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Evaluation of Amide Proton
Transfer-Weighted Imaging for
Risk Factors in Stage I Endometrial
Cancer: A Comparison With
Diffusion-Weighted Imaging
and Diffusion Kurtosis Imaging
Xingxing Jin1†, Ruifang Yan1†, Zhong Li1†, Gaiyun Zhang1, Wenling Liu1, Hongxia Wang1,
Meng Zhang1, Jinxia Guo2, Kaiyu Wang2 and Dongming Han1*

1 Department of Magnetic Resonance Imaging (MRI), The First Affiliated Hospital, Xinxiang Medical University, Weihui, China,
2 Magnetic Resonance Imaging (MRI) Research China, General Electric (GE) Healthcare, Beijing, China

Background: Endometrial cancer (EC) is one of the most common gynecologic
malignancies in clinical practice. This study aimed to compare the value of diffusion-
weighted imaging (DWI), diffusion kurtosis imaging (DKI), and amide proton transfer-
weighted imaging (APTWI) in the assessment of risk stratification factors for stage I EC
including histological subtype, grade, stage, and lymphovascular space invasion (LVSI).

Methods: A total of 72 patients with stage I EC underwent pelvic MRI. The apparent
diffusion coefficient (ADC), mean diffusivity (MD), mean kurtosis (MK), and magnetization
transfer ratio asymmetry (MTRasym at 3.5 ppm) were calculated and compared in risk
groups with the Mann–Whitney U test or independent samples t-test. Spearman’s rank
correlation was applied to depict the correlation of each parameter with risk stratification.
The diagnostic efficacy was evaluated with receiver operating characteristic (ROC) curve
analysis and compared using the DeLong test. A multivariate logistic regression was
conducted to explore the optimal model for risk prediction.

Results: There were significantly greater MTRasym (3.5 ppm) and MK and significantly
lower ADC and MD in the non-adenocarcinoma, stage IB, LVSI-positive, high-grade, and
non-low-risk groups (all p < 0.05). The MK and MTRasym (3.5 ppm) were moderately
positively correlated with risk stratification as assessed by the European Society for
Medical Oncology (EMSO) clinical practice guidelines (r = 0.640 and 0.502, respectively),
while ADC and MD were mildly negatively correlated with risk stratification (r = −0.358
and −0.438, respectively). MTRasym (3.5 ppm), MD, and MK were identified as
independent risk predictors in stage I EC, and optimal predictive performance was
obtained with their combinations (AUC = 0.906, sensitivity = 70.97%, specificity =
92.68%). The results of the validation model were consistent with the above results,
and the calibration curve showed good accuracy and consistency.
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Conclusions: Although similar performance was obtained with each individual parameter
of APTWI, DWI, and DKI for the noninvasive assessment of aggressive behavior in stage I
EC, the combination of MD, MK, and MTRasym (3.5 ppm) provided improved predictive
power for non-low-risk stage I EC and may serve as a superior imaging marker.
Keywords: endometrial cancer, amide proton transfer-weighted imaging, diffusion kurtosis imaging, diffusion-
weighted imaging, risk factors
INTRODUCTION

Endometrial cancer (EC) is one of the most common gynecologic
malignancies in clinical practice, and 80% of newly diagnosed
patients are in stage I (1, 2). According to the histological
subtype, grade, International Federation of Gynecology and
Obstetrics (FIGO) stage, and lymphovascular space invasion
(LVSI), the European Society for Medical Oncology (ESMO)
clinical practice guidelines classify stage I EC into low risk,
intermediate risk, intermediate high risk, and high risk (3). For
low-risk patients, lymphadenectomy is likely to lead to
complications and increased care costs, thereby reducing their
survival benefit, but in non-low-risk (intermediate-,
intermediate-high-, and high-risk) patients, lymphadenectomy
is necessary and effective (4). The histological subtype, grade,
FIGO stage, and LVSI, which are obtained mainly by
preoperative magnetic resonance imaging (MRI) and biopsy at
present, are important factors for the risk stratification of stage I
EC (3, 5). However, the accuracy of FIGO stage evaluation using
conventional T1-weighted (T1W) and T2-weighted (T2W) MRI
may be influenced by factors such as adenomyosis, leiomyomas,
myometrial compression, and loss of the junctional zone (6, 7).
In addition, biopsy has the disadvantages of invasiveness,
inadequate sampling, and susceptibility to operator experience
(8, 9). Therefore, it is of great interest to discover a noninvasive
and effective means for assessing stage I EC risk factors for
stratification, thus complementing existing methods.

Diffusion and molecular MR imaging techniques have been
explored for the diagnosis and differentiation of EC. Diffusion-
weighted (DW) MRI detects the diffusion movement of water
molecules in tissues (10). Jiang et al. showed that diffusion-
weighted imaging (DWI) can help differentiate EC from normal
endometrial parenchyma (11). Diffusion kurtosis imaging (DKI),
as an evolutionary technique of DWI, takes into account the
non-Gaussian distribution of the diffusion movement of water
molecules in the tissue and is considered as a more accurate
imaging technique to characterize the microstructure of the
lesion (12, 13). Amide proton transfer-weighted imaging
(APTWI) is a molecular imaging method that utilizes the
chemical exchange between amide protons and water
molecules to quantify the mobile proteins and peptides in
tissues (14). Yue et al. and Takayama et al. indicated that DKI
and APTWI can play active roles in the histological grading
assessment of EC (15, 16). Meng et al. found that both DKI
and APTWI can be used in the diagnosis of EC with different
clinical and histological types (17). Based on these results, we
hypothesized that DWI-, DKI-, and APTWI-related parameters
25
may be useful predictors of the risk stratification factors for
stage I EC.

A few studies have briefly reported the role of these
techniques in stage I EC risk stratification (18, 19). However,
these studies either explored the application of only a single
imaging technique or assessed only risk stratification without
evaluating the risk stratification factors. The aims of this study
were to compare the value of DWI, DKI, and APTWI in
assessing the risk stratification factors for stage I EC, including
histological subtype, grade, FIGO stage, and LVSI, and to explore
the advantage of including multiple parameters from MRI in
differentiating low-risk and non-low-risk stage I EC patients.
MATERIALS AND METHODS

Study Population
The local institutional review board approved the present study,
and all participants provided written informed consent. A series
of 132 consecutive female patients with suspected EC on
computed tomography (CT) or ultrasound (US) underwent
pelvic MRI between July 2018 and June 2021. Sixty
participants were excluded for the following reasons: 1) having
FIGO stage II, III, or IV (n = 32); 2) having claustrophobia or
other diseases or conditions that prevent them from completing
all the sequences (n = 4); 3) inadequate imaging quality in DWI,
DKI, or APTWI for analysis due to severe artifacts (n = 5); 4)
received relevant treatment prior to scanning (n = 6); 5) having
the largest area of the lesion <50 pixels (392 mm2) in the axial
plane of DWI, DKI, or APTWI (n = 7); 6) histological findings
of non-EC (n = 4); and 7) uncertain histological findings
(n = 2). Ultimately, 72 patients were enrolled in the present
study (Figure 1).

MRI Protocols
All pelvic MRI examinations were acquired with a 3.0-T MRI
system (Discovery MR750, GE Healthcare, Waukesha, WI, USA)
using a 16-channel phased-array body coil. Participants were
given 40 mg of hyoscine butylbromide (Buscopan; Boehringer,
Ingelheim, Germany) intramuscularly or intravenously prior to
the examination to minimize bowel motion. All participants
were placed in the supine position with their feet first and a
partially full bladder. Two-dimensional oblique axial
(perpendicular to the long axis of the cervix) T1W imaging
(T1WI), T2W imaging (T2WI), and DWI were performed first.
Subsequently, all slices containing lesions were selected from the
images from DWI, and their position, layer thickness, and layer
April 2022 | Volume 12 | Article 876120
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spacing were copied to DKI and APTWI for the corresponding
scans. Finally, a three-dimensional axial contrast-enhanced
sequence was performed via intravenous injection (0.1 ml/kg,
2.0 ml/s) of gadopentetate dimeglumine (Gd-DTPA; Bayer
Pharmaceutical, Berlin, Germany) using an automatic injector.
Details of the protocol are provided in Table 1.

Image Post-Processing
All images were transferred to the Advantage Workstation
(version 4.6; GE Healthcare) and post-processed with the
apparent diffusion coefficient (ADC), DKI, and amide proton
transfer (APT) processing tools independently by two
genitourinary radiologists (XJ and RY, with 7 and 15 years of
experience, respectively.) who were unaware of each other’s
outcomes and of the clinical and histological information.
Frontiers in Oncology | www.frontiersin.org 36
The DWI parameter was drawn from the following formula:

Sb=S0 = exp( − b �  ADC) (1)

where b is the diffusion sensitizing factor, S0 and Sb are the signal
intensities (SIs) under zero and nonzero b values, respectively,
and ADC is the apparent diffusion coefficient (10). The DKI
parameter was derived from the following function:

Sb = S0 � exp( − b � Dapp + b2 � Dapp2� Kapp=6 ) (2)

where Dapp denotes the diffusion coefficient corrected for non-
Gaussian bias and Kapp denotes the degree of deviation from the
Gaussian distribution. MD and MK reflect the average Dapp and
Kapp values for all directions, respectively (12). The APTWI
parameter was calculated using the following equation:
TABLE 1 | Imaging protocol parameters.

Parameters T1WI T2WI DWI DKI APTWI Contrast-enhanced imaging

Sequence 2D FSE 2D FSE 2D SS-EPI 2D SS-EPI 2D EPI 3D LAVA
Orientation Axial Axial Axial Axial Axial Axial
Repetition time/echo time (ms) 605/8 5,455/109 6,000/60.5 2,500/58.9 3,000/12 4.2/2.1
Field of view (cm2) 36 × 36 36 × 36 36 × 36 36 × 36 36 × 36 36 × 36
Matrix 320 × 224 320 × 224 128 × 128 128 × 128 128 × 128 320 × 320
Bandwidth (Hz/pixel) 62.50 83.33 250 250 250 83.33
Slice thickness (mm) 5 5 5 5 5 1
No. of sections 20 20 20 Based on lesion size Based on lesion size 80
No. of excitation 1 1 1 (b = 0) 2 1 0.7

4 (b = 1,000)
Diffusion encoding directions – – 1 30 – –

Fat suppression – STIR STIR SPECIAL STIR FLEX
b-values (s/mm2) – – 0, 1000 0, 500, 1,000,1,500, 2,000 – –

Respiratory compensation Free Free Free Free Free Breath holding
Scan time 1 min, 57 s 1 min, 33 s 1 min, 24 s 5 min, 28 s 2 min, 36 s (single slice) 9 s (each phase)
April 2022
Saturation pulses (Tsat) of 0.5 s and a saturation level of 2.0 mT were used to perform APTWI. A total of 52 frequencies, including a frequency 5000 Hz (3 times) away from the resonant
frequency and 49 offsets ranging from -600 to +600 Hz with an interval of 25 Hz, were used for signal normalization of APTWI and z-spectrum scans. The water saturation shift reference
(WASSR) was applied for B0 correction. The number of DKI diffusion gradient directions is 30.
T1WI, T1-weighted imaging; T2WI, T2-weighted imaging; DWI, diffusion-weighted imaging; DKI, diffusion kurtosis imaging; APTWI, amide proton transfer-weighted imaging; FSE, fast spin
echo; SS-EPI, single-shot echo planar imaging; LAVA, liver acquisition with volume assessment; FLEX, flexible; STIR, short-inversion time (TI) recovery; SPECIAL, spectral inversion at lipids.
FIGURE 1 | Flowchart of the present study.
| Volume 12 | Article 876120
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MTRasym (3:5 ppm)

= ½Ssat( − 3:5 ppm) − Ssat( + 3:5 ppm)�=S0 (3)

where Ssat and S0 denote the SIs obtained with and without
selective saturation, respectively, and MTRasym (3.5 ppm) is the
asymmetric magnetization transfer ratio at 3.5 ppm (14). With
the DWI and contrast-enhanced images as references, the region
of interest (ROI) of the lesion was manually delineated layer by
layer along the inside of the tumor margin on axial T2WI, where
areas with necrosis, apparent signs and hemorrhage artifacts,
cystic degeneration, and blood vessels were avoided (17). All
ROIs were automatically copied to each parameter map by the
software to calculate the mean values.
Histopathological Analysis
All lesion specimens were harvested through surgery with a
median interval of 10 days (range, 1–24 days) between pelvic
MRI examination and surgery. An experienced pathologist
analyzed these specimens without knowledge of the clinical
and imaging findings. The histological grade, subtype, and
LVSI were confirmed by hematoxylin/eosin (HE) staining. The
depth of myometrial invasion was assessed using the FIGO
staging system (20). The new ESMO clinical practice guidelines
were used to assess the risk stratification, and eventually, all
included participants were classified into four groups: low,
intermediate, high-intermediate, and high risk (3). Then, the
low-risk stage I EC patients were categorized into the low-risk
group and the intermediate, high-intermediate, and high-risk
stage I EC patients, who are usually considered to have
undergone lymphadenectomy, were categorized into the non-
low-risk group (18).
Statistical Analysis
The intraclass correlation coefficient (ICC) was calculated to
assess inter-observer agreement (r < 0.40, poor; 0.40 ≤ r < 0.60,
fair; 0.60 ≤ r < 0.75, good; and r ≥ 0.75, excellent) (21). After
checking the normality of the data with the Shapiro–Wilk test,
the Mann–Whitney U test was used for the comparison of non-
normally distributed data (median and interquartile range) and
the independent samples t-test used for the comparison of
normally distributed data (mean ± standard deviation). The
diagnostic efficacy of the different parameters was described by
the area under the receiver operating characteristic (ROC) curve
(AUC) and compared with DeLong analysis. A multivariate
logistic regression was performed to explore the optimal
differentiation performance with multiple parameters. The
regression model was also verified using calibration curves
with bootstrapping (1,000 samples) (22). Spearman’s rank
correlation was applied to evaluate the correlation of each
parameter with risk stratification (r ≥ 0.75, good; 0.50 ≤ r <
0.75, moderate; 0.25 ≤ r < 0.50, mild; and r < 0.25, little or none)
(23). All analyses were performed by Stata (version 16.0;
StataCorp, College Station, TX, USA) and MedCalc (version
15.0; MedCalc Software, Oostende, Belgium) software. A p < 0.05
was considered statistically significant.
Frontiers in Oncology | www.frontiersin.org 47
RESULTS

Basic Information
Table 2 and Figure 2 present the clinicopathological and
imaging information of the patients, respectively.

Consistency Between Two Radiologists
for Quantification
The quantification parameters measured by the two radiologists
showed excellent consistency, and the ICCs of ADC, MTRasym
(3.5 ppm), MD, and MK were 0.896 (95% CI = 0.834–0.935),
0.844 (95% CI = 0.752–0.903), 0.881 (95% CI = 0.809–0.925),
and 0.861 (95% CI = 0.778–0.913), respectively. The average
results of the two radiologists were used for the final analysis.

Assessment of Risk Factors
The differentiation of adenocarcinoma from non-adenocarcinoma
in stage I EC showed significantly greater MTRasym (3.5 ppm)
and MK and significantly lower ADC and MD in the non-
adenocarcinoma group than those in the adenocarcinoma group
(all p < 0.05). The AUCs of MD, MTRasym (3.5 ppm), MK, and
ADC were 0.839, 0.793, 0.830, and 0.797, respectively. No
statistically significant differences among these AUCs were
found (Tables 3, 4 and Figure 3A).

The results for the differentiation of stages IA and IB in stage I
EC are shown in Tables 3, 4 and Figure 3B. Significantly greater
MTRasym (3.5 ppm) and MK but significantly lower ADC and
MDwere found in the stage IA group compared with those in the
stage IB group (all p < 0.05). The AUCs of ADC, MD, MTRasym
(3.5 ppm), and MK were 0.665, 0.723, 0.748, and 0.864,
respectively, and there were significant differences between the
AUCs of MK and ADC and between the AUCsMK andMD (Z =
2.779 and 2.074, p = 0.006 and 0.04, respectively).
TABLE 2 | Clinicopathological features of the patients.

Variable Data

Age (years), mean ± SD 58.89 ± 7.53
Maximum diameter (mm), mean ± SD 52.07 ± 15.31
FIGO stage, n (%)

IA 44 (61.11)
IIB 28 (38.89)

Histologic subtype, n (%)
Adenocarcinoma 67 (93.06)
Non-adenocarcinoma 5 (6.94)
Clear cell 3 (4.17)
Serous 2 (2.77)

Lymphovascular space invasion, n (%)
Present 18 (25.00)
Absent 54 (75.00)

Histological grade, n (%)
Grade 1 31 (43.06)
Grade 2 24 (33.33)
Grade 3 17 (23.61)

Risk stratification, n (%)
Low 41 (56.94)
Intermediate 7 (9.72)
High-intermediate 12 (16.67)
High-risk group 12 (16.67)
April 2022 | Volume 12 |
 Article 876120
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Compared with the quantification of the LVSI-negative group
in stage I EC, the MTRasym (3.5 ppm) and MK in the LVSI-
positive groups were significantly greater and the ADC and MD
were significantly lower (all p < 0.05). The AUCs of ADC, MD,
MK, and MTRasym (3.5 ppm) were 0.693, 0.698, 0.767, and
0.775, respectively, with no significant difference for each
between the LVSI-negative and LVSI-positive groups
(Tables 3, 4 and Figure 3C).

Quantification of the high-grade group in stage I EC was for
grade III, while that of the non-high-grade group was for grades I
and II. MTRasym (3.5 ppm) and MK were found significantly
greater while ADC and MD were significantly lower in the high-
Frontiers in Oncology | www.frontiersin.org 58
grade group than those in the non-high-grade group (all p <
0.05). The AUCs of ADC, MD, MTRasym (3.5 ppm), and MK
were 0.690, 0.693, 0.828, and 0.903, respectively, and significant
differences were found between the AUCs of MK and ADC and
between the AUCs of MK and MD (Z = 2.625 and 2.974, p =
0.008 and 0.003, respectively) (Tables 3, 4 and Figure 3D).

Assessment of Risk Stratification
MK andMTRasym (3.5 ppm) were moderately positively correlated
with risk stratification, with r values of 0.640 (95%CI = 0.479–0.759,
p < 0.001) and 0.502 (95%CI = 0.306–0.657, p < 0.001), respectively.
ADC and MD were mildly negatively correlated with risk
FIGURE 2 | (A–F) A 48-year-old woman with low-risk endometrial cancer (EC) [arrowheads, endometrioid type; grade 1, stage IA, lymphovascular space invasion
(LVSI)-negative]. (G–L) A 61-year-old woman with high-intermediate-risk EC (arrowheads, endometrioid type; grade 3, stage IA, LVSI-positive). (A, G) T2-weighted
imaging (T2WI) maps (fat suppression). (B, H) Diffusion-weighted imaging (DWI) original maps (b = 1,000 s/mm2). (C, I) Pseudo-colored maps of the apparent
diffusion coefficient (ADC). (D, J) Pseudo-colored maps of the mean diffusivity (MD). (E, K) Pseudo-colored maps of the mean kurtosis (MK). (F, L) Pseudo-colored
maps of the magnetization transfer ratio asymmetry (MTRasym, at 3.5 ppm).
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TABLE 3 | Comparison of the different parameters among different groups.

Parameters MTRasym (3.5 ppm) (%) ADC (×10−3 mm2/s) MK MD (×10−3 mm2/s)

Histological subtype
Adenocarcinoma 3.54 ± 0.41 0.98 (0.92–1.04) 0.79 (0.76–0.83) 1.22 (1.10–1.27)
Non-adenocarcinoma 3.96 ± 0.30 0.90 (0.86–0.92) 0.85 (0.83–0.87) 1.13 (0.99–1.15)
t/z value 2.873 −2.515 −2.448 −2.171
p-value 0.005b 0.009b 0.011 0.027b

FIGO stage
IA 3.48 (3.22–3.66) 1.00 ± 0.10 0.77 (0.75–0.81) 1.22 ± 0.10
IIB 3.78 (3.52–4.14) 0.95 ± 0.06 0.84 (0.81–0.87) 1.12 ± 0.11
t/z value −3.535 2.873 −5.181 3.524
p-value <0.001a 0.005b <0.001a 0.001b

Lymphovascular space invasion
Positive 3.85 ± 0.34 0.94 ± 0.06 0.83 (0.80–0.86) 1.13 ± 0.11
Negative 3.48 ± 0.40 0.99 ± 0.09 0.78 (0.75–0.82) 1.20 ± 0.10
t/z value 3.889 −2.521 −3.375 2.604
p-value <0.001b 0.014b 0.001a 0.015b

Histological grade
Non-high grade (grades I and II) 3.46 ± 0.38 0.98 (0.92–1.04) 0.78 (0.75–0.81) 1.20 ± 0.10
High grade (grade III) 3.92 ± 0.32 0.93 (0.90–0.99) 0.86 (0.83–0.87) 1.12 ± 0.11
t/z value −5.030 −2.361 −4.999 2.582
p-value <0.001b 0.018a <0.001a 0.016b

Risk stratification
Low risk 3.41 (3.14–3.64) 1.01 ± 0.09 0.76 (0.74–0.80) 1.23 ± 0.09
Non-low risk (intermediate, high-intermediate, and high) 3.77 (3.51–4.13) 0.94 ± 0.06 0.83 (0.80–0.86) 1.12 ± 0.11
t/z value −4.055 3.261 −5.101 4.328
p-value <0.001a 0.002b <0.001a <0.001b
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Values shown in bold denote statistical significance in the comparison.
MTRasym, magnetization transfer ratio asymmetry; ADC, apparent diffusion coefficient; MK, mean kurtosis; MD, mean diffusivity.
aComparisons performed using Mann–Whitney U test.
bComparisons performed using independent t-test.
TABLE 4 | Predictive performance of the different parameters.

Parameters AUC (95% CI) p-value Cutoff Sensitivity (%) Specificity (%) Youden index (%)

Histological subtype
MTRasym (3.5 ppm) (%) 0.797 (0.686–0.883) <0.001 3.780 77.61 80.00 57.61
ADC (×10−3 mm2/s) 0.839 (0.733–0.915) <0.001 0.928 71.64 100.00 71.64
MK 0.830 (0.723–0.908) <0.001 0.831 76.12 80.00 56.12
MD (×10−3 mm2/s) 0.793 (0.681–0.879) <0.001 1.159 64.18 100.00 64.18

FIGO stage
MTRasym (3.5 ppm) (%) 0.748 (0.632–0.843) <0.001 3.750 86.36 53.57 39.94
ADC (×10−3 mm2/s) 0.665 (0.544–0.772) 0.011 1.043 29.55 96.43 25.97
MK 0.864 (0.763–0.933) <0.001 0.784 68.18 96.43 64.61
MD (×10−3 mm2/s) 0.723 (0.605–0.822) <0.001 1.233 50.00 85.71 35.71

Lymphovascular space invasion
MTRasym (3.5 ppm) (%) 0.775 (0.662–0.865) <0.001 3.520 57.41 94.44 51.85
ADC (×10−3 mm2/s) 0.693 (0.574–0.797) 0.003 0.993 48.15 88.89 37.04
MK 0.767 (0.652–0.859) <0.001 0.784 55.56 94.44 50.00
MD (×10−3 mm2/s) 0.698 (0.578–0.801) 0.006 1.213 55.56 77.78 33.33

Histologic grade
MTRasym (3.5ppm) (%) 0.828 (0.721–0.907) <0.001 3.750 83.64 70.59 54.22
ADC (×10−3 mm2/s) 0.690 (0.570–0.794) 0.007 1.036 29.09 94.12 23.21
MK 0.903 (0.810–0.960) <0.001 0.815 78.18 94.12 72.30
MD (×10−3 mm2/s) 0.693 (0.573–0.796) 0.006 1.217 50.91 76.47 27.38

Risk stratification
MTRasym (3.5 ppm) (%) 0.780 (0.667–0.870) <0.001 3.490 83.87 56.10 39.97
ADC (×10−3 mm2/s) 0.709 (0.590–0.810) <0.001 0.915 41.94 87.80 29.74
MK 0.853 (0.750–0.925) <0.001 0.784 93.55 70.73 64.28
MD (×10−3 mm2/s) 0.766 (0.652–0.858) <0.001 1.233 87.10 53.66 40.76
Combined diagnosis 0.906 (0.814–0.962) <0.001 – 70.97 92.68 63.65
The combined diagnosis represents MTRasym (3.5 ppm) + D + MK.
AUC, area under the receiver operating characteristic curve; MTRasym, magnetization transfer ratio asymmetry; ADC, apparent diffusion coefficient; MK, mean kurtosis;
MD, mean diffusivity.
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stratification, with r values of−0.358 (95%CI =−0.544 to−0.138, p=
0.002) and−0.438 (95%CI=−0.608 to−0.229,p<0.001), respectively
(Figure 4). Only the difference in the r values betweenMK andADC
was statistically significant (Z = 2.253, p = 0.024) (Figure 4).

MTRasym (3.5 ppm) and MK were significantly greater while
ADC and MD were significantly lower in the non-low-risk group
than those in the low-risk group (all p < 0.05) (Table 3). The
AUCs of ADC, MD, MTRasym (3.5 ppm), and MK increased
successively, whichwere 0.709, 0.766, 0.780, and0.853, respectively,
but only the differences between the AUCs of MK and ADC were
significant (Z = 1.981, p = 0.047) (Tables 3, 4 and Figure 5A).

The potential risk-related factors of age, tumor size, ADC,
MD, MK, and MTRasym (3.5 ppm) were investigated in the
logistic regression analysis to explore their value for the
stratification of low- and non-low-risk stage I EC patients.

Univariate analysis showed statistical significance for ADC,
MTRasym (3.5 ppm), MD, and MK as risk predictors (p-values
of 0.004, <0.001, <0.001, and <0.001, respectively), while
multivariate analysis revealed that MTRasym (3.5 ppm), MK,
and MD were independent predictors (p-values of 0.005, 0.034,
and 0.015, respectively).
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The combination of the independent predictors [MD, MK,
and MTRasym (3.5 ppm)] showed optimal predictive
performance (AUC = 0.906, sensitivity = 70.97%, specificity =
92.68%, p < 0.001), which was significantly better than those of
ADC (AUC = 0.709, Z = 3.013, p = 0.003), MTRasym (3.5 ppm)
(AUC = 0.780, Z = 2.852, p = 0.004), and MD (AUC = 0.766, Z =
2.787, p = 0.005) individually, but not MK (AUC = 0.853, Z =
1.414, p = 0.157) (Table 5 and Figure 5A).

The calibration curves generated by the analysis of
bootstrapped samples are shown in Figures 5B, C and were
used to validate the multi-parameter regression model that
included MD, MK, and MTRasym (3.5 ppm). There was high
consistency between the predicted and the observed risk
stratification for stage I EC.
DISCUSSION

Both ADC and MD can be used to reflect the degree of the
restricted diffusion movement of water molecules in tissues.
Generally, the higher the density of tissue cells, the more
A B

DC

FIGURE 3 | Curves showing each parameter using receiver operating characteristic (ROC) analysis for the differentiation of adenocarcinoma and non-
adenocarcinoma (A), stage IA and stage IB (B), LVSI-positive and LVSI-negative (C), and high-grade and non-high-grade (D) stage I endometrial cancer (EC). Details
of the area under the curves and the 95% CIs of each index are shown in Table 5.
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significant the limitation of the diffusion movement of water
molecules and, thus, the smaller the ADC and MD (11, 12). ADC
and MD have been used to evaluate stage I EC in several studies.
The study of An et al. showed that the ADC histogram was
conducive to the evaluation of stage I EC histological subtype,
grade, FIGO stage, and even risk stratification (18). Meng et al.
used the average ADC and MD based on the total tumor volume
for stage I EC risk stratification assessment, and the results
showed that these values decreased with the increase in risk
stratification; significant differences in the ADC and MD
between the low-risk and non-low-risk groups were observed
(19). In the present study, the ADC and MD were lower in the
non-adenocarcinoma, stage IB, high-grade, and non-low-risk
groups than those in the adenocarcinoma, stage IA, non-high-
grade, and low-risk groups (all p < 0.05), which was generally
consistent with the above findings. The results of both ADC and
MD being lower in the LVSI-positive group than those in the
LVSI-negative group were similar to the findings of Ma et al. (24)
and Yamada et al. (13), suggesting that both parameters can be
helpful for LVSI assessment in stage I EC. Due to the tighter
tissue structure in patients of the LVSI-positive group, a more
significant restriction of water molecule diffusion within it may
be the main reason for the above results. MD rather than ADC in
the multivariate regression analysis was found as an independent
predictor, which might be related to the fact that MD was
calculated by taking into account the restricted diffusion of
water molecules in all directions and therefore could assess the
diffusion of water molecules more accurately than ADC (12, 15).
Frontiers in Oncology | www.frontiersin.org 811
MK is a representative parameter of DKI that is mainly used to
reflect the degree of deviation from the Gaussian distribution of
water molecule diffusion movement in tissues (12). Usually,
malignant lesions with complex tissue structures are assumed to
have a higher degree of deviation from the Gaussian distribution of
watermolecule diffusionmovement,whichmeans largerMKvalues
(13, 19). Previous studies have shown that MK can provide a valid
assessment of the histological type, grade, stage, and LVSI status of
EC patients due to differences in the cell density, nuclear
heterogeneity, and other factors (13, 24–26). However, these
studies included patients with different FIGO stages of EC, so it
may be difficult to provide a more definitive reference for the
managementof patientswith stage I EC.Our results forMK in stage
I EC patients for the groups in histological subtypes, grades, FIGO
stages, and even LVSI status were similar to those described above.
The results also showed thatMK was not only effective in assessing
the above risk factors but also one of the independent predictors for
discriminating between non-low-risk and low-risk stage I EC
patients, which was consistent with the results of the study
conducted by Meng et al. (19) using the old ESMO clinical
practice guidelines, indicating that MK can play a reliable role in
the risk assessment of stage I EC patients.

APTWI is a MRI molecular imaging technique, and MTRasym
(3.5 ppm) characterizes the heterogeneous metabolism of mobile
proteins and peptides due to changes in the histopathology and
genetic expression of tumors (14, 27, 28). Previous investigations
have revealed that a higher MTRasym (3.5 ppm) indicated a high
level of mobile protein and peptide metabolism, which was
A B

DC

FIGURE 4 | Correlation of various parameters with risk stratification (LM, intermediate; LM-H, intermediate-high). The apparent diffusion coefficient (ADC) (A) and
mean diffusivity (MD) (B) were mildly negatively correlated with risk stratification (r = −0.358 and −0.438, respectively). The mean kurtosis (MK) (C) and magnetization
transfer ratio asymmetry (MTRasym, at 3.5 ppm) (D) were moderately positively correlated with risk stratification (r = 0.640 and 0.502, respectively).
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associated with more active cell proliferation, more microscopic
necrosis (29), greater microvascular density (30), and an
appropriate pH level (31). Only a few studies have explored the
value of APTWI for the assessment of EC. The study by Takayama
et al. showed that MTRasym (3.5 ppm) was positively correlated
with the histological grade of endometrial adenocarcinoma (16),
and the work byMeng et al. revealed thatMTRasym (3.5 ppm) can
be used to differentiate EC of different clinical types, histological
grades, subtypes, and risk stratification (17, 19). In the present
study, MTRasym (3.5 ppm) showed similar performance to that in
the aforementioned studies in the identification of stage I EC
patients with different histological subtypes, grades, and risk
stratification. To our knowledge, our study is the first to conduct
the evaluation of APTWI for identifying stage I EC patients with
different FIGO stages and LVSI status. The higher MTRasym (3.5
ppm) in the stage IB and LVSI-positive groupswas speculated to be
related to the fact that the EC in these groups has more active cell
proliferation, which leads to an increased content ofmobile protein
peptides in the tissues (13, 25).

Several limitations of this research should be taken into account.
Firstly, our studywasdesignedat a single institutionwith a relatively
small number of patients, which may have contributed to selection
bias. Secondly, bothAPTWIandDKIbasedonechoplanar imaging
acquisition had poor signal-to-noise ratios and low spatial
resolution, making the assessment of small EC lesions difficult
(largest area, <50 pixels). Thirdly, the APTWI sequence used in the
present study was two-dimensional, and althoughwe replicated the
Frontiers in Oncology | www.frontiersin.org 912
position, layer spacing, and layer thickness of the previous sequence
layer by layer throughout the scanning procedure, this not only led
to an increase in the scanning time but also may have introduced
errors. In the future, we will include a larger population, attempt to
conductmulti-institutional studies, andrefine the relevant scanning
techniques to make the findings more complete and reliable.
CONCLUSION

Although a similar performance was obtained with each single
parameter of APTWI, DWI, and DKI for the noninvasive
assessment of aggressive behavior in stage I EC, the
combination of MD, MK, and MTRasym (3.5 ppm) provided
improved predictive power for non-low-risk stage I EC and may
serve as a superior imaging marker.
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TABLE 5 | Univariate and multivariate analyses for the identification of low- and non-low-risk EC patients.

Parameters Univariate analyses Multivariate analyses
OR (95% CI) p-value OR (95% CI) p-value

Age (years) 1.386a (0.855–2.247) 0.186 – –

Tumor size (mm) 1.445a (0.885–2.393) 0.139 – –

MTRasym (3.5 ppm) (%) 4.334a (2.009–9.349) <0.001 3.897a (1.501–10.119) 0.005
ADC (×10−3 mm2/s) 0.402a (0.215–0.750) 0.004 0.524a (0.220–1.249) 0.145
MK 4.528a (2.113–9.704) <0.001 2.781a (1.083–7.142) 0.034
MD 0.304a (0.158–0.585) <0.001 0.312a (0.121–0.799) 0.015
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Values in bold are statistically significant.
OR, odds ratio; CI, confidence interval; MTRasym, magnetization transfer ratio asymmetry; ADC, apparent diffusion coefficient; MK, mean kurtosis; MD, mean diffusivity.
aOR per 1 standard deviation.
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This study aimed to investigate whether magnetic resonance imaging (MRI) features could
differentiate non-hypervascular pancreatic neuroendocrine tumors (PNETs) from
pancreatic ductal adenocarcinomas (PDACs). In this study, 131 patients with surgically
and pathologically proven non-hypervascular PNETs (n = 44) or PDACs (n = 87) were
enrolled. Two radiologists independently analyzed MRI imaging findings and clinical
features. Relevant features in differentiating non-hypervascular PNETs from PDACs
were identified via univariate and multivariate logistic regression models. The MRI
feature-based nomogram was constructed based on multivariable logistic analysis and
the reliability of the constructed nomogram was further validated. The results showed that
tumor margin (P = 0.012; OR: 6.622; 95% CI: 1.510, 29.028), MPD dilation (P = 0.047;
OR: 4.309; 95%CI: 1.019, 18.227), and signal in the portal phase (P < 0.001; OR: 53.486;
95% CI: 10.690, 267.618) were independent discriminative MRI features between non-
hypervascular PNETs and PDACs. The discriminative performance of the developed
nomogram was optimized compared with single imaging features. The calibration curve,
C-index, and DCA validated the superior practicality and usefulness of the MRI-based
nomogram. In conclusion, the radiologically discriminative model integrating various MRI
features could be preoperatively and easily utilized to differentiate non-hypervascular
PNETs from PDACs.

Keywords: pancreatic neuroendocrine tumors, pancreatic ductal adenocarcinoma, magnetic resonance imaging,
nomogram, non-hypervascular
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INTRODUCTION

Pancreatic neuroendocrine tumors (PNETs) are rare and
heterogeneous pancreatic tumors, which arise from pancreatic
neuroendocrine cells (1, 2). PNETs have various clinical behaviors
and account for about 2%–10% of all pancreatic neoplasms (3).
With the development of imaging technology, the detection and
diagnosis rates of PNETs have been increasing in recent years (4).

The common imaging features of PNETs have been summed
up as a hypervascular and well-defined solid pancreatic mass,
which are exhibited as relatively hyperenhancement in the
arterial phase of computed tomography (CT) or magnetic
resonance imaging (MRI) (4, 5). Nevertheless, several studies
showed that up to 42% of PNETs exhibit non-enhancement in
the arterial phase (6). Therefore, such overlapping imaging
features between hypovascular PNETs and low-enhancement
pancreatic ductal adenocarcinomas (PDACs) make it difficult
to preoperatively distinguish the two tumors on imaging.
Remarkably, PDACs have a relatively worse prognosis and
lower survival rates and, more importantly, lower resectability
rate with a wider range of excision compared with PNETs (7).
Therefore, it is of great clinical significance to preoperatively
discriminate between PNETs and PDACs.

Recently, several studies have focused on the difference of CT
imaging features between non-hypervascular PNETs and PDACs
(8, 9). For instance, Karmazanovsky et al. have reported that a
series of CT imaging features, such as a well-defined margin,
morphologic characteristic, and enhancement pattern,
contribute to differentiate non-hypervascular PNETs from
PDACs (8). Moreover, Xue’s group has constructed a
combined model, integrating CT-based radiomics signature
and clinical–radiological features and exhibiting a better
performance on the discrimination between atypical non-
functional neuroendocrine tumors and PDACs (10).
Unfortunately, few studies have reported the value of MRI
features in discriminating non-hypervascular PNETs from
PDACs. Due to its superior assessment performance for
pancreatic parenchyma, pancreatic ducts, and peripancreatic
Frontiers in Oncology | www.frontiersin.org 216
soft tissues or vessels (11), MRI may be helpful in improving
the differential diagnosis of non-hypervascular PNETs from
PDACs. Moreover, to our knowledge, the radiological
identification model integrating various MRI features for
differentiating non-hypervascular PNETs from PDACs has not
been reported.

Therefore, the purpose of our study was to evaluate whether
MRI features are helpful to differentiate non-hypervascular
PNETs from PDACs. Furthermore, we tried to develop a
radiological identification model integrating significant MRI
features for the precise differentiation of non-hypervascular
PNETs from PDACs.
MATERIALS AND METHODS

Patient Selection
This retrospective study was approved by the Institutional
Review Board of the Affiliated Hospital of Guizhou Medical
University and the requirement for informed consent was
waived. Between April 2012 and May 2019, all patients with
surgically and pathologically proven PNETs in our hospital were
enrolled. The inclusion criteria were as follows: a) patients who
underwent MRI examination with a standardized MRI protocol
within 2 weeks before surgery and b) patients who did not receive
local or systemic treatment prior to surgery. The exclusion
criteria, on the other hand, were as follows: a) missing MR
imaging data or poor-quality MR images, b) patients underwent
treatment before MRI examination, and c) patients diagnosed
with hypervascular PNETs. The detailed data are presented in
Figure 1. Hypervascular PNETs were defined as tumors that
exhibited hyperintensity in the MRI arterial phase compared
with the adjacent normal pancreas parenchyma. On the other
hand, non-hypervascular PNETs are considered atypical tumors.
All PNETs in this study were defined by three experienced
reviewers. Finally, 44 patients with non-hypervascular PNETs
were enrolled in this cohort.
FIGURE 1 | Flowchart of the selection of patients with non-hypervascular pancreatic neuroendocrine tumors (PNETs) and pancreatic ductal adenocarcinomas (PDACs).
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In addition, 136 consecutive patients with surgically and
pathologically proven PDACs between May 2018 and October
2019 were enrolled as a comparison group. Among these cases,
49 patients were excluded for the following reasons: a) patients
did not undergo MRI examinations (n = 26), b) patients’ MRI
images were of poor quality (n = 4), and c) patients underwent
treatment before the MRI examination (n = 19).

MRI Protocol
All cases in this study were examined by contrast-enhanced MRI
in a 1.5-T MRI scanner (Magnetom Aera; Siemens Medical
Solutions, Germany) with a standardized scan protocol. The
examination protocol is as follows: fat-suppressed T2-weighted
two-dimensional turbo spin-echo (TSE) and diffusion-weighted
imaging (DWI) with b-values = 0 and 500 s/mm2 utilizing
respiratory triggering. Three-dimensional T1-weighted
volumetric interpolated breath-hold examination (VIBE) was
conducted once before and three times after intravenous
injection. Acquisitions were obtained at 20, 90, and 180 s after
injection of gadopentetate dimeglumine at a rate of 3 ml/s and a
dose of 0.1 mmol/kg during the hepatic arterial, portal, and
delayed phases, respectively. All detailed MRI sequences are
specifically shown in Table 1.

Imaging Analysis
The MRI images were acquired, evaluated, and processed via a
picture archiving communication system (PACS) workstation.
All MRI images were reviewed by two pancreatic radiologists
(with 6 and 18 years of experience, respectively), who were
blinded to the pathological and clinical data. Furthermore, all
images were evaluated independently by two radiologists. In the
event that there is inconsistency, another more experienced
observer was invited for an opinion, and a majority decision
was finally reached.

Qualitative data included the following: a) tumor location
(head/neck, body, or tail), b) tumor consistency (solid, cystic, or
solid and cystic), c) tumor margins (well-defined/ill-defined), d)
main pancreatic duct (MPD) dilation (presence/absence), e)
pancreatic atrophy (presence/absence), f) bile duct (BD)
dilation (presence/absence), g) infiltration of peripancreatic fat
(presence/absence), h) invasion of peripancreatic vessels
(presence/absence), i) lymph node invasion (presence/absence),
and j) signal on T2-weighted portal venous and delayed phase
MRI images (defined as hypointense or iso-/hyperintense in
comparison with the surrounding normal pancreatic
parenchyma). MPD dilation was defined as MPD with a
diameter larger than 3 mm. Invasion of peripancreatic vessels
Frontiers in Oncology | www.frontiersin.org 317
was considered based on the following: a) a mass adjoined >90°
of the vascular circumference, b) occlusion of major
peripancreatic arteries, and c) a mass adjoined >180° of the
circumference of the portal vein (PV) or superior mesenteric
vein (SMV). Lymph node invasion was considered as having at
least one or more peripancreatic lymph nodes that are larger
than 1 cm in diameter. Tumor consistency was divided according
to the following three types: a) solid exhibiting an enhancing
solid part of >90% of the mass, b) cystic exhibiting an enhancing
solid part of <50% of the mass, and c) solid and cystic exhibiting
an enhancing solid portion of 50%–90% of the mass.

Quantitative data analysis included a) tumor size (the
maximal diameter of the tumors) and b) apparent diffusion
coefficient (ADC) values (b = 500 s/mm2). The ADC values
were assessed via ROIs on the ADC images. All ROIs were
manually drawn to include the largest part of the mass, avoiding
the adjacent pancreas parenchyma, large vessels, and areas of
hemorrhage or necrosis. All quantitative data were measured
thrice by one experienced pancreatic radiologist, and the average
values were finally used for further research.

Pathological Analysis
Histopathologic analysis of all excised lesions was performed by
two experienced pancreatic pathologists. The pathological grade
of all PNETs was classified according to the 2017 World Health
Organization classification as follows: G1 (low grade), G2
(intermediate grade), or G3 (high grade) (12).

Construction and Validation of the
MRI-Based Nomogram
In order to build a combined nomogram integrating various MRI
features, we constructed a multivariable logistic regression model
to identify the preoperatively discriminative radiological findings
between non-hypervascular PNETs and PDACs and then
integrated all significant features to construct a valuable
discriminative radiological model. Furthermore, validation of
the performance of the developed MRI-based nomogram was
evaluated via the calibration curve and concordance index (C-
index). The calibration curve was performed to graphically
describe discriminative outcomes versus real outcomes, and the
C-index was conducted to assess the discriminative performance
of the developed MRI-based nomogram.

Statistical Analysis
All quantitative parameters were represented as mean ± standard
deviation (SD) or median [interquartile range (IQR) = 25–75],
and categorical parameters were represented as number
TABLE 1 | MRI sequences and parameters.

Parameters Repetition time (ms) Echo time (ms) Section thickness (mm) N excitations Matrix Bandwidth (Hz/pixel) Flip angle (°)

T1-weighted imaging 6.87 2.38/4.76 4 1 320 * 240 430/490 10
T2-weighted imaging 2,400 94 5.5 2 384 * 218 194 160
Diffusion-weighted imaging 5,100 55 6 2 84 * 128 1,562 /
Contrast-enhanced imaging 4.36 2 3.5 2 320 * 195 64 10
M
ay 2022 | Volume 12 |
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(percentage). Depending on the distribution of variables,
continuous variables between two groups were analyzed via
Student’s t-test or the Mann–Whitney U test, and categorical
parameters between two groups were analyzed via the c2 test or
Fisher’s exact test. The dependent discriminative parameters for
differentiating non-hypervascular PNETs from PDACs were
analyzed using receiver-operating characteristic (ROC) curve
analysis, and then the corresponding sensitivity, specificity, and
area under the ROC curve (AUC) were calculated. k statistics
was performed to assess the interobserver variability for
categorical parameters. The grade of agreement was classified
as follows: slight (k < 0.20), fair (k = 0.21–0.40), moderate (k =
0.41–0.60), substantial (k = 0.61–0.80), and outstanding
(k > 0.80).

Univariate and multivariate logistic regression analyses were
used to identify the independent risk factors of the two groups.
Then, a discriminative nomogram based on the significant MRI
features was formulated via the rms package in R project. The C-
index and the calibration curve were performed to assess the
performance of the preliminary MRI-based nomogram. All
statistical analyses were performed using SPSS software
(version 22.0; IBM, Armonk, NY, USA) and R project (version
3.5.0). The tests were two-sided and P-value <0.05 was defined as
statistically significant.
RESULTS

Patient and Tumor Characteristics
A total of 131 patients, consisting of 44 with non-hypervascular
PNETs and 87 with PDACs, were finally included in this
retrospective study. There were no multifocal masses in both
cohorts. In the non-hypervascular PNET group, the age of the
patients (median age, 55.6 ± 14.6 years) ranged from 19 to 79,
and in the PDAC group, the patients’ age (median age, 57.7 ±
12.6 years) ranged from 32 to 79. Furthermore, in this cohort, the
ratio of female patients in the non-hypervascular PNET group
was 65.9% (29/44), which was slightly larger than that in the
PDAC group (52.3%, 46/87). Based on the 2017 WHO
classification, among the non-hypervascular PNET cohort, 15
masses were classified as G1 (34.1%) and 65.9% masses were
defined as G2/G3.
Interobserver Agreement for Qualitative
MRI Features
An outstanding interobserver agreement was achieved for tumor
consistency (k = 0.812), tumor margin (k = 0.878), MPD dilation
(k = 0.924), pancreatic atrophy (k = 0.873), BD dilation (k =
0.819), and signal in T2-weighted images, portal phase, and
delayed phase (k = 0.846, 0.896, and 0.876, respectively), and a
substantial agreement was obtained for invasion of
peripancreatic vessels (k = 0.798) and infiltration of
peripancreatic fat (k = 0.786).
Frontiers in Oncology | www.frontiersin.org 418
Analysis of the Predictive Factors for MR
Imaging Features in Differentiating
Non-Hypervascular PNETs From PDACs
To investigate the predictive value of MR imaging features in
differentiating non-hypervascular PNETs from PDACs,
univariate and multivariate analyses were performed, and these
are shown in Tables 2, 3. The univariate analysis data exhibited
that tumor margin (P < 0.001), MPD dilation (P < 0.001),
pancreatic atrophy (P = 0.03), infiltration of peripancreatic fat
(P = 0.001), invasion of peripancreatic vessels (P = 0.004), and
signal in the portal phase (P < 0.001) were considered as
significantly different MR imaging features between the non-
hypervascular PNETs and PDACs. Next, the above significant
MRI parameters were further subjected to multivariate analysis.
The multivariate analysis data showed that the well-defined
tumor margin (P = 0.012; OR: 6.622; 95% CI: 1.510, 29.028),
the absence of MPD dilation (P = 0.047; OR: 4.309; 95% CI:
1.019, 18.227), and hyperintensity in the portal phase (P < 0.001;
OR: 53.486; 95% CI: 10.690, 267.618) were independent risk
factors for discriminating non-hypervascular PNETs from
PDACs (Figure 2). The ROC analysis exhibited that the
sensitivity, specificity, and AUC of the tumor margin, MPD
dilation, intensity in the portal phase, and the combined MR
imaging features were 84.62%, 57.47%, and 0.710; 92.31%,
67.82%, and 0.801; 82.05%, 74.71%, and 0.814; and 82.05%,
86.21%, and 0.900, respectively (Figure 3).
Construction and Validation of the
MRI-Based Nomogram for Discrimination
Between Non-Hypervascular PNETs
and PDACs
To develop a visual and individualized differential model, we
have combined various significant MR imaging features in
multivariate logistic regression to construct a novel nomogram
for discriminating non-hypervascular PNETs from PDACs
(Figure 4A). In this cohort, the C-index was calculated to
assess the discriminative performance of various MRI features.
The results represented that the C-index for differential diagnosis
with the tri-combined nomogram was 0.914 (95% CI: 0.036,
0.134), which was larger than other C-indices for the other single
or bi-combined variables (Table 4).

To validate the discriminative effect of the developed
nomogram, the calibration curve and decision curve analysis
(DCA) were performed. The calibration curve results implied
better consistency between estimation and observation for the
discrimination performance of the two neoplasms (Figure 4B).
Furthermore, as shown in Figure 5, the DCA exhibited that the
developed nomogram represented better discriminative net
benefits with a broader scope of threshold probabilities
compared with the single MR imaging features, implying that
the MRI feature-based nomogram can serve as a more effective
method for differentiating non-hypervascular PNETs
from PDACs.
May 2022 | Volume 12 | Article 856306
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DISCUSSION

In the present study, we not only investigated the performance of
MRI features for discrimination of non-hypervascular PNETs
and PDACs but also constructed and validated a more practical
differential diagnosis model merging diverse MRI findings,
which showed better diagnostic efficiency than separated MRI
features. In this cohort, tumor margin, MPD dilation, and
Frontiers in Oncology | www.frontiersin.org 519
intensity in the portal phase were significantly discriminative
MRI features between non-hypervascular PNETs and PDACs.

Several studies have reported that about 20%~43% of PNETs
exhibited iso- or hypointensity in the arterial phase of contrast-
enhanced MDCT or MRI, which is similar to the imaging
findings in the arterial phase of pancreatic cancer, leading to
misdiagnosis (13, 14). In our study, 26.3% (44/167) of PNET
patients showed non-hyperintensity in the arterial phase of
TABLE 2 | Clinical and radiological characteristics.

Non-hypervascular PNETs (n = 44) PDACs (n = 87) P-value

Age (years)a 55.6 ± 14.6 57.7 ± 12.6 0.401
Sex 0.154
Female 29 (65.91%) 46 (52.87%)
Male 15 (34.09%) 41 (47.13%)
Location 0.198
Head/neck 23 (52.27%) 52 (59.77%)
Body 4 (9.09%) 2 (2.3%)
Tail 17 (38.64%) 33 (37.93%)
Tumor sizea 3.3 ± 1.4 3.7 ± 1.2 0.147
Tumor consistency 0.369
Cystic 4 (9.09%) 3 (3.45%)
Solid 34 (77.27%) 69 (79.31%)
Solid and cystic 6 (13.64%) 15 (17.24%)
Tumor margin <0.001
Well-defined 33 (75%) 27 (31.03%)
Ill-defined 11 (25%) 60 (68.97%)
MPD dilation <0.001
Absence 36 (81.82%) 31 (35.63%)
Presence 8 (18.18%) 56 (64.37%)
Pancreatic atrophy 0.030
Absence 38 (86.36%) 60 (68.97%)
Presence 6 (13.64%) 27 (31.03%)
BD dilation 0.082
Absence 37 (84.09%) 61 (70.11%)
Presence 7 (15.91%) 26 (29.89%)
Infiltration of peripancreatic fat 0.001
Absence 33 (75%) 37 (42.53%)
Presence 11 (25%) 50 (57.47%)
Lymph node invasion 0.351
Absence 29 (65.91%) 50 (57.47%)
Presence 15 (34.09%) 37 (42.53%)
Invasion of peripancreatic vessels 0.004
Absence 35 (79.55%) 47 (54.02%)
Presence 9 (20.45%) 40 (45.98%)
Signal in T2-weighted images 0.292
Hypointense 1 (2.27%) 1 (1.15%)
Isointense 13 (14.94%) 16 (18.39%)
Hyperintense 30 (68.18%) 70 (80.46%)
Signal in the portal phase <0.001
Hypointense 8 (18.18%) 69 (79.31%)
Isointense 15 (34.09%) 10 (11.49%)
Hyperintense 21 (47.73%) 8 (9.2%)
Signal in the delayed phase 0.061
Hypointense 66 (150%) 26 (29.89%)
Isointense 20 (45.45%) 15 (17.24%)
Hyperintense 1 (2.27%) 3 (3.45%)
ADC (×10−3 mm2/s)b 1.25 (0.81–1.49) 1.16 (0.80–1.48) 0.153
May 2022 | Volume 12 | Article
Unless otherwise indicated, data are the number of lesions, with percentage in parentheses.
aData are expressed as mean ± standard deviation.
bData are expressed as [interquartile range (IQR) = 25–75].
ADC, apparent diffusion coefficient; MPD, main pancreatic duct; BD, bile duct.
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dynamic enhanced MRI, which coincided with previous studies
(8). Among these cases, 68.8% of non-hypervascular PNETs were
classified as G2/G3, which coincided with previous studies (8).

In this study, a well-defined tumor margin has been more
often shown in the non-hypervascular PNETs than in PDACs. In
a recent research by Jeon et al., the authors reported that tumor
margin can serve as a discriminatively morphologic
characteristic between non-hypervascular PNETs and PDACs
(15). Likewise, Karmazanovsky et al. have also suggested that
smooth and regular margins are more commonly observed in
non-hypervascular PNETs in comparison with PDACs (58% vs.
25%) (8). This may be partly explained by the fact that non-
hypervascular PNETs show less infiltration into surrounding
tissues than PDACs.

In addition, the absence of MPD dilation, in our cohort, is
another significant MRI feature to discriminate non-
hypervascular PNETs from PDACs, which may be associated
with the location of origin of the two tumors. Notably, PNETs
originated from progenitor islet cells of pancreatic parenchyma.
However, PDACs originated from the ductal epithelium of the
pancreas, which is more likely to infiltrate into the pancreatic
Frontiers in Oncology | www.frontiersin.org 620
duct and cause dilation or obstruction of the pancreatic duct.
Several recent studies have shown that the absence of MPD
dilation in both CT and MRI features is more likely to occur in
PNETs, which is in agreement with our research results (16, 17).

Furthermore, our study also investigated that, compared with
PDACs, iso- or hyperintensity in the portal phase in the dynamic
enhanced MRI more commonly appeared in non-hypervascular
PNETs. A recent study has also reported that there is a significant
difference in the enhancement patterns of MRI between non-
hypervascular PNETs and PDACs (15). Moreover, in that study,
the enhancement degree of the portal phase in the non-
hypervascular PNETs was obviously higher than that in the
PDACs, which is consistent with our study’s results. Similarly, in
another study, hyperenhancement in the portal venous phase
and persistent iso-enhancement were the significant independent
CT features of non-hypervascular PNETs (8). This can be
attributed to the pathological nature of PDACs (having lower
vascularity and a higher rate of fibrosis compared with PNETs).
Furthermore, in our cohort, other MRI features, including
pancreatic atrophy, BD dilation, infiltration of peripancreatic
fat, and invasion of peripancreatic vessels, are not independent
TABLE 3 | Univariate and multivariate analyses for relevant MRI features for differentiating non-hypervascular PNETs and PDACs.

Risk factors Univariate analysis Multivariate analysis

OR 95% CI P-value OR 95% CI P-value

Age (years) 0.988 0.962, 1.016 0.398
Sex
Female 1.723 0.812, 3.656 0.156
Malea

Location
Head/necka

Body 4.522 0.773, 26.465 0.094
Tail 1.165 0.543, 2.500 0.696
Tumor size 0.776 0.572, 1.051 0.102
Tumor consistency
Cystica

Solid 1.232 0.439, 3.457 0.692
Solid and cystic 3.333 0.567, 19.593 0.183
Tumor margin (well-defined) 6.667 2.937, 15.132 <0.001 6.622 1.510, 29.028 0.012
MPD dilation (absence) 9.482 3.900, 23.053 <0.001 4.309 1.019, 18.227 0.047
BD dilation (absence) 2.253 0.890, 5.705 0.087
Pancreatic atrophy (absence) 2.850 1.007, 7.544 0.035 1.947 0.423, 8.961 0.392
Infiltration of peripancreatic fat (absence) 4.054 1.814, 9.058 0.001 2.892 0.586, 29.028 0.192
Lymph node invasion (absence) 1.431 0.673, 3.042 0.352
Invasion of peripancreatic vessels (absence) 3.310 1.421, 7.706 0.006 1.025 0.179, 5.875 0.978
Signal in T2-weighted images 0.292
Hypointensea

Isointense 1.896 0.812, 4.425 0.139
Hyperintense 2.333 0.141, 38.548 0.554
Signal in the portal phase
Hypointensea

Isointense 12.937 4.374, 38.268 <0.001 28.298 5.956, 134.463 <0.001
Hyperintense 22.641 7.547, 67.675 <0.001 53.486 10.690, 267.618 <0.001
Signal in the delayed phase
Hypointensea

Isointense 1.904 0.848, 4.274 0.119
Hyperintense 7.615 0.757, 76.584 0.085
ADC (×10−3 mm2/s) 1.993 0.771, 5.155 0.155
May
 2022 | Volume 12 | Article
aData were utilized as the reference variable.
OR, odds ratio; CI, confidence interval; ADC, apparent diffusion coefficient; MPD, main pancreatic duct; BD, bile duct.
The values provided in bold type mean ＜0.05 and statistically significant.
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predictors for the discrimination of non-hypervascular PNETs
and PDACs. However, in two other recent studies, peripancreatic
infi ltration and pancreatic parenchymal atrophy are
discriminative CT features between PNETs and PDACs, which
may be caused by the different sample sizes and inclusion criteria
(8, 18).

Although there are overlapping imaging findings between
non-hypervascular PNETs and PDACs, the treatment strategies
and prognosis are totally different. Specifically, compared with
PNETs, thorough surgical approaches, such as the Whipple
procedure or pylorus-preserving pancreatoduodenectomy, are
Frontiers in Oncology | www.frontiersin.org 721
more beneficial to patients. Undoubtedly, preoperative imaging
discrimination of non-hypervascular PNETs from PDACs is of
great importance in developing treatment strategies, improving
patient outcomes (4, 15, 19). For example, previous studies
reported that endoscopic ultrasound (EUS) features are
correlated with malignancy of non-hypovascular solid
pancreatic tumors, and EUS tissue acquisition (EUS-TA) is
helpful for obtaining pathological results before surgery.
However, such imaging strategies are still invasive and
complex (20, 21). Thus, in this study, a preliminary MRI-based
nomogram merging the various significant MRI parameters
FIGURE 2 | (A–D) A 60-year-old man pathologically diagnosed with G2 non-hypervascular PNETs. (A) T1-weighted imaging shows a well-defined hypointense
mass in the head of the pancreas (white arrow). (B) The mass in the arterial phase shows hypointensity (white arrow). (C, D) The mass in both portal (C) and
delayed phases (D) shows relative isointensity (white arrow). (E–H) A 60-year-old man pathologically diagnosed with PDACs. (E) T1-weighted imaging shows an ill-
defined hypointense mass in the body of the pancreas (white arrow). (F) The mass in the arterial phase shows hypointensity (white arrow). (G) The mass in the portal
phase shows obvious hypointensity with mild pancreatic duct dilation (white arrow). (H) The mass in the delayed phase shows obvious hypointensity (white arrow).
FIGURE 3 | The ROC curve of separate three MRI features and combined MRI features for discrimination of the non-hypervascular PNETs from PDACs.
May 2022 | Volume 12 | Article 856306

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Xu et al. MRI Diagnosis of Pancreatic Neuroendocrine Tumors
derived from multivariate regression analysis was developed for
the individualized discrimination of non-hypervascular PNETs
from PDACs. The developed nomogram is of great clinical
significance because it eliminates the complicated equation and
the calculation of the regression analysis model and enables
clinicians to intuitively and graphically calculate the probability
of disease (22). As far as we know, this is the first time that a
radiologically user-friendly model was constructed combining
diverse MR imaging findings to improve differential diagnostic
performance. Furthermore, the preliminarily developed model
was further assessed by the calibration curve, C-index, and DCA,
to determine its practicality and accuracy. As shown by the
results, the calibration curve represented a favorable coherence
between the nomogram-estimated and the actually observed
probability, and the C-index validated that this developed
nomogram optimized the accuracy of discrimination.
Frontiers in Oncology | www.frontiersin.org 822
Meanwhile, DCA showed the best clinical benefit with a wider
range of threshold probability, guaranteeing the dependability of
the developed nomogram.

This study also has several limitations. First, there was
inevitably inherent selection bias because only cases with
surgically resected PNETs and PDACs were enrolled in this
retrospective study. Second, due to some technical difficulties,
this study only enrolled a relatively large sample of non-
hypervascular PNETs from a single center; thus, our results
may not represent the true spectrum of PNETs. Third, owing to
the limitation of the number of cases, internal and external
validation were not performed. Fourth, since non-hypervascular
PNETs are relatively rare, we did not create a test group and a
validation group nor included an external validation group.
Although a very clinically valuable discrimination model was
constructed in this study, it still needs to be verified by further
A

B

FIGURE 4 | (A) The developed nomogram integrating three statistically significant MRI features to discriminate non-hypervascular PNETs from PDACs. (B) The
calibration curve of the MRI-based nomogram to discriminate non-hypervascular PNETs from PDACs.
TABLE 4 | Discriminatory capabilities of the nomogram and independent MRI features.

Factors C-index 95% CI

Tumor margin 0.719 0.199, 0.361
Signal in the portal phase 0.817 0.109, 0.256
MPD dilation 0.731 0.193, 0.345
Nomogram incorporating (tumor margin + signal in the portal phase) 0.896 0.044, 0.162
Nomogram incorporating (tumor margin + MPD dilation) 0.779 0.147, 0.294
Nomogram incorporating (signal in the portal phase + MPD dilation) 0.874 0.066, 0.185
Nomogram incorporating (tumor margin + signal in the portal phase + MPD dilation) 0.914 0.036, 0.134
May 2022 | Volume 12 | A
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experimental studies. Thus, to validate the results of this study in
the future, a much larger sample and multicenter data should be
utilized. Finally, although the practicability and accuracy of the
developed model were assessed, this tool did not integrate
another clinical variable. Therefore, this tool should be further
improved and validated in another cohort.

In conclusion, we thoroughly investigated the significantly
useful MRI features, including tumor margin, MPD dilation, and
Frontiers in Oncology | www.frontiersin.org 923
intensity in the portal phase, to discriminate non-hypervascular
PNETs from PDACs. Notably, a radiologically discriminative
nomogram incorporating diverse MRI parameters was
constructed and validated, which may improve the efficiency
and accuracy of diagnosis and provide more efficient
communication among radiologists, clinicians, and patients.
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18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG
PET/CT) was used to predict pathologic grades based on the maximum standardized
uptake value (SUVmax) in soft tissue sarcoma and bone sarcoma. In retroperitoneal
sarcoma (RPS), the effectiveness of PET was not well known. This study was designed to
investigate the association of SUVmax with histopathologic grade and evaluate the
usefulness of 18F-FDG PET/CT before operation. Patients at Samsung Medical Center
undergoing primary surgery for retroperitoneal sarcoma with preoperative 18F-FDG PET/
CT imaging between January 2001 and February 2020 were investigated. The relationship
between SUVmax and histologic features was assessed. The association of SUVmax with
overall survival (OS), local recurrence (LR), and distant metastasis (DM) were studied. Of
the total 129 patients, the most common histologic subtypes were liposarcoma (LPS;
68.2%) and leiomyosarcoma (LMS; 15.5%). The median SUVmax was 4.5 (range, 1- 29).
Moreover, SUVmax was correlated with tumor grade (p < 0.001, Spearman coefficient;
0.627) and mitosis (p < 0.001, Spearman coefficient; 0.564) and showed a higher value in
LMS (12.04 ± 6.73) than in dedifferentiated liposarcoma (DDLPS; 6.32 ± 4.97,
p = 0.0054). SUVmax was correlated with pathologic parameters (tumor grade and
mitosis) in RPS and was higher in the LMS group than the DDLPS group. The optimal
SUVmax threshold to distinguish high tumor grade was 4.8. Those with a SUVmax greater
than the threshold showed poor prognosis regarding OS, LR, and DM (p < 0.001).
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INTRODUCTION

Retroperitoneal sarcoma (RPS) is a rare neoplasm of
mesenchymal origin derived from connective tissue. The most
common histologic types are liposarcoma (LPS) and
leiomyosarcoma (LMS), which account for 70% of all RPSs (1, 2).

Researches on the optimal treatment of RPS are in progress.
Hospitals in many countries around the world are conducting
continuous research together (2–4). For example, Almond, L.M.,
et al. was reported that neoadjuvant chemotherapy can improve the
likelihood of negative resection margins in patients with locally
advanced and high-risk primary sarcomas (5). Bonvalot, S., et al.
was reported that preoperative radiotherapy had no clinical benefit
on RPS (6). However, peri-operative treatments on RPS are still
controversial and surgical resection, including that of adjacent
organs, is accepted as the standard treatment (7–9).

Preoperative diagnosis and identification of tumor extent are
important to determine extensive surgical resection including
adjacent organs. Percutaneous biopsy and computed tomography
(CT) are robust preoperative diagnosis methods and can safely
determine histologic subtype and presence of metastasis (10, 11).
However, percutaneous biopsy has limitations in that the accuracy
is low (67.2%) and it is difficult to distinguish the tumor grade (12).
In addition, CT scan has the disadvantage of being inaccurate in
discriminating histologic subtypes of heterogenous tumors (13).
Due to these limitations, diagnostic tool that can increase the
accuracy of diagnosis is needed. The 18F-fluorodeoxyglucose
positron emission tomography/computed tomography (18F-FDG
PET/CT) can play a complementary role as it differentiate high-
grade portion of heterogenous tumors and perform targeted
biopsy (14).

There have been several studies on the use of 18F-FDG PET/CT in
sarcomas, but most included both bone sarcoma and soft tissue
sarcoma (15, 16). Alternatively, whole soft tissue sarcomas not
specific to RPS have also been targeted (17, 18). Previously, our
research team conducted a study on the association between
maximum standardized uptake value (SUVmax) and retroperitoneal
LPS (19). However, there was a limitation that only LPS was included.

In this study, we aimed to investigate the prognostic significance
of SUVmax in RPS and to find out whether SUVmax shows
different values depending on the histologic subtypes.
METHODS

Patients
We retrospectively investigated patients undergoing primary
surgery for RPS with preoperative 18F-FDG PET/CT imaging
at Samsung Medical Center between January 2001 and February
2020. The diagnoses were determined according to the World
Health Organization 2013 classification of specimens collected
during surgery by pathologists specialized in sarcoma. The
following patients were excluded: pediatric patients (those
under 19 years of age); patients diagnosed with another
malignant disease; patients who received pre-operative
treatment, such as chemo-radiation therapy, before obtaining
PET imaging; patients diagnosed with distant metastasis; and
Frontiers in Oncology | www.frontiersin.org 226
patients diagnosed with visceral sarcoma (tumors that clearly
originated from a visceral organ, such as uterine sarcoma and
sarcoma of the prostate, bladder, or vesicles), a benign tumor,
carcinosarcoma, or a gastrointestinal tumor.

Data on underlying diseases, gender, BMI, and surveillance,
such as [overall survival (OS), local recurrence (LR), and distant
metastasis (DM)] were collected from patient medical records.

Pathologic Characteristics
All pathologic records, based on surgical specimens, were
reviewed by specialized sarcoma pathologists. Tumor histologic
subtype, size, mitosis, necrosis, and multifocality were analyzed.
Tumor grade was determined using the French Federation of
Cancer Centers Sarcoma Group Grading System (FNCLCC).

18F-FDG PET/CT Imaging
All 18F-FDG PET/CT images were taken to confirm metastasis to
other organs before surgery, and interpretations were made by
nuclear medicine specialists. All patients fasted for at least 6 hours
before PET/CT imaging, and their blood glucose level was required
to be less than 200mg/dL. Whole-body PET and unenhanced CT
images were acquired using a PET/CT scanner (Discovery STE, GE
Healthcare, Waukesha, WI, USA). Whole-body CT was performed
using a 16-slice helical CT with 30 to 170 mAs adjusted to the
patient’s body weight at 140-kVp and 3.75-mm section width. After
the CT scan, an emission scan was performed from the thigh to the
basal skull for 2.5 min per frame in three-dimensional mode
60minutes after intravenous 18F-FDG injection (5.0 MBq/kg).
The ordered subsets expectation-maximization algorithm (20
subsets and 2 iterations) with a 128 × 128 matrix and voxel size
of 3.9 × 3.9 × 3.3mm was used to reconstruct PET images utilizing
CT data to correct attenuation. Regarding SUVmax measurement,
we placed a spherical volume of interest with a diameter of 3 cm at a
location where the tumor tissue had the highest metabolic activity
using Volume Viewer (AdvantageWorkstation 4.4, GEHealthcare).
SUVmax was normalized to patient body weight.

Statistical Analysis
Factors affecting the prognosis of RPS were analyzed through
univariate and multivariate Cox regression models. The Cox
proportional hazards model was used to evaluate prognostic
variables, and an estimated hazard ratio (HR) with its 95%
confidence interval (95% CI) was presented. P < 0.05 was
considered to represent a statistically significant comparison.

The Analysis of Variance (ANOVA) test was used to analyze
the correlation between SUVmax and histologic subtypes. The
receiver-operating characteristic (ROC) methodology was used
to calculate the ideal threshold to distinguish high-grade
sarcoma. The area under the curve (AUC) was calculated for
each parameter using the non-parametric method to represent
the overall predictive or prognostic performance.

Regarding survival analysis, Kaplan-Meier estimates and the
log-rank test were used, and OS, LR, and DM were analyzed
using time-to-event regression. Specifically, OS was calculated
from the date of surgery to the date of death, LR was identified in
CT scans, and the duration was calculated based on the CT scan
date. DM was defined as a tumor found in organs such as liver,
May 2022 | Volume 12 | Article 868823
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lung, brain, and bone, and the date of its diagnosis corresponded
to when the tumor was detected by clinical symptoms or imaging
tests. All analyses were performed using R version 4.0.4 (The R
Core Team, Vienna, Austria).

Ethical Approval
The study protocol conformed to the ethical guidelines of the
Declaration of Helsinki and was approved by the Institutional
Review Board of Samsung Medical Center (IRB No. 2021-09-
062-001)

Informed Consent
The need for informed consent was waived by the institutional
review board of Samsung Medical Center due to the retrospective
nature of the study.
RESULTS

Clinicopathologic Data
In total, 136 patients who underwent primary surgery for RPS
between2001and2020 andunderwentpreoperative 18F-FDGPET/
Frontiers in Oncology | www.frontiersin.org 327
CT to determine the presence of metastasis were identified. Three
patients with Ewing’s sarcoma were excluded. Four patients were
excluded due to insufficient pathological data such as mitosis and
necrosis. After excluding these patients, data from a total of 129
patients were investigated. The histologic subtypes were
dominantly LPS (68.2%) and LMS (15.5%). DDLPS accounted for
68%of theLPSpatients, followedbywell-differentiated liposarcoma
(WDLPS) and pleomorphic liposarcoma (PLS). There was no
significant difference in the distribution of tumor grades.
Demographic and clinicopathological details are shown inTable 1.

Correlation Between SUVMmax
and Pathologic Characteristics
The median SUVmax was 4.5 (range, 0.4-29). Tumor SUVmax
was correlated with a higher tumor grade (p < 0.001, Spearman
coefficient; 0.627) and mitosis (p < 0.001 Spearman coefficient;
0.564). In addition, SUVmax was different depending on the
histologic subtype. The LPS group showed a lower SUVmax than
the LMS group. When comparing SUVmax among the three
groups, values were obtained in this order: WDLPS (2.32 ± 0.89),
DDLPS (6.32 ± 4.97), and LMS (12.04 ± 6.73). The differences
were statistically significant (Figure 1).
TABLE 1 | Characteristics of patients.

Variable Value

Age, years (mean) 56.4 ± 12.2
Gender (%) F 67 (51.9)

M 62 (48.1)
BMI, kg/m2 (mean) 23.5 ± 3.0
Underlying disease
DM Yes 11

No 118
HTN Yes 39

No 90
Chronic renal disease Yes 1

No 128
Histologic subtype (%) Well-differentiated liposarcoma 24 (18.6)

Dedifferentiated liposarcoma 60 (46.5)
Pleomorphic liposarcoma 4 (3.1)
Leiomyosarcoma 20 (15.5)
Malignant peripheral nerve sheath tumor 4 (3.1)
Perivascular epithelioid cell tumor 1 (0.8)
Other 16 (12.4)

FNCLCC grade (%) 1 29 (22.5)
2 36 (27.9)
3 64 (49.6)

SUVmax (median [range]) 4.5 [0.4, 29.0]
Tumor size, mm (mean) 166.4 ± 101.3
Multifocality (%) Yes 23 (17.8)

No 106 (82.2)
Necrosis (%) Absent 60 (46.5)

<50% 60 (46.5)
≥50% 9 (7.0)

Mitosis (%) <9/10 HPF 95 (73.6)
10-19/10 HPF 24 (18.6)
≥20/10 HPF 10 (7.8)

Local recurrence (%) Yes 54 (41.9)
No 75 (58.1)

Distant metastasis (%) Yes 17 (13.2)
No 112 (86.8)

Follow up months after primary surgery, month (median[range]) 37.8 [20.3, 71.9]
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Prognostic Factors for RPS and SUVmax
Univariate analysis of the prognostic factors associated with OS
was performed considering all patients with RPS. The factors
significantly associated with OS were high-tumor grade (grade
III, p = 0.003), SUVmax (p < 0.001), mitosis (≥ 20/10 high power
fields (HPF), p < 0.001), and necrosis (≥50%, p < 0.001). In the
multivariate analysis, SUVmax (p = 0.004) was the only factor
significantly associated with OS. When analyzing the OS factors
by histologic subtype, tumor grade (grade III, p = 0.011) and
SUVmax (p < 0.001) were significant prognostic factors in the
LPS group, consistent with RPS. However, there were no
statistically significant risk factors in the LMS group. The
details of the analyses are shown in Table 2.

Univariate analysis of prognostic factors for LR was
performed considering all RPS patients. The SUVmax (p <
0.001), high tumor grade (p < 0.001), mitosis (≥20/10 HPF,
p = 0.024), WDLPS (p = 0.004), LMS (p = 0.011) and necrosis
(≥ 50%, p < 0.001) were significantly associated with LR. Within
the multivariate analysis, the only factors independently
associated with LR were high tumor grade (p = 0.014),
Frontiers in Oncology | www.frontiersin.org 428
WDLPS (p = 0.035) and necrosis (≥ 50%, p = 0.005). However,
in the analysis conducted within histologic subtypes, SUVmax (p
< 0.001) and high tumor grade (p = 0.002) were the main factors
for LPS LR (Table 3).
Optimal Threshold to Distinguish High
Grade Sarcoma
Receiver Operating Characteristic (ROC) curve analysis
demonstrated that the Area Under the ROC curve (AUC) for
high tumor grade (Grade III) was maximal when the threshold
SUVmax was 4.8. The AUC for high tumor grade at the cut-off
SUVmax was 0.820 (p < 0.001). At this threshold, the values of
sensitivity and specificity were 0.77 and 0.80, respectively (Figure 2).

Outcome prediction Using an Optimal
SUVmax threshold
The SUVmax threshold was used to distinguish a high SUVmax
group and a low SUVmax group survival analysis was performed
with respect toOS, LR, andDM.Considering the entire RPS group,
the high SUVmax group showed a poor prognosis regarding OS,
LR, and DM (p < 0.001). When analyzed by histologic subtype, the
LPS patients with high SUVmax showed poor prognosis regarding
OS (p < 0.001) and LR (p = 0.004). However, there were no such
differences in the LMS group (Figure 3).
DISCUSSION

This study analyzed the relationship between SUVmax and the
pathologic characteristics and prognosis of RPS. We showed that
SUVmax is associated with high-grade RPS. In addition, we
demonstrated that the range of SUVmax varies according to
histologic subtype.
FIGURE 1 | Comparison of median SUVmax with histologic subtypes.
TABLE 2 | Univariate and multivariate analyses of risk factors associated with overall survival.

Variables Univariate Multivariate

HR (95% CI) p value HR (95% CI) p value

Male 1.9 (0.98,3.66) 0.057
Age 1.03 (1,1.06) 0.033
SUVmax 1.11 (1.07,1.16) < 0.001 1.09 (1.03,1.15) 0.004
Tumor size 1 (1,1) 0.815
FNCLCC grade: ref. = 1
2 0.93 (0.19,4.61) 0.926 0.76 (0.15,4.01) 0.749
3 6.06 (1.84,19.98) 0.003 4.4 (0.83,23.45) 0.083

Histology: ref.=DDLPS
WDLPS 0.35 (0.1,1.21) 0.097
LMS 0.89 (0.33,2.41) 0.815
MPNST 1.48 (0.34,6.38) 0.597
Other 1.18 (0.43,3.22) 0.746

Necrosis: ref.= Absent
<50% 3.26 (1.46,7.28) 0.004 0.81 (0.24,2.74) 0.74
≥50% 6.49 (2.1,20.02) 0.001 1.37 (0.33,5.73) 0.666

Mitosis: ref.= <9/10 HPF
10-19/10 HPF 2.26 (1.06,4.81) 0.035 0.7 (0.26,1.9) 0.484
≥20/10 HPF 4.63 (1.83,11.7) 0.001 0.77 (0.21,2.81) 0.69
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Distinction Between DDLPS and LMS
Our key finding was that higher SUVmax was found in LMS
(12.04 ± 6.73) than DDLPS (6.32 ± 4.97). DDLPS and LMS are
potential candidates for neoadjuvant chemotherapy, as the micro-
metastasis potential is lowered, and unresectable tumors can be
reduced in size before surgery (5). Anthracycline-based adjuvant
chemotherapy is the cornerstone of first-line treatment for
localized soft tissue sarcoma (20). However, based on many
retrospective studies, different histology-driven -chemotherapy
options can be applied to DDLPS and LMS. In addition, multi-
center prospective research (STRASS-2) is ongoing to determine
whether these treatments affect prognosis (21). The distinction
between high-grade LPS and LMS is becoming increasingly
important to clinical decision-making considering these studies.
Our findings suggest that 18F-FDG PET/CT can be useful in
distinguishing these two histologic subtypes preoperatively.

Detecting High-Grade RPS Through
18F-FDG PET/CT Imaging
Due to its multifocal nature and large size, RPS can be difficult to
target accurately during biopsy at the time of detection. In
addition, preoperative biopsies tend to underestimate the final
Frontiers in Oncology | www.frontiersin.org 529
grade, most likely due to sampling error (22). For example, in
LPS, when a solid portion and a fatty portion exist together, the
high-grade portion is likely to be the solid portion. However,
when there are several solid portions, it is difficult to predict the
high-grade portion with CT. Because of these difficulties, the
TARPSWG guidelines suggest that 18F-FDG PET/CT be
available for defining biopsy target areas (2). The current study
demonstrated that tumor -SUVmax was correlated with higher
tumor grade (p < 0.001, Spearman coefficient; 0.627) and mitosis
(p < 0.001 Spearman coefficient; 0.564). This result is similar to
other studies showing the association between pathologic
characteristics and SUVmax (22, 23). These results support the
TARPSWG guidelines recommendation to set SUVmax as the
biopsy target area.
Prognosis Prediction Using SUVmax
A previous study conducted by our research team demonstrated
that a SUVmax cut-off of 4.5 stratified RPS tumor grades and
prognosis. In this study, only LPS was used, and there was a
limitation in that SUVmax was determined in a heterogeneous
population including metastatic and recurrent tumors (19).
Subramaniam et al. also reported that when the SUVmax was
higher than 5.0, the prognosis was poor, and high SUVmax and
tumor grade were related. This study investigated a homogenous
population; only the DDLPS and LMS groups were studied.
However, the small number of patients has been mentioned as a
limitation (22). In both studies referenced above, OS and relapse-
free survival (RFS) were mentioned in the analysis of SUVmax
and prognosis.

The current study investigated a relatively large number of
patients given the low prevalence of RPS, excluding those with
metastatic or recurrent tumors. In addition, the present study
showed a correlation between SUVmax and DM, which has not
been shown in other studies to our knowledge. The cut-off
SUVmax (4.8) was a good measure for predicting prognosis
TABLE 3 | Univariate and multivariate analyses of risk factors associated with local recurrence.

Variables Univariate Multivariate

HR (95% CI) p value HR (95% CI) p value

Male 1.14 (0.67,1.95) 0.632
Age 1.01 (0.99,1.03) 0.503
SUVmax 1.08 (1.04,1.12) < 0.001 1.01 (0.94,1.08) 0.855
Tumor size 1 (1,1) 0.582
FNCLCC grade: ref. = 1
2 8.43 (1.9,37.39) 0.005 7.27 (1.57,33.75) 0.011
3 15.38 (3.69,64.04) < 0.001 8.13 (1.54,42.92) 0.014

Histology: ref.=DDLPS
WDLPS 0.12 (0.03,0.51) 0.004 0.19 (0.04,0.89) 0.035
LMS 2.32 (1.22,4.43) 0.011 1.93 (0.81,4.6) 0.137
MPNST 3.22 (0.96,10.78) 0.058 2.77 (0.75,10.19) 0.126
Other 0.46 (0.14,1.52) 0.206

Necrosis: ref.= Absent
<50% 3.35 (1.77,6.33) < 0.001 1.56 (0.76,3.21) 0.23
≥50% 13.9 (5,38.6) < 0.001 6 (1.74,20.7) 0.005

Mitosis: ref.= <9/10 HPF
10-19/10 HPF 3.38 (1.79,6.39) < 0.001 1.37 (0.61,3.09) 0.449
≥20/10 HPF 2.99 (1.15,7.75) 0.024 1.79 (0.4,7.91) 0.444
May 2022 | Volume 12 | Article
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but showed relatively low sensitivity (0.77) for predicting tumor
grade and was not particularly useful in the LMS group.
Therefore, our results indicate that 18F-FDG PET/CT may be a
useful measure of prognosis or high tumor grade for LPS
considering its relatively high specificity (0.8).

Limitations
The current study is limited by its retrospective nature and the
small number of LMS patients. A large-volume study is needed
to find the SUVmax that can differentiate between DDLPS and
LMS and to further evaluate the role of 18F-FDG PET/CT in
recurrent and metastatic tumors.
CONCLUSION

Tumor SUVmax was correlated with RPS pathologic parameters
(tumor grade and, mitosis) and was higher in LMS than DDLPS.
In addition, prognosis with respect to (OS, LR, and DM) was
poor for patients with high SUVmax (p < 0.001). A SUVmax of
4.8 is the optimal threshold to rule out high-grade tumors, and
prognosis can be predicted using this value.
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The concept of precision oncology entails molecular profiling of tumors to guide
therapeutic interventions. Genomic testing through next-generation sequencing (NGS)
molecular analysis provides the basis of such highly targeted therapeutics in oncology. As
radiomic analysis delivers an array of structural and functional imaging-based biomarkers
that depict these molecular mechanisms and correlate with key genetic alterations related
to cancers. There is an opportunity to synergize these two big-data approaches to
determine the molecular guidance for precision therapeutics. Colorectal cancer is one
such disease whose therapeutic management is being guided by genetic and genomic
analyses. We review the rationale and utility of radiomics as a combinative strategy for
these approaches in the management of colorectal cancer.

Keywords: radiomics, colorectal, cancer, precision medicine, personalized medicine, precision oncology, genomics
REVIEW

What is Precision Medicine/Oncology?
In the early part of this century, the term personalized medicine was heavily used to promote a new
paradigm of treatment tailored to an individual. However, as this field developed, this term was seen
as a misnomer as it highlights the individual and not the disease process. The term precision
medicine more aptly describes how treatment is tailored to tumor-specific features that can be
shared between individuals (1). Features of a disease state can be found in genetic, imaging, and
histological information, and have been explored using deep analytics with genomics, radiomics,
and pathomics, respectively.

Precision oncology, the application of this paradigm to oncology, has potential to revolutionize
cancer management. This is a developing field with robust ongoing research. The greatest strides
have been in genomics with radiomics not far behind.

The Genetics/Genomics Landscape of Colorectal Cancer
The theory of genomics in precision oncology is that treatment can be tailored based on the genetic
make-up of the cancer (2). The most suitable therapy can be selected either by correlating between
the unique genetic fingerprint of the malignancy and therapy options, or by impeding the driver
mutation of an identified specific oncogene.

There is robust research in this field mainly due to recent availability and affordability of high-
quality NGS molecular analysis (3). An example of that is the HER2 positivity, a clinically relevant
genomic marker for breast cancer that predicts response to trastuzumab-based therapies (3).
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Trastuzumab binds to the HER2 receptor which results in
inactivation of the intracellular tyrosine kinase and, therefore,
handicaps cell proliferation (4). Lung cancer management has
also been more recently transformed by precision oncology
approaches. Currently, instead of treating all patients with
platinum-based doublets, treatment takes into consideration
genetically defined subsets. For example, PD-L1 expression
denotes a stronger response to immunotherapy (3). More
recently, genomic subtyping has been shown to be prognostic
in pulmonary large-cell neuroendocrine carcinoma (5).

The advent of NGS has made finding mutations in colorectal
cancer more applicable to clinical practice. Genetic testing in
colorectal cancer for prognostication and therapy selection is
now standard of practice. In EGFR-expressing colorectal cancer
(CRC), the mainstay of treatment is EGFR-targeting antibodies.
However, only a limited percentage of CRC with EGFR
expression respond. Currently, prognostication of treatment
response with anti-EGFR correlates with specific KRAS, NRAS,
and to a lesser extent BRAF V600E mutations. These mutations
predict poor treatment response to anti-EGFR treatment. The
presence of the KRAS or NRAS mutation confers not only poor
response but also shorter survival if anti-EGFR treatment is
used (6).

Beyond anti-EGFR therapy, newer therapeutic approaches
are increasingly being guided by genetic/genomic advancements.
Clinical trials studying the targeting of the BRAF V600E
mutation with triple therapy (anti-RAF, anti-MEK, and
cetuximab) are showing promise (6). Amplification of HER2
(ERBB2) also predicts poor anti-EGFR response as seen in the
HERACLES trial (6, 7). Fusion involving the NTRK family of
genes are seen in some CRC. Anti-NTRK treatment has shown
promise in this subtype of CRC. Further, fusion in ALK, ROS,
and RET all are present in different subtypes of CRC and show
promise with targeted therapies (6).

Tissue heterogeneity is the main culprit in poor clinical
adoption of new genomic insights for colorectal cancer. Within
the same tumor there can be heterogeneous genetics that can be
missed due to biopsy sampling error. Tissue heterogeneity can
also be seen in colorectal cancer between the primary site and
metastatic sites. Even more challenging are the changes in the
genetic make-up of the disease seen after therapy. Furthermore,
it is practically difficult to subject the patient to repeated biopsies
for tissue/molecular/genetic analyses (6). It can be postulated
that these issues can be allayed by radiomics. The phenotypic
heterogeneity of tissue and its metastatic foci can be deciphered
from imaging data. Moreover, imaging is easily repeatable,
making it feasible to continually assess radiomic endpoints that
represent intratumoral patterns of therapy response. In a
synergistic fashion, radiogenomics, we believe, will enable
precision oncology to deliver at its highest potential.

Radiomics as a Non-Invasive Imaging
Correlate to Pathophysiologic
and Genetic Basis of CRC
As a quantitative image analysis technique, radiomic analysis
yields signatures (set of features) that may be shown to correlate
Frontiers in Oncology | www.frontiersin.org 233
with molecular processes or structural changes implicated in
tumor behavior and its responsiveness to therapy. A wide range
of radiomic signatures have been extracted in a number of
studies focusing on CRC and were found to be useful in
improving the way CRC is classified (8), stratified (9), and
assessed for their natural history and therapy response (10).
Radiomics is also improving our ability to develop more effective
therapies to fight cancer by way of providing endpoints for
pharmacokinetic/pharmacodynamic assessment as well as early
therapy assessment response (or even predictive) biomarkers.

The emerging landscape of radiomics in CRC includes
applications of this technique for the improved classification of
CRC. Studies have shown that CT-based radiomic signatures were
able to distinguish between high-grade and low-grade (AUC 0.7;
0.9) (11), and between the stage I-II and stage III-IV of CRC (AUC
0.8) (12), and for the prediction of microsatellite instability (MSI)
in CRC which has implications for therapy responsiveness.
Radiomics should be seen as a complimentary approach (and
not as an alternative) to standard clinicopathologic methods used
to guide clinical management. In a recent randomized controlled
trial, radiomics was performed on preoperative CT in stage II and
III CRC and it was observed that the combined clinical-radiomics
model predicted the preoperative MSI status more accurately than
the clinical or radiomic models alone (AUC 0.8) (13).

Radiomics has the potential to noninvasively predict genetic
mutations/alterations which have implications in the
personalized management of CRC. In a study by Tien et al., it
was observed that CT-based radiomics predicted the KRAS/
NRAS/BRAF mutations while clinical background, tumor stage
and histological grade had no significant association (AUC 0.8)
(14). FDG-PET-based radiomics analysis has also been used to
determine various genetic alterations in CRC. Kao et al. observed
that CRC with a mutated KRAS showed a 25th-percentile
increase in the standardized uptake value (SUV) in their
metabolic tumor volume (MTV) (15). It was also shown that
the mutated TP53 was associated with an increased value of
short-run low gray-level emphasis derived from the gray-level
run length matrix, while the APC mutants exhibited lower low
gray-level zone emphasis derived from the gray-level zone length
matrix (15). In another study, CT-based radiomic analysis that
quantified the temporal decrease in the tumor spatial
heterogeneity and boundary infiltration were found to better
predict the sensitivity EGFR-targeting therapy in metastatic CRC
as compared to the standard endpoints, such as KRAS mutations
and tumor shrinkage as per RECIST 1.1 (16).

More sophisticated radiomic analyses are possible with MRI,
a modality used regularly in the management of CRC. A 30-
feature radiomic signature extracted from pre- and post-therapy
MRI (along with tumor length) was shown to predict the
pathologic complete response to locally advanced CRC (AUC
0.98) (17). Another study showed that T2W-MRI based
radiomics was superior to T2W/DWI at predicting pathologic
complete response to neoadjuvant therapy for CRC (AUC 0.93)
(18). FDG-PET based radiomics has also been found to be useful
for therapy response prediction. In a recent study, it was shown
that the radiomics-based tumor heterogeneity along with low
June 2022 | Volume 12 | Article 872656
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tumor volume, both measured on FDG PET/CT were associated
with improved clinical outcome (AUC 0.8) (19). A combined
multiparametric approach, using FDG-PET and MR-based
radiomics assessment was found highly predictive of
neoadjuvant therapy response (20).

Combining Radiomics With Genomics for
Precision Therapy Guidance for CRC
As shown by several studies mentioned above, radiomic
biomarkers can be correlated with and potentially predict
genetic mutations on one hand and clinical outcomes on the
other. Furthermore, it can be proven to be a highly useful
methodology when combined with genetic/genomic studies to
understand the complete genotype-phenotype relationship that
is implicated in the natural history and therapy responsiveness of
CRC. Such radiogenomic methodologies have been employed in
diseases, including Non-small lung and breast cancers (21) and
utilizing it may be of great benefit in the precision management
of CRC as well.

This combinative multi-omics approach has been used to
evaluate the pathophysiologic underpinnings and the natural
history they impact (22, 23). Radiogenomics involves extracting
radiomic features from a CT, MR or a PET scan and combining it
with the mRNA expression data to create a radiogenomic signature
and correlating it with the clinicopathological event under study (see
Figure 1). This was performed in a study performed by Duo et al, in
which they employed a radiogenomic approach using FDG-PET/
CT and messenger RNA data to develop a signature that depicted
the epithelial–mesenchymal transition in non–small cell lung cancer
(25). Such methodologies have been attempted in the realm of CRC
as well. Bogdan et al. studied the combined signature from CT and
ABC22, CD166, CDKNV1 and IHBBB gene expression and
Frontiers in Oncology | www.frontiersin.org 334
histologic grading to be an statistically significant prognosticator
for CRC screening and management (26).

Studies have been performed to study the genetic changes and
the radiomics features and if they can be used to guide precision
therapy. Lambin et al. have demonstrated that radiomics can
identify the gene expressions related to tumor cells in response to
doxycycline and radiation treatment (27). Radiomic signatures
that can predict the V-Ki-ras2 Kirsten rat sarcoma viral
oncogene homolog (KRAS) mutation in CRC have been
studied, where it was interesting to note that radiomic signal
based on CT was superior to FDG PET for that purpose (28). In a
retrospective study performed by Petskova et al., a radiogenomic
analysis using the genomic sequences and the pretreatment MRI
was performed, which showed that quantitative assessment
(radiomics as opposed to qualitative assessment) showed an
association with genetic mutation related to CRC (29).

These approaches, while potentially highly beneficial are not
without their challenges. The robustness of radiomics/
radiogenomics in terms of inter- and/or intra-reader
agreement continues to be scrutinized. Having said that, many
studies have concluded that these techniques are reliable in that
regard, especially when the models have large datasets to build
on and the segmentation capabilities improved (which can be
challenging in CRC lesions) (30).
Other Considerations
Here we have focused on the emerging role of radiogenomics for
colorectal cancer as we believe it will be a pillar of precision
oncology. However, it should be noted that beyond imaging
biomarkers and genetic make-up, environmental and
epidemiological factors also affect cancer behavior. Varied
June 2022 | Volume 12 | Article 872656
FIGURE 1 | Overview of radiogenomic analysis to identify associations between, (A) semantic features at CT and, (B) RNA sequencing data. [reused from Zhou
et al. (24) under the CC-BY license].
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factors such as alcohol intake, processed meat consumption, gut
flora makeup, cigarette smoking, infanthood bottle feeding,
sedentary lifestyle, and obesity amongst others are implicated
in cellular epigenetic and genetic alterations which can
predispose an individual to CRC (31). This is termed the
exposome, which describes the sum of exposures and their
interactions (31). The field of molecular pathological
epidemiology (MPE) looks at how epidemiologic factors affect
molecular pathology, and as MPE develops there is potential for
finding exposome biomarkers (32). Studying the interplay
between imaging, genetics, pathology, and the exposome to
develop a more precise tumor signature is the terminus of
precision oncology.
Frontiers in Oncology | www.frontiersin.org 435
CONCLUSION

Precision management of CRC is poised to benefit from the
noninvasive radiomic correlates to the genetic information
implicated in its driving decision making process as well as the
combined radiogenomics approaches that study the genotype-
phenotype relationship at its core.
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Purpose: To develop and validate a radiomics nomogram integrated with clinic-
radiological features for preoperative prediction of DNA mismatch repair deficiency
(dMMR) in gastric adenocarcinoma.

Materials and Methods: From March 2014 to August 2020, 161 patients with
pathologically confirmed gastric adenocarcinoma were included from two centers
(center 1 as the training and internal testing sets, n = 101; center 2 as the external
testing sets, n = 60). All patients underwent preoperative contrast-enhanced
computerized tomography (CT) examination. Radiomics features were extracted from
portal-venous phase CT images. Max-relevance and min-redundancy (mRMR) and least
absolute shrinkage and selection operator (LASSO) methods were used to select
features, and then radiomics signature was constructed using logistic regression
analysis. A radiomics nomogram was built incorporating the radiomics signature and
independent clinical predictors. The model performance was assessed using receiver
operating characteristic (ROC) curve analysis, calibration curve, and decision curve
analysis (DCA).

Results: The radiomics signature, which was constructed using two selected features,
was significantly associated with dMMR gastric adenocarcinoma in the training and
internal testing sets (P < 0.05). The radiomics signature model showed a moderate
discrimination ability with an area under the ROC curve (AUC) of 0.81 in the training set,
which was confirmed with an AUC of 0.78 in the internal testing set. The radiomics
nomogram consisting of the radiomics signature and clinical factors (age, sex, and
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location) showed excellent discrimination in the training, internal testing, and external
testing sets with AUCs of 0.93, 0.82, and 0.83, respectively. Further, calibration curves
and DCA analysis demonstrated good fit and clinical utility of the radiomics nomogram.

Conclusions: The radiomics nomogram combining radiomics signature and clinical
characteristics (age, sex, and location) may be used to individually predict dMMR of
gastric adenocarcinoma.
Keywords: gastric cancer/adenocarcinoma, radiomics, tomography, X-ray computed, nomogram, DNA mismatch
repair deficiency
INTRODUCTION

Globally, gastric cancer (GC) is one of the most common
malignant tumors and is a common cause of cancer-related
death (1, 2). The symptoms of early GC are occult and often
neglected, so many patients in China have locally advanced disease
at the time of diagnosis (3). Since microsatellite instability (MSI)
was found in hereditary non-polyposis colorectal cancer in 1993, it
has been detected in many forms of malignant tumor, such as lung
and bladder cancers (4–6). Increasingly, clinical trials have
confirmed that MSI/DNA mismatch repair deficiency (dMMR)
plays an important role in the occurrence and prognosis of GC (7–
9). The Cancer Genome Atlas has identified MSI or dMMR as a
hallmark of the second molecular subtype of GC (10, 11). MSI or
dMMR status in GC is crucial for clinical decision making, as it
identifies patients with different treatment responses and
prognoses of GC (12–14). According to the 2021 guidelines of
the National Comprehensive Cancer Network (NCCN) for GC
(15), all newly diagnosed GC patients should be tested for MSI by
polymerase chain reaction (PCR)-based molecular testing or DNA
mismatch repair (MMR) protein using immunohistochemistry
(IHC). Conventional MSI/MMR testing is recommended, but
many patients remain untested. Testing for MSI/MMR is
expensive, and interobserver variability in interpretation has
been found among the different primary modalities (16, 17).
Presurgery prediction of mismatch repair gene expression in GC
would be of great significance for the selection of the treatment
plan and treatment method and the evaluation of prognosis. There
is a critical need for development of an objective, broadly
accessible, and cost-efficient testing method for patients with GC.

Radiomics can provide more information than conventional
CT images. The rise of radiomics makes it possible to convert
imaging data into high-dimensional feature data, and the multiple
quantitative features extracted from original images by
bioinformatics can predict the underlying biological behavior of
tumors (18–20). In recent years, many studies have found that
certain radiomics features have diagnostic and prognostic value
(21–23). Zhang et al. reported that the magnetic resonance
imaging (MRI) texture signature may serve as a potential
predictive biomarker for immunophenotyping and overall
survival of intrahepatic cholangiocarcinoma patients (23). In the
field of radio-genomics, imaging features are allied to genotype.
Tumors with poor prognosis also tend to have greater genomic
heterogeneity of tumor tissues (24). Radio-genomics is an
238
evolution on the foundation of radiomics, which assumes that
genomic heterogeneity at the microscopic level can present as
tumor heterogeneity, and variation in the microenvironment of
the lesion may be manifested as morphological characteristics and
macroscopic images (25). Hence, the application of radiomics
offers a new path to remove the limitations of traditional biopsy
methods. Kim et al. found that the texture features based on
multiparametric MRI were particularly connected with the
isocitrate dehydrogenase mutation and tumor aggressiveness in
diffuse lower-grade glioma (26). In recent years, radiomics
nomograms, which are based on multiple variables, have been
widely accepted as a user-friendly tool for predicting prognosis
and have been used successfully to forecast the genotype of
malignant tumors preoperatively (27–29). Wang et al. reported
that the radiomics nomogram integrated with clinic-radiological
features holds promise for clinical use as a non-invasive tool in the
individual prediction of lymph node metastasis in GC (30). Wang
et al. found that the nomogram-integrated CT-radiomics
signature and CT-reported T stage can enhance prediction of
the human epidermal growth factor receptor 2 status of
esophagogastric junction adenocarcinoma before surgery (31).

Therefore, in this research, we aimed to develop and validate a
radio-clinical nomogram based on a combination of radiomics
signature and clinical risk factors for the preoperative prediction
of DNA mismatch repair deficiency in patients with
gastric adenocarcinoma.
MATERIALS AND METHODS

Patients
This retrospective study was approved by the review board of our
institution (The Cancer Hospital of the University of Chinese
Academy of Science). The requirement for informed consent was
waived. This study retrospectively collected data from 1,456
patients with pathologically confirmed GC who underwent
radical gastrectomy between March 2014 and August 2020 at
two centers. In total, 161 patients were enrolled according to the
inclusion and exclusion criteria (detailed below). Among these,
101 cases from center 1 (The Cancer Hospital of the University of
Chinese Academy of Science) were used as the training and
internal testing sets, and 60 cases from center 2 (The Second
Affiliated Hospital Zhejiang University School of Medicine) were
used as the external testing set. A flowchart of the patient record
July 2022 | Volume 12 | Article 865548
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selection process is shown in Figure 1. All patients underwent
preoperative contrast-enhanced CT examination of the abdomen.

The inclusion criteria were as follows: (1) postoperative
pathologically confirmed gastric adenocarcinoma at stage 3 or
4 according to the diagnostic criteria of the 8th edition of the
American Joint Committee on Cancer Staging Manual; (2)
patients who underwent contrast-enhanced CT of the upper
abdomen or the whole abdomen within 1 month before surgery;
(3) IHC detection was performed on pathological tissue to
evaluate the MMR status postoperatively. The exclusion
criteria were the following: (1) incomplete clinical or
pathological information (2); pathological type signet ring cell
carcinoma or mucinous adenocarcinoma; (3) treatment was
given before surgery; (4) poor CT image quality with longest
diameter of less than 5mm. Patients’ clinical and imaging data
including sex, age, tumor location, and MMR status were
Frontiers in Oncology | www.frontiersin.org 339
recorded. The location of GC was based on pathology,
including cardia, gastric body, and gastric antrum.

CT Image Acquisition
All patients underwent contrast-enhanced abdominal CT using
the following multidetector row CT systems: BrightSpeed, Optima
CT680 Series (GE Medical Systems), and Siemens Somatom
Definition AS 64, Perspective (Siemens Medical Systems). The
acquisition parameters were as follows: tube voltage, 120–130 kV;
tube current, 150–300 mAs; reconstructed axial-section thickness
5 mm, slice interval 5 mm, pitch 0.6. The contrast agents were
Ultravist (Bayer Schering Pharma, Berlin, Germany), Optiray
(Liebel-Flarsheim Canada Inc., Kirkland, Quebec, Canada), and
Iohexol (Beijing North Road Pharmaceutical Co. Ltd., Beijing,
China). A total of 70–100 ml of contrast agent was administered
using a pump injector into an antecubital vein. Arterial phase and
FIGURE 1 | Flowchart of the recruiting study population and model construction.
July 2022 | Volume 12 | Article 865548
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portal venous phase contrast-enhanced CT scans were performed
after delays of 30–35 s and 50–60 s after injection of the contrast
medium, respectively.
Mismatch Repair Protein Status
IHC was used to evaluate the results of MMR protein status
according to the 2021 Gastric Cancer NCCN guidelines as
follows: FmutL homologue 1 (MLH1), mutS homologue 2
(MSH2), mutS homologue 6 (MSH6), and PMS1 homologue 2
(PMS2) proteins were detected, which were positively located in
the nucleus. Any protein expression loss was evaluated as dMMR
(mismatch repair function defect), and all four protein
expressions were positive as pMMR (mismatch repair
function complete).
Tumor Segmentation
The portal-venous phase CT images of GC patients were acquired
from the picture archiving and communication systems. The
patient’s abdominal portal venous phase CT digital image was
exported in digital imaging and communications in medicine
(DICOM) format. Radiologists with over 5 years of experience
in interpreting abdominal diseases examined each layer of the
patients’ CT images. Two radiologists outlined the regions in each
patient’s CT images. Lesions were delineated using ITK-SNAP
(version 3.8.0, http://www.itksnap.org) as shown in Figure 2.

For the tumor regions of interest (ROIs), radiologists
reviewed all of each patient’s CT image slices and selected the
largest tumor area slice to segment. The ROI was selected to
cover the whole area of the tumor. Observer 1 delineated the
lesions of all patients with GC. Observer 2 confirmed the tumor
segmentation (32). If the segmented lesions were inconsistent
between the two observers, consensus was reached by discussion.
During the delineation process, ROI selection avoided the areas
of gastric air, necrosis, and adipose tissue.
Frontiers in Oncology | www.frontiersin.org 440
Radiomics Feature Extraction
and Selection
The radiomics feature extraction process for this study was
performed using YITU AI Enabler, which is an integrated
machine learning platform for medical data analysis using
well-established python pyradiomics (version 3.0.1) and the
scikit-learn (version 0.22) package. Resampling through the
radiomics features was first extracted based on the original
image data set. Then a feature stability check was performed
on the features extracted within the lesion ROI and the extended
lesion ROI to filter out unstable features with minor change of
ROI using an intra-class correlation algorithm. The extended
lesion ROI was made by extending the boundary of lesion ROI by
one image pixel. We used max-relevance and min-redundancy
(mRMR) and least absolute shrinkage and selection operator
(LASSO) methods to select features, and then the rad-score of
each GC patient was calculated by their coefficients.

Construction of a Predictive Model
Multivariable logistic regression analysis was used to develop a
prediction model by combining significant rad-score, sex, age, and
tumor location (with P values less than 0.05 in the univariable
analysis). In the training set, for clinicians’ convenience we
constituted the model as a radio-clinical nomogram based on
multivariable logistic regression analysis. Finally, the generalization
ability of the nomogram was evaluated in the internal and external
testing sets.
Performance of the Radiomics Nomogram
The predictive performance of the radiomics nomogram was
evaluated using the receiver operator characteristic (ROC) curve,
calibration curve, and decision curve analysis (DCA). Model
evaluation 10-fold cross-validation was used in model training,
and the diagnostic performance of radiomics, clinical, and radio-
clinical models were validated in the internal testing set. The area
BA

FIGURE 2 | An example of manual segmentation in gastric cancer. (A) Localized thick wall of gastric cancer with enhancement is observed on the portal venous
phase computed tomography (CT) image. (B) Manual segmentation on the same axial slice is depicted with red label.
July 2022 | Volume 12 | Article 865548
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under the ROC curve (AUC), sensitivity, specificity, accuracy,
positive predictive value (PPV), and negative predictive value
(NPV) of the nomogram were calculated. DCA analysis was
performed to assess the model’s clinical utility by calculating the
net benefits at different threshold probabilities. Finally,
generalization of the radiomics nomogram was evaluated in
the independent external testing set.

Statistical Analysis
All statistical analyses were performed using R software (version
3.4.1; http://www.Rproject.org) and IBM SPSS Statistics (Version
26.0; IBM Corp., New York, USA). Quantitative data were
described by mean ± standard deviation, and qualitative data
by frequency (percent). Normally distributed continuous data
were compared using the Student’s t-test. The chi-square test was
used to compare the distribution of categorical data between
groups. A multivariate logistic regression analysis was applied to
determine the independent predictors among all the clinical
variables. P < 0.05 was considered statistically significant. The
“glmnet” package was used for LASSO logistic regression
analysis. The multivariable logistic regression analysis and
calibration plots were conducted using the “rms” package. The
ROC plots of radiomics signature were performed with the
“pROC” package. The “rmda” package was applied for decision
curve analysis (DCA).

RESULTS

Clinical Characteristics
Among 101 patientswithGC fromcenter 1, there were dMMR (n=
35) and pMMR (n = 66) cases. The patients were randomly divided
into a training set of 71 cases and an internal testing set of 30 cases.
In the training set, statistically significant differences in sex, age, and
tumor location were found between dMMR and pMMR GC
patients (P < 0.05). In the training and internal testing sets, a
significantly higher rad-score was found in dMMR than in pMMR
in both cohorts (P < 0.05). Among 60 patients withGC from center
2 as an external testing set, there were dMMR (n = 21) and pMMR
(n = 39) cases. Additional details are provided in Table 1.
Frontiers in Oncology | www.frontiersin.org 541
Radiomics Feature Selection and
Radiomics Signature Construction
A total of 1,648 radiomics features were extracted from CT
images of each GC patient, among which 989 features with good
stability were selected for radiomics model establishment.
Initially, mRMR was performed to eliminate the redundant
and irrelevant features, and 30 features were retained. Then,
LASSO was conducted to choose the optimized subset of
features to construct the final model. The optimal l in the
LASSO logistic regression analysis with 10-fold cross-
validation was used to select the best radiomics feature with a
non-zero coefficient, as shown in Figure 3. Finally, two
radiomics features were selected to construct the radiomics
signature, and the rad-score was calculated by summing the
selected features weighted by their coefficients. The final formula
for rad-score is as follows:

Radscore = 0:666 ∗ original _ shape _Maximum2DDiameterColum

+ −0:283 ∗ original _ firstorder _Median   +  −0:747
Development of an Individualized
Radiomics Nomogram
Univariate analysis showed that sex, age and tumor location with
P values less than 0.05 were independent clinical risk factors for
MMR status in GC patients. Multivariable analysis was
performed to develop a prediction model by combining the
rad-score, sex, age, and tumor location (Table 2). Further, the
radiomics nomogram is visualized in Figure 4. The formula for
the nomoscore is as follows:

Nomoscore   =   Interceptð Þ ∗−7:56566042486333
+ Age ∗ 0:127948643930096

+ Location ∗ −1:49110528477808

+ Sex*1:64766133092359

+ Radscore ∗ 2:22277808425775
TABLE 1 | Clinic-radiological characteristics of patients in the training and testing sets.

Characteristic Training set Internal testing set External testing set
dMMR pMMR dMMR pMMR dMMR pMMR

Age (Y)
mean (sd) 72.8 (9.1) 65.6 (10.4) 69.3 (7) 68.1 (8.1) 70.0 (8.5) 64.8 (9.3)

Sex
Male 13 (54.2) 38 (80.9) 6 (54.5) 15 (78.9) 9 (42.9) 33 (84.6)
Female 11 (45.8) 9 (19.1) 5 (45.5) 4 (21.1) 12 (57.1) 6 (15.4)

Location
Cardia 1 (4.2) 14 (29.8) 1 (9.1) 7 (36.8) 17 (81.0) 12 (30.8)
Gastric body 10 (41.7) 19 (40.4) 5 (45.5) 7 (36.8) 3 (14.3) 21 (53.8)
Antrum 13 (54.2) 14 (29.8) 5 (45.5) 5 (26.3) 1 (4.7) 6 (15.4)

Rad-sore
Median [iqr] -0.2 [-0.7, 0.6] -1.1 [-1.5,-0.8] -0.6 [-0.8, 0.0] -1.1 [-1.3,-0.7] -1.1 [-1.4,-0.8] -1.5 [-1.9,-1.0]
July 2022 | Volume 12 |
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Performance of the Radiomics Nomogram
Table 3 lists the performance of the radiomics nomogram in the
training, internal, and external testing sets. The prediction model
based on the radiomics features provided only moderate
predictive power, as shown in Figure 5. The AUC value of
radiomics signature in the training set and internal testing sets
was 0.81 and 0.78, respectively. The predictive model based on
clinical features alone showed that the AUC values in the
training and internal testing sets were 0.82 and 0.69,
respectively. The radiomics nomogram model combining
clinical factors and radiomics features shows superior ability to
differentiate MMR status compared with the other two models
generated with clinical features and radiomics features alone.
The AUC values of the radiomics nomogram in the training set
and internal testing set were 0.93 and 0.82 (Figure 5). The
external testing set radiomics nomogram showed an AUC value
of 0.83 (Figure 6). The calibration curve of the radiomics
nomogram showed good predictions in both the training and
validation cohorts (Figure 7). The DCA of the radiomics
nomogram demonstrated the higher overall net benefit
compared to the clinics model, showing an excellent clinical
utility in distinguishing MMR status (Figure 8).

DISCUSSION

In the present study, we developed and validated a radio-clinical
nomogram for the prediction of the MMR status of GC
Frontiers in Oncology | www.frontiersin.org 642
perioperatively. The user-friendly nomogram, which consisted
of the radiomics signature, sex, age, and tumor location, showed
good performance in both cohorts and may effectively stratify
patients according to MMR status. The combined analysis of
multiple radiomics and clinical markers as a signature is the
approach that demonstrates the most promise to change clinical
practice (21, 33).

Since MSI was detected in many different types of tumors, the
MMR status of tumors has become an important determinant in
the choice of therapeutic method. In recent years, immunotherapy
has gradually attracted attention and has developed rapidly.
Immune checkpoint inhibitors, including anti-programmed
death-1 and anti-cytotoxic T-lymphocyte-associated protein-4
antibodies, were effective for MSI-high or dMMR solid tumors
in many trials (34). In 2017, the Food and Drug Administration of
the United States approved pembrolizumab to treat patients with
dMMR/MSI-H non-resectable or solid metastatic tumors. The
MSI status is currently used as a biomarker for cancer
immunotherapy (35). In addition, MMR status plays an
important role in predicting the efficacy of neoadjuvant
chemotherapy (13, 14). Accurate prediction of the DNA
mismatch repair deficiency status is consequential for the
selection of individualized treatment plans in patients with GC.
A recent study found that deep learning can differentiate routine
hematoxylin and eosin (H&E)-stained, formalin-fixed, paraffin-
embedded digital whole-slide images (WSIs) of colorectal cancer
into those with microsatellite stability and microsatellite
TABLE 2 | Univariate and multivariate logistic regression analysis of the clinic-radiological features.

Characteristics Univariate analysis Multivariate analysis
OR 95% CI P value OR 95% CI P value

Age 1.08 [1.02;1.14] <0.01 1.14 [1.03;1.25] <0.01
Sex 3.57 [1.21;10.55] 0.021 5.19 [0.88;30.54] 0.068
Location 0.37 [0.17;0.79] 0.012 0.23 [0.07;0.73] 0.013
Rad score 5.51 [2.30;13.18] <0.01 9.23 [2.95;28.92] <0.01
Jul
y 2022 | Volume 12 | Article
BA

FIGURE 3 | Feature selection with the least absolute shrinkage and selection operator (LASSO) binary logistic regression model. (A) Tuning parameter (l) selection
of the LASSO model. Binomial deviance was drawn versus log(l). Vertical dotted lines were plotted at the best value using 10-fold cross-validation to tune parameter
(l) selection in the LASSO model. (B) LASSO coefficient profiles of the features. Each colored line represents the corresponding coefficient of each feature. A vertical
dotted line was drawn at the selected l, where non-zero coefficients were obtained with two features.
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instability, with an AUC of up to 0.84 (36). Rikiya et al. developed
a deep learning model using 100 H&E-stained WSIs and found
that they performed better than human experts (gastrointestinal
pathologists) at detecting MSI in routine H&E-stained WSI (37).
Some researchers have begun to use artificial intelligence to predict
gene expression status non-invasively. The present study used
more easily available imaging data and achieved good predictive
performance. Radiomics enables non-invasive detection of the
revealing relationship between invisible high-dimensional image
features and pathophysiological characteristics. Radiomics has
developed rapidly in recent years, and now more than 1,000
radiomics features are available for various aspects of tumor
heterogeneity (38). The advantage of this study was presumably
that it took radiomics scores, incorporating numerous quantitative
features, into consideration. Radio-genomics builds on radiomics,
which hypothesizes that genomic heterogeneity at the microscopic
level may manifest in the tumor, and changes in the
microenvironment within the tumor can be expressed on
macroscopic images (18). Yang et al. reported that the proposed
CT-based radiomics signature is associated with KRAS/NRAS/
BRAF mutations; their study indicated that CT may be useful for
the analysis of tumor genotype in colorectal cancer and thus
helpful to determine therapeutic strategies (39). Combining
analysis of clinical features and CT-based radiomics signature
may improve predictive efficacy and allow patients to non-
invasively choose individualized treatment plans (40).

In this study, dMMR accounted for only 8 percent of GC, a
cohort of 80 out of 1,000 patients. Therefore, the sample size of this
experiment is small. Pathophysiological characteristics are the
foundation of the radiomics features. Since histopathological
Frontiers in Oncology | www.frontiersin.org 743
types and grades have more influence on image performance than
genotypes in GC, this study limited the pathological type of GC to
confirmed gastric adenocarcinoma at stage 3 or 4, excluding signet
ring cell carcinoma or mucinous adenocarcinoma. The above
criteria aimed to minimize the influence of factors other than
DNAmismatch repair status on image performance.

In our study, radiomics signature comprised two robust
radiomics features and manifest moderate predictive efficacy.
Texture features consider the interaction between neighboring
pixels and are therefore more propitious to quantifying tumor
heterogeneity (41). The LASSO algorithm was used for feature
redundancy elimination. This method has two primary
preponderances. First, it allows features to be selected on the
foundation of their univariable association with the outcome
without overfitting. Next, it enables a signature to be constructed
by a group of selected features (42). In this study, two texture
features related to dMMR were selected to build the radiomics
signature, which were intended to reveal tumor characteristics that
are not apparent in the visual image (43). The two features were
Original first-order Median and Original shape-Maximum 2D
diameter Column. Original first-order Median is a first-order
feature, while first-order statistics describes the distribution of
voxel intensities within the image region defined by the mask
through commonly used and basic metrics. The meaning of
“median” in this context is the median gray-level intensity within
the ROI.Original shape-Maximum2Ddiameter Column is a shape
feature. Maximum 2D diameter Column is defined as the largest
pair-wise Euclidean distance between tumor surface mesh vertices
in the row-sliceplane.Using this approach,weattempted todevelop
a radiomics signature for the prediction of DNA mismatch repair
TABLE 3 | Predictive performance of the radiomics nomogram.

Radiomics nomogram AUC (95%CI) Accuracy Sensitivity Specificity PPV NPV

Training set 0.93 (0.85–1.00) 0.873 0.917 0.851 0.759 0.952
Internal testing set 0.82 (0.66–0.98) 0.733 0.616 0.824 0.727 0.737
External testing set 0.83 (0.73–0.94) 0.767 0.821 0.667 0.821 0.667
July 2022 | Vo
lume 12 | Article 8
FIGURE 4 | The CT-based radiomics nomogram. The radiomics nomogram was built in the training cohort, with the radiomics signature, sex (0 is male, 1 is female),
age, and tumor location (0 is antrum, 1 is gastric body, 2 is cardia).
65548

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Tong et al. Radiomics Predicting dMMR
deficiency in patients with GC. Our radiomics signature exhibited
moderate discrimination, with an AUC of 0.81 in the training set
and 0.78 in the internal testing set.

In this study, we extracted 2D CT annotations radiomics
features based on single CT image slices. Meng et al. conducted a
multicenter study comprehensively comparing the representation
and discrimination capacity of 2D and 3D radiomics features
regarding GC. The results based on three tasks showed that 2D
and 3D models showed comparable ability to characterize GC.
Their study indicated that 2D CT annotations might be a better
Frontiers in Oncology | www.frontiersin.org 844
choice than 3D inGC radiomics studies, because the lattermay add
noise (44).

Furthermore, the present study was not limited to the use of a
single CT image slice. The importance of clinical characteristics
should not be neglected, and the radiomics-derived data cannot
predict all clinical decision problems. The univariate analysis
showed that three clinical features (gender, age, and tumor
location) were independent predictors. We then constructed
the nomogram, a user-friendly, graphical analog computation
device. The nomogram has clinical significance in the support of
BA

FIGURE 5 | The ROC curves (AUC) of the three models in the training set (A) and internal testing set (B).
FIGURE 6 | The ROC curves (AUC) of the external testing set.
July 2022 | Volume 12 | Article 865548
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clinicians selecting individualized treatment for patients with
GC. The AUC of the nomogram was 0.93, suggesting that the
radiomics nomogram achieved greater predictive efficacy than
either the radiomics signature or the clinical predictive model
alone. The calibration and discrimination in the internal and
external validation sets were also good. As a previous study
revealed, dMMR GC typically has an antral location (45).
Consistent with former research, the tumor locations in the
present study were significantly different between the dMMR
group and the pMMR group, with dMMR GC more likely to
occur in the gastric antrum. The results of the present study also
showed that pMMR (without DNA mismatch repair gene
deficiency) was more likely to occur in men and at a younger
age than the defective form. In contrast, Wang et al. reported that
dMMR GC was more common in men (65% vs. 35%) (46) and
that most of the cases were stage 2. In the present study, dMMR
GC was more common in women, and this difference may be due
Frontiers in Oncology | www.frontiersin.org 945
to Wang’s study including mostly dMMR cases at stage 2, while
the present study only included stage 3 or 4 GC patients.

The strength of our study is that the radiomics nomogram
consists of only three clinical factors that are easily accessible
preoperatively. Thus, the nomogram developed here may be used
as a credible and non-invasive modality to preoperatively predict
DNA mismatch repair deficiency in GC.

Our study was subject to some limitations. Firstly, the sample
size of this study is small, including few patients with dMMRGC.
Secondly, the tumor segmentation was manually sketched, which
is time-consuming and laborious. In future work, computer
algorithm-assisted automatic segmentation should be used.
Thirdly, due to the retrospective nature of our study, selection
bias was difficult to avoid, and patients not eligible for surgery
were excluded. Fourthly, the slice thickness of most segmented
CT images is 5 mm, and the volume effect of segmented CT
images with a diameter of less than 5 mm is clear.
B CA

FIGURE 7 | Calibration curves of the nomogram in the training set (A), internal testing set (B), and external testing set (C).
FIGURE 8 | Decision curve analysis (DCA) for the radiomics nomogram and clinics model. The DCA indicated that more net benefits within the most of thresholds
probabilities were achieved using the radiomics nomogram.
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CONCLUSIONS

In conclusion, our study demonstrated that the radiomics
nomogram based on radiomics signature and clinical
characteristics (age, sex, and tumor location) may be used for
personalized preoperative prediction of DNA mismatch
repair deficiency of GC and thereby assist in clinical
decision-making.
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Skin cancer is one of the most dangerous diseases in the world. Correctly classifying skin
lesions at an early stage could aid clinical decision-making by providing an accurate
disease diagnosis, potentially increasing the chances of cure before cancer spreads.
However, achieving automatic skin cancer classification is difficult because the majority of
skin disease images used for training are imbalanced and in short supply; meanwhile, the
model’s cross-domain adaptability and robustness are also critical challenges. Recently,
many deep learning-based methods have been widely used in skin cancer classification to
solve the above issues and achieve satisfactory results. Nonetheless, reviews that include
the abovementioned frontier problems in skin cancer classification are still scarce.
Therefore, in this article, we provide a comprehensive overview of the latest deep
learning-based algorithms for skin cancer classification. We begin with an overview of
three types of dermatological images, followed by a list of publicly available datasets
relating to skin cancers. After that, we review the successful applications of typical
convolutional neural networks for skin cancer classification. As a highlight of this paper, we
next summarize several frontier problems, including data imbalance, data limitation,
domain adaptation, model robustness, and model efficiency, followed by
corresponding solutions in the skin cancer classification task. Finally, by summarizing
different deep learning-based methods to solve the frontier challenges in skin cancer
classification, we can conclude that the general development direction of these
approaches is structured, lightweight, and multimodal. Besides, for readers’
convenience, we have summarized our findings in figures and tables. Considering the
growing popularity of deep learning, there are still many issues to overcome as well as
chances to pursue in the future.

Keywords: generative adversarial networks, convolutional neural network, deep learning, skin cancer,
image classification
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Wu et al. Review of Skin Cancer Classification
1 INTRODUCTION

Given the rising prevalence of skin cancer and the significance
for early detection, it is crucial to develop an effective method to
automatically classify skin cancer. As the largest organ of the
human body (1), the skin shoulders the responsibility of
protecting other human systems, which increases its
vulnerability to disease (2). Melanoma was the most common
cancer in both men and women with approximately 300,000 new
cases (3) diagnosed globally in 2018. In addition to melanoma,
two other major skin cancer diseases, basal cell carcinoma (BCC)
and squamous cell carcinoma (SCC), also had a relatively high
incidence, with over 1 million cases in 2018 (4). As (5) reported,
more skin cancers are diagnosed each year than all other cancers
combined in the United States. Fortunately, if detected early, the
chances of cure will be greatly improved. According to (4),
melanoma has a 5-year survival rate of 99% when it does not
metastasize. If it metastasizes to other organs in the body, its
survival rate reduces to 20%. However, because early indications
of skin cancer are not always visible, diagnostic results are often
dependent on the dermatologist ’s expertise (6). For
inexperienced practitioners, an automatic diagnosis system is
an essential tool for more accurate diagnoses. Beyond that,
diagnosing skin cancer with naked eyes is highly subjective and
rarely generalizable (7). Therefore, it is necessary to develop an
automatic classification method for skin cancer that is more
accurate, less expensive, and quicker to diagnose (8). Besides,
implementing such automated diagnostic systems can effectively
minimize mortality from skin cancers, benefiting both patients
and the healthcare systems (9).

However, owing to the complexity and diversity of skin
disease images, achieving automatic classification of skin
cancer is challenging. First of all, different skin lesions have
lots of interclass similarities, which could result in misdiagnosis
(10). For example, there exist various mimics of BCC in
histopathological images, such as SCC and other skin diseases
(11). As a result, it is difficult for the diagnosis systems to
effectively discriminate skin malignancies from their known
imitators. Secondly, several skin lesions differ within their same
class in terms of color, feature, structure, size, and location (12).
For example, the appearance of BCC and its subcategories is
almost different. This makes it difficult to classify different
subcategories of the same category. Furthermore, the
classification algorithms are highly sensitive to the types of
camera devices used to capture images. When the test images
come from a different domain, their performance suffers (13).

Although traditional machine learning approaches are
capable of performing well in particular skin cancer
classification tasks, these algorithms are ineffective for
complicated diagnostic demands in clinical practice.
Traditional machine learning methods for skin cancer
diagnosis typically involve extracting features from skin-disease
images and then classifying the extracted features (14). For
example, ABCD Rule (15), Menzies Method (16), and 7-Point
Checklist (17) are effective methods for extracting various
features from skin disease images. The handcrafted features are
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then classified using several classification methods such as SVM
(18), XGBoost (19), and decision tree (20). Due to the restricted
number of selected features, machine learning algorithms can
often only classify a subset of skin cancer diseases and cannot
generalize to a broader range of disease types (21). Besides, given
the wide variety of skin cancers, it is not effective to identify each
form of cancer solely based on handcrafted features (22).

Without the need for domain expertise and feature extraction,
deep learning algorithms have been widely used for skin cancer
classification in recent years; however, there are still several
difficulties and challenges ahead. Compared with traditional
machine learning methods, deep learning algorithms can
analyze data from a large-scale dataset faster and more
accurately, which allows them to effectively extract relevant
characteristics (23). At the same time, deep learning algorithms
can also aid clinicians in more thorough data analysis and
examination of test results (24). A number of studies, such as
(25–27) demonstrated that deep learning algorithms can
diagnose at a level comparable to that of a dermatologist.
However, these algorithms still have many obstacles to
becoming a complete diagnostic system. Firstly, data imbalance
and the lack of a large volume of labeled images have hindered
the widespread use of deep learning methods in skin cancer
classification (12). When these algorithms are used to classify
skin cancers that are rare in the training dataset, they frequently
result in a misdiagnosis (28). Furthermore, when working with
high-resolution images (such as pathological images) with
millions of pixels, the deep learning models often result in
significant computing costs and additional training time (29).
Besides, different noises will be generated as a result of the
various conditions (such as different imaging devices,
backgrounds). Therefore, the robustness and generalization
ability of these algorithms should also be taken into account (30).

These years, a number of reviews that detail the diagnostic
breakthroughs in skin cancer classification have been published;
however, no review has provided a specific analysis of frontier
challenges in skin cancer classification tasks, such as data
imbalance and limitation, domain adaptability, model
robustness, and model efficiency (31). reviewed the recent
developments in skin lesion classification using dermoscopic
images (32). presented a detailed overview of studies on using
CNNs to classify skin lesions (33). showed how the use of CNNs
in correctly identifying skin cancer has developed (34). presented
a review of different machine learning algorithms in dermatology
diagnosis, as well as some of the obstacles and limitations (12).
and (28) summarized a number of deep learning-based
approaches for skin cancer classification, as well as various
challenges and difficulties (35). provided an in-depth review of
the current articles about melanoma classification and compared
their results with human experts (36). summarized the latest
CNN-based methods in skin lesion classification by utilizing
image data and patient data (37). provided a review of deep
learning-based methods for early diagnosis of skin cancer. We
present these relevant surveys with details and highlights in
Table 1. By summarizing the previous reviews, we find that all of
the preceding publications methodically studied a specific topic
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in skin cancer classification. However, most of them treated skin
cancer classification as a classical classification problem, without
addressing the model’s significant practical constraints in clinical
work, such as data imbalance and limitation, cross-domain
adaptability, model robustness, and model efficiency. Although
several earlier reviews summarized some of the methods to solve
the abovementioned frontier problems, their summaries were
incomplete. Some novel techniques were not covered, such as
pruning, knowledge distillation, and transformer. Therefore, in
this review, we comprehensively summarize the frontier
challenges in skin cancer classification and provide
corresponding solutions by analyzing articles published until
the year 2022. It gives readers in-depth information on the
advances and limitations of deep learning in skin cancer
classification and also provides different ideas for researchers
to improve these algorithms.

The rest of this paper is organized as follows: first of all,
Section 2 introduces three types of dermatological images and
several popular public datasets. In Section 3, we review several
typical CNN frameworks and frontier problems with their
corresponding solutions in skin cancer classification tasks. A
brief conclusion is given in Section 4.
2 DERMATOLOGICAL IMAGES
AND DATASETS

High-quality images of skin diseases are important for both
dermatologists and automated diagnostic systems. On the one
hand, dermatologists rely on high-resolution (HR) images to
make diagnoses when direct observation is impossible (38). This
is especially common in telemedicine, medical consultations, and
regular clinics (39). On the other hand, training reliable
algorithms has always necessitated the use of high-quality data.
Frontiers in Oncology | www.frontiersin.org 350
In particular, deep learning algorithms always need a vast
volume of labeled data for a better accuracy (28). As a result,
high-quality dermatological images are critical for both clinical
diagnosis and the design of new algorithms. In this section, we go
over three different types of images commonly used in skin
cancer diagnosis, as well as some public datasets.

2.1 Dermatological Images
The three main types of image modalities used to diagnose skin
diseases are clinical images, dermoscopy images, and
histopathological images (see Figure 1). Clinical images are
frequently captured by mobile devices for remote diagnosis or
as medical records. Dermoscopy images and histopathological
images are commonly utilized in clinical diagnosis to assess the
severity of the illness. In the next part, we introduce
them separately.

2.1.1 Clinical Images
Clinical images are obtained by photographing the skin disease
site directly with a camera. They can be used as a medical record
for patients and provide different insights for dermoscopy images
(12). The biggest issue of utilizing clinical images for skin cancer
classification is that they include limited morphological
information while also introducing considerable inaccuracies
into the diagnostic results, owing to the effect of diverse
imaging settings (such as lighting, angle, and so on) (40).

2.1.2 Dermoscopy Images
Dermoscopy images are captured with dermoscopy, a type of
optical observation tool used to assess the fine details of skin
diseases (41). Clinicians frequently utilize dermoscopy to
diagnose benign nevi and malignant melanoma (42). It serves
as a bridge between clinical and pathological aspects, and thus
dermoscopy is often referred to as a dermatologist’s stethoscope.
TABLE 1 | A summary of the current review related to skin cancer classification.

Ref. Title Venue Remarks

(32) Skin Cancer Classification Using Convolutional Neural
Networks: Systematic Review

Journal of Medical Internet
Research

This study presents a detailed overview of studies on using CNNs
to classify skin lesions.

(31) Techniques and algorithms for computer aided diagnosis of
pigmented skin lesions—A review

Biomedical Signal Processing
and Control

This paper gives a review of the recent developments in skin lesion
classification using dermoscopic images.

(33) Classification of Skin cancer using deep learning,
Convolutional Neural Networks -Opportunities and
vulnerabilities-A systematic Review

International Journal for
Modern Trends in Science
and Technology

This article reviews the development of deep learning for skin
cancer classification tasks.

(34) Machine Learning in Dermatology: Current Applications,
Opportunities, and Limitations

Dermatology and Therapy
volume

This paper reviews the fundamentals of machine learning and its
wide range of applications in dermatology.

(12) Artificial intelligence-based image classification methods for
diagnosis of skin cancer: Challenges and opportunities

Computers in Biology and
Medicine

This review discusses the developments in AI-based methods for
skin cancer diagnosis, as well as challenges and future directions
to enhance them.

(35) Skin cancer classification via convolutional neural networks:
systematic review of studies involving human experts

European Journal of Cancer This paper analyses studies comparing AI–based skin cancer
classifiers with dermatologists.

(37) Skin Cancer Detection: A Review Using Deep Learning
Techniques

International Journal of
Environmental Research and
Public Health

This paper provides a review of deep learning-based methods for
early diagnosis of skin cancer.

(36) Integrating Patient Data Into Skin Cancer Classification Using
Convolutional Neural Networks: Systematic Review

Journal of Medical Internet
Research

This review summarizes the latest CNN-based methods in skin
lesion classification by utilizing image data and patient data.

(28) Skin disease diagnosis with deep learning: A review Neurocomputing This paper analyses several deep learning algorithms for
diagnosing skin diseases from a variety of perspectives based on
the challenges at hand.
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Dermoscopy images provide a clear visualization of the skin’s
surface and are used to analyze the color and microstructure of
the epidermis (43). For some skin diseases, there are already
numerous diagnostic guidelines based on dermoscopy images
(44), for example, the ABCD Rule Law (15), the CASH Rule Law
(45), and the Menzies Method (16). When using dermoscopy
images for skin cancer diagnosis, the range of structures that can
be observed is limited, and its diagnostic accuracy is occasionally
affected by the experience of dermatologists (46).

2.1.3 Histopathological Images
Histopathological images were obtained using microscopes to
scan tissue slides and then digitalize as images (28). They are
utilized to show the vertical structure and complete internal
characteristics of the diseased tissue. In the clinic, pathological
examinations serve as the “gold standard” for diagnosing almost
all types of cancers, as they are often used to distinguish between
types of cancers and guide appropriate treatment plans based on
pathological changes. However, different histopathological
images of skin cancer exhibit different morphologies, scales,
textures, and color distributions, which makes it difficult to
find a common pattern for diagnosis (12).

2.2 Datasets
To create a trustworthy and robust skin cancer classification
system, a variety of datasets with all kinds of dermatological
images are required. As the need for medical imaging resources
in academia grows, more and more datasets are becoming
publicly available. To provide readers with a reference, we
introduce several commonly used skin-disease datasets in the
next part, along with the works based on these datasets.

2.2.1 PH2 Dataset
The PH2 dataset is constructed by (47) to support the research of
classification and segmentation methods. It contains 200 color
dermoscopy images (768 × 560) of three types of skin diseases,
including common nevi, atypical nevi, and melanomas. Besides,
it contains complete medical annotations, such as lesion
segmentation results and pathological diagnosis.
1https://dermnetnz.org/topics/basal-cell-carcinoma.
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PH2 is frequently used as a dataset for testing the diagnostic
algorithms of skin disease. For example (48), used the SegNet
framework to automatically diagnose and segment the
dermoscopic images in PH2 and finally obtained the
classification accuracy of 94% (49). proposed a novel deep
convolutional network for feature extraction and classification
of skin lesions. The model was mainly divided into three stages.
The first stage was for data augmentation and image contrast
enhancement. The second stage used CNN to extract
information from the boundary of the lesion area. The third
stage used Hamming distance to fuse and select features obtained
with pretrained Inception v3. Finally, the model obtained a
classification accuracy of 98.4%, 95.1%, and 94.8% on the PH2,
ISIC-2016, and ISIC-2017 datasets, respectively (50). proposed a
Multi-Focus Segmentation Network for skin cancer disease
segmentation tasks based on the PH2 dataset by utilizing
feature maps of different scales. Two boundary attention
modules and two reverse attention modules were utilized to
generate skin lesion masks. Finally, the experimental results
revealed that the proposed method achieved a dice similarity
coefficient of 0.954 and an IoU index of 0.914 on the PH2 dataset.
In addition to the above works, the PH2 dataset is being utilized
by an increasing number of algorithms to validate their
effectiveness and accuracy.

2.2.2 MED-NODE Dataset
The MED-NODE Dataset3 is collected by the Department of
Dermatology of the University Medical Center Groningen
(UMCG), which contains 170 digital images of melanoma (51)
and nevi case (52). It is used to build and evaluate the MED-
NODE system for detecting skin cancer with macroscopic
images (53).

On the MED-NODE dataset, a variety of approaches
provided significant classification results. For example, in order
to improve the generalization ability of the model and alleviate
the problem of data imbalance (54), proposed a model for
melanoma classification based on transfer learning and
ensemble learning. Finally, the model achieved 93%
classification accuracy on the MED-NODE dataset, surpassing
other state-of-the-art methods (55). applied AlexNet for the skin
A B C

FIGURE 1 | Examples of three types of dermatological images of BCC to show their differences and relationships: (A) Clinical image. (B) Dermoscopy image.
(C) Histopathological image.1
3https://www.cs.rug.nl/~imaging/databases/melanoma_naevi/.
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cancer classification task by using three different transfer
learning methods, including fine-tuning the weight parameters
of the model, replacing the classification layer function, and
performing data augmentation on the original dataset. In the
end, they achieved an accuracy of 96.86% on the MED-NODE
dataset. Then (56), used two additional networks for the skin
cancer classification task, including ResNet-101 and GoogleNet.
Finally, experiment results revealed that GoogleNet achieved the
best classification accuracy of 99.29% on the MED-NODE
dataset. It can be seen that various convolutional neural
networks have obtained decent classification results on this
dataset; however, the number of skin disease images included
is relatively restricted.

2.2.3 HAM10000 Dataset
The HAM100004 dataset was collected by the International Skin
Imaging Collaboration (ISIC) to solve the problem of data
imbalance and data limitation in skin-disease datasets. It
contains 10,015 dermoscopic images with seven representative
diseases in pigmented skin lesions: nematode disease and
intraepithelial carcinoma, basal cell carcinoma, benign keratoid
lesions, cutaneous fibroma, melanoma, melanocyte nevi, and
vascular lesions (including hemangiomas, purulent granulomas,
and subcutaneous hemorrhage) (57, 58).

The HAM10000 dataset is widely used by many scholars due
to its diversity of skin lesions. For example (25), used four novel
deep CNN models, DenseNet-201, ResNet-152, Inception-v3,
and InceptionResNet-v2 to classify eight different types of skin
cancers on the HAM10000 and PH2 datasets. Finally,
experimental results indicated that the diagnostic level of these
CNN models exceeds the dermatologists in terms of ROC AUC
score (59). trained 30 different models on the HAM10000 dataset
to explore the classification performance of different models. At
the same time, they also used two locally interpretable methods
GradCAM and Kernel SHAP techniques to observe the
mechanism of the classification model. Finally, the model
achieved an average AUC of 0.85 (60). designed a method for
classifying seven skin diseases that used ensemble learning and
the one-versus-all (OVA) strategy. Finally, they achieved a
classification accuracy of 0.9209 on the HAM10000 dataset
(61). obtained the best classification result by combining
Inception ResNet-v2 with Soft-Attention mechanism on the
HAM10000 dataset, with an accuracy of 0.934, an AUC of
0.984, and an average precision of 0.937. With the in-depth
study of skin cancer classification tasks by scholars, more and
more novel classification methods are being tested on the
HAM10000 dataset for a better comparison, where the
adoption of the Soft-Attention module yields the best
classification results.

2.2.4 Derm7pt Dataset
The Derm7pt dataset contains approximately 2,000 clinical and
dermoscopy color images of skin disease, as well as structured
information for training and assessing CAD systems. It serves as
4https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/
DBW86T.
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a database for analyzing the prediction results of the seven-point
malignancy checklist of skin lesion (62).

Due to the multimodal information contained in the
Derm7pt dataset, it has gradually been widely used to test
various multitask networks. When releasing the dataset (62),
also proposed a multitask network for predicting melanoma with
seven-point checklist criteria and diagnostic results. The model
used different loss functions to handle different input modalities,
while being able to make predictions on missing data at the
output. Finally, the model achieved a classification accuracy of
73.7% on the Derm7pt dataset, also benchmarking the approach.
To increase its interpretability (63), created a multitask model
based on the Derm7pt dataset to illustrate the mechanism
between different tasks. Learnable gates were used in the model
to show how the method used or combined features from various
tasks. This strategy may be used to investigate how CNN models
behave, potentially enhancing their clinical utility (64). proposed
a deep convolutional network for skin lesion classification on the
Derm7pt dataset. Meanwhile, they implemented regularized
DropOut and DropBlock to increase the model’s generalization
capabilities and reduce overfitting. In addition, to address the
dataset’s imbalance and limitation, they devised a novel loss
function that assigns different weights to various samples, as well
as an end-to-end cumulative learning technique. Finally, the
method achieved excellent classification performance on
the Derm7pt dataset and ISIC dataset while with low
computational resources. The release of the Derm7pt dataset
has a great boost in promoting the use of multimodal data in skin
cancer classification tasks, as well as new ideas and solutions.

2.2.5 BCN20000 Dataset
The BCN200005 dataset comprises 5,583 skin lesions and 19,424
dermoscopic images taken using high-resolution dermoscopy.
They were all gathered between 2010 and 2016. At the same time,
the collector employed a variety of computer vision techniques to
remove noise, background, and other interference from the
images. Finally, they were carefully reviewed by numerous
experts to ensure the diagnosis’ validity (65).

BCN20000 is commonly utilized in skin cancer classification
and segmentation tasks as part of the dataset for the ISIC-2019
competition. For example, in order to protect the data privacy
and avoid data abuse (66), proposed a Distributed Analytics
method for distributed training of skin disease images, which
ensures that the training data remains in the original institution.
Finally, after training on the BCN20000 dataset, the model
achieves classification accuracy comparable to the centralized
distribution. To evaluate the robustness of different CNNmodels
(67), generated a series of out-of-distribution (OOD) images by
using different data augmentation methods based on BCN20000,
HAM10000, and other skin-disease datasets. This method
establishes a benchmark for OOD testing and considerably
facilitates the clinical use of skin cancer classification methods.
Specially, by using different data augmentation methods with an
ensemble learning strategy (including EfficientNets, SENet, and
ResNeXt101_wsl) (68), achieved the first-place classification
5https://www.isic-archive.com/, 2019.
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resul t wi th a balanced accuracy of 74 .2% on the
BCN20000 dataset.

2.2.6 ISIC Dataset
To reduce skin cancer mortality while promoting the development
and use of digital skin imaging (69), the International Skin Imaging
Collaboration (ISIC) has established a publicly available skin disease
dataset6 for the computer science community around the world.
Currently, ISIC Archive comprises over 13,000 representative
dermoscopic images from clinical facilities throughout the world,
all of which have been inspected and annotated by experts to ensure
image quality (70).

The majority of studies that utilized the ISIC dataset focused
on skin cancer classification and segmentation tasks, with the
binary classification task being the most popular. For example
(71), designed different modules based on VGGNet for skin
disease classification (melanoma or benign) and benchmarked
for the ISIC-2016 dataset. In the end, results showed that this
method obtained excellent performance with an accuracy of
0.8133 and a sensitivity of 0.7866 (51). achieved the best
classification results with an AUC of 0.911 and balanced
multiclass accuracy of 0.831 on three skin cancer classification
tasks of ISIC-2017 by using an ensemble of ResNet-50 networks
on normalized images (72). used ensemble learning with a
stacking scheme and obtained the classification results with an
accuracy of 0.885 and an AUC of 0.983 in the ISIC-2018
competition (73). employed two bias removal techniques,
“Learning Not to Learn” (LNTL) and “Turning a Blind Eye”
(TABE), to alleviate irregularities in model predictions and
spurious changes in melanoma images. Among them, the
LNTL method combined a new regularization loss with a
gradient inversion layer to enable the model to debias the
CNN’s features in backpropagation. The TABE method
reduced biases by using different auxiliary classifiers to identify
biases in features. Finally, the experimental results revealed that
TABE had a more effective denoising effect, with an
improvement of 11.6% in the AUC score benchmark on the
ISIC dataset. Since the ISIC dataset is widely used in
6https://www.isic-archive.com/.
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competitions and research, readers can find more methods for
comparison on the competition leaderboard or on the Internet.

Table 2 summarizes the above datasets to show the different
characteristics between them. What we summarized are the most
common datasets in the skin cancer classification task and may
not be the most exhaustive summary. Readers can find more
datasets from various sources online. At the same time, it can be
seen from the above summary that most of the images in the
skin-disease dataset are dermoscopic images, while clinical
images and histopathological images are still relatively rare.
Furthermore, most skin-disease datasets have a relatively small
number of images compared with datasets of natural images, which
poses certain challenges for skin cancer classification tasks.
3 METHODS FOR TYPICAL AND
FRONTIER PROBLEMS IN SKIN
CANCER CLASSIFICATION

In the past few years, many scholars have been working on
developing computer-aided diagnostic (CAD) systems for skin
cancer classification. Before the emergence of deep learning, the
CAD systems were primarily designed by machine learning (ML)
algorithms (74). However, due to the complexity of feature
engineering and limitations of handcrafted features, these ML-
based methods can only diagnose a subset of skin diseases. Deep
learning algorithms, on the other hand, can automatically learn
semantic features from large-scale datasets with higher accuracy
and efficiency. As a result, deep learning-based methods such as
Convolutional Neural Network (CNN) have been used to solve
the great majority of skin cancer classification problems in recent
years and obtained satisfactory results.

However, as we dig deeper into the challenges of skin cancer
classification, it appears that they are not as straightforward as
the challenges in the non-medical domain (e.g., ImageNet,
PASCAL-VOC, MS-COCO) (75) (12). Firstly, many datasets of
skin images are imbalanced due to the disproportions among
different skin cancer classes, which increases the risk of
misdiagnosis by the diagnostic system. Also, since correct
annotation needs a great amount of expertise knowledge and is
time-consuming and labor-intensive, many datasets only provide
TABLE 2 | Characteristics of different skin-disease datasets.

Dataset No. of
images

Modality of
images

No. of lesion
types

Image
format

Published
year

Goal of publication

PH2 200 Dermoscopic 3 .bmp 2013 To facilitate the development of computer-aided diagnosis systems in the
segmentation and classification of melanoma.

MED-
NODE

170 Macroscopic 2 .jpg 2015 To build and evaluate the MED-NODE system for detecting skin cancer with
dermoscopic images.

HAM10000 10,015 Dermoscopic 8 .jpg 2018 To address the small size and insufficient diversity of images in the skin-disease
dataset.

Derm7pt 2,000 Dermoscopic
Structured
data

15 .jpg 2018 As a database for the analysis of a seven-point malignant checklist for skin lesions.

BCN20000 19,424 Dermoscopic 9 .jpg 2019 Used to analyze skin cancer lesions in hard-to-diagnose locations such as nails
and mucous membranes.

ISIC
Archive

>13,000 Dermoscopic 9 .jpg,
DICOM

2016–2020 To reduce skin cancer mortality while promoting the development and use of digital
skin imaging.
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a limited number of images (e.g., the ISIC dataset is the largest
publicly available skin disease dataset until now, which contains
about 13,000 skin images). As a result, more labeled data is
required to design a more accurate system. Besides, when the
amount of training data is insufficient, the model’s generalization
performance degrades. In addition, different noises generated by
different devices or different shooting conditions also bring
biases to the model, resulting in a reduction in diagnosis.
Furthermore, the operational efficiency and resource consumption
of the model also limit its clinical implementation on various
medical devices.

As a result, in the following part, we present a complete
overview of the use of deep learning methods in skin cancer
classification. We begin by introducing the use of typical CNN
frameworks in skin cancer classification, then review the frontier
challenges in skin cancer classification and provide related
solutions. We summarize these methods in Tables 3–6.
Frontiers in Oncology | www.frontiersin.org 754
Among them, Table 3 summarizes the use of typical
frameworks in skin cancer classification, as well as their
highlights and limitations. Tables 4–6 summarize the
approaches to address the frontier issues of data imbalance and
limitation, model generalization ability and robustness, and
model computational efficiency in skin cancer classification. At
the same time, we list publications based on the same or similar
dataset together to make it easier for readers to compare
different approaches.

3.1 Typical CNN Frameworks for Skin
Cancer Classification
During the early stages of the development of CNN, people
usually used self-building networks for a specific task. For
example (76), presented a self-supervised model for melanoma
detection. Firstly, a deep belief network and self-advised SVM
were used to train the labeled and unlabeled images. After that, a
TABLE 3 | References of skin cancer classification with typical CNN frameworks.

Ref. Dataset CNN Architecture Highlights Limitations Performance

(76) Self-collected
dataset

Deep Belief Network,
SVM

By combining deep belief networks and SVM classifiers to
handle skin cancer diagnosis tasks with limited datasets, as
well as outliers and erroneous data.

The generalization ability of the model
is limited.

Accuracy:
0.89

(77) Self-collected
dataset

Resnet-34, ResNet-50
ResNet-101 and
ResNet-152

Proposed how to improve deep learning-based dermoscopy
classification and dataset creation.

Data from more modalities, such as
the patient’s medical history,
information on other symptoms, are
not considered.

Accuracy:
0.85

(78) Online
repositories
and the
Stanford
University
Medical Center

Inception-v3 Used a CNN framework to train a large-scale skin disease
dataset and achieve superior results on par with
dermatologists. The method was also developed for mobile
devices.

More research is required to assess
its performance in clinical practice. At
the same time, this method is limited
to some extent by the amount of
data.

Accuracy:
0.6375 (avg.)

(79) MED-NODE Deep CNN Compared with previous methods, it directly used CNN to
automatically extract features for skin disease images, also had
a higher classification accuracy.

Due to the large noise interference of
clinical images, there are still some
misclassifications.

Accuracy:
0.81
PPV: 0.75,
NPV: 0.86

(71) ISIC-2016 VGG-16 It reduces the training time of the model by using the transfer
learning strategy while obtaining higher sensitivity and
precision.

It is prone to overfitting due to the
limited amount of training images.

Accuracy:
0.813
Sensitivity:
0.787

(80) ISIC-2017, IAD Inception-v2 Introducing sonification into the diagnosis of skin cancer
lesions to improve the sensitivity of the model.

Differences in the diagnosis of
pathologists can affect the prediction
results of the model.

AUC: 0.976
Sensitivity:
0.86
Specificity:
0.91

(27) ISIC-2017 DenseNet, Dual Path
Nets Inception-v4,
Inception-ResNet-
v2MobileNetV2,
PNASNet, ResNet
SENet, Xception

By analyzing 13 factors from 9 different models, they
systematically evaluated the factors influencing the choice of
CNN structure.

The dataset used in this article is too
limited, and it only focuses on the
melanoma classification task.

Top accuracy:
0.827

(81) IAD VGG-19 Adopted VGG-19 network to evaluate the thickness of
melanoma for the first time.

There are no more pre-training
methods utilized for comparison, and
precisely predicting melanoma
thickness would be more clinically
significant.

Accuracy:
0.872
Specificity:
0.840

(82) Derm7pt Inception-v3 A multi-task network was designed to classify the seven-point
checklist and skin disease diagnosis. Different loss functions
were also designed to handle different input modalities, such
as clinical and dermoscopic images, and patient diagnostic
results.

Some criteria of the 7-point checklist
are unable to be distinguished.

Accuracy:
0.737

(60) HAM10000 Deep CNN models Proposed a method combining CNN with one-versus-all (OVA)
for skin disease classification.

The model has not been tested on
datasets from various domains and
may have a large variance.

Accuracy:
0.929

(83) HAM10000
ISIC-2019

ResNeXt, SeResNeXt,
DenseNet
Xception, and ResNet

Adopted a grid search strategy to find the best ensemble
learning methods for skin cancer classification.

The amount of training data is still
insufficient, and most of models
employed in ensemble learning are
from the same network architecture.

Accuracy:
0.88
F1 score:
0.89
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bootstrap approach was used to randomly choose the training
images for the network to improve the generalization ability and
decrease the redundancy of the model. Experiments showed that
the proposed method outperformed other methods like KNN
and SVM. Then (79), designed a simple CNN network work for
detecting melanoma. Firstly, all input images were preprocessed
to eliminate the effects of noise and artifacts. The processed
images were then fed into a pretrained CNN to detect if they
were melanoma or benign. Finally, experiment results showed
that CNN outperformed other classification methods.

With the development of deep learning, various well-known
networks, such as VGGNet (117), GoogleNet (118), and ResNet
(119), have been applied to skin cancer classification with
favorable results. The most landmark work was (78). It was the
Frontiers in Oncology | www.frontiersin.org 855
first time that a CNN has been utilized to train large-scale clinical
images for skin cancer classification. They designed an end-to-
end network for automated skin cancer classification using
Inception v3. A total of 129,450 clinical images with 2,032
distinct skin diseases were utilized for training the model.
Meanwhile, to make use of the fine-grained information in
taxonomy structure, they proposed a disease partitioning
algorithm to divide skin cancers into fine-grained classes (e.g.,
melanoma was subdivided into amelanotic melanoma and
acrolentiginous melanoma). In the end, the results of the
experiments indicated that the skin cancer classification system
could attain diagnostic levels equivalent to dermatologists. In the
same year (71), successfully implemented VGGNet for skin
lesion classification (melanoma or benign) and benchmarked
TABLE 4 | Different methods for solving data imbalance and data limitation.

Ref. Dataset Highlights Limitations Performance

(84) ISIC-2017 By coupling seven GANs to generate seven skin-disease images. At the
same time, they improved the efficiency of the model by making the initial
layers of GANs share the same parameters.

The model was unable to distinguish the lesion area
well when it was mixed with the skin surface, and
artifacts such as human hair can also affect the
generation of new images.

Accuracy:
0.816
AUC: 0.88

(85) ISIC-2018 Proposed a GAN architecture that was customized to the style of skin
lesions. At the same time, it can generate higher resolution and more
diverse skin disease images by adjusting the progressive growth structure
of the generator and discriminator in the GAN network.

The content of the GAN-generated synthetic dataset
was not complicated enough when compared with the
original dataset, and it was also not diverse enough.

Accuracy:
0.952
Sensitivity:
0.832
Specificity:
0.743

(86) ISIC-2018 Utilized conditional generative adversarial networks (CGAN) to extract key
information from all layers to generate skin lesion images with different
textures and shapes while ensuring the stability of training.

The amount of data used for training was relatively
limited.

Accuracy:
0.941
Precision:
0.915
Recall: 0.799

(87) ISIC
Archive

Explored four types of data augmentation methods and a multiple layers
augmentation method in melanoma classification.

The data augmentation methods evaluated in this
paper were limited and not validated on a large
amount of datasets.

Accuracy:
0.829

(88) HAM10000 They adopted a variational autoencoder network to get domain-dependent
noise vectors. Also, a student-like distribution was employed to increase
image diversity, and an auxiliary classifier was used to create images of
certain classes.

Due to the specificity of medical images, different
image generation models may generate skin disease
images that did not belong to the same class.

Accuracy:
0.925

(89) HAM10000 It combined the attention mechanism with PGGAN to obtain global
features of skin lesions images, also introduced the Two-Timescale Update
Rule to generate features with high fine-grainedness, while increasing the
stability of GAN.

Due to the limitation of hardware conditions, this data
augmentation method was only evaluated on the
resolution of 256 × 256, rather than the original
resolution of 600 × 450 in HAM10000 dataset.

AUC: 0.793

(90) HAM10000 Proposed a class-weighted loss function and a focal loss to overcome the
problem of data imbalance.

There is no artifact removal for the images in the
training dataset, which leads the model to be biased.
Also, it has a relatively high computational complexity.

Accuracy:
0.93
Recall: 0.86

(91) HAM10000 A novel loss function was combined with the balanced mini-batch logic of
the data level to alleviate the imbalance problem of the dermatology
dataset.

The classification accuracy for rare skin diseases with
limited data needs to be improved further.

Accuracy:
0.8997
Recall:
0.8613

ISIC-2019

(92) HAM10000 Proposed a two-stage technique for determining the appropriate
augmentation procedure for mobile devices.

Given the particularity of lightweight CNN, more data
augmentation methods and data need to be
considered to alleviate the problem of overfitting.

Accuracy:
0.853

(93) PAD-UFES Designed two algorithms based on evolutionary algorithm and also applied
weighted loss function and oversampling to alleviate the problem of data
imbalance.

A larger dataset was necessary to improve the
performance further.

Accuracy:
0.92
Recall: 0.94

(94) PH2 Proposed novel a data augmentation method based on a oversampling
technique (SMOTE).

The proposed data augmentation method was not
validated in the deep learning architectures, and
experiments on larger datasets were also required.

Accuracy:
0.922
Sensitivity:
0.808
Specificity:
0.951
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for ISIC datasets by using dermoscopic images. In this study,
they designed three different modules based on VGG-16 as
comparison. The first module trained the network from initial
weights. The second module used pretrained VGG-16 for
training and then used the current dataset to train the fully
connected classifier. The third module also used transfer learning
to train the network, but weights in the high-level part of the
convolutional layers were initialized from the first module. In the
end, results showed that the third module obtained excellent
performance in skin cancer classification. Different from
previous classification tasks (81), utilized a CNN framework
(VGG-19) for the first time to evaluate the thickness of
melanoma. They began by locating the lesion and cropping the
region of interest (ROI). To solve the problem of data limitation
and data imbalance; they then employed the Synthetic Minority
Over-sampling technique to generate synthetic samples. After
Frontiers in Oncology | www.frontiersin.org 956
that, the pretrained VGG-19 was used for the thickness
prediction. Finally, the results demonstrated that the algorithm
can estimate the thickness of melanoma with an accuracy of
87.5%. For the first time, a multitask network was proposed by
(82) based on Inception v3 by utilizing three different modalities
of data to predict seven-point criteria. In addition, they designed
a multimodal–multitask loss function to tackle the combinations
of input modalities, which was also able to make predictions with
incomplete information. Finally, results showed the superior
performance in classifying skin lesions and the seven-point
criteria. Besides, the proposed method had the ability to
identify discriminating information and generate feature
vectors for image retrieval (80). built two systems for skin
disease classification based on the novel deep learning
algorithms. Additionally, they added a sonification-derived
layer to increase the sensitivity of the model. In the first
TABLE 5 | Different methods for improving model generalization ability and robustness.

Ref. Dataset Highlights Limitations Performance

(95) DermIS
DermQuest

Investigated the advantages of large-scale supervised pre-training for
medical imaging applications.

In addition to the analysis of the weights and features of
the model, it is necessary to conduct a comprehensive
analysis of other features such as network structure to
explore the importance of pre-training.

Accuracy:
0.871
(DermIS)
Accuracy:
0.974
(DermQuest)

(96) HAM10000
MoleMap

Proposed transfer learning and adversarial learning in skin disease
classification to improve the generalization ability of models to new
samples and reduce cross-domain shift.

When the data domain and target domain are significantly
different, the method’s overall accuracy suffers.

Accuracy:
0.909
AUC: 0.967

(97) HAM10000 Performed adversarial training on MobileNet and VGG-16 using the
innovative attacking models FGSM and PGD for skin cancer
classification.

The number of datasets tested for this experiment is very
limited, and there may be local optimizations.

Accuracy:
0.7614

(98) ISIC-2016 Proposed a comprehensive deep learning framework combining
adversarial training and transfer learning for melanoma classification.
At the same time, focal loss was introduced to iteratively optimize the
network to better learn hard samples.

This method does not consider more types of skin
diseases, and it had a high computational cost.

Accuracy:
0.812
Sensitivity:
0.918

(99) ISIC2017
HAM10000

Presented a Multi-view Filtered Transfer Learning approach to extract
useful information from the original samples for domain adaption,
thereby improving representation ability for skin disease image.

The effectiveness of this domain adaptation method should
be validated on more dermatology datasets.

Accuracy:
0.918
AUC: 0.879

(100) ISBI-2017,
PH2

Proposed an adversarial training method combined with attention
module to enhance the robustness of the model in skin-disease
classification and segmentation.

Due to the limited amount of training data and the unclear
boundaries of skin disease images, the model still suffers
from under-segmentation and over-segmentation.

Accuracy:
0.968
Sensitivity:
0.962
Specificity:
0.941

(101) ISIC-2018 Using seven universal adversarial perturbations to investigate the
vulnerability of the classification model.

This method does not perform adversarial training on more
skin disease datasets, so the robustness of its model
needs to be further improved.

Accuracy:
0.873

(102) ISIC-2019 Proposed Monte Carlo dropout, Ensemble MC dropout, and Deep
Ensemble for uncertainty quantification.

Further optimization of the robustness of the model is
required, and the model should also be tested for noise
detection to provide a confidence score.

Accuracy:
0.90
AUC: 0.945

(103) ISIC Archive
MED-NODE
Dermofit

Proposed a transfer learning method to address the shortage of data
in skin lesion images. Also, they utilized a hybrid deep CNN model to
accurately extract features and ensure training stability while avoiding
overfitting.

The model requires a considerable amount of
computational resources while also lacking the diversity of
domains.

Accuracy:
0.853
F1 score:
0.891

(104) HAM10000,
Dermofit,
Derm7pt,
MSK
PH2,
SONIC,
UDA

Proposed to improve the generalization performance of the model by
combining data augmentation and domain alignment.
Designed a Bayesian generative model for continual learning based
on a fixed pretrained feature extractor.

Due to the privacy of medical images, this trained model
may underperform on ethnic groups with a small
proportion of the population.

Accuracy:
0.670

(105) Skin7,
Skin40

To increase the method’s overall performance, better pre-
training of the extractor can be investigated.

Mean class
recall: 0.65
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system, a CNN architecture was proposed based on Inception v2
to identify skin diseases (benign or malignant) with dermoscopic
images. The second system transformed the feature
representation generated in the preceding system into sound
data. Then, this sound information was then put into a machine
learning classifier or translated to spectrograms for further
analysis. In the end, both systems performed exceptionally well
in terms of classification and sonification. After the deep learning
methods achieved excellent results in the skin cancer
classification task (77), proposed how to improve deep
learning-based dermoscopy classification and dataset creation.
They analyzed four ResNet architectures in dermoscopic
classification, namely, ResNet-34, ResNet-50, ResNet-101, and
ResNet-152, to apprehend the mechanisms and certain error
Frontiers in Oncology | www.frontiersin.org 1057
causes. First, four ResNet networks were trained at their best fits
to see if the structural differences between the models would
result in different classification results. After testing with several
epochs, they found that the accuracy of different models tended
to be consistent and varied with different hyperparameter
settings. Meanwhile, they had a high level of stability during
training. Therefore, the training errors of the classification
models were attributed to incorrect annotations and the
complexity of medical images.

Gradually, people discovered that applying a single CNN to a
CAD system typically did not produce the desired results due to
the large variances in deep neural networks. After that, ensemble
learning was proposed as a way to limit the error generated by a
single model by training multiple models and then combining
TABLE 6 | Different methods for improving model efficiency.

Ref. Dataset Highlights Limitations Performance

(106) Self-collected Proposed a knowledge distillation method to transfer knowledge between
various models simultaneously.

The proposed method sacrifices local
accuracy for higher global accuracy, with some
additional classification errors on local objects.

Accuracy:
0.75

(107) Public
repositories

Proposed a MobileNet-based classification method and successfully
deployed it on an Android application.

To improve the model’s classification
accuracy, more sophisticated sampling
strategies and data preprocessing can be
adopted.

Accuracy:
0.944

(108) HAM10000 Presented an assessment of the effectiveness for the attention module and
self-attention module in skin cancer classification based on ResNet
architecture.

Only limited number of attention mechanisms
are used for comparison.

Accuracy:
0.622
(attention)
Accuracy:
0.737 (self-
attention)

(109) HAM10000 Proposed a weight pruning strategy for lightweight neural networks to make
up for the accuracy loss and improve model performance and reliability in the
skin cancer classification.

The proposed pruning method is only
validated on the skin disease dataset, and
more kinds of medical images are needed to
validate its effectiveness.

Accuracy:
0.975

SH-11 AUC: 0.931

(110) HAM10000,
PH2,
Dermofit

Designed a new pruning method “MergePrune” to reduce the computational
cost of retraining the network by combining pruning and training into a single
stage.

To assess this strategy, more domain data is
needed, such as clinical images, patient meta-
data.

Accuracy:
0.776 (avg.)

Derm7pt,
MSK, UDA

(111) ISIC-2017 Proposed a classification method that incorporated the attention residual
learning (ARL) mechanism to EfficientNet for skin cancer diagnoses.

The interpretability of the model needs to be
further strengthened.

Accuracy:
0.873
AUC: 0.867

(112) ISIC-2017 Three different lightweight networks MobileNet, MobileNetV2, and
NASNetMobile were were evaluated for skin cancer classification.

The number of lightweight networks and
hyperparameters used for testing are relatively
restricted.

Accuracy:
0.82
Precision:
0.812

(113) ISIC-2017,
PH2

Proposed an MT-TransUNet network to segment and classify skin lesions
simultaneously.

The model finds it difficult with low-contrast
skin disease images, and its segmentation
performance is vulnerable to occlusions in the
skin image.

Accuracy:
0.912

(114) PH2,
DermQuest

Built a pruning framework to simplify the complicated architectures by
choosing the most informative color channels in skin lesion detection. Also, it
carried out a hardware-level analysis of the complexity of different skin cancer
classification networks.

The proposed method works well for simple
networks, but it may not perform as well for
more complicated networks.

Accuracy:
0.9811 (PH2)
Accuracy:
0.9892
(DermQuest)

(115) SD-198, SD-
260

Proposed a knowledge distillation method based on curriculum training to
distinguish herpes zoster from other skin diseases.

It requires manual tuning of hyperparameters
according to different models and datasets.

Accuracy:
0.935

(116) DermIS,
DermQuest,
DermNZ,
“11K Hands”

Proposed an expert system “i-Rash” based on SqueezeNet to classify four
skin diseases.

More clinical data and skin-disease images are
needed to further improve the generalization of
the model.

Accuracy:
0.972
Sensitivity:
0.944
Specificity:
0.981
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their results to get the final classification results (27). compared
the performance between ensemble models and a single model
by utilizing nine different CNN architectures in skin cancer
classification. After different comparative experiments, they
found the significance of ensemble learning for obtaining
optimal classification models. In addition, they investigated the
effectiveness between two different selection strategies in
ensemble learning: random selection and utilizing a validation
set. For the smaller ensemble models, they found that the second
method had more advantages, but the first was also effective. For
the larger ensemble models, it was possible to get away with
merely picking models arbitrarily. Based on the same method
(60), proposed two different methods for skin cancer
classification while reducing the complexity of the model by
using an OVA strategy: i) alone CNN model and ii) the
incorporation of seven CNN models. In the first method,
images from the dataset were directly put into the single CNN
model for the final prediction. In the second method, a one-
versus-all (OVA) strategy was used to combine seven separate
models with two classes to obtain the final prediction. Each class
in this method was classified according to true and false labels,
thus increasing the efficiency of the model. The results revealed
that the second method outperformed the first in terms of
classification accuracy (83). adopted a grid search strategy to
find the best ensemble learning methods for the classification of
seven skin lesions. During the training, five CNN networks,
ResNeXt, SeResNeXt, ResNet, Xception, and DenseNet, were
used as baseline. After that, two ensemble learning strategies,
namely, average ensemble and weighted ensemble, were
conducted to find the optimal model. In the end, results
showed that the weighted ensemble model had more
advantages than the average ensemble model.

3.2 Data Imbalance and Data Limitation in
Skin Disease Datasets
Data imbalance and data limitation in skin disease datasets are
common problems in the skin cancer classification tasks. In fact,
benign lesions account for the majority of data in many skin
disease datasets. Meanwhile, many skin disease datasets have
large inequities in the number of samples among different skin
disease classes. Only the common skin diseases, such as BCC,
SCC, and melanoma, are included in the majority of skin disease
datasets. Other skin cancer diseases (such as appendiceal
carcinomas and cutaneous lymphoma) are relatively rare in
these datasets, making it difficult for algorithms to classify
them correctly (28). Besides, the skin lesions in most of the
current datasets are from fair-skinned people, with only a few
from dark-skinned people (12). It has been demonstrated that
deep learning frameworks that have been validated for skin
cancer diagnosis in fair-skinned people are more likely to
misdiagnose those with different races or ethnicity (120). At
the same time, the quantity of skin disease images is also
relatively restricted. For example, ISIC-2020 (121) is the
dataset with the largest number images so far, with about
30,000 skin disease images. Although large amounts of skin
disease images can be obtained from websites or medical
Frontiers in Oncology | www.frontiersin.org 1158
institutions without any diagnosis information, labeling them
takes professional knowledge and can be extremely challenging
and time-consuming. What is more, sufficient labeled data are a
requirement for training a reliable model. When only a limited
number of images are provided, overfitting is more likely to
occur. As a result, for the skin cancer classification task, a
considerable amount of labeled data is required.

Generative adversarial networks (GAN) are widely thought to
be a preferable alternative, as they can generate artificial data to
compensate for data imbalance in terms of positive and negative
proportions, rare cases, and different people (84). designed a data
augmentation method based on generative adversarial networks
to address the shortcomings of skin lesion images in melanoma
detection. Firstly, they utilized several data processing methods
to locate and eliminate hairs and other artifacts of the input
images. Then they used two convolutional GANs, namely,
DCGANs, to generate 350 images of melanoma and 750
images of seborrheic keratosis . Finally, the results
demonstrated that combining the processing module and
generative adversarial networks resulted in superior
performance when compared with other baselines. Although
GAN is extensively employed for data augmentation, the images
it generated are typically low-resolution. To overcome this issue
(85), proposed a style-based GAN to generate more high-quality
images in skin lesion classification. Then these synthetic images
were added to the training set to the pretrained ResNet-50
model. The experiment showed that the proposed style-based
GANmethod outperformed other GAN-based methods in terms
of Inception Score (IS), Fréchet Inception Distance (FID),
precision, and recall. What is more, the accuracy, sensitivity,
specificity, and other indicators of the classification model also
improved. In (88), the author proposed a GAN-based framework
“TED-GAN” to generate skin lesion images artificially in skin
cancer classification. Instead of using random Gaussian
distribution to sample the noise vector in GAN, they used
informative noise that was obtained from a separate network
for the first time to generate the medical images. TED-GAN had
four parts: one variational auto-encoder, two GANs, and one
auxiliary classifier. Firstly, an auto-encoder network was trained
to get the vector containing the image manifold’s information.
Then one of the GANs sampled output of the auto-encoder to
ensure the stability of training and make it more convenient to
use the domain information. After that, the other GAN obtained
more training data from the prior GAN. In addition, an auxiliary
classifier was added to this GAN network, then the two were
trained together to generate images of various skin diseases. In
the end, experiment results showed that TED-GAN had a
positive effect on skin cancer classification as it provided more
images for training. Although data augmentation methods such
as GAN may successfully increase the number of skin cancer
images and alleviate the problem of data imbalance, the
generated data usually have identical distributions, limiting the
improvement in model performance. To solve this issue (89),
proposed a data augmentation method based on PGGAN,
namely, SPGGAN, to generate skin lesion images with different
types and data distributions. Firstly, an attention module was
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added into SPGGANs to obtain the global and local information
from skin lesion images, also enabling PGGAN to generate more
diverse high-quality samples. Then, the Two-Timescale Update
Rule (TTUR) was added to SPGGANs to reduce the signal
magnitude increase and hence enhance the stability of the
model. Finally, experiments showed that the GAN-based data
augmentation approach can lead to an improvement in the
classification in terms of accuracy, sensitivity, F1 score, and
other metrics. Since skin lesions often contain irregular
boundaries, varied textures, and shapes, it makes the training
of the GAN framework sometimes unstable. To address this issue
(86), utilized conditional generative adversarial networks
(CGANs) to extract key information from all layers and
generate skin lesion images. The proposed CGAN has two
modules: a generator module and a discriminator module. The
generator module was to extract useful features from high-level
and low-level layers and generate synthetic images. The
discriminator module was to accurately map latent feature
components by combining auxiliary information with training
images. After that, augmented images with original datasets were
put into the pretrained ResNet-18 network for the classification
task. Experiments showed that this model achieved superior
results compared with other datasets.

Another popular method for resolving data imbalance is to
apply weights to various samples in the loss function. The goal is
to calculate the losses differently depending on whether the
samples are in the majority or minority. For example (90),
proposed an end-to-end framework for classifying seven skin
lesions in the HAM10000 dataset. Especially, a class-weighted
learning strategy was utilized to overcome the problem of data
imbalance in the dataset by assigning different weights to
different lesion classes in computing the loss function.
Meanwhile, focus loss was used to further increase the model’s
classification performance. It concentrated training on tough
examples, preventing the classifier from being overwhelmed by
easy samples. Experiment results revealed that the model
obtained an average accuracy of 93%, outperforming
dermatologists’ 84% accuracy. Although the problem of data
imbalance can be alleviated through the design of the loss
function, there exists a problem of slow learning of the
minority classes. To solve the issue (91), proposed a hybrid
strategy for skin cancer classification. It combined a loss function
method at the algorithm level with a balanced mini-batch logic
method for real-time image augmentation at the data level. By
applying the balanced mini-batch and real-time image
augmentation method, the new loss function can improve its
learning ability in minority samples, thereby improving training
efficiency. When compared with the previous strategy, this
method improved the learning effectiveness of minority classes
on an imbalanced dataset by increasing m-Recall by 4.65% and
decreasing the standard deviation of recalls by 4.24%. In addition
to designing a new loss function (93), also designed two new
algorithms based on evolutionary algorithms, the Mixup
Extrapolation Balancing (MUPEB) and the Differential
Evolution (DE), to solve the problem of data imbalance in
melanoma classification. The MUPEB method included a set of
Frontiers in Oncology | www.frontiersin.org 1259
operations to mix and interpolate the dataset until it was
balanced. The DE method mixed and combined three random
images with varied clinical information to achieve data balance.
Apart from that, weighted loss function and oversampling were
also used to alleviate data imbalance. In the end, this algorithm
increased the model’s classification precision and recall by 1%
and 11%, respectively.

Data augmentation is an ideal solution to artificially increase
the amount of data by generating new data points from existing
data. It scales the number of images by random rotating,
padding, rescaling, flipping, translation, etc. At the same, with
the development of technology, various novel approaches for
data augmentation have been presented in skin cancer
classification (58, 122). released the HAM10000 dataset by
natural data augmentation; the images of skin lesions were
captured at various magnifications or angles, or with multiple
cameras. To evaluate the effectiveness of data augmentation
methods while determining the most effective method (87),
explored four types of data augmentation methods (geometric
transformation, adding noise, color transformation, and image
mix) and a multiple-layer augmentation method (augmented
images by more than one operation) in melanoma classification.
The first step was to preprocess the images to remove artifacts
such as body hair on the images. Then each augmentation
method was assessed to decide the optimal augmentation
method. In the end, they found that single-layer augmentation
outperformed multiple-layer augmentation methods. Besides,
the region of interest (ROI)-mix method achieved the best
performance compared with other approaches (92). proposed a
two-stage strategy data augmentation method on mobile devices
successfully with limited computing resources. The first stage
was to search the optimal augmentation method in the Low-
Cost-Augment (LCA) space. The second stage was to fine-tune
the deep CNNs with augmented images and choose the model
with the highest accuracy. Finally, the augmented images were
trained with EfficientNets, which resulted in better accuracy and
computational efficiency. Different from previous data
augmentation methods (94), proposed a novel Synthetic
Minority Oversampling Technique (SMOTE) to solve the
problem of image scarcity and imbalance in the skin lesion
dataset. Firstly, all images in the PH2 dataset were preprocessed
for ensuring cleaning. Then in the data augmentation stage, the
covariance matrix (CM) was exploited by SMOTE to find
dependent connections between attributes. Then they built
surrogate instances based on the estimated CM to balance the
number of minority class and majority class. Finally, all
augmented images were utilized to train the SqueezeNet and it
resulted in a significant improvement in terms of accuracy,
sensitivity, specificity, and F1 score.

3.3 Poor Generalization Ability Across
Different Domains
In the skin cancer classification task, the generalization ability of
the model is often inferior to that of an experienced
dermatologist. Firstly, owing to the small scale of skin image
datasets, even if a large amount of similar data is artificially
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generated, the overfitting problem still exists. Secondly, the
majority of research exclusively focuses on dermatological
images taken using standardized medical equipment, such as
dermoscopic and histological images (78). Little research has
been conducted on dermatological images captured by other
devices. When a trained model is applied to a new dataset with a
different domain, its performance suffers significantly.

Transfer learning (TL) is commonly utilized for improving
the generalization ability of computer-aided diagnostic systems
in test data. The fundamental idea of TL is to preserve
information gained while addressing a problem and implement
it to a new but relevant problem (52). It can not only drastically
reduce the time overhead and labor cost associated with partial
repetitive labor but also compensate for the flaw in the skin
disease datasets (96). presented two methods to improve the
generalization ability of models to new samples and reduce cross-
domain shift. The first method used a transfer learning strategy
with two steps to acquire new knowledge from diverse domains.
It began with pretraining on ImageNet and fine-tuned the model
with a single skin dataset. In the end, they used the target set to
fine-tune the model to get the prior information. The second
method used a pixel-wise image synthesizing adaptation method
to transfer the features between the source domain and target
domain. In comparison to the previous transfer learning
approach, this method was semi-supervised and did not need
any labels for domain adaptation. Finally, cross-domain
experiments showed that in order to improve classification
performance, the proposed methods had the ability to
transform images between different modalities. In order
to solve the problem of class imbalance in skin lesion datasets,
To address the problem of poor generalization performance due
to low interclass variance and class imbalance in skin disease
images (98), proposed a two-stage framework with adversarial
training and transfer learning in melanoma detection. The first
stage was to solve the data scarcity and class imbalance problem
by generating underrepresented class samples. The second stage
was to train deep neural networks for melanoma classification,
by using newly synthesized images and original datasets. A focal
loss was proposed to assist the model in learning from hard
examples. In the end, results showed the significant
improvement of the classification performance and superiority
of the proposed method. With the application of transfer
learning in skin cancer diagnosis, it has been discovered that
most existing transfer learning methods only extract knowledge
from the source data to learn, but many inaccurate samples that
are very different from the target data are incorporated into the
process. Meanwhile, most skin cancer classification methods
simply learn from raw skin disease images, which makes
information from different aspects (such as texture, shape, etc.)
interfered by noise during the learning process. Therefore (99),
proposed a multi-view-filtered transfer learning (MFTL) method
to solve the poor scalability problem of skin cancer classification
models. MFTL consisted primarily of two modules: a multi-view-
weighing representation module and a filtered domain adaption
module. The first module put the view weights obtained from
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the feature representation procedure to the final prediction. The
second module selected key source information to transfer the
knowledge between the source domain and target domain.
Finally, the result showed a significantly improved
performance in classifying melanoma and seborrheic keratosis.
In (103), the author proposed a transfer learning approach to
address the issue of insufficient data in the medical image
datasets, as well as to improve the performance of other related
medical image classification tasks. The proposed approach first
trained deep learning models on a great amount of unlabeled
images for a specific task, as the volume of unlabeled medical
images has increased significantly. Then the models were fine-
tuned on a relatively small-labeled dataset to perform the same
task. Besides, they utilized a hybrid deep CNN model to
accurately extract features and ensure training stability while
avoiding overfitting. Experiments showed the effectiveness in the
skin cancer and breast cancer classification in terms of
classification accuracy, recall, precision, and F1 score. With the
growing use of transfer learning in the field of computer vision,
an increasing number of studies have proved that large-scale
pretraining on natural images can be beneficial in a variety of
tasks. However, research on medical images is still limited. With
this purpose (95), investigated the advantages of large-scale
supervised pretraining with three medical images: chest
radiography, mammography, and dermatological images. Five
tasks including in-domain performance, generalization under
distribution shift, data efficiency, subgroup fairness, and
uncertainty estimation were conducted to test if large-scale
pretraining aided in the modeling of medical images. Finally,
experiment results indicated that, despite significant differences
from the pretraining data, employing larger pretraining datasets
can achieve significant improvements across a wide range of
medical disciplines. Besides, they discovered that pretraining at
scale may allow downstream tasks to more effectively reuse
deeper features.

In addition to TL, many novel methods such as adding
innovative regularization terms, estimating model uncertainty,
and lifelong learning models are beginning to be introduced into
the skin cancer classification task to improve the generalization
ability of the model across different domains (104). proposed a
method that can improve the generalization ability of a model
under limited samples by combining data augmentation and
domain alignment. They observed in medical images that
domain changes were compact and related to a certain extent.
To be able to model such dependencies, the author introduced a
dependency regularization term to learn a representative feature
space that captured sharable information across different medical
image domains. At the same time, a variational encoder was used
to ensure that the latent features followed a predetermined
distribution. Finally, through theoretical derivation, the author
obtained the upper bound of empirical risk for any relevant
target domain under this method, which alleviated the problem
of overfitting. Finally, the generalization ability of the model was
well confirmed on seven skin-disease datasets. In order to obtain
the uncertainty quantification (UQ) of the deep learning model
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to prevent overfitting (102), proposed three indicators Monte
Carlo (MC) dropout, Ensemble MC (EMC) dropout, and Deep
Ensemble (DE) to solve this problem. They next presented a
novel hybrid Bayesian deep learning model based on the three-
way decision (TWD) theory to obtain the residual uncertainty
after using the three methods of MC, EMC, and DE. It also
enabled different UQ methods to be used in different neural
networks or different classification stages. Finally, the
experimental findings demonstrated that the proposed model
can be employed efficiently in analyzing different stages of
medical images, and the model’s uncertainty was accurately
quantified. Since the deep learning model might forget much
of the previous information while learning new data, updating
the system with more new data would reduce the performance of
the previous learning, which poses a greater challenge to the
medical autonomous diagnosis system. To this end (105),
designed a Bayesian generative model for continual learning
based on a fixed pretrained feature extractor. Different from the
previous continual learning method, which stored a small
number of images for each old class, the proposed method
stored the statistical information of each class based on the
previous feature extractor, which can make the model naturally
keep the knowledge of each old class from being used. Therefore,
there was no need to store or regenerate old images. Finally, the
model performed well on both the Skin7 and Skin40 datasets,
and it was able to retain some images from previous classes
during continual learning. The model’s scalability and
generalization have been greatly enhanced.

3.4 Noises From Heterogeneous Devices
and Images
Various noises obtained from heterogeneous sources and skin
disease images pose challenges to the robustness of models in the
task of skin cancer classification. When trained on high-quality
skin lesion datasets, the deep learning model can reach the same
diagnostic level as dermatologists, even surpassing them.
However, since the skin cancer classification model is sensitive
to images captured with different devices, lighting settings, and
backgrounds, it frequently fails to obtain satisfactory
classification results when tested with different images.
Furthermore, photographic images (such as smartphone
images) vary greatly in terms of zoom, perspective, and
lighting, making classification much more difficult.

Therefore, many scholars have worked to integrate
adversarial training into the field of skin cancer classification
to enhance the robustness of the classification models. In (100),
the author introduced a novel Attention-based DenseUnet (Att-
DenseUnet) network combined with adversarial training for skin
lesion segmentation and classification. With the addition of the
attention module, the model can pay more attention to
discriminative features while also successfully suppressing
irrelevant features in the DenseBlocks output. In this way, the
interference of artifacts on skin disease images is reduced. Att-
DenseUnet had two main modules: Segmentor module and
Discriminator module. The segmentor module was a U-Net
Frontiers in Oncology | www.frontiersin.org 1461
shape structure, which contained a down-sampling path, up-
sampling path, and related attention module to ensure the
information transfer between different layers. Additionally, it
adopted an attention module to focus on the essential features
and speed up the training process. The discriminator module
employed the adversarial training to impose the segmentor
module to obtain diverse features with different sizes and
shapes and direct the attention module to concentrate on the
multiscale lesions. Besides, they used the adversarial loss to
prevent overfitting by providing the regularization term for the
networks. Finally, the results showed that this network achieved
excellent performance and was robust enough for different skin
image datasets. In clinical applications, it has been discovered
that noises that are difficult for humans to detect frequently cause
significant interference to the diagnostic model, limiting the
utility of deep learning in the actual world. To improve the
model’s robustness (97), performed adversarial training on
MobileNet and VGG-16 using the innovative attacking models
FGSM and PGD for skin cancer classification. Firstly, two white-
box attacks based on Projected Gradient Descent (PGD) and Fast
Gradient Sign Method (FGSM) were used to test the robustness
of these models. Then, to increase the robustness of these models,
the author did the adversarial training based on PGD against
white-box attacks. In the end, the results showed that the
robustness of these models significantly improved. To further
increase the difficulty of adversarial attacks instead of simple
adversarial attacks (101), used the more realistic and riskier
Universal Adversarial Perturbation (UAP) to adversarially train
seven classification models (VGG-16, VGG-19, ResNet-50,
Inception ResNet-V2, DenseNet-21, and DenseNet-169).
During the adversarial attack phase, the author used an
iterative algorithm to generate perturbations for non-targeted
and targeted attacks and the Fast Gradient Sign Method (FGSM)
was used to generate perturbations for input images. After that,
they conducted adversarial retraining to improve the robustness
of these seven models. The results showed that these models were
easily deceived when applied to adversarial attacks. In addition,
they found the limited effect of adversarial retraining on non-
targeted perturbations. Although adversarial retraining
considerably lowered the vulnerability to adversarial
perturbations in targeted attacks, it did not totally avoid it.

3.5 Toward Faster and More Efficient
Classification Models
Although an increasing number of deep learning algorithms have
been successfully applied to skin cancer classification with
excellent classification results, the computational complexity of
the model still needs to be considered. Firstly, due to
improvements in imaging technology, many skin disease
images with high resolution have large pixels. For example,
histological scans are made up of millions of pixels, and their
resolution is often larger than 50,000 × 50,000 (123). As a result,
training them takes longer time and additional computing
resources. Secondly, the computational complexity in the deep
learning model is increasing as its accuracy improves, which
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demands their implementation to various medical equipment or
mobile devices at a higher cost. Here we introduce three latest
methods when designing an effective network for skin
cancer classification.

Over the past few years, many Lightweight Convolutional
Neural Networks have been designed and successfully applied in
skin cancer classification to meet the demands of practical
applications. Subsequently, many scholars used lightweight
CNN for the task of skin cancer classification and successfully
employed it to various mobile devices. For example (107),
proposed an automated classification method based on
MobileNet and successfully deployed it on an Android
application or a website for public use. With the vigorous
development of mobile health (mHealth), more and more
mobile applications are designed for cancer classification and
prediction. However, the application of automatic classification
of skin cancer is still limited. To solve this problem (116),
proposed an innovative expert system based on SqueezeNet,
namely, “i-Rash,” to classify four classes of skin diseases in real
time. Due to the limited size of “i-Rash” (i.e., 3 MB), identifying
an unknown image for the system only took 0.09 s. Inspired by
predecessors (111), proposed a novel method that incorporated
attention residual learning (ARL) mechanism to EfficientNet
with fewer parameters. Besides, they also investigated how the
mechanism related to the existing attention mechanisms:
Squeeze and Excitation (SE). Through the comparison of
experimental results between models with and without SE,
they speculated that the attention module accounts for a large
portion of EfficientNet’s outstanding performance. What is
more, the addition of ARL increased the accuracy of the
EfficientNet and its variance. In (112), three different
lightweight models (including MobileNet, MobileNetV2,
NASNetMobile) were adopted for skin cancer classification.
To find the model with the best performance, they tested a
total of nine models with three different batch sizes. In the end,
they found that the NASNetMobile model showed the best
performance with a batch size of 16. Meanwhile, they
benchmarked the lightweight models with fewer parameters
and less computational time.

Pruning is an effective way to remove parameters from an
existing network to maintain the accuracy of the network while
increasing its efficiency (124). To enable CNN to be used in
medical devices with limited power and resources (114), built a
pruning framework to simplify the complicated architectures by
choosing the most informative color channels in skin lesion
detection. The proposed method is to achieve two purposes:
removing redundant color channels and simplifying the whole
network. Firstly, all color channels were put into the network.
Then the weights that associated with the non-essential color
channels were deleted to select the most informative color
channel. After that, to generate a simplified network, they
utilized CNN models as the target network and trained them
on the chosen color channels. Besides, the requirements of these
models were calculated from hardware perspectives to analyze
the complexity of various networks. Finally, results showed that
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this color channel pruning strategy improved segmentation
accuracy while also simplifying the network. Designing an
efficient and generalizable deployment strategy is an extremely
challenging problem for lightweight networks. To this end (109),
proposed a weight pruning strategy for lightweight neural
networks to make up for the accuracy loss and improve model
performance and reliability in the skin cancer classification. Five
l ightweight CNNs, namely , SqueezeNet , MnasNet ,
MobileNetV2, ShuffleNetV2, and Xception, were investigated
in this task. Firstly, a dense–sparse–dense (DSD) training
strategy was used to avoid the underfitting and high bias of the
networks. Then, a detailed analysis was used for building a
pruning method including not just pruning connections with
various relations but also reviewing a novel pruning mechanism
that can remove the weights according to the distribution in each
layer adaptively. In the end, the pruning strategy achieved higher
accuracy and less computation compared with unpruned
networks (110) . des igned a new pruning method
“MergePrune” to reduce the computational cost of retraining
the network by combining pruning and training into a single
stage. Firstly, different units were assigned to learn each domain
independently as they contribute differently to the classification
result. Then, for one domain, determined culprit network units
with high “culpability” scores were pruned and then reset and
assigned to learn new domains. At the same time, non-culprit
units were preserved. MergePrune was implemented to reduce
the amount of computation and improve the efficiency of the
classification model. Finally, the results showed that the network
can perform accurately and effectively on real-world clinical
imaging data with various domains, even with high
pruning ratios.

Knowledge distillation is the process of distilling information
from a huge model or group of models to a smaller model that
could be successfully implemented with real-world restrictions
(106, 125). proposed a knowledge distillation-based method that
enabled to transfer knowledge between models simultaneously in
skin cancer classification and brain tumor detection. Firstly, a
pretrained ResNet-50 was chosen as a base model as its excellent
performance out of the box. Then, with the significant degree of
resemblance across the images in the medical image dataset, they
let the knowledge transfer only between the two bottom-most
layers. As a result, high-level visual comprehension was
preserved, and information was added to the granular
distinction in this way. The findings of the experiments were
revealed in order to gather remote knowledge and enhance global
accuracy; some local accuracy was lost. To improve the
robustness and reduce the computational cost of the model
(115), proposed a knowledge distillation method based on
curriculum training in distinguishing herpes zoster from other
skin diseases. Firstly, three kinds of model, namely, basic models,
mobile models, and ensemble models, were chosen for
benchmark. Then, to improve the performance of a single
network, an ensemble knowledge distillation was utilized. This
allowed the student network to learn more robust and
representative features from the network while keeping a low
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computational cost. After that, they proposed curriculum
training for ensemble knowledge distillation in order to distill
ensemble teachers more efficiently with an adaptive learning
technique. In the end, the results showed that the proposed
method achieved improved performance while obtaining
higher efficiency.

Transformer (126) is a deep learning model designed by the
Google team in 2017 that was originally utilized in Natural
Language Processing (NLP) and is now frequently employed in
medical image processing, such as skin lesion images. It uses the
self-attention mechanism to weigh the relevance of different
parts of the input data series, resulting in shorter training
periods and improved accuracy (126, 127). The introduction of
the attention mechanism has generated great interest in the
research community, but there is still a lack of systematic ways
to select hyperparameters that guarantee model improvement.
To this end (108), presented an assessment of the effectiveness
for the attention module and self-attention module in skin
cancer classifications based on ResNet architecture. Among the
two modules, the attention module was used to recompute the
features of the input tensor in each layer. The self-attention
module was used to connect multiple positions of input images
to obtain different representations of the input. In the experiment
stage, the author investigated and compared a variety of
alternative attention mechanisms with images from the
HAM10000 dataset. In the end, the results showed that many
of the self-attention structures outperformed the ResNet-based
architectures, while containing fewer parameters. At the same
time, applying the attention mechanism reduced the image noise;
however, it did not behave consistently across different structural
parameters. In solving the skin cancer classification problem,
people often treat it as a simple classification task, ignoring the
potential benefits of lesion segmentation. To this end (113),
proposed an approach that combined the attention module with
the CNNmodule for skin cancer classification. The CNNmodule
was in charge of getting lesion texture information, while the
attention module was responsible for obtaining context
information such as the shape and size of the lesion. In
addition, dual-task and attended region consistency losses were
adopted to mediate the classification and segmentation heads
without pixel-level annotation, which increased the robustness of
the model when it trained with various augmented images.
Finally, MT-TransUNet achieved excellent performance in the
skin lesion segmentation and classification. At the same time, it
preserved compelling computational efficiency and speed.
4 CONCLUSION

With the development of science and technology, the diagnosis
accuracy and efficiency for skin cancer classification are
constantly improving. In the previous clinical diagnosis
scenarios of skin cancer, the final diagnosis often depends on
the imaging quality and the experience of dermatological experts,
which is highly subjective and has a high rate of misdiagnosis.
Frontiers in Oncology | www.frontiersin.org 1663
With the advent of machine learning, various CAD systems have
been designed to aid the dermatologists to diagnose skin cancer
diseases. In some skin cancer classification tasks, these CAD
systems achieved excellent performance by utilizing handcrafted
features. Recently, with the success of deep learning in medical
image analysis, several researchers have applied deep learning
methods for skin cancer classification in an end-to-end manner
and achieved satisfactory results. It is expected that in the future,
artificial intelligence and the diagnosis of skin cancer diseases
would become closely associated.

In this study, we present a comprehensive overview of the
most recent breakthroughs in deep learning algorithms for skin
cancer classification. Firstly, we introduced three different types
of dermatological images used in diagnosis and some commonly
used datasets. Next, we present the applications of typical CNN-
based methods in skin cancer classification. After that, we
introduce several frontier problems in the skin cancer
classification task, such as data imbalance and limitation,
cross-domain adaptability, model robustness, and model
efficiency, along with relevant deep learning-based approaches.
Finally, we provide a summary of the entire review. We draw the
key information as follows:

• Skin cancer develops as a result of uncontrolled cell
proliferation in the skin. It frequently appears on sun-
exposed skin. The three major types of skin cancers are
basal cell carcinoma (BCC), squamous cell carcinoma
(SCC), and melanoma. Early skin cancer classification
increases the chances of a successful treatment (refer to
Section 1 for more information).

• Clinical images, dermoscopic images, and histopathological
images are three common types of images used for skin
disease diagnosis. Among them, the most common forms of
images are dermoscopy images. With the growing need for
medical imaging resources in academia, more and more
datasets are becoming publicly available. We list several
popular datasets for skin-disease images along with works
based on these datasets. However, compared with natural
image datasets, the diversity and quantity of skin-disease
datasets are still very limited, which also brings great
challenges to the automatic diagnosis of skin cancer (refer
to Section 2 for more information).

• When using CNN-based methods for skin cancer
classification, VGGNet, GoogleNet, ResNet, and their
variants are the most often used deep learning models.
Also, ensemble learning was proposed to limit the error
generated by only a single model and achieved satisfactory
results. Although various deep learning models have
performed admirably on skin cancer classification tasks,
several challenges still exist and need to be resolved, such as
imbalanced datasets, a lack of labeled data, cross-domain
generalization ability, noisy data from heterogeneous
devices and images, and how to design effective models for
complicated classification tasks. To address the challenges,
methods include generative adversarial networks, data
augmentation, designing new loss functions, transfer
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learning, continual learning, adversarial training, lightweight
CNN, pruning strategy, knowledge distillation, and
transformer. It can be expected that AI has the potential to
play an active role in a paradigm shift in skin cancer diagnosis
in the near future (refer to Section 3 for more information).

In comparison to other comparable reviews, this paper
presents a comprehensive review in the topic of skin cancer
classification with a focus on contemporary deep learning
applications. It can be seen that the general evolutionary trend
of these frameworks is structured, lightweight, and multimodal.
With the help of this essay, one can gain an intuitive
understanding of the core principles and issues in this field.
Furthermore, anyone eager to engage in this field in the future
should explore a number of different approaches to dealing with
these issues. It is believed that the problems described above will
become the research hotspots of scholars for a long time to come.
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Tumor cellularity beyond the
visible in soft tissue sarcomas:
Results of an ADC-based, single
center, and preliminary
radiomics study
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Simone Mocellin2,3, Antonella Brunello4, Marco Rastrelli 2,3

and Roberto Stramare1

1Department of Medicine – DIMED, University of Padova, Padova, Italy, 2Soft-Tissue, Peritoneum
and Melanoma Surgical Oncology Unit, Veneto Institute of Oncology - IOV Istituto di Ricovero e
Cura a Carattere Scientifico (IRCCS), Padova, Italy, 3Department of Surgery, Oncology and
Gastroenterology (DISCOG), University of Padua, Padua, Italy, 4Department of Oncology, Medical
Oncology 1 Unit, Veneto Institute of Oncology - IOV Istituto di Ricovero e Cura a Carattere
Scientifico (IRCCS), Padua, Italy
Purpose: Soft tissue sarcomas represent approximately 1% of all malignancies,

and diagnostic radiology plays a significant role in the overall management of

this rare group of tumors. Recently, quantitative imaging and, in particular,

radiomics demonstrated to provide significant novel information, for instance,

in terms of prognosis and grading. The aim of this study was to evaluate the

prognostic role of radiomic variables extracted from apparent diffusion

coefficient (ADC) maps collected at diagnosis in patients with soft tissue

sarcomas in terms of overall survival and metastatic spread as well as to

assess the relationship between radiomics and the tumor grade.

Methods: Patients with histologically proven soft tissue sarcomas treated in our

tertiary center from 2016 to 2019 who underwent an Magnetic Resonance (MR)

scan at diagnosis including diffusion-weighted imaging were included in this

retrospective institution review board–approved study. Each primary lesion

was segmented using the b50 images; the volumetric region of interest was

then applied on the ADC map. A total of 33 radiomic features were extracted,

and highly correlating features were selected by factor analysis. In the case of

feature/s showing statistically significant results, the diagnostic accuracy was

computed. The Spearman correlation coefficient was used to evaluate the

relationship between the tumor grade and radiomic features selected by factor

analysis. All analyses were performed applying p<0.05 as a significant level.
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Results: A total of 36 patients matched the inclusion criteria (15 women; mean

age 58.9 ± 15 years old). The most frequent histotype was myxofibrosarcoma

(16.6%), and most of the patients were affected by high-grade lesions (77.7%).

Seven patients had pulmonary metastases, and, altogether, eight were

deceased. Only the feature Imc1 turned out to be a predictor of metastatic

spread (p=0.045 after Bonferroni correction) with 76.7% accuracy. The value

-0.16 showed 73.3% sensitivity and 71.4% specificity, and patients with

metastases showed lower values (mean Imc1 of metastatic patients -0.31).

None of the examined variables was a predictor of the overall outcome

(p>0.05, each). A moderate statistically significant correlation emerged only

between Imc1 and the tumor grade (r=0.457, p=0.005).

Conclusions: In conclusion, the radiomic feature Imc1 acts as a predictor of

metastatic spread in patients with soft tissue sarcomas and correlates with the

tumor grade.
KEYWORDS

radiomics, soft tissue sarcoma, magnetic resonance, tumor grade, metastasis
Introduction

Soft tissue sarcomas are rare tumors representing

approximately 1% of all malignancies, and diagnostic

radiology plays a significant role not only at diagnosis and

staging but also during follow-up (1–3). In particular, MR

imaging, because of its intrinsic soft tissue contrast, is

considered the main tool for investigating the primary site.

Furthermore, this technique carries additional advantages due

to the possibility to perform quantitative and functional

analyses. In fact, the information about tumor perfusion,

chemical composition, and cellularity can be easily assessed by

dynamic contrast-enhanced (DCE) techniques, spectroscopy,

and diffusion-weighted imaging (DWI), respectively (3–9).

Nowadays, DWI is considered crucial in oncological imaging

in general (10, 11). For soft tissue sarcomas, it has been

demonstrated that it also contributes in distinguishing

recurrences from postsurgical scars, improves specificity in

defining tumor margin infiltration, and predicts the response

to treatment (8–10). Despite these encouraging results, potential

pitfalls and controversies must be addressed, especially for

myxoid tumors due to their high mucin content. In fact, in

this case, the distinction between benign and malignant lesions

by DWI could be hampered (10).

The recent technical developments allowed radiologists to

move further in their contribution to the overall diagnostic

management of cancer patients as demonstrated by the

increasing use of complex analyses such as histogram and
02
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radiomics. Indeed, these types of computations were

demonstrated to be very useful for different types of tumors

including soft tissue sarcomas, applying various sequences (12–

15). For instance, Corino et al. already showed that the variables

of first order (FOS) extracted from apparent diffusion coefficient

(ADC) maps allow the distinction of the lesions of different

grades. Similar conclusions were drawn by Xu and colleagues

using T1w and T2w fat-sat imaging (15, 16). Using DCE-MRI at

the baseline in patients with high-grade non-metastatic soft

tissue sarcomas, Crombe et al. showed that radiomic variables

have an important prognostic role (17). Lastly, Gao and

colleagues did not predict the response to radiotherapy by

DWI but better predicted the treatment effect score applying

delta radiomics (18).

Despite this growing evidence, up to now, to the best of our

knowledge, the prognostic value of radiomics regarding

metastatic spread has not been fully investigated yet.

Thus, the aim of this study was to evaluate the prognostic

role of radiomic variables extracted from ADC maps collected at

diagnosis in patients with soft tissue sarcomas in terms of overall

survival and metastatic spread as well as to assess the

relationship between radiomics and the tumor grade.
Methods

Patients with histologically proven soft tissue sarcomas

treated in our tertiary center from 2016 to 2019 who
frontiersin.org
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underwent an MR scan at diagnosis by a 1.5 T scanner (Siemens

Avanto 1.5T, Siemens Healthcare, Siemens, Erlangen, Germany)

including an axial short tau inversion recovery–DWI sequence

with 6 mm slice thickness and two b-values (i.e., b50 and b 800)

were examined for this preliminary retrospective single-center

institution review board–approved study. One radiologist with

12 years of experience in musculoskeletal imaging segmented

each lesion along tumor margins using the b50 images because

of the higher spatial resolution than the ADC map. The

volumetric region of interest was then applied on the map

(Figure 1). From each segmented volume, the 33 radiomic

features of two classes were extracted: intensity-based features
Frontiers in Oncology 03
70
(FOS) and texture features [gray-level co-occurrence matrix

(GLCM as well as gray-level run length matrix (GLRLM)].

The segmentation and extraction of radiomics features have

been performed by an open-source software (3D Slicer, www.

slicer.org).
Statistical analysis

Descriptive statistics were applied for demographics, tumor

histotype, site, grade, and metastatic spread. Factor analysis was

applied to select highly correlating radiomic features. Then,
FIGURE 1

Representation of the segmentation process and data extraction from the primary lesion of patients with soft tissue sarcoma included in the study.
In particular, it is hereby represented by a 76-year-old woman affected by a myxofibrosarcoma of the right lower leg. The axial b50 DWI images
have been used for segmentation of the entire lesion. The volumetric segmentation has been then applied on the apparent diffusion coefficient
(ADC) map and the extraction of 33 radiomic features performed. Factor analysis allowed the selection of five highly correlating features.
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stepwise regression analysis was used to evaluate if any of the

selected radiomic variables had a predicting role on the overall

outcome (dead/alive) and/or the metastatic spread. Moreover,

the Bonferroni correction was applied to correct the statistical

significance level for multiple tests. In the case of feature/s

showing statistically significant results, the diagnostic accuracy

was computed using ROC curves and the value/s with the

highest Youden index were selected as a cut-off. The Spearman

correlation coefficient was used to evaluate the relationship

between the tumor grade and all radiomic features selected by

factor analysis.

To evaluate the robustness of the proposed method, all

segmentations and data extraction were repeated by a second

reader with 4 years of experience in oncological imaging and the

intraclass correlation coefficient (ICC) of the variables highly

correlating at factor analysis were computed. ICC values >.750

were considered excellent (19).

All statistical analyses were performed with SPSS (IBM SPSS

Statistics version 27, IBM Armonk, NY, USA), applying p<0.05

as a significant level.
Results

From an overall amount of 80 cases treated in our center, 36

patients matched the inclusion criteria (15 women; mean age

58.9 ± 15 years old) and were examined. The characteristics of

the examined population are summarized in Table 1. The most

frequent histotype was myxofibrosarcoma (six patients, 16.6%),

and most of the patients were affected by high-grade lesions (i.e.,

28 had grade III lesions, 77.7%). Seven patients had pulmonary

metastases, and, altogether, eight were deceased. On average, the

survival was of 56.9 ± 22 months. Most of the lesions affected the

lower limbs (29, 80.5%).

Factor analysis allowed the extraction of five highly

correlating variables: three of first order (kurtosis, skewness,

and uniformity) and two of second order (informational

measure of correlation (Imc1) and high gray-level

run emphasis).

Only the feature Imc1 turned out to be a predictor of

metastatic spread (p=0.045 after Bonferroni correction) with

76.7% accuracy (Figure 2). The value -0.16 showed 73.3%

sensitivity and 71.4% specificity, and patients with metastases

showed lower values (mean Imc1 of metastatic patients -0.31).

None of the examined variables was a predictor of the overall

outcome (p>0.05 each).

A moderate statistically significant correlation emerged only

between Imc1 and the tumor grade (r=0.457, p=0.005) (Figure 3).

The proposed method of the segmentation and extraction of

radiomic features showed high reproducibility: kurtosis ICC =

.870 [95% CI,.748 –.933], skewness ICC = .765 [95%
Frontiers in Oncology 04
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CI,.544 –.879], uniformity ICC = .814 [95% CI,.640 –.904],

Imc1 ICC = .786 [95%CI,.584–.890], and high gray-level run

emphasis ICC=.842 [95% CI,.692 –.918].
Discussion

To the best of our knowledge, this is one of the largest studies

investigating the role of radiomic features extracted from the

ADC maps of patients with soft tissue sarcomas at diagnosis

demonstrating that the Imc1 is a predictor of metastatic spread

and correlates with the tumor grade. Similar results were

obtained using T1w and T2w fat-sat sequences by other

groups. For instance, Tian and colleagues, applying a machine

learning model, and Vallieres et al., associating the above-

mentioned MR sequences with positron emission tomography

(PET) information, obtained an early detection of pulmonary

metastases (13, 20). This last evidence, together with other

previous promising results provided by PET/MR-based

histogram analyses and texture features, suggests that the role

of hybrid imaging should be further assessed, especially about
TABLE 1 Characteristics of the examined population.

Gender(female/male) 14/22

Age(years) 58.9 ± 15 (mean ± SD)(range 18–82)

Histotype 6 myxofibrosarcoma

6 undifferentiated pleomorphic sarcoma

5 leiomyosarcoma

4 myxoid liposarcoma

3 aggressive fibromatosis

2 synovial sarcoma

2 solitary fibrous tumor

2 liposarcoma

2 round cell liposarcoma

1 angiosarcoma

1 hemangioendothelioma

1 malignant peripheral nerve sheath tumor

1 spindle cell sarcoma

Site 29 lower limbs

3 upper limbs

2 pelvis

2 thorax

1 neck

Grade 3 grade I

5 grade II

28 grade III

Metastatic(yes/no) 7/29

Deceased(yes/no) 8/28

Survival in months(median) 55
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the possibility to simultaneously collect data regarding metabolic

activity and functional information (12, 20).

Regarding, in particular, the Imc1 feature, it quantifies the

complexity of the texture and its importance has been

previously demonstrated in several studies on different types

of cancer (21–24). For instance, our results are in line with

those of Liao and colleagues who identified more negative

values in patients with brain metastasis due to non-small lung

cancer with poor local tumor control, thus suggesting that

tumors with high intralesion heterogeneity might be associated

with a worse clinical course, in our study represented by the

occurrence of metastasis. Moreover, together with other

features, it was part of a “radiomic signature” indicating

patients with ground glass nodules at risk for invasive

adenocarcinoma (25). The feature Imc1 may even be

considered a novel biomarker of metastatic spread in patients

with soft tissue sarcomas considering that it showed an

excellent repeatability in our dataset and strong robustness in

a previously published computed tomography–based

computational model (26). Nevertheless, it should be

considered that further studies on a larger population are

needed to fully assess the hereby presented evidence; since,

for instance, Corino et al., in a group of 19 patients with soft

tissue sarcomas, showed that only the features of the first order

were the best classifier of the tumor grade (15).

For the overall role of radiomics for this heterogeneous

group of tumors, as previously underlined, different MR
Frontiers in Oncology 05
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sequences have been used with very promising results (17, 18)

and probably not only more comparisons among sequences are

necessary (27), but it should also be assessed if a model

combining information deriving from multiple sequences

could provide additional and more robust results.

In contrast to part of the literature, in our study, none of

the selected radiomic features turned out to be a predictor of the

overall outcome. This discrepancy might be due to the

heterogeneity of our sample in terms of the histotype and

grade. In fact, radiomics acted as prognostic factor in selected

groups like patients with myxoid and liposarcomas only and

patients with high-grade lesions (28–30). Moreover, in the

above-mentioned studies, other types of sequences (i.e., T1w,

T2 fat-sat, or DCE-MRI) than DWI have also been used. We

strongly encourage further investigation in this direction to also

gain new knowledge about the potential prognostic role of this

sequence in the specific subgroups of patients.

This study is affected by several limits. First, as noted above,

the sample size and the large variety of histotypes did not allow

to investigate the predictive role of this technique on the type of

tumor and the relationship between different histotypes and

radiomic features. Moreover, the small population also

hampered the subdivision of our sample in test and validation

sets. Certainly, the rarity of the disease contributed to these flaws

and multicenter studies are necessary to fill these voids and

provide further insights into the role of radiomics for

these tumors.
FIGURE 2

Receiver operating curves (ROCs) demonstrating the accuracy of the radiomic feature Imc1 in predicting the occurrence of metastases in
patients with soft tissue sarcomas.
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Then, the lower spatial resolution of DWI in contrast to

conventional imaging should be considered. Nevertheless, as

previously mentioned, analyses showed a high repeatability and

several ex vivo and in vivo studies demonstrated a high reliability

of radiomics using this type of sequence (31, 32).

In conclusion, the radiomic feature Imc1 acts as a predictor

of metastatic spread in patients with soft tissue sarcomas and

correlates with the tumor grade. Further studies on a larger

sample and including delta-radiomics analyses at follow-up are

expected to provide new insights on the potential impact of this

evidence on the therapeutic and overall management of this rare

group of tumors.
Frontiers in Oncology 06
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FIGURE 3

Scatter plots showing the relationship among the radiomic features selected by factor analysis and the tumor grade (A–E). Only the feature
Imc1 showed a moderate statistically significant correlation (A).
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Shanghai Jiao Tong University School of Medicine, Shanghai, China
Purpose: The substratification of high-risk neuroblastoma is challenging, and

new predictive imaging biomarkers are warranted for better patient selection.

The aim of the study was to evaluate the prognostic role of PET-based

intratumor heterogeneity and its potential ability to improve risk stratification

in neuroblastoma.

Methods: Pretreatment 18F-FDG PET/CT scans from 112 consecutive children

with newly diagnosed neuroblastoma were retrospectively analyzed. The

primary tumor was segmented in the PET images. SUVs, volumetric

parameters including metabolic tumor volume (MTV) and total lesion

glycolysis (TLG), and texture features were extracted. After the exclusion of

imaging features with poor and moderate reproducibility, the relationships

between the imaging indices and clinicopathological factors, as well as event-

free survival (EFS), were assessed.

Results: The median follow-up duration was 33 months. Multivariate analysis

showed that PET-based intratumor heterogeneity outperformed

clinicopathological features, including age, stage, and MYCN, and remained

the most robust independent predictor for EFS [training set, hazard ratio (HR):

6.4, 95% CI: 3.1–13.2, p < 0.001; test set, HR: 5.0, 95% CI: 1.8–13.6, p = 0.002].

Within the clinical high-risk group, patients with a high metabolic

heterogeneity showed significantly poorer outcomes (HR: 3.3, 95% CI: 1.6–

6.8, p = 0.002 in the training set; HR: 4.4, 95% CI: 1.5–12.9, p = 0.008 in the test

set) compared to those with relatively homogeneous tumors. Furthermore,

intratumor heterogeneity outran the volumetric indices (MTVs and TLGs) and

yielded the best performance of distinguishing high-risk patients with different

outcomes with a 3-year EFS of 6% vs. 47% (p = 0.001) in the training set and 9%

vs. 51% (p = 0.004) in the test set.

Conclusion: PET-based intratumor heterogeneity was a strong independent

prognostic factor in neuroblastoma. In the clinical high-risk group, intratumor

heterogeneity further stratified patients with distinct outcomes.
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Introduction

Neuroblastoma is the most common extracranial solid tumor

in children and is remarkable for its heterogeneity (1). Risk

stratification using a combination of clinical and biological

factors, such as age at diagnosis, stage, histology, and MYCN

status, is of paramount importance to effectively inform

therapeutic approaches. At the time of presentation, about 60%

of children are classified as high risk (2). The incorporation of

intensive multimodality therapy has increased the 5-year survival

for high-risk neuroblastoma from less than 20% to ~50% (3).

However, a notable subset of patients do not respond to induction

therapy and have a dismal outcome, with a long-term survival of

less than 15% (4). The improved outcome for the survivors has

come at a cost of significant early or long-term toxicity. The early

identification of these different subsets of patients may facilitate a

more precisely tailored treatment, which remains an important

unmet need.

Intratumor heterogeneity, resulting from subclonal genetic

diversity within a tumor, manifests in spatial variation in stromal

architecture and consumption of oxygen and glucose (5). It has

been associated with poor prognosis and predisposes patients to

inferior response to anticancer therapies (6). Medical images can

depict the spatial heterogeneity in individual tumors

andquantify the overall functional characteristics. Various

approaches for the assessment of intratumor heterogeneity in

PET images have been investigated, including simple visual

analysis, histogram quantifying voxel distributions, and texture

features quantifying spatial complexity (7, 8). A growing body of

evidence suggests that PET-based intratumor heterogeneity

might have predictive or prognostic value in various

malignancies (9, 10).
123I-meta-iodobenzylguanidine (mIBG) scan has been the

main imaging modality for neuroblastoma. For high-risk

diseases, however, the limited prognostic value of pretreatment

mIBG score was reported (11, 12). On the other hand, 18F-FDG

PET/CT is increasingly used in neuroblastoma, particularly in

tumors not taking up mIBG. SUVmax has been reported to

correlate with MYCN amplification (13) and may serve as a

prognostic biomarker in neuroblastoma (14, 15). Volumetric

parameters derived from 18F-FDG PET, including metabolic

tumor volume (MTV) and total lesion glycolysis (TLG), were

previously reported as significant prognostic factors in
02
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neuroblastoma (16). To date, there is limited evidence

regarding the role of intratumor metabolic heterogeneity

in neuroblastoma.

Our key objectives were to investigate the prognostic role of

PET-based intratumor heterogeneity and whether it could be

used to further risk-stratify neuroblastoma.
Materials and methods

Patients

This study included 129 consecutive pediatric patients with

histologically proven neuroblastoma between October 2011 and

September 2020. The inclusion criteria were as follows: 1) newly

diagnosed neuroblastoma with no previous anticancer

treatment, 2) underwent baseline 18F-FDG PET/CT scan, 3)

not accompanied by other malignancies, and 4) at least

6 months of follow-up. Patients were excluded if they had

primary intracranial neuroblastoma, ganglioneuroma, no

predominant primary tumor site, refused treatment, or had

received chemotherapy before the PET scan (Figure 1).

Clinicopathological prognostic indices, such as age, stage, risk

stratification, MYCN, lactate dehydrogenase (LDH), and

ferritin, were collected. This retrospective study was approved

by the institutional review board, and the requirement for

informed consent was waived.
PET/CT imaging

18F-FDG was administered at a dose of 5.18 MBq/kg after at

least 4–6 h of fasting. PET/CT scans from the skull to the

proximal thigh were acquired about 60 min after injection

using a Biograph mCT-64 scanner (Siemens). When

metastasis was suspected to involve the extremities, imaging

from the vertex to the toes including the arms was performed.

Chloral hydrate sedation (50 mg/kg) was used 30 min before

scanning for children unable to follow instructions. PET images

were reconstructed using 3D ordered subset expectation

maximization (3 iterations, 24 subsets). CT scans were

acquired with 100-kV tube voltage, automated tube current

modulation, 3-mm slice thickness, and a pitch of 1.5.
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Imaging segmentation
and feature extraction

Segmentation and feature extraction were performed using the

LIFEx software (Version 6.31, http://www.lifexsoft.org). To

investigate the voxel relationships inside the entire tumor,

volumes of interest (VOIs) covering the whole primary tumor

were delineated manually in PET images by a nuclear medicine

physician with more than 11 years of PET/CT experience without

knowledge of clinical information. In some cases, the primary

tumor fused with the metastatic lesions and was delineated with

reference to recent contrast-enhanced CT or MRI images. As PET

has relatively large voxels compared with CT and MRI, each VOI

must contain at least 64 contiguous voxels according to the LIFEx

user guide. Two patients were excluded due to small voxels. Imaging

indices were computed after a resampling step using 64 bins (size

bin of 0.3) without spatial resampling. MTV and TLG with a

threshold of 41% of SUVmax (MTV41%, TLG41%), which has

been reported to correspond best with the actual dimensions of the

tumor for tumor boundary delineation (17), were extracted from

the same VOIs.
Clinical endpoints and risk stratification

Event-free survival (EFS) was calculated as the time from the

start date of cancer treatment to the date of relapse, progression,

or death from any cause. All the patients received risk-adapted
Frontiers in Oncology 03
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treatment according to the Chinese Children Cancer Group-NB-

2009/2014. The risk categorization schema was consistent with

the Children’s Oncology Group protocol (2). Briefly, patients

were classified into low-, intermediate-, and high-risk categories

based on age, stage, and other histopathological factors. High-

risk disease was defined as ≥18 months of age and either

disseminated disease or localized disease with unfavorable

markers, such as MYCN amplification.
Statistical analysis

To determine robust features, half of the patients were

selected randomly and segmented independently by another

nuclear medicine physician with 6 years of PET/CT

experience. We evaluated the reproducibility of features using

a two-way random, absolute agreement intraclass correlation

coefficient (ICC). Using the lower bounds of the 95% confidence

interval (CI) of the ICC value (ICClb95%) (18), the reproducibility

of each feature was categorized as follows: poor, ICClb95% <0.50;

moderate, ICClb95% of 0.50–0.75; good, ICClb95% of 0.75–0.90;

and excellent, ICClb95% ≥0.90. Robust features with good or

excellent reproducibility were qualified for further analysis.

The Mann–Whitney U test and chi-squared test were used for

comparing variables between groups. The Benjamini–Hochberg

stepwise method was performed to control the false discovery rate

and adjusted p-values were calculated. Correlations among the

parameters were determined by the Pearson and Spearman rank
FIGURE 1

Flowchart shows study population selection, with exclusion criteria.
frontiersin.org

http://www.lifexsoft.org
https://doi.org/10.3389/fonc.2022.896593
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Li et al. 10.3389/fonc.2022.896593
correlation. To avoid redundancy, factors with poorer predictive

validity in the pairs of indices that showed correlation coefficient

(r) ≥0.8 were omitted (19, 20). Logistic regression analyses with

forward selection were performed to evaluate the relationship

between imaging indices and MYCN amplification. Then, the

entire cohort was randomly split into a training set (n = 77) and

a test set (n = 35). Prognostic factors were identified by univariate

and multivariable Cox regression analyses in the training set and

then validated in the test set. Receiver-operating characteristic

curve (ROC) analyses and the Youden index were used to

determine the optimal cutoff values. Survival estimates were

evaluated by the Kaplan–Meier analysis and log-rank test. All

statistical analyses were performed using SPSS 25.0 (IBM, Chicago,

IL, USA), except that the adjusted p-values were obtained on R

software (Version 4.0.3, http://www.r-project.org/). A two-sided p-

value <0.05 was considered statistically significant.
Frontiers in Oncology 04
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Results

Patient characteristics

As a result, a total of 112 children were identified. The

patient characteristics are summarized in Table 1. There were 39

girls (median age 34 months, range 1–153 months) and 73 boys

(median age 36 months, range 2–150 months). Ninety patients

had neuroblastoma and 22 had ganglioneuroblastoma (GNB).

Most of them presented disseminated disease (2 with stage 4S, 79

with stage 4). With a median follow-up of 33 months, 51 disease

relapse/progression and 34 deaths occurred. The 3-year EFS rate

was 47%.

All the patients had an FDG-avid primary tumor with amedian

SUVmax of 5.8 (range 1.6–26.5). Seven tumors had SUVmax lower

than 2.5 (1.6–2.4), all of which were higher than the liver
TABLE 1 Patient characteristics.

Characteristics Total (n = 112) Training set (n = 77) Test set (n = 35) p-value
No. (%) No. (%) No. (%)

Median age (months) 37 ± 26 37 ± 28 37 ± 22 0.615

≥18 months 84 (75%) 58 (75%) 26 (74%) 0.906

Sex 0.438

Female 39 (35%) 25 (32%) 14 (40%)

Male 73 (65%) 52 (68%) 21 (60%)

Pathology 0.081

GNB intermixed/well-differentiated 16 (14%) 8 (10%) 8 (23%)

GNB nodular, neuroblastoma 96 (86%) 69 (90%) 27 (77%)

MYCN (n = 90) 0.320

Non-amplified 70 (78%) 48/64 (75%) 22/26 (85%)

Amplified 20 (22%) 16/64 (25%) 4/26 (15%)

Location 0.352

Abdominal and pelvic 92 (82%) 65 (84%) 27 (77%)

Others 20 (18%) 12 (16%) 8 (23%)

Stage 0.889

1, 2, 3, 4S 33 (29%) 23 (30%) 10 (29%)

4 79 (71%) 54 (70%) 25 (71%)

Risk stratification 0.910

Low 7 (6%) 5 (6%) 2 (6%)

Intermediate 26 (23%) 17 (22%) 9 (26%)

High 79 (71%) 55 (71%) 24 (69%)

Laboratory tests

Ferritin ≥92 ng/mla 63/96 (66%) 45/64 (70%) 18/32 (56%) 0.171

LDH ≥587 U/La 51/100 (51%) 36/66 (55%) 15/34 (44%) 0.323

Metabolic parameters

SUVmax 6.3 ± 3.5 6.1 ± 3.2 6.7 ± 4.3 0.488

SUVpeak 4.6 ± 2.4 4.5 ± 2.1 4.8 ± 3.1 0.713

Endpoints

Progression 51 (46%) 33 (43%) 18 (51%) 0.399

Death 34 (30%) 21 (27%) 13 (37%) 0.292
fronti
LDH, lactate dehydrogenase; GNB, ganglioneuroblastoma.
aCutoff values for ferritin and LDH were set according to INRG (2).
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background. High-risk neuroblastoma showed significantly higher

FDG uptake (SUVmax and SUVpeak, p < 0.001) and volumetric

values (MTV, TLG, and TLG41%, all p < 0.001; MTV41%,

p = 0.040) than those with non-high-risk disease (Figure S1).
Imaging feature selection

Sixty-nine imaging features were obtained per VOI. The steps

used to reduce feature dimension are summarized in Table S1.

The ICC revealed that most of the imaging features could be

reproduced well (Table S2). Fifty-one out of the 59 feature pairs

had ICClb95% ≥0.75 (excellent reproducibility in 39 and good

reproducibility in 12) and were qualified for subsequent analyses.
Imaging model for predicting
MYCN amplification

MYCNstatuswasavailable in90patients andwasamplified in20

patients. The majority of imaging features (44/51) were significantly

different between the MYCN-amplified and the non-amplified

groups (Table S3). After false discovery correction, 34 remained

statistically significant. For example, FDG uptake was significantly
Frontiers in Oncology 05
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higher in the MYCN-amplified tumor (SUVmax: 7.9, 95% CI: 6.7–

9.9 vs. 5.1, 95% CI: 4.9–6.6, p < 0.001, adjusted p = 0.005).

The ROC analysis showed that all of the above 34 features

had AUCs higher than 0.7 to predict MYCN amplification.

Histogram_Kurtosis, which reflects the shape of the histogram

distribution relative to a normal distribution, yielded the highest

AUC of 0.853 (p < 0.001). After multicollinearity reduction, nine

features were entered into multivariate logistic regression

analysis. A radiomic model composed of two features

[Histogram_Kurtosis and gray-level non-uniformity from

gray-level zone length matrix (GLZLM_GLNU), which reflects

the non-uniformity of the gray levels of the homogeneous zones

in 3D] was built subsequently, resulting in an AUC of 0.871

(Figure 2, p < 0.001) with the following equation:

Predicted probability = EXP (−0.287 − 0.228 ×

Histogram_Kurtosis + 0.021 × GLZLM_GLNU)/(1 + EXP

(−0.287 − 0.228 × Histogram_Kurtosis + 0.021 × GLZLM_GLNU).
Development of rad-risk to predict EFS

The distribution of key variables including age, stage,

MYCN, and conventional metabolic parameters was similar

between the training and test sets (Table 1). In the training set,
FIGURE 2

Receiver-operating characteristic curve analysis for the prediction of MYCN amplification according to a model composed of two texture features.
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univariate Cox regression analysis revealed that 14 first-order

and 8 second-order indices correlated with EFS (p < 0.05). After

feature dimension reduction, two first-order indices, namely,

SUVmax and Histogram_Entropy reflecting the randomness of

the voxel distribution, were retained (Table 2). Three second-

order indices retained were as follows: one from the gray-level

co-occurrence matrix (GLCM): GLCM_energy, which reflects

the uniformity of gray-level voxel pairs; two from the gray-level

run-length matrix (GLRLM), namely, the gray-level non-

uniformity (GLRLM_GLNU), which measures the non-

uniformity of the gray levels, and run-length non-uniformity

(GLRLM_RLNU), which quantifies the non-uniformity of the

length of the homogeneous runs. The AUCs for SUVmax,

Histogram_Entropy, GLCM_energy, GLRLM_GLNU, and

GLRLM_RLNU to predict progression were 0.611, 0.666,

0.645, 0.689, and 0.733, respectively. Multivariate Cox

regression analyses revealed that GLRLM_RLNU with a cutoff

value of 1,828 and Histogram_Entropy with a cutoff value of 3.3

outperformed other imaging indices and were significant to

predict events. In addition, imaging features extraction was

performed in the high-risk group separately, and the results

are presented in the Supplementary Materials (Supplementary

Data and Figure S2).

Then, patients in the training set and the test set were

d iv ided in to three groups accord ing to whether

GLRLM_RLNU ≥1,828 and Histogram_Entropy ≥3.3: patients

with neither of these two risk factors, those with either one of the

factors, and those with both. Patients with neither or either one

of these factors demonstrated similar survival curves both in the
Frontiers in Oncology 06
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training set and test set (Figure 3A, p = 0.697; Figure 3B,

p = 0.383) and, thus, were combined and categorized as low

rad-risk. Patients with both factors had a significantly worse

prognosis (training set, HR: 6.4, 95% CI: 3.1–13.2, p < 0.001; test

set, HR: 5.0, 95% CI: 1.8–13.6, p = 0.002) and were categorized as

high rad-risk. The 3-year EFS of low vs. high rad-risk was 71%

vs. 6% in the training set and 69% vs. 17% in the test set,

respectively (both p < 0.001).
Multivariate analysis

Clinicopathological factors including age, stage, MYCN,

LDH, and ferritin significantly correlated with EFS in the

training set (Table 2). As MYCN status, LDH, and ferritin

were unavailable in several patients, we firstly integrated rad-

risk with age and stage into the multivariate analysis. After

adjustment for clinical covariates (Table 3), rad-risk obtained

independent significance with HR of 4.3 (95% CI: 2.0–9.1,

p < 0.001), while age showed marginal significance (HR: 6.8,

95% CI: 0.9–52.5, p = 0.066). After incorporating MYCN into the

model, only rad-risk remained significant (HR: 8.8, 95% CI: 3.7–

21.0, p < 0.001). Furthermore, we integrated LDH and ferritin

into the multivariate analyses separately or together, and rad-

risk was the only factor that retained significance.

Similarly, after adjusting for clinicopathological variables

separately or together in the multivariate analysis, high rad-

risk was confirmed to be the most significant factor to predict

EFS in the test set (Table 3).
TABLE 2 Univariate Cox regression analyses for event-free survival.

Variables Training set (n = 77) Test set (n = 35)

HR 95% CI p-value HR 95% CI p-value

Clinicopathological factors

Age ≥18 months 13.2 1.8–96.8 0.011 2.1 0.6–7.3 0.246

Stage 4 vs. 1, 2, 3, 4S 4.5 1.6–12.9 0.005 2.5 0.6–10.9 0.224

MYCN amplificationa 2.8 1.2–6.4 0.014 0.5 0.1–4.1 0.527

LDH ≥587b 3.0 1.3–6.9 0.008 3.3 1.3–8.6 0.015

Ferritin ≥92c 3.0 1.1–7.8 0.026 1.9 0.7–5.3 0.246

First-order imaging indices

SUVmax ≥5.5 3.2 1.5–6.7 0.003 2.9 1.0–8.1 0.049

Histogram_Entropy ≥3.3 3.8 1.8–7.9 <0.001 3.5 1.1–10.6 0.029

Second-order imaging indices

GLCM_Energy ≤0.02 3.5 1.7–7.1 0.001 2.1 0.8–5.6 0.146

GLRLM_RLNU ≥1,828 5.1 2.3–11.3 <0.001 5.7 2.0–16.4 0.001

GLRLM_GLNU ≥575 2.9 1.5–5.8 0.002 2.1 0.6–6.6 0.224
fronti
CI, confidence interval; HR, hazard ratio; GLCM, gray level co-occurrence matrix; GLNU, gray-level non-uniformity; GLRLM, gray-level run-length matrix; rad-risk, radiomic risk; RLNU,
run-length non-uniformity.
aMYCN amplification status was available in 64 patients in the training set and 26 in the test set.
bLDH was available in 66 patients in the training set and 34 in the test set.
cFerritin was available in 64 patients in the training set and 32 in the test set.
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Refinement of risk stratification
in neuroblastoma

None of the seven patients with clinical low-risk diseases had

a high rad-risk, and only 2 of the 26 patients with clinical

intermediate-risk diseases had a high rad-risk, indicating that

the majority of patients with clinical non-high-risk had a

relatively homogeneous tumor. Due to limited cases with a

high rad-risk in the clinical non-high-risk group, the
Frontiers in Oncology 07
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significance of rad-risk in the risk substratification in this

group could not be statistically analyzed.

Seventy-nine patients had high-risk neuroblastoma: 55 patients

in the training set and24 in the test set.We further evaluatedwhether

adding rad-risk could refine risk stratification and compared it with

volumetric indices, including MTV, MTV41%, TLG, and TLG41%.

In the training set, ROC analyses were performed (Figure S3) and

optimal cutoff values were determined to be 120 ml for MTV, 65 ml

for MTV41%, 426 g for TLG, and 141 g for TLG41%, respectively.
TABLE 3 Multivariate Cox regression analyses for event-free survival.

Models Training set Test set

HR 95% CI p-value HR 95% CI p-value

Multivariate model 1a n = 77 n = 35

Age ≥18 months 6.8 0.9–52.5 0.066 / / /

High rad-risk 4.3 2.0–9.1 <0.001 5.0 1.8–13.6 0.002

Multivariate model 2b n = 64 n = 26

High rad-risk 8.8 3.7–21.0 <0.001 6.7 1.7–26.0 0.007

Multivariate model 3c n = 66 n = 34

Age ≥18 months 6.5 0.8–49.9 0.074 / / /

LDH ≥587 U/L / / / 3.2 1.1–8.7 0.026

High rad-risk 4.4 2.0–9.6 <0.001 4.8 1.7–13.6 0.003

Multivariate model 4d n = 64 n = 32

Age ≥18 months 7.0 0.9–54.1 0.062 / / /

High rad-risk 3.9 1.8–8.5 <0.001 4.4 1.6–12.2 0.004

Multivariate model 5e n = 51 n = 25

High rad-risk 8.3 3.2–21.4 <0.001 12.9 2.6–63.6 0.002
fronti
aMultivariate model 1 includes age, stage, and rad-risk (n = 112).
bMultivariate model 2 includes age, stage, MYCN, and rad-risk (n = 90).
cMultivariate model 3 includes age, stage, LDH, and rad-risk (n = 100).
dMultivariate model 4 includes age, stage, ferritin, and rad-risk (n = 96).
eMultivariate model 5 includes age, stage, MYCH, LDH, ferritin, and rad-risk (n = 76).
BA

FIGURE 3

Kaplan–Meier event-free survival (EFS) curves in children with neuroblastoma having neither, one, or both imaging risk factors—GLRLM_RLNU
≥1,828 and Histogram_Entropy ≥3.3—in the training set (A) and the test set (B).
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As shown in Figure 4, all of the five imaging indices

significantly correlated with EFS in the training set. The 3-year

EFS for patients with high vs. low MTV, MTV41%, TLG, and

TLG41% were 17% vs. 61% (p = 0.013), 14% vs. 53% (p = 0.015),

18% vs. 40% (p = 0.014), and 16% vs. 61% (p = 0.025),

respectively. However, the volumetric features failed to retain

significance in the test set, except TLG (Figure 5). Rad-risk

yielded the best performance to distinguish high-risk patients

with different outcomes, with a 3-year EFS of 6% vs. 47%

(p = 0.001, Figure 4E) in the training set and 9% vs. 51%

(p = 0.004, Figure 5E) in the test set. High rad-risk was

associated with a 2.3–3.4 times higher risk of progression (HR:

3.3, 95% CI: 1.6–6.8, p = 0.002 in the training set; HR: 4.4, 95%

CI: 1.5–12.9, p = 0.008 in the test set). Two patients with high-

risk neuroblastoma and a high or low rad-risk are presented

in Figure 6.
Discussion

The substratification of high-risk neuroblastoma is challenging,

and new predictive biomarkers are warranted for better patient

selection. In this study, we confirmed that PET-based intratumor

heterogeneity independently correlated with EFS in neuroblastoma

both in the training set and the test set. It further improved the risk

stratification in high-risk neuroblastoma, with a 3-year EFS of 6%–

9% for the highly heterogeneous tumors compared to 47%–51% for

the relatively homogeneous ones.

Radiomics, extracting quantitative features from medical

images, has rapidly evolved throughout these years. Compared

to histological biopsy only capturing a small proportion of tumor

tissue that could underestimate the mutational burden (21), a

great advantage of radiomics is its ability to visualize the

characteristics of the whole tumor non-invasively. It fully

depicts spatial intratumor heterogeneity, which has been

associated with poor prognosis. Studies showed that radiomic

features in PET images correlated with heterogeneity at the

cellular and genomic levels and had significant prognostic value

in various malignancies (22–24). On the other hand, tumor

necrosis results from increased tumor size, intratumor hypoxia,

and nutrient deprivation. Both the presence and the extent of

necrosis correlated with poor prognosis (25, 26). A necrotic core

appears as non-FDG-avid area within the tumor. To investigate

the spatial voxel relationships inside the entire tumor, the current

study examined the VOI covering the whole mass (including the

necrotic region) instead of putting a threshold of SUVmax on VOI

segmentation. Our results partly confirmed previous studies that

texture features significantly correlated with tumor size or volume

(27, 28). We found four second-order indices reflecting tumor

heterogeneity, including GLRLM_RLNU, highly correlated with

volumetric indices. The latter is usually considered a reflection of

tumor burden, while texture features correlate with tumor

heterogeneity. A larger tumor results in a higher level of
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intratumor hypoxia and necrosis and leads to higher spatial

complexity and heterogeneity (27). Hatt et al. found that

radiomic heterogeneity quantification provided valuable

complementary information for large tumors (>10 cm3) (27). In

our study, only one patient had a tumor volume less than 10 ml.

The median volume for our whole cohort was 160 ml.

MYCN amplification is the most common genomic alteration

in neuroblastoma, occurring in approximately 20% of the patients

(29). It is highly associated with advanced stage and poor

prognosis; thus, it has been incorporated into the mostly used

neuroblastoma protocol. Radiomic models derived from contrast-

enhanced CT have been shown to accurately predict MYCN

amplification (30–32). Wu et al. (31) suggested that three-phase

CT had a higher value than non-contrast CT scan, which could be

explained by tumor angiogenesis promoted by MYCN

amplification. Different from the density heterogeneous and

vascular structure complexity depicted by CT scans, PET

imaging semi-quantifies the glucose consumption of tumor

parenchyma and reflects the uneven spatial distribution of

cellular metabolism, hypoxia, necrosis, and proliferation. In our

study, MYCN amplification occurred in 22% of the patients. Two

patients had divergent MYCN results, potentially resulting from

the heterogeneity of the tumor or underestimation of the

mutational burden by biopsy bias. In line with a prior study by

Sung et al. (33), we found that SUVmax and TLG had the

potential to predict MYCN with AUCs of 0.771 and 0.776,

respectively. However, histogram metrics and several second-

order indices showed superior performance. Consequently, a

radiomic model containing two PET features, namely,

Histogram_Kurtosis and GLZLM_GLNU, was built and showed

the strongest predictive power with an AUC of 0.871.

Histogram_Kurtosis reflects the shape of the histogram

distribution relative to a normal distribution. GLZLM_GLNU

reflects the non-uniformity of the gray levels of the homogeneous

zones in 3D. These two features have been proven to be promising

parameters as biomarkers of tumor heterogeneity in various

malignancies (34–36). A higher GLZLM_GLNU and a lower

Histogram_Kurtosis, which indicate higher spatial heterogeneity,

correlated with a higher possibility of MYCN amplification.

Recently, Qian et al. reported that the radiomic signature

containing both PET and CT features had a good ability to

predict MYCN amplification (37). However, the majority of the

features were obtained from wavelet transformed images, which

decompose an image by using spatially oriented frequency filters

but require intensive computation and may suffer from low

reproducibility (38). Despite the methodology differences, we

both showed that a high intratumor heterogeneity was

associated with MYCN amplification. Since neuroblastoma is

remarkably heterogeneous, which might require at least two

solid tumor areas to provide a more accurate genomic diagnosis

(39), texture features fully portraying the entire tumor might

provide important complementary information about

molecular profiling.
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Our second step was to evaluate whether intratumor

heterogeneity could provide prognostic information in

pretreatment neuroblastoma. A recent study reported that high

intratumor metabolic heterogeneity on 18F-FDG PET/CT was a

strong prognostic factor in 38 children with newly diagnosed
Frontiers in Oncology 09
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neuroblastoma (40), and it was the first report identifying

metabolic heterogeneity as a prognostic biomarker of

neuroblastoma. The authors used the area under the curve of the

cumulative SUV-volume histograms (AUC-CSHs), which is a

histogram-based first-order feature that describes the percentage
B

C D

E

A

FIGURE 4

Kaplan–Meier curves for EFS in children with high-risk neuroblastoma in the training set according to (A) metabolic tumor volume (MTV) with a
cutoff value of 120 ml; (B) MTV41% with a cutoff value of 65 ml; (C) total lesion glycolysis (TLG) with a cutoff value of 426 g; (D) TLG41% with a
cutoff value of 141 g; (E) rad-risk.
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of total tumor volume above the percent threshold of SUVmax, as

an intratumor heterogeneity index. Lower AUC-CSH indicated

higher heterogeneity of the tumor and poorer outcomes. Although

the histogram analysis appears promising and simple, the major

pitfalls of the histogram analysis are the lack of information on the
Frontiers in Oncology 10
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spatial organization of tumors and that it is not straightforward

which might lead to errors (34, 41). In another recently published

study of 18 children with high-risk neuroblastoma, Fiz et al.

demonstrated that intratumor heterogeneity on 18fluorine-

dihydroxyphenylalanine (18F-DOPA) PET/CT was closely
B

C D
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A

FIGURE 5

Kaplan–Meier curves for EFS in children with high-risk neuroblastoma in the test set according to (A) MTV with a cutoff value of 120 ml;
(B) MTV41% with a cutoff value of 65 ml; (C) TLG with a cutoff value of 426 g; (D) TLG41% with a cutoff value of 141 g; (E) rad-risk.
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associated with metastatic burden and had certain prognostic value

(42). In the current study, we further expanded that intratumor

heterogeneity was a prognostic biomarker in neuroblastoma, with a

much larger cohort and a higher order of texture analysis, which

further improves quantitative histogram approaches by introducing

the spatial dimension. Multivariate analysis identified

GLRLM_RLNU and Histogram_Entropy as the independently

significant predictors for EFS. GLRLM_RLNU gives the size of

homogeneous runs for each gray level. A similar run length results

in low values of GLRLM_RLNU. On the contrary, a high value is

indicative of heterogeneity. Studies have reported that

GLRLM_RLNU extracted from PET had the potential for

predicting treatment response and prognosis (43, 44). On the

other hand, Histogram_Entropy measures the randomness of

voxel distribution and has been established as an important

biomarker reflecting heterogeneity in various MRI and PET

studies (43, 45). In accordance with previous studies (40, 42), we

found that high rad-risk, defined as patients with both a high

GLRLM_RLNU and a high Histogram_Entropy, indicating a high

intratumor heterogeneity, was the most significant independent

factor for EFS after adjusting for clinicopathological factors.

To further evaluate the ability of rad-risk in the refinement of

risk stratification, we incorporated rad-risk into the existing risk

stratification schema and compared it to volumetric indices. The

results showed that the majority of patients with clinical non-high

risk had a low rad-risk, indicating a relatively homogeneous tumor.

Among high-risk neuroblastoma, rad-risk effectively distinguished
Frontiers in Oncology 11
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patients with distinct outcomes both in the training and test sets. In

addition, despite that intratumor heterogeneity highly correlated

with MTV and TLG, rad-risk outperformed the volumetric indices

and showed the highest ability to predict the outcome. These

findings indicate that PET-based intratumor heterogeneity might

have independent prognostic information, which may help

substratify neuroblastoma patients for more refined risk-adapted

treatment approaches in the future.

The limitations of this study are as follows: first, this is a

retrospective study with a relatively small sample size in a single

center. Second, 123I-mIBG scans were not performed in our

cohort, since 123I-MIBG is not yet available in our country. The

disadvantages of the 123I-mIBG scan, including limited spatial

resolution and lower sensitivity in soft tissue lesions or small

lesions, limit its value in radiomic analysis in neuroblastoma.

Future efforts in PET-based texture features using novel

radiopharmaceuticals such as 18F-fluorometaguanidine and
124I-mIBG might yield important predictive or prognostic

information. Third, this study evaluated the features of

primary tumor and captured less information outside the

primary site, such as metastatic lesions or metastatic burden,

which could be of important prognostic value. An additional

limitation is that no separate cohort was used for validation

regarding the prediction of MYCN amplification due to the

limited number of patients with amplified MYCN. A large

cohort with external validation should be warranted in

the future.
FIGURE 6

Two patients with a high-risk neuroblastoma and high or low intratumor heterogeneity. Both patients had amplified MYCN and stage 4 diseases.
(A–D) A 20-month-old girl with a highly heterogeneous FDG uptake in the primary tumor (high rad-risk). She progressed 21 months after
diagnosis. (E–H) A 5-year-old boy with a relatively homogeneous FDG uptake (low rad-risk). The patient remained recurrence free within
5 years of follow-up.
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Conclusions

In summary, PET-based intratumor heterogeneity could serve as a

powerful and non-invasive approach to predict MYCN amplification

and survival outcome in newly diagnosed neuroblastoma, providing a

potential approach to refine the risk stratification in childrenwith high-

risk diseases. Further validation with a larger cohort is required.
Data availability statement

The original contributions presented in the study are

included in the article/Supplementary Material. Further

inquiries can be directed to the corresponding authors.
Ethics statement

This retrospective study was approved by the Ethics

Committee of Xin Hua Hospital Affiliated to Shanghai Jiao

Tong University School of Medicine and the requirement for

informed consent was waived.
Author contributions

ChL, HW, and SC contributed to the conception and design

of the study. ChL and SC organized the database. ChL and SC

performed the statistical analysis. CaL, SW, YY, FF, and HF

performed the data analysis and interpretation. ChL and SC

wrote the first draft of the manuscript. CaL, SW, YY, FF, and HF

wrote sections of the manuscript. ChL, HW, and SC edited the
Frontiers in Oncology 12
87
manuscript. All authors contributed to manuscript revision,

read, and approved the submitted version.
Funding

This study has been supported by the National Natural

Science Funds (81801731 and 81901775).
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/

fonc.2022.896593/full#supplementary-material
References
1. van Groningen T, Koster J, Valentijn LJ, Zwijnenburg DA, Akogul N, Hasselt
NE, et al. Neuroblastoma is composed of two super-enhancer-associated
differentiation states. Nat Genet (2017) 49(8):1261–6. doi: 10.1038/ng.3899

2. Cohn SL, Pearson AD, London WB, Monclair T, Ambros PF, Brodeur GM,
et al. The international neuroblastoma risk group (INRG) classification system: An
INRG task force report. J Clin Oncol (2009) 27(2):289–97. doi: 10.1200/
JCO.2008.16.6785

3. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2021. CA Cancer J
Clin (2021) 71(1):7–33. doi: 10.3322/caac.21654

4. Tadeo I, Berbegall AP, Castel V, Garcia-Miguel P, Callaghan R, Pahlman S,
et al. Extracellular matrix composition defines an ultra-high-risk group of
neuroblastoma within the high-risk patient cohort. Br J Cancer (2016) 115
(4):480–9. doi: 10.1038/bjc.2016.210

5. Junttila MR, de Sauvage FJ. Influence of tumour micro-environment
heterogeneity on therapeutic response. Nature (2013) 501(7467):346–54. doi:
10.1038/nature12626

6. Meacham CE, Morrison SJ. Tumour heterogeneity and cancer cell plasticity.
Nature (2013) 501(7467):328–37. doi: 10.1038/nature12624

7. Chicklore S, Goh V, Siddique M, Roy A, Marsden PK, Cook GJ. Quantifying
tumour heterogeneity in 18F-FDG PET/CT imaging by texture analysis. Eur J Nucl
Med Mol Imaging (2013) 40(1):133–40. doi: 10.1007/s00259-012-2247-0
8. van Velden FH, Cheebsumon P, Yaqub M, Smit EF, Hoekstra OS,
Lammertsma AA, et al. Evaluation of a cumulative SUV-volume histogram
method for parameterizing heterogeneous intratumoural FDG uptake in non-
small cell lung cancer PET studies. Eur J Nucl MedMol Imaging (2011) 38(9):1636–
47. doi: 10.1007/s00259-011-1845-6

9. Yoo SH, Kang SY, Cheon GJ, Oh DY, Bang YJ. Predictive role of temporal
changes in intratumoral metabolic heterogeneity during palliative chemotherapy in
patients with advanced pancreatic cancer: A prospective cohort study. J Nucl Med
(2020) 61(1):33–9. doi: 10.2967/jnumed.119.226407

10. Pinho DF, King B, Xi Y, Albuquerque K, Lea J, Subramaniam RM. Value of
intratumoral metabolic heterogeneity and quantitative (18)F-FDG PET/CT
parameters in predicting prognosis for patients with cervical cancer. AJR Am J
roentgenol (2020) 214(4):908–16. doi: 10.2214/AJR.19.21604

11. Yanik GA, Parisi MT, Shulkin BL, Naranjo A, Kreissman SG, London WB,
et al. Semiquantitative mIBG scoring as a prognostic indicator in patients with
stage 4 neuroblastoma: A report from the children's oncology group. J Nucl Med
(2013) 54(4):541–8. doi: 10.2967/jnumed.112.112334

12. Katzenstein HM, Cohn SL, Shore RM, Bardo DM, Haut PR, Olszewski M,
et al. Scintigraphic response by 123I-metaiodobenzylguanidine scan correlates with
event-free survival in high-risk neuroblastoma. J Clin Oncol (2004) 22(19):3909–15.
doi: 10.1200/JCO.2004.07.144
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fonc.2022.896593/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fonc.2022.896593/full#supplementary-material
https://doi.org/10.1038/ng.3899
https://doi.org/10.1200/JCO.2008.16.6785
https://doi.org/10.1200/JCO.2008.16.6785
https://doi.org/10.3322/caac.21654
https://doi.org/10.1038/bjc.2016.210
https://doi.org/10.1038/nature12626
https://doi.org/10.1038/nature12624
https://doi.org/10.1007/s00259-012-2247-0
https://doi.org/10.1007/s00259-011-1845-6
https://doi.org/10.2967/jnumed.119.226407
https://doi.org/10.2214/AJR.19.21604
https://doi.org/10.2967/jnumed.112.112334
https://doi.org/10.1200/JCO.2004.07.144
https://doi.org/10.3389/fonc.2022.896593
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Li et al. 10.3389/fonc.2022.896593
13. Liu CJ, Lu MY, Liu YL, Ko CL, Ko KY, Tzen KY, et al. Risk stratification of
pediatric patients with neuroblastoma using volumetric parameters of 18F-FDG
and 18F-DOPA PET/CT. Clin Nucl Med (2017) 42(3):e142–e8. doi: 10.1097/
RLU.0000000000001529

14. Lee JW, Cho A, Yun M, Lee JD, Lyu CJ, Kang WJ. Prognostic value of
pretreatment FDG PET in pediatric neuroblastoma. Eur J Radiol (2015) 84
(12):2633–9. doi: 10.1016/j.ejrad.2015.09.027

15. Papathanasiou ND, Gaze MN, Sullivan K, Aldridge M, Waddington W,
Almuhaideb A, et al. 18F-FDG PET/CT and 123I-metaiodobenzylguanidine
imaging in high-risk neuroblastoma: Diagnostic comparison and survival
analysis. J Nucl Med (2011) 52(4):519–25. doi: 10.2967/jnumed.110.083303

16. Li C, Zhang J, Chen S, Huang S, Wu S, Zhang L, et al. Prognostic value of
metabolic indices and bone marrow uptake pattern on preoperative 18F-FDG PET/
CT in pediatric patients with neuroblastoma. Eur J Nucl Med Mol Imaging (2018)
45(2):306–15. doi: 10.1007/s00259-017-3851-9

17. Boellaard R, Delgado-Bolton R, Oyen WJ, Giammarile F, Tatsch K, Eschner
W, et al. FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0.
Eur J Nucl Med Mol Imaging (2015) 42(2):328–54. doi: 10.1007/s00259-014-2961-x

18. Peerawaranun P, Landier J, Nosten FH, Nguyen TN, Hien TT, Tripura R,
et al. Intracluster correlation coefficients in the greater Mekong subregion for
sample size calculations of cluster randomized malaria trials. Malar J (2019) 18
(1):428. doi: 10.1186/s12936-019-3062-x

19. Dissaux G, Visvikis D, Da-Ano R, Pradier O, Chajon E, Barillot I, et al.
Pretreatment (18)F-FDG PET/CT radiomics predict local recurrence in patients
treated with stereotactic body radiotherapy for early-stage non-small cell lung
cancer: A multicentric study. J Nucl Med (2020) 61(6):814–20. doi: 10.2967/
jnumed.119.228106

20. Mukaka MM. Statistics corner: A guide to appropriate use of correlation
coefficient in medical research. Malawi Med J (2012) 24(3):69–71.

21. Gerlinger M, Rowan AJ, Horswell S, Math M, Larkin J, Endesfelder D, et al.
Intratumor heterogeneity and branched evolution revealed by multiregion
sequencing. N Engl J Med (2012) 366(10):883–92. doi: 10.1056/NEJMoa1113205

22. Basler L, Gabrys HS, Hogan SA, Pavic M, Bogowicz M, Vuong D, et al.
Radiomics, tumor volume, and blood biomarkers for early prediction of
pseudoprogression in patients with metastatic melanoma treated with immune
checkpoint inhibition. Clin Cancer Res (2020) 26(16):4414–25. doi: 10.1158/1078-
0432.CCR-20-0020

23. Sun R, Limkin EJ, Vakalopoulou M, Dercle L, Champiat S, Han SR, et al. A
radiomics approach to assess tumour-infiltrating CD8 cells and response to anti-PD-1 or
anti-PD-L1 immunotherapy: An imaging biomarker, retrospective multicohort study.
Lancet Oncol (2018) 19(9):1180–91. doi: 10.1016/S1470-2045(18)30413-3

24. Moon SH, Kim J, Joung JG, Cha H, Park WY, Ahn JS, et al. Correlations
between metabolic texture features, genetic heterogeneity, and mutation burden in
patients with lung cancer. Eur J Nucl Med Mol Imaging (2019) 46(2):446–54. doi:
10.1007/s00259-018-4138-5

25. Minervini A, Di Cristofano C, Gacci M, Serni S, Menicagli M, Lanciotti M,
et al. Prognostic role of histological necrosis for nonmetastatic clear cell renal cell
carcinoma: Correlation with pathological features and molecular markers. J Urol
(2008) 180(4):1284–9. doi: 10.1016/j.juro.2008.06.036

26. Rakheja R, Makis W, Tulbah R, Skamene S, Holcroft C, Nahal A, et al.
Necrosis on FDG PET/CT correlates with prognosis and mortality in sarcomas.
AJR Am J Roentgenol (2013) 201(1):170–7. doi: 10.2214/AJR.12.9795

27. HattM,MajdoubM, VallièresM, Tixier F, Le Rest CC, GroheuxD, et al. 18F-FDG
PET uptake characterization through texture analysis: investigating the complementary
nature of heterogeneity and functional tumor volume in amulti-cancer site patient cohort. J
Nucl Med (2015) 56(1):38–44. doi: 10.2967/jnumed.114.144055

28. Pfaehler E, Mesotten L, Zhovannik I, Pieplenbosch S, Thomeer M, Vanhove
K, et al. Plausibility and redundancy analysis to select FDG-PET textural features in
non-small cell lung cancer.Med Phys (2021) 48(3):1226–38. doi: 10.1002/mp.14684

29. Matthay KK, Maris JM, Schleiermacher G, Nakagawara A, Mackall CL, Diller L,
et al. Neuroblastoma. Nat Rev Dis Primers (2016) 2:16078. doi: 10.1038/nrdp.2016.78
Frontiers in Oncology 13
88
30. Chen X, Wang H, Huang K, Liu H, Ding H, Zhang L, et al. CT-based
radiomics signature with machine learning predicts MYCN amplification in
pediatric abdominal neuroblastoma. Front Oncol (2021) 11:687884. doi: 10.3389/
fonc.2021.687884

31. Wu H, Wu C, Zheng H, Wang L, Guan W, Duan S, et al. Radiogenomics of
neuroblastoma in pediatric patients: CT-based radiomics signature in predicting
MYCN amplification. Eur Radiol (2021) 31(5):3080–9. doi: 10.1007/s00330-020-
07246-1

32. Di Giannatale A, Di Paolo PL, Curione D, Lenkowicz J, Napolitano A,
Secinaro A, et al. Radiogenomics prediction for MYCN amplification in
neuroblastoma: A hypothesis generating study. Pediatr Blood Cancer (2021) 68
(9):e29110. doi: 10.22541/au.161144128.80677267/v1

33. Sung AJ, Weiss BD, Sharp SE, Zhang B, Trout AT. Prognostic significance of
pretreatment (18)F-FDG positron emission tomography/computed tomography in
pediatric neuroblastoma. Pediatr Radiol (2021) 51(8):1400–5. doi: 10.1007/s00247-
021-05005-y

34. Just N. Improving tumour heterogeneity MRI assessment with histograms.
Br J Cancer (2014) 111(12):2205–13. doi: 10.1038/bjc.2014.512

35. Acar E, Turgut B, Yigit S, Kaya G. Comparison of the volumetric and
radiomics findings of 18F-FDG PET/CT images with immunohistochemical
prognostic factors in local/locally advanced breast cancer. Nucl Med Commun
(2019) 40(7):764–72. doi: 10.1097/MNM.0000000000001019

36. Toyama Y, Hotta M, Motoi F, Takanami K, Minamimoto R, Takase K.
Prognostic value of FDG-PET radiomics with machine learning in pancreatic
cancer. Sci Rep (2020) 10(1):17024. doi: 10.1038/s41598-020-73237-3

37. Qian L, Yang S, Zhang S, Qin H,WangW, Kan Y, et al. Prediction of MYCN
amplification, 1p and 11q aberrations in pediatric neuroblastoma via pre-therapy
18F-FDG PET/CT radiomics. Front Med (Lausanne) (2022) 9:840777. doi:
10.3389/fmed.2022.840777

38. van Griethuysen JJM, Fedorov A, Parmar C, Hosny A, Aucoin N, Narayan
V, et al. Computational radiomics system to decode the radiographic phenotype.
Cancer Res (2017) 77(21):e104–e7.
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Breast cancer is the most common cause of cancer death in women. Early

screening and treatment can effectively improve the success rate of treatment.

Ultrasound imaging technology, as the preferred modality for breast cancer

screening, provides an essential reference for early diagnosis. Existing

computer-aided ultrasound imaging diagnostic techniques mainly rely on the

selected key frames for breast cancer lesion diagnosis. In this paper, we first

collected and annotated a dataset of ultrasound video sequences of 268 cases

of breast lesions. Moreover, we propose a contrastive learning–guided multi-

meta attention network (CLMAN) by combining a deformed feature extraction

module and a multi-meta attention module to address breast lesion diagnosis

in ultrasound sequence. The proposed feature extraction module can

autonomously acquire key information of the feature map in the spatial

dimension, whereas the designed multi-meta attention module is dedicated

to effective information aggregation in the temporal dimension. In addition, we

utilize a contrast learning strategy to alleviate the problem of high imaging

variability within ultrasound lesion videos. The experimental results on our

collected dataset show that our CLMAN significantly outperforms existing

advanced methods for video classification.

KEYWORDS

ultrasound sequence, video classification, breast lesion, contrastive learning, multi-
meta attention network
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1 Introduction

According to the World Cancer Report (1), the number of

new cases of breast cancer has reached 2.26 million worldwide in

2020, and breast cancer accounts for about 6.9% of all deaths

from cancer worldwide, ranking fifth. Early detection and timely

treatment can effectively improve the survival prognosis of

breast cancer patients, prolong their survival years, and

improve the people’s living standards. Because it is non-

invasive, inexpensive, safe, and free of ionizing radiation,

ultrasound imaging is currently the most commonly used

technique for the early detection of breast lesions. However,

ultrasound imaging provides low-quality imaging, mainly

because interference from the ultrasound reflective wavefront

causes speckle noise on imaging. During the acquisition or

examination of a breast sequence, the operator usually needs

to apply processing such as filtering, adjusting brightness levels,

and scaling the image to improve the quality of ultrasound

imaging, whereas interpreting ultrasound imaging usually

requires an experienced and well-trained radiologist. However,

in some cases, the breast lesion in the ultrasound imaging is

ambiguous, and even experienced radiologists are unable to

accurately determine its benignity or malignancy [in medical

practice, BI-RADS 1–3 are usually considered benign, BI-RADS

4 for suspicious malignant, and BI-RADS 5–6 for malignant (2)].

Computer-assisted technology has provided new ideas for

the diagnosis of breast lesions by ultrasound imaging. With the

help of computer-aided diagnosis, the operation-dependent

impact of ultrasound imaging can be minimized. At the same

time, computer-aided diagnosis can also reduce the workload of

radiologists. Most of the existing computer-aided diagnostic

techniques analyze a single frame (key frames) in the video

sequence of pathology acquisition. Although it helps to reduce

the computer diagnostic time, it also reveals two significant

problems: first, it is challenging to select typical key frames

representing pathology samples; second, too much pathology

diagnostic information is lost in the video sequence. The field of

benign and malignant classification for breast lesions by

ultrasound video sequences is in urgent need of research.

Therefore, we propose an automatic diagnosis model for

ultrasound sequences, which uses deep learning methods to

achieve high accuracy in classification recognition to assist

medical diagnosis tasks. The designed diagnostic model weighs

spatial dimensional information through the non-local module,

on the one hand, and adaptive and fine-grained attention weight

scoring for each feature dimension of each frame through the

multi-meta attention module, on the other hand, focusing on the

key information in the samples in a self-learning manner. This

approach can accept samples of different sequence lengths and

make full use of the potential connections between frames in the

sample by weighting and aggregating the features of each frame

through the aggregation module to improve the accuracy

of diagnosis.
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The contributions of this work can be summarized as

follows: a) We develop a new network for learning video-level

classification of breast lesions. b) We collected an ultrasound

video dataset (268 sequences) for breast lesion classification. c) A

deformed feature extraction module is proposed to facilitate

high-quality deep feature representation, whereas a multi-meta

attention module is developed to acquire key feature

information at the video level adaptively. d) The experimental

results show that our network achieves a new state-of-the-art

performance in the breast ultrasound lesion classification task on

our collected dataset.
2 Related work

2.1 Breast ultrasound classification

Classification of breast lesion pathology is a primary task in

computer-aided diagnosis projects. Researchers working on

breast ultrasound-related topics have proposed a number of

effective deep learning schemes. Han et al. (3) used deep

convolutional networks pre-trained on grayscale nature images

to discriminate between benign and malignant. Although the

lesion regions of interest used in this scheme were all provided

by radiologists, this study demonstrated that breast lesion

features extracted by deep learning–based networks can

achieve comparable classification performance to hand-

designed feature methods. To further avoid the potential

missing effects that result from manual intervention in the

region of interest selection, Cheng et al. (4) proposed the

utilization of an unsupervised stacked denoising auto-encoder

to extract high-level feature representations for breast lesion

imaging with supervised fine-tuning training. Diagnosis models

constructed in a deep learning manner usually require a large

amount of training data to achieve significant classification

results. However, because most cases are benign, the

imbalance of medical data makes it particularly difficult to

collect sufficient training samples. To alleviate the problem of

model underfitting due to data scarcity, Fujioka et al. (5) and Pan

et al. (6) started to use generative adversarial networks to

simulate and enhance breast ultrasound sample data. The

synthesized images will be further used for the training of

convolutional neural networks. The semi-automatic

classification model proposed by Bocchi et al. (7) is an

outstanding early work to study breast lesion classification

based on ultrasound video sequence data. In their proposed

method, each imaging frame of the video is independently

classified as benign or malignant after semi-automatic

segmentation and morphological feature extraction.

Subsequently, the classification results of all frames of the

video are integrated to obtain reliable video-level results. This

scheme results in a substantial improvement in the correct

classification rate compared with the results of a single-image
frontiersin.org
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frame. At the same time, the uncertainty of classification

judgments for certain frames reflects the clinical situation that

lesions may present different characteristic manifestations when

viewed from different viewpoints.
2.2 Contrastive learning

Traditional supervised learning methods rely heavily on a

large amount of labeled training data available. In addition to the

expensive labeling cost, this approach is also vulnerable to

generalization error, spurious correlations, adversarial attaches,

etc. (8). More and more studies start to find new ways out and

start to learn feature representation by self-supervised learning.

Contrastive learning is a discriminative approach, which aims to

group similar samples closer together and dissimilar samples as

far away from each other as possible. For computer vision tasks,

methods such as MoCo (9), SwAV (10), and SimCLR (11) have

produced comparable results to the state-of-the-art supervised

methods in ImageNet (12) dataset. He et al. (9) proposed the

momentum contrast method for unsupervised visual

representation learning, which trains visual representation by

constructing dynamic dictionaries with queueing and moving

average encoders to match with encoded queries encoder.

Compared with the direct comparison of features in general

contrast learning, Caron et al. (10) save computational overhead

by clustering data and computing online for different

enhancements of the same image. Chen et al. (11) save

computational overhead by incremental image augmentation

and by feature representation and introducing a learnable linear

transformation between the feature representation and contrast

loss, further substantially improving the quality of the

learned feature.
2.3 Attention mechanism

In the field of image classification, the attention mechanism

is used to extract key regions and recognize images by spatial
Frontiers in Oncology 03
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invariance. The STN (Spatial Transformer Networks) proposed

by Jaderberg et al. (13) effectively addresses the insensitivity of

convolutional networks to different viewpoints of the same thing

through the attention mechanism. Wang et al. (14) proposed the

non-local model to apply the self-attention mechanism to the

computer vision tasks. For an input feature image, each pixel

value is derived from the weighted average of other pixel

features. SENet (15) proposed the squeeze-and-excitation

module, which enhances important channels and suppresses

invalid channels by automatically learning the importance of

different channel features, thus improving model accuracy and

reducing computational effort and complexity. Woo et al. (16)

propose CBAM (Convolutional Block Attention Module) based

on SENet. It extends the attentional dimension from focusing on

the channel dimension to the spatial dimension.
3 Method

Figure 1 shows the schematic illustration of the designed

contrastive learning–guided multi-meta attention network

(CLMAN). The network determines the input breast

ultrasound sequence as benign or malignant, as well as the

predicted score given to that. CLMAN consists of two main

modules: a feature extraction module and a multi-meta attention

module. The feature extraction module performs self-

supervision training on the breast ultrasound video dataset by

the contrast learning method before the formal training to the

learn high-quality feature extraction patterns. For a given breast

ultrasound sequence containing T frames, CLMAN first

performs feature extraction on each frame by a pretrained

feature extraction module to obtain independently encoded

high-level feature vectors. Subsequently, the high-level feature

vectors are aggregated for each frame in the multi-meta attention

module. The module performs adaptive and fine-grained weight

scoring along each feature dimension of each frame to form a

compact and differentiated representation of breast lesions.

Finally, the aggregated video-level feature vectors are used to

determine the pathology of breast lesions by a linear classifier.
FIGURE 1

Schematic illustration of the developed Contrastive Learning guided Multi-meta Attention Network (CLMAN) for breast lesion classification in
ultrasound sequence.
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3.1 Deformed feature extraction module

As shown in Figure 2, the feature extraction module is

designed to extract features in a sequence and obtain a high-

quality feature encoding vector for each frame, which is used for

downstream tasks. The module is based on ResNet-18 (17)

because the residual structure adopted effectively solves the

problem of model degradation due to its depth, and the

constant mapping also enhances the information transfer

between the upper and lower layers. Because of the inherent

multi-frame nature of a sequence, video classification tasks often

take smaller batch sizes. Although the amount of training data

per batch is sufficient in terms of the number of images, the

general batch normalization approach may not be applicable

when the model goes normalization because of the high

similarity of pixel feature distribution across frames within the

same video. In view of this, the group normalization (18) is used

in each bottleneck structure in the basic feature extraction

module to guarantee the stability of the distribution of the

input features. For the problems of low quality and poor

contrast of ultrasound imaging, it is especially important to

focus on critical regions and suppress invalid regions effectively.

The non-local (14) module is introduced and placed in the third

and fourth stages of the feature extraction module for capturing

spatially distant relationships. It focuses on the correlation

between larger objects when the model level is shallow and

pays more attention to the correlation between smaller objects

when the model level is deep.

Suppose a breast ultrasound sequenceV = {vt|t∈[0,T]} , where
vt denotes the tth frame and T denotes the index of frames in the

sequence. The feature extraction module Q(·) extracts features

from each frame to obtain the high-quality feature coding vector

F = {ft|t∈[0,T]} for the whole sequence, which is given by

ft = Q vtð Þ,   t ∈ 0,T½ � (1)
3.2 Contrast learning strategy

Breast ultrasound tumors tend to be characterized by large

intraclass disparities and small interclass disparities in visual
Frontiers in Oncology 04
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presentation. Moreover, the cross-sectional visualization of

lesions presented at different stages within the same sequence

often varies greatly. How to identify the diversity of different

cross-sections of the same lesion is the basis for the correct

classification of multi-frame sequences. Inspired by SimCLR

(11), we borrowed this method of learning different data

augmentation of the same image as positive samples together

with negative samples composed of other images to train to

determine the proximity of two features and applied it to video

data, as shown in Figure 3.

For any N sequence clips,M frames are selected randomly as

training samples, and then, the augmented training samples

are extracted by the feature extraction network to obtain the

high-level feature vectors. The extracted features are cascaded

through MLP layers to obtain a tighter feature representation for

the model to learn a better similarity representation. Assuming

that the training samples provided for learning are fvnmj ∀ n∈
½0,N�,   ∀m∈ ½0,M�g, the final feature representation can be

obtained by the following:

f
−n

m = MLP Q t vnmð Þð Þð Þ (2)

where t denotes data augmentation. In the data

augmentat ion stage , we mainly adopt the random

combination of flip, crop, scale, modulation of brightness,

contrast, and elastic transformation to increase the diversity of

sample data.
3.3 Multi-meta attention module

The multi-meta attention module is applied to aggregate

high-level feature vectors across frames of video to provide a

compact and differentiated representation of mammary nodules.

The module adaptively weighs all frames at a fine-grained level

along each feature dimension, leveraging the valuable or

discriminatory parts of each frame to facilitate commonality

recognition without easily discarding or trivializing low-quality

frames as the previous approaches have done. The feature

extraction module trained by the contrast learning strategy is
FIGURE 2

Schematic illustration of the deformed feature extraction module.
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used to extract feature representations for each frame of the

original sequence, denoted as follows:

Ft = f t1 f t2 ⋯ f tm
� �T

m�1 (3)

where Ft denotes the tth frame feature vector with

m dimensions.

As shown in Figure 1, a cascading attention module is

applied to each frame feature to capture the attention

representation better. Each attention module consists of a filter

and an activation layer, which are cascaded to perform nonlinear

feature learning:

Et
l = s WlE

t
l−1 + bl

� �
(4)

where the fully connected layer is used as the filter and the

Tanh function is used as the activation layer s(·) for nonlinearly
transformation. When l = 1, Et

l−1 is defined as Ft. For the

obtained attention vectors of each frame, the attention linear

weights corresponding to each of the Ft channels are obtained by

Softmax operation:
Frontiers in Oncology 05
93
At =

exp et1ð Þ
oT

j=1
exp ej1ð Þ

exp et2ð Þ
oT

j=1
exp ej2ð Þ
⋮

exp etmð Þ
oT

j=1
exp ejmð Þ

2
6666666664

3
7777777775
m�1

(5)

The final aggregated feature is computed by multiplying the

attention weights by the cumulative sum of the feature vectors,

as shown in Figure 4. The specific aggregation operation can be

expressed as follows:

F
−
=oT

t=1A
t o ̇ Ft (6)

where ȯ denotes the matrix bitwise product. This

aggregation module can weigh the importance of features at

the dimensional level. Theoretically, it can achieve the best

aggregation with good training. CLMAN uses a fair treatment

of each frame of information to maximize the use of any of its

valuable local features to facilitate the recognition of lesion

sequence. Meanwhile, it is worth noting that the formula F
−

FIGURE 4

Schematic illustration of multi-meta attention operation .
FIGURE 3

Schematic illustration of the predecessor task for the contrast learning strategy.
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degrades to average pooling when each item in the attention

matrix A is equal, and of course, the same formula also applies to

maximum pooling in extreme cases.

In addition, using this module of mid-term aggregation of

features allows the linear classifier to process sequence clips of

arbitrary length, whereas the aggregation results F
−
have the

same vector dimension as the individual features Ft and the

order remain constant, i.e., this aggregation module is

insensitive to sequence order and temporal information and

is generalizable to ultrasound sequence clips of arbitrary start

and end points. The module’s parameters can be obtained by

the standard backpropagation and gradient descent for

supervised learning.
4 Experiments

4.1 Dataset

To evaluate the effectiveness of the developed network, we

collected a dynamic breast ultrasound video sequences dataset

with 268 videos, of which 152 sequences are malignant and 116

sequences are benign. All sequences are acquired by GE

Healthcare equipment (Chicago, IL, USA), with L12-5

ultrasound probe and sampling frequency of 12 MHz,

supported by the Xiamen University Xiang’an Hospital. A

total of 107 of these sequences are randomly selected as the

test set (about 40% of the total data volume), and the rest of the

sequences are used as the training set. Data for both the training

and test sets are obtained from cases of patients aged 20 years

and older with definite benign or malignant pathological

findings (BI-RADS categories 3 to 5) of breast lesions as

determined by ultrasound.
4.2 Evaluation metrics

The six widely used metrics are utilized for quantitatively

comparing different breast lesion ultrasound sequence
Frontiers in Oncology 06
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classification methods. These are accuracy, average precision

(AP), sensitivity, specificity, F1 score, and area under curve (AUC).
4.3 Implementation details

Our network is implemented on PyTorch (19) and trained

using a SGD (Stochastic Gradient Descent) (20) with 320

epochs, an initial learning rate of 1 × 10−4, a momentum of

0.9, and a weight decay of 5 × 10−4. The sample length T is set to

16, whereas cross-entropy loss is set as the loss function. The

whole architecture is trained on one GeForce RTX 2080 Ti GPU,

and each GPU has a batch size of 8. In the contrast learning

phase, NT-Xent (11) is used as the loss function, and the LARS

(21) optimizer is used to train the model in the pre-task with

8,192 epochs, an initial learning rate of 9 × 10−3, and a weight

decay of 1 × 10−6. The batch size here is set to 64. The learning

rate is adjusted using the Cosine Annealing (22).
4.4 Ablation study

4.4.1 Effectiveness of deformed
extraction modules

We establish separate control groups based on ResNet-18

and compare the use of different components on the

classification performance. As shown in Table 1, “ResNet18

(vanilla)” indicates the most primitive ResNet-18 architecture,

“GN” denotes Group Norm, and “NL” denotes non-local

module. To avoid the effect of the contrast learning strategy,

none of the four settings in Table 1 use that strategy. Compared

with the plain ResNet-18 architecture, the feature extraction

module with group norm has 4.68%, 6.33%, 1.92% and 3.18%

improvement in accuracy, specificity, F1, and AUC, respectively.

Meanwhile, the feature extraction module with the non-local

module shows a steady increase in all six metrics, with 10.28%

increase in accuracy, 6.4% increase in AP, 3.05% increase in

sensitivity, 13.15% increase in specificity, 5.64% increase in F1,

and 11.26% increase in AUC. The feature extraction module

with the group norm and non-local module achieves the average
TABLE 1 Quantitative comparisons for the effectiveness of deformed extraction modules.

Methods Acc AP Sens Spec F1 AUC

ResNet18 (vanilla) 70.09 77.68 75.00 68.67 78.08 71.75

ResNet18 + GN 74.77 77.01 74.29 75.00 80.00 74.93

ResNet18 + NL 80.37 84.08 78.05 81.82 83.72 83.01

ResNet18 + GN + NL (ours) 82.24 81.16 82.05 82.35 85.50 84.85
frontiers
“GN” denotes Group Norm, and “NL” denotes Non-local module.
The bold values/numbers means that it is the largest among all the values at the column.
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best performance, with accuracy of 82.24%, AP of 81.16%,

sensitivity of 82.08%, specificity of 82.35%, F1 of 85.50%, and

AUC of 84.85%. It indicates that using the group norm and non-

local module for the feature extraction module to obtain high-

quality deep features has a certain facilitation effect.

4.4.2 Effectiveness of contrast
learning strategy

The feature extraction module used by our network is pre-

trained by a contrast learning strategy to effectively identify

different geometric patterns of the same lesion under the same

sequence imaging before formally training. Table 2 verifies the

impact of the contrast learning strategy, which is denoted as “CL”,

on the model performance. The experiments show that the

performance of the CLMAN decreases when the contrast

learning strategy is removed. Specifically, accuracy, AP,

sensitivity, specificity, F1, and AUC decreased by 6.55%,

11.62%, 12.39%, 3.57%, 5.54%, and 7.79%, respectively. It

suggests that the contrast learning strategy can effectively

alleviate the problem of large intraclass differences in the visual

presentation of ultrasound lesions.

4.4.3 Effectiveness of multi-meta
attention module

We conduct ablation experiments of multi-meta attention

modules on the CLMAN model. First, the experiment considers

the degenerate version of our multi-attention module, i.e.,

average pooling, as well as the extreme case of the maximum

pooling and then compares them. Second, the LSTM (Long
Frontiers in Oncology 07
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Short TermMemory) methods for long sequence feature capture

are also compared in this experiment. In addition, we also

compared attention modules proposed by other studies to

demonstrate the advantage of the multi-meta attention module

in video tasks. As shown in Table 3, “Multi-meta Att” denotes

the multi-meta attention module, and “Average” and “Max-

pooling” represent the degenerate average pooling and the

extreme maximum pooling, respectively. According to Table 3

the long sequence feature capture capability of LSTM is not fully

applicable to ultrasound video imaging aggregation. The

proposed classic attention modules that have often been

effective in the past do not seem to be up to our video task.

Meanwhile, the simple average pooling and maximum pooling

methods achieved the best in terms of sensitivity or specificity,

but the other metrics were not satisfactory. The proposed multi-

meta attention scheme shows a 1.87% improvement in accuracy,

4.66% improvement in AP, 3.94% improvement in F1, and 5.12%

improvement in AUC, with a stronger comprehensive capability.

It indicates that the model has different fine-grained trade-offs

for each part of the features, whereas such weights are learnable,

and the simple and crude average pooling and maximum

pooling approaches limit this adaptive capability.
4.5 Comparisons with state of the arts

To demonstrate the effectiveness and feasibility of the

designed CLMAN model, Table 4 selects from five papers

nine existing methods commonly used to handle video
TABLE 3 Quantitative comparisons for the effectiveness of multi-meta attention module.

Methods Acc AP Sens Spec F1 AUC

With External Attention (23) 79.44 81.39 76.19 81.54 82.81 79.98

With Self-attention (24) 80.37 77.85 79.49 80.88 83.97 78.50

With Efficient Multi-head Self-attention (25) 80.37 78.51 81.08 80.00 84.21 77.49

With LSTM 83.18 77.91 96.43 78.48 87.32 79.47

With Average 86.92 85.26 96.88 82.67 89.86 87.48

With Max-pooling 85.05 88.12 80.43 88.52 87.10 87.52

With Multi-meta Attn (ours) 88.79 92.78 94.44 85.92 91.04 92.64
frontiers
“Multi-meta Att” denotes the multi-meta attention module, and “Average” and “Max-pooling” represent the average pooling and the maximum pooling, respectively.
The bold values/numbers means that it is the largest among all the values at the column.
TABLE 2 Quantitative comparisons for the effectiveness of contrast learning strategy.

Methods Acc AP Sens Spec F1 AUC

Without CL Guided 82.24 81.16 82.05 82.35 85.50 84.85

With CL (ours) 88.79 92.78 94.44 85.92 91.04 92.64
“CL” denotes the contrast learning strategy.
The bold values/numbers means that it is the largest among all the values at the column.
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classification task for comparison, including R3D (23), Times

Former (27), MC3 (23), P3D (24), R(2 + 1)D (23), TIN(Res18,

Res34, Res50)(29), and TSM (25). For providing a fair

comparison, we obtain the classification results of all

compared methods by exploiting their public implementations

or by implementing them. We train these networks on our

dataset and only set the batch size and epoch number to the

same as ours.

CLMAN performs on par with the best of the methods

compared and even better suited for video-level classification tasks

of breast ultrasound sequence, with accuracy improved by 1.87%,

AP improved by 3.06%, sensitivity improved by 2.77%, specificity by

1.44%, F1 improved by 1.49%, and AUC improved by 2.42%.
Frontiers in Oncology 08
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More visually, Figure 5 shows the ROC curves of CLMAN

with the above five of the nine methods. The performance of

R3D, MC3, P3D, and R(2 + 1)D is similar, and the AUC remains

around 80%, whereas the area of TSM and CLMAN is

comparable, both exceeding 90%.
5 Conclusion

In this paper, we first collected 268 video sequences

constituting a video dataset for breast ultrasound classification.

Moreover, we propose a CLMAN for lesion diagnosis of

ultrasound breast sequences in arbitrary length. Our approach
FIGURE 5

ROC curves of our network and compared methods.
TABLE 4 Quantitative comparisons of our network and compared methods on the collected ultrasound sequence dataset.

Methods Acc AP Sens Spec F1 AUC

R3D (26) 75.70 80.03 82.14 73.42 81.69 77.56

Times Former (27) 77.57 71.34 77.78 77.46 82.09 72.08

MC3 (26) 77.57 80.83 81.25 76.00 82.61 78.86

P3D (28) 80.37 81.33 89.66 76.92 85.11 81.28

R(2+1)D (26) 82.24 87.36 90.32 78.95 86.33 84.85

TIN Res34 (29) 84.48 86.85 82.33 86.35 86.87 86.79

TIN Res50 (29) 85.05 85.53 88.94 83.10 88.06 86.66

TIN Res18 (29) 85.24 89.52 82.50 87.11 87.52 87.30

TSM (30) 86.92 89.72 91.67 84.51 89.55 90.22

CLMA-Net (ours) 88.79 92.78 94.44 85.92 91.04 92.64
frontiers
The bold values/numbers means that it is the largest among all the values at the column.
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is able to learn the attention weights of each feature dimension

adaptively and autonomously in both spatial and temporal

dimensions while using a contrast learning predecessor task to

effectively address several challenges of the ultrasound video

sequence classification problem. Experimental results on the

collected dataset show that our network achieves superior

diagnostic performance for breast lesions than the state-of-the-

art video classification methods.
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Case report: Primary intracranial
mucosa-associated lymphoid
tissue lymphoma presenting as
two primary tumors involving
the cavernous sinus and extra-
axial dura, respectively
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Primary intracranial mucosa-associated lymphoid tissue (MALT) lymphoma is a

rare type of brain tumor, with only a few reported cases worldwide that mostly

have only one lesion with conventional magnetic resonance imaging (MRI)

findings. Here, we present a special case of intracranial MALT lymphoma with

two mass lesions radiographically consistent with meningiomas on MRI before

the operation. A 66-year-old woman was admitted to the hospital with

intermittent right facial pain for 1 year, aggravated for the last month. Brain

MRI showed two extracerebral solid masses with similar MR signal intensity.

One mass was crescent-shaped beneath the skull, and the other was in the

cavernous sinus area. Lesions showed isointensity on T1WI and T2WI and an

intense homogeneous enhancement after contrast agent injection. Both

lesions showed hyperintensity in amide proton transfer–weighted images.

The two masses were all surgically resected. The postoperative pathology

indicated extranodal marginal zone B-cell lymphoma of MALT. To improve

awareness of intracranial MALT lymphoma in the differential diagnosis of extra-

axial lesions among clinicians, we present this report and briefly summarize

previously reported cases to describe the clinical, pathological, radiological,

and treatment features.

KEYWORDS

extranodal marginal zone lymphoma, mucosa-associated lymphoid tissue, primary
intracranial tumor, central nervous system, magnetic resonance imaging, treatment
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Introduction

Extranodal marginal zone lymphoma of the mucosa-

associated lymphoid tissue (MALT lymphoma), as defined in

the 2016 World Health Organization classification of lymphoid

neoplasms (1), is a type of mature B-cell lymphoid neoplasm. At

the very beginning, MALT lymphoma is described as a subtype

of gastric lymphoma. Then, studies found that the MALT

lymphoma may arise in almost all organs of the human body,

including unusual sites, such as the dura (2). MALT lymphoma

derived from dura is extremely rare; only a few cases were

diagnosed and reported (3–10). The diagnoses are mostly based

on conventional magnetic resonance imaging (MRI) image, and

some combine with diffusion–weighted imaging (DWI) (11).

This case report presented a MALT lymphoma with two

separated lesions in the cranial: along the right fronto–

temporo–parietal extra–axial dura and in the right cavernous

sinus (CS). On the other hand, the patient also underwent amide

proton transfer–weighted (APTw) and contrast–enhanced

fluid–attenuated inversion recovery (FLAIR) examinations in

addition to the conventional MR sequences.
Case report

A 66–year–old woman was admitted to the hospital with

intermittent right facial pain for 1 year, aggravated for the last

month, the pain was knife–like accompanied with numbness of

the upper and lower lips and had no obvious inducement before

onset. The patient also had nausea without vomiting. No other

objective neurologic findings were detected. The patient had a

history of type 2 diabetes mellitus for more than 10 years.

Brain MRI showed two extracerebral solid masses with similar

MR signal intensity. One mass was fusiform in the cavernous sinus

(CS) area (Figures1 A–C), the other was crescent-shaped beneath

the fronto-temporo-parietal region skull (Figures1 D–F). The

lesions showed a slight hypointensity to isointensity on T1–

weighted image (T1WI), an isointensity on T2–weighted image

(T2WI), and an intense homogeneous enhancement after contrast

agent injection. (Figures 1G–I). For more details, for the tumor

beneath cranium, short striped flow voids signals inside and

moderate edema zone around (Figure 1E) are were observed. As

the CS lesion, the ipsilateral cavernous segment of internal carotid

artery had no stenosis (Figures 1J, K). The right CS lesion spread to

the posterior cranial fossa, involving the internal auditory canal and

encircled the cisternal segment of the right trigeminal nerve,

auditory nerve and facial nerve (Figures 1J, K). The serrated

enhancement was due to leptomeningeal involvement along the

inner side of the fronto-temporo-parietal region lesion on the post-

contrast fluid-attenuated inversion recovery (FLAIR) image (Figure

1L). APTw image (Figure 1M) showed relatively hyperintense

compared to the normal brain tissue, the mean APTw value of
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the tumor was 3.1% (2.2%–4.3%). Overall, the MR features of these

two lesions were misdiagnosed asconsistent with meningiomas.

The surgery was performed to resect the lesions on the right

forehead and parasellar via the right frontotemporal parietal

approach. The tumor was 9.0 × 7.5 cm in size at the top of the

right forehead region, reaching from the base of the anterior

cranial fossa forward to the central anterior gyrus backward. The

solid tumor showed inconsistent hardness supplied by dural and

lateral fissure vessels and adheres closely to the brain

parenchyma. The dura near the tumor was enlarged up to

2 cm. The lesion was completely removed. The right parasellar

tumor was relatively soft grayish white and dark brown mass

with a size of 2.5 × 2.0 × 1.8 cm, wrapping the internal carotid

artery and III–V cranial nerves. The parasellar tumor is only

partially removed along the internal carotid artery and the lateral

cranial nerve space due to the involvement of the cranial nerve.

Microscopic examination of the biopsy revealed fragments

of dense connective tissue infiltrated by closely packed,

medium–sized, and monomorphic lymphocytes and scattered

plasma cells (Figure 2A). The lymphocytic infiltrates were

positive for CD20 (Figure 2B), CD138, CD38, CD21

(Figure 2C), CD79a (Figure 2D), and MUM1. These

lymphocytes and plasma cells are monotypic for kappa light

chain (Figure 2E) expression, and they are essentially negative

for lambda light chain (Figure 2F). The pathological diagnosis

was MALT lymphoma with plasma cell differentiation and

amyloidosis of the stroma and vascular wall.

A month and a half after the surgery, the patient received 4

weeks of whole–brain radiotherapy of 40 Gy in total. Follow–up

of the initial MRI 8 months after the operation illustrated no

evidence of tumor recurrence (Figures 3A–L). During the last 27

months of follow–up, the patient had no complaints in her

daily life.
Discussion

Extranodal marginal zone MALT lymphoma accounts for

7% to 8% of newly diagnosed lymphomas (12). Although the

World Health Organization classification published in 2008 still

defines the stomach as the most common organ of origin

(accounting for roughly 50% of MALT lymphomas), recent

data have suggested a decline in the percentage of gastric

MALT lymphomas (12). It can occur in a variety of extranodal

locations, but it is most common in organs where lymphocytes

are generally absent, such as the stomach, salivary glands, and

thyroid. To our knowledge, only a few cases have been reported

to occur in the dura mater (3, 4). Louveau et al. (12) discovered

functional lymphatic vessels in the dural sinus, which could be

the cause of the issue. The published cases were all single lesions.

To the best of our knowledge, we are the first to present a rare

case of two simultaneous lesions occurring in different

cranial regions.
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MALT lymphoma has a wide range of clinical presentations,

owing to variances in signs and symptoms associated with

different extranodal organs. According to the literature, there

is a slight female preponderance among patients with MALT
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lymphoma, and the median age at diagnosis is about 65 years.

Patients with cranial MALT lymphoma present non–specific

neurologic symptoms, including headache, meningeal signs, and

cranial nerve involvement (4). The clinical features are
FIGURE 1

Axial T1WI (A) and T2WI (B) show a fusiform lesion isointensity to gray matter in the right cavernous sinus (CS). T1WI (D) and T2WI (E) show a crescent–shaped
extra–axial mass in the right fronto–temporo–parietal region dura. The right CS lesion (J) extends into the posterior cranial fossa into the internal auditory canal
and encircles the auditory nerve and facial nerve (K). Post–contrast T1–weighted (C, F, G, H, I) images show intense homogeneous enhancement of the mass
lesions with both dural tails visible. The leptomeningeal involvement of the right extra–axial dura lesion shows serrated enhancement on contrast–enhanced T2–
FLAIR (L). APTw image (M) shows a relative homogeneous tumor mass, with APTw signal intensity rates of 2.2%–4.3% (mean: 3.1%).
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summarized in Table 1. In this case, the patient complained

about a severe knife–like pain on the right side of her face. The

MRI showed that the trigeminal nerve was involved by the right

CS lesion, and it was further confirmed that the lesion wrapped

the III–V nerves during the operation.

Radiologically, MALT lymphoma is mainly a single

hyperattenuated lesion on CT, reflecting the highly dense tumor

cells. MRI reveals a homogeneous isointensity–to–hypointensity

lesion on T1WI and isointensity on T2WI, consistent with the

dense cells and increased fibrous tissues in the tumor. Vasogenic

edema is typically noted in the adjacent brain parenchyma. MALT

lymphomas are uniformly enhanced on post–contrast T1WIs, and

the interface between the tumor and brain parenchyma is blurred

(13), with a long and wide meningeal tail sign. In this case, the
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contrasted T2–FLAIR sequence shows a sawtooth–like

enhancement in the brain–tumor interface, which is considered

as a sign of the involvement of the pia mater. The permeability of

meningeal vessels increases with the breakdown of the blood–

brain, blood– cerebrospinal fluid (CSF), or blood–nerve barrier

(14). As T2–FLAIR sequences are thought not to show signals in

the leptomeningeal vasculatures at a normal flow, a

leptomeningeal enhancement on the contrast–enhanced T2–

FLAIR images indicates a true leptomeningeal involvement (8,

15, 16).

Advanced MRI technology can add more diagnostic

information and improve the accuracy of diagnosis. However,

to our knowledge, only one MALT lymphoma case with DWI

has been published. They observed diffusion restriction on DWI
FIGURE 2

Microscopic examination shows a diffuse infiltrate of lymphocytes, plasma cells, and some cells with intermediate lymphoplasmacytic
morphology (A). The lymphocytic infiltrates were positive for CD20 (B), CD21 (C), and CD79a (D). These lymphocytes and plasma cells are
monotypic for kappa light chain (E) expression, and they are essentially negative for lambda light chain (F).
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(b–value =1,000 s/mm2) with a decreased apparent diffusion

coefficient (ADC) value of 0.64 × 10−3 mm2/s (11). The patient

in this case underwent APTw sequence, and a relative

hyperintense mass with a mean APTw value of 3.1% in the

APTw. The elevated APTw may be result from a high protein

and amino acid concentration in the increased lymphoid cells.

The APTw changes are also helpful to the differentiation and
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grading of tumors. Jiang et al. (16) found that the APTWmax

value of lymphomas was lower than that of high–grade gliomas

(3.38% ± 1.06% and 4.36% ± 1.30%, respectively). Recent studies

on meningiomas have demonstrated that the normalized

magnetization transfer ratio asymmetry (nMTRasym) of

atypical meningiomas was significantly greater than that of

benign meningiomas (2.46% vs. 1.67%, P < 0.001) (17).
FIGURE 3

Axial T1WI (A), T2WI (B), and T2–FLAIR (C) demonstrate postoperative alterations in CS. In axial T1WI (D), T2WI (E), and T2–FLAIR (F) images, an
obvious edema zone can be seen in the right parietal frontal brain, which may be related to brain changes after radiotherapy. No tumor
recurrence was found in post–contrast T1–weighted (G–L) images.
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A wide variety of lesions can involve the dura, ranging from

benign to malignant neoplastic, infectious, and granulomatous

etiologies. Frequently, these lesions have imaging characteristics

similar to those of a meningioma and are often mistaken for one.

MALT lymphoma is often misdiagnosed as meningioma because

of its origin in the dura mater. As shown in this case, compared

with meningiomas, the meningeal tail of MALT lymphoma is

longer and not smooth, and the interface presents a serrated

change. Solitary fibrous tumor/hemangiopericytomas also

originate from dura and is characterized by a narrow base

connected to the dura, and “mushroom” grows to the adjacent

brain in a lobulated shape. Intracranial Rosai–Dorfman disease is a

rare benign histiocytosis that primarily affects men. The

distinguishing point from MALT lymphoma is that the edema

of the adjacent brain parenchyma is obvious.

The treatment of MALT lymphoma includes local surgical

resection, radiotherapy, or chemotherapy. This case was

misdiagnosed as meningiomas and underwent surgical resection.

During the operation, the tumor adhered to the cranial nerve,

resulting in a small part of the residual. Radiotherapy was

performed after the operation. The patient’s life was normal

after postoperative radiotherapy. Although surgical resection of

tumors may cure many patients withMALT lymphoma, the use of

this strategy is gradually decreasing (12). This is because

postoperative sequelae and organ dysfunction are more harmful

than lymphoma itself (12). In one case (3), six cycles of rituximab

+ bendamustine allowed intracranial MALT lymphoma complete

remission for more than 2 years without the need for invasive

surgery. Therefore, surgery is mainly limited to histopathological

diagnosis, management of treatment complications, or treatment

of recurrent diseases in patients who are not suitable for other

treatments. As an inert malignant tumor, MALT lymphoma

usually has a good curative effect.
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In conclusion, we report a case in which two MALT

lymphomas occur simultaneously in different skull regions.

These specific MRI features combined with APTw, post–

contrast T1WI, and contrast–enhanced T2 FLAIR images

could help in making a directive diagnosis before the

operation, which can further help neurosurgeons make

appropriate preoperative treatment plans for patients.
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TABLE 1 Summary of Intracranial MALT Lymphomas up to 4 November 2022.

References Age/
sex

Immune
status Clinical features Involvement site CT/

MRI Treatment Follow–up

Shaia et al. (2) 61/F N/A
Nausea and
vomiting

Right posterior fossa −/+
Oral steroid therapy,
surgery, R/T

3/6 months:
relapse–free

Ferguson
et al. (4)

29/F Immunocompetent
Exophthalmos and
visual loss

Right optic foramen and
cavernous sinus

−/+ Surgery, R/T
3 years: relapse–
free

Choi et al. (5) 69/M N/A Headache Anterosuperior −/+ Surgery, C/T
30 months:
relapse–free

Sanjeevi et al.
(6)

46/F N/A
Headache and
ophthalmalgia

Left cavernous sinus −/+ surgery, R/T N/A

Neidert et al.
(8)

44/M N/A facial numbness right fronto–parietal −/+ surgery, R/T
2 years: relapse–
free

Yang et al.
(11)

59/M
Immuno
competent

Ptosis and blurred
vision

Right cavernous sinus +/+ Surgery, R/T, C/T
2 years: relapse–
free

N/A, not available, C/T, chemotherapy, R/T, radiotherapy.
-/+ represents the absence or availability of corresponding CT and MRI images.
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