toAD patients with low serum levels ofGal-9

(32.5 ± 4%vs 19.3± 3.9%, P=0.029, Figure 2B).Vice versa,

patients with high rates of TIM-3+CD4+ T cells had markedly

higher serum levels of Gal-9 than patients with low rates (3,532 ±

253 vs 2,456 ± 273 pg/ml, P=0.0074, Figure 2C).

In AD, high rates of circulating TIM-3+T
cells are linked to high disease activity,
IgE levels, and circulating eosinophils
and B cells

When we assessed these findings for their clinical

relevance, increased circulat ing TIM-3+CD4+T cell

populations in our AD patients were linked to higher disease
Frontiers in Immunology 04
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activity, i.e. SCORAD values (r=0.6060, P=0.0004, Figure 3D),

higher serum levels of total IgE (r =0.3633, P=0.048,

Figure 3A), as well as higher number of circulating blood

eosinophils (r =0.6126, P=0.0003, Figure 3B) and CD19+B

cells (r =0.5120, P=0.0038, Figure 3C). Gal-9 serum levels

showed similar links, albeit less pronounced (Figure 4),

suggesting that TIM-3 and Gal-9 contribute to the course

and pathogenesis of AD.
In AD, rates of circulating TIM-3-positive
CD4+ cells are positively correlated with
rates of TH2/TH22 cells and negatively
correlated with rates of TH1/TH17 cells

Next, we explored the role of TIM-3 and possible

underlying mechanisms in AD. High rates of TIM-3+CD4+T

cells in the blood of AD patients were strongly linked with high

rates of TH22 cells (r=0.7633, P<0.0001, Figure 5A), and, in

addition, with those of TH2 cells (r =0.5481, P<0.01, Figure 5B).

In contrast, the rates of TIM-3+CD4+ T cells in the blood of our

AD patients were negatively correlated, albeit weakly, with

those of TH17 cells (r =-0.4372, P <0.05, Figure 5C), and,

additionally, with those of TH1 cells (r =-0.4652, P <0.01,

Figure 5D). Serum levels of Gal-9, in our AD patients, were

also positively and negatively correlated with circulating TH22

cells (r=0.5904, P <0.001, Figure 6A) and TH17 cells (r
B

C D

A

FIGURE 1

Blood levels of Gal-9 and TIM-3-positive T cells are markedly increased in patients with AD. (A) Serum Gal-9 levels of patients with atopic
dermatitis involved in this study (AD, n = 30), as compared to healthy controls (HC, n = 30), (B) the percentage of CD4+TIM-3+ T cells in whole
blood, the percentage of (C) TIM-3+TH1 cells and (D) TIM-3+TH17 cells in PBMCs of the above patients with AD compared to HC. These results
are presented as means ± SEM.
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TABLE 1 Characteristics of patients with atopic dermatitis in the present study.

Patient Age at onset Total serum Absolute eosinophil count Blood CD19+ B cells

no. Sex (years) SCORAD IgE (U/ml) (/nl) (0,02-0,52) (%) Allergens

1 F 6 17.20 878 1.22 8.49 D.pteronyssinus

2 F 5 19.50 86.12 0.29 6.17 /

3 F 6 20.10 2979 3.76 9.25 /

4 F 5 23.70 199.40 1.87 15.60 Cat and Dog dander

5 F 11 16.20 2026 0.28 14.90 unknown

6 F 5 15.10 617 0.67 6.71 unknown

7 M 19 6.80 1586 1.73 13.80 Dog dander and Birch pollen

8 F 18 11.80 2773 0.02 12.10 C. albicans

9 F 20 12.60 3300 1.50 13.50 /

10 M 10 27.50 1084 3.84 11.80 /

11 F 2 29.20 710 1.90 13.20 /

12 F 13 30.50 2783 4.70 11.90 Birch pollen

13 M 6 32.50 2173 5.01 16.00 /

14 M 8 34.80 580 1.80 15.00 /

15 M 14 35.40 440 5.10 11.40 Peanut and Shrimp

16 M 16 37.20 2069 3.60 7.28 Cat dander

17 F 18 38.50 1099 1.80 13.40 Mugwort pollen

18 M 15 69.50 1945 0.10 9.67 Timothy pollen

19 F 16 70.20 2118 1.19 11.20 /

20 F 4 75.10 738 3.73 6.52 /

21 F 13 78.20 3769 2.03 17.20 D.pteronyssinus

22 M 18 53.00 1737 1.01 7.60 /

23 M 20 54.00 1165 3.04 9.88 Egg white and Cow’s milk

24 M 19 56.50 1198 4.07 15.40 unknown

25 F 6 61.30 2945 0.12 6.39 unknown

26 F 8 68.40 3227 0.10 10.60 D.pteronyssinus

27 F 17 39.20 1175 0.26 7.48 /

28 F 1 40.50 2284 0.13 11.60 /

29 F 8 45.60 2889 0.30 13.60 /

30 F 7 49.00 2076 0.04 12.90 unknown
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F, female; M, male; /, no testing for sensitization to allergens was performed. SCORAD, SCORing Atopic Dermatitis. Determination of suspected allergenswas performed by fluorescence
enzyme immunoassay usingImmunoCAP System® (Sigma-Aldrich, Deisenhofen, Germany).
B CA

FIGURE 2

Correlation between Gal-9 levels and rates of TIM-3+CD4+ T cells. (A) Association between the percentage of TIM-3+CD4+ T cells and serum
Gal-9 levels. For comparisons between groups, we divided the data based on Gal-9 level as low (<2659.13pg/ml), high (≥2659.13pg/m) and the
frequency of TIM-3+ cells on CD4+ T cells as low (<21.9%), high (≥21.9%), respectively. The above cut-off values were 2 times the mean of HC
test results. (B, C) The association of the serum Gal-9 level and the percentage of TIM-3+CD4+ T cells.
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=-0.4647, P<0.01, Figure 6C), respectively, suggesting that Gal-

9, via TIM-3, downregulates TH1/TH17-immunity and drives

TH2/TH22 polarization. However, there were no significant

correlations between Gal-9 serum levels and circulating TH2

cells (Figure 6B) and TH1 cells (Figure 6D).
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Gal-9 inhibition of T cell proliferation
and induction of T cell apoptosis are
linked to AD severity

Finally, we characterized the effects of TIM-3 activation of T cells

by Gal-9 in AD and their clinical relevance. To this end, we
B

C D

A

FIGURE 3

Association between the percentage of TIM-3+CD4+ T cells and total serum IgE (A), circulating eosinophils (B), blood CD19+ B cells (C), and
disease activity as assessed by SCORAD (D) in patients with AD.
B

C D

A

FIGURE 4

Association between the serum Gal-9 levels and total IgE (A), eosinophils (B), CD19+ B cells (C), and SCORAD (D) in patients with AD.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.952338
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Su et al. 10.3389/fimmu.2022.952338
stimulated circulating T cells in PBMC samples of patients withmild,

moderate, or severe AD with Gal-9 and anti-CD3 and then assessed

their proliferation and apoptosis. Gal-9 dose-dependently inhibited

proliferation (Figure 7A) and induced apoptosis (Figure 7B) in
Frontiers in Immunology 07
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PBMCs of AD patients. The inhibition of proliferation and

induction of apoptosis by Gal-9 were highest in PBMCs of

patients with severe AD and lowest in patients with mild AD

(Figures 7A, B), linkingGal-9 effects on T cells to AD disease severity.
B

C D

A

FIGURE 5

The correlation between TIM-3 levels and TH2/TH22 as well as TH1/TH17 cell ratios in AD. Association between the percentage of
TIM-3+CD4+ T cells and the frequency of TH1 cells (A), TH2 cells (B), TH17 cells (C), and TH1 cells (D) in patients with AD.
B

C D

A

FIGURE 6

The correlation between Gal-9 levels and TH2/TH22 as well as TH1/TH17 cell ratios in AD. Association of Gal-9 levels and the percentage of
TIM-3+CD4+ T cells and frequency of TH1 cells (A), TH2 cells (B), TH17 cells (C), and TH22 cells (D) in patients with AD.
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Discussion

This study tiesGal-9 and its receptor, TIM-3, to the

pathogenesis of AD. Both are upregulated in patients in AD

and linked to disease features and activity. Our findings support

the notion that Gal-9, via TIM-3, augments TH2/TH22

polarization and down regulates TH1/TH17immunityvia effects

on CD4+ TH1 and TH17 cells.

That Gal-9 levels are elevated in AD is not a new finding (23,

33). In contrast, what our study shows for the first time, is that levels
Frontiers in Immunology 08
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of CD4+ T cells that express the Gal-9 receptor TIM-3 are also

markedly increased in patients with AD. TIM-3 is specifically

expressed in TH1 and TH17 cells, but not in TH2 (33), and our

AD patients showed triple and double the rate of TIM-3-expressing

TH1 and TH17 cells, respectively, as compared to HC. These findings

go against those reported by Kanai and coworkers, who reported

numbers of TIM-3-expressing CD4+T cells to be similar in 9 AD

patients as compared to HC (34). Possible explanations for this

discrepancy include differences in patient populations, i.e. young

Han Chinese patients in our study vsmiddle-aged Japanese patients,
BA

FIGURE 7

Gal-9 inhibits the proliferation and induces apoptosis in PBMCs from AD patients. (A) CCK-8 assay and (B) Apoptosis assay of PBMCs isolated
from AD patients (Mild AD, n=11; Moderate AD, n=9; Severe AD, n=10) under graded doses of Gal-9 (0, 1.5, 5, 15, and 50 nM) and anti-CD3
(100ng/ml) for 72 h, respectively. These results are presented as means ± SEM. *P <0.05, **P <0.01, ***P <0.001 Mild AD vs. Moderate AD; #P <
0.05, ##P < 0.01, ###P < 0.001 Mild AD vs. Severe AD. zP < 0.05, zzP < 0.01, zzzP < 0.001 Moderate AD vs. Severe AD.
FIGURE 8

Proposed model of the role of Gal-9 and TIM-3 in the pathogenesis of AD. Gal-9, via TIM-3 expressed by TH1/TH17 cells, downregulates their
numbers, by inhibiting proliferation and the induction of apoptosis (1). The reduction of TH1/TH17 immunity leads to TH2/TH22 polarization (2).
Increased TH2/TH22 immunity and cytokines drive type 2 inflammation and disease activity (3) with higher numbers of eosinophils(4) and B cell
class switching to IgE and elevated IgE levels (5). This, in turn, may drive further upregulation of Gal-9 and TIM-3 expression (6). MBP (Major
basic protein), ECP (Eosinophil cationic protein), EPO (Eosinophilperoxidase), SCF (Stem cell factor), VEGF-A (Vascular endothelial growth factor-
A), NGF (Nerve growth factor).
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and the small number of patients studied. In addition to age, factors

such as gender, genetics, and environmental factors also will

influence the immunological profile of patients with AD (35).

Why are Gal-9 levels and rates of TIM-3+CD4+ T cells both

upregulated in AD?Our study does and cannot answer this question

and was not meant to. Further studies are needed to identify the

underlying mechanisms. At least four scenarios could be relevant.

First, elevated Gal-9 could increase the rate of TIM-3+CD4+ T cells.

Second, TIM-3+CD4+ T cells could drive Gal-9 levels. Third, Gal-9

and TIM-3 expression may be upregulated by independent

mechanisms. Fourth, increased Gal-9 and TIM-3 expression may

be driven by the same signals. The first scenario is unlikely since

Gal-9 inhibits the proliferation and induces apoptosis of TIM-3+

cells, as previously reported (36)and demonstrated by our findings

in AD. That TIM-3+cells produce or induce the production of Gal-9,

i.e. scenario two, is also unlikely. CD4+T cells have been reported to

produce Gal-9 (37, 38), but other cells such as keratinocytes and

mast cells are probably much more relevant sources of Gal-9 in AD

(24). As for the third and fourth options, the fact that Gal-9 levels

and rates of TIM-3+CD4+T cells are strongly correlated suggests

that the mechanisms that drive the elevation of both are shared, at

least in part, rather than independent. Since both are not only

correlated with each other, but also linked to disease activity and, to

a lesser extent, AD features such as IgE and blood eosinophils and B

cells, it appears likely that what drives the increase in Gal-9 levels

and rates of TIM-3+CD4+T cells in AD is AD itself. Thus, Gal-9 and

TIM-3 may act as amplifiers of AD pathogenesis. This notion is

supported by the observation that effective treatment of AD can

result in the decline of Gal-9 levels.

Our results clearly show that, regardless of the cause, high

rates of circulating TIM-3+T cells are linked to high AD disease

activity, IgE levels, numbers of circulating eosinophils and B cells,

as well as high rates of TH2/TH22 cells and low rates of TH1/TH17

cells. This was also so for Gal-9, albeit less pronounced. What

explains this, at least in part, is that Gal-9, in our AD patients,

inhibits T cell proliferation and induces T cell apoptosis and that

both effects are linked to AD severity. The vicious feedback loop

suggested by our results looks like this: High levels of Gal-9 and

high levels of TIM-3 expressing TH1/TH17 cells make for strong

inhibition of TH1/TH17 immunity and for TH2/TH22 polarization,

which in turn comes with high levels of disease activity and

inflammatory signals that may drive further Gal-9 and TIM-

3 expressions.

As two target glycoproteins of Gal-9 have been identified,

TIM-3 and CD44. Whether Gal-9 downregulates TH1/TH17

immunity via TIM-3 in AD? First, we observed that both Gal-

9 level and the rate of TIM-3+CD4+ T cells are elevated in AD

patients. Second, Gal-9 levels and rates of TIM-3+CD4+T cells

are strongly correlated in our patients with AD. Third, in our AD

patients, Gal-9 significantly inhibited T cell proliferation and

induced T cell apoptosis. These results indicate that Gal-9 might

via TIM-3 contributes to the inhibition of TH1/TH17 activation

in AD. However, further experimental evidence is still needed,
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such as TIM-3 block experiment. And additional experiments

with galectin inhibitors also need to be performed to clarify the

specific mechanism of Gal-9-mediated suppression in AD.

Our study has several strengths and a few limitations. As for the

former, for example, we assessed Gal-9 and TIM-3 in a sizeable and

well-characterized patient population, together with clinical and

other molecular markers. A major limitation of our study is its

monocentric approach, which calls for confirmation of our results

in a broader and more heterogeneous group of patients. A minor

limitation of our study is that we only investigates the expression of

Gal-9 and TIM-3 in blood samples. This is mainly due to blood

samples are relatively easy to obtain, and blood source indicators

have the potential to be developed into biomarkers in the later stage

for AD. As skin biopsy is not a routine test for patients with AD.

Besides, two studies have been reported that, increased Gal-9

expression in the skin lesions of AD patients (23, 24). Whereas,

comparative studies on Gal-9 and TIM-3 expression in peripheral

blood and lesions of AD are still needed.

Taken together, as summarized in Figure 8, upregulation of

TIM-3/Gal-9 interaction, in AD, comes with downregulation of

TH1/TH17 responses and more pronounced TH2/TH22

immunity. Our data suggest that the TIM-3/Gal-9 pathway

may play an important role in the pathogenesis of AD, given

that levels of TIM-3/Gal-9 are closely associated with disease

activity, total serum IgE levels as well as blood eosinophil and B

cell count. Further research is needed to clarify the molecular

mechanisms that drive increased TIM-3/Gal-9 expression of

TH1/TH17 cells in AD. In addition, future studies should aim to

characterize TIM-3/Gal-9 expression on Tc1, NK, and myeloid

cells as well as their levels in skin lesions of patients in AD.
What is already known about this
topic?
• Atopic dermatitis (AD) is driven by TH2/TH22

polarization and cytokines.

• Galectin-9 (Gal-9) can promote TH2/TH22 immunity,

via its receptor T cell immunoglobulin- and mucin-

domain-containing molecule-3 (TIM-3).
What does this study add?
• Gal-9 and TIM-3 are markedly upregulated in AD and

linked to disease features.

• Gal-9 and TIM-3 levels are positively correlated with

rates of TH2/TH22 cells and negatively correlated with

rates of TH1/TH17 cells.
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Fron
• TIM-3/Gal-9 inhibits the proliferation and induces

apoptosis in AD T cells, and both effects are linked to

disease severity.
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SUPPLEMENTARY FIGURE 1

Representative flow cytometry analysis of TIM-3 expression on CD4+T

cells in whole blood of patients with AD and HC. Cells were initially gated

on CD4+ T cells. Subsequently, the frequency of TIM-3+ cells CD4+ T cells
was analyzed by flow cytometry in the whole blood of AD patients and

HC, respectively.

SUPPLEMENTARY FIGURE 2

Representative flow cytometry analysis of TIM-3 expression on CD4+IFN-

g+ T cells in PBMCs from AD patients and HC. Cells were initially gated on
CD4+ T cells. Then IFN-g+cells were selected out of the gated CD4+ T

cells. Subsequently, the frequency of TIM-3+ cells on CD4+IFN-g+ T cells
was analyzed by flow cytometry in PBMCs from AD patients and

HC, respectively.

SUPPLEMENTARY FIGURE 3

Representative flow cytometry analysis of TIM-3 expression on CD4+IL-

17A+ T cells in PBMCs from AD patients and HC. The cells were initially
gated on CD4+ T cells. Then IL-17A+ cells were selected out of the gated

CD4+ T cells. Subsequently, the frequency of TIM-3+ cells on CD4+IL-
17A+ T cells was analyzed by flow cytometry in PBMCs from AD patients

and HC, respectively.

SUPPLEMENTARY FIGURE 4

Representative flow cytometry analysis of TH22 and TH22 in PBMCs from

AD patients. (A) TH22 cells: Cells were initially gated on CD4+ T cells. Then
IL-22+cells were selected out of the gated CD4+ T cells. (B) TH2: Cells
were initially gated on CD4+ T cells. Then IL-4+cells were selected out of

the gated CD4+ T cells.
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T cell receptors (TCRs) recognize peptide antigens bound to major

histocompatibility complex (MHC) molecules (p/MHC) that are expressed on

cell surfaces; while B cell-derived antibodies (Abs) recognize soluble or cell

surface native antigens of various types (proteins, carbohydrates, etc.). Immune

surveillance by T and B cells thus inspects almost all formats of antigens to

mount adaptive immune responses against cancer cells, infectious organisms

and other foreign insults, while maintaining tolerance to self-tissues. With

contributions from environmental triggers, the development of autoimmune

disease is thought to be due to the expression of MHC risk alleles by antigen-

presenting cells (APCs) presenting self-antigen (autoantigen), breaking through

self-tolerance and activating autoreactive T cells, which orchestrate

downstream pathologic events. Investigating and treating autoimmune

diseases have been challenging, both because of the intrinsic complexity of

these diseases and the need for tools targeting T cell epitopes (autoantigen-

MHC). Naturally occurring TCRs with relatively low (micromolar) affinities to p/

MHC are suboptimal for autoantigen-MHC targeting, whereas the use of

engineered TCRs and their derivatives (e.g., TCR multimers and TCR-

engineered T cells) are limited by unpredictable cross-reactivity. As Abs

generally have nanomolar affinity, recent advances in engineering TCR-like

(TCRL) Abs promise advantages over their TCR counterparts for autoantigen-

MHC targeting. Here, we compare the p/MHC binding by TCRs and TCRL Abs,

review the strategies for generation of TCRL Abs, highlight their application for

identification of autoantigen-presenting APCs, and discuss future directions

and limitations of TCRL Abs as immunotherapy for autoimmune diseases.

KEYWORDS

TCR-like antibodies, autoimmune diseases, autoantigen presentation, immunotherapy,
antigen-specific therapy
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Introduction

To date, over 80 autoimmune diseases have been described

(1), ranging from organ-specific (e.g., pancreas-specific Type 1

diabetes (T1D) and thyroid gland-specific Grave’s disease) to

systemic conditions (e.g., rheumatoid arthritis (RA) and

systemic lupus erythematosus (SLE)). Curative approaches for

autoimmunity are lacking. Despite diverse manifestations and

autoantigen sources, these autoimmune reactions typically share

stages of initiation, propagation, and for some, periods of clinical

remission (2).

Although environmental factors are thought to be required

as triggers for disease, predisposition to autoimmunity most

often reflects inherited factors, with MHC (human leucocyte

antigen (HLA) in humans) alleles conferring the highest risk (3,

4). Typically, class I (MHC-I or HLA-I in humans) genes encode

proteins that present peptides from intracellular antigens to CD8

+ T cells, and class II (MHC-II or HLA-II in humans) genes

encode proteins that present extracellular/endosomal antigens to

CD4+ T lymphocytes (5). A number of particular HLA-II (i.e.,

HLA-DR, -DQ, and -DP) alleles have been identified as critical

risk factors for particular autoimmune diseases. For example,

>90% celiac patients carry HLA-DQA1*05:01/HLA-

DQB1*02:01 (6, 7), and >95% narcoleptic patients carry HLA-

DQB1*06:02 (8, 9). In addition, the HLA-DRB1*04:01/*04:04

genotypes are risk alleles (odds ratios are ∼4.14 and ∼3.17,
respectively) for RA (10) and the HLA-DRB1*15:01-

DRB5*01:01 haplotype (up to 60% among Caucasians) is

linked to multiple sclerosis (MS) (11). How these polymorphic

MHC proteins interact with autoantigens and how autoantigen-

MHC presenting APCs interact with autoreactive T cells are

central questions in the field.

HLA-II+ APCs generate peptide/HLA-II (p/HLA-II)

complexes (12, 13) that interact with cognate TCRs on CD4+

T cells, which orchestrate downstream autoimmune reactions (9,

14–16). Therefore, targeting autoantigen-HLA-II complexes on

the APC surface with soluble TCR or TCRL reagents enables a

specific way to investigate the initiation and propagation of

autoimmunity. Here, we review current approaches and future

directions for generating and using TCRL (also known as TCR

mimic) Abs as research tools and potential therapeutics for

autoimmune diseases.
Comparisons of TCRL Abs
with TCRs

Abs share many similarities with TCRs in terms of diversity

of the receptor repertoire and specificity for antigen recognition

(17, 18). Abs, especially monoclonal Abs (mAbs) are widely used

in research, diagnoses and therapies as specific immune-

targeting agents (19), whereas TCRs have not been widely
Frontiers in Immunology 02
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used (20). This is in large part due to the intrinsic difference

in their antigen binding affinities. TCRs have micromolar

affinities for cognate p/MHCs (21), whereas Abs have

nanomolar affinities and interact with their specific antigens

with >100x higher binding energies (22).

Each TCR contains two polypeptide chains: a and b,
whereas each Ab consists of two heavy (H) and two light (L)

chains. An Ab has two identical antigen-binding fragments (Fab,

an H/L dimer) and a crystallizable fragment (Fc, from the H

chain) that links the two Fab arms (22), yielding increased

avidity for antigen. The Fab H/L heterodimer, like the TCR a/
b heterodimer, uses two sets of complementarity-determining

regions (CDRs) to directly contact the cognate antigen. The

CDR regions are also referred to as the fragment variable (Fv)

region. CDR3 of both Fabs and TCRs are hypervariable, with key

amino acid residues governing antigen binding specificity.

Residues within the germline-encoded CDR1 and CDR2 are

less variable (17). Ab engineering usually focuses on CDRs of

Fab or Fv heavy and/or light chains. To modify both chains

using one gene cassette, a covalent link between the heavy and

light chain fragments can be used, yielding single-chain Fv

(scFv) for example.

As natural p/MHC receptors, TCRs have scientific, diagnostic

and therapeutic potential, particularly if used as tetramers or

higher order multimers to increase avidity (23), or if engineered to

improve target affinity or avidity (23–25). Affinity improved and/

or multimeric TCRs and TCR-engineered T cells have been used

to target and clear tumor cells presenting cancer-related p/MHC-I

(26). However, these reagents have seldom been used for

autoantigen-MHC-II targeting, likely for several reasons. First,

compared to TCRs recognizing foreign or neoantigens, MHC-II/

autoantigen-reactive TCRs tend to have lower affinity, which

typically allows their escape from thymic negative selection but

activity for autoimmune responses (27); this affinity window is a

poor starting point for affinity improvement by TCR engineering.

Second, improved TCR affinity is often compromised by

unpredictable cross-reactivity (28, 29), causing off-target staining

during auto-APC characterization.

To resolve these issues stemming from natural TCRs,

investigators developed TCRL mAbs by combining the high

affinity of a mAb with the capacity to recognize p/MHC

complexes (20). Some TCRL mAbs target intracellular

antigens presented by MHC-I on tumor cells and have been

applied as immunotherapeutics for cancers (30, 31).

Crystallization studies have determined the structures of five

p/MHC-I-specific TCRL mAbs in Fab formats binding to their

p/MHC-I targets (32–35). Although CDR regions of all five

TCRL Fab molecules interact with the peptide region of p/MHC-

I complexes, only two (34) show the canonical docking geometry

of TCRs with p/MHC (20). Thus, the TCR docking geometry

that elicits TCR signaling (36) is not an absolute requirement for

TCRL mAb development. Recently, the co-crystal structure of an

MHC-II-restricted TCRL Fab bound by a gliadin peptide/HLA-
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DQ2.5 (DQA1*05:01/DQB1*02:01) complex has been

determined (37). This Fab has picomolar affinity, adopts the

canonical TCR docking geometry (38), and demonstrates

desirable properties for p/MHC-II staining and specific T cell

inhibition relevant to celiac disease (37).
Generation of TCRL mAbs targeting
p/MHC-II complexes

Naturally occurring Abs rarely mimic TCR specificity for p/

MHC antigen(s); therefore, the TCRL feature of an Ab is

typically obtained through target-driven in vitro selection and/

or Ab engineering. Advances in hybridoma technology (39),

recombinant p/MHC synthesis (40), and binder selection via

phage or yeast display (41, 42) have enabled protein engineering

of TCRL mAb. As other reviews have summarized TCRL mAb

generation (20, 30, 31), we focus on the available approaches

relevant to TCRL mAbs specific for p/MHC-II.

Initially, mice or rats immunized with p/MHC-II complexes

expressed by cells or as soluble, recombinant proteins were used

to produce a candidate B cell pool from which B cell hybridomas

(immortal B cell lines producing candidate mAbs) were

generated. Although TCRL specificity was possible (43, 44),

most often, p/MHC-II-specific enrichment and screening were

required to identify hybridomas producing TCRL mAbs. To

date, >20 p/MHC-II-specific TCRL mAbs have been generated
Frontiers in Immunology 03
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using this approach (20, 45, 46) and about half are relevant to

autoimmune diseases (Table 1). However, challenges persist: 1)

limited B cell clonal candidates with peptide specificities and

more clones with monomorphic MHC specificity due to the

framework differences of MHC-II alleles or MHC-II from

different species (immunization of HLA-transgenic mice (49)

may help enrich for peptide-specific responses, see discussion

below); 2) low throughput of hybridoma production and labor-

intensive screening for p/MHC-II binding; 3) non-human origin

of the Ab itself, limiting their therapeutic use. Notably, a human

B cell hybridoma expressing a TCRL mAb recognizing an HLA-

A2-derived self-peptide bound to HLA-DR1 was generated

using peripheral blood mononuclear cells (PBMC) (59).

To avoid the limitations of hybridoma approaches, phage

display has been applied by several groups to screen Ab libraries

for p/HLA-II binders (49, 52, 56) (Table 1). A typical library

contains 108-1011 phage particles, each displaying an Ab variant

on the surface. Phage display is achieved by covalently fusing Ab

fragments, such as Fab and scFv, with a phage coat protein

through molecular cloning (41, 70). Screening the library for

binders to p/HLA-II relies on a process called “panning” or more

recently “biopanning” (70). This process includes multiple

rounds of negative selection (e.g., against irrelevant p/HLA-II)

and positive selection (e.g., against target p/HLA-II). Designing

Ab libraries in phage allows selection frommouse (49) or human

(37, 52, 53, 56) antibody sources. To enrich for peptide-specific

Abs in the mouse endogenous repertoire prior to construction of
TABLE 1 TCRL mAbs targeting autoimmunity-related p/MHC-II complexes.

mAb Clone Species Format Method Disease/Model T cell antigen/MHC References

B-7-1, B-18-7, C-34-72 Mouse Full-length Ab Hybridoma MS/EAE model MBP87-99/I-A
s (47)

S.1.6 Mouse Full-length Ab Hybridoma MS MBP/DR7 (48)

R.1.D12 Mouse Full-length Ab Hybridoma MS MBP/DRw11 (48)

MK16 Mouse Fab Phage display MS MBP218-231/DR15 (49)

12A Mouse Full-length Ab Hybridoma RA HC gp-39263-275/DR4 (50, 51)

2E4, 1F11, 2C3, 3A3, 3H5 Human Fab Phage display MS MOG35-55/DR15 (52)

G3H8 Human Fab; reconstructed full-length Ab Phage display T1D GAD65555-567/DR4 (52, 53)

mAb287 Mouse Full-length Ab Hybridoma T1D/NOD mice Insulin B9-23/I-A
g7 (54, 55)

FS1 Mouse Full-length Ab Hybridoma Diabetes/NOD mice p63/I-Ag7 (46)

106, 107 Human scFv; reconstructed full-length Ab Phage display Celiac Disease glia-a1a/DQ2.5 (56)

mAb757 Mouse Full-length Ab Hybridoma T1D/NOD mice Insulin B9-23/I-A
g7 (57)

3-5 Mouse Full-length Ab Hybridoma T1D/NOD mice 2.5HIP/I-Ag7 (58)

206, 3.C11 Human scFv; reconstructed full-length Ab Phage Display Celiac Disease glia-a2/DQ2.5 (37)

Selected other TCRL mAbs mentioned in this mini review

Y-Ae Mouse Full-length Ab Hybridoma Self-antigen Ea/I-Ab (43, 44)

UL-5A1 Human Full-length Ab Hybridoma* Self-antigen HLA-A2105-117/DR1 (59)

I-5 Mouse Full-length Ab Hybridoma Self-antigen CLIP/DR3 (60)

D-4, G-32, and G-35 Mouse Full-length Ab Hybridoma Model antigen MCC/I-Ek (61, 62)

3M4E5 and 3M4F4 Human Fab Phage Display Tumor antigen NY-ESO-1/A*0201 (34)

13.4.1 Mouse Fab Phage Display Viral antigen HA255-262/H-2Kk (63)
fr
*Human hybridoma. Note: See (20, 30, 31, 45, 46, 64–69) for a more comprehensive list of other TCRL mAbs, including anti-p/MHC-I reagents.
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a phage-Fab library, the Fugger group immunized HLA-DR15

(DRA*01:01/DRB1*15:01) transgenic mice using DR15

molecules in complex with a myelin basic protein (MBP)

peptide, leveraging the inherent DR15 tolerance of the model

to skew the Ab response towards specificity for the MBP peptide

(49). HLA-transgenic animal immunization followed by

screening yielded a series of TCRL reagent findings, including

the MBP/DR15-restricted TCRL mAb MK16 as mentioned (49),

invariant chain peptide/HLA-DR mAb in another study (60),

and an MHC-I-restricted TCRL mAb in additional work (63).

Human Fab or scFv libraries built and expressed in phage have

been mostly from large naïve repertoires (37, 52, 53, 56), which

likely harbor TCRL candidates, albeit rare. Using stringent phage

panning strategies, the Reiter and the Løset groups isolated DR-

restricted (52, 53) and DQ-restricted (37, 56) human TCRL

mAbs, respectively (Table 1). As these human Fabs or scFvs were

not raised or matured against the target p/HLA-II, their affinities

were suboptimal. Reconstructing a full-size Ab using the TCRL

Fab or scFv increased the binding strength (37, 53). However,

further affinity maturation may be useful. Recently, Frick et al.

suggested a strategy to improve binder affinity via multiple

rounds of phage-Ab library optimization and selection (37).

Combining phage display with yeast display is particularly

useful for developing high affinity TCRL mAbs (71). Since first

developed (42), yeast display technology has evolved, allowing

surface display of monomeric or dimeric protein scaffolds (72,

73). Thus, either scFv or Fab identified from a phage-Ab library

can be affinity matured using the yeast platform. Advantages of

yeast display include 1) eukaryotic gene transcription and

protein expression machinery for appropriate Ab folding; and

2) quantitative flow cytometry-based screening, ensuring high

throughput selection for high-affinity Abs (74, 75).
TCRL mAbs as research tools and
therapeutics for autoimmune
diseases

Characterization of autoantigen-
presenting APCs using TCRL mAbs

Presentation of autoantigen by APCs, especially professional

MHC-II+ APCs, such as dendritic cells (DCs), macrophages

(MФs), and B cells, is critical for CD4+ T cell activation and

differentiation into helper T effector (Teff) or suppressive T

regulatory (Treg) cells during autoimmune responses. An

imbalance of Teff and Treg functions upon autoantigen

recognition is believed to drive the loss of tolerance, with

subsequent autoreactive T cell responses and production of

autoantibodies (2). Therefore, the study of MHC-II+

autoantigen presenting cells (auto-APCs) is fundamental for
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understanding disease pathogenesis and may lead to novel

immunotherapies. Murine models allow direct evaluation

of tissue-resident and circulating APC subsets and enable

genetic modifications of these APCs to assess their

autoreactive functions. For example, using an experimental

autoimmune uveitis (EAU) mouse model, Lipski et al.

analyzed disease-related infiltrating MФs and resident retinal

microglia by tissue immunostaining and cytometry-based

immunophenotyping of isolated cells (76). In another model,

single-cell sequencing was used to characterize tissue-infiltrating

APCs in autoimmune diabetes (77). However, discoveries in

murine models are not easily transferable to human diseases

(78, 79).

Auto-APC identification using human samples is a preferred

approach for clinical relevance. Early studies with human

samples focused on APC enumeration in PBMC and biopsies.

Increased frequency of circulating DCs was implicated in

regulation of antigen presentation by islet cells and activation

of autoreactive CD4+ T cells (80, 81). Recently, a novel approach

was developed using PBMC to identify autoantigen-specific

memory B cells, which are potent MHC-II+ APC (82).

Therapeutic strategies focusing broadly on APC function have

been developed, such as B cell depletion in SLE (83) and

tolerogenic DC adoptive therapy (84). However, the key to the

optimization of APC-directed immunotherapy is identification

of autoantigen specificity.

Due to their high affinity and the ease with which they can be

further engineered, TCRL mAbs have gradually replaced TCR-

derived reagents in research and therapeutic development for

autoimmunity. TCRL MK16, described above, identified

microglia/MФs rather than astrocytes as the predominant

auto-APCs in MS lesions (49). Human cartilage glycoprotein

(HC gp-39, residues 263-275) represents a candidate T cell

autoantigen in RA and can be presented by the RA

susceptibility allele, HLA-DR4 (DRA*01:01/DRB1*04:01) (50,

85). TCRL mAb 12A specific for gp-39 (263-275)/DR4 identified

autoantigen-presenting DCs in synovial tissue of DR4+ patients,

indicating local presentation of gp-39 in inflamed joints (50, 51).

Recently reported are several TCRL mAbs, specific for different

gluten-derived peptide epitopes in complex with the celiac

disease risk allele, HLA-DQ2.5. These complexes are known to

be recognized by CD4+ T cells that drive disease (16, 38). The

TCRL mAbs identified plasma cells, an unexpected APC, as the

most abundant cell type presenting gluten peptides in gut

biopsies from celiac patients (37, 56).

Although murine models cannot directly identify auto-APCs

that function in human diseases, applying TCRL mAbs in these

models may shed mechanistic light on disease pathology. For

example, with specificity for a model antigen, moth cytochrome

c-derived peptide (MCC, residues 95-103) bound by mouse

MHC-II I-Ek, TCRL mAb determined that a minimum of

200–400 p/MHC-II complexes per APC was necessary for T-

cell stimulation (61). This number is at least an order of
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magnitude higher than the minimum requirement of p/MHC-I

complexes for licensing cytolytic activity of human CD8+ T cells

(86, 87).
Therapeutic potential of TCRL mAbs in
autoimmune diseases

TCRL mAbs have not been intensively investigated as

therapeutics for autoimmune diseases, although their pre-

clinical examination in cancers (30, 31) suggests therapeutic

potential. In cancer, TCRL mAbs can target intracellular tumor

antigens presented by cell surface MHC-I molecules, broadening

the original oncoantigen spectrum targeted by Ab-based

therapy. However, a limitation of TCRL mAb in this setting is

low TCRL Ab coverage per cell due to MHC-I downregulation

on tumors (30). In contrast, MHC-II is typically up-regulated on

auto-APCs in autoimmunity. Further, the tight linkage of

particular autoimmune diseases with particular MHC-II alleles

(3) provides defined allelic targets for TCRL mAbs. Although
Frontiers in Immunology 05
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depletion of pathology-driving cells, as in cancer therapy, is a

therapeutic option in autoimmunity, TCRL mAb therapy

typically aims to reestablish healthy immune balance among

cells like CD4+ Teff and Treg cells by non-depleting mechanisms

(Figure 1). Here, we propose a few options for future TCRL

autoimmune therapeutics, based on advances in TCRL mAb

cancer therapies (30, 31) and Ab therapies for autoimmune

diseases (19, 88).

Antibody treatment can induce target cell apoptosis (89) or

(via Ab Fc region) lead to antibody-dependent cell-mediated

cytotoxicity (ADCC), antibody-dependent cellular phagocytosis

(ADCP), or complement-dependent cytotoxicity (CDC) (88, 90)

(Figures 1A, B). For example, anti-CD20 mAbs, FDA-approved

for RA and primary progressive MS (91, 92), appear to work by

depletion of CD20+ B cells, including those that present

autoantigen to T cells and give rise to autoantibody-producing

plasma cells. However, unclear long-term benefits and side

effects (e.g., lack of vaccine Ab response) of broad B cell

elimination are concerns (88). Alternatively, one may consider

engineering a bispecific Ab (BsAb), coupling specificity of anti-
FIGURE 1

Therapeutic potential of TCRL mAbs in autoimmune diseases. TCRL mAbs specific for autoantigen/HLA complexes can elicit therapeutic effects
via depleting (pink) or non-depleting (cyan) mechanisms. (A) TCRL mAbs either block autoantigen presentation or induce apoptosis of target
cells. (B) TCRL mAbs induce Fc-mediated cytotoxicity through various effector mechanisms. (C, F) Bispecific antibodies targeting autoantigen/
HLA complexes and either a surface marker of target cells or a pathogenic-related cytokine; (D) TCRL mAb–toxin conjugates induce auto-APC
depletion by payload effector molecules, including cytokines, toxins or radioactive substances. (E) TCLR mAb-cytokine conjugates guide the
delivery of immunomodulatory cytokines (e.g., IL-10, TGF-b) to auto-APCs for tolerance induction. (G) TCRL scFv fragments are reformatted
into CARs for auto-APC targeting and depletion. (H) CD4+CD25+ TCRL CAR Treg cells suppress Teff function and induce tolerance. (This figure
was created with BioRender.com).
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CD20 and anti-autoantigen p/MHC for targeted depletion of

pathology-related B cells (Figure 1C). In NOD mice, an

autoimmune diabetes model, TCRL mAb alone were reported

to delay diabetes onset, likely due to selective deletion of auto-

APCs (54, 55); detailed mechanism and systemic immune

impact await further investigation.

Non-depleting TCRL mAbs, for example those with low FcR

binding (93, 94), provide additional avenues for therapeutic

interventions. TCRL mAbs can limit autoantigen-MHC

accessibility and reduce activation of cognate T cells

(Figure 1A). This has long been the rationale for evaluating

TCRL mAb specificity and functionality in vitro or in mouse

models (37, 49, 50, 53, 54). Additionally, autoimmune

modulators conjugated to or coupled with TCRL mAbs could

facilitate modulator delivery to autoantigen-MHC-II-enriched

sites of disease. Such modulators include toxins (Figure 1D),

immunoregulatory cytokines, and antibodies that neutralize

effector molecules or regulate effector cell activity (88).

Cytokines like IL-10 and TGF-b that induce tolerogenic DC

(95) with therapeutic efficacy (84) might reestablish tolerance at

sites harboring auto-APCs (Figure 1E). Coupling TCRL mAb to

FDA-approved antibodies that target inflammatory cytokines, as

available for TNF, IL-6 and IL-1b, could localize their

immunosuppressive effect to the sites of pathology (Figure 1F).

TCRL mAbs could also be used in a chimeric antigen receptor

(CAR) format for constructing CAR T cells (Figure 1G). In

diabetic NOD mice, CAR T cells expressing an insulin peptide/

MHC-II TCRL mAb modulated autoimmunity (54, 55). In

addition, re-directing Treg cells to the autoimmune milieu was

shown to suppress autoreactive Teff cells in several models (96).

Thus, it may be fruitful to introduce TCRL CARs into Treg cells

for autoantigen-MHC directed Treg cell activity (Figure 1H).
Potential side effects of TCRL mAb
therapy targeting autoantigen-
MHC complexes

For TCRL mAbs that are on-target (specific for autoantigen-

MHC) and on-tissue (targeting autoimmune lesion), their

primary actions will be to deplete auto-APCs and/or to

modulate the CD4+ T cell-mediated immune responses

(Figure 1). However, adverse effects may arise after target

auto-APC depletion or following immunomodulation. A

potential concern with cell-depleting TCRL mAbs is

autoantigen release from apoptotic auto-APCs, which may

propagate autoimmunity (2). On-target but off-tissue or off-

target binding by TCRL mAbs raises other risks, such as

unpredictable cross-reactive interaction between these Abs and

highly homologous HLA-II allelic proteins or mimetic self-

peptides. For example, unexpected cross-reactivity of affinity-

enhanced TCR reagents targeting cancer-related MAGE A3/
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HLA-A*01 complex was reported to result in fetal cardiotoxicity

(29). Regardless of target specificity, immune activation or

suppression subsequent to TCRL mAb administration may

lead to unpredictable toxicities, such as new autoimmune

reactions or reduced host defense. In general, most safety and

side effect concerns associated with traditional Ab therapies (97,

98) are worthy of attention during TCRL Ab development and

preclinical evaluation. To minimize the chance of causing

adverse effects, efforts in 1) Fc engineering/modification to

control Fc-mediated effector function, 2) advanced affinity

maturation to avoid exaggerated/prolonged mAb binding to

the target, and 3) rigorous immunopharmacology studies in

vitro and in animal models (97), will be crucial at stages prior to

clinical trials.
Future directions

Despite great promise, effectively leveraging modern TCRL

technologies in autoimmune therapy st i l l requires

optimization: First, advanced tools and innovative strategies

for autoantigen discovery are still needed, as highly accurate

identification and characterization of HLA-restricted peptide

antigens are a prerequisite for downstream development of

TCRL agents. Secondly, directed evolution and affinity

maturation for low affinity TCRL candidates are still

challenging, although combinatorial libraries designed using

phage and yeast display platforms offer potential solutions. As

more and more TCR and TCRL mAb structures emerge,

machine learning (99) may offer more guidance on TCRL

engineering. Last, for use in physiologic conditions, protein

scaffolds other than mAbs sometimes possess better properties

including protein stability, reduced immunogenicity, and

increased tissue penetration (90, 100). Lessons learned from

TCRL mAb development can be applied to alternative protein

scaffolds (90) to expand TCRL methodology. Ongoing TCRL

projects are focusing on resolving these issues, in hopes of

opening an era for next generation autoimmune research

and therapies.
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Vector-borne diseases have high morbidity and mortality and are major health

threats worldwide. gdT cells represent a small but essential subpopulation of T

cells. They reside in most human tissues and exert important functions in both

natural and adaptive immune responses. Emerging evidence have shown that

the activation and expansion of gdT cells invoked by pathogens play a

diversified role in the regulation of host-pathogen interactions and disease

progression. A better understanding of such a role for gdT cells may contribute

significantly to developing novel preventative and therapeutic strategies.

Herein, we summarize recent exciting findings in the field, with a focus on

the role of gdT cells in the infection of vector-borne pathogens.

KEYWORDS

gdT cells, vector-borne diseases (VBDs), host immune response, infection, pathogens
Introduction

Vector-borne emerging and re-emerging infectious diseases are major public health

problems worldwide, accounting for more than one sixth of all infectious diseases (1, 2).

They are caused by pathogens carried and transmitted by vectors, such as mosquitos,

ticks, fleas, flies, lice, snails, and triatomine bugs (Figure 1).

WHO recently announced the spread of the vector-borne pathogens, primarily

including parasites, viruses and bacteria (https://www.who.int/zh/news-room/fact-

sheets/detail/vector-borne-diseases). Specifically, the parasites included were lymphatic

filariasis (mosquito), schistosoma (aquatic snail), onchocodium filariasis (black fly) and

trypanosoma (triatomine bug, tsetse fly) and etc; viruses include mosquito-borne

chikungunya fever, dengue, lymphatic filariasis, Rift Valley fever, yellow fever, Zika,

and tick-borne Crimean-Congo hemorrhagic fever virus, borrelia burgdorferi, tick-borne

encephalitis virus, and etc.; and bacteria mainly include Typhoid, Coxella bainiensis, spot

fever rickettsia, and etc. (Figure 1).
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Vector-borne diseases may not be directly disseminated

between humans. Under certain circumstances, they can be

transmitted to different hosts through the bite by pathogen-

infected vectors (3, 4). As emerging infectious diseases

(including vector-borne diseases) have certain relationships

with social and economic development (5), a better

understanding of the emerging and recurrent infectious

diseases, especially how these diseases are transmitted, has

profound significance for both human health and

social development.

In response to pathogen invasion, human immune system

acts as an advanced structural and functional architecture, in

which all components (e.g. immune organs and cells,

inflammatory factors, humoral factors, cytokines and

chemokines) are highly orchestrated towards eliminating the

invaded pathogen (6). During the invasion, both innate and

adaptive immune responses can be triggered. Compared to

innate immunity, adaptive immunity utilizes antigen and

antibody specificity to eliminate the pathogen, thereby

maintaining a steady state of the host and creating

immunological memory for combating potential re-invasion of

the same pathogen.

Different leukocytes, for example B and T cells, are known to

play differential roles during these processes (7). T cells can be

categorized to conventional T cells (abT cells) and

unconventional T cells (gdT cells) according to the types of

their cell surface antigen receptors (8). Although abT and gdT
originate (differentiate) from the same thymic precursors, there

are huge differences of biological functions and structures

between the two types of T cells. The abT cell receptors are
Frontiers in Immunology 02
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expressed by ~95% of the T cells in the spleen, lymph nodes, and

circulation system, and by ~60-70% of T cells in the peripheral

blood. They have a and b chains and exhibit MHC restriction

during the recognition of antigens (9).

On the contrary, the gdT cells express g and d chains of T cell

receptors, account for ~5-15% T cells in the peripheral blood, and

do not have MHC restriction during the recognition of antigens

(10, 11). At the initial stage during the invasion of pathogens, gdT
cells apparently exert innate immunity functions (6), so that they

can rapidly respond by recognizing some common antigen

components expressed by the invading pathogens, including

glycolipids, glycoproteins, and mycobacterial derivatives (12).

Although gdT cells have been known to act primarily in innate

immunity, more and more findings have shown that these cells

also exert fundamental functions in adaptive immune responses,

for instance, by secreting cytokines and presenting antigens.

Therefore, they have been considered as a bridge connecting

innate immunity and adaptive immunity. However, the

biological functions of gdT cells are not entirely dependent on

HLA recognition mechanism.

gdT accounts for only a small part of the T cell population

and is widely distributed in different parts of the human body,

such as skin and intestinal tract (7). Human gdT cells are mainly

categorized by the usage of d chain, whereas mouse gdT cells are

often categorized by the usage of g chains. As such, human gdT
cells can be divided into gd1, gd2, and gd3 T cells (13), with their

distribution and function varying from each other (14). gd1 T

cells are mainly distributed in the mucosal epithelium and play

an important role in cell infection by listeria and

cytomegalovirus. gd2 T cells are relatively high in peripheral
FIGURE 1

Major vector-borne diseases and their vectors. Mosquitos, ticks, fleas, flies, lice, snails, and triatomine bugs are best-characterized vectors that
can carry pathogens for a variety of diseases. The listed are representative rather than a complete list of major vector-borne diseases that are
known to be transmitted by each of the vectors.
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blood gdT cells and show strong immune response to

mycobacterium and influenza virus (15, 16). They destroy

pathogens or infected cells by interacting rapidly with them

(17, 18). gd3 T cells, which account for a small proportion of gdT
cell and are abundant in the liver, act during chronic viral

infection (19).

The common and more harmful vector-borne diseases

include dengue virus, Japanese encephalitis, Lyme disease and

malaria. gdT cells play a key role in the host immune responses

to the invasion of arbo-borne pathogens. More and more studies

have shown that gdT cells are critical for antiviral and

immunomodulatory activities in the first stage of arbo-borne

pathogen infection. They are activated and participate in innate

immune responses by producing cytokines associated with

appropriate T-assisted responses during the early stages of

microbial infection, either intracellular or extracellular (20). In

addition to directly fighting against invading pathogens, gdT
cells can also respond by recruiting other natural immune cells

such as neutrophils and macrophages (21).

Infectious diseases are caused mainly by pathogenic

microorganisms such as bacteria, viruses and parasites. gdT
cells play important roles in responding to the invasion of

common pathogens. Zhao and colleagues have summarized

the role played by gdT cells in host responses to
Frontiers in Immunology 03
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mycobacterium tuberculosis, Listeria monocytogenes, influenza

viruses, HIV, EBV, and HBV (13). However, little is known

about the effects of vectors on host gdT cells. Emerging vector-

borne infectious diseases are an important part of emerging

infectious diseases and have been in an intensified form globally.

Many social and natural factors, including environmental

pollution and modern transportation and logistics, make it

more convenient for vectors to transmit arboreal pathogens.

Traditionally, many vector-borne diseases can be treated by

antibiotics-based therapeutics. However, at least partly due to

the antibiotics abuse in clinic, a variety of pathogens have

developed resistance to common antibiotics, leading to poor

clinical outcomes when using antibiotics to treat infected

patients (22). To address this problem, it is critical for

developing novel therapeutic approaches. In the past decades,

scientists and clinicians have focused on the roles of

conventional T cells-mediated immune responses during the

pathogen infection. Notably, more and more evidence has

uncove red pr ev ious l y -unr ecogn i zed key ro l e s o f

unconventional T cells in this process. Therefore, we feel it is

important to summarize recent progresses in the field

investigating the functions of T cells (Table 1), especially the

unconventional gdT cells, during the host immune responses to

vector-borne pathogens, such as plasmodium, borrelia
TABLE 1 Potential roles for gdT cells in vector-borne diseases.

Disease Pathogen Involved gdT cells and their potential roles References

Chikungunya

(mosquito-borne)

chikungunya

fever virus

gdT cells; likely involved in promoting protective immunity (23–25)

Rift Valley Fever

(mosquito-borne)

Rift Valley

Fever virus

CD11b+ gdT; may be critical for the host responses in sheep (26–28)

Yellow fever

(mosquito-borne)

Yellow fever

virus

gd2T cells; can respond quickly to virus infection and produce IFN-g (29)

Dengue fever

(mosquito-borne)

Dengue fever

virus

gd2-T-cells; may serve as the early source of IFN-g during dengue virus infection and promote the host immune

responses by eliminating the virus-infected cells

(30–37)

Zika fever

(mosquito-borne)

Zika virus gd2T; unclear (38–40)

West Nile fever

(mosquito-borne)

West Nile

virus

gdT cells; may serve as the main source of IFN-g and may also promote DC maturation and CD4+ T cell infiltration (41–45)

Malaria

(mosquito-borne)

plasmodium

parasite

gdT cells, Vg9Vd2 subpopulation, and gd2+ gdT cells; play both anti-pathogen and pathogenic roles (46–60)

Lyme disease

(tick-borne)

borrelia

burgdorferi

gdT cells; may act indirectly through the actions of Toll-like receptors of DCs or monocytes, and may also act to

activate the host acquired immunity during the infection of the pathogen

(61–66)

Tularaemia

(tick-borne)

Francisella

tularensis

gdT cells can be increased and maintained for up tyo a year in the peripheral blood from tularaemia patients (67–69)

Leishmaniasis leishmania gdT cells; a potential role for gdT cells in eliminating the infected parasites, but long-term parasite infection may

lead to gdT lymphoma

(70–73)

South American

trypanosomiasis

Trypanosoma

cruzi

gdT cells; may act by secreting IL-10 to facilitate host responses (74)
fron
tiersin.org

https://doi.org/10.3389/fimmu.2022.965503
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Chen et al. 10.3389/fimmu.2022.965503
burgdorferi, and dengue fever, with a hope to accelerate our

effor t s in deve loping nove l and effec t ive c l in ica l

therapeutic strategies.
Immune responses of the host gdT
cells to mosquito-borne pathogens

Mosquito-borne viruses

Chikungunya
Chikungunya is caused by the infection of chikungunya fever

virus. Its clinical manifestations include headache, fever, and

serious joint pains (23–25). Vectors for chikungunya fever mainly

include Aedes Aegypti and Aedes albopictus (also called Asian

tiger mosquito) (75). Currently, there is no effective drugs or

vaccines available for treating or preventing chikungunya (76).

Different T cell family members play differential roles after the

invasion of chikungunya fever. Rapidly accumulated CD8+ T

cells have been detected in the joints of mice that are acutely

infected by the virus to promote protective immunity, but the

lack of CD8+ T seems to have no effect in preventing

arthrophlogosis of the infected mice (77). On the contrary, the

virus will not be able to induce joint diseases after the exhaustion

of CD4+ T cells (77, 78). Activated CD4+ T cells have been shown

to be implicated in the pathogenesis of arthrosis swell (77–79).

Unconventional gdT cells are also likely involved in

promoting protective immunity in the host against

chikungunya invasion. The numbers of gdT cells in the feet

and lymph nodes are significantly increased after the mice are

infected by chikungunya. Mice defective in gdT cells are more

susceptible to chikungunya infection, exhibiting more severe

foot swell and inflammation in the ankles, as well as increased

oxidative damages, suggesting that gdT cells play critical roles in

the protective immunity during the infection of chikungunya

and subsequent inflammation and tissue damage (80).

Rift Valley Fever
Rift Valley Fever is a type of zoonosis caused by Rift Valley

Fever virus, transmitted mainly by aedes and culex (26).

Although most of infected patients only have minor fever,

headache, and muscle pains, some patients may develop

serious symptoms, including retinopathy, meningoencephalitis

symptoms, and hemorrhagic fever (27). A possible role for gdT
cells in Rift Valley Fever has been reported for infected sheep.

Similar to other ruminants, the sheep’s gdT cells account for a

major population of its peripheral blood mononuclear cells.

When recombinant Rift Valley Fever vaccine has been injected

into the sheep, the percentage of CD11b+ gdT in its peripheral

blood mononuclear cells can be significantly increased,

suggesting that these cells may be critical for the host

responses in respond to the virus infection (28).
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40
Yellow fever virus
Yellow fever virus belongs to the Flaviviridae, transmitted

primarily by aedes and haemophilus mosquito. The symptoms

for yellow fever commonly include fever, headache, jaundice,

muscle pains, and emesia. Some patients may develop more

serious symptoms and die quickly (29). So far, the YF-17D

vaccine for yellow fever is probably one of the most effective

vaccines. When it is inoculated into human hosts, gd2T cells can

respond quickly and produce IFN-g within a week (28).

Dengue fever
Dengue virus is a mosquito-borne pathogen that is

transmitted between hosts by mosquito bite (30). In clinic,

most patients with slight infection will not have complications,

and only a small population of patients will progress into severe

disease states, exhibiting thrombocytopenia, end-organ damage,

and other symptoms (31). critically ill patients commonly

develop secondary infection, which is closely related with

innate immunity (32, 33). In the host immunity, T cells are

critical for eliminating pathogen invasion. In in vitro

experiments, CD8+ abT cells can respond to dengue virus,

and many evidence have shown that these cells play important

roles in the host responses (34, 35).

We know relatively less about the roles for gd T cells in the

dengue virus infection. Eleonora Cimini and colleagues analyzed

peripheral blood mononuclear cells from 15 dengue fever

patients, the results show a significant decrease of gd2-T-cell
frequency and an increase of failure markers. In addition, the

ability of gd2-T-cells to produce IFN-g in response to the

phosphor-antigen was limited (36). Interestingly, primary

human gdT has been shown to be able to kill dengue virus in

vitro, suggesting a potential role for these cells in the anti-dengue

virus process. Further investigations by Chen-Yu Tsai and

colleagues have shown that primary gdT cells serve as the early

source of IFN-g during dengue virus infection and promote the

host immune responses by eliminating the virus-infected cells.

Monocytes can act as helper cells to participate in the virus

infection and enhance the immune reponses in an IL-18-

dependent manner (37).

Zika virus
Similar to dengue virus, Zica virus is primarily transmitted

by infected aedes mosquitoes in tropical and subtropical regions.

The infection of Zica virus can cause Guillain-Barre syndrome,

neuropathy and myelitis. The infection during pregnancy may

lead to the development of microcephaly and other congenital

abnormalities in fetuses and newborns (38), and there has been a

lack of clear treatment strategy. Previous reports have shown

significantly increased Th1, Th2, Th9, and Th17 during acute

Zica infection (39), suggesting that conventional T cells may

dominate the host responses to Zica invasion. However, it

should be noted that Eleonora Cimini and colleagues have also
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specifically detected gd2TCR in Zika virus-infected patients and

a significantly increased expression level of CD3+CD4−CD8− T

cell subsets (40), implying a possible role for unconventional

gdT cells.

West Nile virus
West Nile virus is a type of flavivirus, primarily transmitted

by culex pipiens. Most West Nile virus-infected patients exhibit

no significant symptoms (asymptomatic). However, the

incidence of severe cases increases significantly in

immunocompromised populations (41), and there is no

targeted vaccine for such cases. gdT cells are thought to play

an essential role in the early control of infection. They respond

rapidly by producing large amounts of IFN-g (42). In addition to

serving as the main source of IFN-g, gdT cells may also promote

DC maturation and CD4+ T cell infiltration, as suggested by the

observations that the expression of the dendric CD40, CD80,

CD86 and MHC II molecules, as well as the expression of IL-12,

are lower in gdT-deficient mice compared to those in wild-type

mice. Furthermore, West Nile virus-induced activated gdT cells

can promote the maturation of DC and the initiation and

excitation of CD4+ cells (43) to combat against virus invasion.

Besides of above-mentioned roles, West Nile virus-activated

gdT cells are also critical for limiting the invasion of the virus

into the brain central vervous system, which is essential for

protecting most infected-hosts from developing fatal

encephalitis. Thomas Welte and colleagues have shown that,

compared with young mice, older/aged mice are more

susceptible to virus infection and have slower Vg1+ responses
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but more Vg4+ cells, which in turn produce TNF-a, a factor

implicated in the destruction of the blood-brain barrier. On the

other hand, low Vg4+ cells will allow the virus load in the brain,

whereby reducing the mortality rate of virus-caused severe

encephalitis (44). In the acquired immunity against West Nile

virus infection, gdT cells also actively participate in the host

defense process, and decreased memory responses of CD81+ T

cells likely easily lead to secondary infection of the virus in gdT-
deficient mice (45).
Mosquito-borne parasite

Malaria
Malaria is estimated to affect more than 200 million people

each year (46). It is an arbo-borne disease transmitted by the bite

of mosquito-borne plasmodium parasite. Despite more and

more significant progresses in the control and reduction of

malaria cases in the past decade, it still remains a major threat

to global health (47). After invading into the host, malaria

parasites parasitize their spores in the liver of the host, then

start to grow and eventually formmerozoites to invade red blood

cells, leading to significant clinical symptoms and death (48, 49).

The invasion of plasmodium parasites can cause

complicated immune responses, including humoral and

cellular immunity responses. We have very limited knowledge

about the nature of these responses, especially the cellular

immunity responses. Previously, it has been reported that gdT
cells can be activated by phosphor-antigen of the parasites (50),
FIGURE 2

Roles for gdT cells in malaria parasites infection. At the early stage of infection, gdT cells can be activated and expanded and subsequently secret
IFN-g and other cytotoxic effectors to prevent or attenuate the infection. After the parasites have infected blood cells, activated gdT cells can
also bind to the infected cells, release granzymes and granulysin, and kill the invaded plasmodium parasites and infected red blood cells.
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leading to a quick increase of gdT cells, especially the Vg9Vd2

subpopulation (51, 52) (Figure 2). Such activation and/or

expansion of gdT cells appear to be persistent after the

invasion of the plasmodium parasites and can occur during

secondary infections (53–55). It is already known that the main

cause of the high morbidity and mortality of malaria patients is

the successful survival and exponential proliferation of

plasmodium parasites within the host blood. In the

supernatants from the co-culture of plasmodium parasites, gdT
cells can be specifically expanded and promoted to acquire the

parasite-lysing potential through the up-regulated expression of

IFN-g and other cytotoxic effector proteins.

Subsequently, gdT cells can directly kill plasmodium

parasite-infected red blood cells to prevent or attenuate further

infections (56) (Figure 2). These killer cells can bind to the

infected red blood cells, release granzymes and granulysin to kill

the invaded plasmodium parasites (46). Therefore, a decrease of

the numbers of gdT cells may reversely facilitate the tolerance of

plasmodium parasites. Accordingly, repeated plasmodium

parasites infection may contribute to the development of

clinical immunity in children living in plasmodium parasites-

infested regions, which is characterized by decreased numbers of

patients with clear symptoms, accompanied by increased

numbers of asymptomatic patients (57, 58).

During the repeated plasmodium parasites infections, the

numbers of gd2+ gdT cells will be decreased in the peripheral

blood, along with down-regulated production of cytokines and

up-regulated immune-related factors. As such, repeated

plasmodium parasites infections in the childhood will drive a

progressive loss of the gd2+ gdT cells, leading to increased

immune tolerance of the patients to plasmodium parasites (59).

Notably, besides above-mentioned anti-pathogen roles, gdT
cells may also have a paradoxical role in driving or participating

in the pathogenesis of cerebral malaria, as the incidences of

cerebral malaria complications is lower in infants with lower gdT
reactivity. Julie Ribot and colleagues have shown that the gdT-
deficient mice are more resistant to the development of cerebral

malaria when infected with the plasmodium berghei ANKA

sporozoa. Conversely, the presence of gdT cells can enhance the

production of the plasmodium immune factors at the stage of

liver infection and subsequently promote the inflammation

reactions at the blood infection stage (60). Together, these

findings demonstrate that gdT cells can promote the

pathogenesis of IFN-g-dependent plasmodium infection.
Immune responses of the host gdT cells
to tick-borne pathogens

Borrelia burgdorferi
Compared to mosquito-borne pathogens, there have been

less reports regarding the roles of gdT cells in the infection of

tick-borne pathogens. The Lyme disease is the most frequently
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seen natural epidemic disease in the United States of America

(61) and is transmitted through bites from different hosts by

borrelia burgdorferi-carrying ticks (62). Initial symptoms after

the pathogen invasion in most Lyme disease patients are

characterized by chronic erythema migrans. Several weeks

after the disease onset, some patients may develop

neurological and cardiac problems. After several months, most

patients will have recurrent symptoms such as joint pain or

arthritis (63). Under the stimulation by borbora burgdorferi, an

accumulation can be detected within the inflated joints of the

patients (64), suggesting a possible role for these cells in the host

immune responses to the pathogen. Similarly, proliferated gdT
cells have also been detected in leukocytes from micewith Lyme

disease and in human peripheral blood after tick bites (65).

However, the responses of gdT cells may be indirectly through

the actions of Toll-like receptors of DCs or monocytes, rather

than through a direct mechanism by themselves (64). In

addition, gdT cells may also act to activate the host acquired

immunity during the infection of the pathogen (66).

Tularaemia
The pathogen for tularaemia is Francisella tularensis, a type

of gram-negative bacterium, which can be transmitted by tick

bites from different hosts and cause acute febrile disease (67).

Increased numbers of gdT cells can be detected in the blood from

tularaemia patients (67), possibly attributable to non-specific

phosphor-molecules (68). Further investigations by M. KROCA

and colleagues have revealed that the frequency of gdT cells can

be increased and maintained for up tyo a year in the peripheral

blood from tularaemia patients (69).
Immune responses of the host gdT cells
to other vector-borne diseases

Leishmaniasis
Leishmaniasis is disease caused by the infection of

leishmania and primarily transmitted by the bites from

different hosts by leishmania-infected female diptera insect

phlebotomus fly. Leishmaniasis can be categorized into three

major subtypes, including visceral leishmaniasis, cutaneous

leishmaniasis, and mucocutaneous leishmaniasis. Visceral

leishmaniasis is also called kala-azar (black sickness) and is the

most severe subtype of leishmaniasis. Visceral leishmaniasis

leads to symptoms including irregular fever, weight loss,

hepatosplenomegaly, and anamenia, and may eventually cause

patient death. Cutaneous leishmaniasis is the most popular

subtype and mainly causes skin ulcer. Mucocutaneous

leishmaniasis mainly causes mucous membrane injury within

the oral and nasal cavity. Leishmania belongs to parasites, and

cellular immunity plays a central role in the host responses to its

infection. An accumulation of gdT cells has been detected in the

skin and blood from human hosts infected with leishmania (70,
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71), suggesting a potential role for gdT cells in eliminating the

infected parasites. Consistently, it has been reported that natural

killer cells and gdT cells act through secreting INF-g and TNF-a,
respectively, to exert their functions in the host innate immunity

against the leishmania invasion (72). Compared with healthy

individuals, double negative T cells from about 75% of the

cutaneous leishmaniasis patients express abT cell receptors,

and the rest of the double negative T cells express gdT cell

receptors (73). In addition, dogs severely infected with

leishmania may develop gdT cell lyphoma (71), suggesting that

long-term stimulation by leishmania may lead to malignant

transformation and lyphoma pathogenesis, but the underlying

mechanism has been unclear.

South American trypanosomiasis
South American trypanosomiasis is also known as Chagas’

disease and mainly caused by direct contact with the excrement

or urinate of Trypanosoma cruzi-infected trypanosoma

triatoroae (stink bug). Currently there is no vaccine available

for this disease. During the acute stage, the infected patients

mainly exhibit symptoms including cyanosis swelling on one

side of the skin or eyelid, headache, difficulty in breath, and

muscle pains. At the chronic stage, the parasites parasitize in the

intestine tracts and the heart. Years later after the infection, some

patients may develop heart and digestive tract diseases. By

utilizing gdT cell-deficient mice as a model, a recent report has

shown that the gdT cells may not play a critical role in the

elimination of the parasites at the acute stage of the disease but

may contribute to tissue damage and pathogenesis. In cutaneous

leishmaniasis patients, abT cells and gdT cells secret

inflammatory factors and IL-10, respectively to protect the

hosts against the parasites invasion (74). Moreover, the

frequency of IL-10 expression by gdT cells have been linked to

an improvement of cardiac functions of cutaneous leishmaniasis

patients, suggesting a potentially important role for gdT cells in

the host responses (74).
Conclusions

It is estimated that vector-borne diseases lead to more than

half million of global deaths each year, and some types of vector-

borne diseases, such as chikungunya, leishmaniasis, and

lymphatic filariasis may cause life-long diseases. Vaccines or

other clinically effective drugs for many vector-borne diseases

are still lacking, further worsening the life quality of the infected

patients. As such, understanding better the host-pathogen

interactions is critical for future developing novel and

curative therapeutics.

Compared to unconventional gdT cells, the role for

conventional abT cells in the host responses to vector-borne

pathogens has been more extensively and comprehensively
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studied, for instance Chikungunya virus (81–83), Rift Valley

Fever virus (28), Yellow fever virus (84, 85), Zika virus (86, 87),

West Nile virus (88), Malaria (89, 90), Borrelia burgdorferi (91),

and Leishmaniasis (73, 92). However, as above-reviewed, our

understanding of the role for gdT cells in these processes has

been preliminary and incomplete.

It should be noted that most types of pathogens for vector-

borne diseases are carried and disseminated by mosquitos and

ticks, which transmitted the pathogens through the bites of host

skin (93, 94). Given that gdT cells primarily reside in skin and

mucosal tissues (95), these cells apparently are in the frontline to

respond to pathogen invasion at the earliest stage. Therefore, it is

important and urgent to gain a better understanding of the role

for gdT cells during these precesses.

Previous studies have shown that abT and gdT cells

cooperate with each other and act synergistically towards

eliminating pathogen invasion. As a bridge between innate and

adaptive immunity, gdT cells have been known to play active

roles during the first and secondary infections by pathogens and

may serve as targets for clinical development. However, we still

have limited knowledge about details of how they appropriately

respond to vector-borne pathogen infection to facilitate the host

immune responses.

During the early events of pathogen infection, activated gdT
cells can secret multiple cytokines and inflammatory factors to

induce the acquired immunity (96–98). Further studies in rodent

models of infection of listeria, cytomegalovirus, and plasmodium

parasites have revealed that gdT cells can strongly respond and

quickly expand during secondary infections, suggesting that they

have acquired certain levels of immune memory. These findings

also suggest that the mode by which gdT cells respond to

pathogen infections may be more complicated than

previously appreciated.

Herein, we have reviewed recent findings related to the

potential roles of gdT cells in response to several types of

vector-borne pathogens, especially the mosquito- and tick-

borne pathogens. We expect that these findings, together with

those from more studies to analyze the interactions between gdT
cells and vector-borne pathogens in the future, will provide

useful information for developing clinically relevant

targeted therapeutics.
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cells regulate humoral immunity
in chronic inflammatory lesions
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T follicular helper (Tfh) cells drive humoral immunity by facilitating B cell responses

at the initial and recall phases. Recent studies have indicated the possible

involvement of Tfh cells in the process of chronic inflammation. However, the

functional role of Tfh cells in persistent immune settings remains unclear. Here, we

report that CD4+CD8+ (double-positive, DP; CD3+CD4+CD8+CXCR5hiPD-1hi) Tfh

cells, a subset of germinal-center-type Tfh cells, were abundantly present in the

fibroinflammatory lesions of patients with immunoglobulin G4-related disease

(IgG4-RD). Transcriptome analyses showed that these DP-Tfh cells in the lesions

of IgG4-RD preferentially expressed signature genes characteristic of cytotoxic

CD8+ T cells, such as Eomes, CRTAM, GPR56, and granzymes, in addition to CD70.

Scatter diagram analyses to examine the relationships between tissue-resident

lymphocytes and various clinical parameters revealed that the levels of DP-Tfh

cells were inversely correlated to the levels of serum IgG4 and local IgG4-

expressing (IgG4+) memory B cells (CD19+CD27+IgD-) in patients with IgG4-RD.

Cell culture experiments using autologous tonsillar lymphocytes further suggested

that DP-Tfh cells possess a poor B-cell helper function and instead regulate

memory B cells. Since CD4+ (single positive, SP; CD3+CD4+CD8-CXCR5hiPD-1hi)

Tfh cells differentiated into DP-Tfh cells under stimulation with IL-2 and IL-7 as

assessed by in vitro experiments, these data imply that SP-Tfh cells are a possible

origin of DP-Tfh cells under persistent inflammation. These findings highlight the

potential feedback loop mechanism of Tfh cells in immune tolerance under

chronic inflammatory conditions. Further studies on DP-Tfh cells may facilitate

control of unresolved humoral responses in IgG4-RD pathological inflammation.
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Introduction

CD4+ T helper cells as well as their diverse distinct subsets

drive humoral and cellular immune responses for host defense

under pathological conditions (1). Humoral immunity plays a

cardinal role in immune responses, therefore, the T follicular

helper cells (Tfh cells) which are an effector subset of helper

CD4+ T cells, have received much interest (2, 3). Tfh cells play an

essential role in facilitating germinal center (GC) formation by B

cells to generate high-affinity antibodies as well as long-lived

plasma cells and memory B cells. The antagonistic functions of

the two transcription factors, B-cell lymphoma 6 (Bcl6), which is

a master regulator of Tfh cells, and B lymphocyte-induced

maturation protein 1 (Blimp1), toward each other during the

development of Tfh cells from naïve CD4+ T cells underlie a

mechanism for bimodal cell fate decision-making to specify Tfh

cell identity among effector helper CD4+ T cells (4). The

productive interactions of Tfh and B cells are controlled by the

C-X-C motif chemokine receptor 5 (CXCR5) and sphingosine-1

phosphate receptor 2 (S1PR2) expressed on Tfh cells, which are

responsible for the effective distribution of Tfh cells to tissues to

enable their cognate interactions with B cells (5). After activation

of Tfh cells in lymphoid tissues, a portion of tissue-resident Tfh

cells enters the systemic circulation as memory-like Tfh cells

(Tfh1, Tfh2, and Tfh17 cells) with the functional feature of a

class switch recombination for B-cell activation (6). In these

contexts, studies on Tfh cells and their related lymphocytes can

renew the landscape of Tfh cell-mediated humoral immunity in

immunocompetent settings as well as in the aberrant immune

responses underlying pathological chronic inflammation (7, 8).

Immunoglobulin G4-related disease (IgG4-RD) belongs to a

unique category of chronic immune-mediated diseases, that are

primarily recognized as an archetypal Mikulicz’s disease of

IgG4-related dacryoadenitis and sialadenitis (9, 10). IgG4-RD

occurs in multiple organs including salivary glands, lacrimal

glands, pancreas, thyroid glands, lung, biliary tree, and

retroperitoneum, and is characterized by the presence of high

serum levels of IgG4. In tissue lesions of IgG4-RD, ectopic GCs

are observed as a common histopathological feature in addition

to marked infiltration of IgG4-positive B cells, storiform-pattern

fibrosis, and obliterative phlebitis. While steroid therapy is

effective in the treatment of IgG4-RD, relapse occasionally

occurs after dose tapering or intermittent administration of

glucocorticoids (11). Although the pathogenesis of IgG4-RD

remains controversial, rituximab, an anti-CD20 antibody that

decreases B-cell activity, is generally beneficial for IgG4-RD

treatment, suggesting that B cells are the target cells of steroid

therapy for IgG4-RD (12). In this regard, dysregulation of B-cell-

mediated immunity is thought to be related to the pathogenesis

of IgG4-RD. Accumulating evidence has shown that the tissue

lesions of IgG4-RD preferentially harbor Tfh cells (13, 14);

however, an understanding of the functional role of Tfh cells
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in B-cell regulation and its mechanism of action within the

inflammatory environment of IgG4-RD has been a topic of

debate in recent years.

To address the possible role of Tfh cells in IgG4-RD, we

investigated Tfh cells and other lymphocyte subsets in tissue

lesions of IgG4-RD in this study. Ectopic GCs are commonly

formed in IgG4-RD lesions; therefore, we focused on GC-type

Tfh cells (CD3+CD4+CXCR5hiPD-1hi) and comprehensively

analyzed their transcriptome (15). In comparison with GC-

type Tfh cells in tonsils, GC-type Tfh cells in the inflammatory

les ions of IgG4-RD preferent ia l ly expressed CD8

(CD3+CD4+CD8+CXCR5hiPD-1hi). These cells are thus

referred to as CD4+CD8+ (double-positive; DP) Tfh cells. The

CD8 expression in DP-Tfh cells was lower than that in canonical

CD8+ cytotoxic T cells (CTLs). However, DP-Tfh cells expressed

CTL-related signature genes such as eomesodermin (Eomes),

class I-restricted T cell-associated molecule (CRTAM), G

protein-coupled receptor 56 (GPR56), perforin, and granzymes

(16, 17). Interestingly, clinical studies of DP-Tfh cells in IgG4-

RD and in vitro experiments using autologous lymphocytes of

tonsils have suggested that memory B cells are a potential target

of DP-Tfh cells. Since GC-type Tfh cells in tonsils upregulate

CD8 upon stimulation with IL-2 and IL-7, which are usually

associated with the maintenance of T cell activation and memory

T cells, authentic CD4+ GC-type Tfh cells may be able to

generate DP-Tfh cells to regulate surrounding memory B cells

under inflammatory conditions. By focusing on the functional

and developmental processes of DP-Tfh cells, further studies

could provide a novel modality to resolve undesirable immune

responses in IgG4-RD and other pathological conditions

underlying chronic inflammation.
Materials and methods

Study populations

The study populations are summarized in Supplementary

Table S1. Diagnosis of IgG4-RD was performed in accordance

with widely recognized diagnostic criteria (18). The type of

organ involved in IgG4-RD patients is summarized in

Supplementary Table S2. None of the recruited patients had

received standard glucocorticoid therapy before surgical

resection of submandibular glands (SMGs).
Tissues

Tissues from SMGs and palatine tonsils were obtained from

patients with IgG4-RD and tonsillar hypertrophy for diagnosis

or treatment at Sapporo Medical University Hospital, Japan.

Cells in tissues were analyzed by flow cytometry and in vitro
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studies, and a portion of the tissues was employed to prepare

formalin-fixed paraffin-embedded (FFPE) sections.
Antibodies and other reagents

Antibodies for flow cytometry and immunohistochemistry

as well as reagents used for in vitro studies are summarized in

Supplementary Table S3.
Flow cytometry and cell sorting

Tissues were mechanically disrupted and lymphocytes in

single-cell suspensions were prepared by density-gradient

centrifugation with Lympholyte-H (Cedarlane, Burlington,

Canada). Then, the cells were stained with antibodies to

determine the expression of specific molecules using flow

cytometry. The cells were analyzed or sorted using a FACS

Canto II or FACS Aria II and III (BD Biosciences, New Jersey,

USA) in combination with magnetic bead sorting (Miltenyi

Biotec, North Rhine-Westphalia, Germany). In each

experiment, samples were analyzed for singlet events with

doublet discrimination. The purity of FACS-sorted cells

reached 95% after validation by reanalysis using the FACS

Canto II. The flow cytometry data were analyzed using FACS

DiVA and FlowJo software (BD Biosciences).
Microarray analysis

Total RNA was extracted using TRIzol reagent (Life

Technologies, California, USA) and validated with a 2100

Bioanalyzer (Agilent Technologies, California, USA) and

NanoDrop microvolume spectrophotometer (Thermo Fisher

Scientific, Massachusetts, USA). Then, the RNA was amplified

and labelled with Cy3-CTP to obtain cRNA using a Quick Amp

Labelling kit (Agilent Technologies) and then hybridized to a

microarray plate (SurePrint G3 Human GE 8×60K v3; Agilent

Technologies). The obtained data were analyzed by

bioinformatics software (Riken Genesis, Tokyo, Japan) and

Heatmapper software (The University of Alberta, Alberta,

Canada). Data were further investigated by gene set

enrichment analysis (GSEA v2.0.13 software, UC San Diego,

California, USA) and the iPathwayGuide platform (Advaita

Bioinformatics, Ann Arbor, Michigan, USA).
RT-qPCR analysis

First-strand cDNA was synthesized from total RNA by using

a High-Capacity cDNA Reverse Transcription kit (Thermo

Fisher Scientific). Quantitative PCR analysis was conducted to
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detect gene-specific products using SYBR green and TaqMan

probes with the Light Cycler 96 System (Roche, Basel,

Switzerland). The PCR primer pairs and probes used are

summarized in Supplementary Table S4.
Immunohistochemistry

FFPE tissue sections were immunestained using a standard

protocol to detect IL-7. After staining, signals were visualized with

3,3′-diaminobenzidine and the sections were counterstained with

hematoxylin. For histological differentiation, corresponding tissue

sections were stained with hematoxylin and eosin.
Transmission electron microscopy

Transmission electron microscopy was performed using a

standard protocol. Ultrathin sections were prepared using an

ultramicrotome, mounted on a copper grid, and examined under

a transmission electron microscope (JEM-1400; JEOL,

Tokyo, Japan).
Cell culture experiments

FACS-sorted tonsillar lymphocytes were used for cell culture

experiments in a humidified atmosphere with 5% CO2 at 37°C.

For co-culture of T and B cells, DP-Tfh or SP-Tfh cells were

seeded in a 96-well round-bottom plate with autologous B cells

at a 1:1 ratio (5×104 cells/well) in 200 mL of AIM-V medium

containing 2 mg/mL anti-CD3 mAb, 2 mg/mL anti-CD28 mAb,

and 1 mg/mL CD40L. After incubation for 7 days, the

supernatants were analyzed using an ELISA kit to measure

IgG (R&D Systems, Minneapolis, USA) and a cytotoxicity

LDH assay kit-WST (Dojindo, Tokyo, Japan) to evaluate

cytotoxicity. To examine the secretion of cytotoxic granules,

cells (5 × 104 cells) were seeded in a 96-well plate in 200 mL of

AIM-V medium containing 2 mg/mL anti-CD3 mAb and 2 mg/
mL anti-CD28 mAb, and incubated for 7 days. Subsequently, the

supernatants were analyzed by an ELISA kit for granzyme B

(R&D Systems).
Statistical analyses

Results are expressed as mean ± SEM. Statistical analyses

were performed using Mann–Whitney U test or Spearman’s

rank correlation test, where applicable. In the all analyses, p <

0.05 was considered significant (*p < 0.05, **p < 0.01, ***p <

0.001, ****p < 0.0001), while p > 0.05 was considered non-
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significant (n.s.). The statistical tests were performed using

GraphPad Prism 8 software (GraphPad, San Diego, CA).
Results

Tfh cells in IgG4-RD lesions have a
cytotoxic phenotype

Following a previous study, which showed the abundance of

tissue-resident Tfh cells (CD3+CD4+CXCR5+PD-1+) in SMG

lesions in patients with IgG4-RD (14), we examined the gene

expression profile of GC-type Tfh cells (CD3+CD4+CXCR5hiPD-1hi)

in IgG4-RD lesions and compared it with that of GC-type Tfh

cells in tonsils (Figure 1A). The results indicated that GC-type

Tfh cells in IgG4-RD lesions significantly expressed signature

genes of CTLs, including CD8, Eomes, CRTAM, and

granzymes (Figure 1B and Supplementary Table S5). Further

analysis of transcriptomes showed that other CTL-related

genes, such as GPR56 and FAS ligand, were also upregulated

in GC-type Tfh cells in the SMG lesions of IgG4-RD, whereas

the expression levels of Tfh-related genes, such as IL-21,

CD200, and Pou2af1 (also named as Bob1), in GC-type Tfh

cells of IgG4-RD appeared to be relatively lower than those of

GC-type Tfh cells in tonsils (Figure 1C). GC-type Tfh cells of

IgG4-RD expressed low levels of genes related to Th2, Th17,

and Treg cells, while genes related to Th1 cells and interactions

of T cells with B cells such as CD70 were well expressed in these

cells (19). Validation studies further showed that the GC-type

Tfh cells in IgG4-RD lesions showed higher expression of CD8,

Eomes, CRTAM, and granzymes in comparison with GC-type

Tfh cells in tonsils (Figures 1D, E). Based on the expression

profile of CD8, we here referred to CD8-expressing GC-type

Tfh cells as CD4+CD8+ Tfh cells (double-positive Tfh cells,

DP-Tfh cells ; CD3+CD4+CD8+CXCR5hiPD-1hi) . The

frequency of DP-Tfh cells in IgG4-RD lesions ranged from

1.1% to 62.3% (average, 14.5% of the total GC-type Tfh cells; n

= 31; Figure 1E). DP-Tfh cells were also detected in tonsils and

constituted about 0.1%–11.5% of the total GC-type Tfh cells

(average, 2.3%; n = 71; Figure 1E). CD8 protein expression on

DP-Tfh cells was lower than that on canonical CD8+ CTLs in

both IgG4-RD lesions and tonsils (Figure 1F). Additionally,

CD8a and CD8b were almost equally expressed on DP-Tfh

cells of IgG4-RD lesions and tonsils (data not shown). The

ultrastructural analysis indicated the cytotoxic activity of GC-

type Tfh cells, which possessed electron-dense granules similar

to NK cells, but not of GC-type Tfh cells in tonsils (Figure 1G).

Collectively, these data indicated that DP-Tfh cells with a

possible CTL-like ability are frequently found in the GC-type

Tfh cell population residing in IgG4-RD lesions. To a lesser

extent, such DP-Tfh cells were detected among GC-type Tfh

ce l l s as a minor populat ion in the tons i l s . Most
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CD3+CD8+CXCR5hiPD-1hi cells expressed CD4 in tonsillar

lymphocytes as identified with DP-Tfh cells (Figure 1H).
Clinical significance of DP-Tfh cells in
IgG4-RD

To address the functional role of DP-Tfh cells in the etiology

of IgG4-RD, we analyzed scatter plot diagrams of the levels of

DP-Tfh cells and various clinical parameters in patients with

IgG4-RD. The results showed a marked inverse correlation of

the levels of DP-Tfh cells with the serum IgG4 level (r = -0.4812,

p = 0.0234), and the ratio of serum IgG4 to total IgG (r = -0.5234,

p = 0.0124; Figure 2A). We also obtained similar results from

scatter plot analysis of the level of DP-Tfh cells and the number

of involved organs in IgG4-RD (r = -0.434, p = 0.0436; Figure 2A

and Supplementary Table S2). Since the serum level of IgG4 is

well associated with the disease severity of IgG4-RD (11), these

findings imply a possible role of DP-Tfh cells in regulating a

certain pathway(s) involved in the production of IgG4 in IgG4-

RD. Next, we performed scatter chart analyses to determine the

relationships between DP-Tfh cells and different B-cell subsets in

IgG4-RD lesions (Figure 2B). Interestingly, the results indicated

an inverse correlation between the levels of DP-Tfh cells and

memory B cells (r = -0.5076, p = 0.0159; Figure 2C), which

promptly and effectively induce a humoral recall response as

antigen-experienced B cells (20). Conversely, the levels of other

B-cell subsets, including naïve B cells, GC B cells, plasmablasts,

plasma cells, and regulatory B cells, did not show any correlation

to the level of DP-Tfh cells in the tissue lesions of IgG4-RD. Even

though the SMG lesions of IgG4-RD with the formation of

ectopic lymphoid structures could not fully harbor a memory B

cell pool, IgG4-expressing (IgG4+) memory B cells were fairly

enriched in the lesions (Figures 2E–G). Thus, DP-Tfh cells could

be considered to have a potential role in regulating IgG4

production by controlling IgG4+ memory B cells in IgG4-RD

lesions. While we did not find functional correlations between

DP-Tfh cells and B-cell subsets residing in tonsils (Figure 2D),

the clinical significance of DP-Tfh cells might be observed in

ectopic lymphoid tissues under chronic inflammation rather

than secondary lymphoid tissues.
DP-Tfh cells vary from SP-Tfh cells

To better understand the physiological characteristics of DP-

Tfh cells, we conducted a comparative transcriptome analysis of

tonsillar Tfh cell populations including DP-Tfh cells and single-

positive (SP) GC-type Tfh cells (CD3+CD4+CD8-CXCR5hiPD-

1hi, SP-Tfh cells) used as a control. DP-Tfh cells were detected in

the tonsils of young (e.g., adenoid) and adult patients

(Figures 3A, 5A), whereas SP-Tfh cells were consistently found

in the tonsils irrespective of age. Next, we investigated the
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transcriptomes of pairs of DP-Tfh and SP-Tfh cells derived from

each individual tonsil (Supplementary Table S6). The results

showed that DP-Tfh cells preferentially expressed transcripts

related to CTLs, such as CD8 (CD8A and CD8B), Eomes,
Frontiers in Immunology 05
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CRTAM, FAS ligand (CD95L), granzymes, and SLAMF7,

indicating a possible cytotoxic attribute of DP-Tfh cells

(Figures 3B–E). Th1 cell-related signature genes were also

expressed in DP-Tfh cells, and cytokines, such as interferon
A B
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C

FIGURE 1

Phenotypic characteristics of GC-type Tfh cells in IgG4-RD lesions. (A) Flow cytometry profiles showing selected windows and gating strategy applied
to identify GC-type Tfh cells (CD3+CD4+CXCR5hiPD-1hi) in lymphocytes of tonsils and SMG lesions of IgG4-RD. (B) Volcano plot identifying differentially
expressed genes (p < 0.05) with more than two-fold expression in GC-type Tfh cells localized in SMG lesions of IgG4-RD versus GC-type Tfh cells in
tonsils. The red and blue dots indicate upregulated and downregulated genes, respectively, in the Tfh cells of IgG4-RD. Data were obtained from
microarray analysis of four specimens in each experiment group of IgG4-RD lesions or tonsils. (C) Heat map indicating relative abundances of transcripts
identified in (A) for selected genes regulating helper CD4+ T cells and CTLs. Relative values of gene expression are indicated by color. (D) Relative
expression levels of genes in GC-type Tfh cells in the SMG lesions of IgG4-RD and tonsils as indicated in (C) assessed by RT-qPCR analysis. GAPDH was
used as a control (IgG4-RD, n = 4-6; tonsil, n = 4-6). (E) Representative flow cytometry profiles of the expression of CD8 and granzyme A (GZMA) in
GC-type Tfh cells in SMG lesions of IgG4-RD and tonsils (upper panels). Graphs indicating the expression of CD8 (IgG4-RD, n = 31; tonsil, n = 71) and
GZMA (IgG4-RD, n = 11; tonsil, n = 11) in GC-type Tfh cells as assessed by flow cytometry (lower panels). (F) Expression levels of CD8 on DP-Tfh cells
and CD8+ CTLs in the lymphocytes of IgG4-RD lesions and tonsils (IgG4-RD, n = 8; tonsil, n = 8) assessed by flow cytometry. MFI, mean fluorescence
intensity. (G) Transmission electron microscopy of FACS-sorted T cells, including GC-type Tfh cells from SMG lesions of IgG4-RD and tonsils and NKT
cells (CD3+CD56+) from tonsils. Arrowheads indicate electron-dense granules in the cytosol. Scale bar: 1 mm. (H) DP-Tfh cells enriched in the
CD3+CD8+CXCR5hiPD-1hi T cell population in tonsils. Representative flow cytometry profiles to detect DP-Tfh cells and CD3+CD4-CD8+CXCR5hiPD-1hi

T cells as indicated in the red square (left panels). A graph showing the CD3+CD8+CXCR5hiPD-1hi T cell population preferentially containing DP-Tfh cells
(right). Data from the same tonsils are paired (n = 6). Data in (D–F, H) were analyzed by the Mann–Whitney U test. Data in (G) were obtained from three
independent experiments.
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(IFN)-g and interleukin (IL)-10, were highly expressed in DP-

Tfh cells rather than SP-Tfh cells. Of note, expression profiles of

authentic GC-type Tfh (i.e., SP-Tfh)-related genes, such as IL-4,

IL-21, Bcl6, and Pou2af1, appeared to be shared with DP-Tfh
Frontiers in Immunology 06
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cells (Figures 3C, D). Among genes that regulated the interaction

of T cells with B cells, DP-Tfh cells expressed the costimulatory

molecule CD70 on their cell surface (Figures 3C, F). CD70 is a

binding partner of CD27, which is highly expressed on class-
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FIGURE 2

Clinical association of DP-Tfh cells in IgG4-RD lesions. (A) Scatter plots showing relationships between various clinical parameters associated
with the IgG4-RD disease state and the ratios of DP-Tfh cells (CD3+CD4+CD8+CXCR5hiPD-1hi) to total GC-type Tfh cells
(CD3+CD4+CXCR5hiPD-1hi) in SMG lesions of IgG4-RD (n = 22). (B) Flow cytometry profiles showing selected windows and gating strategies
applied to identify B cells (CD3-CD19+) and B-cell subsets (naïve B cells, CD3-CD19+IgD+CD27-; memory B cells, CD3-CD19+IgD-CD27+; GC B
cells, CD3-CD19+CD20+CD38+; regulatory B cells, CD3-CD19+CD24hiCD27+; plasmablasts, CD3-CD19+CD24-CD38+; plasma cells, CD3-

CD19+CD138+) in SMG lesions of IgG4-RD. (C) Scatter plots indicating the relationships between the ratios of various B-cell subsets and ratios
of DP-Tfh cells to total GC-type Tfh cells in SMG lesions of IgG4-RD (n = 22) measured by flow cytometry. (D) Scatter plots indicating
relationships between the ratios of various B-cell subsets and ratios of DP-Tfh cells to total GC-type Tfh cells in tonsils (n = 14) measured by
flow cytometry. (E) Flow cytometry profiles showing selected windows and gating strategy for IgG4-expressing memory B cells of lymphocytes
of tonsils and SMG lesions of IgG4-RD. (F) Naïve and memory B cells in SMG lesions of IgG4-RD (n = 14) and tonsils (n = 12) analyzed by flow
cytometry. (G) High frequency of memory B cells expressing IgG4 (IgG4+ memory B cells) in SMG lesions of IgG4-RD analyzed by flow
cytometry (IgG4-RD, n = 4; tonsil, n = 4). Data in (A, C, D) were analyzed by the Spearman’s rank correlation test, and data in (F, G) were
studied by the Mann–Whitney U test.
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FIGURE 3

Different characteristics of DP-Tfh and SP-Tfh cells in tonsils. (A) Ratio of DP-Tfh cells (CD3+CD4+CD8+CXCR5hiPD-1hi) to total GC-type Tfh
cells (CD3+CD4+CXCR5hiPD-1hi) and ratio of SP-Tfh cells (CD3+CD4+CD8-CXCR5hiPD-1hi) to total GC-type Tfh cells in young (n = 44) and adult
(n = 27) tonsils assessed by flow cytometry are shown in the left and right, respectively. (B) Volcano plot showing differentially expressed genes
(p < 0.05) with more than two-fold expression in DP-Tfh cells versus SP-Tfh cells (CD3+CD4+CD8-CXCR5hiPD-1hi) derived from tonsils. The red
and blue dots indicate the upregulated and downregulated genes, respectively, in DP-Tfh cells. Data were obtained from microarray analysis of
four tonsil specimens in each experimental group studying DP-Tfh and SP-Tfh cells. (C) Heat map representing the relative abundances of
transcripts identified in (B) for selected genes regulating helper CD4+ T cells and CTLs. Relative values of gene expression are indicated by color.
(D) Relative levels of expression of genes in DP-Tfh and SP-Tfh cells of tonsils (n = 4-7) as indicated in (C) are shown assessed by RT-qPCR
analysis. GAPDH was used as a control. (E) Expression levels of granzyme A (GZMA) and granzyme B (GZMB)-positive cells in the DP-Tfh and
SP-Tfh cells of tonsils (n = 4) as assessed by flow cytometry. (F) Expression level of CD70 in DP-Tfh and SP-Tfh cells of tonsils (n = 4) as
examined by RT-qPCR analysis (left). FACS analysis of CD70 expression in these cells (middle, representative profiles, and right). (G) Expression
level of CCL20 in DP-Tfh and SP-Tfh cells of tonsils as examined by RT-qPCR analysis (tonsil, n = 4; left). Expression of the CCL20 receptor,
CCR6, on memory B cells assessed by flow cytometry (tonsil, n = 5; right). Data in (A, D–G) were analyzed by the Mann–Whitney U test.
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switched B cells such as memory B cells, and the CD27/CD70

interaction usually facilitates memory B cells to differentiate into

antibody-secreting cells (21, 22). CCL20 was highly expressed in

DP-Tfh cells, but not in SP-Tfh cells, which is a ligand for the

CCR6 presented on memory B cells (Figure 3G). These data

suggest the possible engagement of DP-Tfh cells and memory B

cells in lymphoid tissues (23).
DP-Tfh cells exert a regulatory effect on
memory B cells

We next investigated the specific cellular effects of DP-Tfh

cells on B-cell subsets by co-culture experiments using

autologous tonsillar lymphocytes. After T cell activation

using anti-CD3 and anti-CD28 Abs, the SP-Tfh cells

stimulated whole B cells and B-cell subsets, including naïve

B cells and memory B cells, to produce antibodies

(Figure 4A). In contrast to SP-Tfh cells, DP-Tfh cells

induced a weaker antibody-producing effect in whole B cells

and naïve B cells, but not memory B cells (Figure 4A). This

was also indicated by the results from further experiments

that analyzed the ratio of the IgG level from B cells induced by

DP-Tfh cells to that of the IgG level from B cells induced by

SP-Tfh cells (IgG DP-Tfh cells/IgG SP-Tfh cells, Figure 4B).

The corresponding ratios for whole B cells and naïve B cells

were comparable, whereas the ratio for memory B cells was

markedly lower than that of whole and naïve B cells (Figure 4B).

Together with evidence showing that DP-Tfh cells indeed secreted

the cytotoxic molecule of granzyme B after CD3 and CD28

stimulation (Figure 4C), these data suggested that DP-Tfh cells

induced memory B-cell death. After co-culture experiments of

memory B cells and DP-Tfh cells or SP-Tfh cells as a control, a

cytotoxic assay to measure lactate dehydrogenase (LDH) in the

supernatants suggested that the regulatory activities of DP-Tfh cells

strongly influenced memory B-cell fate (Figure 4D). Collectively,

these results imply that DP-Tfh cells can act as an unidentified

regulator of memory B-cell responses.
EomeshiCD70hi DP-Tfh cells in lesions
of IgG4-RD

To further characterize the features of DP-Tfh cells in

lymphoid tissues, we investigated the transcriptomes of DP-

Tfh cells in SMG lesions of IgG4-RD in comparison with those

of DP-Tfh cells in tonsils (Figure 5A). The results showed that

DP-Tfh cells in IgG4-RD lesions expressed more CTL-related

genes, such as Eomes and granzymes, than DP-Tfh cells in

tonsils (Figures 5B–D, Supplementary Table S7). Notably, the

CD70 level of DP-Tfh cells in IgG4-RD lesions was higher than

that of tonsillar DP-Tfh cells (Figure 5E). Genes related to Tfh

cell functions appeared to be expressed in DP-Tfh cells of tonsils
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rather than in DP-Tfh cells of IgG4-RD lesions (Figure 5C). DP-

Tfh cells in tonsils potentially promoted IgG production from B

cells, albeit with lesser ability than SP-Tfh cells, whereas DP-Tfh

cells in IgG4-RD lesions did not (Figures 4A–B, 5F). Considering

the results of GSEA, DP-Tfh cells in IgG4-RD lesions may show

greater cytotoxic capability than DP-Tfh cells in tonsils

(Figure 5G). Taken together, these findings indicate that IgG4-

RD lesions favorably contained DP-Tfh cells expressing Eomes

and CD70 at high levels (EomeshiCD70hi DP-Tfh cells), with a

high capacity to regulate memory B cells. Because Eomes and

CD70 are usually upregulated in activated T cells in

inflammatory tissues (24), they are also considered to be

signature molecules of DP-Tfh cells induced during the

persistent inflammation of IgG4-RD lesions. In our

experiments, we could scarcely detect DP-Tfh cells in

peripheral blood specimens of the participants (data not shown).
SP-Tfh cells are the possible origin of
DP-Tfh cells

Finally, we investigated the possible origin of tissue-resident

DP-Tfh cells. In pathway analysis of upstream genes identified

by transcriptome analyses of GC-type Tfh cells in IgG4-RD

lesions and tonsils (Figures 1B, 3B), a series of cytokines,

including IL-2, IL-1b, CCL2, and IL-10, were postulated to be

possible driver molecules related to the phenotype of lesional

Tfh cells in IgG4-RD (Supplementary Table S8A). Further

pathway analysis of transcriptomes in DP-Tfh cells and SP-

Tfh cells of tonsils revealed that cytokines such as IL-2, IL-7,

TNF, IL-6, IL-3, IL-1b, and IL-10 were involved in the

maintenance of tonsillar DP-Tfh cells (Supplementary Table

S8B). The gene expression profile of DP-Tfh cells was partly

shared by authentic CD4+ Tfh cells (SP-Tfh cells) in tonsils;

therefore, we performed in vitro analysis of tonsillar SP-Tfh cells

under stimulation with different combinations of these

cytokines. The results showed that consecutive stimulation by

IL-2 and IL-7 efficiently induced CD8 expression in SP-Tfh cells

(Figure 6A). IL-7 expression was highly detected in the

inflammatory SMG lesions of IgG4-RD (Figures 6B, C). A

receptor complex specifically bound to IL-7 (IL-7 receptor) is

a heterodimer of the IL-7 receptor a chain (CD127) and

common g chain, which regulates T cell activation (25). We

examined CD127 expression in DP-Tfh and SP-Tfh cells and

found that the level of CD127+ Tfh cells in IgG4-RD lesions was

relatively lower than that in tonsils (Figure 6D). However, we

observed no significant differences in the mean fluorescent

intensity (MFI) of CD127 (Figure 6D). Despite the primary

structural differences in tonsils and inflamed SMGs of IgG4-RD

lesions, which are secondary and tertiary lymphoid tissues,

respectively, the lesions in IgG4-RD and tonsils seemed to

contain CD127+ Tfh cells ready to receive IL-7. Therefore, SP-

Tfh cells may be a potential origin of DP-Tfh cells in IgG4-RD
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lesions and tonsils. On the bases of the data obtained in this

study, we proposed a model for DP-Tfh cells in the regulation of

B cells in IgG4-RD lesions (Figure 7).
Discussion

In this study, we describe CD4+CD8+ DP-Tfh cells that were

defined as GC-type Tfh cells with possible cytotoxic activity to

regulate the function of memory B cells in chronic inflammatory

lesions. This follows the findings of a previous study that showed

the abundance of tissue-resident Tfh cells in IgG4-RD lesions

(13). Our findings are probably consistent with recent reports,
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which suggested the active involvement of cytotoxic CD4+ T

cells in the pathogenesis of IgG4-RD (26, 27). Our study also

suggests a potential transition of SP-Tfh cells to DP-Tfh cells

under stimulation by the common g-chain cytokines of IL-2 and

IL-7. In line with this, GC-type Tfh cells, especially under

persistent inflammation, coordinate humoral immunity by

instructing a wider range of B cells than previously thought.

IL-2 primes the activation of effector T cells and induces the

expression of CD127 to enable T cells to bind to IL-7 for the

formation of the memory T cell pool (25, 28). In addition to their

general importance in the functional modulation of effector T

cells, IL-2 and IL-7 have well-recognized roles in influencing the

fate of Tfh cells (29–31). IL-2 controls the gene expression

profile of Tfh cells during their initial development, whereas
A

B DC

FIGURE 4

Functional effects of DP-Tfh cells on B-cell regulation. (A) Representative graphs of co-culture experiments to examine antibody production
using autologous Tfh and B cells sorted from tonsil specimens (n = 3-5). DP-Tfh cells (CD3+CD4+CD8+CXCR5hiPD-1hi) or SP-Tfh cells
CD3+CD4+CD8-CXCR5hiPD-1hi) were co-cultured with whole B cells (CD3-CD19+), naïve B cells (CD3-CD19+IgD+CD27-), or memory B cells
(CD3-CD19+IgD-CD27+) under the stimulation of CD3, CD28, and CD40L. After incubating cells for 7 days, IgG levels in the supernatants were
analyzed by ELISA. (B) Effects of DP-Tfh cells on B cells investigated by co-culture experiments as demonstrated in (A). Data indicate ratios of
IgG levels from whole B cells, naïve B cells, or memory B cells in the presence of DP-Tfh cells to those in the presence of SP-Tfh cells (IgG DP-
Tfh/IgG SP-Tfh). Data were obtained from three to five independent experiments using autologous tonsillar lymphocytes. (C) Increased capacity
of DP-Tfh cells to secrete granzyme B (GZMB) under CD3 and CD28 stimulation in comparison with SP-Tfh cells of tonsils. After incubating
cells for 7 days, GZMB levels in culture supernatants were analyzed by ELISA. Data were obtained from four independent experiments using
autologous tonsillar lymphocytes. (D) Cytotoxicity of DP-Tfh cells for memory B cells in comparison with SP-Tfh cells. Co-culture supernatants
of memory B cells and DP-Tfh cells or SP-Tfh cells derived from autologous tonsillar lymphocytes were analyzed by a cytotoxicity LDH/WST
assay. The absorbance values indicating the cytotoxic activities of DP-Tfh and SP-Tfh cells in each experiment (depicted as a closed circle and
rectangle, respectively) are connected by a line to evaluate their differences. Data were obtained from six independent experiments. Statistical
significance in (B–D) was determined by the Mann–Whitney U test.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.941385
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Murayama et al. 10.3389/fimmu.2022.941385
IL-7 signaling represses the functional expression of Bcl6 and

induces cell surface expression of CD70 and PD-1 for efficient

interactions between Tfh and B cells. In our findings, the ratio of

DP-Tfh cells expressing CD127 in IgG4-RD lesions was
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relatively lower than that in tonsils. This is probably due to

the difference in the primary structures of tonsils and IgG4-RD

lesions, which constitute secondary and tertiary lymphoid

tissues, respectively. Thus, it is reasonable to consider the
B

C

D

E

F G

A

FIGURE 5

Features of DP-Tfh cells in inflammatory lesions of IgG4-RD. (A) Representative flow cytometry profiles of DP-Tfh cells and SP-Tfh cells in GC-
type Tfh cells in the lymphocytes of tonsils and SMG lesions of IgG4-RD. (B) Volcano plot showing differentially expressed genes (p < 0.05) with
more than two-fold expression in DP-Tfh cells localized in SMG lesions of IgG4-RD versus those in tonsils. Red and blue dots indicate the
upregulated and downregulated genes, respectively, in the DP-Tfh cells of IgG4-RD. Data were obtained from microarray analysis of four
specimens in each experimental group. (C) Heat map representing the relative abundances of transcripts identified in (B) for selected genes
involved in the functioning and regulation of helper CD4+ T cells and CTLs. Relative values of gene expression are indicated by color. (D)
Expression of CTL-related molecules in DP-Tfh cells of SMG lesions of IgG4-RD (n = 8) and tonsils (n = 4) as assessed by flow cytometry. (E)
Relative levels of gene expression in DP-Tfh cells of SMG lesions of IgG4-RD (n = 4) and tonsils (n = 4) as indicated in (B) analyzed by RT-qPCR.
GAPDH was used as a control. (F) Lower B-cell helper capacity of DP-Tfh cells in IgG4-RD lesions than in tonsils. The levels of IgG and
granzyme B (GZMB) in supernatants from co-cultures of DP-Tfh cells with autologous whole B cells (CD3-CD19+) under stimulation of CD3 and
CD28 were analyzed by ELISA on day 7 after initial incubation (IgG4-RD, n = 6; tonsil, n = 6). (G) Gene set enrichment analysis (GSEA) of genes
identified in (B) showing transcriptomes of DP-Tfh cells. Results from gene sets associated with cytotoxic T cells or Tfh cells are shown on the
left and right, respectively. Data in (D–F) were analyzed by the Mann–Whitney U test.
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B C

D

A

FIGURE 6

SP-Tfh cells are the possible origin of DP-Tfh cells. (A) Upregulation of CD8 on SP-Tfh cells (CD3+CD4+CD8-CXCR5hiPD-1hi) under the
stimulation of IL-2 and IL-7. SP-Tfh cells (5×104 cells/well) from tonsils (n = 4) were incubated in 200 mL of AIM-V medium with or without 2
mg/mL anti-CD3 and 2 mg/mL anti-CD28 mAbs. Under the stimulation of CD3 and CD28, 20 ng/mL IL-2 and 20 ng/mL IL-7 were added once
on day 0 or twice on days 0 and 3. On day 7, cells were analyzed by flow cytometry. Representative flow cytometry profiles are shown on the
left. Data obtained from four independent experiments are summarized in a graph on the right. (B) Histological examination of IL-7 expression.
Immunohistochemistry of IL-7 in SMG lesions of IgG4-RD, normal SMG tissues, and tonsils are shown in the upper panels. The HE-stained
images and isotype controls for immunohistochemistry in the corresponding tissue areas are shown in the middle and lower panels,
respectively. Scale bar: 100 mm. (C) Relative expression levels of IL-7 in SMG lesions of IgG4-RD (n = 4) and normal SMG (n = 4) assessed by
RT-qPCR analysis. GAPDH was used as a control. (D) Representative flow cytometry profiles showing the presence of CD127 on GC-type Tfh
cells (CD3+CD4+CXCR5hiPD-1hi) in IgG4-RD lesions of SMGs and tonsils (left). The percentages of CD127+ GC-type Tfh cells among the total
GC-type Tfh cells in IgG4-RD lesions and tonsils (right). Values of the mean fluorescence intensity (MFI) of CD127 on GC-type Tfh cells in the
two groups are also shown (IgG4-RD, n = 11; tonsil, n = 11). Data in (A, C, D) were analyzed by the Mann–Whitney U test.
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transition of excess SP-Tfh cells to DP-Tfh cells in response to

aberrant IL-7 and IL-2 concentrations in inflammatory lesions

(32). According to our study, the inflammatory milieu in tertiary

lymphoid tissues is suggested to allow the generation of DP-Tfh

cells. Thus, in such immune settings, adaptive immunity

depending on memory B cells may be regulated by DP-Tfh

cells. Since DP-Tfh cells efficiently target IgG4+ memory B cells

within the tertiary lymphoid lesions of IgG4-RD, these cells

might have a unique capability to regulate the resolution of

pathological immune responses. This regulatory mechanism is

postulated to be a previously unidentified mechanism of

immune tolerance mediated by Tfh cells. In instances where

IgG4+ memory B cells reside in the lymph nodes, spleen and/or

bone marrow of the patients with IgG4-RD, the regulatory

function of DP-Tfh cells in memory B cells might be inhibited

due to the lack of access of DP-Tfh cells to these tissues. This

probably leads to high levels of serum IgG4 in patients with the

IgG4-RD in comparison with healthy subjects.

Tfh cells expressing perforin and granzymes, which

characterize a cytotoxic function (cytotoxic Tfh cells), are

frequently detected in hospitalized patients with coronavirus

disease 2019 (33, 34). Notably, cytotoxic Tfh cells are negatively

correlated with the serum level of antibodies bound to the SARS-

CoV-2 spike protein, implying the cardinal role of cytotoxic Tfh
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cells in the production of antigen-specific antibodies (33).

Cytotoxic Tfh cells are further suggested to target GC B cells

within tissues of chronic tonsillitis caused by periodic infection

with group A Streptococcus (35). While the expression level of

CD8 in such cytotoxic Tfh cells remains unclear, memory B cells

may be regulated by cytotoxic Tfh cells, such as DP-Tfh cells,

during viral and bacterial infections. In our study,

EomeshiCD70hi DP-Tfh cells in IgG4-RD lesions potentially

showed a robust cytotoxic function in comparison with

tonsillar Eomes+ DP-Tfh cells. Thus, the cell lytic activities of

DP-Tfh cells appear to be associated with their expression level

of Eomes, which is a homologous T-box transcription factor T-

bet and establishes a cytotoxic effector profile of natural killer

cells and CD8+ CTLs (16, 36). A recent study focusing on

Eomes+CD4+ CTLs has expanded and documented their roles

in anti-tumor immunity and pathological responses in inflamed

conditions such as rheumatoid arthritis and multiple sclerosis

(24, 37). Investigations focusing on the mechanisms regulating

the expression of Eomes in DP-Tfh cells may improve our

understanding of the functional significance of DP-Tfh cells in

various immune settings. DP-Tfh cells of mice immunized with

ovalbumin did not seem to be associated with the MHC Class I

tetramer specific to ovalbumin, which could certainly bind to

CD8 cytotoxic T cells (unpublished observation), suggesting that
FIGURE 7

Model of DP-Tfh cell function in chronic inflammatory lesions of IgG4-RD. SHM, somatic hypermutation. CSR, class switch recombination.
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the involvement of MHC Class I molecules in DP-Tfh cell

function may be minimal.

Polarized Tfh-cell subsets are identified among blood

lymphocytes probably affected by the surrounding cytokine

milieu, which influences the differentiation of the helper CD4+

T cells to distinct subsets (38). Conversely, the DP-Tfh cells are

detected in tissues, but not in blood specimens, implying that

their primary function may be limited to the local lymphoid

tissues where they are produced. In our study of tonsillar

lymphocytes, the percentages of cells expressing cytotoxic

molecules like granzymes and perforin in non-Tfh DP cells

were significantly lower than those of DP-Tfh cells

(unpublished observation), further implying the cytotoxic

capability of DP-Tfh cells in tissues. Peripheral extrathymic

CD4+CD8+ T cells have been well studied across species (39).

Human CD4+CD8+ T cells have been suggested to show an

anti-tumor capacity that is hampered by the major

histocompatibility complex molecules in tumor tissues (40).

CD4+CD8+ T cells are known to include a subpopulation of

cells sensitive to IL-2 and IL-7 with cell lytic enzymes, as seen

in healthy subjects, thereby supporting the critical role of these

cytokines in the regulation of DP-Tfh cells (41). CD8+

follicular T cells (CXCR5+PD-1+) are a subset of CD8+ T

cells in mice and regulate GC B cells (42). A similar

phenotype of CD8+ follicular T cells has also been reported

in human blood and suggested to be involved in the

pathogenesis of viral hepatitis and Sjögren’s syndrome (43,

44). Currently, the relationship between DP-Tfh and CD8+

follicular T cells remains elusive. Nonetheless, studies focusing

on the diversity and plasticity of Tfh cells are warranted to

illustrate the functional properties of Tfh cells in secondary and

tertiary lymphoid tissues as well as in peripheral blood and

thereby to improve our understanding of the pathogenesis of

immune-related disorders.

In summary, we report DP-Tfh cells as a heterogeneous

subpopulation of GC-type Tfh cells that are enriched in IgG4-

RD lesions. DP-Tfh cells may regulate IgG4 production of

memory B cells in IgG4-RD, and DP-Tfh cells are a potential

target to improve the pathological immune settings of IgG4-RD.

As an active interaction of GC B cells and SP-Tfh cells (CD4+ GC-

Tfh cells) proceeds, further interaction of memory B cells and DP-

Tfh cells may rationally lead to efficient regulation of humoral

responses, especially in inflammatory conditions. This hypothesis

may be further supported by evidence suggesting a similar

expression level of CXCR4 orchestrating GC reactions in SP-Tfh

and DP-Tfh cells of tonsils (unpublished observation).

Considering the importance of Tfh cells in protective immune

responses, future research based on the present study could also

provide an efficient modality to induce vaccine-specific antibodies

for preventing infections caused by harmful pathogens.
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Priming of T cells by antigen presenting cells (APCs) is essential for T cell fate

decisions, enabling T cells to migrate to specific tissues to exert their effector

functions. Previously, these interactions were mainly explored using blood-

derived cells or animal models. With great advances in single cell RNA-

sequencing techniques enabling analysis of tissue-derived cells, it has

become clear that subsets of APCs are responsible for priming and

modulating heterogeneous T cell effector responses in different tissues. This

composition of APCs and T cells in tissues is essential for maintaining

homeostasis and is known to be skewed in infection and inflammation,

leading to pathological T cell responses. This review highlights the

commonalities and differences of T cell priming and subsequent effector

function in multiple barrier tissues such as the skin, intestine and female

reproductive tract. Further, we provide an overview of how this process is

altered during tissue-specific infections which are known to cause chronic

inflammation and how this knowledge could be harnessed to modify T cell

responses in barrier tissue.

KEYWORDS

skin, T cells, antigen-presenting cells, female reproductive tract, tissue-resident T
cells, intestine, barrier tissue
Introduction

T cells are highly specialized executors of immune responses against pathogens and

play important roles in maintaining tissue homeostasis. During infection or acute

and chronic inflammatory responses, effector T cells (Teff) can infiltrate from the

periphery and establish residency and subsequent memory, involving a switch in

transcriptional program using different transcription factors and signaling hubs (1–6).

This explains why the majority of the T cell population found in tissues are memory T cells
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(7), subdivided into central memory T (Tcm), effector memory T

(Tem), and resident memory T (Trm) cells. Tem and Tcm were first

identified in the peripheral blood (8). Tem were found to be the

predominant subset in non-lymphoid tissue while their Tcm

counterparts are mainly found in secondary lymphoid organs

(9–17). Later, a long-lived memory population with little to no

recirculatory capacity was identified and termed Trm (12–18).

Another prevalent T cell subset in tissues are regulatory T cells

(Tregs), particularly important for maintaining a tolerogenic tissue

environment, preventing excessive immune responses to harmless

antigens often found at barrier tissues [reviewed in (19, 20)]. Tregs

usually refer to CD4+ T cells with the unique ability to suppress

pro-inflammatory effector functions in other T cells as well as

contribute to tissue homeostasis (21, 22). Tissue Tregs can also be

subdivided by the central and effector memory cell classification

based on the expression of CD44 and CD62L (23–25), with central

Tregs being able to recirculate through secondary lymphoid tissues,

while effector Tregs exhibit a more resident phenotype,

representing the predominant Treg population in nonlymphoid

tissues (23). Non-conventional T cells can also be found in barrier
Frontiers in Immunology 02
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tissues. An example of this are gdT cells, which are mainly found

in epithelial tissues and are particularly abundant in the intestine

(26). In homeostatic conditions, gdT cells have been described to

exhibit a pre-activated memory phenotype (27), being able to

exert direct cytotoxic functions (28, 29). As for other T cell subsets

in tissues, roles in wound healing and tissue homeostasis have also

been attributed to gdT cells (30, 31). A broad overview of T cell

subsets found in tissues and surface markers most commonly

associated with each subset is depicted in Figure 1. It should be

noted that these markers are not absolute and their expression is

often changed in different tissues. However, these figures aim to

give a broad overview over the most common and widely

distributed markers of each subset and highlight commonalities

and differences between mice and humans.

Priming by antigen presenting cells (APCs) is crucial for T

cells to exert their correct functions and home to tissues. For

example, the presence and function of Tregs in tissue has been

directly linked to the presence of dendritic cells (DCs) (32).

Tissue-patrolling DCs are of an immature phenotype and

internalize antigens by endocytosis or phagocytosis, which are
FIGURE 1

T cell subsets and commonly associated markers in mice and humans found in barrier tissues discussed in this review. Created with BioRender.com.
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loaded to major histocompatibility complex class II (MHC-II)

for CD4 T cell presentation via endosomal pathways (33).

However, DCs are also efficient in cross-presenting

extracellular antigens via MHC-I to CD8 T cells, by which

exact mechanism is still under debate (33, 34). Apart from

antigen uptake, DCs need to receive additional stimuli in

order to mature and upregulate CCR7, by which they interact

with the ligands CCL19 and CCL21 guiding them to the lymph

nodes to meet naïve T cells (35, 36). Under homeostatic

conditions, DCs mainly collect non-hazardous antigens from

food or commensal bacteria in the intestinal tract and skin or

paternal antigens of fetal cells within the female genital tract

during pregnancy (37–39). On the other hand, DCs are highly

sensitive against pathogen-associated molecular patterns

(PAMPs), which they detect via their toll-like receptors or C-

type lectin receptors and they sense cytokines produced by other

cell types during infection (33, 40). Mature DCs upregulate

molecules necessary for co-stimulation of T cells like CD86 and

CD80 (41).

Classically, DCs are divided into several subclasses:

conventional DCs (cDCs), monocyte-derived DCs (mo-DCs)

and plasmacytoid DCs (pDCs) (42). Langerhans cells were

previously also classified as DC population; however, they

developmentally originate from yolk sac progenitors, which

identifies them as member of the tissue-resident macrophage

family. In contrast to macrophages, they can efficiently present

antigens and possess a migration potential to the lymph node

(43). Therefore, they are often mentioned along with other DC

subsets inducing T cell responses. Conventional DCs are

subdivided into type 1 classical DC (cDC1), which are known

to cross-present antigens via MHC-I to CD8 T cells but also

polarize CD4 T cells towards Th1, while type 2 classical DCs

(cDC2) mainly present antigens viaMHC-II to CD4 T cells. The

cDC1 subset in mice is CD11blo and shows CD8a and CD103 on

their surface, while human cDC1 express and XCR1 and CD141

(33). cDC2 express CD172a and depending on murine or human

origin they highly express CD11b or CD1c, respectively (33).

Especially cDC2 comprises a very heterogenous immune cell

population which can acquire quite contrary immune functions

depending on the context. For examples, in human there exists a

cDC2 subset which expresses at the same time monocyte-related

genes like CD163 and CD14, which was termed DC3 (44, 45).

LCs are a population patrolling the epidermis as well as the

epithelial layer of the vagina and cervix and are characterized by

expression of a specific lectin receptor, langerin (CD207) and

CD1a (46). Monocytes express CD14 and can be differentiated in

vitro to monocyte-derived DCs (mo-DCs) by addition of GM-

CSF and IL-4 and are a widely used model for priming T cells in

vitro (47). However, the existence of mo-DCs in vivo remains

under debate, but several mouse (48, 49) and human (50) studies

observed that monocytes can differentiate into DC-like cells,

especially under inflammatory conditions (45, 51). With the

evolving of single-cell sequencing technology, more and more
Frontiers in Immunology 03
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DC subsets are discovered and it now appears that the

discrimination between DC and monocyte subsets is not that

black and white, with mo-DCs in comparison to DC3 being just

one example (44, 45, 52, 53). APC subset composition varies

widely throughout tissues and we are still far from

understanding which subset contributes to immunity and

tolerance under certain conditions (54–57). DCs are in general

CD45+ cells, expressing HLA-DR and lacking other linage

markers, such as CD3 or CD19 (52). In Figure 2, a simplified

overview of the most important DC subsets in human can be

found with the markers for those respective subsets in

mice included.

In this review, we discuss the different subsets of T cells and

APCs present in the skin, intestine and female reproductive tract

(FRT) and how their interplay contributes to maintaining a

homeostatic tissue environment as well as how this composition

shifts during chronic inflammatory diseases and infection. While

the term “immune homeostasis” is widely used, we refer to

“homeostasis” as the balance between immune activation and

suppression in tissues and organs in contribution to maintaining

a healthy state of an organism under normal physiological

conditions. This review aims to focus on the human system

wherever possible; however, some insightful mechanistic studies

in different animal models are included as these contribute

greatly to our understanding of tissue immunity where human

studies are not yet possible. To give a more comprehensive view

of already described mechanistic studies not yet discovered in

humans we also included animal studies when appropriate.

Therefore, unless otherwise stated, findings summarized were

done in humans and deviation to animal models is indicated.
Skin

The skin is one of the largest organs in the human body and

essential for protection against external injury and pathogens.

Next to its role in physical protection, the skin also houses a vast

landscape of resident and recirculating immune cells which are

poised locally to respond to tissue damage and infection. The

skin is comprised of three layers: the outermost epidermis, an

intermediate layer termed dermis, and the innermost layer called

hypodermis (Figure 3). The epidermis is mainly comprised by

structural cells such as keratinocytes, as well as melanocytes. The

main immune cells found in this layer are CD8+ T cells and LCs,

skin-resident macrophages which originate from the fetal liver

and the yolk sac, and exhibit DC-like characteristics (58). Next

to structural fibroblasts, the dermis contains the majority of

immune cells, including DCs, macrophages, natural killer (NK)

cells, innate lymphoid cells (ILCs), as well as CD4+ and CD8+ T

cells. Further, this layer is also supplied with lymphatic and

blood vessels which allow immune cell trafficking in and out of

the tissue. The lowest layer, the hypodermis, is mainly comprised

of adipocytes responsible for thermoregulation (59, 60).
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However, recently an immunological role has been attributed to

adipose tissue as it has been shown to house multiple types of

immune cells (61–66). Additionally, structures such as hair

follicles and nerve endings are major players in regulating

immune responses in the skin. Hair follicles represent unique

structures in the skin, as many studies in mice have shown that
Frontiers in Immunology 04
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they are the primary site for Treg maintenance, which are in turn

essential for establishing the stem cell niche at the hair follicle

(67–69). In human skin, the hair follicle is also the major site of

Treg localization (70). Further, the hair follicle is also of

importance for DC function in the skin of mice (68, 71).

Besides the hair follicle, nerve endings in the skin have been
FIGURE 2

APC subsets and commonly associated markers in mice and humans found in barrier tissues discussed in this review. Created with BioRender.com.
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shown to play an important role for CD8+ T cell mediated

immunity (72) as well as create a special environment for specific

macrophage subsets (73) as demonstrated in mouse models.

Upon encountering pathogens or injury to the epidermal

layer, LCs are the first to initiate an immune response. These

cells constitute approximately 2-4% of all cells in the epidermis

and are specialized macrophages with DC characteristics,

expressing the surface markers CD1a and Langerin/CD207

(46), whose dendrites can extend through the stratum

corneum to sample antigen without disturbing the epithelial

barrier (74, 75). LCs preferentially recognize mannosylated

ligands on surfaces of pathogens via C-type lectins and pattern

recognition receptors (PRRs) (76). Binding of these receptors

leads to receptor-mediated endocytosis thereby activating the LC

(77). Like their conventional DC counterpart, LCs have been

found to be able to traffic to the skin-draining lymph nodes

(LNs) and activate naïve T cells (78–80) as well as activate skin-

resident Tregs (81). LCs have also been described to be highly

efficient at inducing a neutralizing IgG response against S. aureus

from B cells (82). While LCs have their primary role in immune

surveillance of the skin, macrophages are mainly responsible for

initiating inflammatory responses in response to infection or

injury as well as to tissue regeneration (83–85).

Apart from the acute role of innate immune cells in clearing

infection, APCs also play a major role in activating an adaptive

immune response. As in other tissues, dermal APCs expressing

CD1c (86, 87) can be divided into multiple subsets. In healthy

human skin, the main subsets at steady-state are CD1a++CD207+

+ LCs, CD1a+CD1c+ DCs, CD141++CD14- DCs, as well as two

populations of macrophages that can be, in part, distinguished

by their autofluorescence (AF) created by their high scatter

properties: CD14+AF- monocyte-derived macrophages (mo-

Mac), and FXIIIA+CD14+AF++ macrophages (88). Upon

antigen encounter in the skin, dermal DCs (DDCs) become
Frontiers in Immunology 05
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migratory and act as APCs in the lymph node where they

activate and polarize different adaptive immune cells, such as

naïve T cells (88, 89). It was shown in mice that the constant

travel of skin APCs to the LN during homeostasis is only

dependent on the CCR7 ligand CCL21, whereas CCL19

presence is dispensable for the trafficking (90, 91). However,

CCL19 deficient mice exhibit lower T cell numbers due to

decreased cell survival (91). However, DCs in the skin have

also been shown to locally activate memory T cells within the

skin, bypassing the need for tissue egress (81) and thereby

enabling a rapid adaptive immune response locally.

Specifically, T cells play a major role in the cutaneous

immune system, with a large tissue-resident population being

found throughout the dermis and epidermis. In healthy skin, this

population can comprise up to 2x1010 cells, which is nearly two

times as many as found in circulation (17). Differences in T cell

composition between murine and human skin have made

studies using mouse models difficult. In mice, the majority of

resident T cells are gdT cells with a limited T cell receptor (TCR)

repertoire (92), while in human skin most resident T cells are

abT cells with a much greater TCR diversity (17). Overall, T

cells in the epidermis are less proliferative but have increased

capacity to produce cytokines such as IFN-g and TNF-a (93).

While abT cells rely on antigen presentation via MHC

molecules, gdT cells have a restricted TCR repertoire, with

their receptors recognizing unconventional antigens such as

phosphoantigens, stress molecules, as well as non-peptide

metabolites (94–96). Human gdT cells express the Vd1, Vd2,
and Vd3 chains, with each subtype having a preferential

distribution across the body (97). A murine-specific gdT cell

subset, called dendritic epidermal T cells (DETCs), have also

been shown to significantly contribute to immune homeostasis

in mouse skin (98), but don’t have a human counterpart. How

different T cells subsets contribute to maintaining homeostasis
FIGURE 3

Resident T cells and APCs in the human skin. Created with BioRender.com.
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and how this paradigm is shifted during the inflammatory

response and infection will be discussed below.
DC-T cell composition in homeostasis

Memory T cells
While the T cell subsets above mainly describe different

effector states of activated T cells, a central part of T cell function

is the capacity to develop long-lived immunological memory.

Teff cells primed in the lymph nodes by an APC are maintained

in the skin as memory T cells, whose survival is supported by

keratinocytes producing growth factors as well as other tissue

resident (immune) cells (99, 100). These resident memory cells

are crucial for maintaining tissue homeostasis as they contribute

to immune surveillance and supply a rapid, specific response

when re-encountering pathogens. As with all other immune cell

subsets, memory T cells in the skin can be divided into two

major groups: resident and recirculating. Using a human skin

xenograft model with nude NSG mice, four distinct memory

populations in the skin have been identified using the resident

vs. recirculating paradigm. In human and mouse skin, the

primarily resident subsets are Tem and Trm. Recirculating

subsets can further be subdivided into migratory memory

(Tmm) and Tcm (8, 93, 101). Cutaneous lymphocyte antigen

(CLA) is a marker that specifically distinguishes memory T cells

originating from the cutaneous immune system as well as skin-

infiltrating T cells. CLA binds to chemokine receptors, E-selectin

which together with Very late antigen 1 (VLA-1)/Vascular cell

adhesion protein 1 (VCAM-1) and Lymphocyte function-

associated antigen 1 (LFA-1)/Intercellular adhesion molecule 1

(ICAM-1) enables skin tropism of these cells (102–105).

Tem are thought to be the first responders, expressing high

levels of CD44 but lacking migratory and homing receptors such

as L-selectin and CCR7 (8, 106, 107), making them incapable of

recirculating. As their name suggests, they provide immediate

effector function, which is underscored by their production of

IFN-g as well as other pro-inflammatory cytokines (93). While

Tem are crucial for immediate adaptive responses, this

population undergoes significant contraction after an infection

is resolved and their niche has been found to be replaced by Tcm

which enter from the circulation over the course of an acute

inflammatory response (13). Tcm express high levels of homing

receptors that are lacking on Tem (CCR7, LCA, CCR4) (17, 108,

109). Contrary to Tem, their reactivation primarily takes place in

the local LNs. There, they undergo extensive proliferation and

adopt a Tem-like phenotype (8, 110). The other circulating

subset, Tmm, was described by Rei et al. (93) and shows a

population of cells high in skin-homing receptors such as CLA

and CCR7 but are defined by the absence of L-selectin. This lack

of L-selectin has raised suspicion that these cells are able to
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remain in the skin after infection, where they contribute to

immune homeostasis as these cells are not high producers of

pro-inflammatory cytokines (93). Another, more recently

discovered, family member are Trm which express high levels

of the integrin CD103 as well as the glycoprotein CD69. While

their overall phenotype is similar to that of Tem, they have been

shown to be maintained long-term even after an infection, as

well as being significantly more potent in their effector response

while also being limited in their proliferative capacity (13, 111).

An essential tool in understanding the migratory behavior of Trm

is two-photon intravital microscopy. Multiple studies in mice

have revealed that, in the skin, these cells are relatively stationary

and confined in and close to the epidermis where they surveil

their environment and are responsible for regulating secondary

recall responses after primary challenge (112–114). Together,

these memory subsets contribute to long-lasting immune

memory and surveillance in the skin.

Effector T cells
While T cells in the skin at steady-state are mostly memory T

cells, effector T cells (Teff) can also be found. These are activated

by APCs in the skin-draining lymph nodes and traffic to the skin,

where they further encounter cutaneous APCs presenting their

cognate antigen, which leads to T cell activation and production

of effector cytokines (115, 116). Most studies on Teff cells have

described essential roles for CD8+ Teff cells in maintaining tissue

homeostasis in the skin. CD8+ T cells can be found in both the

dermis as well as the epidermis. CD8+ T cells have been shown to

have increased migratory capacity within different skin

compartments, albeit with slower kinetics than migration in the

lymph node (117). In a sophisticated ex vivo imaging system of

whole skin to observe T cell migration, Dijkgraaf et al., could

demonstrate that human CD8+ skin-resident Trm in the epidermis

migrate along the stratum basale, close to the basement

membrane and preferentially localize below aggregations of

stationary LCs. In contrast, CD8+ T cells in the papillary dermis

were observed to accumulate in collagen I rich regions as well as

collagen I-poor dermal vessels. These observed migration

dynamics highlight an important function of CD8+ skin-

resident T cells in tissue patrol, possibly enabling immediate

cytotoxic response to antigen presentation by co-localized LCs

at the epidermal-dermal junction (118). While CD8+ T cell co-

localization with LCs at the epidermis-dermis interface may hint

at increased priming capacity by local epidermis-patrolling APCs,

observed changes in morphology of CD8+ Trm to a more

dendrite-like shape (7, 117, 119, 120) could also suggest that

these memory cells can act, at least in part, independently of APCs

when confronted with their respective antigen, which has been

described to be the case in mice (121–123). However, it is known

that specialized CD141+CD103+ DCs are especially effective at

cross-presentation for CD8+ T cells in the skin (124, 125).
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Regulatory T cells
Similar to other immune cell populations, Tregs can reside in

non-lymphoid tissue (NLT) such as the skin. Specific residency

transcriptional programs in these organs have been described,

mediating Treg adaptability to different tissues in mice (126). In

human skin, Tregs represent between 5% and 20% of all resident

T cells under homeostatic conditions (127, 128), where they are

known to interact with LCs and fibroblasts (81, 127). Most

circulating Tregs found in peripheral blood express skin-homing

markers which indicates that these cells are constitutively

recruited to the skin over other organs (129). Similar to their

effector memory counterparts, Tregs from the skin are also able to

elicit a memory response and have been shown to persist in the

skin and induce tolerance to autoantigens in a mouse model

(130). In human skin, the function of skin-resident Tregs remains

elusive, with few studies investigating their function under

homeostatic conditions. Other than the canonical transcription

factor FoxP3, skin Tregs express CLA, as well as the chemokine

receptors CCR6, high levels of CCR4, a skin homing marker,

high levels of L-selectin and HLA-DR. Similar to their blood

counterparts, they express GITR and high levels of intracellular

CTLA-4. Contrary to other skin-resident Teff cells, skin Tregs

tend to express much lower CD103 (127). Seneschal et al.

demonstrated that the function of skin-resident Tregs is highly

dependent upon the context under which they are activated by

local LCs. Under steady-state, LCs appear to preferentially

activate and expand CD4+CD25+FoxP3+CD127- Tregs, which

were functionally competent in suppressing autologous skin

resident Tem cells. Further, it was suggested that this effect is

MHC-restricted, showing that under steady-state conditions,

LCs act in concert with Tregs to induce and maintain tissue

homeostasis (81). While reports of antigen-specific responses by

Tregs do exist, it is well-established that skin Tregs have a high

proliferative capacity in response to non-antigen dependent

stimuli, such as contact with dermal fibroblasts in combination

with IL-15 (127). Other than their immediate immunological

function, cutaneous Tregs are known to be involved in wound

healing (131, 132), where their primary role lies in inhibiting

IFN-g production by other T cells and inflammatory

macrophages (132), as well as and modulating hair follicle

stem cells (133).

gdT cells
In human skin, 1-10% of all resident T cells are estimated to

be gdT cells (134), with the majority expressing the Vd1 TCR (135,

136). One known ligand for this TCR is CD1d which is able to

present lipid antigens on DCs (137). CCR6 on gdT cells is thought

to be an important receptor mediating recruitment of activated

gdT cells via CCL20 expression by keratinocytes, DCs as well as

endothelial cells (138). CCL20 secretion by keratinocytes is
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especially upregulated during acute injury, suggesting an

important role for gdT cells in response to injury (139).

Cytokines important in abT cell maintenance in the skin have

also been found to play key roles for gdT cell maintenance and

development in this organ. IL-7R signaling, for example, has been

shown to induce rearrangement and transcription of the TCR g-
chain, and IL-15 is also involved in the expansion of gd epidermal

T cell precursors as well as their survival, while IL-4 signaling has

been shown to promote growth of the epidermal gdT cell

compartment (140–142). The skin residency marker CD103 has

also been implicated to play a role in establishing gdT cells in the

murine epidermis, with CD103-deficient mice showing significant

reduction in gdT cell numbers in the skin as well as abrogated

morphology in the gdT cells present (143). Further, murine

CD103- DETCs share a competitive niche in the epidermis with

CD103+ Trm, indicating that CD103 is an important determinant

in establishing tissue residency in the murine epidermis (113). If

CD103 expression by gdT cells is also vital in human skin remains

to be uncovered. Co-stimulation for gdT cells is less understood

than for their ab counterparts. However, in mice CD27 has been

shown to contribute to the function of Vg2Vd2 T cell activation

and promote IFN-g production by these cells (144). Further CD2

and ICAM-1 have been suggested as costimulatory molecules for

Vd1 T cells (145–147). Specific functions of gdT cells in human

skin are known to include regulation of keratinocyte proliferation

and homeostasis through the production of insulin-growth factor

1 (IGF-1) and other keratinocyte growth factors (98, 148). Further,

gdT cells are also able to contribute to skin homeostasis by

recognizing damaged cells and exhibit cytotoxic activity via the

NKG2D receptor (149), as well as perforin secretion and Fas-

mediated cell lysis (150).
DC-T cell composition in infection and
inflammation

Chronic inflammatory diseases
A skewed composition in terms of T cell numbers and

function of skin-resident T cells has been described in a

plethora of chronic inflammatory skin diseases. Accordingly,

the populations of APCs in inflamed skin also shift, with the

dominant subsets being FcER1+CD1alo (inflammatory dendritic

epidermal) DCs, CD1c+CD14+/- DC (inflammatory), TNF-

a+INOS+CD14-CD11c+CD1c- (TNF-a and iNOS producing)

DCs, and CD123+ pDCs depending on the nature of the

disease (88). Further, in a mouse model of skin inflammation,

Chow et al. demonstrated that specifically usually resting Tregs

become highly motile during both adaptive and innate

inflammation, highlighting the importance of these cells to

control local inflammation (151).
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One prominent example of such a disease is psoriasis, which

affects 2-3% of the population (152). Skin lesions in psoriasis are

thought to be caused by dysregulated cross-talk between APCs

and T cells, which leads to an increased production of pro-

inflammatory cytokines such as IL-17, IL-12, IFN-g, TNF-a, and
IL-23 (153, 154). This creates a positive feedback loop by

recruiting more lymphocytes, neutrophils and myeloid cells to

the lesion ultimately causing chronic cutaneous inflammation

and epidermal hyperplasia (155). Blocking of TNF-a
significantly reduced expression of the DC migration marker

CCR7 and its ligand CCL19, thereby supporting clinical

remission of patients (156). Dermal CD3+ T cells in these skin

lesions are often increased by up to 15%. The composition of ab
and gdT cells in psoriasis also shifts, with some studies observing

more than 40% of CD3+ T cells also expressing gd TCRs and

secreting the pathogenic cytokines IL-17 and IL-23 (157). Other

studies have observed CLA+ Vg2Vd2 T cells homing to the skin

to be increased in patients with psoriasis (158). Further, LCs

have been described to preferentially utilize the MAPK-p38a
signaling pathway, which has been linked to psoriasis

susceptibility in humans (159). This has been shown to

specifically promote production of IL-17 in CD4+ T cells by

promoting the expression of IL-23 and IL-6, both of which are

essential for Th17 differentiation and known to drive psoriasis

pathogenesis (160). Additionally, LCs are able to induce a

peripheral T cell response by priming immature CD4+ T cells

in the lymph node to produce IL-22 which then acts on epithelial

cells, further promoting tissue inflammation via alarmins such

as the antimicrobial peptide HBD3 (161).

While many chronic inflammatory diseases are of unknown

etiology, some have been correlated to dysbiosis of the skin

microbiota. An example of this is atopic dermatitis (AD), a

chronic Th2-dominated disease characterized by eczematous

lesion and severe pruritus caused by immune cell infiltration

of inflammatory DCs, macrophages and eosinophils (162).

Further, AD is often found to be associated with

transepidermal water loss due to a mutation in the filaggrin

gene which leads to enhanced susceptibility to overgrowth of

pathogenic S. aureus (163, 164). Further, patients with acute

flares of the disease have been found to have an acute expansion

of the cutaneous S. aureus population and significant loss of

diversity in the cutaneous microbiome. Conversely, resolution of

lesions has been association with a more diverse microbiome

composition and contraction of the S. aureus population (165).

Chronic inflammatory skin disorders still represent a major

subset of disease with little mechanistic understanding of how

T cell responses are shifted to cause disease.
Infection
It is becoming clear that the capacity of LCs in activating T

cells in human skin is highly context dependent with their

homeostatic role being more regulatory rather than activating
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Teff cells. However, it has been demonstrated that LCs are indeed

able to activate skin-resident Tem in the context of C. albicans

infection, driving them to produce effector cytokines such as

IFN-g and IL-17 (81).

As the skin is constantly exposed to pathogens, the pool of

Trm in this and other organs is thought to reflect previous

infections and exposures. In humans, many CD69+ Trm have

been shown to recognize prevalent viruses such as influenza A

(166, 167), and respiratory syncytial virus (RSV) (168) in the

lung. Further, viruses that cause latent and re-activating

infections such as herpesvirus (HSV)-1 and -2 (72, 169, 170),

Eppstein-Barr virus (171–173), and cytomegalovirus (174) are

also known to elicit a strong Trm response. This is further

corroborated by the correlation between presence of virus-

specific Trm and increased immune protection and ability to

control infections, which was shown to be the case for RSV

(168), hepatitis B virus (175), and HSV-2 (170) infection.

Specifically, in HSV infections, CD8+ Trm seem to play a

crucial role in resolution and protection. HSV-specific CD8+

Trm have been found at the dermal-epidermal junction, close to

sensory nerve endings which connect the latently infected

ganglia to the skin as well as the genital mucosa (72, 170, 176).

These cells have been shown to rapidly produce perforin and

pro-inflammatory cytokines upon asymptomatic HSV-2

shedding. Further, cluster formation around virally infected

epithelial cells and recruitment of CD8+ T cells from the

dermis (170) emphasize that CD8+ Trm are at the forefront of

the immune response against acute and latent HSV. While it is

now possible to also study Trm in humans, it is worth

mentioning that the great majority of current knowledge of

Trm behaviour during infection was acquired using murine

models of HSV infection which greatly contributed to our

understanding of these cells in mucosal tissues (11, 123,

177–180).
Intestine

Similar to the skin, the intestine is constantly exposed to

exogenous triggers such as food or microbiota-derived antigens.

These antigens are prevented from triggering a pathogenic

immune response by cellular barriers. Physically, the intestine

is protected by a layer of mucus and glycocalyx which coats the

epithelial layer (181) and contains high concentration of secreted

IgA (182, 183). In the small intestine, this is composed of a single

unattached layer, while the large intestine has two layers of

protective mucus, respectively relating to the bacterial burden in

each location (184). The intestine is also home to intraepithelial

lymphocytes (IELs), other immune cells resident in the lamina

propria (LP) and gut-associated lymphoid tissue (GALT),

comprising Payer’s patches (PP), cecal patches, and colonic

patches distributed along the small and large intestine (185).

There are differences in immune cell composition between the
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small and large intestine which have been extensively reviewed

elsewhere (186, 187). A simplified overview of the architecture of

the small and large intestine including resident T cells and APCs

is shown in Figure 4.

At the bottom of the intestinal crypts, Paneth cells are the

main producers of antimicrobial products such as defensins

(188) and lysozyme (189), which are secreted into the mucus at

the opening of the crypt. Goblet cells, responsible for the

production of intestinal mucus, have the ability to take up

antigen from the intestinal lumen and deliver these antigens to

DCs in the LP via a process called goblet cell-associated antigen

passage (GAP) (190). Antigens delivered via this process have

been shown to be taken up by CD103+CD11c+ DCs which

preferentially present to Tregs, suggesting that this way of

antigen delivery significantly contributes to induction of oral

tolerance (191). While this mechanism is not well-understood

yet, the more accepted route of antigen delivery from the lumen

to the epithelium is via M cells on lymphoid follicles (e.g. on

Payer’s Patches), which can transport whole bacteria (192, 193)

that can then be taken up by DCs in the epithelium. This

continued sampling of the microbiota by the immune system

is crucial to maintaining homeostasis and resistance to

pathogens. For example, expression of the chemokine receptor

CX3CR1 in mice is essential for APCs to extend their dendrites

between epithelial cells and take up intestinal bacteria from the

lumen (194) which are then transported to the mesenteric LNs,

where production of secretory IgA by plasma cells is induced

(195–197). While originally being described as DCs due to their

functional properties (194), CX3CR1+ APCs were classified as

macrophages by others as they also express the macrophage

markers CD64 and F4/80 and derive from monocytes (198, 199).

Specifically, DCs in the intestine have the major responsibility in

establishing tolerance to oral and microbiota-derived antigens.

The gut-draining LNs as well as the GALT are the primary sites

of T cell priming by intestinal DCs. As in other tissues, many DC
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subsets have been identified in the human intestine, with specific

subsets more prevalent at specific anatomic locations. In

humans, intestinal cDCs are divided into subgroups based on

the expression of CD103 and SIRPa (200, 201), with CD103-

SIRPa+ cDC2 further subcategorized based on the expression of

the chemokine receptor CCR2 (202).

Intestinal cDCs are the only DCs expressing the enzyme

RALDH2, which is required for metabolizing Vitamin A to all-

trans retinoic acid (RA) (203). This metabolite is required for

imprinting gut-homing receptors on T cells, namely a4b7 and

CCR9 (204–207). Both CD103+ and CD103- cDCs in humans

have been found to express RALDH2 (208), which is reinforced

by expression of RA by stromal cells in the mesenteric LNs (209,

210). In humans, the majority of IELs are T cells, with the

highest proportion of non-T immune cells in the colon (211).

The highest number of IELs are found in the proximal small

intestine, decreasing in the distal small intestine, and lowest

numbers in the colon (212). In the adult jejunum, the majority of

IELs are CD8+ abT cells with a tissue-resident Tem phenotype

[reviewed in (213)], while the ileum and colon have higher

numbers of CD4+ abT cells, with a minor population of gdT
cells (212). In the LP, CD4+ T cells dominate over CD8+ T cells,

with the majority of cells exhibiting Treg-like or Tem phenotypes

(214–217). IL-17 producing CD4+ T cells are most common in

the LP of the colon and ileum, with lowest numbers in the

jejunum (216), which is inverse to the distribution of Treg:non-

Treg T cells observed in mice (215, 217).
DC-T cell composition in homeostasis

Memory T cells
In contrast to skin, sustained CD69 expression is not

necessary for Trm formation in the small intestine (7). Further,

in the human intestine CD103 is also not necessary for Trm
FIGURE 4

Resident T cells and APCs in the human small and large intestine. Created with BioRender.com.
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persistence (218, 219), and is higher expressed on CD8+ Trm

than CD4+ Trm (216, 220, 221). Human intestinal Trm

specifically express CD161, a C-type lectin-like receptor (222,

223), and they share the classic Trm phenotype of

downregulating LN homing receptors CD62L and CCR7 as

well as the upregulation of adhesion molecules CRTAM and

chemokine receptors CXCR6 and low expression of CX3CR1

(224). In the human small intestine, both CD4+ and CD8+ Trm

have been described to survive years, with CD4+ Trm exhibiting a

Th1 phenotype upon reactivation (218, 225). In the gut, it has yet

to be elucidated if Trm are continuously replenished from

circulating Tcm under homeostatic conditions or whether the

local population proliferates in situ, which has so far not been

described. The TCR repertoire of CD8+ CD103+ vs. CD103- Trm

has been described to have low clonal overlap, however overlap

between CD103- CD8+ Trm was shown to be similar to that of T

cells from the peripheral blood, indicating that CD103- Trm are

recruited from the periphery and represent an intermediate state

between circulatory and resident T cells (218). A study utilizing

two-photon laser scanning microscopy revealed that intestinal

Trm have restricted mobility (226), indicating that intestinal Trm

are able to remain at the site of primary infection.

In mice, memory precursor cells expressing low levels of

KLRG1 have been identified as a Trm precursor, whose

development is accelerated by DC-derived TGF-b (227).

Inflammatory monocytes expressing IL-12 and TNF-b have

been shown to suppress TGF-b-induced CD103 expression,

leading to an increased population of CD103- LP Trm (228).

Additionally, intraepithelial CD103- Trm appear to preferentially

develop from KLRG1+ T cells over T cells that never express

KLRG1 (229). Lastly, while IL-15 is critical for Tcm and Tem

maintenance, this cytokine is not necessary for Trm retention in

the intestine (230).

Overall, Trm biology and contribution of antigen presenting

cells to Trm generation and maintenance in the human intestine

still have many open questions. More detailed reviews on

intestinal Trm can be found elsewhere (231, 232).

Effector T cells
While at steady-state, DCs in the gut preferentially induce

Tregs, with Teff cells being primarily induced during infection or

inflammation, which has mostly been studied in mice. Intestinal

cDCs “escaping” regulatory conditioning in the gut at

homeostasis have, however, been shown to induce tonic

protective Teff responses. This escape has been proposed to be

mediated by early exposure to TLR ligands and pro-

inflammatory cytokines, reducing residency time of cDCs and

pDCs in the epithelium and thereby limiting exposure to

regulatory-inducing factors (233, 234). Another example of

this is p38-MAPK signaling in mouse CD103+ DCs, which has

been shown to regulate fate-decision between Treg and Th1 cells

from infiltrating naïve T cells by influencing RALDH2

expression required for Treg induction (235). Further, specific
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TLR5 signaling activating CD103+CD11b+ cDCs induces IL-6

and IL-23 production which promotes Th17 development and

antimicrobial peptide production (200, 236).

The local microbiota is also essential in inducing T cell

subset differentiation and polarization in the gut. In mice, it has

been shown that monocolonization with segmented filamentous

bacteria (SFB), which are members of the order Clostridiales, can

induce the development of LP-resident CD4+ Th17 cells (237).

This selective Th17 induction is MHC class II-dependent and

requires presentation of SFB antigens by resident intestinal

CD11c+ DCs (238). The relationship between SFB and Th17

has further been demonstrated in mice engineered to express the

human antimicrobial peptide HBD5. These mice exhibited loss

of SFB which subsequently correlated to a lower percentage of

Th17 cells in the lamina propria (239).

Regulatory T cells
Tregs are central components of establishing tolerance in the

intestine and crucial for maintaining homeostasis. Specifically in

the gut, Tregs are necessary for controlling pro-inflammatory

responses to commensal pathogens as well as establish tolerance

to food antigens (240–242). Both thymus-derived (t)Tregs and

periphery-induced (p)Tregs have been described in the gut, with

pTregs being thought to play the main role in establishing oral

tolerance (243, 244), having been shown to control dysregulated

Th1 responses to food antigens (245). In the colon, the

predominant subset of pTregs expresses the Th17 master

transcription factor ROR-gt, the expression of which is

dependent on the microbiota (245–248). The ROR-gt- pTregs

conversely are critical for homeostasis maintenance in the small

intestine (245). In mice, Helios+ tTregs in the gut express GATA3

and exhibit a tissue-repair phenotype (246, 249, 250). This

GATA3+ Treg subset has not, however, been described in

humans so far.

TGF-b is an essential cytokine for pTreg differentiation and

is, unsurprisingly, present at high concentrations in the intestine

(251). DC-derived TGF-b in the gut is essential for local Treg

differentiation, which has been demonstrated in mice by ablating

expression of the integrin responsible for activation of latent

TGF-b (avb8) on DCs which lead to impaired induction of Tregs

in the mesenteric LNs (252). Contrarily, deletion of the TGF-

bR1 on Tregs resulted in normal Treg numbers in the gut (253).

However, the authors did not analyze Treg subsets in this study,

therefore it cannot be excluded that compensatory Treg

expansion was the underlying cause for this observation. Other

than cytokines, the metabolite RA is an important contributor to

Treg differentiation in the gut. Together with TGF-b, RA has

been shown to induce pTreg characterized by upregulation of

CCR9 and a4b7 (254–256). Particularly CD103+ DCs are crucial
for this induction, as they show a high expression of RALDH2,

the enzyme metabolizing vitamin A to RA (257, 258).

Particularly development of ROR-gt+ pTregs is dependent on

DC-derived RA (247, 259), further emphasizing that local Treg
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induction is crucial to intestinal homeostasis. Other than RA,

DCs play a role in Treg induction via TLR signaling in the gut.

For example, TLR2-mediated recognition of polysaccharide A

on the commensal Bacteroides fragilis has been shown to trigger

induction of Tregs and their production of the anti-inflammatory

cytokine IL-10 (260).

gdT cells
Intestinal intraepithelial gdT cells play an extensive role in

tissue surveillance, having a high migratory capacity and moving

through the intestinal epithelium using occludin-mediated cell-

cell contact (261). The majority of gdT cells in the human

intestine express V7d TCR (262) and have been associated

with intestinal homeostasis via the production of keratinocyte

growth factor 1 (KGF1) (263). Their significant contribution to

gut homeostasis has been shown in gdT cell deficient mice,

showing that mice lacking these cells have reduced intestinal

epithelial cell turnover (264), increased susceptibility to dextran

sulfate sodium (DSS)-induced colitis (263), and increased gut

permeability (265). In humans, intestinal gdT expressing

NKG2A have been shown to express TGF-b1, thereby

dampening IFN-g and granzyme B production by co-cultured

abT cells from patients with coeliac disease (266). Together,

studies so far indicate that intestinal gdT cells have an important

role in regulating tissue homeostasis and contribute to

controlling inflammatory responses in the gut. However, a lot

of open questions about their effector functions and interplay

with other cells, such as APCs, in humans still remain.
DC-T cell composition in inflammation
and infection

Chronic inflammatory diseases
Inflammatory bowel disease (IBD) is a well-known and well-

studied chronic inflammatory condition in the intestine and

covers ulcerative colitis and Crohn’s disease. IBDs have been

linked with multiple exogenous factors such as environmental

factors, microbiota dysbiosis, and genetic background (267, 268),

which culminate in an overall inappropriate immune cell

activation in the gut. In IBD, DCs are known to contribute to

disease pathology via TLR2/4-induced production of IL-12,

IL-6, and IL-23 (269, 270), which further impacts T cell

polarization and drives Th17-mediated disease phenotypes.

CD103+CD141+CD1c+ cDCs are reduced in inflamed intestinal

lesions, showing functional impairments such as decreased

RALDH2 activity (271). Further, some findings have indicated

that intestinal inflammation, such as seen in Crohn’s disease,

impairs normal DC trafficking which consequently leads to

dysregulated T cell responses in the gut. For example, CCR7

expression on CD83+DC-SIGN+ intestinal cDCs is lower in

patients with Crohn’s disease (272). Further, it has been
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observed that leptin production in mesenteric fat is increased in

early Crohn’s disease patients (273), which has been associated

with upregulation of CCR7, maturation and migration of cDCs

(274). Whether CCR7 expression is timepoint dependent and

what effect this has on T cell priming in Crohn’s disease remains

to be elucidated.

In recent years, the role of Trm in IBD has become apparent.

For example, CD69+CD103+ Trm-like cells in the LP have been

described to be increased in patients with ulcerative colitis and

Crohn’s disease. Further, the authors could show that increased

levels of CD4+ Trm are associated with early IBD relapse (275).

Along the same line, Bishu et al. described these CD4+ Trm as

functionally competent TNF-a producers in inflamed tissue of

patients with Crohn’s disease (276). CD8+ Trm have also been

implicated in IBD pathogenesis. Bottois et al. described two

distinct subsets of CD8+ Trm expressing KLRG1 and CD103,

showing that CD103+ CD8+ Trm in Crohn’s disease patients

exhibit a Th17-like phenotype, while highly proliferative

KLRG1+ CD8+ Trm present with increased cytotoxic effector

function and are overrepresented during acute inflammation

(277). Single-cell RNA-sequencing studies of ulcerative colitis

also showed transcriptional changes in the CD8+ Trm

compartment, with an increased inflammatory signature (278,

279). In a recent publication using mass spectrometry, HLA-

DR+CD38+ CD4+ Tem were found to be enriched in lesions of

Crohn’s disease patients. The authors could further use imaging

mass cytometry of tissue sections to show co-localization of

memory CD4+ T cells together with HLA-DR+CD11c+ DCs

located below the epithelial layer in the inflamed regions of the

intestine (280). Trm with a regulatory signature have also been

described to be reduced in IBD, characterized by CD103+Runx3+

and expression of the regulatory-associated molecules CD39 and

CD73 together with IL-10 production (281). Furthermore, studies

revealed a decrease in both the CD103+ CD8+ and CD4+ Trm

compartment during active IBD, which recovered during

remission phases, whereas the opposite observation was made

for CD103- Trm (282). These studies further demonstrate the

heterogeneity of intestinal Trm and are likely a reflection of Trm

plasticity during different phases of the inflammatory response.

Infection
While the physical barriers like the intestinal mucus protect

against food-borne pathogens and harmful commensals (known

as pathobionts), many microbial organisms have evolved to

evade host defense and cause infections. Infections with such

enteric pathogens are most commonly associated with diarrhea,

which is a major cause of death worldwide (283). The most

frequent enteric infections are with Salmonella spp. and

Campylobacter spp (284)., with other examples being Vibrio

cholerae, Shigella spp. and certain strains of Escherichia coli

(285). The most common pathobiont infections are caused by

Enterococcus spp (286). and Clostridium difficile (287).
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While TLR2 is important in inducing Tregs (see above),

TLR5, the receptor for bacterial flagellin (288), has been

implicated in the host response to invasive pathogens such as

Salmonella spp. CD11c+ LP-resident DCs express TLR5, which

is important in modulating DC movement, as TLR5-deficient

mice have increased survival and lower dissemination when

infected orally with Salmonella spp. whereas no difference was

observed when mice were infected intraperitoneally (289). This

observation indicates that trafficking to the mesenteric LN by

DCs is impaired thereby preventing dissemination of the

infection. Another important consequence of TLR-mediated

activation of DCs is cytokine production. A crucial cytokine in

the gut produced by DCs in response to infection is IL-23, which

has been linked to infection with pathogens like Salmonella spp

(290)., C. rodentium (291), and C. jejuni (292). The receptor for

IL-23 in the gut is expressed on multiple immune cells such as

Th17, NKT, gdT cells and ILCs (293, 294). IL-23 receptor

signaling in turn triggers production of IL-17 and IL-22. IL-17

appears to have time-dependent effects during intestinal

infection. During early Salmonella spp. infection, IL-17

produced in the caecum is primarily mediated by Th17 cells

and to a lesser extent gdT and NKT cells (295, 296). Another

example of the importance of Th17-mediated immunity during

infection has been shown in rhesus macaques where SIV-

induced depletion of Th17 cells leads to erosion of the mucosal

barrier and increased dissemination of S. enterica Typhimurium

to the mesenteric LNs (296). IL-17A or IL-17F deficiency in mice

lead to increased pathology in response to C. rodentium

infection (297).

The IL-23-Th17 axis is also important in human intestinal

infection. Patients suffering from C. jejuni infection show

increased percentages of Th1 and Th17 cells, as well as

increased levels of the respective effector cytokines. The

authors could show that when intestinal epithelial cells were

treated with IL-17A or IL-17F, intracellular survival of C. jejuni

was significantly decreased, emphasizing the importance of these

cytokines in human infection (292). Further, IL-17 expression

was also detected in the duodenum of patients recovering from

V. cholerae infection, the causative agent of cholera. Kuchta et al.

observed that in patients suffering from acute cholera, IL-17

expression was increased compared to later disease stages or

healthy subjects, suggesting that V. cholerae infection also

induces an immediate mucosal Th17 response (298).

The other IL-23-induced cytokine important in intestinal

infection is IL-22. In general, IL-22 is associated with tissue

repair and is known to be a major inducer of antimicrobial

peptide production by mucosal epithelial cells (299, 300). In the

context of infection, IL-22 has been found to increase

colonization resistance to the pathobiont vancomycin-resistant

enterococci (236). Similar to IL-17, IL-22 has also been shown to

have time-dependent effects. During early infections, IL-22 is

primarily produced by ILCs and only later on by T cells. This

was demonstrated by Ahlfors et al, showing that during infection
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with C. rodentium IL-22 is initially produced by ILC3s and then

by CD4+ T cells (301).

Overall, it has become clear that the DC-induced IL-23-Th17

axis is particularly important in response to intestinal infection

by modulating epithelial microbial peptide expression and

preventing dissemination of intestinal infection.
Female reproductive tract

The immune system in the FRT has a dual role as it protects

the barrier tissue against pathogens transmitted during sexual

intercourse, and promotes tolerance to foreign antigens

necessary to allow fertilization and embryo development. As

these two diametrical roles are important at specific times during

the menstrual cycle, the composition of immune cells undergoes

major fluctuations. During menstruation, a much higher density

of CD1a+ DCs was observed in the human uterus compared to

proliferative and secretory phase (302). Uterine macrophages

increase constantly in numbers during secretory phase and peak

at menstruation, while the total number of T cells remains

constant (303–305). The sex hormone progesterone does not

only inhibit activation of DCs (306), but also causes polarization

of T cells into Th2 and Treg direction (307, 308). Moreover,

subsets of immune cells do not only change during the

menstrual cycle, but also differ when comparing tissues from

pre- and postmenopausal females (309). There are substantial

differences between the structure and physiology of the female

genital tract between the most frequently used animal model of

mice compared to humans, as the murine uterus contains two

uterine horns and also the estrous cycle has a length of around 5

days compared to 28 days in humans. However, due to the

previously low interest in female reproductive health, scientists

started only recently to investigate immune cell populations in

large scale in the FRT of humans. Therefore, most knowledge on

the female genital immune system was obtained in mice (310).

With this section, we aim to shed light on specific features of

antigen uptake and presentation as well as T cell responses in the

female genital tract and raise awareness for inflammatory

conditions and chronic infections.

The female genital tract is structured in several parts: the

lower reproductive tract lined with multilayered stratified

epithelia forming vagina and ectocervix, the endocervix as an

interphase and the upper genital tract with single columnar

epithelium forming the uterus, adjacent to the fallopian tubes

stretch connecting the ovaries with the uterus which are

composed of secretory and ciliated columnar epithelial cells

(Figure 5). The main APC subsets in the human vaginal tissue

are, similar to skin, in the epithelial layer LCs characterized by

CD207 expression and in the lamina propria DCs characterized

by expression of CD1c as well as CD14 on a specific subset (311,

312). In addition to DCs, another frequent APC subsets in the

vagina are CD1c-CD14+ macrophages additionally having
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CD163 on their surface (311, 312). In the cervix, the most

frequent immune cell population are macrophages which

make up more than 25% of all CD45+ immune cells (55).

CD11c+CD14+ DCs accounting for another approx. 20% of

immune cells are the most common DC subset and a large

proportion also express DC-SIGN. Other DC subsets such as

CD11c+CD14- myeloid DCs and CD123+ plasmacytoid DCs

were described in low numbers (55). The percentage of APC

subsets within CD45+ immune cells is quite similar in cervix and

uterus, however, the APC compartment in the uterine

endometrium shows some substantial differences. There are

less DC-SIGN+ DCs and DCs expressing CD103+ involved in

antigen sampling and migration were almost exclusively found

in the endometrium (313). In the murine endometrium, both

CD103+ and CD103- DCs migrate to the local lymph nodes

upon antigen challenge. The CD103+ DCs preferentially present

antigens to Tregs, whereas their CD103
- counterparts were shown

to stimulate an effective CD4 T cells response (314). In the

murine uterus, DC in the decidua of pregnant females were

shown to be trapped in the tissue, despite keeping responsiveness

to pro-inflammatory stimuli and migration capacity towards

CCL21 (315). This indicates that by preventing DC trafficking to

the draining LN, T cell tolerance to fetal antigens is promoted.

Single-cell sequencing of human uterine samples during

secretory and proliferative phase revealed presence of myeloid

cells during both phases, being composed of DCs as well as M1-

and M2-polarized macrophages (316). CD11c+ DCs can be

further divided into CD11b++ and CD11blo DCs, with the

CD11b+ expressing DCs being the most abundant subset in all

tissues of the FRT and correlating with CD14 expression (313).

In the vagina, the ratio of CD4 to CD8 cells is almost equal, with

an increasing ratio towards endocervix and ectocervix (55, 317).

In the uterus, however, CD8 T cells represent the predominant
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subset (55). B and NK cells make up less than 5% of immune

cells in the human ectocervix and are not in focus of this

review (55).
DC-T cell composition in homeostasis

Memory T cells
In general, most T cells in the female reproductive tract are

Trm being CCR7-CD45RA-. More than 80% of cervical T cells

express CD69 within both stroma and epithelium (317, 318).

The marker CD103 being associated with a Trm phenotype in

other tissues is in the cervix almost exclusively present on

epithelial CD8 Trm (318), but also enriched on vaginal CD4

Trm (317). These vaginal CD103+CD69+ CD4 Trm show a Th17

signature including high expression of RORC, IL-17A, IL-17F

and IL-22 (317). A recent publication used Trm derived from

human cervix to assess antigen-specific CD4 and CD8 response

against HSV-2 (319). An elegant mouse study using parabiosis

models revealed that CD8+ Trm in the mucosa undergo

proliferation in situ after mucosal rechallenge independently of

CD11c+ DCs (114). On the other hand, bystander memory CD8

T cells consisting of Tcm and Tem are recruited during local

challenge without antigen recognition and develop a Trm-like

phenotype by upregulating CD69, but not CD103 (114). To

investigate how the recruitment of bystander memory cells to

sites of infection as well as tissue autonomous amplification of

local Trm contributes to immunity in the human FRT, it is

important to apply functional models with human cells and

validate other experimental approaches in the future. To date,

the Trm subset is the best studied immune cell subset in the FRT

and will be discussed further in the sections about the respective

infectious diseases.
FIGURE 5

Resident T cells and APCs in the human FRT. Created with BioRender.com.
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Regulatory T cells
Recently, Tregs were shown to make up around 15% of the

CD4 population with comparable percentage within all tissues

from the lower FRT, including vagina, endocervix and ectocervix

(317, 320). It is reported that Tregs are induced in the decidua of

mice and humans to protect the developing embryo from the

immune system of the mother, nicely summarized in the

following reviews (321–323). However, Tregs can also have an

unfavorable role if they dampen the immune response against

sexually transmitted infections such as human immunodeficiency

virus (HIV), human papilloma virus (HPV) or chlamydia. In a

mouse model of intravaginal N. gonorrhea infection TGF-b+ Tregs

were induced in cervix-draining lymph nodes, thus evading the

immune response and enabling pathogen survival (324). The

occurrence of Tregs in the mucosal tissue is described for several

pathogens and conditions, while the mechanisms of their

induction still need to be elucidated.
gdT cells
Human studies revealed a gdT cell percentage ranging from

5% to 10% of CD3+ T cells depending on tissue sampling during

the proliferative phase or secretory phase. The majority of them

expressing Vd1 (325, 326), but CCR5 can be found on the

surface of both Vd1 and Vd2 (327). HIV infection significantly

reduces the number of gdT cells in the cervix (327). Abnormal

vaginal flora due to bacterial vaginosis was shown to change the

composition of vaginal gdT cells to higher levels of Vd2 (328).

Beside their role during infection, gdT cells seem to be involved

in tolerance induction during pregnancy. The decidua of women

with spontaneous abortions showed increased numbers of gdT
cells with an additional upregulation of Vd2+ cells (325). In the

murine female genital tract, gdT cells represent a much higher

proportion of immune cells and express preferentially IL-17A

under steady state (329). As IL-17A was described to be essential

for resistance against fungal infection, a murine study revealed

that TCRgd deficient mice are more susceptible to C. albicans

growth in the FRT (330). To date, our knowledge about gdT cells

in the FRT is still limited and remains to be addressed in

different disease settings.
DC-T cell composition in infection

Viral infections
CD4 and the chemokine receptors CCR5 and CXCR4 are

hijacked by HIV. Beside T cells, this repertoire of receptors is

found on all four APC subsets in the vagina in different

quantities, indicating a role of these cells during HIV

acquisition and transmission to other cell types (311). It was

shown that exclusively CD14+ DCs take up HIV virus-like

particles and express CCR5 ligands (313). The type-I

interferon inducible lectin Siglec-1 expressed on CD14+ DCs
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was identified to play an indispensable role in HIV uptake and

transmission to CD4 T cells which can be blocked by anti-Siglec-

1 antibodies (331). As CD14+ DCs are most frequently occurring

in the ectocervix, this tissue is highly relevant to study HIV

transmission (313, 332). CD4 Trm from the ectocervical region

expressing CD69 are characterized by high CCR5, thereby

function as a primary target for HIV infection and persistence

(333, 334). Numbers of CD4 Trm are significantly decreased in

cervix tissue of infected individuals, but increased activation can

be observed (333). In the same lines, CXCR3+ Trm in the skin

and anal mucosa of HIV infected individuals starting

antiretroviral therapy late remain constantly depleted, thereby

creating an optimal environment for HPV related cancer

development (335). HIV-infected individuals show increased

Tregs and reduced Th17 cells, the ratio between these two cell

types can be restored by anti-retroviral therapy (ART) (336).

The percentage of Tregs remained increased even under ART and

was associated with a skewed ratio of CCL17/CCL20 in the

ectocervix samples of these women (336), indicating that APCs

as major source of those cytokines, are causing the disbalance of

T cells in these conditions.

Infections with HPV are widespread and almost every

human encounters HPV during their life time. There are

several different types, with only some of them being

transmitted sexually and causing infections that can lead to

cancer development in the cervix. Patients with HIV infection

possess an increased risk to develop HPV associated cancer with

T cells as important players in the course of HPV-related

malignancies (337, 338). Upon HPV infection, T cells in the

cervix obtain a more activated profile by upregulation of HLA-

DR, independent of HIV status of the patients (339). However,

in patients with a co-infection of HIV and HPV, lower numbers

of CD4 T cells were observed compared to HPV-negative HIV-

infected patients (339). In individuals with HPV-associated

genital warts, an accumulation of Tregs was reported (340). It

was shown that Tregs are attracted by CCL17 and CCL22, which

are mainly produced by CD1a+ LCs and macrophages within the

warts, respectively (340). Trafficking of APCs such as LCs is

impaired in HPV lesions, as the chemoattractant for (CCL20)

and activation pattern of LCs (CCR7, CD80 and CD86) seem to

be decreased (341–343). Also, Th17 cells seem to play a role in

progression of HPV-related intraepithelial cervical neoplasia

(CIN), as patients with high CIN or cervical cancer exhibit

high numbers of Th17 cell in the blood, which is correlated with

high IL-17 levels in the cervix tissue (344). In a study assessing

the T cell infiltration in cervical cancer patients, CD103+ CD8 T

cells infiltrate the tumors and are associated with good prognosis

(345). These findings indicate that a Th17 and Treg response is

correlated with progressive HPV infection, whereas CD8 T cells

are beneficial. However, most studies focus on late stages in CIN

progression/tumor development and little is known about early

processes of HPV infection.
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Bacterial infections
Infections with chlamydia are the most common bacterial

sexually transmitted infection in humans. However, most of our

knowledge of immune reactions during chlamydia infections

was obtained in mice, as studying immunity against chlamydia

trachomatis (Ct) is connected with many difficulties, such as the

high number of asymptomatic cases and the development of

tolerance instead of immunity when using inactivated bacteria.

The later problem was addressed in a mouse model by Stary et al.

showing that live and UV-inactivated Ct are taken up by either

CD103- and CD103+ DC subsets, causing priming of

immunogenic effector T cells or Tregs, respectively (314). In

mice, induction of Th1 cells plays a huge role in conveying

protective immunity, whereas stimulation of CD8+ T cells was

suggested to play a role in chronical inflammation and cause

tissue destruction rather than advancing protective immunity in

mice (314, 346, 347). Th1 polarization initially relies on IL-12

production by DCs, as IL-12 deficient mice had prolonged times

of chlamydia shedding (348). In fact, the most important

immune mechanism for chlamydia clearance is IFN-g, as T-

bet deficient mice could not control chlamydia growth, but T

cells shifted to a more Th17 response, whereas IFN-g or IFN-g-
receptor deficient mice die from systemic infection (349, 350).

Trm of the FRT seemed to be essential to protect against

subsequent chlamydia infection (314). However, a recent

publication suggests that also circulating memory T cells can

protect against infection without being primed in the tissue

(351). Apart from conveying protective immunity, T cells can

also be involved in undesirable responses causing FRT pathology

and chronic inflammation. Especially activation of non-antigen-

specific CD4 as well as CD8 bystander cells can exacerbate the

pathology in a mouse model of chlamydia infection (352). The

presence of Tregs was on the one hand shown to exacerbate Ct

infection (314), on the other hand, they are described to skew T

cell differentiation into a Th17 direction, which was correlated

with increased pathology in a chlamydia muridarum mouse

model of infection (353). Together, these findings suggest that

the T cell response during Ct infection is highly plastic and the

induction of a certain cytokine milieu is essential.

Discussion

All the same: Commonalities and
differences in tissue APC-T cell crosstalk

When comparing the three different tissues summarized in

this review, some overarching themes are apparent: The majority

of T cells in tissues are Trm cells (7), closely followed by Tregs (19,

20), both cell types reflecting the constant exposure to

environmental compounds and antigens in barrier tissues and

the need for a balance between immune tolerance and reaction.

Further, DC subsets are responsible for controlling this balance,
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but they are often described by different markers in different

tissues and their subsets appear more tissue-specific than those

of T cells, whose identity is often easier to define across tissues.

However, some clear differences exist also in T cells. Expression

of CD69 and CD103, canonical Trm markers in the skin (13, 111)

and FRT (317, 318), seem dispensable for Trm establishment in

the intestine (7). Trm are relatively stationary within the

respective tissue, however, there are quite substantial

differences in motility between Trm in different tissues, as Trm

in the FRT move up to 5-times faster compared to Trm in skin

epidermis, probably depending on the architecture of the tissue

and density of the structural cells (114). While CD4+ and CD8+

Trm exist in all discussed barrier tissues, the skin harbors more

CD8+ Trm than the intestine and the FRT, where the distribution

of CD4+:CD8+ Trm is approximately equal (218, 225). Further,

Treg induction in the intestine is highly dependent on RA

produced by local DCs (254–256) and in the FRT,

progesterone (307), independently of DCs, appears to take a

similar role, while no hormones or metabolites are yet identified

to induce Tregs in the skin. In general, it appears, that while all

barrier tissues are continuously exposed to microbial antigens,

only the intestine has dedicated DC subsets to specifically induce

Tregs to promote tolerance against the microbiome (191). This

observation fits with the fact that, in the skin, most Tregs respond

and get activated by non-antigenic stimuli while most Tregs (127)

in the gut are antigen specific (240–242). In general, aside from

their function in maintaining immune tolerance, the function of

Tregs in different tissues is often diverse, ranging from direct

suppression of activated immune cells to aiding in tissue repair

(19, 20), thereby emphasizing the need to characterize these cells

and their non-canonical functions in a tissue context better.

Similar to this, gdT cells exhibit both regulatory and cytotoxic

functions across tissues even though their distribution is tissue-

specific (Vd1 in the skin, Vd7 in the intestine, Vd1 and Vd2 in

the FRT) (149).

During an immune challenge in barrier organs, such as

during infection, Trm are poised locally in all three tissues,

reacting to previously encountered antigenic stimuli directly.

Further immune responses are induced by APCs which traffic to

the respective draining lymph nodes and recruit Teff cells to the

tissue. Th17 responses are crucial in controlling infections, both

bacterial and viral (313, 332). Interestingly, the same responses

and effector cytokines are also often the ones that are pathogenic

in chronic inflammatory diseases (153, 154). How and why

exactly these exacerbated immune responses cannot be

controlled by tissue-resident Tregs, which are present in barrier

tissues in great abundance under homeostatic conditions, has yet

to be elucidated. However, all chronic inflammatory diseases

discussed in this review are characterized by a decrease in tissue

Tregs, but whether this is cause or effect of chronic tissue

inflammation and what role APCs play in this shift of T cell

subsets during chronic inflammation remains a big question that

should be the topic of further research.
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Into the (un)known: On big data, future
perspectives, and individualized therapies

Previous dogmas of dividing immune responses strictly into

pro- and anti-inflammatory immune cell subsets are outdated. The

more we learn about tissue-specific immune responses, the more

we understand that there is not the one beneficial and harmful

immune cell subset to every disease. It is more a fine-tuned balance

act between APCs and T cells to enable immunity against

pathogens but protect the host from autoimmunity. With

current advances in single-cell RNA sequencing (scRNA-seq)

and multichannel flow cytometry, we will be able to get a better

insight, which players are involved in regulating immunity during

homeostasis. scRNA-seq has specifically enabled much greater

insight into molecular mechanisms of tissue immunity as well as

led to the discovery of new immune cell subsets or new definitions

of existing subsets. This is especially valuable since this approach

allows for the acquisition of a large amount of data from, often

limited, human material. Further, a lot of information that is

derived from these big data experiments would be impossible to

acquire using traditional experimental models as it is now possible

to also model in vivo dynamics from these datasets, such as the

interplay between different cell types (354, 355) and temporal

dynamics across the development of organs (356–358), and

tracking T cell clones across tissues (359, 360). Analyses like

these have revealed novel regulatory T cell-APC interactions at

the maternal-fetal interface important for embryo implantation

(361), a renewed focus on pDCs in skin inflammation (362), novel

Vd1 T cell effector subsets (363), and detailed profiling of different

immune niches and interactions across the human intestine (54).

Further, a better understanding of tissue adaptation of different

immune cells is becoming appreciated, highlighting basic

principles of immune biology in barrier tissues but also

appreciating that these cells have the potential to specifically

adapt to the local tissue environment and how this changes in

disease (126, 364–366). As highlighted in this review,

communication between different immune cell types is

absolutely essential in determining the outcome of an immune

response and understanding this interplay at a deeper level in local

tissues is an important step towards developing new therapeutic

avenues that can act in a much more targeted manner than

previously possible. Further, the plasticity of immune cell

subtypes, especially APCs and T cells, is becoming more

appreciated as having whole transcriptome data can separate cell

types that were previously indistinguishable and is an important

step towards understanding fundamental changes during disease

development. As this knowledge progresses, it will be interesting to

see if we will gain a better understanding of responses to

immunotherapy and why some patients benefit while others do

not. Moreover, this technical evolution will also allow to come

away from animal models and help uncover tissue-specific
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differences as well as overarching themes in immune defense in

barrier tissues. In addition, we want to emphasize the importance

of investigating the interplay of different human immune cell

subtypes in complex 3Dmodel systems to further validate findings

from big data-based models and how these can be translated to

patient care. It will be crucial to define the function of rare DC

subsets, Tregs or gdT cells as they seem to have a major role in

immune balance despite their low frequencies. Especially the

mechanisms balancing different gdT cell subset or Tregs and Th17

cells will be an important focus for further studies. In the future,

integrating different large datasets will be highly valuable in better

understanding more complex disease systems, such as metabolic

dysregulation as well as epigenetic modifications. Together, these

data will yield a clearer picture of biological networks and how they

are perturbed in different diseases. Currently, we are at the start of

a new era of understanding biological mechanisms that lead to

disease and disease progression. In the future, insights gained from

these basic studies will in turn re-shape how therapeutics are

developed and most likely emphasize the importance of more

patient-specific approaches to health care.
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218. Bartolomé-Casado R, Landsverk OJB, Chauhan SK, Richter L, Phung D,
Greiff V, et al. Resident memory CD8 T cells persist for years in human small
intestine. J Exp Med (2019) 216:2412–26. doi: 10.1084/JEM.20190414

219. Bergsbaken T, Bevan MJ. Proinflammatory microenvironments within the
intestine regulate the differentiation of tissue-resident CD8+ T cells responding to
infection. Nat Immunol (2015) 16:406–14. doi: 10.1038/ni.3108

220. Beura L, Fares-Frederickson N, Steinert EM, Scott MC, Thompson EA,
Fraser KA, et al. CD4+ resident memory T cells dominate immunosurveillance and
orchestrate local recall responses. J Exp Med (2019) 216:1214–29. doi: 10.1084/
jem.20181365

221. Romagnoli P, Fu H, Qiu Z, Khairallah C, Pham QM, Puddington L, et al.
Differentiation of distinct long-lived memory CD4 T cells in intestinal tissues after
oral listeria monocytogenes infection. Mucosal Immunol (2017) 10:520–30.
doi: 10.1038/mi.2016.66

222. Kurioka A, Cosgrove C, Simoni Y, van Wilgenburg B, Geremia A,
Björkander S, et al. CD161 defines a functionally distinct subset of pro-
frontiersin.org

https://doi.org/10.1038/ncomms13346
https://doi.org/10.1073/PNAS.1202288109
https://doi.org/10.1038/ni.2744
https://doi.org/10.1016/J.MIB.2011.11.002
https://doi.org/10.1038/mi.2007.6
https://doi.org/10.15252/EMBR.201439263
https://doi.org/10.1038/nrgastro.2013.35
https://doi.org/10.1038/nri3738
https://doi.org/10.3748/WJG.V20.I41.15216
https://doi.org/10.1016/J.IMMUNI.2017.04.004
https://doi.org/10.1038/ni797
https://doi.org/10.1007/S00018-002-8412-Z
https://doi.org/10.1038/nature10863
https://doi.org/10.1126/SCIENCE.1237910
https://doi.org/10.1126/SCIENCE.1237910
https://doi.org/10.1053/J.GASTRO.2011.11.039
https://doi.org/10.1053/J.GASTRO.2011.11.039
https://doi.org/10.1038/nature08529
https://doi.org/10.1126/science.1102901
https://doi.org/10.1126/SCIENCE.1091334
https://doi.org/10.1126/SCIENCE.1091334
https://doi.org/10.1016/J.CHOM.2007.09.013
https://doi.org/10.1016/J.IMMUNI.2013.01.009
https://doi.org/10.1016/J.IMMUNI.2013.01.009
https://doi.org/10.1172/JCI59150
https://doi.org/10.1016/j.celrep.2015.07.040
https://doi.org/10.1016/J.IMMUNI.2013.03.009
https://doi.org/10.1084/JEM.20080414
https://doi.org/10.1038/mi.2014.70
https://doi.org/10.1016/j.immuni.2004.08.011
https://doi.org/10.1084/jem.20051100
https://doi.org/10.1084/jem.20031244
https://doi.org/10.1038/nature01726
https://doi.org/10.1002/1521-4141(200205)32:5%3C1445::AID-IMMU1445%3E3.0.CO;2-E
https://doi.org/10.1053/j.gastro.2014.01.057
https://doi.org/10.1084/jem.20080039
https://doi.org/10.4049/jimmunol.0900311
https://doi.org/10.1136/GUT.22.3.169
https://doi.org/10.1093/INTIMM/7.9.1473
https://doi.org/10.1111/J.1600-065X.2006.00481.X
https://doi.org/10.1016/J.CELL.2006.07.035
https://doi.org/10.1016/J.CELL.2006.07.035
https://doi.org/10.1038/NI1504
https://doi.org/10.1016/j.immuni.2012.09.020
https://doi.org/10.1016/j.immuni.2012.09.020
https://doi.org/10.1016/J.COI.2012.03.004
https://doi.org/10.1084/JEM.20190414
https://doi.org/10.1038/ni.3108
https://doi.org/10.1084/jem.20181365
https://doi.org/10.1084/jem.20181365
https://doi.org/10.1038/mi.2016.66
https://doi.org/10.3389/fimmu.2022.984356
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Neuwirth et al. 10.3389/fimmu.2022.984356
inflammatory natural killer cells. Front Immunol (2018) 9:486. doi: 10.3389/
FIMMU.2018.00486

223. Fergusson JR, Hühn MH, Swadling L, Walker LJ, Kurioka A, Llibre A, et al.
CD161intCD8+ T cells: a novel population of highly functional, memory CD8+ T
cells enriched within the gut. Mucosal Immunol (2015) 9:401–13. doi: 10.1038/
mi.2015.69

224. Kumar BV, Ma W, Miron M, Granot T, Guyer RS, Carpenter DJ, et al.
Human tissue-resident memory T cells are defined by core transcriptional and
functional signatures in lymphoid and mucosal sites. Cell Rep (2017) 20:2921–34.
doi: 10.1016/J.CELREP.2017.08.078
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Immune and inflammatory
mechanisms of abdominal
aortic aneurysm

Ana Cristina Márquez-Sánchez and Ekaterina K. Koltsova*

Department of Medicine, Department of Biomedical Sciences, Research Division in Immunology,
Cedars-Sinai Cancer Institute, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles,
CA, United States
Abdominal aortic aneurysm (AAA) is a life-threatening cardiovascular disease.

Immune-mediated infiltration and a destruction of the aortic wall during AAA

development plays significant role in the pathogenesis of this disease. While

various immune cells had been found in AAA, the mechanisms of their

activation and function are still far from being understood. A better

understanding of mechanisms regulating the development of aberrant

immune cell activation in AAA is essential for the development of novel

preventive and therapeutic approaches. In this review we summarize current

knowledge about the role of immune cells in AAA and discuss how pathogenic

immune cell activation is regulated in this disease.

KEYWORDS

abdominal aortic aneurysm, inflammation, immune cells, cytokines, microbiota,
vascular immunology, tissue microenvironment
Introduction

Cardiovascular diseases (CVD) are the leading cause of death globally with an

estimated ~18 millions of annual deaths (up to 32% of global deaths) (1) and high

prevalence in both high and low income countries (2). Abdominal aortic aneurysm (AAA)

is a CVD characterized by abdominal aorta dilatation exceeding the diameter of aorta by 50%,

caused by immune cell-mediated inflammation and degradation of the medial layer;

eventually followed by aortic rupture and bleeding that is often sudden and fatal. AAA

affects about 5% of the population and represent 15th most frequent cause of mortality in the

US, where each year ~200,000 people are diagnosed with AAA. Smoking, age (> 60 years old),

hypertension, atherosclerosis, and male gender are established AAA risk factors (3–8).

Although new potential therapies have been recently proposed for AAA treatment,

including nanoparticles loaded with antihypertensive drugs, statins or inhibitors of vascular

endothelial growth factor receptor (VEGFR) (9, 10), the current standard of care is still mostly

limited to surgery at late stages of the disease (11, 12). Despite significant progress in the
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understanding of pathophysiology of AAA (3, 13–16), immune and

inflammatory mechanisms controlling this disease pathogenesis

only recently started to come to light as a mainstream and pivotal

players. Nowadays, chronic inflammation caused by the infiltration

and activation of various immune cells is an important driver of

AAA (3, 5, 6). Yet, factors regulating immune cell recruitment and

activation in AAA remains incompletely understood. Here we

discuss recent data on immune and inflammatory mechanisms

implicated to the control of AAA development and briefly highlight

local and systemic factors impacting immune cell activation in

this disease.
Immune cells in abdominal
aortic aneurysm

Innate immune cells

Myeloid cells, including neutrophils, monocytes, macrophages

and dendritic cells (DC) play diverse and important roles in

inflammation, immunity and tissue repair (17). They also
Frontiers in Immunology 02
88
contribute to the aortic inflammation and vessel destruction

during AAA (6, 16, 18, 19). Early myeloid cell infiltration in the

aortic wall is considered to be a hallmark of AAA development both

in mice and humans (20, 21), suggesting that these cells could

contribute to initial steps of aortic wall destruction (Figure 1).

Neutrophils
Neutrophils, cells of bone marrow origin, are the most

abundant circulating leukocytes in the human immune system

and the first effector cells to be recruited to the site of injury,

infection or inflammation. Neutrophils represent one of the most

prevalent cell populations found in the aneurysm and are detected

even in early lesions (19). Neutrophils are capable to release

different types of granules containing various bioactive

molecules such as myeloperoxidase (MPO), neutrophil elastase

(NE), defensins, cathepsin G, azurodicin, and endotoxin-

neutralizing proteins (22), NADPH oxidase (NOX) and matrix

metalloproteinases (MMPs) (23–25). The latter are highly

abundant in human and mouse AAA tissues (26–28). Activated

neutrophils produce extracellular traps (NETs), a web-like defense

structures to trap foreign cells, growth factors, cytokines, proteases
FIGURE 1

Immune networks in aortic abdominal aneurysm. Various immune cells are found in the aorta with AAA. The composition and activation status
of immune cells infiltrating the aortic wall during AAA development is dynamic and changes through the course of disease development.
Activated immune cells contribute to the inflammatory environment in the aortic wall and VSMC apoptosis resulting in the destruction of the
aorta and progressive growth of AAA eventually leading to rupture. NK, Natural Killer; MF, macrophages; Tregs, T regulatory cells; NF,
neutrophils; gd T cells, Th17, T helper 17 cells; Th1, T helper 1 cells; Th2, T helper 2 cells; DC, dendritic cells; VSMC, vascular smooth muscle
cells; IgM, immunoglobulin M; IgG, immunoglobulin G; MMPs, matrix metalloproteinases; GM-CSF, granulocyte-macrophage colony-stimulating
factor; IL, Interleukin; ECM, Extracellular Matrix; AT1aR, Angiotensin II Receptor Type 1; TLR, Toll-like Receptor; PVAT, perivascular adipose
tissue; Ang II, Angiotensin II.
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and expose them to effector protein (29). NETs are long

intersecting fibers consisting of released neutrophil DNA, and

histones 3 and 4 (H3 and H4) as well as cytoplasm-derived effector

molecules MPO, NE, and cathepsin G (29). Neutrophils play

essential and diverse roles in CVD (5, 18, 30–32). NETs

production in atherosclerosis is triggered by inflammatory

stimuli including LPS and cholesterol crystals (29, 31, 33, 34).

Hypochlorous acid generated by MPO oxidizes circulating LDL,

contributing to the activation of macrophages and foam cell

formation (22). Neutrophil NETs promote inflammation

facilitating the activation of Th17 cells and macrophages

regulating the release of IL-1b, IL-18 and other pro-

inflammatory cytokines (29). Moreover, NETs induce apoptosis

of vascular smooth muscle cells (VSMC) leading to the thinning of

the fibrous cap and eventual plaque rupture (29). In myocardial

infarction (MI), the recruitment and infiltration of neutrophils has

been also associated with cardiac damage, but nevertheless

neutrophils are needed for healing processes after MI.

Neutropenic mice were characterized by increased fibrosis and

heart failure because of altered macrophage polarization skewed to

a highly inflammatory state with low phagocytic capacity (29).

NLR (Neutrophil to Lymphocyte Ratio) was recently

suggested as a prognostic marker for AAA patients, where

high frequency of neutrophils in circulation in comparison

with lymphocytes predicted a poor prognosis and mortality in

patients with ruptured aneurysm (35–38). It has been shown

that neutrophils, neutrophil-derived IL-8 and NETs elements

were elevated in plasma and tissue of patients with AAA

suggesting enhanced neutrophil activation (18, 33, 34). The

recruitment of neutrophils is facilitated by CXCL1, CCL2,

CCL5 and CXCL8 chemokines (22, 39) that are mainly

produced by pro-inflammatory macrophages and are elevated

in serum and aorta from humans (40–42) and mice with AAA

(43). The depletion of neutrophils or genetic ablation of

neutrophil-specific genes (e.g., MPO, MMP-9) attenuates

AAA development, suggesting overall pathogenic role for

these cells in AAA (3, 19, 44, 45). Several types of

neutrophil-derived effector molecules including NETs were

detected in the intraluminal thrombus of patients with

advanced AAA (23, 31). In elastase mouse model, NETs

citrullinated (cit-) H3 and neutrophil elastase were found in

the adventitia and at the border of intima and media; and

depositions of cit- H3 and H4 were found in the intraluminal

thrombus where they co-localized with IL-1b (18). Both

Angiotensin (Ang) II and NADPH oxidase-derived ROS were

also shown to stimulate NETs formation (38) and inhibition of

NETosis by altering the function of PAD enzyme family

significantly limits aneurysm development (46, 47).

Altogether, these studies imply neutrophils as important

inflammatory regulators of AAA. Nevertheless, mechanisms

triggering NETosis as well as interaction of neutrophils with

other cell types within AAA lesions require further

investigation. It also remains to be determined whether
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neutrophils initiate the destruction of the aortic wall in AAA

or simply work as a first responders to the injury driven by

some other factors.
Monocytes
Monocytes, originated from the bonemarrow, play crucial roles

in host defense and contribute to various chronic inflammatory

diseases, including CVD (6, 48–60). In humans, three populations

of monocytes have been described based on CD14 and CD16

surface expression. Classical monocytes represent up to 90% of

circulating monocytes and are characterized by CD14++ and CD16-

expression, high surface expression of CCR2, CD62L (L-selectin),

and low levels of CX3CR1. Non-classical monocytes are

characterized by CD14+ CD16++ surface phenotype, high levels of

CX3CR1 and low CCR2. The third population has an

“intermediate” phenotype of CD14++ CD16+ and was suggested

to have pro-inflammatory and enhanced phagocytic properties (6).

In mice, two homologous populations Ly6Chigh (classical) and

Ly6Clow (non-classical) had been described. Ly6Chigh monocytes

are equivalent to human classical monocytes, and were shown to

promote inflammatory responses and perform antimicrobial and

phagocytic functions. Ly6Clow monocytes, corresponding to human

non-classical monocytes, are involved in vessel patrolling, immune

surveillance and tissue repair. Monocytes had been implicated to the

pathogenesis of various CVD, and elevated numbers of circulating

monocytes had been associated with atherosclerosis, myocardial

infarction and AAA (6, 20). Several studies described changes in

circulating monocytes in patients with AAA. While one study

showed a reduction of classical monocytes in circulation and

augmented proportion of intermediate monocytes, an increase of

classical monocytes or no alterations in their presence had been also

reported (16, 61–63). In mice Ang II infusion, which heightens

blood pressure and drives AAA development, was shown to

increase number of circulating Ly6Chigh monocytes (6, 16), while

the administration of angiopoietin 2 reduced circulating Ly6Chigh

monocytes and attenuated AAA (64). Moreover, mice lacking

CCR2 were protected from AAA due to the limited recruitment

of monocytes to the aorta along with low IL-6 and CCL2 expression

(65). The role of CD11b, an integrin subunit expressed on

monocytes, but also on macrophages and facilitating the

recruitment of immune cells to the site of inflammation, had

been investigated in AAA. Higher levels of CD11b on circulating

monocytes from patients with AAA compared to healthy subjects

have been reported (6, 26). In vitro experiments showed that

monocytes from patients with AAA are more capable for

adhesion and transmigration. However, the knockout of CD11b

(Itgam-/-) did not significantly affect the incidence of AAA, but

nevertheless reduced maximum abdominal aortic diameter,

macrophage infiltration, MMP-9 and IL-6 expression, as well as

elastin and collagen degradation (66).

Monocytes differentiate from hematopoietic stem and

progenitor cells (HSPC); and Ang II was shown to activate
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those cells and stimulate myelopoiesis in the bone marrow (20).

Another source of monocytes is a spleen where extramedullar

hematopoiesis occurs (67, 68). Spleen-derived monocytes were

shown to contribute to atherosclerosis, myocardial infarction

and AAA (16, 69–71). Recent study demonstrated that in AAA

acute mobilization of monocytes from the spleen to the

circulation was dependent on Triggering Receptor Expressed

on Myeloid Cells (TREM)1 and driven by Ang II via AT1R (21).

Moreover, TREM 1 was also shown to regulate CD62L

expression thereby facilitating monocyte infiltration into the

aortic wall during AAA development (21).

The role of non-classical Ly6Clow monocytes in AAA had

been also suggested in studies utilizing NR4A1 (Nuclear receptor

subfamily 4 group A transcription factor) deficient mice. The

reduction of Ly6Clow monocytes in these animals was associated

with augmented AAA and elevated elastin destruction,

suggesting potentially protective role of this monocyte subset

(72). While these data imply that circulating monocytes play

important roles in AAA, a detailed contribution of monocyte

subsets, their cooperation with neutrophils and mechanisms

controlling monocyte output in AAA remains to be elucidated.

Macrophages
Monocytes recruited to the aortic tissue are capable to

further differentiate into macrophages or dendritic cells (DC)

(73). Monocytes-derived macrophages are generally classified

into “inflammatory” and “tissue repair” subsets, both of which

had been implicated to AAA development (3, 6). While the

localization of macrophages in AAA had been established (61,

74), macrophage polarization at different stages of the disease

requires further investigation. Single-cell RNA sequencing of

aortas showed about 5-fold early expansion of pro-inflammatory

macrophages in CaCl2-induced AAA, while tissue-repair subset

was not affected, suggesting the predominance of inflammatory

macrophages (75).

Inflammatory macrophages acquire their phenotype upon

activation with a vast variety of stimuli, including LPS, ROS,

fatty acids, inflammatory cytokines or local hypoxia in the aortic

wall (76–79). Inflammatory macrophages are characterized by

elevated expression of pro-inflammatory mediators such as

IL-1b, IL-6, TNF, IL-12, IL-23, MMPs, NOS2 and chemokines

including CCL2 and CXCL1, in turn regulating the recruitment

and activation of other immune cells as well as VSMC apoptosis

(6). The expression of these pro-inflammatory molecules is

particularly prominent at the advanced stages of AAA.

Moreover, Ang II was suggested to promote macrophage

activation via upregulation of TLR4 (80).

The role of various macrophage-derived cytokines and

bioactive molecules had been investigated in multiple studies

using pharmacological or genetic approaches, however many

studies reported the conflicting results depending on the model

used. For example, pharmacological blockade or knockout of

IL-1b was shown to reduce AAA in CaCl2 model (81). However,
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recent study by Batra et al. using the same mouse model of AAA

came to the opposite conclusions and showed that Il1b-/- or
Il1r-/- mice were not protected from the disease development,

and Il1r-/- mice develop even larger AAA (82). Serum IL-1b
levels were elevated in patients with AAA, which particularly

was linked to rs35829419 polymorphism of NLRP3 common

allele (83). Indeed heightened expression of NLRP3

inflammasome had been detected in AAA tissue (83). The

genetic inactivation of NLRP3, or other inflammasome

components (caspase-1 or ASC) reduced the incidence of

AAA and ECM degradation in mice infused with Ang II (83).

Activation of TLR4 can induce MMP9 expression in VSMC and

macrophages, while expression of these entities was reversed in

Tlr4-/- mice (80, 84). Similar results were observed with TLR4

antagonist, Eritoran (80). Recent study also documented higher

TLR4 and MMP9 expression in lymphocytes rather than

macrophages in human AAA (85).

Extracellular matrix degradation mediated by MMPs is a

hallmark of AAA. Elevated serum MMP9 served as a prognostic

marker for AAA (34), and it is known that genetic ablation of

MMP9 and MMP2 halts AAA development in CaCl2 model (86,

87). Adoptively transferred WT macrophages promoted AAA

growth in Mmp9-/- but not Mmp2-/- mice, suggesting the

importance of MMPs in macrophages and collaborative action

between MMP2 and MMP9 (86, 87).

TNF, a major macrophage-derived cytokine (88) was

suggested to contribute to AAA in calcium chloride model

(82), and its genetic ablation or pharmacological inhibition of

TNF limited AAA development (89). At the same time the

ablation of its main receptor TNFR1 (p55) in Ldlr-/- mice

subjected to Ang II infusion did not significantly affect AAA

formation, but strongly reduced atherosclerosis (90).

Elevated levels of IL-6, which is presumably myeloid cell

derived, had been detected in serum and aortic tissue from

patients with AAA (91). The production of IL-6 in aneurysm

tissue is directly regulated by Ang II signaling (92); and IL-6

ablation protects from endothelial dysfunction induced by Ang

II (93).

The role of IL-12 and IL-23 cytokines in AAA was suggested

but different studies reported conflicting results. Antibody-

mediated blockade of IL-12p40 at early stages of the AAA

reduced aortic diameter and limited macrophage infiltration in

elastase perfusion model (75). However, knockout of IL-12p40

resulted in augmented AAA development in Ang II model (94).

While the observed difference in phenotypes may be due to

different models used, it is important to note that p40 is a shared

subunit between IL-23 and IL-12, and therefore genetic

inactivation likely affects both cytokines. These data suggest

that the results using neutralization or genetic knockout of one

of the subunits of heterodimeric cytokines should be interpreted

with caution. Moreover, both IL-12 and IL-23 are implicated in

the regulation of microbiota, the effect of which has to

be considered.
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Recent studies identified among CD11b+CD68+Adgre1+

macrophages a unique subset marked by Netrin 1 expression.

Netrin 1 (Ntn1) is a protein of the laminin family, which was

suggested to be involved into the axon guidance and cell

migration (95). Ntn1-positive macrophages expressed high

amounts of pro-inflammatory and pro-angiogenic markers

including MMP3, while macrophages with lower levels of

Ntn1 exhibited anti-inflammatory phenotype and expressed

high level of macrophage mannose receptor 1 (Mrc1) and

Scd1, Cd36, Cydec, Dgat2, Apoc1 genes. Hematopoietic cell-

specific Netrin-1 deficiency, meanwhile, prevented AAA

formation (95).

Exosomes are lipid bilayer nanoparticles containing RNA

and proteins that mediate cell-cell communication. They are

produced by macrophages and other cel l types as

communication tools (96). Increased presence of exosomes has

been associated with CVD, including AAA where exosomes

were detected in the adventitia, mostly in areas of macrophage

accumulation (97). In vitro experiments suggest that

macrophage exosomes mediate VSMC migration and

metabolism by modulating the expression of MMP2 in JNK-

and p38-dependent manner. Inhibition of exosome formation

by GW4869 reduced AAA progression, preserved elastin

integrity and decreased MMP2 expression in a mouse

model (96).

Tissue repair macrophages, known to perform tissue

surveillance and tissue repair functions, are also implicated in

AAA development (98). This subset of macrophages becomes

more abundant at the late stages of the disease development,

which might represent a compensatory mechanism to prevent

further AAA expansion or rectify tissue injury. While Ang II

stimulates Ly6Chigh monocyte infiltration, it was also suggested

to regulate the switch from pro-inflammatory to tissue repair

macrophage phenotype (99). Also, coagulation factor XIIIa was

shown to promote macrophage differentiation toward tissue

repair phenotype in the aneurysm (6). Cytokines produced by

this subset of macrophages, such as IL-10 and TGFb, had been

shown to play an important protective role in AAA. Increased

IL-10 systemic level correlated with reduced AAA diameter and

dissection in elastase model in rabbits (100) and Apoe-/- mice

infused with Ang II (101). Infusion of recombinant IL-10

promoted smooth muscle cells proliferation in the aorta (100),

and systemic induction of IL-10 by its overexpression increased

accumulation of FoxP3+ Tregs in aortic tissue reducing the

inflammation and diameter of AAA (101). Transforming

growth factor (TGF-b) was shown play a protective role in

AAA, since antibody neutralization of TGF-b augments AAA

severity accompanied by macrophage accumulation in the aortic

wall and enhanced ECM degradation (102). VSMC specific

deletion of TGFbR2, however, seems to protect from the

development of thoracic but not abdominal aneurysms,

implying that TGFb could act through different cell types at

different part of the aorta (103).
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Tissue resident macrophages. Aortas also harbor tissue

resident macrophages, which originate from yolk sac during

development (104, 105). These macrophages are also

heterogeneous and can be polarized toward anti-inflammatory

or tissue repair subsets. In cardiac repair, they play an important

role in tissue regeneration and were shown to remove debris,

regulate extracellular matrix (ECM), and stimulate

cardiomyocytes proliferation (106), but their exact role in

AAA has not been fully dissected yet. Single cell RNAseq

analysis of elastase-driven AAA and healthy vessels revealed

that CX3CR1+ (yolk-sac derived) macrophages are the most

abundant subset in healthy aorta representing 62.5% of total

macrophage population, while bone marrow derived

macrophages (CCR2+Ly6C2lowF4/80lowCD11blowH2-Aalow)

start to dominate in AAA lesions (107). Another tissue

resident subset of Flt3+ macrophages is increased in AAA and

expresses pro- and anti-inflammatory cytokines such as CCL3,

IL-1b and IL-10 (107), suggesting their contribution to cell

recruitment and activation. A trans-differentiation of VSMCs

toward a “macrophage-like” phenotype was demonstrated in

atherosclerotic disease (108), however the relevance of this

mechanism to AAA remains to be determined.

The interplay between monocytes, macrophages and

neutrophils could also be implicated to their reciprocal

activation during AAA pathogenesis. Early monocytes

infiltration in the aortic wall in AAA and differentiation

toward inflammatory macrophage subset with the subsequent

production of CXCL1 may further facilitate neutrophil

recruitment, contributing to the aortic wall destruction.

Conversely, neutrophils produce IL-6 known to contribute to

pro-inflammatory macrophage activation (6). Moreover,

macrophage macropinocytosis was linked to the engulfment of

NETs, and a negative correlation between the density of

macrophages and NETs in AAA was observed (109).
Dendritic cells
Dendritic cells (DC) are professional antigen presenting cells

that link innate and adaptive immune responses (6). DC activate

T cells and also contribute to innate immune responses via

secretion of pro-inflammatory cytokines, including TNF, IL-12,

IL-23 and others as well as chemokines (105, 110). Dendritic

cells can be divided on conventional DC, plasmacytoid DC,

lymphoid DC and inflammatory DC subsets. The latter

differentiate from the recruited monocytes at the site of

inflammation (111). DC had been detected in AAA (45, 112)

and depletion of CD11c+ DC using DTR-driven approaches led

to the reduction in maximum diameter of AAA in Ang II-driven

model (112). Depletion of DC lowered numbers of circulating

CD44high CD62Llow effector CD4 T cells, CD44high CD62Llow

effector CD8 T cells and B cells. Moreover, DC depletion also

attenuated SRA matrix degradation by limiting neutrophil

elastase activity, resulting in limited elastin degradation and
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heightened collagen content (112). Plasmacytoid DC activation

in AAA has been linked to NET formation due to their ability to

produce cathelicidin and type I IFNs (45). Therefore, DC were

suggested to promote lymphocyte and neutrophil infiltration

and activation, and regulate matrix content and organization.

Nevertheless, the putative self-antigens presented by DC in AAA

are not known and mechanisms driving initial DC accumulation

and activation in AAA remains to be elucidated.
Mast cells
Mast cells had been detected in AAA lesions in outer media

and adventitia, and their number correlated with AAA diameter

(113). Mast cells are known to produce proteases such as

tryptase and chymase, inhibition of which is explored as a

therapeutic approach for AAA in animal models (114).

Immunoglobulin E (IgE) is a signature molecule of allergic

responses activating FcϵR1 on mast cells. Apoe-/-Ige-/- mice

infused with Ang-II or treated with CaCl2 were protected from

AAA and neutralization of IgE by antibodies reduced AAA

formation and inflammation in the aorta (115, 116).

Amelioration of the disease was accompanied by limited

recruitment of neutrophils and lowered expression of MIP-2a

and CXCL5 in AAA tissue (116). One of the suggested

mechanisms was via TNF produced by mast cells, which was

regulated by metalloendopeptidase Meprin-a (Mep1A). Mast

cell-derived TNF regulated MMP2 production and VSMC

apoptosis in AAA; and the Mep1A deficiency ameliorated the

disease (117). These observations provide an important largely

unexplored link between allergic inflammation and AAA

development and warrant detai led investigation in

future studies.
NK and ILC cells
Both Natural killer (NK) and Innate lymphoid cells (ILC) are

professional innate cytotoxic cells capable of producing

cytokines, such as IFNg, or cytotoxic molecules, such as FasL

(CD95L), perforin and granzymes. They typically act to

eliminate infected, stressed, senescent or transformed cells

(118). NK cells represent a potent source of inflammatory

IFNg, and their pathologic role in atherosclerosis had been

previously suggested (119). Immunohistochemistry and

microarray analysis of human AAA tissue revealed elevated

presence of NK cells in AAA tissue along with upregulated

granzyme B and other cytotoxic markers (120, 121).

Hematopoietic deficiency of CD95L, a transmembrane protein

regulating cell death or pro-survival pathways (122),

significantly reduced AAA formation in CaCl2 model, which

was associated with lowered infiltration of macrophages and T

cells along with limited MMP-2 and MMP-9 expression (123).

Innate lymphoid cells (ILC) comprise of three major

populations (ILC1, ILC2 and ILC3) which are characterized by
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distinct functions and spectrum of produced cytokines (124).

ILCs can be typically found at mucosal surfaces, in the adventitia

of arteries, pericardium, adipose tissue as well as liver (124, 125).

While ILC1 are known producers of IFNg, ILC2 represents a

critical source of type 2 cytokines such as IL-4, IL-5, IL-9 and

IL-13 (125). ILC2 were implicated to the regulation of metabolic

homeostasis, obesity, helminth infection and allergic lung

inflammation (126–128). In atherosclerosis-prone mice fed

with high fat diet (HFD) ILC2 cells were found in para-aortic

fat tissue and were characterized by pro-inflammatory gene

expression profile (124). Also, NK cells expressing IL-4, IL-5

and IL-13 were associated with the development of AAA in early

studies, nowadays would be probably classified as ILC2 (120).

NK cell mediated IL-13 production can induce MMP-2, -9, -13

and -14 in pulmonary diseases (129), thereby hinting at its

potential role in AAA progression via similar mechanisms. ILC3

are RORgt-dependent cells, which produce IL-17A and IL-22

cytokines (130). The role of these cells in CVD only recently

attracted attention and was discussed elsewhere (131), while

their role in AAA have not yet been examined.

iNKT
Invariant Natural Killer T (iNKT) cells express TCRb and

NK1.1 surface markers. NKT cells recognize non-classical

antigens, including lipids, presented in the context of MHC-I

and MHC-I-like molecules, including CD1d (132). In vascular

diseases, NKT cells has been implicated in the progression of

atherosclerosis (57, 133). In human AAA tissue, an increased

proportion of activated Va24Ja18+NKT subsets in the media

was reported (134). Elevated presence of iNKT cells in AAA had

been also found in Apoe-/- mice infused with Ang II, especially

after the treatment with a-galactosylceramide (aGC), a

synthetic glycolipid that activates iNKT cells via CD1d. That

correlated with increased incidence of AAA. Histopathological,

immunofluorescent staining and RNAseq results also showed

more severe infiltration by inflammatory cells in the Ang II+

aGC group (134). Interestingly, opposite results were found in

another study, where activation of iNKT cells by aGC attenuated

Ang II-mediated AAA in obese ob/ob mice via induction of anti-

inflammatory macrophage polarization (135). Overall this

points out to possible iNKT role in AAA development but

complimentary “loss-of-function” experiments are still missing.
Adaptive immunity

T cells

T cells represent a key arm of adaptive immunity and are

composed of CD4+TCRb+ (helper) and CD8+TCRb+ (cytotoxic)
subsets. Depending on environmental cues CD4 T cells can

differentiated toward Th1, Th2, Th17, Th22, regulatory T (Treg,
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CD4+FoxP3+CD25+) and more recently described Tfh lineages

(136), most of which have been found in AAA (93, 105, 137).

T helper subsets are characterized by the production of subset-

specific cytokines impacting the inflammatory environment at

the site of inflammation (138). Degradation of ECM proteins

such as elastin and collagen progressing during AAA

development is accompanied by CD4+ T cells infiltration

(116). Recent study utilizing RNAseq on sorted “bulk/

conventional” CD4 T cells revealed that CXCR6/CXCL16 axis

is necessary for the recruitment of CD4 T cells to AAA. CD4 T

cells were shown to produce GM-CSF, which in turn controls the

recruitment and polarization of pro-inflammatory monocytes to

the aortic wall through upregulation of CCL2 and activation of

IRF5 (interferon regulatory factor 5) (139).
Th subsets: Th1 and Th2
Th1 cells are characterized by production of IFNg, which

plays a pro-inflammatory role in atherosclerosis (140–142). In

AAA, however, the role of IFNg is not clearly defined. Early

studies showed that administration of recombinant IFNg into

mice lacking CD4+ T cells promotes aneurysm development

(143). However, IFNg deficiency was also associated with

augmented AAA in Ang II–induced mouse model, suggesting

a protective role for this cytokine in AAA (7). The proposed

mechanism suggests that IFNg is a regulator of CXCL10

expression in AAA, which in turn controls the recruitment of

protective effector T cells (7). However, CXCL10 can also attract

NK cells, which are considered pathogenic in AAA because of

the production of so-called “type 2” cytokines (IL-4, IL-5 and

IL-13) in antigen-independent, innate immune mode manner.

Moreover, the neutralization of IFNg by antibodies did not

protect mice from AAA (144). Overall while these

observations put IFNg as an important player in AAA, they

warrant further studies of its role at different stages of this

disease, mechanisms of its induction, cell specificity of IFNgR
signaling as well as cell type specific mechanisms of

IFNg production.
Th2 helper subset is characterized by the production of “type

2 cytokines” such as IL-4 and IL-5; and in that capacity these

cells are similar to ILC2 and NK cells. These cytokines contribute

to the control of B cell activation and clonal expansion (136,

145). They were shown to suppress early atherosclerotic lesions,

however IL-4 deficiency only slightly alters the course of the

disease (146, 147). IL-5 deficiency was shown to accelerate

atherosclerosis (148). However, in AAA Th2 cells producing

IL-4 and IL-5 were suggested to be pathogenic, particularly due

to the ability to induce VSMC apoptosis (149, 150). The shift

from Th1 to Th2 was associated with AAA augmentation (151).

In humans, however, large AAA were characterized by Th1

cytokines profile whereas Th2 response was a predominant in

patients with small aneurysms (152). The difficulty to assign a

specific role for Th2 cells in AAA is related to the fact that type II
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cytokines can be also produced by NK cells and ILC2 (153, 154).

The specific cellular source of type 2 cytokines had not been

explicitly studied in AAA and future studies addressing cell

specificity will be important.

Th17 cells
Th17 helper subset is regulated by the transcription factor

RORgt and known to produce characteristic cytokines IL-17A,

IL-17F and IL-22. Th17 cells are dependent on IL-23, IL-6 and

IL-1b cytokines derived from myeloid and epithelial cells (155).

Th17 cells play a pro-inflammatory, disease-promoting role in

many inflammatory pathologies, including atherosclerosis (156–

158) and had been implicated to AAA. IL-17A genetic deletion

in elastase model of AAA attenuated the disease development

and limited inflammatory cell infiltration (8). Similar phenotype

was also observed in the Ang II-infusion model, where genetic

and pharmacological neutralization of IL-17 or use of RORgt
antagonist limited the disease (91, 159). Conversely, SOCS3

(suppressor of cytokine signaling 3) overexpression and

reduction of IL-17A expression accelerated AAA (160). It is

important to note that SOCS3 has multiple downstream targets

beside IL-17A, for instance IL-10, which has its own, protective

function in AAA. As Th17 cells expansion is driven by IL-23, its

genetic and pharmacological ablation mitigated AAA, which was

associated with reduced IL-12p40 production and lowered MMP

expression (94).

Overall, more mechanistic studies better dissecting cell type

specific responses are needed to elucidate the relative

contribution of Th1 versus Th2 versus Th17 or other subsets

of CD4 T cells in comparison with other cell types producing

similar cytokines in AAA (161).

Regulatory T cells
Tregs are professional suppressors of immune and inflammatory

responses known to inhibit the activation of other T cells and innate

immune cells, thereby controlling the inflammation, autoimmunity,

and anti-tumor immunity (162). Tregs had been detected in aortic

tissue and their protective role in atherosclerosis had been

demonstrated in multiple studies (163, 164). Tregs were also

implicated to AAA pathogenesis by suppressing inflammatory cell

accumulation (mainly macrophages and T cells) and

proinflammatory molecules expression including CCL2, IL-6 and

ICAM-1 (165, 166). Prostanoids and eicosanoids are essential

inflammatory mediators associated with AAA development, and

cyclooxygenase COX2, an enzyme regulating the conversion of

arachidonic acid to prostanoids and eicosanoids, expression is

upregulated in patients with AAA (167). Tregs can suppress COX2

expression by myeloid cells, thereby limiting AAA (168).

T cell co-inhibitory molecule cytotoxic T lymphocyte

associated antigen-4 (CTLA4) is known to act as a potent

negative regulator of immune responses (169). Overexpression

of CTLA4 in CTLA-4 transgenic Apoe-/- mice fed with WD and
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infused with Ang II limited AAA incidence by 66%, reduced the

diameter of abdominal aorta and mortality by 26% (110). These

effects led to lowered number of accumulated CD4 T cells and

downregulated expression of CD80 and CD86 (ligands for

CTLA-4) on CD11c+ dendritic cells in lymphoid tissues.

CD11c depletion led to reduced accumulation of macrophages

and CD4 T cells, attenuating aortic inflammation, preserved

vessel integrity, and decreased AAA and aortic rupture (110). In

atherosclerosis Tregs in the aorta were shown to lose their

suppressing anti-inflammatory properties converting to pro-

inflammatory subsets. The conversion was mediated by the

environment in atherosclerotic plaque characterized by local

hypoxia, dyslipidemia and overproduction of pro-inflammatory

cytokines. During atherosclerosis development Tregs were

shown to lose FoxP3 (Treg specific transcription factor)

expression, thereby switching to exTregs and upregulating

transcription factors typical for other Th subsets, for instance

to Th1 or Tfh (follicular helper cells) (170–173). It remains to be

determined whether such conversion also takes place in AAA.

Pharmacological treatment with statins has been widely used

in CVD, in part due to their immunomodulatory properties.

Simvastatin and Treg depletion with anti-CD25 antibody in

Apoe-/- mice subjected to Ang II infusion lowered the incidence

and severity of AAA accompanied by reduced VSMC apoptosis

and ROS production in the aortic wall (174). In patients with

AAA receiving simvastatin, the levels of Ang II signaling marker

caveolin-1 and Nrf2 activation were decreased (175), while

protective eNOS expression was increased (176), suggesting its

beneficial effect in AAA.
T follicular helper cells and T follicular
regulatory helper cells

T follicular helper cells (Tfh) are localized in the germinal

centers of secondary lymphoid organs where they regulate antibody

class switching in B cells thereby controlling humoral immunity.

Tfh are characterized by the expression of transcriptional factor Bcl-

6 (B cell lymphoma 6) as well as CXCR5 and PD-1 (programmed

death-1) (177, 178). A circulating subpopulation is characterized by

CXCR3 and CCR6 expression and can be divided on cTfh1

(CXCR3+CCR6−; producing IFNg), cTfh2 (CXCR3−CCR6−;

secreting IL‐4, IL‐5, and IL‐13), and cTfh17 (CXCR3−CCR6+;

producing IL‐17A and IL‐22) subsets (179). Tfh cells have been

implicated to the regulation of autoimmune and inflammatory

diseases including CVD. Their presence had been detected in the

aortic wall (180) and CXCR3+ Tfh cells were found elevated in

atherogenic environment (177, 178). Moreover, decreased

frequency of cTfh1 and increased frequency of cTfh2 and cTfh17

had been described in patients with atherosclerosis compared to

healthy controls (179). The genetic ablation of Bcl-6 in CD4+T cells

slightly reduce atherosclerotic plaque size in Apoe-/- mice (178).

T follicular regulatory helper cells (Tfr) are Tfh cells that also

express FoxP3 as well as IL-10 and TGFb. Tfr cells were shown
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to suppress the activation of Tfh cells upon adoptive transfer to

Apoe-/- mice causing marked decrease of Thf population along

with atherosclerotic plaque size (181). However, the role of these

cells in AAA is yet to be investigated.
CD8 T cells

Much less is known about the contribution of CD8 cytotoxic

T cells to AAA development. Early studies found CD8+CD28−

IFNg producing T cells in AAA tissue and in circulation. Besides,

a population of CD8 T cells lacking CD27 (that allows

accumulation of CD8 T cells in tissues) was detected in

human AAA lesions but not peripheral blood, suggesting a

potential unique role of this subset of CD8 T cells in AAA

(182). More recently, the role of CD8 T cells was assessed in the

elastase model of AAA utilizing Cd8-/- animals and transgenic

CD8 T cells. The study suggested that CD8, but not CD4 T cell

derived IFNg activates MMP9 and MMP2, thereby enhancing

AAA development (183).
gd T cells

gd T cells is a subset of T lymphocytes that can directly

recognize antigen without APC and produce IL-17 and IFNg. gd
T cells were detected in atherosclerotic aortas and were

suggested to regulate neutrophil activation in IL-17 dependent

manner (184). In humans, no difference in proportions of CD4,

CD8, and gd1+ T cells were detected between aneurysm tissue

and PBMCs (185). At the same time gd2+ T cells were found in

greater numbers in aorta, and the frequency of Tregs was

significantly lower in AAA compared to PBMCs (185). The

number of CXCR5 expressing Vd2+ T cells was significantly

increased in aneurysm tissue compared to normal aorta or

PBMCs from patients with aneurysm. Moreover, the frequency

of IL-17A+ cells in AAA was significantly higher among gd2+ T
cells compared to CD4 or CD8 T cells. Importantly, IL-17A-

producing gd2+ T cells were found only in the aortic tissue,

implying their potential role in the progression of AAA (185). In

experimental model, gd T cell deficiency inhibited the

inflammatory response in the aorta and attenuated AAA,

suggesting overall pro-inflammatory AAA-promoting role for

gd T cells (184).
B cells

B cells represent another key arm of adaptive immunity

performing their functions via antibody and cytokine

production as well as antigen presentation. Two types of B

cells had been described: B1 and B2 (186). B1 cells originate from

fetal liver and in adult organisms mostly reside in the abdominal
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cavity. They are active producers of IgM antibody with

predominant specificity to different components of bacterial

products and phospholipids; their activation is mostly T-cell

independent. B1 cells control atherosclerosis by the production

of LDL specific IgM antibodies, which suppressed inflammatory

macrophages polarization and foam cell formation (186). B2

cells develop in bone marrow and differentiate to antibody-

producing plasma cells upon antigen exposure and help from T

cells. B2 cells produce different flavors of antibodies, including

IgG, IgA and IgE, as well as cytokines IL-10 and IL-6 (186), and

can further promote Th1 and Th17 cell responses. IgE was

shown to activate CD4 T cells and macrophages through FcϵR1
receptor recognizing IgE (4). In atherosclerosis, high fat diet

(HFD) was shown to enhance the activation of T cells by

augmenting cDC production, a mechanism in part mediated

by B cell derived GM-CSF (186). In addition, atherosclerotic

plaque is a source of endogenous TLR ligands that might

promote B cell activation (186).

The role of B cells in AAA had been also suggested (187,

188). B cells had been detected mostly in adventitia in both

human and mouse AAA (5, 187, 189). Ablation of B cells by

knockout of muMT (IgG heavy chain) or cell depletion by anti-

CD20 reduced AAA development in elastase and Ang II infusion

models, which was associated with an increased presence of

Tregs (187, 189, 190). B cell-deficient muMT mice were

presented with reduced expression of MMP9. Furthermore,

inhibition of key B cell receptor signaling molecule Syk

suppressed AAA growth, reduced inflammatory response and

limited immunoglobulin deposition in AAA (190). This overall

suggests that B2 cells promote AAA. B cell accumulation in

CaCl2-induced AAA at various stages of the disease progression

does not significantly change during the disease progression,

however, IgG and IgM had been detected in AAA with a peak at

1 week after the CaCl2 perfusion (190). Interestingly, B cell

activation and production of autoantibodies such as anti-Hsp70,

anti-Hsp65, or anti-AT1R occurs in humans and rodent models

of hypertension (191), suggesting a potential role of Ang II in B

cell activation. BAFF, a member of the tumor necrosis factor

family of cytokines, drives the differentiation of B cells and is a

critical survival factor for mature B cells. Recent studies

demonstrated that blockade of BAFF receptors in elastase

perfusion model attenuated AAA (170). The antagonist of

BAFF depleted most of mature B cell subsets in spleen and

circulation, decreased infiltration of B cells to the aorta, along

with proinflammatory macrophages, and reduced number of

apoptotic cells in AAA. The study also reported that in AAA

tissue, B cells and macrophages were found in close contact (188,

190), suggesting a possible role of B cell-macrophage

communication in AAA pathology. Future studies will be

needed to elucidate the mechanisms regulating B cell

activation in AAA, role of specific antibodies, including IgA as

well as contribution of B1 cells and IgM to AAA pathogenesis.
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Taken together, most of the immune subsets have well

established or suggested function in AAA which is further

summarized in Table 1, along with the information of genetic

or pharmacological tools helpful to ascertain the role of various

cells in AAA promotion or inhibition.
Mechanisms that regulate immune
cells in AAA

While various immune cells had been detected in aortic

tissue and multiple study attempted to address the mechanistic

role of these cells in AAA, the upstream mechanisms controlling

immune cells activation and accumulation in AAA are still

under investigation. Despite previously established roles of

listed below factors in immune cell activation in other diseases

including CVD, one can hypothesize and extrapolate it to AAA

to suggest how these factors influence immune activation and

function in AAA and where spatially the activation of immune

cells occurs (Figure 2).
Angiotensin II

High blood pressure is one of the key risk factors for AAA.

RAS (Renin-Angiotensin-Aldosterone System) controls

vasoconstriction and blood pressure. Moreover, RAS was also

implicated in the regulation of cell growth and vascular wall

integrity influencing many cellular processes (192). Ang II is one

of the key enzymes of RAS. Ang II acts through its receptors

AT1R and AT2R to regulate cardiovascular remodeling. Ang II

also shares some of the signaling pathways with growth factors,

promoting growth of cardiac myocytes, fibroblasts and vascular

smooth muscle cells (VSMCs) via MAPKKK pathway (193,

194). AT1Rs are expressed by vascular, endothelial cells and

various immune cells (13) suggesting Ang II involvement in

their activation. Multiple studies demonstrated the effect of Ang

II on immune cells. For example, Ang II was shown to induce a

pro-inflammatory program in THP-1 macrophages in vitro

(195). Moreover, interaction between Ang II and core clock

gene Rev-erba in macrophages had been proposed, which

through the AT1R/LXRa pathway was implicated to the

control of MMP9 expression (196). Furthermore, Ang II was

shown to control not only mature immune cells but also

hematopoietic stem and progenitor cells (HSPC) leading to

enhanced myeloid differentiation and myeloid cells

production (197).

Recent work identified cytokine-dependent mechanisms

that cooperate with Ang II to induce stress myelopoiesis and

AAA (198). Specifically, IL-27R signaling was shown to

potentiate the response of HSPC in the bone marrow to Ang
frontiersin.org

https://doi.org/10.3389/fimmu.2022.989933
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Márquez-Sánchez and Koltsova 10.3389/fimmu.2022.989933
TABLE 1 The role of immune cells in AAA.

Cell type Target Intervention Effect on AAA AAA model Ref

Neutrophils

Neutrophil depletion Anti-PMN Elastase (19)

Inhibition of NETosis
Losartan Ex vivo (38)

Cl-amidine, YW3-56 Elastase (46, 47)

Monocytes /Macrophages

Ly6Chigh monocytes
Ang II infusion Ang II (6, 16)

Angiopoietin-2 Ang II (64)

CCR2 Ccr2-/- Ang II (65)

Ly6Clow monocytes Nr4a1-/- Ang II (72)

CD11b+ cells Itgam-/- CaCl2 (66)

MMP9 Mmp9-/- CaCl2 (87)

MMP2 Mmp2-/- CaCl2 (87)

TNFa Tnf-/-, TNFa antagonist
(infliximab)

CaCl2 (89)

TNFR1 Tnfr1-/- Ang II (90)

Macrophage exosomes GW4869 (exosome inhibitor) CaPO4 (96)

IL-23 Il123-/-, anti-IL-23 antibody Ang II (94)

Netrin 1 Ntn1-/- in hematopopietic cells Ang II (95)

NLRP3, ASC or Caspase-1 NLRP3-/-, ASC-/- or caspase-1-/- Ang II (83)

Macrophages/Neutrophils/DC IL-1
Il1b-/-, anti IL-1b CaCl2 (81)

Il1b-/-, Il1r-/- CaCl2 (82)

Macrophages/DC IL-12p40 Anti IL-12p40 antibody
Elastase (75)

Ang II (94)

Monocyte/Macrophages/
CD4T Th1

TLR4 Tlr4-/- Ang II (80)

Eritoran (drug), TLR4 signaling
suprresion

Ang II (80)

Macrophages/ Treg

TGF-b
Tgfbrflox/flox Acta2-CreER
(smooth muscle specific)

Ang II (103)

AntiTGFb antibody Ang II (103)

IL-10
rIL-10 infusion Elastase (100)

IL-10 systemic induction with
minicircle vector transfection

Ang II (101)

Monocytes/Macrophages/
Neutrophils/
CD4T cell Th17

IL-6 Il6-/- Ang II (93)

(Continued)
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II. The ablation of IL-27R in mice infused with Ang II protected

them from AAA (198). Mitigation of aneurysm development

was associated with blunted accumulation of myeloid cells in the

aorta due to attenuation of Ang II-induced HSC expansion.

Mechanistically, IL-27R signaling was required to induce

transcriptional programming to overcome HSC quiescence

and increase differentiation and output of mature myeloid cells

in response to stress stimuli to promote their accumulation in

the diseased aorta (198). It is conceivable that other cytokines

(such as IL-1 and IFNg) may also conspire with Ang II to

enhance emergency myelopoiesis from BM during

AAA development.

Spleen was shown to play an important role as a reservoir for

extramedullar hematopoiesis (199), that had been previously

linked to atherosclerosis development (200). The mobilization of

both Ly6Chigh and Ly6Clow monocytes from the spleen in

response to Ang II had been reported (16). B cells were

suggested to regulate early monocyte mobilization and

promote macrophage accumulation in the AAA through
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mediation of extramedullary hematopoiesis. Splenectomy prior

to Ang II infusion inhibited early monocyte mobilization and

protected from AAA (16).

Cells of adaptive immunity also express ATRs. It has been

reported that Ang II stimulation activated inflammatory

phenotype in T cells and facilitates their infiltration to

adventitia and perivascular adipose tissue (PVAT) as well as

into the heart (191). The modulation of adaptive immune

activation in hypertension has been attributed to target organ

oxidative stress and was suggested to be sex dependent (191).

Although effects of Ang II on T cells have been explored, the role

of Ang II in the regulation of B cells in AAA is poorly

understood despite AT1R being expressed on B cells.

Ang II was suggested to affect the composition of gut

microbiota, and therefore a possible crosstalk between

microbiota-inducing cytokines and Ang II during AAA

development should be taken into the consideration

(Figure 2). Systemically, Ang II was shown to modify plasma

and fecal metabolites in conventionally raised mice vs germ-free
TABLE 1 Continued

Cell type Target Intervention Effect on AAA AAA model Ref

Dendritic cells CD11c+ cells Cd11cDTR Ang II (112)

Mast Cells
IgE Ige-/-, anti-IgE

Ang II (116, 117)

CaCl2

Meprin a Meprin1a-/- Ang II (117)

Th1/CD8/NK/ILC1/gd T cells
IFNg

Ifng-/- Ang II (7)

Anti IFNg Ang II (150)

CD4T Th2/ILC2/NK IL-4 Anti IL-4 Elastase (150)

Th2/NK/ILC IL-5 Anti IL-5 Ang II (149)

Th17/ILC3 IL-17A
Il17a-/- Elastase (8)

Il17a-/- and anti IL-17A Ang II (8, 159)

Tregs CTLA4 CTLA-4 Tg Ang II (169)

CD25 anti CD25(PC61) antibody Ang II (174)

CD8 T cells
CD8

Cd8-/- Elastase (183)

Cd8Tg Elastase (183)

gd T cells gd Tcells gdTcr-/- Elastase (184)

B cells B2 cells

muMT-/- Elastase (190)

Anti CD20 Ang II (190)

Anti BAFF Elastase (188)
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(GF) animals, suggesting the role of Ang II in the regulation of

intestinal epithelial cells and microbiota (201), possibly in a sex-

dependent manner (201). Despite multiple studies convincingly

demonstrating an important role of Ang II in AAA (13),

additional work is needed to better understand the cell

specificity of Ang II signaling in this disease.
Microbiota in CVD

Diet, inflammation, aging and increased bone marrow (BM)

myeloid cell output all contribute to the development of CVD

(102, 202). Microbiota is a common facilitator for processing

and metabolizing food, inducing inflammation and regulating

BM output. A connection between unhealthy diet, alterations in

bacterial composition in the intestine and CVD has recently

emerged (203). The relationship between dysbiosis and obesity

has been suggested, supporting the emerging view that gut

microbiota contribute to metabolic disease by modulating host

metabolism (202, 204–206). Germ free (GF) mice are resistant to

diet-induced obesity, with some mechanisms of microbiota

modulating inflammation and lipid metabolism suggested. GF

mice are characterized by reduced adipose tissue inflammation,

while the presence of gut microbiota increases macrophage

content in the fat with a polarization toward pro-inflammatory

phenotype (207, 208). Metabolic alterations that contribute to

atherosclerosis and possible contribution of gut microbiome to

this disease development via altered production of microbial- or
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food-derived metabolites have been also reported (208–212),

however more mechanistic studies are needed to demonstrate

causative rather than correlative effect.

The composition of the diet was shown to regulate barrier

function of the intestine. Hence, intestinal permeability and

alterations in the microbial community in the gut are affected

by high fat, high carbohydrate “Western diet” and can cause

translocation of bacterial products and metabolites, further

impacting CVD development (213–218). Moreover,

microbiota-derived factors can modify activation state of

intestinal epithelial cells (IEC) and immune cells. For instance,

high fiber diet induced favorable changes in microbiota, and

played a protective role in the development of atherosclerosis by

controlling acetate (short chain fatty acid) production. Its effects

were accompanied by downregulation of Egr1, a master

regulator gene involved in cardiac hypertrophy, cardiorenal

fibrosis, and inflammation (210). On the other hand, dietary

serves as a substrate for microbiota-catalyzed overproduction of

di- and tri-methylamines. Trimethylamine-N-oxide (TMAO) is

a metabolic derivative of L-carnitine and choline; found to be

upregulated in patients with CVD, and its serum levels correlate

with higher risk of myocardial infarction and atherosclerosis

development (211, 219).

Microbiota and its products also has been shown to

influence hematopoietic stem cell (HSC) differentiation and

BM output (220). At the same time, WD was suggested to

impact epigenetic reprogramming of granulocyte and monocyte

precursor cells in NLRP3 inflammasome dependent manner,
FIGURE 2

Potential mechanisms regulating immune cells activation in AAA. Multiple factors may systemically and locally regulate immune cells activation
in AAA. Angiotensin (Ang) II receptors are expressed on various immune cells and can directly regulate their activation and function. Alteration of
intestinal barrier will impact microbiota composition and function leading to changes in circulating metabolites and microbial products that in
turn may regulate immune cell activation in AAA. Ang II as well as microbiota-derived products may stimulate immune cell mobilization from
bone marrow and spleen. Perivascular adipose tissue (PVAT) may contribute to the inflammation in the aortic wall via the production of
adipokines, cytokines and chemokines regulating immune cells accumulation in PVAT.
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skewing bone marrow cell differentiation toward myeloid

lineages and enhancing so-called “trained immunity” in

atherosclerosis. This reprogramming is maintained even after

the switch to chow diet, showing long lasting “trained

immunity” induced by WD along with enhanced production

of myeloid cells which are later on recruited into CVD lesion

sites (52).

Single-cell RNA sequencing of human AAA tissues revealed

increased expression of histone demethylase JMJD3 in aorta

infiltrating monocyte and macrophages, resulting in reduction of

repressive histone methylation H3K27me3 marks on promoters

of inflammatory genes and concomitant upregulation of

inflammatory gene expression. Jmjd3 expression was shown to

be controlled by IFNb/JAK/STAT pathway and led to NF-kB-
dependent induction of inflammatory gene transcription in

aorta-infiltrating macrophages contributing to vascular

inflammation (221). These results suggest that epigenetic

modifications could play a modulatory role in the regulation

of inflammatory environment in AAA.
Microbiota and AAA
While many studies are focused on the connection between

alterations of microbiota and atherosclerosis, its contribution to

AAA is far less understood. Change in gut microbiota

composition is linked to hypertension in rodents and humans

(202, 207, 222). The relationship between microbiota diversity

and AAA severity in humans has been recently reported, and

changes in microbiota composition correlated with AAA

presence and size (223). Specifically, a decrease in relative

abundance of Bacteroidetes and increased relative abundance

of Proteobacteria had been reported in patients with AAA (223).

The relation between AAA size and a-diversity index was

inverse, and severity had a positive correlation with increased

relative abundance of Enterobacteriaceae and decreased

abundance of Veillonellaceae (223). The reduction of the

Verrucomicrobia (particularly represented by Akkermansia)

was detected in mice infused with Ang II (224).

Germ-free (GF) mice infused with Ang II were characterized

by lower neutrophil infiltration into the aorta, attenuated cardiac

and kidney inflammation, fibrosis, and systolic dysfunction

(207). Accordingly, attenuated leukocyte adhesion, lowered

infiltration of Ly6G+ neutrophils and Ly6C+ monocytes into

the aortic wall, limited endothelial dysfunction and reduction of

blood pressure were observed in GF mice subjected to Ang II

infusion, indicating possible contribution of gut microbiota to

immune cells activation in response to Ang II (207). A link

between normal vascular function and microbiota was directly

proven by microbiota depletion (225). When young GF mice

were analyzed for vascular contractility and structure, males and

females showed differential response: males showed a marked

decrease in contraction of arteries and increased vascular

stiffness, while females showed hypertrophic remodeling. Also,
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ROS generation by neutrophils was blunted in female GF mice

and exacerbated in male GF mice (225).

While several microbiota-derived products and metabolites

had been implicated in the regulation of immune cells activation

in CVD as described above, most of the studies to date had been

focused on atherosclerosis. It remains to be determined whether

similar mechanisms are also specifically involved in the

pathogenesis of AAA. Here we will briefly discuss microbial

metabolites and their role in CVD and possible contribution

to AAA.
LPS

LPS is an obligatory component of gram-negative bacteria

wall. Elevated levels of LPS can be detected in the circulation as a

result of altered gut barrier and increased gut permeability and

alteration of microbiota composition. Unhealthy diets can

induce gut dysbiosis and alter gut barrier function, thereby

contributing to elevated LPS in the circulation. LPS promotes

activation of myeloid cells via TLR4/MyD88 pathway, systemic

inflammation and monocyte infiltration to vascular wall (226–

228). The effect could be further exacerbated by combined action

with other cardiovascular disease modifying factors. Hence, LPS

in combination with oxLDL was shown to induce NLRP3

inflammasome activation and IL-1b production by

macrophages that contribute to atherosclerosis development

(52). LPS induces various pro-inflammatory cytokines

production including IL-6, TNF as well as Osteopontin (Spp1)

by macrophages (52, 227, 229, 230). Moreover, LPS together

with oxLDL was shown to inhibit cholesterol transporters

ABCA1 and ABCG1, which in turn affects reverse cholesterol

transport (231). Furthermore, LPS together with TMAO had

been demonstrated to enhance Spp1, Il1b, and Cd36 gene

expression in the aorta (229).

In vitro study comparing monocyte-derived macrophages

from AAA patients and matched controls showed limited

response to LPS due to TLR4 cytosolic internalization, which

may be a sign of diminished inflammatory responsiveness, but

also may reflect an excessive LPS signaling which resulted in

“LPS tolerance” (232).
TMAO

TMAO (trimethylamine-N-oxide) is produced in the liver

from choline and L-carnitine dietary-derived metabolite TMA

(trimethylamine) whose production itself requires gut

microbiota. TMAO production has been associated with the

presence of specific bacterial taxa in the gut, for example

Prevotella spp (202, 211, 233). Elevated serum TMAO was

found in individuals with CVD and was implicated into

atherosclerosis and thrombosis (218, 229, 234–240). In

experimental models L-carnitine or choline supplementation

to mice led to the upregulation of TMAO and augmented

atherosclerosis acting by reducing in vivo cholesterol reverse
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transport and modifying microbiota (202, 233). Moreover, no

upregulation of TMAO was detected in GF mice despite

L-carnitine supplementation, thus no augmentation of

atherosclerosis was found (211), implying an important link

between intestinal microbiota, TMAO production and CVD.

TMAO had been also implicated into the regulation of platelet

hyperreactivity and thrombus formation and these parameters

were reduced in the absence of microbiota in GF mice (208).

The bacterial fermentation products such as lactate and

acetate had been shown to regulate storage and metabolism of

lipids in intestinal epithelial cells via control of b-oxidation and

PPARa pathways (209). However, not all studies demonstrated a

notable effect of microbial products on CVD. For example, one

study reported that choline supplementation or WD feeding in

conventionally raised and GF mice led to a minor dysbiosis in

mice, but the effects on atherosclerosis were only driven by

cholesterol levels in plasma (212). The role of TMAO in AAA

has been recently suggested. TMAO added to drinking water

promoted AAA development in Ang II and CaCl2 mouse models

(241). This was accompanied by heightened elastin degradation

and upregulation of ROS, MMP-2 and 9 and senescence markers

in the aorta (241).

Bile acids

Multiple members of gut microbiota including Clostridium,

Bifidobacterium and Lactobacillus participate in bile acid

metabolism through bacterial bile-salt hydrolase (BSH) activity,

necessary for the bile acid deconjugation and formation of free bile

acids and taurine residues (242). Decreased bile-salt hydrolase in

dysbiotic conditions had been linked to enhanced foam cell

formation by upregulation of hepatic FXR (Farnesoid X

Receptor) and inhibition of Cyp71a (cholesterol 7 alpha-

hydroxylase) and LXR, thus promoting cholesterol accumulation

within the liver, intestinal cells and plaque macrophages (243). Bile

acids such as deoxycholic acid (DCA), signal through G protein-

coupled BA receptor 1 (TGR5), causing the activation of

macrophages and the production of inflammatory cytokines.

Interestingly, it was suggested that low concentrations of

secondary BA may have anti-inflammatory effects, whereas high

concentrations are clearly pro-inflammatory (244). Ang II infusion

to conventional raised mice resulted in upregulation of

taurodeoxycholate and taurodeoxycholic acid in feces, while no

changes had been observed in GF mice (201). Taurodeoxycholate

has been shown to lower blood pressure in rats (201), which

suggests that microbiota may also exerts beneficial effects in the

host as a homeostatic mechanism.

Short chain fatty acids (SCFA)

SCFA including propionate, butyrate and acetate are produced

by gut bacteria from dietary fiber. These metabolites can regulate

inflammation in intestinal macrophages by signaling through G-

protein coupled receptors or by inhibiting histonedeacetylases (244).

SCFAalsocontribute to theexpansionofTregs andIL-10secretion in
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colon (244). The reduction of butyrate producers such as

Eubacterium and Roseburia in atherosclerosis had been reported

and was associated with increased adhesion of monocytes to the

inflamed endothelium, promoting plaque development (243).

Propionate administration in hypertensive Apoe-/- mice lowered

systemic inflammation and attenuated hypertension, vascular

dysfunction, atherosclerosis and fibrosis. The role of SCFA in the

inflammatory environment in AAA remains to be experimentally

tested directly. Dietary supplementation of propionate has been

suggested for AAA patients, but its actual benefits remain to be

determined (217).

As the relevance of microbiota to CVD emerges the number of

identified metabolites will continue to grow. For example, recently

Nemet et al. identified the correlation between plasma metabolite

phenylacetylglutamine (PAGln) and severity and outcomes of

myocardial infarction and stroke (245). PAGln enhanced platelet

activation and thrombosis signaling through G-protein coupled

receptors, such as a2A, a2B and b2-adrenergic receptors (245).
Role of perivascular adipose tissue
in AAA development

Perivascular adipose tissue (PVAT) is adipose tissue that

surrounds the vessels as a distinct layer. As any other adipose

tissue PVAT is composed of white and brown adipocytes, and

fibroblasts (234). It is infiltrated by multiple immune cells (234)

and heavily innervated (246, 247). In pro-inflammatory

environment or under the conditions of lipid overload,

adipocytes become activated and produce pro-inflammatory

cytokines (including TNF and IL-6) and adipokines (such as

leptin) which further facilitate immune and VSMC cell

activation (234, 248–250). Increased adiposity and lipid

deposition is associated with the shift toward white adipocytes

and heightened accumulation of pro-inflammatory immune cell

types (251), for example pro-inflammatory adipose

macrophages (252). In obesity the inflammation in the visceral

adipose tissue can be mediated by skewing T helper response

from Tregs towards pro-inflammatory T helper subsets, with

loss of a unique population of Ly6C+ Tregs normally localized in

“lean” adipose tissue (253). Therefore, increase in white adipose

tissue accompanied by low-grade inflammation, PVAT may

contribute to AAA development given that it contains higher

number of immune cells compared to healthy aortic wall (254).

PVAT is also implicated in the control of vascular tone, however

both anti- or pro-contractile effects had been described (234,

255–259). Moreover, PVAT was also shown to play a critical role

in vascular regulation by local secretion of RAS components,

including Ang II, as well as production of other entities which

regulate vessels, blood pressure and inflammation, including

leptin, IL-6, catecholamines and prostanoids, resistin and

adiponectin (234, 259, 260). Angiotensin and aldosterone are
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both present in PVAT tissue and modulate endothelial

dysfunction as well as immune cell infiltration (261).

The role of Ang II receptor signaling in adipocytes had been

recently suggested. Adipose tissue transplantation from Apoe-/-

At1r-/-mice to Apoe-/-mice infused with Ang II attenuated aortic

aneurysm formation, macrophage infiltration, osteopontin

expression by macrophages and gelatinolytic activity in the

abdominal aorta (255). Levels of ceramides in PVAT

correlated with elevated accumulation of macrophages and T

cells in human AAA (262). Indeed, both CD4 and CD8 T cells

had been detected in human samples, and activated CD69+ CD4

T cells were present in higher numbers in PVAT than in AAA

lesions and their accumulation was dependent on Ang II (152,

262). B1 cells were also detected in PVAT in human and mouse

aorta samples (263). The effects of microbiota and circulating

metabolites on PVAT that can further transpire to affect AAA

are largely unknown and will remain a subject of future studies.
Perspective

During the past decade the contribution of immune cells to

the pathogenesis of AAA became evident and different immune

cells had been found in AAA lesions. Some mechanistic studies

provided evidence regarding the role of immune cells in AAA

pathogenesis. However, the specific contribution of immune

cell subsets remains poorly understood and warrants future

studies using cell type specific knockouts and more

physiologically relevant models. Remaining questions include

the understanding of the dynamic of immune cell accumulation

and their contribution at early or more advanced stages of the

disease. For example, it would be very interesting to determine

experimentally whether initial steps of AAA development are

actually mediated by recruited neutrophils (and monocytes) or

they are only responders to the injury of the aorta generated by

other factors. The spatiotemporal changes in cell lineage plasticity

(for macrophages, neutrophils or VSMC) will be further

addressed through in depth multiproteomic phenotyping and

next generation single cell RNA sequencing. These approaches

are also great for in depth mechanistic studies of samples derived

from human AAA patients.

Better understanding of the mechanisms regulating immune

cells activation and accumulation in AAA would provide an

important knowledge for therapeutic interventions and likely

will allow consideration of new preventive approaches. While

the role of microbiota alterations had been implicated to the

control of chronic inflammatory diseases including

atherosclerosis, the field still gathers and catalogues data on

the roles and mechanisms of microbiota action in AAA. A

particular interest may represent a focus on the effect of diets

and food additives that had been demonstrated to impact

microbiota composition and function as well as affect immune

cells and inflammatory responses. Future mechanistic studies
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focusing on interplay between microbiota, metabolites and

immune cells during AAA initiation and progression will be of

a great interest and potential translational importance.

Several models of AAA development in rodents had been

developed and widely used in experimental studies, however

they are not fully reflecting human pathology and frequently

provide opposite results which are likely related to the nature

and limitations of the models. The immune cell responses and

requirements for specific immune subsets or mediators may vary

between the models. It would be important to take into the

account chronic inflammatory nature of AAA as well as

contribution of systemic factors such as microbiome when

experiments are designed and interpreted.

Overall, understanding of novel immunemediatedmechanisms

regulating AAA development and factors driving pathogenic

immune cell activation will pave the road for novel therapeutics

and preventive approaches in AAA and other CVDs, therefore

representing an exciting area of research for future studies.
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The CARDS toxin of
Mycoplasma pneumoniae
induces a positive feedback
loop of type 1 immune response

Ting Wang1†, Huiming Sun1†, Zhitao Lu2†, Wujun Jiang1,
Ge Dai1, Li Huang1, Meijuan Wang1, Canhong Zhu1,
Yuqing Wang1, Chuangli Hao1, Yongdong Yan1*

and Zhengrong Chen1*

1Department of Respiratory Medicine, Children’s Hospital of Soochow University, Suzhou, China,
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Background:Within the past 3-5 years,Mycoplasma pneumoniae has become

a major pathogen of community-acquired pneumonia in children. The

pathogenic mechanisms involved in M. pneumoniae infection have not been

fully elucidated.

Methods: Previous protein microarray studies have shown a differential

expression of CXCL9 after M. pneumoniae infection. Here, we conducted a

hospital-based study to explore the clinical significance of the type 1 immune

response inflammatory factors interferon (IFN)-g and CXCL9 in patients withM.

pneumoniae pneumonia (MPP). Then, through in vitro experiments, we

explored whether CARDS toxin stimulated F-DCs (dendritic cells incubated

with Flt3L) to promote Th-cell differentiation; we also investigated the IFN-g-
induced CXCL9 secretion pathway in macrophages and the role of CXCL9 in

promoting Th1 cell migration.

Results: The CXCL9 expression level was upregulated among patients with a

higher fever peak, fever duration of greater than 7 days, an imagingmanifestation

of lobar or segmental, or combined pleural effusion (P<0.05). The peripheral

blood levels of IFN-g and CXCL9, which were higher in patients than in the

healthy control group, were positively correlated with each other (r=0.502,

P<0.05). In patients, the CXCL9 expression level was significantly higher in the

bronchoalveolar lavage fluid (BALF) than in the peripheral blood, and the BALF

CXCL9 expression level was higher than that in the healthy control group (all

P<0.05). Our flow cytometry analysis revealed that M1-phenotype macrophages

(CD16+CD64+CD163−) were predominant in the BALF from childrenwithMPP. In

in vitro experiments, F-DCs stimulated with CARDS toxin promoted the

differentiation of CD4+IFN-g+ Th (Th1) cells (P<0.05). Moreover, IFN-g induced

high levels of CXCL9 expression in M1-type macrophages in a dose-dependent

and time-dependent manner. Additionally, macrophages transfection with

STAT1-siRNA-1 downregulated the expression of CXCL9 (P<0.05), and CXCL9

promoted Th1 cell migration (P<0.05).
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Conclusions: Our findings suggest that CARDS toxin induces a type 1 immune

response positive feedback loop during M. pneumoniae infection; this putative

mechanism may be useful in future investigations of immune intervention

approaches for M. pneumoniae pneumonia.
KEYWORDS

Mycoplasma pneumoniae, CARDS toxin, type 1 immune response, CXCL9,
positive feedback
Introduction
Acute respiratory tract infections are the most common and

frequently occurring childhood diseases worldwide, particularly

in children aged <5 years (1). Mycoplasma pneumoniae is a

major respiratory tract pathogen in children (2, 3). The clinical

manifestations ofM. pneumoniae infections are diverse, in terms

of both respiratory disease and a wide range of extrapulmonary

manifestations (4, 5). The incidence of community-acquired

pneumonia (CAP) caused by M. pneumoniae is characterized

by cyclical epidemics at intervals of 3 to 7 years (6); up to 40% of

CAP cases can be attributed to M. pneumoniae (7). In recent

years, the annual incidence of M. pneumoniae pneumonia

(MPP) has been increasing and become more severe, with

about 5% requiring intensive care unit treatment (8). Severe

M. pneumoniae pneumonia (SMPP) is characterized by massive

pleural effusion, acute respiratory distress syndrome (ARDS),

pulmonary consolidation, pulmonary fibrosis, obstructive

bronchitis, and even life-threatening pulmonary sequelae, such

as bronchiectasis, atelectasis, occlusive bronchitis, etc. Some

children present with necrotizing pneumonia (NP) (9). After

treatment with macrolide antibiotics for ≥7 days, the clinical

manifestations in some children with MPP (usually children

with SMPP) are not relieved and the lung imaging findings

gradually worsen; these patients are diagnosed with refractory

M. pneumoniae pneumonia (RMPP) (10).

There are no specific clinical symptoms during the early

stage of M. pneumoniae infection in children; in the absence of

clear clinical signs, affected patients can develop SMPP or RMPP

(11). Systemic inflammatory responses and immune disorders

have important roles in the occurrence, development, and

prognosis of SMPP or RMPP; the influence of macrolide

antibiotic resistance is increasing (12, 13). Therefore,

considerable global research attention has been focused on the

immunological pathogenesis ofM. pneumoniae infection, as well

as efforts for early identification and intervention.

The network of inflammatory interactions formed by innate

and adaptive immunity has an important role in MPP and is

closely related to disease severity (12). It’s mainly composed of
02
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types 1, 2, and 3 immune responses causing cytokine “waves”. The

type 1 immune response mainly involves Th1 cells, interferon

(IFN)-g, and M1 macrophages (Mjs), which exert immune

effector functions. The expression level of the Th1 cytokine IFN-

g is closely associated with the severity of MPP and the degree of

recovery (14). M1-type Mjs can be activated by IFN-g (15);

numerous inflammatory factors (e.g., interleukin [IL]-1b, IL-6,
tumor necrosis factor-a, and CXCL9) are then released.

Chemokine CXCL9, also known as the IFN-g-induced
monokine, can recruit leukocytes to sites of inflammation.

CARDS toxin is a virulence factor that stimulates excessive

immuno-inflammatory responses after M. pneumoniae infection;

its functions include adenosine diphosphate-ribosylation and

vacuolization (16, 17).Inhibition of CARDS toxin is expected to

reduce MPP severity, and CARDS toxin may be useful as a vaccine

antigen (18). Therefore, the specific regulatory mechanism of IFN-

g/CXCL9 and CARDS toxin remains unclear, which has important

research implications for MPP.

In the present study, we collected peripheral blood and

bronchoalveolar lavage fluid (BALF) from children with MPP,

conducting a hospital-based study to explore the clinical

significance of the type 1 immune response inflammatory

factors IFN-g/CXCL9; through in vitro assays, we explored

whether CARDS toxin promote Th-cell differentiation and

the IFN-g-induced CXCL9 secretion pathway in macrophages.

Our findings may be useful in early identification, guidance

regarding treatment and prognosis, and future investigations

of targeted treatment and immune intervention approaches

for MPP.
Materials and Methods

Patients

This study included patients who were diagnosed with MPP

from July 2019 to October 2021 at Children’s Hospital of

Soochow University (N=140); all diagnoses were confirmed by

both MP-immunoglobulin (IgM) positivity and the presence of

MP-DNA (≥1.0×104 copies/ml) in nasopharyngeal aspirates
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(NPA) or BALF, as measured by real-time quantitative

polymerase chain reaction (qPCR) (19). The patients’ ages

ranged from 17 months to 16 years; their clinical

manifestations included fever, cough, tachypnea, chest

retractions, abnormal auscultatory findings, and radiologic

evidence of CAP.

Among MPP patients, 117 cases were selected as

experimental group A to study the correlation of CXCL9

expression level in peripheral blood; while 23 cases were

selected as experimental group B and measured IFN-g and

CXCL9 in peripheral blood and BALF; to further study the

correlation between IFN-g/CXCL9 and immune inflammatory

damage in the lung.

Cases met one or more of the exclusion criteria were excluded

(a): co-infection (b); clinical and imaging features indicative of

fungal pneumonia (c); presence of congenital respiratory diseases,

and abnormalities in other systems (e.g., heart, liver, kidney, and

blood) (d); >3 days of treatment with glucocorticoids (20) and/or

azithromycin before admission. To exclude co-infections, seven

respiratory virus antigen tests (influenza A and B; parainfluenza 1,

2, and 3; respiratory syncytial virus; and adenovirus) and other

pathogen tests (human bocavirus; human rhinovirus; human

metapneumovirus; and chlamydia pneumoniae) were

conducted; the results were negative. The results of bacterial

cultures of NPA and BALF were also negative.

Peripheral blood and BALF were also collected from 18

children who underwent emergency surgery for foreign bodies in

the ENT department of our hospital during the same period with

23 cases of MPP children; these children served as a control

group. The inclusion criteria were as follows: no respiratory tract

infection within the previous 4 weeks, no chronic lung disease or

bronchopulmonary malformation, and no history of treatment

with hormones or immunosuppressive agents.

The studies involving human participants were reviewed and

approved by the Ethics Committee of the Children’s Hospital of

Soochow University (2019LW014) on July 24, 2019. Written

informed consent to participate in this study was provided by the

participants’ legal guardian/next of kin. All participant data were

anonymized prior to analysis.
Collection of clinical data

All patients’ age and sex were recorded. In the experimental

group A, the following clinical data were recorded: duration of

fever, fever peak, and imaging manifestations. Peripheral blood

samples obtained within 24 h of admission were used for

measurements of CXCL9 and specific antibodies to

M. pneumoniae.

In the experimental group B, the following clinical data were

also recorded: durations of hospital stay and fever, fever peak,

and laboratory test data on admission (Table 1). Peripheral

blood samples obtained within 24 h of admission were also used
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for measurements of complete blood counts, C-reactive protein

(CRP), lactate dehydrogenase (LDH), immunoglobulins (IgA/

IgG/IgM), lymphocyte subsets, specific antibodies to M.

pneumoniae, IFN-g and CXCL9. Flexible fiber bronchoscopy

and bronchoalveolar lavage were performed in accordance with

existing guidelines (21). BALF was gently aspirated, collected,

and prepared for detection of the protein concentrations of IFN-

g and CXCL9.
Real-time fluorescent qPCR for M.
pneumoniae in NPA or BALF

Nucleic acid extraction and qPCR for the detection of M.

pneumoniae 16S rDNA were performed as previously described

(17, 21). Briefly, samples (NPA/BALF) were shaken for 30s, then

centrifuged at 12,000×g for 5 min. Subsequently, the sediment

was collected and DNA was extracted from 400-mL of each

sample. The primers for M. pneumoniae 16S rDNA were as

follows: forward: 5′-GCAAGGGTTCGTTATTTG-3′; reverse:
5′-CGCCTGCGCTTGCTTTAC-3′ (amplicon size: 380 bp).

Real-time qPCR was performed using the iQ5TM BIO-

icycler (Bio-Rad, Hercules, CA, USA). The PCR conditions

were as follows: 37°C for 2 min; initial denaturation at 94°C

for 10 min, followed by 40 cycles of denaturation at 94°C for 10s,

annealing at 55°C for 30s, and extension at 72°C for 40s. After

amplification, a computer connected to the instrument

automatically analyzed the results, then expressed the test

results as Ct values. For samples with a Ct value <38, a

quantitative reagent (Aikang Co., Ltd., Hangzhou, China) was

used for further quantitative determination.
Detection of IFN-g and CXCL9 by
enzyme-linked immunosorbent assays

IFN-g and CXCL9 were measured in peripheral blood or/

and BALF samples from MPP and control groups using the

appropriate commercial enzyme-linked immunosorbent assay

kits, in accordance with the manufacturer’s instructions.

Enzyme-linked immunosorbent assay kits were purchased

from Xuguang kexing Biotechnology Co., Ltd. (Suzhou, China).
Flow cytometry analysis of cell counts
and Mj phenotypes in BALF from
children with MPP

Flow cytometry was used to determine cell counts of Mjs,
and lymphocytes in BALF from children with MPP, using flow

cytometry equipment (Beckman Coulter, Miami, FL). The

forward scatter (FSC) value represents cell volume; a larger

FSC value indicated greater cell volume. The side scatter (SSC)
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value represents cell granularity; a larger SSC value indicated

higher granularity. Cells with greater volume and higher

granularity were considered neutrophils; cells with less volume

and lower granularity were considered lymphocytes; monocytes

(Mjs) were in between the two types of cells; then, Mj
phenotypes were determined by flow cytometry.
Protein microarray

Protein microarrays enable determination of the protein-

binding specificities of multiple analytes in solution; they are

versatile tools for high-throughput analyses of the human

proteome (22). In a preliminary experiment, six blood samples

from the SMPP group, four blood samples from the MPP group,

and five blood samples from the control group were analyzed by

Ray Biotech Co., Ltd. (Guangzhou, China), which provided all

reagents and instruments.

Multiple protein molecules were immobilized on a solid

support in a predetermined arrangement to form a microarray.

Samples were incubated with the protein chip; after specific

binding reactions occurred, the components that were not

bound to the protein on the chip were removed by washing.

Fluorescently labeled antibodies were used for secondary

incubation; the fluorescence value of each point on the chip
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was analyzed using a commercial fluorescence scanning analysis

instrument and software.
Animals and F-DCs (DCs incubated with
Flt3L) induction

The animal study was reviewed and approved by the Ethics

Committee of Soochow University (SUDA20200510A02) on

May 10, 2020. C57BL/6 mice (age, 4–5 weeks; weight, 20±2g)

were purchased from the Laboratory Animal Center of Soochow

University (Suzhou, China). All animals were housed in separate

cages under constant temperature (25±1°C) and humidity (50%)

with 12-h light-dark cycles; they had free access to food

and water.

Bone marrow mononuclear cells (BM-MNCs) were isolated

from C57BL/6 mouse bone marrow via density gradient

centrifugation. BM-MNCs were cultured in 24-well plates with

Mouse Steady-State Dendritic Cell Culture Kit (Dongling

Biotechnology Co., Ltd., Suzhou, China); the cell density was

adjusted to 1.5×106 cells/ml. Flt3L (Jinsirui Biotechnology Co.,

Ltd., Nanjing, China) was added to each well at a final

concentration of 200 ng/ml; we obtained suspension cultured

cells after 9 days of incubation (23), which were DCs with

diverse phenotypic characteristics (i.e., F-DCs). Cultures were
TABLE 1 Demographic data and clinical characteristics in experimental group B.

Clinical parameters MPP cases Controls Blood- BALF-

(experimental group B, n=23) (n=18) p CXCL9 CXCL9

r P r P

Age, years 4.90(3.80,7.00) 2.25(1.90,2.73) 0.00* N/A N/A N/A N/A

Male, n (%) 8(34.78%) 10(55.56%) 0.183 N/A N/A N/A N/A

Hospital stay, days 9.13±2.26 N/A -0.04 0.86 -0.33 0.13

Duration of fever, days 6.78±2.76 N/A -0.43 0.040* 0.44 0.036*

Peak of fever (°C) 39.36±0.59 N/A -0.51 0.51 0.16 0.48

WBC, 109/L 7.59±3.41 N/A 0.3 0.17 0.19 0.4

N (%) 53.23±17.10 N/A 0.54 0.009* 0.17 0.43

PLT, 109/L 334.30±137.68 N/A 0.15 0.49 0.11 0.62

EOS (%) 1.95±1.50 N/A -0.34 0.11 0.42 0.048*

CRP, mg/L 12.71±12.66 N/A -0.06 0.77 0.05 0.82

LDH, IU/L 384.58±125.10 N/A 0.33 0.13 0.06 0.77

IgA, g/L 1.02±0.53 N/A -0.17 0.44 0.28 0.2

IgG, g/L 9.31±2.36 N/A 0.01 0.96 0.27 0.21

IgM, g/L 1.38±0.41 N/A 0.36 0.09 0.06 0.79

CD3+, % 71.79±5.85 N/A -0.23 0.33 0.13 0.6

CD3+CD4+, % 41.79±5.96 N/A 0.09 0.71 -0.28 0.23

CD3+CD8+, % 27.88±5.79 N/A -0.24 0.32 0.29 0.21

CD3-CD (16+56+), % 8.68±4.04 N/A -0.14 0.56 0.11 0.63

CD3-CD19+, % 18.45±5.67 N/A 0.39 0.09 -0.27 0.25
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incubated at 37°C in a humidified atmosphere containing 5%

CO2 in air.
Construction of recombinant
CARDS toxin

Recombinant CARDS toxin was constructed from Sino

Biological Co., Ltd. (Beijing, China) and its biological function

was verified as previously described (17, 21). According to the

manufacturer’s instructions, the recombinant CARDS toxin was

expressed in insect cells, and the insect cell expression system

belonged to the eukaryotic cell expression system. From the

NCBI database, we obtained the full-length gene sequence and

protein sequence of MPN372, which coded CARDS Toxin. The

optimized MPN372 gene sequence was cloned into the pFastBac

donor plasmid vector for virus packaging. High-Five cells in

logarithmic growth phase were infected with high titer

recombinant virus to express the target protein, which was

further purified by nickel column.
Use of CARDS toxin to stimulate F-DCs
for the regulation of Th cell
differentiation in vitro

CD4+T cells (1×105 cells/ml) were isolated from mouse

spleens in accordance with the instructions of the Mouse

Naïve CD4+T Cell Isolation Kit (STEMCELL Technologies,

Vancouver, Canada). Labeled cells were isolated using EasySep

magnets without a column, and the target cells were transferred

to new tubes. Naïve CD4+T cells from the spleen were negatively

selected using magnetic beads. Flow cytometry equipment was

described as previously.

F-DCs were screened for phenotype by flow cytometry and

the cell concentration was adjusted to 1×105 cells/well. F-DCs

incubated with cell growth medium were used as the negative

control group; F-DCs incubated with CARDS toxin (10 ng/ml)

were used as the experimental group. Both groups of cells were

co-incubated with naïve CD4+T cells (1:4 ratio of DCs to T cells)

for 24 h at 37°C with 5% CO2. The numbers of CD4+IFN-g+Th,
CD4+IL-4+Th, and CD4+IL-17+Th cells were analyzed by

flow cytometry.
IFN-g-mediated induction of CXCL9
expression in M1-type Mjs

THP-1 cells in suspension (1×105 cells/ml) were purchased

from Noble Biological Co., Ltd. (Shanghai, China). Phorbol ester

(PMA) was added to the THP-1 cells in suspension at a final

concentration of 50 ng/ml. Then, these cells were seeded into
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six-well plates (1×105 cells/ml), and adherent mononuclear Mjs
were obtained after incubation for 24 h. The cell growth medium

was then changed to complete medium without PMA; cells were

cultured for 3 days to observe changes in morphology.

Pseudopodia were observed , indicat ing success fu l

Mjs induction.
IFN-g has been reported to induce Mjs differentiation into

M1-type Mjs (15). Here, we stimulated Mjs (1×105 cells/ml)

with different concentrations of IFN-g (0 ng/ml, 1 ng/ml, or 10

ng/ml) for 24 h; we used two experimental methods (i.e., real-

time qPCR and ELISA), to measure the CXCL9 expression level

at 3 h, 6 h, and 9 h. The primers were synthesized by Jinkairui

Biological Engineering Co., Ltd. (Wuhan, China). ELISA kits

were purchased from ELK Biotechnology Co., Ltd. (Wuhan,

China). Primer sequences are shown in Supplementary

Table S1.

The Western blot is an important laboratory technique that

allows for specific identification and characterization of

proteins. Sodium dodecyl sulfate-polyacrylamide gel

electrophoresis (SDS-PAGE)-separated proteins are

electophoretically transferred to a polyvinylidene fluoride

(PVDF) membrane which is then incubated with specific

antibodies, then developed to show the protein of interest; b-
actin is acted as an internal control. We determined the

expression of protein CXCL9, STAT1 and p-STAT1 by

Western Blot at different concentrations (IFN-g 0 ng/ml, 1

ng/ml, or 10 ng/ml) and different times (3 h, 6 h, and 9 h).

Reagents were purchased from ASPEN Biotechnology Co., Ltd.

(Wuhan, China).
STAT1-small interfering RNA (siRNA) in
vitro assay

STAT1-siRNA-CON (negative control group), STAT1-

siRNA-1, STAT1-siRNA-2, or STAT1-siRNA-3 were

transfected into Mjs (1×105 cells/ml) using Lipofectamine®

2000 (Thermo Fisher Scientific, Waltham, MA, USA); the cells

were incubated for 24 h after transfection. The effect of STAT1

interference (STAT1-siRNA-1, STAT1-siRNA-2, and STAT1-

siRNA-3) on the expression of STAT1 in Mjs was analyzed by

qPCR. The results of STAT1-siRNA interference efficiency

verification showed that the three pairs of STAT1-siRNA

down-regulated the expression level of STAT1 by 43%, 70%,

and 80%, respectively; it met the quality control standards (at

least one pair of siRNAs had a silencing efficiency of more than

70% at the mRNA level under standard conditions of use).

IFN-g (1 ng/ml) was used to stimulate Mjs that had been

transfected with STAT1-siRNA-1; after IFN-g stimulation for 24

h, the level of CXCL9 expression was analyzed by qPCR and

ELISA; CXCL9, STAT1 and p-STAT1 protein expression were

analyzed by Western blot.
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Measurement of cell migration via
Transwell assays

CD4+T cells (1×105 cells/ml) were isolated from the

peripheral blood of healthy volunteers using autoMACS

columns with the Direct Human CD4+T Cell Isolation Kit

(STEMCELL Technologies). CD4+T cells were treated with

PMA (20 ng/ml) + ionomycin (1 mg/ml) at 37°C for 1 h;

Breedellin A (1 ml/ml) was then added and cells were cultured

for an additional 3–5 h to obtain Th1 cells.

In the lower chamber of the Transwell plate (Corning, NY,

USA), Mjs (1×105 cells/ml) were stimulated with IFN-g (1 ng/

ml) for 24 h; one group was transfected with STAT1-siRNA-1,

whereas one group was not transfected. Unstimulated Mjs were
used as negative controls. In the upper chamber of the Transwell

plate, Th1 cells were seeded. The suspension in the lower

chamber was subjected to smear staining to analyze the cell

morphology and determine the number of migrating Th1 cells.
Statistical analysis

Data were stored in a Microsoft Excel-supported database,

statistical analyses were performed using SPSS statistics version

20.0 (International Business Machines Corp., NY), and graphics

were prepared using GraphPad Prism version 6.0 (GraphPad

Software Inc., San Diego, CA). Categorical data of patient

characteristics were compared using the Chi-square test. Data

with normal distributions were expressed as means ± standard

deviations; comparisons among groups were performed by t-tests or

one-way analysis of variance. Data with non-normal distributions

were expressed as medians (interquartile ranges); comparisons

between groups were performed by the Mann–Whitney U-test.

The Spearman correlation coefficient was used for correlation

analysis. P-values <0.05 were considered statistically significant.
Results

Demographic data and clinical characteristics

Demographic data and clinical characteristics were collected

uniformly from the control and MPP groups (experimental group

A and experimental group B). In experimental group A, there

were 52 (44.44%) male and 65 (55.56%) female cases, with a male

to female ratio of 1:1.25 and a mean age of 5.74 ± 3.03 years.

In experimental group B, there were 8 (34.78%) male and 15

(65.22%) female cases, with a male to female ratio of 1:2.25,

while in the control group there were 10 (55.56%) male and 8

(44.44%) female cases, with a male to female ratio of 1.25:1, as

shown in Table 1. There was no significant difference in terms of

sex between the control group and experimental group B
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(P>0.05) and there was a difference in terms of age between

two groups (P<0.05). Most airway foreign bodies in children

occur in children under 3 years old and the peak incidence is in

children aged 1-2 years. Therefore, specimens will to be collected

to verify the difference level of IFN-g/CXCL9 between the two

groups in the further. The duration of fever was 6.78 ± 2.76 days,

the fever peak was 39.36 ± 0.59°C, and the duration of

hospitalization was 9.13 ± 2.26 days, as shown in Table 1.
Altered expression of CXCL9 protein in
children with MPP

To identify differentially expressed proteins (DEPs) in

patients with M. pneumoniae infection, we selected six blood

samples from the SMPP group, four blood samples from the

MPP group, and five blood samples from the control group for

protein microarray analysis in a preliminary experiment. DEPs

were defined as proteins with P<0.05 and fold change >1.2

or <0.83 (absolute log2 [fold change] >0.263).

In terms of DEPs with significant expression, the levels of

CXCL9 (MIG), CXCL10 (IP-10), and IL-18 changed between the

two groups (Figures 1A, D). Gene Ontology (GO) enrichment

analysis between the two groups was performed at three levels:

cellular component, molecular function, and biological process.

DEPs were related to CXCR3 chemokine receptor binding,

cytokine response, and cell chemotaxis and migration

(Figure 1B). Kyoto Encyclopedia of Genes and Genomes

(KEGG) enrichment analysis indicated that DEPs might be

related to the JAK/STAT signaling pathway (Figure 1C). Further

clinical pre-experimental research was conducted in the early

stage through detecting the same samples by ELISA; only the level

of CXCL9 expression significantly differed between the two

groups (P<0.05) (Figure 1E). The level of IFN-g expression is

reportedly closely associated with MPP severity and subsequent

recovery; moreover, IFN-g can induce the production of CXCL9

(24). The above findings suggested that CXCL9 plays an

important role in M. pneumoniae infection.
Clinical significance of IFN-g/CXCL9 in
peripheral blood and BALF from children
with MPP

In experimental group A, the duration of fever was 4.52 ±

2.96 days, the fever peak was 39.05(38.70, 39.70) °C. The CXCL9

expression level was upregulated among patients with a higher

fever peak, fever duration of greater than 7 days, an imaging

manifestation of lobar or segmental, or combined pleural

effusion (All P<0.05, Figure 2).

In experimental group B, the peripheral blood levels of IFN-g
and CXCL9, which were higher in patients than in the healthy

control group, were positively correlated with each other (r=0.502,
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P<0.05). In patients, the CXCL9 expression level was significantly

higher in the BALF than in the peripheral blood, and the BALF

CXCL9 expression level was higher than that in the healthy control

group (All P<0.05, Figure 3A). The expression level of IFN-g in

BALF between experimental group B and control group was low.

CXCL9 in peripheral blood was negatively correlated with the

duration of fever, whereas CXCL9 in BALF was positively

correlated with the duration of fever (r=-0.43 and r=0.44,

respectively; both P<0.05). CXCL9 in peripheral blood was

positively correlated with neutrophils(N)%, whereas CXCL9 in
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BALF was positively correlated with eosinophils(EOS)% (r=0.54

and r=0.42, respectively; both P<0.05; Figure 3B). Other laboratory

test data showed no significant correlations, as shown in Table 1.
Cell counts and Mj phenotypes in BALF
from children with MPP

We selected 5 children withMPP in experimental group B and 5

children in the control group to measure cell counts and Mj
B

C D
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E

FIGURE 1

CXCL9 protein expression exhibited the greatest difference between groups (MPP vs. CON; SMPP vs. CON). (A) Heatmap of differentially
expressed proteins (DEPs) expression abundances (MPP vs. CON: n = 94; 81 downregulated, 13 upregulated; SMPP vs. CON: n = 37; 29
downregulated, 8 upregulated). (B) Gene ontology analysis was used to identify the biological functions of DEPs. (C) Kyoto Encyclopedia of
Genes and Genomes analysis of DEPs revealed enrichment in the cytokine-cytokine receptor interaction pathway. (D) Analysis of the first six
DEPs by log2FC between different groups (MPP vs. CON; SMPP vs. CON; red refers to the up-regulation of expression, blue refers to the down-
regulation of expression; MIG: CXCL9; IP-10: CXCL10). (E) Comparison of CXCL9, CXCL10, and IL-18 expression between the control and MPP
groups during the preliminary experiment; statistical comparison was performed using the Mann–Whitney U-test (*P<0.05; NS, not significant).
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phenotypes in BALF by flow cytometry. Results showed that the cell

counts of Mjs were significantly higher than those of the control

group (t=2.844, P<0.05; Figure 3C). Previous studies have shown that

Mjs mainly comprise two distinct functional phenotypes: classically

activated Mjs (M1) and alternatively activated Mjs (M2) (25). Our

flow cytometry analysis revealed that M1-phenotype Mjs
(CD16+CD64+CD163-) were predominant (Figure 3D).
CARDS toxin-mediated differentiation of
Th1 cells

Mouse BM-MNCs were isolated, then differentiated into F-

DCs using Flt3L; CD11c+DCs were identified by flow cytometry

(Figure 4A). CD4+T cells with low carboxyfluorescein diacetate

succinimidyl ester (CFSE) staining were promoted after CARDS

toxin stimulation (P<0.001, Figure 4B). Notably, F-DCs

stimulated with CARDS toxin promoted the differentiation of

CD4+IFN-g+Th (Th1) cells(P<0.001), without affecting the

differentiation of Th2 or Th17 cells (Figure 4C).
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The IFN-g-induced high expression of
CXCL9 in M1-type Mjs can be blocked
by transfection with STAT1-siRNA

IFN-g promoted the level of CXCL9 expression in a dose-

dependent manner at the same time (3 h, 6 h, and 9 h) by qPCR

and ELISA (P<0.05); qPCR and ELISA also showed that the

level of CXCL9 expression significantly increased after

stimulation with IFN-g (1 ng/ml, 10 ng/ml) (P<0.05). Upon

stimulation with the same concentration of IFN-g(1 ng/ml), the

level of CXCL9 expression significantly decreased after Mjs
had been transfected with STAT1-siRNA-1 (P<0.05)

(Figures 5A, C, D).

Western Blot showed protein CXCL9 and p-STAT1 were

expressed in a dose-dependent and time-dependent manner

(P<0.05). The expression of protein CXCL9, STAT1 and p-

STAT1 increased after stimulation with IFN-g (1 ng/ml)

(P<0.05); after Mjs had been transfected with STAT1-siRNA-

1, the expression of these proteins significantly decreased

(P<0.05) (Figures 5B, E).
B
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FIGURE 2

Relationships between CXCL9 expression in peripheral blood and clinical indicators in experimental group A (MPP: n=117). (A, B) Relationships
between CXCL9 expression and the degree and duration of fever. (C) Relationship between CXCL9 expression and the extent of lung lesion on
imaging. (D) Relationship between CXCL9 expression and pleural effusion. To detect statistically significant differences, the Mann–Whitney U-
test was carried out (*P<0.05; **P<0.01).
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CXCL9 promotes the migration of
Th1 cells

The expression of CXCL9 in the lower Transwell chamber

increased after 24 h of Mj (THP-1+PMA induction) stimulation

with IFN-g (1 ng/ml), and the number of migrating Th1 cells

increased (P<0.001). Whereas, the number of migrating Th1

cells significantly decreased after Mjs had been transfected with

STAT1-siRNA-1 (P<0.001) (Figure 5F).
Discussion

In recent years, the annual incidence of MPP has been

increasing, and some children die because of severe M.

pneumoniae infection. When it encounters an onslaught of

proinflammatory cytokines and cellular elements (e.g.,

neutrophils, lymphocytes, Mjs, and mast cells) from the host,

M. pneumoniae strongly adheres to the epithelial cell surface; it

uses toxic molecules to damage host cells, thereby inducing

ciliostasis and epithelial desquamation to acquire critical

nutrients (26). Thus, there is a need to investigate the
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occurrence and specific regulatory mechanism involved in the

immuno-inflammatory response toM. pneumoniae; the findings

can facilitate early identification and targeted treatment of MPP

in children.

In the early stages of this study, protein microarrays from

clinical peripheral blood samples showed that CXCL9 was

upregulated after M. pneumoniae infection. Therefore, the clinical

significance of the chemokine CXCL9 in MPP was investigated.

CXCL9 is induced by IFN-g, which is usually secreted by peripheral
blood mononuclear cells (24). We found the CXCL9 expression

level was upregulated among patients with a higher fever peak, fever

duration of greater than 7 days, an imaging manifestation of lobar

or segmental, or combined pleural effusion, suggesting that the

CXCL9 might have correlation with the disease severity. Our study

also showed that the peripheral blood levels of IFN-g and CXCL9,

which were higher in patients than in the healthy control group,

were positively correlated with each other. In patients, the CXCL9

expression level was significantly higher in the BALF than in the

peripheral blood, and the BALF CXCL9 expression level was higher

than that in the healthy control group. Consistent with the findings

by Chung et al. (27), that CXCL9 was involved in the pathogenesis

of acute respiratory infection involving M. pneumoniae. Cytokine
B

C D

A

FIGURE 3

Clinical significance of IFN-g/CXCL9 in peripheral blood and BALF from children with MPP in experimental group B and control group (MPP:
n=23, CON=18). (A) Comparison of IFN-g and CXCL9 expression between groups. (B) Correlations between CXCL9 and laboratory indexes. (C)
Comparison of different types of cells from BALF between groups. (D) Flow cytometry result from the BALF between groups of representative
cases (patient 1 and CON 1; M1-phenotype Mjs:CD16+CD64+CD163-). Comparisons between groups were performed by the Mann–Whitney U-
test; correlations between CXCL9 and laboratory indexes were performed using the Spearman correlation coefficient; comparison of different
types of cells from BALF between groups were performed by t-tests. (*P<0.05; ***P<0.001; NS, not significant).
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release syndrome is regarded as the driver of coronavirus disease

2019 (COVID-2019) inflammation, and multiple studies have

demonstrated that CXCL9 is associated with the severity of

COVID-2019 (28, 29). Accordingly, CXCL9 may be useful as a

clinical biomarker for disease diagnosis and treatment monitoring.

Previous reports (30) concerning experimental models of

lower respiratory tract infection with M. pneumoniae have

indicated that lung disease severity is directly associated with

Th1-type cellular immunity; tigecycline treatment significantly

reduced the levels of IFN-g, tumor necrosis factor-a, and IL-1b,
CXCL9, and other inflammatory mediators, thereby significantly

reducing histological lung inflammation and disease severity. In

another study, the ratios of IFN-g/IL-4 and IFN-g/IL-13 in BALF

are significantly higher in children with MPP than in controls

(31), suggesting that children with MPP exhibit a type 1 immune

response dominated by Th1-type cellular immunity. Therefore,

the type 1 immune response inflammatory factors IFN-g and

CXCL9 are closely associated with lung immuno-inflammatory

injury. Furthermore, we found that the level of CXCL9

expression was significantly higher in BALF than in peripheral
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blood, indicating that lung tissue was the main site of the

inflammatory response. IFN-g stimulates M1-type Mjs to

produce CXCL9, which guides Th1 cells along the CXCL9

concentration gradient (from low to high) toward the center of

the inflammatory response; this results in a cascade expansion

effect that comprises type 1 immune response positive feedback

with IFN-g/CXCL9 as the core circuit, along with a strong

immuno-inflammatory response in the lungs.

CARDS toxin, an M. pneumoniae-related pathogenic factor,

induces cytopathology in vivo and in vitro, replicates the

infection process, and induces histopathological changes

similar to M. pneumoniae infection; these changes include

characteristic fibrillar arrest, cytoplasmic swelling and

vacuolization, nuclear fragmentation, extensive inflammation,

and histopathological damage (32). As reported (17), the

expression level of CARDS toxin increase in the BALF of

children with MPP, especially in MPP with mucus plugs and

pleural effusion or RMPP. However, the mechanism by which

CARDS toxin initiates the subsequent immuno-inflammatory

response remains unknown.
B

C

A

FIGURE 4

CARDS toxin stimulates F-DCs to regulate Th1 cell differentiation. (A) Screening and identification of F-DCs. (B) F-DCs were stimulated by
CARDS toxin (10 ng/ml) and cell growth medium was used as the negative control; CD4+T cells with low carboxyfluorescein diacetate
succinimidyl ester (CFSE) staining were identified. (C) CD4+IFN-g+Th, CD4+IL-4+Th and CD4+IL-17+Th cells were analyzed by flow cytometry
and their proportion among all cells were analyzed between groups (CON vs. CARDS toxin). To detect statistically significant differences, t-tests
was carried out (***P<0.001; NS, not significant).
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Then, through in vitro experiments, we explored whether

CARDS toxin stimulated F-DCs (dendritic cells incubated with

Flt3L) to promote Th-cell differentiation; we also investigated

the IFN-g-induced CXCL9 secretion pathway in macrophages

and the role of CXCL9 in promoting Th1 cell migration.

DCs induced by the Flt3L-dependent bone marrow culture

system (i.e., F-DCs) have diverse phenotypic characteristics,

robust antigen processing, and a strong antigen presentation

capacity (33). Therefore, we constructed an F-DC culture

identification system to explore the ability of CARDS toxin to

stimulate F-DCs to regulate Th cell differentiation; the results

showed that F-DCs stimulated by CARDS toxin promoted the

differentiation of CD4+IFN-g+Th (Th1) cells without affecting

the differentiation of Th2 and Th17 cells. Our findings suggest
Frontiers in Immunology 11
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that CARDS toxin is closely associated with the Th1-type

immuno-inflammatory response in the lungs after M.

pneumoniae infection.

We also found that Mjs increased significantly in BALF

afterM. pneumoniae infection; M1-type Mjs were predominant

in BALF from children with MPP. Mjs polarize into different

activation states, play different roles, and participate in the

progression of different diseases (34). Th1 cell differentiation is

reportedly mediated by polarized M1-type Mjs through a

mechanism that requires NLRP3 inflammasome activation; IL-

1b, IL-6, tumor necrosis factor-a, CXCL9, and CXCL10 are the

hallmark cytokines of M1-type Mjs (35, 36). PMA-induced

differentiation of THP-1 cells into Mjs is a common in vitro

model for the analysis of monocyte differentiation (37). Here, we
B

C

D E F

A

FIGURE 5

IFN-g induced CXCL9 expression in a STAT1-dependent manner. (A) PMA was added to the THP-1 cells in suspension at a final concentration of
50 ng/ml and mononuclear Mjs were obtained after incubation for 24 h; then, mononuclear Mjs were stimulated with different concentrations
of IFN-g (CON, 1 ng/ml, or 10 ng/ml) and the expression level of CXCL9 was analyzed at different times (3 h, 6 h, 9 h) by qPCR. (B) Protein
CXCL9, STAT1 and p-STAT1 were analyzed at different times and at different concentrations of IFN-g by Western Blot. (C) The expression level
of CXCL9 was analyzed at different times and at different concentrations of IFN-g by ELISA. (D) The expression level of CXCL9 was analyzed by
qPCR and ELISA before and after Mjs (IFN-g 1 ng/ml stimulation) transfection with STAT1-siRNA-1. (E) Protein CXCL9, STAT1 and p-STAT1 was
analyzed by Western Blot before and after Mjs (IFN-g 1 ng/ml stimulation) transfection with STAT1-siRNA-1. (F) Number of migrating Th1 cells in
Transwell experiment and observation of cell morphology by smear staining before and after Mjs (IFN-g 1 ng/ml stimulation) transfection with
STAT1-siRNA-1; Groups: different groups(bottom) + Th1 (top). To detect statistically significant differences, one-way analysis of variance was
carried out (*P<0.05; **P<0.01; ***P<0.001; NS, not significant).
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used PMA to induce THP-1 differentiation in vitro; we found

that IFN-g promoted the expression of CXCL9 in a dose-

dependent manner at the same time. Upon stimulation with

the same concentration of IFN-g, the level of CXCL9 expression
increased significantly. These findings showed that the activation

of M1-type Mjs was initiated by IFN-g stimulation; the activated

M1-type Mjs then produced CXCL9, Lo et al. (15) reported

similar results.

Inflammatory and growth factors often rely on the JAK/

STAT signaling pathway to transmit signals that regulate

biological effects such as cell growth, proliferation, survival,

and inflammatory responses (38). JAK/STAT1 is activated by

IFN-g and plays a central role in Mj differentiation, maturation,

and host defense against pathogen infection (39–41). siRNAs

degrade mRNAs with homologous complementary sequences;

this loss-of-function mechanism is an important tool for analysis

of the roles of genes in biomedical studies (42). To explore the

mechanism underlying IFN-g activation of the CXCL9 signaling

pathway, we stimulated Mjs (THP-1+PMA induction) with

IFN-g (1 ng/ml) for 24 h; the level of CXCL9 expression

significantly increased. After Mjs had been transfected with

STAT1-siRNA-1, the level of CXCL9 expression significantly

decreased. These results showed that STAT1-siRNA-1 mediated

the reduction of CXCL9 expression in M1-type Mjs by

downregulating the level of STAT1 expression. Therefore, the

IFN-g-JAK/STAT1-Mj-CXCL9 pathway carefully regulates the

host immune response in terms of gene and protein expression.

Our study also revealed that CXCL9 was produced in the

lower Transwell chamber after Mjs had been stimulated with
Frontiers in Immunology 12
120
IFN-g (1 ng/ml), thus promoting Th1 cell migration. After Mjs
had been transfected with STAT1-siRNA-1, the level of CXCL9

expression decreased and the number of migrating Th1 cells

significantly decreased. These results confirmed that CXCL9

promoted the migration of Th1 cells, and the migration of

Th1 cells was correlated with the concentration of CXCL9.

To sum up, CARDS toxin promoted a Th1-type immuno-

inflammatory response in the lungs after M. pneumoniae

infection. Subsequently, IFN-g activated the JAK/STAT1

signaling pathway and promoted the secretion of CXCL9 by

M1-type Mjs; CXCL9 promoted the migration of more Th1

cells to the inflammatory response center, thereby forming a

type 1 immune response positive feedback loop that amplified

the inflammatory cascade and aggravated immunity-related

damage in lung tissue (Figure 6).
Limitations

An important limitation in this study was that we did not

characterize the specific mechanism by which CARDS toxin

stimulates F-DCs and promotes Th1 cell differentiation. We will

continue to focus on this mechanism in future studies.
Conclusions

Our findings suggest that the level of inflammatory factors

IFN-g/CXCL9 expression can provide new biological markers
FIGURE 6

Mechanism of CARDS toxin-induced type 1 immune response positive feedback loop in MPP (generated using Figdraw).
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for early identification, guidance of treatment and prognosis.

CARDS toxin induces a type 1 immune response positive

feedback loop during M. pneumoniae infection; this putative

mechanism may be useful in future investigations of immune

intervention approaches for M. pneumoniae pneumonia.
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Drastic transformation of
visceral adipose tissue and
peripheral CD4 T cells in obesity

Kohsuke Shirakawa and Motoaki Sano*

Department of Cardiology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
Obesity has a pronounced effect on the immune response in systemic organs

that results in not only insulin resistance but also altered immune responses to

infect ious diseases and mal ignant tumors. Obesi ty-associated

microenvironmental changes alter transcriptional expression and metabolism

in T cells, leading to alterations in T-cell differentiation, proliferation, function,

and survival. Adipokines, cytokines, and lipids derived from obese visceral

adipose tissue (VAT) may also contribute to the systemic T-cell phenotype,

resulting in obesity-specific pathogenesis. VAT T cells, which have multiple

roles in regulating homeostasis and energy utilization and defending against

pathogens, are most susceptible to obesity. In particular, many studies have

shown that CD4 T cells are deeply involved in the homeostasis of VAT

endocrine and metabolic functions and in obesity-related chronic

inflammation. In obesity, macrophages and adipocytes in VAT function as

antigen-presenting cells and contribute to the obesity-specific CD4 T-cell

response by inducing CD4 T-cell proliferation and differentiation into

inflammatory effectors via interactions between major histocompatibility

complex class II and T-cell receptors. When obesity persists, prolonged

stimulation by leptin and circulating free fatty acids, repetitive antigen

stimulation, activating stress responses, and hypoxia induce exhaustion of

CD4 T cells in VAT. T-cell exhaustion is characterized by restricted effector

function, persistent expression of inhibitory receptors, and a transcriptional

state distinct from functional effector and memory T cells. Moreover, obesity

causes thymic regression, which may result in homeostatic proliferation of

obesity-specific T-cell subsets due to changes in T-cell metabolism and gene

expression in VAT. In addition to causing T-cell exhaustion, obesity also

accelerates cellular senescence of CD4 T cells. Senescent CD4 T cells

secrete osteopontin, which causes further VAT inflammation. The obesity-

associated transformation of CD4 T cells remains a negative legacy even after

weight loss, causing treatment resistance of obesity-related conditions. This

review discusses the marked transformation of CD4 T cells in VAT and systemic

organs as a consequence of obesity-related microenvironmental changes.
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1 Introduction

The start of the obesity epidemic in the US in the early 1970s

led to much research on adipose tissue, which regulates

metabolic and nutritional homeostasis (1). Then, in the mid-

1990s, Hotamisligil et al. proposed the intriguing hypothesis that

immune cells are activated in response to a state of excess energy,

which induces inflammation and, consequently, insulin

resistance (2). Compared with subcutaneous adipose tissue,

visceral adipose tissue (VAT) is composed of more diverse cell

populations and is highly vascularized and contains numerous

sympathetic and sensory nerves. Furthermore, during the

development of obesity, a more complex diversity of immune

cells arises in VAT than in subcutaneous adipose tissue. Since

2003, when Weisberg et al. and Xu et al. independently reported

that macrophages accumulate in obese VAT, macrophages—

which express high levels of inflammatory cytokines—have been

considered the central players in VAT inflammation. However,

subsequent studies revealed that VAT inflammation involves a

greater variety of immune cells than previously thought and that

not only the innate but also the acquired immune system is

activated (3, 4). Obese VAT has a higher proportion of CD4 T

cells, which have been recognized as central regulators of chronic

VAT inflammation. Even in the lean state, VAT CD4 T cells

continue to be weakly activated against an autoantigen specific

to VAT. Interestingly, a much larger amount of regulatory T

cells (Tregs) are present in VAT than in secondary lymphoid

tissues, indicating that local immunometabolic homeostasis is

maintained within VAT by enhanced immune tolerance (5).

During the development of obesity, strong activation of

effector T cells initiates VAT inflammation (6). Furthermore,

in chronic obesity, acute inflammation transitions to chronic

inflammation and T cells become dysfunctional (because of T-

cell exhaustion and senescence) (7–11). Once obesity has

formed, the memory of obesity is imprinted on T cells and

does not disappear with weight loss (12, 13); for this reason,

weight rebound after weight loss induces more inflammation in

the VAT than was present before weight loss (13).

VAT dynamically functions as not only a lipid storage organ

but also an endocrine organ that produces a variety of soluble

mediators, such as adipokines, cytokines, and lipids. The drastic

changes in the VAT microenvironment in obesity affect the

phenotype of not only VAT T cells but also systemic ones.

In this review, we summarize what is known about how T-

cell activation, differentiation, and function change in response

to obesity-associated factors.
2 Regulatory mechanisms of
T-cell activity

In general, T-cell activation (survival, proliferation,

differentiation, and functional enhancement) requires three
Frontiers in Immunology 02
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positive signals: a T-cell receptor (TCR) signal, co-stimulation

signal (CD28 signal), and cytokine signal. The TCR-mediated

signal primarily activates the ZAP70-PLCg pathway; the co-

stimulation signal, the phosphatidylinositol-3-kinase-protein

kinase B pathway; and the cytokine signal, the Janus family of

kinases-signal transducer and activator of transcription (JAK-

STAT) pathway (14). To suppress excessive responses, T cells are

equipped with brakes on each of these three signals. TCR-

mediated signaling is suppressed by programmed cell death 1

(PD-1) (15); PD-1 has an immunoreceptor tyrosine-based

inhibitory motif, and upon stimulation by the ligands PD-L1

and PD-L2, it recruits Src homology 2 domain-containing

protein tyrosine phosphatase 1, which dephosphorylates and

inactivates ZAP7 (16, 17). Co-stimulation is suppressed by

cytotoxic T-lymphocyte associated protein 4 (CTLA4), which

has an extracellular domain similar to that of costimulatory

receptor CD28 and competes with CD28 for binding to its ligand

CD80/86; CTLA4 has higher affinity for CD80/86 than CD28

does, but it does not generate a signal (18) and thus physically

blocks CD28-mediated signaling (19). And the cytokine

signaling JAK-STAT pathway is suppressed by the suppressor

of cytokine signaling family of molecules (20).

In addition to known T cell responses, obesity-associated

insulin resistance and changes in adipokine secretion profiles all

affect T-cell activation, function, and survival, not only in VAT

but also in systemic organs (21). Obesity-associated adipocyte

hypertrophy and hyperplasia cause VAT microenvironment

remodeling, including impaired angiogenesis, deposition of

extracellular matrix protein, and hypoxia-induced pyroptosis

(22), which may result in changes in T-cell phenotype Obese

VAT cells also regulate adipose T-cell activity through antigen

presentation and co-stimulatory or co-inhibitory receptor

signaling. Obesity-associated disruption of T-cell homeostasis

may contribute to the development of an inflammatory state,

which is followed by disruption of tissue homeostasis.
3 T-cell activation and suppression

The finding that T cells with a restricted TCR repertoire

accumulate in the VAT of diet-induced obese (DIO) mice (23)

suggests that in obesity, T cells recognize some kind of antigen.

Antigen-presenting cells process an antigen and present it to T

cells in the form of an antigen-peptide major histocompatibility

complex (MHC). The MHC is recognized by the TCR on the T

cell, and the T cell is activated. In addition, antigen-presenting

cells highly express co-stimulatory molecules, which pair with

co-stimulator receptors on the T-cell surface to modulate T-cell

activation (24). Activation of T cells by antigen-presenting cells

also plays an important role in triggering the VAT inflammation

induced by a high-fat diet (HFD). In VAT T cells, MHC class II

(MHCII)-T cell receptor interaction upregulates the expression

of inflammatory Th1 marker genes, including Tbx21 and Ifng.
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Deletion of MHCII, which plays a role in presenting antigen-

derived peptides to CD4 T cells, reduces VAT CD4 T helper type

1 (Th1) cell activity and macrophage accumulation within VAT

(23, 25–27).

In VAT, besides the classical antigen-presenting cells, i.e.,

dendritic cells (DCs) (28), macrophages (27, 29), and B cells

(30), adipocytes (26) also play an important role in the

formation of T-cell responses as antigen-presenting cells (31).

Adipocytes express MHCII molecules and the costimulatory

molecules CD80/86 and thus act as antigen-presenting cells and

promote CD4 T cell activation (26).Interestingly, in obesity,

adipocytes have higher expression levels of MHCII molecules

and costimulatory molecules (25).The above findings indicate

that during the progression of obesity, antigens presented on

MHCII molecules induce T-cell proliferation and differentiation

into specific subclasses of inflammatory effectors and that this

process is the basis for the initiation and persistence of

inflammation in VAT. Knowledge about obesity-related

antigens could potentially lead to the development of vaccines

and treatments to prevent chronic inflammation of VAT, but

unfortunately, such antigens have not yet been identified.

Immune checkpoint molecules maintain immune

homeostasis by suppressing self-immune responses and

excessive activation of T cells. Co-inhibitory receptors such as

CTLA-4 and PD-1 are co-expressed on effector T cells and are

involved in immune response homeostasis (19). T-cell

exhaustion is characterized by restricted effector function,

persistent expression of inhibitory receptors, and a

transcriptional state distinct from functional effector and

memory T cells. In general, PD-1 is expressed in T cells in

response to most immune challenges; however, it is rapidly

downregulated during the acute phase of the immune response,

allowing for normal immune responses (15). On the other hand,

PD-1 expression remains high in chronically stimulated antigen-

specific T cells, so the immune response to additional

stimulation is impaired (32–35).

T-cell exhaustion has also been identified in VAT in mice

and humans with obesity (7, 9, 36).

In fact, in HFD-induced obese mice and patients with type 2

diabetes, adipose T cells are less able than lean adipose T cells to

produce cytokines such as IL-2 and IFN-g (9). HFD-induced

obesity increases the PD-1 expression level in adipose T cells,

and T cells with high PD-1 expression are a subset of T cells that

acquire the exhaustion phenotype (7–9). Various obesity-

associated environmental factors lead to heterogeneous T-cell

exhaustion profiles, suggesting that obesity may not promote

classical T-cell exhaustion.The transient elevation in the

expression of immune checkpoint molecules during the

priming process, in which native T cells are sensitized and

activated by antigen-presenting cells, not only inhibits

excessive activation but is also involved in determining the

polarity of the effector T cells (37, 38). PD-L1 is expressed in

large amounts on DCs in VAT of HFD-fed mice. DC-specific
Frontiers in Immunology 03
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PD-L1 deficiency shifts the polarity of T cells in the VAT of

HFD-fed mice toward Th1, exacerbating weight gain and

abnormal glucose metabolism (39). PD-L1 expression on DCs

is an important factor in suppression of Th1, Th17, and

cytotoxic T cells in antitumor responses and autoimmune

diseases (40, 41) and appears to play a similar role in the

pathogenesis of obesity.

Upregulation of PD-L1 in human adipose tissue is positively

correlated with body mass index, but not with type 2 diabetes

(42). On the other hand, a negative correlation was reported

between body mass index and PD-L1 expression (43). The

pathology of human obesity is highly heterogeneous, with

multifactorial contributions by dietary quantity and quality,

physical inactivity, and genetic factors. Therefore, despite the

common phenotype of accumulation of adipose tissue, the

number and qualitative changes of immune cells involved in

chronic inflammation of VAT are thought also to be diverse.

These differences may stem from the different roles of immune

cells: They are involved in the initiation, amplification, and/or

suppression of chronic inflammation of VAT, and their roles

differ greatly depending on the phase of obesity. The role of PD-

1/PD-L1 signaling in human VAT T cells remains unclear and

requires further elucidation.
4 T-cell metabolism

Differentiation of CD4 T cells into functional subsets is

supported by complex metabolic programs (44). Th1, Th17,

and Th2 effector cells generate energy by aerobic glycolysis

rather than oxidative phosphorylation, whereas Tregs rely on

fatty acid oxidation-fueled oxidative phosphorylation rather

than glycolysis (45).

Obesity-related alterations in environmental signaling in

VAT alter cellular metabolism and contribute to obesity-

specific T-cell responses (46, 47). However, it is difficult to

measure the metabolic state of VAT T cells in mice because of

the complexity of the isolation process, so splenic T cell

metabolism has mainly been studied.

Glucose uptake and oxygen consumption are increased in

splenic CD4 T cells from obese mice compared with those from

lean mice (46). Furthermore, b3-adrenergic receptor stimulation

mimics T-cell metabolism in DIO mice and reduces expression

of the mitochondrial-localized chaperone protein disulfide bond

A oxidoreductase like protein (DsbA-L) in T cells. Although

alterations in mitochondrial respiration are an important

mechanism controlling cytokine production, loss of DsbA-L in

T cells reduces mitochondrial oxidative phosphorylation

capacity in both CD4 and CD8 T cells. Mice with T-cell–

specific knockout of DsbA-L have reduced IFN-g–producing
Th1 cells in brown adipocytes, enhanced brown adipocyte

thermogenic signaling, and less obesity and insulin resistance

when fed a HFD (48). Thus, the obesity-related changes in T cell
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metabolism greatly contribute to the pathogenesis of obesity,

including insulin resistance; however, many aspects of the

relationship between metabolism and function specific to VAT

T cells remain unclear.
5 Substances that affect T cells in
VAT, thymus and periphery

Adipocytes secrete a variety of bioactive substances,

collectively referred to as “adipokines.” Changes in adipokines

associated with the progression of obesity affect T-cell

proliferation, differentiation, and function (49). Adipocyte-

derived lipids also affect T-cell phenotypes in obesity (Table 1).
5.1 Leptin

Leptin stimulates the satiety center in the hypothalamus. As

body fat mass increases, adipocytes produce more leptin, and the

serum leptin concentration rises. In normal-weight individuals,

the higher serum leptin concentration stimulates the satiety

center, which suppresses eating behavior, allowing body fat

mass to return to its base level. In the periphery, leptin

promotes fatty acid oxidation and glucose uptake in skeletal

muscle (64).

Leptin has been reported to have various physiological

activities in both normal weight and obese conditions. It also

acts on the immune system by promoting T-cell formation by

the thymus. Conversely, leptin deficiency results in thymic

atrophy and decreased numbers of circulating T cells (50).

Administration of leptin to young leptin mutant (ob/ob) and

normal mice increases CD4 single-positive thymocytes in the
Frontiers in Immunology 04
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thymus and CD4 T cells in the periphery (51). The long-chain

leptin receptor ObRb is expressed on double-negative, double-

positive, and CD4 single-positive thymocyte subsets, but not on

CD8 single-positive thymocytes (52). Among other things, leptin

may promote differentiation from double-positive into CD4

single-positive cells (52).

In obesity , thymus function is reduced despite

hyperleptinemia (65). Individuals with obesity are known to

have high blood levels of leptin, but their appetite is not

suppressed and they are in a leptin-resistant state. The

question whether the leptin resistance observed in the

hypothalamus is also observed in the thymus or whether other

factors, such as adipogenesis of thymic tissue, are involved in

obesity-related thymic hypofunction needs further clarification.

Leptin is also involved in the differentiation and proliferation

of CD4 T cells in the periphery: TCR stimulation upregulates the

expression of leptin receptors on T cells (66), which require

leptin for metabolic reprogramming in which activated effector

T cells upregulate the glucose transporter Glut1 and enhance the

glycolytic system (50). Leptin also promotes differentiation of T

cells into Th17 cells via T-cell–like leptin receptors (53–57).

In VAT, leptin gene expression in adipocytes begins to

increase within 1 week after HFD loading, indicating that

leptin may be an initiator of the adipose inflammatory

cascade. Leptin promotes differentiation of VAT T cells into

Th1 cells and secretion of IFN-g (26). On the other hand, ob/ob

and db/db mice also develop VAT inflammation and severe

insulin resistance, suggesting that humoral factors other than

leptin may contribute to the initiation of VAT inflammation

(67). In addition, in the pathogenesis of chronic obesity, leptin

signaling contributes to T-cell exhaustion by activating

homeostatic STAT3 signaling and thus inducing PD-1

expression (8).
TABLE 1 Effects of humoral factors on CD4 T cells in obesity.

Humoral factors Effect on CD4 T cells References

Leptin

T-cell differentiation in the thymus (50–52)

Induction of Glut1 on effector T cells (50)

Promotion of Th17-cell differentiation (53–57)

Promotion of differentiation of IFN-g–producing VAT Th1 cells (26)

Induction of T-cell exhaustion via STAT3 signaling (8)

Adiponectin

Suppression of T-cell proliferation and cytokine production and promotion of apoptosis (58–60)

Suppression of MHC2, CD80, and CD86 on DCs (21)

Upregulation of PD-L1 on DCs and suppression of Th1-cell differentiation (61)

Inhibition of glycolysis pathway in Th1 and Th17 cells (62)

Fatty acids Differentiation of IFN-g–producing effector T cells (63)

DCs, dendritic cells; IFN-g, interferon gamma; PD-L1, programmed death-ligand 1; STAT3, Signal Transducer and Activator of Transcription 3; Th1, T helper 1; VAT, visceral adipose tissue.
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In VAT, in which adipocytes are the major constituent cells,

T cells may be exposed to high concentrations of leptin. In

addition, the degree and duration of obesity, which determine

the amount of exposure to leptin, greatly affect T-cell phenotypic

changes. Leptin is one of the initiators of VAT inflammation that

promotes Th1 differentiation of VAT T cells, and long-term

exposure to leptin induces immune exhaustion. Thus, leptin is a

key molecule in obesity-induced T cell phenotypic changes.
5.2 Adiponectin

Adiponectin would be expected to prevent obesity and

obesity-related diseases by promoting insulin sensitivity and

fatty acid oxidation and exerting anti-inflammatory effects

(68). However, serum levels of adiponectin are negatively

correlated with obesity, and obesity decreases adiponectin

receptor expression (68).

In general, most T cells store the adiponectin receptors

AdipoR1 and AdipoR2 in intracellular compartments. After

antigen-specific stimulation, AdipoR1 and AdipoR2 are

transported to the cell surface and expressed along with the

receptor CTLA-A and other receptors. In various in vivo

inflammatory models, adiponectin acts as a negative regulator

of effector T cells by suppressing T-cell proliferation and

cytokine production and promoting apoptosis (58–60).

Adiponectin also appears to affect the mechanism by which

naïve T cells are activated by DCs, and adiponectin treatment

reduces the expression of MHCII, CD80, and CD86 on DCs and

suppresses production of IL-12p40 (21). Furthermore, PD-L1

expression is increased in adiponectin-treated DCs. Co-culture

of adiponectin-treated DCs with allogeneic T cells in vitro

decreases T-cell proliferation and IL-2 production, and this

phenomenon can be partially reversed by blocking the PD-1/

PD-L1 pathway (61).

Although the question whether the obesity-related decrease

in adiponectin releases the brake on the inflammatory response of

VAT T cells remains unanswered, in vitro research suggests that

adiponectin may suppress the inflammatory response of obesity-

activated T cells. In fact, obesity enhances the glycolysis pathway

in splenic Th1 and Th17 cells, and adiponectin inhibits glycolysis

in both an AMPK-dependent and -independent manner,

resulting in the amelioration of inflammation (62). In obese

patients, adiponectin expression is reduced not only in adipose

tissue but also in serum (69). The reduction in VAT-derived

adiponectin may affect systemic immune function and contribute

to the development of obesity-specific inflammatory conditions.
5.3 Free fatty acids

During the progression of obesity, lipids released from

adipocytes are also involved in the enrichment of IFN-g–
Frontiers in Immunology 05
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producing CD4 T cells in VAT (63). The differentiation of

TCR-stimulated IFN-g–producing effector T cells is enhanced

by co-culture with adipocytes (62). Among the soluble factors,

fatty acids were shown to be the strongest modulators of

differentiation into Th1 (63). Patients with obesity have high

serum fatty acid concentrations, showing that the bias for

differentiation of naïve T cells into IFN-g–producing Th1 cells

is not limited to VAT. Indeed, upon antigen presentation in

secondary lymphoid tissues, T cells primed with excess saturated

fatty acids have been shown to undergo biased differentiation

into pro-inflammatory effector memories that tend to cluster in

pro-inflammatory nonlymphoid tissues such as obese adipose

tissue and atherosclerotic lesions (70).

Because VAT CD4 T cells appear to acquire unique

characteristics that differ from those of CD4 T cells in other

organs, including blood and spleen, it is unclear whether fatty

acids have the same effects on CD4 T cells in VAT as they do on

those in blood. However, VAT CD4 T cells are exposed to higher

concentrations of fatty acids, which may result in higher

production of IFN-g and development of VAT inflammation.
6 Homeostatic and pathogenic role
of CD4 T cells in VAT

From an immunological perspective, VAT is a unique

environment. In the physiological (non-obese) state, T cells are

kept weakly activated against a self-antigen specific to VAT, and

Tregs that are highly reactive to self-antigens are also assembled.

In this way, peripheral immune tolerance is enhanced to suppress

inflammation in VAT and maintain immunometabolic

homeostasis. During the development of obesity, the storage of

excess fat leads to further enhancement of T-cell activation

signals. However, in the chronic phase of obesity, T cells in

VAT become dysfunctional. In this section, we describe how the

immune-tolerant state of VAT is breached in obesity, how T-cell

activation affects adipocyte function, and how T-cell

transformation is involved in chronic VAT inflammation.
6.1 T cells under homeostatic conditions
in a lean state

Endogenous tissue Tregs differentiate and mature in response

to tissue-specific environmental signals and play an important

role in organ homeostasis (5). VAT Tregs are functionally

specialized tissue-resident cells that prevent obesity-associated

inflammation and maintain insulin sensitivity and glucose

tolerance (71). Under homeostatic conditions in a lean state,

VAT has a large population of Tregs, and research showed that as

non-obese mice age, Tregs accumulate in the VAT (72). Indeed,

studies in mice found that at 20 to 30 weeks of age, VAT Tregs

represent a surprisingly high percentage (50%-80%) of the CD4
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T-cell compartment (73, 74). For reference, the proportion of

Tregs in the CD4 T-cell compartment in spleen and lymphoid

tissues is about 5% to 15%.

VAT is thought have such a high proportion of CD4 T cells

because it requires Tregs for immunological homeostasis.

Within VAT, T cells continue to be loosely activated by

autoantigens in adipose tissue. Tissue-resident Tregs play an

important role in preventing the activation of effector T cells and

the accompanying dysfunction of adipocytes and in maintaining

systemic insulin sensitivity.

There are two types of Tregs: Tregs that are generated in the

thymus (referred to as naturally occurring or thymic Tregs) and

Tregs that differentiate from naïve CD4 T cells in the periphery

(peripheral Tregs) (75).

The intestinal lamina propria has a large population of Tregs

to prevent excessive immune responses to dietary components

and intestinal bacteria; the population comprises peripheral

Tregs, which increase locally depending on intestinal bacteria,

and thymic Tregs (76). When all germs were experimentally

removed from the intestinal mucosa, the population of Tregs in

the intestinal mucosa decreased to the level seen in lymphoid

tissues (61). Among intestinal bacteria, Clostridium species are

known to be a strong inducer of peripheral Tregs (76). In VAT,

most Tregs are thymic Tregs. CD4 T cells that undergo negative

selection in the thymus and do not die express the lineage-

determining transcription factor Foxp3 to become Tregs, which

are self-recognizing and thus inherently more likely to invade

self-tissue. Compared with Tregs in lymphoid tissue, VAT Tregs

have a unique TCR repertoire that exhibits specific antigen

recognition (77), meaning that VAT Tregs react to certain

antigens specific to VAT.

Foxp3 and the signal-dependent transcription factor

peroxisome proliferator-activated receptor gamma (PPAR-g),
as well as signaling by the cytokine IL-33 through the IL-33

receptor ST2, are important for the proliferation and functional

maturation of Tregs in VAT (78). VAT Tregs express insulin

receptors, which are rarely expressed on Tregs in lymphoid

tissues, and highly express PPAR-g and the ST2 receptor in an

insulin signaling-dependent manner (79). VAT Tregs have

transcripts driven by PPARg that differ from lymphoid-organ

and other nonlymphoid-tissue Treg populations (80). Mice

lacking Treg-specific PPARg have greatly reduced VAT Tregs.

In mice, the VAT Treg population was found to show sex

differences and IL-33 was found to be particularly important for

the maintenance of Tregs in adipose tissue of males (81). Under

homeostatic conditions in a lean state, the Treg population is

larger in male than in female mice. In female mice, adipose tissue

inflammation is suppressed by estrogen, and the expression of

inflammatory cytokines such as IL-6, C-C motif chemokine

ligand 2, and IL-1b in VAT is more pronounced in males than

in females (81). Consistent with this finding, male mice are more

insulin resistant than females. In males, the environment of
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higher inflammation in the VAT causes more Tregs to be

recruited from the spleen. Androgens regulate the

differentiation of IL-33–producing stromal cell populations

specific to VAT in males (81).

In male mice, VAT Tregs upregulate expression of the ST2

receptor in a manner dependent on transcription factor Blimp1,

which is also highly expressed in males; the upregulated

expression leads to local expansion of VAT Tregs in an IL-33

signaling-dependent manner (81).

VAT Tregs also enhance IL-10 production in a Blimp1-

dependent manner. IL-10 produced by VAT Tregs suppresses

not only effector T activity but also white adipose tissue

browning (82). Because female mice have smaller VAT Treg

populations, they have lower IL-10 levels and are thus more

prone to white adipose tissue browning; lower IL-10 may also be

one of the reasons why female mice are protected from white

adipose tissue accumulation and glucose intolerance compared

with age-matched male mice.

As obesity progresses, VAT Tregs suppress inflammation by

regulating effector T cells, DCs, and macrophage activity directly

or via IL-10 production (74). Tregs, which constantly express

CD25 (also known as IL-2 receptor alpha chain), preferentially

bind to IL-2 to inhibit proliferation of effector T cells (74). Tregs

express the adhesion factors lymphocyte function-associated

antigen-1 (LFA-1) and CTLA4, and the former enables them

to strongly adhere to DCs (83). In addition, Tregs downregulate

the expression of CD80/86 on DCs in both a CTLA-4- and LFA-

1-dependent manner (83). IL-10 acts mainly on DCs and

macrophages to suppress production of IL-12 and tumor

necrosis factor alpha (TNFa) and the expression of CD86,

MHCII, and CD40 by strongly activating STAT3 (84).

In severe obesity, the Treg cell population is reduced to 10%

to 20% of the CD4 T-cell compartment (73, 74). One of the

reported mechanisms for this decrease is the presence of ST2

soluble isoforms, which are secreted by adipocytes in obesity and

function as decoy receptors for the ST2 receptor to weaken IL-33

signaling (85, 86).

The immune compartments of adipose tissue are markedly

different in mice, humans, and primates: Lean male mice have a

high proportion of Tregs in VAT, but the proportion is much

lower in female mice, humans, and cynomolgus macaques (87).

In healthy lean humans, the proportion of Tregs is significantly

lower in VAT than in peripheral blood; however, OX40-

expressing Tregs, which have potent suppressive activity and

high proliferative capacity, are selectively distributed in VAT in

all individuals and further increase with obesity. Upregulation of

OX40 Tregs is thought to be a protective mechanism that

suppresses excessive inflammation (88).

Although the actions of immune cells in the maintenance of

VAT homeostasis appear to differ greatly between species, Tregs

play an important role in regulating VAT inflammatory

across species.
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6.2 Early stage of obesity-induced
inflammation in adipose tissues

The main players in VAT inflammation in obesity are

macrophages. In the lean state, macrophages localize diffusely

in the VAT, but in obesity, they explode in number and become

intensively localized as crown-like structures, which comprise

clusters of macrophages surrounding dead adipocytes (89). A

wide variety of T cells modulate monocyte recruitment to the

VAT and macrophage proliferation and differentiation in the

crown-like structures (90).

CD8 T cells were first noticed as initiators of VAT

inflammation. CD8 T-cell infiltration into VAT precedes

accumulation of macrophages, and genetic deletion of CD8 T

cells reduces VAT inflammation and ameliorates systemic

insulin resistance. Adoptive transfer of CD8 T cells into CD8-

deficient mice exacerbates VAT inflammation (91).

CD4 T cells also regulate VAT inflammation. Macrophage-

driven inflammation is induced by the Th1 response. In VAT,

this response is induced by a HFD. Th1 cells produce TNFa,
which activates the vascular endothelium and promotes

monocyte invasion, and IFN-g, which induces polarization of

proinflammatory M1 macrophages (92).

Thus, Th1 cells contribute to the recruitment of monocytes

into the VAT and their differentiation into M1 macrophages

(26). IFN-g suppresses insulin signaling in mature adipocytes,

which attenuates insulin-dependent glucose uptake and lipid

storage, and also inhibits differentiation of pre-adipocytes to

mature adipocytes (93). In sum, Th1 cells play a central role in

the induction of early adipose inflammation and adipocyte

dysfunction associated with a HFD. Th1 cells are elevated in

VAT in patients with type 2 diabetes and correlate with obesity-

induced inflammation and insulin resistance (94). In human

adipocytes, IFN-g sustains activation of the JAK/STAT1

pathway, attenuates lipid storage and insulin signaling, and

suppresses differentiation (93). Indeed, obese IFN-g knockout

mice have smaller adipocytes and less accumulation of VAT

inflammatory cells, resulting in improved insulin sensitivity (95).

In HFD-induced obese mice, the Th17 cell population in the

spleen and circulating levels of IL-17 are increased in an IL-6–

dependent manner, and IL-17 inhibits insulin signaling in

hepatocytes and glucose uptake in skeletal muscle (96). IL-17

has a modulatory effect on adipocytes, inhibiting lipid uptake

and glucose uptake by insulin and suppressing adipogenesis

(97). Obese insulin-resistant patients have more Th17 cells in

their abdominal subcutaneous visceral fat than insulin-sensitive

obese patients (98). Furthermore, in obese and metabolically

unhealthy individuals, Th17 cells infiltrate obese adipose tissue

and Th17 cytokines promote TNF-a production and induce

inflammation (99).

Th2 cytokines, such as IL-4 and IL-13, have complex effects

in VAT, i.e., they do more than antagonize Th1 cytokines and
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exert anti-inflammatory effects. In healthy adipose tissues,

metabolic homeostasis is maintained by local IL-4 secretion by

VAT eosinophils and maintenance of alternatively activated

macrophages. In the absence of eosinophils, the numbers of

alternatively activated macrophages in VAT are greatly reduced

(100). In obese humans, the number of Th2 cells is decreased in

subcutaneous and visceral fat and peripheral blood and Th2

frequency is inversely correlated with insulin resistance and

serum levels of C-reactive protein, a marker of systemic

inflammation (101). Th2 cytokines are abundant in the crown-

like structures of obese VAT, where macrophages actively

proliferate in a manner dependent on the IL-4 receptor a-
chain (IL-4Ra), a molecule essential for Th2 signaling. In

these structures, IL-6 functions as a major driver of

proliferation of VAT macrophages in obesity by upregulating

IL-4Ra (102). The role of the Th2 cytokines IL-4 and IL-13 in

VAT inflammation caused by a HFD load is supported by the

finding that inflammation is reduced in mice with myeloid cell-

specific knockout of IL-4Ra (103). Thus, in the obese

environment, Th2 cytokines play an important role in the

maintenance of fast-proliferating macrophages within the

crown-like structures (102). In the physiological state, innate

lymphoid cells (ILC2s) are important producers of type 2

cytokines, which are critical for maintenance of alternatively

activated or M2-like adipose tissue macrophages and glucose

homeostasis (104). In obese VAT, ILC2s regulates saturated fatty

acid absorption, resulting in the amelioration of chronic

inflammation (105); however, in obesity the number of ILC2s

decreases in both mouse and humans (104). The sources and

roles of type 2 cytokines appear to be significantly different

between VAT homeostasis and obesity-induced exacerbation of

chronic inflammation, and further research is needed.
6.3 Obesity-induced chronic
inflammation in adipose tissues

Overeating activates the effector function of T cells in VAT

and initiates inflammation of the tissue. However, the

mechanism by which this inflammation becomes chronic is

still being elucidated. Recent studies have revealed that T-cell

dysfunction due to both T-cell exhaustion and aging is involved

in the chronicity of VAT inflammation, and these two aspects

are discussed below.

6.3.1 T-cell exhaustion
As a result of chronic inflammation, obese T cells exhibit an

exhausted phenotype that includes long-term antigen-

stimulation, stress responses, and hypoxia (106). Given that a

significant proportion of VAT CD4 T cells are not recruited

from the circulation and proliferate in situ (107), T-cell

exhaustion can be expected to significantly interfere with
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antigen-specific and memory responses. Soluble factors from the

obese stromal vascular fraction inhibit activation of VAT T cells,

suggesting that the microenvironment of obese VATmay trigger

T-cell exhaustion (9). In mice, chronic HFD intake attenuates

the inflammatory capacity of effector T cells in VAT such that

they lose their ability to respond to TCR-specific stimulation (9).

Strikingly, VAT T-cell dysfunction has been suggested to occur

early, i.e., before macrophage infiltration into the VAT (9).

VAT T cells from DIO mice fed a HFD for 18 weeks fail to

upregulate CD25 or secrete T cell effector cytokines such as IFN-

g and IL-2 (9). CD25 is required for formation of TCR-

stimulated, high-affinity IL-2 receptors. The same is true for

VAT T cells in humans with obesity. On the other hand, the

ability of Tregs to suppress effector T cells is reduced by

downregulation of CD25.

The dysfunction of VAT T cells in DIO mice involves

persistent antigen presentation from antigen-presenting cells.

Although many T cells in the VAT of DIO mice express high

levels of PD-1, blocking PD-1 in the VAT is not able to restore

the ability to produce cytokines upon TCR stimulation (9).

In addition to persistent antigen presentation by antigen-

presenting cells, some soluble factors in obese VAT are involved

in T-cell dysfunction. One candidate for soluble factors is leptin

(see also section 5.2). The high levels of leptin associated with

obesity lead to T-cell exhaustion by inducing PD-1 expression

through strong activation of STAT3 (8, 108). However, adipose

tissue T cells from db/db mice also cause T-cell exhaustion (9),

suggesting that it involves other humoral factors besides leptin.

Obese VAT is in a state of insulin resistance, in which

glucose uptake and fatty acid synthesis are suppressed in the

presence of high insulin levels and, conversely, triglycerides are

broken down and fatty acids and glycerol are released (109).

Impairments in angiogenic capacity also occur in obese VAT.

Inhibition of angiogenesis leads to rarefaction of capillaries,

impaired proliferation of multipotent progenitor cells, and

adipocyte hypertrophy (110). These changes in the

environment surrounding T cells may affect the intracellular

metabolic system and induce T-cell exhaustion.

Aerobic glycolysis is activated when TCRs are stimulated

and suppression of the glycolytic system induces elevated PD-1

expression and T-cell exhaustion, which decreases IFN-g
production. One group proposed a mechanism by which,

when the glycolytic system is suppressed, glyceraldehyde 3-

phosphate dehydrogenase binds to the 3’UTR of IFN-g mRNA

and inhibits its translation, resulting in decreased IFN-g
production (111).

In the cancer microenvironment, glucose deprivation by

cancer cells results in reduced T-cell glycolytic flux, decreased

IFN-g production, and increased PD-1 expression (111). In vitro

co-culture experiments have shown that in the cancer

microenvironment, metabolic constraints, rather than chronic

antigen stimulation per se, may be responsible for T-cell

exhaustion (112). In the obese environment, a reduction in the
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glycolytic flux of VAT T cells may also accelerate T-

cell exhaustion.

PD-1 is one of the indicators of T-cell exhaustion, and

inhibitors of the PD-1/PD-L1 axis, which restores T cells from

exhaustion, have provided major clinical breakthroughs in

cancer (16, 113–115). PD-1 expression on T cells is elevated in

people with obesity (8). Highly exhausted T cells are susceptible

to PD-1 blockade, and obesity is positively correlated with the

efficacy of PD-1/PD-L1 inhibitors in patients and mice with

cancer (8, 116, 117), together suggesting that obesity induces T-

cell exhaustion.

Obesity also induces CD4 T-cell exhaustion in obese VAT,

and exhausted CD4 T cells highly express PD-1 (7). However,

the finding that PD-1 blockade does not improve VAT CD4 T-

cell exhaustion indicates that VAT CD4 T cells may have

acquired a unique exhaustion phenotype independent of PD-

1/PD-L1 signaling (9). CD8 T cells also appear to acquire diverse

exhaustion traits in obese VAT. VAT CD8 T cells from obese

mice highly express T-cell exhaustion markers such as Pdcd1,

Tox, Entpd1, Tigit, and Lag3 and have an exhaustion profile

similar to T cells chronically infected with Lymphocytic

choriomeningitis virus (36). On the other hand, obese VAT

CD8 T cells do not have increased immune checkpoints such as

TIM-3, LAG-3, TIGIT, and EB4 or exhaustion markers such as

TOX, TCF-7, and Eomes; instead, VAT CD8 T cells upregulate

the co-inhibitory receptor B and T Lymphocyte Attenuator

(Btla), Nlrc3, and Dicer1 genes, which suppress TCR signaling

by a mechanism different from that of PD1 signaling (118).

Differences in T-cell exhaustion profiles in VAT may result

from the intensity and duration of exposure to specific antigens

associated with HFDs and obesity. Immunosuppressive signals of

VAT are also considered to be a defense mechanism that

suppresses excessive obesity-related inflammation of VAT.

However, VAT is an important reservoir of immune cells in

obesity, and exhaustion of VAT T cells may be disadvantageous in

case of various pathologies, such as infectious diseases and cancer.

To sum up, in developing obesity, a HFD load causes acute

inflammation by inducing excessive activation of VAT T cells. On

the other hand, in the chronic phase of obesity, inhibitory signals

suppress the normal VAT T cell response. The fact that chronic

inflammation in VAT persists suggests that the presence of not

only T-cell exhaustion but also cell-intrinsic functional changes in

VAT T cells, which more actively sustain inflammation.

6.3.2 Regression of the thymus
and maintenance of T cells by
homeostatic proliferation

TCR spectratyping analyses show that diet-induced obesity

causes thymic regression and limits TCR diversity. Obesity due

to melanocortin-4 receptor deficiency, the most common genetic

cause of human obesity, also reduces T-cell repertoire diversity

(65). A key factor in obesity-induced thymic regression is the

conversion of thymic fibroblasts to adipocytes as a result of lipid
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accumulation (119). Adipocyte proliferation leads to an increase

in leukemia inhibitory factor, oncostatin M, and IL-6, which

inhibits thymic function and induces thymocyte apoptosis,

resulting in a compromised pool of T-cell progenitor cells

(120). After thymic degeneration, peripheral T cells are

maintained by homeostatic proliferation. In humans,

homeostatic proliferation of circulating CD4 T cells is

accelerated in individuals with obesity (121).

6.3.3 Mechanism of the repertoire restriction
of T cells

VAT T cells have significantly less TCR diversity than

splenic T cells, and obesity exacerbates this difference (23).

Repeated antigen stimulation, the effects of antigen-presenting

cells themselves, and homeostatic proliferation may contribute

to the repertoire restriction of T cells.

After thymic degeneration, peripheral T cells are maintained

by homeostatic proliferation, but a significant proportion of VAT

CD4 T cells are not recruited from the circulation (107).

Furthermore, VAT contains a huge pool of T cells in obesity

(122). These findings suggest that to compensate for the decrease

in VAT T cells, VAT T cells are activated and maintained by

repeated antigen stimulation rather than by homeostatic

proliferation. Studies showed HLA- and MHC2-mediated

activation of T cells by antigen-presenting cells in obese humans

and mice (25–27, 123, 124), suggesting that repeated stimulation

with some kind of antigenmay result in TCR repertoire restriction.

Differences in the expression of various co-stimulatory and

inhibitory receptors expressed on antigen-presenting cells also

influence T-cell phenotypic changes (24–27, 29, 31), so antigen-

presenting cells may also contribute to T-cell repertoire restriction.

On the other hand, a specific subset of T cells that emerges

with obesity may be maintained through homeostatic

proliferation because studies showed that during the

physiological aging process, T cells are maintained through

homeostatic proliferation triggered by homeostatic cytokines

and MHC associated with self-peptides (123, 124) and we

previously found that obesity accelerates T-cell senescence and

that senescent T cells have similar characteristics to T cells created

by homeostatic proliferation during aging (7). Although no

studies have directly demonstrated homeostatic proliferation of

T cells in VAT, we hypothesize that obesity-associated senescent

T cells may be maintained by homeostatic proliferation in the

same way as aging-associated senescent T cells.

6.3.4 Obesity-induced T cell senescence
Cellular senescence is triggered by DNA damage, telomere

dysfunction, inflammation, and metabolic dysfunction and is

accompanied by irreversible cell cycle arrest and the acquisition

of the senescence-associated secretory phenotype (125).

Oxidative stress, inflammation, and repeated antigenic

stimulation associated with obesity may induce shortening of

telomere length and accelerate cellular aging (111, 126, 127).
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Obesity is also associated with leukocyte DNA methylation

changes that can lead to immune dysfunction (128). However,

the effects of long-term exposure to obesity on gene expression

and metabolic status in T cells remain to be elucidated.

In mice fed a HFD, the absolute number of CD4 T cells per

gram of VAT continues to increase as obesity progresses. One study

attributed this increase in the absolute number of VAT CD4 T cells

to an increase in antigen-stimulated activated CD44hiCD62Llo cells

(7). In this study, a unique population of CD44hi CD62Llo CD4 T

cells that constitutively express CD153 and PD-1 was found to

exhibit cellular senescence properties. A CD153+ PD-1hi subset

expressing T-bet, the master transcription factor of Th1, had high

senescence-associated beta-galactosidase activity and were positive

for the DNA damage marker gH2AX, indicating characteristics of

cellular senescence. The authors concluded that CD153+ PD-1hi

subset continues to secrete abundant osteopontin (OPN) without

PD-1–mediated negative signaling inhibition at the cost of normal

function and causes VAT inflammation (7). In fact, OPN is elevated

in the circulation of patients with obesity and enhances VAT

inflammation, leading to the development of diabetes (129, 130).

OPN functions as a potent chemoattractant for macrophages.

Chronic inflammation is characterized by macrophage retention,

and OPN is a particularly important molecule in promoting

macrophage migration and retention. OPN also regulates

cytokine production by macrophages and acts on T cells to

promote IL-12 production while inhibiting IL-10 production

and promoting Th1 cell-mediated responses (131).

A portion of Th1 effector cells terminally differentiates into

OPN-producing senescent T cells, and increased numbers of

senescent T cells produce large amounts of OPN and maintain

high levels of OPN in VAT (7). In turn, high OPN levels cause

persistent accumulation and activation of macrophages and

induce a Th1 response. These experimental results suggest

that, at least in mice, VAT CD4 T cells that have deviated

from immune checkpoint mechanisms and acquired a senescent

phenotype continue to produce OPN independently of classical

TCR stimulation and that this process is closely related to the

maintenance of chronic inflammation in obesity. Recently,

vaccination targeting CD153 was shown to reduce senescent

cells in visceral fat of obese mice fed a HFD for 10 to 11 weeks

and to improve VAT inflammation and insulin resistance (132).

Senescent T cells were suggested as a potential therapeutic target

for obesity-associated immunometabolic disorders.

CD153+ PD-1hi CD4 T cells were originally identified as a

characteristic T-cell subset that emerges with aging and were

named senescence-associated T cells (124, 133). Noteworthy is

that the same cells also appear in the VAT microenvironment in

obesity and are involved in chronic local inflammation, making

T cell senescence a common underlying pathology for both

obesity-related and aging-related diseases.

VAT CD4 T cells play an important role in regulating

inflammation and metabolism in obesity, but the underlying

mechanisms are largely unknown. Recently, DIO was shown to
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increase p38 activity in VAT T cells and promote obesity-

associated adipose tissue senescence. p38a, an essential

subunit of p38, promotes T-cell glycolysis through a

mechanistic target of rapamycin signaling, resulting in

enhanced Th1 differentiation. T cell-specific deletion of p38a
protected mice from HFD-induced obesity, fatty liver, adipose

tissue inflammation, and insulin resistance (134).

To sum up, the negative linkage between obesity-

accelerating T-cell senescence and T-cell activation-

accelerating VAT senescence plays an important role in the

development of chronic VAT inflammation (Figure 1).
7 Negative legacy of obesity

Obesity can be corrected by weight loss. However, weight loss

through caloric restriction and increased physical activity is not as

easy as it sounds, and even if weight is lost, it may be regained

quickly. Traditionally, bariatric surgery has been performed in

severely obese patients who are refractory to medical therapy

because of a combination of factors such as dietary environment
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glucagon-like peptide 1 receptor agonist and dual glucose-

dependent insulinotropic polypeptide/glucagon-like peptide 1

receptor agonist, long-term maintenance of successful lost

weight by medication has finally become feasible (135, 136).

However, studies on the long-term effects of weight reduction on

cardiovascular events and life expectancy in patients with obesity

and type 2 diabetes have yielded conflicting results. A meta-

analysis showed that weight reduction is associated with reduced

mortality in unhealthy individuals with obesity (137), and

bariatric surgery reduced the incidence of myocardial infarction

in patients with obesity and type 2 diabetes over a mean follow-up

period of 13.3 years (138). However, a prospective randomized

study found that an intensive lifestyle intervention focused on

weight reduction was not associated with reduced cardiovascular

disease and mortality in adults with overweight or obesity and

type 2 diabetes at almost 10 years of follow-up (139).

The phenotypic changes in T cells upon weight reduction in

obesity appear to be very complex. In obese mice, weight

reduction induces the accumulation of CD4 T cells in VAT,

resulting in the recruitment and retainment of pro-inflammatory
FIGURE 1

Obesity induces CD4 T-cell senescence via several mechanisms. Factors affecting the differentiation and maturation process of visceral adipose
tissue (VAT) CD4 T cells in obesity include 1) alteration of T-cell metabolism; 2) repeated antigen stimulation by antigen-presenting cells, such
as macrophages and dendritic cells; 3) various humoral factors, such as cytokines, adipokines, and lipids; and 4) changes in the VAT
microenvironment. These stimuli activate T helper 1 (Th1) CD4 T cells and induce various types of transcriptional and epigenetic remodeling.
Chronic activation of T cells induces immune exhaustion and reduces the secretion of proinflammatory cytokines, including interferon g. On the
other hand, some Th1 effector T cells deviate from the immune checkpoint mechanism and acquire a cellular senescence phenotype without
anergy because of repeated antigenic stimulation. Senescent CD4 T cells that produce a large amount of osteopontin accelerate macrophage
migration and effector T-cell activation and suppress regulatory T cell function, resulting in the maintenance of chronic VAT inflammation. Ifn-g,
interferon g; PD-1, programmed cell death protein 1; SASP, senescence-associated secretory phenotype; TCR, T-cell receptor.
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macrophages in VAT despite normalization of body weight (13,

140). In mice with weight reduction after being switched from a

HFD to a control diet, body weight and visceral fat decreased to

the same level as lean mice fed the control diet; however, the VAT

of the weight-loss mice showed dense infiltration of macrophages,

which formed more crown-like structures than those in HFD-fed

obese mice. Mechanistically, CD153+ PD-1hi CD4 T cells are

long-lived and not easily eliminated after weight loss, and the

continued presence of senescent T cells is associated with the

production of large amounts of OPN, creating a chronic

inflammatory loop (Figure 2). Thus, senescent CD4 T cells are

suggested to be a negative legacy effect of obesity (13).

Interestingly, in a weight gain-loss-regain model, mice with a

history of obesity regain weight very quickly. Although the

molecular mechanism for this obesity memory is unknown,

CD4 effector T cells were shown to be involved (12).

Furthermore, one study reported that glucose tolerance was

worse in DIO weight-loss-regain mice than in normal DIO

mice and that this metabolic dysfunction was associated with

increased T-cell accumulation in VAT (36).

The above experimental results explain the body’s propensity

to repeatedly gain and lose weight, which makes it difficult to
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maintain weight loss and increases the risk of developing

diabetes. Noteworthy is that the background imprinting of an

obesity-related immune phenotype is present in VAT.
8 Conclusions

VAT is not only a storage organ for lipids, but also an

endocrine organ that regulates energy balance in the body by

secreting various bioactive substances called adipokines, which

are involved in food intake and insulin resistance. Dysregulation

of adipokine function and production in obese VAT plays a

major role in the development and progression of metabolic

syndrome. Furthermore, it is becoming clear that various

immunocompetent cells, including macrophages, increasingly

infiltrate obese VAT and that the accompanying mild systemic

chronic inflammatory response is the underlying pathogenesis of

lifestyle-related diseases such as metabolic syndrome.

In this review, we sought to summarize the role of CD4 T

cells in maintaining VAT homeostasis, inflammation caused by

excessive fat accumulation in VAT, and the chronicity of this

inflammation. In addition to TCR signals, co-stimulation
FIGURE 2

Senescent CD4 T cells are a negative legacy of obesity. In the pathophysiology of obesity, not only effector and exhausted T cells but also
senescent T cells accumulate in visceral adipose tissue (VAT). VAT inflammation induced by these VAT T cells induces systemic insulin resistance
and contributes to the pathogenesis of diabetes. Weight reduction reduces exposure to self-antigens, metabolic stress, and humoral factors in
the VAT microenvironment. However, long-lived senescent CD4 T cells concentrate in VAT after weight loss and continue to secrete
proinflammatory osteopontin. As a result, VAT inflammation persists after weight reduction and may represent a residual risk factor for
cardiovascular disease.
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signals, and cytokine signals from antigen-presenting cells, T

cells undergo tissue-specific differentiation in response to organ-

and disease-specific environmental signals.

To date, most of the findings on chronic inflammation of

VAT associated with obesity are from analyses of DIO mice fed a

HFD rich in saturated fatty acids. Therefore, future research needs

to carefully examine the extent to which findings from DIO mice

can be extrapolated to humans. Epidemiological evidence

indicates that obese VAT increases the risk of developing

cardiovascular disease. However, the mediators that affect

remote organs via immunological changes in VAT remain

unclear. In obesity, ectopic fat accumulates around the heart

and blood vessels, and development of cardiovascular disease

may be more strongly influenced by this neighboring ectopic fat.

Obesity also affects systemic immune function. When considering

the relationships between obesity and infectious diseases, cancer,

and autoimmune diseases, the hypothesis is attractive that

immunological abnormalities in obese VAT can also affect

systemic immune function. In fact, some research suggests such

an association, but proving a causal relationship remains a

challenge for the future. Nevertheless, an understanding of the

qualitative and quantitative changes of immune cells within the

microenvironment in VAT will undoubtedly help to elucidate the

mechanisms by which obesity causes various diseases, including

lifestyle-related ones, via excessive local or systemic activation of

the immune system. In the future, tailored therapeutic strategies

based on an understanding of immune cell trait changes may

contribute to improving the prognosis of obesity-related diseases.
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T cells and their products in
diabetic kidney disease

Yue Liu1, Yaodong Lv2, Tingwei Zhang1, Tongtong Huang1,
Yating Lang1, Qinghao Sheng1, Yingxiao Liu1, Zhijuan Kong1,
Ying Gao1, Shangwei Lu1, Meilin Yang1, Yaqi Luan1,
Xining Wang1*† and Zhimei Lv1*†

1Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical
University, Jinan, China, 2Department of Neurology, Yantai Yuhuangding Hospital, Shandong University,
Yantai, China
Diabetic kidney disease (DKD) is the most common cause of end-stage renal

disease and has gradually become a public health problem worldwide. DKD is

increasingly recognized as a comprehensive inflammatory disease that is largely

regulated by T cells. Given the pivotal role of T cells and T cells-producing

cytokines in DKD, we summarized recent advances concerning T cells in the

progression of type 2 diabetic nephropathy and provided a novel perspective of

immune-related factors in diabetes. Specific emphasis is placed on the

classification of T cells, process of T cell recruitment, function of T cells in the

development of diabetic kidney damage, and potential treatments and therapeutic

strategies involving T cells.

KEYWORDS

diabetic kidney disease, T cells, cytokines, immunologic function, differentiation,
recruitment, therapeutic methods
Abbreviations: DKD, Diabetic kidney disease; MHC, Major histocompatibility complex; MAIT, Mucosal-

associated invariant T cells; NKT, Natural killer T cells; Trm, Tissue-resident memory T-cells; TFH, T follicular

helper cells; IFN-g, Interferon-g; TNF-a, Tumor necrosis factor-a; STAT, Signal transducer and activator of

transcription; TIM3, Immunoglobulin domain and mucin domain 3; Treg, Regulatory T cell; FasL, NF-a/Fas

ligand; S1PR1, Sphingosine 1-phosphate receptor 1; HbAlc, Glycated hemoglobin; CXCL, C-X-C motif

chemokine ligand; CXCR, C-X-C motif chemokine receptor; CCL2, Chemokine ligand 2; CCR, Receptor C-

C chemokine receptor; AGE, Advanced glycosylation end; TIM-1, T-cell immunoglobulin and mucin-

containing molecule-1; KIM-1, kidney injury molecule-1; tolAPCs, Tolerogenic antigen presenting cells;

IDDM, Insulin-dependent diabetic; TP, Triptolide; TCR, T-cell-specific antibody anti-T-cell receptor; GRK2,

G protein coupled receptor kinase 2; DT, Diabetea teame.
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1 Introduction

Diabetic kidney disease (DKD) is a highly prevalent microvascular

complication of diabetes that affects >50% of incident cases of diabetes

mellitus (DM) and profoundly contributes to patient morbidity and

mortality (1). Clinically, DKD is characterized by the presence of

albuminuria and decreased estimated glomerular filtration. DKD is

diagnosed based on glomerular basement membrane thickening,

mesangial expansion, diffuse or nodular glomerulosclerosis, podocyte

loss, and interstitial fibrosis on pathology and histology (2). Multiple

mechanisms contribute to the outcome of DKD. Among them,

nonimmune factors, metabolism, and hemodynamics are considered

the most crucial causes of renal damage in patients with type 2 DM

(T2DM) and DKD in traditional perceptions (3–5). Therefore, optimal

control of hyperglycemia and intensive treatments for elevated blood

pressure remain the current management strategies for patients with

diabetes. However, current treatments are insufficient to prevent its

progression in a large proportion of patients, and the prevalence of

DKD is still increasing every year. The mechanisms leading to the

development of renal dysfunction in diabetes are not fully understood;

therefore, there is an urgent need to identify the pathogenesis and

therapeutic approaches to DKD.

In comparison to merely considering DKD a non-immune

metabolic disease induced by hyperglycemia, current studies

emphasize that DKD is also an inflammatory disease (6, 7). The

infiltration of immune cells, which is related to innate and adaptive

immunity, may be involved in hyperglycemia-induced renal injury (8).

In particular, the role of T-cells in the development of DKD has been

confirmed (9). On the one hand, high glucose has been verified to

induce T cells recruitment, activation, differentiation, and maturation,

even the cytokine factor expression profiles of T cell (10). On the other

hand, serum concentrations of chemokines and cytokines produced by

T cells have been assessed in patients with diabetes, which are

supposedly to predict the onset of diabetic complications.

Hence, we summarized the updated progress in the aspects of

differentiation, recruitment, function of T cells, and their products in

the DKD as well as the potential strategies for the treatment of DKD,

hoping to provide insights for future research.
2 Classification and differentiation of T
cells in diabetic kidney disease

T cells are involved in host defense and clearance of pathogens. In

general, T cells are divided into two species according to their

constitutive chains, called “conventional T cells” and “unconventional

T cells,” which operate in utterly different ways to regulate and

coordinate immune responses in the kidney.

Classically, T cells that express T-cell receptors (TCRs) with a-
and b-chains are classified as conventional T cells; specifically,

conventional T cells can be separated into CD8+ T cells and CD4+

T cells, and these cells recognize peptides presented by the major

histocompatibility complex class II and I. Based on the specific

function, the differentiated CD4+ T cell subsets were further

distinguished into T-helper (Th) cells and regulatory T cells (Tregs).

According to previous research, unconventional T cells recognize

antigens in the absence of classical restriction via the major
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histocompatibility complex and respond rapidly upon antigen

encounters (11). In the kidneys, unconventional T cells include mucosal-

associated invariant T (MAIT), natural killer T (NKT), and gdT cells (12).

In addition, tissue-residentmemory (TRM)T-cells, themost abundant

memory T-cell subset, have been identified as a class of T cells that reside in

the kidney (13, 14). The different phenotypes and functions of TRM are

derived from its position in various tissues (15). Due to the synergistic effect

of the anatomical localization effector and memory phenotype, TRM T-

cells located in the kidney are critically involved in DKDs.
2.1 Overview of T helper cells

Th cells are a cluster of highly plastic CD4+ T cells and are

simultaneously important contributors to the autoimmunity and

inflammation induced by DKD. Many modulatory mechanisms

employed by Th cells contribute to the adjustment of renal tissue

damage, such as by mediating the production of local cytokines.

According to their cytokine and transcription factor expression

profiles, Th cells are primarily grouped into Th1, Th2, Th3, Th9,

Th17, Th22, T follicular helper (Tfh), and Tregs.

As a flock of plastic cells, Th cell subsets can acquire regulatory

functions upon chronic stimulation in diabetes, opening a new

perspective for the exploration of immunomodulatory mechanisms

for diabetes (8, 16). Hence, the classification and differentiation of Th

cells in diabetes and its renal complications are associated with their

unique subsets, which are described in the following sections.

2.1.1 Th1
Since 1986, a groundbreaking study has elaborated the patterns of

lymphokine activity production of Th1 and Th2 cells; Th1 expresses

its signature cytokines such as interleukin (IL)-2, interferon-g (IFN-
g), tumor necrosis factor-a (TNF-a), and transcription factor T-box

(T-bet), among others (17–19), owing to which it participates in the

activation of macrophage cell-mediated immunity and systematically

regulates cellular function.

Notably, the level of Th1 can be mediated by multiple factors. For

example, STAT4 and STAT1, members of the signal transducer and

activator of transcription (STAT) family, are crucial for inducing

differentiation and maintaining the Th1 cell phenotype (20, 21). T-bet

also modifies the level of Th1 by activating STAT1 (22). In contrast,

the cell immunoglobulin domain and mucin domain 3 are extensively

considered suppressants of IFN-g-producing T-cells (23).

Meanwhile, Th1 has been shown to respond to preceding and

accompanying immunoreaction in DM (24). In clinical settings, Th1

cells dramatically increase in patients with type 2 diabetic

nephropathy (T2DN), and the degree of proteinuria is positively

correlated with aberrant cytokine production, such as IFN-g and IL-

2R (25). Creatinine clearance is also negatively correlated with plasma

TNF-a and urinary MCP-1 levels.

2.1.2 Th2
Th2 and its produced IL-4, IL-5, IL-9, IL-10 and IL-13 are related

to the pathogenesis of DKD (26, 27). Furthermore, the inherent link

between Th1 and Th2 has been discussed in the immunopathogenesis

of diabetes. In contrast, IL-10 and IL-4 produced by Th2 can dampen

IFN-g secretion and suppress Th1 cell activation (in the regulation of

humoral immunity, among other processes (27, 28).
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Contrastingly, the decrease in T-bet produced by Th1

corresponds with the increase in plasma IL-4 secreted by Th2,

implying an imbalance between Th1 and Th2 (29). Hence,

upregulating GATA-3 and IL-4 expression and downregulating T-

bet and IFN-g levels may provide a novel therapeutic method for type

1 diabetes (T1D) treatment in non-obese diabetic (NOD) mice (30).

Intriguingly, GATA-3, a promoter of Th2 responses, was increased in

diabetes (31, 32), while peritoneal dialysis may increase the frequency

of Th2 cells during the treatment of DKD (33).

2.1.3 Th17
As discovered in 2005, Th17 secrete IL-17 as its signature cytokine

(34). After Th17 cells receive active signaling, the JAK/STAT pathway

directly culminates in activation of STAT3 of RORgT, resulting in the

production of IL-17 (35). In contrast, IL-2-induced activation of

STAT5 causes a decrease in ROR-gt and a transient downregulation

of IL-17 (36). In addition to ROR-gt, the differentiation of Th17 cells

can be directed by transforming growth factor (TGF)-b, IL-6, IL-1b,
and IL-23 (37, 38). Interestingly, unique cytokines can induce

different types of Th17 cells. For example, the proinflammatory

subtype of Th17 cells is induced by TGF-b, whereas the less

pathogenic subtype is promoted by IL-1b (36, 39). In peripheral

blood lymphocytes from patients with diabetes, promoter activation

was verified as the core principle of the change in IL-17 and its

downstream signaling (40).

On the immune-mediated kidney disease, Th17 cells are likely to

get upregulated in DKD, resulting in a general increase of IFN-g and IL-
17A in streptozotocin (STZ)-induced diabetes (41). A clinical study

based on blood samples collected from 56 patients with nephropathy

and 57 patients with diabetes revealed that patients carrying at least one

allele of the IL-17A (rs2275913) gene polymorphism were vulnerable to

DKDs (42). In a cross-sectional study, the level of serum IL-17 was also

found to be lower in individuals with diabetes or renal lesions in Asian

and Indian populations (43).

Furthermore, in terms of DKD treatment, IL-17A gradually

demonstrates dose-dependent properties. As mentioned above,

presence of IL-17A in individuals with diabetes and diabetic mouse

models is an obvious characteristic, and serum and urinary levels of

IL-17A in the former with advanced DKD confirms this finding;

additionally, low doses of IL-17A have a noteworthy therapeutic effect

on podocytes and tubular cells (44). The protective effect of IL-17 may

also be dependent on its subsets, as low doses of IL-17A and IL-17F

can prevent severe impairment of renal function at the beginning of

the course of DKD; however, IL-17C or IL-17E do not show a similar

effect (40).

With respect to the relative ratio of Th17 cells, interesting studies

have demonstrated that the Th17/Treg ratio promotes inflammation

and may hasten the development of diabetic complications. The

increase in Th17 or decrease in Tregs may be a contributing factor

to the deterioration of kidney function (45, 46). The Th17/Th1

response ratio is a potential contributor to b cell destruction and

provides a novel biomarker for the rapid diagnosis of T1D preceding

the clinical end. Moreover, similar investigations have been

performed on the serum levels of relevant cytokines in patients

with T2DM, and the Th1/Th2/Th17/Treg paradigm has been

demonstrated to skew toward Th1 and Th17 (26).
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2.1.4 Th3, Th9, and Th22
As the research has progressed, various types of Th cells have been

discovered to be involved in diabetic complications. Characterized by

high expression of TGF-b, Th3 has a negative correlation with DKD

at the onset of the disease rather than in the prediabetic phase (47).

Another subset, named Th9 cells, is designated as IL-9 producers.

With the technical support of nanoscale flow cytometry, Semenchuk

et al. found that IL-9 is inversely related to the quantification of

urinary podocyte-derived extracellular vesicles (48). Additionally,

Th22 participates in the regulation of DKD by producing IL-22 (49).
2.2 Tfh cells

Tfh cells are another distinctive Th subset of cells that require the

synergistic action of IL-6 and IL-21 to drive differentiation (50, 51).

Tfh cells are involved in diabetic syndrome, leading to elevated levels

of CXCR5, ICOS, PDCD1, BCL6, and IL21 (52). Many subsets of Tfh

cells, such as CXCR5+ PD1+ ICOS+ and CD4+ CXCR5+ PD-1+, are

increased in children and adults with diabetes (53, 54). In particular,

CD4+ CXCR5+ Tfh cells have been confirmed to manipulate the levels

of estimated glomerular filtration rate (GFR), creatinine, urea, urinary

protein, fasting and postprandial blood glucose, and hemoglobin A1c

in patients with DKD (55).
2.3 Regulatory T cells

Analysis of gene polymorphisms revealed that FOXP3+ Tregs

were reduced in patients at the onset of diabetes (56). The apoptosis of

Tregs is affected by aberrant IL-2R signaling, leading to a decrease in

FOXP3 persistence and impacting the establishment of tolerance (57).

Therefore, a single infusion of autologous polyclonal Tregs and

recombinant human low-dose IL-2 may be a novel treatment for

diabetes (58).

In addition to suppressing T cells, NK cells, NKT cells, B cells, and

dendritic cells in the adaptive immune responses, Treg cells play a

fundamental role in the pathological development of DN,

maintaining a dynamic equilibrium between inflammatory

cytokines and anti-inflammatory cytokines (59–61). Treg cells can

control phenotypic changes by increasing (IFN-g, IL-2, and IL-17)

and decreasing (IL-10, IL-35, and TGF-b) the levels of anti-

inflammatory cytokines (62, 63). Generally, the population and

function of Tregs has a peculiar effect on immunoregulation in

patients with diabetes.
2.4 CD8+ T cells

Recent findings have reported that CD8+ T cells were increased in

patients with diabetes and that suppressing CD8+ T cells may alleviate

the pathological reaction of DKD (64). Furthermore, infiltration of

CD8+ effector T cells is important for recruiting macrophages to

ameliorate systemic insulin resistance in mice fed a high-fat diet (65).

Interestingly, the proportion of CD8+ TRM cells was increased in

DKD and further promoted podocyte injury and glomerulosclerosis,
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suggesting a pivotal role of CD8+ T cells in podocyte damage in

insulin-resistant patients with DN (66).
2.5 NKT cells and gd T Cells

NKT cells are another characteristic T-cell subset that links the

innate and adaptive immune systems, and abnormalities in the

frequency and activity of NKT cells may be attributed to the

exacerbation of T1D (67). NKT cells play a fundamental role in

various renal diseases involving abnormal metabolism. For instance,

inappropriate overactivation of NKT cells can cause kidney damage

via the TNF-a/Fas ligand pathway (68). In progressive non-alcoholic

fatty liver disease, NKT cells also cause glomerular function and renal

immunotoxicity (69). Furthermore, during chronic kidney disease

(CKD) progression, the raise of CD3- CD56+ NK cells were observed

in tubulointerstitial, and the frequency of CD3- CD56+ NK cells and

CD3+ CD56+ NKT cells were also remarkably elevated in the

peripheral blood of diabetic patients (70, 71). Simultaneously, NKT

cells express IL-4, IFN-g, natural-killer group 2 member D, and IL-17,

thus inducing vascular injuries (72).

The subsets of yd TCR+ cells, such as CD27- CD44hi and CD27+

CD44lo, have also been increased in prediabetic NOD mice; however,

the knowledge of concrete mechanism of gd T in DKDs has been

limited until now (73).
2.6 Mucosal-associated invariant T cells

MAIT cells not only belong to a specialized subset of

unconventional (non-major histocompatibility complex-restricted)

T cells but have also emerged as key players in immunity and

pathological inflammation. First, human MAIT cells express a

semi-invariant TCRa chain (Va7.2, coupled with restricted Ja

segments), coexpressed with high levels of the C-type lectin

receptor CD161, which is beneficial to its presentation in human

barrier sites such as the kidneys (74, 75). Moreover, MAIT cells were

reported to sharply increase with a cytokine cocktail comprising IL-

12, IL-15, and IL-18, which participates in the progression of chronic

inflammation (76).

Furthermore, researchers have found that dysregulation of MAIT

cells may influence the severity of insulin resistance. The frequency of

MAIT has been shown to be influenced by BMI, and there is a positive

correlation between MAIT and HbA1c levels, accompanied by an

increase in CD25 and CD69 (77, 78). Another study by Harms et al.

observed a significant increase in the CD27- MAIT cell subset and IL-

17A in patients with T1DM, particularly in younger patients (77).
2.7 Tissue-resident memory T-cells

CD69+ CD103+ and CD69+ CD103- TRM cells have been

identified as two primary subsets of TRM cells (15). CD69 binds to

S1PR1 on the T cell membrane, restraining the migration of memory

T cells from the blood to peripheral tissues (79). Therefore, a mass of

TRM-T cells exists in the kidney rather than in the circulation. After

encountering antigens in vivo and in vitro, native T cells rapidly
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produce effector T cells and swiftly migrate to lymphoid and non-

lymphoid tissues, persisting through barrier tissues, such as the

kidney (80, 81). Following inflammation resolution, antigen-specific

effector T cells differentiate into diverse memory T cell subsets with

distinct trafficking properties.

In the tubulointerstitium of DKD, a recent xCell analysis has

identified immune cells, thus revealing significant changes, including

activated Th2 cells, CD4+ T cells, CD8+ T cells, dendritic cells,

conventional dendritic cells, M1 macrophages, and restrained Tregs

(82). However, knowledge of T cell differentiation in DKD

remains limited.
3 Recruitment and activation of T cells
in diabetic kidney disease

As early as 2012, the aberrant recruitment and activation of T cells

in DKD had been discussed (83). The results showed an increase in

CD4+, CD8+, and CD20+ cells in the interstitium, indicating that

aberrant intrarenal infiltration and recruitment of T cells are potential

immunopathological mechanisms of diabetic kidney lesions.

Immunohistochemical analysis also showed that a substantial

proportion of juxtaglomerular apparatuses in patients with T1DM

contained abundant T cells (84).

To exert their local effects on renal injury, circulating T cells must

reach the site of inflammation. Typically, some T cells, such as Th

cells, do not possess a residency status similar to that of other immune

cells, such as kidney TRM-T cells.

A series of tissue-specific markers has been reported to activate T

cells in the kidney. Once activated, T cells can expand their

immunoreaction, inducing chemokine release and more widespread

recruitment of T cells (85). However, little is known about the

trafficking of T cells into the kidney under hyperglycemic

conditions, and their migration patterns have been the subject of

extensive studies (17). Hence, the methods for circulating T cell

migration into kidney should be assessed in the next step of research.
3.1 Chemokines and its receptor

There is a positive feedback between chemokines and T cells in

the inflammatory response and immune adjustment. In other words,

chemokines facilitate the attraction of circulating T-cells and

stimulate their infiltration into tissues. T cells also participate in the

regulation of the pathophysiological progression of renal insufficiency

by producing chemokines. In this section, we focus on the

chemokines involved in the recruitment of T cells in DKD.

3.1.1 CXCL9-CXCR3
Multiple studies have shown that the urinary level of C-X-C motif

chemokine ligand 9 (CXCL9) mRNA is significantly elevated and

correlated with eGFR decline, which can be utilized to measure and

stratify the risk of DKD (86, 87).

On the other side of the CXCL9-CXCR3 axis, C-X-C motif

chemokine receptor 3 (CXCR3) is a well-known chemokine

receptor predominantly expressed on the surface of Th1 polarized

T cells and regulates the recruitment of Th1 cells (88). Moreover,
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CXCL9 and CXCR3 have been found to be influenced by advanced

glycosylation end products (AGEs), implying that Th1 can be

recruited under diabetic conditions (89).

3.1.2 CXCL10/CXCR3
In an exploratory study, the CXCL10/CXCR3 axis was observed

in the autoimmune process in T1D. Serum levels of CXCL10, a well-

known Th1 chemokine, are elevated in patients with T1D, suggesting

that CXCL10 plays a critical role in predicting T1D (90). Most

importantly, CXCL10 may be induced by IFN-g, promoting T cell

infiltration and accelerating beta cell destruction (91).

3.1.3 CXCR5
In individuals with DN, the increase in CD4+ CXCR5+ Tfh cells

may significantly increase creatinine, urea, urinary protein levels,

fasting blood glucose, postprandial blood glucose, and HbA1c and

decrease estimated GFR (55). In the future, the increased number of

CD4+ CXCR5+ PD-1+ Tfh cells in patients with DN may be a new

target for intervention in DKD (47).

3.1.4 CX3CL1-CX3CR1
At an early stage of nephropathy, CX3CR1+ T cells are elevated

and induce IL-17A production in renal impairment (92–94). In

addition, the polarization of TH17 or Treg cells may be associated

with an increase in CX3CR1 reporter gene expression in T cells (92).

Several studies have shown that CX3CR1 and CX3CL1 are

upregulated in the kidneys of patients with diabetes, accompanied

by an increase in urea, creatinine, A/C ratio, HbA1C, and IgG;

however, the concrete mechanism of CX3CL1-CX3CR1 recruiting T

cells requires further exploration in DKD (93).

3.1.5 CCL5 (RANTES)- CCR5
CCL5 is a b-chemokine, which is also known as RANTES

(regulated on activation, normal T cell expressed and secreted), and

can function as a chemotactic factor for T cells and induce cellular

activation of normal T cells (95) In inflammatory kidney diseases,

constitutive RANTES expression facilitates the accumulation of CD4+

T cells in the kidney, while the administration of RANTES-neutralizing

antibody is helpful in reducing the accumulation of T cells in the

kidneys to a large degree. Moreover, RANTES-neutralizing antibodies

can reduce the deposition of collagen in obstructed kidneys (96).

There is no doubt that CCR5 is a characteristic of Th1

lymphocytes and a critical chemokine receptor for trafficking of

TH1 cells to the kidney (88, 97); however, the status of CCR5 in

T2DM and microvascular complications remains controversial. The

problems are mainly focused on the significant discrepancy in the

allelic frequency of CCR5 between different ethnic groups. In Asian

populations and people with T2DM, the CCR5 59029G/A

polymorphism is significantly associated with an enhanced

susceptibility to DN (98). Nevertheless, the CCR5 59029 A allele

only has a convincing association with nephropathy in T2DM

Malaysian Chinese population but is weakly associated with

nephropathy in Malaysian Indian population (99). Additionally, in

native Estonian patients with T2D, there was a lack of association

between the CCR5-D32 mutation and DKDs (100). Hence, further
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research is needed to determine whether CCR5 is associated with

DKD worldwide.

3.1.6 CCL2 (MCP-1)- CCR2
Chemokine ligand 2 (CCL2) binds to its receptor, C-C chemokine

receptor 2 (CCR2), initiating the migration and infiltration of T cells

and regulating tissue inflammation (101). A longitudinal analysis

followed the fate of CCR2−/− T cells and observed that CCR2 regulates

the immune response by modulating the effector/regulatory T ratio.

Additionally, CCR2 deficiency in T cells decreases the levels of Th17

cells while promoting a program that induces the accumulation of

Foxp3+ Tregs in vivo (102).

Recent studies have suggested that CCL2 (MCP-1) is a key

chemokine involved in DN. In a blood sample analysis conducted

in Iran, CCL2 was gradually elevated in patients with T1D with

disease duration (103). Furthermore, the blockade of this pathway

plays a protective role in insulin resistance, modulation of adipose

tissue, restoration of renal function, and restraint of progressive

fibrosis in hyperglycemic kidneys (104, 105). A phase Ia study

targeting emapticap impeded the CCL2/CCR2 receptor axis and

exerted beneficial effects on ACR and HbAlc in albuminuric T2D

(106). Overall, the CCL2/CCR2 receptor axis is thought to be crucial

for the progression of DKD.

3.1.7 Interleukins
T cells not only produce several members of the IL family but are

also recruited by other immunocytes produced ILs, such as IL-18, IL-

19, among others.

IL-18 is not mainly produced by T cells but plays an underlying

pathophysiological role in the progression of T cell differentiation in

DKD. IL-18 induces plasticity in established Th1 and Th2 cells (107–

109). It also acts synergistically with IL-12 to increase the level of IFN-

g, a Th1 cytokine (110). In recent years, a cross-sectional study of

patients with T2D showed that IL-18 levels were significantly boosted

at a low eGFR and positively correlated with the development of DN

and urinary albumin excretion (UAE) rate (111, 112).

Similarly, IL-19 were markedly positively correlated with Hs-

CRP, cystatin C, and UAE in patients with DN (113). The reduction

in IL-19 levels contributes to the suppression of T-cell responses and

inhibition of the regulatory activity of CD4+ T cells, causing cell-

mediated immunosuppression (114). Therefore, IL-19 may be

another target for regulating T cell differentiation in DKD.
3.1.8 TGF-b
In renal inflammatory diseases, TGF-b has been demonstrated to

orchestrate the differentiation of T cells, including Th17 and Foxp3+

Treg cells (96) Additionally, rats with hyperglycemia-induced

microalbuminuria possess upregulated TGF-b and serum creatinine

levels (115). Recently, the role of TGF-b in promoting the

characterized T cell cytokines, IL-9 and IL-17, has become more

widely accepted. TGF-b controls the secretion of both these cytokines,

subsequently mediating fasting and postprandial glucose and HbAlc

levels in patients with DN (116). Taken together, restraining TGF-b
may be considered as an approach aimed at attenuating T1D in the

immediate future.
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3.2 Other factors that regulate T cells

Similar to chemokines, there are many other factors that facilitate

the assembly and infiltration of T cells, such as C3a and its receptor,

AGE, KIM-1, Chromogranin A, among others.

3.2.1 Complement C3a and its receptor
Emerging evidence suggests that the expression of C3a and C3aR

is involved in DN pathogenesis (117). Compared with normal

controls, C3aR was significantly increased in the renal specimens of

patients with diabetes and wild-type (WT) diabetic mice. In vitro

microarray profiling revealed the underlying mechanism that C3a

plays a role in suppressing T-cell adaptive immunity by interfering

with CD4+ and CD8+ T cell infiltration, and in an in vitro study, C3a

was able to enhance differentiation of the T-cell lineage in

inflammatory responses (118). Thus, C3aR may be a promising

target for T cell recruitment and activation.

3.2.2 Advanced glycosylation end products
In peripheral blood T lymphocytes, the expression of AGE

binding sites serves to target T cells to the AGE-rich renal tissues.

With the increase and accumulation of AGE products and AGE-

modified proteins, their binding to the AGE receptor on T cells is

remarkably increased, promoting the synthesis and release of

proinflammatory cytokines in diabetes (119).

3.2.3 KIM-1
KIM-1 is also known as T-cell lg mucin 1 (TIM-1) or hepatitis A

virus cellular receptor 1 and has been reported as a transmembrane

glycoprotein receptor on T cells (120). Recent studies have revealed

elevations in KIM-1, suggesting that glycemic variationsmay increase the

production of KIM-1 in CD8+ T cells in individuals with DKD, thereby

increasing the risk of DKD (121). The elevations in circulating KIM-1

also increases the urinary KIM-1 in DN, verifying that KIM-1 can be a

biomarker and a reliable predictor of diabetic kidney injury (122).

3.2.4 Chromogranin A
The b-cell secretory granule protein, also known as chromogranin

A, is a new autoantigen in T1D. A recent study identified

chromogranin A as a forceful inducer of the reacting CD4+ T cells

in the pathogenic process of T1D in NOD mice (123). However,

studies on the function of chromogranin A in diabetic vascular

complications and DKD are still insufficient.
4 T cells regulate inflammation in
diabetic kidney disease through
inflammatory cytokines

In DKD, the inflammatory cytokines secreted by T cells can cause

the epithelial-to-mesenchymal transition and the extracellular matrix

accumulation (124). In this section, we have elaborated on the

mechanisms by introducing, summarizing, and comparing the

inflammatory mediators in DKD, which may prove useful in

future researches.
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4.1 IL-1b

Based on the different encoding genes, IL-1, a classical chemokine,

is divided into IL-1a and IL-1b. Both can bind to the primary

receptor point of distinction (IL-1RI), while only IL-1b is secreted

by T cells and macrophages (125). In diabetic metabolic syndrome,

high glucose and oxidative stress can induce IL-1 activation, which

occurs earlier than the pathophysiological manifestations. IL-1b
production may be related to TNFR-Fas-caspase-8-dependent

pathway in CD4+ T cell-driven autoimmune pathology (126).

Moreover, IL-1b was also identified to cause endothelial cell

damage in resistance arteries and affect the NADPH oxidase

activation (127, 128). In addition, studies have shown that

repressing IL-1b and its receptor can reduce systemic inflammation

in patients with T2DM (128, 129).
4.2 IL-2

IL-2 can be produced by Th and kidney-derived MAIT cells. The

function of the IL-2/IL-2R in renal dysfunction has been discussed

in early studies, which has indicated that serum soluble IL-2R (sIL-

2R) levels increase with a decrease in creatinine clearance (130). In

the autoimmune diabetic NOD mice, two separate research groups

have revealed that deficiency in IL-2 production or the

responsiveness of Tregs to IL-2 may be associated with the

development of the immune response (131, 132). Given its crucial

role in the expansion and function of Tregs, IL-2 has been used to

regulate tissue damage and limit the immune response following

infection (133). Low-dose IL-2 selectively induces CD4+ CD25+

FOXP3+ Tregs in patients with CKD, and these Tregs limit the levels

of proinflammatory Th1 and Th17 cells (133). In other mouse

models of autoimmune diseases, such as C57BL/6 mice, CD4+

CD25+ Tregs are also induced by recombinant IL-2, thus

preventing the progression of diabetes (134). Hence, it would be

interesting to explore the effect of IL-2 on new therapeutic schedules

for patients with DKD.
4.3 IL-4

IL-4, partly produced by Th2 and NKT cells, can expand the

proliferation of activated T and B cells and regulate the differentiation

of Th1 and Th2 cells (135). The role of IL-4 in DM remains

controversial. Data investigation of Filipino patients suggested that

the risk of T1D was partly determined by specific polymorphisms.

The variability in promoters, coding sequences, and specific

combinations of genotypes indicated that IL-AR of IL-4 and IL-13

were significantly associated with susceptibility to T1DM (136). In

contrast, no significant change in IL-4 plasma levels between patients

with T2DN and those without nephropathy was observed in a study

(25). The IL-4 rs2243250 polymorphism is irrelevant to DN in

Slovenian patients with T2DM (137). As a result, the relationship

between IL-4 and DN may depend on race, ancestry, geographical

conditions, and national customs to some extent, which needs to be

proven by more prospective evidence.
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4.4 IL-6

IL-6 levels are significantly increased in the plasma of patients

with DN patients than those with diabetes but without nephropathy

(138). Furthermore, the IL-6-174 G allele was found to increase the

occurrence rate of DN, confirming the correlation between IL-6 and

DN (139). Similarly, a recent meta-analysis revealed the significance

of different IL-6 polymorphisms in DN progression. The results

showed that IL-6 rs1800795, rs1800796, and rs1800797 were

associated with DN, whereas IL-6 rs2069837 and rs2069840 may be

indifferent to the risk of renal complications in patients with

T2DM (139).

Classically, IL-6 participates in the pathogenesis of DKD by

various methods, including binding to the receptor IL-6R, sIL-6R

trans-signaling pathway, and IL-6 autocrine signaling (140). IL-6

influences renal cells by relying on diverse signaling pathways. For

instance, IL-6 facilitated mesangial expansion by infiltrating the

mesangium, interstitium, and tubules, which has been observed in

human renal biopsies (141). Second, the determination of samples

from patients indicated that the width of the glioblastoma (GBM) was

directly associated with fibrinogen and IL-6 levels in diabetic

glomerulopathy (142). Moreover, the effects of IL-6 on diabetic

renal injury may be due to increased insulin resistance and

promotion of the inflammasome (143).
4.5 IL-9

IL-9 is mainly produced by a flock of T cells, such as Tregs and

Th2 cells, and manipulates signaling pathways in renal immune

diseases. For example, IL-9 protects against progressive

glomerulosclerosis and tubulointerstitial fibrosis and regulates T

cell-induced immune suppression in adriamycin-induced

nephropathy and acute kidney injury (144, 145). Meanwhile, as

characterized by T cell cytokines, IL-9 levels were evidently reduced

in the diabetic group and positively correlated with the level of urea

and microalbuminuria, which may be considered as an approach of T

cells to address hyperglycemia damage (43).
4.6 IL-17

IL-17A can be produced by many types of CD4+ab and gd T cells,

particularly Th17 cells (146). The IL-17 family is essential for

the inflammatory response and includes six structurally related

isoforms: IL-17A, IL-17B, IL-17C, IL-17D, IL-17E, and IL-17F.

However, only IL-17A and IL-17F have unique functions in DN,

whereas IL-17C and IL-17E are indifferent to DN (44).

Clinically, the decline in IL-17 levels is synchronous with the

progression of DKD and is correlated with declining GFR (43, 147).

IL-17A has been proven to not only trigger inflammatory signaling

pathways associated with NF-kB downstream but also regulate the

viability of T cells (147). However, another study reported the

opposite result, indicating that IL-17A may increase the infiltration

of inflammatory cells in renal tissue and blood pressure in mice (148)

As a potential immunologic therapeutic target for DKD, studies

have suggested that intrarenal IL-17A1 CD41 T cells can be
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suppressed by mycophenolate mofetil, which is beneficial for

treating albuminuria and tubulointerstitial fibrosis (41). All-trans

retinoic acid was used to retain the capacity of Tregs to secrete IL-

17 during hyperglycemia, implying an important role of IL-17 in

DKD (149).
4.7 IL-22

In addition to studies on DKD, IL-22, mainly produced by Th22,

was found to be downregulated in patients with DKD. Further

observations indicated that the mechanism of IL-22 participating in

inflammatory processes of DKD is intricate and comprehensive. Chen

et al. demonstrated that IL-22 induced AMPK/AKT signaling and

PFBFK3 activity, alleviating the level of dysfunctional mitochondria

and the accumulation of reactive oxygen species (150). In addition,

IL-22 can ameliorate renal fibrosis and attenuate microalbuminuria in

DKDs (150, 151).
4.8 IL-35

Anti-inflammatory cytokine IL-35 is expelled by Tregs, regulatory

B cells, and tolerogenic antigen presenting cells. Tregs were reported

to infiltrate renal tissues to maintain homeostasis of the immune

system in patients with diabetes and use IL-35 to intervene in the

development of DKD (63).
4.9 INF-g

Several studies have reported that T cells can be stimulated by

high glucose concentrations and expedite IFN-g production (83, 130,

152). Under conditions of high glucose concentrations, IL-12 can

stimulate CD4 cells to produce IFN-g. AGE-modified proteins bind to

the receptor for AGE and T cells, inducing the synthesis and release of

IFN-g and accelerating inflammation of renal tissues (130).
4.10 TNF-a

As a synthetic product of T cells, TNF-amay be used as an indicator

for evaluating DKDs (153). Many clinical studies have found that TNF-

a is increased in the plasma and urine of patients with diabetes, leading

to a higher risk of mortality, more serious macroalbuminuria, sodium

retention, and renal hypertrophy (154–157). Specifically, TNF-a
participates in the pathophysiological reaction in DN via diverse

pathways, including altering intraglomerular blood flow, reducing

glomerular filtration, inducing cytotoxicity to renal cells, and

producing local reactive oxygen species (158–160).
5 Summary of other functions of T cells
in diabetic kidney disease

Pathologically, hyperglycemia stimulates T cells to produce

chemokines and cytokines that not only participate in the
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promotion of inflammation and activation of macrophages and

endothelial cells but also damage renal function through different

mechanisms. First, these proinflammatory molecules highlight the

role of T cells in the process of insulin resistance. Second, T cells

mediate the glomerular filtration barrier through podocytes. Third, T

cells contribute to extracellular matrix deposition and the

differentiation and proliferation of myofibroblasts. Ultimately, T

cells lead to proteinuria and the development of DKD (Figure 1).
5.1 Function of T cells in insulin resistance

Insulin resistance is often regarded as a strong marker of DKD and is

characterized by hyperinsulinemia and reduced insulin action, affecting

many classical insulin-regulated pathways in the kidney and vasculature

(161). For instance, the lack of insulin resistance in the kidney has been

verified as an inducer of sodium retention, resulting in salt-sensitive

hypertension. Podocyte insulin sensitivity is critical for glomerular

alterations and disorders in DKDs (162, 163). In recent years, T-cells

have been reported to improve glucose tolerance, enhance insulin

sensitivity, and reduce weight gain in mouse models (164). However, a

summary of T cells in renal insulin resistance is currently insufficient.

The relationship between insulin resistance and T cells has been

described, involving Tregs, CD8+ T cells, Th cells, and MAIT cells.

The depletion of Tregs leads to enhanced insulin resistance and

impaired insulin sensitivity accompanied by albuminuria and

glomerular hyperfiltration (165). In contrast, insulin sensitivity in

DKD can be significantly rescued by adoptive transfer of CD4+

FoxP3+ Tregs in a murine model, resulting in less diabetic kidney

damage (166). In addition, CD4+T cells in visceral adipose tissue have

also been demonstrated to regulate insulin resistance and control

glucose homeostasis in diet-induced obesity progression. When Th1

statically overwhelms CD4+ FoxP3- Tregs, weight gain and insulin

resistance are reversed (166).

Moreover, the depletion of CD8+ T cells has been reported to

alleviate macrophage infiltration of CD8+ T cells. CD8 + T cells

recruit macrophages to mediate insulin resistance and adipose tissue
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inflammation (65). Conversely, systemic insulin resistance is

aggravated by adoptive transfer of CD8+ cells (167). In addition,

Th1 and MAIT cells can regulate insulin resistance (77, 168).

As mentioned above, secretion and release of T cells produce

proinflammatory cytokines that not only induce insulin resistance

but also impair kidney function. IL-1, IL-6, IL-17, IL-33, GATA-3,

and other proinflammatory cytokines also play important roles in renal

insulin resistance. First, the blockade of IL-1 improves glycemia and b-
cell secretory function; repression of the IL-6 receptor relieves diabetic

renal injury and insulin resistance, and suppression of GATA-3 restores

insulin sensitivity (129, 143, 169). In clinical investigations, TGF-b is

positively correlated with insulin resistance markers, including fasting

and postprandial glucose levels and HbA1c, whereas IL-17 is negatively

associated with them (43). Additionally, studies have shown a serial

decline in IL-33 levels in DN, resulting in an increased severity of

insulin resistance and microalbuminuria (170). Overall, insulin

resistance in DKD is closely associated with proinflammatory

cytokines produced by T cells.
5.2 T cells and podocyte damage in DKD

Normal function and structural integrity of podocytes are

essential for the occurrence of albuminuria and progression of

diabetes (171). T cells and their production have been described as

novel factors influencing podocytes in patients with diabetes (172).

Therefore, podocytes may be regarded as an essential part of T cells

that mediate pathological effects in DKD.

Firstly, CD28/B7 and cytotoxic T lymphocyte-associated antigen-

4 (CTLA4) are critical for Th cells and podocytes. With regard to T-

cell proliferation, differentiation, and survival, costimulatory

molecules composed of CD28, B7-1 (CD80), and B7-2 (CD86) have

been reported to play crucial roles (173). As a novel biomarker for

podocyte damage, B7-1 is upregulated in podocytes under high

glucose conditions. After activation, the CD28/B7-1 pathway

mediates circulating T cells to aggravate podocyte damage (174,

175). Moreover, CTLA4 is a negative regulator of T cell activation,
FIGURE 1

The model of T cells and their products participating in DKD.
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and genetic polymorphisms in CD28/B7/CTLA4 are related to

susceptibility to T2DM (176). However, the fact that B7-1 was not

inducible in podocytes in patients with DKD is contradictory;

therefore, further investigation is required (177).

Researchers have also discovered that IL-17A is a characteristic

proinflammatory cytokine in the serum and urine of patients with

diabetes, and CD40 expression was observed to be increased in

podocytes with DN (38, 147). The synergistic action of IL-17 and

CD40L regulates the inflammatory response and mediates

remodeling of glomerular sclerosis in DN.

Furthermore, podocyte damage is affected by TNF. Albuminuria

is partly attributed to TNF-induced ABCA1 deficiency in podocytes.

Studies have indicated that TNF is sufficient to cause free cholesterol-

dependent podocyte injury through an NFATC1/ABCA1 dependent

mechanism (155).

Podocyte apoptosis is triggered by CD8+ TRM cells. In db/db mice,

the relative proportion of CD8+ TRM cells is remarkably increased

under pathological conditions, and renal CD8+ TRM cells have

cytotoxic effects on podocytes and enhance podocyte apoptosis (66).

5.3 T cells and renal fibrosis in DKD

Pathologically, fibrosis is one of the most fundamental

characteristic mechanisms in the onset and progression of DKD,

and renal T-cell infiltration is helpful for fibrosis. Therefore,

hyperglycemia stimulates T cells and T cell-derived products,

including IL-1, IL-6, IL-17, and IL-22, which are of central

importance in progressive fibrosis in DKD (66).

Primarily, IL-1b induces proximal tubule damage and fibrosis in

renal tubule interstitials (178). One study showed that IL-1b
participates in the dysregulation of glycolysis and matrix activation,

leading to tubulointerstitial fibrosis (147). In contrast, another report

on CKD described the relationship between IL-1b and fibrosis

initiation and progression (178).

Second, IL-6 trans-signaling may be a crucial factor in the

development of renal fibrosis, thus influencing the width of the

GBM in the pathogenesis of diabetic glomerulopathy (142, 179).

Simultaneously, targeting IL-6 trans-signaling, Fc-gp130, could be a

novel therapeutic strategy for renal fibrosis.

Moreover, IL-17 suppresses fibrosis via the STAT-3 and WAP

domain protein pathways in models of T1D and T2D, and

tubulointerstitial fibrosis can be rescued by suppressing intrarenal

IL-17A1 CD41 T cells (41, 44). Furthermore, through the NLRP3/

caspase-1/IL-1b pathway, IL-22 can reverse the overexpression of

fibronectin, collagen IV, and extracellular matrix in mouse renal

glomerular mesangial cells, thereby ameliorating renal fibrosis and

proteinuria excretion in DN (150, 180).

Additionally, sphingosine 1-phosphate receptor 1 activation in T

cells leads to fibrosis in normoglycemic conditions but exacerbates

fibrosis in a model of STZ-induced diabetic cardiomyopathy (181).
5.4 T cells and albuminuria in DKD

5.4.1 The quantity of T cells and albuminuria
To elaborate the internal relationship between T cells and albuminuria

in DN, preliminary exploration was performed. Under STZ stimulation,
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only Rag1(+/+) mice, which have mature T lymphocytes, had glomerular

immunoglobulin deposition. However, Rag1(-/-) mice, which lack kidney

infiltration with T cells, were protected from albuminuria (172).

Additionally, the degree of albuminuria is regulated by the number of T

cells infiltrating the kidneys of DKD animals, and abatacept ameliorates

DKD by blocking systemic T-cell activation (182).

However, there are also a series of contradictory reports. Absolute

and percent T-lymphocytes were found to be relatively lower in

patients with nephrotic proteinuria and long-standing insulin-

dependent diabetes (183). In contrast, Another study showed that T

cell-positive patients had a shorter duration of diabetes and lower

albumin excretion rates than T cell-negative patients (84). Hence, the

exploration and summary of the relationship between T cells and

proteinuria in DN are significant.

5.4.2 Types of T cells associated with proteinuria
In general, circulating CD8+ T cells and Tregs are considered the

main types of T cells that are associated with albuminuria in DN. A

cross-sectional study showed that the percentage of circulating CD8+

T cells was correlated with albuminuria in T2DM, indicating that

systemic inhibition of T lymphocytes provides a new therapeutic

direction for albuminuria in DKD (184). In addition, FoxP3+ Tregs

exert a protective effect in the kidneys of diabetic mice, although it

reduces glomerular hyperfiltration and albuminuria. Moreover,

depletion of Tregs with anti-CD25 antibodies can accelerate the

progression of albuminuria (165).

5.4.3 Product of T cells and albuminuria
T cells regulate albuminuria through cytokines including IL-6, IL-

9, TNF-a, IL-22, IL-33, and IL-233.

IL-6, associated with higher albuminuria, has been reported in db/

db mice and patients with diabetes (143, 185). The IL-6 receptor

antibody (tocilizumab) can reduce proteinuria and glomerular

mesangial matrix accumulation. Furthermore, the levels of IL-9 and

TNF-a are positively correlated with the levels of urea and

microalbuminuria (43, 185, 186). Albuminuria may be caused by

TNF-a via alterations in the glomerular capillary wall and an increase

in albumin permeability.

In addition, studies on IL-22 support the hypothesis that cytokines

drive proteinuria. IL-22 can alleviate mesangial matrix expansion and

proteinuria in mice (151, 172). IL-33 also represses microalbuminuria

in DKDs (170, 187). Intriguingly, the increase in IL-33 levels in DN is

only associated with diabetes but not with kidney injury (188).

Therefore, the exact role of IL-33 in DKD remains controversial.

Notably, a novel cytokine (named “IL-233”) possesses the

activities of both IL-2 and IL-33 and protects against type-2 DN by

promoting T-regulatory cells. Treatment with IL233 reduces

hyperglycemia, plasma glycated proteins, and albuminuria,

protecting mice from T2DN (189).
6 Promising novel therapies targeting T
cells in DKD

Until now, the standard management strategy for DKD has

prioritized strict glucose control and blood pressure with RAAS
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blockade. However, the therapeutic means are limited to stopping or

reversing the progression of DN. Therefore, new drugs targeting the

pathological mechanisms of DKD, such as T cells and their products,

have drawn increasing attention (Table 1).
6.1 Traditional drug therapy with T cells

First, there are some drugs that target the Th cells. Similar to

triptolide, a well-known drug for DN, influences Th lymphocyte cells

in rat models of DN by regulating the Th1/Th2 cell balance. DN is

associated with the upregulation of Th1 cells and downregulation of

Th2 cells; however, triptolide can alter this ratio in high-fat diets and

STZ-induced rats (152). Concurrently, animal experiments have

shown that miR-29b is a novel therapeutic agent for treating T2D

that effectively rescues renal inflammation and fibrosis by inhibiting

T-bet/Th1-mediated immune response (190).

Second, the expansion and activation of CD4+ and CD8+ T cells

can be enhanced by Enalapril and g-aminobutyric acid receptors in

DKDs (191, 192).

In addition, combining anti-TNF-a therapy and the T-cell-

specific antibody anti-TCR can reverse the diabetic metabolic state

in a model of human T1D (193).
6.2 Tregs-targeted drugs

Researchers have discovered that administering drugs targeting

Tregs can be beneficial in diabetic diseases. For instance, Paroxetine,

a G protein-coupled receptor kinase 2 inhibitor, has been approved

to rescue Treg differentiation and restore the population of

circulating Tregs in vitro and in vivo (194). In obese WT and ob/

ob (leptin-deficient) mice, a CD3-specific antibody or its F(ab’)2
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fragment can promote the predominance of Foxp3+ cells over Th1

cells (166).

Ethnopharmacological relevance Diabetea teame was verified to

promote the Treg/IL-17 ratio in clinical settings, suggesting the

protective effect of DT against diabetes-related complications in the

long term (195). In addition, Surfactin, a bacillus-produced natural

immunomodulator, could increase CD4+ CD25+ FOXP3+ Tregs while

simultaneously suppressing T cell proliferation and downregulating

the activated CD8+ T cells (196).
6.3 Recombinant human IL-2 and Tregs

IL-2 plays an essential role in the expansion of Tregs and can

reduce tissue damage by limiting immune response. A single ultra-

low dose of Aldesleukin (proleukin; recombinant human IL-2) has

been demonstrated to regulate early altered trafficking and

desensitization of Tregs in T1D (133). Simultaneously, low

expression of mlL-2 also prevents the progression of diabetes by

regulating Tregs in islets (135). Furthermore, combining low doses of

IL-2 with exogenously administered Tregs leads to an increase in the

number of Tregs, NK cells, mucosal associated invariant T cells, and

clonal CD8+ T cells (58).
6.4 Adoptive Treg immunotherapy

Recently, expanded Tregs have been used to treat deficits in the

number and suppressive activity of Tregs in immune-related diseases.

Two separate research groups have explored adoptive Treg

immunotherapy and demonstrated its safety, tolerance, and efficacy

in patients with DM (197, 198). Bluestone et al. reported a phase 1
TABLE 1 The therapeutic methods targeting to T cells in DKD.

The therapeutic methods Target T Potential mechanism Reference

Triptolide (TP) Th cells Regulating the Th1/Th2 cell balance in DN 152

miR-29b Th1 Rescues renal inflammation and fibrosis 190

Enalapril CD4+ and
CD8+ T

Promoting expansion and activation of T cells 191

TNF-a and TCR therapy T cells Reverse the diabetic metabolic state in T1DM 193

Paroxetine Tregs Rescued the differentiation and the population of Tregs 194

CD3-specific antibody Foxp3+ Promote the predominance of Foxp3+ cells over Th1 cells 166

Diabetea teame (DT) Tregs Promote the Treg/IL-17 ratio 195

Surfactin Tregs
CD8+ T

Increasing CD4+ CD25+ FOXP3+ Tregs
Suppress CD8+ T cells

196

Recombinant human IL-2 and Tregs Tregs Regulating the trafficking and desensitization of Tregs in Type 1 Diabetes
Increasing NK, MAIT, and CD8+ T cell

58, 133, 135

Adoptive Treg Immunotherapy Tregs Improved insulin sensitivity
Down-regulating the ACR in DN

165, 197, 198

MSCs CD8+T Impairing the activation and proliferation of CD8+T
Preventing the exacerbation of kidney injury

64, 199
f
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trial of adoptively transferred self-derived Tregs to repair or replace

Tregs in patients with T1D. Simultaneously, adoptive transfer of

CD4+ FoxP3+ Tregs significantly improved insulin sensitivity and

decreased the albumin-to-creatinine ratio in DN (165).
6.5 Mesenchymal stem cells

In the last decade, MSCs have been widely used to treat DN.

Intriguingly, MSC-CM pretreatment reduced CD8+ T cell priming

and proliferation capacities in the kidneys of DN rats (64).

Furthermore, MSC transplantation not only impairs the activation

and proliferation of CD8+ T cells but also prevents the exacerbation of

kidney injury, providing a new insight into the treatment of DN (199).
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7 Conclusion

With the increase in the number of patients suffering from DKD,

exploration of the function of T cells in DKD is increasingly important.

After circulating T cells are recruited into the renal tissue or T cells are

amplificated, differentiated, and activated in the kidney, T cells play

protective or pathogenic roles through multiple pathways, including

influencing insulin resistance, mediating podocyte damage, participating

in fibrosis, and regulating proteinuria (Table 2 and Figure 1).

As Table 1 showed, based on the significant functions of T cells

and cytokines, the application of T cell-associated therapies in DKD

has been attempted and preliminary achievements have been made.

Promising studies on T cell biology will unquestionably contribute to
TABLE 2 The fundamental function of T cells in DM and DN.

Regulatory
factors

T cells
population

Cytokine
secretions

Key finds in DM and DN Reference

STAT4↑
STAT1↑
T-bet↑
TIM3↓
IL-10↓
IL-4↓

Th1 IL-2↑
IFN-g↑
TNF-a↑
T-bet↑

Activating macrophages
Associated with proteinuria and creatinine clearance

17–25

GATA-3↑ Th2 IL-4↑
IL-5↑
IL-9↑
IL-10↑
IL-13↑

Suppress Th1 cell activation 26–33

JAK/STAT↑
STAT3↑
IL-2↓
STAT5↓
TGF-b↑
IL-1b↑
IL-6↑
IL-23↑

Th17 IL-17↑ Aggravating diabetic renal
Regulating Th17/Th1 and Th17/ Treg

Increase inflammatory
Correlated with GFR

26,
34–46

Th3 TGF-b↑ 47

Th9 IL-9 ↑ Associated with podocyte injury and ACR in T1DM 48

Th22 IL-22↑ 49

IL-6 and IL-21↑ Tfh IL21↑ Manipulate the level of estimated creatinine, urea and urinary protein level,
Fasting and postprandial blood glucose,
Hemoglobin A1c in diabetic nephropathy

50–55

IL-2↑ Tregs IL-2↑
IL-17↑
IL-10↓
IL-35↓
TGF-b↓

Maintaining the balance in the anti-inflammation and anti-inflammation in diabetes
condition

Limit the pro-inflammatory Th1 and Th17
Lessening glomerular hyperfiltration and albuminuria

56–63

CD8+ T Recruiting macrophages
Ameliorating systemic insulin resistance

Promoting podocyte injury
Accelerating glomerulosclerosis

64–66

NKT Kidney damage through FasL pathway
Taking part in the exacerbation of DM

67–72

gd T Upregulated, but the mechanism is unknown 73

MAIT IL-2
GM-CSF
IL-17

Influence the insulin resistance
Promoting the level of HbA1c

74–78
f
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a more profound understanding of DKDs, highlighting the need to

identify new therapeutic approaches.
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Platelet, a key regulator of innate 
and adaptive immunity
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Platelets, anucleate blood components, represent the major cell type involved 
in the regulation of hemostasis and thrombosis. In addition to performing 
haemostatic roles, platelets can influence both innate and adaptive immune 
responses. In this review, we summarize the development of platelets and their 
functions in hemostasis. We  also discuss the interactions between platelet 
products and innate or adaptive immune cells, including neutrophils, monocytes, 
macrophages, T cells, B cells and dendritic cells. Activated platelets and released 
molecules regulate the differentiation and function of these cells via platelet-
derived receptors or secreting molecules. Platelets have dual effects on nearly all 
immune cells. Understanding the exact mechanisms underlying these effects will 
enable further application of platelet transfusion.

KEYWORDS

platelet, monocyte, macrophage, T cell, B cell, dendritic cell

Introduction to platelets

The production of platelets from megakaryocytes (MKs) is a systematic process that is 
thought to occur in the bone marrow (1). Thrombopoiesis occurs from common myeloid 
progenitor (CMP) cells in the bone marrow, which differentiate into promegakaryocytes and 
then into MKs. After migrating into the vascular niche, mature MKs extend many proplatelets 
(PPTs) through the sinusoid vessel barrier (2–4). Then, PPTs interconvert into pre-platelets, and 
platelets are created after the fission of pre-platelets (5). Each MK can produce 1,000–3,000 
platelets after multiple divisions (6, 7). A recent study proposed the lung as the main site of 
platelet release (8). The average lifespan of platelets is only 8–10 days. In the circulation, each 
individual has 150–400 × 109 platelets per liter of peripheral blood (9).

The primary roles of platelets are hemostasis and thrombosis. Hemostasis is the process that 
stops blood loss from a damaged vessel (10). Hemostasis involves multiple interlinked steps: 
primary hemostasis, secondary hemostasis, and tertiary hemostasis (11). Platelets are mainly 
involved in primary hemostasis, which is also called platelet clotting. In primary hemostasis, 
platelets stick to the damaged tissue and become activated, which recruits more platelets to form 
a platelet “plug” to stop blood loss from the damaged area. Primary hemostasis may also involve 
constriction of the blood vessel, which can occur due to substances released by platelets (12). In 
addition to hemostasis, platelet activation also contributes to thrombosis, which is a blood clot 
within a blood vessel that limits the flow of blood. Platelets play a significant role in the 
development of arterial thrombosis rather than venous thrombosis (13). Atherosclerosis allows 
the activation of platelets, causing adhesion and aggregation, which leads to the formation of a 
clot. Thus, the management of arterial thrombosis predominantly involves the use of antiplatelet 
agents for monotherapy or dual-antiplatelet therapy (14).
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For long, Platelets are small, anucleate cell debris (15). Actually, 
platelets possess almost every feature of cells, except the nucleus. The 
role of platelets in hemostasis has long been known, but they have also 
been shown to be involved in defense against pathogens (16, 17), as 
well as in the acceleration of autoimmune diseases (18). Therefore, 
platelets are seen as a cellular component of the innate immune system 
(19). In the presence of certain infectious agents or inflammatory 
stimuli, platelets mediate hemostasis and thrombosis and activate 
innate and adaptive immunity via specific receptors (CD42, CD41 
CD40, CD154, etc.) and/or granule release (CXCL4, CCL5, TGFβ, 
serotonin, β-defensin, etc.), RNA transfer, and mitochondrial 
secretion (20). Moreover, it was found that platelets can also release 
extracellular vesicles (EVs), including ectosomes (also called 
microvesicles or microparticles; 100–1,000 nm) and exosomes 
(40–100 nm) to regulate hemostasis, thrombosis and inflammation 
(21). In this review, we will summarize platelet-mediated regulation 
of innate and adaptive immune cells.

Influence of platelets on immune cells

Due to the haemostatic function of platelets, platelet transfusion 
is used to treat thrombocytopenia platelet function defecting disease 
in the clinic. Initially, platelet transfusions were thought to have no 
side effects, but recent findings have indicated that although the effects 
are not fatal, platelet transfusion can lead to febrile nonhemolytic 
transfusion reactions (FNHTRs), anaphylactic reactions, haemolytic 
transfusion reactions and other immune-mediated reactions (22). 
Guo et al. found that antibody-mediated immune thrombocytopenia 
(ITP) was resistant to allogeneic platelet transfusions, while the T-cell-
mediated form of the disease was susceptible, suggesting that 
transfusion therapy might be beneficial for antibody-negative ITP 
(23). Moreover, it was reported that fresh platelets could induce 
transfusion-related immunomodulation (TRIM) independent of 
white cells (WBCs) due to their MHC antigen expression, whereas 
aging results in the loss of MHC and the ability to mediate TRIM (24). 
Ultraviolet B (UVB) radiation plus riboflavin treatment of 
WBC-enriched platelet-rich plasma (PRP) effectively blocks 
alloimmunization and modulates immune responses to subsequent 
exposures (25). These reports demonstrated that various reactions 
mediated by different WBCs led to limitations in the application of 
platelet transfusion. We detail the interactions between platelets and 
different WBCs below.

Neutrophils

As an indispensable member of the innate immune system, 
neutrophils are the first leukocytes to infiltrate the site of injury (26). 
Platelet derived P-selectin induces neutrophils to move to sites of 
thrombus formation by activating P-selectin glycoprotein ligand-1 
(PSGL1), a receptor of P-selectin on neutrophils (27). The platelet-
derived serotonin metabolite 5-hydroxyindoleacetic acid (5-HIAA) 
also promotes neutrophil recruitment to inflamed tissue via the 
G-protein-coupled receptor 35 (GPR35) (28). In a murine model of 
Klebsiella pneumoniae-induced pulmonary inflammation, Toll-like 
receptor 4 (TLR4) deficiency in platelets decreased the number of 
neutrophils in the lung (29). Inhibition of platelet p110β (the catalytic 

subunit of phosphatidylinositol 3-kinase) prevented platelet–
neutrophil interactions, diminishing neutrophil infiltration (30). It 
was also reported that activated platelet-derived nanovesicles could 
recruit neutrophils to exert anti-tumor effects (31). C-type lectin-like 
receptor (CLEC-2) was recently discovered as a platelet receptor. 
Blocking platelet CLEC-2 signaling enhanced liver recovery from 
acute toxic liver injuries by increasing tumor necrosis factor-α 
(TNF-α) production, which then improved reparative hepatic 
neutrophil recruitment (32). All these findings indicated that platelets 
regulate the movement of neutrophils.

Platelets also regulate neutrophil activation. Mac1 and LFA1 
strengthen the attachment between platelets and neutrophils via 
junctional adhesion molecule 3 (JAM3) (33), Intercellular adhesion 
molecule 2 (ICAM-2) (34), CD42 (35) and Choline transporter-like 
protein 2 (CTL2) (36), which bind to platelet ɑIIbβ3 integrin, 
enhancing neutrophil activation. Clinical observational data showed 
that the levels of C-X-C chemokine receptor type 4 (CXCL4; also 
called platelet factor 4, PF4), CXCL7 (neutrophil activating protein-2, 
NAP2) and myeloperoxidase (MPO) were related to platelet activation 
and platelet–neutrophil interactions (37). Both CXCL4 and CXCL7 
secreted by platelets can initiate neutrophil activation (38, 39). 
Similarly, inhibition of the chemokine receptors CXCR4 and CXCR7 
on platelets and polymorphonuclear neutrophils (PMNs) was shown 
to reduce platelet–neutrophil complex (PNC) formation (40). 
Leukotriene B4 (LTB4) and leukotriene A4 (LTA4) derived from 
platelet-derived arachidonic acid (AA) can activate neutrophils (41). 
In addition, platelet-derived mitochondria induce the release of 
human neutrophil microvesicles that recruit additional immune cells 
to remove pathogens (42). Platelet-derived serotonin was shown to 
promote neutrophil degranulation, which increased the expression of 
the membrane-bound leukocyte adhesion molecule CD11b, enhanced 
inflammation in the infarct area and reduced myocardial salvage by 
inducing the release of myeloperoxidase and hydrogen peroxide 
(H2O2) (43).

An important function of neutrophils is to release neutrophil 
extracellular traps (NETs), which remove pathogens from the 
circulation. Platelet-derived exosomal high-mobility group protein 
1 (HMGB1) and/or miR-15b-5p and miR-378a-3p promote 
excessive NET formation through the Akt/mTOR autophagy 
pathway during sepsis and subsequent organ injury (44). It was 
reported that both HMGB1 and the C3a component released by 
platelets could activate neutrophils to induce the formation of NETs 
(45–47). These stimuli significantly enhanced PSGL-1-induced 
neutrophil activation. Additionally, platelets interact with C3b 
attached to NETs (48). The P-selectin-PSGL-1 interaction was 
shown to induce the release of NETs, and clearing activated platelets 
via platelet-derived microparticle (100–1,000 nm) mediated 
neutrophil activation (49). Moreover, platelets were able to induce 
NOX-independent NET formation in a dengue virus non-structural 
protein 1 (NS1)-dependent manner (50). The inhibition of nuclear 
factor of activated T cells (NFAT) in platelets promotes interactions 
with neutrophils and NET induction, which might be harnessed in 
the clinic (51). In addition to influencing the infiltration of 
neutrophils, the TLR4-ERK5 axis in platelets facilitates NET 
formation to promote the capture of circulating tumor cells (52). 
Furthermore, a neutralizing anti-CXCL4 antibody significantly 
inhibited NET formation induced by NCA-associated vasculitis 
(AAV)-derived platelets (38).
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Interestingly, NETs also induce a hypercoagulable state in platelets 
by upregulating phosphatidylserine and P-selectin on cells in the 
context of gastric cancer (GC) (53). Neutrophils can activate platelets 
by releasing antimicrobial cathelicidins via degranulation or as part of 
NETs. For example, cathelicidin LL-37 and its mouse homolog 
cathelicidin-related antimicrobial peptide (CRAMP) can bind 
glycoprotein VI (GPVI) on the platelet surface, further stimulating 
platelet and neutrophil activation (54). Citrullinated H3 histones, key 
markers of ongoing NETosis, have also been shown to activate platelets 
(48). During ischaemic stroke, neutrophils can rapidly bind platelets 
through P-selectin and glycoprotein Ibα (55), and neutrophils have 
been shown to undergo “plucking” on megakaryocytes to accelerate 
platelet production via CXCR4-CXCL12 signaling (56). Additionally, 
neutrophils activate platelets after pneumolysin exposure by releasing 
extracellular vesicles (EVs; 100–1,000 nm) (57). In acute myocardial 
infarction, the observed increase in S100A8/A9 levels in platelets was 
not due to an increase in synthesis but was due to uptake of proteins 
secreted by neutrophils (58). This result indicated that neutrophils 
were able to alter the platelet proteome.

Taken together, these findings support mutual regulation between 
platelets and neutrophils. Platelets can regulate infiltration, activation 
and NET formation in neutrophils (Table 1). In the clinic, depending 
on the specific conditions of a disease, the mechanism of mutual 
regulation between these cell types could be controlled or blocked.

Monocytes

Platelets mediate multiple types of immune responses, and many 
studies have shown that platelets can interact with innate immune 
cells during infection and inflammation. One study showed that 
platelet activation is the major initiator of platelet–monocyte 
aggregation (59). Platelets interact with monocytes through cluster of 
differentiation (CD)62p (known as P-selectin), which recognizes 

PSGL-1 expressed on the surface of monocytes to initiate aggregation 
(60). Platelet-derived hyaluronidase-2 (HYAL2) also causes aggregate 
formation (61). Platelets from severe COVID-19 patients were highly 
activated and induced the expression of tissue factor (TF) in 
monocytes from healthy volunteers (62). The increased expression of 
TF also drives platelet–monocyte aggregation (63), inflammatory 
activation and inflammatory cytokine secretion (64). However, 
activated platelet-derived EVs (40–100 nm) contribute to the 
suppression of TF expression by transferring hsa-miR-223-3p to 
monocytes, which inhibits aggregation (65). Therefore, the exact 
influence of platelets on platelet–monocyte aggregation needs to 
be further explored.

Platelets can induce the oxidative burst and inflammation in 
monocytes and neutrophils via direct interactions (66–70) and 
promote leukocyte adhesion and extravasation (71–73). In addition, 
platelet aggregability leads to monocyte extravasation into the 
infarcted myocardium and influences inflammation in patients with 
acute myocardial infarction (74). The SARS-CoV-2 spike protein can 
interact with the CD42b receptor to activate platelets and promote 
proinflammatory cytokine production by monocytes through the 
interaction of P-selectin/PGSL-1 and CD40L/CD40 (75). P-selectin 
was shown to contribute to the secretion of TNFα, IL-1β, IL-6, 
CXCL8, IL12 and CCL4 by autologous monocytes (76, 77). In 
addition, platelets were reported to potentiate the release of IL-8, 
mainly from monocytes (78). Thus, some researchers have concluded 
that platelet–monocyte aggregates can be used as a robust marker of 
platelet activation and monocyte inflammatory responses (79). 
Interestingly, platelets do not always activate monocytes to induce the 
production of proinflammatory cytokines, and platelet-monocyte 
interactions can actually decrease inflammation by increasing IL-10 
levels and reducing TNF-α levels in monocytes through CD40L/
CD40 (80).

Platelets also regulate the differentiation of monocytes. Both 
Sigrun Badrnya et al. and J H Phillips et al. reported that activated 
platelets increased CD16 expression, which induced monocytes to 
switch to an intermediate phenotype. CD16+ monocytes produced 
transcripts for the gamma subunit of the high-affinity IgE FcR and 
could kill anti-CD16 hybridoma cell targets in the absence of CD3 
zeta (81, 82). Similarly, it was reported that platelet-derived CXCL4 
induced monocyte differentiation into macrophages (83). However, 
another study reported that inhibition of PSGL-1 or P-selectin did 
not attenuate platelet-mediated monocyte activation (84). This meant 
that there were other pathways activating monocytes. Zachary et al. 
found that platelet-derived β-2 microglobulin (β2M) induced 
monocyte proinflammatory differentiation through a noncanonical 
TGFβ receptor pathway (85) and regulated age-associated monocyte 
polarization. β2M was shown to maintain the balance between 
inflammatory and reparative signals. In addition, loss of β2M 
increases profibrotic cardiac responses (86). Thus, platelets have both 
pro- and anti-inflammatory effects on monocytes (Table 2).

Macrophages

The phenotype and function of macrophages are also affected by 
platelets. Haem-activated platelets promote the formation of macrophage 
extracellular traps (METs) via reactive oxygen species generation or 
histone citrullination, enhancing rhabdomyolysis-induced acute 

TABLE 1 Platelet-derived molecules affect the function of neutrophils.

Regulating 
aspects on 
neutrophils

Platelet 
components

Regulatory 
effect

References

Infiltration

P-selectin, 

5-HIAA, p110β
Upregulated (25, 26, 28)

TLR4, CLEC-2 Downregulated (27, 30)

Activation

ɑIIbβ3, CXCL4, 

CXCL7, MPO, 

LTB4, LTA4, 

mitochondria, 

serotonin

Upregulated (35–37, 39–41)

NET formation

HMGB1, miR-

15b-5p, miR-378a-

3p, C3a, C3b, 

P-selectin, TLR4, 

CXCL4, NS1

Upregulated (42–48)

Nuclear factor of 

activated T cells 

(NFAT)

Downregulated (49)
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kidney injury (87). Platelet-conditioned medium was also shown 
to induce an anti-inflammatory, pro-resolving phenotype in 
macrophages (88). Platelet-Treg cell aggregates in the lung induce 
macrophage polarization toward an anti-inflammatory phenotype 
and promote effective resolution of pulmonary inflammation (89). 
Ryoka et al. reported that platelet-rich plasma (PRP) suppressed 
M1 macrophage polarization and promoted M2 macrophage 
polarization (90). Platelet-rich fibrin could shift macrophage 
polarization from an M1 phenotype toward an M2 phenotype to 
induce an anti-inflammatory response (91) and reduce IL-1β 
release and caspase-1 production in macrophages that underwent 
pyroptosis by increasing NLR family pyrin domain containing 3 
(NLRP3) ubiquitination (92, 93). Interestingly, both leukocyte-
poor (LP) and leukocyte-rich (LR) PRP promoted the recruitment 
of M1 macrophages during the process of tendon healing, while 
the number of M2 macrophages was high only in the LP-PRP 
group (94). However, the presence of platelets skewed monocytes 
toward an M1 phenotype via the GPIb-CD11b axis in the presence 
of lipopolysaccharide (LPS) (95). Thus, platelets can affect 
macrophage polarization via different pathways.

Natural killer cells

Natural killer cells are also regulated by platelets. PLT-ectosomes 
(100–1,000 nm) can inhibit NK cell effector function in a TGF-β1-
dependent manner, reducing the expression of surface receptors, like 
natural-killer group  2, member D (NKG2D), natural-killer p30 
(NKp30) and CD226, and IFN-γ production (96). This result 
suggested that platelets can promote tumor dissemination by coating 
tumor cells (97, 98). Co-incubation of NK cells with platelets was 
shown to reduce NK cell cytotoxicity by reducing NK cell 
degranulation, IFN-γ production, NKG2D and natural-killer p46 
(NKp46) expression and increased Killer cell immunoglobulin-like 

receptor 2DL1 (KIR2DL1) expression in NK cells (99). Furthermore, 
NK cell cytolytic activity was shown to be attenuated via tumor cell-
induced platelet secretion (100). However, platelet-derived growth 
factor D (PDGF-DD)-activated IL-2-induced NK cells exert anti-
tumor effects by binding with the NKp44 receptor (101), and PDGF-
D-PDGFRβ signaling enhances IL-15-mediated human NK cell 
survival (102). In addition, platelet-derived CXCL4 induces human 
natural killer cells to synthesize and release interleukin-8 (103). Taken 
together, these findings show that platelets also have dual regulatory 
effects on NK cells.

T cells

In addition to innate immune cells, platelets also influence T-cell 
and B-cell responses. Norbert et al. found that platelets enhanced the 
differentiation and cytokine production of CD4+ T cells via both direct 
cell–cell contact and multiple chemokines (platelet-derived CXCL4 
and CCL5) (104). Platelets can produce many molecules, such as FasL, 
TNF-related apoptosis-inducing ligand (TRAIL), IL-7 and CD40L, 
which are all important for adaptive immune responses (105–107). In 
particular, platelet CD40L regulates CD8+ T-cell response. Elzey et al. 
reported that depletion of platelets decreased the generation of 
cytotoxic T lymphocytes (CTLs) (108). In platelet-depleted mice, 
reconstitution of platelets increased the number of CTLs in the spleen 
and liver after lymphocytic choriomeningitis virus (LCMV) infection 
(109). Thus, platelets are important for the expansion of antigen-
specific CTLs. Chapman et al. also demonstrated that platelets can 
process and present antigens via MHC class I and directly activate 
naive T cells in a platelet MHC class I-dependent manner (110). 
However, platelets were also shown to delay the infiltration of CD8+ T 
cells into the liver, allowing increased viral replication via the release 
of serotonin, which might ultimately cause chronic hepatitis (111). In 
addition, Aslam et al. found that platelets suppressed CD8+ T-cell 
function in a transfusion-related model and that transfusion of 
MHC-I bearing platelets prolonged allograft survival (24). 
Interestingly, the expression of MHC-I in platelets was shown to 
be significantly increased in humans and mice, which reduced the 
numbers and impaired the function of antigen-specific CD8+ T cells 
during sepsis (112). Platelets promote protection against C. albicans 
airway mycosis by activating Th2 and Th17 responses via an antifungal 
pathway that includes candidalysin, GP1bα, and dickkopf WNT 
signaling pathway inhibitor 1 (Dkk-1) (113). However, activated 
platelets accumulate in the lung lesions of tuberculosis patients and 
inhibit T-cell responses and mycobacterium tuberculosis replication in 
macrophages (114). CD84-lacking platelets were shown to reduce 
cerebral CD4+ T-cell infiltration and thrombotic activity, slowing 
neurological damage in an experimental model of stroke. In a clinical 
study, a high level of platelet CD84 expression resulted in poor 
outcomes in patients with stroke (115). Platelets block the 
immunosuppressive function of Tregs directly via the P-selectin/
PSGL-1 axis, which induces Syk phosphorylation and an increase in 
intracellular calcium in systemic lupus erythematosus (SLE) patients 
(116). However, Jan et al. reported that interactions between platelets 
and Tregs via the P-selectin/PSGL-1 axis encouraged the release of the 
anti-inflammatory mediators IL-10 and TGFβ. Platelet-Treg cell 
aggregates induce macrophage polarization toward an anti-
inflammatory phenotype in pulmonary inflammation (89). Rachidi 

TABLE 2 Platelet-derived molecules affect the function and 
differentiation of monocytes.

Platelets 
products

Receptors 
on 
monocytes

Effects on 
monocyte 
function

References

CD40L CD40 IL-10 ↑, TNF-α ↓ (39)

P-selectin PSGL-1

TNFα, IL-1β, 

IL-6,IL-8 CXCL8, 

IL-12, CCL4↑

(19, 35, 36)

Hyaluronidase-2 

(HYAL2)
/

Platelet–

monocyte 

aggregation ↑

(20)

Extracellular 

vesicles (EVs)
Tissue factor

Platelet–

monocyte 

aggregation ↑

(24)

Platelet factor 4 

(PF4)
/

Differentiating 

into macrophages 

↑

(42)

β-2 micro 

globulin (β2M)

Noncanonical 

TGFβ receptor 

pathway

Proinflammatory 

differentiation ↑
(44)
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et  al. found that platelets constrained T-cell immunity through a 
glycoprotein repetition predominant (GARP)-TGFβ axis, and platelet-
specific deletion of GARP potentiated protective immunity against 
both melanoma and colon cancer (117). In addition, Hinterleitner 
et al. reported that platelet-derived GARP induced peripheral Treg 
cells by upregulating Foxp3 expression (118).

Platelet-derived CXCL4 was also shown to enhance Th1 cell 
responses and CD4+ T effector memory cell responses via Akt-PGC1α-
TFAM signaling-mediated mitochondrial biogenesis (119). Platelets 
exert dose-dependent regulatory effects on the effector responses of 
naive T cells via CXCL4-TGFβ. Low concentrations of CXCL4 
reinforce TGFβ signaling, but high concentrations of CXCL4 have the 
opposite effect (120). In addition, knocking down the expression of 
CXCR3, the receptor of CXCL4, was shown to abolish Th1 and Treg 
cell responses (121). Platelet-derived mitochondria directly upregulate 
central memory (TCM) CD4+ T cells and downregulate effector 
memory (TEM) CD4+ T cells through C-X-C motif chemokine 
receptor 4 (CXCR4) and its ligand stromal cell-derived factor-1 
(SDF-1) (122). However, CXCL4 expression is inversely correlated 
with T-cell function in advanced lung adenocarcinoma (LAC), leading 
to accelerated development of tumors (123). Pten-deficient platelets 
are hyperactive and overproduce multiple Tfh-promoting cytokines 
via the PDK1/mTORC2-AKT-SNAP23 axis, which promotes CD4+ 
T-cell differentiation into Tfh cells. Pten deletion results in age-related 
lymphoproliferative diseases and humoral autoimmunity in 
mice (124).

PD-L1 is widely known as an inhibitor of the adaptive immune 
system. It can be  transferred from tumor cells to platelets in a 
fibronectin 1-, integrin α5β1- and GPIbα-dependent manner in 
non-small cell lung cancer (NSCLC), and platelet PD-L1 possesses the 
ability to inhibit the function of CD4+ and CD8+ T cells (118). 
Christina et al. demonstrated that platelets decrease PD-1 and PD-L1 
expression, T-cell proliferation and IFN-γ and TNF-α production 
(125). PD-L1-overexpressing platelets can rescue β-cells by 
suppressing the activity of pancreatic autoreactive T cells and 
increasing the percentage of Tregs in type 1 diabetes (T1D) (126). 
However, high expression of PD-L1 was found in platelets from 
COVID-19 patients, which inhibited the upregulation of CD25 
expression and TNF-α and IFN-γ production by CD4+ T cells (127). 
Activated platelet-derived IL-33, Dkk-1, and 5-HT or CD40L induce 
type 2 immune response or interact with TSLP-stimulated myeloid 
DCs to tune the sensitization stage of allergic asthma through RANK/
RANKL signaling (128). In addition, platelet-CD4+ T-cell aggregate 
frequency was positively correlated with HIV-1 viral load and was 
related to immune activation during HIV-1 infection (129). 
HIV-containing platelets result in dysfunction of glycolysis-mediated 
energy production in CD4+ T cells. This result indicates that platelets 
might be  a therapeutic target for immunological non-responders 
(130) (Figure 1).

B cells

Compared with those on T cells, the effects of platelets on B cells 
are less well studied. It was reported that the transfer of normal 
platelets into CD40L-deficient mice could transiently increase antigen-
specific IgG production (131, 132). Fabrice et al. also reported that 
platelets could activate peripheral blood B cells and increase the 

production of immunoglobulins (133). These results indicated that 
platelet CD40L contributed to B-cell responses when CD4+ T-cell-
derived CD40L was absent. CD40L released from platelets contributes 
to the proliferation of tumor cells in intravascular large B-cell 
lymphoma (134). In addition, platelets secreting PF4 increase B-cell 
differentiation in the bone marrow environment by inducing the 
phosphorylation of STAT5 (135).

Since the start of the COVID-19 pandemic, vaccines for SARS-
CoV-2 have been developed. In addition, numerous researchers have 
found that vaccine-induced immune thrombotic thrombocytopenia 
(VITT) occurs in individuals exposed to vaccines, especially 
adenoviral vector vaccines (136). VITT is an autoimmune condition 
characterized by antibodies that directly activate platelets, triggering 
thrombosis in the arterial and venous circulation. The pathophysiology 
of VITT is still incompletely understood (137). One hypothesis 
suggested that vaccines might bind to PF4, creating a novel antigen 
that is subsequently taken up by monocytes and trafficked to the 
lymph nodes, where it stimulates the proliferation of anti-PF4 memory 
B cells. Then, antibody binding to FcγRIII-A contributes to platelet 
clearance and thrombocytopenia (138). Additionally, platelets express 
human Fc receptors. The receptors for IgG, the Fc-γ receptor, and IgE, 
the Fc-ε receptor, are expressed on the platelet surface (139). FcγRIIA-
expressing platelets activated by IgG immune complexes contribute to 
the severity of anaphylaxis (140). IgE antibody binding to platelets via 
the low-affinity IgE receptor (Fc epsilon RII/CD23) or high-affinity 
IgE receptor (Fc epsilon RI) led to immediate-type allergic reactions 
(141, 142). Thus, platelets and their secreted molecules can influence 
B cells in adaptive immunity. In addition, antibodies released by B 
cells are also able to regulate the numbers and activation of platelets.

Dendritic cells

Although many studies have indicated that platelets play critical 
roles in T-cell and B-cell adaptive immunity, the mechanism is still 
unknown. In addition to their ability to mediate T-cell and B-cell 
immune responses directly, platelets might also regulate these 
responses indirectly through dendritic cells (DCs). DCs are the 
primary antigen-presenting cells and can cross-present antigens to T 
cells to induce antigen-specific cell responses. Thus, changes in the 
number or phenotype of DCs influence cell immunity.

Platelets were reported to significantly inhibit proinflammatory 
(IL-12, IL-6, and TNFα) cytokine production and increase anti-
inflammatory (IL-10) cytokine production in moDCs. In addition, 
platelet-derived soluble mediators inhibit T-cell priming and T helper 
differentiation toward an IFNγ+ Th1 phenotype induced by moDCs 
(143). Platelet concentrates also downregulate the expression of CD40, 
CD80, CD83, and CD86 and IL-8, IL-12 and IL-6 secretion by BDCA+ 
DCs (144, 145). Similarly, platelet-monocyte complex (PMC)-derived 
DCs were shown to exhibit reduced levels of critical molecules for DC 
function (CD206, CD80, CD86, and CCR7) and reduced antigen 
uptake capacity (146). Conversely, thrombin-activated platelets 
increased CD80 expression in DCs and induced DCs to produce 
tumor necrosis factor alpha (TNF-α), interleukin 12 (IL-12), and IL-6 
after coculture of BMDCs and staphylococcus aureus in vitro (147). 
Furthermore, platelets have the ability to enhance the DC-mediated 
Th2 response and contribute to allergic inflammation through the 
RANK ligand (148). Platelets are necessary for efficient host 
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sensitization to allergens and increase the allergen sensitization of 
CD11c+ DCs (149).

Platelet-derived P-selectin interacts with PSGL-1 on the surface 
of monocytes and induces monocyte differentiation into DCs, which 
are more potent than cytokine-derived DCs during tumor-specific 
T-cell immune responses (150). Additionally, the interaction between 
platelets and DCs is mediated by Mac-1, which is upregulated on DCs 
by activated platelets in a PSGL-1-dependent manner (151). Moreover, 
platelet-derived CD40L can induce monocyte differentiation into 
DCs, promote DC maturation, increase the expression of 
costimulatory molecules (152, 153) and enhance interferon-α 
secretion by plasmacytoid dendritic cells in systemic lupus 
erythematosus (154). Sharmeen et  al. also reported that platelets 
enhanced dendritic cell responses through CD40-CD40L during 
staphylococcus aureus infection (147).

Serotonin, another platelet molecule, had opposite effects on DC 
differentiation. As the expression of costimulatory molecules on DCs 
was reduced and IL-10 production was increased by serotonin, the 
antigen presentation function of DCs was repressed (155). Similarly, 
CXCL4 inhibited monocyte differentiation into CD1α+ DCs and 
increased the number of CD1α− DCs, but CD1α− DCs were not as 
effective as CD1α+ DCs in activating T cells (156). Moreover, CXCL4 
enhanced monocyte-derived DCs to promote autologous CD4+ T-cell 

and CD8+ T-cell proliferation and the production of IFN-γ and IL-4 
(157). In summary, platelets and their secreted molecules have 
different effects on the development or differentiation of DCs, and the 
exact mechanism still needs further exploration (Table 3).

Conclusion

In addition to supporting thrombosis, platelets release a number 
of mediators that regulate both innate and adaptive immunity. Due to 
the large number of platelets in the circulation, they and their products 
can efficiently interact with peripheral circulating cells directly, such 
as neutrophils, monocytes, T cells, B cells, DCs, macrophages, and NK 
cells, which modulates their differentiation. Platelets affect the 
functions of monocytes and neutrophils, including their receptors and 
soluble mediators. Moreover, platelet interactions with monocytes 
induce their differentiation into macrophages and regulate cytokine 
release. Depending on the severity of the disease, platelets can enhance 
or reduce leukocyte cytokine production, which maintains a balance 
to limit excessive inflammation during infection. Platelet-derived 
CD40L or other ligands can also modulate adaptive immunity. 
Additionally, both in vitro and in vivo evidence suggests that platelets 
also impact the development and functions of DCs to regulate T-cell 

FIGURE 1

Platelets affect the function and differentiation of CD4+ and CD8+ T cells.
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and B-cell responses. According to previous reports, different products 
of platelets have different effects on DCs, thus changing their antigen 
presentation capacity.

All these reports indicated that in addition to hemostasis, platelets 
also play critical roles in the immune system, but the exact mechanism 
is still not clear. Given that platelet concentrates are widely used in 
clinical treatment and given the side effects of platelet transfusion, 
we need to consider the effects of platelets and their secreted molecules 
on immune cells, such as neutrophils, monocytes, B cells, T cells and 
DCs. Elucidating how platelets interact with these cells will contribute 
to broader application of platelet products and avoid adverse reactions.
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