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Editorial on the Research Topic

CNS autoimmune disorders and COVID-19

Acute autoimmune disorders involving the central nervous system (CNS) are a group

of diseases that occur when the immune system attacks and damages brain and spinal cord

cells and tissues. neuromyelitis optica spectrum disorder (NMOSD), myelin oligodendrocyte

glycoprotein antibody disease (MOGAD) and multiple sclerosis (MS) are some examples of

CNS autoimmune disorders (1). COVID-19 is a highly contagious respiratory disease caused

by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and belongs to the

Coronaviridae family.

Since late 2019, COVID-19 has been spreading globally and has affected all people

around the world (2). COVID-19 may increase the risk of developing neurological

symptoms, such as headaches, confusion, ageusia, and anosmia (3), as well as some

neurological disorders, like encephalopathy, stroke, seizures, hypoxic/ischemic brain injury,

and a number of CNS autoimmune diseases (4). On the other hand, COVID-19 infection

can deteriorate the pre-existing neurological diseases in affected individuals (5, 6).

With respect to CNS autoimmune disorders, several reports have been published on

individuals developing different forms of autoimmune encephalitis following COVID-19

infection (7). These include patients with anti-N-Methyl-D-Aspartate Receptor encephalitis,

anti-Myelin oligodendrocyte glycoprotein (MOG) antibody encephalitis, acute disseminated

encephalomyelitis (ADEM), as well as other variants of autoimmune encephalitis (7, 8).

Moreover, COVID-19 has been shown to cause demyelinating diseases of CNS in a number

of reports (8).

Additionally, acute inflammatory demyelinating polyneuropathy (AIDP) is one of the

commonly reported autoimmune diseases after COVID-19 infection (9). Guillain-Barré

syndrome (GBS) is probably the most frequent subtype of AIDP reported among these

patients and presents with muscle weakness, paralysis, and impairments in coordination and

balance which could have devastating outcomes if not treated urgently (8). Other forms of

polyneuropathy have also been reported among affected individuals (8).

Frontiers inNeurology 01 frontiersin.org45

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://doi.org/10.3389/fneur.2023.1183998
http://crossmark.crossref.org/dialog/?doi=10.3389/fneur.2023.1183998&domain=pdf&date_stamp=2023-04-04
mailto:hans-peter.hartung@uni-duesseldorf.de
https://doi.org/10.3389/fneur.2023.1183998
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fneur.2023.1183998/full
https://orcid.org/0000-0002-0614-6989
https://www.frontiersin.org/research-topics/31453/cns-autoimmune-disorders-and-covid-19
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Mirmosayyeb et al. 10.3389/fneur.2023.1183998

Lastly, COVID-19 has been shown to exacerbate preexisting

neurological conditions (5, 6). The immune response to the virus

may further worsen the symptoms of conditions such as multiple

sclerosis, Alzheimer’s disease, Parkinson’s disease, epilepsy, and

stroke probably in the setting of increased inflammation (6, 7).

Specifically, with regards to multiple sclerosis, this is explained

by alterations in the T cell counts during the disease course as

well as fluctuations in body temperature that can worsen some

neurological symptoms in these patients (6).

Another relevant area that has been investigated is the

susceptibility of individuals suffering from neurological diseases

or taking immunosuppressive/immunomodulatory medications to

COVID-19 and their disease outcome. Patients taking anti-CD20

medications, which deplete B-cells, may be more prone to contract

COVID-19 although it may not necessarily increase rates of

hospitalization (9).

COVID-19 can affect the central nervous system through a

variety of routes (10). In some individuals, SARS-CoV-2 may

trigger an overactive immune response of Th1, Th2, NK cell,

DC, and elevated levels of pro-inflammatory cytokines of IL-

1β, IL-2, IL-6, IL-8, IL-12, IL-17 that results in the development

of autoantibodies against the CNS. These autoantibodies can

attack the protective myelin coating of the nerves, resulting

in inflammation and damage. In addition, the olfactory bulb

is another route that SARS-CoV-2 can pass, cross the blood-

brain barrier (BBB), and infect the CNS (10). Even though there

is increasing evidence linking COVID-19 and the autoimmune

diseases of the CNS, more research is required to better understand

the mechanisms that underlay this relationship and to determine

whether or not COVID-19 contributes to the development of

autoimmune diseases of the CNS.

The development of vaccines against COVID-19 has been the

most important tool to fight the COVID-19 pandemic and decrease

the disease severity, hospitalization rates, and mortality (11).

However, there are some reports on neurological complications of

these vaccines (12). The majority of these complications are mild

and transient, such as headaches, while a small number of people

may develop more serious side effects (13). These include cerebral

sinus venous thrombosis, Bell’s palsy, transverse myelitis, and GBS

(14). Of note, the evidence on these complications comes mostly

from case reports which do not provide strong evidence regarding

this association (14).

In this issue, eleven interesting studies have presented that

focus on CNS autoimmune diseases and COVID-19 infection, as

outlined below.

Lotan et al. investigated the risk of CNS demyelinating diseases

following COVID-19 infection through a systematic review. They

showed that the risk of developing these diseases or experiencing

relapses in the setting of COVID-19 infection remains relatively

low with a favorable outcome. Elizalde-Díaz et al. further explained

the relationship between inflammatory and humoral immune

markers activated through COVID-19 infection and their effect on

neural cells and subsequent neurological complications seen among

some patients.

Czarnowska et al. reported on the safety of the COVID-

19 vaccine among patients with MS on disease-modifying

therapies and found overall favorable outcomes with low risk.

On the other hand, three case studies reported on autoimmune

complications of COVID-19 vaccines, including a case of multiple

autoimmune syndromes in Poli et al. study, a case of immune

thrombotic thrombocytopenia with cerebral venous thrombosis

and hemorrhage in Chen et al. study, a case of acute disseminated

encephalomyelitis by Bastide et al., and a patient with NMO

reported by Ghelmez et al.. Moreover, Rinaldi et al. reported six

patients with CNS inflammatory demyelinating events (two acute

transverse myelitis, three multiple sclerosis, and one NMOSD)

following COVID-19 infection.

The humoral response to COVID-19 vaccines and

immunogenicity among patients with pre-existing CNS

autoimmune disorders was assessed by three studies. Dominelli

et al. showed that disease-modifying therapies, specifically

depleting/sequestering-out treatments, lower the humoral response

to COVID-19 vaccines, while cellular responses are still achieved.

Similarly, van Dam et al. looked at the humoral response to the

vaccine among patients with MS who had contracted COVID-19

before, and found increased humoral responses in patients without

anti-CD20 therapies, but decreased responses among those treated

with ocrelizumab. Lastly, Sedaghat et al. studied a group of patients

with multiple sclerosis who had remained seronegative following

two doses of inactivated COVID-19 vaccines and suggested

adenoviral vector or mRNA-based vaccines may be a better choice

as the third dose in these cases.

In conclusion, the current evidence demonstrates how

the COVID-19 pandemic has led to the development of CNS

autoimmune diseases such as MS, NMOSD, autoimmune

encephalitis, and AIDP. These complications, however, remain

relatively infrequent despite the large number of people

affected by COVID-19. On the other hand, patients with

pre-existing neurological disorders are affected, both with

deterioration/relapse of their symptoms and with the increased

risk of developing a more severe infection in the setting of

immunosuppressive/immunomodulatory therapies. Of note, the

current evidence on this topic is still limited and warrants further

studies on larger populations with prospective designs. Lastly,

the COVID-19 vaccine has shown to be safe and very effective in

decreasing disease contraction, severity, and mortality, although

it rarely can lead to CNS autoimmune disorders. The vaccination

strategies among patients on disease-modifying therapies is

another challenging topic that requires further investigation.
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The global pandemic has resulted from the emergence of severe acute respiratory

syndrome coronavirus-2 (SARS-CoV-2), causing coronavirus disease 2019 (COVID-19).

To control the spread of the pandemic, SARS-CoV-2 vaccines have been developed.

Messenger ribonucleic acid (mRNA)-based COVID-19 vaccines have been the most

widely used.We present the case of a 65-year-old patient, whowas diagnosedwith acute

disseminated encephalomyelitis, ocular myasthenia gravis, and autoimmune thyroiditis,

following his third mRNA COVID-19 vaccination. On admission, the patient showed

mild left-sided hemiparesis, contralateral dissociated sensory loss, dizziness, and

right-sided deafness. Brain MRI revealedmultiple acute inflammatory contrast-enhancing

periventricular and brainstem lesions with involvement of vestibulo-cerebellar tract and

cochlear nuclei. Despite steroid pulse and intravenous immunoglobulin therapy, clinical

symptoms and MRI lesions worsened, and additional signs of ocular myasthenia gravis

and elevated but asymptomatic thyroid antibodies developed. After repeated plasma

exchange, all clinical symptoms resolved. This is, to the best of our knowledge, the first

case report of multiple autoimmune syndromes triggered by COVID-19 vaccination. The

rare occurrence of such treatable autoimmune complications should not question the

importance of vaccination programs during the COVID-19 pandemic.

Keywords: multiple autoimmune syndrome, ADEM, thyroiditis, myasthenia gravis, mRNA-based COVID-19

vaccines

INTRODUCTION

Besides specific vaccine complications (such as vaccine-induced thrombotic thrombocytopenia
after vector-based COVID-19 vaccines), the association between new-onset autoimmune disease
and vaccination could not be established yet, most likely due to low incidence. However, cases
of vaccine-triggered autoimmune phenomena have been reported, and different mechanisms
have been suggested (molecular mimicry, production of autoantibodies, and vaccine adjuvants)
(1). Acute disseminated encephalomyelitis (ADEM) is an autoimmune demyelinating disease
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that affects multiple areas of the central nervous system and
typically presents with multifocal neurologic symptoms. It
is commonly considered a monophasic disease with a rare
recurrent or multiphasic variant (2). Up to three-quarters
of ADEM events are associated with viral infections (3).
Prior immunizations may also trigger ADEM events (4). A
causal relationship between inactivated and mRNA SARS-CoV-
2 vaccination has been reported (5–8). Myasthenia gravis due
to acetylcholine receptor (AChR) autoantibodies, which prevent
transmission of the excitatory cascade at the neuromuscular
junction during muscle contraction, maybe rarely, also induced
by mRNA COVID-19 vaccination (9). Likewise, cases of
autoimmune thyroiditis have been described following exposure
to inactivated and mRNA-based SARS-CoV-2 vaccines (10).

We report a patient, who developed all of these three
autoimmune disorders shortly after being vaccinated for SARS-
CoV-2.

CASE DESCRIPTION

A 65-year-old male patient was referred for the subacute onset of
paresis of the left arm, followed by loss of pain and temperature
sensation on the right side of the body, as well as right-sided
deafness with vertigo, 3 days after receiving the third dose of the
mRNA-based Pfizer-BioNTech COVID-19 vaccine, without any
acute allergic reactions.

His medical history was relevant for multiphasic ADEM,
with two previous clinical episodes, 10 and 11 years prior to
this admission. In the first event, the patient manifested mild
right-sided sensorimotor hemiparesis and Th11/Th12 paraplegia
with urinary incontinence in the second event. At that time,
cerebral and spinal cord magnetic resonance imaging (MRI)
showed multiple T2-weighted hyperintense lesions involving
supratentorial areas and, respectively, the spinal cord, all with
T1 contrast enhancement. Cerebrospinal fluid (CSF) showed
lymphocytic pleocytosis (50 and 7 cells/mm3, respectively),
while protein and glucose levels were within reference ranges.
Oligoclonal banding was not present in both events. Confirming
the diagnosis of ADEM, stereotactic brain biopsy showed
typical perivenous inflammatory demyelination. The patient
fully recovered under intravenous high-dose corticosteroids both
times. A Follow-up MRI of the brain solely showed minor
periventricular white matter sequelae; spinal cord lesions were
completely resolved.

The patient’s family history was positive for Graves’ disease
by a daughter; further (auto)immune disorders or neurological
diseases were denied.

On the current admission, the patient was alert and
oriented and presented mild left-sided hemiparesis (MRC 4/5)
with contralateral dissociated sensory loss, and right-sided
vestibulocochlear nerve deficit. Brain MRI revealed acute
inflammatory gadolinium-enhancing lesions on the right
cerebellar peduncle, as well as pons and medulla oblongata. CSF
analysis showed lymphocytic pleocytosis (54 cells/mm3), while
protein and glucose levels were normal. Oligoclonal bands were
searched in serum and CSF by isoelectric focusing, with negative

results (type 1 pattern). Screening for bacterial, viral, and fungal
neuro infections was negative. Tests were also negative for
antibodies targeting antigens associated with demyelinating
disorders of the central nervous system (myelin oligodendrocyte
protein and aquaporin-4), as well as onconeural-, and anti-
ganglioside antibodies. The CSF cytological analysis excluded
circulating malignant cells. Biochemical serum markers for
sarcoidosis (angiotensin-converting enzyme and soluble
interleukin-2 receptor) were unremarkable, and CD4/CD8
ratio in CSF and bronchoalveolar lavage were not elevated.
Interleukin-10 in CSF was normal, and chemokine CXC
ligand 13 slightly increased. Complete blood count and
markers of systemic autoimmunity (including antinuclear,
extractable nuclear antigen, anti-neutrophil cytoplasmic, and
antiphospholipid antibodies, as well as complement C3 and C4)
were normal/negative.

The patient was treated with high-dose intravenous
methylprednisolone (1 g daily) for five days. Due to non-
response, intravenous immunoglobulin therapy with a total
dose of 2 g/kg, fractionated in 5 days, was started. Rapid
clinical deterioration with the development of severe left-sided
hemiparesis (MRC 2/5), hemiataxia, and major difficulties to
walk was accompanied by new periventricular and progressive
infratentorial and upper cervical spinal cord contrast-enhancing
lesions on follow-up MRI (Figure 1).

Furthermore, the patient developed fluctuating binocular
horizontal diplopia and ptosis of the right eye, with worsened
toward the end of the day. Diagnostic pyridostigmine (60mg
orally) did not improve ocular symptoms within a 1-h
observation period. Immunologic testing showed elevated anti-
AChR antibody titers (2.1 nmol/L, normal range is <0.4).
Autoantibodies against muscle-specific kinase and titin were
negative. No thymoma was detected on chest computed
tomography (CT). The patient was newly diagnosed with ocular
myasthenia gravis and started on oral pyridostigmine 90mg twice
a day.

On further laboratory investigations, positive anti-
thyroglobulin antibodies (21.4 IU/ml, normal range is <4.5),
anti-thyroid peroxidase antibodies (197.9 KU/L, normal
range is <60), and anti-thyroid stimulating hormone (TSH)
receptor autoantibodies (2.09 IU/L, normal range is 1.75)
were detected. Thyroid function (TSH, triiodothyronine, and
thyroxine), however, was normal, with no past medical history
of thyroid disease. Thyroid ultrasonography was normal.
Subacute thyroiditis was first diagnosed based on the patient’s
laboratory findings.

Considering the clinical worsening and the development
of multiple autoimmune disorders despite treatment
with corticosteroids and intravenous immunoglobulins,
plasmapheresis was indicated. Seven plasma exchanges were
conducted within 13 days. The hemiparesis improved, and
the patient regained walking ability. Follow-up MRI brain
and spinal cord scans after the third plasma exchange already
revealed reduced lesion size and contrast enhancement. Ocular
myasthenic symptoms resolved completely. Anti-thyroid and
anti-AChR autoantibodies were no longer detectable. The
patient was referred to rehabilitation, where clinical status
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FIGURE 1 | Brain magnetic resonance imaging showing FLAIR hyperintense lesions (A–C) and T1 contrast-enhancement (D–F) in the periventricular white matter

(A,D), right cerebellar peduncle (B,E) and medulla oblongata/upper cervical spinal cord (C,F). FLAIR, Fluid attenuated inversion recovery.

further improved until 1 month after plasma exchange (three
months after onset).

DISCUSSION

Our patient met the diagnostic criteria for ADEM set
by the International Pediatric MS Study Group (2), and
alternative diagnoses, such as infectious or another autoimmune
encephalitis, were excluded. ADEM, following vaccination,
is a well-known entity and has been reported after mRNA
SARS-CoV-2 vaccination (Moderna and BioNTech/Pfizer),
even among older adults such as our patient (5–7), but also
after inactivated vaccine (Sinovac) (8). Previously reported
cases of vaccination-triggered ADEM had an excellent
response to systemic corticosteroids and/or intravenous
immunoglobulins. Our patient, however, deteriorated under
first-line therapy and required plasmapheresis. Steroid resistance
is commonly observed in cases like ours with fulminant
and/or multiphasic ADEM (11, 12). Moreover, our patient
simultaneously developed two other autoimmune disorders,
i.e., ocular myasthenia gravis and subacute thyroiditis. In
contrast to ADEM, these were first-in-life episodes. Both

have been separately described following both mRNA
(BioNTech/Pfizer) (9, 10) and inactivated (Sinovac) (13)
SARS-CoV-2 vaccination. A literature search, however, did
not identify any case with a multiple autoimmune syndromes
similar to ours. The missed opportunity of testing neutralizing
antibodies against SARS-CoV-2 in serum and/or CSF before
immunoglobulin therapy and plasmapheresis may be considered
a limitation of our case study. The presence of these in either
compartment, however, would not have proven the causal link
with autoimmune reaction.

The rare occurrence and favorable outcomes of vaccination-
triggered ADEM, myasthenia gravis, and subacute thyroiditis,
as well as the fact that severe (multiple) autoimmune syndromes
may also occur after COVID-19 infection (14–17), do not
detract from the public health imperative to vaccinate
against COVID-19. However, clinicians should be aware
that those autoimmune diseases can potentially occur alone or
simultaneously, following both mRNA-based and inactivated
SARS-CoV-2 vaccines, and may affect patients of any age.
Extended half-life monoclonal neutralizing antibodies against
SARS-CoV-2 may be considered to protect patients with
insufficient immunity, in whom further vaccines are not
advised (18).
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Background and Objectives: Since vaccination against COVID-19 is available for

over a year and the population of immunized individuals with autoimmune disorders

is higher than several months before, an evaluation of safety and registered adverse

events can be made. We conducted a large study of side effects following the COVID-

19 vaccine among patients with multiple (MS) sclerosis treated with disease-modifying

therapies (DMTs) and analyzed factors predisposing for particular adverse events.
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Methods: We gathered data of individuals with MS treated with DMTs from 19 Polish MS

Centers, who reported at least one adverse event following COVID-19 vaccination. The

information was obtained by neurologists using a questionnaire. The same questionnaire

was used at all MS Centers. To assess the relevance of reported adverse events, we

used Fisher’s exact test, t-test, and U-Menn-Whutney test.

Results: A total of 1,668 patients with MS and reports of adverse events after COVID-19

vaccination were finally included in the study. Besides one case marked as “red flag”, all

adverse events were classified as mild. Pain at the injection site was the most common

adverse event, with a greater frequency after the first dose. Pain at the injection site was

significantly more frequent after the first dose among individuals with a lower disability

(EDSS ≤2). The reported adverse events following immunization did not differ over sex.

According to age, pain at the injection site wasmore common among individuals between

30 and 40 years old, only after the first vaccination dose. None of the DMTs predisposed

for particular side effects.

Conclusions: According to our findings, vaccination against COVID-19 among patients

with MS treated with DMTs is safe. Our study can contribute to reducing hesitancy toward

vaccination among patients with MS.

Keywords: multiple sclerosis, vaccination, SARS-CoV-2, COVID-19, side effects

INTRODUCTION

The long-term impact of the severe acute respiratory syndrome
coronavirus-2 (SARS-CoV-2) infection on individuals with
autoimmune disorders is unknown. Among patients with
multiple sclerosis (MS), the course of the infection can be severe
in those with a higher level of disability, comorbid diseases, older,
and on high effective therapies (1).

In general, vaccination is recommended for individuals with
MS. Systemic infection can worsen the course of MS, so
prevention is advisable. Most vaccines are considered safe for
patients under disease-modifying therapies (DMTs). However,
live vaccines are contraindicated under immunosuppressive
treatment in most cases (2).

The first vaccines against coronavirus disease 2019
(COVID-19) were approved by the end of 2020. Their high
effectiveness was reported in early studies. The mortality and
hospitalization rate of SARS-CoV-2 infection is significantly
lower in vaccinated persons (3, 4). Throughout the COVID-19
pandemic, diverse variants of SARS-CoV-2 have emerged.
The latest variant (Omicron) seems to be more infectious
than the original virus (5). The effectiveness of vaccination
varies across virus variants and is still under investigation.
However, a beneficial role of vaccination is suggested
against old and novel variants. The proposed mechanism
behind this is the immunological T cell memory induced by
vaccination to cross-recognize different variants (6). Therefore,
vaccination against COVID-19 is highly recommended,
especially for those with autoimmune and other comorbid
diseases (7).

Numerous adverse events were reported after the COVID-19
vaccination. However, the overwhelming majority of side effects

are mild and self-limiting. In rare cases, serious post-vaccine
incidents were observed, including neurological side effects (8).

Here we report adverse events after COVID-19 vaccination
among individuals with multiple sclerosis treated with different
disease-modifying therapies in Poland and identify any
predisposing factors for the occurrence of side effects.

MATERIALS AND METHODS

The Multiple Sclerosis and Neuroimmunology Section of the
Polish Neurological Society published an announcement about
the study at www.ptneuro.pl, and every MS Center in Poland
was invited to participate. Finally, participants were recruited
from 19 Polish MS Centers. The data was obtained by
neurologists using a questionnaire. The same questionnaire
was used at all MS Centers (available in Supplementary
Materials). Patients were recruited to the study during standard
or unplanned visits at a particular MS Center or over
the telephone.

We included individuals who had any adverse event
after COVID-19 vaccination and confirmed diagnosis of MS
according to 2010 and 2017 McDonald criteria. Disability
was assessed by the Expanded Disability Status Scale (EDSS).
All patients were treated with one of the DMTs available in
Poland (interferon, glatiramer acetate, teriflunomide, dimethyl
fumarate, fingolimod, alemtuzumab, cladribine, natalizumab,
or ocrelizumab).

We collected patient demographics, data regarding specific
features of multiple sclerosis, information about vaccination
against SARS-CoV-2, presence of adverse events after
vaccination), and information regarding relapses following
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immunization or worsening of MS symptomatology. Incidence
classified as relapse must have had a clear monophasic course,
objective findings typical of multiple sclerosis verified by a
neurologist, lasted over 24 h, and were not related to fever or
infection. Gathered data included side effects after the first
or second dose of different vaccines. The analysis did not
include side effects after the third dose, as the observation
time would be insufficient and the number of patients
too little.

Categorical variables were characterized by frequency and
percentage. Continuous variables were reported by their median,
mean value, and interquartile range. For statistical comparisons,
the χ2 test of homogeneity of odds was calculated. To assess the
relevance of reported adverse events, we used Fisher’s exact test,
t-test, and U-Mann-Whitney test.

All calculations were performed using STATA 15 software
(StataCorp 2017) (7).

The study was approved (approval No. 62/2021) by the
Bioethics Committee at Collegium Medicum, Jan Kochanowski
University in Kielce, Poland.

RESULTS

A total of 1,668 individuals with MS and reports of adverse
events after COVID-19 vaccination were included in the study.
Among participating MS Centers 3,264 patients were vaccinated
with at least one dose. Therefore, the percentage of individuals
reporting any adverse events was 51% and the percentage of
patients denying any side effects was 49%. Thirty-seven patients
with missing data were excluded. Demographic and clinical
data regarding features of multiple sclerosis are presented in
Table 1. The average observation time was 7 months (range:
1–12 months).

The distribution of vaccines against SARS-CoV-2
administered among the cohort was as follows: 1,215
(72.84%) patients immunized with the BioNTech-Pfizer
vaccine, 223 (13.37%) with the Oxford-Astra Zeneca vaccine,
155 (9.29%) with the Moderna vaccine, and 75 (4.5%)
with the Johnson & Johnson vaccine. More than three-
quarters (77.34%) of individuals were administered vaccines
using genetically engineered mRNA to induce an immune

TABLE 1 | Demographics and clinical characteristics of patients with MS who presented with side effects following vaccination against SARS-CoV-2.

N (%) Mean Median IQR SD

Study population 1,668 100

Sex

Female 1,209 72.48

Male 459 27.52

Whole study population age 41.88 42 16 11.07

Female age 42.03 42 16 11.21

Male age 41.49 41 16 10.68

Disease course

RRMS 1,585 95.02

SPMS 42 2.52

PPMS 41 2.46

EDSS 2.36 2 2.5 1.48

≤2 917 54.98

3–4 658 39.44

≥5 93 5.58

Disease duration 9.44 8 9 6.34

DMTs

Interferon beta 377 22.6

Glatiramer acetate 134 8.03

Dimethyl fumarate 665 39.87

Teriflunomide 168 10.07

Fingolimod 74 4.44

Natalizumab 105 6.29

Ocrelizumab 77 4.62

Cladribine 14 0.84

Alemtuzumab 10 0.6

Mitoxantrone 6 0.36

Others 38 2.28

AMS, multiple sclerosis; SD, standard deviation; IQR, interquartile range; RRMS, relapsing-remitting multiple sclerosis; PPMS, primary progressive multiple sclerosis; SPMS, secondary

progressive multiple sclerosis; EDSS, the expanded disability status scale; DMTs, disease-modifying therapies.
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FIGURE 1 | The distribution of adverse events reported in individuals with MS treated with DMTs in Poland.

response (BioNTech Pfizer vaccine; Moderna vaccine). The first
vaccination dose was given to all patients and the second to
1,573 (94.3%) people.

The reported adverse events were almost exclusively mild.
The distribution of particular side effects among the cohort
is presented in Figure 1. The most common, with a greater
frequency after the first dose, was pain at the injection site.
Fever/chills/flu-like symptoms, fatigue, headache, malaise, and
muscle/joint pain were more often present after the second
dose. In the majority of cases, the reported symptoms were self-
limiting. The adverse events resolved within 7 days in 98.3%
of patients after the first dose and 97.6% after the second
dose. The proportion of most common adverse events following
particular vaccines is shown in Table 2. All differences were
statistically significant.

The mRNA vaccines significantly predisposed for developing
pain at the injection site in comparison to vaccines using non-
replicating viral vectors (Oxford-Astra Zeneca vaccine; Johnson
& Johnson vaccine) (p = 0.001). However, being administered
with vector vaccines increased propensity for fever, headache,
fatigue, skin lesion at the injection site, and muscle/joint pain
following immunization (p = 0.000, p = 0.000, p = 0.001, p =

0.004; p= 0.000, respectively).
Generally, the observed side effects were not

multisymptomatic. After the first dose, 844 (50.6%) individuals
had one adverse event and 655 (41.64%) after the second dose.
The number of reported adverse events by individual patients is
shown in Figure 2.

Only one adverse event was classified as “Red-Flag”. It was
a pro-thrombotic incidence in a 42 years old female patient 2

weeks after the first dose of the Oxford-Astra Zeneca vaccine.
The patient complained of chest pain, the laboratory finding
showed elevated D-dimers level, but pulmonary embolism was
excluded. Currently, the patients fells well and further diagnostics
did not confirm any thromboembolism. Three patients had
anaphylactic reactions immediately after immunization (one
individual after both doses). There were no fatal outcomes
following vaccination.

None of the DMTs significantly predisposed for particular
adverse events or longer duration of side effects. However, the
sample size for cladribine, alemtuzumab, and mitoxantrone was
insufficient for statistical analysis.

The reported adverse events following immunization did
not differ between sex. According to age, pain at the injection
site was more common among individuals between 30 and
40 years old, only after the first vaccination dose (p =

0.001). The proportion of most common adverse events divided
by age is shown in Figures 3A,B. The mean duration of
the disease was similar for all side effects, there were none
relevant differences.

Pain at the injection site was significantly more frequent after
the first dose among individuals with a lower disability (EDSS ≤
2) (p = 0.027). However, a headache was the dominant adverse
event after the first dose in individuals with moderate disability
(EDSS 3–4) (p = 0.005). The proportion of patients with the
most common adverse events divided by EDSS is shown in
Figures 4A,B.

Among individuals with RRMS, 4.42% of patients (70
people) had relapses up to 3 months before vaccination. After
immunization (up to 3 months), 67 patients (4.02%) had
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TABLE 2 | The proportion of most common side effects after particular vaccines administered among the cohort.

Pain at the

injection site

Skin lesion at

the injection

site

Fever, chills,

flu-like

symptoms

Fatigue Headache Muscle

pain/Joint pain

Malaise

(%) (%) (%) (%) (%) (%) (%)

First dose

BioNTech, Pfizer

vaccine

68.89 4.86 20.08 12.59 10.04 7.16 7.08

Oxford, Astra Zeneca

Vaccine

60.99 11.21 43.05 22.42 22.42 17.04 20.18

Moderna vaccine 64.52 15.48 27.74 16.13 16.77 10.97 10.97

Johnson & Johnson

vaccine

49.33 10.67 48 17.33 17.33 12 10.67

Pearson chi2 0.001 0.000 0.000 0.001 0.000 0.000 0.000

Fisher’s exact p-value 0.001 0.000 0.000 0.002 0.000 0.000 0.000

Second dose

BioNTech, Pfizer

vaccine

54.98 4.53 26.42 14.73 10.29 9.3 9.71

Oxford, Astra Zeneca

Vaccine

36.77 8.97 26.01 16.14 24.66 12.56 10.76

Moderna vaccine 52.26 8.39 50.32 24.52 20 24.52 24.52

Pearson chi2 0.000 0.002 0.000 0.000 0.000 0.000 0.000

Fisher’s exact p-value 0.000 0.002 0.000 0.000 0.000 0.000 0.000

FIGURE 2 | The number of adverse events reported by individual patients with MS treated with DMTs in Poland.

relapsed, but only 22.39% of them within the first 21 days. In 29
cases (1.74%), the worsening occurred after the first dose and in
38 (2.28%) after the second dose. Magnetic resonance imaging
(MRI) was not routinely performed.

DISCUSSION

The real-world data regarding vaccination against SARS-CoV-2
among individuals with autoimmune disorders is limited. This

study analyzes the range of adverse events following the COVID-
19 vaccine reported in patients with multiple sclerosis treated
with DMTs.

In our observation, almost all reported adverse events were
mild and self-limiting. The most common were pain at the
injection site, fever/chills/flu-like symptoms, and fatigue. A
similar range and frequency of adverse events were found
in clinical trials evaluating COVID-19 vaccinations in general
population (9). Pain at the injection site after the first dose
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FIGURE 3 | (A) The proportion (%) of most common adverse events according to age after the first dose. (B) The proportion (%) of most common adverse events

according to age after the second dose.

of vaccination was more common for individuals with lower
disability and patients under 40 years old. The same observations
were made on a smaller cohort of people with SM by Achiron
et al. (10). In several other studies, based on the general
population, also younger patients reported any adverse events
more often (11, 12). Therefore, the shift toward younger patients
may not be related to the coexistence of autoimmune diseases.

Three patients had developed anaphylactic reactions
immediately after immunization. Only one patient had a pro-
thrombotic “Red-Flag” (chest pain, elevated D-dimers level)
without a final diagnosis of any embolism.

Interestingly, in clinical trials of COVID-19 vaccines, the
percentage of adverse events in the placebo group was quite high
(approximately one-third). The most frequent were headaches
and fatigue (13). It is important to acknowledge the fact, as the

mentioned symptoms were also common among patients with
MS and, in some cases, might be related to other factors (e.g.,
anxiety related to the safety of the vaccine).

The occurrence of relapses following vaccination was very
low in our cohort and not higher in comparison to the 3
month period before immunization. There are case reports in
the literature showing a temporal relation between the COVID-
19 vaccine and relapse (14). However, the greater frequency of
relapses following vaccination against SARS-CoV-2 has not been
observed in our study or other studies conducted on a larger
number of patients, including the third dose (10, 14, 15).

None of the DMTs among the cohort were predisposed to
a particular adverse event. There was no difference between
monoclonal antibodies, sphingosine-1-phosphate receptor
modulators, and other therapies in terms of type or the duration
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FIGURE 4 | The proportion (%) of most common side effects after COVID-19 vaccination among the cohort was divided by three categories of disability assessed by

EDSS after the first (A) and the second dose (B).

of reported side effects. Patients with MS were vaccinated in
Poland, keeping a time interval between the administration
of certain DMTs according to guidelines, consistent with
international consensus (16). The vast majority of our cohort
was administered vaccines based on mRNA. Therefore, based
on our findings, we can conclude that mRNA vaccines are safe,
even on high-efficacy therapies. Among individuals immunized
with the use of non-replicating viral vectors, the reported
adverse events were also mild, but as the number of patients
was much smaller in comparison to patients administered
with mRNA vaccines, a larger observation is required to
draw conclusions.

The results of our study provide an argument for pro
immunization among hesitating individuals. As we know from
several studies, there are multiple issues holding patients back
from getting vaccinated (17, 18). Most are related to the novelty

of the vaccination and concerns about its safety. Also, their
effectiveness is constantly undermined by false information on
the Internet and social media (19). This creates a big challenge
for health workers worldwide. Most clinical trials are based on
the general population. Therefore, our study proving vaccination
safety among individuals with MS can be a convincing tool for
these particular patients.

There are several limitations to our study. Although the study
included a large representation of patients with MS treated
with DMTs in Poland, the total number of individuals treated
with DMTs is much higher. We did not include non-treated
with DMTs patients and those with a high level of disability
(EDSS >8). Furthermore, the representation of different types
of MS is unequal in the cohort as mostly patients with
RRMS are included. Finally, the reports of adverse events were
in most cases retrospective and based, besides relapses, on

Frontiers in Neurology | www.frontiersin.org 7 June 2022 | Volume 13 | Article 9132831718

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Czarnowska et al. Multiple Sclerosis and COVID-19 Vaccination

subjective assessment of the patient, so it might be imprecise in
some individuals.

CONCLUSIONS

The reason for COVID-19 vaccination hesitancy is multifactorial.
However, there are genuine fears of potential adverse events,
especially among individuals with autoimmune diseases.
Our study demonstrates the safety of vaccination against
SARS-CoV-2 among patients with MS treated with DMTs.
Almost all reported symptoms were mild and self-limiting,
some were more frequent in younger patients and with
lower EDSS.
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Atypical acute disseminated
encephalomyelitis with systemic
inflammation after a first dose of
AztraZaneca COVID-19 vaccine.
A case report

Laure Bastide1*, Gaetano Perrotta1, Valentina Lolli2,

Céline Mathey3, Ortensa-Irina Vierasu3, Serge Goldman3 and

Frédéric Vandergheynst4

1Department of Neurology, CUB Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium,
2Department of Radiology, CUB Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium,
3Department of Nuclear Medicine, CUB Hôpital Erasme, Université Libre de Bruxelles, Brussels,

Belgium, 4Department of Internal Medicine, CUB Hôpital Erasme, Université Libre de Bruxelles,

Brussels, Belgium

Background: Only a few cases of acute disseminated encephalomyelitis

(ADEM) following coronavirus disease 19 (COVID-19) vaccination have been

described since the beginning of the vaccination campaign.

Results: Here we report the first case of central nervous system (CNS)

demyelination with systemic inflammatory findings on whole body

19-fluorodeoxyglucose positron emission tomography with computed

tomography (FDG-PET/CT) following the ChAdOx1 nCoV-19 vaccine.

Conclusions: Clinicians should stay aware of potential new adverse events

after immunization.

KEYWORDS

acute disseminated encephalomyelitis (ADEM), COVID-19, vaccination, systemic

inflammation, fluorodeoxyglucose positron emission tomography with computed

tomography (FDG-PET/CT)

Introduction

Since the beginning of the pandemic, vaccines were produced in record time.

Real-world studies indicated an excellent safety profile. Despite these studies, the

scientific community must stay aware of rare but severe complications and report them.

This allows more accuracy of the real-world safety profile of the vaccine. We can take

appropriate measures, as we did with the AztraZaneca vaccine (ChAdOx1 nCoV-19)

and its thromboembolic complications (1). The ChAdOx1 nCoV-19 is a vaccine based

on a recombinant adenoviral vector encoding the spike protein of SARS-CoV-2 (2).

Acute disseminated encephalomyelitis (ADEM) is an immune-mediated inflammatory

disorder of the central nervous system (CNS) that occurs after an antigenic challenge.

The post-vaccine etiology represents 5% of all ADEM cases and the annual incidence

of ADEM ranges from 1 to 10 per million (3). Here we report the first case of central

nervous system (CNS) demyelination with systemic inflammatory findings on whole
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body 19-fluorodeoxyglucose positron emission tomography

with computed tomography (FDG-PET/CT) following the

ChAdOx1 nCoV-19 vaccine.

Case report

A previously healthy 49-year-old female received her first

dose of ChAdOx1 nCoV-19 vaccine. She experienced mild flu-

like symptoms during the following 48 h. One week later, the

patient presented another episode of flu-like symptoms with

fever, fatigue, neck pain, followed over the next few days by

rapidly progressive sensitive symptoms including paresthesia

in both legs, up to the chest, Lhermitte’s phenomenon and

sphincter dysfunction. In April, the patient came to the

Abbreviations: ADEM, acute disseminated encephalomyelitis;

Coronavirus disease 19, COVID-19; CNS, central nervous system;

FDG-PET/CT, whole body 19-fluorodeoxyglucose positron emission

tomography with computed tomography; Th, thoracic; MRI, magnetic

resonance imaging; SSEPs, somatosensory evoked potentials; FLAIR,

fluid attenuated inversion recovery; ADC, apparent di�usion coe�cient

PMR-GCA, polymyalgia rheumatic associated with a giant cell arteritis.

FIGURE 1

Part 1: (A,B) Axial T2 FLAIR-weighted images demonstrated extensive, asymmetric involvement of periventricular and deep white matter [arrows

in (A)]. Smaller lesions were observed in the ponto-mesencephalic tegmentum, superior and middle cerebellar peduncles [arrows in (B)]. (C)

Lesions were mildly hyperintense on ADC cartography, revealing increased di�usivity (*). (D) A small focus of contrast enhancement was

demonstrated in the left superior cerebellar peduncle (arrow). Part 2: (A–C) Reformatted coronal (A) and axial (B) T2 FLAIR-weighted images and

sagittal T2-weighted images and sagittal T2 weighted image (C) reveal multiple short-segment hyperintensities (arrows). Lesions are asymmetric

and excentrically located and involve both white and gray matter. Signal intensity is variable, from midly to markedly increased. (D) Sagittal

post-gadolinium T1-weighted image shows scattered foci of enhancement (arrows). Part 3: (A–C) Sagittal T2 (A) and post-contrast sagittal (B)

and axial (C) T1-weighted images demonstrate progression of disease. We found lesions on the entire spinal cord. FLAIR, fluid attenuated

inversion recovery; ADC, apparent di�usion coe�cient.

neurological consultation at another hospital. During the

examination a hypoesthesia with a thoracic (Th) 8 level was

noticed with a sensory ataxia. A full spine magnetic resonance

imaging (MRI) was normal but somatosensory evoked potentials

(SSEPs) showed abnormal conduction above the sensory

decussation in the lower brainstem. Four weeks later, the patient

came to our neurological outpatient clinic. Her symptoms had

worsened with sensory symptoms now involving her hands,

worsening sensory ataxia and of sphincter dysfunction. Her

neurological examination showed normal strength, hypoesthesia

to all modalities with a Th 8 level, absent plantar response,

impaired tandem walking and the presence of a Romberg sign.

An MRI of the brain was obtained and revealed large,

ill-defined T2 fluid attenuated inversion recovery (FLAIR)

hyperintensities of periventricular and deep white matter,

along with smaller lesions infratentorially (Figure 1, part1).

Subcortical U fibers were spared, and so were the cortex and

deep gray matter. Lesions showed mildly increased diffusivity

and were mostly non-enhancing. They exerted no mass effect.

No meningeal enhancement was noted. MRI of the spinal cord

revealed the appearance of numerous contiguous short-segment

cervical and thoracic lesions, showing variably increased T2

signal intensity and contrast enhancement (Figure 1, part 2). The
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TABLE 1 Clinical evolution and complementary assessments done during patient follow-up.

Temporality Neurological

examination

Laboratory investigations Cerebrospinal fluid

investigations

MRIs Others Treatment

April 2021 Hypoesthesia with a Th8 level

Lhermitte phenomenon

Sensitive ataxia

Sphincter dysfunction.

Thyroid, hepatic, hematologic and renal

functions normal.

None. Normal spinal MRI. SSEPs: asymetric conduction of the

somesthetic influx with a subcortical but

supralemniscal level.

May and June 2021 As above but with decreased

pallesthesia and absent

plantar response.

serum protein electrophoresis, vitamins,

angiotensin converted enzyme,

erythrocyte sedimentation speed,

microbiological studies (including

Tuberculosis – QuantiFERON blood

test, HAV, HBV, EBV, CMV, HIV, HSV,

Syphilis, Borrelia, Toxoplasma, JC virus,

SARS-CoV-2), screening for antibodies

targeting antigens associated with

demyelinating disorders of the CNS

(MOG, AQP4) and other auto-immune

disorders (ANA, ANCA) remained

negative.

8 WBC, protein level at 101

mg/dl, normal IgG/Albumin

Index, OCBs identical in CSF

and serum.

Negative infectious panel.

Extensive, asymmetric involvement of

periventricular and deep white matter.

Smaller lesions were observed in the

ponto-mesencephalic tegmentum,

superior and middle cerebellar

peduncles. Lesions were mildly

hyperintense on ADC cartography,

revealing increased diffusivity. A small

focus of contrast enhancement was

demonstrated in the left superior

cerebellar peduncle.

Normal nerve conductive studies. IV MP 1 gr/day, for

5 days.

July 2021 Paraparesis 2/5 in the right leg

and 3/5 in the left leg.

Apallesthesia up to iliac crests.

Sensory level at Th5 level.

Need walking aids

Negative MOG and AQP4 antibodies.

Negative ANA and ANCA.

Numerous contiguous short-segment

cervical and thoracic lesions, showing

variably increased T2 signal intensity

and contrast enhancement.

5 sessions of

Therapeutic Plasma

Exchange.

August 2021 Weakness worsened after an

improvement.

Normal thyroid hormone level and

autoantibodies.

Negative ANA and ANCA

Negative MOG antibody.

2 WBC, protein level at

95mg/dl, normal

IgG/Albumin Index, OCBs

identical in CSF and serum.

Negative infectious panel.

Increase in the number and size of

spinal cord lesions and the appearance

of new foci of contrast enhancement.

Brain findings were unchanged.

FDG PET-CT: increased glucose uptake

in the thyroid, the pulmonary nodules,

the thoracic aorta walls, the lumbar

spinous processes and the whole

spinal cord. Normal

thyroid echography.

Rituximab 1 gr IV

in 2 times at 15 days

and another course

of IV MP.

November 2021 Paraparesis 3+/5 in the right

leg and 4+/5 in the left leg.

Sensory level at Th12.

Few steps without help.

Brain and spinal MRIs stable or

regression of the most enhanced lesions.

FDG PET-CT: thyroid and pulmonary

uptake disappeared or decreased, new

uptake in scapular and pelvic belts,

ischiatic, and great trochanters.

Th, thoracic; SSEPs, somatosensory evoked potentials; WBC, white blood cells, OCBs, oligoclonal bands; CSF, cerebrospinal fluid; MRI, magnetic resonance imaging; ADC, apparent diffusion coefficient; DWI, diffusion-weighted imaging; IV, intravenous;

MP, methylprednisolone; FDG PET-CT,fluorodeoxyglucose positron emission tomography with computed tomography (FDG-PET/CT).
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spinal cord was moderately swollen. Nerve conductive studies

were normal. A lumbar puncture showed a mild pleocytosis

with 8 white blood cells, elevated protein levels (101 mg/dL),

normal IgG/albumin index and identical oligoclonal bands

in the cerebrospinal fluid (CSF) and serum (type 4 pattern).

Based on the clinical history and the radiological aspects an

inflammatory origin was retained. Our differential diagnosis

workup was mainly focused on an infectious or an auto-immune

causes. An infectious panel was negative. An exhaustive blood

investigation was done with the intention to exclude auto-

immune systemic diseases, no relevant findings were found.

A screening for antibodies targeting antigens associated with

demyelinating disorders of the CNS (MOG antibody disease and

NMO spectrum) remained negative (Table 1).

Based on the exclusion of CNS infection or other

autoimmune disorders, the diagnosis of atypical ADEM was

made. The patient was treated with an intravenous course

of methylprednisolone (1 g/day for 5 days). Her condition

stabilized and she was transferred to a rehabilitation center.

Three weeks after discharge, she was readmitted because of

a clinical deterioration. Neurological evaluation showed a new

paraparesis, evaluated at 2/5 in the right leg and 3/5 in the left

leg, complete loss of pallesthesia up to the iliac crests, a sensory

Th 5 level, and a severe sensory ataxia requiring walking aids.

Six weeks afterwards, on July 14, anMRI showed an increase

in the number and size of spinal cord lesions and the appearance

of new foci of contrast enhancement (Figure 1, part 3). Brain

findings were unchanged. She was treated with 5 sessions of

plasma exchange. She improved and was discharged again to a

rehabilitation center. Three weeks later, her weakness worsened.

A new MRI showed there were new enhancing lesions in the

brain stem and cervical spinal cord.

Because of the atypical course of the disease, the diagnosis

of ADEM was reconsidered. Whole body fluorodeoxyglucose

positron emission tomography with computed tomography

(FDG-PET/CT) was obtained with the aim of excluding systemic

inflammation, namely sarcoidosis despite negative biological

markers. Results revealed increased glucose uptake not only in

the spinal cord but also in the thyroid, the thoracic aorta walls

and the lumbar spinous processes (Figure 2).

She did not have any complaints about osteo-articular

or vascular systems. Further thyroid testing with echography,

hormone levels and autoantibodies were normal. She received

IV rituximab (1 g and another after 15 days) and another course

of IV methylprednisolone (1 g/day for 5 days). Over the next 2

months, she progressively improved. At last follow-up, strength

in her right and left lower limbs was evaluated at 3+/5 and 4+/5,

respectively, the sensory level had dropped to the level of Th12

and she could take a few steps without aid. AnotherMRI showed

stability or regression of most lesions.

On repeat whole body FDG-PET/CT (13 weeks after the

first one), thyroid uptake had disappeared but other regions’

abnormal uptake had decreased and new areas of increased

FIGURE 2

(A) sagittal view of FDG-PET/CT showing hypermetabolism of

the spinal cord at the cervicothoracic level (between arrows). (B)

sagittal view of FDG-PET/CT showing hypermetabolism of the

spinal cord at the lumbosacral level (black arrow) and an

interspinous hypermetabolism at two level of the lumbar spine

(open arrows). (C) fused FDG-PET/CT image on the transverse

plane showing a marked and di�use hypermetabolism of the

thyroid gland. FDG-PET/CT, whole body 19-fluorodeoxyglucose

positron emission tomography with computed tomography.

uptake had appeared at the level of the scapular and pelvic

girdles, ischiatic and great trochanters.

Discussion

This case report raises two important points: the association

between ChAdOx1 nCoV-19 and ADEM and the meaning of

incidental findings in the FDG PET-CT.

A review of the SARS-CoV-2 vaccine and ADEM literature

showed 13 reported cases of ADEM following the administration

of a COVID-19 vaccine, which are summarized in Table 2

(4–14).

In comparison to prior cases except maybe one who had

a pseudo relapse (14), our patient had a more protracted

course, which evolved in two subsequent worsening phases

until improvement 8 months later. These phases occurred each

time after treatment cessation and there was no relapse after

the symptomatic nadir which occurred in August (Table 1).

Therefore, we conclude that these recurrences are part of the

same monophasic course.

Also, the MRI evolution of the lesions is atypical for

several reasons: the sub-acute evolution (longer than 3 months),

Frontiers inNeurology 04 frontiersin.org

2324

https://doi.org/10.3389/fneur.2022.995875
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


B
a
stid

e
e
t
a
l.

1
0
.3
3
8
9
/fn

e
u
r.2

0
2
2
.9
9
5
8
7
5

TABLE 2 Clinical and demographic characteristics of the 6 cases reporting with an ADEM post COVID vaccine.

Authors Age/gender Vaccine Time of

onset

Clinical picture CSF/laboratory

investigations

MRI Treatment Outcome/follow-

up

Cao et al. (4) 24y/F Sinovac,

inactivated

vaccine

1st dose, 14 d

after

Memory decline, headache,

low-grade fever, muscle

stiffness, extremity weakness,

and reduced appetite. GTCs

after one week.

Negative anti-AQP4,

anti-MOG antibodies,

vasculitis, OCBs.

Brain lesions, no

enhancement.

IVIG 20 g/d for 5 d. No recurrences.

Marked

improvement.

Complete

resolution of MRI

lesions. No seizures,

30d.

Ozgen

Kenangil et al.

(5)

46y/F Sinovac,

inactivated

vaccine

2nd dose, 30d

after

GTCs. Negative OCBs. Brain lesions, no

enhancement.

IV MP 1 g/d for 7d. No recurrences.

Stable. No seizure

recurrence.

Raknuzzaman

et al. (6)

55y/M mRNA-based

vaccine

1st dose, 21d

after

Headache, somnolence,

delirium and GTCs.

Normal ESR. Brain lesions. IV MP 1 g/d for 5d

followed by oral

tapering steroids.

No recurrences.

Improvement of

MRI lesions and

fully recovered, 30d.

Vogrig et al.

(7)

56y/F Pfizer-

BioNTech

COVID-19,

mRNA-based

vaccine

1st dose, 14d

after

Malaise, chills, without fever,

followed by unsteady gait,

clumsiness of left arm.

Negative: anti-AQP4,

anti-MOG antibodies,

vasculitis, OCBs.

Brain lesions, no

enhancement.

Prednisone 75mg

q.d. with gradual

tapering.

No recurrences.

Partial

improvement, 50d.

Kania et al. (8) 19y/F Moderna,

mRNA-based

vaccine

1st dose, 14d

after

Severe headache, fever, back

and neck pain, nausea,

vomiting, urinary retention.

Negative: anti-AQP4,

anti-MOG antibodies, OCBs.

Brain and medullar

lesions with

enhancement.

IV MP and TPE

(stopped because of

allergic reaction)

No recurrences.

Mild headache, 40d.

Rinaldi et al.

(9)

45y/M ChAdOx1

nCoV-19, viral

vector

1st dose, 12d

after

Numbness of all the upper

limbs, trunk, and legs and

progressive reduced visual

acuity, dysarthria, dysphagia,

clumsy right-hand

movements and urge

incontinence.

Negative: anti-AQP4,

anti-MOG antibodies, ANA,

ESR, OCBs.

Brain and medullar

lesions with

enhancement.

IV MP 1 g/d

followed by oral

prednisolone.

No recurrences.

Complete recovery,

4months.

Permezel et al.

(10)

63y/M ChAdOx1

nCoV-19, viral

vector

1st dose, 12d

after

Vertigo, fatigue, declining

cognition, disorientation and

impaired attention.

Negative: anti-AQP4,

anti-MOG, anti-neuronal,

anti-NMDAR, anti-LGI-1 and

anti-forantivoltage gated K+

channel antibodies. OCBs

positive.

Brain and medullar

lesions without

enhancement.

IV MP 1 g/d 5d

followed by TPE.

Death 20d after

hospitalization.

(Continued)
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TABLE 2 (Continued)

Authors Age/gender Vaccine Time of

onset

Clinical picture CSF/laboratory

investigations

MRI Treatment Outcome/follow-

up

Shimizu et al.

(11)

88y/F Pfizer-

BioNTech

COVID-19,

mRNA-based

vaccine

2nd dose, 29d

after

Impaired consciousness and

gaze-evoked nystagmus.

Negative: anti-onconeuronal,

anti-ganglioside antinuclear,

autoimmune vasculitis and

MBP antibodies, OCBs.

Brain lesions

without

enhancement.

IV MP 1 g/d 3d. Clinical and MRI

improvement after

66d.

Al-Quliti et al.

(12)

56y/F ChAdOx1

nCoV-19, viral

vector

1st dose, 10d

after

Paraparesis and slurred

speech.

/ Brain lesions IV steroids. Clinical

improvement.

Nagaratnam

et al. (13)

36y/F ChAdOx1

nCoV-19, viral

vector

1st dose, 14d

after

Bilateral visual impairment

and headache.

Pseudo relapse 15d after the

onset.

Negative: anti-AQP4,

anti-MOG, ANCA, ANA.

OCBs positive.

Brain lesions with

enhancement and

no spinal lesion.

Two courses of IV

MP 1 g/d 3d with a

prednisolone

tapering plan.

Clinical resolution

and MRI

improvement at

42d.

Ancau et al.

(14)

61y/M ChAdOx1

nCoV-19, viral

vector

1st dose, 2d

after

Fever, headache, apathy and

then unconsciousness and GS.

Negative: anti-AQP4,

anti-MOG, ANA, ANCA,

anti-neuronal and

paraneoplasic antibodies,

OCBs.

Brain lesions with

hemorrhages.

IV MP 1 g/d 5d

followed by TPE

with concomitant

oral MP.

MRI improvement

at 5d and vegetative

state after 98d.

Ancau et al.

(14)

25y/F ChAdOx1

nCoV-19, viral

vector

1st dose, 9d

after

Cephalalgia, thoracic back

pain, paraplegic syndrome

with Anesthesia below

dermatome Th6, sphincter

dysfunction.

Negative: anti-AQP4,

anti-MOG, ANA, ANCA,

anti-neuronal and

paraneoplastic antibodies,

OCBs.

Brain and spinal

lesions with

enhancement and

hemorrhages.

IV MP 1 g/d 5d

followed by TPE

with concomitant

oral MP

Clinical

improvement of

sensory symptoms

at 42d.

Ancau et al.

(14)

55y/F ChAdOx1

nCoV-19, viral

vector

1st dose, 9d

after

Nausea, dizziness and

meningism, worsened to

severe spastic tetraparesis and

coma.

Negative: anti-AQP4,

anti-MOG, ANA, ANCA,

anti-neuronal and

paraneoplastic antibodies,

OCBs.

Brain lesions with

hemorrhages.

IV MP 1 g/d 5d. Death

Our case

report

49y/F ChAdOx1

nCoV-19, viral

vector

1st dose, 7d

after

Neck pain, fatigue, fever,

partial transverse myelitis and

sphincter dysfunction Two

recurrences.

Negative: AQP4, MOG

antibodies, ANA, ANCA,

ESR, OCBs.

Brain and medullar

lesions with

enhancement.

IV MP 1 g/d during

5d, TPE 5 sessions,

Rituximab 2gr and

IV MP 1 g/d during

5d.

Mild improvement,

9 months.

CSF, Cerebrospinal fluid; MRI, magnetic resonance imaging; FDG PET-CT, F-fluorodeoxyglucose positron emission tomography with computed tomography; Y, years; F,Female; M, Male; d, days, GTCs, Generalized Tonico-Clonic seizures; OCBs,

OligoClonal Bands; ESR, Erythrocyte Sedimentation Rate; IV, Intravenous; IG, Immunoglobulins; MP, Methylprednisolone; TPE, Therapeutic Plasma Exchange; Th, Thoracic.
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the discordance between brain and spinal cord lesions in

terms of how they evolved and their aspects, and the limited

resolution on the last MRI after 7 months of follow-up. As

some studies have described, some lesions could take up to 18

months to disappear (15) or persisted on follow-up imaging

(16). We did have the information of the MRI evolution from

only 3 previously reported cases as shown in Table 2: one

with a complete resolution in 1 month (4) and the other

two with a partial resolution at follow-up of 30 and 66d

(6, 11). We retained the diagnosis of ADEM according to

Sejvar et al. (17) but determined it atypical because of these

particular findings.

It is the first reported case of post-ChAdOx1 nCoV-19

vaccination ADEM in which FDG-PET/CT was performed. The

observed pulmonary nodules’ hypercaption were very small

(<5mm) with a reduction of the glucose uptake at the FDG-

PET/CT control. A basic control will be performed at one year

with a CT.

The increased glucose uptake observed in the thyroid

on the first FDG-PET/CT is difficult to interpret in our

clinical setting. Mild FDG uptake by the thyroid is likely

physiological and a normal variant but moderate-to-intense

diffuse uptake is usually associated with elevated TSH,

thyroiditis, hyperthyroidism or Graves’ disease (18). One

interesting study reported aortic and thyroid unexpected

hypermetabolism without clinical relevance in a cohort of

patients with anti-neutrophil cytoplasmic antibodies-associated

vasculitis (19). In our case the complementary analysis

and also the control FDG-PET/CT were normal, leading

to the conclusion that the initial thyroid finding had no

clinical relevance.

The increased uptake of the thoracic aorta and the lumbar

spinous processes interspaces associated with the increased

uptake of the scapular and pelvic girdles, ischiatic and great

trochanters in the second FDG-PET/CT raised the question

of polymyalgia rheumatic associated with a giant cell arteritis

(PMR-GCA) diagnosis. Again, in our case we did not have any

clinical correlation and our patient is substantially younger (40

years old) than the median age (70 years old) of diagnosis for

this PMR-GCA entity (20). We did not find any description

in the literature of the association of ADEM with vasculitis,

in particular giant-cell arteritis. Large-vessel vasculitis is not

classically associated with extensive myelitis. We only found a

case report of NMO spectrum disorder which is a demyelinating

auto-immune disease of the CNS, associated with Takayasu

arteritis (21). The possibility of CNS and systemic vasculitis,

triggered by the vaccination in our case, should be raised.

Recent literature reports cases of vasculitis as cutaneous

vasculitis (22), hypersensitivity angiitis, IgA vasculitis (23) and

ANCA-associated vasculitis (24) following ChAdOx1 nCoV-

19 vaccine and one case of eosinophilic granulomatosis with

polyangiitis after the Moderna vaccine (25). We also found

one reported case of CNS vasculitis following BNT162b2,

Pfizer/BioN-Tech vaccine (26) but without FDG-PET/CT done.

Vasculitis was described as a complication during COVID-

19 because of direct endothelial damage (27) and ChAdOx1

nCoV-19 vaccine is associated with immune thrombosis and

thrombocytopenia. To date, current data do not strongly

support a causative link between vaccination and most of

vasculitis (28). The hypothesis of two autoimmune disorders

coexistence’ rather than a large-vessel vasculitis with CNS

involvement could also be raised and it is a situation already

described in the literature (29, 30). In our case, the lack

of clinical corresponding symptoms to the FDG-PET/CT

findings does not allow to confirm a specific diagnosis. For

all these reasons we will remain for now with the diagnosis

of atypical ADEM with systemic inflammation without a

clear diagnosis.

Conclusions

We report the first case of post-ChAdOx1 nCoV-

19 vaccination atypical ADEM with incidental findings

on the FDG-PET/CT consistent with a large-vessel

vasculitis, in particular GCA given the hypermetabolism

of scapular and pelvic girdles and typical of polymyalgia

rheumatica. Their relevance remains debatable at this stage

given the lack of corresponding symptoms. Clinicians

should stay aware of potential new adverse events

after immunization.
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Background: Viral infections are a proposed possible cause of inflammatory

central nervous system (CNS) demyelinating diseases, including multiple

sclerosis (MS), neuromyelitis optica spectrum disorder (NMOSD), and myelin

oligodendrocyte glycoprotein antibody-associated disease (MOGAD). During

the past 2 years, CNS demyelinating events associated with severe acute

respiratory syndrome coronavirus 2 (SARS-CoV-2) infection have been

reported, but causality is unclear.

Objective: To investigate the relationship between CNS demyelinating

disease development and exacerbation with antecedent and/or concurrent

SARS-CoV-2 infection.

Methods: A systematic literature review of all publications describing either

a new diagnosis or relapse of CNS demyelinating diseases (MS, NMOSD,

MOGAD) in association with SARS-CoV-2 infection was performed utilizing

PRISMA guidelines. Descriptive statistics were used for data analysis, using a

case analysis approach.

Results: Sixty-seven articlesmet the inclusion criteria for the study. Most of the

reported cases of NMOSD (n = 13, 72.2% of reported cases) and MOGAD (n =

27, 96.5% of reported cases) were of new disease onset, presenting with typical

clinical and radiographic features of these conditions, respectively. In contrast,

reported MS cases varied amongst newly diagnosed cases (n = 10, 10.5% of

reported cases), relapses (n = 63, 66.4%) and pseudo-relapses (n = 22, 23.2%).

The median duration between COVID-19 infection and demyelinating event

onset was 11.5 days (range 0–90 days) in NMOSD, 6 days (range−7 to +45

days) in MOGAD, and 13.5 days (range−21 to +180 days) in MS. Most cases

received high-dose corticosteroids with a good clinical outcome.

Conclusion: Based upon available literature, the rate of CNS demyelinating

events occurring in the setting of preceding or concurrent SARS-CoV-2

infection is relatively low considering the prevalence of SARS-CoV-2 infection.

The clinical outcomes of new onset or relapsing MS, NMOSD, or MOGAD

associated with antecedent or concurrent infection were mostly favorable.

Larger prospective epidemiological studies are needed to better delineate the

impact of COVID-19 on CNS demyelinating diseases.

KEYWORDS

COVID-19, multiple sclerosis (MS), neuromyelitis optica spectrum disorder (NMOSD),

myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD),

diagnosis, relapse, exacerbation
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Introduction

Multiple sclerosis (MS), neuromyelitis optica spectrum

disorder (NMOSD), and myelin oligodendrocyte glycoprotein

antibody-associated disease (MOGAD) are immune-mediated

inflammatory demyelinating diseases of the central nervous

system (CNS). While the cause of these conditions is

unknown, it is proposed that an interaction between genetic

predisposition and behavioral, environmental, and personal

factors contribute to disease development. Among the

environmental factors involved, viral infections are considered

a possible triggering factor.

Prior studies have shown a higher rate of multiple sclerosis

(MS) exacerbation in temporal association with viral infections,

especially upper respiratory tract infections caused by influenza

A virus and Epstein Barr virus (EBV) (1). EBV has also been

proposed as a causal agent in the onset of MS (2, 3). Likewise,

preceding infections have been proposed as a possible trigger

for the induction of pathogenic mechanisms leading to the

development of NMOSD and MOGAD (4–10).

During the past 2 years, neurological complications

associated with SARS-CoV-2 infection, the aetiologic agent of

the coronavirus disease 2019 (COVID-19), have been reported.

Some of these complications are thought to be caused by

direct damage to the nervous system as a result of direct

viral invasion (11). However, in most cases, the severe acute

respiratory syndrome coronavirus 2 (SARS-CoV-2) CSF RNA

test is negative, and an immune-mediated mechanism is

postulated (12–15). In this latter category, reports of MS,

NMOSD, andMOGAD cases presenting either as new diagnoses

or disease relapses in temporal association with COVID-19 have

been accumulating.

This systematic review aims to summarize the available

data regarding the occurrence of new disease onset and disease

exacerbation of MS, NMOSD, and MOGAD associated with

SARS-CoV-2 infection.

Materials and methods

This systematic literature review was performed utilizing

PRISMA guidelines. Electronic searches for published literature

were conducted by a medical librarian using Ovid MEDLINE

(1946 to present), Embase.com (1947 to present), and Web of

Science (1900 to present). The searches were run in December

2021. A search update was run in May 2022.

The search strategy incorporated controlled vocabulary and

free-text synonyms for the concepts of multiple sclerosis (MS),

neuromyelitis optica spectrum disorder (NMOSD), myelin

oligodendrocyte glycoprotein antibody-associated disease

(MOGAD), relapse, new diagnosis, and COVID-19. The full

database search strategies are documented in Appendix 1. No

restrictions on language or any other search filters were applied.

All identified studies were combined and de-duplicated in a

single reference manager (EndNote). The citations were then

uploaded into Covidence systematic review software.

The full reference list of all selected papers was screened for

additional relevant sources. Publications meeting the purpose

of the review that were not identified through the initial

electronic search were added manually to the final review. The

paper selection and data extraction process were carried out

independently by two authors (IL and SN), with a third author

available in case of disagreements.

To ensure maximal coverage of the currently

available data pertinent for the topic of this review,

we included all available case reports, case series, and

cohort studies that met the pre-defined case selection

criteria, presented either as manuscripts in peer-reviewed

scientific journals or as posters or oral presentations in a

scientific congress.

Descriptive statistics was used to present the data from

reported cases, using a case analysis approach. Cases with

missing data points were excluded from the analysis of the

missing variable.

Case selection

We included patients of any age with confirmed COVID-

19 and case description consistent with a new diagnosis or

a relapse of MS, NMOSD, or MOGAD, in accordance with

the 2017 revised McDonald criteria for MS (16), the 2015

international consensus diagnostic criteria for NMOSD (17),

and the international recommendations on the diagnosis of

MOGAD (18), respectively. Patients fulfilling a diagnosis of

clinically isolated syndrome (CIS), considered as having a

high likelihood of MS, were included as well. A relapse was

defined as a clinical episode reflecting a focal or multifocal CNS

demyelinating event lasting at least 24 h, in the absence of fever

or active infection (16).When such an event was reported during

an acute febrile state related to COVID-19, it was regarded

as a pseudo-relapse, even when considered a relapse in the

original publication.

COVID-19 cases were included if meeting one of the

following criteria, as defined by the United States Centers for

Disease Control and Prevention and the Infectious Diseases

Society of America: (1) clinical symptoms consistent with

COVID-19 without laboratory confirmation in the absence

of an alternative explanation, (2) nasopharyngeal swab

positive for COVID-19 PCR with or without symptoms,

or (3) positive COVID-19 serologies with or without

symptoms (19, 20).

No assumptions were made regarding the

duration between COVID-19 and the onset of

neurological manifestations. Missing data was noted as

not available.
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FIGURE 1

PRISMA flow chart of the article selection process.

Exclusion criteria

Cases describing clinical manifestations consistent with

demyelinating events of the CNS (i.e., optic neuritis, transverse

myelitis, acute disseminated encephalomyelitis, etc.) not

fulfilling the diagnostic criteria for MS, NMOSD, or MOGAD

as described above, were excluded from this review. Papers

reporting a suspected diagnosis of COVID-19 that do not fulfill

the diagnostic criteria described above, and papers not available

for full-text review were also excluded.

Results

Sixty-seven articles were included in the final review.

Twelve articles describe post-COVID-19 NMOSD (21–32), 25

describe post-COVID-19 MOGAD (33–56), and 29 describe

post-COVID-19MS (57–85). One paper describes three patients

with post-COVID-19 demyelinating events, of which one is

NMOSD, one- MOGAD, and one- clinically isolated syndrome

(CIS) (86). Another paper describes various CNS inflammatory

diseases, of which three were MOGAD and one—NMOSD (87).

A PRISMA flow chart illustrating the article selection process is

presented in Figure 1.

Post-COVID-19 NMOSD

Cases of post-COVID-19 NMOSD are summarized in

Table 1.

Collectively, 13 case reports and one case series describe the

occurrence of 18 NMOSD-related clinical events in the context

of COVID-19 (21–32, 86, 87). Eight patients were females, four

were males, and in six cases the patients’ sex was not reported.

The mean age was 33.24± 18.5 years.

Ten case reports describe the onset of newly diagnosed

NMOSD in people without previous neurological disease

(22–26, 28–30, 32, 87). Two case reports describe people

with previously undiagnosed neurological disease who then

presented with a second clinical manifestation in temporal

association to COVID-19, leading to an NMOSD diagnosis (27,

86). In one case, the aquaporin-4 antibodies (AQP4 Abs) were

retrospectively found to be positive in a stored serum sample

drawn 11months before SARS-CoV-2 infection andmore than a

year before the clinical onset of NMOSD (31). Apostolos-Pereira

et al. report a series of 34 NMOSD patients who developed

COVID-19. Five of these patients (15%) developed neurological

manifestations that were regarded as relapse or pseudo-relapse

during or after SARS-CoV2 infection (21).

In 10 case reports, AQP4-IgG Abs were positive (22–27, 29,

31, 86, 87). In two case reports the AQP4 abs were negative
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TABLE 1 COVID-19 and NMOSD: Cases of para- and post-infectious disease development, relapse or pseudo-relapse.

References Number

of

patients

Diagnosis GenderAge Ethnicity Clinical

presentation

AQP4-

IgG

status

Time from diagnosis

of COVID-19 to

clinical onset

Method of

COVID-19

diagnosis

CSF

SARS-

CoV-2

PCR

Treatment of

acute attack

Outcome

Barone et al.

(22)

1 New onset M 35 NA ON+ acute myositis Positive

(titer not

reported)

1 month Clinical

criteria+

serology

NA IVMP Poor recovery of

vision, full recovery

of muscle

symptoms

Batum et al.

(23)

1 New onset F 50 NA LETM Positive

(titer not

reported)

Concomitant Clinical

symptoms

NA IVIG 0.4 g/kg for 5

days, then PLEX (10

courses every other

day)+ IVMP

(750mg every other

day)

Some improvement

in sensory function

in the upper limbs,

no motor

improvement

Shaw et al. (29) 1 New onset M NA

*Septuagenarian

NA ON+ TM Positive

(titer not

reported)

9 days SARS-CoV-2

PCR

NA NA Died due to sepsis

and multiorgan

failure

Chuang and

Miskin (24)

1 New onset NA NA NA LETM+ APS Positive

(titer not

reported)

Neurological symptoms

appeared shortly after

COVID-19 diagnosis

Clinical

symptoms+

serology

NA NA NA

Corrêa et al.

(25)

1 New onset F 51 Caucasian Encephalomyeloradiculitis Positive

(titer not

reported)

2 weeks SARS-CoV-2

PCR

Negative IVMP 1 gr X5 days

followed by PLEX

Remarkable

improvement

Nasreldein

et al. (28)

1 New onset F 56 NA BON+ diencephalic

syndrome (lethargy and

disorientation)

NA 2 weeks SARS-CoV-2

PCR

NA IVMP 1 gr/day

(treatment duration

not reported)

Deceased

Hooshmand

et al. (27)

1 New diagnosis

*Patient

suffered from

intractable

emesis and

visual loss 30

years prior

M 49 NA ON Positive

(1:10 by

FACS

assay)

2 weeks SARS-CoV-2

PCR

NA NA NA

(Continued)
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TABLE 1 (Continued)

References Number

of

patients

Diagnosis GenderAge Ethnicity Clinical

presentation

AQP4-

IgG

status

Time from diagnosis

of COVID-19 to

clinical onset

Method of

COVID-19

diagnosis

CSF

SARS-

CoV-2

PCR

Treatment of

acute attack

Outcome

Shukla et al.

(30)

1 New onset F 13 Asian BON, APS, brainstem

syndrome, cerebral

syndrome

Negative NA Clinical

criteria+

serology

NA CS, IVIG,

Rituximab

Improved

Khair et al.

(86)

1 New onset

*Patient had

an

undiagnosed

ADEM-like

demyelinating

episode 6

month prior

F 14 NA Left eye blurring of

vision, neck pain,

generalized fatigue, and

right leg numbness

Positive

(titer not

reported)

Concomitant SARS-CoV-2

PCR

NA NA NA

Ghosh et al.

(26)

1 New onset M 20 Asian-Indian APS+ LETM Positive

(titer not

reported)

5 days SARS-CoV-2

PCR

NA IVMP 1 gr/d for 5

days; RTX

Some improvement

of the motor power

in all limbs and

resolution of the

sensory symptoms

Jentzer et al.

(31)

1 New onset F 71 Caucasian LETM Positive

(titer not

reported)

3 months SARS-CoV-2

PCR

NA NA NA

Das et al. (32) 1 New onset F 16 ON+ LETM Negative 4 months Clinical

symptoms+

serology

NA IVMP+ oral

prednisone taper+

RTX

Improvement of

vision; outcome of

myelopathic

symptoms not

reported

(Continued)
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TABLE 1 (Continued)

References Number

of

patients

Diagnosis GenderAge Ethnicity Clinical

presentation

AQP4-

IgG

status

Time from diagnosis

of COVID-19 to

clinical onset

Method of

COVID-19

diagnosis

CSF

SARS-

CoV-2

PCR

Treatment of

acute attack

Outcome

Aubart et al.

(87)

1

*Also

describes

3

MOGAD cases

New onset F 14 NA ON Positive

(titer not

reported)

NA

*Inclusion criteria required

positive testing for

SARS-CoV-2 infection

performed <6 weeks before

onset of neurological

symptoms or seroconversion

following the symptoms with

a prior history of

SARS-CoV-2 exposure.

SARS-CoV-2

PCR

NA IVMP Complete recovery

Apostolos-

Pereira et al.

(21)

34

NMOSD

patients

who

developed

COVID-

19

Five patients

(15%)

presented

neurologic

manifestations

(relapse or

pseudo

exacerbation)

during or after

SARS-CoV2

infection

NA 48, 25, 16, 22,

32

NA 2- ON, 1-visual acuity

worsening in previous

ON, 1-TM, 1- not

reported

15

patients-

positive;

7-

negative;

7- not

tested (all

patients

fulfilled

the

NMOSD

diagnostic

criteria).

*The

antibody

status of

the five

patients

who had

relapse is

not specified.

In one patient neurological

symptoms appeared 7 days

after the viral infection, in

one- concomitantly with the

febrile illness, in the other 3-

not reported

18-

SARS-CoV-2

PCR; 16-

Clinical

symptoms

*The method

of diagnosis of

the five

patients who

had relapse is

not specified.

NA 2- oral CS; 2-

IVMP; 1- not

reported

3- Good recovery;

1- Poor recovery; 1-

Worsening of EDSS

from 4.0 to 5.0

APS, area postrema syndrome; BON, bilateral optic neuritis; CS, corticosteroids; IVIG, intravenous immunoglobulins; IVMP, intravenous methylprednisolone; LETM, longitudinally extensive transverse myelitis; ON, optic neuritis; PLEX, plasma

exchange; RTX, rituximab; TM, transverse myelitis.
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(30, 32) and each fulfilled the diagnostic criteria for seronegative

NMOSD. In one report, AQ4 serostatus was not reported (28).

In the case series by Apostolos-Pereira et al., 15 patients tested

positive for the AQP4-IgG Abs, 7 tested negative, and in 7

the antibody testing was not available (all patients fulfilled the

NMOSD diagnostic criteria). The AQP4 antibody status of the

five patients who had a relapse was not specified (21).

Neurological symptoms appeared after a median of 11.5

days (range 0–90 days) from COVID-19 diagnosis. In all

cases, COVID-19 symptoms preceded the occurrence of

neurological symptoms.

Treatment consisted of corticosteroid (CS) monotherapy

in seven cases (21, 22, 28, 87), CS + rituximab in two cases

(26, 32), intravenous methylprednisolone (IVMP)+ intravenous

immunoglobulin (IVIG)+plasma exchange (PLEX) in one case

(23), CS+IVIG+ rituximab in one case (30), and CS+ PLEX in

one case (25). In the remaining six cases, the treatment regimen

was not reported (21, 24, 27, 29, 86). A favorable outcome

(i.e., improvement of neurological symptoms) was reported in

eight patients (21, 25, 26, 30, 32, 87), while poor neurological

outcome (i.e., worsening of neurological disability) was reported

in four patients (21–23). Two patients deceased due to systemic

complications (28, 29). The clinical outcome was not reported

for the remaining four patients (24, 27, 31, 86).

Post-COVID-19 MOGAD

Post-COVID-19 MOGAD cases are summarized in Table 2.

A total of 28 cases of MOGAD occurring in temporal

relation to COVID-19 have been described (33–47, 56, 86, 87).

Seventeen were males, and 11 were females. The mean age was

28.1 ± 20.3 years (range 1–69 years; 10 patients <18 years

old). The median time between COVID-19 and neurological

symptoms was 6 days (range−7-+45 days). In one case, the

neurological symptoms preceded the diagnosis of COVID-19 by

1 week (33). In four cases, neurological symptoms developed

concomitantly with COVID-19 (37, 39, 42, 86), and in the

remaining 23, COVID-19 diagnosis preceded the onset of

neurological symptoms. In 27 (96.5%), a new diagnosis of

MOGADwasmade in people without prior neurological disease.

In one case, a relapse occurred in a patient with knownMOGAD

(43). The MOG-IgG antibodies were positive in all cases. In

one case, NMDAR antibodies and MOG-IgG antibodies were

detected concomitantly (86). In another case, human herpes

virus 6 (HHV6) PCR was also positive (46). Eighteen patients

were treated with CS alone (intravenous methylprednisolone

followed by oral prednisone taper, n = 15; IVMP alone, n =

2; details of steroid regimen were not described, n = 1) (42).

One patient was treated with intravenous immunoglobulins

(IVIG) alone (33). One patient received IVMP+ IVIG (45),

three received IVMP + PLEX (40, 43, 46), and three received

IVMP+ PLEX+ IVIG (48, 55, 56). One patient was not

treated (87). The treatment regimen was not described for

one patient (38). Clinical improvement was reported for

26 patients (93%).

Post COVID-19 MS

Table 3 illustrates MS cases occurring in the context of

COVID-19.

Fifteen case reports and case series reported the

occurrence of MS relapse/pseudo-relapse or the onset of

a first demyelinating event consistent with MS or CIS in

19 patients (57, 63, 65–69, 76–79, 81, 82, 84, 86). Twelve

observational case series and cohort studies documented the

occurrence of relapses or pseudo-relapses among patients

with a known diagnosis of MS and confirmed diagnosis of

COVID-19 (58–61, 64, 71–75, 83, 85). Collectively, 54 relapses

and 20 pseudo-relapses were reported in 804 patients (6.7 and

2.5%, respectively).

Three observational cohort studies of COVID-19 patients

with various neurological manifestations reported MS cases (62,

70, 80). Overall, one case of multifocal demyelination consistent

with MS and three MS relapses were reported among 481

patients (0.8%).

Considering all the reported cases, a total of 73

demyelinating events consistent with CIS/MS (10 new diagnoses

and 63 relapses) and 22 events defined as pseudo-relapse were

reported in 1,305 people (5.6 and 1.7%, respectively). Of these 73

events, 11 were in females, 10 in males, and sex was not reported

in the remaining 64 cases. The mean age was 38.45 ± 15.93

years. Most relapses or first demyelinating events consistent

with MS/CIS occurred after the onset of COVID-19. However,

in two cases neurological symptoms preceded the diagnosis of

COVID-19 by 6 and 21 days, respectively (57, 76). The median

time from COVID-19 diagnosis to demyelinating event onset

was 13.5 days (range−21-180 days).

Nine hundred eighty-six people with a known MS and

COVID-19 diagnosis were reported. Of these, 624 (63.3%) were

treated with various disease-modifying treatments (DMTs), 14

(1.5%) were not treated, and for 165 (16.7%), the information

on DMTs was not reported. Twenty-one MS patients treated

with DMTs (3.4%) had a relapse in temporal association with

COVID-19. Five MS patients treated with DMTs (0.8%) had

a pseudo relapse, and 144 (23.1%) did not have neurological

worsening. The remaining 455MS patients treated with DMTs

(73%) were reported in larger cohorts in which some people

were not treated. The information regarding relapses in these

cohorts was not stratified between treated and untreated patients

(61, 75).

Most MS/CIS cases received treatment with IVMP 1 gram

for 3–5 days (57, 61, 65, 68, 76, 77, 79, 80, 82) and had a

favorable outcome (57, 65, 68, 77–82). Treatment of pseudo-

relapses was primarily focused on COVID-19 management,

with return to baseline neurological status upon infection

recovery (63, 69).
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TABLE 2 COVID-19 and MOGAD: Cases of para- and post-infectious disease development or exacerbation.

References Number

of

patients

Diagnosis Gender Age Ethnicity Clinical

presentation

Method of

COVID-19

diagnosis

CSF SARS-

CoV-2

PCR

Time from

diagnosis of

COVID-19 to

clinical onset

Treatment Outcome

Zhou et al. (44) 1 New

onset

M 26 Hispanic BON+TM SARS-CoV-2

PCR

Negative A few days IVMP 1 gr X 5d

followed by oral

prednisone taper

Rapid improvement

in vision, outcome

of myelopathic

symptoms not

reported

Ide et al. (35) 1 New

onset

F 24 NA ON+ TM

(diagnosed as

ADEM d/t

additional

brain lesions)

SARS-CoV-2

PCR

Negative 3 weeks IVMP 1 gr X5 days

followed by

prednisolone taper

Visual symptoms

Improved

spontaneously;

other symptoms

improved after

treatment

Khan et al. (36) 1 New

onset

M 11 NA BON SARS-CoV-2

PCR

NA 4 days IVMP+

prednisone taper

Improved vision

Kogure et al. (37) 1 New

onset

M 47 Asian ON (clinically

unilateral, but

bilateral optic

nerve

enhancement

on MRI)

SARS-CoV-2

PCR

Negative Concomitant IVMP 1 gr X 3 days

+ prednisone taper

Rapid improvement

in pain and vision

Pinto et al. (40) 1 New

onset

F 44 NA CNS

inflammatory

vasculopathy

SARS-CoV-2

PCR

Negative

(repeated

twice)

7 days IVMP 1 gr X5 days

followed by oral

prednisolone 60

mg/d,+ PLEX

Rapid clinical

improvement

Woodhall et al. (43) 1 Relapse F 39 NA ON SARS-CoV-2

PCR

NA 6 days IVMP 1 g/day for 5

days followed by

five cycles of PLEX

Partial

improvement

(Continued)
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TABLE 2 (Continued)

References Number

of

patients

Diagnosis Gender Age Ethnicity Clinical

presentation

Method of

COVID-19

diagnosis

CSF SARS-

CoV-2

PCR

Time from

diagnosis of

COVID-19 to

clinical onset

Treatment Outcome

Sawalha et al. (41) 1 New

onset

M 44 Hispanic BON SARS-CoV-2

PCR

NA One week IVMP 1 g/day for 5

days followed by

prednisone taper

Complete recovery

in one eye,

remarkable

recovery but not

complete in the

other eye

Khair et al. (86)

1

*Also

describes

one case

of

NMOSD

and

one CIS

New

onset

*Concomitant

NMDARAbs

F 16 NA Headache,

blurred vision,

leg numbness,

and weakness.

SARS-CoV-2

PCR

NA Concomitant NA NA

Lindan et al. (38) 1 New

onset

M 4 NA Seizures, facial

palsy, and four

limb

dysfunction

SARS-CoV-2

serology

NA NA IVMP Marked

improvement

Peters et al. (39) 1 New

onset

M 23 NA Headaches and

dysesthesia

followed by

seizures,

inattention

and cognitive

slowing

SARS-CoV-2

PCR

Negative Initial neurological

symptoms

developed

concomitantly with

positive

COVID-testing;

further symptoms

developed over the

next 4 weeks

IVMP 1 gr X5 days

followed by oral

steroid taper

Gradual clinical and

radiological

resolution

(Continued)
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TABLE 2 (Continued)

References Number

of

patients

Diagnosis Gender Age Ethnicity Clinical

presentation

Method of

COVID-19

diagnosis

CSF SARS-

CoV-2

PCR

Time from

diagnosis of

COVID-19 to

clinical onset

Treatment Outcome

Vraka et al. (42) 1

*Describes

another

case of

encephalopathy

with

negativeMOG-

IgG

New

onset

F 13

months

NA ADEM SARS-CoV-2

PCR

Negative Concomitant Steroids Gradual

improvement

Ahsan et al. (33) 1 New

onset

F 7 NA ADEM SARS-CoV-2

serology

NA Neurological

symptoms preceded

COVID-19 by a

week

IVIG 2 g/kg over 3

days

Gradual

improvement

(almost returned to

her baseline with

mild dysarthria)

de Ruijter et al. (34) 1 New

onset

M 15 Caucasian BON Clinical

criteria

NA A few weeks IVMP 1 gr/d for 3

days

Improved (almost

full recovery)

Durovic et al. (47) 1 New

onset

M 22 NA Encephalitis SARS-CoV-2

PCR

Negative 3 days IVMP 1 gr/d for 5

days

Complete clinical

and radiological

resolution

Jumah et al. (46) 1 New

onset

*Concomitant

HHV6 infection

M 61 NA LETM SARS-CoV-2

PCR+

serology

Negative 1 week IVMP 1 gr/d for 5

days+ prednisone

taper+

Gancyclovir, PLEX

(7 sessions)

Marked

improvement

Sinha et al. (45) 1 New

onset

F 11 NA BON SARS-CoV-2

PCR

NA 3 days IVMP 1 gr/d+

IVIG 2gr/kg for 5

days+ prednisone

taper

Improved

(Continued)
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TABLE 2 (Continued)

References Number

of

patients

Diagnosis Gender Age Ethnicity Clinical

presentation

Method of

COVID-19

diagnosis

CSF SARS-

CoV-2

PCR

Time from

diagnosis of

COVID-19 to

clinical onset

Treatment Outcome

Yang et al. (55) 1 New

onset

M 57 NA LETM SARS-CoV-2

PCR

NA 3 weeks IVIG× 4 days, then

five sessions of

PLEX, then IVMP 1

gr/d for 5 days+

steroid taper

NA

Assavapongpaiboon

et al. (50)

1 New

onset

F 35 Thai BON SARS-CoV-2

PCR

Negative 1 week IVMP 1 gr/d for 5

days+ steroid taper

Improved

Dias da Costa et al.

(52)

1 New

onset

M 31 NA LETM SARS-CoV-2

serology

Negative 21 days IVMP 1 gr/d for 5

days+ steroid taper

Almost complete

resolution of motor

and sensory

symptoms, mild

urinary symptoms

Doukas et al. (53) 1 New

onset

M 40 NA TM SARS-CoV-2

serology

NA 12 days IVMP 1 gr/d for 5

days+ steroid taper

Gradual

improvement

Jossy et al. (54) 1 New

onset

M 38 NA ON SARS-CoV-2

serology

NA 6 weeks IVMP 1 gr/d for 3

days+ steroid taper

Complete

resolution

Rojas-Correa et al.

(49)

1 New

onset

M 69 NA BON Clinical

criteria

Negative 45 days IVMP 1 gr/d for 5

days+ steroid taper

Improved

Sardar et al. (48) 1 New

onset

F 38 NA BON

*Diagnosed

with

concomitant

idiopathic

intracranial hypertension

Clinical

criteria

NA 2 weeks IVMP for 5 days,

PLEX, IVIG for 5

days

Acetazolamide

Significant

improvement

(Continued)
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TABLE 2 (Continued)

References Number

of

patients

Diagnosis Gender Age Ethnicity Clinical

presentation

Method of

COVID-19

diagnosis

CSF SARS-

CoV-2

PCR

Time from

diagnosis of

COVID-19 to

clinical onset

Treatment Outcome

Žorić et al. (51) 1 New

onset

M 63 NA ON SARS-CoV-2

serology

NA 4 weeks IVMP 1 gr/d for 5

days+ steroid taper

Improved

Aubart et al. (87) 3

*Also

describes

one case

of NMOSD

New

onset

2M, 1F 1.5, 4, 10 NA ADEM SARS-CoV-2

PCR or

serology

NA NA

*Inclusion criteria

required positive

testing for

SARS-CoV-2

infection performed

<6 weeks before

onset of

neurological

symptoms or

seroconversion

following the

symptoms with a

prior history of

SARS-CoV-

2 exposure.

2- IVMP, 1- not

treated

Complete recovery

Cay-Martínez et al.

(56)

1 New

onset

F 7 NA ADEM SARS-CoV-2

serology

Negative 1 week IVMP+ PLEX+

IVIG+ oral

prednisone taper

Resolution of facial

and upper

extremity weakness,

mild improvement

in leg weakness

ON, optic neuritis; BON, bilateral optic neuritis; TM, transverse myelitis; LETM, longitudinally extensive transverse myelitis; ADEM, acute demyelinating encephalomyelitis; IVMP, intravenous methylprednisolone; IVIG, intravenous immunoglobulins;

PLEX, plasma exchange.
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TABLE 3 COVID-19 and MS: Cases of para- and post-infectious disease development, relapse or pseudo-relapse.

References Number of

patients

Diagnosis Gender Age Ethnicity Clinical

presentation

Method of

COVID-19

diagnosis

DMT before

COVID-19

infection

Time from

diagnosis of

COVID-19 to

clinical onset

CSF SARS-

CoV-2

qPCR

Treatment Outcome

Case reports

Moore et al.

(77)

1 New onset M 28 NA Brainstem

syndrome (vertigo,

oscillopsia,

diplopia, facial

numbness)

Clinical

criteria

None Neurological

symptoms appeared

10 days after

COVID-19

symptoms

Negative IVMP 1 g/day for 3

days followed by

prednisone taper

Improved

Pignolo et al.

(79)

2 1 new onset, 1

relapse

M, F 21,52 NA Hand paresthesia

and facial nerve

palsy; Right-sided

weakness and

clumsiness

Clinical

criteria,

serology

None (new onset)

Cladribine (relapse)

MS onset a few days

after COVID-19;

MS relapse 2

months after

COVID-19

Negative in

one case (new

onset), NA in

the other

IVMP 1 g/day for 5

days

Relapse- fully

resolved, new

onset disease-

partial recover

Fragoso et al.

(66)

1 New onset F 27 Caucasian Left side dysesthesia Clinical

criteria

None 6 months Negative NA NA

Wildemann

et al. (81)

1 MS relapse

and Takotsubo

cardiomyopathy

F 39 NA Brainstem

syndrome

(dizziness, diplopia,

dysarthria,

dysphagia)

SARS-CoV-2

PCR

DMF 10 days Negative IVMP 2 gr/day for 5

days+ PLEX

(seven courses)

Slow

improvement

Yavari et al.

(82)

1 New onset F 24 NA Diplopia, facial

nerve palsy,

fingertips

paresthesia

SARS-CoV-2

PCR

None 1 month NA IVMP 1 gr/day for 4

days

Improved

(Continued)
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TABLE 3 (Continued)

References Number of

patients

Diagnosis Gender Age Ethnicity Clinical

presentation

Method of

COVID-19

diagnosis

DMT before

COVID-19

infection

Time from

diagnosis of

COVID-19 to

clinical onset

CSF SARS-

CoV-2

qPCR

Treatment Outcome

Palao et al.

(78)

1 New onset F 29 NA ON SARS-CoV-2

serology

None 2–3 weeks Negative IVMP 1 gr/day

(treatment duration

not reported)

followed by oral

prednisolone taper

Improved

Florae et al.

(65)

1 Relapse

*3 weeks post-

partum

F 40 Caucasian Right sided

paresthesia and

motor disability

SARS-CoV-2

PCR

None No systemic

symptoms, tested

positive on swab

PCR upon

admission

NA IVMP 1 gr/d for 3

days;

hydroxychloroquine

4 g/day,

lopinavir/ritonavir

4 tablets/day for 10

days, and

azithromycin 1

g/day, for 3 days

Remission of

neurological

deficit after 2

weeks

Khair et al.

(86)

1 CIS M 8 NA Double vision,

worsening fine

motor skills, and

ataxic gait

Clinical

criteria

None 1 month NA NA NA

Kataria et al.

(69)

3 Pseudo-relapse 2M, 1F 65, 52, 69 NA Fatigue, general

weakness

SARS-CoV-2

PCR

GA Concomitant NA Only COVID-19

management

Improved to

baseline status

(Continued)
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TABLE 3 (Continued)

References Number of

patients

Diagnosis Gender Age Ethnicity Clinical

presentation

Method of

COVID-19

diagnosis

DMT before

COVID-19

infection

Time from

diagnosis of

COVID-19 to

clinical onset

CSF SARS-

CoV-2

qPCR

Treatment Outcome

Barzegar et al.

(57)

1 Relapse F 42 NA Muscle aches, gait

difficulty, sensory

disturbances, and

weakness on the

right side

SARS-CoV-2

PCR

Fingolimod Neurological

symptoms preceded

COVID-19

symptoms by 6 days

NA Initially IVMP 1

gr/d for 3 days; then

azithromycin,

ceftriaxone,

hydroxychloroquine,

oseltamivir, and

piperacillin/tazobactam

Gradual

improvement

Domingues

et al. (63)

1 CIS F 42 NA Left side paresthesia Clinical

criteria

None Concomitant Positive No steroids,

COVID-19

management not

detailed

Full recovery

Jaisankar et al.

(67)

1 Pseudo-relapse M 45 Caucasian Dysphagia, altered

mental status,

general

deterioration

SARS-CoV-2

PCR

None COVID-19

diagnosed 2 weeks

prior to

neurological

deterioration. *Also

diagnosed with

acute renal failure,

anemia, PE and

sepsis.

NA IVMP (dose and

duration not

reported). Received

fluids, packed red

blood cells and

transfusions,

anticoagulants,

ciprofloxacin

Ongoing

disability

(Continued)
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TABLE 3 (Continued)

References Number of

patients

Diagnosis Gender Age Ethnicity Clinical

presentation

Method of

COVID-19

diagnosis

DMT before

COVID-19

infection

Time from

diagnosis of

COVID-19 to

clinical onset

CSF SARS-

CoV-2

qPCR

Treatment Outcome

Karsidag et al.

(68)

2 Two patients

with

new-onset MS

(* + 1 ADEM)

1F, 1M 42, 32 NA Jaw and left facial

pain and

paresthesia;

numbness in left

jaw

Clinical

criteria

None 2–3 weeks; 4

months

1 Negative, 1

Positive

1-IVMP 1 gr/d for 7

days; 1- IVMP 1

gr/d for 10 days

Improved

Möhn et al.

(76)

1 Relapse M 42 NA Gait and limb ataxia SARS-CoV-2

PCR

Teriflunomide Neurological

symptoms preceded

COVID-19 by 3

weeks

NA IVMP 1 gr/d for 4

days

Initial

improvement,

then worsened

concomitantly

to COVID

symptoms

Finsterer (84) 1 Relapse F 27 NA TM Clinical

criteria

IFNβ-1a 2 weeks NA CS Slow

improvement

Observational case series and cohort studies of MS patients

Khurana et al.

(71)

5 RRMS patients 1 relapse 3F, 2M Mean

(SD) age

35.60

(13.94)

NA NA SARS-CoV-2

PCR

Treated with DMT,

type not specified

NA NA NA NA

Maghzi et al.

(73)

3 RRMS, 1 SPMS, 1

RIS

No relapses 3M, 2F Mean

53.6

NA NA SARS-CoV-2

PCR

Teriflunomide NA NA NA NA

Mantero et al.

(74)

7 RRMS patients No relapses. 1

pseudo-relapse

5F, 2M Mean

35.9±

11.4

NA Left hand

paresthesia

Clinical

criteria

DMF Concomitant NA NA NA

(Continued)
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TABLE 3 (Continued)

References Number of

patients

Diagnosis Gender Age Ethnicity Clinical

presentation

Method of

COVID-19

diagnosis

DMT before

COVID-19

infection

Time from

diagnosis of

COVID-19 to

clinical onset

CSF SARS-

CoV-2

qPCR

Treatment Outcome

Conway et al.

(60)

72 RRMS, 21 SPMS,

8 PPMS, 2 CIS,

eight related

disorders

2/111 (1.8%)

relapses, 19

(17.2%)

pseudo-

relapses and 27

(24.3%) with

worsening of

pre-existing

MS symptoms.

Five patients

(4.5%) had

new MRI

lesions on T2

or T1Gd scans

85

females

(77%)

Mean age

49 (SD

12.2)

years

NA NA Clinical

criteria

NA NA NA NA

Chyzhyk et al.

(59)

17 relapsing MS

patients

No clinical or

radiological

signs of MS

disease activity

During 6

months

of observation

4M, 13 F Mean age

38± 7.6

years

NA NA Clinical

criteria

Treated with DMT,

type not specified

NA NA NA

(Continued)
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TABLE 3 (Continued)

References Number of

patients

Diagnosis Gender Age Ethnicity Clinical

presentation

Method of

COVID-19

diagnosis

DMT before

COVID-19

infection

Time from

diagnosis of

COVID-19 to

clinical onset

CSF SARS-

CoV-2

qPCR

Treatment Outcome

Czarnowska

et al. (61)

426 individuals

with MS

27 patients

(6.34%) had a

relapse at 3

months after

the initial

infection

142M,

284F

Mean

40.27±

10.12

NA Symptoms during

the relapse were as

following:

pyramidal track

symptoms (16

people), cerebellar

symptoms (eight

people), sensory

deficit (four

people), brainstem

symptoms (3

people), urinary

incontinence (1

person)

SARS-CoV-2

PCR (n=

361),

SARS-CoV-2

serology (n=

24) or

combination

of tests

Interferon beta (n

= 77); GA (n= 43);

DMF (n= 171);

teriflunomide (n=

34); fingolimod (n

= 16); natalizumab

(n= 29);

ocrelizumab (n=

29); cladribine (n=

7); alemtuzumab (n

= 1); mitoxantrone

(n= 1); ozanimod

(n=12); other (n=

12); none (n= 4)

*Type of DMT in

patients who

relapsed

not specified

The mean time for

relapse occurrence

after the

SARS-CoV-2

infection was 43

days

All treated with

IVMP 3–5 gr

NA

Michelena

et al. (75)

41MS patients with

confirmed

COVID-19

diagnosis

25 patients

(61%) reported

neurological

worsening,

three patients

(7.7%) met

criteria for

relapse

24 F, 17M Mean

42.9 years

(SD 11.3)

NA Motor (n= 12)

Sensory (n= 10)

Visual (n= 7)

Balance disorders

(n= 3) Memory (n

= 6) Fatigue (n=

13)

SARS-CoV-2

PCR

35 treated with

DMTs (23-oral

DMTs,

4-injectables,

8-monoclonal

antibodies)

Concomitant (n=

16), within the 1st

month (n= 5),

beyond the 1st

month (n= 4)

NA CS (type, dose, and

duration not

reported)

NA

(Continued)
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TABLE 3 (Continued)

References Number of

patients

Diagnosis Gender Age Ethnicity Clinical

presentation

Method of

COVID-19

diagnosis

DMT before

COVID-19

infection

Time from

diagnosis of

COVID-19 to

clinical onset

CSF SARS-

CoV-2

qPCR

Treatment Outcome

Luetic et al.

(72)

17 RRMS and 1 RIS

patients

No MS

relapses

occurred

during or after

COVID-19

course.

13 F, 5M Mean

41.2±

12.6

NA NA 11-

SARS-CoV-2

PCR; 8-

Clinical

criteria

Teriflunomide NA NA NA NA

Etemadifar

et al. (64)

A retrospective

cohort study

comparing the risk

of relapse in RRMS

patients with (n=

56) and without

COVID-19 (n= 69)

*Within 6 months

from COVID

4 patients in

the MS-

COVID-19

group (7.14%)

had a relapse

compared to

18 patients in

the RRMS

without

COVID-19

group

(26.09%).

Incidence rate

ratio: 0.275; p

= 0.026

COVID-

19 group:

40

F/15M;

non

COVID-

19 group:

62 F/ 7M

COVID-

19 group:

36.89

(±9.06);

non-

COVID-

19 group:

36.19

(±8.97)

NA 2-limb paresthesia,

1-diplopia, 1-lower

extremity weakness

SARS-CoV-2

PCR

Teriflunomide (n=

3); fingolimod (n=

9); DMF (n= 22);

AZA (n= 5);

Interferon ß 1b (n

= 3; Interferon ß 1a

(n= 6); GA(n= 3);

RTX (n= 3); NTZ

(n= 2)

*Type of DMT in

patients who

relapsed

not specified

Only reported that

the 4 relapses in

COVID-19

confirmed patients

occurred after

COVID-19

diagnosis

NA NA NA

(Continued)
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TABLE 3 (Continued)

References Number of

patients

Diagnosis Gender Age Ethnicity Clinical

presentation

Method of

COVID-19

diagnosis

DMT before

COVID-19

infection

Time from

diagnosis of

COVID-19 to

clinical onset

CSF SARS-

CoV-2

qPCR

Treatment Outcome

Etemadifar

et al. (83)

A prospective-

retrospective hybrid

single center cohort

study comparing

the risk of relapse

during 1 year pre-

and

post-COVID-19

period in 53 RRMS

patients

*Some patients may

have been included

in the previous

study by the same

first author

11 patients

(20.75%) in the

post-COVID-

19 period and

16 patients

(30.19%) in the

pre-COVID-

19 period

experienced a

relapse (p=

0.30)

45 F, 8M Mean

38.42 (SD

8.77)

NA NA Clinical

criteria or

SARS-CoV-2

PCR

*Number of

patients in

each group

not specified

IFN beta (n= 4);

DMF (n= 21);

teriflunomide (n=

1); GA (n= 1);

fingolimod (n=

12); RTX (n= 9);

AZA (n= 2); none

(n= 3)

NA NA NA NA

(Continued)
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TABLE 3 (Continued)

References Number of

patients

Diagnosis Gender Age Ethnicity Clinical

presentation

Method of

COVID-19

diagnosis

DMT before

COVID-19

infection

Time from

diagnosis of

COVID-19 to

clinical onset

CSF SARS-

CoV-2

qPCR

Treatment Outcome

Barzegar et al.

(58)

A retrospective

observational study

comparing the

relapse rate among

41MS patients with

confirmed

COVID-19 during a

pre-defined at-risk

period (from 2

weeks before to 5

weeks after

COVID-19) and the

previous 2 years

Five patients

had a relapse

during the

defined at-risk

period. Other

two patients

had

neurological

worsening that

did not meet

clinical relapse

definition.

Increased

relapse rate

during the

at-risk period

(RR: 2.566,

95% CI:

1.075–6.124, P

= 0.034)

31

females,

10 males

Mean

35.10±

9.20,

NA NA SARS-CoV-2

PCR

NA All relapses

occurred after the

onset of COVID-19

(Mean 3.2 weeks,

range 1–5 weeks)

NA NA

Paybast et al.

(85)

202MS patients

followed for 1 year

25 patients

developed

COVID-19, of

which 1 (4%)

had a relapse

164F,

37M

38.09±

10.44

NA TM SARS-CoV-2

PCR

NA NA NA PLEX NA

(Continued)
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TABLE 3 (Continued)

References Number of

patients

Diagnosis Gender Age Ethnicity Clinical

presentation

Method of

COVID-19

diagnosis

DMT before

COVID-19

infection

Time from

diagnosis of

COVID-19 to

clinical onset

CSF SARS-

CoV-2

qPCR

Treatment Outcome

General observational studies

Sandoval et al.

(80)

13 pediatric patients

with confirmed

COVID-19 and

new-onset

neurological

manifestations

1 patient with

new-onset

multifocal

demyelination

consistent with

MS

M 14 ON, sixth nerve

palsy, asymmetric

paraparesis

SARS-CoV-2

PCR

None No systemic

symptoms, tested

positive on swab

PCR upon

admission

NA IVMP (dose and

duration not

reported)

Significant

clinical

improvement)

Khedr et al.

(70)

439 patients with

confirmed/probable

COVID-19

2MS relapse

(among those

with probable

COVID-19, n

= 62)

NA NA NA NA SARS-CoV-2

PCR

NA NA NA NA NA

Dhillon et al.

(62)

Case series of 29

inpatients presented

with COVID-19

and neurological

disorders, 2MS

patients

1MS relapse M 56 White Worsening of limb

weakness and

dysarthria

SARS-CoV-2

PCR

NA NA NA NA Ongoing

disability

CIS, clinically isolated syndrome; DMT, disease modifying therapy; ON, optic neuritis; TM, transverse myelitis; IVMP, intravenous methylprednisolone; CS, corticosteroids; PLEX, plasma exchange.
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Discussion

This systematic review summarizes the currently available

data on the occurrence of demyelinating CNS events in the

context of COVID-19. As noted, the vast majority of NMOSD

and MOGAD cases represent newly diagnosed cases presenting

with the typical clinical, radiological, and laboratory findings

associated with these two disorders. In contrast, the MS cases

described vary between newly diagnosed cases, relapses, and

pseudo-relapses. The patients’ age of diagnosis in the three

disease groups was relatively similar to the age of diagnosis

reported in the literature for non-COVID-19 related cases. The

clinical presentations and treatment approach were also similar

to non-COVID-19 related cases (for further details, please see

Tables 1–3).

Several mechanisms involved in the pathogenesis of

demyelinating events in the context of SARS-CoV-2 infection

have been proposed. These may be related to either direct

viral neurotropism or induction of aberrant immune response.

The neurotrophic features of the Coronavirus family have

been previously reported for the Middle East respiratory

syndrome coronavirus (MERS-COV) and SARS-COV-1, and

similar evidence has been occasionally reported for SARS-CoV-2

(88–91). However, the fact that the SARS-CoV-2 PCR test in the

CSF was negative in many of the reported cases (25, 35, 37, 39,

40, 42, 44, 66, 68, 77–79, 81) would argue against this mechanism

of direct pathogenicity. Conversely, some evidence favors the

theory of para-infectious or post-infectious immune-mediated

etiology. In fact, SARS-CoV-2 infection leads to hyperactivation

of pro-inflammatory T cells resulting in increased levels of

inflammatory cytokines and chemokines (92) and decreased

regulatory T cells to impair immune response (93). The resulting

pro-inflammatory hyperimmune state may activate specific

immune-mediated mechanisms resulting in CNS inflammation

and damage. The favorable response to immunotherapy

in the majority of the reported cases appears to support

this theory.

The distinction between relapse and pseudo-relapse may not

always be straightforward. According to the 2017 McDonald

criteria, a relapse should be defined in the absence of fever

or acute infection; hence, new or worsening neurological

symptoms developed during a febrile illness or in the presence of

acute infection in a patient with a known diagnosis of MS should

not be defined as true relapse, but rather regarded as a pseudo-

relapse. However, there may be situations where the diagnosis

of true relapse should still be considered even in the context of

acute infection. For example, a true relapse should be considered

if the onset of new symptoms is associated with clinical signs that

can be attributed to a specific anatomical localization that has

not been previously described or correlated with the presence of

a new symptomatic MRI lesion. Following this rationale, a few

of the described clinical worsening in MS cases were felt to be

better classified as pseudo-relapses (67, 69).

Prior studies propose that MS relapses in temporal

association with viral infections occur between 1 and 2 weeks

before infection to 3–5 weeks after (94–98). Andersen et al. and

Correale et al. reported that the highest frequency of relapses

and infection-related MS attacks occurred during the first 2

weeks after infection onset (94). In the series reported by Sibley

et al., the median time between the onset of infection and

occurrence of MS exacerbation was 8 days (95). Buljevac et al.

reported a mean duration of 9.5 days between the onset of

infection and clinical MS exacerbation. Both Buljevac et al.

and Correale et al. also compared the relapse rate ratio during

different time intervals and found that the highest rate ratio

was observed from weeks 1 to 4, while the exacerbation rate

ratio for weeks 3–5 was lower and not statistically significant

compared to the non-at risk period (97, 98). Considering these

data, MS relapses occurring more than 4–5 weeks from an

infection are probably not related to the prior infectious insult.

Therefore, MS cases that occurred >6 weeks from COVID-19

(64, 66, 68, 79, 83), although included in this review in order to

provide a comprehensive review of available data, are thought

to be more likely coincidental and not related to the preceding

infectious insult. Likewise, the relation between SARS-CoV-2

infection and the NMOSD and MOGAD cases developing >6

weeks after the infection (31, 32, 49, 54) remains uncertain.

The case of MOGAD occurring in temporal association to both

HHV6 and COVID-19 infection (46) may also confound the

association between COVID-19 and MOGAD.

The use of disease-modifying therapies (DMTs) may be

associated with an increased risk of viral and bacterial infections.

Early in the course of the COVID-19 pandemic, this notion

led to significant concerns regarding COVID-19 outcomes

for people with neuroimmunological diseases. While some

reports described a less favorable COVID-19 course in people

treated with B-cell depleting agents, the use of other DMTs

does not seem to be associated with such an increased risk

(99–101). Another aspect of interest is whether the efficacy

of DMTs is maintained during the pandemic. However, the

currently available data is not sufficient to answer this question.

While relapses were reported in only 3.4% of MS patients

treated with DMTs, information about DMTs use and relapses

was available for a relatively small proportion of patients

(169/624, 27.1%). The fact that the majority of NMOSD

and MOGAD cases reported are of newly diagnoses rather

than relapses of previously diagnosed disease, may suggest

that the efficacy of immunotherapy during the pandemic

is maintained. In the series reported by Apostolos-Pereira

et al., 97% of NMOSD patients (33/34) continued their

prescribed immunotherapy during the pandemic. The relatively

low incidence of neurological exacerbation reported by the

authors (5/34, 15%) may further support this theory (21).

Still, prospective studies comparing the rate of relapse between

COVID-19 patients treated with DMTs and untreated patients

are required to answer this question.
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The current literature pertaining to the occurrence of

demyelinating events in temporal association with COVID-

19 is primarily composed of case reports, case series, and

relatively small cohort studies. Therefore, while the rate of

such events appears low based upon this review, especially

considering the high prevalence of SARS-CoV-2 infection, the

available data does not permit the determination of whether

the rate of CNS demyelinating events (either new onset or

true relapse) differs among people with confirmed COVID-19

compared to those who do not contract the infection. Additional

questions that remain unanswered at this point are whether

there are differences in the severity of demyelinating attacks

and the response to acute treatments between demyelinating

events occurring in association with COVID-19 and those not

associated with the infection.

In conclusion, the rate of CNS demyelinating events

occurring in the context of SARS-CoV-2 infection is

relatively low given the global prevalence of infection.

The clinical outcomes of new-onset or relapsing MS,

NMOSD, or MOGAD associated with antecedent or

concurrent SARS-CoV-2 infection is mostly favorable.

Larger prospective epidemiological studies are needed

to better characterize the impact of COVID-19 on CNS

demyelinating diseases.
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Vaccine-induced thrombotic thrombocytopenia (VITT) is a well-known

complication of adenoviral vector COVID-19 vaccines including ChAdOx1

nCoV-19 (AstraZeneca) and Ad26. COV2.S (Janssen, Johnson & Johnson).

To date, only a few cases of mRNA COVID-19 vaccine such as mRNA-

1273 (Moderna) or BNT162b2 (Pfizer-BioNTech)-induced VITT have been

reported. We report a case of VITT with acute cerebral venous thrombosis

and hemorrhage after a booster of mRNA-1273 (Moderna) vaccine in a patient

previously vaccinated with two doses of the AstraZeneca vaccine. A 42-year-

old woman presented with sudden onset of weakness of the right upper

limb with focal seizure. She had received two doses of AstraZeneca vaccines

and a booster with Moderna vaccine 32 days before presentation. She had

also undergone a laparoscopic myomectomy 12 days previously. Laboratory

examinations revealed anemia (9.5 g/dl), thrombocytopenia (31 × 103/µl),

and markedly elevated d-dimer (>20.0 mg/L; reference value <0.5 mg/L).

The initial brain computed tomography (CT) was normal, but a repeated scan

10h later revealed hemorrhage at the left cerebrum. Before the results of

the blood smear were received, on suspicion of thrombotic microangiopathy

with thrombocytopenia and thrombosis, plasmapheresis and pulse steroid
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therapy were initiated, followed by intravenous immunoglobulin (1 g/kg/day

for two consecutive days) due to refractory thrombocytopenia. VITT was

confirmed by positive anti-PF4 antibody and both heparin-induced and PF4-

induced platelet activation testing. Clinicians should be aware that mRNA-

1273 Moderna, an mRNA-based vaccine, may be associated with VITT with

catastrophic complications. Additionally, prior exposure to the AstraZeneca

vaccine and surgical procedure could also have precipitated or aggravated

autoimmune heparin-induced thrombocytopenia/VITT-like presentation.

KEYWORDS

vaccine-induced thrombotic thrombocytopenia, cerebral hemorrhage, Moderna

booster, autoimmune heparin-induced thrombocytopenia, cerebral venous

thrombosis

Introduction

Coronavirus disease 2019 (COVID-19) has caused

six million deaths globally since 2019, the majority with

severe respiratory complications. Several vaccines against

SARS-CoV-2 were developed and administered worldwide,

including ChAdOx1 nCoV-19 (AstraZeneca), BNT162b2

(BioNTech/Pfizer), mRNA-1273 (Moderna), and Ad26.COV2.S

(Janssen; Johnson & Johnson). Despite the high efficacy of these

vaccines, the virus developed different variants, such as the

omicron variant, making the vaccines less effective. To increase

protection, a booster shot after two injections and combined

multiple source-based vaccines were suggested. While these

strategies were intended to improve immunity, they could also

increase the risk of adverse effects.

Vaccine-induced immune thrombotic thrombocytopenia

(VITT) was first reported by Greinacher et al. and proposed

a pathophysiology resembling that of heparin-induced

thrombocytopenia/thrombosis (1). The pathogenesis of these

thrombotic events involves the generation of antibodies that

bind to platelet factor 4 (PF4), resulting in platelet activation,

aggregation, and thrombosis formation. Treatment strategies

include anticoagulation, preferably with a non-heparin

agent, correction of low fibrinogen with cryoprecipitate,

consideration of intravenous immunoglobulin (IVIG), steroids,

and plasmapheresis (2). In a prospective cohort study, patients

with VITT who received AstraZeneca vaccines have a mortality

rate of approximately 22%, which increased to 2.7 times

among patients with cerebral venous thrombosis. The mortality

associated with VITT was the highest among patients with a low

platelet count and intracranial hemorrhage (3).

An association between adenoviral vector-based vaccines

and VITT is well recognized. However, there is little to no

information in the literature about VITT after receiving an

mRNA vaccine such as the Moderna vaccine, or more precisely,

VITT after a booster of the Moderna vaccine following previous

exposure to the adenoviral AstraZeneca vaccine, which raises the

possibility of a cumulative effect of induction of thrombogenic

autoimmunity. Herein, we present such a case of VITT

complicated by cerebral venous thrombosis and hemorrhage.

Case

A 42-year-old woman presented to the emergency room

with sudden onset of weakness and numbness of the right

upper limb. Her past medical history was unremarkable except

for occasional headaches, which were related to her menstrual

cycle and stress. She had been suffering from menorrhagia and

dysmenorrhagia for a year, and a huge uterine myoma (9.3 ×

10.2× 7.7 cm over right posterior wall) was found. She only took

iron supplements and had not used oral contraceptives before.

She had received the first and second doses of the ChAdOx1

nCoV-19 (AstraZeneca) vaccine seven and 4 months before

hospitalization, and she received a booster dose of the Moderna

vaccine 32 days before the onset of symptoms. Of note, 12 days

before the presentation, she had a laparoscopic myomectomy

under general anesthesia. The medications used in anesthesia

included fentanyl, lidocaine, propofol, rocuronium bromide,

dexamethasone, glycopyrrolate, and desflurane inhalation. Her

vital signs before, during, and after surgery were normal. She

reported mild dizziness after surgery. Two days after surgery,

she began to experience a mild headache, nausea, and lethargy.

Frequent vaginal bleeding was also noted, but the amount of

bleeding was small. The hemoglobin (15.3 g/dl; reference value

12–16 g/dl), platelet count (121 × 103/µl; reference value, 150–

400 × 103/µl), coagulation parameters, and blood biochemistry

tests were normal before the surgery. However, on the first

postoperative day, she was found to be anemic (Hgb 8.2 g/dl) and

thrombocytopenic (platelets 121 × 103/µl). The rapid decline

of hemoglobin was thought to be due to blood loss (about

400ml during surgery) and hemodilution (fluid replacement

with colloid 500ml and crystalloid 1,100ml during surgery,

and dextrose 5% in water 1,000ml and 0.9% normal saline
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1,000ml after surgery). The platelet count further decreased

to 31 × 103/µl 8 days later in the gynecology outpatient

department visit. There was no heparin exposure, infection, or

blood transfusion during that hospitalization.

On her current admission to the hospital, her body

temperature was 36.8◦C; blood pressure, 125/94 mmHg;

heart rate, 96 beats per minute; respiratory rate, 22 times

per minute. Physical and neurological examinations revealed

mild pale conjunctiva, weakness of the right hand (Medical

Research Council scale grade 3), and paresthesia of the

right upper limb. The National Institutes of Health Stroke

Scale score was 2. Laboratory studies showed anemia (9.5

g/dl), thrombocytopenia (31 × 103/µl), and elevated D-

dimer (>20.0 mg/L; reference value <0.5 mg/L). Brain

computed tomography (CT) without contrast enhancement

revealed no remarkable findings. Antiplatelet treatment

with aspirin 300mg was orally administered on suspicion

of acute ischemic stroke. Focal-onset aware seizure of the

right upper and lower limbs was observed. The repeated

brain CT still showed no abnormalities. Levetiracetam

1,500mg was administered intravenously on suspicion of early

poststroke seizure.

Ten hours after admission, she had progression of right-

sided weakness and consciousness change. Brain CT revealed

two lobar hemorrhages over the left frontal and parietal lobes

with perifocal edema and mild midline shift (Figure 1A).

She was intubated immediately. On suspicion of VITT or

other autoimmune disorder-related thrombocytopenia such

as catastrophic antiphospholipid syndrome, systemic lupus

erythematosus (SLE) with central nervous system involvement,

and thrombotic thrombocytopenic purpura, plasmapheresis was

arranged, and methylprednisolone 1 g/day was administered

intravenously. Unfortunately, her consciousness deteriorated

rapidly, declined from E2M4VT to E1M1VT, and bilateral

pupils were dilated to 8mm without light reflexes. The

follow-up brain CT revealed rapid expansion of hematoma

with marked brain edema, midline shift, and uncal and

tonsillar herniation. The lobar hemorrhage extended into

the subdural and subarachnoid spaces (Figure 1B). Emergent

decompressive craniectomy was performed after transfusion

of two units of single-donor platelets. Plasmapheresis was

undertaken immediately after the surgery. The intracranial

cerebral pressure (ICP) increased to 120 mmHg on day

3 of admission, despite the use of mannitol, glycerol, 3%

normal saline, and mechanical hyperventilation. The enzyme-

linked immunosorbent assay for anti-PF4 polyanion antibody

was positive (test value, 2.91 optical density; reference value,

<0.4 optical density). ADAMTS-13 activity was normal,

and markers of SLE or anti-phospholipid syndromes were

all negative (Supplementary material). The blood smear was

negative for schistocytes. The result of the platelet activation

assay was consistent with VITT (Figure 2) thereby confirming

the diagnosis of VITT.

FIGURE 1

A series of brain CT over the disease course. (A) Brain CT

revealed two lobar hemorrhages located in the left frontal and

parietal lobes with perifocal edema. (B) Five hours later, the

patient’s brainstem reflex was lost, and brain CT showed

progressive hemorrhage with di�use cerebral edema and

bilateral uncal herniation (arrow). (C) Contrast-enhanced brain

CT obtained 5 days after craniectomy showed suboptimal

vascular image quality due to prominent intracranial

hypertension.

No improvement in thrombocytopenia was observed after 3

days of plasmapheresis (days 2, 4, and 5 of admission, Figure 3).

We therefore switched to immunoglobulin (1 g/kg/day)

administered intravenously for two consecutive days on days 5

and 6 of admission. However, platelet count remained low (16–

34 × 103/µl), and plasmapheresis was restarted on day 9 of

admission. The platelet count improved to 60× 103/µl and 105

× 103/µl on days 10 and 11 of admission, respectively (Figure 3).

Although the patient’s peripheral arterial oxygen saturation was

maintained at 99%−100% before, during, and after surgery, head

CT on day 6 showed diffuse brain edema and loss of gray-white

matter junction, involving the bilateral cerebrum, basal ganglia,

brain stem, and cerebellum with obliteration of all ventricles

(Figure 1C). The findings were indicative of diffuse hypoxic

ischemic brain injury, which could be a result of decreased brain

perfusion secondary to increased ICP. Autonomic dysfunction,

arrhythmia, refractory shock, and central diabetes insidious with

hypernatremia developed subsequently. Because of irreversible

severe brain injury, her family decided on hospice care with

withdrawal of ventilatory support on day 11 of admission, and

the patient expired.
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FIGURE 2

(A) Heparin-induced platelet activation assay was used to detect of HIT antibodies. CD61 (glycoprotein IIIa) and CD62p (p-selectin) served as

markers of platelet identification and activation, respectively. Adenosine diphosphate was used to confirm normal platelet activation. The

proportion of activated platelets was at least >11% in the presence of heparin (0.1 or 0.3 IU/ml) compared with baseline (no heparin), and the

activation could be suppressed by a high dose of heparin (100 IU/ml). There was obvious platelet activation in the presence of the patient’s

plasma and low concentration (0.1 and 0.3 U/ml) of heparin, which was suppressed by the high concentration of heparin (100 U/ml). (B)

PF4-induced flow cytometry-based platelet activation (PIFPA) revealed that the percentage of activated platelets increased from 12.28%

baseline, no PF4 addition) to 29.95% with addition of 5 µg/ml PF4.

Discussion

We present a 42-year-old woman with VITT about a

month following a Moderna COVID-19 vaccine booster,

complicated by catastrophic cerebral venous thrombosis,

intracranial hemorrhage, and uncal herniation, eventually

leading to the patient’s demise. To the best of our knowledge,

there are no previous reports of VITT complicated with

cerebral venous thrombosis and hemorrhage associated with

the Moderna vaccine. Elevated anti-PF4 antibodies are not

specific for VITT diagnosis, so we performed the heparin-

induced platelet activation assay. This assay can be positive

in both HIT and VITT (4). We therefore performed PF4-

induced platelet activation by flow cytometry-based assay for

confirmatory diagnosis of VITT. This can distinguish VITT

from HIT because unlike HIT which requires the presence of

heparin, platelet activation in VITT occurs in the presence of

PF4 alone (5).

VITT is a rare, but severe complication of COVID-19

vaccines. Most cases were related to the AstraZeneca vaccine,

and only few cases were reported to be related to the

Moderna vaccine (6–8). According to the American Society of

Hematology (2), the diagnosis of VITTmust meet all five criteria

including (1) COVID vaccination 4–42 days before symptom

onset, (2) any venous or arterial thrombosis (often cerebral or

abdominal location), (3) thrombocytopenia (platelet count <

150 × 109/L), (4) positive anti-PF4 antibody, and (5) markedly

elevated D-dimer (more than four times the upper limit of

normal). Our patient met all these diagnostic criteria of VITT.

A CT venography (CTV) was not performed initially, and the

subsequent severe cerebral swelling precluded the assessment

of venous filling defect by CTV (9). Because of the use of

postoperative staples on the scalp and infusion pump from the

second day after admission, the patient had no chance to receive

brain magnetic resonance imaging. However, the preceding

nausea, headache, followed by focal neurologic deficit with

seizure imply the high probability of cerebral venous thrombosis

(CVT) rather than arterial thrombosis, and the location of

cerebral hemorrhage at juxtacortical white matter is suggestive

of CVT with hemorrhagic transformation (10).

In this patient, the onset time of neurological symptoms

was 32 days after the Moderna vaccination. Moderna vaccine-

induced thrombocytopenic petechiae/purpura has been

reported previously (8); however, our patient developed more

life-threatening complications, including CVT and intracranial

hemorrhage with rapid progression of brain edema and

uncal herniation. The patient had undergone laparoscopic

myomectomy 12 days before presentation and experienced

mild headache, nausea, and lethargy after the surgery. In

addition, mild thrombocytopenia was observed 1 day after
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FIGURE 3

Clinical course, the laboratory studies and therapeutic agents used.

the surgery. Postoperative headaches are not uncommon in

clinical practice, and postoperative thrombocytopenia can be

caused by hemodilution and consumption. In our patient,

spontaneous HIT, which is a subtype of HIT without preceding

heparin exposure, could also explain a clinical and serologic

picture similar to VITT. Spontaneous HIT has been largely

reported after orthopedic surgery and some other exposures

such as polyanionic medications or virus/bacterial infection

(11). Occasionally, no preceding trigger is identified (12).

From the available data in our patient, it was not possible

to definitively determine if spontaneous HIT induced by

laparoscopic myomectomy was the only cause of her clinical

presentation with acute thrombosis or a precipitating factor

for VITT development from prior exposure to the Moderna

vaccine booster. It is also uncertain whether there may have

been persistent low-level/subclinical HIT-like antibodies from

more remote AstraZeneca vaccine exposure that may have

added to the overall cumulative risk of thrombosis.

Once a diagnosis of VITT is established, treatment involves

(1) IVIG 1 g/kg daily for 2 days, (2) non-heparin anticoagulant

agents, (3) avoiding platelet transfusions, (4) corticosteroids that

do not have sufficient data to prove their role, (5) avoiding

aspirin, since it does not help with treatment or prophylaxis

and may increase bleeding risk, and (6) plasmapheresis, which

is an additional option when thrombosis progresses despite

IVIG and non-heparin anticoagulants (13). Because VITT was

not suspected initially in our patient, one dose of 300mg

aspirin was administered orally at the emergency room under

the impression of acute ischemic stroke. For CVT, heparin is

the standard treatment, but is best avoided in VITT cases.

The safer anticoagulant for VITT is direct oral anticoagulant

(DOAC). In our patient, the cerebral hemorrhage could have

been a complication of aspirin or CVT. Unfortunately, the rapid

expansion of the hematoma precluded the use of DOAC.

The initial uncertain diagnosis and a rapid and catastrophic

course in our case led us to choose plasmapheresis and

steroid pulse therapy first as broad coverage of VITT

and other potential autoimmune diseases that were in the

differential, such as catastrophic antiphospholipid syndrome,

SLE with central nervous system involvement, and thrombotic

thrombocytopenic purpura (14). Previous studies have

suggested good efficacy of plasmapheresis for patients with

VITT who have thrombocytopenia refractory to IVIG therapy

(14, 15). In our patient, thrombocytopenia was not responsive

to the initial three treatments of plasmapheresis. Partial

improvement in thrombocytopenia was observed after 2 days

of IVIG and another treatment of plasmapheresis. It appears

that plasmapheresis overall was not effective in our patient, or

possibly, the effect of plasmapheresis for thrombocytopenia

was delayed.
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Conclusion

While VITT is typically caused by adenovirus-based

vaccines, our case highlights the possibility of the Moderna

vaccine, a messenger RNA-based vaccine, as a potential

precipitant of VITT in a patient with remote exposure to an

adenoviral vaccine. The prior AstraZeneca vaccine exposure and

the gynecologic surgical procedure before and after theModerna

vaccination respectively could have cumulatively precipitated

or aggravated autoimmuneHIT/VITT-like presentation. During

the COVID-19 pandemic, awareness of this possibility could

allow clinicians to consider VITT as a potential diagnosis

in patients who present with thrombosis and low platelets

and have received a COVID-19 vaccination, even if the time

frame and vaccine type are not typical for VITT. Post-surgery

headaches are common; however, since they are an early sign of

increased intracranial pressure caused by CVT it is challenging

for clinicians to identify the latter early based on this symptom

alone. Generally, antiplatelet therapy should be started in

patients with acute stroke as soon as possible after brain imaging

has excluded hemorrhage. However, clinicians should look at

laboratory data, evaluate the patient’s past medical history, and

consider other stroke mimics thoroughly before antiplatelets are

given. In cases of VITT, aspirin is not recommended because of

the increased bleeding risk. A high index of suspicion in such

cases could facilitate early diagnosis, which could lead to timely

and aggressive intervention, and in turn may help to prevent

severe morbidity or mortality.
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Double seropositive
neuromyelitis optica associated
with COVID-19: A case report
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Neuromyelitis optica spectrum disorders are characterized by severe

demyelination and axonal damage with autoimmune mechanisms,

predominantly targeting the optic nerves and the spinal cord. Patients often

test positive for anti-AQP4 antibodies, while some have anti-MOG antibodies.

Double seropositivity has been described, with a variable prevalence (0 to

26%) dependent on the testing method. The clinical significance of double

seropositivity remains unclear. We present the case of a 65-year-old patient,

admitted to our clinic with optical neuritis, followed up approximately 10 days

later by cervical myelitis, who tested positive for both anti-AQP4 and anti-MOG

antibodies. The clinical onset coincided with a mild form of SARS-CoV-2

infection. The neurological symptoms were initially relatively subdued, which

delayed the diagnosis. The patient was not vaccinated against SARS-CoV-2.

The clinical picture was compatible with an anti-AQP4 phenotype. The patient

was started on corticosteroid therapy, under which the clinical response

was good. Our case reinforces the idea that SARS-CoV-2 can precipitate

autoimmune demyelinating diseases since SARS-CoV-2 infection has already

been demonstrated as a risk factor for NMOSD relapses. To the best of our

knowledge, this is the first reported case of double seropositive neuromyelitis

optica associated with COVID-19. We expect that in the near future, as the

true burden of COVID becomes clearer, we shall encounter other cases which

can trace their apparent clinical onset to a SARS-CoV-2 infection. Careful

attention should be paid to the apparent minor neurological symptoms

of COVID-19.

KEYWORDS

neuromyelitis optica, anti-AQP4 antibodies, anti-MOGantibodies, COVID-19, NMOSD

Introduction

Neuromyelitis optica spectrum disorders (NMOSD) are rare autoimmune disorders

characterized by severe demyelination and axonal damage, predominantly targeting the

optic nerves (ONs) and the spinal cord (1). The AQP4-IgG serum antibodies play a

direct role in the pathogenesis of NMOSD, targeting a water channel protein found

in high concentrations in the astrocytic foot processes. A small percentage of ∼12%
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of patients who fulfill the clinical criteria for NMOSD

are seronegative for AQP4-IgG (2). Approximately 40%

of seronegative patients have anti-myelin oligodendrocyte

glycoprotein (anti-MOG) antibodies (3). Whether an anti-MOG

disease is a distinctive clinical entity is still to be determined, but

some common characteristics seem to be found more frequently

in this group: a simultaneous manifestation of optic neuritis and

myelitis at onset, simultaneous bilateral optic neuritis, myelitis

more often affecting the lower portion of the spinal cord,

and monophasic attack or fewer relapses than the AQP4-IgG

seropositive patients (1, 4). SARS-CoV-2 is a new pathogen that

has been shown to have significant interactions with the immune

system, not only in the acute setting but also in the long term,

exacerbating or initiating numerous autoimmune disorders (5).

Case presentation

We present the case of a 65-year-old Caucasian male,

without any significant medical history, admitted to our clinic

with bilateral lower limb motor deficit and distal paresthesia

in all limbs, with an onset of ∼3 weeks prior. The patient

also complained of sudden bilateral decreased visual acuity,

more severe on the right side, which preceded the motor deficit

by approximately 10 days and had a spontaneously favorable

evolution and was partially remitted by the time of admission.

FIGURE 1

Sagittal MRI STIR sections of the cervical spine at admission (A), 2 months (C), and 12 months (E). Axial MRI TSE sections at approximatively the

same level (a plane passing through the upper C6 plateau) at admission (B), 2 months (D), and 12 months (F). The hyperintense STIR cervical

lesion is visible, extending from C4 to C7. Progressive fading of the increased signal is visible over time, especially on the axial images.

An ophthalmologist in another service evaluated the patient

approximately 7 days from the onset of the visual symptoms,

where he tested positive for SARS-CoV-2. At that moment,

he had had mild respiratory symptoms (slight cough and

rhinorrhea) for a∼2 days. The interval between the onset of the

neurological and COVID-19 symptoms was∼5 days.

The ophthalmological examination noted VOS Presbyopia

0.5 sc (0.7 c), VOD PHM, with a regular fundus examination

in both eyes. At that time, sight in the left eye was

already spontaneously improving, and the diagnosis was right

retrobulbar optic neuritis. He was not started on any therapy and

received a recommendation for a neurological evaluation and a

brain MRI scan. The patient chose to isolate himself at home for

14 days, per the local recommendations at the time.

Approximately 3 days into the isolation period, he developed

lower limb paresthesia, followed by paraparesis and ataxia,

which progressively worsened until he could no longer walk.

Our initial clinical examination showed a slight loss of

visual acuity in the right eye (he could read a newspaper),

asymmetric paraparesis (3/5 MRC on the right, 4/5 MRC on

the left), bilateral Babinski sign, distal paresthesia in all limbs,

severe bilateral lower limb myoarthrokinetic and vibratory

hypoesthesia, with important secondary ataxia, and a T10

sensory level on the left side; walking was impossible.

The full spine MRI revealed a non-enhancing, T2 and STIR

hyperintense cervical demyelinating lesion extending from C4

to C7 levels (Figures 1A,B), cervical spondylotic changes, and
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degenerative lumbar stenosis at L4–L5 levels. The cerebral MRI

was unremarkable except for a slight STIR hyperintense signal

affecting the right ON, extending posteriorly into the optic

chiasm (Figure 2).

The patient was evaluated extensively for autoimmune

disorders associated with myelitis, testing negative for ANA,

c-ANCA, p-ANCA, anti-Ro, anti-La, and anti-neuronal

antibodies. The infectious screening was negative except for

the incidental presence of IgG against HCV. Testing for HIV,

syphilis, and borreliosis was negative. The B12 serum level

was normal. Serum anti-AQP4 antibodies and anti-MOG

antibodies were both positive. The AQP4 was tested by indirect

immunofluorescence with a titer of 1:1,000 (N < 1:10). The

MOG testing was Western Blot.

The CSF had elevated protein levels (albumin 0.44 g‰,

positive Pandy test) without pleocytosis (6 elements/µL) and no

oligoclonal bands. The IgG index was normal (0.63).

Given the patient’s history of optic neuritis, longitudinal

extensive cervical myelitis, positive tests for anti-AQP4 and anti-

MOG antibodies, and the exclusion of other possible causes

that could have caused central nervous system demyelination,

a diagnosis of neuromyelitis optica was reached.

The patient had been treated with iv Methylprednisolone

1,000mg daily for 5 days with significant improvement of motor

function (4-/5 MRC bilaterally) and partial remission of the

paresthesia but with the persistence of the objective sensory

deficits. The patient was able to walk using a Zimmer frame. He

was discharged with oral prednisone at 1 mg/kg/day.

At the 2-month checkup, the patient had continued to

improve, presenting with normal visual acuity, asymmetric

paraparesis (4-/5 MRC on the right, 4+/5 MRC on the

left), bilateral lower limb paresthesia up to the lower half

of the thighs, and crural proprioceptive hypoesthesia,

still requiring a frame for walking. The cervical MRI

showed a slightly favorable evolution of the cervical lesion

(Figures 1C,D). As a corticoid-sparing treatment, he was started

on Azathioprine (AZA), gradually reaching a dose of 150mg

per day.

He was seen again at the 1-year mark, being stationary

from a neurological point of view, with the persistence

of the asymmetric paraparesis and sensory anomalies.

The cervical MRI examination was discreetly improved,

as the intramedullary pathological signal had continued

to decrease in area and intensity (Figure 1F). AZA was

continued in the same doses while prednisone tapering

was initiated.

Discussion

As the last 2.5 years unfolded, SARS-CoV-2 has repeatedly

been shown to initiate and decompensate many autoimmune

diseases (6).

This seems to be a family effect for coronaviruses, but SARS-

CoV-2 stands out among its peers (7). A recently published

review underlines the potential of coronaviruses to spread and

persist in the central nervous system (CNS) and their potential

for neuropathogenesis. This persistence may be associated

not only with the induction or exacerbation of long-term

neuropathologies such as multiple sclerosis but may be able to

FIGURE 2

Coronal MRI STIR sections are at the intracranial optic nerves (A) and optic chiasm (B). Yellow arrows point out increased STIR signal intensity at

the level of the right optic nerve and the right side of the chiasm. The blue arrow points out the left optic nerve with normal signal intensity.
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explain persistent neuropsychiatric symptoms associated with

long COVID (8).

Although the exact mechanism of virus dissemination in the

CNS has not been established, the two possible explanations are

either hematogenous spread from the systemic circulation or

trans-neuronal spread via the olfactory pathway. In addition,

the CNS can be potentially compromised through an ischemic–

hypoxic insult of the blood-brain barrier resulting from severe

respiratory insufficiency or by immune-mediated mechanisms

(9, 10). Anti-AQP4 antibodies have been shown to induce

interleukin-6 (IL-6) production in astrocytes, and IL-6 signaling

to endothelial cells induces blood-brain barrier dysfunction (11).

The link between SARS-CoV-2 and several neurologic

autoimmune pathologies, including Guillain-Barré syndrome,

multiple sclerosis, and vasculitis, has also been shown by

multiple studies (12, 13).

Although SARS-CoV-2 is known as a risk factor for NMOSD

relapses, a causal relationship is more difficult to prove (14).

Still, accumulating data support a demyelinating aspect of

SARS-CoV-2 infection (9). The ethiopathogenic process is not

fully understood. Carlos A et al. hypothesized a possible loss

of tolerance to self-antigens caused by a state of transient

immunodeficiency of both acquired and innate components

(15). According to Wu et al., a neuronal injury may be

produced by immune-mediated pathways (16). The binding

of the SARS-CoV-2 virus to the ACE2 receptors in the CNS

triggers an intense local inflammatory response with impaired

blood-brain barrier permeability (10).

Only a handful of cases of neuromyelitis optica with the

onset in close temporal relation with a SARS-CoV-2 infection

have been reported (17). Most of them tested positive for AQP4

antibodies. To our knowledge, ours is the first case having double

seropositivity for AQP4 and MOG.

In NMOSD cohorts, the incidence of double seropositive

patients is variable and method-dependent (18–20). In one

study, Kezuka et al. found 26% of patients (6 out of 23) to be

seropositive for both AQP4 andMOG antibodies (21). However,

a study by Sato et al. on a group of 215 patients found no

double seropositive cases (22). The discrepancy between the

two results can be attributed to the method of detection: cell-

based assay in Sato’s study vs. ELISA in Kezuka’s study. However,

in a later study, Kezuka found two double-positive patients

with a cell-based assay using full-length human MOG cDNA-

expressing HEK cells (23). As mentioned above, in our case,

AQP4 antibodies were tested by indirect immunofluorescence

and MOG antibodies by Western Blot.

There are notable clinical differences between NMOSD

with positive serology for AQP4 compared with MOG-positive

cases. Cases with anti-AQP4 antibodies tend to involve the

posterior part of the ON or the chiasma. The spinal cord

involvement is usually cervicothoracic, while patients with anti-

MOG antibodies tend to have anterior involvement of the

ON, often bilateral and longitudinally more extensive, and

a lower spinal cord involvement (often including the conus

medularis) (24).

Regarding chiasmal involvement, a recent study has shown

smaller differences than expected between the two groups, with

a frequency of 20% in AQP4-positive patients and 16% inMOG-

positive cases. In the MOG subgroup, the ON lesion was more

often longitudinally extensive (25).

The differences seem to extend to treatment response, but

the details are far from clear. Both situations require prompt

immunosuppression, and both respond well to Rituximab.

MOG-positive NMOSD seems to be more responsive to

corticotherapy, with relapses being more frequent on steroid

withdrawal (24).

The clinical picture of our patient, with posterior optical

neuritis and cervical myelitis, was compatible with the anti-

AQP4 phenotype. We believe the patient had suffered from

optic neuritis with chiasmal involvement, with a clinical impact

mainly on the right eye. This would explain the initially

diminished visual acuity in both eyes and was supported by

the MRI, which shows an extension of the inflammation in the

optical chiasm (Figure 2).

Notably, the optic neuritis had a spontaneous favorable

course, and the spinal lesions, while topographically extensive,

were invalidating mainly due to the sensory ataxia. A CSF

SARS-CoV-2 was not ordered, as it would not have been

informative. The patient was admitted to our clinic 3 weeks after

the onset, and previous studies have shown that even in cases

where the virus can be detected in the CSF, this happens early

in the course of the infection. The levels are low and quickly

transient (26, 27).

Interestingly, our patient’s onset of clinical neurological

symptoms overlapped with COVID-19, the rarer of two

situations. In the case series, 68% of transverse myelitis

associated with SARS-CoV-2 infections had a latency of 10 days

up to 6 weeks, suggesting the complications were mediated by

the host’s immune response to the infection. In the remaining

32%, the latencies varied from 15 h to 5 days, advocating a direct

neurotropic effect of the virus (28).

As the spinal cord involvement ensued about 5 days after

the debut of the respiratory symptoms of COVID-19 and

progressively worsened during the next weeks, the autoimmune

mechanism is a certainty. The situation is not so clear-cut

regarding the optical neuritis, which had its onset approximately

5 days before SARS-CoV-2manifested in the form of respiration.

The incubation period for COVID-19 is considered to be 4–

5 days in most cases, with a maximum of 14 days following

exposure (29). The patient was unaware of any contact with

known cases of SARS-CoV-2 infection, so we cannot place

the exposure date. There have been rare reports of cases

of optic neuritis in patients with concomitant SARS-CoV-2

infection and no known autoimmune pathology, but while an

acute neurotropic effect of the virus cannot be excluded, the

chiasmatic involvement with bilateral diminished visual acuity
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and the fact that it was rapidly followed by myelitis, argue

strongly in favor of an autoimmune mechanism in the context

of NMOSD (30).

According to a recent study, more than a third of

hospitalized COVID-19 infected patients developed

neurological symptoms at some point, but unfortunately,

most are not able to undergo extensive imagistic workup

in the acute phase (31, 32). Taking into account that, even

in our patient who had significantly impaired walking,

the diagnosis was delayed for about 3 weeks and that

some cases might have an even milder initial phase,

we think that in the near future, as the true burden of

COVID-19 becomes more clear, we might encounter

other cases that can trace their apparent clinical onset to

“minor” neurological symptoms following a SARS-CoV-2

infection. This aspect might become even more interesting

as these patients get repeated infections with the same or

different variants.

Conclusion

SARS-CoV-2 is known to significantly interfere with

the immune processes of the body. Since NMOSD

does not have a very high incidence, it took a while

longer to become obvious that COVID-19 could be a

triggering factor, but indeed this seems to be the case. The

main serological and clinical forms appear to be of the

AQP4 type.

Acute vision disturbances or distal sensory symptoms should

be taken seriously in such patients, even if they are mild,

with early diagnosis and treatment being the main way to

reduce disability.

The significance of double seropositivity remains unclear,

as we do not have sufficient evidence suggesting that both

types of antibodies would be simultaneously pathological.

Cell-based assays are the gold standard and should be used

whenever possible. While serology can be used to orient

some aspects of the treatment, double seropositive cases do

not have this advantage. In such cases, we think the clinical

orientation toward an AQP4 or MOG phenotype can be

used instead.
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Longitudinal SARS-CoV-2
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with and without SARS-CoV-2
infection prior to vaccination
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Introduction: During the COVID-19 pandemic, certain disease modifying

therapies (DMTs) used in multiple sclerosis (MS), such as anti-CD20 therapies,

have been associated with decreased humoral responses after SARS-CoV-2

vaccination. Hybrid immunity, referring to immunity after both vaccination and

SARS-CoV-2 infection might increase humoral responses.

Methods: This was a substudy of two prospective cohort studies

on SARS-CoV-2 antibodies after SARS-CoV-2 infection and vaccination.

RBD-specific IgG titers of patients with MS and healthy controls who

had experienced SARS-CoV-2 infection prior to the first vaccination were

compared with those patients and healthy controls without prior infection.

Humoral responses were measured at various time points after SARS-CoV-2

infection in convalescent patients and all patients prior to the first vaccination,

28 days after the first vaccination, and 28 days after the second vaccination.

Results: One hundred and two individuals [of which 34 patients with MS and

DMTs (natalizumab or ocrelizumab), 30 patients without DMTs, and 38 healthy

controls] were included. Fifty one of these individuals were convalescent.

Median SARS-CoV-2 antibody titers were higher after the first vaccination in

convalescent individuals compared with individuals without infection prior to

vaccination. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)

antibody titers were comparable after the second vaccination in patients

with MS with and without prior infection. However, in the convalescent

ocrelizumab-treated patients, SARS-CoV-2 antibody titers did not increase

after vaccinations.
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Conclusion: In patients with MS without anti-CD20 therapies, SARS-CoV-2

infection before vaccination increases humoral responses after the first

vaccination, similar to the healthy controls. In patients with MS treated

with ocrelizumab (convalescent and non-convalescent), humoral responses

remained low.

KEYWORDS

multiple sclerosis, SARS-CoV-2, COVID-19, disease modifying treatment, humoral

response

Introduction

Since the start of the COVID-19 pandemic, humoral,

and cellular immunity against SARS-CoV-2 antigen has been

extensively studied after vaccinations. Within the population

with multiple sclerosis (MS), anti-CD20 therapies (e.g.,

ocrelizumab and rituximab) were shown to severely impair

humoral responses after SARS-CoV-2 vaccination (1). In

patients with MS without disease modifying therapies (DMTs)

or patients with MS on non-immunosuppressive DMTs,

immunity after vaccination is largely comparable to healthy

controls (2).

Despite vaccination, infection with SARS-CoV-2 can result

in breakthroughCOVID-19, even though vaccination is effective

in preventing severe COVID-19. Hybrid immunity, resulting

from SARS-CoV-2 infection and vaccination combined, has

been shown to increase potency and breadth of SARS-CoV-

2 antibodies in healthy individuals (3). The observation that

SARS-CoV-2 breakthrough infections are more frequent among

patients with MS and low SARS-CoV-2 antibody titers (4), gives

rise to the question of whether hybrid immunity in MS leads

to a better humoral immune response and clinical protection

than vaccination only. In patients with MS, data are scarce

regarding the effects of hybrid immunity on humoral responses

and SARS-CoV-2 breakthrough infections.

The objective of this study was to evaluate the humoral

immune response and SARS-CoV-2 breakthrough infections

in patients with MS and healthy controls with and without

SARS-CoV-2 infection prior to the first vaccination.

Materials and methods

From August to December 2020, before the availability

of SARS-CoV-2 vaccinations, patients with MS from the

Amsterdam MS Center, the Netherlands, were tested for

SARS-CoV-2 antibodies (COMS-19 study, ClinicalTrials.gov

Identifier: NCT04498286) (5). Patients with a positive SARS-

CoV-2 antibody response or a positive PCR prior to vaccination

were longitudinally followed in another prospective cohort

study on vaccination against SARS-CoV-2 in patients with

various immune-mediated inflammatory diseases (T2B!; Trial

NL8900; Dutch Trial register) (6).

For this substudy, patients with MS treated with

ocrelizumab, natalizumab, or no DMTs who have had a

SARS-CoV-2 infection (defined by positive PCR and/or

positive SARS-CoV-2 antibodies) prior to the first vaccination

were included. Matched controls without prior SARS-CoV-2

infection from the T2B! study were included (1:1) matching for

DMT, age, and sex. Furthermore, a group of healthy controls

with and without SARS-CoV-2 infection prior to vaccination

was included. All patients in the SARS-CoV-2 negative control

groups were tested negative for SARS-CoV-2 antibodies at

baseline (prior to the first vaccination).

Clinical data and data regarding SARS-CoV-2

(breakthrough) infections were retrieved from the medical

files and electronic questionnaires, which were sent to

patients every 2 months after the first vaccination. When a

patient indicated a positive PCR or antigen test, that patient was

contacted by a researcher at least 2 weeks after the positive test to

verify and determine COVID-19 severity. Coronavirus disease

(COVID-19) severity was based on the WHO classification.

In the COMS-19 study, serum samples were cross-

sectionally collected by venipuncture in a large cohort of patients

with MS and variable timing of sampling since SARS-CoV-2

infection and until the first vaccination. For follow-up in the

T2B! study, serum samples were collected by venipuncture or

by participants at home using a finger prick set. Samples were

taken at predefined time points: at baseline (prior to the first

vaccination) and day 28 after the first and second vaccination

(when applicable). Serum was not available for all patients at all

time points (see Table 1).

The serum was assessed using a quantitative anti-RBD

IgG enzyme-linked immunosorbent assay (ELISA), as described

previously (7). Anti-RBD IgG titers were expressed as arbitrary

units (AU) per mL (AU/mL) and were compared with a serially

diluted calibrator (arbitrarily assigned a value of 100 AU/mL)

consisting of pooled convalescent plasma. Seroconversion after

vaccination was defined as antibody titers >4 AU/mL.

Differences in proportions were analyzed using Fisher’s exact

test, and differences between continuous variables were analyzed

using the Wilcoxon rank-sum test. Analyses were performed
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TABLE 1 Baseline characteristics and data on humoral responses.

Natalizumab

(n: 18)

Ocrelizumab

(n: 16)

No DMT

(n: 30)

Healthy controls

(n: 38)

SARS-CoV-2 infection

prior to vaccination, n (%)

Yes,

9 (50)

No,

9 (50)

Yes,

8 (50)

No,

8 (50)

Yes,

15 (50)

No,

15 (50)

Yes,

19 (50)

No,

19 (50)

Age, mean (SD) 44 (12) 46 (8) 50 (10) 53 (3) 55 (9) 55 (3) 55 (3) 55 (4)

Female sex, n (%) 8 (89) 8 (89) 4 (50) 4 (50) 10 (67) 10 (67) 14 (74) 14 (74)

COVID-19 severity prior to vaccination, n (%)

Asymptomatic 2 (33) NA 3 (38) NA 2 (13) NA 3 (18) NA

Mild 7 (78) NA 4 (50) NA 13 (87) NA 14 (82) NA

Moderate 0 NA 0 NA 0 NA 0 NA

Severe 0 NA 1 (13) NA 0 NA 0 NA

Vaccination type primary immunization, n (%)

AstraZeneca 1 (11) 1 (11) 1 (13) 0 4 (27) 0 0 0

Janssen 0 0 1 (13) 0 0 0 0 0

Moderna 2 (22) 2 (22) 3 (38) 7 (89) 3 (20) 8 (53) 13 (69) 13 (69)

Pfizer/BioNtech 6 (67) 6 (67) 3 (38) 1 (13) 8 (53) 7 (47) 6 (32) 6 (32)

Anti-RBD titer >4 AU/mL prior to first vaccination, n (%)

Seroconversion 5 (63) 0 4 (67) 0 6 (75) 0 11 (61) 0

No seroconversion 3 (38) 9 (100) 2 (33) 7 (100) 2 (25) 15 (100) 7 (39) 18 (100)

Serology missing 0 0 2 1 7 0 1 1

Anti-RBD titer prior to first vaccination, median (IQR)

Titer 7.5 (2.3–16.9) NA 8.4 (0.7–31.8) NA 6.2 (3.4–9.7) NA 4.42 (1.2–13.0) NA

Anti-RBD titer >4 AU/mL 28 days after 1st vaccination, n (%)

Seroconversion 6 (100) 6 (67) 3 (50) 1 (14) 14 (93) 14 (93) 17 (100) 18 (100)

No seroconversion 0 3 (33) 3 (50) 6 (86) 1 (7) 1 (7) 0 0

Serology missing 3 0 2 1 0 0 2 1

Anti-RBD titer 28 days after 1st vaccination, median (IQR)

Titer 180.0

(54.4–271.0)

12.9 (3.0–36.9) 11.7 (1.0–38.5) 0.5 (0.1–1.6) 163.0

(21.6–545.0)

23.3 (10.9–48.9) 300.0

(218.0–558.0)

22.9 (12.2–34.1)

Anti-RBD titer >4 AU/mL 28 days after 2nd vaccination, n (%)

Seroconversion 9 (100) 9 (100) 2 (33) 3 (38) 14 (100) 14 (100) 15 (100) 19 (100)

No seroconversion 0 0 4 (67) 5 (63) 0 0 0 0

Serology missing 0 0 2 0 1 1 4 0

Anti-RBD titer 28 days after 2nd vaccination, median (IQR)

Titer 205.0

(158.0–341.0)

135 (72.9–662) 0.6 (0.1–12.7) 1.0 (0.1–12.3) 188.0

(83.0–329.0)

157.0

(69.8–250.0)

356.0

(237.0–662.0)

228.0

(88.9–289.0)

Breakthrough infection in 180 days after second vaccination, n (%)

SARS-CoV-2 infection 0 (0) 0 (0) 0 (0) 1 (13) 0 (0) 1 (7) 0 (0) 1 (5)

Baseline characteristics and humoral data in patients categories with SARS-CoV-2 infection prior to the primary vaccination and matched controls without prior SARS-CoV-2 infection.

In two healthy controls, severity of COVID-19 is missing. Seroconversion after vaccination was defined as antibody titers >4 AU/mL. The median time in days between last ocrelizumab

infusion and first vaccination was 116 (IQR 25–157) in convalescent patients and 136 (IQR 20–152) in non-convalescent ocrelizumab-treated patients.

in R version 4.2.1 (R Foundation for Statistical Computing,

Vienna, Austria).

Results

One hundred and two participants were included in this

substudy, of which 34 patients with MS and DMTs (natalizumab

or ocrelizumab), 30 patients without DMTs, and 38 healthy

controls. Baseline characteristics and humoral responses of

participants with (n = 51) and without prior SARS-CoV-2

infection (n = 51) are described in the Table 1. Longitudinal

results of SARS-CoV-2 anti-RBD antibody titers are presented

in the Figure 1.

The exact time of SARS-CoV-2 infection prior to vaccination

was available in 47% (24/51) of participants as PCR testing

was not widely available in the Netherlands in early 2020.

The median time from positive PCR to first vaccination in
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FIGURE 1

Longitudinal SARS-CoV-2 antibody titers in patients with and without prior SARS-CoV-2 infection. The figure shows anti-RBD titers over time in

patients with MS in various treatment groups. The x-axis shows time in days before and after the first vaccination. The y-axis is a logarithmic

scale of anti-RBD-IgG titers in AU/mL. The Dots indicate antibody titers for individual participants. The black line indicates the regression line per

group to demonstrate a trend. The horizontal black line indicates the cut-o� for seroconversion (>4 AU/mL). The dotted lines, respectively,

indicate the median timing of the first and second vaccination, either with mRNA vaccines (Moderna/Pfizer) or ChAdOx1 nCoV-19 (AZD1222)

vaccine from Oxford-AstraZeneca. The median time between the first and second vaccination was 42 days.

patients with available data was 229 days (IQR 175–304). In

remaining patients with MS without a date of SARS-CoV-

2 infection, infection occurred prior to first sampling which

took place a median of 216 days (IQR 185–231) prior to the

first vaccination.

Before the first vaccination, 65% (26/40) of all participants

with prior SARS-CoV-2 infection had anti-RBD IgG titers above

the threshold of 4 AU/mL; however, titers were low [median titer

10.9 AU/mL (IQR 6.5–17.8)].

At day 28 after the first vaccination, 85% (23/27) of patients

with MS and prior SARS-CoV-2 infection had anti-RBD IgG

titers above the threshold of 4 AU/mL vs. 68% (21/31) of patients

with MS without SARS-CoV-2 infection (p: 0.14, Table 1). In

patients with MS on natalizumab, patients without DMTs, and

healthy controls, the anti-RBD antibody titer after the first

vaccination was higher in participants with prior SARS-CoV-

2 infection than in participants without prior infection to

vaccination (p: 0.04, p < 0.01, and p < 0.001, respectively,
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Table 1). In contrast, no difference was identified in anti-

RBD titers after the first vaccination in patients with MS on

ocrelizumab with or without a prior SARS-CoV-2 infection (p:

0.07, Table 1).

At day 28 after the second vaccination, all individuals were

seroconverted (anti-RBD titer >4 AU/mL 28 days after the

second vaccination), with an exception of ocrelizumab-treated

patients (36%, 5/14). Antibody titers in patients with MS on

natalizumab, without DMTs, and healthy controls, were all

higher after the second vaccination compared with the first

vaccination (Table 1). In patients on natalizumab and without

DMTs, no significant differences in titer were observed in

patients with and without prior SARS-CoV-2 infection (p: 0.73

and p: 0.48, respectively, Table 1), whereas for healthy controls,

the median anti-RBD antibody was higher by 1.6-fold (p < 0.01,

Table 1). In ocrelizumab-treated patients, seroconversion and

anti-RBD antibody titers remained low after vaccinations, also

in the group with prior SARS-CoV-2 infection.

SARS-CoV-2 breakthrough infections in 6 months (180

days) after the second vaccination were reported by 3%

(3/102) of participants, all females without prior SARS-CoV-

2 infection. These breakthrough infections occurred in one 53

years old healthy control who had mild symptomatic disease

(no assistance needed), one 50 years old patient without DMT

who had mild symptomatic disease (no assistance needed),

and one 50 years old ocrelizumab-treated patient who had

moderate disease (hospitalization with oxygen). The patient on

ocrelizumabwas hospitalized for supportive treatment including

oxygen suppletion for 10 days after which she recovered and

was discharged.

Discussion

In this study, in patients with MS on natalizumab and

without DMTs and healthy controls with prior SARS-CoV-

2 infection, higher SARS-CoV-2 antibody titers were found

28 days after the first vaccination compared with matched

individuals without SARS-CoV-2 infection. In these patients,

further increase of anti-RBD titer was limited after the second

vaccination. Our results are in agreement with Shenoy et al.

who reported an increase in antibody titers after vaccination

in convalescent patients with autoimmune rheumatic diseases

compared with non-convalescent patients (8). In this study,

part of the patients who experienced COVID-19 did not

show seroconversion when tested prior to vaccination. As

immunity and seroconversion after infection or vaccination

against SARS-CoV-2 wanes over time, a full vaccination cycle is

also recommended following international guidelines in patients

with MS andprior SARS-CoV-2 infection. Our data show no

difference in SARS-CoV-2 antibody titers after a full vaccination

cycle between convalescent and non-convalescent patients

with MS. Therefore, patients with MS and hybrid immunity

(including a full vaccination cycle) might have comparable

immunity compared with non-convalescent patients, although

the potency and breadth of SARS-CoV-2 antibodies could be

different after vaccination or infection, which was not evaluated

in this current study.

In ocrelizumab-treated patients, we found low

seroconversion rates and anti-RBD antibody titers in patients

with and without prior SARS-CoV-2 infection. Anti-CD20

therapies greatly impair the antibody response after SARS-

CoV-2 infection and vaccination in patients with MS (1, 9).

Therefore, patients are offered additional vaccinations to

increase humoral responses. The majority of these patients,

however, remain seronegative after the third vaccination (10).

Decreased humoral responses are shown to increase the risk of

SARS-CoV-2 breakthrough infection, but severe breakthrough

infection is rare likely due to intact T cell responses (4).

Our study has limitations, the most important one being the

limited sample size. In addition, we were unable to study patients

on sphingosine 1-phosphate receptor modulators, a therapy

known to inhibit the humoral and cellular responses after SARS-

CoV-2 vaccination, as only five patients on fingolimod with a

SARS-CoV-2 infection were identified in the COMS-19 study

who did not complete follow-up after vaccination (5). Another

limitation was missing data regarding the timing of COVID-

19 prior to vaccination in half of our patients, as the timing

influences antibody titers and level of immunity. Furthermore,

our results might not be translatable to later variants of SARS-

CoV-2. The strength of this study was the prospective design and

sampling at pre-specified time points after vaccination.

In conclusion, prior SARS-CoV-2 infection increases anti-

RBD antibody responses after the first vaccination in patients

with MS. However, in ocrelizumab-treated patients, humoral

responses remained low and also in convalescent participants.
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Matteo Tartaglia2, Eeva Tortellini 1, Mariasilvia Guardiani1,
Valentina Perri1, Patrizia Pasculli 1, Federica Ciccone1,
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Aurelia Gaeta1, Miriam Lichtner4,5, Antonella Conte2,6,
Claudio Maria Mastroianni1 and Maria Rosa Ciardi1

1Department of Public Health and Infectious diseases, Sapienza, University of Rome, Rome, Italy,
2Department of Human Neurosciences, Multiple Sclerosis Centre, Sapienza, University of Rome,
Rome, Italy, 3Department of Molecular medicine, Sapienza, University of Rome, Rome, Italy,
4Infectious Diseases Unit, Santa Maria Goretti Hospital, Sapienza, University of Rome, Latina, Italy,
5Department of Neurosciences Mental Health and Sensory Organs, Sapienza University of Rome,
Rome, Italy, 6Scientific Hospitalization and Treatment Institute, Neuromed Mediterranean
Neurological Institute, Pozzilli, Italy
Background: The mRNA vaccines help protect from COVID-19 severity,

however multiple sclerosis (MS) disease modifying therapies (DMTs) might

affect the development of humoral and T-cell specific response to vaccination.

Methods: The aim of the study was to evaluate humoral and specific T-cell

response, as well as B-cell activation and survival factors, in peoplewithMS (pwMS)

under DMTs before (T0) and after two months (T1) from the third dose of vaccine,

comparing the obtained findings to healthy donors (HD). All possible combinations

of intracellular IFNg, IL2 and TNFa T-cell production were evaluated, and T-cells

were labelled “responding T-cells”, those cells that produced at least one of the

three cytokines of interest, and “triple positive T-cells”, those cells that produced

simultaneously all the three cytokines.

Results: The cross-sectional evaluation showed no significant differences in

anti-S antibody titers between pwMS and HD at both time-points. In pwMS,

lower percentages of responding T-cells at T0 (CD4: p=0.0165; CD8:

p=0.0022) and triple positive T-cells at both time-points compared to HD

were observed (at T0, CD4: p=0.0007 and CD8: p=0.0703; at T1, CD4:

p=0.0422 and CD8: p=0.0535). At T0, pwMS showed higher plasma levels of

APRIL, BAFF and CD40L compared to HD (p<0.0001, p<0.0001 and p<0.0001,

respectively) and at T1, plasma levels of BAFF were still higher in pwMS

compared to HD (p=0.0022).According to DMTs, at both T0 and T1, lower

anti-S antibody titers in the depleting/sequestering-out compared to the
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enriching-in pwMS subgroup were found (p=0.0410 and p=0.0047,

respectively) as well as lower percentages of responding CD4+ T-cells (CD4:

p=0.0394 and p=0.0004, respectively). Moreover, the depleting/

sequestering-out subgroup showed higher percentages of IFNg-IL2-TNFa+
T-cells at both time-points, compared to the enriching-in subgroup in which a

more heterogeneous cytokine profile was observed (at T0 CD4: p=0.0187; at

T0 and T1 CD8: p =0.0007 and p =0.0077, respectively).

Conclusion: In pwMS, humoral and T-cell response to vaccination seems to be

influenced by the different DMTs. pwMS under depleting/sequestering-out

treatment can mount cellular responses even in the presence of a low positive

humoral response, although the cellular response seems qualitatively inferior

compared to HD. An understanding of T-cell quality dynamic is needed to

determine the best vaccination strategy and in general the capability of

immune response in pwMS under different DMT.
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SARS-CoV-2 mRNA vaccine, T-cell, MS, DMTs, flow-cytometry, BAFF, April, CD40L
Introduction

In the last two years, the coronavirus disease 2019

(COVID-19), caused by Severe Acute Respiratory Syndrome

CoronaVirus-2 (SARS-CoV-2), has emerged with a severe global

health impact and difficult clinical management (1, 2). SARS-

CoV-2 vaccines with different designs have been approved and

authorized in many countries, Italy included, and vaccine

campaigns have been launched (3). Among them, the mRNA

vaccine mRNABNT162b2 (Comirnaty®) has been widely

employed in the Italian population (4). Several studies showed

that mRNA vaccines help protect from severe COVID-19

disease, hospitalization and death in immunocompetent

individuals and in frail populations (5, 6). However, multiple

sclerosis (MS) disease modifying therapies (DMTs) might

affect COVID-19 disease severity as well as the development

of humoral and cellular immunity after SARS-CoV-2 exposure

or vaccination (7, 8). Indeed, Sormani et al. (9) showed

a propensity toward a more severe COVID-19 disease in

people with MS (pwMS) under certain DMTs, such as anti-

CD20 treatments.

MS is an inflammatory demyelinating disease affecting the

central nervous system (CNS), thought to result from the

interaction of genetic and environmental factors that remain

only partially understood (10). Several DMTs have been

developed and are now currently available (11). These drugs

act at different levels on the immune system causing (I) depletion

and/or cytolysis of immune cells, such as anti-CD20 humanized

monoclonal antibody (ocrelizumab), anti-CD52 monoclonal
02
7576
antibody that depletes CD52+ T- and B-cells (alemtuzumab)

and purine analogue that interferes with DNA synthesis

inducing prolonged lymphocyte depletion (cladribine), and (II)

an impairment of immune cell migration, such as a4-integrin
antibody that prevents lymphocytes blood–brain barrier (BBB)

crossing (natalizumab) and a non-selective sphingosine 1

phosphate (S1P) receptor modulator that prevents lymphocyte

egress from lymph nodes (fingolimod) (2, 11). Despite the

remarkable effectiveness, DMTs are usually associated to an

increased risk of infections, such as tuberculosis, hepatitis B,

John Cunningham (JC) virus, herpes viruses reactivation (12–

20) and an attenuation of responses to vaccination, that seems to

be related to the drug’s mode of action (21–24).

B-cell activating and survival factors, like B-cell activating

factor (BAFF), A-proliferation inducing ligand (APRIL) and

CD40L ligand (CD40L), are mainly implicated in B-cell

survival, proliferation and antibody production and T-cell

dependent and independent antibody class switching (25–27).

After vaccination their concentrations increases enhancing B-

cell activation (28, 29), and their expression is a prerequisite for

activation of adaptive immune response to vaccination, while

their absence may result in a reduced magnitude of response

(27). Being involved in B-cell differentiation and survival, the

three cytokines are target for immune modulation in the context

of vaccine design and have been recently studied as molecular

adjuvants to improve vaccine outcome (30).

The aim of the study was to evaluate humoral and specific T-

cell response, as well as B-cell activating and survival factors in

pwMS under different DMTs.
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Materials and methods

Ethics statement

The study was approved by Ethics Committee of Policlinico

Umberto I, Sapienza University of Rome (protocol numbers

0062/2022). All patients gave written consent for participation in

the study.
Study design and participants

To evaluate humoral and specific T-cell response to

mRNABNT162b2 (Comirnaty®) vaccine, pwMS under different

DMTs and age- and sex-matched healthy donors (HD) were

enrolled. Prior history of symptomatic SARS-CoV-2 infection was

considered as exclusion criterion. Both pwMS and HD received

two dose of mRNABNT162b2 (Comirnaty®) vaccine according to

schedule proposed by the current Italian national vaccination

program (4). For both groups, two time-points were considered:

before (T0) and after two months from the third dose of

mRNABNT162b2 vaccine (T1).

All enrolled pwMS were stratified according to the drug’s

mechanism of action on peripheral blood cells into two

subgroups: depleting/sequestering-out, including those patients

treated with alemtuzumab, cladribine, fingolimod and

ocrelizumab, and enriching-in, including those patients treated

with natalizumab. The blood samples from pwMS treated with

cladribine, ocrelizumab or alemtuzumab were taken at least 3

months after last drug administration. The differences in

humoral and specific T-cell response as well as in B-cell

activating and survivor factors, among the two subgroups

were evaluated.
SARS-CoV-2 anti-N and anti-S antibodies

To exclude possible pre-exposure to asymptomatic natural

SARS-CoV-2 infection, specific SARS-CoV-2 anti-Nucleocapsid

(N) antibodies were measured on serum using the KT-1032 EDI

TM Novel Coronavirus COVID-19 IgG Enzyme Linked

Immunosorbent Assay (ELISA) Kit (Epitope Diagnostics, Inc.

7110 Carroll Rd, San Diego, CA 92121, USA) and performed

according to the manufacturer’s instructions. The average value

of the absorbance of the negative control is less than 0.25 optical

density (OD), and the absorbance of the positive control is not

less than 0.30 OD.

Specific SARS-CoV-2 total anti-Spike antibodies were

evaluated in serum, for all time-points, using a commercial

chemiluminescence immunoassay (CLIA) (The DiaSorin

Liaison SARS-CoV-2 TrimericS IgG; DiaSorin S.p.A)

according to manufacturer’s instructions. The test detects
Frontiers in Immunology 03
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SARS-CoV-2 Spike S1/S2 protein specific IgG antibody levels,

expressed in binding antibody unit (BAU/ml) according to

World Health Organization international Reference Standard

(NIBSC code. 20/268). A positive serologic response was defined

as having detectable IgG antibodies against SARS-CoV-2 over

the cut-off value of 33.8 BAU/ml.
T-cell stimulation with SARS-CoV-2
specific peptide libraries

T-cell specific response was assessed using a multiparametric

flow cytometry after overnight stimulation with SARS-CoV-2

peptide libraries on isolated peripheral blood mononuclear cells

(PBMCs), as previously described (12, 21, 31). Pools of lyophilized

peptides, consisting mainly of 15-mer sequences with 11 amino

acids overlap, covering the immunodominant sequence domains

of the Spike glycoprotein (S) (GenBank MN908947.3, Protein

QHD43416.1) and the Nucleocapsid phosphoprotein (N)

(GenBank MN908947.3, Protein QHD43423.2) of SARS-CoV- 2

were purchased from Miltenyi Biotec. Specifically, PepTivator

SARS-CoV-2 Prot_S1 covered the N-terminal S1 domain of the

spike protein (amino acids [aa] 1–692). PepTivator SARS-CoV-2

Prot_S covered selected immunodominant sequence domains of

the spike protein (aa 304–338, 421–475, 492–519, 683–707, 741–

770, 785–802, and 885–1273). PepTivator SARS-CoV-2 Prot_N

covered the complete sequence of the N phosphoprotein of SARS-

CoV-2. For each patient, an unstimulated and a positive

phytohemagglutinin (PHA) 5mg/ml control was also included.

Brefeldin A at a final concentration of 5mg/ml was added in the

culture after 1 hour of incubation.

PBMCs were stained with an appropriate combination of

fluorochrome-conjugated antibodies (PacificBlue-conjugated

anti-CD45, APC-Cy7-conjugated anti-CD4, APC-conjugated

anti-CD8, BioLegend, San Diego). Fix/Perm solution

(BioLegend, San Diego) was used prior intracellular staining

(FITC-conjugated anti- IFNg, PerCp-Cy 5.5-conjugated anti-

TNFa and PE-Cy7-conjugated anti-IL2, BioLegend, San Diego),

according to manufacturer’s instructions. Fixable viability kit

(Zombie Aqua™ BioLegend, San Diego) was used to exclude

dead cells. Samples were acquired using MACSQuant (Miltenyi

Biotec, Germany) and analyzed using FlowJo™ v10.8.1 software.

Specifically, cytokine background obtained from the

unstimulated condition was subtracted to the stimulated ones.

All possible combinations of intracellular expression of IFNg,
IL2 and TNFa in cytokine-producing T-cells were evaluated

using the Boolean gate. “Responding T-cells” were defined as

those cells that produce any of IFNg, IL2 and TNFa, while
“triple-positive T-cells” were defined as those simultaneously

producing all three cytokines. Display and analysis of

the different cytokine combinations was performed with

SPICE v6.1.
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Measurement of BAFF, APRIL and CD40L

In both pwMS and HD, plasma levels of BAFF, APRIL and

CD40L were measured using a commercial cytometric bead-

based multiplex panel immunoassay (CBA) (BioLegend, San

Diego), acquired using MACSQuant (Miltenyi Biotec, Germany)

and analyzed using FlowJo™ v10.8.1 software (Figure 1). B-cell

activating and survival factors were expressed as plasma

concentration (pg/ml).
Statistical analyses

All data are reported as median and interquartile range

(IQR). Differences between pwMS and HD were assessed using a

two-tailed Mann-Whitney test for quantitative variables.

Differences among pwMS subgroups and HD were assessed

using a non-parametric Kruskal-Wallis test with Dunn’s

multiple comparison post-test for quantitative variables. Two-

point longitudinal assessment was performed using a non-

parametric Wilcoxon test. Results were considered statistically

significant if the p value was <0.05. Statistical analyses were

performed using GraphPad Prism 9. Finally, distributions of

different cytokine combinations were performed by the

nonparametric Wilcoxon rank test using SPICE, distributed by

the National Institute of Allergy and Infectious Diseases, NIH.

Results

Study population

From October 2021 to June 2022, 18 pwMS (female/male:

12/6; 43 [35-56] years) and 18 HD (female/male: 13/5; 30 [30-

53] years) were enrolled (Table 1). All pwMS were under DMTs
Frontiers in Immunology 04
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and the median time (IQR) from starting the current treatment

was of 3 [2-4] years. As reported in Table 1, among pwMS 5.5%

were alemtuzumab-treated, 11.1% cladribine-treated, 11.1%

fingolimod-treated, 33,3% natalizumab-treated and 38.9%

ocrelizumab-treated. Given that, we stratified pwMS according

to the drug’s mechanism of action on peripheral blood immune

cells into two subgroups: depleting/sequestering-out (n=12;

female/male: 7/5; 46 [35-57] years) and enriching-in (n=6;

female/male: 5/1; 40 [34-44] years) (Table 1).
The cross-sectional evaluation of
humoral and specific T-cell response,
and B-cell activating and survival factors

The cross-sectional evaluation of humoral and specific T-cell

response, as well as B-cell activating and survival factors was

performed at T0 comparing 18 pwMS (female/male: 12/6; 43

[35-56] years) and 12 HD (female/male: 8/4; 42 [33-53] years),

and at T1 comparing 16 pwMS (female/male:11/5; 42 [34-49]

years) and 15 HD (female/male: 12/3; 38 [30-52] years).

The evaluation of specific SARS-CoV-2 anti-N antibodies

performed both T0 and T1 showed negative results for all

enrolled pwMS and HD.

Overall, a positive serological response to vaccination was

observed in 77.8% (14/18) and 88.0% (14/16) of enrolled pwMS,

at T0 and T1, respectively. Conversely, a positive serological

response at both time-points in 100% (12/12 and 15/15,

respectively) of enrolled HD was found.

The cross-sectional evaluation of anti-S antibody titers

showed no statistically significant differences between pwMS

and HD at both time-points (T0: 199 [60-1120] and 369

[189-700.50] BAU/ml, respectively; T1: 1930 [225-5895] and

1660 [1520-9400] BAU/ml, respectively) (Figure 2A).
FIGURE 1

Gating strategy. A. Representative flow cytometry plot for the evaluation of plasma APRIL, BAFF and CD40L levels after bead-based multiplex
assay panel. APRIL, A-proliferation inducing ligand; BAFF, B-cell activating factor; CD40L, CD40 ligand.
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TABLE 1 Demographic and clinical features of study population.

HD pwMS depleting/sequestering-out enriching-in

Female/Male 13/5 12/6 7/5 5/1

Age, median (IQR) 30 (35–53) 43 (35–56) 46 (35–57) 40 (34–44)

Years of disease, median (IQR) – 7 (3–14) 7 (5–15) 5 (1–9)

EDSS, median (IQR) – 3 (1–4) 3 (1–6) 2 (1–3)

Previous MS treatment (yes/no) – 5/13 3/9 2/6

Years of current treatment, median (IQR) – 2 (2–4) 3 (2–4) 1 (1–4)

Current MS treatment –

alemtuzumab (n) 1

cladribine (n) – 2

fingolimod (n) – 2

natalizumab (n) – 6

ocrelizumab (n) – 7
Frontiers in Immunology
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MS, multiple sclerosis; pwMS, people with multiple sclerosis; HD, healthy donors; n, number; IQR, interquartile range; EDSS, expanded disability status scale.
E

A B
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FIGURE 2

Cross-sectional evaluation of humoral and specific T-cell response in pwMS and HD, and overview of cytokine-producing T-cells. (A) The evaluation of
anti-S antibody titers in pwMS and HD. (B) Overview of intracellular IFNg,IL2 and TNFa production by CD4+ and CD8+ T-cells at T0 and at T1 in pwMS
and HD. (C) Evaluation of percentage in responding CD4+ and CD8+ T-cells in pwMS and HD. (D) Evaluation of percentage in triple-positive CD4+ and
CD8+ T-cells in pwMS and HD. (E) Evaluation of plasma levels of APRIL, BAFF and CD40L in pwMS and HD. APRIL, A-proliferation inducing ligand;
BAFF, B-cell activating factor; CD40L, CD40 ligand; pwMS, people with multiple sclerosis; HD, healthy donors; T0, before third dose of vaccine; T1, after
two months form third dose of vaccine. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
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As reported in Figure 2B, at both time-points, we observed a

different T-cell subset distribution in pwMS and HD, with a

more heterogeneous production of the three cytokines in the

latter (Figure 2B).

At T0, a lower percentage of responding CD4+ and CD8+

T-cells in pwMS compared to HD was observed (CD4: 1.04 [0.85-

1.44] and 1.98 [1.52-3.29], respectively, p=0.0165; CD8: 1.00

[0.71-1.34] and 1.82 [1.42-3.48], respectively, p=0.0022)

(Figure 2C). Otherwise, at T1, not statistically differences in the

percentage of responding T-cells were found (CD4:1.23 [0.60-

1.63] and 1.39 [0.70-2.05], respectively; CD8: 1.17 [0.86-1.56] and

1.02 [0.17-1.70], respectively) (Figure 2C).

At both T0 and T1, lower percentages of triple-positive T-

cells were seen, although only a trend for CD8+ T-cells was

observed (CD4: 0.06 [0.03-0.09] and 0.10 [0.10-0.10],

respectively, p=0.0007; 0.09 [0.03-0.09] and 0.10 [0.10-0.10],

respectively, p=0.0422; CD8: 0.06 [0.02-0.09] and 0.10 [0.04-

0.10], respectively, p=0.0703; 0.06 [0.03-0.10] and 0.10 [0.05-

0.11], respectively, p=0.0533) (Figure 2D).

Finally, at T0, pwMS showed higher plasma levels of APRIL,

BAFF, and CD40L compared to HD (APRIL: 13296 [8890-

18759] and 833 [220-3042] pg/ml, respectively, p<0.0001;

BAFF: 6330 [2015-16971] and 429.3 [154-631] pg/ml,

respectively, p<0.0001; CD40L:111275 [75329-132373] and

26664 [12457-55197] pg/ml, respectively, p<0.0001)

(Figure 2E). Otherwise, at T1, only plasma levels of BAFF

were still higher in pwMS compared to HD (9616 [1204-

13922] and 594 [143-1097] pg/ml, respectively, p=0.0022)

(Figure 2E). No significant differences in plasma levels of

APRIL and CD40L were observed (Figure 2E).
The longitudinal evaluation of humoral
and specific T-cell response, and B-cell
activating and survival factors

The two-point longitudinal evaluation of humoral and T-cell

response, as well as B-cell activating and survival factors was

performed in 16 pwMS (female/male: 11/5; 42 [34-49] years)

and 9 HD (female/male: 7/2; 44 [33-53] years).

At T1, both pwMS and HD showed an increase in anti-S

antibody titers compared to T0 (pwMS: 1930 [245-5895] and 198.5

[81-1140] BAU/ml, respectively, p=0.0006; HD: 3590 [1575-10850]

and 320 [124-662] BAU/ml, respectively, p=0.0039) (Figure 3A).

Concerning specific T-cell response, an increase in the percentage

of responding CD8+ T-cells in pwMS was observed (1.17 [0.86-

1.56] and 1.00 [0.60-1.33], respectively, p=0.0136) (Figure 3B).

Conversely, no differences in the percentages of responding CD4

+ T-cells neither in the percentages of triple-positive T-cells in both

pwMS and HD were found (responding CD4+ T-cells: 1.23 [0.60-

1.63] and 1.03 [0.80-1.28], respectively; triple-positive CD4+ T-
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cells: 0.09 [0.03-0.09] and 0.05 [0.03-0.09], respectively; triple-

positive CD8+ T-cells: 0.06 [0.03-0.10] and 0.05 [0.02-0.09],

respectively) (Figure 3B, C).

In pwMS, the evaluation of B-cell activating and survival

factors showed a significantly reduction in plasma levels of

APRIL and CD40L at T1 compared to T0 (APRIL: 4173

[1926-7510] and 13296 [8890-18759] pg/ml, respectively,

p=0.0001; CD40L: 41546 [21284-68397] and 111275 [75329-

132373] pg/ml, respectively, p=0.0012) (Figure 3D). Conversely,

in pwMS no differences in plasma levels of BAFF were observed

(Figure 3D) as well as in the longitudinal evaluation of APRIL,

BAFF and CD40L plasma levels in HD (Figure 3D).
Two-point cross-sectional evaluation of
humoral and T-cell response, and B-cell
activating and survival factors in pwMS
stratified according to DMTs

Stratifying pwMS according to DMTs, at both T0 and T1, a

lower anti-S antibody titer in the depleting/sequestering-out

compared to the enriching-in subgroup was found (T0: 100

[1-292] and 871 [175-1360] BAU/ml, respectively, p=0.0410; T1:

370 [50-1975] and 5410 [2655-9893] BAU/ml, respectively,

p=0.0047) (Figure 4A). Moreover, only at T1, the depleting/

sequestering-out subgroup showed a lower anti-S antibody titer

compared to HD (370 [50-1975] and 1660 [1520-9400] BAU/ml,

respectively, p=0.0244) (Figure 4A). No significantly differences

in anti-S antibody titers between the enriching-in subgroup and

HD ween seen (Figure 4A).

Interestingly, at both time-points, in the enriching-in

subgroup, a heterogeneous cytokine production was observed

(Figure 4B). Conversely, an unusual T-cell subset distribution in

the depleting/sequestering-out subgroup at both time-points was

found (Figure 4B). Specifically, the depleting/sequestering-out

subgroup showed a higher percentage of IFNg-IL2-TNFa+ CD4

+ T-cells compared to the enriching-in one at both time point,

although at T1 the differences were not statistically significant (T0:

1.31 [0.38-3.76] and 0.20 [0.08-0.32], respectively, p=0.0187; T1:

0.51 [0.23-2.40] and 0.27 [0.16-0.41], respectively). Likely, a higher

percentage of IFNg-IL2-TNFa+ CD8+ T-cells in the depleting/

sequestering-out subgroup compared to the enriching-in one at

both time-points was observed (T0: 0.72 [0.45-0.82] and 0.04

[0.02-0.06], respectively, p=0.0007; T1: 0.52 [0.33-0.74] and 0.06

[0.01-0.55], respectively, p=0.0077).

At both T0 and T1, a lower percentage of responding CD4+

T-cells in the depleting/sequestering-out compared to the

enriching-in subgroup was seen (0.92 [0.73-1.15] and 1.30

[1.16-2.01], respectively, p=0.0394; 0.85 [0.50-1.22] and 1.68

[1.48-1.96], respectively, p=0.0004) (Figure 4C). No differences

in the responding CD8+ T-cell percentages between the depleting/
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sequestering-out and the enriching-in subgroups were observed

(T0: 0.91 [0.60-1.32] and 1.31 [0.75-1.72], respectively; T1: 0.97

[0.60-1.41] and 1.54 [1.00-2.70], respectively) (Figure 4C).

Conversely, at T1, a lower percentage in triple-positive CD8+ T-

cells in the depleting/sequestering-out compared to the enriching-

in subgroup was observed (0.04 [0.02-0.07] and 0.10 [0.08-0.13],

respectively, p=0.0082) (Figure 4D).
Frontiers in Immunology 07
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Finally, at T0, a lower percentage of responding T-cells in the

depleting/sequestering-out subgroup compared to HD was found

(CD4: 0.92 [0.73-1.15] and 1.98 [1.52-3.29], respectively,

p=0.0116; CD8: 0.91 [0.60-1.32] and 1.82 [1.42-3.48],

respectively, p=0.0049) (Figure 4C). A both T0 and T1, a lower

percentage in triple-positive CD4+ T-cells in the depleting/

sequestering-out subgroup compared to HD was seen, although
frontiersin.or
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FIGURE 3

Longitudinal evaluation of humoral and specific T-cell response in pwMS and HD. (A) The longitudinal evaluation of anti-S antibody titers in pwMS
and HD. (B) The evaluation of responding CD4+ and CD8+ T-cells in pwMS and HD. (C) The evaluation of triple-positive CD4+ and CD8+ T-cells
in pwMS and HD. (D) The longitudinal evaluation of plasma levels of APRIL, BAFF and CD40L. APRIL, A-proliferation inducing ligand; BAFF, B-cell
activating factor; CD40L, CD40 ligand; pwMS, people with multiple sclerosis; HD, healthy donors; T0, before third dose of vaccine; T1, after two
months from third dose of vaccine. *p < 0.05; **p < 0.01; ***p < 0.001.
g

https://doi.org/10.3389/fimmu.2022.1050183
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Dominelli et al. 10.3389/fimmu.2022.1050183
not statistically significant at T1 (T0: 0.05 [0.03-0.09] and 0.10

[0.10-0.10], respectively, p=0.0024; T1: 0.09 [0.02-0.09] and 0.10

[0.10-0.10], respectively, p=0.0645) (Figure 4D).

Moreover, at both T0 and T1, lower percentages of triple-

positive CD8+ T-cells in the depleting/sequestering-out

subgroup compared to HD was found, although not

statistically significant at T0 (T0: 0.05 [0.02-0.08] and 0.10

[0.04-0.10], respectively, p=0.0588; T1: 0.04 [0.02-0.07] and

0.10 [0.05-0.11], respectively, p=0.0048) (Figure 4D).

At both time-points, no differences in the plasma levels of

APRIL and CD40L between the depleting/sequestering-out and

the enriching-in subgroups were observed (APRIL T0: 12603

[8077-19540] and 15312 [9740-11670] pg/ml, respectively; T1:

4173 [1706-7957] and 3965 [2082-6646] pg/ml, respectively;

CD40L T0: 101855 [73681-129802] and 125967 [101016-

140260] pg/ml, respectively; T1: 45043 [15469-72595] and

36953 [28036-73177] pg/ml, respectively) (Figure 4E).

Otherwise, at T0 and T1, a higher plasma level of BAFF in the

depleting/sequestering-out compared to the enriching-in

subgroup was seen (T0: 11768 [5094-228865] and 2412 [836.30-

3807] pg/ml, respectively, p=0.0064; T1: 12146 [5409-164509] and

504.90 [163.30-2578]pg/ml, respectively, p=0.0023) (Figure 4E).
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At T0, a higher plasma level of APRIL in both the depleting/

sequestering-out and the enriching-in subgroups compared to

HD was observed (the depleting/sequestering-out: 12603 [8077-

19540] and 832.70 [220.10-3042] pg/ml, respectively, p=0.0005;

the enriching-in: 15312 [9740-11670] and 832.70 [220.10-3042]

pg/ml, respectively, p=0.0017) (Figure 4E). At T1, no differences

were observed (Figure 4E). Otherwise, at T0 and T1, a higher

plasma level of BAFF in the depleting/sequestering-out

subgroup compared to HD was observed (T0: 11768 [5094-

228865] and 429.30 [154.20-630.80] pg/ml, respectively,

p <0.0001; T1: 12146 [5409-164509] and 594.10 [142.50-1097]

pg/ml, respectively, p=0.0004) (Figure 4E). No differences in the

plasma level of BAFF between the enriching-in subgroup

and HD were found (Figure 4E). Finally, at T0 a higher

plasma level of CD40L in both the depleting/sequestering-out

and the enriching-in subgroups compared to HD was observed

(the depleting/sequestering-out: 101855 [73681-129802] and

26664 [12457-55197] pg/ml, respectively, p=0.0013; the

enriching-in: 125967 [101016-140260] and 26664 [12457-

55197] pg/ml, respectively, p=0.0012) (Figure 4E). No

differences in plasma level of CD40L between pwMS

subgroups were seen (Figure 4E).
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FIGURE 4

Cross-sectional evaluation of humoral and specific T-cell response is pwMS subgroups and HD, and overview of cytokine-producing T-cells. (A)
The evaluation of anti-S antibody titers at two time-points: T0 and T1 in the depleting/sequestering-out and the enriching-in subgroups, and
HD. (B) Overview of intracellular IFNg, IL2 and TNFa production by CD4+ and CD8+ T-cells at T0 and at T1 in the depleting/sequestering-out
and the enriching-in subgroups. (C) Evaluation of responding CD4+ and CD8+ T-cells in pwMS subgroups and HD. (D) Evaluation of
triple-positive CD4+ and CD8+ T-cells in pwMS subgroups and HD. (E) Evaluation of plasma levels of APRIL, BAFF and CD40L in the depleting/
sequestering-out and the enriching-in subgroups, and HD. APRIL, A-proliferation inducing ligand; BAFF, B-cell activating factor; CD40L, CD40
ligand; pwMS, people with multiple sclerosis; HD, healthy donors; T0, before third dose of vaccine; T1, after two months form third dose of
vaccine. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
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Two-point longitudinal evaluation of
humoral and T-cell response, and B-cell
activating and survival factors in pwMS
stratified according to DMTs

At T1, the longitudinal evaluation of anti-S antibody titer

showed a significant increase in the enriching-in subgroup

compared to T0 (5410 [2655-9893] and 871 [175.30-1360]

BAU/ml, respectively, p=0.0313) (Figure 5A).

In both pwMS subgroups, no differences in the percentages of

responding and triple-positive T-cells were observed (Figure 5B, C).

Finally, at T1, a significant reduction in plasma levels of APRIL and

CD40L in both pwMS subgroups compared to T0 was observed

(the depleting/sequestering-out subgroup: APRIL: 4173 [1706-

7957] and 12603 [8077-19540] pg/ml, respectively, p=0.0031;

CD40L: 45043 [15469-72595] and 101855 [73681-129802] pg/ml,

respectively, p=0.0245; the enriching-in subgroup: APRIL: 3965
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[2082-6646] and 15312 [9740-19322] pg/ml, respectively, p=0.0313;

CD40L: 36953 [28036-73177] and 125967 [101016-140260] pg/ml,

respectively, p=0.0313) (Figure 5D).
Discussion

In this observational, monocentric, and prospective study,

we investigated the immunogenicity before and after the third

dose of BNT162b2 mRNA vaccine in pwMS under different

DMTs, evaluating both humoral and specific T-cell response as

well as B-cell activating and survival factors and comparing the

obtaining findings with a control group.

In line with other studies involving different pwMS (8, 32–

34), the first main result of our study was that pwMS treated with

DMTs develop a positive humoral immune response to the

mRNA vaccine, which does not differ significantly from that
A

B

D

C

FIGURE 5

Longitudinal evaluation of humoral and specific T-cell response pwMS subgroups and HD. (A) The longitudinal evaluation of anti-S antibody titers
between T0 and T1 in the depleting/sequestering-out and in the enriching-in subgroups compared to HD. (B) The evaluation of responding CD4+
and CD8+ T-cells in pwMS subgroups. (C) The evaluation of triple-positive CD4+ and CD8+ T-cells in the depleting/sequestering-out and in the
enriching-in subgroups. (D) The longitudinal evaluation of plasma levels APRIL, BAFF and CD40L. APRIL, A-proliferation inducing ligand; BAFF, B-cell
activating factor; CD40L, CD40 ligand; pwMS, people with multiple sclerosis; HD, healthy donors; T0, before third dose of vaccine; T1, after two
months from third dose of vaccine. *p < 0.05; **p < 0.01.
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observed in HD. Moreover, an increase in humoral response in

pwMS following the third dose of BNT162b2 mRNA vaccine

was seen. However, as reported by Sabatino et al. (32), humoral

response to SARS-CoV-2 vaccine appears to be influenced by

different DMTs mechanism of action. Indeed, in our study,

pwMS belonging to the depleting/sequestering-out subgroup

(including alemtuzumab-, cladribine-, fingolimod- and

ocrelizumab-treated) showed a significantly lower humoral

response to vaccination when compared to HD and to the

enriching-in subgroup (natalizumab-treated). This is in

agreement with several published studies in which a pattern of

low humoral response to SARS-CoV-2 vaccination, with respect

to healthy subjects, has been previously reported, mainly for

patients receiving B-cell depleting drugs (35–37) and fingolimod

(32, 38). Even though the depleting/sequestering-out subgroup

displayed lower anti-Spike antibody titers, most patients had

near-normal total anti-Spike IgG levels, while only few did not

seroconvert. This particular phenomenon could be due, as

already proposed by Hausler et al., to an incomplete depletion

of B-cells by anti-CD20 treatment, that mainly act on circulating

B-cells, leaving a smaller number of these cells that may persist

in secondary lymphoid tissues (32, 39).

Although the first line of protection against SARS-CoV-2

includes pre-existing antibodies, induced by vaccination or

infection, great safeguard can also be attributed to the T-cell

response (40, 41). Indeed, as shown by Agrati et al. (42), in

immunocompetent subjects the BNT162b2 mRNA vaccine is

able to elicit a coordinated spike-specific T-cell response

characterized by a production of all Th1 cytokines, with IFNg
correlating with both TNFa and IL2. Given that, we performed

in pwMS a broad characterization of the functional profiles of

specific T-cells, comparing the obtaining findings with HD. One

strength of our study was the evaluation of all possible

combination of intracellular expression of IFNg, IL2 and

TNFa by T-cells. T-cells that produce more than one of the

three cytokine of interest have been considered as to be

important in response to viral infections, including influenza

(43, 44). Moreover, in convalescent COVID-19 patients this

polyfunctional cytokine profile has been observed suggesting a

possible rapid recall response (45–47).

In our study, pwMS showed lower percentages in

responding and triple-positive T-cells compared to HD.

Interestingly, when stratifying pwMS according to DMTs,

lower percentages in responding and triple-positive T-cells

were seen mainly in the depleting/sequestering-out subgroup.

Different results have been reported in pwMS, with an

extensive T-cell response in natalizumab-treated patients, an

adequate T-cell response in ocrelizumab-treated and an

impaired one in fingolimod-treated ones (2, 21, 32, 48, 49).

The lower T-cell mediated response to vaccination that we

observed in the depleting/sequestering-out subgroup is in

accordance with published studies in which a reduction or
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even absence of adaptive cellular response has been reported

in patients treated with fingolimod (50, 51). An explanation to

this phenomenon could be the mode of action of fingolimod

itself, that may result in trapping relevant T-cells in secondary

lymphoid tissues blocking in vitro responses (51).

Moreover, in our study, pwMS included into the depleting/

sequestering-out subgroup showed a higher percentage of IFNg-
IL2-TNFa+ T-cells at both time-points, compared to the

enriching-in subgroup and HD in which a more heterogeneous

cytokine profile was observed. These data suggest an inferior

quality of response in pwMS included into the depleting/

sequestering-out subgroup. This is in line with results from

Picchianti-Diamanti et al. (52), showing a production of only

one cytokine by T-cells in fragile patients and suggesting a

potential dysfunction in T-cell response in frail subjects.

Lastly, due to B-cell involvement in vaccination immune

response and in mounting an immunological memory (28), we

evaluated plasma concentration of B-cells activating and survival

factors, BAFF, APRIL and CD40L (25, 53, 54). Higher plasma

levels of BAFF, APRIL and CD40L were seen at baseline in

pwMS when compared to HD, difference that lasted in the

depleting/sequestering-out and in the enriching-in subgroups.

This is in accordance with some studies in which higher plasma

levels of the three cytokines are reported in pwMS when

compared to HD, due to their involvement in worsening of

MS pathogenesis and in its regulation (55–58). A reduction over-

time in APRIL and CD40L plasma concentration was seen in

pwMS and the two subgroups, supporting their involvement in

immune response to vaccination (59–61). However, no

differences in plasma levels of BAFF over-time were observed.

Being involved in B-cell survival and promotion, BAFF receptor

expression is critical in enhancing an immune response and

antiviral immunity (62). These results suggest that, event tough

it is lower than healthy subjects’, a humoral response is still

elicited in pwMS.

Our study has some limitations such as the small sample size

and the extremely heterogeneous pwMS DMTs included. On the

other hand, an alemtuzumab-treated patients was included into

the study, a treatment difficult to include due to the reduced use

of this drug.
Conclusion

In summary, our data underline that the third dose of

BNT162b2 mRNA vaccine provides additional benefit to

pwMS. However, according to DMT mechanism of action,

pwMS should be addressed toward the use of pre-exposure

monoclonal antibodies, that have been proved to be effective

in mounting an adequate humoral response (63), and to other

therapeutic strategies to prevent SARS-CoV-2 infection, when

necessary. T-cell and antibody titer testing of patients under
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certain DMTs may allow a more individualized counselling of

their infection risk. Finally, an understanding of T-cell quality

dynamic is needed to determine the best vaccination strategy

and in general the capability of immune response in pwMS

under different DMT.
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Maza S, et al. Is humoral and cellular response to SARS-CoV-2 vaccine modified by
DMT in patients with multiple sclerosis and other autoimmune diseases? Mult
Scler (2022) 28:1138–45. doi: 10.1177/13524585221089540

38. Sormani MP, Inglese M, Schiavetti I, Carmisciano L, Laroni A, Lapucci C,
et al. Effect of SARS-CoV-2 mRNA vaccination in MS patients treated with disease
modifying therapies. EBioMedicine (2021) 72:103581. doi: 10.1016/
j.ebiom.2021.103581

39. Häusler D, Häusser-Kinzel S, Feldmann L, Torke S, Lepennetier G, Bernard
CCA, et al. Functional characterization of reappearing b cells after anti-CD20
treatment of CNS autoimmune disease. Proc Natl Acad Sci U.S.A. (2018) 115:9773–
8. doi: 10.1073/pnas.1810470115

40. Messika J, Eloy P, Roux A, Hirschi S, Nieves A, Le Pavec J, et al. COVID-19
in lung transplant recipients. Transplantation (2021) 105:177–86. doi: 10.1097/
TP.0000000000003508

41. Rabinowich L, Grupper A, Baruch R, Ben-Yehoyada M, Halperin T, Turner
D, et al. Low immunogenicity to SARS-CoV-2 vaccination among liver transplant
recipients. J Hepatol (2021) 75:435–8. doi: 10.1016/j.jhep.2021.04.020

42. Agrati C, Castilletti C, Goletti D, Meschi S, Sacchi A, Matusali G, et al.
Coordinate induction of humoral and spike specific T-cell response in a cohort of
Italian health care workers receiving BNT162b2 mRNA vaccine. Microorganisms
(2021) 9:1315. doi: 10.3390/microorganisms9061315

43. Lin L, Finak G, Ushey K, Seshadri C, Hawn TR, Frahm N, et al. COMPASS
identifies T-cell subsets correlated with clinical outcomes. Nat Biotechnol (2015)
33:610–6. doi: 10.1038/nbt.3187

44. Seder RA, Darrah PA, Roederer M. T-Cell quality in memory and
protection: implications for vaccine design. Nat Rev Immunol (2008) 8:247–58.
doi: 10.1038/nri2274

45. Breton G, Mendoza P, Hägglöf T, Oliveira TY, Schaefer-Babajew D, Gaebler
C, et al. Persistent cellular immunity to SARS-CoV-2 infectionPersistent SARS-
CoV-2 cellular immunity. J Exp Med (2021) 218:e20202515. doi: 10.1084/
jem.20202515

46. Sekine T, Perez-Potti A, Rivera-Ballesteros O, Strålin K, Gorin J-B,
Olsson A, et al. Robust T cell immunity in convalescent individuals with
asymptomatic or mild COVID-19. Cell (2020) 183:158–168.e14. doi: 10.1016/
j.cell.2020.08.017

47. van der Ploeg K, Kirosingh AS, Mori DAM, Chakraborty S, Hu Z, Sievers
BL, et al. TNF-a+ CD4+ T cells dominate the SARS-CoV-2 specific T cell response
in COVID-19 outpatients and are associated with durable antibodies. Cell Rep Med
(2022) 3(6):100640. doi: 10.1016/j.xcrm.2022.100640

48. Palomares Cabeza V, Kummer LYL, Wieske L, Hagen RR, Duurland M,
Konijn VAL, et al. Longitudinal T-cell responses after a third SARS-CoV-2
vaccination in patients with multiple sclerosis on ocrelizumab or fingolimod.
Neurol Neuroimmunol Neuroinflamm (2022) 9:e1178. doi: 10.1212/
NXI.0000000000001178
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Background: Vaccinations provided the most e�ective tool to fight the

SARS-CoV-2 pandemic. It is now well established that COVID-19 vaccines are

safe for the general population; however, some cases of rare adverse events

following immunization have been described, including CNS Inflammatory

Demyelinating Events (CIDEs). Although observational studies are showing

that these events are rare and vaccines’ benefits highly outweigh the

risks, collecting and characterizing post-COVID-19 vaccine CIDEs might

be relevant to single out potential risk factors and suggest possible

underlying mechanisms.

Methods: Here we describe six CIDEs, including two acute transverse

myelitis (ATM), three multiple sclerosis (MS), and one neuromyelitis optica

spectrum disorder (NMOSD), occurring between 8 and 35 days from

a COVID-19 vaccine. Moreover, we performed a systematic literature

search of post-COVID-19 vaccines CIDEs, including ATM, ADEM, MS,

and NMOSD/MOGAD, published worldwide between December 2020 and

December 2021, during 1 year of the vaccination campaign. Clinical/MRI

and CSF/serum characteristics were extracted from reviewed studies

and pooled-analyzed.

Results: Forty-nine studies were included in the systematic review,

reporting a total amount of 85 CIDEs. Considering our additional six

cases, 91 CIDEs were summarized, including 24 ATM, 11 ADEM, 47MS,

and nine NMOSD/MOGAD. Overall, CIDEs occurred after both mRNA

(n = 46), adenoviral-vectored (n = 37), and inactivated vaccines (n = 8).

Adenoviral-vectored vaccines accounted for the majority of ADEM (55%)

and NMOSD/MOGAD (56%), while mRNA vaccines were more frequent

in MS new diagnoses (87%) and relapses (56%). Age was heterogeneous

(19–88) and the female sex was prevalent. Time from vaccine to symptoms

onset was notably variable: ADEM and NMOSD/MOGAD had a longer

median time of onset (12.5 and 10 days) compared to ATM and MS (6

and 7 days) and further timing di�erences were observed between events
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following di�erent vaccine types, with ATM and MS after mRNA-vaccines

occurring earlier than those following adenoviral-vectored ones.

Conclusion: Both the prevalence of vaccine types for certain CIDEs and

the heterogeneity in time of onset suggest that di�erent mechanisms—with

distinct dynamic/kinetic—might underly these events. While epidemiological

studies have assessed the safety of COVID-19 vaccines, descriptions and

pooled analyses of sporadic cases may still be valuable to gain insights into

CIDE’s pathophysiology.

KEYWORDS

ADEM, transverse myelitis, multiple sclerosis, NMOSD, MOGAD, COVID-19, vaccines

Introduction

The Coronavirus disease 19 (COVID-19) vaccination

campaign has no precedent in history for magnitude and

speed. Randomized Control Trials (1–4) (RCTs) and real-

world studies (5, 6) provided clear-cut evidence of vaccines’

effectiveness in reducing infections, severe COVID-19, and

deaths, resulting as the major tool to fight the pandemic.

Up to now, 40 COVID-19 vaccines have been approved

for emergency use by at least one regulatory authority

(7) and several are under development (8). These include

mRNA/DNA, adenoviral-vectored, protein-based, and whole

virus inactivated/live attenuated formulations. Currently, the

four vaccines licensed for use in the highest number of countries

are the mRNA-based BNT162b2 (Pfizer/BioNTech) and mRNA-

1273 (Moderna), and the adenoviral-vectored ChAdOx1 nCoV-

19 (Vaxzeviria) and Ad26.COV2.S (Janssen). Phase 3 RCTs

have demonstrated their safety in the general population (1–

4). However, as the global vaccination campaign advances, data

are being collected for Rare Adverse Events (RAEs), negligible

from a statistical viewpoint but potentially helpful to suggest

candidate risk factors and possible underlying mechanisms.

Among RAEs, some cases of CNS Inflammatory Demyelinating

Events (CIDEs) following COVID-19 vaccines have been

described in literature from December 2020 (9), including both

acute syndromes, such as acute transverse myelitis (ATM) and

Acute demyelinating encephalomyelitis (ADEM), and relapses

of chronic CNS inflammatory demyelinating diseases, such as

multiple sclerosis (MS), neuromyelitis optica spectrum disorder

(NMOSD), and myelin oligodendrocyte glycoprotein antibody-

associated disease (MOGAD). Although an increasing amount

of studies are showing that these events are rare and COVID-

19 vaccine benefits highly outweigh the risks (10–13), collecting

and characterizing post-COVID-19 vaccine CIDEs might still be

relevant to gain insights about CNS inflammatory demyelinating

diseases pathophysiology.

Here we report six CIDEs occurring after COVID-19

vaccines and present the results of a systematic review and

pooled descriptive analysis of an additional 85, published

worldwide from 1 December 2020 to 31 December 2021, during

1 year of the vaccination campaign.

Case series

Case 1

A 34-year-old man, with unremarkable past medical

history, presented with numbness in his arms 8 days after

receiving the first dose of Ad26.COV2.S vaccine. His condition

worsened in a few days: numbness extended to his trunk and

legs, and he progressively developed lower limb weakness

and urinary retention. He entered our unit 4 days later. On

neurological exam, he had light touch/pin-prick hypoesthesia

below C4 level, four limbs weakness, and sphincter disturbances

requiring catheterization. A spinal cord MRI showed a T2-

weighted hyperintensity irregularly extending from C3 to

medullaris conus (appearing swallowing from C4 to C7)

with no gadolinium enhancement on T1-weighted images

(Figures 1A,B); brain MRI resulted negative. Blood count,

erythrocyte sedimentation rate, and C-reactive protein were

normal. Cerebrospinal fluid (CSF) analysis revealed marked

lymphocytosis (310 leucocytes, 90% mononuclear cells) and

a slightly elevated protein level. No infectious agent was

detected at CSF PCR testing for extensive infectious panel

(Herpesviruses, Enterovirus, Parechovirus, i K1, Haemophilus

influenzae, Listeria monocytogenes, Neisseria meningitidis,

Streptococcus agalactiae, Streptococcus pneumoniae, and

Cryptococcus neoformans/gattii). CSF immunoelectrophoresis

(IEP) showed no oligoclonal bands (OCB). Serum anti-

AQP-4 and anti-MOG antibodies were negative, as well

as an antibody panel for connective tissue diseases. The

patient was administered a 5-day course of high-dose IV

methylprednisolone (IVMP) followed by oral tapering. After

2 weeks, he showed an almost complete motor recovery in the

arms while lower limb weakness and sphincter disturbances
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partially improved. He started rehabilitation treatment and

after 4 months he reported marked amelioration of leg strength

and further recovery of limb hypoesthesia. At 8 months of

control, he remained clinically stable and MRI showed the

complete resolution of the cervical swelling, with the extended

T2-hyperintensity appearing fragmented in multiple shorter

lesions, barely visible (Figure 1C); brain MRI was still negative.

Case 2

A 19-year-old man with a negative past medical

history presented with numbness and weakness in his

right arm in December 2018, 3 months after receiving

Diphtheria/Tetanus/Pertussis (Tdap) and Poliovirus (IVP)

vaccine booster doses. Symptoms spontaneously resolved in 2

weeks. Three months later, he underwent a spinal cord MRI

showing a T2-weighted hyperintensity from C5 to C7, with

swelling and blurred contrast-enhancement (Figures 1D,E);

the brain MRI was negative. CSF analysis revealed normal

cell count/protein level and IEP showed the presence of three

OCBs (pattern II, OCB exclusively in CSF). CSF PCR testing

for the extensive infectious panel was positive for Enterovirus,

but this result was not considered significant due to the

absence of prodromal respiratory/gastroenteric illness and

clinical/MRI/CSF findings not suggestive of Enterovirus-related

ATM. Serum antibodies panel for infectious diseases (including

HIV, Herpesviruses, and Borrelia) was unremarkable as well as

anti-AQP-4/MOG and connective tissue diseases antibodies. At

6-months of MRI control the cervical lesion appeared shrunk in

volume, with no more contrast-enhancing, and no other lesions

were detected in the spinal cord and brain (Figures 1F,G). He

remained stable at clinical and radiological follow-ups for the

next two years, with the last MRI performed in February 2021.

On 3rd June 2021, he received the first dose of the BNT162b2

vaccine and the second dose on 28th June. After 8 days, he

underwent a brain and spinal cord MRI follow-up, showing

the swelling and gadolinium enhancement of the previously

detected cervical lesion (Figures 1H,I). He did not complain

of any symptoms, except for a mild right-hand numbness

occurring 3 weeks after the second dose and lasting for a few

days. At a brain and spinal cord MRI performed 4 months later,

the cervical lesion appeared reduced in dimension and did not

show enhancement (Figures 1J,K). On 22nd December 2021, the

patient received the third dose of BNT162b2. After 35 days, he

reported numbness in his right arm followed by his right limb

weakness. He was admitted to our neurology unit and a new

spinal cord MRI showed the swelling and contrast enhancement

of the pre-existing cervical lesion (Figures 1L,M); the brain

MRI was still negative. A new lumbar puncture showed normal

cell count/protein level with no infectious agent detected at

PCR, while IEP revealed again the presence of three OCBs

(pattern II). Serum anti-AQP-4/anti-MOG and antibodies

panel for connective tissue diseases were still unremarkable.

The patient was administrated a 5-day course of high-dose

IVMP followed by Oral Corticosteroid (OCS) tapering, showing

complete recovery after a week. At 4-months of control, he was

clinically stable and did not report relapses. He is currently

under clinical/radiological follow-up.

Case 3

A 40-year-old woman, with a history of renal cell carcinoma

and no other comorbidities, received the first dose of the

BNT162b2 vaccine on 5th May 2021, and the second dose

5 weeks later. Ten days after the first dose, she presented

with numbness in her hands progressively extending to all the

upper limbs. On 4th July −25 days after the second dose—she

developed diplopia in her left horizontal gaze. She was admitted

to the emergency unit and an abduction deficit in her left eye

was found. A brain and cervical spinal cord MRI showed a

T2-weighted hyperintensity with blurred enhancement in the

left paramedian mid-pons (Figures 2A,B) and a non-enhancing

cervical spinal lesion at C2–C3 level (Figure 2C). She was

administered a 5-day course of high-dose IVMP and almost

completely recovered within 1 week. Two months of the brain

and spinal cord MRI control showed two new enhancing

supratentorial lesions—one juxtacortical in the left frontal

hemisphere and one periventricular abutting the right lateral

ventricle occipital horn—and two spinal lesions at the dorsal

level, with no contrast enhancement (we cannot define their time

of onset as the first MRI lacked a dorsal study; Figures 2D–H).

Blood counts and C-reactive protein were normal. Anti-AQP-

4/anti-MOG and antibodies for connective tissue diseases were

negative. Serum panel for infectious diseases was unremarkable,

except for Epstein-Barr Virus (EBV) serology resulting positive

for anti-EBV VCA IgM (titer 75.3 U/ml), VCA IgG (>750

U/ml), EBNA IgG (239 U/ml), while EBV EA IgG was negative

(9 U/ml). CSF analysis revealed normal cell count, protein, and

glucose, and no infectious agent (including EBV) was detected at

CSF PCR; CSF IEP showed the presence of 12 OCB (pattern II).

She was diagnosed with MS and Natalizumab was started.

Case 4

A 27-year-old woman, with no previous clinical history,

received the first dose of BNT162b2 vaccine on 16th June 2021

and the second dose after 21 days. One week later she reported

mild weakness in her left leg spontaneously resolving in 10 days.

A few days later, she developed a right facio-brachial motor

deficit and dysarthria. She was admitted to the emergency unit

and a brain MRI revealed T2-weighted hyperintensities in both

centra semiovale (CSO) and left thalamus/posterior limb of the

internal capsule (IC); lesions in the right CSO and left IC showed
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FIGURE 1

Serial spinal cord MRI scans in Case 1 (A–C) and Case 2 (D–M). Case 1: Cervical (A) and thoracic (B) spinal cord MRI obtained 10 days after

Ad26.COV2.S first dose showed a T2-weighted hyperintensity irregularly extending from C3 to medullaris conus with swelling from C4 to C7

(arrows) and no gadolinium enhancement (not shown). (C) 8-months MRI follow-up showing the complete resolution of the swelling and

marked amelioration of the signal abnormality, barely visible on Short Tau Inversion Recovery (STIR) images. Case 2: (D) Spinal cord MRI

performed 3 months after Tdap and IVP vaccine administration, showing a T2-weighted hyperintensity from C5 to C7 (arrow) with swelling and

blurred contrast-enhancement on T1-weighted sequence (E) (arrow). (F) 6-months MRI control showing the cervical lesion shrinkage on

T2-weighted sequences and no more contrast-enhancement (G). (H) Spinal cord MRI obtained 8 days after the BNT162b2 second dose,

showing swelling on STIR (arrow) and gadolinium enhancement [(I); arrow] of the previously detected lesion. (J) 4-months MRI showed

showing marked reduction of the signal abnormality and no more enhancement on the T1-weighted image (K). (L) Spinal cord MRI obtained 62

days after the BNT162b2 third dose, showing a new swelling (arrow) and gadolinium ring enhancement (M) of the known cervical lesion.

blurred contrast enhancement (Figures 2I–L); spinal cord MRI

was negative. CSF analysis revealed normal cell count/protein

level and a negative extensive infectious panel, while IEP showed

the presence of OCB (pattern II). Serum anti-AQP-4/anti-

MOG antibodies resulted negative as well as connective tissue

diseases panel except for the positivity of anti-nuclear antibodies

(titer 1:160), considered a non-specific finding. Visual evoked

potentials did not show abnormalities. She was administrated

a 5-day course of high-dose IVMP, with complete recovery.

One week later, she complained of right side weakness again—

this time involving her leg also—and dysarthria. She started

assuming OCS with no improvement. A new brainMRI revealed

a new active lesion in the right peritrigonal area and an increase

in the size of the previously detected lesions in the left CSO—this

time gadolinium-enhancing—whereas areas in right CSO and

left IC showed no more enhancement (Figures 2M–P). A spinal

cord MRI—performed 10 days after—revealed the presence of

three not enhancing cervical areas (at C2, C3, and C5–C6

levels; Figure 2Q). She was diagnosed with MS, and a second

5-day course of high-dose IVMP followed by OCS tapering

was administrated. Poor clinical response was obtained and

five plasma exchange (PEX) sessions were performed, with a

resolution of dysarthria and slight recovery of right hemiparesis.

At 2-months of MRI control, the left CSO and right peritrigonal

lesions were still contrast-enhancing and a 3-day course of high-

dose IVMP was administrated. She promptly started physical

therapy with marked improvement in motor performance. She

received the first cycle of Cladribine in October 2021. At

the three-month follow-up, she almost fully recovered, only

showing right-side brisk reflexes and mild oscillations at the

position test in her right leg [Expanded Disability Status Scale

(EDSS) score 1].

Case 5

A 53-year-old woman was diagnosed with MS at age 32

when she presented with paresthesia to her left limbs and

a brain/spinal cord MRI showed dissemination in space and

time. She was placed on interferon beta-1a with clinical and

Frontiers inNeurology 04 frontiersin.org

9091

https://doi.org/10.3389/fneur.2022.1018785
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Rinaldi et al. 10.3389/fneur.2022.1018785

FIGURE 2

Serial brain and spinal cord MRI scans in Case 3 (A–H) and Case 4 (I–Q). Case 3: (A) Brain MRI performed 25 days after BNT162b2 second dose,

showing a T2-weighted hyperintensity (arrow) in the left paramedian mid-pons with blurred enhancement on T1-weighted images [(B); arrow]

and a non-enhancing spinal lesion at C2–C3 level [(C); arrow]. (D–H) 2-months MRI follow-up showing two new brain lesions—one

juxtacortical in the left frontal hemisphere [(D); arrow] and one periventricular abutting the right lateral ventricle occipital horn [(E); arrow], both

with contrast-enhancement [(G,H); arrows] and two spinal lesions at the dorsal level [(F); arrows], with no contrast enhancement (not shown).

Case 4: (J–L) Brain MRI obtained 10 days after BNT162b2 second dose, revealing T2-weighted hyperintensities in both centra semiovale (CSO)

[(I); arrows] and left thalamus/posterior limb of the internal capsule (IC) [(J); arrow]; lesions in the right CSO [(K); arrow] and left IC [(L); arrow]

showed blurred contrast enhancement on T1-weighted images. (M–P) 20-days MRI control showing the enlargement of the left CSO lesion

[(M); arrow] and a new lesion in the right peritrigonal area [(N), arrow], both with gadolinium-enhancement on T1-weighted images [(O,P);

arrows]. (Q) Spinal cord MRI—obtained 10 days after the brain exam—showing three blurred areas at C2, C3, and C5–C6 levels on STIR

sequences, with no enhancement (not shown).

radiological stability over the next 10 years. In 2010, she

developed numbness in her right arm and a new enhancing

cervical lesion was detected in a spinal cord MRI. She was

switched to Fingolimod with no evidence of disease activity

until 2014 when she reported dysesthesia in her left face

and a brain MRI revealed a new active lesion in the left

frontal lobe. She was administrated a 5-day course of high-

dose IVMP with full recovery. Since then, she remained stable

at an EDSS of 2.5 at 6-month clinical controls and annual

MRI follow-up. On 31st May 2021, she received the first dose

of BNT162b2 vaccine and the second dose 35 days later.

Two weeks after the first dose administration, she complained

of gait imbalance and marked fatigue. A brain/spinal cord

MRI—performed 14 days after symptoms onset—revealed a

new left lateral periventricular T2-weighted hyperintensity

with contrast enhancement (Figures 3A,B). Compared to the

previous neurological exam, she showed moderate gait ataxia

leading to an EDSS increase by 1 point. She was administrated

a 5-day course of IVMP and clinically improved in a few weeks.

At 6-months of control, she reported complete recovery (with

EDSS returned to baseline) and the resolution of the new lesion

enhancement at MRI. She continued with her current disease-

modifying therapy (DMT).

Case 6

A 75-year-old woman presented with right optic neuritis

at age 60, partially resolved after OCS administration. Five

years later she developed bilateral optic neuritis, treated with

OCS with almost complete recovery. No brain/spinal cord

MRI was performed at that time, and she started assuming

chronic OCS with clinical stability over the following years. She

developed Diabetes Mellitus and osteoporosis, complicated by

a lumbar vertebral fracture for which she underwent surgical

fixation in May 2021. Since then, she started using the right

unilateral assistance in walking. On 3rd June 2021, she received

the first dose of BNT162b2 vaccine and the second dose
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FIGURE 3

Serial brain and spinal cord MRI scans in Case 5 (A,B) and Case 6 (C–I). Case 5: (A) Brain MRI performed 28 days after BNT162b2 first dose,

showing a new left lateral periventricular T2-weighted hyperintensity (arrow) with contrast enhancement [(B); arrow]. Case 6: (D) Spinal cord

MRI obtained 12 days after BNT162b2 second dose, showing a T2-weighted hyperintensity from C2 to C7 with swelling (arrow) and gadolinium

enhancement [(E); arrow]. (G) Brain MRI performed few days later showed a T2-weighted hyperintensity in left lateral pons (arrow) with blurred

contrast enhancement [(H); arrow] and confluent supratentorial bilateral periventricular hyperintensities on FLAIR images (C). (I) 7-days MRI

controls revealed the complete resolution of gadolinium enhancement of the left pontine lesion and the volume shrinkage of the cervical lesion

with no more contrast enhancement on T1-weighted images (F).

on 1st July. After 10 days, she developed dysesthesia and

weakness in her right upper limb, followed by weakness in

her legs. She was admitted to our emergency unit. On exam,

she had four limbs weakness (with motor strength at MRC

scale of grade 2/5 and 3/5 in her upper, and lower limbs,

respectively), brisk osteotendinous reflexes, bilateral Babinski

sign, and light touch hypoesthesia below D4 level. A spinal cord

MRI showed a T2-weighted hyperintensity from C2 to C7 with

swelling and gadolinium enhancement on T1-weighted images

(Figures 3D,E). A brain MRI performed a few days later showed

a T2-weighted hyperintensity in left lateral pons with blurred

contrast enhancement and confluent supratentorial bilateral

periventricular areas on FLAIR images (Figures 3C,G,H). Blood

count, erythrocyte sedimentation rate, and C-reactive protein

were normal. CSF analysis revealed normal cell count and

protein level. No infectious agent was detected at CSF PCR,

while IEP showed the presence of three OCBs (pattern II).

Anti-AQP-4 antibodies were positive. Extensive serum panel

for infectious diseases was unremarkable, as well as anti-

connective tissue and anti-neural surface/onconeural antigens

antibodies. Patient was administrated a 5-day course of high-

dose IVMP. After 10 days, she showed improvement in limb

motor performance, with strength at the MRC scale of grade

4/5 in all limbs. A new MRI revealed the complete resolution

of enhancement in the left pontine lesion (Figure 3I) and the

cervical area—also appeared significantly shrunk in volume

(Figure 3F). The patient was planned to start physical therapy

and a DMT (Rituximab/Eculizumab).

Systematic review

Methods

A systematic review was performed according to the

Preferred Reporting Items for Systematic Reviews and Meta-

analysis (PRISMA) guidelines. Data were collected from

PubMed, SCOPUS, and Google Scholar databases, considering

records published from 1st December 2020 to 31st December

2021. Two reviewers (VR and GB) independently conducted

the search using the following relevant medical subject

headings (MeSH) and keywords: “myelitis,” “encephalomyelitis,”

“multiple sclerosis,” “neuromyelitis optica,” “MOGAD,”

“COVID-19,” “SARS-CoV-2,” and “vaccine.” After duplicates’

removal, records were screened and selected for full-text

assessment according to the following inclusion criteria: (i)

records reporting a CNS Inflammatory Demyelinating Event

(CIDE) occurred after a COVID-19 vaccine (ii) CIDE was

either an acute CNS inflammatory demyelinating syndrome—

including ATM and ADEM—or a new diagnosis/relapse
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of a chronic CNS inflammatory demyelinating disease—

including MS, NMOSD, and MOGAD. Additional relevant

articles that were referenced in the included studies were

hand-searched and underwent the screening process. Among

eligible records, studies that were not peer-reviewed and not

published in English were ruled out. Reviews, viewpoints, letters,

and commentaries—unless reporting a case report—were not

considered. Furthermore, studies that did not provide individual

data or were not supported by positive MRI findings were also

excluded. Once identified, included studies were full-text

assessed and the following variables were extracted using a

standardized form: authors and country of publication, subjects’

age, gender, and past medical history, disease characteristics

for patients with previously diagnosed MS, NMOSD, and

MOGAD (including clinical disease phenotype and duration,

time since last clinical/radiological relapse, most recent EDSS

score and treatment with DMT), COVID-19 vaccine type and

dose administered, time from vaccine to neurological symptoms

onset, CIDE clinical presentation, MRI and CSF/serum analysis

findings, administered treatment and recovery outcome. Cases

were defined as ATM, ADEM, MS, NMOSD, or MOGAD

according to the most recent relative diagnostic criteria (14–18).

For MS, NMOSD, and MOGAD, it was specified whether the

event led to a new disease diagnosis or consisted of a relapse of

a previously defined disease.

Pooled descriptive analysis was performed considering

data from both cases reported in the literature and

described in our case series. Data were summarized using

frequencies/proportions for categorical variables and

median/Interquartile Range (IQR)/range for continuous

variables. Statistical analysis was conducted using R

and RStudio.

Results

A systematic search identified an initial amount of 851

records, of which, 549 resulted unique after duplicate removal

(Supplementary Figure 1). Among them, 455 studies did not

meet inclusion criteria. The remaining 94 articles underwent a

full-text assessment and 45 records were ruled out according

to exclusion criteria. Forty-nine studies were finally included

in the systematic review. These accounted for 40 case reports

and nine case series, reporting a total number of 85 CIDEs,

published in 20 countries worldwide. Considering the additional

six cases described in our case series, a total of 91 CIDEs

were summarized, including 24 ATM, 11 ADEM, 47MS (15

new diagnoses and 32 relapses), eight NMOSD (seven new

diagnoses and one relapse), and one MOGAD. Data extracted

from single cases are reported in Supplementary Tables 1–4.

Cases characteristics resulting from the pooled analysis are

summarized in Table 1 for acute syndromes (ATM and ADEM)

and Table 2 for chronic inflammatory demyelinating diseases

(MS and NMOSD/MOGAD).

TABLE 1 Characteristics of ATM and ADEM after COVID-19 vaccines.

ATM (n = 24) ADEM (n = 11)

Age

median years (range)

52 (19–85) 46 (19–88)

Female sex

n (%)

12 (50) 8 (73)

History of IMD

n (%)*

3 (14) 4 (40)

Vaccine type

n (%)

- mRNA: 10 (42)

- AV: 11 (46)

- Inactivated: 3 (12)

- mRNA: 3 (27)

- AV: 6 (55)

- Inactivated: 2 (18)

Time from vaccine to

symptoms onseta

median days (range)

6 (1–35)

- mRNA: 2.5 (2–3)

- AV: 8 (7.5–11)

- Inactivated: 5 (5–21)

12.5 (2–30)

- mRNA: 14 (13–29)

- AV: 9 (2–12)

- Inactivated: 22 (14–30)

Number of very early

onset eventsb

n (%)

9

- mRNA: 8 (89)

- AV: 1 (11)

- Inactivated: –

1

- mRNA: –

- AV: 1

- Inactivated: –

MRIc

n (%)

STM: 7 (29)

LETM: 17 (71)

Brain:

- Supratentorial: 9 (82)

- Infratentorial: 4 (36)

Spinal cord:

- STM: 1 (9)

- LETM: 2 (18)

CSFd

n (%)*

Pleocytosis: 11 (48)

↑ protein level: 14 (8)

OCB presence: 5 (29)

Pleocytosis: 5 (56)

↑ protein level: 1 (20)

OCB presence: 1 (10)

Treatment

n (%)

IVMP/OCS: 23 (96)

PEX/IVIG: 8 (33)

IVMP/OCS: 10 (91)

PEX/IVIG: 5 (46)

Recoverye

n (%)

Complete/almost: 10 (42)

Partial: 13 (54)

Death: 1 (4)

Complete/almost: 6 (55)

Partial: 3 (27)

Death: 2 (18)

AV, adenoviral-vectored; DMT, disease modifying treatment; IMD, immune-mediated

disease; IQR, interquartile range; IVIG, intravenous immunoglobulin; IVMP, high dose

intravenous methylprednisolone; n/a, not available data; LETM, longitudinally extensive

transverse myelitis; Mab, monoclonal antibody; OCB, oligoclonal bands; OCS, oral

corticosteroids; PEX, plasma exchange; STM, short-segment transverse myelitis; TM,

transverse myelitis.

*Proportions are based on cases with related data available.
aTimeframe between vaccine administration and onset of ATM/ADEM symptoms.
bEvents occurred within 3 days of vaccine administration.
cNumber of cases presenting different locations/extensions of the brain and/or spinal

cord lesions at MRI.
dNumber of cases presenting CSF-positive findings. CSF pleocytosis and increased

protein level were defined as CSF WBC >5/µl and protein level >45 mg/dl, respectively.
eRecovery at the last available follow-up.
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TABLE 2 Characteristics of MS and NMOSD/MOGAD after COVID-19 vaccines.

MS (n = 47) NMOSD/MOGAD

(n = 9)

New diagnoses (n = 15) Relapses (n = 32)

Age

median years (range)

40 (26–36) 39 (22–60) 53 (26–75)

Female sex

n (%)

12 (80) 24 (75) 6 (67)

Disease duration

median years (IQR)

– 10 (0.25–28) 8h

Time from last relapsea

median years (IQR)

– 7 (3–14.25) n/a

EDSSb

median (range)

n/a 2 (0–6) n/a

DMT

n (%)

None Untreated: 10 (31)

First-line: 9 (28)

Second-line: 13 (41)

Azathioprineh

Vaccine type

n (%)

- mRNA: 13 (87)

- AV: 2 (13)

- Inactivated: –

- mRNA: 18 (56)

- AV: 13 (41)

- Inactivated: 1 (3)

- mRNA: 2 (22)

- AV: 5 (56)

- Inactivated: 2 (22)

Time from vaccine to

symptoms onsetc

median days (range)

7 (1–35)

- mRNA: 7 (1–35)

- AV: 5.5 (3–8)

- Inactivated: –

7 (1–25)

- mRNA: 6.5 (3–14)

- AV: 10 (7–20)

- Inactivated: 2

10 (3–21)

- mRNA: 14 (10–18)

- AV: 8 (7.5–11)

- Inactivated: 6.5 (3–10)

Number of very early onset

eventsd

n (%)

6

- mRNA: 5 (83)

- AV: 1 (17)

- Inactivated: –

9

- mRNA: 6 (67)

- AV: 2 (22)

- Inactivated: 1 (11)

1

- mRNA: –

- AV: –

- Inactivated: 1

MRIe

n (%)

Brain:

- Supratentorial: 12 (80)

- Infratentorial: 3 (20)

Spinal cord:

- STM: 6 (40)

- LETM: 0

Optic nerve: 0

Brain:

- Supratentorial: 17 (53)

- Infratentorial: 7 (22)

Spinal cord:

- STM: 7 (22)

- LETM: 1 (3)

Optic nerve: 2 (6)

Brain:

- Supratentorial: 3 (33)

- Infratentorial: 4 (44)

Spinal cord:

- STM: 2 (22)

- LETM: 4 (44)

Optic nerve: 2 (22%)

CSFf

n (%)*

OCB presence: 12 (92) n/a OCB presence: 2 (25)

Serumf

n (%)*

anti-AQP4: 0

anti-MOG: 0

n/a anti-AQP4: 6 (75)

anti-MOG: 1 (13)

(Continued)
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TABLE 2 (Continued)

MS (n = 47) NMOSD/MOGAD

(n = 9)

New diagnoses (n = 15) Relapses (n = 32)

Treatment

n (%)

IVMP/OCS: 15 (100)

PEX/IVIG: 3 (20)

IVMP/OCS: 29 (91)

PEX/IVIG: 1 (3)

IVMP/OCS: 8 (89)

PEX/IVIG: 5 (56)

Recoveryg

n (%)*

Complete/almost: 10 (77)

Partial: 3 (23)

Complete/almost: 16 (62)

Partial: 10 (39)

Complete/almost: 3 (33)

Partial: 6 (67)

AV, adenoviral-vectored; DMT, disease modifying treatment; IQR, interquartile range; IVIG, intravenous immunoglobulin; IVMP, high dose intravenous methylprednisolone; LETM,

longitudinally extensive transverse myelitis; Mab, monoclonal antibody; n/a, not available data; OCB, oligoclonal bands; OCS, oral corticosteroids; PEX, plasma exchange; STM, short-

segment transverse myelitis; TM, transverse myelitis.
*Proportions are based on cases with related data available.
aTime from the last clinical and/or radiological relapse.
bExpanded Disability Status Scale at baseline.
cTimeframe between vaccine administration and onset of MS/NMOSD/MOGAD symptoms.
dEvents occurred within 3 days of vaccine administration.
eNumber of cases presenting different location/extension of new T2-weighted/gadolinium-enhancing brain and/or spinal cord lesions at MRI.
fNumber of cases presenting CSF/serum positive findings.
gRecovery at the last available follow-up.
hDisease duration and DMT of the unique reported case of NMOSD relapse in a previously diagnosed patient (Case 8, Supplementary Table 4).

Acute transverse myelitis

Among the 24 ATM described (19–40), 11 followed

an adenoviral-vectored (46%), 10 an mRNA-based (42%),

and three an inactivated vaccine (12%; Figure 4A). Overall,

the median time from vaccine to symptoms onset was 6

days (1–35) (Figure 4D), although cases following mRNA-

vaccines showed a lower median time (2.5 days, IQR: 2–3)

comparing to those after adenoviral-vectored ones (8 days,

IQR: 7.5–11; Figure 4E). Moreover, out of nine very early

onset ATMs (within 3 days from vaccine administration),

eight occurred after an mRNA vaccine. The median age was

52 years and events were equally distributed between sex

groups (Figures 4B,C). Three out of 22 reporting cases (14%)

had a history of the immune-mediated disease (including

atopic dermatitis, asthma, and pulmonary sarcoidosis).

All patients presented with a typical clinical syndrome

involving sensory, motor, and sphincter systems, while in

three cases (Cases 5, 9 and 10; Supplementary Table 1)—

all occurring after an adenoviral-vectored vaccine—ATM

was also accompanied/followed within 2 weeks by a

cranial nerve palsy. Longitudinally Extending Transverse

Myelitis (LETM) was the most common MRI finding

(71% of cases). CSF OCB resulted absent in 12/17 tested

patients, whereas type IV (“mirror,” homologous OCB in

CSF and serum) and II (OCB exclusively in CSF) patterns

were described in 3 and 2 cases, respectively. All but

one patient were treated with a 3–6-day course of high-

dose IVMP and a second-line therapy (PEX/IVIG) was

administrated in one-third of cases. Complete or almost

complete recovery was achieved in 10/24 patients (42%),

while others partially recovered, and one patient died of poor

general condition.

Acute demyelinating encephalomyelitis

Out of 11 ADEM (41–49), six occurred after an adenoviral-

vectored (55%), three after an mRNA-based (27%), and

two after an inactivated vaccine (18%; Figure 4A). The

median time from vaccine to symptoms onset was 12.5

days (2–30) (Figure 4D), with all but one case occurring at

least after 7 days. Median age was 46 years and the female

sex was prevalent (73%; Figures 4B,C). Four out of 10

reporting cases (40%) had a previous history of immune-

mediated disease (including atopic dermatitis, Hashimoto’s

thyroiditis, polymyalgia rheumatica, and post-infectious

rhombencephalitis). Prodromal symptoms (including fever,

malaise, headache, and nausea) were common, followed by

polyfocal neurological symptoms and/or encephalopathy

[defined as decreased level of consciousness/lethargy/behavioral

disorders, systemic illness or post-ictal symptoms (15)]. Seizures

were reported in three cases. MRI revealed a prominent

supratentorial localization with typical -multiple, large, and

poorly marginated lesions, whereas the spinal cord was involved

in 27% of cases, mostly with a longitudinally extensive feature.

CSF OCB was absent in 9/10 tested cases. Acute Hemorrhagic

Encephalomyelitis (AHEM) was described in three patients

(Cases 3, 4, and 5; Supplementary Table 2), all showing poor

outcomes. Complete or almost complete recovery was reached

in 6/11 patients (55%) after a 3–7-day course of high-dose

IVMP/OCS. Among others, three cases showed partial recovery
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FIGURE 4

Demographical characteristics and time of onset among di�erent CIDEs. (A) Proportions of di�erent vaccine types. (B) Proportions of sex

categories. (C) Age distributions. (D) Overall time from vaccine to symptoms onset. (E) Time from vaccine to symptoms onset by vaccine type.

AV, adenoviral-vectored vaccines.

and two patients died—one presenting an AHEM variant and

one due to a rapidly progressive clinical worsening.

Multiple sclerosis

Fifteen cases of MS new diagnoses and 32 relapses were

described after a COVID-19 vaccine (50–62). Among new

diagnoses, 13 occurred after an mRNA vaccine (87%) and

two after an adenoviral-vectored one (13%; Figure 4A). Median

time from vaccine to symptoms onset was 7 days (1–35)

(Figure 4D). Patients were 80% women, with a median age of

40 years (Figures 4B,C). Sensory onset was the most common,

followed by pyramidal, cerebellar, truncal, visual, and sphincter

systems involvement. MRI showed typical supratentorial lesions

(periventricular and/or cortical/iuxtacortical) in the majority

of patients, while infratentorial and spinal cord locations were

reported in 20 and 40% of cases, respectively. CSF OCB was

present in 12/13 tested patients. All were treated with a 3–5 day

course of IVMP (with further days of IVMP/PEX needed in just

three cases) and recovery was mostly favorable.

Among MS relapses, 18 cases followed an mRNA (56%), 13

an adenoviral-vectored (41%), and 1 an inactivated vaccine (3%;

Figure 4A). Overall, median time from vaccine to symptoms

onset was 7 days (1–25) (Figure 4D), although relapses following

mRNA-vaccines presented with a lower median time [6.5

days (IQR: 3–14)] compared to those after adenoviral-vectored

vaccines [10 days (IQR: 7–20); Figure 4E]. Moreover, among

nine very early onset events (within 3 days from vaccine

administration), six followed anmRNA-vaccine.Median age was

39 years and the female sex was prevalent (Figures 4B,C). In

cases reporting disease characteristics, the median EDSS was 2

and 75% had their last clinical and/or radiological relapse at least

3 years before. Ten out of 32 patients (31%) were not taking

DMT, while 9/32 (28%) were on first-line DMT, and 13/32 (41%)

were on second-line DMT (six of which receiving oral therapy

and seven a monoclonal antibody). Active lesions were located

exclusively in the brain on 11/28 and involved the spinal cord in

25% of cases. Corticosteroid therapy was performed in the vast

majority of patients (followed by PEX in just one case), followed

by complete or almost complete recovery in 16/26 reporting

cases, while the others partially improved.

Neuromyelitis optica spectrum disorder and
anti-MOG antibodies-associated disease

Eight cases of NMOSD and one case of MOGAD were

reported after a COVID-19 vaccine (50, 58, 63–67). Five

followed an adenoviral-vectored (56%), two an mRNA

(22%), and two an inactivated vaccine (22%; Figure 4A),

with a median time from vaccine to symptoms onset of 10

days (3–21) (Figure 4D). Median age was 53 years, and 6/9

cases were women (Figures 4B,C). Among NMOSD, seven

cases were new diagnoses and one consisted in a relapse

in a previously diagnosed patient, currently treated with
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azathioprine (Case 8; Supplementary Table 4). The most

frequent core clinical presentation was an acute medullary

syndrome, followed by brainstem/area postrema/diencephalic

syndromes and optic neuritis. MRI showed typical NMOSD

characteristics in all cases (LETM and/or brain peri-

ependymal lesions) and anti-AQP4 were positive in all but

one patient (Case 2; Supplementary Table 4), who fulfilled

seronegative NMOSD diagnostic criteria reporting two

clinical cores syndromes with typical MRI features. The

unique case of MOGAD was described in a 59-years-old

man, presenting an acute medullary syndrome with serum

MOG-antibody positivity 13 days after receiving the first

dose of ChAdOx1 nCoV-19 (Case 9; Supplementary Table 4).

Overall, treatment consisted of IVMP in 8/9 NMOSD/MOGAD

patients, followed by PEX in four of them. The outcome

was commonly poor, with 6/9 patients not achieving

complete recovery.

Discussion

Vaccinations and CIDEs

The magnitude and speed of the COVID-19 vaccination

campaign allowed us to observe, on a large scale and in

an extremely short time period, rare adverse events already

described for other vaccines in a more scattered way.

Among RAEs, post-vaccination CIDEs are a well-established

entity and have been temporally associated with different

vaccines. Karussis and Petrou (68) reported 71 cases of

CIDEs published in literature from 1979 to 2013, including

cases of ADEM, ATM, optic neuritis, MS, and NMOSD

The most commonly associated vaccines included influenza,

human papillomavirus (HPV), hepatitis A or B, rabies, measles,

rubella, yellow fever, anthrax, meningococcus, and tetanus.

However, apart from rare exceptions [e.g., ATM following

the live attenuated Oral Poliovirus Vaccine (OPV) (69)], a

causal link between vaccinations and CIDEs has not been

formally confirmed and the association only relies on temporal

relation (70).

CIDEs after COVID-19 vaccines

RCTs and observational studies

Phase 3 RCTs for COVID-19 mRNA vaccines—the first to

be approved in December 2020—did not report CIDEs during

the study period (1, 2), as well as RCT for the adenoviral-

vectored Ad26.COV2.S (4). Interim analysis of the four RCTs

for ChAdOx1 nCoV-19 reported three cases of ATM among

11,636 participants, two occurring in the treatment group and

one in the control (meningococcal) arm (3). Among the first

two, one case presented 14 days after the second dose and,

although initially regarded as possibly related to vaccination, was

eventually diagnosed as an idiopathic ATM. The second case

occurred 10 days after the first dose and was instead considered

to be related to a pre-existing—but not recognized—MS.

However, RCTs are hardly able to detect RAEs—for

insufficient statistical power—and provide only limited

information about population subgroups not included in trial

protocols, such as persons with autoimmune diseases. Therefore,

as long as the vaccination campaign advance, data have been

acquired for RAEs through post-marketing surveillance systems,

case reports, and observational studies—the latter allowing for

a less biased risk assessment. Concerning CIDEs, a systematic

review accounted for 32 events reported in the literature until

September 2021 (9). Besides case descriptions, in a recent

self-controlled case-series study—conducted from December

2020 to May 2021 on a cohort of more than 32 million people

in England—Patone et al. (10) assessed the association between

the first dose of a COVID-19 vaccine (ChAdOx1nCoV-19 or

BNT162b2) and the occurrence of neurological complications,

including CIDEs. Study findings showed an increased risk of

Guillain–Barré syndrome and Bell’s palsy after ChAdOx1nCoV-

19 and of hemorrhagic stroke after BNT162b2, while CIDEs

did not result associated to neither vaccine. However, a trend

toward increased risk of encephalitis/meningitis/myelitis was

reported after ChAdOx1nCoV-19 vaccine. Few other studies

evaluated CIDEs risk more specifically in persons affected by

a chronic CNS inflammatory demyelinating disease. Achiron

et al. assessed the safety of BNT162b2 in an adult MS cohort (n

= 574) in Israel, finding no increased risk of clinical relapses

in a median time of 38 and 20 days, respectively, from the

first and the second dose (11). Consistent results came from

an Italian study (n = 324 patients) evaluating clinical relapse

rates in a longer timeframe (2 months) after the first dose of an

mRNA-based vaccine (12). Another Italian study conducted on

a cohort of AQP4-positive NMOSD (n = 26) and MOGAD (n

= 30) patients, showed no higher frequency of relapses in the

month after an mRNA-vaccine administration (13). Although

these studies did not include MRI data—detecting potential

subclinical disease activity—they provide evidence supporting

the COVID-19 vaccine’s safety in patients affected by chronic

inflammatory demyelinating diseases, encouraging their access

to vaccination campaigns.

CIDEs characteristics

In our case series, we reported and characterized six post-

COVID-19 vaccines CIDEs, including both acute syndromes

(two ATM) and new diagnoses/relapses of chronic CNS

inflammatory demyelinating diseases (three MS and one

NMOSD). Among ATM, one case (Case 1) occurred 8 days

after the first dose of Ad26.COV2.S and showed characteristics

in line with the other 22 cases of ATM previously published

in the literature. The other (Case 2) was instead a case of
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recurrent ATM presenting multiple reactivations of the same

spinal cord lesion after the administration of subsequent vaccine

doses. Interestingly, the patient reported his first event 3 months

after receiving Tdap and IVP vaccines, while the other two

reactivations occurred after BNT162b2 second and third dose,

as the mechanism driving those events would be shared across

different vaccine types. Notably, the patient clinically and

radiologically recovered within ATM recurrences and did not

present any other spinal cord/brain lesion in the timeframes

between vaccine administrations. These elements would argue

against a diagnosis of a chronic inflammatory demyelinating

disease such as MS, but—considering the presence of CSF OCB

and the recent proposal of a new pure spinal MS phenotype

(71)—a longer follow-up is needed to exclude any further disease

activity. Our three MS cases (Cases 3–5) occurred after the

BNT162b2 vaccine. In two patients (Cases 3 and 4), the event

represented the clinical onset, and diagnosis wasmade according

to the 2017-revised McDonald criteria. Intriguingly, in Case 3,

the anti-EBV antibodies serum pattern was strongly suggestive

of recent primary infection/reactivation. This is particularly

remarkable considering the recent findings supporting the

causal role of EBV in MS (72), pointing to a possible synergic

effect between EBV infection and a simultaneous/strictly

sequential vaccine administration in the priming of self-reactive

lymphocytes (especially with regards to vaccine adjuvant

component- as discussed below). In Case 5, we described the

occurrence of a relapse in a previously diagnosed MS patient,

showing demographic/disease characteristics consistent with

the other 31 cases of MS relapses published in the literature.

Last, we reported a newly diagnosed AQP4-positive NMOSD

(Case 6), in a patient—with a previous history of two optic

neuritis- presenting with LETM and brainstem involvement

after BNT162b2 second dose.

Considering our cases (n = 6) and those collected from the

literature (n = 85), we summarized the characteristics of 91

CIDEs. Overall, age was heterogeneous (Figure 4C), especially

in ATM and ADEM, in line with recent evidence showing that

differently from the post-infectious variant (more frequent in

childhood) ADEM following vaccinations seems to occur at

any lifetime (73). Apart from ATM where no sex prevalence

was observed, females represent the majority in all other

CIDEs (Figure 4B), as generally expected for CNS inflammatory

demyelinating diseases [except for ADEM, known to have male

predominance (15)]. Concerning past medical history, 40% of

ADEM and 14% of ATM cases presented a previous diagnosis of

immune-mediated disease, suggesting a possible predisposition

to develop a dysfunctional immune response. The majority of

MS patients were clinically/radiologically stable and with mild

disability at the time of vaccination. Notably, 59% of them

were either not assuming treatment or on first-line DMT and

therefore possibly at higher risk of disease activity compared

to patients receiving high-efficacy therapies. CIDEs outcome

was generally favorable in MS and ADEM (except when a

hemorrhagic variant occurred), while ATM and NMOSD more

likely showed partial recovery.

Overall, CIDEs were described after both mRNA-based,

adenoviral-vectored, and inactivated vaccines. In ATM,

adenoviral-vectored and mRNA vaccines resulted in almost

equal proportions (46 vs. 42%). Contrarily, adenoviral-vectored

vaccines accounted for the greatest amount of ADEM (55%) and

NMOSD/MOGAD (56%), while in MS cases mRNA-vaccines

resulted in the majority of both new diagnoses (87%) and

relapses (56%; Figure 4A). However, results for MS relapses

could be biased by the fact that mRNA-based vaccines were

mainly preferred for persons with autoimmune diseases,

including MS. On average, ADEM and NMOSD/MOGAD

presented a longer time of onset (12.5 and 10 days) compared

to ATM and MS (6 and 7 days; Figure 4D); interestingly,

ATM after mRNA-based vaccines occurred earlier than those

following adenoviral-vectored ones (2.5 vs. 8 days), with a

similar trend observed in MS relapses (Figure 4E). Moreover,

19/26 (73%) of very early onset CIDEs (within 3 days from

vaccine administration) followed an mRNA-vaccine. Although

these observations are limited by small numbers and potential

recording bias, both the prevalence of vaccine types for certain

CIDEs and the heterogeneity in time of onset could suggest that

different mechanisms might underly these events.

Possible immunological mechanisms

Like all other vaccinations, anti-COVID-19 vaccines bear

two components: a pathogen-specific antigen—against which

neutralizing antibodies and specific T cells are desired, and

an adjuvant— which is able to stimulate the innate immune

response providing the second signal and pro-inflammatory

cytokines to initiate the adaptive response. In mRNA-based

vaccines, the mRNA itself constitutes both the immunogen

(synthetizing the SARS-CoV-2 Spike glycoprotein) and the

adjuvant (for the RNA intrinsic properties to be recognized

by pattern recognition receptors (PRR), such as TLR3 and

TRL7), while in adenoviral-vectored vaccines the antigen is

encoded in the DNA of a recombinant Chimpanzee adenovirus

and the adjuvant is provided by the virus particles itself (74).

On these bases, several mechanisms—already advanced for

other vaccines—could be proposed to explain post-COVID-19

vaccinations CIDEs (68, 69). For instance, vaccines, stimulating

innate immune response through adjuvants and creating

an inflammatory cytokines environment, could activate pre-

existing self-reactive T and B cells, in a process known as

bystander activation. This would occur rapidly in the early

phase of the immune response and could therefore be involved

in early-CIDEs presenting in the next few days after a

vaccine administration, such as in early-onset ATM following

mRNA vaccines. Other possible mechanisms include molecular

mimicry (vaccine-derived antigens mimicking self-molecules
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could prime cross-reactive T cells) and epitope spreading

(after the initial activation of antigen-specific T cells against

a dominant epitope, the immune response could react also

against different epitopes of the same or other proteins of both

self and non-self origin). Theoretically, all these mechanisms

would involve both a cell-mediated and a humoral adaptive

immune response. Interestingly, adenoviral-vectored vaccines

have been previously associated with Guillain-Barré Syndrome

(75)—which is largely driven by aberrant autoantibodies

(29)—and thrombotic thrombocytopenia, mediated by platelet-

activating antibodies against PF4 (76); from our analysis,

adenoviral-vectored formulations resulted in major amounts

in NMOSD cases and all ATM with a cranial nerve

palsy. Altogether, these observations could suggest a higher

tendency of adenoviral-vectored vaccines to trigger antibodies-

mediated diseases, compared to mRNA-based formulations.

Nevertheless, considering the rarity of these events both in

the general population and in persons with immune-mediated

diseases—beyond the possible immunological mechanisms

involved—a genetic predisposition underlying an abnormal

reaction to vaccine stimuli could play a key role. In this

regard, polymorphisms in TLRs and other PRRs recognizing

adjuvants could potentially affect the innate immune response

to immunizations and represent risk factors for RAEs, as

previously suggested by some authors (77).

CIDEs after the SARS-CoV-2 infection

Besides post-COVID-19 vaccines events, CIDEs have

also been described after the SARS-CoV-2 infection

itself. A systematic review reported 60 studies published

from January 2020 to June 2021 describing 102 CNS

demyelinating events temporally associated with COVID-

19, including encephalitis/encephalomyelitis, ATM, and

MS/NMOSD/MOGAD-like demyelination (78). More recently

further studies reported cases of MS and NMOSD onset/relapses

following SARS-CoV-2 infection (79–81), suggesting its possible

ability to trigger inflammatory disease activity as previously

considered for other viruses, especially with regard to MS

(82, 83). In their large case-series study, Patone et al. (10)

compared the risk of developing neurological complications

after SARS-CoV-2 infection with that after COVID-19 vaccines,

showing that the former was substantially higher. Taken

together, these data further strengthen the favorable risk-

benefits profile of COVID-19 vaccines, supporting their use

both in the general population and in persons affected by

chronic CNS inflammatory demyelinating diseases.

Limitations

Small numbers and potential recording/reporting bias of

reviewed cases hampered the feasibility of performing inferential

statistics and meta-analysis, limiting our study to a descriptive

level. Moreover, we could not account for the number of

persons administrated with different vaccine types in the

population fromwhich cases came from. Indeed, those data were

highly variable among countries/times and difficult to estimate

considering the worldwide source of reviewed cases and their

occurrence in different time periods. We did not summarize

the long-term follow-up outcomes and possible further events

following vaccine booster doses (if administered), since data

were missing in most of the reports. Whether a pre-existing

CIDEwould represent a risk factor for a future aberrant immune

response to the same/another vaccine still remains an open

question—with major implications in the clinical setting.

Conclusion

While epidemiological studies have assessed the safety

of COVID-19 vaccines, detailed descriptions and systematic

reviews of sporadic cases may still be valuable to gain insights

into CIDEs pathophysiology and suggest candidate risk factors.

From our pooled analysis, both the prevalence of vaccine

types for certain CIDEs and the differences in time of

onset might suggest that distinct mechanisms—with different

dynamics and kinetic—could underly these events. Further

large-scale observational studies are needed—both in the

general population and in subgroups affected by chronic CNS

inflammatory demyelinating diseases—to evaluate clinical and

MRI data as well as other biomarkers (including genetic ones)

potentially predicting CIDEs risk. These would help to optimize

immunization strategies and tailor clinical management in

patients with a history of post-vaccination CIDEs, as well as

providing novel insights for future vaccine development.
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The relationship between
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In the past two years, the world has faced the pandemic caused by the severe

acute respiratory syndrome 2 coronavirus (SARS-CoV-2), which by August of

2022 has infected around 619 million people and caused the death of 6.55

million individuals globally. Although SARS-CoV-2mainly affects the respiratory

tract level, there are several reports, indicating that other organs such as the

heart, kidney, pancreas, and brain can also be damaged. A characteristic

observed in blood serum samples of patients suffering COVID-19 disease in

moderate and severe stages, is a significant increase in proinflammatory

cytokines such as interferon-a (IFN-a), interleukin-1b (IL-1b), interleukin-2
(IL-2), interleukin-6 (IL-6) and interleukin-18 (IL-18), as well as the presence

of autoantibodies against interferon-a (IFN-a), interferon-l (IFN-l), C-C motif

chemokine ligand 26 (CCL26), CXCmotif chemokine ligand 12 (CXCL12), family

with sequence similarity 19 (chemokine (C-C motif)-like) member A4

(FAM19A4), and C-C motif chemokine ligand 1 (CCL1). Interestingly, it has

been described that the chronic cytokinemia is related to alterations of blood-

brain barrier (BBB) permeability and induction of neurotoxicity. Furthermore,

the generation of autoantibodies affects processes such as neurogenesis,

neuronal repair, chemotaxis and the optimal microglia function. These

observations support the notion that COVID-19 patients who survived the

disease present neurological sequelae and neuropsychiatric disorders. The

goal of this review is to explore the relationship between inflammatory and

humoral immune markers and the major neurological damage manifested in

post-COVID-19 patients.

KEYWORDS

long COVID syndrome, SARS-CoV-2, inflammatory response, neurodegeneration,
autoantobodies, autoantigens
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Introduction

The pandemic caused by the severe acute respiratory

syndrome coronavirus 2 (SARS-CoV-2) has increased

morbidity and mortality rates worldwide (1, 2). According to

various clinical reports and laboratory studies, it is known that

the virus can affect different organs such as respiratory tract,

lungs, heart, liver, pancreas, kidneys, muscles, and nervous

system at different levels (3–5). During the pandemic course,

several post COVID-19 effects have been observed that hinder

total patient recovery. The World Health Organization (WHO)

has denominated these symptoms as long COVID or COVID-19

condition, defining it as a condition that “occurs in individuals

with a history of probable or confirmed SARS-CoV-2 infection,

usually 3 months from the onset of COVID-19 with symptoms

and that last for at least 2 months and cannot be explained by an

alternative diagnosis. Symptoms may be new onset following

initial recovery from an acute COVID-19 episode or persist from

the initial illness. Symptoms may also fluctuate or relapse over

time” (6–8).

Several follow-up studies in patients suffering long COVID

have documented cardiovascular alterations, fatigue, dyspnea, chest

pain, appetite loss and hair loss. Interestingly nervous system seems

particularly affected after COVID-19 disease (9, 10). Patients have

reported headaches and dizziness, as well as psychiatric disorders

and motor discoordination (11–13). In a period of 7 months after

viral infection, some patients have presented conditions that are

mainly related to neuropsychiatric and neurological deficits, with a

prevalence of 19.7% to 36% (4, 14, 15). The characteristic symptoms

of these alterations are anosmia, hypogeusia, partial or total

hyposmia (16, 17), myalgia, cerebral inflammation,

cerebrovascular strokes (18), acute encephalopathy, seizures,

Guillain-Barré syndrome (19), neurocognitive disorders, sleep

disorders, delirium, memory deficit, concentration deficit,

depression, psychosis, hallucinations, paranoia (20), chronic

fatigue and partial or total apraxia (21).

Similar to the neurological alterations of SARS-CoV-2 post-

infection, there are data from patients who were infected with

SARS-CoV-1 and MERS. The clinical follow-up carried out on

these patients recorded symptoms of depression, disorder of post-

traumatic stress (PTSD), anxiety, sleep disorders, weakness,

chronic fatigue and general pain, in a follow-up period covering

6 to 20 months post-infection (22, 23), symptoms set similar to

the neurological alterations reported in SARS-CoV-2 post-

infection. A meta-analysis of 120,970 patients infected with

SARS-CoV-2 revelated that women are more susceptible to

present moderate neurological and cardiovascular long-COVID

symptoms. It also was reported that age is directly related to a

higher incidence of psychiatric, respiratory, digestive and skin

conditions. In addition, in a subgroup of 106,284 participants it

was observed an incidence of 19.7% of neurological disorders,

where the main manifestations included, concentration difficulty
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(14.6%), headache, disorders of the taste and smell, cognitive

impairment, memory deficits, dizziness, and cramps.

Furthermore, psychiatric conditions affected 20.3% of the

participants, who presented PTSD, depression, sleep disorder

and anxiety (14).

The analysis of cerebrospinal fluid (CSF) and peripheral blood

samples of 127 patients, who were positive for SARS-CoV-2 and

showed neurological damage symptoms after 7 days of infection,

revelated that they suffered systemic inflammation and impaired

blood-brain barrier (BBB). The neurological manifestations

included encephalopathy, altered consciousness, delayed walking

reaction, epilepsy-like electroencephalogram (EEG) changes,

cerebral ischemia, myelitis, cerebellar ataxia, sensorimotor

symptoms of unknown cause, cognitive impairment, peripheral

neuropathy, anosmia, headache and nausea (24). Altogether these

studies indicate a relationship between SARS-CoV-2 infection and

neurological conditions observed in long COVID. Themain goal of

this review is to elucidate the role of the antiviral dysregulation

response by the immune system and its relationship with the

sequelae of damage to the central nervous system (CNS) in

patients with long COVID.
Relationship between SARS-CoV-2
and nervous system

It has been documented that coronaviruses have the ability

to affect the CNS (25). In this context, several investigations have

discovered that b-coronaviruses such as MERS-CoV and SARS-

CoV-1 can infect the CNS (25–29). Furthermore, traces of

SARS-CoV-2 have been detected in the olfactory mucosa,

trans olfactory mucosa, neuronal projections and neurons

during and after the infection period (30–34). In some

COVID-19 cases the first symptoms presented by patients is

hyposmia or anosmia. This could be due to the olfactory

epithelium damage caused by the coronavirus, which in turn

affects the olfactory neural network that is connected with the

primary olfactory cortex (35–37). To date there is no precise

understanding about the dynamics of the initial antiviral

response against SARS-CoV-2 that occur at the level of the

olfactory epithelium. However, there are data from nasal

samples that showed an increase of proinflammatory cytokines

within two days after the first symptoms, compared with

samples of same tissue that were taken at longer times (5 or

more days after presenting the first symptoms), when the levels

of proinflammatory cytokines decreased (17). This could

indicate that the immune response produced in the olfactory

epithelium associated with nerve cells occurs in a transient

manner. However, this response is sufficient to generate some

neuronal damage either by a direct action of the virus or by an

indirect mechanism that involves the dysregulation of the

immune response.
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The BBB is the main physiological structural interconnection

between the external environment and the brain whose main

function is to protect central neurons. It also participates in the

selective transit of cells, nutrients and brain cell metabolism toxic

byproducts (38). When a systemic inflammation process occurs,

the BBB induces a series of brain responses whose main objective

is to promote brain survival, which is known as disease behavior

(39). This response induces a set of physiological and behavioral

changes, coordinated and executed by the brain, which protect the

individual from the various phases occurring during an infection.

For example, the induction of lethargy allows to fight infection

through the induction of fever and anorexia (40, 41).

In patients who succumbed to COVID-19 and who had an

exacerbated inflammatory response, presented BBB involvement

manifested through multifocal vascular damage caused by

autoantibodies. This process that induced serum proteins

infiltration into the brain parenchyma, generalized endothelial

cell activation, classical complement pathway activation, platelet

aggregates and microthrombi adhered to endothelial cells

throughout the vascular lumen. In addition, the infiltration of

macrophages, T cells and B cells into brain structures has been

reported, observing a greater presence of CD8+ T cells in the

perivascular region compared to CD4+ cells. There are also

reports of astrogliosis in perivascular regions and microglial

nodule formation in the hindbrain, which is associated with focal

neuronal loss and neuronophagia (42).

The SARS-CoV-2 induces a nuclear structure reorganization

and the dispersion of the genomic compartments of the cell, which

leads to the low expression of the genes ADCY3, CNGA2, GN13,

GFY, OMP, LHX2 and ATF5, which are key in the olfactory

receptors signaling and this downregulation lead to anosmia (17).

It has been proposed that once the virus enters the olfactory

receptor neurons, the infection is propagated through the synaptic

connections (43). In the case of the olfactory receptor neurons-

mitral cells axis, there is an activation of the glial, which in turn

promote the release proinflammatory cytokines such as IFN-a,
TNF-a, IL-1a, IL-1b, IL-2, IL-6, IL-8, IL-17A, IL-18, CXCL10,
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CXCL12, CCL1, CCL2, CCL3, CCL4, CCL5, CCL7, CCL11, GM-

CSF and B cell-activating factor belonging to the TNF family

(BAFF). These cytokines that have been detected at elevated levels

in samples of CSF, brain tissue, and serum of peripheral blood

from patients with severe COVID-19 (44–49). It should be noted

that the upregulated production of these cytokines can cause

serious damage to the CNS, since it promotes neuronal stress and

apoptosis, as well as the interruption of the BBB (43). In a mild

respiratory COVID mouse model, it was observed that these

events eventually increase neuroinflammation cascades causing

synaptic loss, demyelination, excitotoxicity and transcriptional

downregulation of Trem2, Sall3 and Adrb1 genes in microglia,

the latter gene being an indicator of white matter degeneration

(48). Other cerebral regions can potentially be affected by a similar

mechanism. For instance, midbrain dopamine neurons derived

from human pluripotent stem cells are selectively permissive to

SARS-CoV-2 infection. This triggers an inflammatory response at

neuronal level and the expression of the insulin like growth factor

binding protein 7 (IGFBP7) and LAMININ B1 genes associated

with cellular senescence (32). The expression of these molecules

leads to the overactivation of glia and trigger mechanisms of

neuronal damage (50). Overall, the neuronal damage associated

with the upregulation of proinflammatory cytokines could be the

cause of the appearance of neurological symptoms related with

long COVID (Table 1).

The effects that SARS-CoV-2 infection induces in brain

structures was analyzed on 401 patients who suffered from

COVID-19. Using the UK Biobank database, there was a

selection of patients with brain imaging studies prior to

COVID infection, and all patients were subject to brain

imaging 38 months later. All the patients had at least one or

more of the following affectations: significant reduction in gray

matter thickness and tissue contrast in the orbitofrontal cortex,

changes in diffusion measures, which are indicators of tissue

damage, increase in CSF volume and overall size brain reduction

(37). These changes were consistent and related to previously

detected cognitive impairment in the study population. SARS-
TABLE 1 Upregulated cytokines associated at neurological damage observed in patients with long COVID.

Neurological affectation Upregulated cytokines References

Neurocognitive disorders IFN-a, IL-1, IL-6, IL-17A, IL-18, CCL7 (51–59)

Sleep disorders IL-1, IL-8, IL-18 (55, 56, 58, 60)

Memory deficit IL-1, IL-18, CCL3, CCL7, BAFF (54, 57, 60–63)

Concentration deficit IFN-a, CCL7 (51, 57, 64)

Depression IFN-a, TNF-a, IL-1, IL-2, IL-6, IL-8, IL-17A, IL-18, CCL1, CCL2, CCL5, CCL7, CCL11 (51, 52, 54–57, 65–71)

Psychosis IFN-a, IL-6, BAFF (51, 55, 63, 72)

Hallucinations IFN-a (51)

Systemic inflammation IFN-a, TNF-a, IL-1, IL-2, IL-6, IL-8, IL-12, IL-17A, IL-18, CXCL10, CCL3, CCL4, CCL5, CCL7, GM-CSF (51, 54–56, 60, 61, 73–78)

Peripherial neuropathy TNF-a, IL-1, IL-2, IL-6, IL-8, IL-12, IL-17A, IL-18, CXCL10, CCL3, CCL4, CCL5, CCL7, GM-CSF (54–56, 60, 61, 73–79)

Stroke IFN-a, TNF-a, IL-1, IL-6, IL-8, IL-17A, IL-18, CXCL-10, CXCL12, CCL2, CCL3, CCL5, CCL11 (55, 56, 60, 75, 78, 80–82)

Anxiety TNF-a, IL-1, CXCL12 (56, 67, 83)
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1039427
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Elizalde-Dı́az et al. 10.3389/fimmu.2022.1039427
CoV-2 infection also changes the vasculature of the brain, since

one of the damages induced by the virus is ischemic and

hemorrhagic cerebrovascular strokes (84). A postmortem

study in patients who died from severe COVID-19 revelated

the presence of viral inclusion structures, accumulation of

inflammatory cells in the vascular endothelium (lymphocytic

endotheliitis), and endothelial cell apoptosis (50). All these

sequelae of SARS-CoV-2 infection in the CNS has been

monitored in the serum and CSF of patients with long COVID

who present neurological damage symptoms (encephalopathy,

seizures, paraplegia, paresis, Guillain-Barré syndrome, ataxia

and dysesthesia). These patients show a slight increase in

white blood cells and an increase in the concentrations of total

proteins and albumin, which indicates that the virus triggers a

systemic dysfunction that can be detected at blood and CSF

level (24).
Deciphering the process of
neurological damage caused by the
exacerbated innate immune
response to SARS-CoV-2

Once a virus reaches the nerves and brain tissue, an

inflammatory mechanism is activated which aims to limit the

infection process, eliminate the virus, or repair cell damage.

Depending on the activated immunological pathway and the

magnitude with which it is activated, the response can have

positive or negative consequences on the physiology and

behavior of the individual (85). The complications of

exacerbated neuroinflammation can include headache, ischemia,

interstitial edema, cerebral vasodilatation, blood vessel injury,

vomiting, visual loss, blood stasis, increased cerebral pressure,

cognitive problems, and loss of consciousness (86–89).

Neuroinflammation characterized by an early and brief

inflammatory response is considered neuroprotective, and is

initiated by the activation of glial and endothelial cells (90, 91).

On the contrary, a prolonged neuroinflammatory activation

induces damage to brain structures and tissues, which has been

associated with several neurodegenerative diseases, such as

Alzheimer’s disease (AD), Parkinson’s disease (PD), and

multiple sclerosis (92, 93).

The role of the microglia during resting conditions is to

constantly examine the brain microenvironment to maintain

homeostasis through the elimination of cellular waste (94).

When there is a damage to neuronal structures, a process

known as microglia activation occurs. This process is

characterized by the release of cytokines, chemokines, and

inflammatory molecules (95). However, when the immune

response is dysregulated, the exacerbated release of

proinflammatory cytokines occurs, which has been associated

with high mortality in patients with COVID-19 (96). This type
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of patients show microglia hyperactivation through multisystem

inflammatory syndrome (97, 98) and systemic inflammatory

response syndrome (99).

Dysregulation of the immune response due to the SARS-

CoV-2 infection has the ability to downregulate angiotensin

converting enzyme 2 (ACE-2) expression, which influences the

activation and balance of the inflammatory pathway (100). The

decreased expression of ACE-2 increases the concentration of

Ang-II favoring the ACE/Ang-II/AT1R pathway. This leads to

the activation of the NF-kB transcription factor and the

consequent activation of the production and release of

proinflammatory cytokines (101). Altered cytokine

concentrations have been observed in samples of both patients

with acute SARS-CoV-2 and in patients with manifestations

associated with long COVID (43, 102, 103). The increase in Ang-

II concentration also favors the Ang-II/aminopeptidase-A/Ang-

III/aminopeptidase-A/Ang-IV/AT4R pathway (104, 105). The

increase in Ang-III concentration induces hormone

overproduction such as vasopressin in the hypothalamus and

aldosterone in the adrenal gland (105). These alterations result

in increased peripheral vascular resistance and blood pressure.

Moreover, Ang-III dysregulates Na+/K+ equilibrium which

results in vascular damage, stroke and heart attack (106, 107).

Both Ang-III and Ang-IV can bind to AT1R, thus induce the

activation of this receptor and the activation consequently of the

NF-kB transcription factor (105, 108, 109). The increase of Ang-

IV dysregulates the vasodilatation process, increases the

excretion of sodium, and the release of plasminogen activator

inhibitor-1, favoring the development of thrombotic events both

in lungs and in the brain (108, 110–113). According to

transcriptome databases, ACE2 is expressed in excitatory and

inhibitory neurons, astrocytes, oligodendrocytes, and

endothelial cells (114). We believe that ACE-2 downregulation

induced by SARS-CoV-2 infection, is one of the first pathways

responsible for immunological response damage to the CNS.

An additional mechanism associated with pro-inflammatory

cytokines induction occurs when the virus infects the cell, and

the innate immune system detects viral RNA genome, either as

ssRNA or one of dsRNA’s intermediaries through the Toll-Like

Receptors including TLR3, TLR7, and TLR8 (115, 116). These

receptors are responsible for activation of transcription factors

such as IRF3, IRF7, NF-kB, ISRE3, and API. This transcription

factors are related to the expression of key proinflammatory

cytokines in the antiviral response such as TNF-a, IFN-a, IFN-b
and IFN-g (115, 117). IFN-a and IFN-b activates genes involved

in apoptosis processes, in the modulation of immune response,

in cellular attraction and adhesion, and genes involved in

antiviral and pathogenic detection (118). The balance that

exists between IFN-a and IFN-b concentrations is key in the

regulation of the inflammatory response. If there is any

imbalance in their concentrations, the IFN-g production is

affected and therefore the anti-inflammatory process does not

occur. In addition a chronic inflammation is promoted when the
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humoral response is deficient (119). Interestingly, in samples of

respiratory epithelial cells and plasmacytoid dendritic cells from

patients with severe COVID-19, there is a decrease of type-I

IFNs associated with self-recessive deficiencies in genes that code

for the proteins involved in interferon production (e.g. TLR3,

UNC93B, TRIF, TBK1, TBK1, IRF3, IRF7, IFNAR1/2, MYD88,

GATA2 and IRAK4) (120–126). In CSF samples of patients with

acute COVID-19 and sings of neurological damage, it was found

a reduced interferon response, expansion of clonal T cells and a

depletion of CD4+ T cells (127). Thus, it is possible that the

interferon production during and after infection is a key point in

the process of regulating systemic and neuronal inflammation.

The inflammatory response in the CNS system is mediated

by resident microglia and astrocytes (128), which detects the

presence of an exogenous or pathogenic agent such as SARS-

CoV-2 (129). Besides its direct participation in the elimination of

an infection, the microglia establish the balance between the

innate immune response and the adaptive immune response

(130, 131). During acute COVID-19, the exacerbated release of

proinflammatory cytokines promotes the production of reactive

oxygen species (ROS), which causes stress and cell damage at the

systemic level, affecting brain tissue (129). In some COVID-19

patients these cellular events manifest in symptoms such as

ischemia, inflammation of brain tissue, obstruction of blood

flow, headaches, loss of consciousness, cerebral edema, and

neuronal death (131–133).

Previous studies have reported that during influenza virus

infection there is an increase in the levels of proinflammatory

cytokines, such as IL-1b, IL-6, CXCL8, CXCL9, CXCL10, CCL2,
and TNF-a, in the CSF of patients who present neurological

alterations such as acute encephalitis and encephalopathy (134,

135). It is also known that patients infected with human

orthopneumovirus and presenting neurological symptoms such

as encephalitis and encephalopathies, have elevated levels of the

proinflammatory cytokines IL-6, IL-8, CCL2, and CCL4 in CSF

samples (136, 137). West Nile virus is also known to

cause a neuroinvasive disease manifesting meningitis,

meningoencephalitis, encephalitis, or acute flaccid paralysis,

commonly associated with diarrhea/vomiting, weakness,

impaired vision, confusion, or drowsiness, and shows elevated

levels of proinflammatory cytokines IL4, IL6, and IL10 in serum

samples (138). Finally, Zika virus can infect the CNS and induce

microcephaly in fetuses and rare but serious neurological diseases

in adults, which are associated with excessive production of IFN-

a, IFN-b, IL-6, and TNF-a (139).

Interestingly, these neuroinflammatory pathological

processes observed in long COVID patients, resemble those

that occur in early phase of Parkinson’s disease (PD and AD

(92). For example, high levels of TNF-a and low levels of TNF-b
have been detected in CSF samples from patients with mild

cognitive impairment who progressed to AD, and the cytokines

IL-1b, IL-6, and TNF-a, tend to increase slowly, while the

cytokines IL-18, MCP-1, and IP-10 peak at a certain stage of
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the disease (140, 141). Activation of microglial cells has been

detected in the substantia nigra of patients with PD, due to the

fact that aggregated a-synuclein is released from the damaged

dopaminergic neurons (142). The accumulation of a-synuclein
leads microglia to a reactive proinflammatory phenotype in

which TNF-a, nitric oxide, and IL-1b are produced,

generating a neuroinflammatory state as recently shown in an

in vitro model of PD (143).
Role of the dysregulated antibodies
response against SARS-CoV-2
infection in neurological disorders

Part of neurological sequelae previously mentioned suffered

by SARS-CoV-2 patients, were also reported in individuals who

survived SARS-CoV-1 infection in 2004 who presented

cerebrovascular disorders such as ischemic stroke (144). These

affectations could be caused by abnormalities in coagulation

and hyperinflammation promoted by the presence of

antiphospholipid autoantibodies (eg. antiphosphatidylserine or

antiprothrombin) produced by plasma cells (88, 145, 146).

Autoantibodies are a type of antibodies that recognize epitopes

present in organs or tissues of the same individual and are related

to the development of autoimmune diseases including allergies

and oncopathologies (147, 148). Much of the generation of these

autoantibodies is caused by genetic mutations, infections or

environmental factors (149). The autoantibody generation can

result from an altered production of cytokines, stimulation of toll-

like receptors, or pattern recognition receptors (150).

Furthermore, they can also originate from an inadequate and

dysregulated release of autoantigens by cells and tissues, and/or

molecular mimicry (150, 151). In the case of COVID-19 infection,

various studies indicate that the spike protein of SARS-CoV-2 is

the causal agent of inducing the autoantibodies generation, which

might be a common characteristic in coronavirus infections (147,

148, 150, 152). It has been reported that the antibodies produced

by plasma cells against spike protein or receptor-binding domain

of the SARS-CoV-2 can cross-bind with own antigens (153). In a

follow-up study of 610 patients after 6 to 12months post-infection

with SARS-CoV-2, there were low concentrations of IgM and

IgG3 that correlated with a predisposition to develop long

COVID. Moreover, 71% of these patients presented severe

COVID-19 and bronchial asthma at the same time (152).

Regarding these immunoglobulins, it is known that both are

induced by the controlled production of interferons and

antagonized by IL-14 (154, 155). In addition, IgMs have a

relevant role in the humoral response since it is the first

immunoglobulin that participates in pathogen elimination

(156). IgMs functions as a powerful complement activator,

participate in the activation and regulation of the inflammatory

response, opsonization, and destruction of pathogens present in
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the circulatory system (155, 157). In addition, IgMs are associated

with the protective mechanisms of the vasculature and mucous

membranes (157). IgG3s, activate the complement system and

have a great affinity with Fc receptors (158). The deficiency of

IgG3s is related with the development of autoimmune diseases

(159). This could indicate that the innate immune response

dysregulation directly affects the humoral response activation

process, which leads to a deficient, non-specific and delayed

production of antibodies against SARS-CoV-2.

In a recent multicenter study it was proposed that a deficient

and prolonged immune response in hospitalized severe COVID-

19 patients promotes the adaptive immune response that attacks

non-structural viral proteins and causes the development of IgG

autoantibodies (160). Similarly, a proteomic profiling analysis

revealed that the generation of certain autoantibodies (e.g.

MUC1 or TNFRSF6B) is associated with the severity of the

disease (147). Consistent with this notion, several investigations

have also found that patients who had COVID-19 exhibit

marked increases in autoantibody reactivity compared with

uninfected individuals (160, 161). These individuals show a

high prevalence of autoantibodies against immunomodulatory

proteins (including cytokines, chemokines, complement

components, and cell surface proteins) (162). The main

consequence of these autoantibodies is the disruption of the

immune function and the impairment of the virologic control by
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inhibiting immunoreceptor signaling and altering the

composition of peripheral immune cells (163, 164).

There are cases where the presence of autoantibodies can be

detected prior to any viral infection, suggesting a genetic

predisposition to the generation of these autoantibodies (165).

This could explain why some COVID-19 patients are more

susceptible to produce autoantibodies that promote long

COVID (166, 167). Recent studies have shown that some of

these autoantibodies have an affinity for blood vessel and

nervous system proteins, which could explain the neurological

effects of long COVID by two mechanisms (168). First,

autoantibodies could potentiate the cellular stress induced by

proinflammatory cytokines. Second, autoantibodies could cause

specific and long-term damage in patients suffering from post-

COVID neurological sequelae (43, 168). In fact, COVID-19

patients with neurological sequelae produce autoantibodies

that inhibit the function of key proteins involved in

neuroprotection processes, neurite outgrowth, axogenesis,

neuronal plasticity, neurotransmission, neuronal survival, and

axonal regeneration (Supplementary Table 1) (167). The

generation of these autoantibodies may aggravate the

neuronal damage.

The dysregulation of the immune response and the deficient

elimination of cells infected by SARS-CoV-2 promote the release

of autoantigens towards the extracellular space and the
FIGURE 1

Proposed mechanism for neuro-long COVID. 1: SARS-CoV-2 infects olfactory epithelial and lungs. 2: Type-I IFNs production dysregulated
during primary immune response process against SARS-CoV-2 infection. 3: Exacerbated release of proinflammatory cytokines. 4: The
exacerbated and dysregulated inflammatory response causes the proinflammatory molecules release that damage the BBB, facilitate the
infiltration of immune cells into brain tissue, activate microglia, and damaging brain tissue cells, causing the autoantigens release. 5: Innate
immune response dysregulation affects the humoral response activation process and induce a nonspecific and delayed production of antibodies
against SARS-CoV-2 and the generation of autoantibodies against key proteins involved in neuronal regeneration and repair processes. 6:
Induction of neuronal death in specific areas.
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consequent generation of autoantibodies (169, 170). The analysis

of the “autoantigenicoma” in patients who suffered from

COVID-19 through the detection of autoantigens bound to

determatan sulfate (autoantigen-DS complex) seems to be

helpful to predict the appearance of autoimmune diseases and

neurological damage (171, 172). Using this strategy, 751

autoantigen candidates were found, of which 657 are directly

altered by infection with SARS-CoV-2. Remarkably, 400 of those

autoantigens are related to autoimmune diseases and cancer

(162). Regarding the nervous system, 150 autoantigens of

proteins are related to axon guidance, neuron projection,

myelin sheath, axon growth cone, neuronal cell body,

cerebellar Purkinje cell layer, peripheral nervous system axon

regeneration, radial glial scaffolds and proteins related to the

olfactory bulb. There were also 193 autoantigens of proteins

related to neurological diseases such as neuronal infection with

Japanese encephalitis virus, neuroblastoma, glioblastoma,

neurodegeneration in Down syndrome, AD, schizophrenia,

cerebral ischemia induced neurodegenerative diseases, PD, and

neurodegeneration (Supplementary Table 2) (172). The

mechanism by which coronaviruses could resemble conditions

of early events of neurodegeneration should be explored

considering the participation of the immune system and the

uncontrolled generation of autoantibodies that deteriorate

neuronal circuits.
Summary and proposal

The effects of long COVID on the CNS are increasingly

evident. For this reason, in the present work we analyzed the

role of the immune response against the coronavirus and its

impact on neuronal structures. The SARS-CoV-2 infects olfactory

epithelial cells through ACE-2 (173). Through genetic

rearrangements, the virus downregulates the expression of

proteins such as olfactory receptors and ACE-2 (17, 100). The

latter is implicated in the production of proinflammatory

cytokines (43). When the immune system detects the entry of

the virus, it activates the primary response, which is characterized

by the release of proinflammatory cytokines and the activation of

immune cells. These processes are regulated by type-I INFs and

together with IFN-g (115, 117) induce the generation of antibodies
(130, 131). However, due to the downregulation of ACE-2 and

mutations in type I INFs, the inflammatory response is

dysregulated, provoking the exacerbated release of

proinflammatory cytokines (117). This response damages

cellular structures and promotes the release of autoantigens

(168, 169). At the same time, the dysregulation of the innate

immune response affects the activation process of the humoral

response (119, 169). This may lead to a nonspecific and delayed

production of antibodies against SARS-CoV-2 and the generation

of autoantibodies that recognize key proteins involved in neuronal
Frontiers in Immunology 07
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regeneration and repair processes, thereby increasing

neurodegeneration (167). We think this generates a cyclical

process of recognition and destruction of neuronal structures

(Figure 1). Depending on the region that is affected, this promotes

the appearance of neurological symptoms observed in patients

with long COVID.
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Third COVID-19 vaccine dose for
people with multiple sclerosis
who did not seroconvert
following two doses of BBIBP-
CorV (Sinopharm) inactivated
vaccine: A pilot study on safety
and immunogenicity

Nahad Sedaghat 1,2* , Masoud Etemadifar3, Noushin Lotfi4,
Farnaz Sayahi5, Ahmad Chitsaz6, Mehri Salari7

and Alireza Ghasemi Movaghar1

1Alzahra Research Institute, Alzahra University Hospital, Isfahan University of Medical Sciences,
Isfahan, Iran, 2Network of Immunity in Infection, Malignancy, and Autoimmunity (NIIMA), Universal
Scientific Education and Research Network (USERN), Isfahan, Iran, 3Department of Neurosurgery,
School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran, 4Department of Immunology,
School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran, 5Isfahan Research Committee
of Multiple Sclerosis (IRCOMS), Isfahan Multiple Sclerosis Center, Isfahan, Iran, 6Department of
Neurology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran, 7Functional
Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence,
Shahid Beheshti University of Medical Sciences, Tehran, Iran
Background: People with multiple sclerosis (pwMS) on anti-CD20 therapies (aCD20)

and fingolimod have shown inadequate humoral responses to COVID-19 vaccines.

Objective: The objective of the study was to pilot larger studies by demonstrating

the safety and comparing the immunogenicity of different types of third doses in

seronegative pwMS after two doses of BBIBP-CorV inactivated vaccine.

Methods: In December 2021, subject to receiving their third dose, being COVID-

19-naiive, and receiving no corticosteroid within two months, we measured the

level of anti-SARS-CoV-2-Spike IgG in pwMS seronegative after two shots of

BBIBP-CorV inactivated vaccine.

Results: We included 20/29 pwMS who received adenoviral vector (AV), 7/29 who

received inactivated, and 2/29 who received conjugated third doses. No serious

adverse events were reported two weeks post-third dose. The pwMS receiving AV

third doses showed significantly increased IgG concentrations, while only the ones not

on aCD20 and fingolimod responded to inactivated third doses. An ordinal logistic

multivariable generalized linear model indicated that age (per year b: −0.10, P = 0.04),

type of disease-modifying therapy (aCD20 b: −8.36, P <0.01; fingolimod b: −8.63, P =

0.01; others: reference), and type of third dose (AV or conjugated b: 2.36, P = 0.02;

inactivated: reference) are predictive of third dose immunogenicity among pwMSwho

remain seronegative after two shots of BBIBP-CorV vaccine. Statistical significance

was not achieved for variables sex, MS duration, EDSS, duration of DMT, duration of

third dose to IgG test, and duration from last aCD20 infusion to third dose.
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Conclusion: This preliminary pilot study highlights the need for further research to

determine the optimal COVID-19 third dose vaccination strategy for pwMS living in

areas where BBIBP-CorV vaccine has been used.
KEYWORDS

COVID-19, multiple sclerosis, vaccine immunogenicity, disease-modifying therapies
(DMTs), BBIBP-CorV
1 Introduction

Among people with multiple sclerosis (pwMS) on sphingosine-1-

phosphate receptor modulators (S1PRM) and anti-CD20 therapies

(aCD20) primed with mRNA COVID-19 vaccines, evidence shows

persistent vaccination failure after mRNA third doses (1), while data

on third-dose immunogenicity remain scarce for those receiving other

types of third doses—or any other primary series than adenoviral vector

(AV) or mRNA. Given the vast global usage of inactivated vaccines as

primary series, particularly in densely-populated developing areas, the

determination of third dose safety and immunogenicity among

immunocompromised people who fail to respond to the inactivated

primary series is of relevance for future evidence-driven policy making

and practice. Hence, in order to facilitatemore research on the subject, we

decided to reidentify from our previous study (2) the pwMS who

remained seronegative after two doses of BBIBP-CorV, determine the

frequency of serious adverse events, measure the anti-SARS-CoV-2 IgG

levels among the ones who received their third dose, and investigate the

effect of different variables on third-dose immunogenicity among them.
2 Methods and results

2.1 Design, settings, and participants

As an extension of an observational retrospective cohort study

conducted in December 2021 in Isfahan, Iran, we identified 49 adults with

definitive MS who received two doses of BBIBP-CorV but remained

seronegative from our previous study (2) and contacted them, asking if

they had received any kind of third dose of a COVID-19 vaccine. Among

them, 21 women and eight men (mean age [SD]: 40 years [10.60]) were

COVID-19-naiive—defined as having no history of: i) clinical illnesses

compatible with COVID-19, ii) contact with suspected or confirmed

COVID-19 patients, or iii) COVID-19 diagnosis based on the available

laboratory and imaging methods—and did not receive corticosteroids within

two months of their third dose. 12 were receiving aCD20, eight fingolimod,

four teriflunomide, two glatiramer acetate (GA), and one dimethyl fumarate

(DMF), without any change in DMT regimen in the past year. Their further

demographics and MS-related characteristics are interpretable from Table 1.

Furthermore, information was collected regarding the date and

type of their third dose and the development of any serious adverse

events following their third dose, as defined by the US Food and

Drug Administration (FDA) (3)1. A total of 20/29 of the
derate adverse events
.

02115116
participants received AV (ChAdOx1 nCoV-19, AstraZeneca), 7/29

inactivated (BBIBP-CorV, Sinopharm), and 2/29 conjugated

(PastoCovac, Pasteur Institute of Iran) third doses. The

participants receiving inactivated third doses had higher disease

durations than the ones receiving AV/conjugated third doses

(mean diff. 5.56 years, P = 0.03); their other known features were

similar (Table 1).
2.2 Post-third dose safety and
antibody responses

None of the participants reported any serious adverse events—

including MS relapses or pseudorelapses—from the administration

of their third dose until two weeks later. At least two weeks after

their documented third dose, blood samples were obtained from

the participants and used for quantification of post-third dose anti-

SARS-CoV-2-Spike IgG—which corresponds to neutralizing

activity against variants of concern (VOC) (4–6) with an ELISA

kit (Pishtazteb Diagnostics, Iran), in accordance with manufacturer

instructions (7) and with methods previously described (2). The
frontiersin.org
TABLE 1 Characteristics of participants.

Variable Heterologous1

third dose
(n = 22)

Homologous2

third dose
(n = 7)

P-value

Mean Age (Years)
[SD]

39.04 (11.28) 43 (8.08) 0.40#

Sex (n, %) [M:F] 7 (31.82): 15
(68.18)

1 (14.29): 6 (85.71) 0.36@

Mean MS duration
(Years) [SD]

8.73 (5.98) 14.29 (4.57) 0.03#

Median EDSS (Range) 2.25 (1–4) 2 (1–3.5) 0.81*

DMT (n, %) 0.56@

* aCD20 8 (36.36) 4 (57.14)

* Fingo 7 (31.82) 1 (14.29)

* Other 7 (31.82) 2 (28.57)

Median duration on
current DMT (years)
[Range]

5 (1–10) 5 (4–7) 0.27*

(Continued)
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IgG levels above the kit’s upper limit of quantification (ULoQ) were

regarded as >100 RU/ml without precise quantification due to

restrictions in rerunning the assays with serial dilutions of samples.

2.2.1 Antibody responses in pwMS on aCD20
Among the pwMS on aCD20, 4/8 (50%) of the ones receiving AV/

conjugated third doses and none of the four who received inactivated

third doses seroconverted after their third dose. Anti-SARS-CoV-2-Spike

IgG levels increased significantly in the aCD20-treated participants after

receiving AV/conjugated third doses (P=0.012) but did not differ

significantly in the ones receiving inactivated third doses (P =

0.87a) (Figure 1).

2.2.2 Antibody responses in pwMS on fingolimod
Among the pwMS on fingolimod, 2/7 (28%) of those receiving

AV/conjugated third doses seroconverted after their third dose. The

only fingolimod-receiving participant who received an inactivated

third dose did not seroconvert. Anti-SARS-CoV-2-Spike IgG levels

increased insignificantly after AV/conjugated third doses among the
TABLE 1 Continued

Variable Heterologous1

third dose
(n = 22)

Homologous2

third dose
(n = 7)

P-value

Median (Range) of weeks from:

*2nd dose to 3rd dose 23.5 (16–28) 23 (11–25) 0.28*

* 2nd dose to
subsequent IgG test

7 (2–18) 5 (3–9) 0.47*

* 3rd dose to
subsequent IgG test

3 (2–6) 3 (2–6) 0.55*

* aCD20 infusion to
3rd dose (n = 12)

14.5 (5–22) 11 (9–12) 0.26*

Median anti-SARS-
CoV-2-Spike IgG
(Range)

31.75 (0.14– >100) 1.75 (0.17–47.10) 0.048*
2 Wilcoxon matched-pairs signed rank test.
#Student’s T-test; @Pearson Chi2; *Mann–Whitney U test. Assumptions of normality of
distributions were tested using the Kolmogorov–Smirnov method; variables, the distribution
of values of which passed the Kolmogorov–Smirnov test, are reported with mean and SD, and
compared using parametric statistics; others are reported with median and range, and compared
using non-parametric statistics.
1. AstraZeneca ChAdOx1 nCoV-19 (n = 20) and Pasteur Institute of Iran PastoCovac (n = 2).
2. Sinopharm BBIBP-CorV.
SD, standard deviation; M, male; F, female; MS, multiple sclerosis; EDSS, expanded disability
status scale; DMT, disease-modifying therapy; aCD20, anti-CD20 therapies; Fingo, fingolimod.
FIGURE 1

Anti-SARS-CoV-2-Spike IgG levels in pwMS receiving anti-CD20 therapies, fingolimod, or other disease-modifying therapies after their second and third
COVID-19 vaccine doses. The red hyphenated line corresponds to the seropositivity cut-off index. The gray bars correspond to the median of IgG levels.
*P <0.05; ns, P >0.05. aCD20, anti-CD20 therapies; Fingo, fingolimod; RU/ml, relative units per milliliter.
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fingolimod-receiving pwMS (P = 0.07a). Statistical significance was

reached after excluding the single fingolimod-treated participant who

received a conjugated third dose (P = 0.03a).

2.2.3 Antibody responses in pwMS on other DMTs
All the participants on other DMTs seroconverted following their

third dose. Among them, compared to the ones receiving inactivated

third doses, anti-SARS-CoV-2-Spike IgG levels were significantly

higher in those receiving AV third doses (P = 0.03b) (Figure 1).

2.2.4 Further analysis
A multivariable generalized linear model controlling for the

confounding effect of variables age, sex, MS duration, expanded

disability status scale (EDSS), DMT, and the interaction term of

DMT and duration of being on the DMT indicated a significant (P

<0.05) effect of age, DMT type, and third dose type on the post-dose 3

increase in IgG levels (Table 2); the possible effects of other

mentioned variables were not statistically confirmed (P >0.05).
3 Conclusion

Our study demonstrates that the immunogenicity of the third

COVID-19 vaccine dose could be safely studied in adult pwMS who

received two doses of an inactivated vaccine but remained

seronegative. In line with studies among non-MS adults, which

have consistently demonstrated the superiority of AV or mRNA

third doses over inactivated ones in terms of humoral

immunogenicity and clinical effectiveness against the VOC (8–12),

our results hint that AV third COVID-19 vaccine doses may be of

more benefit than inactivated ones for pwMS who received two doses
Frontiers in Immunology 04117118
of an inactivated vaccine but remained seronegative. Third dose

studies are currently scarce among pwMS who received inactivated

primary series; however, such studies among pwMS receiving mRNA

or AV primary series have suggested that less time from the last

aCD20 infusion and being on S1PRM and aCD20 DMTs blunt

seroconversion rates (1, 13–15). The current study lacked adequate

statistical power to support the former but could be considered

supportive of the latter statement. Nevertheless, administration of

third booster doses, although not as much as other pwMS, could be

considered beneficial for pwMS on S1PRM and aCD20 (14) but its

cost-effectiveness in the current state of the pandemic remains to

be investigated.
4 Limitations

Although some of our findings are unlikely to be explained merely

by chance as interpreted from hypothesis testing and statistical

significance, our study was conducted on a limited number of

participants; therefore, the certainty of our findings is very low. Also,

due to our small sample size, the effect of the aCD20 infusion-to-third

dose period could not be investigated. The results of the current study

have implications for future larger studies on the subject; conclusions

from our study that might affect real-world practices are subject to

validation by studies with larger sample sizes. We encourage future

researchers to account for the limitations of this study by recruiting a

larger sample size, collecting data on mild to moderate adverse events,

quantifying measures above ULoQ, using T cell and/or neutralization

assays, and including previously-seropositive participants who might

have been subject to immunity waning—especially the ones on aCD20,

cladribine, and alemtuzumab.
TABLE 2 Multivariable generalized linear model.

Variable (reference) Multivariable GLM (n=29, ordinal logistic response, outcome: rank of increase in anti-SARS-
CoV-2-Spike IgG [RU/ml] after third dose)

B (SE) P-value

Age (per year) -0.10 (0.05) 0.04

Female sex (male) 0.19 (0.92) 0.84

MS duration (per year) -0.13 (0.11) 0.25

EDSS (per score) 0.62 (0.54) 0.25

DMT type (Other)

–aCD20 -8.36 (3.01) <0.01

– Fingo -8.63 (3.48) 0.01

Duration of receiving DMT (per year)

– aCD20 0.74 (0.43) 0.09

– Fingo 0.57 (0.53) 0.28

– Other 0.18 (0.31) 0.57

Heterologous third dose (homologous) 2.36 (1.02) 0.02

Duration from third dose to phlebotomy (per week) -0.99 (0.54) 0.07
GLM, generalized linear model; B, beta coefficient; SE, standard error; MS, multiple sclerosis; EDSS, expanded disability status scale; DMT, disease-modifying therapy; aCD20, anti-CD20 therapies;
Fingo, fingolimod.
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