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Editorial on the Research Topic
Molecular architecture and dynamics of meiotic chromosomes

Introduction

Meiosis is a special type of cell division that allows the generation of haploid gametes
and is a key process for sexual reproduction of animals, plants and fungi. Haploidization
requires that meiotic cells undergo a series of unique processes; namely, pairing, synapsis,
recombination and segregation of homologous chromosomes. This involves profound
meiosis-specific changes in the protein composition and architecture of homologous
chromosomes as well as of the condensation and folding of chromatin that require a
critical timing and regulation. The details of these changes may vary among different
species. Nevertheless, the essential nature of meiosis has remained highly conserved
throughout evolution.

A major goal of the present Research Topic of Frontiers in Cell and Developmental
Biology is to provide an overview of how meiotic chromosomes and their components are
critically involved in the mechanisms of haploidization and how dynamic protein
complexes yield important structural intermediates and temporal regulation to this
process. To this end, this special Topic contains selected original research and review
articles dealing with the composition, architecture, function and regulation of meiotic
chromosomes of animals, plants and fungi using microscopic, biochemical, molecular and/
or genetic techniques.

This Research Topic comprises 15 articles covering different aspects of Meiosis. For
clarity, we have divided them into four main themes: Architecture and recombination,
Pairing and chromosome dynamics, Regulation of meiotic progression, and Nuclear
envelope functions.
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Architecture and recombination

In recent years, substantial progress has been achieved
demonstrating the outstanding role of the chromosome axis in
meiosis-specific processes, i.e., pairing, synapsis and recombination
(Zickler and Kleckner, 2023). In their article, Ito and Shinohara
provide an up-to-date overview on the peculiarities and roles of
meiotic axial structures and their role in double-strand break (DSB)
generation and regulation, as well as in crossover (CO) formation.

The mini review by Rafiei and Ronceret deals with a still intriguing
aspect of meiosis, namely, CO interference (Zickler and Kleckner,
2023). Although this phenomenon has been known for decades, the
mechanisms involved have remained elusive. In their article, the authors
summarize the data of the literature, particularly in plants, and propose
an integrative model for CO interference regulation that involves the
synaptonemal complex (SC) as a structure that would allow the
diffusion of a CO limiting factor. For their part, Shinohara and
Shinohara have also investigated the mechanisms of CO control in
budding yeast using cytological and genetic tools. They have explored
the relationship between DSB frequencies and the localization of the
Msh5 complex in selected strains and concluded that the complex
would play an important role in CO homeostasis.

Localization and number of COs are important parameters in
meiotic recombination studies. However, the quantitative manual
analysis of these events is time consuming. To overcome this
limitation, Soriano et al. have developed an ImageJ macro routine
that allows for a faster, reproducible, and more rigorous investigation
of the mentioned CO parameters in meiotic chromosome spreads of
vertebrates. This tool will greatly facilitate the analysis of meiotic COs
in the context of the SC, even considering overlapping chromosomes.

The SC is a meiosis-specific nuclear structure that mediates
synapsis between homologous chromosomes (Page and Hawley,
2004). Very little is known about the assembly/disassembly process
at the molecular level. Pollard et al. have investigated aspects of this
process by live-cell imaging in budding yeast using a GFP-tagged
Zip1 protein, and they have obtained highly interesting new data on
SC kinetics. Notably, while SC assembly occurs with both monophasic
and biphasic kinetics, final disassembly takes place rapidly due to
Zip1 degradation. In addition, the authors describe a novel type of
event, termed “abortive disassembly”, that differs from the final
disassembly in various mechanistical aspects.

Pairing and chromosome dynamics

Traditionally, meiosis has been studied in only a few model
organisms. However, the emergence of new tools is enabling
researchers to expand the set of model species to include less
studied and more unusual systems (Grusz et al., 2017). Studies in
these species are really promising and could help answer long-
standing questions and provide insight into different strategies for
solving meiotic problems. In this context, Marín-Gual et al. analyzed
meiotic progression in four reptile species (the Australian central
bearded dragon, two geckos and the painted turtle) and demonstrated
that the bouquet is a highly conserved structure during prophase I,
whereas the level of DSBs is highly variable among vertebrates.
Curiously, these reptile species exhibit low recombination rates,
and this feature is shared with the American marsupials Thylamys

elegans andDromiciops gliorides, where RPA and RAD51 foci show an
extreme polarization towards chromosome ends, as it has been
reported by Valero-Regalón et al. However, the distribution of
meiotic DSBs seems to be different in the Australian marsupial
Macropus eugenii, where DSB markers are present along the entire
length of the chromosomes. In addition, bouquet polarization is
incomplete and more transient in this species.

The ability of homologous chromosomes to pair is one of themost
enigmatic processes that takes place during meiosis. Although there
has been some progress in the understanding of this mechanism, it is
still a long way from being fully understood. It seems clear that
although meiotic recombination is essential to ensure recognition of
homologues, there are interhomologous interactions that are not
dependent on DSB formation in many organisms (Page and
Hawley, 2004; Da Ines et al., 2014; Zickler and Kleckner, 2023).
Solé et al. provide an overview of these recombination-independent
events that involve different strategies based on chromosome
clustering and movement, chromosome structures, proteins and
even non-coding RNAs in five model species. Pairing of
homologous chromosomes can be disrupted because of the
presence of unequal sets of chromosomes, as is the case in
organisms with chromosome rearrangements such as Robertsonian
(Rb) translocations (Wallace et al., 2002). Ayarza et al. performed a
detailed analysis of the inheritance of Rb (metacentric) chromosomes
in the offspring of heterozygous males and females for eight Rb
chromosomes. Their results show that the number of inherited Rb
chromosomes is not a random process. In addition, they found no
evidence for a preferential segregation of translocated chromosomes,
i.e., segregation bias or meiotic drive.

Regulation of meiotic progression

The concept of cell-cycle checkpoints was originally
introduced by Hartwell and Weinert more than 3 decades ago
to define the control mechanisms enforcing the dependency in
the order of cell cycle events. According with this notion,
checkpoint pathways prevent the initiation of a late event if a
previous one has not been successfully completed (Hartwell and
Weinert, 1989). Meiosis involves tightly regulated processes
such as homologous chromosome pairing, synapsis,
recombination, and segregation. The precise coordination
between these meiotic events and the progression of meiotic
development is essential to ensure faithful distribution of the
chromosomes to the gametes (Subramanian and Hochwagen,
2014). A review by Huang and Roig in this Research Topic
focuses on the surveillance mechanisms, or checkpoints,
monitoring pairing, synapsis and recombination during
meiosis in mice. The authors discuss how studies in mouse
models provide insights into genetic regulations and the link
between meiotic errors and mammalian infertility, offering
potential diagnostic value for human infertility.

Protein phosphorylation, resulting from the balance between
the action of kinases and phosphatases, plays a paramount role in
the regulatory pathways coordinating timely meiotic progression
(Kar and Hochwagen, 2021). Among the numerous kinases
acting in meiotic cells, cyclin-dependent kinases (CDKs) and
polo-like kinases (PLKs) possess a prominent relevance
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(Tsubouchi et al., 2018). In this Research Topic, Palacios-Blanco
and Martín-Castellanos review the crucial role of cyclins and
CDKs in orchestrating meiosis-specific events, including the
establishment of unique chromosome architecture,
homologous recombination, and synapsis. The authors
highlight the evolutionary conservation of meiosis-specific
cyclins and CDKs, and their diverse functions. They also
emphasize the significance of these regulators in guaranteeing
the precise transmission of genetic information. In addition, an
original research article by Gómez et al. reports two roles for the
polo-like kinase PLK1 during mammalian male meiosis, in
particular the disassembly of SYCP3 and HORMAD1 from the
lateral elements of the SC, and the assembly of the inner
centromere at meiosis I. Their results underscore the
importance of PLK1 as a master regulator of meiotic
progression in mice spermatocytes.

Nuclear envelope functions

The nuclear envelope (NE) and its associated structures play
critical mechanical and regulatory roles during meiosis. Rapid
chromosome movements during meiotic prophase I are promoted
by the evolutionarily conserved LINC complex composed by SUN and
KASH proteins. The LINC traverses the NE connecting the telomeres
(inside the nucleus) with the cytoskeleton (outside the nucleus)
providing the physical forces for telomere-driven chromosome
motion. These movements are critical for proper interhomologous
interactions (Burke, 2018; da Cruz et al., 2020; Zetka et al., 2020).
Another type of highly organized assemblies embedded in the NE are
the nuclear pore complexes (NPCs). Variousmeiotic functions for the
NPCs are beginning to emerge. In yeast, basket nucleoporins appear
to mediate interactions of meiotic chromosomes with the NE
(Komachi and Burgess, 2022), and these nucleoporins undergo a
dynamic reorganization during meiotic divisions (King et al., 2023).
NPCs also contribute to control of meiotic progression by regulation
of SUMOylation (Yang et al., 2023). In addition, exportin-dependent
nucleocytoplasmic trafficking via NPCs also plays important meiotic
roles in yeast andmammals (Onuma et al., 2018; Herruzo et al., 2023).
Three articles in this Research Topic address NE-related subjects.

A research article by Gurusaran et al. reports the crystal
structure of the luminal coiled-coil domain (α1) of SUN1,
which forms a parallel trimeric structure. The trimer is
stabilized by zinc coordination via a central cysteine motif. The
α1 domain combines with another coiled-coil domain (α2) to
mutually reinforce SUN1 trimerization and sustain the
interaction with KASH5. This study expands our knowledge
about LINC organization and how forces are transduced across
the NE to move chromosomes.

In a perspective article, Fernández-Álvarez discusses recent
progress in understanding the non-canonical functions of the
telomere bouquet during meiosis. High-resolution live-cell
imaging techniques combined with data-mining algorithms
tracking telomeres, together with advanced quantitative biology,
are revealing novel complex chromosome movement patterns and
structural features of chromatin. These approaches unveil the
plasticity of the telomeric bouquet with higher spatial and
temporal resolution.

A research article by Fernández-Jiménez et al. examined the
meiotic role of nucleoporins SAR1 and SAR3, which are
components of the NPC outer ring in Arabidopsis thaliana.
Mutation of SAR1 or SAR3 results in abnormal chromatin
condensation and chromosomal fragmentation in a subset of
meiocytes. These defects are dependent on the formation of
SPO11-induced DSBs, and they are also observed in other
mutants deficient in the outer ring complex, like hos1.
Distribution of NPCs is altered in sar1 mutants. This research
provides new insights into how NPCs contribute to meiotic
chromosome behavior in plants.

Concluding remarks

Although our knowledge of meiosis and its biological
functions has expanded in recent years, many facets still
remain opaque. Comprehensive study of meiosis using
innovative techniques will help to elucidate aspects that
remain unclear in key meiotic events; namely, pairing,
synapsis, and recombination. A deeper understanding of
chromosome behavior, including dynamics, movement, and
segregation, could also benefit from continued methodological
advances. Future studies will allow not just to expand our
fundamental scientific understanding, but also to provide
valuable practical contributions to several areas including
agriculture and healthcare.
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During meiotic prophase I, tightly regulated processes take place, from pairing

and synapsis of homologous chromosomes to recombination, which are

essential for the generation of genetically variable haploid gametes. These

processes have canonical meiotic features conserved across different

phylogenetic groups. However, the dynamics of meiotic prophase I in non-

mammalian vertebrates are poorly known. Here, we compare four species from

Sauropsida to understand the regulation of meiotic prophase I in reptiles: the

Australian central bearded dragon (Pogona vitticeps), two geckos (Paroedura

picta andColeonyx variegatus) and the painted turtle (Chrysemys picta). We first

performed a histological characterization of the spermatogenesis process in

both the bearded dragon and the painted turtle. We then analyzed prophase I

dynamics, including chromosome pairing, synapsis and the formation of double

strand breaks (DSBs). We show that meiosis progression is highly conserved in

reptiles with telomeres clustering forming the bouquet, which we propose

promotes homologous pairing and synapsis, along with facilitating the early

pairing of micro-chromosomes during prophase I (i.e., early zygotene).

Moreover, we detected low levels of meiotic DSB formation in all taxa. Our

results provide new insights into reptile meiosis.

KEYWORDS

reptile, meiosis, gametogenesis, micro-chromosomes, DSBs, recombination, bouquet

Introduction

Meiosis is used by all sexually reproducing organisms to form haploid gametes

(oocytes or sperm) via two consecutive cell divisions preceded by one round of genome

replication. This follows a tightly regulated progression of chromosome condensation and

folding, coupled with changes to the epigenome and gene expression (Hammoud et al.,

2014; Alavattam et al., 2019; Patel et al., 2019; Vara et al., 2019; Vara and Ruiz-Herrera,
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2022). Meiosis generates genetically variable gametes by

recombination of the two parental chromosomes during

prophase I. This involves faithful chromosome synapsis, the

formation of double strand breaks (DSBs) and DNA exchange

(crossovers, COs) between homologues.

Meiotic prophase I is commonly subdivided into four

different stages (leptotene, zygotene, pachytene and diplotene)

based on the dynamics of meiotic chromosomes and their

telomeres (reviewed in Bolcun-Filas and Handel, 2018). The

pairing of homologous chromosomes begins at leptotene with

FIGURE 1
Phylogeny of the reptiles included in the study. (A) Phylogenetic relationships of the four reptilian species included in the study. For each
phylogenetic branch, variation in diploid numbers and sex determination system are indicated. (B) Mitotic karyotypes of the four studied species:
Pogona vitticeps, Paroedura picta, Chrysemys picta and Coleonyx variegatus. The bearded dragon (P. vitticeps) and the painted turtle (C. picta)
karyotypes include macro- and micro-chromosomes, whereas the western banded gecko (C. variegatus) and the ocelot gecko (P. picta)
karyotypes include chromosomes of progressively smaller size. Karyotypes correspond to mitotic metaphases from fibroblast primary cell cultures.
GSD: genotypic sex determination; TSD: temperature sex determination.
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the formation of a protein scaffold along chromosomes

composed of cohesins and proteins specific to the

synaptonemal complex (SC). This coincides with the

generation of DSBs by the endonuclease protein SPO11

(Keeney et al., 1997). Telomeres play an important role

during the leptotene-zygotene transition, clustering to form a

structure known as the bouquet (Scherthan et al., 1996; Liebe

et al., 2004; Reig-Viader et al., 2013). At zygotene, DSBs are

repaired, leading to their resolution as either COs or non-COs

(NCOs) between sister chromatids. It is not until pachytene that

chromosomes are completely synapsed and COs are resolved as

chiasmata (the points where genetic material is actually

exchanged). The mechanisms underlying meiotic progression

have been extensively studied in several model organisms,

including yeast, fruit flies, nematodes, mice and zebrafish

(Zickler and Kleckner, 2015; Blokhina et al., 2019; Imai et al.,

2021). However, our understanding of the dynamics of meiotic

prophase I and recombination among non-mammalian amniote

vertebrates (i.e., sauropsids–birds/reptiles) remains incomplete

(Segura et al., 2013; Marín-Gual et al., 2022).

Amniote vertebrates shared a last common ancestor

approximately 325 mya (Shedlock and Edwards, 2009)

(Figure 1) and are characterized by distinctive chromosome

morphology and evolutionary labile sex determination.

Sauropsids display variation in chromosome number,

especially in birds (2n = 40–138), although this is less

pronounced in reptiles (2n = 22–68) (Ruiz-Herrera et al.,

2012; Montiel et al., 2016; Waters et al., 2021). The non-avian

sauropsids (reptiles) are composed of Squamata (lizards and

snakes), Sphenodontia (tuatara), Crocodilia (crocodiles and

alligators), and Testudines (turtles). Reptiles are characterized

by the presence of generally well conserved micro- and macro-

chromosomes (Waters et al., 2021) and by a high variability in

their sex-determining systems (i.e., ZZ/ZW, XX/XY or

temperature sex determination - TSD) (Ezaz et al., 2006)

(Figure 1). While meiotic progression in the chicken has been

studied and mirrors eutherians (Schoenmakers et al., 2009;

Guioli et al., 2012), little is known about meiosis in reptiles.

The few existing reports focused on CO formation (Lisachov

et al., 2017, 2019; Spangenberg et al., 2021) and formation of

unreduced eggs in parthenogenetic lineages (Lutes et al., 2010),

but whether meiotic progression in reptiles resembles the process

described for either mammals or zebrafish (which last shared a

common ancestor with amniotes approximately 400 mya) is

currently unknown.

Here we provide a comparative analysis of key features of

spermatogenesis and meiotic prophase I progression in

previously uncharacterised reptile linages, with a focus on

meiotic recombination. We examined the ocelot gecko

(Paroedura picta) and the western-banded gecko (Coleonyx

variegatus) as representatives of Gekkota (geckos), the

Australian central bearded dragon (Pogona vitticeps) as a

representative of Iguania (iguanas, agamids and chameleons),

and the painted turtle (Chrysemys picta) as a representative of

Testudines (turtles). These species are emerging models for

thermal and reproductive physiology (Valenzuela, 2009;

Starostová et al., 2013; Kubička et al., 2015), as well as

developmental biology (Noro et al., 2009). The three lizards

have genotypic sex determination (GSD). The bearded dragon

has ZW sex chromosomes (Ezaz et al., 2005; Koubová et al.,

2014), whereas the western banded gecko and the ocelot gecko

GSD systems are still unknown (Rovatsos et al., 2019; Keating

et al., 2022). However, the genetic sex determination of the

bearded dragon can be overridden by temperature to produce

viable ZZ females (Quinn et al., 2007; Holleley et al., 2015). Most

turtle species have temperature-dependent sex determination

(TSD, including C. picta), although XY and ZW systems are

also present in different lineages (Bista and Valenzuela, 2020)

(Figure 1).

Our study unveils shared features between bearded dragon

and painted turtle spermatogenesis. We also observed that all

reptiles examined here present an equivalent pattern of prophase

I progression forming the bouquet at early stages, where

homologous micro-chromosomes synapse first and cluster

together. Remarkably we detected low rates of DSB formation

in reptiles when compared to mammals, suggesting that low

recombination rates are a distinctive feature of reptiles.

Material and methods

Samples

Male bearded dragons (n = 4, P. vitticeps) were obtained from

captive colonies in Canberra (ACT, Australia) at the end of the

breeding season (February). Male ocelot geckos (n = 3, P. picta)

and male western banded geckos (n = 1, C. variegatus) were

originated from breeding colonies in Charles University in Prague

(Czech Republic). Male painted turtles (n = 3, C. picta) were wild-

caught in Iowa (United States) at the end of the breeding season

under appropriate permits from Iowa’s DNR.

Primary fibroblast cell culture and
karyotyping

Four primary fibroblast cell lines were derived from all reptile

species studied. Samples of connective tissue were washed in

1xPBS supplemented with an antibiotic-antimycotic solution

(100 U/ml penicillin, 100 μg/ml streptomycin, 50 μg/ml

gentamicin and 0.25 μg/ml amphotericin B). Cultures were

established by disaggregating tissue with a scalpel blade and

resuspending cells in AmnioMAX. Cell cultures were incubated

at 28°C in 5% CO2.

For karyotyping, cells were arrested in metaphase by adding

80 μl of Colcemid (10 μg/ml) to 10 ml of medium for 2 h and
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then trypsinised. Cells were centrifuged down at 600 xg for 5 min

and resuspended in 5 ml of hypotonic solution (0.075M KCl) for

30 min at 37°C. Chromosomes were then fixed by addition of

fixative solution (3:1 methanol/acetic acid) and metaphase

spreads were obtained by dropping 15 µl of cell suspension

onto a cleaned dry slide. Slides were baked at 65°C for one

hour and kept at −20°C until use. Metaphases were stained

homogenously with DAPI for the karyotype analysis.

Histology and testis morphometry

Testes from the bearded dragon and the painted turtle were

collected for histological procedures. Briefly, testes were fixed

overnight in Bouin’s solution (70% saturated picric acid, 25%

formaldehyde and 5% glacial acetic acid). Then, samples were

dehydrated, cleared and embedded in paraffin using standard

procedures. Sections (7 µm) were stained with PAS-hematoxylin.

Spermatocyte spreads and
immunofluorescence

Testicular biopsies were obtained immediately after animal

dissection and processed as previously described (Garcia-Cruz

et al., 2011) in order to obtain spermatocyte spreads. Briefly, a

piece of the testicular biopsy was carefully minced on a slide; 1%

Lipsol was added and incubated for 30 min at room

temperature. Then, a fixative solution containing 4%

paraformaldehyde was added, and slides were kept in a

humid chamber. After two hours, slides were washed in 1%

photo-flo solution and further processed for

immunofluorescence, or frozen at −20°C until use.

Immuno-staining of meiocytes was performed using the

following primary antibodies: rabbit antibody against SYCP3

(#ab15093, Abcam, 1:100 dilution), rabbit antibody against

SYCP1 (#ab15087, Abcam, 1:100 dilution), rabbit antibody

against TRF2 (#NB110-57130SS, Novus Biologicals, 1:

100 dilution), mouse antibody against RNA pol II (#5408,

Abcam, 1:400 dilution), rabbit antibody against RAD51

(#PC130, Calbiochem, 1:50 dilution), rabbit antibody against

RPA32/RPA2 (#10359, Abcam, 1:100 dilution), mouse antibody

against MLH1 (#51–1327GR, BD PharmigenTM, 1:100 dilution),

rabbit antibody against MLH1 (#ab47703, Abcam, 1:

100 dilution) and rabbit antibody against γH2AX (#H5912,

Sigma-Aldrich, 1:100 dilution).

Fluorochrome-conjugated secondary antibodies were used

for detection (all from Jackson ImmunoResearch

Laboratories). Antibodies were diluted in PBST (Tween

0.05% in PBS). Primary antibodies were incubated

overnight at 4°C in a humid chamber and secondary

antibodies for 1 h at 37°C in a humid chamber. After

washing away the excess of secondary antibodies, DNA was

counterstained with anti-fade solution (Vectashield)

containing 8 μg/ml DAPI (4′,6′-diamidino-2-phenylindole).

Microscopy and image analysis

PAS-hematoxylin–stained tissue sections were analyzed on an

Olympus CH2 microscope, and images were captured using a Zeiss

Axiophot Microscope and Olympus C5060 camera. For fluorescent

sample analysis and image capturing, a Zeiss Axioskop fluorescence

microscope connected to a ProgRes Jenoptik camera was used. The

image capture software ProgRes CapturePro was employed for

image acquisition and image processing.

The accumulation of foci in the bouquet was analyzed as the

percentage of foci per cell located in the bouquet region,

previously delimited as the area where synaptonemal complex

(i.e., SYCP3 signal) begins to assemble and SYCP3 intensity is

higher. Only cells with a well-defined bouquet were included in

the analysis.

Statistical analysis

Statistical significance for the DSB analysis as RPA and

RAD51 foci, and for the analysis of the percentage of DSB

foci in the bouquet was determined using two-sided Mann-

Whitney U-tests. The critical value for statistical significance

was p < 0.05 for all tests. Each plot or its figure legend indicates

the statistical methods and corresponding p-values. All boxplots

are represented as centre lines (median), box limits (interquartile

range; 25th and 75th percentiles) and whiskers (largest and

lowest data points inside the first and third quartiles plus

1.5 times the interquartile range).

Results

Spermatogenesis progression in the
bearded dragon and the painted turtle

We first characterized spermatogenesis progression in the

bearded dragon (P. vitticeps) and the painted turtle (C. picta)

(Figure 2), following the mammalian classification of germ cell

morphology (Russell et al., 1993). Both the bearded dragon

(Figures 2A,B) and the painted turtle (Figures 2C,D) had a

histological organisation of germ cells within the seminiferous

epithelia (between the basal lamina and the lumen) that was

similar to that of eutherian mammals (Russell et al., 1993) and

other amniotes (Gribbins, 2011).

In both species, spermatogonia (A and B) were restricted

to the basal lamina (Figures 2A,C). Type A spermatogonia

presented a rounded nucleus showing one nucleolus, whereas

type B spermatogonia contained densely stained chromatin
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and more than two nucleoli (between 2-4 nucleoli) (Figures

2B,D). Large populations of cells subsequently progress

through meiosis towards the centre of the seminiferous

tubule. Meiotic cells were characterized by an increase in

size and condensed chromatin. This included recognizable

stages of prophase I: leptotene, zygotene, pachytene and

diplotene (Figure 2). Both first and second meiotic divisions

and secondary spermatocyte stages occurred rapidly, as all

three phases were found in low proportions in cross-sections

of seminiferous tubules (Figures 2A,C). Leptotene

spermatocytes were distinguished by dense filamentous

chromatin at the nuclei. Zygotene spermatocytes exhibited

clumps of condensed filamentous chromatin within the

nucleus. Pachytene spermatocytes displayed an open

nucleoplasm and their nuclei contained thick chromatin

fibres. Finally, diplotene spermatocytes had chromatin fibres

in a tight circle and degenerating nuclear membranes. We also

distinguished meiotic cells with the chromosomes fully

condensed and aligned at the metaphase plate. During the

second meiotic division, secondary spermatocytes contained

randomly dispersed chromatin fibres (Figures 2B,D).

Spermiogenesis (the differentiation and maturation of

sperm) encompasses a longer period than previous stages as

large populations of round and elongating spermatids were

FIGURE 2
Testis histology. Histological cross-sections of seminiferous tubules of (A) the bearded dragon and (C) the painted turtle stained with PAS-
hematoxylin. Dashed circles and arrowheads point clusters of different cell types. Scale bars: (i) 200 μm, (ii) 100 μm, and (iii, iv) 20 μm. Germ cell
types found within the seminiferous epithelium and their progression in (B) the bearded dragon and (D) the painted turtle. Scale bar: 10 μm. Legend
type: Spg A, type A spermatogonia; Spg B, type B spermatogonia; L, leptotene spermatocyte; Z, zygotene spermatocyte; P, pachytene
spermatocyte; D, diplotene spermatocyte; MI, metaphase I; Sp II, secondary spermatocyte; RS, round spermatid; ES, elongating spermatid; Sp Z,
spermatozoa.
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FIGURE 3
Synapsis dynamics during prophase I. Spermatocyte spreads labelled with antibodies against SYCP3 (green) and SYCP1 (red), counterstaining
the DNAwith DAPI (blue) for (A) the bearded dragon and (B) the ocelot gecko. Scale bar: 10 μm.White dashed circle: cluster ofmicro-chromosomes.
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FIGURE 4
Telomere dynamics during prophase I. Spermatocyte spreads labelled with antibodies against SYCP3 (green) and TRF2 (red), counterstaining
the DNA with DAPI (blue) for (A) the bearded dragon, (B) the ocelot gecko and (C) the western banded gecko. Scale bar: 10 μm and 2 μm (insets).
White arrowheads: telomeres fromwhich SC is beginning to assemble. Yellow arrowheads: completely associated micro-chromosomes (i.e., lateral
elements of the SC completely assembled between both telomeric ends).
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observed (Figure 2). Spermiogenic cells were divided into three

different stages: i) round spermatids, the smallest cell type,

rounded with fully condensed chromatin; ii) elongating

spermatids with their round nuclei and condensed chromatin

becoming elongated; iii) mature sperm after the completion of

spermiogenesis and the elongation process was finalised.

Micro-chromosomes pair earlier during
prophase I than macro-chromosomes

We then analyzed the meiotic chromosome pairing strategies

in all four species. Chromosome pairs in all four reptile species

largely differ in size (Figure 1). The chromosome complement of

the reptiles herein varied: 2n = 32 chromosomes in the bearded

dragon (6 pairs of macro chromosomes and 10 pairs of micros,

including the sex chromosomes) (Young et al., 2013), 2n = 32 in

the western-banded gecko (16 pairs of acrocentric chromosomes

with continuous decreasing of size from large to small) (Pokorná

et al., 2010), 2n = 36 chromosomes continuously decreasing in

size in the ocelot gecko (Main et al., 2012; Koubová et al., 2014)

and 2n = 50 in the painted turtle (13 pairs of macro

chromosomes and 12 pairs of micros) (Badenhorst et al.,

2015) (Figure 1B).

Axial elements of the synaptonemal complex labelled with

anti-SYCP3 were used to classify spermatocytes into the different

prophase I stages (leptotene, early zygotene, late zygotene and

pachytene; Figure 3 and Supplementary Figure S1) as previously

described (Alavattam et al., 2018). The proportion of thick

(i.e., synapsis) and thin (i.e., unsynapsis) SYCP3 filaments

were used to distinguish between earlier and later stages of

zygotene spermatocytes. Zygotene spermatocytes with ≤ 50%

of thick SYCP3 filaments (i.e., synapsis) were classified as “early

stage”, whereas zygotene spermatocytes with > 50% of synapsis,

were classified as “late stage” (Alavattam et al., 2018).

In all four species we observed short filaments of SYCP3 at

leptotene, which represented the forming axial elements

(Figure 3; Supplementary Figure S1). The general trend in all

four species was for the chromosomes to start pairing at one pole

of the cell at leptotene, forming the bouquet, from which SYCP3-

positive filaments assembled from telomeres (Figure 4;

Supplementary Figure S2). As prophase I progressed, axial

elements become larger at zygotene, when synapsis between

homologous chromosomes takes place, as revealed by

SYCP3 and SYCP1 labelling (Figure 3; Supplementary Figure

S1) (Alavattam et al., 2018). At pachytene, autosomes had

completed synapsis. Remarkably, we found that micro-

chromosomes completed synapsis earlier than macro-

chromosomes, forming a discrete cluster (Figure 3A). This

previously undescribed pattern was also highlighted by

TRF2 immunostaining of telomeres, which revealed that some

micro-chromosomes were fully synapsed in early zygotene

(Figure 4; Supplementary Figure S2).

Moreover, phosphorylated RNA polymerase II (the active

form of RNA pol II) was detected in spermatocytes of all four

species, with increasing signal intensity through prophase I

(Supplementary Figure S3), mirroring therian mammals (Page

et al., 2012; Marín-Gual et al., 2022) and insects (Viera et al.,

2017). The absence of transcriptional repression of any specific

pair of chromosomes during pachytene (no antibodies against

γH2AX yielded any positive staining) suggested that meiotic sex

chromosome inactivation (MSCI) was absent in the four reptilian

species, contrasting male mammals (Turner et al., 2005; Ruiz-

Herrera and Waters, 2022). The absence of MSCI is not

surprising because our reptile models either do not have sex

chromosomes (the painted turtle, Valenzuela et al., 2014), or

because males are the homogametic sex (the bearded dragon,

Ezaz et al., 2005), or because sex chromosomes are likely poorly

differentiated (the ocelot gecko and the western banded gecko,

Keating et al., 2022; Rovatsos et al., 2019).

DSBs dynamics in reptiles

We then analyzed the dynamics of DSB formation by

immunodetection of the recombination proteins RPA

(Replication Protein A) and RAD51 (Radiation Sensitive

51) (Figure 5; Supplementary Figures S4, S5) as no

antibodies against MLH1 yielded any positive staining in

reptile spermatocytes (data non shown). RPA binds to the

3’ DNA strand following DSBs formation, and is subsequently

replaced by RAD51 and/or DMC1 by early prophase I (He

et al., 1995; Keeney et al., 1997). As such, the number of RPA

and RAD51 sites in early prophase is a proxy for the number of

DSBs, as previously described for various mammalian taxa

(Segura et al., 2013; Ruiz-Herrera et al., 2017; Marín-Gual

et al., 2022).

We successfully detected RPA foci in spermatocyte spreads

of the western banded gecko, the ocelot gecko, and the bearded

dragon (Figures 5A,B; Supplementary Figure S4; Table 1).

Both geckos had equivalent numbers of RPA foci at

leptotene and early zygotene (Mann-Whitney test, p ≥ 0.05,

Table 1). However, they had different RPA replacement

dynamics, because the mean number of RPA foci was

higher in the western banded gecko compared to the ocelot

gecko by late zygotene (Mann-Whitney test, p < 0.001) and

pachytene (Mann-Whitney test, p < 0.01) (Table 1).

Furthermore, the RPA loading and replacement dynamics

in the bearded dragon differed from both geckos, with

lower RPA foci per cell at early zygotene (Mann-Whitney

test, p < 0.001), intermediate values at late zygotene (Mann-

Whitney test, p < 0.001) and higher RPA foci at pachytene

compared to the ocelot gecko (Mann-Whitney test, p < 0.05)

(Figure 5B; Table 1).

Similar dynamics (i.e., a decreasing numbers of foci as

prophase I progressed) were detected for RAD51, which we
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FIGURE 5
Double strand break formation dynamics during reptilian prophase I. (A) Late zygotene spermatocyte spreads labelled with antibodies against
SYCP3 (green) and RPA (red), counterstaining the DNA with DAPI (blue) for the western banded gecko, the ocelot gecko and the bearded dragon.
Scale bar: 10 μm. (B) Plot representing the number of RPA foci per cell detected at leptotene, early zygotene, late zygotene and pachytene. (C) Late
zygotene spermatocyte spreads labelled with antibodies against SYCP3 (green) and RAD51 (red), counterstaining the DNA with DAPI (blue) for
the painted turtle, the ocelot gecko and the bearded dragon. Scale bar: 10 μm. (D) Plot representing the number of RAD51 foci per cell detected at
leptotene, early zygotene, late zygotene and pachytene. (E) Early zygotene spermatocyte spread labelled with SYCP3 (green) and RPA (red),
counterstaining the DNA with DAPI (blue) in the bearded dragon. Dashed yellow circle: RPA foci detected in the bouquet. Blue circle: nuclei
perimeter. (F) Plots representing the percentage of (i) RPA and (ii) RAD51 foci detected in the bouquet for the western banded gecko, the painted
turtle, the ocelot gecko and the bearded dragon. Only cells with a well-defined bouquetwere included in the analysis. The number of cells examined
per species per stage, illustrated in panels (B,D,F), are listed in Table 1. Mann-Whitney test (*p < 0.05, **p < 0.01 and ***p < 0.001). Legend: L,
leptotene; EZ, early zygotene; LZ, late zygotene; P, pachytene.
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detected in spermatocyte spreads of the painted turtle, the ocelot

gecko and the bearded dragon (Figures 5C,D; Supplementary

Figure S5; Table 1). Both lizards had equivalent values of

RAD51 foci per cell at leptotene (Mann-Whitney test, p ≥
0.05), whereas the mean was higher in the bearded dragon

compared to the ocelot gecko by early zygotene (Mann-

Whitney test, p < 0.001) and late zygotene (p < 0.001)

(Table 1). In contrast, the painted turtle showed higher mean

values of RAD51 foci per cell compared to both lizards at all

stages of prophase I (Man-Whitney test, p < 0.001) except in

pachytene (Mann-Whitney test, p ≥ 0.05) (Figure 5D; Table 1).

Remarkably, RPA and RAD51 loading followed similar

dynamics, with both proteins accumulated in the bouquet

region at early stages of prophase I (Figure 5E). Despite some

variation among reptile species, between 66% and 75% of the

total RPA and RAD51 foci per cell were detected in the bouquet

(Figure 5F), indicating that DSB formation initiates at telomeres.

Discussion

Our work represents a comparative study of the dynamics of

the spermatogenic cycle and prophase I progression in reptiles,

with an emphasis on chromosome pairing and the formation and

repair of meiotic DSBs.

Continuous spermatogenic cycle in the
bearded dragon and the painted turtle

Spermatogenesis in vertebrates follows two main

arrangements in the seminiferous epithelia: (i) cystic, in

which developing germ cell syncytia are individually

encapsulated by Sertoli cells as observed in fish and

amphibians, and (ii) noncystic, where spermatogenesis takes

place in seminiferous tubules (reptiles, birds, and mammals)

(Schulz et al., 2010; Sousa et al., 2014). In species with

noncystic spermatogenesis, the seminiferous epithelium is

the building block of seminiferous tubules, which are

primarily composed of Sertoli cells and germ cells. Then,

germ cell differentiation takes place in a continuous

manner with a species-specific time interval (e.g., 8.6 days

in mice and 16 days in humans, Russell et al., 1993).

Both the histological and cytological characterization

presented here for reptiles revealed that spermatogenesis

progression is noncystic and highly conserved with respect to

cell morphology and distribution. Analysis of the histological

distribution of different germ cell types within the seminiferous

epithelia revealed that both the bearded dragon and the painted

turtle showed similar patters to those described in eutherian

mammals (Russell et al., 1993) and other reptiles (Gribbins, 2011;

Sousa et al., 2014). In fact, all amniotes described to date present

similar testis structure and organization, although differences

have been reported in terms of reproductive strategy and

behaviour, including both continuous and seasonal breeding

(Gribbins et al., 2003).

In temperate and subtropical lizards, the testicular cycle is

divided in two phases: (i) the regenerative phase, which occurs

in the spring, and (ii) the degenerative phase, that begins in

summer (Mayhew and Wright, 1970; Amey and Whittier,

2000a). So, there is a cycle of hypertrophy and regression of

reproductive organs. Previous studies in the eastern

bearded dragon Pogona barbata classified testis as (i)

regressed (only spermatogonia present), (ii) developing

(spermatocytes or spermatids present), and (iii)

spermiogenic (spermatogenesis and mature sperm present)

(Amey and Whittier, 2000a). Consistently, the observations

made here for the central bearded dragon agree with the

observation of maximum spermatogenic activity in spring,

followed by the cessation of spermatogenesis directly after the

breeding period and testicular recrudescence in February (late

summer). Both bearded dragons and the painted turtle are

seasonal breeders (Gibbons, 1968; Amey and Whittier, 2000b)

and since samples were collected at the end of the mating

season for both species, our results showed that germ cells

enter the spermatogenic cell cycle continually during the

reproductive season, as all cell stages were found in the

seminiferous epithelium.

TABLE 1 Dynamics of DSB formation during prophase I in the four reptiles included in the study. Values indicate the average number of RPA or
RAD51 foci per cell immunodetected in leptotene, early zygotene, late zygotene, and pachytene, as well as the fraction of the total foci per cell
detected in the bouquet. Values in parenthesis indicate the number of cells analyzed in each case.

Leptotene Early zygotene Late zygotene Pachytene % foci in bouquet

Mean RPA foci/cell Western-banded gecko 115 (29) 95 (20) 82 (24) 49 (17) 69 (28)

Ocelot gecko 115 (30) 94 (25) 61 (27) 36 (11) 69 (29)

Bearded dragon – 85 (32) 70 (32) 44 (41) 70 (32)

Mean RAD51 foci/cell Painted turtle 103 (29) 75 (37) 56 (37) 22 (17) 70 (26)

Ocelot gecko 65 (31) 44 (37) 31 (35) 19 (25) 66 (24)

Bearded dragon 61 (17) 53 (36) 40 (24) 21 (34) 75 (15)
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Meiosis progression is highly conserved in
reptiles

We found that the progression of prophase I was highly

conserved among the reptiles examined. In most species,

chromosomes were organized into chromosome axes but

were not yet synapsed at leptotene. This was coupled with

the formation of DSBs (Zickler and Kleckner, 2015). In our

target reptiles, chromosome axes were detected as short

stretches of SYCP3 and SYCP1 signal adjacent to the

telomes, mirroring the patterns previously described in

zebrafish (Blokhina et al., 2019; Imai et al., 2021).

Moreover, telomeres clustered to one side of the nucleus

forming the bouquet, presumably promoting

homologous pairing and synapsis. The bouquet first

appeared from leptotene to late zygotene, depending on

the species. This feature is shared with zebrafish, suggesting

that early telomere clustering is ancestral and has

been retained over almost 400 million years of vertebrate

evolution.

Interestingly, micro-chromosomes completed synapsis

earlier than macro-chromosomes, forming discrete

clusters concurrent with the bouquet. This suggests that

the bouquet facilitates SYCP3 loading and synapsis of

homologous chromosomes (both macro and micro-

chromosomes) from the telomeres towards the central

regions of the chromosomes, at the same time as micro-

chromosome synapsis. Complete homologous synapsis of

micro-chromosomes was observed from early zygotene to

pachytene. This was coupled with a polarization of DSBs

towards telomeres, a notable difference compared to some

mammal species where DSBs are distributed more

homogenously across the genome as the SC is being

assembled (Ruiz-Herrera et al., 2017; Marín-Gual et al.,

2022), although DSBs and COs have been reported to be

enriched at sub-telomeric regions in human males (Barlow

and Hultén, 1998; Khil and Camerini-Otero, 2010; Pratto

et al., 2014).

The clustering of telomeres during early prophase I

extends previous cytological and genomic studies where

micro-chromosomes in reptiles tend to clump centrally in

mitotic and meiotic metaphase I (Waters et al., 2021),

resulting in higher inter-chromosomal genomic interactions

between micro-chromosomes than for macro-chromosomes

(Waters et al., 2021). This results in micro-chromosomes

forming a structural and functional domain that is

maintained in germ cells, probably facilitating homology

search and DSBs formation. As most sauropsids are

characterized by very conservative genomes (with few

macro-chromosomes and up to many micro-chromosomes)

(Valenzuela and Adams, 2011; Waters et al., 2021), we

hypothesize that meiotic patterns described herein will

apply widely in this clade.

Low meiotic DSB rates in reptiles

Remarkably, reptiles showed lower levels of DSBs than

eutherian mammals. Although variable among species,

between 200 and 300 DSBs per cell (mean values) occur

genome-wide during leptotene in eutherian mammals

(Segura et al., 2013). Marsupials show the lowest

recombination rates in mammals with less than 150 RPA

foci per cell in zygotene (Zenger et al., 2002; Samollow

et al., 2004; Marín-Gual et al., 2022). This contrasts with

our results where fewer RPA foci (from 95 to 85 per cell)

and RAD51 foci (from 75 to 44 per cell) (a proxy for DSBs)

were observed in early zygotene in reptiles. A closer inspection

of the data revealed that squamates (geckos and the bearded

dragon) showed equivalent values of DSBs in early stages of

prophase I, and lower than turtles, the sister taxon to

archosaurs (birds plus crocodilians). Two biological, non-

mutually exclusive alternatives could explain these

observations: differences in DSBs per cell observed between

squamates and turtles are due to (i) contrasting chromosome

number and size between the taxa examined, or (ii) these

lineages differ in the genetic determinants of DSBs induction.

The first alternative agrees with previous cytological data.

Specifically, studies in disparate taxa show that the total number

and distribution of COs (and also initial meiotic DSBs) on a

specific chromosome depends on several factors, such as

chromosome size, and an individual’s sex and age (Pardo-

Manuel De Villena and Sapienza, 2001; Lynn et al., 2004;

Garcia-Cruz et al., 2011; Ruiz-Herrera et al., 2017; Wang

et al., 2019). Larger chromosomes tend to accumulate more

COs (but see recent data in yeast, Murakami et al., 2021), and

each chromosome arm generally presents at least one CO (the

obligatory chiasmata) (Sun et al., 2017). Thus, because both

geckos and the bearded dragon have lower diploid numbers

(2n = 32–36) than the painted turtle (2n = 50), differences in

meiotic DSBs (COs were not reported in this study) are expected

among groups. This rationale would also apply to birds, which

possess high chromosome numbers (typically 2n = 80, Ruiz-

Herrera et al., 2012; Waters et al., 2021). In birds, cytological

analyses of COs (meiotic DSBs are unreported) are restricted to

species from the domesticated groups Galloanserae and

Passeriformes, in which recombination rates are higher (from

1.8 cM/Mb to 2.6 cM/Mb; del Priore and Pigozzi, 2020) than

those reported for mammals (from 0.18 cM/Mb to 1.78 cM/Mb;

Segura et al., 2013). Moreover, birds show little variation in

recombination rates between groups (del Priore and Pigozzi,

2020), and thus are not lineage-dependent (unlike mammals,

Segura et al., 2013), perhaps related to high genome conservation

(Waters et al., 2021).

The second hypothesis derives from the observation that

recombination rates may vary by the presence of different genetic

determinants of DSBs induction, such as PRDM9 (Mihola et al.,

2009; Myers et al., 2010; Grey et al., 2011; Vara et al., 2019).
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PRDM9 is a meiotic-specific histone (H3) methyltransferase with

a C-terminal tandem repeat zinc finger (ZnF) domain that adds

H3K4me3 marks at nucleosomes close to DSBs in early meiosis.

This process genetically determines recombination hotspots

(Mihola et al., 2009; Baudat et al., 2010; Grey et al., 2011).

Experimental work has shown that PRDM9 provokes changes

in local chromatin structure that tend to position nucleosomes in

ways that increased overall accessibility (Yamada et al., 2020).

Moreover, in the absence of PRDM9, DSBs tend to form in gene

promoter regions (Brick et al., 2012; Baker et al., 2015; Lange

et al., 2016). PRDM9 is present in most mammals (with the

exception of canids, Muñoz-Fuentes et al., 2011), but substantial

allelic variability was described in natural populations, especially

in rodents (Buard et al., 2014; Capilla et al., 2014; Vara et al.,

2019) contributing to speciation (Smagulova et al., 2016). Most

importantly, PRDM9 gene was lost at least 13 times

independently in vertebrates, including in birds, some snakes,

and lizards (Cavassim et al., 2022). Although bearded dragons

have a complete PRDM9 (Cavassim et al., 2022), little is known

regarding geckos and turtles. It is tempting to speculate the

existence of yet to be discovered genetic determinants of

recombination across vertebrates, and that one (or more) of

these might be responsible for reduced recombination rates

observed in the species herein. Further research is needed to

fully test these hypotheses.

Limitations of the study

As the use of non-model species can be challenging, future

studies with a larger number of animals per species will be

desirable to capture inter-individual variability in

recombination rates. Additionally, here we report results

obtained with two early markers of meiotic DSBs

(RAD51 and RPA) in four different reptile species, but the

use of direct measures of COs were precluded. Thus, future

research focussed on MLH1 foci (a marker of COs) together

with the analysis of chiasmata in metaphase I will provide a

comprehensive view of the recombination dynamics in

reptiles.

Conclusion

Overall, our findings provide new insights into meiotic

chromosome dynamics and double strand break formation

during reptile spermatogenesis. Shared histological patterns

observed between squamates and turtles suggest that they

represent the ancestral state. However, future research across

more species is warranted to asses conservation of this ancestral

pattern across other sauropsids. Understanding the intricacies of

the mechanisms regulating chromosome synapsis,

recombination and segregation during meiosis progression

across vertebrates will further determine the genomic basis of

biodiversity, and how it may be affected by ecotoxicological and

other environmental changes.
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SUPPLEMENTARY FIGURE 1:
Synapsis dynamics during prophase I. Spermatocyte spreads labelledwith
antibodies against SYCP3 (green) and SYCP1 (red), counterstaining the

DNA with DAPI (blue) for (A) the western-banded gecko and (B) the
painted turtle. Scale bar: 10 μm.

SUPPLEMENTARY FIGURE 2:
Telomere dynamics during prophase I. Spermatocyte spreads labelled
with antibodies against SYCP3 (green), SYCP1 (red) and TRF2 (blue) for
the bearded dragon. Scale bar: 10 μm and 2 μm (insets). White
arrowheads: telomeres from which SC is beginning to assemble. Yellow
arrowheads: completely synapsed micro-chromosomes (i.e., lateral and
central elements of the SC completely assembled between both
telomeric ends). Insets (bottom row panels) show micro-chromosomes
completely assembled.

SUPPLEMENTARY FIGURE 3:
Transcriptional dynamics during prophase I. Spermatocyte spreads
labelled with antibodies against SYCP3 (green) and RNApol II (red)
for (A) the bearded dragon, (B) the ocelot gecko, (C) the western
banded gecko and (D) the painted turtle. Scale bar: 10 μm.

SUPPLEMENTARY FIGURE 4:
RPA dynamics during reptilian prophase I. Spermatocyte spreads
labelled with antibodies against SYCP3 (green) and RPA (red),
counterstaining the DNA with DAPI (blue) for (A) the western
banded gecko, (B) the ocelot gecko and (C) the bearded dragon.
Scale bar: 10 μm.

SUPPLEMENTARY FIGURE 5:
RAD51 dynamics during reptilian prophase I. Spermatocyte spreads
labelled with antibodies against SYCP3 (green) and RAD51 (red),
counterstaining the DNA with DAPI (blue) for (A) the painted
turtle, (B) the ocelot gecko and (C) the bearded dragon. Scale bar:
10 μm.
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Robertsonian translocation is the most common chromosomal rearrangement

in mammals, and represents the type of chromosomal change that most

effectively contributes to speciation in natural populations. Rb translocations

involve double-strand DNA breaks at the centromere level in two telocentric

chromosomes, followed by repair ligation of the respective long arms, creating

a metacentric Rb chromosome. Many different chromosomal races have been

described in Mus musculus domesticus that show reduced chromosome

numbers due to the presence of Rb metacentric chromosomes. The

crossroads between ancestral telocentrics and the new metacentric

chromosomes should be resolved in the meiotic cells of the heterozygote

individuals, which form trivalents. The preferential segregation of metacentric

chromosomes to the egg during female meiosis I has been proposed to favor

their fixation and eventual conversion of a telocentric karyotype to a

metacentric karyotype. This biased segregation, a form of meiotic drive,

explains the karyotype changes in mammalian species that have

accumulated Rb fusions. We studied and compared the number of Rb

chromosomes inherited by the offspring of multiple Rb heterozygous of M.

domesticus in reciprocal crosses. We did not find that the Rb chromosomes

were inherited preferentially with respect to the telocentric chromosomes;

therefore, we found no evidence for the meiotic drive, nor was there a random

distribution of Rb chromosomes inherited by the descendants.
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Introduction

Robertsonian (Rb) translocation is the most common

chromosomal rearrangement in mammals (King 1993) and

that most effectively contributes to variation or speciation in

natural populations (Garagna et al., 2001a; Aniskin et al., 2006).

InMus musculus domesticus, many different chromosomal races

have been described that show reduced chromosome numbers

due to the presence of metacentric Rb chromosomes (Pialek et al.,

2005). Rb translocations involve double-strand DNA breaks at

the centromere level in two telocentric chromosomes, followed

by fusion of the respective long arms, creating a metacentric Rb

chromosome. The short arms (p) of the original telocentric

chromosomes, including the proximal telomeres, part of the

satellite DNA and, frequently one centromere, are lost (Nanda

et al., 1995; Garagna et al., 2001a; Garagna et al., 2002). Most

current models of chromosomal variation of natural populations

assume that Rb chromosomes are negatively tolerated; only after

a long period can the new chromosome could eventually

overcome the meiotic restrictions and become established

within a reproductive community (Baker and Bickham, 1986;

Rieseberg 2001; Hauffe et al., 2012). However, six distinct

chromosomal races of the house mice of the Madeira Island

have emerged in less than 500 years. This remarkable example of

chromosome evolution has been explained by reproductive

chromosomal isolation and genetic drift (Britton-Davidian

et al., 2000; Britton-Davidian et al., 2005). The crossroads

between ancestral telocentrics and new metacentric

chromosomes should be resolved in heterozygote individuals,

wherein trivalents are formed during meiosis I (Wallace et al.,

2002). The Mendelian distribution of metacentric/telocentric

chromosomes in the heterozygote gametes will depend on the

normal progression of the meiotic prophase, random

arrangement of the trivalents at metaphase I, and alternate

segregation between them at anaphase. The meiotic drive

(also called segregation distortion) is the preferential selection

of certain chromosomes or gametes that alters the gene ratio

from the Mendelian expectations.

Although multiple Rb heterozygotes showed an increased

loss of spermatocytes at prophase I, many of them entered

meiotic divisions (Garagna et al., 2001b; Wallace et al., 2002;

Manterola et al., 2009). The chromosomes of each trivalent move

together into alignment at metaphase and separate from each

other at anaphase I. Only gametes resulting from alternate

segregation exhibit normal or balanced karyotypes. Gametes

produced by adjacent segregations have unbalanced

karyotypes, being nullisomic or disomic in one or more

chromosomes. Selective mechanisms, such as the metaphase

checkpoint, appear to be effective because spermatids resulting

from alternate segregation prevail in heterozygotes (Eaker et al.,

2001; Anton et al., 2004; Pylyp et al., 2013; Manieu et al., 2014;

Lamotte et al., 2018). Additionally, the direction of alternate

segregation during female meiosis I could potentially determine

whether metacentric chromosomes are transmitted to the

offspring (Yoshida and Kitano, 2012).

According to the meiotic drive hypothesis, Rb metacentrics

segregated preferentially to the egg in populations that have

fixed multiple different metacentrics; and preferentially

segregate to the polar body in other populations that have

remained telocentric (de Villena and Sapienza 2001; White

et al., 2010). It is still unclear what determines the direction of

the drive and how that directions can differ between

populations, so that some of them retain the fusions and

change karyotype, while others do not. The relative

centromere strength of Rb metacentric versus homologous

telocentrics has been proposed to determine the direction of

the meiotic drive, with stronger centromeres preferentially

remaining in the egg (Chmátal et al., 2014). In addition,

asymmetries in the meiotic spindle orientation, tubulin and

microtubule-organizing center, and associated meiotic drivers

may contribute to explain the meiotic drive in oocytes (Akera

et al., 2017; Wu et al., 2018; Kruger and Mueller., 2021).

In this study we attempted to determine whether the meiotic

drive could be taking place during the meiosis of Robertsonian

heterozygotes of Mus musculus domesticus who carry eight Rb

chromosomes, by studying the number of Rb chromosomes

(0–8), inherited by the descendants of parental males or

females who are multiple heterozygous Rb.

Materials and methods

Animals and crosses

Males and females of the Rb heterozygotes 2n = 32 group of

Mus musculus domesticus were generated by crossing the

homozygote strain CD1 2n = 40, with all their chromosomes

telocentric, and the homozygote Milano II race 2n = 24, with

eight pairs of Rb metacentric chromosomes. The heterozygotes

were crossed with homozygotes (2n = 40), to obtain offspring

who could inherit between 0 and 8 Rb metacentric chromosomes

(Figure 1). The eight Rb chromosomes are: Rb 2.12, 3.4, 5.15, 6.7,

8.11, 9.14, 10.13, 16.17. Numbers correspond to the 2n =

40 standard karyotype. Nineteen crosses of heterozygous

females (2n = 32) and homozygous males (2n = 40) were

performed with litter, with an average of 4.4 offspring in each.

Ten crosses of heterozygous males (2n = 32) and homozygous

females (2n = 40) were made with litter, with an average of

5.5 offspring each.

Mice were maintained at 22°C with a light/dark cycle of 12/

12 h and fed ad libitum. The procedures involving the use of the

mice were reviewed and approved by the Ethics Review

Committee of the School of Medicine, Universidad de Chile

(No. CBA #0441), and by the Ethics Review Committee of the

Chilean National Science Foundation FONDECYT-CONICYT.

The care and handling of laboratory animals was done following
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all institutional and national guidelines (protocol CBA #0441,

FMUCH).

Number of Robertsonian chromosomes
and size of pericentromeric region

The number of Rb chromosomes inherited by

139 descendants of female or male Rb heterozygotes was

studied in metaphase plate chromosomes obtained from bone

marrow cells and stained with Giemsa or DAPI. Briefly, bone

marrow cells were incubated for 10 min in 0.05 M KCl at 37°C,

and the pellet was washed and fixed in 3:1 v/v methanol: acetic

acid. Rb chromosomes and total chromosomes were counted in

10 metaphase plates per animal. After determining the number of

Rb metacentric chromosomes, we verified that the telocentric

chromosomes actually completed the corresponding diploid

number.

The size of the pericentromeric region was measured in the

Rb chromosomes inherited by each of the five offspring of a 2n =

32 heterozygous father and a 2n = 40 mother, which were

respectively: Three, five, three, two, four, and five Rb

chromosomes, respectively. Chromosomes were stained with

DAPI (4′, 6-diamino-2-phenylindole), which distinguishes

A-T base-rich pericentromeric heterochromatin. Metaphase

plates were stained for 10 min in the dark with 10 µl DAPI

(Thermo Fisher Scientific®) in 40 µl 1x PBS buffer, washed with

1x PBS buffer, and sealed with coverslips. The samples were

observed under a Nikon® Optiphot fluorescence microscope and

digitized using a Nikon® Digital Sight DS-5M camera.

The segmented tracing tool of the Fiji software (Just ImageJ,

image processing and analysis in Java) was used to measure both

chromatids and thus estimate the average total length of each

chromosome (TL). The length of the centromeric region (CL)

was measured in pixels and normalized with respect to the

chromosomal total length (CL/TLx100), to reduce errors

caused by differences in chromosome compaction. For each

specimen, 20 metaphase plates were studied, and the total

values were recorded according to the number of Rb

chromosomes present in each metaphase plate. Hence, there

were 160 values for the heterozygous parent that had eight Rb

chromosomes and only 40 values for the son D that had only two

Rb chromosomes. The estimated pericentromeric region length

of Rb metacentric chromosomes (CL/TL) for each offspring was

compared with the normalized average length of the

pericentromeric regions of the eight Rb chromosomes of the

parental heterozygote, which was also measured in 20 metaphase

plates.

FIGURE 1
Origin of the mice under study that can inherit between 0 and 8 Rb chromosomes. Males and females of Robertsonian (Rb) heterozygotes 2n =
32 ofMus musculus domesticuswere generated by crossing homozygotes Milano II race 2n = 24, with eight pairs of Rb metacentric chromosomes,
and homozygote strain CD1 2n = 40, with all chromosomes telocentric. In turn, heterozygotes were crossed with homozygotes (2n = 40) to obtain
offspring who could inherit between 0 and 8 Rb metacentric chromosomes.
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Statistical analysis

To test the null hypothesis that Rb chromosomes inherited by

the offspring of multiple heterozygous parents have a random and

equal distribution for the offspring of male and female heterozygous

parents, a theoretical binomial distribution with probability p =

0.5 was generated, whose probability function is given as:

P(X � x) � ( 8
x
)0.5x , X � 0, 1, 2, 3 . . . , 8

Based on this distribution, the expected frequencies of the

appearance of offspring with the Rb chromosome were

calculated, and the Chi-2 goodness-of-fit test was used to

compare the expected frequencies with those observed. The

theoretical distributions, as percentages, are shown in Table 1.

We used the binomial proportion test to test the null

hypothesis that 50% of the offspring could have a larger

pericentromeric region of Rb chromosomes than the

centromeric average size of 21.51 of the eight heterozygous

father Rb chromosomes. The confidence interval was 95% and

5% was used for statistical significance. The data were processed

using STATA v. 16.0.

Results

Number of Rb chromosomes present in the offspring of

crosses between Rb heterozygous male or female parents and

2n = 40 homozygotes of Mus domesticus.
We analyzed a total of 139 mice that were descended from

crosses between heterozygous 2n = 32 with eight metacentric Rb

chromosomes and homozygous 2n = 40 with all telocentric

chromosomes were analyzed. Of these, 83 came from the

cross of heterozygous females and homozygous males, and

56 from the crosses of heterozygous males and homozygous

females (Table 2). In the chromosome set of offspring, 0 to 8 Rb

metacentric chromosomes were found; however, in six offspring

of heterozygous mothers, Rb chromosomes were absent, and no

offspring showed seven Rb chromosomes (Table 2). The total

number of Rb chromosomes present in the descendants of

heterozygous females and males were 256 and 228,

respectively. The average number of chromosomes per each

descendants of heterozygous females was 3.08 (38.6%) and

that of heterozygous males was 4.07 (50.7%), which shows

significant difference (<0.01).
Roughly, the set of 484 Rb chromosomes inherited by the

total descendants would be equivalent to approximately 44% of

the maximum possible number of 1,112 metacentric Rb

TABLE 1 Expected frequencies of the appearance of offspring with the
0 to 8 Rb chromosomes, calculated on the theoretical binomial
distribution with probability p = 0.5.

Descendants according Rb
chromosomes inherited

Expected descendants in
binomial distribution %

0 0.39

1 3.13

2 10.94

3 21.88

4 27.34

5 21.88

6 10.94

7 3.13

8 0.39

100.00

TABLE 2 Number of Rb chromosomes inherited by descendants of crosses between Rb heterozygous male or female parents and homozygotes 2n =
40, of Mus m domesticus mice.

Heterozygous females Heterozygous males

Number of
Rb chromosomes
per cell

Number of
descendants according
Rb chromosomes

Total Rb
chromosomes in
offspring

Number of
Rb chromosomes
per cell

Number of
descendants according
Rb chromosomes

Total Rb
chromosomes in
offspring

0act 6 0 0 2 0

1 7 7 1 1 1

2 22 44 2 5 10

3 10 30 3 14 42

4 20 80 4 14 56

5 15 75 5 10 50

6 2 12 6 5 30

7 0 0 7 1 7

8 1 8 8 4 32

TOTAL 83 256 TOTAL 56 228
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chromosomes, considering eight Rb chromosomes per

139 descendants. This suggests that although the Rb

chromosomes were highly inherited, they were not preferred

over telocentric chromosomes.

To assess whether the number of Rb chromosomes inherited

by the offspring of multiple heterozygous parents has a random

and similar distribution for offspring of male and female

heterozygous parents, a theoretical binomial distribution with

TABLE 3 Observed number of descendants by inherited Rb chromosome and expected frequencies according to the binomial distribution.
Heterozygous females (p-value = 0.0000); Heterozygous males (p-value = 0.0000).

Number of Rb
chromosomes per
cell

Heterozygous females Heterozygous males

Number of descendants
according Rb
chromosomes
(Expected)

Number of descendants
according Rb
chromosomes
(Observed)

Number of descendants
according Rb
chromosomes
(Expected)

Number of descendants
according Rb
chromosomes
(Observed)

0 0.3 6 0.22 2

1 2.6 7 1.75 1

2 9.2 22 6.13 5

3 18.4 10 12.25 14

4 23.0 20 15.31 14

5 18.4 15 12.25 10

6 9.2 2 6.13 5

7 2.6 0 1.75 1

8 0.3 1 0.22 4

83 83 56 56

FIGURE 2
Observed frequencies do not fit the theoretical binomial distributions. (A)Observed (bars) descendants from heterozygous females by inherited
Rb chromosome and expected (curve) frequencies according to the binomial distribution (p-value = 0.0000). (B)Observed (bars) descendants from
heterozygous male by inherited Rb chromosome and expected (curve) frequencies according to the binomial distribution (p-value = 0.0000).
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probability p = 0.5 was generated and the observed data were

compared.

In binomial distributions, the expected frequencies of

descendants from heterozygous female or male parents

according to the inherited Rb chromosome are shown in

Table 3, and the comparison between the observed

and the expected frequencies of descendants

from female and male heterozygous parents is shown in

Figure 2.

In both cases, the null hypothesis was rejected (p < 0.05),

which means that the data do not follow a binomial distribution

pattern; therefore, they can be associated with non-random

inheritance.

Pericentromeric region size in Rb chromosomes present in

the offspring of crosses between heterozygous Rb males and 2n =

40 homozygous females of Mus domesticus.
The size of the pericentromeric regions of the Rb

chromosomes was measured in the eight Rb chromosomes

of a 2n = 32 heterozygous male, and in the Rb chromosomes

inherited by his six sons (Figure 3). The descendants named A,

B, C, D, E, and F presented respectively three, five, three, two,

four, and five Rb chromosomes and diploid numbers of 37, 35,

37, 38, 36, and 35, respectively (Table 4).

The length of the pericentromeric regions was estimated as a

percentage of CL to TL (Figure 3; Table 4). In five of the six

descendants, the length of the pericentromeric region was greater

than the average length of the pericentromeric regions of the Rb

chromosomes of the father (Table 5). In the offspring of this

family, the ratio 5/6 is greater than 0.5 (inheritance by chance)

and p = 0.0512.

Discussion

Since the first observation of chromosome behavior during

meiosis in the grasshopper Brachystola (Sutton 1903; Carothers

1917), the segregation of homologous chromosomes during

meiosis is widely considered as being fundamentally random.

However, clear examples have been described in various

organisms where meiotic drive or distortion with respect to

random meiotic segregation occurs (Bongiorni et al., 2004;

Presgraves, 2009; Dawe et al., 2018; Malinovskaya et al., 2020;

Kruger and Mueller, 2021; Pajpach et al., 2021).

In natural populations of Mus domesticus, a totally

telocentric ancestral karyotype, Robertsonian translocations or

centric mergers occur that originate from Rb metacentric

FIGURE 3
Mitotic chromosomes stained with DAPI. (A) Pericentromeric region length of a Rb chromosome; (A9,A99) Sister chromatid lengths of same
chromosome. (B) Heterozygous parent 2n = 32 metaphase plate. Arrows show 8 metacentric Rb chromosomes. (C) Descendent C, 2n =
37 metaphase plate. Arrows show 3 metacentric Rb chromosomes.
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chromosomes and reduce the chromosome number (Pialek et al.,

2005). Given the unusual speed with that Rb chromosomes have

set in some populations, it has been proposed that Rb

chromosomes can be inherited preferentially with respect to

the ancestral telocentrics in the descendants of heterozygotes

(Britton-Davidian et al., 2000; Britton-Davidian et al., 2005). In

these cases, the meiotic drive or preferential segregation of some

of the chromosomal forms were observed (de Villena and

Sapienza, 2001; White et al., 2010; Clark and Akera, 2021).

Crossroads between both chromosomal forms are found in

heterozygotes; in the first meiotic prophase, the metacentric Rb

chromosome synapsed with the telocentrics, homologous to their

arms, forming a trivalent, and subsequently, must segregate

between them (Wallace et al., 2002). Although multiple Rb

heterozygotes have a loss of spermatocytes at prophase I and

majorly at meiotic divisions produce gametes and are fertile

(Garagna et al., 2001b; Wallace et al., 2002; Manterola et al.,

2009).

In Rb heterozygous males, gametes produced by alternate

meiotic segregation, in which the Rb metacentric chromosome

separates from the telocentric chromosomes, seem to

predominate (Manieu et al., 2014). In human males

heterozygous for one Robertsonian chromosome, 70%–80% of

the total gametes are normal or balanced gametes (Wang et al.,

2017; Lamotte et al., 2018).

In this study, we analyzed whether Rb chromosomes were

preferentially inherited with respect to the telocentric

chromosomes, by the offspring of heterozygous males and

females for eight Rb chromosomes. Our data showed that

offspring inherited between 0 and 8 Rb chromosomes and

that the distribution of frequencies was not binomial. The

non-binomial distribution of the descendants of any of the

heterozygous parents suggests that the number of inherited Rb

chromosomes would not be a random process, at least in

quantitative terms, because Rb chromosomes have not been

distinguished between them. We did not find that descendants

of heterozygous females inherited more Rb chromosomes than

those of heterozygous males. In contrast, we found that male

descendants presented a significantly higher number of Rb

chromosomes.

Obviously, these results were obtained from heterozygotes of

crosses of the CD1 strain (2n = 40) with the Milano II race (2n =

24), and therefore cannot be directly extrapolated to all the Mus

musculus domesticus strains/races.

The configuration of the trivalent in the meiotic prophase of

Rb heterozygotes could favor the alternating segregation of the

TABLE 4 Diploid number, Rb chromosomes and lengths of the pericentromeric regions of Rb chromosomes in themembers of a family composed by
a multiple Rb heterozygous male and a homozygous female 2n = 40 and their six offspring. The length of the centromeric region (CL) was
measured in pixels and normalized with respect to the chromosomal total length (CL/TLx100).

Animal Diploid number Number
of Rb chromosomes

Pericentromeric
length (CL/TL)%

Rb heterozygous male parent 2n = 32 8 21.51%

Descendant A 2n = 37 3 21.11%

Descendant B 2n = 35 5 25.61%

Descendant C 2n = 37 3 21.7%

Descendant D 2n = 38 2 26.28%

Descendant E 2n = 36 4 25.22%

Descendant F 2n = 35 5 22.29%

Homozygous female parent 2n = 40 0 --

TABLE 5 In 5 of the 6 descendants, the length of the pericentromeric region was verified to be greater than the average length of the pericentromeric
regions of the Rb chromosomes of the father. The ratio 5/6 is greater than 0.5 (inheritance by chance) p = 0.0512.

Pericentromeric lengths (CL/TL)
of descendants%

Father’s Rb pericentromeric
region length%

Descendants with greater
pericentromeric region lengths

21.11 21.51 0

26.61 21.51 1

21.7 21.51 1

26.28 21.51 1

25.22 21.51 1

22.29 21.51 1
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anaphase, but this chromosomal configuration could also be

relevant in the fixation of the Rb chromosomes in hybrid

populations. This could be because this synaptic configuration

ensures an obligatory encounter between the Rb chromosome

and its telocentric homologous chromosomes, giving rise to the

closeness of the abundant pericentromeric heterochromatin of

the three gathered chromosomes (Berríos et al., 2014; Berríos

2017). This chromosomal conjunction, which is reiterated in

thousands of cells, may also contribute to a second-centric fusion.

In addition to the mentioned chromosomal configuration of first

meiotic prophase, the intense DNA nicking and repair activity

(Neale and Keeney 2006) and the homology of satDNA

sequences shared by the mouse telocentric chromosomes

create the conditions for new chromosomal rearrangements

(Garagna et al., 2001a; Kalitsis et al., 2006). In this way, the

concurrence of elements that could favor new chromosome-

centric fusions would enhance the chance of those chromosomes

regaining the homozygous condition.

The successful fixation of an Rb chromosome in natural

populations is the result of the meeting of heterozygotes and the

production of homozygous descendants. Any meiotic condition

that favors Rb chromosomes in gametes also contributes to the

fixation of Rb chromosomes.

The hypothesis that heterozygous females would transfer

more Rb chromosomes to their offspring than males arises from

findings in different organisms (de Villena and Sapienza, 2001;

Fishman and Saunders, 2008; Presgraves, 2009; Dudka and

Lampson, 2022). In addition, segregational asymmetry is

difficult to explain in males, whereas in female meiosis, such

asymmetry is possible because the chromosomes that eventually

remain in the oocyte can be inherited, while those that remain in

the polocytes are necessarily lost (Lindholm et al., 2016). In this

scenario, the differences in centromere strength has been shown

to predict the direction of driving. Stronger centromeres,

manifested by increased kinetochore protein levels and

specific interactions with spindle microtubules, would produce

chromosomes that are preferentially retained in the egg (Chmatal

et al., 2014; Akera et al., 2017; Wu et al., 2018).

Considering that the main cellular mechanism proposed has

been focused on centromere size and its segregational advantage, we

found it interesting to show what was observed in the measurement

of the pericentromeric and centromeric regions of Rb chromosomes

in six descendants of an Rb heterozygote. In mice, the centromeric

region contains repetitive centromeric DNA sequences that are

enriched in minor satellite repeats, which are prominent sites for

centromeric proteins CENP-A and CENP-B assembly (Guenatri

et al., 2004; Pajpach et al., 2021). The mouse pericentromeric region

contains inactive chromatin and is composed of major satellite

repeats, that are required for heterochromatin formation (Guenatri

et al., 2004; Pajpach et al., 2021). In 5/6 of the sons, the average size of

the centromeric region of the inherited Rb chromosomes was found

to be significantly larger than the average size of the same region in

the eight Rb chromosomes of the heterozygous male parent. The

measurement made involved the centromeric DNA and the

abundant pericentromeric heterochromatin located in the

proximal p and q regions of the Rb chromosomes. These

observations are not comparable with the cellular analyses of

segregational efficiency in meiosis of the Rb chromosome

according to the size and strength of its centromere because our

measurements included the pericentromeric heterochromatin that

we do not know how much it may contribute to the meiotic

segregation of chromosomes (Chmatal et al., 2014; Iwata-Otsubo

et al., 2017). On the other hand, the centromeric region sizes

estimated here are on Rb chromosomes that have successfully

appeared in the descendants, after overcoming meiotic

segregation, gamete differentiation, fertilization, embryonic

development and birth. This observation suggests that the larger

size of the entire centromeric region is advantageous to the inherited

Rb chromosomes.
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Cyclins and CDKs in the
regulation of meiosis-specific
events
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How eukaryotic cells control their duplication is a fascinating example of how a

biological system self-organizes specific activities to temporally order cellular

events. During cell cycle progression, the cellular level of CDK (Cyclin-

Dependent Kinase) activity temporally orders the different cell cycle phases,

ensuring that DNA replication occurs prior to segregation into two daughter

cells. CDK activity requires the binding of a regulatory subunit (cyclin) to the

core kinase, and both CDKs and cyclins are well conserved throughout

evolution from yeast to humans. As key regulators, they coordinate cell

cycle progression with metabolism, DNA damage, and cell differentiation. In

meiosis, the special cell division that ensures the transmission of genetic

information from one generation to the next, cyclins and CDKs have

acquired novel functions to coordinate meiosis-specific events such as

chromosome architecture, recombination, and synapsis. Interestingly,

meiosis-specific cyclins and CDKs are common in evolution, some cyclins

seem to have evolved to acquire CDK-independent functions, and even some

CDKs associate with a non-cyclin partner. We will review the functions of these

key regulators in meiosis where variation has specially flourished.

KEYWORDS

meiosis, prophase, cyclins, CDKs, nuclear architecture, recombination, synapsis,
substrates

Introduction

Meiosis is the cell division program that ensures sexual reproduction by the

generation of haploid gametes from diploid cells. Different meiosis-specific hallmarks

help to the accurate partitioning and shuffling of the genetic information, which is

essential for the viability of gametes, and the efficient transmission and variability of

genomes from one generation to the next. These characteristics range from a new nuclear

architecture, the formation of a highly organized zipper-like structure between

homologous chromosomes (synaptonemal complex, SC) and the promotion of

homologous recombination, to the mono-orientation of sister-kinetochores and the

sequential degradation of sister-chromatid cohesion (Petronczki et al., 2003; Marston

and Amon, 2004; Sakuno and Watanabe, 2009; Keeney et al., 2014; Lam and Keeney,

2014; Zickler and Kleckner, 2015). As a result of these new meiotic features, gametes

receive the correct number of chromosomes that after fertilization will ensure the
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maintenance of species ploidy. Errors during meiosis produce

gametes with an abnormal number of chromosomes

(aneuploidy), that in some species such as mammals (specially

in humans) are very frequent and the leading cause of

miscarriages (Hassold et al., 2007; Hunt and Hassold, 2010;

Nagaoka et al., 2012). In addition, deregulation of meiotic

genes in somatic cells is a common feature of cancer cells,

probably contributing to their characteristic genomic

instability (Tuna et al., 2009; Folco et al., 2017; Sou et al., 2022).

As in the case of the mitotic cell cycle, meiotic progression is

driven by kinase activities provided by cyclin-CDK (Cyclin-

Dependent Kinase) complexes, a serine/threonine kinase

bound to a regulatory cyclin subunit (Morgan, 1995). In

unicellular eukaryotes such as yeasts, a unique CDK binds to

different cyclins to temporally order the cell cycle phases,

ensuring that DNA replication (S-phase) occurs prior to

segregation into two daughter cells (M-phase); and in fission

yeast, even a single cyclin-CDK complex is sufficient to drive a

“minimal” mitotic and meiotic cycle (Stern and Nurse, 1996;

Coudreuse and Nurse, 2010; Uhlmann et al., 2011; Gutierrez-

Escribano and Nurse, 2015). Notably, early cell cycle substrates

are very efficiently phosphorylated and require lower CDK

activity than the late targets, what contributes to the

sequential ordering of S and M-phases (Swaffer et al., 2016).

From this minimal conception of the cell cycle, cyclins and CDKs

have evolved and diversified, especially in organisms with a more

complex developmental biology as higher eukaryotes, indicating

a corresponding expansion of functions (Harashima et al., 2013;

Malumbres, 2014). Functional diversification of CDK activities is

clearly observed in meiosis, where CDK complexes already

present in vegetative cells have acquired novel meiotic

functions, and meiosis-specific variants have also emerged.

We will review these aspects of cyclins and CDKs in meiosis,

focusing on their meiosis-specific functions. The meiotic-

progression properties of CDK complexes have been recently

reviewed (Chotiner et al., 2019; Li et al., 2019; Palmer et al., 2019;

MacKenzie and Lacefield, 2020). Phosphorylation networks

conducted by several kinases during meiotic prophase are also

reviewed in (Kar and Hochwagen, 2021).

Meiosis-specific events regulated by
cyclins and CDKs

A key difference from mitosis is the establishment in meiosis

of an extended gap phase (G2), known as meiotic prophase, prior

to chromosome segregation. Prophase is cytologically visualized

by the remodeling of the nuclear architecture and the formation

of the SC or related structures. During prophase, homologous

chromosomes align, tightly pair, and recombine. In organisms

with a canonical SC, meiotic prophase is divided in different

stages depending on the SC assembly; and in budding yeast,

mouse, and plants, SC formation and recombination are

functionally linked (Padmore et al., 1991; Cohen and Pollard,

2001; Hunter and Kleckner, 2001; Zickler and Kleckner, 2015).

Briefly, recombination is initiated by programmed Double-

Strand Breaks (DSBs) in the DNA during leptotene, when

axial elements of the SC are forming. Processing of these

DSBs generates single-stranded DNA nucleofilaments that

invade the homologous chromosome searching for homology,

which brings homologs closer and promotes local nucleation of

the central element of the SC (zygotene). Full SC assembly along

the entire chromosome length is the hallmark of pachytene,

which correlates with the production of DNA joint molecules

between homologs. Finally, at diplotene SC disassembles and

resolution of the joint molecules generates final recombination

products (Figure 1A). As discuss below, CDKs, cyclins, and non-

cyclin CDK activators play an important role in these aspects of

meiotic prophase (Figure 1B and Table 1).

Nuclear architecture

A conserved feature of meiosis is the remodeling of the

nuclear architecture to acquire the so-called bouquet

configuration (Bass, 2003; Harper et al., 2004; Tomita and

Cooper, 2006; Scherthan, 2007; Klutstein and Cooper, 2014).

Telomeres, that during vegetative cycle are scattered around the

nuclear periphery, polarize in tight proximity to the nuclear

envelope (NE), in some organisms close by or even bound to the

centrosome. This reorganization requires telomere anchoring to

the Linker Nucleoskeleton and Cytoskeleton (LINC)-complex,

which is composed of SUN (Sad1, UNC-84) and KASH

(Klarsicht, ANC-1, Syne homology) family proteins. SUN-

domain proteins are inserted in the inner nuclear membrane

and KASH-domain proteins are inserted in the outer nuclear

membrane, interacting in the transluminal space. The binding of

telomeres to this complex is mediated by meiosis-specific

proteins that provide the connection of chromosomes with

the cytoskeleton, and, in doing so, promote chromosomal

movements that facilitate proper chromosome alignment and

recombination (Hiraoka and Dernburg, 2009; Koszul and

Kleckner, 2009; Shibuya and Watanabe, 2014; Link et al.,

2015; Shibuya et al., 2015; Fan et al., 2022). Depending on the

organisms, the bouquet configuration is a transient feature or it

can be maintained during the entire meiotic prophase. This is the

case of the fission yeast Schizosaccharomyces pombe where, in the

absence of a canonical SC, bouquet-led chromosome movements

have acquired a prominent role in chromosome pairing (Ding

et al., 2004). In addition, this nuclear configuration seems to play

unanticipated functions in centromere maturation and spindle

formation (Tomita and Cooper, 2007; Klutstein et al., 2015).

The striking stable bouquet structure and its extremely

vigorous motion has made fission yeast an extensively used

model to study bouquet formation and chromosome

movements (Yamamoto and Hiraoka, 2001). In this organism,
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telomere binding to the Spindle Pole Body (centrosome

equivalent) is mediated by pheromone-induced Bqt1 and

Bqt2. These proteins connect the conserved telomeric protein

Rap1 and the SPB-component Sad1 (SUN-domain protein). This

interaction initially delocalizes Sad1 to the scattered telomeres at

the NE, and the subsequent travelling of Sad1 back to the SPB

promotes the bouquet formation (Chikashige et al., 2006; Tomita

and Cooper, 2006). Since Sad1 is a NE protein, Bqt1-Bqt2

binding requires previous telomere-NE association, which is

mediated by the binding of Rap1 to the NE-anchoring

complex Bqt3-Bqt4 during vegetative cell cycle (Chikashige

et al., 2009) (Figure 2). Notably, Cdc2 (CDK) and the

meiosis-specific Crs1 cyclin localize to the SPB during bouquet

(Moiseeva et al., 2017; Bustamante-Jaramillo et al., 2021).

Crs1 localization is independent of bouquet formation, and in

the absence of Crs1 the clustering of telomeres is unstable though

the integrity of the SPB is preserved (Bustamante-Jaramillo et al.,

2021). Although less severe, this phenotype is reminiscent of the

defects observed in bqt1 and bqt2 mutants. As for bqt1 and bqt2,

crs1 gene expression is induced by pheromone signaling, the

protein localizes at the SPB in early prophase, and it remains at

SPBs in meiosis I (Chikashige et al., 2006; Tang et al., 2006;

Bustamante-Jaramillo et al., 2021). At present, it is not known

how Crs1 influences telomere positioning during meiosis and

whether it is required for the localization of Bqt1-Bqt2 proteins at

the SPB.

Interestingly, Rap1 is highly phosphorylated during meiotic

prophase, including at five Cdc2 sites, raising the possibility that

CDK phosphorylation could modulate Rap1 interaction with

Bqt1-Bqt2 proteins (Amelina et al., 2015) (Figure 2). Three of

FIGURE 1
Meiotic prophase and CDK activity. (A) Synaptonemal complex (SC) formation and recombination during meiotic prophase between a pair of
homologous chromosomes. Prophase is divided in different stages depending on the SC assembly (upper scheme). Recombination occurs in the
context of the SC (lower scheme), and, in some organisms, it is linked to SC formation; for simplicity only the chromatid pair involved in
recombination is depicted. (B)Meiotic events regulated by CDK activity and substrates. The regulated processes during the different prophase
stages are highlighted. Identified substrates indicating the species are listed. SC assembly is shown only in one pair of homologs (green colored). DSB
double-strand break, SCAS synaptonemal complex attachment sites, LRN late recombination nodule.
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these sites (Thr378, Ser422, and Ser513) are also specifically

phosphorylated at early M-phase in vegetative cell cycle, and

Ser513 is critical for releasing telomeres from the NE to facilitate

chromosome segregation (Fujita et al., 2012). Cdc2-dependent

phosphorylation at these residues weakens the interaction with

the NE-anchoring complex Bqt3-Bqt4. Indeed, structural studies

support that Ser513 phosphorylation could impair the binding to

Bqt4, and the Rap1-S513E mutant protein, mimicking this serine

phosphorylation, shows a reduced binding affinity (Hu et al.,

2019). Similarly, once the scattered telomeres have bound to

Bqt1-Bqt2 and Sad1 in meiosis, Cdc2-dependent

Rap1 phosphorylation could diminish the interaction with the

Bqt3-Bqt4 complex, facilitating the natural travelling of the

telomeres along the NE to gather at the SPB. Otherwise, once

the telomeres reach the SPB, local Cdc2-dependent inhibition of

the interaction with the Bqt3-Bqt4 complex could enhance Bqt1-

Bqt2 binding and reinforce telomere attachment to the SPB.

However, rap1-32A and rap1-32E mutants, in which all the

meiosis-identified phosphorylated sites were substituted with

non-phosphorylatable residues (alanine) or phosphomimetic

residues (glutamic acid), show normal bouquet dynamic, and

telomeres timely cluster and dissociate from the SPB (Amelina

TABLE 1 CDK substrates in meiotic prophase.

Substrate Organism Residues Evidences Function References

Mer2 S. cerevisiae S30 In vitro kinase assay, SDS-PAGE mobility,
CDK inhibition (cdc28-as1), mer2S30A and
mer2S30D phosphomutants

DSB formation Henderson et al. (2006); Wan et al.
(2008)

Rec10 S. pombe S347, T482, and
S529

Mass spectrometry DSB formation (rec108A no
recombination phenotype)

Spirek et al. (2010);
Bustamante-Jaramillo et al. (2019)

Fkh2 S. pombe S481 In vitro kinase assay, SDS-PAGE mobility,
EMSA assays, fkh2S481A and fkh2S481D

phosphomutants

Transcriptional activation of
mid-meiotic genes

Alves-Rodrigues et al. (2016)

REC-1 C. elegans T39, T96, T160,
S146, S205, S218,
S281, T305

In vitro peptide array, in vitro kinase assay,
CDK inhibition S146 (Roscovitine)

DSB formation (rec-18S/TA

and rec-18S/TD loss-of-
function phenotype)

Chung et al. (2015)

Rap1 S. pombe S213, T378, S422,
S513, S549

Mass spectrometry, phosphoaffinity SDS-
PAGE mobility

Bouquet formation (rap132A

and rap132E no phenotype)
Amelina et al. (2015)

SUN1 M. musculus S48 In vitro kinase assay NE-telomere attachment/
Bouquet formation

Viera et al. (2015); Mikolcevic et al.
(2016)

TERB1 M. musculus T647 Mass spectrometry, phospho-specific
antibody, CDK inhibition (Roscovitine),
terb1T647A and terb1T647D phosphomutants

NE-telomere attachment/
Bouquet formation

Huttlin et al. (2010); Shibuya et al.
(2014) and Shibuya et al. (2015)

Zip1 S. cerevisiae - In vitro kinase assay, SDS-PAGE mobility,
CDK inhibition (cdc28-as1), Clb5 and
Clb6 dependency

Synapsis (zip14SA no
phenotype)

Ubersax et al. (2003); Zhu et al. (2010)

Red1 S. cerevisiae - Phosphoaffinity SDS-PAGE mobility, CDK
inhibition (cdc28-as1), Clb5 and
Clb6 dependency

Synapsis (red17A no
phenotype)

Zhu et al. (2010); Lai et al. (2011)

SYP-1 C. elegans T452 In vitro kinase assay, phospho-specific
antibody, syp1T452A phosphomutant

Synapsis Brandt et al. (2020)

ASY1 A. thaliana T142, T184 Mass spectrometry, in vitro kinase assay,
asy1T142V, asy1T142D and asy1T142V;T184V

phosphomutants

Synapsis Yang et al. (2020)

Sgs1 S. cerevisiae S46, T50, T122,
S272, S348, S493,
S617

Mass spectrometry (mitosis), in vitro kinase
assay, SDS-PAGE mobility, CDK inhibition
(cdc28-as1), sgs19A phosphomutant

DSB Repair Grigaitis et al. (2020)

MSH-5 C. elegans T1009, T1109,
S1278

Mass spectrometry (in vitro phosphorylated
protein), in vitro kinase assay, phospho-
specific T1009 antibody, msh513A

phosphomutant

CO formation Haversat et al. (2022)

MLH1 A. thaliana - In vitro kinase assay CO formation Wijnker et al. (2019)

Mms4 S. cerevisiae S56 Mass spectrometry (mitosis),
phosphoaffinity SDS-PAGE mobility,
mms414A phosphomutant

DSB Repair (persistent JM
resolution)

Matos et al. (2011)

Yen1 S. cerevisiae S71, S245, S500,
S583, S655, S679

Mass spectrometry (mitosis),
phosphoaffinity SDS-PAGE mobility,
YenON(9A) phosphomutant

DSB Repair (persistent JM
resolution)

Matos et al. (2011); Blanco et al.
(2014); Eissler et al. (2014);
Alonso-Ramos et al. (2021)
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et al., 2015). It is worth noting that these mutants harbor

additional mutations apart from the Cdc2-phosphomutant

sites, which can obscure the contribution of CDK.

Interestingly, by yeast two-hybrid (Y2H) assays the Rap1-32E

proteins seems to interact more efficiently with Bqt1-Bqt2 than

the wild type protein. In addition, structural studies of a minimal

Rap1-Bqt4 complex have identified a Bqt4-binding motif in

Rap1 which is also present in other known and newly

identified Bqt4-interacting proteins, including Sad1, and these

proteins bind to Bqt4 in a competitive manner (Hu et al., 2019). It

will be worthy to explore the contribution of Thr378, Ser422, and

particularly, Ser513 phosphorylation sites to bouquet formation,

and their possible regulation by the meiosis-specific Crs1 cyclin.

More recently, telomere anchorage to the NE during meiosis

has been also studied in mice, where different components of the

LINC-complex and the meiosis-specific linker to telomeres have

been identified (Shibuya and Watanabe, 2014; Shibuya et al.,

2015) (Figure 2). Interestingly, meanwhile CDK2 is not essential

for vegetative growth, it plays a crucial role in meiosis, and knock

out (KO) mice are sterile due to spermatocyte and oocyte arrest

in prophase and death by apoptosis (Berthet et al., 2003; Ortega

et al., 2003). CDK2 localizes to telomeres from leptotene to

pachytene (Ashley et al., 2001), and in spermatocytes it is

observed in the NE-attachment plates by electron microscopy

(Viera et al., 2015). In the absence of CDK2 50% of the telomeres

are not properly associated to the NE and the bouquet

conformation is not observed. Cdk2 KO spermatocytes present

aberrant dynamics in chromosome pairing, with frequent

unsynapsed regions, non-homologous associations, and

formation of chromosome rings (Viera et al., 2009; Viera

et al., 2015). These phenotypes are also observed in Speedy A

and cyclin E mutants.

Speedy A, also known as Ringo A, is a non-cyclin CDK

interactor that seems to act as the main activator for CDK2 in

telomere dynamics. The protein is specifically expressed in the

adult testis, being present in spermatocytes from preleptotene to

pachytene, and in embryonic ovary when meiotic prophase I

occurs (Tu et al., 2017). Speedy A colocalizes with CDK2 in NE-

FIGURE 2
CDK regulation of themeiotic telomere attachment to the nuclear envelope. S. pombe andM.musculusmodels. Functional conservation of the
different elements is highlighted by the same color. INM inner nuclear membrane, ONM outer nuclear membrane, SCAS synaptonemal complex
attachment sites. Protein interactions are based on Chikashige et al., 2006, Chikashige et al., 2009, and Hu et al., 2019 for fission yeast, and Shibuya
et al., 2014, Shibuya et al., 2015, and Wang et al., 2020 for mouse.
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associated telomeres and is essential for the telomeric

recruitment of CDK2; indeed, a CDK2 protein carrying

mutations on the key residues for Speedy A binding does not

localize to the telomeres (Mikolcevic et al., 2016; Tu et al., 2017).

The interaction between these proteins is also supported by co-

immunoprecipitation and, moreover, by the fact that

CDK2 kinase activity is approx. 70% decreased in Speedy A

KO testis (Mikolcevic et al., 2016; Tu et al., 2017). Similarly to the

Cdk2 KO, lack of Speedy A also impairs homologous pairing and

telomere dynamics, showing NE-unattached telomeres inside the

nucleus and telomere fusions (Mikolcevic et al., 2016; Tu et al.,

2017). Specifically, the telomeric cap-remodeling observed at late

prophase is defective in the mutant, and telomeres do not show

the characteristic TRF2 (shelterin core component)

redistribution into a ring structure (Shibuya et al., 2015; Tu

et al., 2017; Chen et al., 2021). Interestingly, Speedy A reaches the

telomeres prior to CDK2 and harbors a telomere localization

domain that is sufficient to restore the telomere-NE interactions

in Speedy A KO spermatocytes, indicating a docking function

beyond its known CDK2-activation function (Tu et al., 2017).

The mechanism underlying the CDK2-Speedy A essential

role in telomere-NE attachment and bouquet formation is not

completely elucidated. SUN1 is a component of the LINC

complex located at the telomere attachment plates associated

with the inner nuclear membrane (Ding et al., 2007; Link et al.,

2014). In Cdk2 and Speedy A KO mutants, SUN1 protein is

delocalized from these spots and observed as a polarized cap-

shaped signal at the NE. Lack of SUN1 interactions at the NE

could explain the telomere dynamics defects observed in these

mutants (Viera et al., 2015; Mikolcevic et al., 2016; Tu et al.,

2017). Indeed, SUN1 and CDK2-Speedy A directly interact, and a

SUN1 mutant protein in the Speedy A-binding domain exhibits

similar phenotypes to those of Speedy A and SUN1mutants with

approx. 50% of the telomeres unattached to the NE (Wang et al.,

2020; Chen et al., 2021). Moreover, in vitro experiments showed

that SUN1 is phosphorylated by CDK2-Speedy A, at least on

Ser48 (Viera et al., 2015; Mikolcevic et al., 2016).

SUN1 phosphorylation by CDK2-Speedy A could be an

important regulatory step to control telomere-NE interactions,

and their proper diffusion along the NE necessary for telomere

dynamics and bouquet formation (Figure 2). Recent studies

support this notion (see below).

Cyclin E1 and cyclin E2 also contribute to maintain the

integrity of the telomeres and ensure their attachment to the NE

in meiosis (Martinerie et al., 2014; Manterola et al., 2016).

Although they are not essential for vegetative growth and

both KO mice are viable, E2 KO males are subfertile. In

addition, the meiotic phenotypes of E2 KO mice are enhanced

when cyclin E1 levels are disminished, and E1+/- E2−/− male mice,

which reduce cyclin E in E2 KO background, are infertile

(Martinerie et al., 2014). Deficiency of E1 and E2 cyclins in

spermatocytes reduces localization of components of the

shelterin complex to the chromosome ends. This defect

correlates with an increased amount of the DNA-damage

γH2AX marker at telomeres, indicating a loss of telomere

protection (Manterola et al., 2016). Cyclin E1 and E2 are

important for the formation of the synaptonemal complex

attachment sites (SCAS, expansions of chromosome ends

reflecting the formation of the attachment plates), which are

crucial for the stable association of telomeres to NE.

Spermatocytes depleted in E1 and E2 cyclins develop

narrower SCAS and, in fact, telomere attachment to the NE is

compromised since the TRF1 telomere marker (shelterin core

component) is detected inside the nuclear space in 47% of the

spermatocytes (Martinerie et al., 2014; Manterola et al., 2016). In

correlation with these alterations, lack of E2 cyclin causes

telomeric and synaptic abnormalities that are enhanced in

E1+/− E2−/− spermatocytes. Although E-type cyclins do not

show specific telomeric enrichment, they are likely to act in

combination with CDK2 given the similar defects in telomere-

NE attachment and synapsis observed in the mutants;

particularly the presence of residual membranes in the

detached telomeres is observed in both mutants (Viera et al.,

2015; Manterola et al., 2016). Indeed, E-type cyclins are necessary

for the telomeric localization of CDK2. In the absence of

E2 approx. 40% of telomeres exhibit a reduced CDK2 loading,

raising up to 93% in E1+/− E2−/− mice. Moreover, co-

immunoprecipitacion analysis confirm that both cyclins

interact with CDK2 in spermatocytes in vivo (Martinerie

et al., 2014).

Defects in shelterin complex integrity at the telomeres in

E-cyclin deficient mutants might affect cap-remodeling. In fact,

this process is influenced by CDK activity in mouse

spermatocytes. At cap-remodeling the telomere ends are

reorganized by the meiosis-specific TERB1/2-MAJIN

connecting complex to ensure a stable telomere-NE

attachment (Shibuya et al., 2015; Chen et al., 2021).

Treatment with the CDK inhibitor Roscovitine was shown to

avoid cap-remodeling. Interestingly, TERB1 Thr647 is a CDK

susbtrate implicated in the downregulation of the TERB1-TRF1

interaction (Shibuya et al., 2014) (Figure 2). This

phosphorylation was detected in NE-attached telomeres and

shown to be important for the stabilization of telomere

attachments (Shibuya et al., 2015). However, other CDK

targets must exist to regulate cap-remodeling, since

TERB1 phosphorylation is not essential for this process and

the TERB1-T647A mutant is able to perform cap-remodeling.

CDK2 could potentially exert this regulation given its essential

function in telomere dynamics.

How the LINC and TERB1/2-MAJIN complexes interact to

anchor telomeres to the NE was not clear, althought an

interaction between SUN1 and TERB1 was reported (Shibuya

et al., 2014). Recent studies dissecting these interactions, as well

as the interaction and structural studies with Speedy A, support a

model whereby Speedy A interacts with SUN1 to anchor CDK2-

Speedy A to the NE which promotes SUN1 phosphorylation and
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the strengthening of the SUN1-MAJIN interaction. In addition,

SUN1 also binds to TERB1 reinforcing the interaction between

the complexes (Wang et al., 2020; Chen et al., 2021). Intestingly,

in contrast to Speedy A, cyclin E1 and E2 do not bind to SUN1,

pointing to Speedy A as the key triggering element to promote

telomere-NE attachments (Wang et al., 2020). However, which

SUN1 residues are phosphorylated and, in particular, the

implication of Ser48 phosphorylation in MAJIN binding is

unknown. Overall, CDK phosphorylation of SUN proteins

seems to play an important role in the LINC-complex

regulation; in fact, in worms and humans CDK1 is required

for the phosphorylation of SUN proteins in mitosis (Patel et al.,

2014; Zuela and Gruenbaum, 2016). Strikingly, in the case of

worms, the expression in adults of the phosphomimetic SUN1-

S34E protein drastically reduces fertility and abolishes bivalent

formation (Zuela and Gruenbaum, 2016). Additionally,

SUN1 phosphorylation mediated by other kinases controls

meiotic chromosome dynamics in this organism (Penkner

et al., 2009; Woglar et al., 2013).

Bouquet formation is regulated by a meiosis-specfic B3-type

cyclin, Cyc2p, in Tetrahymena thermophila. In the absence of this

cyclin micronuclei arrest at early prophase and fail to form the

elongate-crecent shape characteristic of the bouquet-like

organization in this ciliate (Xu et al., 2019). Cyc2p might be

required to organize the microtubules that support crecent

formation, which could explain the phenotype.

Finally, in addition to the positive effect of CDK

phosphorylation in bouquet formation and telomeric

dynamics, CDK regulation of bouquet disassembly has been

reported in the budding yeast Saccharomyces cerevisiae. In this

organism where bouquet conformation is very transient,

controlled chemical inhibition of Cdc28 (CDK) stabilizes

telomere clustering (Prasada Rao et al., 2021). However, the

mechanism is currently unknown.

DSB formation

A key feature of meiosis is recombination, the physical

exchange of genetic information between each pair of parental

chromosomes (homologs) (Hunter, 2015). In addition to

produce variability in the offspring, it is essential for

generating tension in the spindle-bound homologous pair

which ensures proper alignment and chromosome segregation

(Petronczki et al., 2003). Recombination is initiated by

programmed DSBs in the DNA introduced by Spo11, a

conserved meiosis-specific topo-like protein similar to TopVI

of archaea (Keeney et al., 1997; Lam and Keeney, 2014; Bouuaert

and Keeney, 2016; Robert et al., 2016; Vrielynck et al., 2016).

DSBs are one of the most dangerous lesions in the DNA and cells

have developed surveillance mechanisms to sense and repair

these lesions. However, meiotic cells have integrated their

production as part of the cell physiology, and have acquired a

network of mechanisms to place and balance them (Keeney et al.,

2014). DSB formation is coordinated with meiotic progression

and DSBs occur locally after DNA replication during prophase

(Borde et al., 2000; Murakami and Keeney, 2014). Indeed,

replication-fork stalling blocks DSB formation by the

activation of the S-phase checkpoint (Tonami et al., 2005;

Ogino and Masai, 2006; Blitzblau and Hochwagen, 2013). In

budding yeast, CDK (Cdc28) activity participates in this

coordination phosphorylating Mer2, a conserved Spo11-

accessory protein of the RMM complex (Henderson et al.,

2006; Murakami and Keeney, 2008; Wan et al., 2008; Claeys

Bouuaert et al., 2021). S-phase Cdc28 activity (associated to

cyclin Clb5 and Clb6) phosphorylates Mer2 at Ser30 which

primes adjacent Ser29 (and S28) for subsequent

phosphorylation by DDK (Dbf4-Dependent Kinase).

Mer2 phosphorylation at these sites is essential to promote

the binding to other Spo11-accessory proteins, Spo11 loading

at the recombination hotspots in the DNA, and DSB formation.

However, additional CDK and DDK targets exist since the DSBs

observed in cells expressing the phosphomimetic Mer2-DDD

protein still depends on each of these kinases (Wan et al., 2008).

Mer2 phosphorylation likely occurs upon replication-fork

passage since DDK travels with the fork, and fork passage

correlates with the loading onto chromatin of the Spo11-

accessory protein Rec114, which it is known to depend on

Mer2 phosphorylation (Panizza et al., 2011; Murakami and

Keeney, 2014).

DSB formation also depends on CDK in fission yeast

(Bustamante-Jaramillo et al., 2019). Although several CDK

complexes contribute to this function, the meiosis-specific

Crs1 cyclin has a prominent role and crs1 mutants show a

50% reduction in DSB and recombination levels. In addition

to its SPB location (see above), Crs1 has a pan-nuclear

localization during meiotic prophase compatible with this role

in DSB formation (Bustamante-Jaramillo et al., 2021).

Interestingly, CDK downregulation impairs the chromatin

binding of Rec25, a structural component of the Linear

Elements (LinEs). LinEs are chromosome axis structures with

similarity to the SC axial/lateral elements of other eukaryotes

(Lorenz et al., 2004; Davis et al., 2008; Ding et al., 2021; Chuang

and Smith, 2022). They are required for DSB formation and

preferentially enriched at recombination hotspots; furthermore,

when misplaced they induce DSBs (Fowler et al., 2013; Martin-

Castellanos et al., 2013; Nambiar and Smith, 2018). Thus,

modulation of the loading of LinEs onto chromatin may be a

mechanism for CDK to control DSB formation. However,

phosphonull rec10-8A or rec27-A mutants, the only two LinE-

components harboring CDK sites, have no impact on meiotic

recombination, even though several CDK sites in Rec10 are

phosphorylated in vivo (Spirek et al., 2010; Bustamante-

Jaramillo et al., 2019). Thus, it seems that these alterations

alone would not significantly impair LinE chromatin

association. In addition, similarly to budding yeast Mer2, the
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conserved RMM component Rec7 is a phosphoprotein that

harbors a CDK site adjacent to potential DDK sites (Thr243

Ser244 Ser245) and DDK is also required for DSB formation

(Ogino et al., 2006; Miyoshi et al., 2012). However, phosphonull

rec7-AAA mutants show wild type levels of recombination

(Bustamante-Jaramillo et al., 2019). Thus, a key target for this

function of CDK has not yet been identified in fission yeast. It is

possible that in this organism several CDK targets contribute to

the regulation of DSB formation, and the reduction in

recombination would not be observed until cumulative

deregulation of several targets. Alternatively, regulation may

be indirect. In this regard, LinE formation depends on the

meiotic cohesins Rec8 and Rec11 which are phosphoproteins

with several phospho-CDK sites detected in vivo (Molnar et al.,

2003; Lorenz et al., 2004; Davis et al., 2008; Ishiguro et al., 2010;

Rumpf et al., 2010; Fowler et al., 2013; Phadnis et al., 2015).

Moreover, different levels of CDK regulation may exists. The

cyclin Cig2-CDK complex regulates promoter occupancy of the

mid-meiotic genes by phospho-regulation of the forkhead

transcription factor Fkh2 (Alves-Rodrigues et al., 2016). Cig2-

CDK phosphorylation of Fkh2 Ser481 reduces its promoter

binding affinity and facilitates the loading of the

transcriptional activator Mei4. One of these genes is mde2,

which is essential for the organization of the pre-

recombination complexes (Miyoshi et al., 2012). Therefore,

timely expression of mde2 by CDK might establish a temporal

window for DSB formation.

REC-1 and HIM-5 are paralog related proteins required

for normal levels of DSBs in Caenorhabditis elegans (Chung

et al., 2015). Foci of the recombinase RAD-51 are reduced in

each single mutant, particularly in him-5, and the reduction is

significantly aggravated in the double mutants. This defect

correlates well with the percentage of univalents at diakinesis

(last prophase stage with highly condensed chromosomes). It

was proposed that these proteins may function as Spo11-

accessory proteins similarly to the proteins forming the

pre-recombination complexes in budding and fission yeast;

however, this has not been formally determined, and indeed,

in contrast to Spo11-accessory proteins in yeasts, these C.

elegans proteins are not essential for DSB formation.

Interestingly, REC-1 is a CDK target that is phosphorylated

in vitro by recombinant Cyclin B3-CDK4 complexes;

moreover, it is also phosphorylated by cell extracts but not

when the extracts are previously treated with Roscovitine

(Chung et al., 2015). However, the in vivo relevance of this

phosphorylation is unclear since both phosphomimetic and

phosphonull rec-1 mutants show a loss-of-function

phenotype. It is possible that CDK does not play a crucial

role in early meiotic events in this organism, where the

meiosis-specific checkpoint kinase CHK-2 has acquired a

prominent role in the regulation of chromosome

architecture and movements, DSB formation, and

homologous pairing and synapsis (MacQueen and

Villeneuve, 2001; Penkner et al., 2009; Rosu et al., 2013;

Stamper et al., 2013; Kim et al., 2015).

Recombinational repair

After DSB formation Spo11-bound break sites are

endonucleolytically resected to generate single-stranded DNA

nucleofilaments that, coated with strand-exchange proteins

Rad51/Dmc1, invade the homologous chromosome for repair.

The efficient and differential resolution of the recombination

intermediates is essential for several reasons (Hunter, 2015; San-

Segundo and Clemente-Blanco, 2020). First, to produce viable

gametes without DNA lesions. Second, to resolve enough DNA

joint molecules (JM) as crossovers (CO). COs result in the

reciprocal exchange of genetic material and the formation of

physical links between the pair of homologs, which ensures their

correct reductional segregation at first meiotic division (meiosis

I). And finally, to resolve and release the physical connections

between chromosomes on time before anaphase; otherwise,

persistent JMs can impede chromosome segregations.

Regarding this, some structure-selective endonucleases (SSEs)

as Mus81-Mms4 and Yen1 in S. cerevisiae are tightly temporally

controlled by cell cycle-regulated phosphorylation cycles to

ensure that JMs are resolved and eliminated (Blanco and

Matos, 2015) (Figure 3A). Of note that although CDK

regulated targets that operate in DNA damage repair during

vegetative growth has been broadly documented (reviewed in

(Trovesi et al., 2013; Kciuk et al., 2022)), this is not the case for the

meiotic DSB repair. It is expected that some of these targets are

common to both mitotic and meiotic repair, while others will be

specific to meiotic cells, given the formation of JMs between

homologous chromosomes and the biased repair to

generate COs.

In S. cerevisiae Mus81-Mms4 SSE activity is regulated by

phosphorylation in meiotic and mitotic cells (Matos et al., 2011).

Mms4 hyperphosphorylation in meiosis I strongly increases the

nuclease activity of the complex, promoting the resolution of JMs

before anaphase I. mms4 deletion mutant accumulates aberrant

multichromatid JMs. The non-phosphorylatable mms4-14A

mutant shows a delay in the resolution of JMs and, similarly

to mus81 deletion mutants, fails to segregate homologous

chromosomes at anaphase I (Matos et al., 2011). Despite the

fact that Polo Kinase Cdc5 seems to play the major role in

Mus81-Mms4 phospho-regulation, CDK (Cdc28) is involved as

well, although this CDK regulation have mostly been studied in

mitosis (Gallo-Fernandez et al., 2012; Matos et al., 2013; Szakal

and Branzei, 2013). Indeed, the Mms-14A protein harbors

changes to alanines in the 5 CDK sites present in the protein,

and at least one of them is phosphorylated in vivo. The other ones

were not confirmed due to incomplete peptide coverage of the

mass spectrometry (MS) analysis (Matos et al., 2011). Cyclin

Clb1-CDK activity is induced at the end of prophase (Carlile and
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Amon, 2008), and therefore, it is a candidate to participate in this

regulation.

Mechanisms of CDK regulation have also been identified in

fission yeast Mus81-Eme1 and human MUS81-EME1 in

vegetative cells. In S. pombe, CDK (Cdc2)-dependent

phosphorylation of Eme1 is cell-cycle regulated, and it is

required to respond to DNA damage and to maintain

chromosome stability in the absence of the RecQ-type DNA

helicase Rqh1 (Dehe et al., 2013). In contrast to S. cerevisiae,

fission yeast Eme1 phosphorylation does not depend on Polo

kinase. In human cells, CDK stimulates MUS81-EME1 resolvase

activity by promoting the interaction with SLX1-SLX4 SSE

(Wyatt et al., 2013; Payliss et al., 2022). However, the

relevance in meiosis of these phospho-regulations have not

been studied.

Yen1 SSE has been widely studied in S. cerevisiae. During

meiotic cell cycle, in sharp contrast to Mms4, CDK (Cdc28)-

mediated phosphorylation of Yen1 restrains its function until

anaphase II when it acts as an additional back-up system for late

persistent JMs (Matos et al., 2011; Alonso-Ramos et al., 2021).

yen1 deletion mutant does not present obvious defects in

chromosome segregations under unchallenged conditions, but

additional deletion of other repair pathways as Sgs1 and Mus81-

Mms4 results in defective JM resolution and abnormal anaphase

I and II segregations, that unveils the safeguard activity of Yen1

(Matos et al., 2011; Alonso-Ramos et al., 2021). The specific

FIGURE 3
CDK regulation of recombinational repair in meiosis. (A) Role of CDK (Cdc28) in the sequential regulation of helicase and structure-selective
endonuclease (SEE) activities in S. cerevisiae. Low Cdc28 activity activates the RecQ-family DNA helicase Sgs1 during early prophase to promote
NCO formation, high levels of Cdc28 activity at meiosis I entry activates Mus81-Mms4 SSE to implement CO resolution prior to chromosome
segregations, and Yen1 SSE activation by the Cdc14 phosphatase at meiosis II releases its earlier Cdc28-dependent inhibition to process
persistent unresolved joint molecules (JMs). (B) Role of CDK2 in the maturation of early recombination nodules (ERN) and CO selection (late
recombination nodules, LRN) in higher eukaryotes. Protein complexes are only illustrative and they do not represent protein-protein interaction nor
stoichiometry. Only key proteins conserved in several organisms are highlighted: MutSγ complex MSH4-MSH5, RNF212 (ZHP-3 inC. elegans), MutLγ
complex MLH1-MLH3, CDK2 (CDK-2 inC. elegans, CDKA;1 in A. thaliana), CNTD1 (COSA-1 in C. elegans). These proteins are key factors that reduce
foci numbers from early pachytene to mid-pachytene (RNF212 and MutSγ) and that load at LRNs from mid pachytene (MutLγ, CDK2, and CNTD1).
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mechanism of Yen1 dual phospho-regulation by Cdc28 and

Cdc14 phosphatase was first elucidated in vegetative cells

(Blanco et al., 2014; Eissler et al., 2014; Garcia-Luis et al.,

2014), but it has also been described in meiosis. Cdc28-

mediated phosphorylation not only inhibits Yen1 catalytic

activity, but also prevents its precocious nuclear accumulation.

At anaphase II, Cdc14 released from the nucleolus

dephosphorylates Yen1, promoting its activation and nuclear

enrichment (Alonso-Ramos et al., 2021). Regarding this

mechanism, a mutant protein where the 9 CDK-consensus

serines are mutated to alanines, named Yen1ON, bypasses this

phospho-regulation. Therefore, YenON is constitutively active

and accumulated in the nucleus, even in early stages of

meiosis (as S-phase and prophase), in a Cdc14 independent

manner (Blanco et al., 2014; Arter et al., 2018; Alonso-Ramos

et al., 2021). Early Yen1 activation induces premature CO

formation and avoids the transitory accumulation of JMs. As

a consequence, some aspects of the CO physiology such as CO

interference (nearby CO inhibition) and distribution are

defective (Arter et al., 2018). Although Yen1 reaches its

maximum activity in meiosis II, some evidence indicates that

it might exert a previous function at anaphase I, especially when

other repair pathways are compromised (Alonso-Ramos et al.,

2021).

Similarly to Yen1, human ortolog GEN1 contains several

CDK consensus sites, although they are not conserved in position

and context. Indeed, GEN1 is phosphorylated in a CDK-

dependent manner in mitosis; however, this modification has

no impact on the catalytic activity, and wild type and GEN1-8A

proteins resolve JMs with the same efficiency (Chan and West,

2014). Furthermore, the relevance of this modification in meiosis

has not been studied.

The same phospho-regulatory network that tightly controls

SSE activity during nuclear divisions, also regulates Sgs1 in S.

cerevisiaemeiosis and mitosis (Grigaitis et al., 2020) (Figure 3A).

The RecQ-family DNA helicase Sgs1, together with Top3 and

Rmi1 (STR complex), contributes to DSB repair by disassembling

different recombination intermediates favouring the production

of non-crossover (NCO) products over COs. In addition, a

meiotic pro-CO function of Sgs1 is uncovered in the absence

of SSEs (Zakharyevich et al., 2012). During meiotic S-phase and

prophase, CDK (Cdc28) phosphorylation of Sgs1 substantially

increases its DNA unwinding activity. This phospho-stimulation

is essential for proper JM processing, and the phosphonull sgs1-

9A mutant accumulates aberrant multichromatid JMs. Indeed,

sgs1-9A mutant fails to segregate homologous chromosomes at

anaphase I, a defect that is enhanced in the absence of Mms4 and

alleviated in the presence of the Yen1ON version.

Cdc28 phosphorylation also primes Sgs1 for

Cdc5 hyperphosphorylation as cells exit prophase, what has

been suggested to inhibit its activity, but the meaning of this

modification is not completely elucidated (Grigaitis et al., 2020).

It is tempting to think that the differential phosphorylation state

may modulate Sgs1 functions to promote NCOs in early

prophase and JM resolution later on prior to chromosome

segregation as SSEs do.

Overall, CDK plays a crucial role in the metabolism of the

JMs generated during meiotic DSB repair, at least in budding

yeast (Figure 3A). It enhances or inhibits different activities

involved in the process and, in doing so, it temporally orders

their actions to ensure an efficient JM processing that guarantees

a faithful chromosome segregation. In addition, it restrains JM

resolution to stablish a correct CO pattern.

It is quite possible that the role of CDK in averting late JMs is

a conserved feature. In fission yeast, the UvrD-type DNA helicase

Fbh1 is required to remove Rad51 from the DNA. Both, fbh1

mutants, and mutants in its loading factor dbl2, show a retention

of Rad51 foci at meiosis I and defects in chromosome segregation

(Sun et al., 2011; Polakova et al., 2016); moreover, persistence of

JMs is observed in the dbl2 mutant (Polakova et al., 2016).

Interestingly, Dbl2 is potentially a good CDK substrate. It

harbours several putative CDK sites, and 3 of them are

phosphorylated in vegetative cycle (https://www.pombase.org/

gene/SPCC553.01c). It will be worthy to explore any meiotic

contribution of CDK to Dbl2 function and JM resolution.

In fission yeast the meiosis-specific Rem1 cyclin is required

for normal levels of recombination. Interestingly, in its absence

NCOs are reduced but CO levels are not affected, suggesting a

regulatory role in DSB repair (Malapeira et al., 2005). However,

this function does not depend on CDK (Cdc2). Intron retention

produces a short isoform that lacks the cyclin-box motif involved

in Cdc2 binding, and this short version restores the

recombination defects of the rem1 mutant (Moldon et al.,

2008). It is currently unknown how short Rem1 controls the

recombination output. Intron processing depends on

Mei4 binding to rem1 promoter, which recruits the

spliceosome, and produces a larger protein that shows a peak

of associated kinase activity at meiosis I and promotes meiosis I

progression (Malapeira et al., 2005; Moldon et al., 2008). Thus,

Rem1 represents an example of gene economy where splicing

regulation produces a cyclin and a non-cyclin protein with

different meiotic functions. Differential gene expression

regulation has been also reported for other meiotic genes. For

the unconventional CNTD1 mouse cyclin a short isoform has

been recently described as the only detectable species in mouse

testis (see below, (Gray et al., 2020)). In this case, the function of

the full length CNTD1 protein is unclear. Interestingly, mouse

CDK2 also shows a larger isoform via alternative splicing that is

highly induced in meiotic prophase (Ellenrieder et al., 2001; Liu

et al., 2014; Tu et al., 2017). It has been proposed that the larger

protein may add new binding domains to accommodate different

meiotic functions. Indeed, some interactors preferentially bind to

the long CDK2 isoform in vitro (Liu et al., 2014; Bondarieva et al.,

2020).

In mouse, in addition to its telomeric localization, CDK2 is

also observed in 1-2 interstitial sites along the chromosomal axes
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in mid-pachytene spermatocytes and oocytes (Ashley et al., 2001)

(Figure 3B). At these spots, it colocalizes with late recombination

nodule (LRN) pro-CO factors as RNF212, HEI10, PRR19,

CNTD1, and MLH1, and this localization is lost in the

corresponding mutants (Ashley et al., 2001; Ward et al., 2007;

Reynolds et al., 2013; Holloway et al., 2014; Liu et al., 2014; Qiao

et al., 2014; Bondarieva et al., 2020). Based on localization studies,

CDK2 was proposed to act with the HEI10 E3-sumo-targeting

ubiquitin ligase in the dissociation of early recombination factors

and final CO selection (Qiao et al., 2014). Interestingly, human

HEI10 was shown to interact with cyclin B1 in Y2H assays, and it

is specifically phosphorylated in vitro by cyclin B-Cdk1

complexes (Toby et al., 2003); however, cyclin B1-Cdk1 has

not been implicated in CO selection. Recently, the use of a

partial loss-of-function and a gain-of-function Cdk2 allele has

helped to further explore the role in CO regulation of

CDK2 activity (Palmer et al., 2020). The hypomorphic

Cdk2T160A allele harbors a point mutation in the so-called

T-loop of the protein. Upon binding to the cyclin, the loop is

displayed out of the catalytic cleft and exposed to

phosphorylation by CAK (CDK activating kinase), stabilizing

the complex and, therefore, promoting maximal activation

(Malumbres, 2014). Telomeric CDK2 localization and

function remains mostly unaffected in Cdk2T160A mutants,

which allows the study of CDK2 roles in later events (Palmer

et al., 2020). CDK2 location in LRNs depends on T-loop

phosphorylation since Cdk2T160A spermatocytes lose these

interstitial foci and the associated MLH1 loading (component

of the conserved MutLγ SSE with bias for CO resolution).

Correspondingly, increased kinase activity in the gain-of-

function Cdk2Y15S mutant, which precludes inhibition by

phosphorylation at Tyr15 in the catalytic pocket (Malumbres,

2014), correlates with elevated numbers of interstitial foci and the

associated MLH1 loading. In addition, similarly to other mutants

in pro-CO factors, Cdk2T160A spermatocytes show persistence of

foci of earlier recombination proteins as RPA2 and MSH4

(component of the conserved MutSγ complex), reflecting

aberrant stabilization and repair of intermediates. In

particular, the typical reduction in RNF212 foci correlated

with “selection” of meiotic CO sites does not occur in

Cdk2T160A spermatocytes what indicates a defective CO

designation process when CDK2 activity is reduced (Reynolds

et al., 2013; Qiao et al., 2014; Palmer et al., 2020). Thus,

CDK2 might phosphorylate substrates in the recombination

nodules leading the repair process towards CO formation;

however, the molecular mechanism is currently unknown.

Interestingly, Cdk2T160A mutant primarily affects the activity of

CDK2 complexes with conventional cyclin activators, since

CDK2-Speedy A complexes do not require

Thr160 phosphorylation for activation (Karaiskou et al.,

2001). This excludes Speedy A from any role in this LRN

associated function of CDK2; and, indeed, Speedy A is not

located in interstitial foci along chromosomes axes

(Mikolcevic et al., 2016; Tu et al., 2017). Furthermore,

CDK2 phosphorylation at Thr160 is observed in LRNs and

not in telomeres (Liu et al., 2014).

The role of CDK2 in the maturation of early recombination

sites and CO designation is conserved in C. elegans (Figure 3B).

CDK-2 homolog also localizes at CO-selected sites, and it is

eventually detected as six strong foci in pachytene (one per

homolog pair). Absence of bivalents in CDK-2 depleted

oocytes reflects a failure to properly generate COs. Specifically,

the CO selection pathway is disrupted, as seen by the fact that

ZHP-3 (RNF212 in mouse) and MSH-5 (component of the

conserved MutSγ complex) signals fail to restrict to the six

CO sites as normally happens in late pachytene (Haversat

et al., 2022). Some studies identified the cyclin-like protein

COSA-1 (Crossover Site-Associated-1) as a partner for CDK-2

in C. elegans meiosis. COSA-1 and CDK-2 colocalize at CO sites

in a mutually-dependent manner and their absence similarly

impairs the dynamics of CO designation factors, what support

their functional association (Yokoo et al., 2012; Haversat et al.,

2022). In the cosa-1 mutant, bivalents are also absent, and at late

pachytene ZHP-3 aberrantly remains at high levels along the SC

and MSH5 foci are lost (Yokoo et al., 2012). Moreover, in vitro

experiments showed that CDK-2 and COSA-1 are able to form a

complex (Haversat et al., 2022).

Key meiotic substrates of CDK2 for this crossover-related

function are not clearly determined. Recent studies describe

MSH-5 as a key target in C. elegans (Haversat et al., 2022).

MSH-5 contains thirteen CDK consensus motifs in a disordered

C-terminal tail, and this domain is essential for its function in CO

formation. In a C-terminal truncated mutant (msh-5Δ339aa), ZHP-3

signal aberrantly persists and most recombination intermediates fail

to mature into COs. Three of these sites are, indeed, in vitro

phosphorylated by recombinant human CDK1-cyclin A2

complexes. Moreover, phospho-specific antibodies to one of these

sites, Thr1009, show that MSH-5 is actually phosphorylated in vivo

in a CDK-2 and COSA-1 dependent manner. Phosphorylated-

MSH5 signal was enriched at CO-designated sites in late

pachytene, colocalizing with COSA-1 during meiotic progression.

CDKphosphorylation ofMSH-5 promotes its pro-CO activity since,

in a sensitized condition (him-14(it44) mutant, MSH4 in mouse),

the msh513A phospho-null mutant is unable to form bivalents.

Moreover, at late prophase colocalization between MSH-513A and

COSA-1 is lost and the MSH-513A protein persists as multiple foci

instead of pairing down to six bright foci, reminiscent of what it is

observed in CDK-2 depleted germlines. The disordered C-terminal

tail containing CDK sites in MSH-5 is not conserved outside

Caenorhabditis species, indicating that, although the role of

CDK2 in CO selection is conserved, the mechanism may differ

from one organism to another (Haversat et al., 2022).

The mammalian COSA-1 homolog, CNTD1, also presents a

conserved function in CO selection (Figure 3B). It is highly

enriched in mouse and human testis, and in mouse

spermatocytes CNTD1 foci are observed at CO sites
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colocalizing with CDK2 and MLH1 in mid-pachytene

(Bondarieva et al., 2020; Gray et al., 2020). Similarly to other

CO machinery mutants (as Mlh1, Mlh3, Hei10, Rnf212), when

Cntd1 function is depleted early prophase events including

homolog pairing and initial DSB processing remain normal,

but severe defects in DSB repair and CO formation are

observed (Holloway et al., 2014). In Cntd1 mutant

spermatocytes, MutLγ complex (MLH1 and MLH3) and

CDK2 do not localize to LRNs, indicating a disruption in the

canonical CO pathway. In addition, the earlier recombination

factors MSH4 and RNF212 are not properly removed from these

sites as seen by persistence (or even increase) of foci and co-foci

of these proteins during late pachytene. Thus, CNTD1 seems to

act specifically in the final selection of CO sites, coordinating

RNF212 and MutSγ dissociation with the recruitment of MutLγ.
The identification of CNTD1 as a member of the cyclin

superfamily indicates that it may function in a CDK-CNTD1

kinase complex. CDK2 is a good partner for CNTD1 because its

associated kinase activity is also involved in CO designation (see

above); in fact, interstitial CDK2 foci are absent in Cntd1mutants

and, although the interaction has not been detected in vivo,

CNTD1 has been shown to interact with CDK2 by Y2H assays

(Holloway et al., 2014; Bondarieva et al., 2020; Gray et al., 2020).

The CNTD1–CDK2 interaction requires the first predicted cyclin

box located in CNTD1N-terminus; hence, mutants that alter this

first cyclin box diminish the interaction in Y2H assays and impair

CNTD1 function (Bondarieva et al., 2020). Consistent with this

mechanism, other studies have identified a short CNTD1 isoform

that lacks the first cyclin homology domain and is not able to

interact with CDK2 by Y2H assays (Gray et al., 2020). Currently,

the function of the long CNTD1 protein is unclear, since

apparently the short form is the only detectable species in

adult mouse testis (Gray et al., 2020). Further studies are

needed to shed light into the function and regulation of the

distinct CNTD1 isoforms. Given that long variants have been

found in different vertebrates includingmouse (Gray et al., 2020),

the use of specific antibodies for the detection of the long

isoforms will be particularly informative. Nevertheless, given

that CDK2 activity is required for CO selection, there must be

other cyclin/s or activators/s to provide this activity.

Molecularly, in extracts from adult testis no relevant

interactions between short-CNTD1 and the CO machinery

(MSH4, MSH5, MLH1, MLH3, RNF212, HEI10, or CDK2)

have been identified by MS (Gray et al., 2020). However, MS

data shows unexpected interactions with components of the

Replication Factor C (RFC) complex, the loader of the

Proliferating Cell Nuclear Antigen (PCNA). Indeed, RFC3,

RFC4 and PCNA proteins are expressed during meiotic

prophase (after DNA replication), and in the case of

RFC4 clearly detected forming CNTD1-dependent foci on

synapsed chromosomes in pachytene spermatocytes. Given the

role of human RFC and PCNA in the activation of the MutLγ
endonuclease complex in vitro, and the localization of PCNA at a

subset of prospective CO sites in budding yeast cells arrested in

pachytene (Cannavo et al., 2020; Kulkarni et al., 2020), it has been

proposed that CNTD1 association with components of the RFC-

PCNA complex would stimulateMutLγ activity and promote CO

formation (Gray et al., 2020).

In Arabidopsis thaliana CDK activity also regulates CO

formation (Figure 3B). CDKA;1, the homolog for mammalian

CDK1 and CDK2, regulates CO formation in a dose-dependent

manner (Wijnker et al., 2019). Though CDKA;1 is essential, weak

loss-of-function alleles are viable and produce flowers containing

abnormal meiocytes (Dissmeyer et al., 2007; Wijnker et al., 2019).

The hypomorphic cdka;1DBD mutant expresses a fusion of CDKA;1

to an inactive (dead) destruction box ofCYCLINB1;1, and it exhibits

partial kinase activity and reduced fertility (Wijnker et al., 2019).

Early stages of prophase are largely unaffected in cdka;1DBDmutants;

however, at diplotene reduced numbers of bivalents are often

observed, and univalents are also frequent at metaphase I. The

conventional CO pathway is affected as seen by a significant

decrease of approx. 50% in MLH1 foci. Conversely, enhanced

CDKA;1 activity increases recombination by approx. 10%.

Regarding the molecular mechanism, in vitro kinase assays show

that CDKA;1 in complex with meiosis-specific cyclins SDS (SOLO

DANCERS) or TAM (TARDY ASYNCHRONOUSMEIOSIS) can

phosphorylate MLH1, especially the CDKA;1-SDS complex, what

can represent a mechanism to control CO formation. Interestingly,

the SDS cyclin contains an unusually long N-terminal region. This

structure resembles COSA-1/CTND1 unconventional cyclins,

whose sequences also comprise an insertion of 26–33 amino

acids in the highly conserved N-terminal cyclin box domain

(Azumi et al., 2002; Yokoo et al., 2012).

Synapsis

The synapsis of homologous chromosomes is essential for

recombination given the close proximity required for

recombination to occur. This physical constraint has

evolutionarily associated both processes and recombination

occurs in the context of the SC; moreover, in many organisms

as budding yeast, mouse, and plants, early recombination

intermediates promote SC formation and chromosome

synapsis (Zickler and Kleckner, 2015). However, CDK plays a

role in SC regulation independently of its function in DSB

formation, and some SC proteins are known CDK substrates.

In budding yeast, CDK (Cdc28) foci appear early in prophase

and depend on S-phase Clb5 and Clb6 cyclins and the axial-

element components Red1 and Hop1 (Zhu et al., 2010). Later on,

Cdc28 tends to localize on synapsed chromosomes. Chemical

inhibition of Cdc28 after DSB formation impairs polymerization

of the SC central-element component Zip1. However, although

Zip1 is an in vitro CDK substrate (Ubersax et al., 2003) and its

electrophoretic gel-mobility depends on Cdc28, Clb5, and Clb6, a

phospho-null Zip1-4SA protein supports normal SC formation
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(Zhu et al., 2010). Additionally, Red1 is also phosphorylated in a

Cdc28-depedent manner independently of DSB formation (Lai

et al., 2011). Even though the phospho-null Red1-7A protein is

hypophosphorylated during meiotic prophase, it does not impair

sporulation efficiency or spore viability, suggesting normal SC

formation (Lai et al., 2011). Thus, although SC formation

requires CDK activity in budding yeast, it is not well

understood how this function is accomplished. It is possible

that multiple CDK regulated pathways converge to ensure

efficient SC formation. Moreover, given the link between

recombination and SC formation in this organism, it is

possible that a putative CDK role downstream of DSB

formation may also contribute to SC development.

Similarly, CDKA;1 is required for ZYP1 (Zip1) assembly in

Arabidopsis meiotic chromosomes (Yang et al., 2020). The

infertile hypomorphic cdka;1T161D allele harbors a point

mutation in the so-called T-loop of the protein that impairs

fully activation (see above) (Dissmeyer et al., 2007). cdka;1T161D

mutants show pachytene-like meiocytes with ZYP1-depleted

unpaired chromosomes and the absence of bivalents. The

mutant does not affect Dmc1 recombinase loading,

indicating that the synaptic defect is not due to the lack of

DSBs. CDKA;1 co-localizes with ASY1 (Hop1 homolog) at

chromosomes axis and both proteins disappear from the axis

of synapsed chromosomes. ASY1 is a CDKA;1 substrate and,

particularly, phosphorylation of Thr142 and Thr184 residues in

the HORMA domain of the protein promotes self-interaction

and increases the binding affinity to ASY3 (Red1 homolog),

which facilitates ASY1 chromosomal loading (Yang et al., 2020).

CDKG is also required for full ZYP1 assembly in Arabidopsis

(Zheng et al., 2014). In this case, the function is sex and

environmental-condition specific, since the null cdkg1-1

mutant exhibits only male sterility under high temperature.

Regarding the mechanism, an indirect role through gene

expression regulation was proposed, since CDKG associates

with the spliceosome and controls the expression of a gene

involved in pollen differentiation (Huang et al., 2013). The

conserved role of CDKs in mRNA metabolism is well

documented (Malumbres, 2014).

In mouse, the use of the hypomorphic Cdk2T160A allele (see

above) has also uncovered a role in synapsis maintenance (Palmer

et al., 2020). Since CDK2 is required for the telomere attachment to

the NE early in prophase (see above), the observed defects in

synapsis of the null mutant were difficult to evaluate as a direct

consequence. The CDK2T160A mutant protein localizes properly at

telomeres, and spermatocytes progress normally to early pachytene

with normal synapsed chromosomes. However, later on partially

unsynapsed chromosomes are observed, and loading of the

transverse element SYCP1 is diminished; by diplotene a complete

separation of the homologs is frequently observed. As in budding

yeast, mouse SC formation also depends on early recombination

intermediates, and, as mentioned above, Cdk2T160A mutants

accumulate RPA2, RNF212, and MSH4 foci, suggesting a

problem in the processing of intermediates that might affect the

stability of the SC (Palmer et al., 2020). However, since mutations in

pro-CO factors also show an increased number of these foci but

normal chromosome synapsis (Ward et al., 2007; Reynolds et al.,

2013; Holloway et al., 2014; Bondarieva et al., 2020), CDK2 activity is

likely to be directly involved in synapsis maintenance. Finally, given

thatCdk2T160A primarily affects the activity of CDK2 complexes with

conventional cyclin activators (Karaiskou et al., 2001), this role in

synapsis stabilization might depend on E cyclins (see above). The

importance of CDK2 in different aspects of meiotic prophase, herein

reviewed, has pointed it as a target for nonhormonal male

contraception (Faber et al., 2020).

SC disassembly at the end of prophase is equally as important

as SC formation. In C. elegans CDK-1 regulates the chromosomal

relocation of the Polo kinase PLK-2 from the pairing centers to

the SC at late pachytene (Brandt et al., 2020). SYP-1 (Zip1) is

phosphorylated by CDK-1 at Thr452 located in the PBD (Polo

Box Domain)-binding motif. This modification primes for PLK-

2 binding that sustains SYP-1 phosphorylation and promotes SC

disassembly. Meiotic depletion of CDK-1 does not affect PLK-2

recruitment to the pairing centers, and both synapsis and CO

formation are normal. However, SYP-1-T452 phosphorylation is

completely abolished and PLK-2 is not recruited to SC; as a

consequence, chromosome axis remodeling is impaired, and SC

disassembly is delayed until diakinesis (Brandt et al., 2020).

Concluding remarks

Since the molecular identification of the MPF (Maturation

Promoting Factor) activity of Xenopus laevis oocytes in the late

80′s, the study of cyclins and CDKs has generated a vast amount

of knowledge on how eukaryotic cells divide and coordinate

division with internal and external cues in many species. Indeed,

cyclins and CDKs have emerged as broadly conserved key

regulators of the eukaryotic cell cycle. However, how these

regulators control important aspects of meiosis, particularly

during prophase where critical cellular events for the

generation of healthy gametes occur, is not well understood.

In fact, as summarized in this review, no many direct CDK

meiotic-targets have been clearly identified. In addition, meiosis

represents a very interesting scenario to study CDK activity

diversification with the emergence of meiosis-specific cyclins

and new associated functions. The important role of CDK

activity in meiosis is pointed by the fact that in a recent

phosphoproteomic study of mouse spermatocytes undergoing

prophase, 10 of the top 30 enriched kinases were CDKs with

CDK2 in the second position (Li et al., 2022). The increased

number of proteomic studies in several organisms, the

development of improved techniques to enrich cell

populations in specific prophase stages, along with the

analysis of the corresponding phosphomutants, will help to

broad our current knowledge of the fascinating process of
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gamete generation and the efficient genome transmission from

one generation to the next.
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Chromosome architecture and
homologous recombination in
meiosis

Masaru Ito* and Akira Shinohara*

Institute for Protein Research, Osaka University, Suita, Osaka, Japan

Meiocytes organize higher-order chromosome structures comprising arrays of
chromatin loops organized at their bases by linear axes. As meiotic prophase
progresses, the axes of homologous chromosomes align and synapse along their
lengths to form ladder-like structures called synaptonemal complexes (SCs). The
entire process of meiotic recombination, from initiation via programmed DNA
double-strand breaks (DSBs) to completion of DSB repair with crossover or non-
crossover outcomes, occurs in the context of chromosome axes and SCs. These
meiosis-specific chromosome structures provide specialized environments for the
regulation of DSB formation and crossing over. In this review, we summarize insights
into the importance of chromosome architecture in the regulation of meiotic
recombination, focusing on cohesin-mediated axis formation, DSB regulation via
tethered loop-axis complexes, inter-homolog template bias facilitated by axial
proteins, and crossover regulation in the context of the SCs. We also discuss
emerging evidence that the SUMO and the ubiquitin-proteasome system function
in the organization of chromosome structure and regulation of meiotic
recombination.
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Introduction

Homologous recombination during meiosis underlies biological diversity and ensures
proper chromosome segregation during the first division to create haploid gametes. During
meiotic prophase-I, chromosomes develop highly organized three-dimensional structures
where loops of chromatin emanate from structural axes that also interconnect sister
chromatids. Programmed DNA double-strand breaks (DSBs) at recombination hotspots,
which initiate meiotic recombination, are localized to DNA sequences found in chromatin
loops while many factors responsible for DSB formation reside on the axes, indicating that
tethering of DSB sites in loops to their corresponding chromosome axes–loop-axis tethering–is
a crucial step in the initiation of meiotic recombination (Blat et al., 2002; Panizza et al., 2011).
Following DSB formation, homolog search of the DSB ends for homologous chromosomes
leads to pairing of the structural axes of two homologous chromosomes and synapsis along their
lengths to form the synaptonemal complexes (SCs). The SCs are zipper-like structures where
the lateral/axial elements localized to each homolog sandwich the central region composed of
transverse filaments and a central element (Figure 1). Later steps of recombination such as the
formation of double-Holliday junctions and their resolution into crossover products, occur
within the context of the SCs. In this review, we present key findings about the regulation of
meiotic recombination in relation to chromosome architecture.
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Cohesin as a basis of axis-loop higher-
order chromosome structure

During the meiotic S-phase, cohesin complexes interconnect sister
chromatids and are assumed to establish the core unit of chromosome
axis via loop extrusion, likely with help of evolutionarily related axis
core proteins (budding yeast Red1, mammalian SYCP2/SYCP3, and
plant ASY3/ASY4; West et al., 2019; Figures 1A,B). The cohesin
complexes consist of two SMCs (structure maintenance of
chromosome), SMC1 and SMC3; and two non-SMC kleisin
subunits, SCC3/STAG and the α-kleisin RAD21/SCC1 (Nasmyth
and Haering, 2005). REC8 is a meiosis-specific α-kleisin subunit
that is well-conserved from yeast to mammals and is required for
the formation of chromosome axes and the SCs in budding yeast, C.
elegans, and mice (Klein et al., 1999; Pasierbek et al., 2001; Xu et al.,
2005). Recent Hi-C analysis of yeast meiosis revealed Rec8-dependent
intra-chromosome interactions between distal chromosomal loci and
high-frequency contacts between Rec8 binding sites (Muller et al.,
2018; Schalbetter et al., 2019), supporting a model in which
interactions between adjacent cohesin-binding sites assemble
structural axes. Deletion of the budding yeast REC8 gene causes
various defects in meiotic recombination; the redistribution and
reduction of DSBs, impaired choice of recombination template, and
persistence of joint molecule DNA intermediates (Kugou et al., 2009;
Kim et al., 2010), indicating important roles of cohesin-mediated
chromosome structures and/or the cohesin complexes themselves in

the regulation of recombination. Recent work in fission yeast
identified a rec8 separation-of-function mutant, rec8-F204S, that is
proficient for sister chromatid cohesion (SCC) but deficient for axis-
loop structure (Sakuno et al., 2022). This rec8mutant was defective in
meiotic recombination, revealing an essential role for Rec8-cohesin-
mediated axis-loop chromosome structure and not cohesion per se in
meiotic recombination.

In mice, the topologically associating domains (TADs, comprising
~1 Mbp-intra-chromosomal interactions), characteristic of interphase
chromosomes, are diminished and intra-chromosomal interactions
around 2.5–4.5 Mbp became more evident during meiotic prophase-I,
consistent with the formation of axis-loop structures (Alavattam et al.,
2019;Wang Y. et al., 2019; Patel et al., 2019; Vara et al., 2019; Luo et al.,
2020; Zuo et al., 2021). REC8, SMC1β, STAG3, and RAD21L (a second
meiosis-specific α-kleisin; Figure 1A) are known meiosis-specific
cohesin subunits that localize to chromosome axes in mice as six
distinct complexes; three SMC1β-cohesin complexes (RAD21-
SMC1β-SMC3-STAG3, RAD21L-SMC1β-SMC3-STAG3, and
REC8-SMC1β-SMC3-STAG3) and three SMC1α-cohesin complexes
(RAD21-SMC1α-SMC3-STAG1/2, RAD21-SMC1α-SMC3-STAG3,
and RAD21L-SMC1α-SMC3-STAG3) (Revenkova et al., 2004;
Ishiguro et al., 2011; Lee and Hirano, 2011; Fukuda et al., 2014).
With the exception of Rad21L−/− females, all mice that are knockout
mutants for the meiosis-specific cohesin components are sterile, and
show defects in synapsis and compromised meiotic recombination
(Revenkova et al., 2004; Herran et al., 2011; Llano et al., 2012; Fukuda
et al., 2014). Axis lengths in meiocytes are shorter in all mutants, and
double mutant mice such as Smc1β−/− Rec8−/− show much shorter axis
lengths than the corresponding single mutants (Biswas et al., 2016;
Ward et al., 2016). These observations highlight the importance of the
multiple cohesin complexes in the organization of meiotic
chromosome axis structure in mice.

During meiosis, cohesin plays a dual role in sister chromatid
cohesion (SCC) and the formation of axis-loop structure. A recent
series of studies established the loop extrusion activity of SMC
complexes including the mitotic SCC1/RAD21-based cohesin
(RAD21-SMC1A-SMC3-STAG1), which requires the cohesin loader
complex SCC2/NIPBL-SCC4/MAU2 (Davidson et al., 2019; Kim et al.,
2019; Kaur et al., 2022). This loop extrusion seems to be distinct from
cohesin’s SCC activity (Davidson and Peters, 2021). It follows that
meiotic chromosome structure and cohesion may be mediated by two
independent ensembles of cohesin complexes. Importantly, several
organisms including vertebrates and nematodes contain two distinct
meiotic cohesins (Severson et al., 2009; Ishiguro et al., 2011; Lee and
Hirano, 2011; Severson and Meyer, 2014). In mice, the cohesins with
REC8 and RAD21L localize to non-overlapping sites along
chromosome axes (Ishiguro et al., 2011). Moreover, REC8, and
thus REC8-based cohesin, localizes to the chromosomes as early as
meiotic S-phase and persists until metaphase-II; whereas RAD21L-
cohesin appears on the chromosome later, in leptonema and
disappears earlier in late prophase-I (Herran et al., 2011; Lee and
Hirano, 2011; Ishiguro et al., 2014; Biswas et al., 2016). One simple
idea is that REC8-cohesin functions for SCC and RAD21L-cohesin
functions for loop extrusion and thus axis-loop formation. Future
studies are essential to evaluate the hypothesis.

WAPL and PDS5 are highly conserved cohesin regulators that
contribute to the association and dissociation of cohesin complexes
from chromosomes, and thereby modulate chromosome architecture
in somatic cells (Kueng et al., 2006; Tedeschi et al., 2013; Haarhuis

FIGURE 1
Axis-loop chromosome structure and the synaptonemal complex
in mice (A) Surface spreads of mouse oocyte pachytene chromosomes
immunostained for RAD21L (green), SYCP3 (magenta), and DNA (DAPI;
blue). DNA is condensed on chromosome axes where cohesin
complexes and axis core proteins localize and spread as loops from axes.
RAD21L and SYCP3 are shown as a representative ofmeiotic cohesin and
axis core protein, respectively (B) Schematic representation of the
mouse synaptonemal complex. Cohesin complexes interconnect axes
of sister chromatids and lateral elements SYCP2 and SYCP3 and a
transverse filament protein SYCP1 form a ladder/zipper-like structure.
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et al., 2017; Wutz et al., 2017). In C. elegans, cytological analysis of
wapl-1 null mutants indicated minor defects in the repair of meiotic
DSBs (Crawley et al., 2016). Physical analysis of meiotic
recombination at a well-characterized DSB hotspot in budding
yeast revealed a subtle reduction in the levels of meiotic DSBs and
the homolog bias of DSB repair in rad61/wpl1 deletion mutants
(Challa et al., 2016; Hong et al., 2019). More severe defects were
seen in pds5 meiotic null mutants with an interhomolog bias defect
similar to that of a rec8 deletion mutant (Hong et al., 2019). Both
rad61/wpl1 and pds5 mutants showed shortened chromosome axes in
budding yeast (Challa et al., 2016; Yang et al., 2022) and in fission yeast
(Ding et al., 2006; Sakuno et al., 2022). Importantly, the budding yeast
pds5mutant forms SCs between sister chromatids instead of homologs
(Jin et al., 2009), which is reminiscent of the phenotypes seen in mouse
Rec8, Rad21L, Stag3, and Smc1β knockout mutant spermatocytes (Xu
et al., 2005; Ishiguro et al., 2011; Llano et al., 2012; Agostinho et al.,
2016). Recent studies also revealed that depletion of PDS5 (both
PDS5A and PDS5B) in mice leads to shortened chromosome axes,
which form normal SCs between homologs, but are compromised for
meiotic recombination (Viera et al., 2020). The prophase-I phenotypes
of Wapl mutant mice have not been reported yet.

Notably, budding yeast Pds5 interacts with the proteasome and the
shortened chromosome axis length of pds5mutants is rescued by reducing
levels of ubiquitin, suggesting that Pds5 regulates axis length via the
ubiquitin-proteasome system (Yang et al., 2022). Consistently, the
proteasome is indeed localized on chromosome axes in budding yeast,
C. elegans, and mice (Ahuja et al., 2017; Rao et al., 2017). Although
changes in chromosome structures resulting from mutation of PDS5
might indirectly affectmeiotic recombination inmice, physical interaction
between PDS5 and two RAD51 mediators, BRCA2 and the SWS1-
SWSAP1, has been reported. Moreover, DSB repair is defective in
PDS5 mutant somatic cells from fly and human (Brough et al., 2012;
Kusch, 2015; Couturier et al., 2016; Martino et al., 2019). These data
support more direct roles for PDS5 in meiotic recombination, either as a
component of cohesin or as an independent complex.

DSB formation in tethered loop-axis
complexes

Meiotic recombination is initiated by programmed DSBs formed
via an evolutionarily conserved topoisomerase VI-like protein, Spo11,
and its partners (Bergerat et al., 1997; Keeney et al., 1997; de Massy,
2013; Robert et al., 2016). DSB sites are located in chromatin loops

while Spo11 partners such as Rec114-Mer2-Mei4 in budding yeast,
Rec7-Rec15-Rec24 in fission yeast, and REC114-IHO1-MEI4 in mice
localize to chromosome axes where cohesin also localizes, suggesting
that tethered loop-axis complexes (TLACs) form during the initiation
of meiotic recombination to regulate both DSB formation and the
ensuing steps of meiotic recombination (Blat et al., 2002; Kumar et al.,
2010; Panizza et al., 2011; Miyoshi et al., 2012; Fowler et al., 2013; Ito
et al., 2014; Kumar et al., 2015; Stanzione et al., 2016); (Figure 2).

Molecular mechanisms of TLAC formation have been studied in
yeasts. Spp1 in budding yeast and Mde2 in fission yeast are identified
as proteins important for the formation of TLACs (Miyoshi et al.,
2012; Acquaviva et al., 2013; Sommermeyer et al., 2013; Adam et al.,
2018). In budding yeast, DSB hotspots are preferentially located in
promoter regions within chromatin loops (Pan et al., 2011; Ito et al.,
2014). Spp1, a component of the COMPASS/Set1 complex that
catalyzes histone H3K4 trimethylation, is thought to recognize
H3K4 trimethylation marks around DSB hotspots via its PHD
domain, and connect these sites to chromosome axes by interacting
with axis-associated Mer2. Spp1 is likely to mediate TLAC formation
independently from the role in the COMPASS/Set1 complex (Karanyi
et al., 2018). Although Spp1-mediated TLACs contribute to DSB
formation, meiotic cells are equipped with another layer of
regulation for meiotic DSB formation, since spp1 mutants still form
relatively high levels of DSBs (Acquaviva et al., 2013; Sommermeyer
et al., 2013; Zhang et al., 2020). Given that Mer2 itself has an ability to
directly bind to nucleosomes and the association of Mer2 to
chromosome axes is regulated by its interacting axis-associated
protein Hop1, the Hop1-Mer2 may contribute to TLAC formation
both via and independently of Spp1 (Panizza et al., 2011; Rousova
et al., 2021). In fission yeast, where most DSB hotspots are in long
intergenic regions (Fowler et al., 2014), DSB hotspots are marked by
another epigenetic mark, H3K9 acetylation, and the
H3K4 trimethylation mark is dispensable for meiotic DSB
formation (Yamada et al., 2013). Mde2 expresses only after the
meiotic S-phase and is thought to bridge Rec12Spo11-containing
subcomplex at DSB hotspots and an axis-located subcomplex
containing Rec15Mer2 (budding yeast homologs in superscript)
(Miyoshi et al., 2012). Importantly, fission yeast Hop1 also
physically interacts with Rec15Mer2 and promotes chromosomal
localization of Rec15Mer2, suggesting significant contribution of
Hop1 to TLAC formation in both yeasts (Kariyazono et al., 2019).

Whether or not the mechanism of TLAC formation is conserved
remains unclear. In mice, PRDM9, a germ cell-specific
H3K4 trimethylation transferase with a zinc-finger array domain,
recognizes specific DNA sequences, deposits H3K4me3 and
H3K36me3 marks, and directs DSB formation at its binding sites
(Baudat et al., 2010; Diagouraga et al., 2018). Recent ChIP-seq analysis
for meiotic cohesin components REC8 and RAD21L revealed their
localization to promoter regions (Vara et al., 2019) and no overlap of
meiotic cohesin binding sites with DMC1 (the meiosis-specific
RAD51 homolog) and PRDM9 binding sites (Jin et al., 2021).
CXXC1 is an ortholog of budding yeast Spp1, and the physical
interaction of CXXC1 with PRDM9 and IHO1, an axis-associated
protein considered to be the ortholog of budding yeast Mer2,
suggested a similar mechanism of TLAC formation between
budding yeast and mouse (Imai et al., 2017; Parvanov et al., 2017).
However, depletion of CXXC1 in mouse germ cells caused no or small
defects in DSB formation and the early steps of DSB repair (Tian et al.,
2018; Jiang et al., 2020), suggesting that factor(s) other than

FIGURE 2
Tethered loop-axis complex (TLAC) formation to regulate DSB
formation in budding yeast. Schematic representation of the budding
yeast TLAC. Spo11 partner Rec114-Mer2-Mei4 complex localizes to
chromosome axes where Rec8 cohesin and an axial element
Red1 reside, and Spp1, a component of the Set1/COMPASS complex,
tethers Spo11-bound DSB hotspots within loops to chromosome axes
via the interaction with Mer2.
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CXXC1 plays a critical role in TLAC formation and meiotic DSB
formation in mice. A mammalian ortholog of fission yeast Mde2 has
not been identified yet.

Inter-homolog bias controlled by axial
proteins

DSB formation is followed by nuclease-mediated 5′-strand
resection to form long single-stranded tails. Invasion of the
resected DSB end into a template homologous duplex DNA forms
a nascent D (displacement)-loop structure. At this stage, D-loop
intermediates are thought to differentiate into crossover and non-
crossover pathways (Hunter, 2015). The majority are matured as non-
crossovers via DNA synthesis to extend the invading end, dissociation
of the D-loop, and annealing of the displaced strand to seal the DSB
(synthesis-dependent strand annealing) (Allers and Lichten, 2001;
Hunter and Kleckner, 2001). Along the crossover pathways, D-loops
differentiate into metastable D-loops called Single-End Invasions
(SEIs) which then form double-Holliday junctions (dHJs) via DNA
synthesis and capture of the second DSB end. dHJs are specifically
resolved into crossover products. These events also occur in the
context of meiotic chromosome axes and SCs. A prominent feature
of meiotic recombination is that homology search and strand
exchange are biased to occur between homologous chromosomes
(inter-homolog) rather than between sister chromatids (inter-
sister). This biased template choice is regulated by components of
the axial/lateral elements of the SC and axis-associated proteins.

In budding yeast deletion mutants of axis-associated proteins
Red1, Hop1, and the associated recombination-checkpoint kinase
Mek1, DSBs are repaired primarily via inter-sister recombination
(Kim et al., 2010; Lao and Hunter, 2010). The Hop1-Red1-
Mek1 pathway, along with other factors that promote inter-
homolog recombination (Zierhut et al., 2004), may mediate inter-
homolog bias by inhibiting inter-sister recombination, promoting
inter-homolog recombination, and/or by impeding the progression
of recombination until homologs have been engaged (Lao and Hunter,
2010). Further mutant analysis suggested that meiotic cohesin
Rec8 promotes inter-sister bias, which is counteracted by Red1 and
Mek1/Mre4 (Kim et al., 2010). Mek1 is a meiosis-specific, axis-
associated kinase that phosphorylates various targets including
Rad54 and Hed1. The phosphorylation of both Rad54 and
Hed1 suppresses Rad51-mediated inter-sister recombination, which
partly explains the involvement of Mek1 in the suppression of inter-
sister recombination (Niu et al., 2007; Niu et al., 2009; Callender et al.,
2016; Kniewel et al., 2017). Importantly, the meiotic Rad51 homolog,
Dmc1, bears an ability to promote inter-homolog bias (Brown and
Bishop, 2014). However, the exact mechanism of inter-homolog bias
and the relationship between Mek1-mediated phosphorylation and
Rec8-cohesin remain to be resolved.

Hop1 is a conserved HORMA domain-containing protein that
specifically localizes to unsynapsed axes and is locally depleted from
sites of synapsis (Smith and Roeder, 1997), distinct from its binding
partner Red1 and the cohesin complexes that appear to be constitutive
components of chromosome axes before and after SC formation.
Removal of Hop1 from synapsed axes is mediated by an
evolutionarily conserved AAA+ ATPase Pch2, and yeast pch2Δ
mutants show increased inter-sister recombination, suggesting that

Pch2 also contributes to inter-homolog bias via the Hop1-Red1-
Mek1 axis (Borner et al., 2008; Zanders et al., 2011). In mice, the
two HORMA domain-containing proteins HORMAD1 and
HORMAD2 also preferentially localize to unsynapsed axes
(Wojtasz et al., 2009). In the absence of the HORMADs, the repair
of radiation-induced exogenous DSBs was accelerated in Spo11-and
Dmc1-deficient meiocytes in which inter-sister recombination is
preferred, suggesting that, like budding yeast Hop1, mouse
HORMADs may impede inter-sister recombination (Shin et al.,
2013; Rinaldi et al., 2017; Carofiglio et al., 2018). The removal of
HORMADs from synapsed axes is mediated by the Pch2 homolog
TRIP13 (Wojtasz et al., 2009; Roig et al., 2010; Ye et al., 2017). In
Trip13 mutant meiocytes, unrepaired DSBs persist (Li and Schimenti,
2007; Roig et al., 2010; Rinaldi et al., 2017), supporting the idea that
HORMADs suppress inter-sister DSB repair.

Synaptonemal complexes and crossing
over

Synaptonemal Complexes (SCs) are tripartite protein structures
where the two lateral/axial elements of homologous chromosomes are
connected along their lengths by a central region comprising tightly-
packed transverse filaments and a central element. The dependency of
SC formation on DSBs and recombination differs among species, with
recombination-dependent synapsis in most analyzed fungi, plants,
and mammals where SC formation tends to initiate at sites of
recombination (SC also initiates at centromeres in budding yeast).
By contrast, DSBs are dispensable for the SC formation in Drosophila
and C. elegans in which synapsis initiates at centromeres and terminal
pairing centers, respectively (MacQueen et al., 2005; Takeo et al.,
2011). Despite these differences, SCs have a common function in the
formation and/or regulation of crossing over in all organisms (with
known exceptions being Schizosaccharomyces pombe and Aspergillus
nidulans that have no typical SC structure).

The ZMM proteins are a group of meiosis-specific proteins that
facilitate crossing over by promoting/stabilizing the crossover-
pathway joint-molecule intermediates, SEIs and dHJs, and
promoting the crossover-specific resolution of dHJs via MutLγ.
Initially identified in budding yeast, the ZMMs comprise eight
members that define five structures or activities: Zip1SYCP1 is the
transverse filament components of SCs but also functions locally at
recombination sites; Zip2SHOC1-Spo16 is related to XPF-ERCC1 and
thought to bind and stabilize recombination intermediates; Zip4TEX11

is a long TPR-repeat protein that appears to bridge chromosome axes
and recombination complexes by forming the ZZS complex with
Zip2SHOC1-Spo16; Zip3RNF212 is inferred to be an E3-ligase for
SUMO modification that promotes the localization of other ZMMs
to recombination sites; Msh4-Msh5 (MutSγ), homologous to DNA
mismatch-repair factorMutS, binds and stabilizes joint molecules; and
Mer3HFM1 is a DNA helicase that stabilizes joint molecules and
regulates the length of recombination-associated DNA synthesis
(mammalian homologs in superscript) (Lynn et al., 2007; De Muyt
et al., 2018; Arora and Corbett, 2019). In budding yeast, all ZMM
proteins are also required for SC formation, with Zip2-Spo16-
Zip4 and Zip3 being defined as synapsis initiation complexes
(SICs) that assemble at synapsis initiation sites, which mature into
crossover sites, indicating a close link between SC initiation and
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crossing over at least in budding yeast and similarly in Sordaria
macrospora (Chua and Roeder, 1998; Agarwal and Roeder, 2000;
Borner et al., 2004; Fung et al., 2004; Tsubouchi et al., 2006;
Shinohara et al., 2008; Zhang et al., 2014a). In mice, the number of
ZMM-associated recombination sites, detected as cytological foci, is in
large excess relative to SC-initiation sites and crossovers. Meiocytes
frommouse zmm knockouts forHfm1, Msh4,Msh5, Shoc1, Spo16, and
Tex11 show defects in synapsis and crossover formation, as seen in
budding yeast. The exception is mouse knockout mutant for the ZIP3
homolog Rnf212, in which synapsis occurs efficiently but crossing over
fails (de Vries et al., 1999; Kneitz et al., 2000; Yang et al., 2008;
Guiraldelli et al., 2013; Reynolds et al., 2013; Zhang Q. et al., 2018;
Guiraldelli et al., 2018; Zhang et al., 2019).

Like the budding yeast zip1Δ mutant, knockout mutation of
components of the SC central region, SYCP1, SYCE1, SYCE2,
SYCE3, TEX12, and SIX6OS1, in mice abolishes both synapsis and
crossing over (de Vries et al., 2005; Bolcun-Filas et al., 2007; Hamer
et al., 2008; Bolcun-Filas et al., 2009; Schramm et al., 2011; Gomez
et al., 2016). In C. elegans, mutation of components of the SC central
region (SYP-1, SYP-2, SYP-3, and SYP-4) also causes a severe
reduction or loss of crossovers (MacQueen et al., 2002; Colaiacovo
et al., 2003; Smolikov et al., 2007a; Smolikov et al., 2007b; Smolikov
et al., 2009), indicating a coupling between SC formation and crossing
over in most organisms. A notable exception is Arabidopsis thaliana,
in which meiocytes lacking the SC central element ZYP1 are defective
for synapsis but form elevated numbers of crossovers (Capilla-Perez
et al., 2021). Similarly, the absence of the central element proteins
Ecm11 and Gmc2 in budding yeast causes defective SC formation but
increased crossing over (Voelkel-Meiman et al., 2016; Lee et al., 2021).
These observations suggest that full synapsis and the SC central region
are not essential for crossing over per se, but may function to control a
proper number of crossovers.

Despite the close link between SC formation and crossing over in
most species, uncoupling of the two events is implicated in a meiosis-
specific depletion mutant of a component of SCF (Skp1-Cullin-F box)
E3 ubiquitin ligase, Cdc53. The budding yeast cdc53 mutant is largely
proficient in crossover formation, but is severely defective for the
elongation of SCs and shows the abnormal accumulation of ZMM
proteins (Zhu et al., 2021). Moreover, when Cdc53 depletion is
combined with the pch2 deletion mutation, lacking the AAA+
ATPase that removes Hop1HORMAD1 from synapsed axes, the
formation of full-length SCs is restored, but now DSB repair and
crossing over are stalled. This uncoupling is unexpected since most
yeast mutants defective for meiotic DSB repair also impair SC
elongation. A possible explanation is that SCF is part of a
regulatory surveillance mechanism that couples SC elongation and
DSB repair in meiotic cells.

Crossover patterning on synaptonemal
complexes

Crossovers, in concert with cohesion between sister chromatids,
create connections between homologs called chiasmata that enable
stable bipolar orientation of homologs on the meiosis-I spindle and
consequently accurate disjunction at the first meiotic division. The
number and position of crossovers, and thus chiasmata, are strictly
controlled: each pair of homologous chromosomes (a bivalent) obtains
at least one crossover (the obligate crossover or crossover assurance)

and when multiple crossovers form between a bivalent they are evenly
spaced (crossover interference). Crossover homeostasis can maintain
crossover numbers at the expense of non-crossovers to buffer against
variation in DSB numbers and inter-homolog bias (Martini et al.,
2006; Cole et al., 2012; Lao et al., 2013). In addition, the phenomenon
of crossover covariation describes the observation that within
individual nuclei, crossover frequencies covary across different
chromosomes, which may have adaptative advantages by balancing
the cost-benefit ratio of crossing over (Wang S. et al., 2019). The
precise mechanisms of these crossover control processes remain
unresolved.

In budding yeast, crossover interference has been analyzed
genetically by analyzing the segregation patterns of linked gene
alleles and spore autonomous fluorescent makers in tetrads (Cao
et al., 1990; Sym and Roeder, 1994; Shinohara et al., 2003; Thacker
et al., 2011; Lao et al., 2013); and in prophase-I nuclei by analyzing the
distribution of crossover-specific Zip2 and Zip3 immunostaining foci
along SCs (Fung et al., 2004; Zhang et al., 2014b). Zip3 foci are evenly
spaced, implying the establishment of interference patterning at or
before the time of Zip3 loading, which depends on DSB formation
(Zhang et al., 2014b). Mutant analysis revealed that the SUMO-
targeted ubiquitin ligase (STUbL), Slx5/8 and SUMOylation of
Top2 and axis protein Red1 are required for crossover interference
(Zhang et al., 2014c). These and other observations support the
proposal of Kleckner and colleagues that crossover interference is
mediated by the imposition and relief of mechanical stress along
meiotic chromosome axes (the beam-film model; Kleckner et al., 2004;
Zhang et al., 2014b).

ZHP-3 is a C. elegans RING-domain protein related to Zip3 and is
essential for crossover formation (Jantsch et al., 2004). ZHP-3
functions with three paralogs (ZHP-1,2,4) inferred to act as two
heterodimeric complexes ZHP-1/2 and ZHP-3/4 (Zhang L. et al.,
2018). ZHP-3 localizes along SCs in two phases; first as multiple foci
along each SC before becoming restricted to a single crossover-specific
focus in late pachynema (Bhalla et al., 2008). In C. elegans, robust
crossover assurance and absolute interference ensures that each pair of
homologous chromosomes obtains exactly one crossover. In vivo
imaging using Fluorescence Recovery After Photobleaching (FRAP)
technology revealed the dynamic properties of the SC central region
and a switch from a dynamic to a stable state as pachytene progresses,
the timing of which coincides with crossover designation
(Pattabiraman et al., 2017). Other in vivo imaging studies support
the idea that the SC has liquid crystalline properties, suggesting that
the diffusion of the ZHP complexes within the SC might govern
crossover patterning via a diffusion-mediated or coarsening or
condensation process (Rog et al., 2017; Stauffer et al., 2019; Zhang
et al., 2021).

Diffusion-mediated coarsening as a mechanism for crossover
patterning is also suggested from analysis in Arabidopsis. Both
plants and Sordaria encode a sole RING-domain crossover factor
called HEI10 (without Zip3RNF212 orthologs). The localization pattern
of HEI10 is also dynamic: forming multiple discrete foci along the SCs
in early pachynema, which then reduce in number until most foci have
disappeared while a few sites accumulate HEI10 and mature into
crossover sites marked by MutLγ (Chelysheva et al., 2012; Wang et al.,
2012; De Muyt et al., 2014). Analysis of HEI10-focus patterning in
several different contexts via super-resolution structure-illumination
microscopy (SIM) imaging of fixed cells combined with modeling by
computational simulation is compatible with diffusion-mediated
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coarsening of HEI10 foci as a mechanism for crossover patterning
(Morgan et al., 2021).

Mammals encode both Zip3 homolog RNF212 and HEI10, both
of which are essential for crossover regulation in mice (Ward et al.,
2007; Strong and Schimenti, 2010; Reynolds et al., 2013; Qiao et al.,
2014). RNF212 shows dynamic localization along SCs similar to
that of HEI10 in Arabidopsis and Sordaria, forming numerous
discrete foci during early pachynema, which become restricted to
crossover sites as pachytene progresses. By contrast, mouse
HEI10 localizes only to crossover sites during mid-late
pachynema and is not detected along SCs at earlier stages
(Figure 3). It is suggested that RNF212-dependent SUMOylation
stabilizes ZMM factors to confer crossover-competency to
recombination sites, and HEI10-dependent ubiquitination
subsequently licenses crossover/non-crossover differentiation by
recruiting proteasomes to SCs to degrade as yet unknown factors
(Rao et al., 2017). Importantly, the dosage of Rnf212 and Hei10
affects crossover rate in humans and mice, as seen for Arabidopsis
Hei10 (Kong et al., 2008; Chowdhury et al., 2009; Fledel-Alon et al.,
2011; Kong et al., 2014; Ziolkowski et al., 2017). This similarity in
the dosage effect on crossover numbers is consistent with the
possibility that crossover patterning in mammals may also

involve the diffusion-mediated accumulation of RNF212 and
HEI10 at crossover sites.

Discussion (perspective)

Meiotic chromosomes organize into specialized structures that
help strictly regulate the number and position of meiotic DSBs, the
choice of recombination template, and the differentiation of
crossovers and non-crossovers to ultimately ensure the completion
of DSB repair and accurate chromosome segregation. A diversity of
approaches and model species are providing major insights into this
molecular basis of the chromosome structure-recombination
interface. However, major questions still remain to be addressed,
including: Do cohesins and associated factors have direct functions
in the regulation of meiotic recombination? Which factor(s) are
responsible for TLAC formation in other organisms than yeasts,
and how is TLAC formation coupled to DSB formation? How is
inter-homolog bias established? What mechanisms underlie crossover
patterning in mammals in which both Zip3/RNF212-family and
HEI10-family RING-domain proteins are present? Recently,
structural analysis of axis core proteins, Hop1/HORMADs, DSB

FIGURE 3
Chromosomal localization of RNF212 and HEI10 in mice. Successive stages of mouse pachytene spermatocytes immunostained for RNF212 (green),
HEI10 (magenta), and SYCP3 (blue), HEI10 and SYCP3. RNF212 forms numerous discrete foci along the entire SCs (marked by SYCP3) in early pachynema
before HEI10 foci emerge (top), loses most of foci but accumulates at HEI10-bound crossover sites in mid pachynema (middle), and eventually is restricted to
crossover sites in late pachynema (bottom).
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proteins and associated proteins, and SC components is providing
mechanistic insights into their functions (West et al., 2018; Boekhout
et al., 2019; West et al., 2019; Sanchez-Saez et al., 2020; Claeys
Bouuaert et al., 2021; Dunce et al., 2021; Rousova et al., 2021; Nore
et al., 2022). Further mutant analysis based on protein structure will be
a key to answer these unaddressed questions.

As presented above, SUMO, ubiquitin, and proteasome are
involved in the regulation of chromosome axis length and
crossover interference in budding yeast, and presumptive SUMO
and ubiquitin ligases, RNF212 and HEI10, are essential for
crossover regulation in mice, highlighting central roles for the
SUMO and ubiquitin-proteasome systems in meiotic chromosome
organization and the regulation of meiotic recombination. Indeed,
SUMO is enriched on chromosome axes and SCs in budding yeast,
Sordaria, mice, and humans, and ubiquitin and proteasome have been
localized to chromosome axes in budding yeast, C. elegans, and mice
(Voelkel-Meiman et al., 2013; Klug et al., 2013; Brown et al., 2008; De
Muyt et al., 2014; Ahuja et al., 2017; Rao et al., 2017; Figure 4).
Numerous meiotic factors, including cohesin and recombination

proteins, undergo SUMOylation in budding yeast (Bhagwat et al.,
2021), and the SCF ubiquitin ligase, which regulates SC elongation in
conjunction to Pch2TRIP13 in budding yeast (Zhu et al., 2021), localizes
to synapsed chromosome axes and targets HORMAD1 in mouse
(Guan et al., 2020; Guan et al., 2022). Future analysis will further
elucidate molecular roles of SUMO and the ubiquitin-proteasome
system in the regulation of meiotic recombination in conjunction with
chromosome architecture.
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Kinase PLK1 regulates the
disassembly of the lateral elements
and the assembly of the inner
centromere during the diakinesis/
metaphase I transition in male
mouse meiosis
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Madrid, Madrid, Spain, 2Departamento de Neuropatología Molecular, Centro de Biología Molecular Severo
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PLK1 is a serine/threonine kinase with crucial roles during mitosis. However, its
involvement during mammalian male meiosis remains largely unexplored. By
inhibiting the kinase activity of PLK1 using BI 2536 on organotypic cultures of
seminiferous tubules, we found that the disassembly of SYCP3 and
HORMAD1 from the lateral elements of the synaptonemal complex during
diakinesis is impeded. We also found that the normal recruitment of SYCP3 and
HORMAD1 to the inner centromere in prometaphase I spermatocytes did not occur.
Additionally, we analyzed the participation of PLK1 in the assembly of the inner
centromere by studying its implication in the Bub1-H2AT120ph-dependent
recruitment of shugoshin SGO2, and the Haspin-H3T3ph-dependent recruitment
of Aurora B/C and Borealin. Our results indicated that both pathways are regulated by
PLK1. Altogether, our results demonstrate that PLK1 is a master regulator of the late
prophase I/metaphase I transition in mouse spermatocytes.

KEYWORDS

mouse, meiosis, PLK1, lateral elements, inner centromere, H2AT120ph, H3T3ph

Introduction

Meiosis is a specialized cell division process characterized by a single round of DNA
replication followed by two rounds of chromosome segregation, which promotes the generation
of haploid gametes. During prophase of the first meiotic division (prophase I), the homologous
chromosomes must correctly achieve their pairing, synapsis and recombination to allow a
successful chromosome segregation during the first meiotic division (Handel and Schimenti,
2010; Bolcun-Filas and Handel, 2018). These processes lead to the formation of a meiosis-
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specific zipper-like proteinaceous structure known as the
synaptonemal complex (SC), the hallmark of meiosis (Fraune et al.,
2012; Zhang et al., 2021). The SC is formed by two lateral elements
(LEs), one per homolog, and a series of transverse filaments
connecting them. The transverse filaments interact at the SC
central region forming the central element (CE) (Fraune et al.,
2012). During the leptotene stage of prophase I the so-called axial
elements (AEs) form along each homolog and are then named LEs
once the homologs begin to pair during the zygotene stage.
Mammalian AEs/LEs are mainly composed of the proteins
SYCP2 and SYCP3 (Moens et al., 1987; Dobson et al., 1994; Schalk
et al., 1998), different cohesin complexes (Suja and Barbero, 2009;
McNicoll et al., 2013), the cohesin regulatory proteins NIPBL and
MAU2 (Visnes et al., 2014), condensin complexes (Visnes et al., 2014),
and the recruited HORMA-domain proteins HORMAD1 and
HORMAD2 (Wojtasz et al., 2009). During pachytene, the
homologs are synapsed and SCs are fully formed along the length
of the autosomal bivalents. Once recombination is completed, the
homologs and their LEs desynapse by diplotene due to the disassembly
of CE proteins (Jordan et al., 2012). Studies on mouse spermatocytes
indicated a gradual disassembly of the LE protein SYCP3 during late
prophase I stages, and its accumulation at metaphase I inner
centromeres (Dobson et al., 1994; Prieto et al., 2001; Eijpe et al.,
2003; Parra et al., 2004; Gómez et al., 2007). However, the precise
sequence of events leading to these processes, and their regulation, are
poorly understood in vertebrates (Cahoon and Hawley, 2016; Gao and
Colaiácovo, 2018; Láscarez-Lagunas et al., 2022).

Different studies have pointed out to potential kinases that
would be responsible for the SC and LE disassembly. In budding
yeast meiosis, the kinases Cdc5/PLK1, Ipl1/Aurora B, Ddk and Cdk
play important roles (Clyne et al., 2003; Sourirajan and Lichten,
2008; Jordan et al., 2009; Argunhan et al., 2017). In male mouse
meiosis, the Polo-like kinase PLK1 also promotes SC disassembly
(Ishiguro et al., 2011). PLK1 phosphorylates the CE proteins
SYCP1 and TEX12 to allow desynapsis of homolog LEs (Jordan
et al., 2012). Interestingly, it has been recently reported that the
kinases Aurora B and C, as well as PLK1, regulate the disassembly
of LEs during the late prophase I/metaphase I transition (Wellard
et al., 2020; Wellard et al., 2022).

PLKs are a family of serine/threonine kinases conserved from
yeast to mammals (Korns et al., 2022). There are several PLK paralogs
in mammals, PLK1-5, but PLK1 is the most studied one. Many
publications have shown that during mammalian mitotic and
meiotic divisions PLK1 is localized at the centrosomes, acentriolar
microtubule organizing centres (MTOCs), kinetochores, the central
spindle and the mid-body. Accordingly, PLK1 is a key regulator of
mitosis and female mouse meiosis since it has key roles in mitotic
entry and meiotic resumption, formation of acentriolar MTOCs,
centrosome maturation and separation, bipolar spindle assembly,
kinetochore-microtubule attachment, chromosome condensation,
alignment and segregation, regulation of the anaphase-promoting
complex/cyclosome (APC/C), and cytokinesis (Tong et al., 2002;
Schmucker and Sumara, 2014; Kim et al., 2015; Solc et al., 2015;
Combes et al., 2017; Little and Jordan, 2020). In contrast, the role of
PLK1 in male meiosis is much less understood in comparison with
female meiosis.

By phosphorylating some cohesin subunits PLK1 is also
responsible for the partial release of cohesin complexes from
chromosome arms during vertebrate mitotic prophase and

prometaphase, the so-called “prophase pathway” (Giménez-
Abián et al., 2004; Hauf et al., 2005). In addition, it has been
proposed that in mammalian somatic cells PLK1 phosphorylates
and activates the kinase Haspin (Ghenoiu et al., 2013; Zhou et al.,
2014). Haspin then phosphorylates histone H3 at threonine 3
(H3T3ph) (Dai et al., 2005) creating a platform for the
recruitment of the kinase Aurora B and other chromosomal
passenger complex (CPC) proteins to the inner centromere
(Kelly et al., 2010; Wang et al., 2010; Yamagishi et al., 2010;
Wang et al., 2011; De Antoni et al., 2012; Wang et al., 2012).

Here, we analyzed the participation of PLK1 in the disassembly
of the SC LEs and the REC8 cohesin axes of chromosomes during
the diakinesis/metaphase I transition. We first studied the
accurate pattern of distribution of the LE proteins SYCP3 and
HORMAD1, and of the REC8-containing cohesin axes, during the
diakinesis/metaphase I transition in wild-type (WT)
spermatocytes. Then, we inhibited the kinase activity of
PLK1 by treating organotypic cultures of seminiferous tubules
with BI 2536, a small potent molecule that specifically inhibits
PLK1 in somatic cells (Lénárt et al., 2007; Steegmaier et al., 2007;
Zhou et al., 2014; Su et al., 2022), and mouse spermatocytes
(Alfaro et al., 2021) and oocytes (Pomerantz et al., 2012; Du
et al., 2015; Kim et al., 2015; Solc et al., 2015). Moreover, we
also analyzed the putative participation of PLK1 in the
H2AT120ph- and H3T3ph-dependent recruitment of the inner
centromere proteins SGO2 and the CPC proteins Aurora B/C and
Borealin, respectively. Our results show that PLK1 is needed for
the disassembly of LEs during the diakinesis/metaphase I
transition, and the loading of SGO2 and CPC proteins to the
inner centromeres during the first meiotic division in mouse
spermatocytes.

Results

SYCP3 and HORMAD1 disassemble similarly
from LEs during the diakinesis/metaphase I
transition

Since one of our main goals was to determine the potential role
of PLK1 in the disassembly of the LEs during the diakinesis/
metaphase I transition, a meiotic window poorly characterized
in males, we first analyzed the accurate and “step-by-step”
dynamics of SYCP3 and HORMAD1 during this transition in
WT spermatocytes. For this purpose, we made a double
immunolabeling of these proteins on squashed spermatocytes.
We used the squashing technique because it doesn’t disturb
nuclear volume and integrity, and chromosome condensation
and distribution in prophase I nuclei and dividing
spermatocytes are preserved (Page et al., 1998; Parra et al.,
2002). In fact, we used this technique previously to describe a
concise distribution of SYCP3 (Parra et al., 2004; Parra et al., 2006).
Our present results showed, as previously described (Wojtasz et al.,
2009), that HORMAD1 and SYCP3 colocalized along the
asynapsed AEs in zygotene spermatocytes (Figures 1A,B), and
that during the pachytene stage HORMAD1 preferentially
labeled the asynapsed AEs of the sex chromosomes (Figure 1C).
During the diplotene stage, HORMAD1 and SYCP3 colocalized
again along the desynapsed LEs except at their ends, that were only
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labeled by SYCP3, in both autosomal and sex bivalents (Figures
1D,E; Supplementary Video S1). Interestingly, in early diakinesis
spermatocytes both proteins colocalized not only along the
desynapsed LEs, with some of their stretches becoming thinner
at this stage, but also at elongated bulges that began to appear along
them (Figure 1F; Supplementary Video S1). In diakinesis
spermatocytes, SYCP3 also appeared as a homogeneous and
intense nuclear background, a hallmark of all diakinesis
substages, when observed by the squashing technique. Since
about 75–85 focal planes were captured for each diakinesis
nucleus, and Z-projections in a single plane obscured the
SYCP3 labeling along the LEs, we substracted this background
with the ImageJ software for improving clarity (Supplementary
Figure S1). Shortly afterwards, in mid diakinesis spermatocytes,
HORMAD1 and SYCP3 also colocalized along the thin desynapsed
LEs and at numerous round thickenings along them (Figure 1G).
The colocalization and distribution patterns of these proteins were
likewise present in late diakinesis spermatocytes (Figures 1H,I).
However, at this stage, in addition to the round thickenings along
the LEs, which began to appear discontinuous, both proteins
colocalized at some large round agglomerates that didn’t localize
at LEs or centromeres, and apparently were in the nucleoplasm
(Figures 1H,I). In order to precisely determine the staging of
diakinesis spermatocytes and avoid a confusion with
prometaphases I and metaphases I, we made a double
immunolabeling of SYCP3 and lamin B, to indirectly reveal the
integrity of the nuclear envelope. Our results showed the presence
of a continuous nuclear envelope even in late diakinesis
spermatocytes, and its initial disintegration in prometaphase I
spermatocytes (Supplementary Figures S2A–E). A double
immunolabeling of SYCP3 and the inner nuclear membrane
protein SUN1, that associates to the telomeres, showed that
even in late diakinesis spermatocytes the ends of desynapsed
LEs appeared attached to the nuclear envelope (Supplementary
Figures S2F–H).

In metaphase I autosomal bivalents, HORMAD1 and
SYCP3 also colocalized at small patches present along the
region of contact between sister-chromatid arms, previously
named the interchromatid domain (Suja et al., 1999; Prieto
et al., 2001; Parra et al., 2004) (Figures 1J,K; Supplementary
Figure S3). The labeling of both proteins was more continuous
at the interchromatid domain of the sex bivalent (Figure 1L,
Supplementary Figure S3). Moreover, both proteins also
appeared highly accumulated at the centromeres (Figures 1J,K;
Supplementary Figure S3). A double immunolabeling of SYCP3 or
HORMAD1 and the kinetochores, revealed by an ACA serum,
showed that they were accumulated at the inner centromere
domain below the associated sister kinetochores (Supplementary
Figures S4, S5). It is worth noting that at this stage both proteins
also appeared at large round agglomerates in the cytoplasm like
those observed in the nucleoplasm of late diakinesis nuclei
(Supplementary Figures S2E, S3, S5E). We also analyzed the
distribution of SYCP3 during the diplotene/metaphase I
transition with the spreading technique, that is the procedure
commonly used in male mouse meiosis studies. Our results
showed that diakinesis spermatocytes were scarce and difficult
to find, but the dynamics of SYCP3 was like that observed on
squashed spermatocytes at autosomal and sex bivalents
(Supplementary Figures S6, S7). However, bulges and

thickenings along desynapsed LEs, as well as nucleoplasmic
agglomerates in spread diakinesis nuclei were difficult to
observe, probably due to the spreading procedure. Altogether,
our results indicate that SYCP3 and HORMAD1 are released
similarly from the LEs during the diakinesis/metaphase I
transition, to then accumulate preferentially at the inner
centromeres in metaphase I chromosomes.

SYCP3 and REC8-containing cohesin
complexes are differentially released during
the diakinesis/metaphase I transition

We also aimed to ascertain the potential role of PLK1 in the
partial disassembly of the meiotic cohesin axes during the
diakinesis/metaphase I transition. To this end, and although the
pattern of localization of the meiotic cohesin subunit REC8 has
been previously reported in mouse spermatocytes (Eijpe et al.,
2003; Lee et al., 2003; Kudo et al., 2006), we first analyzed in detail
its dynamics and compared it with that of SYCP3. For this, we
codetected REC8, in myc tagged version of REC8 mice (REC8-myc)
(Kudo et al., 2006) and SYCP3 on squashed spermatocytes.
REC8 and SYCP3 axes colocalized in their trajectories from
leptotene up to diplotene (Supplementary Figure S8; Figure 2A).
By contrast, in early and late diakinesis spermatocytes
REC8 appeared as discontinuous lines at the cohesin axes
(Figures 2B,C). In prometaphase I and metaphase I
spermatocytes, REC8 and SYCP3 decorated similarly the
interchromatid domain of autosomal and sex bivalents (Figures
2D–F′). Nevertheless, REC8 didn’t colocalized with SYCP3 at the
cytoplasmic agglomerates and at the inner centromeres (Figures
2F–H). An accurate analysis of the dynamics of REC8 and
SYCP3 on autosomal and sex bivalents corroborated that these
proteins had different behaviors during the late prophase I/
metaphase I transition (Figures 2I–T). The labeling of REC8 at
cohesin axes, which underlie the autosomal LEs and the asynapsed
sex chromosomes AEs, became discontinuous from late diplotene/
early diakinesis on (Figures 2K–P, R–T). These results indicate that
a partial release of REC8-containing cohesin complexes along
cohesin axes occurs during these stages. By contrast, the labeling
of SYCP3 became discontinuous along autosomal LEs from mid
diakinesis on, concomitantly with the appearance of thickenings
along them (Figures 2N–P). Altogether, our results point that
SYCP3 and REC8 are differentially released from the
desynapsed autosomal LEs and cohesin axes, respectively,
during diakinesis, and that REC8 doesn’t accumulate at the
whole inner centromeres in prometaphase I and metaphase I
chromosomes (Figures 2G,H; Supplementary Figure S9).

In vitro inhibition of PLK1 kinase activity in
organotypic cultures of seminiferous tubules

In order to determine the role of PLK1 in the disassembly of the
LEs we inhibited its kinase activity in vitro with the
pharmacological inhibitor BI 2536 on organotypic cultures of
seminiferous tubules, as previously reported (Jordan et al., 2012;
Alfaro et al., 2021). In a previous study we tested different
concentrations of BI 2536 on cultured seminiferous tubules to
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inhibit the kinase activity of PLK1 without affecting the viability of
cultured spermatocytes (Alfaro et al., 2021). We decided to use a
concentration of 100 μM BI 2536 and 8 h of treatment since with
these conditions low levels of apoptosis were found as detected with
Caspase 3 (Alfaro et al., 2021), and a TUNEL assay on squashed
control non-inhibited spermatocytes (3.3% of apoptotic
spermatocytes, n = 1,000) and inhibited spermatocytes (5.40%
of apoptotic spermatocytes, n = 1,000) (Supplementary Figure
S10). We confirmed the efficiency of the inhibition in three
different individuals by detecting, after double immunolabeling
of α-Tubulin and Pericentrin, that 55,36% of metaphases I (n =
466) were altered and showed unaligned bivalents, monopolar
spindles and unseparated centrosomes, as previously reported
(Alfaro et al., 2021; Wellard et al., 2021) (Figures 3A–F). In this
regard, this kind of altered metaphases I was never observed in
control non-inhibited spermatocytes (n = 500). Moreover, we
determined that in all altered metaphases I (n = 30) the
phosphorylation of CENP-U at its threonine 78, a
phosphorylation introduced by PLK1 (Kang et al., 2006), wasn’t
detected at centrosomes or kinetochores (Figures 3G,H).

In all control 8 h cultured diakinesis spermatocytes (n = 25), as
in WT spermatocytes, thin SYCP3-labelled LEs with thickenings
along them were observed (Figure 4A). By contrast, with an 8 h BI

2536 treatment we found that in all diakinesis spermatocytes (n =
30) the labeling of SYCP3 was more continuous along desynapsed
LEs, no thickenings were detected along them, and nucleoplasmic
agglomerates were never observed (Figure 4B; Supplementary
Video S2). After an 8 h treatment, altered metaphases I with
unaligned bivalents, always (n = 235) presented an intense and
continuous labeling of SYCP3 at the interchromatid domain of
autosomal and sex bivalents (Figures 4C,D; Supplementary Video
S3). Concomitantly, we found that in those altered metaphases I
SYCP3 wasn’t accumulated at the inner centromere of the
chromosomes, albeit the close association of sister kinetochores
hadn’t changed (Figures 4C,D; Supplementary Video S3).
Interestingly, no anaphase I or telophase I spermatocytes were
detected in 8 h BI 2536-treated seminiferous tubules indicating that
altered metaphases I remained arrested and didn’t progress in the
division process. This contrasted with the situation found in
control seminiferous tubules were anaphases I and telophases I
were always observed. The characteristic and recognizable
SYCP3 labelling displayed by altered monopolar metaphases I,
being continuous at the interchromatid domain but absent at the
inner centromere (Figures 3B,D, 4C,D), was employed in the rest of
our analyses to identify metaphases I altered by the in vitro
inhibition of PLK1 kinase activity.

FIGURE 1
HORMAD1 and SYCP3 are similarly released from the LEs during the diakinesis/metaphase I transition. Double immunolabeling of HORMAD1 (green) and
SYCP3 (red), and counterstaining of the chromatin with DAPI (blue) on squashed WT spermatocytes. Representative spermatocytes at (A) early zygotene (E.
zyg.), (B) late zygotene (L. zyg.), (C) pachytene (Pac.), (D) early diplotene (E. dip.), (E) mid diplotene (M. dip.), (F) early diakinesis (E. dia.), (G) mid diakinesis (M.
dia.), (H,I) late diakinesis (L. dia.), and (J)metaphase I (M I) spermatocytes are shown. (K,L) Selectedmetaphase I autosomal (Aut. biv.) (K) and sex (Sex biv.)
(L) bivalents. The sex body (XY) is indicated if recognizable. Selected autosomal and sex (XY) bivalents in squared regions are shown in the right column (A–J)
and the lower right line (K,L). Blue arrowheads indicate telomere regions with absence of HORMAD1 labeling. White arrowheads indicate elongated bulges
and round thickenings of HORMAD1 and SYCP3 along desynapsed autosomal LEs, and asynapsed AEs of the X chromosome. Yellow arrowheads indicate
HORMAD1 and SYCP3 agglomerates in the nucleoplasm of late diakinesis spermatocytes (H,I). Scale bars represent 5 μm in (A–J), and 2 μm in (K,L).
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PLK1 regulates the dynamics of
HORMAD1 and SYCP3 during the diakinesis/
metaphase I transition

We analyzed the putative role of PLK1 in the disassembly of
desynapsed LEs during the diakinesis/metaphase I transition. First, we
double immunolabeled HORMAD1 and SYCP3 on 8 h BI 2536-
cultured seminiferous tubules. We found that in all altered

diakinesis spermatocytes both proteins colocalized as continuous
lines decorating the desynapsed LEs without thickenings along
them, a completely different appearance in relation to that found
in control spermatocytes (Figures 4E,F; Supplementary Video S4).
Similarly, in all altered metaphase I bivalents HORMAD1 and
SYCP3 colocalized at their interchromatid domain showing an
intense labeling along them (Figures 4G,H; Supplementary Video
S5). Interestingly, both proteins were not enriched at the inner

FIGURE 2
Dynamics of REC8 and SYCP3 are distinct during the diakinesis/metaphase I transition. Double immunolabeling of REC8-myc (green) and SYCP3 (red),
and counterstaining of the chromatin with DAPI (blue) on squashed WT spermatocytes. Representative spermatocytes at (A) diplotene (Dip.), (B) early
diakinesis (E. dia.), (C) late diakinesis (L. dia.), (D,E) prometaphase I (ProM I), and (F,F’)metaphase I (M I) are shown. (G,H) Selected metaphase I autosomal (Aut.
biv.) (G) and sex (Sex biv.) (H) bivalents. The sex body and the sex bivalents (XY) are indicated in prophase I and prometaphase I spermatocytes. White
arrowheads indicate elongated bulges and round SYCP3 thickenings along the desynapsed LEs in early (B) and late (C) diakinesis. Yellow arrowheads indicate
SYCP3 agglomerates in the nucleoplasm of late diakinesis (C), and in the cytoplasm of prometaphase I (D,E) and metaphase I (H) spermatocytes. Selected
autosomal bivalents are shown at (I,J) early diplotene (E. dip.), (K) late diplotene (L. dip.), (L,M) early diakinesis (E. dia.), (N) mid diakinesis (M. dia.), (O) late
diakinesis (L. dia.), and (P) prometaphase I (ProM I). Blue and white arrows indicate the proximal centromeric and distal telomere regions, respectively. White
arrowheads indicate elongated bulges and round SYCP3 thickenings along the desynapsed LEs in early (L,M), mid (N), and late (O) diakinesis. Yellow
arrowheads indicate SYCP3 agglomerates in the nucleoplasm of a late diakinesis (O) spermatocyte. Selected sex bivalents are shown at (Q) pachytene (Pac.),
(R) late diplotene (L. dip.), (S) early diakinesis (E. dia.), and (T) late diakinesis (L. dia.). The X and Y chromosomes, and the PAR region, are indicated. White
arrowheads indicate round SYCP3 thickenings along the asynapsed AE of the X chromosome in late diplotene (R), and early and late diakinesis (S,T). Yellow
arrowheads indicate SYCP3 agglomerates in the nucleoplasm of a late diakinesis spermatocyte (T). Scale bars represent 5 μm in (A–F’), 1 μm in (G,H), 2 μm in
(I–P), and 1 μm in (Q–T).
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centromeres, contrasting with the labeling observed in control
spermatocytes (Figures 4G,H; Supplementary Video S5). These
results indicate that the kinase activity of PLK1 is necessary for the
regular disassembly of HORMAD1 and SYCP3 from the desynapsed
LEs and their subsequent accumulation at the inner centromeres.

Inhibition of PLK1 has no apparent direct
effect on REC8, RAD21, and RAD21L
distributions during the diakinesis/metaphase
I transition

We next examined the behavior of REC8 on BI 2536-treated altered
diakinesis and metaphase I spermatocytes. The double labeling of REC-
myc and SYCP3 demonstrated that the distribution of REC8 along
cohesin axes on altered diakinesis spermatocytes was like that found in
control ones (Figures 5A,B; Supplementary Video S6). REC8 appeared
as a discontinuous labeling along the cohesin axes (Figures 5A,B). On

the other hand, in altered metaphase I bivalents REC8 was found as a
series of bright patches along the interchromatid domain of
chromosome arms that slightly penetrated the inner centromeres, as
in control bivalents (Figures 5C,D; Supplementary Video S7). We also
analyzed whether the inhibition of PLK1 could affect the distributions of
RAD21-and RAD21L-containing cohesin complexes in metaphase I
spermatocytes. It has been reported that RAD21 (Parra et al., 2004;
Gómez et al., 2007; Viera et al., 2007) and RAD21L (Herrán et al., 2011;
Ishiguro et al., 2011) appear highly accumulated at the inner centromere
of WT metaphase I chromosomes, in contrast to REC8 distribution
(Suja and Barbero, 2009). Our results showed that RAD21 (Figures
5E,F) and RAD21L (Figures 5G,H) showed the same distribution at the
inner centromeres in both control and BI 2536-treated metaphase I
chromosomes. Altogether, our results indicate that the kinase activity of
PLK1 is needed for the regular disassembly and redistribution of
HORMAD1 and SYCP3, but it apparently doesn’t affect the
distribution of REC8, RAD21 or RAD21L-containing cohesin
complexes.

FIGURE 3
Efficiency of BI 2536 on cultured seminiferous tubules. Double immunolabelings of SYCP3 (green) and α-Tubulin (red) (A,B); SYCP3 (green) and Pericentrin (red)
(C,D); α-Tubulin (green) and Pericentrin (red) (E,F); or CENP-Uph (phosphorylated at T78) (green) and kinetochores (ACA, red) (G,H), and counterstaining of the
chromatin with DAPI (blue) on squashed control (A,C,E,G) and 8 h BI 2536-treated (B,D,F,H) metaphase I spermatocytes. Yellow arrowheads indicate
SYCP3 agglomerates in the cytoplasm of a control metaphase I spermatocyte (C). Pink arrowheads indicate the centrosomes (C,D,E,F,G). Scale bar
represents 5 μm.
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PLK1 regulates H2AT120ph phosphorylation
and the loading of shugoshin SGO2 and
MCAK to the inner centromere

Since we observed that HORMAD1 and SYCP3 weren’t loaded
to the inner centromeres in altered metaphase I bivalents, we also

tested a potential PLK1 function in the loading of other proteins
that normally load to the inner centromere. For this purpose, we
studied the two main pathways that regulate the assembly of the
inner centromere domain: the pathway Bub1-H2AT120ph-
Shugoshin SGO2, and the pathway Haspin-H3T3ph-Aurora B.
The phosphorylation of histone H2A at threonine 120 by the

FIGURE 4
PLK1 regulates the release of SYCP3 and HORMAD1 from desynapsed LEs in diakinesis and its accumulation at the inner centromeres in metaphase I
spermatocytes. Double immunolabelings of SYCP3 (green) and kinetochores (ACA, red) (A–D), and SYCP3 (red) and HORMAD1 (green) (E–H), and
counterstaining of the chromatin with DAPI (blue) on squashed control (A,C,E,G) and BI 2536-treated (B,D,F,H) spermatocytes. Representative spermatocytes
and selected autosomal bivalents at (A,B,E,F) diakinesis (Dia.), and (C,D,G,H) metaphase I (M I) are shown. Yellow arrowheads indicate
SYCP3 agglomerates in the nucleoplasm of diakinesis spermatocytes (A,E), and in the cytoplasm of metaphase I (C,G) spermatocytes. Scale bars represent
5 μm in (A–H), and 1 μm in selected diakinesis and metaphase I bivalents in (A–D).
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kinase Bub1 is necessary to recruit the cohesin protector protein
Shugoshin SGO1 to the centromeres (Jeganathan et al., 2007;
Kawashima et al., 2010; Wang and Higgins, 2012; Watanabe,

2012). The histone modification H2AT120ph was not detected
at the centromeres in altered diakinesis and metaphase I
spermatocytes (Figures 6A–D). Accordingly, we corroborated

FIGURE 5
Inhibition of PLK1 does not alter the distribution of REC8, RAD21 and RAD21L-contanining cohesin complexes in diakinesis and metaphase I spermatocytes.
Double immunolabelings of REC8-myc (green inA–D), RAD21 (green inE,F) or RAD21L (green inG,H) and SYCP3 (red), and counterstainingof the chromatinwithDAPI
(blue) on squashed control (A,C,E,G) and BI 2536-treated (B,D,F,H) diakinesis (Dia.) (A,B) andmetaphase I (M I) spermatocytes (C–G). Selected autosomal bivalents in
diakinesis (A,B) andmetaphase I (C,D) spermatocytes are shown. Yellow arrowheads indicate agglomerates of SYCP3 in the nucleoplasmof the control diakinesis
spermatocyte. Scale bars represent 5 μm in (A–H), and 1 μm in selected diakinesis and metaphase I bivalents in (A–D).
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that without the centromere presence of H2AT120ph, SGO2 wasn’t
detected at the inner centromeres in altered diakinesis and
metaphase I spermatocytes. Nevertheless, SGO2 appeared

dispersed over the chromatin in diakinesis nuclei and metaphase
I bivalents, particularly on the sex bivalent (Figures 6E–H). In
addition, since it has been reported that SGO2 recruits the

FIGURE 6
PLK1 regulates the H2AT120ph-dependent loading of SGO2 to the inner centromeres. Double immunolabelings of SYCP3 (red) with either H2AT120ph
(green in A–D), or SGO2 (green in E–H), and counterstaining of the chromatin with DAPI (blue) on squashed diakinesis (Dia.) (A,E) and metaphase I (M I) (C,G)
control spermatocytes, and diakinesis (B,F) and metaphase I (D,H) BI 2536-treated spermatocytes. The sex bivalent (XY) is indicated in (F,H). Yellow
arrowheads indicate SYCP3 agglomerates in the nucleoplasm and cytoplasm of control diakinesis and metaphase I spermatocytes, respectively. Scale
bar represents 5 μm.
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microtubule depolymerizing kinesin MCAK to the inner
centromeres in mouse spermatocytes and oocytes (Llano et al.,
2008; Tanno et al., 2010; Rattani et al., 2013), we compared the
distribution of MCAK in control and BI 2536-treated diakinesis
and metaphase I spermatocytes. We found that MCAK wasn’t
recruited at the inner centromere in altered diakinesis and
metaphase I spermatocytes (Figures 7A–D). Our results thus
indicate that PLK1 regulates the phosphorylation of H2AT120ph
at the centromeres, and the subsequent loading of SGO2 and
MCAK to the inner centromeres in diakinesis and metaphase I
bivalents.

PLK1 regulates the phosphorylations of
H3T3ph and Aurora B/C, and the loading of
Borealin at the inner centromere

We next tested whether PLK1 regulates the Haspin-H3T3ph-
dependent loading of Aurora B/C to the inner centromere during
the diakinesis/metaphase I transition. We found that H3T3ph was
present at chromocenters, which represent clustered centromeres, in
control diakinesis spermatocytes, and covering the chromatin in
control metaphase I bivalents (Figures 8A,C). However, H3T3ph

was undetectable in altered diakinesis or metaphase I
spermatocytes (Figures 8B,D). Then, we analyzed the distribution
of Aurora B/C at the centromeres by using an antibody that recognizes
phosphorylated forms of Aurora A, B, and C, an antibody herein called
Aurora Tph. With this antibody we detected a labeling at the
centromeres in control diakinesis spermatocytes, as previously
reported (Parra et al., 2003; Parra et al., 2009) (Figure 8E). In
control metaphase I, we observed a labeling at the centrosomes,
which corresponds to the labeling of Aurora A (Willems et al.,
2018; Alfaro et al., 2021; Berenguer et al., 2022), and at the inner
centromeres, which corresponds to the labeling of the kinases Aurora
B/C (Watanabe, 2010; Balboula and Schindler, 2014; Hindriksen et al.,
2017; Alfaro et al., 2021; Berenguer et al., 2022) (Figure 8G). In
contrast, no labeling was observed in altered diakinesis and
metaphase I spermatocytes (Figures 8F,H). We also analyzed
whether the loading of the CPC protein Borealin was disturbed
after inhibiting PLK1. Our results showed that Borealin appeared
at the inner centromeres in diakinesis and metaphase I control
spermatocytes (Figures 9A,C), butn’t in altered diakinesis and
metaphase I spermatocytes (Figures 9B,D). Altogether these results
indicate that PLK1 regulates the phosphorylations of H3T3ph and
Aurora B/C, and the loading of Borealin at the inner centromeres
during male mouse meiosis I.

FIGURE 7
PLK1 regulates the SGO2-dependent loading of MCAK to the inner centromeres. Double immunolabeling of MCAK (green) and SYCP3 (red), and
counterstaining of the chromatin with DAPI (blue) on squashed diakinesis (Dia.) (A) and metaphase I (M I) (C) control spermatocytes, and diakinesis (B) and
metaphase I (D) BI 2536-treated spermatocytes. Yellow arrowheads indicate SYCP3 agglomerates in the nucleoplasm of the control diakinesis spermatocyte.
Scale bar represents 5 μm.
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FIGURE 8
PLK1 regulates the H3T3ph-dependent phosphorylation of Aurora B/C at the inner centromeres. Double immunolabelings of SYCP3 (red) with either
H3T3ph (green inA–D) or AuroraTph (green in E–H), and counterstaining of the chromatin with DAPI (blue) on squashed diakinesis (Dia.) (A,E) andmetaphase I
(M I) (C,G) control spermatocytes, and diakinesis (B,F) and metaphase I (D,H) BI 2536-treated spermatocytes. Yellow arrowheads indicate
SYCP3 agglomerates in the nucleoplasm and cytoplasm of control diakinesis and metaphase I spermatocytes, respectively. White arrowheads in (G)
indicate the centrosomes. Scale bar represents 5 μm.
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Phosphorylated forms of PLK1 localize at LEs
and inner centromeres

Our results indicated that PLK1 regulated the disassembly of
HORMAD1 and SYCP3 from the LEs, the phosphorylations of
H2AT120ph, H3T3ph and Aurora B/C, and the loading of SGO2,
MCAK, and Borealin at the inner centromeres during the
diakinesis/metaphase I transition. In order to study whether
PLK1 could be present at SCs and inner centromeres, we
studied the distribution of PLK1 phosphorylated at serine 137
(PLK1S137ph) and at threonine 210 (PLK1T210ph) in spread
spermatocytes. We found that PLK1S137ph appeared at the
centrosomes and on the AEs/LEs from leptotene up to the
diakinesis stage (Supplementary Figures S11A–J). Interestingly,
PLK1S137ph colocalized with SYCP3 at the bulges and
thickenings present along the asynapsed AEs of the sex
chromosomes in late diplotene spermatocytes (Supplementary
Figures S11G–I), and along the desynapsed LEs in diakinesis
spermatocytes (Supplementary Figure S11J). On the other hand,
PLK1S137ph appeared accumulated at the inner centromeres of
prometaphase I and metaphase I bivalents (Supplementary Figures
S11K,L). Differentially, PLK1T210ph didn’t appear at the
centrosomes, and was only detected at the centromeres from
diplotene stage on, and was observed enriched at the inner
centromere domain, colocalizing with SYCP3, in diakinesis,
prometaphase I, and metaphase I spermatocytes (Supplementary
Figure S12). These results indicate that different posttranslational
modifications of PLK1 are at the right place to presumably mediate
either in the disassembly of LEs and/or the assembly of the inner
centromere in mouse spermatocytes.

Discussion

Dynamics of LEs disassembly during the
diakinesis/metaphase I transition

In previous reports a concise description of the distribution of
SYCP3 and HORMAD1 in diakinesis and metaphase I spermatocytes
was presented (Parra et al., 2004; Parra et al., 2006; Wojtasz et al.,
2009). In this sense, SYCP3 disassembles from the LEs during late
prophase I stages and then accumulate at the centromeres in
metaphase I spermatocytes (Cahoon and Hawley, 2016; Gao and
Colaiácovo, 2018; Láscarez-Lagunas et al., 2022). However, a
precise description of this dynamic hasn’t been reported. Here we
have analyzed, for the first time, the accurate behavior of SYCP3 and
HORMAD1 during the diakinesis/metaphase I transition in WT
mouse spermatocytes. Our results show that both proteins have the
same pattern of distribution and behavior during this transition. Thus,
in early diakinesis spermatocytes the HORMAD1-and SYCP3-labeled
desynapsed LEs become thinner, and frequent bulges along them
appear concomitantly with an increase of the nuclear background. In
mid diakinesis spermatocytes, round thickenings along the LEs are
observed, while in late diakinesis spermatocytes LEs become
discontinuous and nucleoplasmic agglomerates appear. Remnants
of HORMAD1 and SYCP3 are detected at the interchromatid
domain, and are preferentially accumulated at the inner
centromere domain, of prometaphase I and metaphase I bivalents.
This observed sequence of events is summarized in Figure 10.
Considering these data, we propose a working model for the
disassembly of the LEs during the diakinesis/metaphase I
transition. SYCP3 and HORMAD1, which interact between them

FIGURE 9
PLK1 regulates the loading of Borealin to the inner centromeres. Double immunolabeling of Borealin (green) and SYCP3 (red), and counterstaining of the
chromatin with DAPI (blue) on squashed diakinesis (Dia.) (A) and metaphase I (M I) (C) control spermatocytes, and diakinesis (B) and metaphase I (D) BI 2536-
treated spermatocytes. Yellow arrowheads indicate SYCP3 agglomerates in the nucleoplasm and cytoplasm of the control diakinesis and metaphase I
spermatocytes, respectively. Scale bar represents 5 μm.
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and form complexes (Fukuda et al., 2010; Fujiwara et al., 2020), could
begin to be released from desynapsed autosomal LEs at early
diakinesis. During this stage, one population of these complexes
could accumulate at bulges along LEs, while another population
could diffuse in the nucleoplasm. With the ongoing release of these
proteins in mid and late diakinesis, there could be a concentration of
these proteins on previous bulges to appear as larger round
thickenings along the LEs, that in turn become discontinuous. We
hypothesize that some SYCP3/HORMAD1 complexes present at those
thickenings could diffuse to aggregate as nucleoplasmic agglomerates.
Alternatively, among other possibilities, the thickenings could detach
as agglomerates from LEs to directly lie in the nucleoplasm. The
formation of agglomerates in the nucleoplasm is supported by the fact
that SYCP3 self-assembles in the nucleoplasm and cytoplasm when
expressed in cultured somatic cells (Yuan et al., 1998). However, a
population of SYCP3 and HORMAD1 still persists as small patches at
the interchromatid domain in prometaphase I and metaphase I
bivalents. Another interesting question is how those proteins
accumulate at the inner centromere in prometaphase I bivalents. In
this regard, newly synthesized proteins or non-degraded proteins that
previously diffused from the LEs to the nucleoplasm or were present at
nucleoplasmic agglomerates could be recruited to the inner

centromeres. Obviously, more reserch is needed to evaluate these
or other possibilities. We consider that high-resolution observations
on living spermatocytes expressing SYCP3 and/or HORMAD1 tagged
with GFP during the diakinesis/metaphase I transition would allow a
better definition of the observed steps of LEs disassembly. In addition,
FRAP experiments would offer outstanding information on the rate of
synthesis and behavior of these proteins during this transition.

Concerning the dynamics of REC8-containing cohesin axes
during the diakinesis/metaphase I transition, our results point that
these cohesin complexes would initiate their release from desynapsed
LEs earlier that SYCP3 and HORMAD1 do. In this sense, the partial
release of those cohesin complexes could lead to the discontinuity of
cohesin axes from early diakinesis on. Interestingly, released cohesin
complexes weren’t cytologically detected in the nuclear background.
Thus, we suggest that the released cohesin complexes, probably not
cleaved by Separase, could be degraded as it seems to occur during the
mitotic “prophase pathway” (Giménez-Abián et al., 2004; Hauf et al.,
2005). Other REC8-containing cohesin complexes would be protected
against their release from chromosome arms during diakinesis to
persist at the interchromatid domain of metaphase I bivalents to
ensure sister-chromatid arm and centromere cohesion until anaphase
I segregation. In summary, REC8-containing cohesin complexes, and

FIGURE 10
Schematic representation of the distribution of SYCP3, HORMAD1 and REC8 in WT and BI 2536-treated late diplotene, early and late diakinesis, and
metaphase I spermatocytes. For clarity, a single autosomal bivalent (Aut. Biv.) and the sex bivalent (XY) are represented. SYCP3 is indicated in blue, themerge of
SYCP3 and HORMAD1 in pink, and REC8 in green. Bulges and round thickenings along desynapsed LEs, as well as nucleoplasmic or cytoplasmic agglomerates
of SYCP3 and HORMAD1, are indicated. A nucleoplasmic and cytoplasmic background of SYCP3 and HORMAD1 are indicated as a pale pink background
in WT late diakinesis andmetaphase I spermatocytes. Kinetochore regions are shown in brown, and centrioles andmicrotubules in light blue. The condensed
chromatin of the autosomal bivalent, with a single interstitial chiasma, and of the sex bivalent (XY), with a distal chiasma, is shown in light grey in metaphase I
spermatocytes.
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SYCP3 and HORMAD1 are differentially released from cohesin axes
and desynapsed LEs during the diakinesis/metaphase I transition,
probably by still non-characterized and different molecular
mechanisms.

PLK1 regulates the disassembly of LEs during
the diakinesis/metaphase I transition

Previous experiments on in vitro cultures of mouse spermatocytes
with the PLK1 inhibitor GW843682X, and posterior induction to
undergo metaphase I with the addition of okadaic acid, promoted the
retention of SYCP3 along the arms of metaphase I bivalents (Ishiguro
et al., 2011). Accordingly, these authors proposed that PLK1 might
promote the release of SYCP3 during late prophase I stages. In
addition, it has been recently observed that in Plk1 cKO male mice
the disassembly of the LEs is aberrant (Wellard et al., 2022). In this
sense, the LE proteins SYCP3 and SYCP2 were retained at the
interchromatid domain of metaphase I bivalents, and these
proteins were absent at the centromeres. These results led the
authors to propose that PLK1 is required for LEs disassembly
(Wellard et al., 2022). We have found that after the in vitro
inhibition of the kinase activity of PLK1 with BI 2536 altered
diakinesis spermatocytes show a continuous labeling of SYCP3 and
HORMAD1 along the desynapsed LEs. Remarkably, in these
spermatocytes neither thickenings along them nor nucleoplasmic
agglomerates are found. Moreover, altered metaphases I, that
probably enter the first meiotic division as altered diakinesis during
the duration of the BI 2536 treatment, show a continuous labeling of
these proteins at the interchromatid domain of bivalents, and don’t
accumulate at their inner centromeres. These data suggest that the
SYCP3 and HORMAD1 proteins that normally accumulate at the
inner centromeres in prometaphase I bivalents derive from the
population of proteins that are previously released from the LEs
throughout the diakinesis stage. Altogether, our results strongly
support previous results (Ishiguro et al., 2011; Wellard et al., 2022)
indicating that PLK1 regulates the disassembly of the LEs during the
diakinesis/metaphase I transition by enabling the release not only of
SYCP3, but also of HORMAD1. Since during budding yeast meiosis
Cdc5/PLK1 also controls this disassembly (Sourirajan and Lichten,
2008; Argunhan et al., 2017), we suggest that PLK1 could be
considered as a master kinase that controls this meiotic process.

It is worth noting that we have found that PLK1 phosphorylated at
serine S137 (PLK1S137ph) is present along the AEs/LEs during all
prophase I stages, and at bulges and thickenings along desynapsed LEs
in late diplotene and diakinesis spermatocytes. The phosphorylation of
PLK1S137ph is necessary to activate PLK1 to phosphorylate some
targets in the S interphase stage (Jang et al., 2002), and has been
detected in mouse oocytes (Du et al., 2015; Feitosa et al., 2018) and
spermatocytes (Wellard et al., 2022). Our results suggest that this
active phosphorylated form of PLK1 is at the right place to mediate the
phosphorylation of the LE proteins leading to their release.

Our results show that the distribution of REC8 at desynapsed
cohesin axes during diakinesis, and at the interchromatid domain of
metaphase I bivalents, are similar in altered, control and WT
spermatocytes. These results apparently suggest that PLK1 would
not be required for the partial release of REC8-complexes during
the diakinesis/metaphase I transition. However, it must be considered
that desynapsed REC8 axes appeared discontinuous at early diakinesis.

Thus, with our experimental conditions, i.e., an 8 h BI 2536 treatment,
we cannot disregard the possibility that PLK1, by promoting the
phosphorylation of REC8 or other subunits of those complexes during
late diplotene, could promote the partial release of REC8 from cohesin
axes. This early release of REC8 cohesin complexes during late
diplotene/early diakinesis could allow the posterior PLK1-
dependent release of SYCP3 and HORMAD1 from LEs, as
previously suggested (Ishiguro et al., 2011). It has been proposed
that the cohesin regulator WAPL could allow the dissociation of
cohesin complexes from the cohesin axes in prophase I mouse
spermatocytes and oocytes (Brieño-Enríquez et al., 2016; Silva
et al., 2020). On the other hand, it has been reported that during
the so-called “prophase I-like pathway” in budding yeast meiosis there
is a cleavage-independent release of Rec8 cohesin complexes from the
SC during late prophase I promoted by Cdc5/PLK1, Rad61/Wpl1/
WAPL, and the Dbf4-dependent Cdc7 kinase (DDK) in a collaborative
way (Challa et al., 2019a; Challa et al., 2019b).

On the other hand, our results on the distribution of the cohesin
subunits RAD21 and RAD21L in control and BI 2536-altered
metaphases I showed that their distributions at the centromeres
weren’t affected. These results suggest that their accumulation at
the inner centromeres in metaphase I spermatocytes, as previously
reported (Parra et al., 2004; Gómez et al., 2007; Viera et al., 2007;
Herrán et al., 2011; Ishiguro et al., 2011), aren’t dependent of PLK1.

PLK1 regulates the loading of inner
centromere proteins

There are two main pathways that regulate the assembly of the inner
centromere domain: the pathway Bub1-H2AT120ph-Shugoshin SGO2,
and the pathway Haspin-H3T3ph-Aurora B (Watanabe, 2010; Yamagishi
et al., 2010; Hadders et al., 2020; Schmitz et al., 2020). In the first pathway,
the kinase Bub1 phosphorylates histone H2A at threonine 120, which
then recruits the centromere cohesin protector protein Shugoshin SGO1/
2 in somatic cells, and mouse oocytes and spermatocytes (Jeganathan et
al., 2007; Kawashima et al., 2010; Ricke et al., 2012; Wang and Higgins,
2012;Watanabe, 2012; El Yakoubi et al., 2017). In the second pathway, the
kinase Haspin phosphorylates histone H3 at threonine 3 (H3T3ph) (Dai
et al., 2005), which then recruits the kinase Aurora B to the inner
centromere (Kelly et al., 2010; Wang et al., 2010; Yamagishi et al.,
2010; Wang et al., 2011; De Antoni et al., 2012; Wang et al., 2012).
Our results indicate that in the absence of PLK1 kinase activity
H2AT120ph isn’t phosphorylated, and SGO2 isn’t loaded to the
centromeres in altered diakinesis and metaphase I spermatocytes.
Similarly, MCAK, that is recruited to WT meiotic centromeres in a
SGO2-dependent manner (Gómez et al., 2007; Llano et al., 2008; Parra
et al., 2009), isn’t loaded to the centromeres. The presence of a monopolar
spindle together with the absence of the microtubule depolymerizing
kinesinMCAKat the inner centromeres explainswhy bivalents aren’t able
to align properly at the equatorial plate in altered metaphases I. Our data
suggest that PLK1 is a key upstream regulator of the Bub1-H2AT120ph-
SGO2 pathway during male mouse meiosis. This agrees with the fact that
PLK1 associates with (Singh et al., 2021) and phosphorylates Bub1 (Qi
et al., 2006; Grosstessner-Hain et al., 2011). All these findings support our
suggestion that PLK1 could be directly phosphorylating and activating the
kinase activity of Bub1, that in turn regulates the H2AT120ph
phosphorylation and H2AT120ph-dependent loading of
SGO2 and MCAK.
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On the other hand, we have found that the inhibition of
PLK1 doesn’t allow the phosphorylations of H3T3ph and
Aurora B/C, and the loading of the CPC protein Borealin, at the
inner centromere of altered diakinesis and metaphase I
spermatocytes. It has been proposed that in mammalian somatic
cells PLK1 phosphorylates and activates the kinase Haspin
(Ghenoiu et al., 2013; Zhou et al., 2014). Thus, it is expected
that by inhibiting PLK1, the kinase Haspin isn’t activated, and
consequently, H3T3ph isn’t phosphorylated at the centromeres as
we have found in spermatocytes. Our present results complement
those we have recently reported after the chemical inhibition of the
kinase Haspin on cultured seminiferous tubules, as well as in
Haspin−/− KO spermatocytes, indicating that in these situations
H3T3ph isn’t phosphorylated at the inner centromere of
metaphase I chromosomes (Berenguer et al., 2022). It is
interesting to mention that we have found that
PLK1 phosphorylated at serine S137 and T210 (PLK1S137ph
and PLK1T210ph), both activated forms of PLK1 (Jang et al.,
2002), are present at the inner centromere of WT metaphase I
bivalents (Alfaro et al., 2021). Therefore, both PLK1 modifications
are at the right place to regulate the phosphorylations of
H2AT120ph, H3T3ph, and Aurora B/C, and the loading of
SGO2, MCAK, and Borealin to the inner centromere of
metaphase I bivalents.

In summary, this work presents data that support that PLK1 is a
master regulator of male mouse meiosis progression via its
involvement in the disassembly of LEs, and the assembly of the
inner centromere domain.

Materials and methods

Mice

Seminiferous tubules from adult C57BL/6 wild-type (WT) male
mice and REC8-myc transgenic male mice (Kudo et al., 2006) were
used for this study.

Organotypic culture of seminiferous tubules
and inhibition of PLK1

The culture of seminiferous tubules fromWT and REC8-mycmice
was performed as previously described (Sato et al., 2011). Testes were
removed, detunicated and fragments of seminiferous tubules were
cultured for 2 h in agarose gel half-soaked in Minimum Essential
Medium α culture medium (MEM α) (Gibco, A10490-01)
supplemented with Knock Out Serum Replacement (KSR) (Gibco,
10828-010) and antibiotics (Penicillin/Streptomycin; Biochrom AG,
A2213) at 34°C in an atmosphere with 5% CO2. The fragments of
seminiferous tubules weren’t immersed in the medium, but rather
deposited over the agarose gel absorbing the media from below,
therefore requiring high concentrations when developing drug
treatments (Alfaro et al., 2021). To inhibit PLK1, 100 µM BI 2536
(Selleck Chemicals, S1109) diluted in 10% DMSO was added to the
culture medium, and seminiferous tubules were recovered after 8 h of
treatment as we previously published (Alfaro et al., 2021). Controls
were done with seminiferous tubules cultured with culture medium
with added 10% DMSO.

Indirect immunofluorescence

Seminiferous tubules were processed for squashing or
chromatin spreading techniques as follows. For the squashing
technique, portions of seminiferous tubules were collected from
the culture and processed for indirect immunofluorescence as
previously described (Page et al., 1998; Parra et al., 2002).
Briefly, seminiferous tubules were fixed in freshly prepared 2%
formaldehyde in PBS (137 mM NaCl, 2.7 mM KCl, 10.1 mM
Na2HPO4, 1.7 mM KH2PO4, pH 7.4) containing .05% Triton X-
100 (Sigma). After 10 min, several seminiferous tubules fragments
were placed on a slide coated with 1 mg/ml poly-L-lysine (Sigma)
with a small drop of fixative, and gently minced with tweezers. The
tubules were then squashed, and the coverslip removed after
freezing in liquid nitrogen. For the spreading technique,
portions of seminiferous tubules were processed by the drying-
down technique as previously described (Peters et al., 1997). For
indirect immunofluorescence, slides of squashed or spreaded
spermatocytes were rinsed three times for 5 min in PBS and
incubated overnight at 4°C with primary antibodies diluted in
PBS. Then, the slides were rinsed three times for 5 min in PBS
and incubated for 1 h at room temperature with secondary
antibodies. After other three rinsing steps, the slides were
counterstained with 10 μg/ml 4′,6-diamidino-2-phenylindole
(DAPI) for 3 min, rinsed in PBS for 1 min, mounted with
Vectashield (Vector Laboratories) and sealed with nail polish.

Antibodies

For indirect immunofluorescence the following primary
antibodies were used at the indicated dilution in PBS: rabbit
polyclonal anti-hSYCP3 (Abcam, ab-15092) at 1:100; mouse
monoclonal anti-mSYCP3 (Santa Cruz, sc-74569) at 1:50; purified
human anti-centromere autoantibody (ACA serum) revealing
kinetochores (Antibodies Incorporated, 435-2RG-7) at 1:20; guinea-
pig polyclonal anti-mHORMAD1 AB146, a gift of Attila Tóth
(Wojtasz et al., 2009), at 1:50; rat monoclonal anti-α-Tubulin
(Abcam, ab-6160) at 1:100; rabbit polyclonal anti-Pericentrin
(Abcam, ab-4448) at 1:10; rabbit polyclonal anti-CENP-U
phosphorylated at T78ph (Abcam, ab-34911) at 1:10; mouse
monoclonal antibody against myc tag (GeneTex, GTX628259) at 1:
20; rabbit polyclonal anti-H2AT120ph (Active Motif, 39,391) at 1:30;
rabbit polyclonal anti-mSGO2 K1059, a gift of José Luis Barbero
(Gómez et al., 2007) at 1:20; rabbit polyclonal anti-H3T3ph (Abcam,
ab-17352) at 1:800; mouse monoclonal anti-hAurora A (T288ph)/
Aurora B (T232ph)/Aurora C (T198ph), that we called Aurora Tph
(Cell Signaling, 2914S) at 1:10; goat polyclonal against Lamin B (Santa
Cruz, sc-6216) at 1:50; guinea-pig polyclonal anti-mSUN1, a gift of
Manfred Alsheimer and Ricardo Benavente (Adelfalk et al., 2009) at 1:
30, rabbit polyclonal anti-mREC8, a gift of Jibak Lee (Lee et al., 2003)
at 1:10; rabbit polyclonal anti-RAD21L, a gift of Alberto Pendas
(Herrán et al., 2011) at 1:10; rabbit polyclonal anti-RAD21, a gift
of José Luis Barbero (Parra et al., 2004) at 1:10; sheep polyclonal anti-
hMCAK, a gift of Linda Wordeman (Andrews et al., 2004) at 1:40;
rabbit polyclonal anti-Borealin serum 1,647, a gift of William
Earnshaw at 1:50; rabbit polyclonal anti-PLK1S137ph (Merk, 07-
1348) at 1:10 (Du et al., 2015); and mouse monoclonal anti-
PLK1T210ph (Abcam, ab-39068) at 1:10 (Du et al., 2015).
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The secondary antibodies used were as follows: donkey anti-mouse
conjugated with Alexa 488 (Molecular Probes, A-21202) or Alexa 594
(Molecular Probes, A-21203), donkey anti-rabbit conjugated with Alexa
488 (Molecular Probes, A-21206), goat anti-rabbit conjugated with Alexa
594 (Molecular Probes, A-11012), goat anti-human conjugated with
Alexa 594 (Molecular Probes, A-11014), goat anti-guinea pig
conjugated with Alexa 488 (Molecular Probes, A-11073), and donkey
anti-sheep conjugated with FITC (Jackson ImmunoResearch, 713-095-
147). All of them were employed at a 1:100 dilution in PBS.

TUNEL assay

The DNA fragmentation-associated apoptosis of control and BI
2536-treated spermatocytes was detected by the TdT-mediated dUTP-
fluorescein nick end labeling (TUNEL) assay by using a kit (Roche,
11684795910) according to manufacturer’s protocol. Nuclei were
counterstained for 3 min with 10 μg/ml DAPI. Tests were
developed on squashed 8 h control and 8 h BI 2536-treated
seminiferous tubules. The percentage of apoptotic cells was
calculated counting one thousand spermatocytes per condition.

Image capture and processing

Immunofluorescence images were collected using an Olympus
BX61 microscope equipped with epifluorescence optics, a
motorized Z-drive and an Olympus digital camera (DP70 or
DP71) controlled by analySIS software (Soft Imaging System).
Figures presenting data obtained in squashed spermatocytes were
obtained as image stacks and were processed to obtain complete
Z-projections from 60–80 focal planes throughout the complete
spermatocyte volume. Stacks were analyzed and processed, and in
some cases three dimensional (3D) recontructions were made
using the public domain software ImageJ (National Institutes of
Health, United States; http://rsb.info.nih.gov/ij) for the generation
of the supplementary videos. Final images were processed with
Adobe Photoshop CS5 software.
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SUPPLEMENTARY FIGURE S1
Distribution of SYCP3 (green) and kinetochores (ACA, red) in diplotene (Dip.) ,
early diakinesis (E. dia.) (C,D), and late diakinesis (E,F) WT squashed
spermatocytes. Spermatocytes with unsubstracted (A,C,E) and substracted
(B,D,F) SYCP3 nuclear background are shown. Numbers in each panel indicate
the Z-projection of the indicated focal planes. White arrowheads indicate
bulges and round SYCP3 thickenings along the desynapsed LEs, and yellow
arrowheads indicate agglomerates at the nucleoplasm. Scale bar
represents 2 μm.

SUPPLEMENTARY FIGURE S2
The breakdown of the nuclear envelope occurs in prometaphase I spermatocytes,
and telomeres maintain their attachment to the nuclear envelope in diakinesis
spermatocytes. Double immunolabelings of SYCP3 (red) with either Lamin B
(green) or SUN1 (green), and counterstaining of the chromatin with DAPI (blue) on
diplotene (Dip.) , early diakinesis (E. dia.) (G), mid diakinesis (M. dia.) (B), late
diakinesis (L. dia.) (C,H), prometaphase I (ProM I) (D) and metaphase I (M I) (E)WT
squashed spermatocytes. Numbers in panels (F–H) indicate the Z-projection of
different focal planes at top, equator and bottom regions of the spermatocytes and
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the complete projection. White arrowheads indicate bulges of SYCP3 along
desynapsed LEs, whereas yellow arrowheads indicate SYCP3 agglomerates in the
nucleoplasm or cytoplasm of diakinesis and metaphase I spermatocytes,
respectively. Scale bar represents 5 μm.

SUPPLEMENTARY FIGURE S3
Distribution of SYCP3 in a representative metaphase I (M I) WT squashed
spermatocyte. Immunolabeling of SYCP3 (green in the top row and
pseudocolored in red in the bottom row), and counterstaining of the
chromatin with DAPI. Numbers in each panel indicate the Z-projection of the
indicated focal planes. Yellow arrowheads indicate SYCP3 agglomerates in the
cytoplasm. Scale bar represents 2 μm.

SUPPLEMENTARY FIGURE S4
Distribution of SYCP3 and kinetochores during the diplotene/metaphase I
transition. Double immunolabeling of SYCP3 (green) and kinetochores (ACA,
red), and counterstaining of the chromatin with DAPI on WT squashed
spermatocytes. Representative spermatocytes at mid diplotene (M. dip.), (B)
early diakinesis (E. dia.), (C)mid diakinesis (M. dia.), (D) late diakinesis (L. dia.), (E)
prometaphase I (ProM I), and (F)metaphase I (M I) spermatocytes are shown.
(A’–E’) Enlarged autosomal bivalents at the corresponding prophase I stages.
Enlarged autosomal (G) and sex (H) metaphase I bivalents. White arrowheads
indicate elongated bulges and round thickenings of SYCP3 along desynapsed
autosomal LEs. Yellow arrowheads indicate SYCP3 agglomerates in the
nucleoplasm and cytoplasm of late diakinesis (D) and prometaphase I (E)
spermatocytes. The sex chromosomes are indicated in (H). Scale bars
represent 5 μm in (A–F), 2 μm in (A’–E’,G), and 1 μm in (H).

SUPPLEMENTARY FIGURE S5
Distribution of HORMAD1 and kinetochores during the late diplotene/
metaphase I transition. Double immunolabeling of HORMAD1 (green) and
kinetochores (ACA, red), and counterstaining of the chromatin with DAPI on
WT squashed spermatocytes. Representative spermatocytes at late diplotene
(L. dip.), (B) early diakinesis (E. dia.), (C) late diakinesis (L. dia.), (D) prometaphase
I (ProM I), and (E) metaphase I (M I) spermatocytes are shown. (F) Enlarged
autosomal metaphase I bivalent. White arrowheads indicate elongated bulges
and round thickenings of HORMAD1 along asynapsed AEs of the sex
chromosomes and desynapsed autosomal LEs. Yellow arrowheads indicate
HORMAD1 agglomerates in the nucleoplasm and cytoplasm of late diakinesis
(C), prometaphase I (D) and metaphase I (E) spermatocytes. The sex bivalent is
indicated in (A). Scale bars represent 5 μm in (A–E), and 2 μm in (F).

SUPPLEMENTARY FIGURE S6
Distribution of SYCP3 in WT spread spermatocytes. Representative spermatocytes
at early diplotene (E. dip.), (C,D)mid diplotene (M. dip.), (E) late diplotene (L. dip.), (F)
early diakinesis (E. dia.), (G)mid diakinesis (M. dia.), (H) late diakinesis (L. dia.), (I–K)
prometaphase I (ProM I), and (L) metaphase I (M I) WT spermatocytes are shown.
The sex bivalent (XY) is indicated. Blue arrows denote the PAR region in the sex
bivalent. White arrowheads indicate elongated bulges and thickenings along the
asynapsed AE of the X chromosome and the desynapsed autosomal LEs. Yellow
arrowheads denote agglomerates in the nucleoplasmof the late diakinesis nucleus
(H) and cytoplasms of prometaphase I and metaphase I spermatocytes (I–L).
Scale bar represents 5 μm.

SUPPLEMENTARY FIGURE S7
Distribution of SYCP3 (green) in selected autosomal and sex bivalents from WT
spread spermatocytes. Representative examples showing the morphological
changes of the AEs/LEs in autosomal and (B) sex bivalents from diplotene up
to metaphase I. Two autosomal bivalents, one of them with one interstitial and
one distal chiasma (A–F), and another one with a single interstitial chiasma
(G–L), are shown. White arrowheads indicate bulges and thickenings along
the desynapsed autosomal LEs and asynapsed AEs of the X chromosome. Blue
arrows denote the PAR region in the sex bivalent. Asterisks indicate the
centromere region of the X chromosome. Yellow arrowheads denote
agglomerates in the nucleoplasm and cytoplasms. Scale bar represents 1 μm.

SUPPLEMENTARY FIGURE S8
Distribution of REC8 and SYCP3 in early WT prophase I spermatocytes. Double
immunolabeling of REC8-myc (green) and SYCP3 (red), and counterstaining of
the chromatin with DAPI (blue) on squashed WT spermatocytes.
Representative spermatocytes at leptotene (Lep.), (B) zygotene (Zyg.), and (C)
pachytene (Pac.) stages are shown. White arrowheads indicate accumulations
of SYCP3 at putative nucleoli. Scale bar represents 5 μm.

SUPPLEMENTARY FIGURE S9
Distribution of REC8 and SYCP3 in WT meiosis I spermatocytes. Double
immunolabeling of REC8 (green) and kinetochores (ACA, red), and
counterstaining of the chromatin with DAPI (blue) on squashed
spermatocytes. Representative spermatocytes at diakinesis (Dia.) and (B)
metaphase I (M I) are shown. The squared region in (B) appears enlarged. Scale
bar represents 5 μm.

SUPPLEMENTARY FIGURE S10
TUNEL assay in 8 h control and BI 2536-treated (B) seminiferous tubules.
TUNEL assay (red) and counterstaining of the chromatin with DAPI (blue).
Unaltered and altered metaphases I denoted by white arrowheads are
enlarged.

SUPPLEMENTARY FIGURE S11
Distribution of PLK1S137ph in WT spread spermatocytes. Double
immunolabeling of PLK1S137ph (green) and SYCP3 (red), and counterstaining
of the chromatin with DAPI (blue). Representative spermatocytes at leptotene
(Lep.), (B) late zygotene (L. zyg.), (C) pachytene (Pac.), (D) early diplotene (E.
dip.), (E)mid diplotene (M. dip), (F) late diplotene (L. dip.), (J) early diakinesis (E.
dia.), (K) prometaphase I (ProM I), and (L) metaphase I are shown. (G–I)
Selected late diplotene sex bivalents. Sex chromosomes (X, Y) and bivalents (XY)
are indicated. White arrows point to centrosomes. Red arrowheads denote
nuclear dense bodies. White arrowheads indicate elongated bulges and
thickenings along the asynapsed AE of the X chromosome, and the desynapsed
autosomal LEs. Scale bar represent 5 μm.

SUPPLEMENTARY FIGURE S12
Distribution of PLK1T210ph during the diplotene/metaphase I transition.
Double immunolabeling of PLK1T210ph (green) and SYCP3 (red), and
counterstaining of the chromatin with DAPI (blue). Representative
spermatocytes at mid diplotene (M. dip), (B) late diplotene (L. dip.), (C) early
diakinesis (E. dia.), (D) prometaphase I (ProM I), and (E)metaphase I are shown.
Sex bivalents (XY) are indicated. White arrowheads indicate SYCP3 elongated
bulges and thickenings along the asynapsed AE of the X chromosome, and the
desynapsed autosomal LEs. Yellow arrowheads indicate SYCP3 agglomerates
in the cytoplasm of prometaphase I and metaphase I (D,E) spermatocytes.
Scale bar represent 5 μm.

SUPPLEMENTARY VIDEO S1
3D reconstruction of WT spermatocytes in diplotene, early diakinesis (Early dia.)
and late diakinesis (Late dia.) after the immunolabeling of SYCP3 (green) and
kinetochores (ACA, red) and chromatin counterstaining with DAPI (blue).

SUPPLEMENTARY VIDEO S2
3D reconstruction of control and BI 2536-treated diakinesis spermatocytes
after the immunolabeling of SYCP3 (green) and kinetochores (ACA, red).

SUPPLEMENTARY VIDEO S3
3D reconstruction of control and BI 2536-treated metaphase I spermatocytes
after the immunolabeling of SYCP3 (red) and kinetochores (ACA, red) and
chromatin counterstaining with DAPI (blue).

SUPPLEMENTARY VIDEO S4
3D reconstruction of control and BI 2536-treated diakinesis spermatocytes
after the immunolabeling of SYCP3 (red) and HORMAD1 (green) and
chromatin counterstaining with DAPI (blue). The Z-projections of these
spermatocytes are shown in Figures 5A,B.

SUPPLEMENTARY VIDEO S5
3D reconstruction of control and BI 2536-treated metaphase I spermatocytes
after the immunolabeling of SYCP3 (red) and HORMAD1 (green) and
chromatin counterstaining with DAPI (blue).

SUPPLEMENTARY VIDEO S6
3D reconstruction of control and BI 2536-treated diakinesis spermatocytes
after the immunolabeling of SYCP3 (red) and REC8-myc (green) and
chromatin counterstaining with DAPI (blue).

SUPPLEMENTARY VIDEO S7
3D reconstruction of control and BI 2536-treated metaphase I spermatocytes
after the immunolabeling of SYCP3 (red) and REC8-myc (green) and
chromatin counterstaining with DAPI (blue).
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During the formation of ova and sperm, homologous chromosomes get physically
attached through the synaptonemal complex and exchange DNA at crossover sites
by a process known as meiotic recombination. Chromosomes that do not
recombine or have anomalous crossover distributions often separate poorly
during the subsequent cell division and end up in abnormal numbers in ova or
sperm, which can lead to miscarriage or developmental defects. Crossover numbers
and distribution along the synaptonemal complex can be visualized by
immunofluorescent microscopy. However, manual analysis of large numbers of
cells is very time-consuming and a major bottleneck for recombination studies.
Some image analysis tools have been created to overcome this situation, but they are
not readily available, do not provide synaptonemal complex data, or do not tackle
common experimental difficulties, such as overlapping chromosomes. To overcome
these limitations, we have created and validated an open-source ImageJ macro
routine that facilitates and speeds up the crossover and synaptonemal complex
analyses in mouse chromosome spreads, as well as in other vertebrate species. It is
free, easy to use and fulfills the recommendations for enhancing rigor and
reproducibility in biomedical studies.

KEYWORDS

meiotic recombination, crossover, synaptonemal complex, image analysis, ImageJ, Fiji,
open-source software

Introduction

Ova and sperm are formed through a special type of cell division known asmeiosis, in which
homologous chromosomes exchange genetic information. This process, known as meiotic
recombination, requires programmed, developmentally regulated double strand breaks (DSBs)
initiating pairing of homologous chromosomes and assembly of a zipper-like multiprotein
structure between them (the synaptonemal complex, SC); then, crossovers (COs) between
paired chromosomes result in the mutual exchange of genetic material at the pachytene meiosis
stage (Figure 1). COs are important for subsequent chromosome segregation during the first
meiotic division: those that do not recombine often appear in abnormal numbers in ova, sperm
and the resulting embryos, leading to infertility, miscarriage and birth defects (Hassold and
Hunt, 2001). Therefore, crossovers not only generate genetic diversity, but are also required for
proper chromosome segregation in many sexually reproducing organisms. Hence, meiotic
recombination studies are of paramount interest in farming, stockbreeding and human fertility
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and health (Notter, 1999; Hassold and Hunt, 2001; Handel and
Schimenti, 2010; Henderson and Bomblies, 2021).

Immunofluorescence of chromosome spreads of pachytene-stage
oocytes or spermatocytes (ova and sperm precursors) has become the
most common approach to study meiotic recombination in animals
(Baker et al., 1996; Anderson et al., 1999; de Boer et al., 2009; Cole
et al., 2012; Imai et al., 2021). For instance, a typical protocol for mouse
and other vertebrates’ recombination studies uses antibodies against
the mismatch repair protein MLH1 to identify CO sites, antibodies
against SYCP3 to label SCs, and DAPI to stain DNA and delimit the
nuclei, since chromosomes are not fully condensed and discernible at
pachytene stage (Figure 1). Since MLH1 signal is usually weak, in
order to tell apart false positives, only MLH1 foci over SYCP3 labeling
are considered true COs. If necessary, the centromeric regions of the
chromosomes can be recognized with specific labels (CREST serum)
or by a more intense DAPI staining (Anderson et al., 1999; Froenicke
et al., 2002; Segura et al., 2013) (Figure 1).

The frequency and distribution of COs along SCs are characteristic
of each species, though differences may occur between the sexes.
Usually, there is at least one CO per SC [the “obligate” crossover
required for proper chromosome segregation (Mather, 1937)]. The
maximum number depends on the length of the chromosome and the
degree of interference between COs, a phenomenon by which the
occurrence of one CO interferes with the appearance of a second one
nearby (Sturtevant, 1915; Muller, 1916; Sym and Roeder, 1994;
Kleckner, 2006). Consequently, high CO frequencies have been
associated with either long SCs or weak interference (Anderson
et al., 1999; de Boer et al., 2009). Other factor that affects the CO
distribution in many species is the CO suppression around the
centromeres -chromosome constrictions that play important roles
during cell division. For instance, in mouse spermatocytes
centromeres are located at one extreme of the chromosomes and,
consequently, crossovers accumulate towards the opposite end
(Anderson et al., 1999) (Figure 1). This distribution is biologically

relevant, because COs too close to the centromeres lead to abnormal
chromosome disjunction during cell division (Koehler et al., 1996;
Lamb et al., 1996; Hassold and Hunt, 2001).

The relevant data for recombination studies that can be extracted
from immunostained pachytene-stage cells are: 1) number of COs per
cell and per individual SC; 2) number of SCs per cell and length of each
one; 3) distribution of COs on each individual SC relative to, for
instance, the centromere. This requires unambiguous identification of
the SCs (as they often overlap) and COs on them, as well as the
location of the centromeres. In mouse and other eutherian mammals,
X and Y chromosomes behave differently than the rest (autosomes)
because they only pair and recombine through a small
(pseudoautosomal) region; for this reason, they are excluded from
many recombination studies in males (Baier et al., 2014; Dumont,
2017).

While MLH1 immunodetection has become a common
procedure for many recombination studies, manual COs and
SCs image analysis can be very time-consuming and, hence,
constitute a major bottleneck. The analysis is also prone to a
certain degree of subjectivity, a problem that has been
circumvented in some studies by duplicating the image scoring
by two independent observers (Baier et al., 2014; Vrooman et al.,
2015). Image analysis automation could solve these problems by
fastening the procedure and applying objective detection
algorithms. A common approach is to develop custom-made
software solutions. Regrettably, they usually do not find
widespread usage outside the originating lab (Swedlow and
Eliceiri, 2009; Prevedello and Khorasani, 2012; Karopka et al.,
2014) due to what some authors call a lack of usability
(Carpenter et al., 2012), rigor and reproducibility (Brito et al.,
2020). In order to facilitate recombination analyses to a broad
research community, software should be easy to access and use,
well documented and supported (Carpenter et al., 2012; Brito et al.,
2020).

FIGURE 1
Male meiosis recombination visualized by immunofluorescence of a mouse pachytene-stage nucleus spread. (A, B) The spermatocyte was
immunostained with antibodies against MLH1 in order to identify the crossover sites (CO) between paired homologous chromosomes. These are joined
together through the synaptonemal complex (SC), visualized with antibodies against the protein SYCP3, one of SC components. Chromosomes are not fully
condensed at this stage, but DNA staining with DAPI allows to identify each nucleus spread. Consequently, centromeres are not visible yet as a
chromosomes constrictions, but can be located with specific probes or by brighter DAPI staining (as indicated in B; notice that mouse centromeres are not
central, but distal). (C) Simplified representation over the previous image of the two homologous chromosomes (blue and magenta) with two COs (white
crosses). These result in the mutual exchange of genetic material between homologous chromosomes, as schematized in (D) (each chromosome
represented by two identical DNA copies (sister chromatids, resulting from previous DNA replication) joined by the centromere (grey circles) as well as other
proteins (cohesins, blank ovals)).
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Indeed, a few tools have been developed for SC analysis (de Boer
et al., 2009; Milano et al., 2019; Peterson et al., 2019;Wang et al., 2019),
but none of them are able to extract all the aforementioned meaningful
data from recombination studies while fulfilling the requirements for
software usability and reproducibility (Carpenter et al., 2012; Brito
et al., 2020). The software quoted in de Boer et al. (2009) (Object Image
and MicroMeasure) are no longer available in the cited websites. They
are intended for SC measurement only and, even though the authors
cite the possibility of using a specific macro to measure CO sites and
SC length, regrettably it has not been published and is only available
upon demand. The macros published in Milano et al. (2019); Wang
et al. (2019) do not consider CO nor centromere analysis, and while no
information on how to implement the former is available, the latter
relies on a specific Python 3 package that is not accessible to users
without programming skills. CO detection software based on
MLH1 foci detection have also been developed (Martin et al., 2014;
Enguita-Marruedo et al., 2019) however, they do not analyze SCs and,
therefore, are unable to discriminate true COs from artifacts. Finally,
the application developed by Peterson et al. (2019) undertakes a
different approach by analyzing large numbers of images in an
unsupervised manner while relying in post-processing analyses to
remove undesired outcomes. This results in relevant data losses,
because overlapping SCs are manually eliminated and sex
chromosomes are excluded by size filtering along with other long
chromosomes, restricting the analysis to short chromosomes. Overall,
this approach is only useful in very large experimental datasets, but
implies manual curation of thousands of images (Peterson et al., 2019).
Moreover, this solution relies on a software, CyVerse, that is not very
common among image analyzers and is only available upon demand.

We decided to develop our own application to study meiotic
recombination and to share our efforts by meeting the requirements
stated for free software distribution in Carpenter et al. (2012) and the
recommendations of Brito et al. (2020) to enhance rigor and
reproducibility in biomedical research. Hence, we chose to develop
an open-source application as an extension of ImageJ/FIJI (Schindelin
et al., 2012; Schneider et al., 2012) because it is the most popular, open-
source software for bioimage analysis with a large and interactive
user’s community (ImageJ, n.d.; FIJI, n.d.; ImageJ Information and
Documentation Portal, n.d.; FIJI Software, n.d.; ImageJ Conferences,
n.d.). Therefore, our software has the potential of being easily
improved or adapted by other ImageJ/FIJI users to the particular
needs of their recombination studies.

Materials and methods

Hardware and software characteristics

The software was written in ImageJ’s script language on FIJI, using
ImageJ 1.53c. On a PC withWindows 10 operative system working on an
Intel Core i5-4200CPU@1.60 GHz 2.30GHz and 4.00 GBRAM.Gabriel
Landini’s Morphology package (Landini, 2008) and the Bio-Formats
importer plugin (Linkert et al., 2010) are required for the software towork.

Validation data sets

Software’s efficiency and accuracy were validated on images from
mouse pachytene spermatocytes immunostained with antibodies

against MLH1 and SYCP3, counterstained with DAPI and captured
under a confocal microscope as previously described (Anderson et al.,
1999; de Boer et al., 2009; Milano et al., 2019; Belmonte-Tebar et al.,
2022).

Software’s flexibility and applicability were validated on
pachytene-stage nuclei images from other species, antibodies and
capturing methods (Supplementary Figure S1). Images labeled with
MLH1 and SYCP3 antibodies were obtained with protocols similar to
ours; some lacked DAPI staining or used human calcinosis, Raynaud’s
phenomenon, oesophageal dysfunction, sclerodactyly and
telangiectasia (CREST) serum for centromere detection (Segura
et al., 2013). They were generously donated as follows: wild-
captured house mice Mus musculus domesticus with standard
karyotype and with Robertsonian translocations (courtesy of
Cristina Marin and Aurora Ruiz-Herrera (Vara et al., 2021));

FIGURE 2
Synaptonemal &COAnalyzer facilitates recombination analysis. (A)The
macro reduces a complex analysis to easy steps. For instance, the user is
asked to draw a few selections (yellowpolyhedrons) to launch an automated
algorithm to detect COs (yellow circle). (B) Synaptonemal & CO
Analyzer is, on average, two times faster than manual methods.
Synaptonemal & CO Analyzer (Syn&CO) performance compared to FIJI and
Zen Litemanual analysis. The sameblinded images (n=20)were analyzedby
each method. The results were analyzed by generalized linear models and
Bonferroni post hoc test. Bars and whiskers represent means and SDs.
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Matthey’s mouse (Mus matheyi, courtesy of Jesus Page (Universidad
Autonoma de Madrid (UMA), Spain) and Frederic Veyrunes
(Universite Montpellier, France); mongolian gerbil (Meriones
unguiculatus, also of Jesus Page); zebrafish (Danio rerio, courtesy of
Yukiko Imai, National Institute of Genetics, Japan); chicken
(Gallus gallus (del Priore and Pigozzi, 2020)) and duck (Anas
platyrhynchos; both bird images were obtained with antibodies
against SMC3 instead of SYCP3 for SC labeling and donated by
Maria Ines Pigozzi, Instituto de Investigaciones Biomedicas,
Universidad de Buenos Aires-CONICET, Argentina). Generous
donations were also Mus musculus images stained with antibodies
against RAD51 (Jesus Page, UMA) and RPA2 (Parijat Chakraborty
and Francesca Cole, The University of Texas MD Anderson Cancer
Center, United States).

Software development and validation
processes

Image analysis using Synaptonemal & CO Analyzer is a semi-
automated process. Semi-automated SC identification relies on
automatically subtracting background using a gaussian filter and a
rolling ball algorithm (Sternberg, 1983). The user setting an intensity
threshold is the only manual step needed. Afterwards, some
binary operations are automatically performed: a reconstruction to
get rid of small objects, a closing and an opening to smooth surfaces,
and finally getting a SCs’ skeleton. Semi-automatic CO and
centromere detection is based on an intensity and size algorithm:
whatever is brighter than the background and bigger than pixels is
selected. The user needs to determine the background by creating a
selection over it (Figure 2).

Exact details on SCs, COs, and centromeres’ detection algorithms
can be found in the macro source code by looking for “function SC_
analysis,” “function CO_analysis” and “function centromere_
analysis,” respectively. Although they work well with most of the
tested images, isolating detection algorithms into functions eases
adapting detection to new image characteristics. In order to do so,
users only need to change the function’s code by a new one. This task
has been eased to users with no image analysis background by
providing two extra macros (skeletonize_SC_macro_
recorder.ijm,foci_detection_macro_recorder.ijm) that generate
detection code, (Supplementary Video tutorial 2 and User
Manual). Modifying objects detection algorithms avoids manual
steps (such as setting an intensity level on each analyzed image)
making the macro more automated. Macro source codes are available
at https://github.com/joaquim-soriano/Synaptonemal-and-CO-
analyzer.

The macro was developed following a two-step procedure. First,
we developed an initial version on mice pachytene spreads (as
mentioned above), that was validated for efficiency and accuracy.
Second, we adapted themacro to ease work on other species and labels.
In the first phase, the software development team consisted of an
image analyst, a project manager and a beta tester. The project
manager, a meiosis expert, determined the software requirements
for recombination studies. The image analyst devised the algorithm
and wrote the code, and the beta tester checked the resulting script on
a set of standard images. Errors detected and new requirements were
reported to the image analyst that fixed the former and implemented
the latter. Software’s first version was released after no further

requirements were found and results were consistent with those
obtained from manual analyses of a set of standard images. These
consisted of a representative sample of 20 images of
20 immunostained mouse spermatocytes of an ongoing research
project. Each image was manually analyzed with FIJI and with the
software previously employed in our laboratory, Zen lite (Zeiss,
Oberkochen, Germany), as well as with our semi-automated
software. Images were randomized and the identities were blinded
and coded differently for each of the three analyses until all were
completed in order to avoid bias. The beta tester was previously
trained on the use of each analysis method with an independent set of
images. Data were obtained on a PC running Windows 10 operative
system on an Intel Core i7-7500U @ 2.70 GHz 2.90 GHz and 8.00 GB
RAM. Total SC length, number of COs per cell (excluding X and Y
chromosomes) and duration of the analysis were compared between
the three methods in order to determine the script’s accuracy and
efficiency. Results were analyzed by generalized linear models (GLM
repeated measures) and Bonferroni post hoc test with SPSS software
(NIH, Bethesda, MA, United States).

In a second phase, software’s first released version was checked
against a diversity of images (Supplementary Figure S1) resulting on a
second macro version that opens different image formats, works on
centromere-specific labeling (e.g., with CREST serum) and provides
means to easily adapting the macro to detect objects under different
image conditions.

Results and discussion

Software analysis process and outcomes

Image analysis using Synaptonemal & CO Analyzer is a semi-
automated process. Once launched, a set of windows ask the user to
perform easy tasks (Figure 2 and Supplementary Material: Video
tutorial 1 and User Manual) until the software gathers all needed
data to automatically perform the analysis. Once done, SCs, COs and
centromeres are analyzed sequentially (Supplementary Figure S2)
following a similar process (Supplementary Figure S3). Basically,
the user decides whether to detect COs or centromeres manually
(if the image quality is too low) or introduce parameters for an
automated analysis (SC automated detection is always done by
default), some checking steps are then performed that might need
further user interaction (for example, replacing a CO that does not lay
over a SC or isolating overlapping SCs) before the analysis is complete.

Synaptonemal & CO Analyzer obtains the following data from
pachytene-stage nuclei images: 1) SC length of each chromosome, 2)
sum of the length of all the SC per cell, 3) number of COs per SC
(i.e., number of COs between each pair of homologous chromosomes), 4)
total number of COs per cell and 5) CO location along each SC (Figure 3).
CO distances are measured starting from one end, with the option of
automatically selecting the centromeric end when discernible. If
centromeres’ detection is based upon centromere labels, the position
of each centromere will be also delivered, as well as lengths between SCs
ends and COs relative to centromere position and the number of COs per
chromosome arm. The application also allows for excluding sex
chromosomes, thus restricting the analysis to autosomal chromosomes
(Baier et al., 2014; Dumont, 2017). Moreover, the macro solves frequent
practical issues by providing tools, for instance, to analyze
overlapping SCs.
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FIGURE 3
Analysis results as displayed in FIJI. Detected elements (SCs, COs, centromeres and nucleus) can be selected in the ROI Manager (B) to be highlighted in
the RGB image (A). In this example, selecting “show all” displays everything (lines: SCs; circles: COs; arrow heads: centromeres, fromwhich SCmeasurements
start), except on the XY chromosomes (on the top), which were excluded from the analysis during the nucleus selection step. (C) Results are either global (sum
of COs number and of total length of the SCs per nucleus) or SC-related: COs number per SC, total length of each SC and partial lengths fromone SC end
(centromeric, if selected as in the figure) to closest CO (partial length-1), between consecutive COs (if more than one) and between opposite SC end to closest
CO (partial length-2, etc.).
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Software requirements and limitations

The macro assumes that SCs are linear, COs and centromeres lay
over SCs, and that the number of centromeres per SC is either one or
none. These criteria allow to discriminate true from background foci
and are optimal for the analysis of pachytene-stage cells, but not for
other stages when SCs are not fully formed. The macro does not
impose limits to image quality; however, poor stained materials and ill
captured images limit results’ quality and increase analysis’ time.
According to our experience, confocal microscopes deliver better
results than conventional fluorescence ones, plan apochromatic
objectives and close-emitting fluorochromes avoid signal mismatch
due to lack of color aberration correction and meeting the Nyquist
theorem assures optimal image resolution (Sanderson, 2020).

The macro relies on the Bio-Formats importer plugin to open
many dozens of proprietary life science image formats (Linkert et al.,
2010) besides the standard ones (tiff, jpeg, etc.). Up to seven channel
images are supported; however, the macro is designed to analyze 2D
images only. Users willing to analyze images with different planes need
to collapse them on a single one. This might introduce changes on SCs’
length and shape or cause too many SC overlaps as for the application
to efficiently discriminate them. Therefore, the tool is not suitable for
immunostained intact nuclei such as those employed in C. elegans
recombination studies (Garcia-Muse, 2021). In other cases, the user
should inspect the images to tell whether these changes occur and are
relevant for the desired analysis. In contrast, 2D images with good
chromosome spreads minimize the amount of SC overlapping and the
macro analysis time and are, therefore, recommended.

Synaptonemal & CO analyzer provides
reliable and fast CO and SC data

When comparing our new application with manual analyses
using FIJI or Zen lite, similar results both in number of COs and in
total autosomal SC length per cell (the sum of the length of all the
SC, excluding the X and Y chromosomes) were obtained (p =
0.308 and p = 0.147, respectively, GLM). This indicates that the
method of choice has no significant effect in the results, thus
validating our application. However, when the duration of the
complete analysis of COs and SCs was compared, a significant
effect of the software of choice was observed (p < 0.0001, GLM).
Bonferroni post hoc analyses revealed that Synaptonemal & CO
Analyzer (7.1 ± 3.0 min, mean ± SD) is significantly faster (about
two times quicker) than the rest (Zen lite: 13.7 ± 2.6 min, and FIJI:
15.9 ± 1.4 min) (Figure 2). The analysis time is variable depending
on the quality of the image and the manual CO and SC corrections
required; nevertheless, differences are clearly significant (Figure 2).

FIGURE 4
Synaptonemal & CO Analyzer is a versatile tool for the analysis of
immunostained pachytene cells. Examples of image analyses from diverse
vertebrates: (A) wild-captured house mice (Mus musculus domesticus)
with Robertsonian translocations [courtesy of Cristina Marín and
Aurora Ruiz-Herrera (Vara et al., 2021)]. (B)Matthey’smouse (Musmatheyi,
courtesy of Jesus Page and Frederic Veyrunes); (C) chicken (Gallus gallus,
courtesy of María Inés Pigozzi (del Priore and Pigozzi, 2020)); (D) Zebrafish
(Danio rerio, courtesy of Yukiko Imai); (E) mongolian gerbil (Meriones
unguiculatus, courtesy of Jesus Page), (F, G) nuclei from mouse inbred

(Continued )

FIGURE 4 (Continued)
strains (Mus musculus) labeled with antibodies against RPA2 and
RAD51 (courtesy of Parijat Chakraborty and Francesca Cole, and Jesus
Page, respectively). (E, F) show magnified views of the elements
detected by the macro in sections on the right. The software
identifies SCs (lines), COs (yellow circles) and, when applicable,
centromeres (white circles); arrow heads indicate the SC end fromwhich
SC measurements start. It performs well with diverse fluorochromes,
central or distal centromeres stained with DAPI or CREST, and diverse
antibodies for CO and SC identification.
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Given the accuracy and speed of Synaptonemal & CO Analyzer, we
have already successfully used it in a study performed by our group
(Belmonte-Tebar et al., 2022)

Applicability: Synaptonemal & CO analyzer for
the analysis of images immunostained with
various antibodies and from diverse
vertebrate species

Immunostaining of pachytene-stage chromosome spreads with
MLH1 and SYCP3 antibodies and DAPI is a common technique for
the study of recombination in diverse species. Our application is
capable of successfully analyze such images in many vertebrates,
including mammals with diverse karyotypes, birds and fish
(Figure 4 and Supplementary Figure S1).

Recombination studies are also performed with other
immunostaining methods. COs are one of the results of the
repair of the hundreds of DSBs that occur at the beginning of
meiosis. The progression of recombination intermediates can be
examined by labeling proteins other than MLH1 (Hunter, 2015;
Zickler and Kleckner, 2015; Gray and Cohen, 2016). The analysis of
pachytene-stage nuclei images obtained with antibodies against
some of these proteins, such as RAD51 and RPA2 (Cole et al., 2012;
Gil-Fernandez et al., 2021), can benefit from the use of our macro as
shown in Figure 4 and Supplementary Figure S1; these foci appear
at earlier stages and significant presence at pachytene stage reflects
a problem in DSB repair. In addition, the application also
successfully analyzes images obtained with specific centromere
markers (e.g., CREST serum), which are often employed in
meiosis studies (Segura et al., 2013) (Figure 4 and
Supplementary Figure S1). Centromere identification is not a
requirement to obtain SC and CO data, but whether they are
identified by DAPI or by CREST serum, centromeres can be
used as SC measurement reference points.

In summary, Synaptonemal & CO analyzer is a versatile tool for
recombination studies in vertebrate nuclei immunostained with
diverse antibodies: it can be used in experiments analyzing SCs
only, or SCs plus COs, and it will work with various stainings and
antibodies. Unlike other applications (Peterson et al., 2019), it
provides means to discriminate overlapping SCs and to exclude sex
chromosomes from the analysis without further data loss. In addition,
results can be easily verified: the software creates a results folder with
an image, a table and a set of files. The results image contains the
analyzed structures andmerges all analyzed channels. The results table
provides all relevant recombination meiotic studies’ data. Finally,
there is a file for all detected structures that allows for overlaying
them to the results image, enabling visual inspection and verification
(Figure 3).

Other advantages of the application

The macro has several additional advantages: 1) it is free, has been
released under an open-source license (GNU General Public License),
is accessible through stable public repositories (https://github.com/
joaquim-soriano/Synaptonemal-and-CO-analyzer, https://zenodo.
org) and has been assigned a DOI (https://zenodo.org/badge/
latestdoi/410606632). 2) It is very intuitive and the learning process

is facilitated by a user manual and video tutorials provided as
Supplementary Material and at https://github.com/joaquim-soriano/
Synaptonemal-and-CO-analyzer. Further support about ImageJ/FIJI
can be received by using the wikis (ImageJ Information and
Documentation Portal, n.d.; FIJI Software, n.d.) and mailing lists
(ImageJ, n.d.; FIJI, n.d.) indicated in the bibliography. 3) It has
been developed under ImageJ/FIJI (running on Java), which is free,
open-source, well documented and ensures operative system
compatibility (Windows and MacOS). It is also the most popular
image analysis and processing software in biological science (Cardona
and Tomancak, 2012; Eliceiri et al., 2012; Schindelin et al., 2012;
Schneider et al., 2012). By using ImageJ scripting language,
Synaptonemal & CO Analyzer can reach a large number of users
that might get involved in further software’s development.

Conclusion

Our application will facilitate studies about the genetic, epigenetic
and environmental factors that affect the recombination rate and,
hence, that can increase the frequency of chromosomal abnormalities
and fertility problems. Among the environmental effects that affect
recombination in mice, bisphenol A (an endocrine disruptor found in
plastics used in a wide variety of consumer products) has been an
object of study for a long time (Hunt et al., 2003; Susiarjo et al., 2007;
Vrooman et al., 2015). These findings motivated us to search and
identify a new effector, diet, in a study that was substantially
accelerated by our application (Belmonte-Tebar et al., 2022). We
continue successfully using it in our current research about
recombination in male mice (Belmonte-Tebar et al., in
preparation), proving that Synaptonemal & CO Analyzer performs
very well, not only in a theoretical, controlled environment, but also
with real complex data.

Synaptonemal & CO Analyzer meets an important need in the
recombination field by providing an efficient and consistent tool for
the analysis of SC length and COs number and distribution. Unlike
other applications, it is free, hosted on an archivally stable platform,
well documented and intuitive, runs in most computers and does not
require computational skills or extensive training, thus facilitating
usability (Carpenter et al., 2012), rigor and reproducibility of the
analyses (Brito et al., 2020).

More importantly, the application facilitates the analysis of
pachytene nuclei from diverse vertebrate species immunostained
with different antibodies and centromere identification methods. In
summary, Synaptonemal & CO Analyzer is a novel and versatile
application tool for the study of recombination that is accessible for
future improvements.
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The animal study was performed previously, but some of the
images have been used in the present article to test and validate
the software.
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Kinetic analysis of synaptonemal
complex dynamics during meiosis
of yeast Saccharomyces cerevisiae
reveals biphasic growth and
abortive disassembly

Michael G. Pollard, Beth Rockmill, Ashwini Oke, Carol M. Anderson
and Jennifer C. Fung*

Department of Obstetrics, Gynecology and Reproductive Sciences, Center of Reproductive Sciences,
University of California, San Francisco, San Francisco, CA, United States

The synaptonemal complex (SC) is a dynamic structure formed between
chromosomes during meiosis which stabilizes and supports many essential
meiotic processes such as pairing and recombination. In budding yeast, Zip1 is a
functionally conserved element of the SC that is important for synapsis. Here, we
directly measure the kinetics of Zip1-GFP assembly and disassembly in live cells of
the yeast S. cerevisiae. The imaging of SC assembly in yeast is challenging due to the
large number of chromosomes packed into a small nucleus. We employ a zip3Δ
mutant in which only a few chromosomes undergo synapsis at any given time,
initiating from a single site on each chromosome, thus allowing the assembly and
disassembly kinetics of single SCs to be accurately monitored in living cells. SC
assembly occurs with both monophasic and biphasic kinetics, in contrast to the
strictly monophasic assembly seen in C. elegans. In wild-type cells, once maximal
synapsis is achieved, programmed final disassembly rapidly follows, as Zip1 protein is
actively degraded. In zip3Δ, this period is extended and final disassembly is
prolonged. Besides final disassembly, we found novel disassembly events
involving mostly short SCs that disappeared in advance of programmed final
disassembly, which we termed “abortive disassembly.” Abortive disassembly is
distinct from final disassembly in that it occurs when Zip1 protein levels are still
high, and exhibits a much slower rate of disassembly, suggesting a different
mechanism for removal in the two types of disassembly. We speculate that
abortive disassembly events represent defective or stalled SCs, possibly
representing SC formation between non-homologs, that is then targeted for
dissolution. These results reveal novel aspects of SC assembly and disassembly,
potentially providing evidence of additional regulatory pathways controlling not just
the assembly, but also the disassembly, of this complex cellular structure.
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Introduction

Meiosis is a crucial part of gametogenesis in sexually reproducing
organisms. The meiotic program is unique in that replicated
chromosomes find and align lengthwise along their homologous
partners, exchange genetic material, and then segregate twice,
resulting in haploid gametes. The pairwise alignment of
homologous chromosomes ensures that genetic exchange will occur
between homologs. Crossovers, or reciprocal genetic exchanges, result
in physical connections between the chromosome pairs that serve to
align them for proper segregation. The synaptonemal complex (SC) is
the protein matrix that forms along the lengths of homologs and is
thought to stabilize the paired homologs and regulate the number of
recombination events that occur along the length of chromosomes
(Lake and Hawley, 2021). The SC is composed of lateral elements,
formed along each replicated homolog, and a central region of ordered
proteins that unite these axes. The central region of the SC, but not the
axes, appears to have fluid-like properties in both yeast and worms
(Rog et al., 2017), where the weakly-bonded proteins canmove around
within the structure. The assembly of the SC is a dynamic process that
appears to be aided by the pulling of chromosome ends from outside
the nucleus using a connection of the chromosome to the nuclear
envelope via the LINC complex and either microtubules or actin fibers
to pull them (Alleva and Smolikove, 2017). Disassembly of the SC is
coordinated with the resolution of connections between the
chromosomes, and its timing is subject to cell cycle regulation
(Hochwagen and Amon, 2006; Jordan et al., 2009). Since failures in
meiosis can lead to infertility, miscarriages and potentially
developmental problems in offspring, it is important to gain a
better understanding of SC assembly and disassembly. Moreover,
formation of the SC is a massive feat of molecular self-assembly,
whose mechanism may hold lessons for other large-scale assembly
processes in the cell.

There are three identified central region proteins in yeast. Zip1, a
major component of the SC central region, is a structurally-conserved
protein that was first identified in yeast (Sym et al., 1993). Zip1 and
functionally analogous proteins in mice, worms, plants and mammals
consist of a long coiled-coil filament with unstructured domains at
either end (Page and Hawley, 2004). These transverse filaments,
through the interactions of their central coiled-coil region are
thought to form N-terminal tetrameric building blocks that self-
assemble into the SC with the C-terminal regions interacting with
the lateral elements (Dong and Roeder, 2000; Dunce et al., 2018). This
configuration and the length of the coiled coil are responsible for the
conserved 100 nm width of the SC (Sym and Roeder, 1995). GFP-tags
inserted in the middle of Zip1 and its homologs (White et al., 2004)
have been widely used to visualize chromosome dynamics during
meiosis, including rapid telomere-led movements (Koszul et al., 2008)
and SC fluidity (Rog et al., 2017). The other two identified central
region proteins are Ecm11 and Gmc2 which facilitate the assembly of
Zip1 (Humphryes et al., 2013). Gcm2 promotes the sumoylation of
Ecm11 by the E3 SUMO ligases, Siz1 and Siz2 (Leung et al., 2015). The
Zip1, at the N-terminus, activates the further sumoylation of
Ecm11 and this positive feedback loop forms the SC (Leung et al.,
2015). Voelkel-Meiman et al. (2012) using additional copies of ZIP1
demonstrated a positive correlation between the concentration of
Zip1 and speed of synapsis onset.

The initiation of SC formation appears to occur at either of two
locations: 1) presumptive crossover sites and/or 2) specific

chromosome domains. In budding yeast, sites of genetic exchange
accumulate proteins that attract components important for SC
initiation (Chua and Roeder, 1998; Agarwal and Roeder, 2000;
Tsubouchi et al., 2006; Pyatnitskaya et al., 2022). A subset of these
sites is likely to be responsible for most SC initiations. Yeast
centromeres are also sites of SC initiation in which centromeres
appear to be among the first regions to accumulate SC proteins
and to initiate SC formation (Tsubouchi et al., 2008). SC initiation
at centromeres is licensed only after recombination has initiated
(Macqueen and Roeder, 2009). In organisms that do not rely on
recombination to engage homologous chromosomes, special
chromosomal sites are used to pair and initiate synapsis. In the
nematode C. elegans, the pairing centers are present on one end of
each chromosome and are responsible for assembling SC along the
homologs. In this case, SC formation is independent of recombination
(Dernburg et al., 1998). In the fly,D. melanogaster, SC initiation occurs
at centromeres and is also independent of recombination (Takeo et al.,
2011; Tanneti et al., 2011).

In nematode oocytes, chromosomes initiate SC formation at the
end of the chromosome where the pairing center resides, and rapidly
and irreversibly complete the SC (Rog and Dernburg, 2015). The rate
of SC assembly is 150 nm/min. The nematode’s six chromosomes
initiate synapsis independently and stochastically, completing
synapsis within 5 hours as nuclei pass through the transition zone.
Movements of the chromosomes by dynein aid the extension of the
SC, since Sun mutants that reduce dynein-directed chromosome
motion cause a severe reduction in the rate of assembly (34 nm/
min). Since C. elegans is the only organism so far in which SC kinetics
have been measured, the question remains whether SC kinetics show
similar behavior in organisms such as yeast and humans, which rely on
recombination for synapsis to occur.

In budding yeast, it is difficult to visualize SC kinetics due to the
large number of chromosomes in a small nucleus; there are 16 pairs of
chromosomes in a ~2.0 μm diameter nucleus. Fission yeast has only
three chromosomes, but fission yeast does not form SC (Bähler et al.,
1993). However, the reduced number of synapsed chromosomes in the
zip3Δmutant in budding yeast could allow the tracking of SC kinetics.
Zip3 is an E3 ubiquitin ligase for which orthologs have been found in
many diverse organisms (Agarwal and Roeder, 2000; Jantsch et al.,
2004; Chelysheva et al., 2012). Whereas mutants in the ZIP3 gene in
most organisms appear to affect crossover formation, yeast mutants
additionally exhibit a reduction in synapsis initiation (Agarwal and
Roeder, 2000). When ZIP3 is deleted, SC initiation occurs
predominantly at the centromere and fewer chromosomes form SC
(Macqueen and Roeder, 2009).

Here, we take advantage of the reduced number of synapsing
chromosomes and initiation sites in the zip3Δ mutant to permit the
measurement of the real-time kinetics of both assembly and
disassembly of the SC on individual chromosomes in yeast. We
find that SC assembly in budding yeast occurs by a monotonic
increase in length, similar to that observed in C. elegans, but that
the rate of assembly in yeast is on average about half the rate observed
in the nematode. We show that both monophasic and biphasic growth
rates are observed, unlike the dynamics in the nematode. The biphasic
growth consists of an initial fast rate followed by a slower rate to
complete assembly. Final disassembly exhibits a monophasic rate of
disassembly. Finally, we uncover a process that we term “abortive SC
disassembly”which is distinct from final SC disassembly, in which SCs
depolymerize before the cell completes the SC assembly phase. We
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propose that abortive SC disassembly may represent the dissolution of
defective/non-productive or non-homologous SCs. We suggest that
this is a mechanism that the cell might employ to correct synapsis or to
resolve interlocks before interactions between chromosomes are
cemented in place.

Materials and methods

Meiotic time course and detection of SCs

For all strains, meiosis was induced by first growing the cells in
2 mL of YPD supplemented with 1.0 mM adenine, and incubating in a
roller drum at 30°C for exactly 24 h, then isolating cells by
centrifugation and transferring to 10 mL of 2% potassium acetate
in 125 mL flasks at 30°C on a platform shaker at 230 rpm. Cells were
then harvested at defined time points, and prepared for live
microscopy by concentrating harvested cells in sporulation media
and then centrifuging them onto a Concanavalin A-treated dish
environmental chamber (Bioptechs Inc. # 04200415C, Butler, PA)
in the well of a silicone gasket (Grace Bio-Labs #CWCS 50R-1.0, Bend,
OR). Cells in the Bioptechs dish were then mounted on an OMX
microscope (Dobbie et al., 2011) at 30°C and viewed using a heated
objective (×100 Olympus 1.45 NA oil immersion at 30°). Details for
live cell imaging can be found in Pollard and Fung (2017).

Zip1-GFP and synapsed chromosomes were detected in a 50 nm
window centered at 525 nm using an excitation frequency of 488. The
excitation laser was attenuated to 3.5% or 0.86% and individual
exposures were 5 ms. Images were acquired in 4 or 10 µm z-stacks
with 0.2 µm intervals between sections. The post-acquisition
processing of imaged nuclei involved concatenation of all time
points, denoising (Boulanger et al., 2010), and deconvolution.
Image screening and manipulation, as well as the quantitation of
Zip1-GFP signal and the measurement of synaptonemal complex
lengths, were performed using PRIISM software (Chen et al.,
1992). Automated SC tracing and kinetic measurements were
performed using scripts written with MATLAB (Mathworks, Natick
MA), although manual tracing of SCs was also performed in PRIISM.
2D projections are either overlaid maximum and summation (max-
sum) projections in Z (axial dimension of microscopy) or triple
overlays, in which an additional overlay was made with an inverted
background and scaled differentially in order to display the nuclear
boundary defining the diffuse Zip1-GFP in blue.

Chromosome spreads, FISH and
immunostaining

Chromosome spreads were performed as described previously
(Fung et al., 2004). Fluorescent in situ hybridization (FISH) was
carried out using two adjacent interval-specific DNA probes. For
the LEU2-MAT interval, the plasmid 12B (Newlon et al., 1991)
containing a 20-kb region of chromosome III extending ~5 kb
centromere-distal and ~15 kb centromere-proximal of the RPS14A
gene was used to make probe. For the HIS4-LEU2 interval, a 15-kb
region starting at HIS4 and ending in the middle of KCC4 was PCR-
amplified from genomic DNA in 2-kb segments. Probes were labeled
with biotin-14-dATP (Invitrogen # 19524016, Waltham, MA) or
digoxygenin-11-dUTP (Roche #11093088910, Basel, CH) and

hybridization was performed as described in Dernburg and Sedat
(Dernburg and Sedat, 1998). Slides were stained with anti-rabbit
Zip1 antibody and then with secondary antibodies: rhodamine
anti-DIG and FITC-streptavidin and Cy5 anti-rabbit antibody. To
stain DNA, 1 μg/mL DAPI was added to the mount made from 0.1%
p-phenylenediamine (Sigma Aldrich #P6001, Burlington, MA) in
glycerol. Zip1 polyclonal antibodies were generously provided by
G.S. Roeder (Yale University).

Sporulation frequency

Log-phase cultures in YPAD were transferred to 10 mL of 2%
potassium acetate and then shaken in a flask at 30° for 5 days. Cell
samples were then prepared on slides and visualized with 3D
bright-field microscopy on the OMX microscope. The number
of spores present in each cell within the bright field image
volume was tabulated.

Spore viability

Diploids were patched to 2% potassium acetate plates and grown
at 30°C for 3 days. Tetrads were dissected onto YPD plates. The
frequency of viable spores was determined after 3 days of growth
at 30°C.

Model fitting, adjusted R-square and PRESS
statistics

Segmented regression and press statistic calculations for assembly,
final disassembly and abortive disassembly rates were performed using
R. Code was adapted from https://gist.github.com/tomhopper/
8c204d978c4a0cbcb8c0 and https://cran.r-project.org/web/packages/
segmented/segmented.pdf.

Calculation of expected frequency ofmultiple
initiation

Based on the Poisson distribution, we can calculate the probability
of seeing k number of initiations with an average number of events, λ.

f k, λ( ) � P k( ) � λke−λ

k!

The frequency of seeing ≥ 2 initiations is f (≥ 2) = 1−f (0)−f (1).
Using a binomial test calculator, the probability of not seeing
≥ 2 initiations after n number of observations can be calculated
using n; f (≥ 2).

Results

In vivo visualization of single chromosome
synapsis in zip3Δ during meiosis

To visualize synapsis of chromosomes in yeast, we performed
three-dimensional (3D) time-lapse studies of the synapsis protein
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FIGURE 1
zip3Δ improves visualization of synapsis. (A) Example of a typical acquisition field of WT (left panel) and zip3Δ (right panel) in vivo yeast cells expressing
Zip1-GFP undergoing meiosis (14 h after meiotic induction) shown as a 2D max-sum projection. Zip1-GFP on synapsed chromosomes is shown in yellow.
Nuclei are defined by overall nuclear Zip1-GFP signal shown in red. These images are not for quantitative intensity comparisons. (B) z-slices every 0.2 μm from
3D image stack of a nucleus containing 9 Zip1-GFP SCs in a zip3. mutant after denoising and deconvolution. (C) 2D max-sum projections of pachytene
nuclei expressing Zip1-GFP in ZIP3 (top panel) compared to the equivalent stage in zip3. (bottom panel). Scale bar―2 μm. (D) Top panel. Map of FISH probes
made to theHIS4-LEU2 region (H-L probe) and to the LEU2-MAT region (L-Mprobe) on chromosome III. Middle panel.WT and zip3Δ pachytene chromosome
spreads hybridized with H-L probes (red) and L-M probes (green) and stained with anti-Zip1 antibodies (purple) for WT and zip3Δ (middle panel). The white
arrowhead indicates a polycomplex. Scale bar 2 µm. Bottom Panel. Red graph shows the percent of HL and LM FISH probes colocalizing for WT (n = 33) and
zip3Δ (n = 40). The blue graph shows percent of colocalized probes that are within synapsed regions for WT and zip3Δ. (E) Histogram of the percent of viable
spores for each genotype. For each genotype, between 120–170 tetrads were dissected. A z-test for proportions was used to test for significance (*). Z = 5.64,
p < 0.00001 between ZIP1/zip1Δ and ZIP1-GFP/zip1Δ. Z = 5.62 p < 0.00001 between ZIP1-GFP/zip1Δ and ZIP1-GFP/zip1Δ zip3Δ/zip3Δ. NS—not significant.
Error bars—STD.
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Zip1 fused to GFP (Zip1-GFP700) in a meiosis-proficient diploid yeast
strain (BR 1919-8B) (see Materials and Methods). We constructed a
zip3Δ mutation in this background to assess SC assembly and
disassembly kinetics for individual chromosomes more easily
(Figure 1). In zip3Δ, the maximal number of synapsed
chromosomes attained varies from 0 to 16 chromosomes (Agarwal
and Roeder, 2000; MacQueen and Roeder, 2009) (Figures 1A,B). This
aspect of the zip3Δ mutant strain allows us to monitor synapsis
kinetics in nuclei containing only one or two synapsing
chromosomes (Figure 1C). Additionally, the use of the zip3Δ
mutant reduces the complication of interpreting synapsis that
normally would start at multiple sites along the chromosome, since
~85% of synapsis initiates exclusively from centromeres (Macqueen
and Roeder, 2009). Despite the reduced extent of synapsis in zip3Δ, a
high level of pairing is achieved, as measured using a pair of adjacent
FISH loci on chromosome III in pachytene chromosome spreads
(Figure 1D). These results agree with a prior study of centromere-
associated lacO pairing in zip3Δ (Voelkel-Meiman et al., 2019). By
simultaneously measuring pairing (association of both FISH loci) and
synapsis (Zip1 immunofluorescence along chromosomes), we found
that the paired loci were only associated with synapsis 17.5% of the
time in zip3Δ compared to WT (80%) (Figure 1D). Together, these
results suggest that a high level of pairing does not ensure high levels of
synapsis, and conversely that synapsis is not necessary for high levels
of pairing. This ability to align without subsequent synapsis likely
contributes to the relatively high spore viability of the zip3Δ mutant
(50%–58%, ((Macqueen and Roeder, 2009), Figure 1E).

As seen in Figure 1, the zip3Δ mutant often forms a
polycomplex during pachytene (Figure 1D, last panel, white
arrowhead). In the BR background, polycomplexes are
aggregates of synapsis-associated proteins that form when the
stoichiometry of SC proteins is disrupted, as in the case of
various meiotic mutants or with altered expression of meiotic
proteins (Sym and Roeder, 1995; Chua and Roeder, 1998).
Other organisms and other yeast strains such as SK1 may form
polycomplexes in the context of wild-type meiosis, either as a
prelude to SC formation or as SCs dissolve (Hughes and Hawley,
2020). The formation of SC is difficult to visualize quantitatively
when two copies of the ZIP1-GFP700 allele reside in a zip3Δ
background, since the polycomplex is about five times brighter
than the synapsing chromosomes. By incorporating a single copy of
ZIP1-GFP700 into a zip3Δ diploid whose endogenous copies of ZIP1
are deleted, the frequency of polycomplex formation was reduced
to only 2.2% of nuclei compared to 100% when both copies of ZIP1-
GFP700 are present. In the BR background, only a small difference in
spore viability is seen when using hemizygous ZIP1-GFP700 (85%)
in place of hemizygous ZIP1 (96%). No difference in spore viability
is observed between zip3Δ strains containing either ZIP1 allele
(Figure 1E), suggesting that replacing ZIP1 with ZIP1-GFP and
reducing the copy number of ZIP1-GFP has only a minor impact on
meiosis. With these strain modifications in place, kinetic
measurements of individual SCs are feasible.

Normal chromosome motion during
pachytene exhibited in a zip3Δ mutant

Meiotic chromosomes undergo rapid, large-scale motions whose
function is important in attaining proper and timely homologous

alignment (Conrad et al., 2008; Koszul et al., 2008; Navarro et al.,
2022). In C. elegans, the disruption of this motion in a Sun mutant
leads to perturbed pairing and synapsis elongation (Sato et al., 2009;
Rog and Dernburg, 2015). Therefore, it is important to establish
whether the behavior of chromosomes in zip3Δ yeast cells
resembles the motion of chromosomes observed in wild type.
Koszul et al. (2008) characterized the motion of fully synapsed
chromosomes marked with Zip1-GFP in permeabilized cells and in
vivo pachytene nuclei. They observed dramatic movements of
chromosomes during the pachytene stage of meiosis mediated by
attachment of the chromosomes to actin cables proximal to the
nuclear envelope. These telomere-led movements exhibit velocities

FIGURE 2
Chromosome dynamics and sporulation observed in zip3Δ (A)
Max-sum projections from a 3-D time series at 5 s intervals of a zip3Δ
cell expressing Zip1-GFP during pachytene. An example of telomere-led
chromosome motion is illustrated by a single long chromosome
moving between t = 35 s to t = 75 s (white arrow). Maverick
chromosomes (green and red arrows). Scale bar—2 µm. (B) Distribution
of velocity measurements for telomere-led motions of pachytene
chromosomes from nuclei expressing Zip1-GFP in zip3Δ. Averages and
STDs are given for the low and high velocity clusters. N = 60.
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of 0.3–0.5 μm/s (up to 0.8 μm/s) and are characterized by abrupt
transitions of increased velocity. We observe comparable motion in
zip3Δ (Figure 2A, movies Supplementary Figures S1–S3) with average
motion in the 0.2–0.6 μm/s range and higher transitions up to 1.0 μm/
s (Figure 2B). Our measurements in zip3Δ also agree with the results
reported in wild-type cells by (Conrad et al., 2008), who examined the

rapid prophase motion by imaging lacO-marked regions of the
chromosome. Another characteristic of wild-type chromosome
behavior in pachytene nuclei, also observed in zip3Δ cells, is the
presence of “maverick” chromosomes (White et al., 2004).
Occasionally, maverick chromosomes are observed to protrude out
at a great distance from the bulk of the chromosomes, often with end-

FIGURE 3
Imaging conditions do not perturb meiotic progression (A) Examples of Zip1-GFP and spore formation examples are shown at three timepoints as
meiosis progresses in live cells. Zip1-GFP signal (green) is overlayed by brightfield to detect cell and spores (red). Both single optical slice and 2D projections
are shown. Although 3 cells show Zip1-GFP expression during the time course, only one progresses to spore formation. Scale bar 5 µm. (B)Cells were tracked
for meiotic progression for 152 h to determine the frequency of cells that enter meiosis as well as the frequency of cells that eventually form spores, to
determine if the imaging conditions perturbed sporulation. A representative experiment in which 38 cells were tracked, of which 29 enteredmeiosis (cells with
black numbers, first column) as determined by Zip1-GFP detection (orange squares) and 9 (cells with red numbers) did not. Cells were imaged for Zip-GFP
initially at 30-minute intervals until 50 h (pale green, top column headers), then 1-hour intervals until 74 h (olive green), then 2-hour intervals until 100 h (dark
green), followed by 4-hour intervals until 152 h (blue). At 6.5, 20.5, 27.5, 35.5, 50, 74, 100, and 152 h, brightfield images were acquired to assess for spore
formation (pink columns). Black boxes indicate when spores were detected. (C) The number of cells entering meiosis and the number of cells forming spores
are compared. Cells were counted if any spores (1–4) were observed. The average percentages were determined from five experiments performed as
described in (B) above. A total of 179 cells were tracked. Experiments performed under the microscope using our optimized imaging conditions are shown in
green. The frequency of sporulation was also calculated by counting spore formation in brightfield for comparison (gray) after 5 days of normal culturing in
flasks.

Frontiers in Cell and Developmental Biology frontiersin.org06

Pollard et al. 10.3389/fcell.2023.1098468

95

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2023.1098468


to-end chromosome connections in which chromosomes resemble
sausages on a string. Figure 2A highlights an example of a time course
projection showing both types of behavior, telomere-led motion and

maverick chromosomes, in the zip3Δ mutant within a single nucleus.
Overall, prophase chromosome movement in zip3Δ appears to be
comparable to that previously observed in wild type.

FIGURE 4
Quantitation of Zip1 levels. (A) Top Panel. Profiles of Zip1 levels from individual time courses of ZIP3 cells expressing Zip1-GFP. n = 16.3D optical sections
of Zip1-GFP in sporulating strains were acquired for 50 h at 1-h intervals starting at 8 h after induction of sporulation. Fluorescence intensity (FI) wasmeasured
as a proxy for Zip1 levels at each time point in arbitrary intensity units (IU). Bottom Panel. Profiles of Zip1 levels from individual time courses of zip3Δ cells
expressing Zip1-GFP. n = 13. (B) A comparison of average total Zip1 FI levels during prophase in ZIP3 (circles) vs. zip3Δ (diamonds) strains. Given the
asynchrony of synapsis initiation times, individual time courses for ZIP3 (n = 16) and zip3Δ (n = 13) were aligned such that time zero represented the time at
which Zip1-GFP was depleted. The time points were adjusted relative to time zero and average Zip1 levels were calculated for each time point for both strains.
These profiles were then aligned to each other based on the time synapsis is first detected. Two adjusted time axes are presented for ZIP3 (grey) and zip3Δ
(black). The general number of SCs is distinguished with colored markers: Red—0, Blue—1–3, Gray—4–6, Green—7–9, and Orange—>10 synapsed regions.
The black arrow indicates the Zip1 threshold at which synapsis is first observed. Brackets shows length of time for synapsis for ZIP3 (gray) and zip3Δ (black). (C)
The rate of SC accumulation for ZIP3 (blue) and zip3Δ (red). The rate was calculated by calculating the time it took to first reach the maximum number of
distinguishable SCs.
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Optimization of conditions for in vivo
microscopy

It is essential for in vivo microscopy studies to demonstrate that
the imaging conditions do not perturb the event of interest and
subsequent cellular progression (Carlton et al., 2010). Our protocol
ensures that cells can complete meiosis without exhibiting phototoxic
effects (Supplementary Figure S4). To document whether our imaging
conditions permit completion of meiosis, cells were continuously
imaged to determine whether they formed spores (Figure 3A). We
used fluorescence microscopy to collect 3D optical sections
(Figure 1B) of wild-type Zip1-GFP strains starting at 8 h after
meiotic induction through early zygotene (~12–16 h) when
synapsis is initiating, through pachytene (~16–21 h), when synapsis
is complete and then at greater time intervals up to 152 h to determine
further meiotic progression (Figure 3B). Spore formation was
monitored by brightfield microscopy at various times throughout
the time course (Figure 3B, pink vertical columns). For the ZIP3
strain, on average 77.8% ±0.6 SD (n = 179, 5 experiments) of the cells
enter meiosis, based on number of cells expressing Zip1-GFP. The
overall sporulation frequency (69%) observed under our imaging
conditions was equivalent to the sporulation frequency measured
under normal sporulation conditions in culture (69%) (Figure 3C).
Thus, the ability to sporulate is not affected by the imaging conditions,
suggesting that photodamage is minimal.

Reduced Zip1 expression and delayed
synapsis kinetics in the zip3Δ mutant

Zip1 expression was monitored over the course of prophase to
determine the relationship between Zip1 expression and SC assembly.
To measure Zip1 expression via fluorescence intensity (FI), 3-D
optical sections of Zip1-GFP in sporulating strains were acquired
for 50 h at 1-h intervals (Materials and Methods). We measured the
total nuclear FI of Zip1-GFP and the volume for each nucleus to assess
the amount of Zip1-GFP at each time point. Profiles of total nuclear
Zip1 Fl for several individual cells over the course of prophase I are
shown for ZIP3 and zip3Δ (Figure 4A). We observe a large variation in
the duration of Zip1 presence for both ZIP3 and zip3Δ in individual
cells.

In order to compare Zip1 profiles in wild type and zip3Δ cells that
start accumulating Zip1-GFP at different times (Figure 4A), we aligned
each profile by setting time to zero when Zip1-GFP is first depleted for
both ZIP3 and zip3Δ. The average total Zip1-GFP FI and number of SCs
for the time courses were then calculated and these two averaged profiles
were aligned to each other at the point at which synapsis initiates
(Figure 4B, arrowhead). We find that Zip1 expression initially
increases before the first SC appears and continues to rise both for
ZIP3 and zip3Δ. Before Zip1 levels decline at the end of pachytene,
Zip1 expression plateaus in ZIP3 for 1.5 h on average, while this period
lasts ~4 times longer (6.3 h) for zip3Δ (Figure 4B). We also observe a
difference in the maximum Zip1 intensity achieved for ZIP3 (740 FU ±
66 SE) as compared to zip3Δ (424 FU ± 29 SE) which only attains 57% of
wild-type levels. The abrupt degradation of Zip1 at the end of pachytene
occurs within 1 hour in ZIP3 wild-type cells, which is much faster than
that observed for zip3Δ mutants, which on average occurs over ~3 h.
Overall, this leads to an average 6-h greater duration of synapsis for zip3Δ
(17 h) than for ZIP3 (11 h) (Figure 4B).

SC formation occurs after equivalent
Zip1 levels are reached

We observe that SCs first appear when the average total Zip1 FI
reaches about 380 × 105 FI for wild type and similarly to 310 × 105 FI
for zip3Δ (Figure 4B, black arrowhead). This suggests that synapsis
initiation may require a threshold level of Zip1 concentration.
However, we cannot distinguish at this point whether it is a
threshold concentration of Zip1 or the stage of meiotic progression
that is permissive for SC initiation. Like Zip1 production, the rate of
accumulation of SCs is faster for wild type (1.7 ± 0.5 SD synapsed
chromosomes/hour) than for zip3Δ (0.6 ± 0.4 SD synapsed
chromosomes/hour) synapsed chromosomes/hr) during this period
(Figure 4C). For wild type, the maximal number of SCs could not be
accurately counted but was determined to be greater than ten. A
previous study using fixed nuclear spreads showed an average of five
synapsed chromosomes in zip3Δ compared to the 16 expected in wild
type (MacQueen and Roeder, 2009). From Figure 4B, it appears the
number of SCs peaks at 1–3 SCs in zip3Δ. This discrepancy is likely
due to the inability to accurately count nuclei with 10–16 SCs in intact
cells as compared to chromosome spreads as well as the lower number
of nuclei used to determine the average in Figure 4A.

SC assembles continuously with either
monophasic or biphasic kinetics in zip3Δ

In zip3Δ, it is possible to observe and measure individual SCs
assembling from initiation, through elongation, to completion of
synapsis (Figure 5). Quantitation of synapsis elongation rates is
greatly facilitated by the tracking of cells when no other synapsed
chromosomes are present. In live yeast, chromosomes range from less
than 0.5 µm to over 3 µm in length. To obtain enough measurements
during elongation, our analysis focused on nuclei in which only a
single long chromosome synapsed (~0.14% of observed nuclei). Cells
were imaged at intervals ranging from 3 to 10 min between each 3-D
stack (shown as 2-D projections in Figure 5A) with most examples at
3-minute intervals. To determine whether the observed SC elongation
represents continuous, discontinuous and/or step-wise assembly, we
plotted the length of the synapsed region over time (Figure 5B).
Segmented regression was used to determine whether SC assembly
occurred at single or at multiple rates (Figure 5C). A predicted
R-squared was calculated and cross-validated with the predicted
residual error sum of squares (PRESS) statistic to distinguish the
best model to minimize overfitting (Alcantara et al., 2022).
Logarithmic fits were also performed, but the average R2 compared
to R2 obtained from the segmented regression was worse
(0.84 vs. 0.98).

In 34 SC assembly events measured, 65% of the assembly was
monophasic and the rest (35%) showed biphasic assembly. In all cases,
SC assembly monotonically increased, as no long pauses between steps
were observed. The average assembly rate was 67 nm/min (range from
12 to 165 nm/min, Figure 5D), which is about half the rate seen for SC
assembly in C. elegans. The average monophasic growth (56 ± 23 SD
nm/min) is significantly slower than that observed for the first and
faster part of biphasic growth (88 ± 42 SD nm/min). For all biphasic
SC growth, the second phase of SC assembly (Figure 5D, blue lines) is
slower (19 ± 12 nm/min Pt. test = 0.002) than the first phase. For
biphasic growth, the first rate of growth contributes on average to
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FIGURE 5
Synapsis assembly. (A) A time series of 2D max-sum projections at 3-min intervals from 3D image stacks of a single nucleus undergoing synapsis
assembly visualized by Zip1-GFP. Scale bar—2 µm. (B) Six representative nuclei containing a single chromosome for which SC length was measured as a
function of time during SC assembly. (C) Segmented regression was applied to the assembly data using 1–3 segments. The best fit model was determined
using the adjusted R2 (adj. R2) and cross-validated with the PRESS statistic. Best fit models have the highest adjusted R2 and lowest PRESS statistic. In this
example, the 2-segment fit (text highlighted in red) represents the best model. (D) Both monophasic and biphasic models were found for SC assembly. The
initial rate of SC growth for bothmonophasic and biphasicmodels are shown illustrated as black lines with roundmarkers. For the biphasicmodels, the second
SC growth rate is shown as blue lines with diamond markers. (E) Total SC length for all nuclei with monophasic and biphasic growth indicated (blue
circles–monophasic, red circles–biphasic) (F) A model in which SC growth initiates bidirectionally from an acrocentric centromere. A faster bidirectional
(initial) SC assembly rate is predicted to slow to 50% of the initial rate once the shorter end is reached (top panel). Predicted and observed rates are shown.
Expected and observed detection of individual synapsis initiation sites fusing into one synapsed chromosome are shown (bottom panel). (G) Plot of the phase
1 rate vs. total Zip1-GFP FI when the appearance the first SC is observed. r is calculated correlation coefficient. A subset of the data was used due to only a few
data sets had intensities associated with the growth under the exact same conditions.
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59% ± 16% (SD) of the final SC length. SC lengths for each assembly
event can be found in Supplementary Table S2 and Figure 5E.

zip3Δ chromosomes synapse from a single
initiation

In zip3mutants, there are fewer initiation events, of which 85% of
the SC initiations come from centromeres (Macqueen and Roeder,
2009). In wild type, synapsis initiation occur at centromeres but more
frequently at recombination-associated sites, and multiple initiations
are observed on each chromosome (Tsubouchi et al., 2008). Because
we did not observe multiple initiations in the 230 SC assembly events
monitored, we wanted to assess whether this could be attributed to an
insufficient number of observations. Based on Poisson statistics and
the average number of SCs in a zip3Δ, we can calculate the likelihood
of seeing multiple initiations on the same chromosome (see Materials
and Methods). Given that there are five SCs on average in zip3Δ, we
would expect to see two or more initiation sites occurring on the same
chromosome ~4% of the time. In the 230 SC assembly events that we
observed, we see no instances of multiple nucleation events which
would be detected by the fusion of elongating SC stretches (Figure 5F,
bottom panel). Since the binomial equation predicts that there is a
0.01 percent chance of missing such an event in the 230 SC assemblies
observed, this suggests that Zip1 initiates only from one nucleation site
in zip3Δ.

Potential models for biphasic growth

The longest SCs we measured were ~3 µm long and likely
correspond to full length chromosome IV SCs since the next
longest chromosome, chromosome XV is estimated to be ~2.3 µm
and thus would not be mistaken for chromosome IV. The fact that
only one initiation site is used for synapsis in zip3Δ implies that the
same initiation site is used twice: in opposite directions to complete
synapsis on that chromosome. Thus, we consider that the synapsis is
bidirectional, although the two initiations may not be simultaneous.
One model to explain biphasic growth could be the result of off-
center centromeres (i.e., neither acrocentric nor metacentric) as in
chromosome IV that initiates synapsis from the same site
bidirectionally without much delay between initiations (Figure 5F,
top panel). In this scenario we expect that for biphasic SC assembly,
the second phase of growth would occur when one end of the SC
reaches the end of the chromosome, such that only the other end
continues to grow with a second phase growth rate 50% of the initial
rate (Figure 5F, top panel). Instead, the second phase growth rate was
25% of the initial rate, significantly lower than expected (Pt.test =
0.002). Another possibility is that nuclear Zip1 concentration
influences SC elongation rates given the results that cells with
extra copies of ZIP1 synapse earlier (Voelkel-Meiman et al.,
2012). To test whether changing Zip1 levels influences the
elongation rate, we asked whether Zip-GFP total FI correlates
with SC elongation rates at the time of appearance of the first SC
(Figure 5G). A correlation coefficient r = −0.2 was observed
indicating no correlation between the starting concentration of
Zip1 and SC elongation rate. This suggests that different nuclear
concentrations of Zip1 may not be dictating the observed biphasic
rates.

Final disassembly of SCs is accompanied by
degradation of Zip1

Final SC disassembly is accompanied by a rapid decrease in
Zip1 levels, such that the majority of Zip1 is removed within
1 hour for ZIP3 (Figure 4B) and ~3 h for zip3Δ. At exit from
pachytene, Zip1 is removed from chromosomes with a minor
amount of Zip1 protein remaining at the centromeres (Jordan
et al., 2009; Newnham et al., 2010). The disassembly of single long
chromosomes in zip3Δ was assessed as in our previous SC assembly
measurements. Final SC disassembly occurs via shortening of the SC
from the ends (Figure 6A). We also explored the possibility that SCs
were also dismantled at specific foci, similar to foci used for initiation.
However, we saw no appearance of gaps within the shortening SCs
that would have been indicative that SC were being dismantled at
specific internal sites.

To assess the rates of disassembly, we plotted the SC length as a
function of time and performed segmented regression to determine
whether disassembly was monophasic or occurred at multiple stages
(Figure 6B). In all cases, final disassembly was monophasic with an
average rate of −66 ± 30 (SD) nm/min, which is similar in magnitude
to the initial rate observed for SC elongation. It is possible that the
disassembly rate is actually slower than appears since if disassembly
occurred simultaneously at the ends, each end would disassemble at
half the rate at which the overall length was shortening. In many
instances, there was an initial phase that occurred at a very low rate at
which SCs were degraded (5 nm/min ± 5 SD). Since this rate was so
low, we did not include this period as a separate phase given the error
of measurements. This programmed loss of Zip1 is distinguishable
from bleaching artifacts (Figure 6C). Figure 6D shows the distribution
of SC lengths as a function of time from which the rates were
calculated.

Abortive disassembly occurs during the SC
accumulation phase

While obtaining examples of SC disassembly, numerous cells were
found in which the disappearance of an SC is not immediately
followed by Zip1 degradation. Indeed, in many of these cases,
other SCs persist, and additional SCs continue to form as shown in
Figure 7A. Whereas the great majority of examples were obtained
from zip3Δ strains, rare examples were uncovered from ZIP3
(Figure 7B). These cells have not progressed to the end of
prophase, since Zip1 levels remained high and nascent SCs were
often still accumulating. We have termed this type of SC disassembly
“abortive SC disassembly.” Unlike final disassembly in which
Zip1 levels decrease by 50% within an hour and a half (Figure 4B),
during abortive disassembly, Zip1 levels remain high well after no SCs
are seen (Figure 7C). In a 5-h period, about 30% of nuclei show an
instance of abortive disassembly (n = 191).

Another difference between final and abortive disassembly is in
the size distribution of SCs that are involved in the two processes
(Figure 7C). Yeast chromosomes range widely in size from ~0.5 µm to
~3 µm with about 25% small (<0.5 microns, as determined from live
cells, Figure 7). Whereas the distribution of SC sizes observed for
assembly and final disassembly are similar, there is a much stronger
bias for small SCs (88%) to be disassembled abortively than during
final disassembly (51%) (Figure 7D). Though rare, 15 medium and
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long SCs experiencing abortive disassembly were characterized for the
kinetics of abortive disassembly. Like final disassembly, abortive
disassembly is monophasic. However, the average rate for abortive
disassembly was much lower 25 ± 1 (SD) nm/min vs. 66 ± 30 (SD) nm/
min for final disassembly. Together these results suggest that abortive
SC disassembly and final disassembly are distinct.

Discussion

Models of biphasic growth

Before this study, the real-time kinetics of synapsis had only been
visualized in C. elegans (Rog and Dernburg, 2015), an organism that does
not rely on recombination to pair or synapse its homologous
chromosomes. We set out in this study to examine the kinetics of
synapsis in yeast, which is more like humans in that it depends on
recombination for its pairing and synapsis. Using a zip3Δmutant in yeast,
we were able to unambiguously follow SC assembly and disassembly from
a single initiation site on a single chromosome.We saw that SC kinetics in

both organisms had distinct differences. In contrast to what has been
reported in C. elegans, in which the kinetics of SC formation exclusively fit
a single rate of elongation, in yeast, we found biphasic elongation 35% of
the time. Analysis of synaptic initiation in yeast suggested that synapsis
from most centromere-initiated SCs was unidirectional (Tsubouchi et al.,
2008). However, a single SC initiation site in zip3Δ is responsible for
synapsis of both arms, implying that SC initiation must be bidirectional
(i.e., proceed in both directions from a single point). Bidirectional synapsis
from a non-centric centromere might account for the two rates of
elongation as the short arm completes synapsis earlier, leaving the
long arm synapsis to finish alone. However, the magnitude of the rate
reduction (greater than the expected two-fold reduction if the elongation
rates are equal) suggests that other factors could be contributing as well,
such as unequal elongation rates for each side of the initiation site.

Another alternative is a model in which the slower second phase of
SC elongation may to be due physical constraints that increase as SC
lengths become long. In this case, we would have expected that
biphasic growth would be seen more frequently on the longer SCs.
Consistent with this, the average SC length is longer for cells exhibiting
biphasic growth (Figure 5E).

FIGURE 6
Final SC disassembly (A) A time series of 2D max-sum projections at 10-minute intervals from 3D image stacks of a single zip3Δ nucleus with a single
chromosome undergoing final synapsis disassembly visualized by Zip1-GFP. Scale bar—2 µm. (B) Four representative nuclei containing one chromosome for
which SC length wasmeasured as a function of time during the final disassembly of the SC. (C)Comparison of nuclear Zip1-GFP fluorescence levels when SCs
are all disassembling (red diamonds), not at final disassembly (green circles), not disassembling but subjected to heavy bleaching conditions (blue
triangles). Log plots are normalized to the respective maximum intensity. (D)Disassembly of SC is monophasic. The rate and length of each SC disassembly is
plotted (n = 10).
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FIGURE 7
Abortive synapsis disassembly. (A) A time-series of 2D triple-overlay projections from 3D image stacks of a single zip3Δ nucleus at 5-minute intervals
showing abortive disassembly for the smaller (white arrow) of the two chromosomes. The yellow square outlines the last time frame in which the smaller
chromosome is last observed. Thewhite square shows time frame in which smaller chromosome is no longer observed. Below is the same time-series in a y-z
view. Scale bar—2 µm. (B) A time-series of 2D triple-overlay projections from 3D image stacks of a single ZIP3 nucleus at 20-minute intervals showing
abortive disassembly chromosomes. The white arrow indicates a SC that formed and then disassembled. The red arrow represents either the same SC as
indicated by thewhite arrow that did not fully disassemble or an SC that newly formed. The yellow square outlines when the chromosome is last observed. The
white square outlines time when chromosome has disassembled. Several timepoints later after a period in which there is no SCs, new SCs form in the
timeframes indicated by (*). Below is the same time-series in a y-z view. Scale bar—2 µm. (C) Abortive synapsis disassembly is distinguishable from final
disassembly by the high levels of Zip1 that remains (right panel, timepoints 130–210 indicated by *) as compared to final disassembly of the SCwhen Zip1 levels
decrease (left panel, timepoints 110–180 indicated by *). Left panel–final disassembly. Right panel–abortive disassembly (D) Distribution of SC sizes divided
into small (<0.5 µm), medium (0.5–1.5 µm) and large (>1.5 µm) for SC assembly (n = 230), abortive disassembly (n = 171) and final disassembly (n = 530).
Images show example SCs belonging to each size class.
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An intriguing possibility for the observed biphasic growth rate is
that the slower rate may be due to chromosome interlocks. Since in
yeast, all chromosome ends are embedded in the nuclear membrane,
as chromosomes pair, other chromosomes may become trapped and
obstruct pairing or alignment in advance of SC formation (Navarro
et al., 2022). This would in turn impede synapsis and thereby attenuate
the rate of SC assembly in the region of the interlock. It was proposed
that entanglements can be resolved by motion of the entrapped
chromosome to the telomeric end where the chromosome can
escape (Navarro et al., 2022). The delay caused by clearing the
entanglement might account for the slower rate of Zip1 assembly.
Such a delay might not be seen in C. elegans, which is unusual in that
only one end of the chromosome is associated with the nuclear
envelope, presumably making it easier for interlocks to resolve.

Yeast SC elongation rate is likely not affected
by zip3Δ mutation

Overall, the rate of SC formation based on Zip1-GFP images in
yeast on average was 67 nm/min which is approximately two-fold
slower than the average rate obtained from nematodes (150 nm/m)
(Rog and Dernburg, 2015). This raises the possibilities that either
synapsis is slower in yeast, or that the zip3Δ mutant impairs synapsis
elongation rates. While the numbers of SCs are reduced in zip3Δ
mutants, a full complement of SCs is restored by a mutation in FPR3
(Macqueen and Roeder, 2009). In the fpr3 zip3 double-mutant, the
inhibition of synapsis initiation at the centromeres is removed, which
allows the cells to form SC on all chromosomes. They found that in
fpr3 zip3 the cumulative lengths of SCs per nucleus scored at similar
time points were not significantly different from wild type. If
elongation rates were slower in the zip3Δ mutant than wild type,
we would not have expected the fpr3 zip3 mutants to attain wild-type
SC lengths at wild-type rates. However, we cannot fully eliminate the
possibility that Fpr3 has some effect on elongation rate. To fully
address whether the zip3Δ SC elongation rate is representative of the
wild-type SC elongation rate, future developments to allow
observations of single chromosomes in wild type are needed.

Factors that might affect overall synapsis
period

Factors other than Zip1 assembly rates influence the time it takes
to complete synapsis of the entire complement of chromosomes. In
some organisms like Drosophila, the centromeres are the synapsis
initiation sites and they are already paired at the start of meiosis
(Takeo et al., 2011; Tanneti et al., 2011). In nematodes, pairing centers
present on a chromosome end initiate synapsis independently of
recombination (Dernburg et al., 1998). In contrast to nematodes,
SC formation in yeast and mammals is dependent on the early steps of
recombination (Giroux et al., 1989; Dernburg et al., 1998; Romanienko
and Camerini-Otero, 2000), perhaps prolonging the phase of synapsis
and/or delaying its onset. The extent of pairing at the time of synapsis
may influence the timing of synapsis completion and could be very
different among organisms. Organisms that are dependent on
recombination for synapsis tend to use a subset of those
recombination sites to initiate synapsis (Joyce and McKim, 2007;
Tsubouchi et al., 2008; Pyatnitskaya et al., 2022). Therefore, completed

chromosome synapsis depends on both the rate of elongation and the
number of initiation sites used as well as the lengths of the
chromosomes. Certain yeast strains backgrounds, including SK1,
can reach full synapsis in less than 4 h (Padmore et al., 1991),
whereas the BR strains spend approximately 11 h undergoing SC
formation. Unless the rate of SC formation is significantly different in
these two laboratory yeast strains, the shorter time spent synapsis
suggests that other regulatory controls such as the number and timing
of synapsis initiations, may be responsible.

Threshold vs. meiotic progression models for
synapsis initiation

We quantified Zip1-GFP accumulation in the nucleus to monitor
cells during the active phase of SC assembly and disassembly. We
found that chromosome synapsis initiated when Zip1-GFP levels
reached comparable levels in both wild-type and zip3Δ cells,
suggesting that a threshold of SC components accumulates before
SC formation begins. It is also possible that rather than a threshold,
reaching a particular stage of meiotic progression licenses SC
formation and Zip1 levels are just coincidentally the same in wild
type and mutant. Voelkel-Meiman et al. (2012) monitored synapsis in
BR strains with 1–6 copies of Zip1 and found that as the copy number
increased, synapsis started earlier. In a threshold model, higher levels
of Zip1 in SK1 vs. BR strains might explain, in part, how SK1 starts
synapsis earlier. It is also consistent with the fact that SK1 normally
synapses in the presence of polycomplexes.

Lower abundance of Zip1 in zip3Δ mutants

As seen in Figure 4B, in zip3Δ less overall Zip1 is seen compared to
wild-type as time progresses. One possibility is that SC structures
themselves stabilize/maintain abundance of Zip1—i.e., Zip1 that is
incorporated into SCmay be less likely to degrade than Zip1 floating in
the nucleoplasm. Perhaps it is the SC structure that stabilizes
Zip1 thereby promoting its accumulation. Another possibility is
that a feedback loop exists such that more Zip1 is produced as
more is incorporated into chromosomes.

Final disassembly involves removal of SC from
the ends

In contrast to the stochastic assembly of Zip1-GFP on individual
chromosomes throughout the synapsis phase, the final SC disassembly
happens all at once to all synapsed chromosomes. The concentration
of Zip1 remains high until programmed SC disassembly, which is
abrupt in wild type, and attenuated in zip3Δ. In both strains the SCs
began rapid disassembly when Zip1 levels begin to decline (within
1.5 h for zip3Δ), suggesting that zip3Δ diploids retain programmed
disassembly signals, but theymay be compromised. Disassembly of the
SC is monophasic with a similar rate to assembly. The loss of
Zip1 occurs at the ends, the reverse of assembly. However, the
possibility exists that in wild-type cells, disassembly may also occur
interstitially, potentially at the sites of synapsis initiation. This is
difficult to measure due to the apparent intensity changes that
accompany a change in orientation of the SC.
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Abortive disassembly may be a way to correct
synapsis

Unexpectedly, we encountered many SCs in zip3Δ nuclei that
disassembled in advance of final disassembly when Zip1 protein is
actively degraded. We refer to the disassembly of these SCs as
“abortive disassembly” since these SCs fail to persist to the end of
the synapsis phase. The abortive disassembly process represents SCs
that are disassembling at the same time that others can be
assembling, making it reminiscent of the “dynamic instability”
phenomenon in microtubules (Kirschner and Mitchison, 1986).
Most of these SCs were very short, but a few larger SCs were
observed. Aborted SCs were also observed in wild-type meiosis,
but examples were technically harder to identify because so many
SCs are assembling at the same time, and it is likely a much rarer
event. Abortive disassembly was not observed in the nematode (Rog
and Dernburg, 2015). Our data reveal that ~30% of the 5-h time
courses (representing about a third of the synaptic period) had one
or more abortive SCs, suggesting that in zip3Δmutants, abortive SCs
are fairly common. Consistent with our data, examination of fixed
nuclei indicated that zip3meiotic nuclei did not gain as many SCs as
wild type (Voelkel-Meiman et al., 2019). However, the dynamics of
assembly and disassembly of SCs can only be revealed from live
imaging, illuminating the wealth of data that can be uncovered from
real-time imaging. One prediction for future in vivo studies is that
abortive disassembly should be more frequent in hybrid strains for
which there are a lot of polymorphisms.

We hypothesize that the aborted SCs are identified as defective or
stalled SCs by a yet uncharacterized surveillance mechanism, and then
targeted for disassembly. We speculate that many of the aborted SCs
identified in zip3Δ mutants represent nascent SCs that were formed
between non-homologous chromosomes. Zip3, with Fpr3, has been
proposed to have a role in licensing SC formation at centromeres after
recombination has initiated (Macqueen and Roeder, 2009).
Consequently, when this license is defective as in zip3 fpr3,
promiscuous SC formation occurs in spo11 mutants, which are
recombination-negative, and in haploids, which do not have
homologs. zip3 fpr3 double mutants attain wild-type levels of SCs
but have low spore viability, implying that apparent full synapsis
cannot rescue zip3. It seems likely that centromere-initiated synapsis,
in the absence of regulation, is error-prone. This could explain why
most of the aborted SCs were very short, since a lack of homology may
slow down elongation or may be a signal for SC abortion or have some
physical characteristic that lacks stability. Perhaps these short SCs,
doomed to disappear, may not have established a robust central
element. We can envision a scenario in which these short non-
homologous SCs are tugged apart by the telomere-led movements
during prophase. Perhaps by virtue of being non-homologous and
relatively short, they are more vulnerable to telomeric pulls. Rather
than invoking a sensing mechanism to seek out non-homology,
perhaps the physical jerking of the chromosomes is enough to
disrupt non-productive SCs. For those SCs that had attained
significant length before they are aborted, they may be the result of
entanglements with other chromosomes. Perhaps the pachytene
checkpoint acts to prolong the synapsis phase in zip3Δ to allow
time for entanglement resolution. In the future, potentially more
elaborate FISH experiments like shown in Figure 1D will be able to
test the hypothesis that the abortive disassembly events predominantly
stem from non-homologous interactions.

During the past several decades, numerous genes involved in
chromosome pairing and synapsis have been identified, and the
protein architecture of the SC determined, yet many basic questions
remain concerning the links between homology recognition, SC assembly,
interlock resolution, recombination, and crossover distribution. The
complex dynamics of meiosis are one reason that these questions have
been difficult to answer. Genetic methods typically apply a constant-in-
time perturbation and then probe the end-point result. The analysis of the
dynamics of SC assembly and disassembly in real time provides a different
view of the same events that have long been probed by genetic means, and
has revealed unexpected features such as biphasic growth and abortive
disassembly that had not been predicted on the basis of genetic analysis.
Our work thus represents a step towards mechanistic understanding of
meiosis as a dynamic process.
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SUPPLEMENTARY FIGURE S1–S3
SC movies in zip3Δ strains. 2D projection movies of the dynamic motion of
zip3Δ SCs. 200 ms interval time series. S1-movie associated with Figure 2A.
S2-movie with 9 SCs. S3-movie with 1 SC.

SUPPLEMENTARY FIGURE S4
Effects of nonoptimal imaging conditions. Preliminary experiments
revealed that excessive exposure of the yeast cells to the 488 nm laser at a
power greater than 30 µW results in phototoxic effects such that
formation of a Zip1 aggregate occurs or that chromosomes adopt a fixed
configuration and no longer appear subject to telomere-led pulls (top and
middle panel). At our imaging conditions at 11 µW, bleaching rates were
reduced and no aberrant chromosome behavior was observed (bottom
panel). Frame numbers are indicated. Data was taken at 200 ms time
intervals.

SUPPLEMENTARY TABLE S1
Yeast Strains.

SUPPLEMENTARY TABLE S2
SC lengths from monophasic and biphasic assembly.
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Genetic control of meiosis
surveillance mechanisms in
mammals
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Meiosis is a specialized cell division that generates haploid gametes and is critical
for successful sexual reproduction. During the extended meiotic prophase I,
homologous chromosomes progressively pair, synapse and desynapse. These
chromosomal dynamics are tightly integrated with meiotic recombination (MR),
during which programmed DNA double-strand breaks (DSBs) are formed and
subsequently repaired. Consequently, parental chromosome arms reciprocally
exchange, ultimately ensuring accurate homolog segregation and genetic
diversity in the offspring. Surveillance mechanisms carefully monitor the MR
and homologous chromosome synapsis during meiotic prophase I to avoid
producing aberrant chromosomes and defective gametes. Errors in these
critical processes would lead to aneuploidy and/or genetic instability. Studies
of mutation in mouse models, coupled with advances in genomic technologies,
lead us to more clearly understand how meiosis is controlled and how meiotic
errors are linked to mammalian infertility. Here, we review the genetic regulations
of these major meiotic events in mice and highlight our current understanding of
their surveillance mechanisms. Furthermore, we summarize meiotic prophase
genes, the mutations that activate the surveillance system leading to meiotic
prophase arrest in mouse models, and their corresponding genetic variants
identified in human infertile patients. Finally, we discuss their value for the
diagnosis of causes of meiosis-based infertility in humans.

KEYWORDS

meiosis, checkpoint, infertility, human infertility, mammalian

1 General aspects of mammalian gametogenesis

The perpetuation of most living beings and their genetic information across generations
relies on a critical biological process-gametogenesis. In mammals, this process includes
oogenesis and spermatogenesis, through which unipotent diploid precursor cells develop
into mature haploid gametes, eggs in females, or sperm in males. After fertilization, the
united egg and sperm form the embryo that develops into a new diploid organism carrying
maternal and paternal genomic material.

During early mouse embryonic development, primordial germ cells (PGCs) are singled
out at the epiblast (at ~ embryonic day (E) 7.25) (Chiquoine, 1954; Ginsburg et al., 1990),
migrate along the developing gut and eventually colonize the future gonads (at ~ E10.5)
(Molyneaux et al., 2001). Soon, PGCs switch from multipotential to bipotential and obtain
the competence to initiate sexual differentiation and meiosis (Lesch and Page, 2012). At ~
E12.5, the expression of the Y chromosome-encoded gene, Sry, determine the gonads to
become the testes (Koopman et al., 1991). Consequently, PGCs commit to divergent
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development based on the cues from the somatic environment:
female and male PGCs differentiate to their specialized gamete
precursors: oogonia and spermatogonia, which initiate meiosis to
form eggs through oogenesis or sperm through spermatogenesis
(Edson et al., 2009).

In mammals, meiosis exhibits substantial sexual dimorphism
(Handel and Eppig, 1997; Morelli and Cohen, 2005). Female meiosis
is initiated roughly simultaneously in all oogonia during fetal
development and subsequently arrests at the end of meiotic
prophase I (dictyotene stage) around birth. It resumes producing
eggs periodically after puberty over a defined reproductive lifetime.
Female meiosis I does not complete until ovulation, and meiosis II
only occurs under the trigger of fertilization, eventually generating
only one haploid oocyte from one oogonium. In contrast, male
meiosis is initiated in separate cohorts of spermatogonia after the
onset of puberty and provides continuous sperm production
throughout most of adult life. The two meiotic cell divisions in
males are consecutive and result in four haploid sperm from each
spermatogonium that initiates meiosis.

Both spermatogonia and oogonia enter meiosis during
preleptotenema but before S phase. The sexually dimorphic
timing of meiosis entry depends on the Stimulated by Retinoic
Acid gene 8 gene (Stra8) (Handel and Schimenti, 2010). In females,
retinoic acid (RA) synthesized in the mesonephric ducts (Bowles
et al., 2006) induces Stra8 expression, resulting in meiosis initiation
(Koubova et al., 2006; Baltus et al., 2006); however, in males, RA is
degraded by CYP26B1 (gene cytochrome P450, family 26, subfamily
b, polypeptide 1) from Sertoli cells, preventing the induction of
Stra8 and thus blocking the meiotic entry (Bowles et al., 2006). The
ability to enter meiosis is gained in males postnatally when the
expression of CYP26B1 is repressed in male gonads (Koubova et al.,
2006; Bowles et al., 2006; Anderson et al., 2008; Lesch and Page,
2012). The exact RA-Stra8 meiotic initiation pathway remains
elusive. This is mainly due to the role of RA as a meiosis-
inducing substance is unclear and has been challenged (Kumar
et al., 2011; Vernet et al., 2020), particularly by a recent study
showing that meiosis can normally occur in the absence of all RA
receptors in female mice (Vernet et al., 2020). The role of STRA8 in
meiotic initiation is more clear and STRA8 is suggested recently to
trigger meiosis initiation in mice together with MEIOSIN in a broad
transcriptional network, probably by activating genes responsible for
suppressing the mitotic program and establishing a meiosis-specific
chromosome structure under the presence of RA (Kojima et al.,
2019; Ishiguro et al., 2020). Notably, other pathways are also
suggested to mediate meiosis initiation in mice, such as the
BMP-ZGLP1 pathway that works in parallel with RA-STRA8
signaling (Nagaoka et al., 2020), STRA8-independent RA-REC8
pathway (Koubova et al., 2014; Soh et al., 2015) and epigenetic
regulated negative controls (Yamaguchi et al., 2012; Yokobayashi
et al., 2013; Endoh et al., 2017).

1.1 Spermatogenesis

Mammalian male fertility requires millions of sperm produced
daily by continuous spermatogenesis throughout reproductive life.
The continual spermatogenesis is founded on a stem cell pool
supplied by spermatogonial stem cells (SSCs) (de Rooij and

Russell, 2000; Oatley and Brinster, 2008). Spermatogenesis
continues with the mitotic expansion of spermatogonia, the
meiotic divisions of spermatocytes, and the morphological
transformations of spermatids.

SSCs are testis-specific stem cells derived from PGCs. In mice,
male PGCs arrested at the G0/G1 phase migrate and differentiate
into SSCs around 3 days postpartum (dpp) (Bellve et al., 1977;
McLean et al., 2003). One subpopulation of these cells
(Neurogenin 3 (NGN3)-negative) initiates the first round of
spermatogenesis during the second week after birth; the other
subpopulation develops into morphologically distinct, NGN3-
positiveSSCs and supplies SSCs for spermatogenesis during
adulthood (Yoshida et al., 2006). SSCs (As (A-single)
spermatogonia) undergo symmetric division to produce SSCs for
self-renewal or progenitor spermatogonia (Apr (A-paired)
spermatogonia) for differentiation, which marks the beginning of
spermatogenesis. SSC self-renewal predominates during the
neonatal period to establish a stem cell pool (Shinohara et al.,
2001) but only occurs periodically under steady-state conditions
during adulthood to maintain the SCC pool (Oatley and Brinster,
2012). Apr spermatogonia undergo seven rounds of mitotic cell
divisions to form undifferentiated Aal spermatogonia (Aal
(A-aligned) spermatogonia)and differentiated A1, A2, A3, A4, In
(Intermediate), and B spermatogonia. B spermatogonia differentiate
into preleptotene spermatocytes via a final round of mitosis and
initiate meiosis (Russell et al., 1993; de Rooij and Russell, 2000; Rato
et al., 2012).

Diploid spermatocytes proceed through meiosis, resulting in
haploid round spermatids. Subsequently, these round spermatids
undergo structural and functional changes, including nuclear
remodeling by chromatin condensation, removing the excess
cytoplasm, and forming an acrosome and a sperm tail
(spermiogenesis) (Hermo et al., 2010; Lehti and Sironen, 2016).
As a result, spermatids become motile spermatozoa and are released
to the central seminiferous lumen (spermiation). Spermatozoa will
complete the final maturation to become fertilizable sperm in the
epididymis.

Spermatogenesis occurs within the seminiferous tubules of the
testis, in which germ cells in different stages of development are
organized into a series of cell associations known as stages. In mouse
testis, 12 stages have been defined (Hasegawa and Saga, 2012). RA
pulses progressively stagger along the tubule and stimulate the
spermatogonia to enter the rigidly timed pathway committed to
meiosis. This determines the seminiferous epithelial cycle initiation
and eventually enables the continuous release of spermatozoa (de
Rooij and Russell, 2000).

In the seminiferous epithelium, Sertoli cells form specialized
tight junctions (so-called “blood-testis barrier” (BTB)) at their base
to separate the seminiferous epithelium into basal (where the
spermatogonial population resides) and the adluminal
compartments (where the meiotic and haploid germ cells reside).
The BTB blocks the elements from the interstitial space to maintain
homeostasis for meiotic and haploid germ cell development in the
adluminal compartment (O’Donnell et al., 2000; Oatley and
Brinster, 2008). The BTB remodels periodically (controlled by
RA) to ensure preleptotene spermatocytes enter the adluminal
compartment to initiate meiosis (Hasegawa and Saga, 2012). The
steroidogenic Leydig cells reside in interstitial tissue between the
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seminiferous tubules and secrete testosterone under the influence
of LH.

1.2 Oogenesis

Mammalian oogenesis begins during embryonic development
and generates primary oocytes assembled in primordial follicles
perinatally. The establishment of the pool of primordial follicles
determines mammalian female fertility. Post-pubertally, primordial
follicles are recruited irreversibly and develop into mature follicles
during the estrous/menstrual cycle, eventually releasing mature and
fertilizable oocytes. As a result, the ovarian reserve is gradually
reduced, defining a finite female reproductive life span (Kerr et al.,
2013; Li and Albertini, 2013; Wear et al., 2016; Hunter, 2017; Ruth
et al., 2021).

In mice, after differentiation of PGCs, oogonia undergo mitotic
divisions with incomplete cytokinesis, forming germ cell cysts in
which daughter cells are connected by intercellular bridges
(McLaren and Monk, 1981; Pepling and Spradling, 1998). On
E13.5, oogonia in the cysts initiate meiosis and eventually
differentiate into primary oocytes, which will complete the first
meiotic prophase and arrest at dictyotene perinatally (Borum, 1961).
After cyst breakdown, primary oocytes are enclosed in a layer of
somatic pre-granulosa cells, forming primordial follicles by 4dpp
(Pepling and Spradling, 2001). The formation of primordial follicles
is a complex process. It requires the presence of germ cells
(McLaren, 1984) and involves communication between oocytes
and pre-granulosa cells (Pepling, 2012).

In mammals, massive oocyte culling accompanies oogenesis.
Mouse oocyte numbers begin to decline since E14.5, remain about
half at birth, and continue reducing postnatally. At 4dpp, eventually,
only 20% of fetal oocytes remain in the ovaries (Malki et al., 2014;
Hunter, 2017; Martínez-Marchal et al., 2020). This massive oocyte
death might result from oocyte quality control (Hunter, 2017).
Oocytes with potential defects due to the activation of
LINE1 transposon are eliminated during embryonic development
(E15.5-18.5) in mice, leaving only oocytes with limited
LINE1 activity (Malki et al., 2014). Postnatally, oocyte culling
occurs in response to errors in meiotic prophase I to remove
oocytes that might have chromosomal defects (Di Giacomo et al.,
2005). Additionally, the loss of oocytes is also suggested to be the
self-sacrifice of the so-called nursing oocytes, similarly to a well-
characterized process that occurs during oogenesis in Drosophila
(Lei and Spradling, 2016). In Drosophila, during oogenesis, nurse
cells surrounding the growing oocyte provide nutrients and other
factors required for development. The nurse cells form a syncytium
with the egg, where the cytoplasm and organelles are shared among
the cells, allowing for efficient transport of substances to the growing
egg. Additionally, the nurse cells also help to regulate the
developmental program of the egg by providing signals and
controlling the expression of specific genes. In this way, the
nursing cells play a crucial role in ensuring the proper
development and survival of the egg. Thus, the oocyte quality
control processes select the most suitable oocytes for the next-
generation.

Newly formed primordial follicles remain quiescent until
recruited. A cohort of primordial follicles located at the anterior-

dorsal region of the mouse ovary is activated to grow during the first
week of postnatal development, the first wave of folliculogenesis
(Cordeiro et al., 2015). After puberty, quiescent primordial follicles
are continually recruited through primordial activation to initiate
follicular development, forming primary follicles with a single layer
of cuboidal granulosa cells (Lintern-Moore and Moore, 1979).

Primary follicles continue developing through two phases: pre-
antral and antral phases. Through the pre-antral phase, primary
follicles become secondary/pre-antral follicles with two or more
layers of granulosa cells. This development is independent of
gonadotropins and is mainly regulated by autocrine and
paracrine signaling, specifically, the TGF-β family members such
as oocyte-secreted GDF-9 and BMP-15 (Yan et al., 2001;
Günesdogan and Surani, 2016; Namwanje and Brown, 2016).
Through the antral phase, antral follicles are formed. The
presence of an antrum-a granulosa cell-secreted fluid-filled cavity
characterizes antral follicles. The follicle development during this
phase depends on gonadotropins FSH and LH (Williams and
Erickson, 2000). FSH stimulates granulosa cells to proliferate and
secrete estrogens. LH stimulates the theca cells to produce
progesterone and testosterone. More importantly, the rise of the
FSH level during the menstrual cycle allows the selection of
dominant follicles, enabling only some of the growing antral
follicles to develop into ovulatory follicles (Zeleznik, 2004).

Since the initiation of follicular development, oocytes start to
grow in size and are transcriptionally and translationally active
(Lintern-Moore and Moore, 1979). However, they remain arrested
at the end of the meiotic prophase, marked by a large nucleus-the
germinal vesicle-with a prominent nucleolus. This arrest is
maintained by the combined effects of the cyclic adenosine
monophosphate (cAMP) and cyclic guanosine monophosphate
(cGMP) (Norris et al., 2009; Jaffe and Egbert, 2017). When the
follicles reach the preovulatory stage, in response to LH surge,
oocytes will resume meiosis and complete maturation, as seen by
the germinal vesicle breakdown. Subsequently, oocytes complete the
first meiotic division but arrest at metaphase II upon ovulation and
will resume meiosis if fertilized, eventually generating a mature
oocyte with two or three polar bodies that will undergo apoptosis.
Besides the nuclear maturation, which involves the haploidization of
the genome, the oocyte cytoplasm must also mature through major
translational, post-translational, and organellar modifications,
which are essential for the completion of meiosis, fertilization,
and early embryonic development (reviewed in Li and Albertini,
2013).

2 Meiosis

Meiosis is a specialized cell division critical for gametogenesis in
all sexually reproducing organisms. Through meiosis, a diploid
parental cell gives rise to haploid daughter cells, and this is
achieved by a single round of DNA replication followed by two
rounds of cell divisions (Kleckner, 1996). Homologous
chromosomes separate during the first division (meiosis I), and
sister chromatids separate during the second division (meiosis II)
analogously to mitosis, resulting in the generation of haploid cells. A
canonical meiotic program present in most organisms (e.g.,
mammals, budding yeast, plants, etc.) will be briefly described in
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this section and expanded in detail, focusing on the two major
meiotic events, synapsis and meiotic recombination (MR), in the
following sections. Findings in mice will be prioritized to discuss in
line with the scope of this review. However, data from other species,
particularly yeast, will be addressed whenever necessary or of
interest.

Meiosis is characterized by an extended prophase I, during
which MR occurs (Figure 1). MR initiates in early prophase I
with the formation of numerous DNA double-strand breaks
(DSBs) catalyzed by the conserved SPO11 protein (Keeney,
2001). DSB ends undergo resection and generate 3′ssDNA ends,

subsequently bound by the RecA family of strand exchange proteins
(DMC1, RAD51) (San Filippo et al., 2008). This protein
nucleofilament searches and invades homologous repair
templates, initiating the repair pathways to form crossovers
(COs), with reciprocal exchange of chromosome arms flanking
the DSB site, or non-crossovers (NCOs), with no exchange of
flanking parental sequences (Keeney and Neale, 2006; Hunter,
2015). NCOs promote homolog pairing while COs establish the
connections between homologous chromosomes to ensure accurate
segregation at meiosis I and reshuffle parental alleles to increase
genetic diversity in offspring (Hunter, 2015; Lam and Keeney, 2015).

FIGURE 1
Meiotic prophase I overview. This schematic illustrates chromosome dynamics during meiotic prophase I in spermatocytes and oocytes (left panel)
and themeiotic recombination pathway (right panel). Left panel, inmeiotic prophase I, each paternal (black) ormaternal (grey) homologous chromosome
is organized around a chromosomal axis. During leptonema, axial elements (AEs) develop for each chromosome, and programmed SPO11-induced DSBs
are generated as recombination initiates. During zygonema, synapsis initiates between paired homologs. Then it spreads alongwith the entire AEs as
the SC central region (CR) proteins (consisting of the transverse filaments (TFs) and the central element (CE)) are installed between the AE. AEs are then
designated as lateral elements (LEs) of the SC. In the meantime, DSBs are gradually repaired as recombination progresses. By pachynema, homologous
chromosomes are fully synapsed, except for the heteromorphic X and Y chromosomes in the spermatocytes, which synapse only in a short
pseudoautosomal region and form a transcriptionally silent chromatin compartment known as the sex body. By the end of pachynema in spermatocytes
or during late pachynema/early diplonema in oocytes, meiotic recombination completes as DSBs on autosomes are all repaired, and crossovers (COs) are
generated. During diplonema, the CR is disassembled, and homologous chromosomes are only held together at the CO sites (chiasmata). From
diplonema, spermatocytes progress to metaphase I, completing meiotic divisions without interruption. In contrast, oocytes arrest at the dictyate stage
until meiotic resumption after puberty. Right panel, several major events and critical transitions occur duringmeiotic recombination. Mammalian proteins
that are, or are predicted (underlined) to be, involved in each event are listed. SPO11 catalyzes DSB formation in association with its accessory proteins.
DSB ends are further resected through a series of nucleolytic activities mediated by the MRN complex (MRE11- RAD50-NBS1) and others. As a result, a
short oligonucleotide covalently attached to SPO11 (SPO11 oligo) is released, and 3′ ssDNA tails are generated, which are immediately coated by ssDNA
binding proteins (such as RPA, MEIOB, SPATA22, etc.). Recombinases DMC1 and RAD51 assemble at resected 3’ ssDNA tails, promoted by recombination
proteins such as MEILB2, BRCA2, BRME1, etc. RAD51 and DMC1 coated ssDNA are stabilized by HOP2-MND1 and engage in homology search and strand
exchange, resulting in D-loop formation. The repair can proceed by either a double Holliday junction (dHJ) pathway or synthesis-dependent strand
annealing (SDSA). ZMM proteins and other factors control this by processing and stabilizing the recombination intermediates. In the dHJ pathway,
D-loops are further stabilized by MutSγ homologs (MSH4 and MSH5), and the second end of the DSB is captured to form a dHJ, requiring RPA-MEIOB-
SPTATA22 complex. ZMMproteins such as HEI10 and RNF212 facilitate the recruitment ofmismatch repair factors MutLβ homologs (MLH1, MLH3). MutLβ
and EXO1mediate the resolution of dHJ, primarily giving rise to crossover (CO) products. In SDSA, the invading strand is displaced after DNA synthesis and
reanneals to the other end of the DSB, followed by further DNA synthesis and nick ligation, ultimately giving rise to non-crossover (NCO) products.
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MR is tightly integrated with a highly-organized and dynamic
chromosome structure throughout the five substages of meiotic
prophase I (leptonema, zygonema, pachynema, diplonema, and
diakinesis) (Zickler and Kleckner, 1999). During leptonema, the
chromatin condenses at the developing chromosomal axes, and
recombination initiates. The axes provide a rod-like center for
the loops of every pair of chromatids to anchor, defining a loop-
axis structure essential for DSB formation and repair template
choice (Subramanian and Hochwagen, 2014). During zygonema,
maternal and paternal homologs progressively pair. The loop-axis
organization makes this close alignment of homolog axes possible.
However, understanding how base-pair resolution pairing is
achieved in the context of the complex meiotic chromosome
architecture is limited. Several regulation layers, including meiotic
recombination and dynamic chromosome movement, are suggested
to promote homolog pairing (Bolcun-Filas and Handel, 2018).
Synapsis initiates as a tripartite proteinaceous scaffold–the
synaptonemal complex (SC)- which starts to form between the
paired homologous chromosome axes to create an intimate
association between them. While in some organisms (e.g.,
Neurospora, and Coprinus), synapsis initiates only after all
homologs complete pairing, in budding yeast and mammals,
synapsis begins concomitantly with homolog pairing at
zygonema. The telomeres and several interstitial sites of DSB-
mediated inter-homolog associations are often where synapsis
initiates (Fung et al., 2004), while in mice and several organisms
with metacentric chromosomes, including humans, centromeres are
often the last to synapse (Roig et al., 2010; Bisig et al., 2012; Qiao
et al., 2012). Once it initiates, synapsis quickly spreads along the
chromosomes in both directions in a zipper-like manner. At
pachynema, the SC is fully installed along the entire length of all
homologous chromosomes (Fraune et al., 2012). The last
recombination steps after strand invasion occur in the SC
context, which further helps keep the homologs in association,
generating COs at the end of pachynema. Subsequently, the SC
disassembles asymmetrically between homologs throughout
diplonema and diakinesis, accompanied by changes in
chromosome compaction (Gao and Colaiácovo, 2018). By late
diakinesis, the highly condensed bivalents only remain connected
by chiasmata, the cytological manifestation of COs. These inter-
homologous connections ensure correct segregation under tension
by allowing homolog pairs to stably bi-orient at the metaphase I
spindle (Handel and Schimenti, 2010). As Meiosis I completes,
maternal and paternal chromosomes are separated into daughter
cells. Then in Meiosis II, sister chromatids separate, ensured by their
centromeric cohesion, resulting in the generation of haploid cells
(Ishiguro, 2019).

Meiosis must be carefully monitored to preserve the order of
meiotic events and avoid producing aberrant chromosomes and
defective gametes (Subramanian and Hochwagen, 2014). In mice,
surveillance mechanismsmonitor recombination and synapsis at the
pachytene stage (meiotic checkpoint) (Roeder, 2000) and control
bipolar attachment to the spindle at metaphase I (the spindle
assembly checkpoint, SAC) (Touati and Wassmann, 2016).
Recent mice findings have revealed new mechanistic insights on
how meiotic checkpoints monitor these meiotic prophase events in
mammals, which will be mainly discussed below. The roles of the
meiotic checkpoint machinery in preserving the order of

chromosomal events during the meiotic prophase I will also be
presented in the following sections whenever necessary.

2.1 The synaptonemal complex and synapsis

The SC is a highly conserved meiosis-specific feature. This is
likely attributed to a conserved SC organization, e.g., the coiled-coil
domains (Gao and Colaiácovo, 2018), whereas its component
proteins share little similarity at the amino acid sequence level
(Grishaeva and Bogdanov, 2014; Fraune et al., 2016). The SC
serves as the scaffold for the close juxtaposition of homologous
chromosomes and is intimately associated with chromosome
pairing, synapsis, and recombination (Fraune et al., 2012;
Cahoon and Hawley, 2016; Geisinger and Benavente, 2017; Gao
and Colaiácovo, 2018). Fully formed SC is revealed as a tripartite
structure by electron microscopy, consisting of two LEs that run
along the electron-dense chromatin and flank a CR (Moses, 1969),
composed of a central element (CE) and numerous transverse
filaments (TFs). In mammals, eight meiotic-specific SC proteins
have been identified and characterized so far (Schücker et al., 2018):
SYCP2 and SYCP3 as the LE proteins (Lammers et al., 1994;
Offenberg et al., 1998); SYCP1 as the TF protein (Meuwissen
et al., 1992), and SYCE1, SYCE2, SYCE3, TEX12, and
SIX6OS1 as the CE proteins (Costa et al., 2005; Hamer et al.,
2006; Schramm et al., 2011; Gómez-H et al., 2016).

The SC plays a universal role, as providing order within the
nucleus during prophase, in all species. But it may also have diverse
roles in many organisms. Notably, it is essential for multiple steps
during MR (Zickler and Kleckner, 2015). The SC regulates
programmed DSB formation as synapsis shuts off the
SPO11 activity (Kauppi et al., 2013). The AE proteins are closely
associated with the development of recombination protein
complexes. The CR plays a significant structural role in these
complexes’ assembly, maintenance, and turnover, thereby
enabling the maturation of the DSBs into COs subject to
interference. In mice, recombination can not be completed
without the CR proteins (Bolcun-Filas et al., 2007; Schramm
et al., 2011; Fraune et al., 2012; Gómez-H et al., 2016). Moreover,
the SC is responsible for holding homologs after the repair of NCO-
fated DSBs and maintaining interhomolog interactions until COs
are formed (Zickler and Kleckner, 1999; Qiao et al., 2012). Finally,
the SC might be centrally important in the surveillance of meiotic
recombination and HORMAD-regulated monitoring of synapsis.

The SC undergoes a dynamic cycle through its assembly, a
highly dynamic steady-state, and disassembly (Gao and Colaiácovo,
2018). Its assembly is through integrating the CR proteins to connect
two LEs, a poorly understood process that might differ in various
organisms due to the divergent SC component proteins (Cahoon
and Hawley, 2016).

In mice, a picture of how the SC proteins are assembled in order
has been inferred from mouse knockout studies (Fraune et al., 2012;
Geisinger and Benavente, 2017). After DNA replication in the pre-
meiotic S-phase, each pair of sister chromatids are tightly held
together by cohesin complexes. The chromatin of sister chromatids
is organized in a linear array of loops emanating from the
chromosome axis, forming the meiotic axis-loop organization,
which allows the close juxtaposition of homolog axes during
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meiotic prophase (Zickler and Kleckner, 2015). During preleptotene
stage, the AE/LE proteins: SYCP2 and SYCP3 load onto the cohesin
complex together with the HORMA domain-containing proteins
(HORMAD1 and HORMAD2) (Wojtasz et al., 2009), forming the
chromosome axis during meiotic prophase I (Zickler and Kleckner,
1999; Yuan et al., 2000; Yang et al., 2006; Fujiwara et al., 2020).
Recent studies suggest that SYCP2 mediates the anchoring of
chromatin loops to the axis by associating with the cohesin
complex (Feng et al., 2017; Xu et al., 2019). Moreover,
SYCP2 possesses putative ‘closure motifs’ that might be
responsible for HORMADs recruitment (West et al., 2019). Then,
the CR proteins: SYCP1, SYCE3, and SYCE1, which are essential for
synapsis initiation, are assembled between the AEs in sequence: the
TF protein SYCP1 first associates with the AEs, likely through
interacting with SYCP2 (Winkel et al., 2009; Schücker et al.,
2015); and then recruits SYCE3 through direct interaction
(Schramm et al., 2011; Hernández-Hernández et al., 2016).
Subsequently, SYCE1 is loaded likely through interacting with
SYCE3 (Lu et al., 2014). SYCE1 also interacts with and stabilizes
SYCP1 (Costa et al., 2005). Recently, a novel CE protein, SIX6OS1,
has been shown to be required downstream of SYCP1 at a similar
hierarchy level to SYCE3 (Gómez -H et al., 2016b). Finally, synapsis
spread along the entire length of homolog axes with the required
loading of SYCE2 and TEX12 (Hamer et al., 2006). These proteins
interact with the SC through SYCE2 binding to SYCP1, SYCE3, and
SYCE1 (Costa et al., 2005; Bolcun-Filas et al., 2007; Schramm et al.,
2011) and interact interdependently to promote the assembly and
stabilization of the SC (Cahoon and Hawley, 2016; Geisinger and
Benavente, 2017). All these CR proteins are required for fertility in
female and male mice, unlike LE proteins, whereas knockout
SYCP2 or SYCP3 leads to sterility in males but subfertility in
females (Yang et al., 2006; Bolcun-Filas et al., 2007; Gómez-H
et al., 2016).

The SC is completely assembled between all the lengthwise-
aligned homologs at the pachytene stage. Interestingly, this SC
structure is highly dynamic during early pachytene in yeast and
C. elegans as the SC subunit composition are constantly changing
(Voelkel-Meiman et al., 2012; Pattabiraman et al., 2017) and shifts to
a more stable state in late pachytene as recombination progresses.

After CO formation, the SC disassembles as SYCP1 is lost from
chromosome arms in diplotene. However, SC fragments remain at
centromeres and CO sites, presumably to coordinate local
chromosome organization and separate the homologous axes,
until diakinesis (Bisig et al., 2012; Qiao et al., 2012). After
removing SYCP1 from the centromeres, SYCP3 accumulates and
persists in these regions until late diplotene, before the nuclear-
envelope breakdown, likely to promote proper homologous
centromere bi-orientation, ensuring appropriate homolog
segregation (Bisig et al., 2012; Qiao et al., 2012).

Multiple layers of regulation are imposed on the formation and
disassembly of the SC to coordinate these mechanisms with the MR
in various organisms (Zickler and Kleckner, 2015; Gao and
Colaiácovo, 2018). These include the regulation from structural
axial protein (cohesin and HORMADs), the transcriptional
regulation of the SC genes, translational control of SC proteins
mRNAs, the association of non-structural regulators with SC
components, protein modifications, etc. (Zickler and Kleckner,
2015; Gao and Colaiácovo, 2018).

In mice, AE formation depends on meiotic cohesion with
different contributions from different cohesin (reviewed in
(Ishiguro, 2019). HORMAD1 is essential for both homolog
pairing and synapsis (Shin et al., 2010; Kogo et al., 2012a; Paigen
and Petkov, 2018) as HORMAD1 promotes efficient DSB formation
and enables DSB-mediated homology search (Shin et al., 2010; Kogo
et al., 2012a; Paigen and Petkov, 2018). Moreover,
HORMAD1 might also have a direct role in SC formation
(Paigen and Petkov, 2018). Additionally, both HORMAD1 and
HORMAD2 are required to surveil homolog synapsis (Wojtasz
et al., 2009; Kogo et al., 2012b; Paigen and Petkov, 2018). Their
absence rescues the loss of asynaptic oocytes in the SPO11-deficient
background (details below).

In yeast, synapsis initiation is controlled by the ‘ZMM’ proteins.
Also, the SUMOylation of several SC components is required for SC
assembly (Humphryes et al., 2013; Leung et al., 2015). In mice, SC
initiation depends on the total number of interhomolog
engagements. Reduced DSBs levels lead to fewer interhomolog
engagements, causing delayed synapsis (Kauppi et al., 2013).
Whether SUMOylation is involved in SC assembly in mice is
unclear, although similar to yeast Red1, mouse SYCP3 can also
be SUMOylated (Xiao et al., 2016). A positive feedback system in
yeast controls SC polymerization. The initial assembly of the
transverse filament recruits central-element proteins, which
recruit more transverse filaments. The mechanism controlling SC
polymerization in mice remains unknown (Cahoon and Hawley,
2016). The control of the timing between the formation of a CO and
SC disassembly is vital for proper chromosome segregation. In mice,
this relies on cell-cycle kinases (PLK1, Aurora B, CDK1-Cyclin B1),
which are regulated through transcriptional and translational
mechanisms (Gao and Colaiácovo, 2018).

2.2 Meiotic recombination

Meiotic recombination is homologous recombination (HR)-
where the homologous chromosomes are used as the template
for DSB repair, generating NCO and CO products and impacting
several other meiotic events during meiosis (Keeney, 2008; Lam and
Keeney, 2015). In many organisms, including mammals, MR
promotes the close juxtaposition of each pair of homologous
chromosomes, thus facilitating chromosome synapsis. DSB-
mediated interhomolog interactions generate CO products in the
context of synapsed chromosomes, resulting in the exchange of
alleles between homologs. Besides, COs facilitate the proper
orientation of homologous pairs at metaphase and thus ensure
they segregate accurately at the first meiotic division, eventually
supporting functional gametes formation (Hunter, 2015; Lam and
Keeney, 2015; Marsolier-Kergoat et al., 2018) (Figure 1).

MR initiates when numerous programmed DSBs are induced by
the conserved SPO11 protein, the ortholog of subunit A of TopoVI
DNA topoisomerase (TopoVIA) (Bergerat et al., 1997; Keeney et al.,
1997). It catalyzes DNA cleavage via a transesterification reaction,
generating meiotic DSBs covalently bound by SPO11 at the 5′end
(De Massy et al., 1995; Liu et al., 1995) (Figures 1–5).

In many organisms, accessory DSB proteins are also required for
SPO11-mediated DSB formation (Lam and Keeney, 2015). Notably,
a TopoVIB-like subunit (TOPOVIBL), structurally similar to the
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TopoVIB subunit of Topo VI topoisomerase, is also essential for
meiotic DSB formation in mice and most likely in most eukaryotic
species (Robert et al., 2016; Vrielynck et al., 2016).

In budding yeast, nine other accessory proteins form different
subcomplexes, directly or indirectly interacting with SPO11, and are
all required for DSB formation, including Ski8, Rec102-Rec104
complex, Rec114-Mei4-Mer2 complex, Mre11–Rad50–Xrs2
(MRX) complex (Lam and Keeney, 2015; Yadav and Claeys
Bouuaert, 2021). In mice, three evolutionarily conserved proteins
have also been identified to be required for SPO11-mediated DSB
formation, including IHO1, MEI4, and REC114, the mouse
orthologs of yeast Mer2, Mei4, and Rec114, respectively. These
three proteins colocalize on the axes of the meiotic chromosome
independently of SPO11 activity (Kumar et al., 2010; Stanzione et al.,
2016; Kumar et al., 2018).

IHO1 is a direct interactor of the axial component protein
HORMAD1 in mice (Stanzione et al., 2016). It is required for the
axis-localization of REC114 and MEI4 in vivo. However, its axial
localization is independent of MEI4 or REC114. Thus, IHO1 might
act as a platform to recruit REC114 and MEI4 to the axes (Stanzione
et al., 2016; Kumar et al., 2018). REC114 directly interacts with
TOPOVIBL in mice, regulating the SPO11/TOPOVIBL catalytic
activity (Nore et al., 2022). It is also inferred to perform this function
via ATM-dependent inhibition of DSBs (Subramanian and
Hochwagen, 2014; Boekhout et al., 2019). ATM might target
REC114 directly by phosphorylating it, as in S. cerevisiae
(Carballo et al., 2013), or indirectly by phosphorylating
ANKRD31, a novel interactor of REC114 (Boekhout et al., 2019;
Papanikos et al., 2019).

DSBs are non-randomly distributed along the chromosomes.
They tend to accumulate preferentially at regions called
recombination hot spots (Székvölgyi et al., 2015), which are
determined by PRDM9 in most mammals (Paigen and Petkov,
2018). PRDM9 binds to specific DNA sequences in the genome
through its zinc finger array. It then methylates histone H3 lysines
4 and 36 (H3K4me3 and H3K36me3) of nearby nucleosomes using
its PR/SET domain, activating hot spots (Grey et al., 2018). Activated
hot spots are believed to mainly locate at the DNA loops. It is not
fully understood how they are further associated with the
chromosomal axis where SPO11 and the accessory proteins are
located. Studies have speculated that EWSR1, CDYL, EHMT2, and
CXXC1 proteins might mediate this association through binding the
KRAB domain of PRDM9 and interacting with the DSB proteins
(Imai et al., 2017; Parvanov et al., 2017). As a result, PRDM9 targets
SPO11 to specific genome regions, generating DSBs. Nevertheless,
some DSB sites are targeted independently of PRDM9 in meiosis,
e.g., the pseudoautosomal region (PAR) in male meiosis (Brick et al.,
2012).

DSB formation is tightly controlled to occur in a narrow time
window within prophase I, and in yeast, ATM plays an essential role
in this by regulating further DSB formation via a negative feedback
loop both in trans and cis (Barchi et al., 2008; Lange et al., 2011;
Zhang et al., 2011; Garcia et al., 2015; Pacheco et al., 2015). Depleting
ATM leads to significantly increased DSBs in multiple organisms,
including mice (Joyce et al., 2011; Lange et al., 2011; Kurzbauer et al.,
2012; Pacheco et al., 2015). ATM might prevent repeated DSB
formation at the same chromosomal locus in mice as in yeast (La
Salle and Trasler, 2006; Barchi et al., 2008; Lange et al., 2011; Garcia

et al., 2015; Lukaszewicz et al., 2021). Besides, ATM might be
involved in other feedback circuits to ensure enough DSBs are
formed to support homolog interactions and recombination
(Cooper et al., 2014).

After DSB formation, DSB ends are resected to generate ssDNA
tails (Baudat et al., 2013; Lam and Keeney, 2015) (Figure 1).

The DSB resection is well elucidated in budding yeast. The MRX
complex recognizes DNA-bound Spo11 and generates nicks nearby
with Sae2, leading to the release of Spo11 bound to short
oligonucleotides (Spo11 oligos) (Neale et al., 2005; Cannavo and
Cejka, 2014). The nicks serve as entry points for short-range
3′→5′resection, mediated by Mre11 exonuclease activity, and
long-range 5′→3′resection, mediated by Exo1 exonuclease
activity and Dna2 nuclease (Manfrini et al., 2010; Zakharyevich
et al., 2010; Garcia et al., 2011). The consequence is the generation of
3′ssDNA tails on both sides of the DSB. The full-length resection
requires the DSB-responsive kinase Tel1, which promotes resection
initiation, likely through Sae2 phosphorylation (Cartagena-Lirola
et al., 2008), and regulates resection length (Mimitou et al., 2017).

In mammals, EXO1 is dispensable for DSB resection (Wei et al.,
2003), and the nucleotide-excision repair factor, DNA polymerase-
β, is implicated in SPO11 removal (Kidane et al., 2010). However,
the role of the mammalian MRX complex and Sae2 homologs, the
MRN complex (MRE11-RAD50-NBS1) and CtIP, respectively, in
meiotic DSB repair is poorly understood due to the embryonic
lethality of knocked-out mice of any MRN component (Pacheco
et al., 2015; Zhang et al., 2020a). A recent study has demonstrated
that conditional disruption of NBS1 in mouse testis causes a
dramatic reduction of DNA end resection and severe defect in
chromosome synapsis, eventually leading to meiotic arrest and
infertility (Zhang et al., 2020a). Thus, like MRX in yeast, the
MRN complex is likely essential for mammalian DSB resection.

Resected 3′ssDNA tails are immediately bound by replication
protein A (RPA) and RPA1-related protein MEIOB and its
associated factor, SPATA22. The recombinases DMC1 and
RAD51 further replace these. Then, one of the RAD51/DMC1-
coated ssDNA commences engaging in homology search and
interhomolog interactions. Consequently, unstable nascent
D-loop intermediates are likely generated in vivo. These are
either destabilized in the NCO pathway or stabilized in the CO
pathway (Brown and Bishop, 2015; Hunter, 2015) (Figure 1).

DMC1 and RAD51 are strand-exchange proteins.
RAD51 functions in somatic and meiotic cell cycles, whereas
DMC1 is meiosis-specific (Brown and Bishop, 2015). DMC1 is
the essential DNA strand–exchange factor in meiosis, while
RAD51 could be dispensable but performs a critical regulatory
role in yeast and mammals (Cloud et al., 2012; Hinch et al., 2020).

The assembly of both recombinases is ATP-dependent and
promoted by several recombination factors in mammals such as
ATR, breast cancer 2 protein (BRCA2), TRIP13, the Shu complex
SWS1-SWSAP1, and PALB2, etc. (Zelensky, Kanaar, and Wyman,
2014; Abreu et al., 2018; Roig et al., 2010; Pacheco et al., 2018; Felipe-
Medina et al., 2020; Zhang et al., 2020b; Zhang et al., 2019a; Widger
et al., 2018). Several recent studies identified BRCA2 localizer
(MEILB2) and MEILB2’s stabilizer (BRME1), both of which form
a complex with BRCA2 and function as the recruiter of RAD51 and
DMC1 onto ssDNA (Zhang et al., 2019a; 2020b; Felipe-Medina
et al., 2020). The activity of the DMC1-RAD51 complex to promote
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homology search and strand exchange is driven by the stability of the
formed nucleoprotein filament (Brown and Bishop, 2015), which is
enhanced by the HOP2-MND1 complex (Petukhova et al., 2003;
Petukhova et al., 2005; Chi et al., 2007; Pezza et al., 2007).

In stark contrast to the exclusive inter-sister (IS) recombination
interactions occurring in the somatic cell cycle, MR interactions are
biased towards homologous chromosomes, thereby promoting
pairing, synapsis, and formation of chiasmata between
homologous chromosomes. The precise mechanism of this
meiotic inter-homolog (IH) bias is unclear but is likely achieved
both by inhibiting IS bias and promoting IH bias. The so-far best-
understood mechanism was uncovered in yeast, involving Tel1/
Mec1 (ATM/ATR), Hop1 (homolog of HORMAD1/2), effector
kinase Mek1 (homolog of CHK2), and RAD54, an SWI/SNF-
family ATPase (Subramanian and Hochwagen, 2014).

In the contemporary meiotic recombination models that are
largely built on yeast studies, single-strand invasions result in less
stable nascent joint molecules, presumably D-loops. The
differentiation of D-loops leads to either NCOs via synthesis-
dependent strand annealing (SDSA) or class I COs subject to
interference (details of CO interference will be discussed below)
via forming CO-specific intermediates single-end invasions (SEIs)
and double Holliday junctions (dHJs) (Figure 1). D-loops are
stabilized along the CO pathway to form SEIs, which are the
earliest detectable CO-specific joint molecules. Subsequently, SEIs
become more stable dHJs joint molecules through a second-end
capture coupled with DNA synthesis. Eventually, dHJs are resolved
exclusively into class I COs. By contrast, unstable D-loops are not
stabilized in the NCO pathway after the invading strand extends.
The nascent DNA is annealed to the other end of the broken DNA
molecule resulting in NCOs. Additionally, a minority of D-loops
escape from these two pathways and generate NCOs and non-
interfering class II COs (Baudat et al., 2013; Hunter, 2015; Ranjha
et al., 2018).

The differentiation of the CO and NCO pathways is controlled
by a panel of factors through processing and stabilizing the
recombination intermediates, including ZMM proteins and a
helicase complex, STR/BTR (yeast Sgs1–Top3–Rmi1, metazoan
BLM-TOPIIIα-RMI1-RMI2) (Hunter, 2015). ZMMs stabilize
recombinational joint molecules and promote the formation of
SC, ultimately required for class I CO formation. In budding
yeast, ZMMs are CO-specific. However, in mice and several
other species, ZMMs’ stabilization of recombinational
interactions may be a prerequisite for CO designation, and
D-loops bound by ZMMs could also form NCOs products (De
Vries et al., 1999; Edelmann et al., 1999; Kneitz et al., 2000; Higgins
et al., 2008; Yokoo et al., 2012; De Muyt et al., 2014; Zhang et al.
Liang, 2014).

ZMM is a group of functionally diverse proteins, and several
mammalian ZMM proteins have been identified to have a role in the
CO/NCO decision: MSH4, MSH5, TEX11, RNF212, HEI10, HFM1,
SHOC1, and SPO16. All of these proteins partially colocalize with
recombination foci (defined by RAD51 and DMC1) on synapsed axes
(De Vries et al., 1999; Edelmann et al., 1999; Kneitz et al., 2000;
Adelman and Petrini, 2008; Guiraldelli et al., 2013; Guiraldelli et al.,
2018; Qiao et al., 2014; Prasada Rao et al., 2017; Zhang et al., 2019b).

MSH4 and MSH5 are homologs of the bacterial MutS family of
mismatch repair proteins with no known function in mismatch

repair and form the MutSγ heterodimer (Pochart et al., 1997), which
is essential for chromosome synapsis, CO formation, and thus
fertility in mice (De Vries et al., 1999; Edelmann et al., 1999;
Kneitz et al., 2000). HFM1 is essential for mammalian fertility as
mutated HFM1 was found in human patients with azoospermia or
POI syndromes (Baudat et al., 2013; Wang et al., 2014; Zhang et al.,
2017) and removing HFM1 causes a drastic reduction of COs and
partially affects synapsis in mice (Guiraldelli et al., 2013). The
deficiency of SHOC1, TEX11, and SPO16 causes reduced COs
with a relatively minor synapsis defect in mice, suggesting a
conserved role in CO formation as in yeast (Adelman and
Petrini, 2008; De Muyt et al., 2018; Guiraldelli et al., 2018; Zhang
et al., 2019b). Mouse RNF212 andHEI10, a ubiquitin-ligase, regulate
CO by modifying recombination factors (MutSγ) at CO-designated
sites in an antagonistic manner. Subsequently, stabilized
recombination factors enable the recruitment of CO-specific
factors (MLH1-MLH3, MutLγ) for CO maturation (Reynolds
et al., 2013; Qiao et al., 2014; Hunter, 2015; Gray and Cohen,
2016; Prasada Rao et al., 2017).

During early recombination steps, STR/BTR is required for
channeling early joint molecules into CO and non-CO pathways.
Later, STR/BTR promotes the resolution of the final recombination
intermediates into NCOs by its dissolution activity via SDSA
(Hunter, 2015). Distinguishingly, in the CO pathway, the
resolution of joint molecules is mediated by the endonuclease
activity of mismatch repair factors MLH1, MLH3, and EXO1 to
generate class I COs. MLH1 and MLH3 are invaluable markers of
crossovers in the cytological analysis as they localize precisely to
future CO sites in many organisms (Kolas and Cohen, 2004).
Additional factors are found to be required for class I CO
formation in mice, including HEI10 (discussed above), CNTD1,
PRR19 and CDK2 (Holloway et al., 2014; Qiao et al., 2014;
Bondarieva et al., 2020).

For non-interfering class II COs, the resolution of joint
molecules is mediated by structure-specific endonucleases,
Mus81, Yen1, and Slx1/4 in yeast and MUS81 in mice (Holloway
et al., 2008; De Muyt et al., 2012; Zakharyevich et al., 2012). In mice,
interfering COs are estimated to account for ~90% of COs
(Holloway et al., 2008; Serrentino and Borde, 2012), and
consistently, the deletion of MLH1, MLH3, or EXO1 causes
significant loss of chiasmata and, consequently, mice sterility
(Baker et al., 1996; Edelmann et al., 1996; Lipkin et al., 2002;
Wei et al., 2003).

Finally, another layer of control tightly regulates the outcome
of DSB repair. CO numbers per meiosis show a low variation
despite a much more considerable variation in the numbers of
recombinational interactions. This phenomenon is called CO
homeostasis, which is underpinned by the lower and upper limits
for the CO numbers regulated by CO assurance and interference
(Martini et al., 2006; Rosu et al., 2011; Cole et al., 2012; Yokoo
et al., 2012; Hunter, 2015). CO assurance guarantees that each
homolog pair obtains at least one CO to segregate properly at
meiosis I. Meanwhile, interference is defined by an inhibitory
zone around CO-designated sites where other DSBs are
prevented from becoming COs. Interference results in COs
being widely and evenly spaced along the genome (Hillers,
2004; Berchowitz and Copenhaver, 2010; Zhang and Liang,
2014).
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The molecular mechanisms responsible for CO assurance and
interference have been long elusive. Studies in various species have
described different mechanisms regulating CO interference (Zhang
and Liang, 2014; Zhang andWang, 2014; Fowler et al., 2018; Capilla-
Pérez et al., 2021; France et al., 2021; Morgan et al., 2021). A study of
fission yeast S. pombe suggests a clustering model, emphasizing DSB
interference as the basis for CO interference (Fowler et al., 2018). In
this model, in each cluster containing several DSB hotspots, only one
single DSB is formed. Given that DSBs are the precursors to COs,
consequently, at most, a single CO is made in the chromosomal
interval corresponding to the DSB hotspot-clustered interval
(Fowler et al., 2018). Studies in budding yeast described a stress-
and-stress relief mechanism for CO interference (the ‘beam-film’

model), which is SC independent and requires topoisomerase II
(Zhang and Liang, 2014; Zhang and Wang, 2014). Distinctly, recent
work in Arabidopsis demonstrated that the SC is essential for CO
interference (Capilla-Pérez et al., 2021; France et al., 2021). Finally, a
new model (the diffusion-mediated coarsening model) is proposed
to explain CO interference (Morgan et al., 2021). These models may
apply to some but likely not all species since the mechanism and
control of meiotic recombination varies among species.

How the outcome of DSB repair is regulated in mice is poorly
understood, and ATMmay have a role in forming the obligate CO in
the small pseudoautosomal region of homology between sex
chromosomes and controlling the numbers and distributions of
COs on autosomes (Barchi et al., 2008). However, this molecular
mechanism elucidated in S. pombe is likely conserved in diverse
organisms, including flies and mice, based on the features of meiotic
recombination and pericentric regions in these species (Prieto et al.,
2001; Manheim and McKim, 2003; Fukuda et al., 2012;
Bhattacharyya et al., 2019; Hartmann et al., 2019; Smith and
Nambiar, 2020).

2.3 Meiotic prophase surveillance
mechanisms

DSB repair and synapsis are carefully monitored during the
meiotic prophase to choreograph nuclear dynamics and cell
division programs. An intricate meiotic checkpoint network has
emerged to create dependencies between independent processes
when homologous chromosomes pair, synapse, and recombine.
The machinery of this meiotic checkpoint involves many canonical
DNA damage response (DDR) signaling proteins, among which the
two evolutionarily conserved sensor kinases, ATM and ATR, play a
central role (MacQueen and Hochwagen, 2011). They detect and
respond to DSBs with the help of checkpoint cofactors in many
organisms. Once activated, ATM and ATR phosphorylate a large
set of substrates, preferentially containing serine/threonine-glutamine
(S/TQ) cluster domains (Traven andHeierhorst, 2005). Many of these
target proteins act directly to implement the checkpoint response,
while others work as transmitters to relay the checkpoint signals to
downstream effectors, such as CHK1 and CHK2 kinases
(Subramanian and Hochwagen, 2014). This section will discuss
how the surveillance mechanisms of the meiotic prophase
checkpoint monitor these meiotic events, particularly in mammals.

In response to DSB repair or synapsis defects, the cells trigger a
cell cycle arrest at the pachytene stage to provide sufficient time to fix

the errors. If errors persist, this mechanism can eventually activate
apoptosis to cull meiocytes in various organisms (Roeder, 2000;
Bhalla and Dernburg, 2005; Di Giacomo et al., 2005; Lu et al., 2010).
In mammals, observations in mutant mice deficient in meiotic
recombination suggest that two genetically distinct surveillance
mechanisms contribute to the activation of the arrest in both
males and females: the recombination (DNA damage) checkpoint
monitoring the DSB repair process and the synapsis checkpoint
monitoring SC formation (Roeder, 2000; MacQueen and
Hochwagen, 2011; Subramanian and Hochwagen, 2014; Joshi
et al., 2015).

In males defective in DSB repair, like Trip13mod/mod and Dmc1−/−

mice, most spermatocytes arrest before incorporating the testis-
specific histone 1t (H1t) at pachynema (Barchi et al., 2005; Marcet-
Ortega et al., 2017; Testa et al., 2018). In contrast, Spo11−/−

spermatocytes, which do not have programmed DSBs,
incorporate H1t and progress further, reaching mid/late
pachytene. These cells arrest before completing the meiotic
prophase and ultimately apoptose (Barchi et al., 2005; Pacheco
et al., 2015). Therefore, irrespective of the common apoptosis
consequence, spermatocytes respond differently to these two
meiotic defects. Furthermore, the removal of DSBs confers a
Spo11-like phenotype to those DSB repair-deficient mutants
(Dmc1−/− and Trip13mod/mod) (Barchi et al., 2005; Li and
Schimenti, 2007), indicating that separate checkpoints act
sequentially to mediate the apoptosis of these defective
spermatocytes.

Likewise, in females, the elimination of oocytes defective for DSB
repair (Trip13mod/mod) or both DSB repair and synapsis (Dmc1−/−,
Msh5−/−) occurs earlier (around birth) than those defective for
synapsis alone (Spo11−/−, up to 2 months postpartum) (Di
Giacomo et al., 2005; Li and Schimenti, 2007). Also, mutations
disrupting DSB formation (Spo11 and Mei1) are epistatic to those
affecting DSB repair (Dmc1, Atm, Trip13, and Mcmdc2) (Di
Giacomo et al., 2005; Reinholdt and Schimenti, 2005; Li and
Schimenti, 2007; Finsterbusch et al., 2016; Martínez-Marchal
et al., 2020). These lines of evidence further support the existence
of two distinct checkpoint mechanisms in mammals, sensing DNA
damage or synapsis errors and resulting in meiotic prophase arrest.
However, there are also arguments against a specific “synapsis
checkpoint”, at least in females, favoring that a canonical DNA
damage checkpoint primarily accounts for the oocyte loss in
response to both recombination and synapsis defects (discussed
below) (Rinaldi et al., 2017; Rinaldi et al., 2020).

2.3.1 The recombination checkpoint
The recombination checkpoint is likely activated when

recombination intermediates persist at pachynema in mammals
(Di Giacomo et al., 2005; Burgoyne et al., 2009; MacQueen and
Hochwagen, 2011). So far, the study of the recombination
checkpoint in mammals has been challenged because most
mutations that compromise recombination also affect synapsis.
However, a gene-trap-disrupted allele of Trip13, Trip13mod/mod

(also known as Trip13RRB047RRB047, X. Li and Schimenti, 2007; Roig
et al., 2010), which cannot repair DSBs but completes synapsis, has
proven to help study the recombination-dependent arrest and
meiocyte elimination. Analyses of mice doubly or triply deficient
for TRIP13 and other DDR genes uncovered several signaling

Frontiers in Cell and Developmental Biology frontiersin.org09

Huang and Roig 10.3389/fcell.2023.1127440

114

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2023.1127440


pathways involved in the recombination checkpoint-mediated arrest
and/or apoptosis in both males and females (Bolcun-Filas et al.,
2014; Pacheco et al., 2015; Marcet-Ortega et al., 2017; Rinaldi et al.,
2017; Rinaldi et al., 2020).

In males, the MRN complex, ATM, CHK2, and the p53 family
members, p53 and TAp63, are required to arrest spermatocytes with
unrepaired DSBs at early pachynema before incorporating H1t into
the chromatin (Pacheco et al., 2015; Marcet-Ortega et al., 2017;
Marcet-Ortega et al., 2022) (Figure 2).

In Trip13mod/mod mice, spermatocytes enter pachynema with
homologous chromosomes completely synapsed but with persisting
recombination intermediates. Thus, most spermatocytes arrest and
undergo apoptosis at epithelial stage IV before incorporating the mid-
pachytene histone marker H1t (Li and Schimenti, 2007; Roig et al.,
2010; Pacheco et al., 2015). In comparison, in Trip13mod/mod

Spo11+/−Atm−/− triple mutant mice, where the activity of ATM is
removed, a significant proportion of spermatocytes accumulate H1t
despite containing high levels of unrepaired DSBs. Thus, eliminating
ATM activity allows spermatocytes to progress further, from an H1t-
negative to an H1t-positive stage, despite having significant amounts
of unrepaired DSBs. These findings suggest that ATM may be
required for the recombination-dependent arrest at early
pachynema (Barchi et al., 2005; Pacheco et al., 2015).

The MRN complex is responsible for DSBs sensing and activating
ATM in somatic cells (Stracker and Petrini, 2011). It is also required for
meiotic recombination in many organisms, including mammals
(Keeney and Neale, 2006; Cherry et al., 2007). CHK2 is an effector
kinase of the ATM signaling pathway activated in response to ionizing
radiation (Matsuoka et al., 1998). Interestingly, disruption of the MRN
complex or the CHK2 kinase in Trip13mod/modmutants confers a meiotic
progression phenotype similar to Trip13mod/mod Spo11+/−Atm−/−mutants
(Pacheco et al., 2015). Thus, theMRN-ATM-CHK2 signaling cascade is
likely to respond to persistent unrepaired DSBs, mediating the
recombination-dependent pachytene arrest in male mice (Pacheco
et al., 2015). Similarly, p53 and TAp63, two canonical CHK2’s
downstream targets (Lu et al., 2010; Bolcun-Filas et al., 2014), have
been inferred to act in the recombination-dependent arrest mechanism.
This is based on the observations that Trip13mod/mod p53−/− and
Trip13mod/mod TAp63−/− spermatocytes can progress to an H1t-
positive stage (Marcet-Ortega et al., 2017).

In Trip13mod/mod mutants lacking ATM or with defective MRN
complex, spermatocytes cannot correctly repair abundant DSBs caused
by the disability of ATM’s negative feedback in DSBs formation (Lange
et al., 2011; Pacheco et al., 2015). Thus these spermatocytes fail to
complete synapsis, which impedes the sex body formation (Barchi
et al., 2008; Burgoyne et al., 2009; Roig et al., 2010; Pacheco et al.,
2015). On the contrary, in Trip13mod/mod Chk2−/−, Trip13mod/mod p53−/−, and
Trip13mod/mod TAp63−/− spermatocytes, although the sex body is formed,
sex chromosomes are not correctly silenced, which explains why these
spermatocytes eventually undergo arrest and apoptosis at late pachynema
(Pacheco et al., 2015; Marcet-Ortega et al., 2017). These lines of evidence
further support an alternative arrest mechanism mediating sex body
defects in male mice (Barchi et al., 2005) (discussed below).

In females, an ATR-CHK1/CHK2-p53/TAp63-PUMA/NOXA-
BAX signaling pathway is proposed to mediate the DNA damage
checkpoint response in the oocytes (Bolcun-Filas et al., 2014; Rinaldi
et al., 2017; ElInati et al., 2020; Martínez-Marchal et al., 2020; Rinaldi
et al., 2020) (Figure 2).

Deletion of CHK2 rescues developing oocytes in 3-week-postnatal
Dmc1−/− mice, although the absence of primordial follicles eventually
results in a nearly complete oocyte depletion by 2 months postpartum.
This pattern of oocyte loss is highly similar to that in Spo11−/− or
Spo11−/−Dmc1−/− mice, suggesting that the loss of CHK2 allows the
deficient oocytes to surpass the DSB repair but not the synapsis arrest.
Moreover, the deletion of CHK2 can reach amore successful rescue in
Trip13mod/mod mice, which complete synapsis. Trip13mod/mod Chk2−/−

mice have a significant pool of oocytes at 3 weeks postpartum, many
follicles at 2 months of age, and sustained fertility for many months.
Abundant γH2AX staining was detected in all dictyate Trip13mod/mod

Chk2−/− oocytes indicating the persistence of unrepaired DSBs like in
Trip13mod/mod. Thus, CHK2 is required for the DNA-damage
checkpoint-mediated oocyte elimination (Bolcun-Filas et al., 2014).

The lack of p53 and TAp63 enables nearly a complete rescue of
Trip13mod/mod oocytes. Compared to wild-type mice, indistinguishable
numbers of primordial and growing follicles are found in the triple
mutant Trip13mod/mod p53−/− TAp63−/− mice (Rinaldi et al., 2020).
Therefore, like in males, p53 and TAp63 might also act
downstream of CHK2 in the DNA-damage checkpoint pathway in
females. However, CHK2 deficiency only rescues Trip13mod/mod

oocytes to around one-third of wild-type levels (Bolcun-Filas et al.,
2014), implying other factors might signal these two effectors p53 and

FIGURE 2
Recombination checkpoint pathway. Model showing the
proposed signaling pathway in response to unrepaired SPO11-
dependent DSBs in male (left) and female (right) mice. Asterisks
represent predicted checkpoint factors. In males, DSBs are
sensed by theMRN complex, leading to the activation of ATM,which in
turn activates effector CHK2. CHK2 acts on target proteins p53 and
TAp63, which implement the recombination-dependent arrest that
blocks progression to mid/late pachynema. In females,
RNF212 prevents the repair of residual DSBs in the late prophase.
Unrepaired DSBs likely activate ATR, which may activate CHK2 before
birth and CHK1 after birth. CHK1 and CHK2 signal to p53 and TAp3.
Pro-apoptotic BCL-2 pathway components PUMA, NOXA, BAX, and
other unknown factors act downstream to trigger oocyte apoptosis.
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TAp63 in parallel with CHK2. Indeed, CHK1 is likely to perform this
function (Martínez-Marchal et al., 2020; Rinaldi et al., 2020). Studies
have shown that when CHK2 is absent in ovaries, CHK1 is activated
by persistent DSBs and is responsible for eliminating Chk2−/− oocytes
(Martínez-Marchal et al., 2020; Rinaldi et al., 2020) (Figure 2).

Interestingly, the pro-apoptotic BCL-2-dependent pathway acts
downstream of CHK2/p53/TAp63 and eliminates recombination-
defective oocytes (ElInati et al., 2020). The BCL-2-dependent
pathway consists of the known targets of p53 and TAp63 PUMA,
NOXA, and BAX (Su et al., 2013). PUMA and NOXA or BAX
deletion rescue oocyte numbers in DSB-repair mutants (Dmc1−/− and
Msh5−/−). However, like CHK2 deletion, this rescue does not reach
wild-type levels, indicating that other components of this pathway
also control the oocyte population (Bolcun-Filas et al., 2014; Rinaldi
et al., 2017; ElInati et al., 2020) (Figure 2). Indeed, other p53 targets
(e.g., BAK, PERP, or CDKN1A) have been proposed to play a role in
this mechanism (ElInati et al., 2020).

Non-etheless, the factors acting upstream of CHK2 in the
recombination checkpoint pathway are not clearly understood in
females. The loss of ATM triggers oocyte elimination by DNAdamage
checkpoint in mice, which can be rescued by the deficiency of
CHK2 to a degree similar to the rescue by CHK2 in Dmc1−/−

ovaries (Bolcun-Filas et al., 2014; Rinaldi et al., 2020). Thus, it has
been proposed that ATR, the other canonical DDR kinase, activates
CHK2 in the recombination checkpoint pathway in females.

Furthermore, RNF212, a SUMO ligase required for crossover
formation, is also suggested to promote the apoptosis of DSB repair-
defective oocytes since Rnf212 deletion significantly restores the oocyte
pool at 18 days postpartum inDSB-repairmutant females (Msh4−/−) (Qiao
et al., 2018). RNF212 is proposed to impede DSB repair via inter-sister
recombination (IS-HR) by stabilizing the association ofHORMAD1along
desynapsed chromosome axes during the late prophase. Thus, residual
DSBs, the repair of which via IS-HR are prevented by RNF212, trigger
CHK2-mediated DNA damage checkpoint, resulting in oocyte
elimination (Qiao et al., 2018; ElInati et al., 2020).

Notably, in both spermatocytes and oocytes, a certain level of
unrepaired DSBs is required to activate the recombination-dependent
arrest pathways during the meiotic prophase (Marcet-Ortega et al.,
2017; Rinaldi et al., 2017). This is particularly important in
spermatocytes, where DSBs on the X chromosome arms lacking
homologous partners are repaired using the sister chromatids at
mid-late pachytene, later than on autosomes (Page et al., 2012;
Baudat et al., 2013). Thus, the DSB threshold level for arrest
activation must be high enough, or all wild-type spermatocytes
would be arrested. Only spermatocytes reaching the threshold
could activate both p53 and p63, which work independently but
additively to trigger apoptosis response (Marcet-Ortega et al., 2017).
In females, the primordial follicle pool is wholely abolished in wild-
type ovaries when the newborn ovaries are exposed to more than
0.3 Gy of irradiation. This dosage induces 10.3 RAD51 foci per oocyte
(Rinaldi et al., 2017). Therefore, like inmales, a threshold level of DSBs
also triggers cell arrest in females.

2.3.2 The syapsis checkpoint
Defects in chromosome axis formation or SC assembly can activate

a cell response to asynapsis independently of DSB formation in many
organisms, leading to cell cycle arrest and even apoptosis (MacQueen
and Hochwagen, 2011). In mammals, this synapsis checkpoint is

debated: whether a specific surveillance mechanism monitoring
asynapsis exists and how it senses it is unclear. Even if the synapsis
checkpoint exists, it might not be like a formal checkpoint response
(Cloutier et al., 2015; Turner, 2015; Rinaldi et al., 2017). In any case, the
meiotic silencing of the unsynapsed chromatin (MSUC) plays a vital
surveillance role in this so-called “synapsis checkpoint” in both males
and females (Burgoyne et al., 2009; Cloutier et al., 2015; Turner, 2015).

The MSUC is a chromatin remodeling process by which
unsynapsed regions are transcriptionally inactivated during meiotic
prophase I (Turner, 2015) (Figure 3). It is achieved through the
crosstalk between the axially located sensors signaling asynapsis, such
as the axial component proteins HORMAD1/2 proteins (Wojtasz
et al., 2009; Fukuda et al., 2010), and the loop-located effectors
mediating gene silencing such as the histone variant H2AX

FIGURE 3
Meiotic response to asynapsis in male. Upper panel, meiotic
silencing of the unsynapsed chromatin (MSUC). Axially located
proteins signal asynapsis and recruit ATR with cofactors, such as
BRCA1. If asynapsis persists, ATR translocates to chromatin loops,
phosphorylating H2AX (γH2AX). This signaling spreads all over the
chromatin with the help of MDC1, leading to the recruitment of
silencing factors for the irreversible silencing of this region. Lower
panel, in wild-type spermatocytes, the physiological MSUC occurs at
XY chromosomes (MSCI), resulting in the silencing of sex
chromosome-linked lethal genes (Zfy1 and Zfy2).However, in Spo11−/−

spermatocytes, despite extensive asynapsis, localized MSUC are
triggered by SPO11-independent DSBs on unsynapsed autosomes. As
BRCA1 accumulates at these DSB sites, MSCI fails to form, and lethal
genes are expressed.
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(Fernandez-Capetillo et al., 2003).HORMAD1 and HORMAD2 load
onto chromosome axes at leptonema and are depleted from the axes
by TRIP13 as the homologs synapse (Wojtasz et al., 2009; Fukuda
et al., 2010; Roig et al., 2010; Koubova et al., 2014). By the late zygotene
stage, HORMAD1/2 acts together with SYCP3 to recruit the breast
cancer 1 (BRCA1) protein to the unsynapsed axes (Turner et al., 2004;
Kouznetsova et al., 2009; Royo et al., 2013). Then, in a HORMAD1/2-
and BRCA1-dependent manner, ATR is recruited to unsynapsed axes
(Turner et al., 2004; Wojtasz et al., 2012; Paigen and Petkov, 2018),
which further promotes the enrichment of BRCA1 and ATR-
activating cofactors: TOPBP1, ATRIP (Perera et al., 2004; Refolio
et al., 2011; Royo et al., 2013) as well as regulate phosphorylation of
HORMAD1/2 (Fukuda et al., 2012). If asynapsis persists until
pachytene, ATR translocates into the chromatin loops and
phosphorylates H2AX (γH2AX) with the help of the γ-H2AX-
binding factor MDC1, resulting in the irreversible silencing of this
region (Ichijima et al., 2011).

In males, spermatocyte loss mediated by the DSB-independent
response to asynapsis involves the failure of Meiotic Sex
Chromosome Inactivation (MSCI) (Burgoyne et al., 2009) (Figure 3).
MSCI is a physiological MSUC process that responds to the unavoidable
partial asynapsis of the sex chromosomes (Turner et al., 2006). MSCI is
reflected by the formation of the sex body, a specialized subnuclear
domain encompassing the asynapsed portions of the X and Y
chromosomes in pachytene spermatocytes. The sex body is
characterized by the lack of gene expression and sequestration of an
array of proteins, which are primarily heterochromatin-related (e.g.,
H2A, H3meK9, CBX1/3) and recombination-related (e.g., MRE11,
γH2AX, and RAD51) (Handel, 2004). In mutant mice with extensive
asynapsis (e.g., Spo11−/−,Dmc1−/−), MSCI cannot occur, and the sex body
fails to form, likely due to the limited association of silencing factors with
the XY axes (Mahadevaiah et al., 2008; Kouznetsova et al., 2009). At the
zygotene/pachytene transition in wild-type spermatocytes, as DSBs get
repaired, BRCA1 is released from the DSB sites and accumulates at the
HORMAD1-coated asynapsed XY axes, initiating MSCI response
(Mahadevaiah et al., 2008; Burgoyne et al., 2009). However, in
mutants with extensive asynapsis, BRCA1 is widely sequestered at
unrepaired SPO11-dependent DSB sites (e.g., Dnmt3l−/−), thus failing
to form MSCI (Mahadevaiah et al., 2008) or accumulates at SPO11-
independent DSB sites, randomly triggering localizedMSUC response at
autosomal axes (Carofiglio et al., 2013). As a result, lethal sex
chromosome-linked genes (e.g., Zfy1 and Zfy2) are expressed, leading
to spermatocyte progression arrest and apoptosis (Royo et al., 2010).
Thus, physiological MSCI is required to allow the exit of the pachytene
stage.

On the other hand, females possess two X chromosomes; thus,
MSCI does not occur in the oocytes. So, the roles of the MSUC in
response to asynapsis are different from that in males (Cloutier et al.,
2015; Turner, 2015) (Figure 4).

In asynapsismodels without associated recombination defects, such
as Spo11−/− mice and mice harboring chromosome abnormalities, such
as Turner syndrome (XO) with only one X chromosome, unsynapsed
chromosomes undergo MSUC, and oocytes with these unsynapsed
chromosomes are eliminated (Daniel et al., 2011; Wojtasz et al., 2012;
Cloutier et al., 2015). Deletion of the MSUC factors HORMAD1 or
HORMAD2 in Spo11−/− mice (Daniel et al., 2011; Wojtasz et al., 2012)
or H2AX in XOmice (Cloutier et al., 2015) restores the oocyte numbers
to wild-type levels. Thus, theMSUC is suggested to transduce asynapsis

into germ cell arrest. The MSUC factors, HORMAD1 and
HORMAD2 would be the putative synapsis checkpoint components
in females (Turner, 2015).

However, it seems that the response to asynapsis in females ca
not be simply explained only by this checkpoint signaling model.
Other mechanisms are also proposed to account for the loss of
oocytes harboring asynapsis: the MUSC might render oocytes
deficient in multiple gene products required for oocyte survival
and development (Cloutier et al., 2015; Cloutier et al., 2016).

In mouse models carrying extra/supernumerary chromosomes,
oocytes with asynapsed chromosomes are not eliminated as in XO
females, despite the presence of HORMAD1 and other meiotic
silencing factors on the asynaptic supernumerary chromosomes
(Cloutier et al., 2015). Silencing these asynaptic supernumerary
chromosomes does not affect the normal gene expression from
the entire genome. In contrast, asynapsis of chromosomes in XO or
other chromosomally unbalanced females would likely lead to the
silencing of multiple housekeeping genes, oogenesis-essential genes,
or critical genes. Therefore, the fate of oocytes with asynapsis
probably depends on the gene content of the silenced asynapsed
chromosomes (Cloutier et al., 2015; Turner, 2015). In Spo11−/−

oocytes, chromosomes are extensively unsynapsed, and the
MSUC takes place on only a part of them (Carofiglio et al.,
2013). This MSUC might silence some essential genes (e.g.,
oogenesis-essential genes), leading to oocyte arrest and ultimately
triggering oocyte death. The rescue of oocyte loss by the deletion of
silencing components HORMADS and H2AX in Spo11−/− mice and
other asynapsis models (Daniel et al., 2011; Wojtasz et al., 2012;
Cloutier et al., 2015) could be explained by the restoration of
standard gene expression patterns, rather than the disruption of
checkpoint signaling per se (Turner, 2015).

Recent findings show that the CHK2-dependent DNA damage
checkpoint also culls SPO11-deficient oocytes (Rinaldi et al., 2017;
Rinaldi et al., 2020). These data argue against the existence of a
specific synapsis-checkpoint mechanism. Most Spo11−/− oocytes
have some DSBs (Carofiglio et al., 2013; Malki et al., 2014).
Thus, authors speculate that it could be enough to reach the
threshold to trigger the CHK2-dependent recombination
checkpoint (Rinaldi et al., 2017). So, a model in which two major
mechanisms are responsible for the elimination of oocytes with
synapsis defect is proposed: the meiotic silencing mechanism, as
discussed above, which primarily works in oocytes with a small
number of asynapsed chromosomes that carry meiotic-essential
genes but the amount of unrepaired DSBs does not reach the
threshold (Cloutier et al., 2015). The recombination checkpoint
could function in oocytes with multiple asynapsed chromosomes
(e.g., Spo11−/− oocytes) that accumulate a sufficient number of DSBs
to trigger the checkpoint (Rinaldi et al., 2017; Rinaldi et al., 2020).

Interestingly, the CHK2 deficiency can only restore a limited
number of Spo11−/− oocytes (Rinaldi et al., 2017; Martínez-Marchal
et al., 2020). Also, HORMAD2 and CHK2 are not functioning in a
single linear checkpoint pathway (Rinaldi et al., 2017; Martínez-
Marchal et al., 2020). Therefore, other mechanisms eliminating most
of the Spo11−/− oocytes cannot be excluded, for instance, through the
MSUC mechanism and/or the CHK1-dependent DNA damage
checkpoint (Rinaldi et al., 2017; Martínez-Marchal et al., 2020).
Moreover, the lack of both p53 and TAp63 can protect nearly all
Spo11−/− oocytes from elimination. However, the deletion of the
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BCL-2 components (PUMA, NOXA, and BAX) does not rescue the
oocyte loss in Spo11−/− females (ElInati et al., 2020). These data
suggest that at least two distinct and partially overlapping genetic
signaling pathways likely respond to recombination and synapsis
errors in females. Noticeably, a more recent study showed that
RAD51 might not be a reliable DSB marker in oocytes, and although
DNA damage signaling from asynaptic axes participates in
removing Spo11−/− oocytes, it does not require high numbers of
SPO11-independent DSBs as suggested in the study from Carofiglio
et al (Carofiglio et al., 2013; Ravindranathan et al., 2022).

Collectively, compared to the recombination checkpoint, the
genetic pathways responsible for the “synapsis checkpoint” control
remain much less understood in both males and females. Rather
than being a typical checkpoint, the surveillance mechanisms that
respond to asynapsis in mammals might be more complex. At least
in females, the DNA damage signaling pathway, the MSUC-
mediated checkpoint signal-transducing, and the depletion of
essential genes for oocyte development and survival might
conspire to drive the elimination of oocytes with asynapsed
chromosomes.

3 Genetic cause of infertility

Successful reproduction requires the precise regulation of
complex processes essential for developing reproductive organs,
performing gametogenesis, acquiring neuroendocrine
competency, and the ability to carry a pregnancy (Yatsenko and
Rajkovic, 2019). Infertility, a common, multifactorial pathological
condition defined as the inability to establish a clinical pregnancy
after at least 1 year of regular unprotected sexual intercourse, affects
approximately 50 million couples worldwide (Mascarenhas et al.,
2012). Among the infertility cases with identified causes, one-third is
due to a female factor, another third is due to a male factor, and the
remaining third is due to combined female and male factors
(Mallepaly et al., 2017). Furthermore, genetic defects contribute
to nearly 50% of these infertility cases. More unknown genetic causes

are suggested in infertility and need to be uncovered (Zorrilla and
Yatsenko, 2013).

Male infertility derives etiologically from quantitative
spermatogenic defects, ductal obstruction or dysfunction,
hypothalamic-pituitary axis dysfunction, and qualitative
spermatogenic defects (from most to least common) (Tournaye
et al., 2017). Genetic factors account for at least 15% of male
infertility and involve all these etiological categories (Krausz and
Riera-Escamilla, 2018). Diagnosing male infertility relies on semen
(and hormone) analysis, which results in two major phenotypes:
oligozoospermia (reduced sperm count) and azoospermia (no
spermatozoa in the ejaculate) (Tüttelmann et al., 2018).
Qualitative spermatogenic defects or ductal obstruction usually
manifest as azoospermia, and multiple genetic factors are
validated as the causes, including numerical and structural
chromosomal anomalies (e.g., Klinefelter’s syndrome, 46, XX
male syndrome), Y-chromosome micro-deletions (e.g.,
azoospermia factor (AZF) deletions), gene mutations (e.g.,
TEX11 deletions), and cystic fibrosis transmembrane conductance
regulator (CFTR) mutations (Krausz and Riera-Escamilla, 2018).
AZF deletions are the most frequent genetic cause of azoospermia
(Krausz et al., 2014). Most numerical and structural chromosomal
anomalies and TEX11 deletions are thought to cause spermatogenic
defects due to errors during meiosis that activate the surveillance
mechanisms (Sun et al., 2007; Yang et al., 2015; Yatsenko et al.,
2015). Currently, some of these genetic infertility causes can be
clinically diagnosed by widely applied analyses, such as karyotyping,
AZF deletion screening, and CFTR mutation analysis (Tournaye
et al., 2017).

Female infertility can result from a wide range of factors
affecting ovarian development, oocyte maturation, fertilization
competence, and the potential of a fertilized egg for implantation
and development (Yatsenko and Rajkovic, 2019). Ovulation
disorders are the leading cause of female infertility, which often
occur as a result of conditions classified into three categories:
hypothalamic failure, dysfunction of hypothalamic-pituitary-
ovarian axis-mostly polycystic ovary syndrome (PCOS), and

FIGURE 4
Meiotic response to asynapsis in female. Several mechanisms are proposed to be responsible for eliminating Spo11−/− oocytes. MSUC might trigger
an unknown checkpoint signaling pathway in these oocytes or silence essential genes for development, leading to oocyte apoptosis. In parallel, in
response to SPO11-independent DSBs, CHK2-mediated DNA damage signaling, which partially overlaps the recombination checkpoint pathway, also
contributes to the elimination of Spo11−/− oocytes.
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primary ovarian insufficiency (POI) (National Institute for Health
and Care Excellence, 2013). Genetic factors are suggested to play a
role in all these disorders. For example, mutations of the GNRHR
gene encoding the gonadotropin-releasing hormone (GnRH)
receptor and genes causing Kallmann syndrome have been
identified in women affected by hypothalamic amenorrhea.
Alternations in multiple genes such as CYP17, CYP19, LHCGR,
DENND1A are linked to PCOS, suggesting its polygenicity
(reviewed in Beke, 2019).

POI has become a significant cause of female infertility due to
premature exhaustion of the primordial follicular pool in most cases
(Rossetti et al., 2017). Themost common contributors to POI are the
X chromosome-linked defects, in which Turner syndrome (TS) is
the primary cause of syndromic POI. In contrast, premutation of the
FMR1 (fragile X mental retardation 1) gene is the most common
gene mutation associated with non-syndromic POI. In most cases of
POI, the activation of the surveillance mechanisms leading to a
reduced ovarian reserve are responsible for infertility. For instance,
the absence of one X chromosome in TS causes oocyte loss during
early meiotic prophase and ovarian development, leading to ovarian
dysgenesis and primary amenorrhea since infancy (Fechner et al.,
2006). In other cases, how particular mutations (e.g.,
FMR1 premutation) lead to POI is not clear yet. The
FMR1 premutation may cause a deficiency of proteins required
for oocyte or follicle development and survival (Rossetti et al., 2017).
Even though nowadays POI cannot be reverted, the identification of
the causative genetic alterations in POI patients is beneficial for her
female relatives, who can undertake precautionary measures (e.g.,
egg freezing, embryo cryopreservation, anticipated pregnancy
planning, etc.) in case of being positive in the genetic screening
(Rossetti et al., 2017). This perspective is becoming increasingly
important due to the modern tendency to delay childbirth in
societies.

Despite the revealed genetic factors contributing to female and
male infertility, many genetic causes remain unexplained for the
majority of infertility cases, including idiopathic infertility cases,
which are identified in 25%–30% of infertility couples and likely
have a genetic etiology (Smith et al., 2003; Mallepaly et al., 2017).
Furthermore, with the increasing use of assisted reproductive
technology (ART), which removes the natural barrier to egg
fertilization, concerns about its safety and possible adverse
outcomes are rising (Davies et al., 2012). Diagnosing the genetic
causes of infertility becomes more clinically significant for infertility
treatment and the health of patients and their children. Thus,
identifying unknown genes involved in mammalian
gametogenesis, which could contribute to human infertility, is
demanding and essential for clinical infertility diagnosis in the
near future.

3.1 Mutations of meiotic prophase genes in
mice

In recent years, advances in genomic approaches, particularly
next-generation sequencing (NGS) technologies, allowed unbiased
genomic studies of human infertility and uncovered many
infertility-associated genes or gene variants in males and females
(Yatsenko and Rajkovic, 2019; Precone et al., 2021; Heddar et al.,

2022). Advanced filtering techniques are required for selecting the
bona fide causes of human infertility from the discovered genes or
gene variants, and mouse studies are the gold standard for defining
the genotype-phenotype connection in fertility, at least in males
(Houston et al., 2021). Moreover, functional studies in mouse
models are usually prerequisites to attributing a disease-causing
role to a newly discovered gene (Riera-Escamilla et al., 2019), thus
offering a panel of strong candidate genes for screening human
infertility factors.

Here, we summarized genes that are functionally involved in
meiotic prophase I, and mutating any of them could trigger
recombination/synapsis checkpoint, leading to spermatocyte
arrest in males and/or oocyte depletion in females
(Supplementary Table S1).

Of these 77 genes, many of them have essential roles in
chromosome pairing, synapsis, and meiotic recombination
(detailed roles are discussed above), including components of the
chromosome axis or the SC, recombination factors required for DSB
formation and repair, or proteins participating in telomere-
mediated chromosome movements. The rest are mainly
functionally related to silencing retrotransposons, chromatin
modification, and transcriptional and translational regulation of
essential proteins required for SC formation and DSB repair.

Intriguingly, more than half of these meiosis-deficient mutants
display sexually dimorphic phenotypes. Less stringent checkpoint
controls in females could explain these phenotypic differences.
Consequently, oocytes could tolerate more meiotic prophase I
error, which would explain why oogenesis is more error-prone
than spermatogenesis (Hunt and Hassold, 2002). In male mice
deficient for Brca2, Mei1, Hormad1, Smc1b, or Sycp3 genes,
spermatocytes are arrested at the pachytene stage due to the
defective meiotic prophase events, resulting in male sterility
(Supplementary Table S1). However, these mutant oocytes are
only partially arrested at meiotic prophase I in females, and some
progress beyond prophase I despite carrying asynaptic homologs,
unrepaired DSBs, or other chromosomal abnormalities. Other
mechanisms during oogenesis can eliminate these defective
oocytes later, but some even complete meiosis and form
unbalanced oocytes. As a result, some of these meiosis-deficient
mutant females are even subfertile (Reinholdt and Schimenti, 2005;
Daniel et al., 2011; Felipe-Medina et al., 2020).

Another explanation could be that some of these genes have
sexually dimorphic roles. For example, Hells and Rad21l genes have
distinct roles in males and females. While the deficient males are
infertile due to meiotic prophase I arrest, the mutant females exhibit
lethality (Hells), or subfertility (Rad21l), due to other defects rather
than failed synapsis or incomplete meiotic recombination. On the
other hand, Asz1, Dnmt3l,Mybl1,Mov10l1, Piwil2, Piwil4, Pld6, and
Tdrd9 are specifically required for the silencing of retrotransposons
in males, whileDmrt7 has significant roles in meiotic silencing of the
XY chromosomes which only exist in spermatocytes. Thus, the
disruption of these genes causes male infertility due to a complete
arrest in spermatocytes, but female fertility is grossly unaffected
(Supplementary Table S1).

Furthermore, some recombination factors, such as BRCA1,
BRME1, MEILB2, and TEX15, recruit recombinases RAD51/
DMC1 to DSB sites in spermatocytes. The mutations of these
genes result in male infertility but only have mild or no effects
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on female fertility (Supplementary Table S1). While if they have
similar roles in females is unclear or cannot be excluded, the milder
phenotypes in female mutant mice might be a consequence of
combined effects from the weak checkpoint control and less-
required roles during meiotic recombination in oocytes.

In humans, meiotic defects typically result in non-obstructive
azoospermia (NOA), whereas in females, they are usually associated
with POI (Krausz et al., 2020). We searched these 77 meiotic
prophase genes, the mutation of which could trigger meiotic
prophase arrest in mice, in ClinVar and Pubmed, and found
monogenetic mutations of 28 genes (145 variants) have been
reported to be associated with human infertility conditions such
as spermatogenetic failure, NOA, POI, spermatogenesis maturation
arrest, pregnancy loss, etc. (Supplementary Table S2).

Based on the interpretations for clinical significance in ClinVar,
55 of these variants are considered as “likely pathogenic” or “uncertain
significance” (Supplementary Table S2). This is mainly due to the lack
of evidence or inconsistent interpretations. Of the 145 variants,
67 variants from 21 genes are classified as ‘pathogenic’, 52 variants
from 16 genes have only 1 or 2 publications reporting independent
probands, and single submitters provide the remainder without
publications. Moreover, only five variants from five genes (Six6os1,
Meilb2, Msh5, Stag3, and Syce1) have supporting biological evidence
from knockout mouse models in which human phenotypes are
recapitulated (Supplementary Table S2). Thus, in the future, more
independent validation studies and functional evidence are required,
including introducing gene variants using CRISPR/Cas9 genome
editing technology in mice to validate the infertility-causing roles of
human gene variants (Houston et al., 2021), not only for distinguishing
between variants that cause disease from variants that are rare but
benign (Araujo et al., 2020), but also for providing robustness to the
clinical validity of these possible disease-causing genes linked to human
infertility (Oud et al., 2019).

Additionally, multiple levels of evidence should also be
considered to confidently link variation in individual genes to
human infertility (Oud et al., 2019). Indeed, an unstructured
assessment has reported three genes, including Tex11, that fulfill
this requirement for a link to male infertility (Tüttelmann et al.,
2018). Recently, in another study of an extensive literature review
and standardized clinical validity assessment of a large number of
genes, some of these meiotic prophase genes were shown to be
associated with male infertility with ‘strong’ evidence (Tex11 and
Tex15), with ‘moderate’ evidence (Sycp3), or with ‘limited’ evidence
(Dmc1, Mei1, Meiob, Spo11, Syce1, and Tdrd9) (Oud et al., 2019).

Importantly, the associated conditions of all these 28 genes in
humans are well matched with the phenotypes of their mutant mice
(Supplementary Table S2). For example, the mutation of SYCP3 causes
male infertility with complete meiotic prophase arrest. Still, it exhibits
subfertility in female mice with a sharp reduction in litter size due to the
presence of aneuploid oocytes. Correspondingly, its linked conditions in
humans are infertility/spermatogenetic failure in men and pregnancy
loss in women. This further support the values of mouse models for
attributing a disease-causing role to a new gene. Thus, the remaining
meiotic prophase genes with no monogenic mutation identified in this
list are worthy of screening in human patients.

However, it is essential to point out that we must be cautious when
using the findings from mouse studies to interpret the causative factors
and mechanisms underlying human infertility regarding considerable

differences still exist between humans and mice (Azhar et al., 2021). A
recent study has shown that the metaphase checkpoint is more
frequently activated than the pachytene checkpoint in human males
with severe spermatogenic impairment (Enguita-Marruedo et al., 2019),
which is in contrast to observations in themouse, where knockout of the
meiotic prophase genes (as we summarized above) most frequently
results in pachytene checkpoint arrest. The underlying reasons are not
clear. It could be that the observed arrest in this study is caused mainly
by mutations in proteins required for the metaphase-anaphase
transition or functioning in cell cycle regulation rather than involved
in meiotic prophase major events (Enguita-Marruedo et al., 2019).
Alternatively, mutation of meiotic prophase genes may trigger a later
metaphase arrest in humans rather than prophase arrest in mice.
Differences in the pachytene surveillance mechanisms between
humans and mice could cause this. Most studies (58 out of
78 publications in Supplementary Table S1) reporting mutations of
meiotic prophase genes in infertile males lack detailed analysis of
meiotic or testicular phenotypes. Thus, to clarify this possibility, it
will be worthwhile to assess the exact spermatocyte arrest phase in
infertile patients carrying meiotic prophase gene mutations in the
future.
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In eutherian mammals, hundreds of programmed DNA double-strand breaks
(DSBs) are generated at the onset of meiosis. The DNA damage response is
then triggered. Although the dynamics of this response is well studied in
eutherian mammals, recent findings have revealed different patterns of DNA
damage signaling and repair in marsupial mammals. To better characterize
these differences, here we analyzed synapsis and the chromosomal distribution
of meiotic DSBs markers in three different marsupial species (Thylamys elegans,
Dromiciops gliorides, and Macropus eugenii) that represent South American and
Australian Orders. Our results revealed inter-specific differences in the
chromosomal distribution of DNA damage and repair proteins, which were
associated with differing synapsis patterns. In the American species T. elegans
and D. gliroides, chromosomal ends were conspicuously polarized in a bouquet
configuration and synapsis progressed exclusively from the telomeres towards
interstitial regions. This was accompanied by sparse H2AX phosphorylation,mainly
accumulating at chromosomal ends. Accordingly, RAD51 and RPA were mainly
localized at chromosomal ends throughout prophase I in both American
marsupials, likely resulting in reduced recombination rates at interstitial
positions. In sharp contrast, synapsis initiated at both interstitial and distal
chromosomal regions in the Australian representative M. eugenii, the bouquet
polarization was incomplete and ephemeral, γH2AX had a broad nuclear
distribution, and RAD51 and RPA foci displayed an even chromosomal
distribution. Given the basal evolutionary position of T. elegans, it is likely that
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the meiotic features reported in this species represent an ancestral pattern in
marsupials and that a shift in the meiotic program occurred after the split of D.
gliroides and the Australian marsupial clade. Our results open intriguing questions
about the regulation and homeostasis of meiotic DSBs in marsupials. The low
recombination rates observed at the interstitial chromosomal regions in American
marsupials can result in the formation of large linkage groups, thus having an
impact in the evolution of their genomes.

KEYWORDS

marsupial, meiosis, evolution, synapsis, recombination, Thylamys, Dromiciops, Macropus

Introduction

Meiosis is a complex and highly regulated process, by which
homologous chromosomes synapse, recombine and segregate.
Synapsis refers to the tight association of homologs during
meiotic prophase I by a structure called the synaptonemal
complex (SC). The SC is formed by two axial/lateral elements
(AE/LEs), one per homologue, held together by transverse
filaments (TFs), which emanate from each of the LEs and
overlap in a central region to form the central element (CE) (von
Wettstein et al., 1984; Page and Hawley, 2004). Recognition of
homologues in mammals (and many other organisms) is mediated
by the formation of hundreds of programmed DNA double-strand
breaks (DSBs) by the SPO11 protein at the beginning of prophase I
(leptotene stage) (Keeney et al., 2014). The formation of DSBs
triggers a DNA damage response that follows the homologous
recombination pathway, leading to the molecular interaction of
chromosomes. The broken DNA molecule uses the intact DNA
sequence of the homologue as a template for DNA repair during
zygotene. These molecular interactions, in turn, stimulate and
facilitate the synapsis of homologous chromosomes. In mammals,
most DSBs produced during meiosis are repaired through a process
that leads to gene conversion (non-reciprocal recombination
events), whereas some of them result in reciprocal exchange
events that lead to the formation of crossovers (COs) at the end
of pachytene (at least one CO per bivalent) (Cole et al., 2012). These
COs are visualized cytologically as chiasmata, which hold
recombined homologous chromosomes together until they
segregate during anaphase of the first meiotic division (Roeder,
1997).

Besides a role in ensuring faithful chromosome segregation, it
is commonly accepted that recombination increases genetic
variability in natural populations through the generation of new
haplotypes, which are later subjected to evolutionary drift and
selection (Barton and Charlesworth, 1998; Otto and Lenormand,
2002). In contrast, suppression of recombination at specific
chromosomal regions leads to the genetic isolation of these
chromosome segments and the formation of large linkage
groups. If allele combinations cannot be reshuffled by
recombination, beneficial alleles are likely to be lost by either
background selection or random drift (Graves, 1995;
Charlesworth et al., 2005; Bachtrog, 2013). Finally, both gene
conversion and CO formation can alter the GC content of
genomic regions where these events accumulate (called
hotspots) by a process known as GC-biased gene conversion
(gBGC) (Duret and Galtier, 2009). Therefore, the frequency and

distribution of meiotic recombination have a significant impact on
genome evolution (Lenormand et al., 2016; Bergero et al., 2021).

In mammals, meiotic studies have been traditionally focused in
model species, mainly the house mouse and humans. However,
comparative studies are important to understand if the features
described in these models are present in other species. For instance,
the organization and composition of the SC seem to be particularly
well conserved (Fraune et al., 2012). Other features, like the
frequency of recombination, have also received great attention,
though they are more variable between species (Dumont and
Payseur, 2008; Segura et al., 2013). Additional aspects, like the
regulation of chromosome segregation, remain unexplored in
most mammals, especially in non-eutherians. This is the case in
marsupials, the sister group of eutherian mammals, which diverged
from each other around 165 million years ago. There are currently
about 270 marsupial species, distributed in America and Australia.
They are grouped into two main clades: Ameridelphia, which
comprises the Orders Didelphimorphia and Paucituberculata; and
Australidelphia, which includes the Australian Orders
Dasyuromorphia, Peramelemorphia, Notoryctemorphia and
Diprodontia (Figure 1A) (Duchêne et al., 2017). Intriguingly,
Australidelphia also includes an American sister clade, the Order
Microbiotheria, only represented by two species of monito del
monte (Dromiciops gliroides and D. bozinovici) (D’Elía et al.,
2016; Feng et al., 2022; Fontúrbel et al., 2022).

Marsupials are characterized by their unique reproductive
strategy, in which pregnancy is uniformly short and the altricial
young are born at an early developmental stage. Development is
usually completed within an abdominal pouch, with the pouch
young dependent on a highly specialized milk (Tyndale-Biscoe
and Renfree, 1987). Marsupials also present a number of genetic
and chromosomal differences compared to eutherians (Graves and
Renfree, 2013). Two of the most relevant are: 1) Their reduced
number of chromosomes (Hayman, 1990; Deakin, 2018). Although
chromosome numbers range from 2n = 10 to 2n = 34, they present a
bimodal distribution andmost species have either 2n = 14 or 2n = 24
(Deakin and Potter, 2019; Deakin and O’Neill, 2020). Since the
genome size is comparable to that of eutherians, marsupial
chromosomes are usually much larger. 2) The Y chromosome is
generally tiny and does not share a pseudoautosomal region (PAR)
with the X due to extreme degeneration of the former over
evolutionary time (Graves et al., 1998). In fact, the Y
chromosome can be lost in some somatic tissues, as reported in
males of the family Peramelidae (Watson et al., 1998).

The special features of marsupial chromosomes also have an
impact on their behavior during meiosis. The most noticeable
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feature is the behavior of sex chromosomes. The absence of a PAR
on the XY pair precludes their reciprocal synapsis and
recombination in male meiosis, thus challenging the usual way
by which homologous chromosomes ensure their segregation
during first meiotic division. Instead, sex chromosomes in
marsupials present an alternative mode of association, which
relies on the formation of a specific structure called the dense
plate (DP) that maintains the sex chromosome association from
prophase I (Solari and Bianchi, 1975; Sharp, 1982; Seluja et al., 1987;
Page et al., 2003) until they segregate at anaphase-I (Page et al.,
2006). Although small differences between species have been found
regarding the timing of DP formation (Marín-Gual et al., 2022b), the
development and dynamics of the DP are well conserved (Sharp,
1982; Page et al., 2005; Fernández-Donoso et al., 2010), indicating
that the DP represents a feature that originated before the radiation
of marsupials (Page et al., 2005). The emergence of this alternative
mechanism of segregation allowed for the proper transmission of sex
chromosomes after their complete differentiation. Interestingly,
analogous mechanisms of sex chromosome segregation have
independently appeared in eutherian species with completely
differentiated sex chromosomes (de la Fuente et al., 2007; de la
Fuente et al., 2012; Gil-Fernández et al., 2020; Gil-Fernández et al.,
2021).

The striking behavior of sex chromosomes may have obscured
other meiotic differences in marsupials. This includes
recombination rates, i.e., the number of COs per cell, which are
lower in marsupials compared to eutherians (Zenger et al., 2002;
Samollow et al., 2004; Samollow et al., 2007; Dumont and Payseur,

2008; Wang et al., 2011). Moreover, marsupial males seem to be
more recombinogenic than females, as opposed to the higher
recombination rates in most female eutherian mammals (Bennett
et al., 1986; Samollow et al., 2004; Samollow et al., 2007). Many
factors seem to regulate the genome-wide rate of recombination in
eukaryotes. These include chromosome number, length of the SC
and of chromatin loops (Segura et al., 2013; Mercier et al., 2015;
Ruiz-Herrera et al., 2017; Wang et al., 2019). Other factors like
genetic background and sex are also relevant (Gruhn et al., 2013;
Baier et al., 2014). In particular, we have recently proposed that the
low recombination rates observed in marsupial males might result
from the induction of fewer DSBs during prophase I, potentially
leading to the formation of fewer COs (Marín-Gual et al., 2022b).
Our previous study revealed that in three species of phylogenetically
distant marsupials, the overall number of DSBs was significantly
lower than in eutherian mammals (i.e., mice and humans),
concomitant with low γH2AX levels on autosomes.

In addition to overall recombination rates, the distribution of
recombination events along chromosome is a field of intense
research. Among eutherians, DSBs have been reported to appear
fairly evenly distributed in mice, whereas COs tend to accumulate
towards the distal regions of chromosomes in this species (Froenicke
et al., 2002; de Boer et al., 2006; Grey et al., 2009; Brick et al., 2018; Li
et al., 2019). In contrast, both DSBs and COs clearly accumulate at
distal regions in humans (Oliver-Bonet et al., 2007; Pratto et al.,
2014). However, studies in non-model mammals are scarce. In this
regard, in our previous study on marsupials we detected inter-
specific differences in the pattern of DSBs distribution along

FIGURE 1
(A). Phylogenetic relationships of extant marsupial orders. The arrangement presented is based on the phylogeny published by Duchêne and
coworkers (Duchêne et al., 2017). Although the topology of the tree is still controversial, Microbiotheria is grouped to Australidelphia in all the trees
consulted. The Orders included in this study are highlighted in red. (B–D). Meiotic karyotypes of the three studied species: SYCP3 in green and
centromeres in red. Bivalents are ordered by size, according to previous reports. In Thylamys elegans (B) the position of the NOR (Nu) on the short
arm of bivalent 6 was detected using anti-fibrillarin antibody (pink). The position of the NOR on the X chromosome ofMacropus eugeniiwas detected by
an accumulation of SYCP3. Scale bar in red: 10 µm.
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chromosomes (Marín-Gual et al., 2022b). Here we test whether DSB
occurrence is evenly distributed along chromosomes in marsupials.
To achieve this, we analyzed the localization of proteins related to
DNA damage response and repair (γH2AX, RAD51, and RPA),
along with SC components (SYCP1 and SYCP3) and telomeric DNA
sequences, during meiosis in species that capture the deepest
divergences within marsupials: the American species Thylamys
elegans and D. gliroides, and the Australian species Macropus
eugenii. Our results uncover remarkable differences in the
initiation and progression of synapsis between homologous
chromosomes, as well as in the distribution pattern of DNA
repair markers, with American species showing an extreme
polarization towards chromosomal ends. This behavior may have
important consequences for recombination rates and distribution,
which in turn could impact genome evolution.

Materials and methods

Animals

Two T. elegans (Didelphidae) and two D. gliroides
(Microbiotheriidae) males were collected in central and Southern
Chile, respectively, from natural populations under permission of
Corporación Nacional Forestal (Conaf). Handling of animals was
performed according to the ethical rules stablished by the University
of Chile. TwoM. eugenii (Macropodidae) males were collected from
wild populations originating on Kangaroo Island (South Australia)
that were later held in a breeding colony in Melbourne (Victoria,
Australia). Sampling was conducted under ethics approval from the
University of Melbourne Animal Experimentation Ethics
Committees and followed the Australian National Health and
Medical Research (2013) guidelines. The karyotypes of these
species are as follows: T. elegans 2n = 14; D. gliroides 2n = 14;
M. eugenii 2n = 16. The meiotic karyotypes of the three species were
arranged according to length and centromere position of each
bivalent (Figures 1B–D), in agreement with previous reports
(Page et al., 2003; Fernández-Donoso et al., 2010; Marín-Gual
et al., 2022b).

Spermatocyte spreads and squashes

Testicular samples were obtained and subsequently processed.
For spreads, we used the protocol previously described by Peters and
coworkers (Peters et al., 1997), with slight modifications for
marsupial samples (Page et al., 2005). Briefly, a cell suspension
was incubated in 10 mM sucrose solution in distilled water for
15 min. The suspension was spread onto a slide dipped in 1%
formaldehyde in distilled water (pH 9.5), containing 100 mM
sodium tetraborate and 0.15% Triton-X100. Cells were left to
settle for 1.5 h in a humid chamber and subsequently washed
with 0.4% Photoflo (Kodak) in distilled water. Slides were air
dried at room temperature and then rehydrated in phosphate
saline buffered (PBS: NaCl 137 mM, KCl 2.7 mM, Na2HPO4

10,1 mM, KH2PO4 1.7 mM, pH 7.4) before immunostaining. For
squashes, we used a previously described method (Page et al., 1998;
Page et al., 2003). Seminiferous tubules were fixed in 2%

formaldehyde in PBS for 10 min and then squashed on a slide.
Coverslip was removed after freezing in liquid nitrogen and slides
were rehydrated in PBS until use.

Immunofluorescence

Slides were incubated overnight at 4°C with the following
antibodies diluted in PBS: rabbit anti-SYCP3 (ab15093, Abcam,
1:200 dilution), rabbit anti-SYCP1 (ab15087, Abcam, 1:
200 dilution), mouse anti-γH2AX (05-636, Upstate, 1:
1000 dilution), rabbit anti-RAD51 (PC130, Calbiochem, 1:
50 dilution), rabbit anti-RPA2 (ab10359, Abcam, 1:
50 dilution), mouse anti-fibrillarin (ab4566, Abcam; 1:
50 dilution), human anti-centromere (441-10BK-50,
Antibodies Incorporated, 1:50 dilution). In addition, many
antibodies were used against DMC1, MLH1, MLH3, and other
proteins associated with COs (PRR19, CNTD1, CDK2) that
yielded no positive labeling. After incubation, slides were
washed three times in PBS and subsequently incubated for
1 hour at room temperature with secondary antibodies
conjugated with Alexafluor 350, Alexafluor 488, Cy3 or Cy5
(Jackson ImmunoResearch Laboratories) all of them diluted 1:
100 in PBS. After three washes in PBS slides were stained with
10 μg/ml DAPI, washed in PBS and mounted with Vectashield.

Fluorescence In Situ hybridization for
telomeric DNA repeats

FISH was conducted as previously described (de la Fuente et al.,
2014). After immunofluorescence, slides were rinsed in PBS, fixed in
4% formaldehyde in PBS for 10 min, dehydrated in an ethanol series
(70%, 90%, and 100%) for 5 min each and air dried. Hybridization
mixture containing 70% deionized formamide (Sigma), 10 μM
FITC-labelled (C3TA2)3 peptide-nucleic acid (PNA) probe
(Applied Biosystems), and 2.1 mM MgCl2 buffer (pH 7.0) in
8 mM Tris (pH 7.2) was added to each slide. DNA was
denatured for 3 min at 80°C. Hybridization was performed for
2 h at room temperature. Slides were then washed twice for
15 min each with 70% formamide in distilled water containing
10 mM Tris (pH 7.2) and 10% BSA, and then three times with
TBS (1 M Tris, 1.5 M NaCl (pH 7.5) containing 0.005% Tween-
20) for 5 min each. Slides were then dehydrated in an ethanol series,
air-dried, stained with 10 μg/ml DAPI and mounted with
Vectashield.

Microscopy and image processing

Observations were made on an Olympus BX61 microscope
equipped with appropriate fluorescence filters and an Olympus
DP72 digital camera. The images were processed using the public
domain software ImageJ (National Institutes of Health,
United States; http://rsb.info.nih.gov/ij) and Adobe Photoshop
7.0 (Adobe). Spread images were taken as single-plane pictures,
whereas squashed spermatocytes were photographed at 0.2 μm
intervals and the resulting stack images processed in ImageJ.
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Quantitative analysis of RPA distribution

For the analysis of RPA foci chromosomal distribution, only
early pachytene spermatocytes in which bivalents could be clearly
discerned from each other were chosen from the overall cell
population study. Bivalents were identified according to their
length and centromere position. In the case of T. elegans, the
location of fibrillarin signal associated to the short arm allowed
the identification of bivalent 6. Each bivalent wasmeasured using the
Free Hand tool in ImageJ. The distance of centromeres and RPA foci
from the tip of the short arm of the bivalents was assessed as follows:
each focus was manually drawn as an intersection line with the
outline of the SC, yielding the longitudinal position of the focus.
Then, each bivalent was divided into 10 different segments, being
segment 1 the distal portion of the shortest arm. Finally, the position
of each RPA focus was ascribed to a specific segment (from 1 to 10).
A minimum of 15 spermatocytes were recorded for each individual
(2 T. elegans and 2M. eugenii males).

Statistical analyses

Quantitative data were analyzed using Prism GraphPad 7.0. The
distribution of RPA foci along chromosomes was compared to a
random distribution by a χ2 goodness of fit test with 9 degrees of
freedom. Statistical significance was considered for p < 0.05. The
relationship between RPA foci number and SC length was evaluated
by Spearman correlation coefficient (r).

Results

Chromosome synapsis dynamics

We first studied the synaptic behavior of chromosomes during
meiosis in the selected species via the immunolocalization of the
proteins SYCP3 and SYCP1, the main components of the axial/
lateral elements (AE/LEs) and transverse filaments of the SC,
respectively. The localization patterns of these proteins were used
to classify spermatocytes into the different prophase I stages,
following previous observations in marsupials (Page et al., 2003;
Page et al., 2005; Marín-Gual et al., 2022b).

In T. elegans, during early prophase I SYCP3 was usually
accompanied by the appearance of a SYCP1 signal (Figure 2A),
making it difficult to discriminate between leptotene and zygotene.
This suggests that the formation of the AEs was concurrent with the
initiation of synapsis early in prophase I in this species. Thus, at early
stages of prophase I the AEs were just partially formed, appearing
with dotted signal along most of the chromosome, but forming short
lines at the regions where two AEs associate (Figure 2A). These
synapsed segments were mostly grouped in a small region (i.e., a
bouquet configuration). In addition, SYCP3 revealed a thickening at
the ends of the AEs. Therefore, we refer to this stage as the leptotene-
zygotene transition. At a subsequent stage, early zygotene
(Figure 2B), the AEs were almost completely formed. Synapsis
began at chromosomal ends, which was evidenced by the
presence of SYCP1 in the region where the AEs (now called LEs)
of homologous chromosomes were associated. Moreover, the ends

of chromosomes were still polarized in a bouquet conformation at
this stage. SYCP1 was observed as continuous lines that regularly
expanded from the ends towards the centers of the chromosomes,
and there was no interstitial initiation of synapsis. This feature was
still observable at late zygotene (Figure 2C). The only exception to
synapsis beginning from telomeres was for the chromosome pair
bearing the nucleolar organizing region (NOR) (see Figure 4C). The
NOR is located near the telomere of the short arm (Figure 1) and it
had delayed synapsis. Even though synapsis in the autosomes was
completed by pachytene, the sex chromosomes remained
unsynapsed at this stage (Figure 2D). In the other American
species, D. gliroides, the pattern of AE formation and synapsis
progression was almost identical, including the conspicuous
bouquet configuration, the thickening of the distal regions of the
LEs at early zygotene, the distal initiation of synapsis, and its
subsequent progression to interstitial regions (Figures 2E–H).

Remarkably, AE formation and SC assembly in M. eugenii
contrasted the pattern in American species. Overall, we observed
three main differences. First, at the leptotene-zygotene transition,
the AEs appeared as short fragments or dots evenly distributed,
instead of accumulated in the region where fragments of
SYCP1 signal were observed (Figure 2I). Second,
SYCP1 fragments did not adopt a markedly polarized
distribution, indicating that the bouquet is not as evident as in
the American species. Third, at early zygotene synapsis initiated
both at the distal and interstitial regions of each chromosome
(Figure 2J), a feature that was still detectable at late zygotene
(Figure 2K). At pachytene, synapsis of the autosomes was
complete, whereas sex chromosomes remained unsynapsed
(Figure 2L).

In order to better characterize the differences in the formation
and dynamics of the bouquet polarization, we combined the
immunolabeling of SYCP3 protein with the localization of
telomeric DNA sequences by FISH (Figure 3). In T. elegans,
telomeres appeared clearly polarized in all spermatocytes at the
transition between leptotene and zygotene (Figure 3A) and also at
early zygotene (Figure 3B). This polarization was subsequently lost
with zygotene progression, but some telomeres occasionally
remained associated with each other at late zygotene (Figure 3C)
and even at early pachytene (Figure 3D). In contrast, chromosomal
ends were more dispersed inM. eugenii. We observed that in 50% of
spermatocytes at the leptotene-zygotene transition (n = 84)
telomeres did not form clusters, although many times they were
observed preferentially distributed in one-half of the nucleus
(Figure 3E). The remaining spermatocytes showed one or two
(sometimes more) telomere clusters, but these groups usually did
not incorporate all chromosome ends (Figure 3F). At early zygotene,
clusters were usually dissolved, and telomeres were dispersed
(Figure 3G). These results suggest that in M. eugenii the bouquet
polarization is incomplete and more ephemeral than in the
American species.

FISH against telomeric DNA repeats also revealed the presence
of interstitial telomeric sequences in the largest bivalent of T. elegans
(Figure 3D), as previously described (Page et al., 2006). Intriguingly,
the interstitial telomeric signals of the two homologous
chromosomes often appeared displaced along that bivalent, which
is concurrent with a displacement of the centromeric signals (see
detail in Figure 3D). This displacement suggests the presence of a
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synaptic mismatch in the central region of the bivalent. We also
revealed the presence of interstitial telomeric repeats in M. eugenii
bivalents (Figure 3H), as previously described (Bender et al., 2012;
Marín-Gual et al., 2022b). No displacement of centromeres or
telomeric repeats was detected in this species (detail in Figure 3H).

Distribution of DSBs during prophase I

In mammals, synapsis initiation is dependent on the occurrence
of DNA DSBs at the beginning of meiosis (Baudat et al., 2000;
Romanienko and Camerini-Otero, 2000). To assess if the differences
detected in the progression of synapsis could be linked to a
differential distribution of DSBs, we studied the localization of
the phosphorylated form of histone H2AX (γH2AX), a widely
used marker of DNA damage during meiosis (Mahadevaiah
et al., 2001; Turner et al., 2004). Mirroring previous observation
(Marín-Gual et al., 2022b) we found that in T. elegans only a few
small foci of γH2AX became detectable at leptotene-zygotene on the
chromatin around the AEs formation (Figure 4A). This location
followed the pattern of chromosome synapsis described above,

corresponding with chromosomal ends polarized in the bouquet
configuration. At early zygotene, γH2AX labeling was mostly
associated with the chromosomal regions where synapsis was
initiated, whereas the rest of the nucleus remained devoid of
γH2AX (Figure 4B). At this stage, the bouquet polarization was
still observed. At late zygotene, an increase of γH2AX signal was
observed, localized mainly over the regions of autosomes that had
not completed synapsis, as well as over the chromatin around the
AEs of the sex chromosomes (Figure 4C). At pachytene, once
autosomes had completed full synapsis, γH2AX signal was only
detectable over the sex chromosomes (Figure 4D). The distribution
of γH2AX during meiosis in D. gliroides was similar, albeit not
completely identical, to that of T. elegans. γH2AX was mostly
detected at the chromosomal ends at leptotene and early
zygotene (Figures 4E,F) and accumulated at unsynapsed
chromosomes in late zygotene, where the signal seemed to be
more intense than in T. elegans. (Figure 4G). During pachytene
γH2AX labeling remained only on sex chromosomes (Figure 4H).

Crucially, in M. eugenii the γH2AX signal was different. At
the leptotene-zygotene transition (Figure 4I) the signal was
distributed over all chromosomes, with no specific

FIGURE 2
Synapsis progression during prophase (I). Spread spermatocytes labeled with antibodies against SYCP3 (red) and SYCP1 (green). (A–D). Thylamys
elegans. Short filaments of SYCP1 are seen between AEs at the leptotene-zygotene transition (A). These filaments appear mostly polarized to a specific
nuclear region, the bouquet area (asterisk). Synapsis progresses during early (B) and late zygotene (C). Polarization of chromosomal ends is still observed
(asterisks). Sex chromosomes (X, Y) lie in the bouquet region. Synapsis is complete at pachytene (D) except for the sex chromosomes. (E–H). D.
gliroides. Chromosomal ends are polarized to the bouquet area (asterisks) at leptotene-zygotene transition (E) and early zygotene (F). Synapsis
progresses during late zygotene (G) and is complete at pachytene (H). Sex chromosomes remain separated. (I–L)Macropus eugenii. AEs appear as short
fragments in the whole nucleus during the leptotene-zygotene transition (I). At early zygotene (J) synapsis is initiated both at the chromosomes ends and
at interstitial regions (arrows). This is also observed at late zygotene (K). Synapsis is complete at pachytene (L), with sex chromosomes lying separately.
Bar: 10 μm.
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accumulations at chromosomal ends or any other region. This
broad distribution was also observed at early zygotene
(Figure 4J). At late zygotene, γH2AX tends to disappear from
synapsed chromosomes but an intense signal was detected over
the still unsynapsed autosomal regions and over the sex
chromosomes (Figure 4K). At pachytene, γH2AX signal
remained only over the sex chromosomes (Figure 4L).

The striking differences in the intensity and distribution of
γH2AX between marsupial species lead us to test whether the
faint signal observed in T. elegans could be due to an artifact of
the spreading technique. Thus, we evaluated in this species the
distribution of γH2AX in spermatocyte squashes, which maintained
the three-dimensional organization of the nucleus and provided
better preservation of the chromatin (Figure 5). This confirmed the
patterns detected in spermatocyte spreads; that is, the almost
complete absence of γH2AX at leptotene and early zygotene was
a bona fide feature of T. elegans (Figures 5A–C). The accumulation
of γH2AX at the unsynapsed regions started when synapsis had
greatly progressed on the autosomes (Figures 5D,E). During
pachytene, γH2AX was only present on the sex chromosomes,
either before they paired (Figures 5F,G) or after they completed
their pairing and the formation of the dense plate (DP) (Figure 5H).

Nuclear distribution of DNA repair proteins

The induction of DSBs triggers the activation of the homologous
recombination repair pathway and the incorporation of proteins
involved in this process, such as RAD51 and DMC1, the

recombinases that mediate the invasion of an intact DNA
template to repair the DSBs, and RPA, which protects single
stranded DNA molecules generated during homologous
recombination (Brown and Bishop, 2015). Here we report the
chromosomal distribution of RAD51 and RPA in the species
studied. Unfortunately, DMC1 did not yield a positive result.

We first analyzed the distribution of RAD51 in squashed
spermatocytes. At the leptotene-zygotene transition, a few
RAD51 foci were observed in T. elegans, mainly located at
chromosomal ends and grouped in the bouquet configuration
(Figure 6A). Some additional foci were observed scattered over
the nucleus. At early zygotene (Figure 6B), foci remained localized
mostly close to the chromosomal ends. At late zygotene (Figure 6C),
the bouquet configuration was lost, and some RAD51 foci were
localized interstitially along bivalents. The X chromosome
accumulated numerous RAD51 foci at late zygotene and also at
early pachytene (Figure 6D). The number of RAD51 foci decreased
with pachytene progression and the protein was completely absent
by late pachytene (not shown). A similar trend was observed for D.
gliroides in spermatocyte spreads (Figures 6E–H). Most foci were
associated with the short SYCP3 filaments at leptotene (Figure 6E).
However, in this species, some RAD51 foci appeared on interstitial
regions of chromosomes along with synapsis progression (Figures
6F,G). This suggested progressive incorporation of RAD51 along
chromosomes during zygotene. Some foci were still detectable at
early pachytene (Figure 6H). Similar to T. elegans, the X
chromosome presented abundant RAD51 foci (Figure 6H).

In sharp contrast, RAD51 foci appeared evenly distributed over
the nucleus in M. eugenii spermatocyte spreads. At the leptotene-

FIGURE 3
Localization of telomeric sequences in Thylamys elegans andMacropus eugenii. Spread spermatocytes were labeled with antibodies against SYCP3
(red) and telomeric sequences revealed by FISH (green) in (A–C) and (E–G), and SYCP3 (blue), centromeric proteins (red) and telomeric sequences (green)
in (D) and (H) (A–D). Thylamys elegans. Telomeres are clustered (asterisks) at the lepto-zygotene transition (A) and early zygotene (B). At late zygotene (C)
a slight polarization is still evident (asterisk), and some telomeres appear associated (arrows). At pachytene (D), some telomeric associations (arrows)
are occasionally observed. Displacement of interstitial telomeric and centromere signals is evident in the largest bivalent (arrowhead), enlarged in the
squared image. (E–H). Macropus eugenii. At the leptotene-zygotene transition (E,F) telomeric signals (small dots) may appear greatly dispersed (E) or
forming several clusters (asterisks in F). Some large FISH signals are also observed (arrows). Chromosomal ends do not show any specific clustering at
early zygotene (G) or at pachytene (H). Immunolabeling of centromeric proteins (H) reveal that the large FISH signals correspond to interstitial telomeric
sequences located at centromeres (arrows) or near centromeres (arrowhead). No displacement of the centromeres or telomeric signal was observed
(enlarged imaged in H). Bar: 10 μm.
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zygotene transition, foci were associated with the short fragments of
the forming AEs (Figure 6I). Similarly, from early to late zygotene,
RAD51 foci were distributed all along the synapsing bivalents
(Figures 6J,K). Even at early pachytene (Figure 6L), RAD51 foci
did not concentrate at any particular chromosomal region, even
though the number of such foci was prominently reduced.

As for RPA, we only obtained a reliable signal of the antibody
in T. elegans and M. eugenii. The dynamics of RPA foci were
similar to that of RAD51. In T. elegans, most foci were localized to
the chromosomal ends at the leptotene-zygotene transition and
early zygotene (Figures 7A,B). Then, foci also appeared at
interstitial regions during late zygotene and early pachytene
(Figures 7C,D) but remained visibly concentrated at
chromosomal ends. In contrast, RPA foci in M. eugenii were
evenly distributed along chromosomes throughout prophase I
(Figures 7E–H).

Chromosomal distribution of RPA

A remarkable feature observed regarding RPA dynamics was
that the number of foci remained high even during early

pachytene. Because autosomes have completed synapsis at this
stage, every bivalent could be identified thanks to the differences
in length, centromere position and location of the NOR (Figures
1B,D and Supplementary Figure S1). This permitted a
quantitative study of the distribution of RPA along each
chromosome in both T. elegans and M. eugenii. We analyzed
at least 15 pachytene spermatocytes in two individuals from each
species. Each bivalent was measured, divided into 10 segments
and the position of each RPA focus was then scored along the
bivalent and assigned to a segment. The same methodology was
applied to the X chromosome for both species.

We detected that in T. elegans RPA foci accumulated towards
the chromosomal ends in all bivalents, particularly in the four
largest, in which the two distal segments concentrated near or
above 50% of all RPA foci (Figure 8; Table 1). The distribution of
RPA foci increased symmetrically in both chromosomal arms,
with just a reduction around centromeres. This was especially
relevant for bivalent 6, which bears the NOR on the short arm.
This region accumulated fewer RPA foci (11.41%) compared to
the opposite chromosomal end (20.16%) (Table 1). The X
chromosome, which remained as univalent, also showed a
non-random distribution of RPA. The X centromere seemed

FIGURE 4
Localization of DNA damage-related proteins. Spread spermatocytes labeled with antibodies against SYCP3 (green) and γH2AX (red). (A–D).
Thylamys elegans. γH2AX is observed as small foci at the leptotene-zygotene transition (A) and early zygotene (B), associated to the synapsing
chromosomal ends polarized to the bouquet (asterisks). A more intense γH2AX labeling is observed at late zygotene (C) associated to the AEs of
unsynapsed autosomal regions and sex chromosomes (X, Y). The proximal end of chromosome 6 also remains unsynapsed (arrow). At pachytene (D)
γH2AX is only observed on the chromatin of sex chromosomes. (E–H). D. gliroides. The pattern of γH2AX is almost identical to the one described for
Thylamys elegans, except for a more intense labeling of γH2AX in the unsynapsed regions of chromosomes at zygotene. (I–L)Macropus eugenii. At the
leptotene to zygotene transition (I) γH2AX is spread in the whole nucleus. As zygotene proceeds (J,K) γH2AX labeling is reduced in the nucleus and
concentrates around the AEs of unsynapsed autosomes and the X chromosome, but not on the Y chromosome. Both sex chromosomes exhibit
signal of the antibody at pachytene (L). Bars in A-H and I–L: 10 μm.
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to have an effect, with a reduced number of RPA in the flanking
segments. The Y chromosome could not be analyzed due to its
small size.

In contrast, the distribution of RPA foci in M. eugenii was
quite homogeneous along bivalents. A χ2 test showed that on most
chromosomes RPA location did not significantly depart from a
random distribution (Table 1). The only exceptions were
chromosomes 1, 7 and X, on which RPA foci were reduced
around the centromere. The NOR, which is located in the
short arm of the X chromosome (Figure 1D) did not have and
apparent effect on accumulation of RPA foci. In fact, RPA
distribution was quite similar on the X chromosome in both
species.

The quantitative analysis of RPA also allowed us to assess a
potential correlation between the number of foci accumulated
on every chromosome and their respective length. Because the X
chromosome was a univalent and the Y chromosome was too
small, we only considered autosomes. We found that in T.
elegans, RPA foci were underrepresented in bivalents 1 to 3,
and conversely overrepresented in bivalents 4 to 6 (Table 2).
Accordingly, a Spearman correlation analysis of RPA foci
number and SC length showed low correlation (r = 0.41, p <
0.0001) (Figure 9). In contrast, allM. eugenii bivalents presented
an increased correlation between chromosome length and RPA
proportion (Spearman correlation analysis r = 0.88, p < 0.0001)
(Table 2; Figure 9). This reinforces the hypothesis that RPA
distribution in M. eugenii is not dependent on specific features
of chromosomes. Their location was equiprobable on any
chromosome and at any chromosomal region.

Discussion

Meiotic studies in non-eutherian mammalian species are scarce.
Only a few reports were devoted to monotremes (Daish et al., 2015;
Casey et al., 2017). In marsupials, most studies have focused on the
unique behavior of sex chromosomes (Solari and Bianchi, 1975;
Sharp, 1982; Roche et al., 1986; Seluja et al., 1987; Page et al., 2003;
Page et al., 2005; Fernández-Donoso et al., 2010; Marín-Gual et al.,
2022b). Our recent work on marsupials revealed divergent strategies
for meiotic DNA repair, recombination and transcription (Marín-
Gual et al., 2022b). Here we extend these observations and report
previously uncharacterized features of marsupial meiosis: bouquet
formation, synapsis initiation and chromosomal distribution of
DSBs. Remarkably, our observations suggest an evolutionary shift
in the meiosis program between American and Australian
marsupials. In the context of recently published reports on fish
and reptile meiosis (Blokhina et al., 2019; Marín-Gual et al., 2022a),
our results reveal the persistence of ancestral vertebrate meiotic
features in marsupials. This highlights the relevance of comparative
studies to fully understand the causes and consequences of meiosis
evolution.

The conspicuous bouquet conformation
could be an ancient feature of vertebrate
meiosis

The polarization of telomeres at the beginning of meiosis has
been described in a wide range of species, from fungi to plants and

FIGURE 5
Localization of DNA damage in Thylamys elegans spermatocytes preserving the 3-dimensional topology of chromosomes. Squashed
spermatocytes labeled with antibodies against SYCP3 (green) and γH2AX (red) and DAPI (blue). (A). Leptotene. No γH2AX labeling is observed. AEs appear
polarized in a bouquet configuration (asterisk). (B). Early zygotene. A few small γH2AX signals are observed at the region where synapsis is initiating. The
bouquet polarization is still evident. (C). Mid zygotene. Synapsis has progressed. A few γH2AX foci are scattered within the nucleus. (D). Mid
zygotene. γH2AX labeling starts to be observed at the unsynapsed regions of autosomes and sex chromosomes (X, Y). (E). Late zygotene. γH2AX signal
increases on unsynapsed chromosomes. Sex chromosomes are detected at opposite nuclear spaces and the γH2AX labeling extends from their AEs to
the surrounding chromatin. (F). Early pachytene. γH2AX is only detected on the chromatin of sex chromosomes, clearly separated in the nucleus. (G).
Early-mid pachytene. Sex chromosomes approach and associate to each other. (H). Mid pachytene. Sex chromosomes pair and form the dense plate
(arrowhead). γH2AX labels the whole sex body. Bar: 5 μm.
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animals (Zickler and Kleckner, 1998). However, the presence and
the extent of this polarization changes from taxa to taxa, and even
between sexes. Formation of the bouquet has been considered a
crucial factor in chromosome pairing and synapsis initiation (Liebe
et al., 2006; Reig-Viader et al., 2016). However, the study of different
mutants has provided evidence that such a feature is not an absolute
requirement, and some model systems like Drosophila melanogaster
and Caenorhabditis elegans are known to lack a chromosomal
bouquet during meiosis (Harper et al., 2004).

Our results show the presence of a marked and long-lasting
bouquet polarization in two of the three marsupial species
analyzed. This was correlated with the initiation of synapsis,
which was clearly terminal in T. elegans and D. gliroides. Synapsis
in these two species extended from the telomeres to the
interstitial regions in a zipper-like manner. Similar
observations were reported in the South American marsupial
Rhyncholestes raphanurus, belonging to the Paucituberculata
Order (Page et al., 2005). Thus, this feature seems to be an
old character among marsupials. Moreover, according to
recent reports in zebrafish (Blokhina et al., 2019) and several

species of reptiles (Marín-Gual et al., 2022a), these seem to be
ancient features of the vertebrate meiotic program, which have
been subsequently maintained in a wide range of groups.
However, this chromosomal polarization has suffered
regulatory modifications in different linages. In eutherian
mammals, the house mouse displays a visible polarization at
the beginning of meiosis (Berrios et al., 2010; Berrios et al., 2014),
but this is brief and often incomplete (Scherthan et al., 1996;
Lopez-Jimenez et al., 2022). Moreover, while synapsis can start at
the chromosomal ends in this species, different reports indicated
that synapsis initiation is mostly interstitial (Boateng et al., 2013;
Gruhn et al., 2016). In humans, a striking sexual dimorphism is
observed, with males displaying a brief bouquet but initiating
synapsis almost exclusively at chromosomal ends and females
showing a more persistent bouquet but initiating synapsis at
interstitial regions (Roig et al., 2004; Gruhn et al., 2016). Thus,
the relevance of the bouquet to drive synapsis initiation seems to
have been attenuated in eutherian mammals. In the present
study, we found that the Australian marsupial species
analyzed, M. eugenii, mimics the pattern described in mouse,

FIGURE 6
Localization of homologous recombination repair. Spermatocytes labeled with antibodies against SYCP3 (red) and RAD51 (green). (A–D). Thylamys
elegans. Squashed spermatocytes. RAD51 foci are scarce and localized in the bouquet (asterisk) during the leptotene-zygotene transition (A) and also at
early zygotene (B). At late zygotene (C) some RAD51 foci are seen at interstitial regions and coat abundantly the X and Y chromosomes (X, Y). At early
pachytene (D)most RAD51 foci concentrate in the sex chromosomes. (E–H).D. gliroides. RAD51 foci associate to the short stretches of SYCP3 at the
leptotene-zygotene transition (E). At early zygotene (F), most foci are localized in the already synapsed distal regions. At late zygotene (G) discrete foci are
also detected over the interstitial regions of autosomes and mostly over the X chromosome. At early pachytene (H), a few foci are still associated to
autosomes. (I–L)Macropus eugenii. Spread spermatocytes. At the leptotene-zygotene transition (I) RAD51 foci appear in the whole nucleus. As zygotene
proceeds (J,K) RAD51 is clearly observed all along the bivalents. At early pachytene (L), RAD51 foci number has decreased but they are observed all along
autosomal bivalents and the sex chromosomes. Bars: 5 μm in (A–D) and 10 μm in (E–L).
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with a loose short-lived bouquet and synapsis initiating both near
telomeres and interstitially.

Considering the phylogenetic relationships between the marsupials
studied here (Figure 1) (Duchêne et al., 2017), and previous reports in
other vertebrates (Blokhina et al., 2019; Marín-Gual et al., 2022a), the
most parsimonious explanation is that bouquet polarization and distal
synapsis initiation are ancestral characters in marsupials, and most
probably in all vertebrates. Then, the loosening of telomere
polarization at the beginning of meiosis (becoming more ephemeral
and/or less conspicuous), as well as loss of correlation between bouquet

and distal synapsis initiation seems to have occurred independently
several times in the evolution of mammals (i.e., Australian marsupial
species and mouse). What could cause this change in chromosome
behavior? The determinants of bouquet polarization include the binding
of telomeres to the nuclear envelope and their interaction with
cytoskeleton components via transmembrane proteins of the nuclear
envelope (Scherthan, 2007). It is unlikely that these dynamics have been
lost in eutherianmammals or in Australianmarsupials, but they could be
regulated differently. Interestingly, a recent report revealed that the
formation of a primary cilium in spermatocytes is a crucial factor in

FIGURE 7
Localization of RPA. Spread spermatocytes labeled with antibodies against SYCP3 (red) and RPA (green). (A–D). Thylamys elegans. Most RPA foci
concentrate in the distal regions of autosomes from leptotene to pachytene. From late zygotene to pachytene, RPA foci also accumulate on the sex
chromosomes (X, Y). Asterisk indicates the polarization of chromosomal ends. Sex chromosomes. (E–H). Macropus eugenii. RPA foci associate to
forming AEs at the leptotene to zygotene transition. From early zygotene onwards, foci are observed along the entire length of the bivalents. Bars in
(A–D) and (E–H): 10 μm.

FIGURE 8
Chromosomal distribution of RPA foci distribution along bivalents and the X chromosome in Thylamys elegans and Macropus eugenii.
Chromosomes have been divided into 10 segments of equal size between telomeres (proximal to distal). Y-axes in the graphs indicate the percentage of
RPA foci in each segment. Each bivalent (BV) has been depicted below the corresponding graph. Pink bars indicate the centromere position, yellow bars
indicate the NOR. We found a prominent polarization of RPA foci towards the chromosome ends in Thylamys elegans. In contrast, in Macropus
eugenii detection of RPA foci uncovered a relatively homogeneous distribution along the entire length of the chromosomes.
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the formation of the bouquet in zebrafish (Mytlis et al., 2022). This
structure is formed in spermatocytes at leptotene-zygotene, and its
removal disrupts bouquet formation, as well as synapsis and
recombination (Mytlis et al., 2022; Xie et al., 2022). Intriguingly, the
formation of the primary cilium in mouse seems to be differently
regulated, because this structure is formed in a reduced fraction of
spermatocytes at the leptotene-zygote transition (Lopez-Jimenez et al.,
2022). This seems to correlate with the absence of a conspicuous bouquet
in the mouse, although a causative relationship has not yet been
demonstrated. Further exploration of mammalian species could
provide new insight into the role that cilia play in bouquet formation.

Induction of DSBs and synapsis initiation and
progression

A characteristic hallmark of meiotic DNA damage is the
localization of phosphorylated H2AX (γH2AX) (Mahadevaiah

et al., 2001; Turner et al., 2004), which appears as scattered foci
at early leptotene and then extends to occupy the whole nucleus
during late leptotene (Enguita-Marruedo et al., 2019). In eutherian
mammals (i.e., mouse) the presence of γH2AX is then reduced as
prophase I progresses, and DNA is repaired but remains during late
stages of prophase I in regions that do not achieve synapsis. This has
been found to occur on both autosomes, as a feature related to the
meiotic silencing of unsynapsed chromatin (MSUC) (Baarends et al.,
2005; Turner et al., 2005; Manterola et al., 2009), and on the sex
chromosomes where it contributes to meiotic sex chromosome
inactivation (MSCI) (Turner et al., 2004; Page et al., 2012). Early
reports on the localization of γH2AX in marsupials indicated that
MSCI also operates in this group (Franco et al., 2007; Hornecker
et al., 2007; Namekawa et al., 2007). However, other aspects of the
localization of γH2AX in relation to DNA damage in marsupials
have remained unexplored until recently.

We have previously shown in marsupials that there are two
waves of γH2AX accumulation during prophase I, along with lower

TABLE 1 Percentage of RPA foci per chromosomal segment in the different bivalents (BV) and the X chromosome (X) of Thylamys elegans andMacropus eugenii. A
χ2 of goodness of fit test (9 degrees of freedom) was performed to assess the deviation from a random distribution along chromosomes. Significance was
considered when p ≤ 0.05. n: number of bivalents analyzed; f = number of foci.

Thylamys elegans (% RPA)

Segment BV1 (n = 31)
(f = 596)

BV2 (n = 35)
(f = 540)

BV3 (n = 33)
(f = 457)

BV4 (n = 35)
(f = 550)

BV5 (n = 33)
(f = 498)

BV6 (n = 35)
(f = 377)

X (n = 28)
(f = 302)

1 26.51 21.85 29.10 27.64 16.87 11.41 14.57

2 9.90 9.07 7.88 10.00 10.24 8.49 9.60

3 5.03 6.30 6.13 5.45 7.43 7.16 9.93

4 2.52 3.15 3.72 6.00 9.44 7.69 2.98

5 5.54 4.81 4.81 3.09 6.22 5.31 3.64

6 4.87 7.22 2.19 3.82 6.02 3.98 8.28

7 3.36 5.56 3.06 4.18 6.83 8.49 10.26

8 6.21 8.15 4.81 6.91 5.62 10.34 10.60

9 11.74 9.26 13.13 8.55 13.45 16.98 12.91

10 24.33 24.63 25.16 24.36 17.87 20.16 17.22

χ2 397.19 256.15 377.73 377.02 93.28 88.79 52.76

p value <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.0004

Macropus eugenii (% RPA)

Segment BV1 (n = 43)
(f = 1525)

BV2 (n = 44)
(f = 1051)

BV3 (n = 44)
(f = 1001)

BV4 (n = 44)
(f = 910)

BV5 (n = 43)
(f = 808)

BV6 (n = 43)
(f = 600)

BV7 (n = 42)
(f = 305)

X (n = 31)
(f = 408)

1 9.18 9.80 9.59 10.11 10.02 10.17 7.87 10.29

2 7.54 8.56 10.49 9.67 10.02 11.50 12.79 8.82

3 11.54 9.13 9.99 9.56 10.27 10.17 10.49 3.19

4 11.08 10.37 9.99 7.69 8.42 8.83 10.16 6.13

5 9.97 10.75 10.49 10.66 10.27 7.33 4.59 9.56

6 11.02 11.04 9.79 11.43 11.01 10.50 6.23 10.54

7 10.30 11.04 10.99 10.11 10.52 9.83 13.11 11.76

8 11.28 10.75 9.79 10.88 11.51 11.17 11.80 10.78

9 9.38 10.56 10.59 11.32 10.27 11.33 15.08 14.95

10 8.72 7.99 8.29 8.57 7.67 9.17 7.87 13.97

χ2 22.94 11.16 4.98 11.54 9.47 8.93 30.31 43.81

p value 0.006 0.2649 0.8357 0.2406 0.3946 0.4435 0.0004 <0.0001
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levels of γH2AX on autosomes when compared to eutherians
(Marín-Gual et al., 2022b). Here we extend these initial
observations and report previously uncharacterized differences
between marsupial species. In T. elegans and D. gliroides γH2AX
signal is scarce and mostly restricted to the regions where
homologous chromosomes initiate their synapsis, whereas in M.
eugenii γH2AX is distributed across the whole nucleus. We suggest
that there is a relationship between this finding and the observed
patterns of synapsis initiation and progression. Thus, in the two
American species a low induction of DSBs would occur in the
chromosomal regions polarized to the bouquet area, triggering the
initiation of synapsis. In the absence of further (or abundant) DSBs
along interstitial regions of chromosomes, synapsis would progress
from chromosomal ends towards the center of chromosomes,
probably owing to the self-assembly capabilities of the SC
components. Therefore, the few DSBs scattered along interstitial
regions do not seem to promote SC assembly. Interestingly, these
interstitial DSBs do not trigger a conspicuous H2AX
phosphorylation either. Only later, during late zygotene, was
γH2AX observed at interstitial regions of the unsynapsed
autosomes, as well as on the sex chromosomes. This could be
interpreted as an indication of late DNA damage events
produced exclusively in those regions. Alternatively, it might be

linked to the silencing of unsynapsed regions, i.e., the MSUC/MSCI
processes. In contrast, the widespread generation of DSBs in M.
eugenii is correlated to synapsis initiation at different regions along
the chromosomes, not only chromosomal ends. Thus, the synapsis
pattern of homologous chromosomes seems to be conditioned by
the way DNA damage is produced during prophase I. The pattern
observed in T. elegans and D. gliroides seems to be ancestral, and
even shared by other non-mammalian vertebrates (Blokhina et al.,
2019; Marín-Gual et al., 2022a).

Finally, we highlight the possibility that a part of the DNA
damage occurring in T. elegans and D. gliroides was not
accompanied by H2AX phosphorylation. Although the restricted
localization of γH2AX at the bouquet area correlates with
accumulation of RPA and RAD51 in these two species, some
RPA and RAD51 foci appeared outside the areas of γH2AX
accumulation. Previous reports in monotreme mammals (Daish
et al., 2015) and some insects (Viera et al., 2017) have indicated that
γH2AX is not necessarily a marker of all DNA damage during
prophase I. Our own observations indicate that γH2AX is not
detected during prophase I in some reptiles (Marín-Gual et al.,
2022a) (Page, unpublished). Therefore, it seems that some aspects of
DNA damage signaling during meiosis in mammals and other
vertebrates are yet to be properly characterized.

TABLE 2 Proportion of RPA foci and SC length of each bivalent at early pachytene, calculated over the number of foci and SC length of autosomes. Only cells in
which all bivalents could be recorded have been included. Values are presented as mean ± standard deviation. n: number of cells analyzed; f = number of foci.

Thylamys elegans (n = 34; f = 2958)

BV1 BV2 BV3 BV4 BV5 BV6

% RPA foci 19.57 ± 4.7 17.91 ± 6.7 15.98 ± 4.9 18.52 ± 7.0 15.20 ± 4.3 12.81 ± 4.9

% SC length 23.89 ± 1.7 21.89 ± 1.7 19.70 ± 1.9 15.12 ± 2.1 9.82 ± 1.3 8.80 ± 1.0

Macropus eugenii (n=41; f= 6968)

BV1 BV2 BV3 BV4 BV5 BV6 BV7

% RPA foci 23.84 ± 3.9 16.81 ± 3.6 15.75 ± 3.1 14.50 ± 2.8 13.68 ± 3.1 10.49 ± 2.5 4.93 ± 2.0

% SC length 22.91± 1.9 16.96 ± 2.0 15.37 ± 1.5 14.47 ± 2.6 13.89 ± 1.4 10.93 ± 1.8 5.47 ± 0.9

FIGURE 9
Compared proportion of RPA foci number and SC length chromosome in Thylamys elegans andMacropus eugenii. Each spot represents a bivalent
in a cell. Black lines represent the calculated regression line. r = Spearman correlation coefficient.
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Differential chromosomal distribution of
meiotic DSBs in marsupials

Perhaps the most striking finding of this study is the extreme
difference in the distribution of DNA damage along chromosomes in
the species analyzed. Several studies have focused on the overall frequency
of recombination across mammals or even eukaryotes (Dumont and
Payseur, 2008; Segura et al., 2013; Stapley et al., 2017). In eutherian
mammals, previous reports have found that early diverging linages had
lower recombination rates (Segura et al., 2013). Furthermore, marsupials
show an even lower rate of recombination when compared to eutherians
(Zenger et al., 2002; Samollow et al., 2004; Samollow et al., 2007; Dumont
and Payseur, 2008; Wang et al., 2011), which has been attributed to the
induction of fewerDSBs during early stages ofmeiotic prophase I (Marín-
Gual et al., 2022b).

While many studies have stressed the evolutionary relevance of
the recombination rate on chromosomal evolution and populations
dynamics (Farré et al., 2012; Capilla et al., 2014; Ullastres et al., 2014;
Dapper and Payseur, 2017; Ritz et al., 2017), the genomic
implications of the uneven distribution of recombination along
chromosomes have received less attention. Initial reports in
mouse and human showed that COs tend to locate towards the
telomeres (Barlow and Hultén, 1998; Froenicke et al., 2002).
Likewise, studies on the localization of DSBs by means of DNA
repair markers like RPA and DMC1 reported an accumulation of
breaks towards chromosome ends in humans (Oliver-Bonet et al.,
2007; Pratto et al., 2014), which is not so evident in mouse (de Boer
et al., 2006). Here we reveal striking inter-specific differences in the
pattern of RPA distribution (CO distribution could not be analyzed

due to the lack of reactivity of many different antibodies against
MLH1 and other CO markers) in marsupials. In T. elegans RPA foci
accumulated towards the chromosomal ends. This pattern resembles
the one characterized in humans, although it is much more
prominent in the marsupial. In contrast, M. eugenii shows a
remarkably even distribution of DSBs along the chromosomes,
resembling the pattern reported in mouse. Moreover, the number
of DSBs per chromosome has a high correlation with SC (Table 2).
On the contrary, large chromosomes appear to accumulate less DSB
than expected in T. elegans, a feature that has been described in
other species, from budding yeast to humans (Kaback, 1996;
Subramanian et al., 2019). It remains to be determined whether
D. gliroides adheres to one of these patterns, or a different one.

We can only speculate on the mechanisms and consequences of
the differential chromosomal distribution of DSBs detected in
marsupials. In mammals, and many other organisms, DSBs are
produced preferentially at recurrent sites referred to as hotspots
(Paigen and Petkov, 2010; Baudat et al., 2013). Two main types of
hotspots are usually recognized. The first are placed in promoter
regions of genes, which supposedly present an open chromatin
configuration that makes them accessible to the DSBs producing
complexes. The second type is determined by the action of the
histone methyl transferase PRDM9, which tri-methylates histone
H3 at lysine 4 (H3K4me), thus transforming these sites into
preferential spots for breakage by the protein SPO11 (Baudat
et al., 2010; Parvanov et al., 2010; Brick et al., 2012). Whereas
the first kind of hotspots are conserved within and between species,
the ones depending on PRDM9 are more variable, owing to the fast-
evolving features of this enzyme (Grey et al., 2018). Most mammals,

FIGURE 10
Schematic representation of the two different patterns of SC assembly, synapsis progression and DNA repair observed in the marsupial species.
Green lines represent AE/LEs, red clouds represent γH2AX and blue spots represent DNA repair proteins (RAD51/RPA). In each nucleus a bivalent and both
sex chromosomes (X, Y) are represented. In the top row, the putative ancestral pattern involves: conspicuous bouquet polarization, AE assembly and
synapsis progression from chromosomal ends and preferential localization of DNA damage and repair towards chromosomal distal regions. In the
bottom row, the emergent pattern observed in Australian marsupials: loosened bouquet, AEs assembly and synapsis progression at any chromosomal
position, and an even distribution of DNA damage and repair events along chromosomes.
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including marsupials have a copy of the Prdm9 gene, but it has been
partially or completely lost in the platypus and canids (Cavassim
et al., 2022). Therefore, it seems unlikely that the different patterns of
DSB distribution we observe could be attributable to the absence of
PRDM9. Instead, it is possible that a differential distribution, usage,
or regulation of the different types of hotspots could be responsible
for such differences. One possibility is that T. elegans relies more in
the use of promoter-related hotspots, with genes concentrated near
chromosomal ends.

M. eugenii could be using more PRDM9-dependent hotspots,
which would be expected to result in a more uniform distribution of
DSBs along chromosomes. This even distribution in M. eugenii
could be also related to the extensive genomic reorganizations
experienced in the family Macropodidae (Deakin, 2018; Deakin
and O’Neill, 2020; Álvarez-González et al., 2022). In fact, recent
reports have shown that lineage-specific evolutionary genomic
reshuffling can influence patterns of higher-order chromatin
organization (Farré et al., 2015; Álvarez-González et al., 2022),
and that chromosomal reorganizations can have an impact on
the three-dimensional genome folding and recombination in the
germ line (Vara et al., 2021; Álvarez-González et al., 2022). Thus,
genome reshuffling in macropodids could have led to a more even
distribution of recombination hotspots genome-wide. Interestingly,
we found that the X chromosome behaves similarly in the species
compared here. It is possible that the X chromosome escaped this
hotspot reorganization. Further analyses in the study of marsupial
genomes and the use of ChIP-Seq approaches to map recombination
hotspots could yield insightful information about this possibility.

Genomic and evolutionary consequences of
divergent recombinogenic patterns

The dissimilar pattern of DSBs chromosomal distribution
may have consequences at the genomic level in marsupials.
Although not all the DSBs produced during prophase I result
into COs, it seems reasonable to assume that COs could be evenly
distributed along chromosomes in M. eugenii. This would
facilitate the recurrent recombination of allele combinations,
thus breaking haplotypes. In the case of T. elegans, however,
the accumulation of DSBs towards chromosomal ends would
reduce the possibilities of recombination at the interstitial
regions of chromosomes. Supporting this view, a previous
study reported that chiasmata are conspicuously terminal in T.
elegans (Page et al., 2006). Since T. elegans has a very low
chromosome number, this would mean the formation of few
and large regions of linkage disequilibrium. Such a strategy could
be beneficial in a very stable environment, as long as allelic
combinations at different loci had achieved an optimum
(Stapley et al., 2017; Wang et al., 2019). In contrast, with
recombination spread all over chromosomes, the resulting
generation of new genome-wide allele combinations could
have provided some marsupial groups with a higher capacity
to adapt to new environments. It is tempting to speculate that this
factor could have had an influence in the diversification of
marsupials in Australasia after they diverged from
Microbiotheria.

Moreover, the fact that most DSBs are repaired as gene
conversion events (Cole et al., 2012; Baudat et al., 2013) does
not preclude these breaks from being innocuous for the evolution
of some genome features, like GC content. Both reciprocal
recombination and gene conversion induce a shift to the
accumulation of GC in the repaired strand, a phenomenon
known as GC-biased gene conversion (gBGC) (Duret and
Galtier, 2009). This mechanism has been detected from yeast
to mammals and has been proposed to impact the evolution of
genomes (Mugal et al., 2015). For instance, it was suggested that
the enrichment of GC-rich isochores in mammalian genomes
could be in part a consequence of gBGC (Duret and Galtier,
2009). The accumulation of GC content due to gBGC requires the
recurrent use of recombination hotspots. Given the differential
use of these hotspots across species, different rates of GC
accumulation are expected. This could partially explain why in
humans, with a rapid turnover of PRDM9-dependent hotspot,
GC accumulation is spread in the whole genome, whereas in birds,
with more conserved recombination hotspots, the increase of GC
content is much more localized to specific genomic regions (Mugal
et al., 2015). Thus, given the distribution of DSBs in the marsupial
species studied, we foresee an accumulation of GC content due to gBGC
at the distal regions of chromosomes in T. elegans, compared to M.
eugenii.

Concluding remarks

Our results suggest that marsupials experienced a major shift
in some of the key processes of meiosis, such as SC assembly,
synapsis progression and DSB distribution (Figure 10). Many of
these changes seems to have occurred after the split of
Microbiotheria and the Australian marsupials, about 60 million
years ago (Feng et al., 2022), although it remains to be
characterized if some features could have already been present
in the common ancestor of these two groups. Likewise, further
research is required to determine to what extent the features
observed in M. eugenii are shared by other Australian
marsupials. Moreover, the features observed in T. elegans,
clearly basal to the rest of the marsupial groups, could have
been shared with the ancestor of the eutherian mammals before
they split apart about 165 million years ago. In view of recent
reports, these features could be even dated back to the appearance
of early vertebrates (Blokhina et al., 2019; Marín-Gual et al.,
2022a). Expansion of meiosis studies to uncharacterized
mammals, including eutherians, marsupials and monotremes, as
well as to other vertebrates (i.e., reptiles, amphibians or fishes), will
shed light on the evolution of meiosis across taxa. Moreover, these
studies will undoubtedly have a deep impact in our understanding
of genome evolution.
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SUPPLEMENTARY FIGURE S1
Identification of bivalents. Spread spermatocytes at pachytene labeled with
antibodies against SYCP3 (red), RPA (green), centromere proteins (blue) and
fibrillarin (pink). (A). T. elegans. (B). M. eugenii. The length and centromere
position allowed for the identification of each bivalent. Additionally, bivalent
6 in T. elegans was recognized by the position of the nucleolus (Nu),
revealed by fibrillarin labeling. Sex chromosomes (X, Y). Bars: 10 μm.

References

Álvarez-González, L., Arias-Sardá, C., Montes-Espuña, L., Marín-Gual, L., Vara, C.,
Lister, N. C., et al. (2022). Principles of 3D chromosome folding and evolutionary
genome reshuffling in mammals. Cell Rep. 41 (12), 111839. doi:10.1016/j.celrep.2022.
111839

Baarends, W.M.,Wassenaar, E., van der Laan, R., Hoogerbrugge, J., Sleddens-Linkels,
E., Hoeijmakers, J. H., et al. (2005). Silencing of unpaired chromatin and histone H2A
ubiquitination in mammalian meiosis. Mol. Cell Biol. 25 (3), 1041–1053. doi:10.1128/
MCB.25.3.1041-1053.2005

Bachtrog, D. (2013). Y-Chromosome evolution: Emerging insights into
processes of Y-chromosome degeneration. Nat. Rev. Genet. 14 (2), 113–124.
doi:10.1038/nrg3366

Baier, B., Hunt, P., Broman, K. W., and Hassold, T. (2014). Variation in genome-
wide levels of meiotic recombination is established at the onset of prophase in
mammalian males. PLOS Genet. 10 (1), e1004125. doi:10.1371/journal.pgen.
1004125

Barlow, A. L., and Hultén, M. A. (1998). Crossing over analysis at pachytene in man.
Eur. J. Hum. Genet. 6 (4), 350–358. doi:10.1038/sj.ejhg.5200200

Barton, N. H., and Charlesworth, B. (1998). Why sex and recombination? Science
281(5385), 1986–1990. doi:10.1126/science.281.5385.1986

Baudat, F., Buard, J., Grey, C., Fledel-Alon, A., Ober, C., Przeworski, M., et al. (2010).
PRDM9 is a major determinant of meiotic recombination hotspots in humans andmice.
Science 327 (5967), 836–840. doi:10.1126/science.1183439

Baudat, F., Imai, Y., and de Massy, B. (2013). Meiotic recombination in
mammals: Localization and regulation. Nat. Rev. Genet. 14 (11), 794–806.
doi:10.1038/nrg3573

Baudat, F., Manova, K., Yuen, J. P., Jasin, M., and Keeney, S. (2000). Chromosome
synapsis defects and sexually dimorphic meiotic progression in mice lacking Spo11.
Mol. Cell 6 (5), 989–998. doi:10.1016/s1097-2765(00)00098-8

Bender, H. S., Murchison, E. P., Pickett, H. A., Deakin, J. E., Strong, M. A., Conlan, C.,
et al. (2012). Extreme telomere length dimorphism in the tasmanian devil and related
marsupials suggests parental control of telomere length. PLOS ONE 7 (9), e46195.
doi:10.1371/journal.pone.0046195

Bennett, J. H., Hayman, D. L., and Hope, R. M. (1986). Novel sex differences in
linkage values and meiotic chromosome behaviour in a marsupial. Nature 323 (6083),
59–60. doi:10.1038/323059a0

Bergero, R., Ellis, P., Haerty, W., Larcombe, L., Macaulay, I., Mehta, T., et al. (2021).
Meiosis and beyond – understanding the mechanistic and evolutionary processes
shaping the germline genome. Biol. Rev. 96 (3), 822–841. doi:10.1111/brv.12680

Berrios, S., Manieu, C., Lopez-Fenner, J., Ayarza, E., Page, J., Gonzalez, M., et al.
(2014). Robertsonian chromosomes and the nuclear architecture of mouse meiotic
prophase spermatocytes. Biol. Res. 47, 16. doi:10.1186/0717-6287-47-16

Berrios, S., Manterola, M., Prieto, Z., Lopez-Fenner, J., Page, J., and Fernandez-
Donoso, R. (2010). Model of chromosome associations in Mus domesticus
spermatocytes. Biol. Res. 43 (3), 275–285. doi:10.4067/S0716-97602010000300003

Frontiers in Cell and Developmental Biology frontiersin.org16

Valero-Regalón et al. 10.3389/fcell.2023.1147610

143

https://www.frontiersin.org/articles/10.3389/fcell.2023.1147610/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fcell.2023.1147610/full#supplementary-material
https://doi.org/10.1016/j.celrep.2022.111839
https://doi.org/10.1016/j.celrep.2022.111839
https://doi.org/10.1128/MCB.25.3.1041-1053.2005
https://doi.org/10.1128/MCB.25.3.1041-1053.2005
https://doi.org/10.1038/nrg3366
https://doi.org/10.1371/journal.pgen.1004125
https://doi.org/10.1371/journal.pgen.1004125
https://doi.org/10.1038/sj.ejhg.5200200
https://doi.org/10.1126/science.281.5385.1986
https://doi.org/10.1126/science.1183439
https://doi.org/10.1038/nrg3573
https://doi.org/10.1016/s1097-2765(00)00098-8
https://doi.org/10.1371/journal.pone.0046195
https://doi.org/10.1038/323059a0
https://doi.org/10.1111/brv.12680
https://doi.org/10.1186/0717-6287-47-16
https://doi.org/10.4067/S0716-97602010000300003
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2023.1147610


Blokhina, Y. P., Nguyen, A. D., Draper, B.W., and Burgess, S. M. (2019). The telomere
bouquet is a hub where meiotic double-strand breaks, synapsis, and stable homolog
juxtaposition are coordinated in the zebrafish, Danio rerio. PLOS Genet. 15 (1),
e1007730. doi:10.1371/journal.pgen.1007730

Boateng, K. A., Bellani, M. A., Gregoretti, I. V., Pratto, F., and Camerini-Otero, R. D.
(2013). Homologous pairing preceding SPO11-mediated double-strand breaks in mice.
Dev. Cell 24 (2), 196–205. doi:10.1016/j.devcel.2012.12.002

Brick, K., Smagulova, F., Khil, P., Camerini-Otero, R. D., and Petukhova, G. V. (2012).
Genetic recombination is directed away from functional genomic elements in mice.
Nature 485 (7400), 642–645. doi:10.1038/nature11089

Brick, K., Thibault-Sennett, S., Smagulova, F., Lam, K.-W. G., Pu, Y., Pratto, F., et al.
(2018). Extensive sex differences at the initiation of genetic recombination. Nature 561
(7723), 338–342. doi:10.1038/s41586-018-0492-5

Brown, M. S., and Bishop, D. K. (2015). DNA strand exchange and RecA homologs in
meiosis. Cold Spring Harb. Perspect. Biol. 7 (1), a016659. doi:10.1101/cshperspect.
a016659

Capilla, L., Medarde, N., Alemany-Schmidt, A., Oliver-Bonet, M., Ventura, J., and
Ruiz-Herrera, A. (2014). Genetic recombination variation in wild robertsonian mice:
On the role of chromosomal fusions and Prdm9 allelic background. Proc. Biol. Sci. 281
(1786), 20140297. doi:10.1098/rspb.2014.0297

Casey, A. E., Daish, T. J., Barbero, J. L., and Grützner, F. (2017). Differential cohesin
loading marks paired and unpaired regions of platypus sex chromosomes at prophase I.
Sci. Rep. 7 (1), 4217. doi:10.1038/s41598-017-04560-5

Cavassim, M. I. A., Baker, Z., Hoge, C., Schierup, M. H., Schumer, M., and Przeworski,
M. (2022). PRDM9 losses in vertebrates are coupled to those of paralogs ZCWPW1 and
ZCWPW2. Proc. Natl. Acad. Sci. U. S. A. 119 (9), e2114401119. doi:10.1073/pnas.
2114401119

Charlesworth, D., Charlesworth, B., and Marais, G. (2005). Steps in the evolution of
heteromorphic sex chromosomes. Hered. (Edinb) 95 (2), 118–128. doi:10.1038/sj.hdy.
6800697

Cole, F., Keeney, S., and Jasin, M. (2012). Preaching about the converted: Howmeiotic
gene conversion influences genomic diversity. Ann. N. Y. Acad. Sci. 1267 (1), 95–102.
doi:10.1111/j.1749-6632.2012.06595.x

Daish, T. J., Casey, A. E., and Grutzner, F. (2015). Lack of sex chromosome specific
meiotic silencing in platypus reveals origin of MSCI in therian mammals. BMC Biol. 13
(1), 106. doi:10.1186/s12915-015-0215-4

Dapper, A. L., and Payseur, B. A. (2017). Connecting theory and data to understand
recombination rate evolution. Philosophical Trans. R. Soc. B Biol. Sci. 372 (1736),
20160469. doi:10.1098/rstb.2016.0469

de Boer, E., Stam, P., Dietrich, A. J. J., Pastink, A., and Heyting, C. (2006). Two levels
of interference in mouse meiotic recombination. Proc. Natl. Acad. Sci. 103 (25),
9607–9612. doi:10.1073/pnas.0600418103

de la Fuente, R., Manterola, M., Viera, A., Parra, M. T., Alsheimer, M., Rufas, J. S., et al.
(2014). Chromatin organization and remodeling of interstitial telomeric sites during
meiosis in the Mongolian gerbil (Meriones unguiculatus). Genetics 197 (4), 1137–1151.
doi:10.1534/genetics.114.166421

de la Fuente, R., Parra, M. T., Viera, A., Calvente, A., Gomez, R., Suja, J. A., et al.
(2007). Meiotic pairing and segregation of achiasmate sex chromosomes in eutherian
mammals: The role of SYCP3 protein. PLoS Genet. 3 (11), e198. doi:10.1371/journal.
pgen.0030198

de la Fuente, R., Sanchez, A., Marchal, J. A., Viera, A., Parra, M. T., Rufas, J. S.,
et al. (2012). A synaptonemal complex-derived mechanism for meiotic
segregation precedes the evolutionary loss of homology between sex
chromosomes in arvicolid mammals. Chromosoma 121 (5), 433–446. doi:10.
1007/s00412-012-0374-9

Deakin, J. E. (2018). Chromosome evolution in marsupials. Genes (Basel) 9 (2), 72.
doi:10.3390/genes9020072

Deakin, J. E., and O’Neill, R. J. (2020). Evolution of marsupial genomes. Annu. Rev.
Animal Biosci. 8 (1), 25–45. doi:10.1146/annurev-animal-021419-083555

Deakin, J. E., and Potter, S. (2019). Marsupial chromosomics: Bridging the gap
between genomes and chromosomes. Reproduction, Fertil. Dev. 31 (7), 1189–1202.
doi:10.1071/RD18201

D’Elía, G., Hurtado, N., and D’Anatro, A. (2016). Alpha taxonomy of Dromiciops
(Microbiotheriidae) with the description of 2 new species of monito del monte.
J. Mammal. 97 (4), 1136–1152. doi:10.1093/jmammal/gyw068

Duchêne, D. A., Bragg, J. G., Duchêne, S., Neaves, L. E., Potter, S., Moritz, C., et al.
(2017). Analysis of phylogenomic tree space resolves relationships among marsupial
families. Syst. Biol. 67 (3), 400–412. doi:10.1093/sysbio/syx076

Dumont, B. L., and Payseur, B. A. (2008). Evolution of the genomic rate of recombination
in mammals. Evolution 62 (2), 276–294. doi:10.1111/j.1558-5646.2007.00278.x

Duret, L., and Galtier, N. (2009). Biased gene conversion and the evolution of
mammalian genomic landscapes. Annu. Rev. Genomics Hum. Genet. 10 (1),
285–311. doi:10.1146/annurev-genom-082908-150001

Enguita-Marruedo, A., Martin-Ruiz, M., Garcia, E., Gil-Fernandez, A., Parra, M. T.,
Viera, A., et al. (2019). Transition from a meiotic to a somatic-like DNA damage

response during the pachytene stage in mouse meiosis. PLoS Genet. 15 (1), e1007439.
doi:10.1371/journal.pgen.1007439

Farré, M., Micheletti, D., and Ruiz-Herrera, A. (2012). Recombination rates and
genomic shuffling in human and chimpanzee—a new twist in the chromosomal
speciation theory. Mol. Biol. Evol. 30 (4), 853–864. doi:10.1093/molbev/mss272

Farré, M., Robinson, T. J., and Ruiz-Herrera, A. (2015). An Integrative Breakage
Model of genome architecture, reshuffling and evolution: The Integrative Breakage
Model of genome evolution, a novel multidisciplinary hypothesis for the study of
genome plasticity. BioEssays 37 (5), 479–488. doi:10.1002/bies.201400174

Feng, S., Bai, M., Rivas-González, I., Li, C., Liu, S., Tong, Y., et al. (2022). Incomplete
lineage sorting and phenotypic evolution in marsupials. Cell 185 (10), 1646–1660.e18.
doi:10.1016/j.cell.2022.03.034

Fernández-Donoso, R., Berríos, S., Rufas, J. S., and Page, J. (2010). “Marsupial
sex chromosome behaviour during male meiosis,” in Marsupial genetics and
genomics J. A. Deakin, P. D. Waters, and J. A. Marshall Graves (Dordrecht:
Springer), 187–206.

Fontúrbel, F. E., Franco, L. M., Bozinovic, F., Quintero-Galvis, J. F., Mejías, C., Amico,
G. C., et al. (2022). The ecology and evolution of the monito del monte, a relict species
from the southern South America temperate forests. Ecol. Evol. 12 (3), e8645. doi:10.
1002/ece3.8645

Franco, M. J., Sciurano, R. B., and Solari, A. J. (2007). Protein immunolocalization
supports the presence of identical mechanisms of XY body formation in eutherians and
marsupials. Chromosome Res. 15 (6), 815–824. doi:10.1007/s10577-007-1165-7

Fraune, J., Schramm, S., Alsheimer, M., and Benavente, R. (2012). The mammalian
synaptonemal complex: Protein components, assembly and role in meiotic
recombination. Exp. Cell Res. 318 (12), 1340–1346. doi:10.1016/j.yexcr.2012.02.018

Froenicke, L., Anderson, L. K., Wienberg, J., and Ashley, T. (2002). Male mouse
recombination maps for each autosome identified by chromosome painting. Am.
J. Hum. Genet. 71 (6), 1353–1368. doi:10.1086/344714

Gil-Fernández, A., Ribagorda, M., Martín-Ruiz, M., López-Jiménez, P., Laguna, T.,
Gómez, R., et al. (2021). Meiotic behavior of achiasmate sex chromosomes in the
african pygmy mouse Mus mattheyi offers new insights into the evolution of sex
chromosome pairing and segregation in mammals. Genes 12 (9), 1434. doi:10.
3390/genes12091434

Gil-Fernández, A., Saunders, P. A., Martín-Ruiz, M., Ribagorda, M., López-Jiménez,
P., Jeffries, D. L., et al. (2020). Meiosis reveals the early steps in the evolution of a neo-XY
sex chromosome pair in the African pygmy mouse Mus minutoides. PLOS Genet. 16
(11), e1008959. doi:10.1371/journal.pgen.1008959

Graves, J. A. M., and Renfree, M. B. (2013). Marsupials in the age of genomics. Annu.
Rev. Genomics Hum. Genet. 14 (1), 393–420. doi:10.1146/annurev-genom-091212-
153452

Graves, J. A. (1995). The origin and function of the mammalian Y chromosome and
Y-borne genes--an evolving understanding. Bioessays 17 (4), 311–320. doi:10.1002/bies.
950170407

Graves, J. A., Wakefield, M. J., and Toder, R. (1998). The origin and evolution of the
pseudoautosomal regions of human sex chromosomes. Hum. Mol. Genet. 7 (13),
1991–1996. doi:10.1093/hmg/7.13.1991

Grey, C., Baudat, F., and de Massy, B. (2009). Genome-wide control of the
distribution of meiotic recombination. PLOS Biol. 7 (2), e1000035. doi:10.1371/
journal.pbio.1000035

Grey, C., Baudat, F., and de Massy, B. (2018). PRDM9, a driver of the genetic map.
PLOS Genet. 14 (8), e1007479. doi:10.1371/journal.pgen.1007479

Gruhn, Jennifer R., Al-Asmar, N., Fasnacht, R., Maylor-Hagen, H., Peinado, V.,
Rubio, C., et al. (2016). Correlations between synaptic initiation and meiotic
recombination: A study of humans and mice. Am. J. Hum. Genet. 98 (1), 102–115.
doi:10.1016/j.ajhg.2015.11.019

Gruhn, J. R., Rubio, C., Broman, K. W., Hunt, P. A., and Hassold, T. (2013).
Cytological studies of human meiosis: Sex-specific differences in recombination
originate at, or prior to, establishment of double-strand breaks. PLOS ONE 8 (12),
e85075. doi:10.1371/journal.pone.0085075

Harper, L., Golubovskaya, I., and Cande, W. Z. (2004). A bouquet of chromosomes.
J. Cell Sci. 117 (18), 4025–4032. doi:10.1242/jcs.01363

Hayman, D. L. (1990). Marsupial cytogenetics.Aust. J. Zool. 37, 331–349. doi:10.1071/
ZO9890331

Hornecker, J. L., Samollow, P. B., Robinson, E. S., Vandeberg, J. L., andMcCarrey, J. R.
(2007). Meiotic sex chromosome inactivation in the marsupial Monodelphis domestica.
Genesis 45 (11), 696–708. doi:10.1002/dvg.20345

Kaback, D. B. (1996). Chromosome–size dependent control of meiotic recombination
in humans. Nat. Genet. 13 (1), 20–21. doi:10.1038/ng0596-20

Keeney, S., Lange, J., and Mohibullah, N. (2014). Self-organization of meiotic
recombination initiation: General principles and molecular pathways. Annu. Rev.
Genet. 48 (1), 187–214. doi:10.1146/annurev-genet-120213-092304

Lenormand, T., Engelstädter, J., Johnston, S. E., Wijnker, E., and Haag, C. R. (2016).
Evolutionary mysteries in meiosis. Philosophical Trans. R. Soc. B Biol. Sci. 371 (1706),
20160001. doi:10.1098/rstb.2016.0001

Frontiers in Cell and Developmental Biology frontiersin.org17

Valero-Regalón et al. 10.3389/fcell.2023.1147610

144

https://doi.org/10.1371/journal.pgen.1007730
https://doi.org/10.1016/j.devcel.2012.12.002
https://doi.org/10.1038/nature11089
https://doi.org/10.1038/s41586-018-0492-5
https://doi.org/10.1101/cshperspect.a016659
https://doi.org/10.1101/cshperspect.a016659
https://doi.org/10.1098/rspb.2014.0297
https://doi.org/10.1038/s41598-017-04560-5
https://doi.org/10.1073/pnas.2114401119
https://doi.org/10.1073/pnas.2114401119
https://doi.org/10.1038/sj.hdy.6800697
https://doi.org/10.1038/sj.hdy.6800697
https://doi.org/10.1111/j.1749-6632.2012.06595.x
https://doi.org/10.1186/s12915-015-0215-4
https://doi.org/10.1098/rstb.2016.0469
https://doi.org/10.1073/pnas.0600418103
https://doi.org/10.1534/genetics.114.166421
https://doi.org/10.1371/journal.pgen.0030198
https://doi.org/10.1371/journal.pgen.0030198
https://doi.org/10.1007/s00412-012-0374-9
https://doi.org/10.1007/s00412-012-0374-9
https://doi.org/10.3390/genes9020072
https://doi.org/10.1146/annurev-animal-021419-083555
https://doi.org/10.1071/RD18201
https://doi.org/10.1093/jmammal/gyw068
https://doi.org/10.1093/sysbio/syx076
https://doi.org/10.1111/j.1558-5646.2007.00278.x
https://doi.org/10.1146/annurev-genom-082908-150001
https://doi.org/10.1371/journal.pgen.1007439
https://doi.org/10.1093/molbev/mss272
https://doi.org/10.1002/bies.201400174
https://doi.org/10.1016/j.cell.2022.03.034
https://doi.org/10.1002/ece3.8645
https://doi.org/10.1002/ece3.8645
https://doi.org/10.1007/s10577-007-1165-7
https://doi.org/10.1016/j.yexcr.2012.02.018
https://doi.org/10.1086/344714
https://doi.org/10.3390/genes12091434
https://doi.org/10.3390/genes12091434
https://doi.org/10.1371/journal.pgen.1008959
https://doi.org/10.1146/annurev-genom-091212-153452
https://doi.org/10.1146/annurev-genom-091212-153452
https://doi.org/10.1002/bies.950170407
https://doi.org/10.1002/bies.950170407
https://doi.org/10.1093/hmg/7.13.1991
https://doi.org/10.1371/journal.pbio.1000035
https://doi.org/10.1371/journal.pbio.1000035
https://doi.org/10.1371/journal.pgen.1007479
https://doi.org/10.1016/j.ajhg.2015.11.019
https://doi.org/10.1371/journal.pone.0085075
https://doi.org/10.1242/jcs.01363
https://doi.org/10.1071/ZO9890331
https://doi.org/10.1071/ZO9890331
https://doi.org/10.1002/dvg.20345
https://doi.org/10.1038/ng0596-20
https://doi.org/10.1146/annurev-genet-120213-092304
https://doi.org/10.1098/rstb.2016.0001
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2023.1147610


Li, R., Bitoun, E., Altemose, N., Davies, R. W., Davies, B., and Myers, S. R. (2019). A high-
resolution map of non-crossover events reveals impacts of genetic diversity on mammalian
meiotic recombination. Nat. Commun. 10 (1), 3900. doi:10.1038/s41467-019-11675-y

Liebe, B., Petukhova, G., Barchi, M., Bellani, M., Braselmann, H., Nakano, T., et al.
(2006). Mutations that affect meiosis in male mice influence the dynamics of the mid-
preleptotene and bouquet stages. Exp. Cell Res. 312 (19), 3768–3781. doi:10.1016/j.
yexcr.2006.07.019

Lopez-Jimenez, P., Perez-Martin, S., Hidalgo, I., Garcia-Gonzalo, F. R., Page, J., and
Gomez, R. (2022). The male mouse meiotic cilium emanates from the mother centriole
at zygotene prior to centrosome duplication. Cells 12 (1), 142. doi:10.3390/
cells12010142

Mahadevaiah, S. K., Turner, J. M., Baudat, F., Rogakou, E. P., de Boer, P., Blanco-
Rodriguez, J., et al. (2001). Recombinational DNA double-strand breaks in mice precede
synapsis. Nat. Genet. 27 (3), 271–276. doi:10.1038/85830

Manterola, M., Page, J., Vasco, C., Berrios, S., Parra, M. T., Viera, A., et al. (2009). A
high incidence of meiotic silencing of unsynapsed chromatin is not associated with
substantial pachytene loss in heterozygous male mice carrying multiple simple
robertsonian translocations. PLoS Genet. 5 (8), e1000625. doi:10.1371/journal.pgen.
1000625

Marín-Gual, L., González-Rodelas, L., Garcias, M. M., Kratochvíl, L., Valenzuela, N.,
Georges, A., et al. (2022a). Meiotic chromosome dynamics and double strand
break formation in reptiles. Front. Cell Dev. Biol. 10, 1009776. doi:10.3389/fcell.
2022.1009776

Marín-Gual, L., González-Rodelas, L., Pujol, G., Vara, C., Martín-Ruiz, M., Berríos, S.,
et al. (2022b). Strategies for meiotic sex chromosome dynamics and telomeric
elongation in Marsupials. PLOS Genet. 18 (2), e1010040. doi:10.1371/journal.pgen.
1010040

Mercier, R., Mézard, C., Jenczewski, E., Macaisne, N., and Grelon, M. (2015). The
molecular biology of meiosis in plants. Annu. Rev. Plant Biol. 66 (1), 297–327. doi:10.
1146/annurev-arplant-050213-035923

Mugal, C. F., Weber, C. C., and Ellegren, H. (2015). GC-Biased gene conversion links
the recombination landscape and demography to genomic base composition: GC-
biased gene conversion drives genomic base composition across a wide range of species.
BioEssays 37 (12), 1317–1326. doi:10.1002/bies.201500058

Mytlis, A., Kumar, V., Qiu, T., Deis, R., Hart, N., Levy, K., et al. (2022). Control of
meiotic chromosomal bouquet and germ cell morphogenesis by the zygotene cilium.
Science 376(6599), eabh3104. doi:10.1126/science.abh3104

Namekawa, S. H., VandeBerg, J. L., McCarrey, J. R., and Lee, J. T. (2007). Sex
chromosome silencing in the marsupial male germ line. Proc. Natl. Acad. Sci. 104(23),
9730–9735. doi:10.1073/pnas.0700323104

Oliver-Bonet, M., Campillo, M., Turek, P. J., Ko, E., andMartin, R. H. (2007). Analysis
of replication protein A (RPA) in human spermatogenesis. Mol. Hum. Reprod. 13 (12),
837–844. doi:10.1093/molehr/gam076

Otto, S. P., and Lenormand, T. (2002). Resolving the paradox of sex and
recombination. Nat. Rev. Genet. 3 (4), 252–261. doi:10.1038/nrg761

Page, J., Berrios, S., Parra, M. T., Viera, A., Suja, J. A., Prieto, I., et al. (2005). The
program of sex chromosome pairing in meiosis is highly conserved across marsupial
species: Implications for sex chromosome evolution. Genetics 170 (2), 793–799. doi:10.
1534/genetics.104.039073

Page, J., Berrios, S., Rufas, J. S., Parra, M. T., Suja, J. A., Heyting, C., et al. (2003). The
pairing of X and Y chromosomes during meiotic prophase in the marsupial species
Thylamys elegans is maintained by a dense plate developed from their axial elements.
J. Cell Sci. 116 (3), 551–560. doi:10.1242/jcs.00252

Page, J., de la Fuente, R., Manterola, M., Parra, M. T., Viera, A., Berrios, S., et al.
(2012). Inactivation or non-reactivation: What accounts better for the silence of sex
chromosomes during mammalian male meiosis? Chromosoma 121 (3), 307–326. doi:10.
1007/s00412-012-0364-y

Page, J., Suja, J. A., Santos, J. L., and Rufas, J. S. (1998). Squash procedure for protein
immunolocalization in meiotic cells. Chromosome Res. 6 (8), 639–642. doi:10.1023/a:
1009209628300

Page, J., Viera, A., Parra, M. T., de la Fuente, R., Suja, J. A., Prieto, I., et al. (2006).
Involvement of synaptonemal complex proteins in sex chromosome segregation
during marsupial male meiosis. PLoS Genet. 2 (8), e136. doi:10.1371/journal.pgen.
0020136

Page, S. L., and Hawley, R. S. (2004). The genetics and molecular biology of the
synaptonemal complex. Annu. Rev. Cell Dev. Biol. 20(1), 525–558. doi:10.1146/annurev.
cellbio.19.111301.155141

Paigen, K., and Petkov, P. (2010). Mammalian recombination hot spots: Properties,
control and evolution. Nat. Rev. Genet. 11 (3), 221–233. doi:10.1038/nrg2712

Parvanov, E. D., Petkov, P. M., and Paigen, K. (2010). Prdm9 controls activation of
mammalian recombination hotspots. Science 327 (5967), 835. doi:10.1126/science.
1181495

Peters, A. H., Plug, A. W., van Vugt, M. J., and de Boer, P. (1997). A drying-down
technique for the spreading of mammalian meiocytes from the male and female
germline. Chromosome Res. 5 (1), 66–68. doi:10.1023/a:1018445520117

Pratto, F., Brick, K., Khil, P., Smagulova, F., Petukhova, G. V., and Camerini-Otero, R.
D. (2014). DNA recombination. Recombination initiation maps of individual human
genomes. Science 346 (6211), 1256442. doi:10.1126/science.1256442

Reig-Viader, R., Garcia-Caldés, M., and Ruiz-Herrera, A. (2016). Telomere
homeostasis in mammalian germ cells: A review. Chromosoma 125 (2), 337–351.
doi:10.1007/s00412-015-0555-4

Ritz, K. R., Noor, M. A. F., and Singh, N. D. (2017). Variation in recombination rate:
Adaptive or not? Trends Genet. 33 (5), 364–374. doi:10.1016/j.tig.2017.03.003

Roche, L., Seluja, G., andWettstein, R. (1986). Themeiotic behaviour of the XY pair in
Lutreolina crassicaudata (Marsupialia: Didelphoidea). Genetica 71, 213–224. doi:10.
1007/bf00057694

Roeder, G. S. (1997). Meiotic chromosomes: It takes two to tango. Genes Dev. 11 (20),
2600–2621. doi:10.1101/gad.11.20.2600

Roig, I., Liebe, B., Egozcue, J., Cabero, L., Garcia, M., and Scherthan, H. (2004).
Female-specific features of recombinational double-stranded DNA repair in relation to
synapsis and telomere dynamics in human oocytes. Chromosoma 113 (1), 22–33. doi:10.
1007/s00412-004-0290-8

Romanienko, P. J., and Camerini-Otero, R. D. (2000). The mouse Spo11 gene is
required for meiotic chromosome synapsis.Mol. Cell 6 (5), 975–987. doi:10.1016/s1097-
2765(00)00097-6

Ruiz-Herrera, A., Vozdova, M., Fernández, J., Sebestova, H., Capilla, L., Frohlich, J.,
et al. (2017). Recombination correlates with synaptonemal complex length and
chromatin loop size in bovids—Insights into mammalian meiotic chromosomal
organization. Chromosoma 126 (5), 615–631. doi:10.1007/s00412-016-0624-3

Samollow, P. B., Gouin, N., Miethke, P., Mahaney, S. M., Kenney, M., VandeBerg, J. L.,
et al. (2007). A microsatellite-based, physically anchored linkage map for the gray,
short-tailed Opossum (Monodelphis domestica). Chromosome Res. 15 (3), 269–281.
doi:10.1007/s10577-007-1123-4

Samollow, P. B., Kammerer, C. M., Mahaney, S. M., Schneider, J. L.,
Westenberger, S. J., VandeBerg, J. L., et al. (2004). First-generation linkage
map of the gray, short-tailed opossum, Monodelphis domestica, reveals
genome-wide reduction in female recombination rates. Genetics 166 (1),
307–329. doi:10.1534/genetics.166.1.307

Scherthan, H. (2007). Telomere attachment and clustering during meiosis. Cell. Mol.
Life Sci. 64 (2), 117–124. doi:10.1007/s00018-006-6463-2

Scherthan, H.,Weich, S., Schwegler, H., Heyting, C., Harle, M., and Cremer, T. (1996).
Centromere and telomere movements during early meiotic prophase of mouse and man
are associated with the onset of chromosome pairing. J. Cell Biol. 134 (5), 1109–1125.
doi:10.1083/jcb.134.5.1109

Segura, J., Ferretti, L., Ramos-Onsins, S., Capilla, L., Farré, M., Reis, F., et al. (2013).
Evolution of recombination in eutherian mammals: Insights into mechanisms that
affect recombination rates and crossover interference. Proc. R. Soc. B Biol. Sci. 280
(1771), 20131945. doi:10.1098/rspb.2013.1945

Seluja, G., Roche, L., and Solari, A. J. (1987). Male meiotic prophase in Didelphis
albiventris. J. Hered. 78, 218–222. doi:10.1093/oxfordjournals.jhered.a110369

Sharp, P. (1982). Sex chromosome pairing during male meiosis in marsupials.
Chromosoma 86 (1), 27–47. doi:10.1007/BF00330728

Solari, A. J., and Bianchi, N. O. (1975). The synaptic behaviour of the X and Y
chromosomes in the marsupial Monodelphis dimidiata. Chromosoma 52 (1), 11–25.
doi:10.1007/BF00285785

Stapley, J., Feulner, P. G. D., Johnston, S. E., Santure, A. W., and Smadja, C. M. (2017).
Variation in recombination frequency and distribution across eukaryotes: Patterns and
processes. Philosophical Trans. R. Soc. B Biol. Sci. 372 (1736), 20160455. doi:10.1098/
rstb.2016.0455

Subramanian, V. V., Zhu, X., Markowitz, T. E., Vale-Silva, L. A., San-Segundo, P. A.,
Hollingsworth, N. M., et al. (2019). Persistent DNA-break potential near telomeres
increases initiation of meiotic recombination on short chromosomes. Nat. Commun. 10
(1), 970. doi:10.1038/s41467-019-08875-x

Turner, J. M., Aprelikova, O., Xu, X., Wang, R., Kim, S., Chandramouli, G. V., et al.
(2004). BRCA1, histone H2AX phosphorylation, and male meiotic sex chromosome
inactivation. Curr. Biol. 14 (23), 2135–2142. doi:10.1016/j.cub.2004.11.032

Turner, J. M., Mahadevaiah, S. K., Fernandez-Capetillo, O., Nussenzweig, A., Xu, X.,
Deng, C. X., et al. (2005). Silencing of unsynapsed meiotic chromosomes in the mouse.
Nat. Genet. 37 (1), 41–47. doi:10.1038/ng1484

Tyndale-Biscoe, H., and Renfree, M. (1987). Reproductive physiology of marsupials.
Cambridge: Cambridge University Press.

Ullastres, A., Farré, M., Capilla, L., and Ruiz-Herrera, A. (2014). Unraveling the
effect of genomic structural changes in the rhesus macaque - implications for the
adaptive role of inversions. BMC Genomics 15 (1), 530. doi:10.1186/1471-2164-
15-530

Vara, C., Paytuví-Gallart, A., Cuartero, Y., Álvarez-González, L., Marín-Gual, L.,
Garcia, F., et al. (2021). The impact of chromosomal fusions on 3D genome folding and
recombination in the germ line. Nat. Commun. 12 (1), 2981. doi:10.1038/s41467-021-
23270-1

Frontiers in Cell and Developmental Biology frontiersin.org18

Valero-Regalón et al. 10.3389/fcell.2023.1147610

145

https://doi.org/10.1038/s41467-019-11675-y
https://doi.org/10.1016/j.yexcr.2006.07.019
https://doi.org/10.1016/j.yexcr.2006.07.019
https://doi.org/10.3390/cells12010142
https://doi.org/10.3390/cells12010142
https://doi.org/10.1038/85830
https://doi.org/10.1371/journal.pgen.1000625
https://doi.org/10.1371/journal.pgen.1000625
https://doi.org/10.3389/fcell.2022.1009776
https://doi.org/10.3389/fcell.2022.1009776
https://doi.org/10.1371/journal.pgen.1010040
https://doi.org/10.1371/journal.pgen.1010040
https://doi.org/10.1146/annurev-arplant-050213-035923
https://doi.org/10.1146/annurev-arplant-050213-035923
https://doi.org/10.1002/bies.201500058
https://doi.org/10.1126/science.abh3104
https://doi.org/10.1073/pnas.0700323104
https://doi.org/10.1093/molehr/gam076
https://doi.org/10.1038/nrg761
https://doi.org/10.1534/genetics.104.039073
https://doi.org/10.1534/genetics.104.039073
https://doi.org/10.1242/jcs.00252
https://doi.org/10.1007/s00412-012-0364-y
https://doi.org/10.1007/s00412-012-0364-y
https://doi.org/10.1023/a:1009209628300
https://doi.org/10.1023/a:1009209628300
https://doi.org/10.1371/journal.pgen.0020136
https://doi.org/10.1371/journal.pgen.0020136
https://doi.org/10.1146/annurev.cellbio.19.111301.155141
https://doi.org/10.1146/annurev.cellbio.19.111301.155141
https://doi.org/10.1038/nrg2712
https://doi.org/10.1126/science.1181495
https://doi.org/10.1126/science.1181495
https://doi.org/10.1023/a:1018445520117
https://doi.org/10.1126/science.1256442
https://doi.org/10.1007/s00412-015-0555-4
https://doi.org/10.1016/j.tig.2017.03.003
https://doi.org/10.1007/bf00057694
https://doi.org/10.1007/bf00057694
https://doi.org/10.1101/gad.11.20.2600
https://doi.org/10.1007/s00412-004-0290-8
https://doi.org/10.1007/s00412-004-0290-8
https://doi.org/10.1016/s1097-2765(00)00097-6
https://doi.org/10.1016/s1097-2765(00)00097-6
https://doi.org/10.1007/s00412-016-0624-3
https://doi.org/10.1007/s10577-007-1123-4
https://doi.org/10.1534/genetics.166.1.307
https://doi.org/10.1007/s00018-006-6463-2
https://doi.org/10.1083/jcb.134.5.1109
https://doi.org/10.1098/rspb.2013.1945
https://doi.org/10.1093/oxfordjournals.jhered.a110369
https://doi.org/10.1007/BF00330728
https://doi.org/10.1007/BF00285785
https://doi.org/10.1098/rstb.2016.0455
https://doi.org/10.1098/rstb.2016.0455
https://doi.org/10.1038/s41467-019-08875-x
https://doi.org/10.1016/j.cub.2004.11.032
https://doi.org/10.1038/ng1484
https://doi.org/10.1186/1471-2164-15-530
https://doi.org/10.1186/1471-2164-15-530
https://doi.org/10.1038/s41467-021-23270-1
https://doi.org/10.1038/s41467-021-23270-1
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2023.1147610


Viera, A., Parra, M. T., Rufas, J. S., and Page, J. (2017). Transcription
reactivation during the first meiotic prophase in bugs is not dependent on synapsis.
Chromosoma 126 (1), 179–194. doi:10.1007/s00412-016-0577-6

vonWettstein, D., Rasmussen, S. W., and Holm, P. B. (1984). The synaptonemal complex in
genetic segregation. Annu. Rev. Genet. 18, 331–413. doi:10.1146/annurev.ge.18.120184.001555

Wang, C., Webley, L., Wei, K.-j., Wakefield, M. J., Patel, H. R., Deakin, J. E., et al.
(2011). A second-generation anchored genetic linkage map of the tammar wallaby
(Macropus eugenii). BMC Genet. 12 (1), 72. doi:10.1186/1471-2156-12-72

Wang, S., Veller, C., Sun, F., Ruiz-Herrera, A., Shang, Y., Liu, H., et al. (2019). Per-
nucleus crossover covariation and implications for evolution. Cell 177 (2), 326–338.e16.
doi:10.1016/j.cell.2019.02.021

Watson, C. M., Margan, S. H., and Johnston, P. G. (1998). Sex-chromosome
elimination in the bandicoot Isoodon macrourus using Y-linked markers. Cytogenet.
Genome Res. 81 (1), 54–59. doi:10.1159/000015008

Xie, H., Wang, X., Jin, M., Li, L., Zhu, J., Kang, Y., et al. (2022). Cilia regulate
meiotic recombination in zebrafish. J. Mol. Cell Biol. 14 (7), mjac049. doi:10.1093/
jmcb/mjac049

Zenger, K. R., McKenzie, L. M., and Cooper, D. W. (2002). The first comprehensive
genetic linkage map of a marsupial: The tammar wallaby (Macropus eugenii). Genetics
162 (1), 321–330. doi:10.1093/genetics/162.1.321

Zickler, D., and Kleckner, N. (1998). The leptotene-zygotene transition of meiosis.
Annu. Rev. Genet. 32, 619–697. doi:10.1146/annurev.genet.32.1.619

Frontiers in Cell and Developmental Biology frontiersin.org19

Valero-Regalón et al. 10.3389/fcell.2023.1147610

146

https://doi.org/10.1007/s00412-016-0577-6
https://doi.org/10.1146/annurev.ge.18.120184.001555
https://doi.org/10.1186/1471-2156-12-72
https://doi.org/10.1016/j.cell.2019.02.021
https://doi.org/10.1159/000015008
https://doi.org/10.1093/jmcb/mjac049
https://doi.org/10.1093/jmcb/mjac049
https://doi.org/10.1093/genetics/162.1.321
https://doi.org/10.1146/annurev.genet.32.1.619
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2023.1147610


The Msh5 complex shows
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Meiotic crossing over is essential for the segregation of homologous chromosomes.
The formation and distribution of meiotic crossovers (COs), which are initiated by the
formation of double-strand break (DSB), are tightly regulated to ensure at least one
CO per bivalent. One type of CO control, CO homeostasis, maintains a consistent
level of COs despite fluctuations in DSB numbers. Here, we analyzed the localization
of proteins involved in meiotic recombination in budding yeast xrs2 hypomorphic
mutants which show different levels of DSBs. The number of cytological foci with
recombinases, Rad51 and Dmc1, which mark single-stranded DNAs at DSB sites is
proportional to the DSB numbers. Among the pro-CO factor, ZMM/SIC proteins, the
focus number of Zip3, Mer3, or Spo22/Zip4, was linearly proportional to reduced
DSBs in the xrs2 mutant. In contrast, foci of Msh5, a component of the MutSγ
complex, showed a non-linear response to reduced DSBs. We also confirmed the
homeostatic responseofCOsby genetic analysis ofmeiotic recombination in the xrs2
mutants and found a chromosome-specific homeostatic response of COs. Our study
suggests that the homeostatic response of the Msh5 assembly to reduced DSBs was
genetically distinct from that of the Zip3 assembly for CO control.

KEYWORDS

crossover control, meiotic recombination, crossover homeostasis, DSB formation,
synaptonemal complex, Msh4-Msh5

Introduction

Meiotic recombination generates both crossovers (COs) and non-crossovers (NCOs).
Crossing over during meiosis is essential to establish a chiasma as a physical connection
between homologous chromosomes to ensure proper segregation of these chromosomes
during the first meiotic division, meiosis I. Spo11 generates DNA double-strand breaks
(DSBs) to initiate the recombination (Bergerat et al., 1997; Keeney et al., 1997). Spo11 forms
a topoisomerase VI-like complex with Rec102, Rec104, and Ski8 (Robert et al., 2016; Claeys
Bouuaert et al., 2021) and associates with two complexes, the Rec114-Mei4-Mer2 (RMM)
andMre11-Rad50-Xrs2 (MRX) complexes (Kee et al., 2004; Maleki et al., 2007). The number
of DSBs exceeds the number of COs in budding yeast and other organisms; e.g., ~90 COs
from ~170 DSBs in the budding yeast (Moens et al., 2002; Pan et al., 2011).

Meiotic CO formation is strictly regulated by several distinct mechanisms, which together are
known as crossover control. Crossover interference negatively regulates CO formation to ensure
even spacing and to limit the number of COs on each chromosome (Muller, 1916). Crossover
assurance (or obligate CO) is a positive regulatory mechanism that ensures at least one CO on
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each homolog pair (Jones, 1984). It is thought that a balance between
CO interference and assurance is the key feature of CO formation
(Kleckner, 2006; Shinohara et al., 2015; Wang et al., 2019a). A third
control mechanism, called CO homeostasis, was proposed based on
studies of spo11 hypomorphic mutants with differential DSB activities
(Martini et al., 2006). COhomeostasismaintains a consistent number of
CO events despite fluctuations in the number of meiotic DSBs (Martini
et al., 2006). CO homeostasis may be a reflection of CO assurance
mechanisms. However, the molecular mechanisms underlying CO
homeostasis remain unknown. Moreover, the additional layer of CO
control per nucleus basis, called CO covariation, is proposed (Wang
et al., 2019b).

Meiosis-specific ZMM (Zip, Mer, Msh) or SIC (Synaptic Initiation
Complex) proteins are components of recombination nodules on the
synaptonemal complex (SC) and are required for CO formation and
CO control; both CO interference and assurance (Sym et al., 1993;
Hollingsworth et al., 1995; Nakagawa and Ogawa, 1999; Agarwal and
Roeder, 2000; Novak et al., 2001; Tsubouchi et al., 2006; Shinohara et al.,
2008). ZMMs include Zip1, Zip2, Zip3, Spo22 (also called Zip4), Mer3,
Msh4, Msh5, and Spo16. Mer3 encodes a 5′-3′DNA helicase and binds
recombination intermediates (Nakagawa et al., 2001). Msh4 and
Msh5 are homologs of Escherichia coli MutS, forming the Msh4-
Msh5 complex (MutSγ), which binds to a recombination
intermediate (Hollingsworth et al., 1995; Snowden et al., 2004).
Msh4-Msh5 complex activates a nuclease activity of the Mlh1-Mlh3
complex (MutLγ) (Cannavo et al., 2020; Kulkarni et al., 2020; Dai et al.,
2021). Zip2, Spo22/Zip4, and Spo16 form a complex (ZZS) required for
SC elongation, which also binds to a recombination intermediate
(Shinohara et al., 2008; De Muyt et al., 2018; Arora and Corbett,
2019). Msh4-Msh5 and ZZS complexes display differential roles in CO
formation and control (Shinohara et al., 2008).

Coordinated activities of two recombinases, Rad51 and Dmc1, are
required for proper strand invasion to form a displacement D-loop with
a single-stranded DNA of the DSBs with homologous duplex DNA
(Bishop et al., 1992; Shinohara et al., 1992; Shinohara et al., 2000;
Shinohara et al., 2003). Stabilization of the D-loop to form a single-end
invasion (SEI) or ejection of the invading strand is a critical regulatory
step in the CO/NCO decision (Allers and Lichten, 2001; Hunter and
Kleckner, 2001; Borner et al., 2004). The SEI is a specific intermediate
for crossing over, which is converted into double Holliday junctions
(dHJ) intermediate (Schwacha and Kleckner, 1994; 1995). Msh4-Msh5
complex stabilizes nascent joint molecules and activate a nuclease
activity of the Mlh1-Mlh3 complex (MutLγ) for the resolution of
dHJs into COs (Snowden et al., 2004; Cannavo et al., 2020; Kulkarni
et al., 2020). Crossover interference is proposed to implement around
the SEI formation (Kleckner, 2006; Shinohara et al., 2008). Moreover,
recruitment of the Msh4-Msh5 complex to meiotic chromosomes
depends on Zip3, but not other ZMM such as Zip2, Spo22/Zip4, or
Mer3 (Shinohara et al., 2008). Zip3 has a conserved RING-finger motif
and is predicted to function as Ubiquitin-E3 ligase or small ubiquitin-
like modifier (SUMO)-E3 ligase (Perry et al., 2005; Cheng et al., 2006;
Shinohara et al., 2008).

Xrs2 is a regulatory subunit of theMRX complex, which is required
forDSB end resection, theDNAdamage response, and nonhomologous
end-joining during the vegetative cell growth (Johzuka and Ogawa,
1995; Tsubouchi and Ogawa, 1998; Usui et al., 1998; Palmbos et al.,
2005; Matsuzaki et al., 2008; Mimitou and Symington, 2009; Ho and
Burgess, 2011). In meiotic prophase I, Xrs2 is necessary for not only

DSB end resection but also DSB formation, which could bemediated by
the interactionwithMer2 (Arora et al., 2004). In addition, Xrs2 interacts
with a meiosis-specific protein Pch2 and the interaction is involved in
checkpoint signaling for meiotic recombination (Ho and Burgess,
2011). We previously isolated several xrs2 mutations, and some
showed defects in nonhomologous end-joining through interaction
with DNA ligase IV in budding yeast (Shima et al., 2005). The mutants
also had differential effects on the frequencies of meiotic DSBs, as seen
with spo11 hypomorphic mutants (Henderson and Keeney, 2004). The
effects of various xrs2 mutations on meiotic DSB frequencies could be
explained by varied instability of mutant Xrs2 mutant proteins
associated with these alleles (Shima et al., 2005).

Here, we used xrs2 hypomorphic mutants to examine the
relationship of global meiotic DSB frequencies with ZMM/SIC
assembly on meiotic chromosomes as well as CO formation and
control. Immuno-staining revealed that number of foci containing
not only Rad51 and Dmc1 but also most ZMM proteins including
Zip3 is proportional to DSB frequencies in the xrs2mutants. On the
other hand, Msh5 ensembles on chromosomes showed a non-linear
response to reduced DSB numbers. Our genetics analysis also
confirmed CO homeostasis in response to reduced DSBs and
showed a chromosome-specific effect of CO homeostasis. These
suggest an important role of yeast MutSγ complex in the
implementation of CO homeostasis, thus CO control.

Materials and methods

Strains and media

All yeast strains and their genotypes are shown in Supplementary
Table S1.We used the isogenic Saccharomyces cerevisiae SK1 strain. The
spo11 mutant strains were derived from crossing a wild-type strain
(MSY831) with SKY330 (spo11-HA) or SKY531 (spo11-YF), gifts from
Dr. Scott Keeney. Synthetic complete media with 7.25 µM CuSO4 was
used for cup2 selection.

Antibodies

Antibodies specific for Zip1 (generated in rabbit and rat), Zip3
(rabbit and rat), Mer3 (rabbit), Spo22 (chicken), Msh5 (rabbit),
Dmc1 (rabbit), and Rad51 (rabbit and guinea pig) were described
previously (Shinohara et al., 2008; Zhu et al., 2010; Matsuzaki et al.,
2012; Sasanuma et al., 2013). We used two different rabbit anti-
Msh5 antisera (Shinohara et al., 2008) and were able to observe two
kinds of Msh5 foci dependent on a lot of Msh5 antibodies. In this
study, we used an antibody that recognizes brighter ones specifically,
which were used in our previous Chromatin-Immunoprecipitation
of Msh5 (Nandanan et al., 2021). This might be a reason why we
observed fewer Msh5 foci than in our previous report (Nishant et al.,
2010).

Cytology

Immunostaining of yeast meiotic chromosome spreads was
performed as described (Shinohara et al., 2000). Stained samples
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FIGURE 1
Rad51 focus formation and SC elongation in xrs2 hypomorphic alleles. (A) Schematic representation of protein domain structure for yeast Xrs2 and
truncated proteins encoded by xrs2 hypomorphic alleles. The FHA domain and BRCA1 C-terminus (BRCT) domains, Mre11-binding and Tel1-binding
domains are shown. (B) The number of Rad51 foci in each nucleus of wild-type, xrs2–314M, xrs2–228M, and xrs2–84M strains; wild-type (NKY1551),
xrs2–314M (MSY 1992), xrs2–228M (MSY1524), xrs2–84M (MSY1494) was counted at the time point when the presence of focus positive nuclei in
each strain peaked (4 h inwild type, xrs2–314M, and xrs2–228M, and 6 h in xrs2–84M). Median numbers of Rad51were indicated. Error bar showsmedian
and interquartile. Statistical significancewas determined usingMann-WhitneyU-test (****p < 0.0001). The right panel shows images of nuclear spreads in
the zygotene stage that were labeled for Rad51 (green) and Zip1 (red). Scale bar = 2 µm. (C) Kinetics of Rad51-focus assembly and disassembly onmeiotic
nuclear spreads. A spread with more than 5 Rad51 foci was classified as a focus-positive nucleus. At each time point, more than 100 nuclei were counted.
(D) Zip1-positive nuclei were classified into three categories: punctate foci (Dot, light gray), partial linear (Partial, gray), and full SC (Long, black). The
kinetics of Zip1 poly-complex formation is represented by opened circles.

Frontiers in Cell and Developmental Biology frontiersin.org03

Shinohara and Shinohara 10.3389/fcell.2023.1170689

149

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2023.1170689


were observed using an epifluorescence microscope (Zeiss Axioskop
2) and a ×100 objective (Zeiss AxioPlan, NA1.4). Images were
captured with a CCD camera (Retiga; Qimaging) and processed
using IP lab (Silicon) and Photoshop (Adobe). To count protein
foci, >100 nuclei were counted for each sample. Pairs of foci were
considered to colocalize if >50% of one side overlapped as described
(Shinohara et al., 2000). The fluorescent intensity of Zip3 single-
focus was measured by using the auto-thresholding signal intensity
in Imaris software (Oxford Instrument). Strains used for this
analysis were wild-type (NKY1551), xrs2–314M (MSY1992),
xrs2–228M (MSY1524), and xrs2–84M (MSY1494).

Genetic analysis of meiotic recombination

Genetics distances between markers and CO interference were
analyzed using the MacTetrad 6.9.1 program (merlot.wekj.jhu.edu)
as described (Shinohara et al., 2003; Shinohara et al., 2008;
Shinohara et al., 2019). Parental haploid strains were mated for
3 h on YPAD (1% bacto-yeast extract, 2% bacto-peptone, 2%
glucose, 0.004% adenine sulfate) plates at 30°C and then
transferred onto SPM (0.3% potassium acetate, 0.02% raffinose)
plates. After incubation at 30°C for 48 h, tetrads were dissected onto
YPAD plates and incubated for 2 days. Genotyping was performed
as described (Shinohara et al., 2003). To avoid aberrant clones (e.g.,
those containing mitotic COs), at least four independent crosses
were carried out and pooled for further analysis. When analyzing
interference or calculating genetic distances, we excluded tetrads
with non-Mendelian segregation of a diagnostic marker from the
analysis. Map distances were determined using Perkins equation:
[distance in (cM)] = 100/2 (TT + 6NPD)/(PD + TT + NPD)
(Perkins, 1949), where tetra types (TT), non-parental ditypes
(NPD), parental ditypes (PD) observed. Standard errors were
calculated using the Stahl Lab online tool (https://
elizabethhousworth.com/StahlLabOnlineTools/). Interference
values are expressed as the NPD ratio. The fraction of tetrads
expected to be NPDs was determined from the Papazian
equation: NPDexp = 1/2 [1 − TT − (1 − 3TT/2)2/3] (Papazian,
1952). To measure coincident double COs in adjacent intervals, the
frequencies of tetrads with recombination in each of the two
intervals were determined by summing TT and NPD tetrads for
those intervals and dividing by the total number of tetrads
(Shinohara et al., 2003). The expected frequency of coincident
recombination is given by the product of two single-interval
frequencies. Coefficient of coincidence (CoC) CO is calculated as

follows: CoC = [CO(A∩B)]/[CO(A) × CO(B)], where A and B are
CO frequencies in an adjacent single interval. Strains used for this
analysis are wild-type (MSY4304/4245), xrs2–314M (MSY4314/
4316), xrs2–228M (MSY4310/4312), and xrs2–84M
(MSY4306/4308).

Results

The xrs2 hypomorphic mutants showed
differential DSB frequencies

We previously reported that N-terminal truncations of
Xrs2 significantly reduce meiotic DSB formation at the
HIS4–LEU2 hotspot (Shima et al., 2005). The xrs2–84M,
xrs2–228M, and xrs2–314M mutants lack N-terminal 83, 227,
and 313 amino acids, respectively (Figure 1A). On the other
hand, even in the largest deletion, the xrs2–314M mutation does
not cause any reduction of meiotic DSBs at the locus (Shima et al.,
2005) with normal spore viability (Table 1). Despite the DSB
reduction, xrs2–228M exhibits normal levels of spore viability. In
contrast, the xrs2–84M allele, even though it encodes the smallest
truncation (Figure 1A), shows significant reductions in spore
viability of 52.4% (Table 1), as shown previously (Shima et al.,
2005). The reduced spore viability in xrs2–84M cells is not caused by
the deletion of the Forkhead-associated (FHA) domain of Xrs2 per se
but rather by reduced levels of Xrs2 protein, as overexpression of
Xrs2–84M protein rescues spore viability of the xrs2-84Mmutant in
a dose-dependent manner (Shima et al., 2005).

We further characterized meiotic defects for the three xrs2
hypomorph mutants in more detail. We estimated the total
number of meiotic DSBs in xrs2 mutants by analyzing the
number of immuno-stained Rad51 foci on meiotic chromosome
spreads, which correspond to DSB sites (Bishop et al., 1992;
Shinohara et al., 2000). We first counted the number of
Rad51 foci in spo11 hypomorphic mutants; spo11-HA/spo11-HA,
spo11-HA/spo11-Y135F and spo11-Y135F/spo11-Y135F, which
decreases DSB levels on chromosomes III, VII and VIII to ~80%,
~30% and 0%, respectively (Martini et al., 2006). The average Rad51-
focus number in the wild type was 54.2 ± 0.7 (± Standard deviation
[SD] at 4 h). The number at 4 h in the spo11-HA/spo11-HA and
spo11-HA/spo11-Y135F was 39.4 ± 5.9 and 19.0 ± 0.1, respectively,
while the spo11-Y135F/spo11-Y135Fmutant formed little Rad51 foci
as described previously (Bishop, 1994). The number of Rad51 foci is
roughly proportional to DSB frequency on the three chromosomes
in the various spo11 hypomorphic mutants (Martini et al., 2006)
(Supplementary Figure S1A). Rad51-focus number per spread could
be used as a proxy for a total DSB number in a single nucleus.

We then studied the Rad51-focus number in the xrs2 mutants
and found that the average number of Rad51 foci within meiotic
nuclei of wild type, xrs2–314M, xrs2–228M, and xrs2–84M was
54.2 ± 0.7, 42.8 ± 7.9, 35.7 ± 1.7 and 14.3 ± 4.8, respectively
(Figure 1B). To avoid the kinetic effect, we analyzed the Rad51-
focus number at 4, 5, or, 6 h, and then we decided to analyze 4-h
samples which are when the peak of focus formation in each xrs2
mutant (Figure 1C). Thus, from a relative decrease of Rad51 foci, we
estimated that DSBs in xrs2–314M, xrs2–228M, and xrs2–84M
mutants were reduced by 21%, 35%, and 74% compared with

TABLE 1 Spore viability of the xrs2 mutants.

Strain Viable spores per ascus Viability ±S.D.a

4 3 2 1 0

Wild type 1,200 69 27 4 8 96.8% ± 2.3%

xrs2–314M 1,200 61 25 2 6 97.3% ± 2.1%

xrs2–228M 1,367 282 100 11 34 90.9% ± 4.2%

xrs2–84M 1,275 590 759 215 1,269 52.4% ± 8.7%

aStandard deviation of spore viability among independent crosses.
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wild type, respectively. A similar reduction was observed for
Dmc1 foci; an average number at 4 h of wild type, xrs2–314M,
xrs2–228M, and xrs2–84M was 57.4 ± 3.3, 47.4 ± 5.6, 39.3 ± 1.9 and
18.3 ± 5.6, respectively. The xrs2 mutant cells also showed slight
delays in the disappearance of Rad51-focus positive spreads during
meiosis (Figure 1C). The delayed disassembly of Rad51 foci suggests
the role of the Xrs2 in meiotic DSB repair.

Substantial DSB levels are required for
Zip1 elongation

A meiosis-specific chromosome structure, the synaptonemal
complex (SC), is formed between homologous chromosome axes.
SC formation depends on meiotic recombination, thus DSB
formation (Alani et al., 1990; Padmore et al., 1991). We also
checked the effect of differential DSB levels in the xrs2 mutants
on SC formation by immune-staining analysis of Zip1 protein,
which is a component of the central region of the SC (Sym et al.,

1993). The Zip1-staining was classified into long, short lines, and
dots (Figure 1D) as described previously (Shinohara et al., 2003).
Like the wild type, fully-elongated Zip1 lines were observed in both
the xrs2–314M and xrs2–228M mutants although the mutants
showed only a 1-h delay in the appearance of long Zip1 lines as
compared to the wild type, which is associated with a higher
frequency of nuclei containing Zip1 poly-complex structures, an
indicator for a defect in Zip1 elongation (Sym and Roeder, 1995).
And the mutants delayed disassembly of Zip1 structure, consistent
with delayed DSB repair in the mutants. The xrs2–84M mutant,
which had the lowest level of DSBs (~25%), showed a clear defect in
Zip1 elongation with very few Zip1 long lines (Figure 1D). This
indicated that substantial levels of DSBs were required for proper
Zip1 elongation, thus chromosome synapsis. Similar results are seen
with spo11 mutants (Henderson and Keeney, 2004) and other
mutants which reduced DSB levels (Bani Ismail et al., 2014).

The two BRCT-like domains of Xrs2 (amino acids 124-313;
Figure 1A) have functions related to Pch2 (Ho and Burgess, 2011),
which is required for normal SC formation and timely meiotic

FIGURE 2
Assembly of recombination and ZMM/SIC components when DSB levels are reduced. (A) Colocalization of Zip1 (red; rat) and Zip3 (green; rabbit),
Spo22/Zip4 (green; chicken), Msh5 (green; rabbit), or Mer3 (green; rabbit). Colocalization of Rad51 (green; guinea pig) and Dmc1 (red; rabbit). Genotypes
are indicated. Wild-type (NKY1551), xrs2–314M (MSY1992), xrs2–228M (MSY1524), xrs2–84M (MSY1494) were used. Scale bar = 2 µm. (B) The number of
foci of indicated proteins per nucleus in wild-type and xrs2 mutants. The focus number in wild type, xrs2–314M, xrs2–228M, and xrs2–84M was
counted at the time point when the presence of focus positive nuclei in each strain peaked (4, 5, or 6 h) as shown 1B. Error bars show the average and SD.
(C) The number of foci of indicated proteins plotted against each average number of Rad51 foci (i.e., DSBs) associated with each strain (Figure 1B). Values
are presented as a ratio relative to the wild type. Open triangles indicate relative CO frequencies as shown in (B). Error bars show the average and SD. (D)
The number of foci of indicated proteins in wild-type and xrs2 mutants (non-normalized values). Error bars indicate the mean values and standard
deviations from at least three independent experiments. Error bars show the average and SD. A black line with open triangles indicates relative CO
frequencies of sums of analyzed intervals in chromosomes III and VII shown in Figure 4B. Values are presented as a ratio relative to the wild type.
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recombination progression (San-Segundo and Roeder, 1999; Borner
et al., 2008). The pch2 mutant cells show unusual localization of
Hop1 protein on pachytene chromosomes with a delay in meiotic
recombination (Borner et al., 2008). However, like in the wild type,
we found dotty staining of Hop1 along long Zip1 lines in the xrs2-
314M cells, which is different from long Hop1 lines on Zip1 lines
seen in pch2 cells (Supplementary Figure S2). The BRCT domains of
Xrs2 do not appear to play a role in the Pch2 function in the
Hop1 loading and/or unloading.

Reduced DSBs decrease the association of
ZMM/SIC and recombination proteins on
meiotic chromosomes in xrs2 mutants

Previously, it is shown that Zip3-GFP foci show a homeostatic
response when DSBs are reduced in spo11 hypomorphic mutants
(Henderson and Keeney, 2004). First, we confirmed that Zip3 foci
show the non-linear response in the spo11 hypomorphic mutants by
using our anti-Zip3 antibody without any tag-conjugation to
Zip3 protein like previously reported (Supplementary Figures S1B,
C). A steady-state number of Zip3 population was 61.5 (median),
58, 22, and 13 in wild-type, spo11-HA/spo11-HA, spo11-HA/spo11-
Y135F, and spo11-Y135F/spo11-Y135F, respectively. The spo11-HA/
spo11-HA mutant with ~78% DSB level maintains a similar
Zip3 focus number to the wild type (94%), indicating a non-linear
relationship as shown previously (Martini et al., 2006). The spo11-HA/
spo11-Y135F mutant with ~29% DSB levels shows a higher Zip3 focus
number (~36% of the wild-type) that expected.

We also analyzed the number of Zip3 foci as well as other ZMMfoci
including Spo22/Zip4, Msh5 and Mer3 when DSB frequencies are
decreased by the xrs2 hypomorphs (Figure 2A). Immunostaining was
carried out and the focus number was counted at 4 h after meiosis entry
for wild-type. To avoid the kinetic effect, we counted the focus number
at 4 h (xrs2–314M and –228M) or 6 h (xrs2–84M) which is when the
peak of focus formation in each xrs2 mutant (Supplementary Figure
S3A-representative kinetic analysis and Supplementary Figure S3D).
The average number of foci per nucleus from four independent time
courses (more than 100 focus-positive nuclei were analyzed for each
counting) for Rad51, Dmc1, Zip3, and Msh5, and from two
independent time courses for Spo22/Zip4 and Mer3 are shown in
Figure 2B. As shown above (Figure 1), the average numbers of
Rad51 and Dmc1 foci at 4 h in wild-type nuclei were 54.2 ± 0.7
(SD) and 57.4 ± 3.3, respectively (Figure 2B), which is consistent with a
previous study (Shinohara et al., 2000). The ZMM/SIC proteins Zip3,
Spo22/Zip4, and Mer3 exhibited similar numbers of foci in wild-type
nuclei: 60.9 ± 8.6, 63.4 ± 11, and 65.5 ± 9.8, respectively (Figure 2B).
There were few significant differences in a steady-state number of foci
between ZMM foci with either Zip3, Mer3, or Spo22/Zip4, and the
RecA-like recombinases (Figures 2A,B). Of note, the steady state
number of Zip3 foci in the wild type detected by anti-Zip3 was
almost the same as the numbers reported to Zip3-myc (~60 foci) by
two independent groups (Yoon et al., 2016; Hong et al., 2019; Tan et al.,
2022) but about twice than that reported to Zip3-GFP (Henderson and
Keeney, 2004).

When xrs2mutants were examined, the focus number of Rad51,
Dmc1, and ZMM/SIC proteins such as Zip3, Spo22/Zip4, and
Mer3 reduce linearly along with meiotic DSB frequencies in the

mutants (Figures 2B–D). Like Rad51/Dmc1 foci, focus numbers of
Zip3, Spo22/Zip4, and Mer3 are decreased when DSB frequencies
are reduced. When compared with the number, Zip3, Spo22/
Zip4 and Mer3 shows linear correlation with Rad51 (R = 0.999,
0.999, 0.994, and 0.982 for Dmc1, Zip3, Spo22/Zip4 and Mer3,
respectively). These suggest that, like Rad51/Dmc1 recombinases,
Zip3-, Spo22/Zip4-, and Mer3-focus number is linearly correlated
with DSB number. Moreover, these are consistent with the result
that the focus formation of these proteins depends on meiotic DSB
formation (Agarwal and Roeder, 2000; Nakagawa et al., 2001;
Shinohara et al., 2008).

While the Zip3-focus number shows a linear relationship with
DSB frequency in the xrs2 mutants (Figure 2B; see below), the
number of Zip3-GFP foci (Henderson and Keeney, 2004) and
Zip3 foci detected by anti-Zip3 (Supplementary Figure S1B)
exhibit a non-linear relationship in spo11 hypomorph mutants.
This suggests a role of N-terminal regions such as the FHA
domain and/or BRCT repeat in the homeostatic response of
ZMM foci of Zip3 as well as Mer3 and Spo22/Zip4 to reduced DSBs.

Msh5-focus numbers are maintained even
with reduced meiotic DSBs are reduced

We found that Msh5 foci showed a unique behavior on the
chromosomes among ZMM proteins. In the wild type, the average
(steady-state) number of Msh5 foci is 42.4 ± 5.6, which is
significantly lower than those of Rad51, Dmc1, Zip3, Mer3, and
Spo22/Zip4 (Figures 2A, B), suggesting the presence of a regulatory
mechanism for Msh5-focus formation.

Different from Zip3, Spo22/Zip4, andMer3 as well as Rad51/Dmc1,
Msh5 foci showed a non-linear relationship in its number to reduced
DSBs in the xrs2 mutants. The number of Msh5 foci in the xrs2–314M
and xrs2–228M strains was 42.9 ± 3.4 and 44.9 ± 4.6, respectively, which
is similar to that in the wild type of 42.4 (Figure 2B; Supplementary
Figure S3B). Thus, Msh5 foci exhibited homeostasis as DSBs were
reduced by ~40% (in xrs2–228M). This non-linear response of ZMM
foci was reported to the foci containing Zip3-GFP (Henderson and
Keeney, 2004) and Zip3 foci detected by anti-Zip3 (Supplementary
Figure S1B) in spo11 hypomorph mutants. On the other hand, more
dramatic reductions in meiotic DSBs did affect the Msh5-focus number,
as the number of Msh5 foci in xrs2–84M mutant cells decreased
substantially to 19.1 ± 4.9, which represented 38.6% of wild type.
However, this reduction of Msh5-focus number in the xrs2–84M
mutant is much milder than those of Rad51, Zip3, Spo22/Zip4, and
Mer3 (26.4, 27.9, 19.2, 22.1%, respectively, in Figures 2C, D). This
suggests that the homeostatic response of Msh5 foci substantially
operates even in the xrs2–84M mutant.

Notably, the similar non-linear relationship was seen for
Msh5 foci in spo11 hypomorphic mutants (Supplementary Figure
S1C). Importantly, the number of Msh5 foci (41 [median] and
39 foci in wild-type and spo11-HA/spo11-HA strains, respectively)
was lower than that of Zip3 foci (61.5 and 58 in wild-type and spo11-
HA/spo11-HA strains, respectively, in Supplementary Figure S1C),
supporting a distinct response between Msh5 and Zip3 foci.

Msh5-focus formation depends on Zip3 (and Zip1), but not on
Spo22/Zip4 or Spo16 (Shinohara et al., 2008). We analyzed the
relationship between the Zip3 and Msh5 localization by double
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staining of “pachytene” cells (at 4 h in wild-type and 5 h in xrs2
mutants) (Figure 3A). Medians of Zip3 foci number distribution in
wild type, xrs2–314M, xrs2–228M, and xrs2–84M cells were 63, 56,
54, and 16, respectively (Supplementary Figure S3C). Although the
number of Zip3 foci co-stained withMsh5 in the xrs2–84M is similar
to that co-stained with Zip1 shown in Figure 2B (16 versus 14), the
focus number of Zip3 co-stained with Msh5 in the xrs2–314M and
xrs2–228M mutants were significantly higher than that co-stained
with Zip1 (56 versus 45 and 54 versus 35 in the xrs2–314M, and
xrs2–228M mutants). The focus-number distribution indicates
variations of the focus number are smaller in the double-staining
of Msh5 and Zip3 than in the co-staining with Zip1 (Supplementary
Figures S3B, C). This suggests that Zip3 co-stained with
Msh5 showed a homeostatic response as shown previously
(Henderson and Keeney, 2004) and in this study (Supplementary
Figure S1C). On the other hand, in this double staining of Zip3 and
Msh5, the medians of Zip3 focus number distribution were 47, 43,
49, and 10 in wild-type, xrs2–314M, xrs2–228M, and xrs2–84M

mutant cells, respectively (Supplementary Figure S3C), which are
not different from those co-staining with Zip1. A simple
interpretation is a kinetic effect such that the focus numbers of
ZMM proteins in the pachytene stage are more than those in earlier
stages. Supporting this idea, the focus numbers were increased in
later time points of prophase I, especially of Zip3 foci in the xrs2-
228M mutant (Supplementary Figure S3A).

Importantly, even in the double-staining of Msh5 and Zip3, the
Zip3-focus number is higher than theMsh5-focus number in any strains
(Figure 3B). In the wild type, 67% of Zip3 foci colocalized with Msh5,
and 94%ofMsh5 foci colocalizedwith Zip3. In xrs2mutants, Zip3-Msh5
colocalization frequencies in Zip3 foci were 69%, 80%, and 41% for the
xrs2–314M, xrs2–228M, and xrs2–84M mutants, respectively. In
addition, 94%, 94%, and 73% of Msh5 foci colocalized with Zip3 in
xrs2–314M, xrs2–228M, and xrs2–84M mutants, respectively
(Figure 3B). This is consistent with the idea that some Zip3 foci
become a site for Msh5 assembly, which is regulated by DSB levels.
In addition, Zip3 foci colocalized with Msh5 seemed brighter than

FIGURE 3
Colocalization of Zip3 and Msh5 on meiotic chromosomes (A) Meiotic nuclear spreads were stained for Zip3 (red) and Msh5 (green) by using anti-
Zip3 (red; rat) and anti-Msh5 (green; rabbit). Anti-Zip3 used here was different from that in Figure 2. Genotypes are indicated. Amagnified image of a wild-
type sample is shown on the right. Arrows show colocalization of Zip3 andMsh5. Scale bar = 2 µm. (B)Colocalization frequencies for Zip3 andMsh5. Foci
were classified into three categories: Zip3 and Msh5 (colocalized, dark gray), Zip3-only (pale gray), and Msh5-only (gray). The average numbers with
standard deviations of foci in three categories in wild-type and xrs2mutants are shown. The number of nuclei analyzed in wild type (4 h), xrs2-314M (4 h),
xrs2-228M (4 h), and xrs2-84M (5 h) is 102, 105, 105, and 59, respectively.
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FIGURE 4
Genetic analysis of xrs2 hypomorphic alleles. (A) Schematic representation of genetic markers on chromosomes VII and III. (B) CO frequencies
within indicated genetic intervals on chromosomes III and VII. Genotypes are color-coded. Error bars indicate the standard deviation from four
independent crosses. Wild-type (MSY4304/4245), xrs2–314M (MSY4314/4316), xrs2–228M (MSY4310/4312), and xrs2–84M (MSY4306/4308) were used.
Statistical significances were calculated by using Student’s t-test. (C) Relationships between the CO frequencies and DSB levels. The x-axis values
indicate the mean number of Rad51 foci for each xrs2mutant relative to that in the wild type. The y-axis values indicate the mean genetic distance sums
for each xrs2 mutant relative to the wild type (for chromosomes III or VII). The gray line shows a linear relationship. (D) Non-Mendelian segregation
frequencies at the indicated genetic loci are shown. Statistical differences were analyzed using Fisher’s exact test with Yates correction. (E) Schematic
representation of the HIS4–LEU2 hotspot on chromosome III. Locations of the leu2-E and his4Bmutations are shown. Rectangles represent genes. The
non-Mendelian fraction at the LEU2 locus was classified by analyzing the linkage of theURA3, LEU2, andHIS4 loci. GC; gene conversion at the LEU2 locus

(Continued )
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Zip3 without Msh5 (Figure 3A; Supplementary Figure S1E). We
speculate the presence of stepwise homeostatic response of ZMM-
focus assembly in response to meiotic DSBs in a context-dependent
manner (See Discussion).

CO homeostasis functions more effectively
on chromosome VII

Using spo11 alleles with ~80%, ~70%, and ~20% of wild-type
DSB levels, Martini et al. (2006) showed CO homeostasis which

maintains CO levels despite reduced meiotic DSBs. We, therefore,
asked whether xrs2 alleles with ~80%, ~65%, and ~25% of wild-type
DSB levels also exhibited CO homeostasis since Zip3 foci showed
non-linear response to reduced DSBs in the spo11-mutants, but not
in the xrs2 mutants. We measured CO and NCO frequencies by the
dissection of tetrads for SK1 yeast strains with different genetic
markers on chromosomes III and VII; a short chromosome
(chromosome III with a synthetic recombination hotspot at the
HIS4 locus [HIS4–LEU2]) and a long chromosome (chromosome
VII) (Higashide and Shinohara, 2016) (Figure 4A). We analyzed the
segregation of genetic markers associated with these chromosomes

FIGURE 5
CO interference in xrs2 mutants. (A) CO interference for indicated genetic intervals on chromosomes III and VII. Genotypes are color coded. The
NPDobs/NPDexp ratio for three intervals was calculated from TT and PD (Supplementary Tables S2, S3). A ratio of 1 indicates no interference. A
Ratio <1 indicates positive interference. Error bars indicate the standard error of NPD ratios and the statistical significance of the difference in NPD ratio
between the wild type and each xrs2 mutant was confirmed by an overlap of the SE value around the map distance or NPD ratio. (Supplementary
Tables S2, S3). (B) The Coefficient of coincidence (CoC) of COs between adjacent intervals on chromosomes III and VII in wild-type and xrs2mutants are
shown. A ratio of 1 indicates no interference. A ratio of <1 indicates positive interference.

FIGURE 4 (Continued)
without CO betweenURA3 andHIS4; CRA; CO-associated gene conversion on the same strand as the CO, 3ST; CO-associated gene conversion on
the strand lacking CO, DCO; gene conversion associated with a double CO. (F)Non-linear relationship of COs or NCOs derived from the non-Mendelian
fraction at the leu2-E/LEU2 heteroalleles. The x-axis values indicate the relative (themean) numbers of Rad51 foci for each xrs2mutant relative to the wild
type. The y-axis values indicate the relative frequencies of COs or NCOs for each xrs2 mutant. The gray line shows a linear relationship. Asterisks
indicate statistically significant differences between the xrs2 mutant and wild type (**p < 0.01, *p < 0.05) (Supplementary Table S4).
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in >1,200 tetrads with four viable spores to calculate CO frequencies
(in centimorgans; cM) for each strain (Supplementary Tables S2,
S3); the number of tetrads analyzed was larger than that in the
previous study (>750 four-viable tetrads; Martini et al., 2006).
Tetrad analysis revealed that wild type of SK1 strain, xrs2–314M,
xrs2–228M, and xrs2–84M strains had spore viabilities of 96.8%,
97.3%, 90.9%, and 52.4%, respectively (Table 1). The results of
genetic analysis in wild-type controls (Figures 4, 5) are generally
consistent with our previous report (Shima et al., 2005; Higashide
and Shinohara, 2016; Shinohara et al., 2019). We assumed that DSB
distribution in various xrs2 strains is not altered and DSB levels are
uniformly reduced along the genome, which is a simple but cautious
assumption given that DSB formation was controlled in various
ways (Yadav and Claeys Bouuaert, 2021) and DSBs are proceeded
differentially in the mutant (see above).

Chromosome VII: The xrs2–314M (~80% DSBs) and
xrs2–228M (~65%) mutants showed wild-type levels of total CO
frequency between the CUP2 and ADE6 loci, 127.9 ± 14.6 (105%)
and 127.1 ± 7.9 (104%) cM, respectively, compared with 121.8 ±
9.4 cM for wild type (Figure 4B; Supplementary Table S2). The
xrs2–84M mutant (~25% DSBs) slightly, but significantly reduced
CO frequency with 109 ± 9.6 cM (89%) relative to the wild type.
These showed that CO levels responded non-linearly to a reduction
of DSB frequencies (Figure 4C). This supports the CO homeostasis
in response to DSB reduction (Martini et al., 2006). Among different
intervals inspected, we see the interval-specific response to reduced
DSB levels. The xrs2–314M mutant (~80% DSBs) showed similar
CO frequencies in all intervals to the wild type. The xrs2–228M
mutant (~65%) showed a slight reduction in the TRP5-ADE6
interval and similar CO levels in the MET13-CYH2 interval
compared to the wild type. Interestingly, the mutant showed
significantly increased CO frequencies in two intervals (CUP2-
MET13 and CYH2-TRP5) relative to the wild type. This increased
response of CO frequencies in response to DSB was not reported in
the previous study (Martini et al., 2006). For xrs2–84M, two of the
four single intervals showed wild-type levels of CO, despite a 76%
reduction in meiotic DSBs. While the CUP2-MET13 interval
increased the frequency compared to the wild type, the TRP5-
ADE6 interval in the mutant significantly reduced CO frequency.

Chromosome III: The xrs2–314Mmutant (~80% DSB) showed
wild-type levels of the total CO frequency between the HML and
MAT loci, 68.0 ± 5.5 cM compared with 67.4 ± 3.1 cM for wild-type
(Figure 4B; Supplementary Table S3). The xrs2–228M mutant
(~65%) slightly decreased CO frequency of 62.0 ± 4.0 cM
(92%). On the other hand, the xrs2–84M mutant (~25% DSBs)
reduced 57.7% of the wild-type level (38.9 ± 4.4 cM), which is
much higher than the expected frequency without the homeostasis
(~16.9 cM). For each interval, the xrs2–314M mutant slightly
decreased CO in one interval (HML-URA3) among four
intervals on the chromosome. The xrs2–228M mutant (~65%)
and the xrs2–84M mutant (~25% DSBs) showed decreased CO
frequencies in two and three intervals, respectively. In the LEU2-
HIS4, the xrs2–314M and xrs2–228M mutants maintained wild-
type CO levels while the xrs2–84M mutant decreased COs relative
to the control (see below). Taken together, these suggested that
chromosome III is less robust for CO homeostasis than
chromosome VII (Figure 4C). Similar results were obtained in
the previous study although it was not emphasized (Martini et al.,

2006). However, we do need more caution on the interpretation of
recombination on chromosome III, since our strains, but not a
previous strain, contains an unusual recombination hot spot,
HIS4–LEU2 on the chromosome.

When the combined CO frequencies on chromosomes III and
VII are compared with the total DSBs level in the xrs2 mutants, the
CO frequencies are maintained even in the xrs2–228M mutant with
~65% DSBs (Figures 4B, C). This CO homeostasis is roughly
correlated with that seen for Msh5 foci (Figure 2D).

NCO formation is sensitive to reduced levels
of meiotic DSBs

Next, we analyzed frequencies non-Mendelian segregation at
10 genetic loci on chromosome III and VII in different xrs2 alleles
(Figure 4A). For xrs2–228M (~65% DSBs) mutant, four of five loci
on chromosome III and four of five loci on chromosome VII showed
significant decreases in non-Mendelian segregation frequencies
(Figure 4D; Supplementary Table S4). The xrs2–314M mutant
(~80% DSBs) reduced the frequency only at the CYH2 locus. The
xrs2–228Mmutant, which maintains CO frequencies with 65% DSB
reduction, seems to show reduced NCO. Strangely, the xrs2–228M
mutant increased the frequency at the MET13 locus. For the xrs2-
84M (~25% DSBs), four of five loci on chromosome III and three of
five loci on chromosome VII showed significant decreases in non-
Mendelian segregation frequencies. The other three loci (HIS4,
MET13, and ADE6) showed reduced frequencies relative to the
wild type, but the difference is not significant. At the LEU2, CUP2,
and MET13 loci, frequencies in the xrs2-84M mutant are
significantly lower than those in the xrs2–228M mutant. In most
cases, however, except for the HML locus, reductions in non-
Mendelian segregation were not proportional to reductions in
meiotic DSBs, as reported (Martini et al., 2006) (Figure 4D;
Supplementary Table S4).

HIS4-LEU2: Non-Mendelian segregation is thought to result
from a simple gene conversion or mismatch repair of heteroduplexes
formed during CO formation (Nicolas and Rossignol, 1983; White
et al., 1985). TheURA3–LEU2–HIS4 interval on chromosome III has
an artificial meiotic DSB hotspot (DSB-I) with leu2E mutation (an
insertion allele of the EcoRI site) andURA3 insertion (Figure 4E). As
leu2E and the URA3 insertion are very close to the DSB-I site
(~1.5 and ~6.6 kb way, respectively), we assumed that LEU2/leu2
gene conversion with or without flanking crossover would come
from DSB-I. Non-Mendelian tetrads of LEU2/leu2E heteroalleles
(3 Leu+: 1 Leu- or 1 Leu+: 3 Leu-segregation) were initially selected,
and then sorted into four classes based on the linkage with flanking
markers, URA3 and/or HIS4 alleles; GC, Gene conversion; CRA,
Crossover associated gene conversion; DCO, double CO; three
strands, 3ST, gene conversion associated with incidental CO
(schematic figures in Figure 4E middle graph). A previous study
showed 40% and 14% of wild-type levels of DSB-I in the xrs2-228M
and xrs2-84M mutants, respectively (Shima et al., 2005). The xrs2-
228M maintained ~90% of wild-type CO level (CRA and DCO
classes). Moreover, decreased level of COs (CRA and DCO) in the
xrs2-84M mutant (~30%) is much higher than reduced DSB levels
(14%) at the locus. These support the idea that CO homeostasis is
operating at this locus (Figure 4F), which was not seen in the

Frontiers in Cell and Developmental Biology frontiersin.org10

Shinohara and Shinohara 10.3389/fcell.2023.1170689

156

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2023.1170689


physical analysis of this locus in the previous study (Martini et al.,
2006). GC frequencies were also reduced in response to decreased
DSB levels (Figure 4F), although higher than expected in the xrs2-
228M (80% to expected 40%) and xrs2-84M mutants (65% to
expected 14%). These high frequencies of meiotic recombination
in the xrs2-228M mutant cannot be explained by DSB-I. These
might come from an event at DSBs other than DSB-I such as DSB-II.

Reduced levels of meiotic DSBs weaken CO
interference

CO interference negatively regulates CO formation to maintain
the appropriate number and spacing of COs (Muller, 1916). A
previous study on CO interference in response to reduced DSBs
(Martini et al., 2006) showed that the interference is maintained
when DSB frequencies are reduced. To confirm this, we also
analyzed CO interference in xrs2 mutants using the same data
described above. In each interval, the tetrads were classified into
three classes with a different combination of flanking markers:
parental ditypes (PD), tetra types (TT), and non-parental ditypes
(NPD). NPD is a tetrad class with “double” COs involving four
chromatids in an interval, whose an expected frequency, NPDexp, is
calculated from a frequency of the TT class, which mainly contains a
single CO event in the interval (Papazian, 1952). First, we used the
Papazian method to examine the ability of a CO to interfere with
coincident COs in the interval by determining the ratio of observed
NPD (NPDobs) to NPDexp (Figure 5A, Supplementary Tables S2,
S3). In the wild type, the ratio of NPDobs to NPDexp, called the NPD
ratio, is indicative of interference when the ratio is <1. Indeed, as
reported previously (Higashide and Shinohara, 2016; Shinohara
et al., 2019), the NPD ratio of seven intervals on chromosome III
and VII in the wild type is 0.19–0.55 (Figure 5A; Supplementary
Tables S2, S3), confirming CO interference within these intervals. In
contrast, we did not detect any NPD tetrads within the MET13-
CYH2 interval after analyzing >1,200 tetrads, indicating the
presence of a strong interference in this interval (Figure 5A;
Supplementary Tables S2, S3).

We then analyzed tetrads for the xrs2mutants. For all xrs2mutants,
the NPD ratio associated with each interval on chromosomes III and
VII was <1 (except forHML–URA3) (Figure 5A; Supplementary Tables
S2, S3). In all cases, the ratio is statistically significant from one (no
interference), showing that the CO interference is maintained in the
mutants. Although the NPD ratio at theHML–URA3 in the xrs2–314M
was about 1; the number of NPDobs in this interval was too low (1 for
wild type, 2 for xrs2–314M, and 0 for the other alleles) to draw any
significant conclusions. As Papazian’s NPD analysis requires an NPD
fraction, which we could not obtain for some chromosome III intervals
(e.g., URA3-LEU2) in xrs2–84M because of severe reductions of COs in
the mutant. These suggest that CO interference could function even
when the number of DSBs was reduced to 20% levels of the wild type.
However, as discussed above, this idea depends on the similar DSB
distribution along these reporter chromosomes in the xrs2 mutants to
that in the wild type.

When compared with the NPD ratios in various xrs2mutants with
those in the wild type, we found that the NPD ratios in theHIS4-MAT,
CUP2-MET13, CYH2-TRP5, and TRP5-ADE6 intervals in the
xrs2–84M mutant (~20% DSBs of wild type) are significantly higher

than corresponding ratio in wild-type cells (Figure 5A; Supplementary
Tables S2, S3). Higher NPD ratios in themutant relative to the wild type
are also observed in the HIS4-MAT and CYH2-TRP5 intervals of the
xrs2–228Mmutant (~65%DSBs) as well as in theCYH2-TRP5 intervals
of the xrs2–314M mutant (~80% DSBs). These suggest weakened CO
interference when DSB frequencies are reduced by the xrs2 mutations.

We also analyzed the frequency of double COs in two adjacent
intervals using the tetrad data (above) for the coefficient of coincidence
(CoC; Figure 5B; Supplementary Table S5). CoC is a ratio of an
observed number of tetrads with simultaneous COs in adjacent
intervals to an expected number of double crossovers, which is
obtained from frequencies of a CO in each interval (Muller, 1916).
In the wild type, five adjacent intervals showed a CoC ratio <1 (CoC for
CYH2–TRP5–ADE6 is less than one but not statistically significant).
The xrs2–314M and xrs2–228M mutants exhibited CoC ratios that
were <1 for the five intervals. The xrs2–84M mutant showed CO
interference for four adjacent intervals, but in the URA3–LEU2–HIS4
interval the CoC was 1.01 (Figure 5B; Supplementary Table S5). This
indicated that a ~80% reduction in meiotic DSBs caused a defect in CO
interference at HIS4–LEU2 hotspot on chromosome III, which is an
abnormal response of the xrs2–84Mmutant in CO andNCO formation
(Figures 4E, F).

CoCs in the xrs2 mutants were compared to those in the wild
type. In the xrs2–84Mmutant, CoC ratios are higher in four adjacent
intervals, HML-URA3-LEU2, URA3-LEU2-HIS4, CUP2-MET13-
CYH2, MET13-CYH2-TRP5, and CYH2-TRP5-ADE6 while lower
in one interval, LEU2-HIS4-MAT. The xrs2–228M mutant shows a

FIGURE 6
Amodel of two-step selection of CO formation through Zip3 and
Msh4-Msh5. Once DSBs are formed on the chromosome, Zip3 may
translocate onto roughly selected DSB sites and suppresses additional
DSB formation. There are two kinds of modes of Zip3: One is
localized at the DSB site and can recruit Msh4-Msh5 (pale blue) and
another cannot recruit Msh4-Msh5 (dark blue). Then, the Msh4-Msh5
complex is recruited to the pro-CO site in a Zip3-dependent manner.
Zip3 and Msh4-Msh5 suppress additional complex formation in a
coordinated manner. Cen indiate a centromere.
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higher CoC ratio in the LEU2-HIS4-MAT and LEU2-HIS4-MAT,
but lower in the URA3-LEU2-HIS4. These support the idea that CO
interference is weakened when DSB frequencies are largely
decreased by the xrs2 mutations.

Discussion

Here we analyzed meiotic CO formation and the assembly of
proteins involved in CO formation in xrs2 hypomorphic
mutants with different levels of DSB formation. The
xrs2–314M and xrs2–228M mutants exhibited 20% and 35%
reductions in meiotic DSBs, respectively, but wild-type levels
of CO formation and spore viability. This indicated that CO
homeostasis functions in the xrs2mutant cells, as it does in spo11
mutants (Martini et al., 2006). In contrast, when DSBs were
reduced by ~80%, which was the case in xrs2–84M mutant, CO
homeostasis weakened. We also described the homeostatic
response of the formation of foci containing a ZMM protein,
Msh5, but not Zip3 in the xrs2 mutants. These suggest that CO
homeostasis is mediated by Msh5, thus, Msh5-containing MutSγ
complex with Msh4.

Foci containing Msh5 exhibit homeostasis in
response to reduced DSBs

By analyzing the number of foci containing different meiotic
recombination proteins in an xrs2mutant with reduced meiotic DSB
formation, we found a linear correlation of the number of ensembles
containing ZMM/SIC proteins (Zip3, Mer3, and Spo22/Zip4, but
not Msh5) as well as Rad51 and Dmc1 (Figure 2B). The steady-state
number of these foci is similar among the proteins. If the lifespan of
these foci is similar, we expect the same number of ensembles of
these proteins. ZMM-focus formation is independent of Rad51/
Dmc1-focus formation (Shinohara et al., 2008), although the
formation of both Rad51/Dmc1 and ZMM foci requires the
formation of ssDNAs at meiotic DSB sites. These suggested that
ensembles containing Zip3, Mer3, and Spo22/Zip4 were closely
associated with the ssDNA region near Rad51/Dmc1. This is
consistent with recent biochemistry and genome-wide mapping
of ZMM proteins including Zip3 which bind the DSB sites in
addition to chromosome axes (Serrentino et al., 2013; De Muyt
et al., 2018).

Although this study revealed the linear relationship of Zip3-focus
number to DSB level in the xrs2 mutants, a previous study showed a
non-linear relationship between Zip3 foci and DSBs in spo11
hypomorphic mutants (Henderson and Keeney, 2004). One critical
difference between our study and this previous report was the antibody
used to detect Zip3 foci. We used two independent raised polyclonal
antibodies against recombinant Zip3 protein generated by our lab (see
Materials and Methods) that detected 60.9 ± 8.6 (generated in rabbit)
and 60.8 ± 14.5 (generated in rat) foci in wild-type zygotene/pachytene
cells. This number is compatible with those reported for Zip3-myc
(~60 foci) by two independent groups (Yoon et al., 2016; Hong et al.,
2019; Tan et al., 2022). On the other hand, the previous report detected
only 35.3 ± 6.2 foci of a Zip3-GFP fusion protein on elongated SCs in
wild-type (ZIP3-GFP) cells using an antibody against GFP. GFP-tagging

of Zip3 may therefore affect the chromosomal localization of
Zip3 proteins. Alternatively, an anti-GFP antibody could detect only
the subfraction of Zip3 on chromosomes, which is resistant to reduced
DSB levels. Indeed, by using our Zip3 antibody, we also found a non-
linear response of the Zip3-focus number in the spo11 hypomorph
mutants. A steady-state number of Msh5 foci (~40) is much lower than
that of Zip3 and other recombination foci (~60). Given Msh4/5-focus
kinetics is similar to those of Rad51/Dmc1 (Zhu et al., 2021 and here), a
difference in the life span could not explain the difference in the number
of foci, suggesting the presence of a distinct regulatory mechanism to
assembly Msh5-ensembles than those of Rad51 and other ZMM
proteins.

We propose two distinct homeostatic responses to the assembly of
ZMM proteins to DSBs (Figure 6). First, DSB formation and/or
associated regulatory mechanisms control the number of ensembles
containing ZMM core proteins including Zip3. Second, a subset of
Zip3 ensembles might be converted into ensembles with Msh4/Msh5.
This second step is also under the control of DSB responses. The
double-staining analysis of Zip3 with Msh5 (Figure 3B) supports the
presence of two populations of Zip3 foci on meiotic chromosomes.
Zip3 foci associated with Msh5 show a homeostatic response to DSBs
and become brighter relative to early Zip3 foci (Figure 3A;
Supplementary Figure S3E). This might be positive feedback of
Zip3-focus formation once colocalized with Msh5. The first step
seems to be sensitive to the N-terminal region of Xrs2 with the
FHA domain. This region is critical for Tel1 (ATM)-mediated
phosphorylation of Hop1-pT318 on meiotic chromosomes in the
rad50S background (Iwasaki et al., 2016). Tel1 is shown to control a
feedback mechanism of meiotic DSB formation (Anderson et al., 2015;
Garcia et al., 2015). The xrs2 mutation-specific effect of
Zip3 homeostasis might be related to the Tel1 function, which
should be studied in the future.

Msh5 foci show homeostatic response to reduced DSB levels,
particularly in the xrs2–314M (~80% DSB level) and xrs2–228M
mutants (~60%DSB level), which also show robust CO homeostasis.
This suggests that Msh5, thus, the Msh4-Msh5 complex (MutSγ) is a
critical machinery for CO homeostasis. As the Msh4-Msh5 complex
stabilized recombination intermediates (Snowden et al., 2004;
Cannavo et al., 2020; Kulkarni et al., 2020), it was previously
reported that MutSγ recruitment is a critical step in the CO/
NCO decision and for CO interference (Bishop and Zickler,
2004; Snowden et al., 2004; Stahl et al., 2004; Shinohara et al.,
2008). The MutSγ complex seems to be a key effector for CO control
during meiosis. Alternatively, the complex is a downstream readout
for the control.

In mouse spermatocytes, MutSγ foci persist longer in late zygotene/
early pachytene stages relative to RAD51/DMC1 foci (Moens et al.,
2002). Moreover, the number of MSH4-MSH5 foci is less than RAD51/
DMC1 foci but ismore thanMLH1-MLH3 (MutLγ) foci, suggesting the
step-wise implementation of ZMM foci for CO formation/control
during mouse meiotic prophase I (Reynolds et al., 2013; Qiao et al.,
2014). Similarly in Sordaria, MSH4 foci appear in early meiotic
prophase than MLH1 foci and the number of MSH4 is higher than
that of MLH1 (Storlazzi et al., 2010). Interestingly, a recent study
showed a chromosomal localization of a tagged version of Mlh1 in the
budding yeast and the number of Mlh1 foci is less than ZMM foci in
wild type, supporting a regulatory transition from MutSγ to MutLγ is
operating in yeast meiosis (Sanchez et al., 2020).
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Prior to Msh4-Msh5 assembly, Zip3 is recruited to
chromosomes and promotes the assembly of Msh4-Msh5
(Shinohara et al., 2008). We found that 94% of Msh5 foci
contained Zip3 foci (Figure 3). A constant Msh5 foci (42-45)
level was maintained in each nucleus when CO homeostasis was
functioning (Figures 2, 3). The Msh5-Zip3 colocalization
frequency was reduced, however, when CO homeostasis was
compromised, i.e., in xrs2–84M mutant cells. We hypothesize
that Zip3-dependent recruitment of Msh4-Msh5 complexes to
DSB sites is critical in CO homeostasis and interference. Again,
in both mouse spermatocytes and Sordaria meiosis,
Zip3 orthologues, Rnf212 and Hei10 (and also Mer3/
Hfm1 foci) appear earlier than Msh4 foci (Reynolds et al.,
2013; Qiao et al., 2014; De Muyt et al., 2018; Dubois et al.,
2019). Thus, it is likely that a Zip3-dependent assembly of the
Msh4-Msh5 complex in CO formation/control is evolutionarily
conserved.

Previous cytological studies on ZMM foci such as Zip3 revealed that
Zip3 foci are evenly spaced along chromosome axes (Fung et al., 2004;
Zhang et al., 2020). Based on these, the establishment of the CO
designation may occur prior to ZMM assembly. Since the number
of Msh5 foci maintain on chromosomes when DSB frequencies are
reduced, Msh5-mediated CO homeostasis might operate after the CO
designation thus, CO interference and/or CO assurances.

In this study, we observed homeostatic responses to ZMM protein
to reduced DSBs in a context-dependent manner, which includes a type
of mutant, a tag to the protein, and antibodies or a combination of
antibodies used for the immuno-staining. Thus, we need a more careful
evaluation of the conclusion obtained by cytological analyses.

CO homeostasis varies between a short and
a long chromosome

A previous study by Martini et al. (2006) analyzed CO
homeostasis on chromosome III (3 intervals), VII (3 intervals),
and VIII (2 intervals) in spo11 mutants and focused on the effect of
reduced DSB levels on total COs on all three chromosomes but did
not study the chromosome-specific variation of CO homeostasis in
detail. In this study, by analyzing one more additional interval in
both chromosome III and VII, we not only confirmed “global” CO
homeostasis but also examined the chromosome-specific effect on
CO homeostasis. In CO homeostasis, the relatively short
chromosome III was more sensitive to DSB reductions than the
longer chromosome VII (Figure 4C).

In the wild type, five of seven intervals on chromosome III
(URA3–LEU2, HIS4–MAT, HML–LEU2, URA3–HIS4, and
LEU2–MAT) were genetically longer than the MET13–CYH2
interval (12 cM) on chromosome VII (Figure 2B; Supplementary
Tables S2, S3). CO frequency associated with the MET13–CYH2
interval was only mildly affected as DSBs were reduced to ~20% (in
the xrs2–84Mmutant). In contrast, the five intervals on chromosome III
showed significant reductions in CO frequencies (p < 0.001) in the
xrs2–84M mutant. This suggested that chromosome III is more
sensitive to DSB reductions than chromosome VII. CO homeostasis
likely works in a long chromosome better than a short chromosome.
Alternatively, given that, together with the two shortest chromosomes I
and VI, chromosome III is unique in the regulation of DSB formation

(Murakami et al., 2020), rather than chromosome length by itself, the
chromosome-specific property may determine the level of CO
homeostasis.

We observed reduced and increased CO frequencies in
MET13–CYH2 and CYH2–TRP5, respectively, in the three xrs2
mutants. These intervals previously analyzed in spo11 hypomorphic
mutants (Martini et al., 2006) exhibited similar tendencies. This suggests
that different intervals exhibit different sensitivities or responses to
reduced frequencies of DSBs, even for intervals on the same
chromosome. In addition, we found that the xrs2–314M mutant
(~65% DSBs) showed weakened CO homeostasis in two intervals
that spanned a centromere, HIS4–MAT and TRP5–ADE6 compared
to other intervals, which is consistent with the suggestion that
centromeres may represent a barrier for CO homeostasis, as has
been suggested (Martini et al., 2006).

COs were maintained at the expense of
NCO, and reduced level of DSBs weakened
CO interference

NCOs tend to be more sensitive to DSB reductions than COs in a
manner that is independent of chromosome size. This is particularly
seen in the xrs2–228Mmutant (~65% DSBs), which showed reduced
NCO frequencies at 9 loci while maintaining wild-type levels of COs.
COs may be maintained at the expense of NCOs, roughly as
proposed (Martini et al., 2006). On the other hand, CO and
NCO formation showed similar responses to severe reductions in
meiotic DSBs (i.e., they did not simply compensate for one another
in the case of xrs2–84Mmutant), suggesting that CO and NCO were
controlled through different mechanisms, consistent with previous
reports that NCOs differentiate earlier than CO in DSB processing
(Allers and Lichten, 2001; Hunter and Kleckner, 2001). Moreover,
these suggested that, in CO homeostasis, certain thresholds of DSBs
might upregulate meiotic CO formation within each chromosome or
genetic interval.

Although CO interference function even when DSBs were
reduced by 80% (xrs2–84M mutant), we observed CO
interference with reduced its strength. Moreover, for the
URA3–LEU2–HIS4 interval on chromosome III, no CO
interference was seen in the xrs2–84M mutant (Figure 5B). In
addition, the non-Mendelian fraction associated with CO (CRA
class) at this locus showed reduced CO homeostasis in the xrs2–84M
mutant (Figure 4F). This suggested that there might be a
coordinating mechanism between CO interference and CO
homeostasis, as well as DSB formation.

We note a remarkable difference between reductions in the relative
ratio of Msh5 foci and CO frequency, which dropped to 38.6% and
73.6% of wild type, respectively, in the xrs2–84M mutant (Figure 2B,
4C). One possibility is that reduced DSB frequencies may stimulate
ZMM-independent CO formation pathway(s) that are out of CO
interference regulation (Sym et al., 1993; Shinohara et al., 2008). SC
elongation is required for the downregulation ofmeiotic DSB formation
(Xu et al., 1995; Tung et al., 2000; Carballo et al., 2013; Gray et al., 2013;
Rockmill et al., 2013). The completion of SC elongation may provide a
signal that there are sufficient DSBs to generate COs and control CO
formation. In contrast, incomplete SC elongation may promote
additional meiotic DSB formation which may result in the
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formation of non-interfering COs (Lee et al., 2021). SC elongation may
be involved in CO homeostasis by regulating DSB formation (and non-
interfering CO). In the xrs2–84M mutant, which had 76% fewer DSBs
of the wild type, elongation of Zip1 was severely reduced, whereas CO
interference still functions, albeit at reduced effectiveness. This indicated
that Zip1 elongation was not critical for CO interference as proposed
previously (Zhang et al., 2014).
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SUPPLEMENTARY FIGURE S1
Rad51 focus formation in the spo11 hypomorph mutants. (A) Y-axis showed
an average number of Rad51 foci in nuclei in wild type (100%), spo11-HA/
spo11-HA (80%), spo11-HA/spo11-YF (30%), and spo11-YF/spo11-YF (0%).
Values of the X-axis were referred from Martini et al. (Martini et al., 2006).
Error bars indicate standard deviations from independent trials (left). The
distribution of the number of Rad51 foci in wild-type and spo11 hypomorph
mutants (raw values) is shown. Error bars show medians and interquartile
ranges. (B) The distributions of the number of Zip3 and Msh5 foci in wild-
type and spo11 hypomorph mutants are shown. Error bars show medians
and interquartile ranges. The numbers at the top of the graph indicate the
median value. The statistical significance of differences was determined
using the Mann-Whitney U-test (****p < 0.0001). (C) The average number
of Zip3 and Msh5 foci plotted in each spo11 mutant strain (left). Values are
presented as a ratio relative to the wild type against each relative number of
Rad51 foci [i.e., DSBs, (A)] in each strain (right).

SUPPLEMENTARY FIGURE S2
Hop1 localization in the BRCT-like domain-deleted xrs2mutant Localization
of Zip1 (red; rabbit) and Hop1 (green; guinea pig) inwild type, xrs2-314M, and
pch2 mutant cells are shown. Scale bar = 2 µm.

SUPPLEMENTARY FIGURE S3
Comparison of focus number of Zip3 and Msh5 in various xrs2 mutants. (A)
The number of foci of Zip3 and Msh5 per nucleus in different time points
after meiosis entry in wild type, xrs2-84M, xrs2-228M, and xrs2-314M. Error
bars show medians and interquartile ranges. (B) The number of foci of
Zip3 and Msh5 per nucleus from Figure 2B was shown in a scatter dot plot.
The number of nuclei analyzed for Figure 2; wild type, xrs2-84M, xrs2-
228M, and xrs2-314M are 459, 416, 542, and 339, respectively (Zip3 foci), and
454, 338, 345, and 219, respectively (Msh5 foci). Error bars show medians
and interquartile ranges. (C) The number of Zip3- and Msh5-foci from co-
localization analysis shown in Figure 3 is shown in a scatter dot plot. Error bars
show medians and interquartile ranges. (D) Kinetics of frequency of Zip3-
and Msh5-focus positive nuclei in wild type, xrs2–228M, and xrs2–84M
during meiosis. Error bars show the average and SD. (E) The fluorescent
signal intensity of Zip3 foci colocalized with or without Msh5 foci was
measured and plotted. The p-value was calculated with Mann-Whitney
U-test. Note the number of Zip3 alone foci is smaller than that of Zip3 foci
with Msh5 (Figure 3B).
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Crossover interference
mechanism: New lessons from
plants

Nahid Rafiei and Arnaud Ronceret*

Plant Molecular Biology Department, Instituto de Biotecnología, Universidad Nacional Autónoma de
México (UNAM), Cuernavaca, Mexico

Plants are the source of our understanding of several fundamental biological
principles. It is well known that Gregor Mendel discovered the laws of Genetics in
peas and that maize was used for the discovery of transposons by Barbara
McClintock. Plant models are still useful for the understanding of general key
biological concepts. In this article, we will focus on discussing the recent plant
studies that have shed new light on the mysterious mechanisms of meiotic
crossover (CO) interference, heterochiasmy, obligatory CO, and CO
homeostasis. Obligatory CO is necessary for the equilibrated segregation of
homologous chromosomes during meiosis. The tight control of the different
male and female CO rates (heterochiasmy) enables both the maximization and
minimization of genome shuffling. An integrative model can now predict these
observed aspects of CO patterning in plants. The mechanism proposed considers
the Synaptonemal Complex as a canalizing structure that allows the diffusion of a
class I CO limiting factor linearly on synapsed bivalents. The coarsening of this
limiting factor along the SC explains the interfering spacing between COs. The
model explains the observed coordinated processes between synapsis, CO
interference, CO insurance, and CO homeostasis. It also easily explains
heterochiasmy just considering the different male and female SC lengths. This
mechanism is expected to be conserved in other species.

KEYWORDS

meiotic recombination, crossing-over, interference, synapsis, heterochiasmy, CO
insurance, CO homeostasis, HEI10 coarsening model

1 Introduction

1.1 Crossing over interference: a short historical perspective

In sexually reproducing organisms, parental alleles are distributed in the offspring
following the laws of segregation defined by Gregor Mendel more than 150 years ago
(Mendel, 1866; Birchler, 2015). The chromosomal theory of heredity proposed by Thomas
H. Morgan (1926) explains how new chromosomic (genomic) combinations are formed
during the meiotic and fertilization processes. During meiosis, new chromosomes are
formed using recombination between parental DNA molecules. The junctions between
parental chromosomes named crossing-overs correspond to the cytologically observed
chiasma defined by Frans A. Janssens (Janssens, 1909) (translated into English by
Koszul and Zickler, 2012). Using Drosophila, Alfred Sturtevant genetically defined that
one CO in a genetic interval reduces the probability of observing another CO in the adjacent
interval (Sturtevant, 1913; Sturtevant, 1965), a phenomenon Hermann J. Muller coined ‘CO
interference’ in 1916 (Muller, 1916). John B.S. Haldane explained the genetic mechanism of
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interference by the statistical non-Poisson distribution of chiasmata
observed in bivalents of various Angiosperms (Haldane, 1931). The
correspondence between genetic crossing-overs (CO) and
cytological chiasmata was elegantly demonstrated in maize
(Creighton and McClintock, 1931; Coe and Kass, 2005). Various
models of CO formation have been developed (reviewed in Haber,
2008; Gray and Cohen, 2016; Chuang and Smith, 2023), including
various models trying to explain CO interference, ever since
Haldane (Berchowitz and Copenhaver, 2010; Sun et al., 2017;
Otto and Payseur, 2019; Saito and Colaiácovo, 2019; Chuang and
Smith, 2023).

In this minireview, we will discuss what we have recently learned
from plants regarding the integrated mechanisms regulating
synapsis, CO interference, CO insurance, CO homeostasis, and
heterochiasmy.

1.2 An integrated molecular model for CO
formation in plants

The meiotic division leads to the reduction by half of the
chromosome number in order to balance the fertilization process
(Zickler and Kleckner, 2015). Meiosis is one of the most dynamic
plant cellular processes (Ronceret and Pawlowski, 2010). It allows,
after one step of replication, the equilibrated segregation of
homologous chromosomes (meiosis I) followed by the
segregation of sister chromatids (meiosis II) to produce four
haploid spores (Mercier et al., 2015; Wang and Copenhaver,
2018; Gutierrez-Pinzón et al., 2021; Lloyd, 2023). During meiotic
prophase I, homologous chromosomes undergo a genetically
regulated process of recombination to create unique new
chromosomes from two parental ones. The molecular models for
meiotic CO formation of the last 40 years are based on the DNA
Double-Strand Breaks (DSBs) Repair model of meiotic
recombination proposed by Resnick, 1976 and refined by Szostak
et al., 1983. This model explains how two DNAmolecules can form a
new recombined one using the error-prone repair mechanism of
homologous recombination (HR). The basic mechanism of meiotic
homologous recombination involves the formation of hundreds of
programmed DSBs inflicted to the genome at the beginning of the
leptotene stage (de Massy, 2013; Mercier et al., 2015; Yadav and
Claeys Bouuaert, 2021). The number of DSBs varies from species to
species: 150 to 250 in Arabidopsis (Vignard et al., 2007), 450 to
550 in maize (Pawlowski et al., 2003), and around 400 to 1,500 in
hexaploid wheat (Benyahya et al., 2020). These various DSBs are
formed in plants by the SPO11 complex containing SPO11-1
(Grelon et al., 2001; Shingu et al., 2012; Sprink and Hartung,
2014; Da Ines et al., 2020; Ku et al., 2020), SPO11-2 (Stacey
et al., 2006; Benyahya et al., 2020; Fayos et al., 2020; Sprink and
Hartung, 2021; Li et al., 2022; Hyde et al., 2023), MTOPVIB (Fu
et al., 2016; Vrielynck et al., 2016; Xue et al., 2019; Jing et al., 2020;
Steckenborn et al., 2023), PRD1 (deMuyt et al., 2007; Shi et al., 2021;
Wang et al., 2022), PRD2 (deMuyt et al., 2009;Wang C. et al., 2023),
PRD3 (de Muyt et al., 2009; Lambing et al., 2022; Wang et al., 2022),
and DFO (Zhang et al., 2012). All these DSB factors form a complex
where SPO11-1/2 (TOPVIA-like subunit) presents the catalytic
transesterase (endonuclease) activity associated with MTOPVIB
(TOPVIB-like subunit), underlining that the SPO11 complex

conserve the structure of a DNA topoisomerase (Vrielynck et al.,
2016; Vrielynck et al., 2021; Wang Y. et al., 2023). In this model, all
original DSBs are not necessarily transformed into COs, but all COs
are designed from a subset of DSBs (Figure 1). In plants, only a small
subset of DSB sites is converted into COs (Mercier et al., 2015).
Though in most species studied, the global genomic position of
DSBs is randomly distributed along the length of chromosomes (He
et al., 2017; Choi et al., 2018), it is known that at smaller scale, there
are hotspots of DSBs in open chromatin regions near transcriptional
start sites with low nucleosome density in Arabidopsis (He et al.,
2017; Choi et al., 2018). It was recently shown that these DSB sites
are also silenced to avoid recombination on transcribed genes
(Wang et al., 2022). The number of DSBs can finally affect the
genomic distribution of CO (Xue et al., 2018). The SPO11 complex is
associated with axial elements (AE) of the synaptonemal complex
(SC) including the HORMA domain ASY1/PAIR2 (Armstrong
et al., 2002; Nonomura et al., 2006; Sanchez-Moran et al., 2007;
Cuacos et al., 2021; Wang C. et al., 2023) as well as the ASY3/PAIR3/
DSY2 (Wang et al., 2011; Ferdous et al., 2012; Lee et al., 2015) and
ASY4 coiled-coil proteins (Chambon et al., 2018), supposably
forming the basis of chromatin loops (Vrielynck et al., 2021;
Lambing et al., 2022) (Figure 1 Leptotene stage).

The process of meiotic recombination is realized in a context of
replicated chromosomes. Each DSB can therefore be repaired by
homologous recombination using different undamaged homologous
sequences as a repair template. The sites where the identical sister
chromatid is used as the repair template form non-CO events
(Figure 1). The sites where the DSB repair is processed using
either one of the two polymorphic DNA sequences of the
homologous chromosomes as the repair template can enter the
pathway to form COs (Figure 1). During meiosis, a specific cohesin
complex is installed between sister chromatids and contains
REC8 instead of SCC1 (Chelysheva et al., 2005; Golubovskaya
et al., 2006; Shao et al., 2011) as well as SMC1/3 (Lam et al.,
2005; Bolaños-Villegas, 2021), SCC2 (Wang et al., 2020), SCC3
(Chelysheva et al., 2005), CTF7 (Bolaños-Villegas et al., 2013), and
PDS5 (Pradillo et al., 2015). The putative helicase MCM8 (Crismani
et al., 2013) and the cohesion-like SMC5/6 complex that favors sister
chromatin HR repair in somatic cells are also tightly controlled
during meiosis to allow the activity of interhomolog HR (Watanabe
et al., 2009; Liu et al., 2014; Knoll et al., 2014; Chen et al., 2021; Zhu
et al., 2021; Jiang et al., 2022). These DSBs are readily resected 5′ to 3′
by the exonuclease activity of MRE11 to form single-strand
overhang 3′ extremities (Puizina et al., 2004; Ji et al., 2013) and
allow the liberation of SPO11-bound oligonucleotides (Choi et al.,
2018). MRE11 forms a complex with RAD50 (Bleuyard et al., 2004),
NBS1 (Akutsu et al., 2007; Waterworth et al., 2007), and COM1
(Uanschou et al., 2007; Ji et al., 2013;Wang et al., 2018). These 3’ free
single-strand DNA extremities are protected by various RPAs
(Chang et al., 2009; Osman et al., 2009; Li et al., 2018; Aklilu
et al., 2020), replaced by recA type recombinases RAD51
(Bleuyard et al., 2005; Da Ines et al., 2022; Li et al., 2022),
RAD51C (Bleuyard et al., 2005; Jing et al., 2019), XRCC3
(Bleuyard and White, 2004; Zhang et al., 2015), and DMC1
(Couteau et al., 1999; Deng and Wang, 2007; Kurzbauer et al.,
2012; Wang et al., 2016; Colas et al., 2019; Szurman-Zubrzycka et al.,
2019). BRCA2 directly interacts with RAD51 and DMC1 and could
facilitate their loading on the resected end of DSBs (Dray et al., 2006;
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Fu et al., 2020). These recombinases have the property to form
nucleoprotein filaments that can bring together the single-strand
DNA extremities with its specific homologous double-strand DNA
molecules in a process known as single-end invasions (SEIs) (review
in Emmenecker et al., 2022). Different recombinase subcomplexes
exist and have differential functions between inter-sister SEI and
interhomolog SEI (Kurzbauer et al., 2012; Pradillo et al., 2012; Su
et al., 2017). The main biochemical difference between the
Arabidopsis RAD51 and DMC1 recombinases tested in vitro is
that RAD51 pairing activity seem not to be influenced by Ca2+ while
DMC1 pairing activity is greatly enhanced in the presence of Ca2+

(Kobayashi et al., 2019). The most recently supported model
proposes a symmetrical loading of RAD51 and DMC1 homotypic
filaments on both DSB ends of a break (Da Ines et al., 2022).
Interestingly, the role of the meiotic specific DMC1 seems to
attenuate the strand exchange activity of the mitotic and meiotic
RAD51 recombinase (Da Ines et al., 2022) (Figure 1 Zygotene stage).

Interhomolog SEI is also promoted during meiosis by axial proteins
such as ASY1 (Sanchez-Moran et al., 2007; De Muyt et al., 2009).
Other recombinase accessory proteins modulate SEI (review in
Emmenecker et al., 2022). For example, RAD54 assists the
RAD51 interhomolog repair of meiotic DSB (Hernandez
Sanchez-Rebato et al., 2021), while the meiotic specific
HOP2 Vignard et al., 2007; Uanschou et al., 2013; Shi et al.,
2019, Emmenecker et al., 2022) and MND1 (Kerzendorfer et al.,
2006; Lu et al., 2020) form a complex that could assist DMC1 strand
invasion (Kang et al., 2015). HOP2 could also prevent illegitimate
recombination between non homologous chromosome regions
(Farahani-Tafreshi et al., 2022) (Figure 1 Zygotene stages). In
rice, HOP2 can directly interact with the ZEP1 SC central
component (Shi et al., 2019).

Hundreds of DSB sites allow the formation of the corresponding
hundreds of SEI sites along the zygotene homologous chromosomes
(Figure 1 Zygotene stage). These multiple sites of SEI connections

FIGURE 1
An integrated model explaining CO interference. Schematic representation of the formation of CO in just a pair of homologous chromosomes. To
simplify, the global arrangement of the chromosome is depicted with two different colors for the homologs (red and blue) and two different tones for
sister chromatids (light red and light blue). At this scale, each double-stranded DNA molecule is depicted as a simplifying line. The molecular steps
necessary to understand the molecular mechanism of CO formation are depicted in magnified insets, where the 5′ ends of each DNA strand are
represented by line with extremities with dots. In leptotene, the replicated chromosomes are represented with their important features for meiotic
recombination. The axial elements (AE) including ASY1, ASY3, and ASY4 are assembled at the base of the loop of two sister chromatids attached bymeiotic
cohesins including REC8. Establishment of the proteinaceous axial element is essential to form the Synaptonemal Complex (SC). The formation of tens of
DNA double-strand breaks (DSBs) for each of the only two homologous chromosomes pictured is processed by the evolutionarily conserved
SPO11 complex. DSB ends are resected at either 5′ end to produce 3′ overhang, which are recognized by Rad51 and Dmc1 to generate inter-homologue
strand-invasion. The 3′ end can invade either a homolog or a sister chromatid. In addition, multi-invasion of the 3′ tails on a homolog and/or sister
chromatid is also possible to find an intact homologous template for HR repair. 3′ tail invasion in the homologous intact molecule generates a
displacement loop (D-loop) through single end invasion (SEI). In zygotene,multiple SEI are used for homologous chromosome recognition/pairing. The
transverse filaments ZYP1 of the synaptonemal complex (SC) start to polymerize at the center of the tripartite SC between two lateral elements. In early
pachytene, the homologous chromosomes are fully synapsed from telomere to telomere. The SC allows the diffusion in only one dimension of the
limiting CO factor HEI10 that can form coarsening recombination nodules explaining interference between CO class I (adapted fromMorgan et al., 2021;
Durand et al., 2022). In mid pachytene, various recombinant intermediates can be associated with HEI10 foci that progressively form larger agglomerated
foci and eliminate the possibility of close CO design, except in the case of non-interfering COs that are not HEI10-dependant. At the end of pachytene,
most of the chromosomal positionswith SEI have not been transformed in CObut are resolved as NCO. At least one and generally few interferent (spaced
out) COs are present on each bivalent, except where non-interfering (class II or class III) COs are formed.
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(known as joint molecules JMs), involving base pair DNA sequence
homology recognition, are usually proposed to explain the
mechanism used for the correct association (also known as
pairing process) between the homologous chromosomes (Zickler
and Kleckner, 1999; Pawlowski et al., 2003; Higgins et al., 2004).
Most of these numerous SEIs will not form CO but are proposed to
allow the accurate alignment between the right partners not only on
a local scale but along the whole chromosome length. The excess of
SEIs compared to the restricted final number of COs could therefore
explain the accuracy of the pairing process between chromosome
bivalents concomitant to synapsis (Gutierrez-Pinzón et al., 2021)
(Figure 1 Zygotene stage). The recognized paired interaction zones
are stabilized by the zipper-like proteinaceous structure known as
the synaptonemal complex (SC). ZYP1 (ZEP1 in rice) is the central
element forming a ladder between the two axial elements of the SC
and connecting homologs from telomere to telomere (Higgins et al.,
2005; Wang et al., 2010; Barakate et al., 2014; Capilla-Pérez et al.,
2021; France et al., 2021) (Figure 1 Zygotene stage). The various SEI
sites form regions of DNA triple helices known as Displacement-
loops (D-loops). Most D-loops do not enter a CO pathway and
several anti-recombinase pathways (described later) can dissociate
the invading strand from the D-loop and re-anneal with the other
DSB end, leading to small patches of hybrid DNA known as non-
Crossover (NCO). The dissolved D-loops are proposed to be
repaired via the Synthesis-Dependent Strand Annealing (SDSA)
model during meiosis (Allers and Lichten, 2001; Puchta, 2005; Vu et
al., 2017; Wang and Copenhaver, 2018) (Figure 1 Zygotene and
pachytene stages).

For the few D-loops that enter a CO pathway, the invading
strand is extended by DNA polymerases that realize a local DNA
synthesis using the undamaged strand to copy it (Figure 1 Zygotene
stage). The displaced strand of the undamaged DNA molecule
hybridizes with the other 3’ end of the DSB in a process known
as second end capture (Figure 1 Zygotene stage). These joint
molecules can interchange part of their homologous strands
extending the hybridization zone in a process known as branch
migration that leads to the formation of double Holliday junctions
(dHJs) (Figure 1 Pachytene stages). The asymmetric resolution of
these dHJs can lead to the formation of COs that covalently link new
portions of two homologous chromosomes (Szostak et al., 1983).

Two principal classes of CO pathways, one sensitive to
interference (class I) and the other insensitive to interference
(class II), have been defined in S. cerevisiae, animals, and plants
(Mercier et al., 2005; Holloway et al., 2008; Gray and Cohen, 2016).

The major pathway (accounting for around 85% of COs in
Arabidopsis) is called class I and is subject to CO interference. The
formation of the class I CO involves members of the ZMM pathway
composed of ZIP4 (Chelysheva et al., 2007; Shen et al., 2012), MER3
(Mercier et al., 2005; Wang et al., 2009), HEI10 (Chelysheva et al.,
2012; Wang K. et al., 2012), PTD (Wijeratne et al., 2006; Ren et al.,
2019), SHOC1/ZIP2 (Macaisne et al., 2008; Ren et al., 2019), mutS-
like MSH4 (Higgins et al., 2004; Zhang et al., 2014b), mutS-like
MSH5 (Higgins et al., 2008a; Luo et al., 2013), mutL-like MLH1
(Dion et al., 2007; Liu et al., 2022), and mutL-like MLH3 (Jackson
et al., 2006; Colas et al., 2016; Mao et al., 2021). Themut-Lγ resolvase
(formed by the MLH1-MLH3 heterodimer of the ZMM complex)
can potentially stabilize D-loop structures and mature them as CO
(review in Ziolkowski, 2023). This interfering pathway also requires

the leading strand DNA polymerase epsilon (Ronceret et al., 2005;
Huang et al., 2015; Wang et al., 2022a; Wang et al., 2022b) as well as
the potential lagging strand DNA polymerase POLD1 (Wang et al.,
2019) and RFC1 factor (Wang Y. et al., 2012) probably necessary for
the synthesis steps of HR. This interfering pathway is limited by the
HCR1 encoding a Protein Phosphatase X1 that can interact with
HEI10, PTD, MSH5, and MLH1 (Nageswaran et al., 2021). In rice, a
new plant specific ZMM member named HEIP1 interacting with
HEI10, ZIP4, and MSH5 was also identified (Li et al., 2018). In
tetraploid wheat, MSH4/MSH5 mutants also demonstrate an 85%–

15% proportion of the two CO pathways in wheat species
(Desjardins et al., 2020). In hexaploid wheat, the classical
Ph1 locus controlling pairing and recombination between
homeologous chromosomes, which is very important for
breeding strategies, corresponds to a ZIP4 homolog (Rey et al.,
2017).

The second minor non-interfering pathway (accounting for 15%
of COs in Arabidopsis, around 10% of COs in rice) is called class II
and involves the MUS81 protein (Berchowitz et al., 2007; Higgins
et al., 2008b; Geuting et al., 2009). The MUS81 complex has a highly
controlled endonuclease activity acting on selective DNA structures,
such as D-loop and HJ, and can act on several replication and
recombination intermediates during mitosis and meiosis depending
on its interacting partners and phosphorylation status (Pfander and
Matos, 2017). In rice, GEN1, the homolog of the Holliday junction
resolvase is necessary for class II CO formation (Wang et al., 2017)
while it is not in Arabidopsis (Bauknecht and Kobbe, 2014; Olivier
et al., 2016), suggesting that the MUS81 pathways have diverged
between dicots and monocots. Compared to Arabidopsis, the
MUS81 pathway contributes even less to CO designation in rice
(Wang et al., 2017; Mu et al., 2022), suggesting that the weight of the
different pathways described in this review probably depend on each
species.

In Arabidopsis, a second non-interfering pathway of CO,
depending on FANCD2 and parallel to the MUS81 non-
interfering CO pathway, contributes to the formation of some
type II COs (Kurzbauer et al., 2018). The FANCD2 pathway, but
not the MUS81 pathway, affects the distribution of class I CO (Li
et al., 2021). In order to avoid confusion, this distinct
FANCD2 pathway could be designed as the non-interfering class
III CO pathway (Gutierrez-Pinzón et al., 2021).

Various meiotic interhomolog intermediate dissolution
pathways (or anti-recombinase pathways) have been identified in
Arabidopsis using meiotic mutant suppressor screens restoring
fertility. Double mutant and cytological marker analysis have
shown that they all reduce specifically the MUS81 dependent
non-interfering class II CO pathway. These anti-recombinase
pathways act using parallel mechanisms since mutants combining
the different pathways lead to additive massive meiotic non-
interfering CO formation (Crismani et al., 2012; Girard et al.,
2015; Séguéla-Arnaud et al., 2015; Serra et al., 2018; Singh et al.,
2023).

The first anti CO pathway requires the RECQ4A and RECQ4B
helicase activity homolog to mammal BLM and yeast SGS1
(Hartung et al., 2007; Higgins et al., 2011; Séguéla-Arnaud et al.,
2015; Serra et al., 2018). Combine with TOP3α (Hartung et al., 2008)
and RMI/BLAP75 (Chelysheva et al., 2008), this complex is known
as the RTR complex in plants and is similar to the ‘dissolvosome’
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BTR complex in mammals and the yeast STR complex
(Emmenecker et al., 2022). In Arabidopsis, recq4A mutant
suppresses CO dependent on MUS81 activity (Séguéla-Arnaud
et al., 2015). The RECQ4A protein is found on recombination
intermediates of telomeres during meiosis and could particularly
restrict CO class II on these chromosomal regions (Higgins et al.,
2011). Recq4mutants increase by around three times the number of
COs in rice, tomato, and pea (Mieulet et al., 2018). It seems that this
RTR complex has functionally diverged between Arabidopsis and
tomato (Whitbread et al., 2021).

The second anti CO class II pathway requires FIDGETIN-like
AAA-ATPase (FIGL1) (Girard et al., 2015) associated with FLIP
(Fernandes et al., 2018). This FIGL1 is an antagonist to the
BRAC2 recombinase (Kumar et al., 2019). In rice, the FLIP-like
MEICA protein can interact with the TOP3α and MSH7 (Hu et al.,
2017), suggesting coordination between the first anti CO pathway at
least in rice. MEICA and FIGNL1 both have an anti CO activity
affecting class II CO (Zhang et al., 2017; Yang C. et al., 2022). These
pathways could also have different strengths in male versus female
meiosis as observed by the male specific effect of the FIGL mutation
in rice (Zhang et al., 2017).

The third anti CO pathway requires the Fanconi Anaemia (FA)
pathway comprising the FANCM helicase (Crismani et al., 2012); its
cofactors MHF1 and MHF2 (Girard et al., 2015); and the FANCC,
FANCE, and FANCF subcomplex (Singh et al., 2023).

It is important to clarify that any of these three parallel anti-
recombinase pathways, which substantially increase the number of
class II CO, have been shown to abolish CO interference measured
genetically. The interpretation of these confounding results is that
the large number of class II COs, by decreasing the space between
COs, mask the class I spacing mechanism expected to remain
unaffected (Crismani et al., 2012; Girard et al., 2015; Séguéla-
Arnaud et al., 2017; Fernandes et al., 2018; Li et al., 2021).

Interestingly, in Arabidopsis, FANCD2, FANCM, FIGL1, and
RMI1 not only suppress non-interfering CO but also have a role in
regulating the distribution of class I CO among chromosomes to
insure at least one CO per bivalent (Li et al., 2021). In wheat, it was
shown that FANCM not only suppresses class II non-interfering
COs but also promotes class I interfering COs and insures at least
one CO by bivalent (Desjardins et al., 2022).

It has been proposed that these dissolution pathways leading to
NCO could be especially important for multi-invasion complexes
formed between more than two DNA molecules that would
otherwise lead to aberrant recombination intermediates
(Emmenecker et al., 2022; Mu et al., 2022). Whether or not these
pathways could be involved in a putative chromatid interference
phenomenon (Zhao et al., 1995; Sarens et al., 2021) is still unknown.

In general, the combination of these different pro- and anti- CO
pathways leads to the formation of only one or two COs per
chromosome arm in plants, fungi, and animals (Otto and
Payseur, 2019; Saito and Colaiácovo, 2019; Pazhayam et al., 2021;
Tock et al., 2021; Lloyd, 2023).

However, despite the understanding of the molecular factors
involved in CO formation in various model species, the mechanism
by which COs tend to space out from each other has been debated
for more than a century. The other mechanisms of the obligatory
CO, CO homeostasis (where the variation of the initial number of
recombination intermediate does not affect the final number of

COs), and heterochiasmy (where CO rate is different between male
and female meiosis) have also gained various insights from recent
analysis in plant meiotic models.

1.3 A model of CO interference based on
HEI10 coarsening along the SC
compartment

Recently, several lines of evidence converged to pinpoint the
fundamental role of the localization dynamics of the specific pro-
crossover ZMM HEI10 factor on meiotic chromosomes to explain
the CO interference phenomenon. HEI10 is a member of a family of
RING-finger domain E3 ubiquitin ligase (De Muyt et al., 2014)
including Zip3 in S. cerevisiae (Agarwal and Roeder, 2000),
HEI10 and RNF212 in mammals (Ward et al., 2007; Kong et al.,
2008), Vilya in Drosophila (Lake et al., 2015) and ZHP-3 in C.
elegans (Bhalla et al., 2008; Zhang et al., 2018). In Arabidopsis, the
expression of HEI10 responds similarly to its overlapping adjacent
gene MRD1 to pathogen inoculations via the OZF1 transcription
factor (Singh et al., 2022). AtHEI10 is also transcriptionally
repressed by a Heat Shock Binding Protein (HSBP) that
contributes to the adaptative CO formation in response to
change in temperature (Kim et al., 2022) suggesting that
HEI10 expression is responding to various environmental factors.
In immunolocalization experiments, HEI10 foci show a peculiar
pattern with a foci number progressively decreasing from late
zygotene to diakinesis with late signal associated with other
members of the class I CO such as MLH1 and MLH3 in
Arabidopsis and rice (Chelysheva et al., 2012; Wang K. et al.,
2012). It was noticed that HEI10 can show either small and faint
numerous foci at the beginning of the zygotene stage or large and
bright signals at the end of the pachytene stage in rice, Arabidopsis,
and wheat meiocytes (Wang Y. et al., 2012; Duroc et al., 2014;
Desjardins et al., 2020; Osman et al., 2021). Natural variation in this
gene is associated with variation in meiotic recombination rate
observed between Arabidopsis ecotypes (Ziolkowski et al., 2017).
The dosage of HEI10, reduced in hei10 heterozygotes or increased in
HEI10 overexpression line is a determinant for CO number and the
strength of CO interference (Ziolkowski et al., 2017; Serra et al.,
2018; Morgan et al., 2021). Using super-resolution SIM track of the
HEI10 immunolocalization signal on fully synapsed pachytene
bivalents, it was observed that the intensity of HEI10 signal per foci
depends on the total number of observed foci per bivalent, with brighter
signal when unique foci are present on bivalents (Morgan et al., 2021).
During early zygotene, faint HEI10 signals are uniformly distributed
along the bivalents (Figure 1. Zygotene stage), the number of HEI10 foci
progressively decreases during zygotene and pachytene stages with an
aggregation of brighter and larger HEI10 foci at the expense of the
fainter and smaller adjacent foci (Figure 1 Zygotene and Pachytene
stages). Ultimately by late pachytene, few large bright foci have been
spaced out by themechanism ofHEI10 coarsening that has depleted the
surrounding HEI10 sites on bivalents (Figure Fig1. Late Pachytene
stage). However, by whichmechanismHEI10 can coarsen and how it is
related to other ubiquitination processes during meiosis require further
investigations (Orr et al., 2021; Ren et al., 2021). It is worth underlining
that the analysis of pachytene bivalents using electron microscopy had
already noticed different sizes and shapes of early (poorly interfering)
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versus late interfering ‘recombination nodules’ (RN) localize along the
synaptonemal complex (Anderson and Stack, 2005). Morgan and
colleagues proposed a mathematical ‘diffusion mediated
HEI10 coarsening model’ where the SC is seen as a linear structure
allowing the diffusion of the HEI10 signal in only one dimension
(Morgan et al., 2021). This model convincingly predicts differently
tested situations in WT and hei10 mutant or HEI10oe overexpression
line (Morgan et al., 2021) (Figure 2). The model explains very well how
the HEI10 recombination nodules become progressively distant from

each other. This model also implicitly explains how the mechanism of
interference is not affected by the formation of either class II
MUS81 dependent CO, nor class III FANCD2 dependent CO,
though either of the three pathways can use the same SEI initial
recombination intermediates. It also suggests that the remaining SEI
sites without HEI10 bright foci are transformed into NCO or non-
interfering COs (Figure 1 Pachytene stages).

The coarsening model was initially proposed in C. elegans,
whose HEI10 homolog ZHP-3 has a similar behavior (Bhalla

FIGURE 2
Many mechanisms of crossover interference can be explained by the HEI10 coarsening model along the ZYP1 synaptonemal complex structure.
Schematic representation of the HEI10 localization at pachytene in Arabidopsis thalianawild type (A), zyp1mutant (B), HEI10oe overexpressed line (C), and
zyp1+HEI10oe (D) adapted fromDurand et al., 2022. In wild type, HEI10 proteins are localized into foci. Many small HEI10 foci on synapsed chromosomes
appear along the SC. With the progression of the pachytene stages, the number of HEI10 foci gradually decreases and few of them coarsen by
agglomerating the smaller foci into the larger ones. Fewer foci are generated in females due to the shorter SC and leads to heterochiasmy (A). In
HEI10 OE, the coarsening process occurs as well as wild type and by keeping the heterochiasmy state, CO numbers in both sexes increase while CO
interference decreases (B). In the absence of SC, zyp1, unlike the presence of SC ones, free diffusion of HEI10 occurs in the nucleoplasm and abolish the
competition among foci to absorb the HEI10 and all initial foci grow continuously by capturing the HEI10. Hence, this results in a loss of crossover
interference and heterochiasmy but an increase in the CO number (C). As it is expected, the combination HEI10 (OE) and zyp1 provides larger increases in
CO number than zyp1 and HEI10 OE alone, and CO interference and heterochiasmy are abolished (D).
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et al., 2008; Zhang et al., 2018; Zhang et al., 2021). The SC also seems
to have peculiar liquid-crystal properties that can facilitate long
range signal transduction (Rog et al., 2017). Whether or not similar
properties of the plant SC could help the progressive coarsening of
HEI10 remains to be determined in plants.

The situation in mammals could be similar since the
HEI10 accumulates at designed CO sites (Qiao et al., 2014).
However, in mammals, the interference mechanism might not
involve the HEI10 protein itself but rather its antagonist
RNF212 SUMO ligase (Qiao et al., 2014; Rao et al., 2017). Indeed,
in mammals, RNF212 seems to be the limiting factor for CO class I
design since it has sequence variants explaining the recombination rate
in human populations (Kong et al., 2008) and shows a sensitive dosage
role during mouse meiotic recombination (Reynolds et al., 2013).

1.4 The SC/HEI10 coarsening could also
explain the mechanisms of obligatory CO
and CO homeostasis

The mechanism by which at least one CO is formed on each
bivalent was recognized as essential to segregate the full set of
homologous chromosomes during the meiotic reductional
division (Darlington and Dark, 1932). This obligate CO was
defined by Owen in 1949 (Owen, 1949). This ability to ensure
CO (also known as CO insurance) on each bivalent can easily be
integrated into the HEI10 coarsening model along the SC. The
HEI10 coarsening model assumes that if enough HEI10 is deposited
on a bivalent, it will produce at least one CO per bivalent explaining
CO insurance.

The mechanism of CO homeostasis was defined by Martini et al.,
2006 to explain a situation observed in budding yeast where the
variation of the number of DSB (i.e., 80% reduction) does not
significantly affect the final number of COs. In Arabidopsis, a
30%–40% reduction in DSB number leads to a proportionate
though smaller reduction of CO number, affecting their
distribution and redirecting them toward the telomeres (Xue et al.,
2018). In maize though, it appears that CO homeostasis is somehow
limited (Sidhu et al., 2015). Anyway, the coarsening HEI10 model
could also account for CO homeostasis if we imagine that a DSB-
independent limiting amount of expressed HEI10 per meiocyte limit
the final number of the major class I CO. The large excess of DSB and
SEI intermediates compared to the final CO number could explain
how the bright and large HEI foci designing class I COs might not be
affected by a change in the number of DSB and earlier SEI
intermediates, as long as the number of these intermediates is at
least the same as or exceeds the number of final COs.

1.5 Role of synapsis in interference, obligate
CO and heterochiasmy

In species with different CO rates between male and female
meiosis (heterochiasmy), the length of SC is particularly different as
well. SC length also depends on chromosome size and the SC length
is proportional to CO rate (Zickler and Kleckner, 2015).

As already mentioned, the ZYP1 is the central element of the SC.
In contrast to the S cerevisiae, Zip1 homolog is considered a member

of the ZMM pathway that is indispensable for synapsis and CO
formation (Sym et al., 1993), the mutation of zyp1 in Arabidopsis
and rice disprupts synapsis but allows the formation of a higher
number of COs per meiosis (Wang et al., 2010; Capilla-Pérez et al.,
2021; France et al., 2021). It appears that this uncoupling of SC and
CO class I formation in plants fortunately allowed the role of the SC
in the interference mechanism to be refined. In addition, plants do
not have a bone fine pachytene checkpoint leading to apoptosis
when bivalents cannot form (De Jaeger-Braet et al., 2022), allowing
easier observations of the consequences of the zyp1mutation than in
animals or budding yeast. In the absence of zyp1, the number of COs
increases, but interference, obligatory CO, and heterochiasmy are
lost (Capilla-Pérez et al., 2021; France et al., 2021). In zyp1mutants,
the HEI10 foci are still formed despite the loss of the SC and the
formation of bright HEI10 signals (Capilla-Pérez et al., 2021),
suggesting that the HEI10 diffusion still occurs but in three
dimensions in the nucleoplasm, instead of being canalyzed by the
SC on each bivalent (Figure 2C). So when synapsis is lost,
heterochiasmy is also lost. This data is interpreted as the fact
that heterochiasmy does not rely on peculiar regulation of the
RH machinery itself except the one imposed by the SC length. It
is predicted that all the factors affecting longer SC length will
increase CO rate; the one decreasing SC length will decrease CO rate.

The HEI10 coarsening model proposed by Morgan et al., 2021
also reliably accounts for these observed facts in male and female
meiosis of Arabidopsis (Durand et al., 2022). The longer male SC
can integrate more HEI10 and have a longer distance to space
them out, leading to both a higher recombination rate and higher
interference (Figure 2B). Finally the HEI10 coarsening model
also predicted as well the combination of zyp1 with HEI10oe

situations (Durand et al., 2022; Fozard et al., 2023)
(Figure 2D). The situation is also observed in a new
separation of function zyp1 allele (Yang S. et al., 2022).
ASY1 also mediates CO insurance and interference (Lambing
et al., 2020; Pochon et al., 2022). The effect of ASY1, one of the
axial elements of the SC, on CO and interference might also be
partly due to the absence of ZYP1 installation in this mutant.

A previous model known as the beam-film model has been
extensively proposed to explain the interference mechanism by a
redistribution of the mechanical stress that dissipates at the site of
CO designation, impeding the formation of another CO nearby
(Kleckner et al., 2004; Zhang et al., 2014a; Otto and Payseur, 2019).
The beam-film model and the HEI coarsening model are possibly
not exclusive and the mechanisms of HEI10 diffusion or coarsening
could be influenced by a mechanical stress potentially perceived
through SC remodeling (Lambing et al., 2020; Yang C. et al., 2022).

Most of the meiotic studies are still made in male meiocytes but
immunolocalization techniques used to analyze female meiocytes
have now been developed (Escobar-Guzmán et al., 2015; Gordillo
et al., 2020) in order to better understand heterochiasmy and
identify the basis of the regulation of the male and female SC
length difference.

2 Conclusion

Forty years after the DSB repair model (Szostak et al., 1983), the
molecular pathways and factors leading to the formation of CO have
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been described in various fungi, animal, and plant models. An
integrated model for understanding the CO patterning at the
whole genome level remained more difficult to establish. The
model reviewed here requires the observed excess of DBS sites
for correct pairing between homologs and synapsis. The excess
SEI sites are also required for interference and the progressive design
of COs along bivalents that lead to the restricted number of final
COs. The SEI sites unused to form CO are still repaired and explain
the presence of NCO.

In the model reviewed here, which was initially proposed in C.
elegans by Zhang et al., 2021 as well as in Arabidopsis by Morgan
et al., 2021 and refined by Durand et al., 2022 and Fozard et al., 2023,
the role of the synaptonemal complex SC, an evolutionary well
conserved structure only present during meiosis, is clearly assigned:
it allows the HR machinery to work on the bivalent as a unit
separated from the rest of the nucleoplasm. This explains how
SC is tightly interconnected with the homologous recombination
process during meiosis. The SC can therefore restrict the diffusion of
important recombination regulators such as HEI10 on a linear basis
and explain the observed coordination of mechanisms controlling
CO insurance, homeostasis, and interference. In this model,
heterochiasmy relies on different SC lengths, as observed
cytologically in various species (Zickler and Kleckner, 1999).
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The courtship choreography of
homologous chromosomes:
timing and mechanisms of
DSB-independent pairing

Mireia Solé, Álvaro Pascual, Ester Anton, Joan Blanco*† and
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Departament de Biologia Cel·lular, Genetics of Male Fertility Group, Unitat de Biologia Cel·lular, Fisiologia i
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Meiosis involves deep changes in the spatial organisation and interactions of
chromosomes enabling the two primary functions of this process: increasing
genetic diversity and reducing ploidy level. These two functions are ensured by
crucial events such as homologous chromosomal pairing, synapsis,
recombination and segregation. In most sexually reproducing eukaryotes,
homologous chromosome pairing depends on a set of mechanisms, some of
them associated with the repair of DNA double-strand breaks (DSBs) induced at
the onset of prophase I, and others that operate before DSBs formation. In this
article, we will review various strategies utilised by model organisms for DSB-
independent pairing. Specifically, we will focus on mechanisms such as
chromosome clustering, nuclear and chromosome movements, as well as the
involvement of specific proteins, non-coding RNA, and DNA sequences.

KEYWORDS

homologous chromosomes, homologous pairing, chromosome dynamics, meiosis, cell
division

Introduction

Meiosis is a process aimed at producing haploid gametes from diploid germ cells. With
this purpose, a single round of DNA replication is followed by two consecutive chromosome
segregations. Meiosis increases genetic variation via two important mechanisms, namely,
independent assortment of homologous chromosomes and genetic recombination. To this
end, it is required that, in meiosis I, homologous chromosomes come close together in a
process called pairing, synapse via synaptonemal complex (SC) formation (reviewed in Page
and Hawley, 2004), recombine (reviewed in Hunter, 2015) and segregate randomly.
Although these four processes are conceptually distinct, they are all closely related and
take place in a sequential way.

It is widely accepted that the generation of DSBs by the topoisomerase-like transesterase
protein Spo11 and the subsequent action of the DNA repair machinery (reviewed by Keeney,
2008; Baudat et al., 2013) induce the physical recognition among homologous DNA
sequences. Once DSBs have been formed, the ends are resected to generate 3’ single-
strand tails, which are loaded with RecA-like proteins, Rad51 and Dmc1. Proteins and DNA
form a filament (via a nascent D-loop) able to identify and interact with their corresponding
homologous double-strand DNA, that eventually cause the approach and coalignment, at a
distance of approximately 400 nm, of specific regions of homologous chromosomes—the
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PAIRING (reviewed in Zickler, 2006). It has been suggested that
only one of the two generated ends would create this “homology
searching tentacle” of DNA and nucleoproteins (Kim et al., 2010).
The alignment of the entirety of the homologous chromosomes
requires the assembly of SC—the SYNAPSIS (reviewed in Page and
Hawley, 2004). Subsequently, the process of RECOMBINATION
will move forward through different strand isomerisations leading to
crossover and non-crossover products (reviewed in Hunter, 2015;
Gray and Cohen, 2016).

Accordingly, in some species the formation and repair of DSBs
play an essential role in the processes of pairing and synapsis. In
support of this hypothesis, it has been observed in spo11 mutants a
relationship between alterations in the number of DSBs and
anomalies in the formation and functionality of the SC (Baudat
et al., 2000; Romanienko and Camerini-Otero, 2000; Tesse et al.,
2003; Kauppi et al., 2013; Rockmill et al., 2013). Moreover,
exogenous DSBs induction partially restores the meiotic defects
observed in some of these mutants (Thorne and Byers, 1993;
Dernburg et al., 1998; Storlazzi et al., 2003; Tessé et al., 2003).

In contrast, in certain model organisms such as Drosophila or
Caenorhabditis, the involvement of DSBs in the pairing process
seems to be dispensable. Moreover, regardless the participation of
DSBs, several aspects of the pairing mechanism indicate the
existence of alternative pathways that play a role in facilitating
the recognition and alignment of homologous chromosomes. For
instance, it should be noted that each DSB generates approximately
1 kb of ssDNA that needs to identify and localise its homologous
chromatid. A homologous sequence search should be achieved
within a short period of time and then held together. This action
is not that simple if homologous chromosomes are not previously
sharing the same territory. Furthermore, chromosomes contain
repetitive sequences, and thus, potential interactions between
these pseudo-homologous regions must be avoided or eliminated
during the homology search process.

In this article, we review the strategies described in different
model organisms that promote homologous pairing throughout
mechanisms not related to DSBs formation. It is important to
note that the term “pairing” will be used to describe the
approximation, association and recognition of homologous
chromosomes before the onset of synapsis.

Saccharomyces cerevisiae

The initial stages of homologous pairing in budding yeast are
determined by telomere clustering and centromere coupling
(Figure 1). In vegetative (mitotic) cells, telomeres are located in a
few clusters at the periphery of the nucleus. After the induction of
meiosis, telomeres disperse over the nuclear periphery and cluster at
the spindle pole body (SPB) (Trelles-Sticken et al., 1999). Meiocytes
arrested in premeiotic S-phase have only a few peripheral telomere
clusters, suggesting that the resolution of peripheral vegetative
telomere clusters occurs at the end of or shortly after premeiotic
S-phase (Trelles-Sticken et al., 1999; Trelles-Sticken et al. 2000;
Trelles-Sticken et al. 2005). Then, during prophase I, telomeres are
distributed in a rim-like pattern (Trelles-Sticken et al., 1999; Trelles-
Sticken et al., 2000) and move rapidly (Trelles-Sticken et al., 2005) to
create miniclusters that eventually assemble into the large cluster
that characterises the bouquet stage (Trelles-Sticken et al., 2005).
Once the bouquet is formed, telomeres continue to move rapidly,
and the nucleus undergoes oscillating deformations (Trelles-Sticken
et al., 2005; Koszul et al., 2008).

Although the molecular mechanisms regulating telomere
attachment and clustering during meiosis are not well
understood, the presence of the meiotic telomere specific adaptor
protein Ndj1/Tam1 appears to be essential for this process (Chua
and Roeder, 1997; Conrad et al., 1997). Additionally, it has been
observed that telomeres experience an actin-dependent constraint
on their mobility during the bouquet stage of meiosis. Cohesin is
required to exit the actin polymerisation-dependent telomere
clustering and link the SPB to the telomere clustering (Trelles-
Sticken et al., 2005).

As soon as pre-meiotic chromosome replication is finished,
centromeres undergo homologous and non-homologous pairwise
associations, a phenomenon known as “centromere coupling”
(Tsubouchi and Roeder, 2005; Obeso and Dawson, 2010).
Remarkably, the formation of DSBs and the resulting signalling
pathways are not essential for this phenomenon as demonstrated by
observation that coupling occurs in mutants lacking the
Spo11 protein (Tsubouchi and Roeder, 2005; Obeso and Dawson,
2010). Conversely, the absence of the SC component Zip1 resulted
in undetectable centromere coupling, demonstrating the crucial

FIGURE 1
Timing and mechanisms of DSB-independent homologous pairing in Saccharomyces cerevisiae.
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function of this protein in the process (Obeso and Dawson, 2010).
Cohesin, on the other hand, is believed to be also required for
centromere coupling due to its influence on Zip1 localization rather
than its direct participation in the coupling process (Chuong and
Dawson, 2010).

Subsequently, as synapsis between homologous chromosomes
begins, centromeres seem to transition from centromere coupling to
centromere pairing, which involves the specific association of
homologous centromeres (Tsubouchi and Roeder, 2005; Storlazzi
et al., 2010; Lake et al., 2015).

The cause of centromere coupling is still not fully understood,
but some studies have proposed that chromosomes have a partner
selection preference dependent on their length (Lefrançois et al.,
2016) that may contribute to the effectiveness of homologous
pairing in the later stages of meiosis. Besides, it has been
suggested that centromere pairing can serve as an alternative
mechanism to link achiasmate homologous chromosomes
(Dawson et al., 1986). In fact, observations have been made of
achiasmatic chromosomes pairing specifically at their centromeres,
providing evidence for this alternative pairing mechanism (Kemp
et al., 2004; Gladstone et al., 2009; Newnham et al., 2010).

Schizosaccharomyces pombe

Homologous pairing in fission yeast is initiated during the
mitotic replication phase and achieved by a combination of
different mechanisms acting in an orchestrated way: centromeres
and telomeres clustering, nuclear movements, as well as the
accumulation of non-coding RNA and the presence of specific
cohesins (Chikashige et al., 1994; Ding et al., 1998; Ding et al.,
2012; Elkouby et al., 2016; Rubin et al., 2020) (Figure 2). It is worth
emphasizing that pairing and synapsis take place normally in rec12
mutants (spo11 homolog) (Ding et al., 2012). This observation
strongly suggests that both processes are independent of DSBs.

During the mitotic replication phase, the centromeres of S.
pombe are grouped in association with the SPB (Funabiki et al.,
1993; Chikashige et al., 1997). Once meiosis begins, immediately
after karyogamy, centromeres detach from SPB and telomeres slide
through the nuclear envelope and cluster forming a bouquet
structure (Chikashige et al., 1994; reviewed in Hiraoka and
Dernburg, 2009). It has been established that the loss of

telomere-SPB clustering by mutations of telomere binding
proteins, such as Taz1 or Rap1 (two proteins involved in
telomere maintenance) or by mutations of the Kms1 membrane-
bound SPB component, reduces recombination frequencies
(Shimanuki et al., 1997; Cooper et al., 1998; Nimmo et al., 1998;
Chikashige and Hiraoka, 2001; Kanoh and Ishikawa, 2001).

Then, the nucleus elongates and undergoes a movement called
“horsetail”. This movement consists of going forward and backward
of the cell (Chikashige et al., 1994; Ding et al., 1998) and will
eventually allow the achievement of pairing and recombination
(Ding et al., 2004). In dynein-disrupted meiotic cells, there is a
lack of nuclear movements that end up in paring anomalies (Ding
et al., 2004) and low recombination levels (Yamamoto et al., 1999).

In the end, horsetail movements result in stable pairing through
the participation of the sme2 locus. This gene encodes a non-coding
RNA required for homologous recognition (Watanabe and
Yamamoto, 1994), which is retained at the sme2 locus by a set of
specific proteins (sme2 RNA-associated protein; Smp) (Ding et al.,
2016a). It has been proposed that the accumulation of non-coding
RNA acts as a recognition marker of DNA sequence homology
(Ding et al., 2016b). Indeed, other loci containing genes that encode
for long non-coding RNAs have been described as essential for
homologous chromosome recognition in different situations. For
instance: the X-Inactivation centre encoding the long non-coding
RNAs Xist in X-chromosome inactivation in mammalian females
(Siniscalchi et al., 2022).

Horsetail movements are also associated with the establishment of
a SC-like structure between homologous chromosomes formed by the
linear elements (LinEs) proteins (Olson et al., 1978; Hirata and Tanaka,
1982; Bähler et al., 1993; Ding et al., 2012), which are evolutionarily
related to the axial/lateral elements of the SC. Ellermeier et al. (2005)
proposed that the linear element component Rec10 is recruited, which
in turn activates Rec12 to perform DNA breaks (Ellermeier et al.,
2005). Core LinE proteins (Rec10, Rec25, Rec27, and Mug20) are
present only during the horsetail stage except the LinE-binding protein
Hop1, which does not disappear even after meiosis I chromosome
segregation (Ding et al., 2012). Oncemovements are finished, telomere
clustering dissolves, and homologous chromosomes remain paired
(Chikashige et al., 1994; Yamamoto et al., 1999; 2001; Ding et al., 2004).

Finally, Ding et al. (2016a) demonstrated that cohesins also
contribute to homologous pairing since it was significantly impaired
in rec8 and pds5 mutants.

FIGURE 2
Timing and mechanisms of DSB-independent homologous pairing in Schizosaccharomyces pombe.
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Drosophila melanogaster

A distinctive feature of D. melanogaster is that homologous
chromosomes are paired in somatic cells. This feature called
“somatic pairing” (Metz, 1916) is frequently observed in Dipterans
(Metz, 1916; McKee, 2004; Joyce et al., 2016; King et al., 2019). It has
been proposed that somatic pairing initiates at discrete sites (“the
button model”) along the length of each chromosome (Funabiki et al.,
1993; Rowley et al., 2019; Viets et al., 2019). Interestingly, some
topologically associated domains (TADs) seem to conduct
homologous associations, acting as high affinity pairing sites (Viets
et al., 2019). In fact, “buttons” also drive pairing with their
homologous sequences even when placed at different positions in
the genome (Viets et al., 2019).

Concerning meiotic cells, homologous pairing was thought to be
an extension of a supposed pre-existing pairing in premeiotic germ
cells (Stevens, 1908; Metz, 1926; Brown and Stack, 1968). However, it
was observed that, during the first stages of oogenesis, homologous
chromosomes remain unpaired in primordial germ cells [except for
the specific repetitive sequences in the ribosomal DNA (rDNA)]
(Christophorou et al., 2013; Joyce et al., 2013). Pairing is progressively
re-established during the mitotic phase, before the onset of meiosis
and the formation of DSBs (Vazquez et al., 2002; McKee et al., 2012),
through the bundling of centromeres into clusters (Takeo et al., 2011;
Christophorou et al., 2013; Joyce et al., 2013) near the SPB (Zou et al.,
2008) and the aggregation of pairing sites (McKee and Karpen, 1990;
McKee et al., 1992) (Figure 3).

The mechanisms that lead to centromere clustering before the
onset of meiosis are poorly understood. In female D. melanogaster,
two key factors have been proposed: the presence of SC elements in
the centromeric region (Christophorou et al., 2013) and the rotation
of the nucleus (Christophorou et al., 2015). Concerning the role of
SC elements, two proteins C (3)G and Corona (CONA), which are
associated with the transverse filaments and central element of the
SC, respectively (Page and Hawley, 2004; Anderson et al., 2005; Page
et al., 2008) show a direct relationship between their levels of
accumulation in the centromeres of mitotic germ cells and
centromere clustering. Homologous pairing is reduced by 30% in
C (3)G and Cona female mutants that also display defective
clustering (Christophorou et al., 2013). On the other hand,
Christophorou et al., 2015 observed that in female D.
melanogaster, the rotational movement of the nucleus during
mitotic cycles contributes to homologous pairing. In their work,

they demonstrate that microtubules, centrosomes, the motor
proteins dyneins as well as the Sun and Kash domain
transmembrane proteins (which play critical roles in establishing
the connection between the nuclear envelope and the cytoskeleton)
are required for centromere motion, pairing, clustering and
homologous chromosome synapsis.

It is important to mention that the homologous recombination
program promoted by DSBs starts shortly after the initiation of SC
formation along the chromosome arms (Liu et al., 2002; Mehrotra and
McKim, 2006; Lake et al., 2011) and it is not needed for the centromeric
aggregation (Takeo et al., 2011). In Mei-W68 mutants (lacking the
enzyme responsible for catalysing DSB formation) and Mei-P22
mutants (lacking the enzyme that facilitate DSB formation by MEI-
W68), which are characterized by the absence of meiotic recombination,
a normal SC formation is observed (McKim et al., 1998). However, in
the absence of the SC proteins C (3)G and C (2)M, the number of DSBs
in oocytes is significantly reduced (Mehrotra and McKim, 2006),
suggesting that SC proteins are required for DSB formation.

In male D. melanogaster, there is no evidence of a re-
establishment of homologous pairing at the transition from mitosis
to meiosis. Spermatogenesis completely dispenses with synapsis and
recombination; cohesins and lateral elements of the SC are not present
(Meyer, 1964; Meyer, 1969; Rasmussen, 1973), and there is a complete
lack of crossing over (CO) (Morgan, 1914). Connections between
homologous chromosomes, including sex chromosomes, are
performed by a surrogate mechanism based on a protein complex
consisting of at least two proteins: Stromalin in Meiosis (Snm) and
Mod (Mdg4) in Meiosis (MNM) (Thomas et al., 2005; reviewed by
McKee et al., 2012). Moreover, sex chromosome pairing is governed
by the presence of nucleolar genes (reviewed inMcKee, 2009; Tsai and
McKee, 2011; McKee et al., 2012), so it has been suggested that rDNA
would have a similar function to the pairing centres (PCs) described
below in C. elegans (Tsai and Mckee, 2011). In support of this idea, it
has been observed that an insertion or deletion of rDNA affects sex
chromosome pairing and, not only that but, only a few copies of
intergenic spacer regions of rDNA are enough to promote pairing
(McKee and Karpen, 1990; McKee et al., 1992; McKee, 1996).

Caenorhabditis elegans

The pairing process of C. elegans begins at the onset of meiosis
by a process that is independent of both DSBs and recombination

FIGURE 3
Timing and mechanisms of meiotic homologous pairing in Drosophila melanogaster.
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(Dernburg et al., 1998; McKim et al., 1998) (Figure 4). During the
leptotene/zygotene stage, chromatin assumes a half-moon shape
(Hirsh et al., 1976) in which the nucleolus locates at the edges
(Mlynarczyk-Evans and Villeneuve, 2017). Each chromosome of C.
elegans contains a single subtelomeric region characterised by
repeated DNA sequences widely referred to as Pairing Centres
(PC). PCs promote and stabilise pairing and synapsis and are
indispensable for accurate homologous segregation (Albertson
et al., 1997; MacQueen et al., 2005). Some pieces of evidence
indicate that PCs themselves are enough for chromosomes to
recognise each other. For instance, pairing and synapsis take
place transiently or inefficiently between chromosomes lacking
PCs (MacQueen et al., 2005). Moreover, in reciprocal
translocation chromosomes that are partly homologous and
partly heterologous, pairing always begins in the PC region
which is shared by both chromosomes (MacQueen et al., 2005).

Various studies have detailed how PCs promote pairing. First,
the alignment of homologous chromosomes is stabilised in a
synapse-independent manner (MacQueen et al., 2002; 2005).
Indeed, in the absence of synapsis (syp-1 or syp-2 mutants)
transient pairing occurs during the leptotene and zygotene stages
(MacQueen et al., 2002; Colaiácovo et al., 2003). We know that a set
of zinc-finger proteins encoded in a single gene cluster - HIM-8,
ZIM-1, ZIM-2 and ZIM-3—recognise and attach to a specific 12 bp
repeat region present in PCs (Phillips et al., 2009). After binding, the
resulting complexes interact with SUN-1 to form a bridge that
crosses the nuclear envelope in a similar way to how telomeres form
a bouquet structure. This mechanism is considered a variant of the
bouquet (Penkner et al., 2009; Sato et al., 2009) although, in this case,
the PCs are never completely clustered (Wynne et al., 2012).
Afterward, chromosomes move through the nuclear envelope to
ease homologous recognition by causing random interactions of PCs
until they stabilise with the corresponding homologous PC and the
formation of the SC (Baudrimont et al., 2010; Mlynarczyk-Evans
and Villeneuve, 2017). SC central element polymerisation typically
begins in proximity to PCs, although SC formation can still occur
even without the participation of PCs (MacQueen et al., 2005;
Hayashi et al., 2010). Importantly, it has been proposed that
homologous synapsis is not reliant on recombination, as it occurs
normally even in a C. elegans spo-11 null mutant (Dernburg et al.,
1998). Some researchers have proposed that chromosomal dynamics

can prevent weak associations between non-homologous
chromosomes. This mechanism is thought to be particularly
important in cases where there is no stabilisation by PCs
(Baudrimont et al., 2010; Wynne et al., 2012). Finally, various
proteins have been described as being involved in meiotic
prophase chromosome movements, including the meiotic family
of serine/threonine protein kinases Polo-like kinases PLK-1 and
PLK-2 (Lake et al., 2011), the motor protein dynein, the
transmembrane SUN/KASH proteins and the orthologue of
mammalian vinculin, DEB-1 (Rohožková et al., 2019).
Interestingly, missense mutations in sun-1 cause pairing defects
and non-homologous synapsis (Penkner et al., 2007; Labrador et al.,
2013). Moreover, homolog pairing is markedly delayed by dynein
knockdown (Sato et al., 2009).

Mus musculus

Some studies have shown that the association of homologous
chromosomes in mouse germ cells takes place before the onset of
meiosis (Boateng et al., 2013; Solé et al., 2022) or directly at the early
leptotene stage (Ishiguro et al., 2014; Scherthan et al., 2014), in both
cases before the formation of DSBs. Solé et al. (2022) quantified this
process and demonstrated that up to 73.83% of homologous
chromosomes are already in contact at premeiotic stages,
suggesting the ability of homologous chromosomes to find each
other before meiosis.

Boateng et al. (2013) showed that early pairing of homologous
chromosomes in mice depends on the presence of SPO11 but not on
its catalytic activity. The independence of pairing from
SPO11 activity was confirmed later by Ishiguro et al. (2014).
They observed pairing of homologous chromosomes in
spermatocytes from spo11 knockout mice, although less
frequently than in wild-type spermatocytes, particularly in the
early zygotene stage. Ishiguro and others also postulated that
cohesins would guide homologous pairing. This idea was based
on two observations. First, during the first meiotic prophase, the
distribution pattern of cohesins RAD21L and REC8 appeared to be
unique along each chromosome but identical in each homolog
(Ishiguro et al., 2011). Second, homologous chromosome pairing
in mice rad21l−/− mutants was impaired, suggesting a relevant role

FIGURE 4
Timing and mechanisms of DSB-independent homologous pairing in Caenorhabditis elegans.
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for this cohesin in the DSB-independent early pairing. Conversely,
homolog pairing was observed in a significant population of rec8−/−
mice spermatocytes (Ishiguro et al., 2014). Supporting the
participation of cohesins, Ding et al. (2016a), Ding et al. (2016b)
also observed an alteration of the pairing pattern in S. pombe in the
absence of Rec8 and Pds5.

The independent pairing of DSBs in mice also appears to be
regulated by the expression of certain prophase I genes during
spermatogonia proliferation, such as some components of SC and
REC8 proteins (Wang et al., 2009; Elkouby et al., 2016) (Figure 5).
Rubin et al. (2020) proposed that the expression of SC proteins prior
to the onset of meiosis may resemble the expression of transverse
filaments and central elements [C (3)G and Corona (CONA),
respectively] in D. melanogaster. Indeed, Bisig et al. (2012)
described an association of telomeres (although not specifically
homologous telomeres) and, consequently, of centromeres in type
B spermatogonia and pre-leptotene mice spermatocytes.
Interestingly, this association was altered in the absence of
SYCP3 (Bisig et al., 2012).

Early pairing of homologous chromosomes later became
reinforced by the bouquet structure formation and chromosome
dynamics. This structure facilitates the interaction of different
chromosomal interstitial points. In terms of dynamics, a
combination of two movements take place during prophase:
nuclear rotation and an autonomous movement of the
chromosomes (Conrad et al., 2008; Shibuya et al., 2014; Lee
et al., 2015; Spindler et al., 2019). When the bouquet structure
and chromosome dynamics are altered, a reduction in homologous
pairing and synapsis has been observed (Shibuya et al., 2014).
Finally, pairing will be completely stabilised through the repair
mechanisms of DSBs (recombination) and the formation of the
SC (Baudat et al., 2000).

Final remarks

Table 1 summarises the main characteristics of early
homologous pairing in the five model organisms reviewed in this
work. The clustering of telomeres (or distal regions in the case of C.
elegans) and/or centromeres appear to be a common mechanism in
the early steps of the process. This chromosome disposition would

place homologous chromosomes at the same latitude of the nucleus,
orienting their chromosome arms and, therefore, helping the
alignment of homologous regions for a more efficient homology
search. The fact that the clustering occurs at a specific region of the
nuclear envelope and before the initiation of chromosomal
movements, would prevent the formation of “interlocks” between
the chromatin of different chromosomes (images of these knots can
be seen inWang et al., 2009). It should be noted that the clustering of
telomeres in the bouquet structure usually occurs near the
microtubule organising centre (MTOC; known as the SPB in
yeast and fungi, and as the centrosome in C. elegans and other
metazoans). It suggests that the MTOC could have a role in the
bouquet structure formation and in causing oscillatory movements
(Sawin, 2005; Sato et al., 2009) that ultimately help to promote
homologous recognition. Dynamics is another common trait that
plays an important role in early homologous pairing. Movements
such as nuclear rotation, horsetail movement or the displacement of
telomeres through the nuclear envelope have been suggested to have
two objectives. It would first help to find those specific elements that
facilitate pairing (SC structure, other proteins, RNA and/or DNA)
by establishing strong interactions in these regions followed by
propagation of pairing along the chromosome, and second,
movements would eliminate weak interactions between non-
homologous chromosomes. In fact, if there are alterations of
proteins involved in chromosomal movement, the frequency of
synapsis between heterologous chromosomes increases (Penkner
et al., 2009).

Based on the information presented in this review, it becomes
evident that the processes of homologous chromosome pairing
encompass additional mechanisms before the repair of double-
strand breaks (DSBs). Independent DSB repair mechanisms
would drive homologous chromosomes to approach, facilitating
the search for homology after DSBs formation. In this way, early
pairing would prevent the search for homologous sequences in non-
homologous chromosomes and, consequently, the formation of
unwanted interactions. At the same time, these mechanisms
would facilitate the repair of DSBs using the intact homologous
duplex as a template.

Overall, it is crucial to shift our understanding of the
chromosomal pairing process from being solely driven by
recombination to a process promoted by multiple factors that

FIGURE 5
Timing and mechanisms of DSB-independent homologous pairing in Mus musculus.
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TABLE 1 Elements involved in early meiotic pairing in different species (Chr.) chromosome, (SC) synaptonemal complex, (PCs) pairing centers. *In Saccharomyces cerevisiae, there is a centromere coupling mechanism that
involves the proximity of homologous and non-homologous centromeres.

When does
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pairing begin?

Does homologous
pairing begin
before DSBs
formation?
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pairing occur in the
absence of DSBs
formation or
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Do these elements promote homologous pairing?

Centromere
clustering

Telomere
clustering

Chr.
dynamics

SC DNA
sequences

RNA
sequences

Cohesin
meiotic

components

Saccharomyces
cerevisiae

Prophase onset No* Yes Yes Yes Yes Yes No data No data Yes

Schizosaccharomyces
pombe

Prophase onset Yes Yes Yes Yes Yes No
data
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Yes

Drosophila
melanogaster

Mitotic phase Yes Yes Yes No Yes Yes Yes (rDNA,
pairing sites)

No data No data

Caenorhabditis
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overlap in time. Amore comprehensive understanding of the factors
involved in homologous pairing and how they interact with one
another is essential to understand the mechanisms that govern
chromosome stability. Future research should aim to identify and
characterise these factors.
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The LINC complex, consisting of interacting SUN and KASH proteins, mechanically
couples nuclear contents to the cytoskeleton. In meiosis, the LINC complex
transmits microtubule-generated forces to chromosome ends, driving the
rapid chromosome movements that are necessary for synapsis and crossing
over. In somatic cells, it defines nuclear shape and positioning, and has a
number of specialised roles, including hearing. Here, we report the X-ray
crystal structure of a coiled-coiled domain of SUN1’s luminal region, providing
an architectural foundation for how SUN1 traverses the nuclear lumen, from the
inner nuclear membrane to its interaction with KASH proteins at the outer nuclear
membrane. In combination with light and X-ray scattering, molecular dynamics
and structure-directed modelling, we present a model of SUN1’s entire luminal
region. This model highlights inherent flexibility between structured domains, and
raises the possibility that domain-swap interactions may establish a LINC complex
network for the coordinated transmission of cytoskeletal forces.

KEYWORDS

LINC complex, nuclear envelope, SUN1, KASH5, X-ray crystallography, molecular
dynamics, biophysics

Introduction

The Linker of Nucleoskeleton and Cytoskeleton (LINC) complex traverses both inner
and outer nuclear membranes to provide physical connections between the cytoskeleton and
nuclear contents (Starr and Fridolfsson, 2010) (Figure 1A). The central role of the LINC
complex in force transduction is exemplified by its essential function in meiosis. During the
first meiotic division, the telomeric ends of chromosomes become tethered to the inner
nuclear membrane by the meiotic telomere complex (Shibuya et al., 2015; Dunce et al.,
2018b). Here, they bind to the meiotic LINC complex, which transmits microtubule-
generated forces to chromosome ends by acting as a transmembrane dynein activating
adapter (Horn et al., 2013b; Spindler et al., 2019; Agrawal et al., 2022; Garner et al., 2022).
This results in rapid chromosome movements that are thought to facilitate recombination
searches and the establishment of homologous chromosome pairs that are necessary for
reductive division and crossing over (Shibuya et al., 2014; Lee et al., 2015). Hence, the meiotic
LINC complex is required for fertility (Horn et al., 2013b). In addition to meiosis, and other
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specialised roles such as in sound perception in the inner ear (Horn
et al., 2013a), the LINC complex has generalised functions in
determining nuclear structure, shape and position by
transmitting active and reactive tension forces to the nuclear
lamina and chromatin (Crisp et al., 2006; Luxton et al., 2010;
Alam et al., 2015). Hence, the LINC complex is important for
cellular life, and its mutations are implicated in laminopathies,
including Hutchison-Gilford progeria syndrome and Emery-
Dreifuss muscular dystrophy (Mejat and Misteli, 2010; Meinke
et al., 2011).

The LINC complex is formed of SUN (Sad1 and
UNC84 homology) and KASH (Klarsicht, ANC-1, and Syne
homology) proteins (Starr and Fridolfsson, 2010; Meinke and
Schirmer, 2015). The SUN protein has an N-terminal nuclear
region, crosses the inner nuclear membrane, and then traverses
the nuclear lumen (perinuclear space) to position its C-terminal
SUN domain immediately below the outer nuclear membrane
(Figures 1A, B). Here, it interacts with the eponymous KASH
domain, located at the C-terminus of the KASH protein, which
then crosses the outer nuclear envelope, and has a large cytoplasmic
domain that mediates interactions with the cytoskeleton (Sosa et al.,
2012; Wang et al., 2012; Zhou et al., 2012).

The LINC complex is formed by a family of SUN and KASH
proteins, which have both generalised and tissue-specific functions.
In mammals, there are five SUN proteins (SUN1-5), of which
SUN1 and SUN2 are generally expressed and exhibit partial
redundancy in nuclear anchorage (Lei et al., 2009; Zhang et al.,
2009). SUN1 is essential for meiosis as its disruption in mice leads
infertility owing to failure of chromosome synapsis (Ding et al.,
2007). Hence, whilst SUN2 is expressed in meiosis and contributes
to meiotic telomere attachment (Schmitt et al., 2007; Link et al.,
2014), it does not provide redundancy for the meiotic function of
SUN1. The remaining SUN proteins, SUN3-5, are specifically

expressed in the later stages of spermatogenesis, where they each
perform essential roles in sperm head formation (Pasch et al., 2015;
Gao et al., 2020; Zhang et al., 2021). There are six mammalian KASH
proteins, of which four are Nesprins (Nuclear Envelope Spectrin
Repeat proteins). Nesprin-1 and Nesprin-2 are generally expressed,
and perform overlapping roles in nuclear anchorage through
interactions between their cytoplasmic spectrin-repeat domains
and actin (Banerjee et al., 2014; Sakamoto et al., 2017; Zhou
et al., 2018). Nesprin-3 is widely expressed are maintains nuclear
integrity by interacting with intermediate filaments and
microtubules via plectin, BPAG1 and MACF (Wilhelmsen et al.,
2005; Ketema and Sonnenberg, 2011). Nesprin-4 is also widely
expressed, and functions in microtubule-dependent nuclear
positioning by binding to the motor protein kinesin-1 (Roux
et al., 2009). It also has an essential role in hearing through a
specific function in the outer hair cells of the inner ear (Horn et al.,
2013a). KASH5 is a meiosis-specific coiled-coil protein that
functions as a dynein activating adapter that transmits
microtubule forces to meiotic chromosome and is essential for
their synapsis and fertility (Horn et al., 2013b; Agrawal et al.,
2022; Garner et al., 2022). The final KASH protein, JAW1/
LRMP/IRAG2, interacts with microtubules, and is required to
maintain nuclear shape and Golgi structure (Kozono et al., 2018;
Okumura et al., 2023). Hence, the combination of five SUN proteins
(and their multiple isoforms) and six KASH proteins achieve the
widespread, varied and essential functions of the LINC complex in
mammals. Owing to the essential roles of SUN1 and KASH5 in
meiotic chromosome synapsis and fertility, this study focusses on
the meiotic SUN1-KASH5 LINC complex.

The mechanism of force transduction by the LINC complex is
inherently defined by its molecular architecture. Structural work has
mostly focussed on the SUN-KASH domain interaction that binds
together LINC components (Sosa et al., 2012; Wang et al., 2012;

FIGURE 1
The LINC complex. (A) The LINC complex consists of interacting SUN and KASH proteins that bind to nuclear and cytoskeletal components,
respectively. The luminal region of SUN proteins is thought to consist of a trimeric coiled-coil that bridges between the inner (INM) and outer (ONM)
nuclear membranes. SUN trimers terminate in globular domains that interact head-to-head in 6:6 complexes with KASH proteins immediately below the
ONM. Whilst we have depicted the LINC complex with a 6:6 stoichiometry, owing to its observation in crystallographic and biochemical studies
(Sosa et al., 2012;Wang et al., 2012; Zhou et al., 2012; Cruz et al., 2020; Gurusaran andDavies, 2021), other stoichiometries have been proposed to form in
proximity of the ONM in vivo (Jahed et al., 2021). Additional components, such as dynein and dynactin, are not depicted to enhance clarity. (B) Schematic
of the human SUN1 sequence in which its transmembrane (TM) and luminal regions are highlighted. Secondary structure prediction is shown with
propensity indicated by peak height (α-helix, red; β-sheet, blue; unstructured, grey) (Drozdetskiy et al., 2015). The principal constructs used in this study
are indicated as luminal coiled-coil domains α1 and α2, along with the C-terminal KASH-interacting SUN domain.
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Zhou et al., 2012; Cruz et al., 2020; Gurusaran and Davies, 2021).
The SUN domain is a globular structure, which upon interaction
with KASH domains, forms a trimer preceded by a short coiled-coil
(Sosa et al., 2012; Wang et al., 2012; Zhou et al., 2012). Nesprin-1/2/
3, Nesprin-4 and KASH5 interact with the SUN domain through a
common C-terminal motif and diverse N-terminal interfaces (Cruz
et al., 2020; Gurusaran and Davies, 2021). SUN1-KASH complexes
are 6:6 structures, formed of two SUN domain trimers associated
head-to-head through KASH-mediated interactions, whilst SUN2-
KASH complexes form 6:6 and higher order assemblies (Gurusaran
and Davies, 2021). Whilst other SUN-KASH complex
stoichiometries have been proposed to form in vivo, particularly
in proximity to the outer nuclear membrane (Jahed et al., 2021), the
6:6 complex is the only structure that has hitherto been observed in
crystal structures and in solution (Sosa et al., 2012;Wang et al., 2012;
Zhou et al., 2012; Cruz et al., 2020; Gurusaran and Davies, 2021). In
absence of KASH-binding, isolated SUN domains remain
monomeric, held in autoinhibited complexes by preceding α-
helices that otherwise form the SUN-KASH complex coiled-coils
(Nie et al., 2016; Jahed et al., 2018a; Jahed et al., 2018b; Xu et al.,
2018). There are no structures of cytoplasmic regions of KASH
proteins other than short stretches of Nesprin-1/2 (Lim et al., 2021),
although we know that KASH5 is a dimer (Agrawal et al., 2022;
Garner et al., 2022). There is also a structure of a short nuclear region
of SUN1 in a meiotic regulatory complex with SpeedyA-CDK2
(Chen et al., 2021).

The luminal region of SUN proteins upstream of the SUN
domain is thought to consist of a long trimeric coiled-coil that
passes between nuclear membranes (Jahed et al., 2021). This is based
on the short trimeric coiled-coils that emanate from each SUN
trimer of the SUN-KASH complex (Sosa et al., 2012; Wang et al.,
2012; Zhou et al., 2012), gel filtration and biophysical studies of
SUN2 (Jahed et al., 2018b), and the crystal structure of a luminal
CC1 trimeric coiled-coil of SUN2 (Nie et al., 2016). The alteration of
oligomer state along the LINC complex axis, between SUN trimer,
SUN-KASH 6:6 complex and KASH5 dimer, has been proposed to
establish a branched LINC complex network suitable for cooperative
force transduction (Figure 1A) (Gurusaran and Davies, 2021).
Further, the geometry of SUN coiled-coil trimers emanating from
SUN-KASH 6:6 complexes suggests that SUN molecules must re-
orient from being perpendicular to parallel to the nuclear membrane
as they pass through the nuclear lumen (Gurusaran and Davies,
2021). However, the absence of a structure of the full luminal region
of a SUN protein has precluded us from visualising how this may
occur at the molecular level.

Here, we report the crystal structure of a trimeric coiled-coil
domain within the luminal region of SUN1, which lies upstream of a
second coiled-coil trimer that corresponds to SUN2’s CC1. The two
coiled-coils combine in a mutually reinforcing trimer that holds
together three SUN domains for KASH-binding and induced head-
to-head association. We combine our crystal structure with previous
structures of SUN2 CC1 and the autoinhibited SUN domain to build
a molecular model of SUN1’s entire luminal trimer, which has a
length matching that of its solution structure, and which is sufficient
to traverse the nuclear lumen. Further, the presence of flexible
linkers between the constituent coiled-coils of SUN1 suggest that
domain-swap interactions may provide additional branching for
force transduction within an integrated LINC complex network.

Results

Crystal structure of a luminal coiled-coil
domain of SUN1

The structure of SUN1’s luminal region defines how forces are
transduced between the inner and outer nuclear membranes.
However, we have hitherto lacked any structural information

TABLE 1 Data collection, phasing and refinement statistics.

SUN1 α1

362–401

PDB accession 8AU0

Data collection

Space group P21

Cell dimensions

a, b, c (Å) 33.31, 35.99, 46.10

α, β, γ (°) 90, 104.543, 90

Resolution (Å) 30.31—2.07 (2.11—2.07)*

Rmeas 0.083 (0.572)

Rpim 0.026 (0.287)

I/σ(I) 8.6 (2.3)

CC1/2 0.997 (0.903)

Completeness (spherical) (%) 96.6 (96.4)

Redundancy 3.8 (3.9)

Refinement

Resolution (Å) 30.31—2.07

UCLA anisotropy (Å) 2.1, 2.1, 2.4

No. reflections 5183

Rwork/Rfree 0.2438/0.2551

Cruickshank DPI (Å) 0.25

No. atoms 1,008

Protein 953

Ligand/ion 0

Water 55

B-factors 20.98

Protein 20.81

Ligand/ion N/A

Water 23.84

R.m.s deviations

Bond lengths (Å) 0.006

Bond angles (°) 0.790

aValues in parentheses are for highest-resolution shell.
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regarding the luminal region of SUN1 preceding its KASH-
interacting SUN domain. On the basis of conservation and
secondary structure prediction (Figure 1B), we identified a
40 amino-acid coiled-coil domain towards the beginning of
human SUN1’s luminal region (amino-acids 362–401; herein
referred to as α1), which was stable in solution following
recombinant expression (Supplementary Figure S1). We obtained
crystals of SUN1 α1 that diffracted anisotropically to a maximum
resolution limit of 2.1 Å, and solved its X-ray crystal structure by
molecular replacement of ideal helical fragments using
ARCIMBOLDO_LITE in ‘coiled-coil’ mode (Caballero et al.,
2018) (Table 1 and Supplementary Figure S2). This revealed a
parallel trimeric coiled-coil of approximately 6 nm in length
(Figure 2A), in which the “a” and “d” heptad amino-acids are
conserved across vertebrates (Figure 2B). Hence, we provide the
molecular structure of a trimeric coiled-coiled domain within
SUN1’s luminal region.

At the centre of the SUN1 α1 coiled-coil structure is a 376-
CHHH-379 motif, in which the cysteine residues are at the “a”

position of the heptad repeat (Figure 2B) and are oriented away from
the coiled-coil axis (Figure 2C). We observed additional electron
density for one cysteine of the trimer, which points towards the
coiled-coil axis, likely representing an oxidised cysteine residue
(Figure 2C). On the basis of the additional density, we modelled
this as S-hydroperoxycysteine, as an alternative conformation of the
reduced cysteine residue, which refined with relative occupancies of
0.62 and 0.38, respectively (Figures 2D, E). The oxidised
C376 residue is packed within the core of the structure, so likely
provided additional stability to the coiled-coil, and may have
assisted the formation of a robust crystal system suitable for
X-ray diffraction. Further, it creates an asymmetry in the
structure, explaining the lack of crystallographic three-fold
symmetry, with the full trimer constituting the crystal’s
asymmetric unit.

The central 376-CHHH-379 motif (Figure 2E) is flanked by
canonical coiled-coil interfaces. The trimeric coiled-coil on the
N-terminal side is formed by heptad amino-acids V365,
V369 and L372 (Figure 2F), whilst the coiled-coil on the

FIGURE 2
Crystal structure of the α1 luminal coiled-coil domain of SUN1. (A) Crystal structure of the SUN1 α1 trimeric coiled-coil. The three SUN1 chains
(coloured blue to red in an N- to C-terminal direction) are arranged in a parallel configuration, in which a central CHHHmotif is continuous with flanking
N- and C-terminal coiled-coils. (B)Multiple sequence alignment of SUN1 α1, highlighting the central CHHHmotif and the amino-acids at ‘a’ and ‘d’ heptad
positions within the structure. Amino-acids are coloured by chemical properties and according to conservation (Waterhouse et al., 2009). (C) 2Fo-
Fc map (blue; contoured at 1.5σ) and Fo-Fc difference map (positive difference, green; negative difference, red; contoured at 3.5σ) of the SUN1
α1 structure refinedwith a reduced cysteine at residueC376 of chain B. (D) 2Fo-Fcmap (blue; contoured at 1.5σ) of the SUN1 α1 structure inwhich C376 of
chain B was modelled with S-hydroperoxycysteine (2CO) as an alternative conformation of the reduced cysteine residue, refined with relative
occupancies of 0.62 and 0.38, respectively. (E–G) Structural details of the (E) central region encompassing the 376-CHHH-379 motif (F) N-terminal
coiled-coil formed of heptad residues V365, V369 and L372, and (G)C-terminal coiled-coil formed of heptad residues L386, L390, L393, V397 andM400.
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C-terminal side is formed by heptad residues L386, L390, L393,
V397 and M400 (Figure 2G). Overall, the structure can be
considered as a single trimeric coiled-coil in which the heptad
patterns of N-terminal and C-terminal coiled-coil regions are
continuous through the intervening “CHHH”-motif region
(Figure 2B).

The SUN1 α1 structure is stable during
molecular dynamics simulations

We assessed whether the SUN1 α1 trimeric coiled-coil is stable, or
could form alternative conformations, through molecular dynamics
simulations. The structure was modified to remove the
S-hydroperoxycysteine conformation, leaving only reduced
C376 residues with full occupancy, and was subjected to molecular
dynamics simulations at 37°C. In three replicates of 1-µs simulations in
explicit solvent, the structure remained intact and retained its
hydrophobic core (Figure 3A). The overall r.m.s deviation was
constant throughout the runs, at values of typically between 1.5–3 Å
(Figures 3B, C and Supplementary Figure S3. Further, local r.m.s
fluctuations were below 1 Å for the coiled-coil α-helices of all chains
between amino-acids 365–397, including the central 376-CHHH-
379 motif (Figure 3D). The local r.m.s fluctuations had higher values
at the N- and C-termini, consistent with splaying apart of helices at the
end of the coiled-coil. Notably, these values were greater at N-termini
(up to 8 Å) than C-termini (up to 3 Å), consistent with the more

extensive coiled-coil on the C-terminal side of the “CHHH”-motif
providing greater stability (Figure 3D). Further, α-helical secondary
structure was retained throughout the simulations (Supplementary
Figure S3). These findings are consistent with the SUN1 α1 crystal
structure representing its principle trimeric conformation. Further, as the
model contained only reduced C376 amino-acids, these molecular
dynamics simulations are consistent with oxidation having occurred
as an artefact of crystallisation rather than being a necessary requirement
for complex formation.

The SUN1 α1 trimer is stabilised by zinc
coordination

We next utilised size-exclusion chromatography multi-angle
light scattering (SEC-MALS) to assess the oligomeric state of
SUN1 α1 in solution. SEC-MALS analysis of an MBP fusion
(used to provide greater molecular mass resolution) confirmed
that SUN1 α1 is predominantly trimeric (144 kDa), in keeping
with our crystallographic and molecular dynamics analyses
(Figure 4A). However, we also observed concentration-dependent
dissociation in solution, through a 100 kDa dimeric intermediate, to
a 50 kDa monomeric species (Figure 4A).

Wewonderedwhether the unusual properties of consecutive cysteine
and histidine residues within the central 376-CHHH-379 motif may
contribute to stability of the coiled-coil trimer through metal
coordination. Using a spectrophotometric 4-(2-pyridylazo) resorcinol

FIGURE 3
Molecular dynamics simulations of the SUN1 α1 structure over 1-μs trajectories at 37°C (n = 3). (A) Superimposed SUN1 α1 trimeric coiled-coil
structures at 100-ns intervals of a representative trajectory, coloured from blue (0 ns) to red (1 µs). (B)Overall r.m.s deviations and (C) 2D r.m.s deviations
(corresponding to panel A) across 1-μs trajectories (2D r.m.s deviations for the remaining replicates are shown in Supplementary Figure S4). (D) Individual
amino-acid r.m.s fluctuations following 1-μs trajectories, shown for all chains of the trimer (solid, dashed and dashed/dotted), and indicating the
position of the central CHHH motif.
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assay, we detected the presence of a divalent cation bound to SUN1 α1, at
a level consistent with one zinc ion per trimer (Figure 4B). Further, the
SUN1 α1 trimer was stabilised by addition of zinc prior to SEC-MALS,

and was largely disrupted to a monomer by prior incubation with
chelating agent EDTA (Figure 4C). We reasoned that zinc-binding
likely involves the conserved cysteine residue of the 376-CHHH-

FIGURE 4
The SUN1 α1 trimer is stabilised by zinc coordination. (A) SEC-MALS analysis in which differential refractive index (dRI; solid lines) is shownwith fitted
molecular weights (Mw; dashed lines) plotted across elution peaks. MBP-SUN1 α1 is a 144 kDa trimer that dissociates into 100 kDa dimers and 50 kDa
monomers (theoretical—148 kDa, 99 kDa and 49 kDa). Data were collected at protein concentrations of 20 mg/mL (red) and 1 mg/mL (grey). (B)
Spectrophotometric determination of zinc content for wild-type (black; 1.28 Zn2+ per trimer) and C376A (red; 0.05 Zn2+ per trimer) SUN1 α1, using
metallochromic indicator PAR, with zinc standards shown in a gradient from light to dark grey (0–100 µM). (C andD) SEC-MALS analysis of (C)MBP-SUN1
α1 (20 mg/mL) and (D)MBP-SUN1 α1 C376A (5 mg/mL) after purification (black), and after over-night incubation with 2 mM zinc acetate (red) or 10 mM
EDTA (yellow). (C) MBP-SUN1 α1 is stabilised as a 145 kDa trimer by zinc incubation and is disrupted to a 50 kDa monomer by EDTA. (D) MBP-SUN1
α1 C376A is restricted to a 47 kDamonomer in all conditions. (E) Structure of designed parallel trimeric coiled-coil Coil Ser L9C bound to arsenic, showing
its trigonal coordination by cysteine residues C9 (PDB accession 2JGO; Touw et al., 2007). (F and G) SUN1 α1 structure at the central 376-CHHH-
379 motif for the (F) crystal structure in which one cysteine residue is partially oxidised to S-hydroperoxycysteine and (G) modelled structure in which
three reduced cysteine residues and a water molecule mediate tetrahedral coordination of a zinc ion.
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379 motif (Figure 2B). Accordingly, introduction of point mutation
C376A eliminated zinc-binding and blocked trimerization, restricting
SUN1 α1 to a monomer (Figures 4B, D). Hence, our data suggest that
SUN1 α1 trimer is stabilised in solution by zinc-binding to cysteine
residue C376.

How can we rationalise stabilisation of the SUN1 α1 trimer by zinc-
binding?We observed several cases in the literature in whichmetal ions
are located along the three-fold axis of trimeric coiled-coils (Touw et al.,
2007; Zastrow and Pecoraro, 2014; Cristie-David and Marsh, 2019). In
one case, arsenic was trigonally coordinated by symmetric cysteine
residues (PDB accession 2JGO; Figure 4E), and it was speculated that
zinc could be tetrahedrally coordinated through the same arrangement
of cysteine residues with water acting as a fourth exogenous ligand
(Touw et al., 2007). We reasoned that this coordination pattern may
explain zinc-binding by SUN1 α1. Hence, we built a zinc-bound model
by changing the rotamer state of cysteine residues to that of metal-

bound structures, and positioning zinc and water along the three-fold
axis (Figures 4F, G). In the resultant energy-minimisedmodel, the bond
lengths and angles between zinc and its cysteine and water ligands
closely match those of tetrahedral geometry (Figure 4G). Further,
H379 residues of the 376-CHHH-379 motif have a suitable location
to complete tetrahedral binding of the water molecule (Figure 4G).
Thus, we propose that tetrahedral coordination of zinc by cysteine and
water ligands provides the structural basis for stabilisation of the SUN1
α1 trimer by zinc-binding.

SUN1’s α1 and α2 coiled-coil domains
mutually reinforce its trimerization

What is the role of SUN1’s α1 trimeric coiled-coil within its
wider luminal structure? We utilised SEC-MALS and size-exclusion

FIGURE 5
The SUNdomain is trimerized by α1 and α2 luminal coiled-coils. (A and B) SEC-SAXS analysis of SUN1 α1 (red), α2 (blue), α1-α2 (green) and α1-α2-SUN
(yellow). (A) SAXS scattering data in which the SUN1 α1 scattering cure is overlaid with the theoretical scattering curve of the SUN1 α1 trimeric coiled-coil
crystal structure, showing a χ2 value of 1.14. The residuals for the fit are shown (inset). (B) SAXS P(r) interatomic distance distributions in which maximum
dimensions (Dmax) are indicated, along with cross-sectional radii (Rc) determined from Guinier analysis (Supplementary Figure S4). (C) Thermal
denaturation recording the circular dichroism (CD) helical signature at 222 nm between 5°C and 95°C, as % unfolded. Melting temperatures were
estimated, as indicated. CD spectra are shown in Supplementary Figure S5. (D and E) SEC-MALS analysis. (D) SUN1 α2 is a 53 kDa trimer that dissociates
into 37 kDa dimers and 21 kDa monomers (theoretical—57 kDa, 38 kDa and 19 kDa). (E) SUN1 α1-α2-SUN and α1-α2 are 141 kDa and 70 kDa trimers
(theoretical—142 kDa and 75 kDa), whereas the isolated SUN domain is a 21 kDa monomer (theoretical—22 kDa). The additional peak marked with an
asterisk in the α1-α2-SUN trace corresponds to a wide range of higher molecular weight species of between 0.2–2.0 MDa, so likely represents a non-
specific aggregate.
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chromatography small-angle X-ray scattering (SEC-SAXS) to
determine the oligomeric states and structures formed by
SUN1 luminal constructs in solution, alongside circular
dichroism (CD) to assess their helicity and thermal stability.

The SUN1 α1 trimer showed SAXS data and corresponding real-
space P(r) pair-distance distribution function indicating an
elongated molecule of approximately 6 nm in length (Figures 5A,
B and Supplementary Figure S4A). This matches the 6 nm length of
the SUN1 α1 crystal structure. Further, Guinier analysis indicated a
cross-sectional radius of 10 Å (Supplementary Figure S4B). We
previously established that dimeric coiled-coils have Guinier
cross-sectional radii of 8–9 Å, whereas four-helical coiled-coils
have cross-sectional radii of 10–14 Å (Dunce et al., 2018a; Dunne
and Davies, 2019; Sanchez-Saez et al., 2020; Dunce et al., 2021).
Hence, a 10 Å cross-sectional radius is consistent with SUN1
α1 being a trimeric coiled-coil. Finally, the SAXS scattering curve
was closely fitted by the SUN1 α1 trimeric coiled-coil structure (χ2 =
1.14; Figure 5A). Further, in agreement with our SEC-MALS data
indicating concentration-dependent dissociation (Figure 4A), CD
showed that SUN1 α1 underwent gradual non-cooperative
unfolding, retaining only 55% of its α-helical structure at 37°C,
with an arbitrary melting temperature of 44°C (Figure 5C and
Supplementary Figure S5). Hence, our combined SEC-MALS,
SEC-SAXS and CD data indicate that whilst the SUN1 α1 crystal
structure represents the bona fide trimeric solution state, it has the
propensity to dissociate and unfold at low protein concentrations
and high temperatures, consistent with a low micromolar affinity.

We wondered whether the α1 coiled-coil domain may be
afforded additional stability by downstream coiled-coils within
SUN1’s luminal region. On the basis of conservation and
secondary structure prediction (Figure 2B), we identified a
second luminal coiled-coil domain (amino-acids 421–584; herein
referred to as α2), which was stable in solution following
recombinant expression (Supplementary Figure S1). This SUN1
α2 coiled-coil domain includes a region of sequence similarity
(less than 20% sequence identity) with SUN2’s CC1 trimeric
coiled-coil (Nie et al., 2016), and is separated from the α1 coiled-
coil domain by a predicted unstructured sequence of 22 amino-acids
(Figure 2B). SEC-MALS analysis of SUN1 α2 revealed a trimeric
structure (53 kDa) that underwent dissociation, through a 37 kDa
dimeric intermediate, to a 21 kDamonomer (Figure 5D). SEC-SAXS
analysis of the trimer indicated maximum dimensions and cross-
sectional radius compatible with it forming a trimeric coiled-coil
(Figures 5A,B and Supplementary Figures S4C, D). Further, CD
showed a gradual non-cooperative pattern of unfolding, retaining
approximately 70% of its α-helical structure at 37°C, with an
arbitrary melting temperature of 49°C (Figure 5C and
Supplementary Figure S5). Thus, α1 and α2 luminal coiled-coil
domains similarly form trimers that dissociate, so are predicted to be
dynamic in solution and potentially within their cellular context.

We next tested how the α1 and α2 coiled-coils behave together
when joined by the intervening 22 amino-acid sequence (amino-
acids 362–584; herein referred to as α1-α2). SUN1 α1-α2 was soluble
following recombinant expression (Supplementary Figure S1), and
SEC-MALS analysis showed that it forms a stable trimer, with no
dissociation to lower oligomeric species (Figure 5E). Further, CD
showed cooperative unfolding, with retention of over 80% of its α-
helical structure at 37°C, and a melting temperature of 56°C

(Figure 5C and Supplementary Figure S5). It is unlikely that the
intervening 22 amino-acid linker mediates formation of a single
continuous α1-α2 trimeric coiled-coil as its sequence, which
includes four glycine and three proline residues, is strongly
predicted to be unstructured. Instead, we propose that α1 and
α2 coiled-coil domains are flexibly linked, mutually reinforcing
their trimeric structure, and thereby stabilising trimerization of
the whole luminal coiled-coil region. This is supported by its
SEC-SAXS dimensions, which are consistent with a linear
arrangement of α1 and α2 trimeric coiled-coils (Figures 5A,B and
Supplementary Figure S4E, F). Finally, we analysed SUN1’s entire
structured luminal domain (amino-acids 362–785; herein referred to
as α1-α2-SUN), confirming that the stable and non-dissociating
trimeric structure was retained upon inclusion of its C-terminal
SUN domain (Figure 5E). Hence, SUN1’s α1 and α2 domains have
mutually reinforcing trimeric coiled-coil structures that combine to
hold together three SUN domains at the end of a luminal trimer.

Molecular model for the SUN1 luminal
structure

To integrate our findings with those of previous studies, we built
a structure-directed model of SUN1’s luminal region using a local
installation of Alphafold2multimer (Evans et al., 2021; Jumper et al.,
2021) in which we could direct its use of structural templates. We
specified the use of our SUN1 α1 structure (PDB accession 8AU0),
the SUN2 CC1 structure (PDB accession 5ED9; Nie et al., 2016) and
the autoinhibited SUN domain structure (PDB accession 5YWZ; Xu
et al., 2018) as templates for modelling SUN1’s α1, α2 and SUN
domains. The resultant trimeric models of SUN1’s luminal region
(amino-acids 326–785) were consistent, with high pLDDT and low
PAE scores in structured regions. The pLDDT score is the per-
residue confidence in the local surrounding structure within each
chain, whereas PAE is predicted aligned error between distant
regions within and between chains of multimers (Evans et al.,
2021; Jumper et al., 2021). We selected the top-ranked model,
and extended its unstructured linkers to present this in a
‘relaxed’ linear state (Figure 6 and Supplementary Figure S6). In
the model, the first 33 amino-acids (after the transmembrane
region) are unstructured, consistent with their poor conservation,
lack of secondary structure prediction and presence of four proline
residues (Figure 1B). The subsequent α1 trimer structure is linked to
a modelled α2 trimer by a 22 amino-acid unstructured/flexible
linker, in keeping with our previous analysis. The α2 trimeric
coiled-coil is continuous with helices at the beginning of the
SUN domains, which are maintained in autoinhibited
conformations, in three-fold symmetry, oriented away from the
coiled-coil axis (Figure 6). Whilst this model must be considered as a
prediction, it provides a molecularly plausible explanation for the
architecture of SUN1 within the nuclear lumen. Further, it allows a
means for estimating the maximum length that could be bridged by
SUN1 molecules. The α1 and α2 structures are approximately 6 nm
and 20 nm long, matching the lengths determined by SEC-SAXS
analysis (Figures 5A, B and Supplementary Figures S4A–D). The
two flexible linkers can vary in length between approximately
8–12 nm and 6–8 nm, depending on whether they are relaxed or
at full stretch. Hence, we predict relaxed lengths of up to 32 nm for
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both α1-α2 and α1-α2-SUN constructs (which lack the first flexible
linker), matching the 26 nm and 30 nm lengths determined by SEC-
SAXS analysis (Figures 5A, B and Supplementary Figures S4E–H).
Hence, our molecular model for the SUN1 luminal trimer agrees
with its experimentally determined dimensions. In total, the full
SUN1 luminal trimer is predicted to be between 40–46 nm
(Figure 6), depending on tension forces, consistent with the
nuclear luminal width (Watson, 1955).

Molecular model for the luminal meiotic
LINC complex

Finally, we used the same technique to build a model of the
entire luminal region of the SUN1-KASH5 meiotic LINC complex.
We first modelled a SUN1 α2-SUN complex (amino-acids 421–785),
with SUN domains in trimeric conformation, using as structural
templates the SUN2 CC1 crystal structure (PDB accession 5ED9;
Nie et al., 2016) and the SUN1-KASH5 structure (PDB accession
6R2I; Gurusaran and Davies, 2021), but not autoinhibited SUN
domains. As previously, models were consistent, with high pLDDT
and low PAE scores within structured regions (Supplementary
Figure S7). We combined this model with the SUN1-KASH5 6:
6 core structure (PDB accession 6R2I; Gurusaran and Davies, 2021),
and the N-terminal region of the previous SUN1 luminal trimer
model, to model the entire SUN1-KASH5 luminal 6:6 complex
(Figure 6 and Supplementary Figure S8). In this model, SUN
domains adopt their trimeric KASH-bound conformation, in a

“flower-like” arrangement of SUN domains around the coiled-
coil stem. Interestingly, α2 and SUN domains are joined by a
short flexible linker, which corresponds to a helix-loop-helix turn
of the autoinhibited conformation. Hence, the SUN1-KASH5
interface is flexibly oriented relative to the coiled-coil, providing
an explanation for how SUN1 transitions from being perpendicular
to parallel to the nuclear membrane for KASH-binding. Further
even with a 90° bend between α2 and SUN domains, this structure is
approximately the same length as the SUN1 luminal trimer, so is also
predicted to stretch between 40–46 nm, in keeping with the width of
the nuclear lumen (Watson, 1955). Thus, we conclude by presenting
a model of the luminal region of the meiotic LINC complex
(Figure 6), demonstrating how all existing structural information
can be integrated into a molecularly plausible structure that fulfils
the necessary geometrical requirements for force transduction
between inner and outer nuclear membranes within a 6:6 head-
to-head LINC complex assembly.

Discussion

The LINC complex operates over a cellular scale, bridging
between the cytoskeleton and nuclear contents across lengths of
potentially hundreds of nanometres, but is formed principally of
coiled-coils that are less than 2 nm in width. Hence, the LINC
complex falls within a “grey area” of biology, in which the scale of its
full assembly is too large for high resolutionmethods, but its smallest
dimensions require higher resolutions than can be achieved by

FIGURE 6
Structure-directedmodels of luminal SUN1 and SUN1-KASH5 complexes. Models of the SUN1 luminal trimer (left) and the SUN1-KASH5 luminal 6:6
complex (right), based on structures and Alphafold2multimermodels generated using specified templates. Modelling details are shown in Supplementary
Figures S6-S8. The structured regions of both conformations have lengths of 6 nm and 20 nm, whereas intervening linkers may adopt relaxed linear (as
shown) or stretched conformations, varying between lengths of 8-12 nm and 6-8 nm. Hence, the overall length of the SUN1 luminal trimer and
SUN1-KASH5 6:6 complex is predicted to vary between 40-46 nm depending on themagnitude and direction of applied tension forces. For comparison,
Alphafold2multimer predictions of the SUN1 trimer without the use of templates, the full 6:6 complex using templates, and the core 6:6 complex without
templates, are shown in Supplementary Figures S9A-I, respectively.
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cellular microscopy (Joseph et al., 2017; Goodsell et al., 2020). Thus,
to understand its structure requires an integrative approach in which
we combine high-resolution structures of domains in silico to obtain
models that explain its molecular structure at a biological scale. We
have integrated our crystal structure of SUN1’s luminal α1 coiled-
coil domain with previous structures and biophysical data to build
molecular models of luminal SUN1 and the LINC complex at a scale
relevant to the nuclear luminal width (Watson, 1955). Thus, we have
provided the first full molecular model of the luminal architecture of
the LINC complex.

The SUN1 α1 trimer was stabilised by zinc-binding, which we
modelled as tetrahedral coordination involving C376 residues, in
keeping with previous metal-bound trimeric coiled-coil structures
(Touw et al., 2007; Zastrow and Pecoraro, 2014; Cristie-David and
Marsh, 2019). However, the zinc-bound trimer demonstrated a
propensity for dissociation in solution, and incubation with
exogenous zinc was required to enhance its stability. Further, the
crystal structure lacked bound zinc, but included a partially oxidised
cysteine residue, which seemingly provided an alternative means for
structural stabilisation. Thus, the SUN1 α1 trimer appears to be
dynamic, raising the possibility that its assembly could be regulated
by the availability of zinc, or another divalent cation, within the
nuclear lumen. Further, the nature of the central 376-CHHH-
379 motif suggests that cysteine oxidation, disulphide formation
and protonation could also affect assembly. Indeed, zinc-binding
and cysteine oxidation are mutually exclusive, so oxidation could
provide a means for irreversibly blocking zinc-induced
trimerization. Similarly, disulphide bond formation between
C376 residues could stabilise a dimeric conformation. Such
regulatory mechanisms have previously been proposed based on
observations that SUN2’s luminal trimer is disrupted by low pH and
calcium, (Jahed et al., 2018b), the SUN-KASH interaction is
enhanced by calcium (Majumder et al., 2022), and that
SUN1 trimers may be linked together by inter-molecular
disulphide bond formation (Lu et al., 2008). Nevertheless, the
biological roles of zinc-binding and other hypothesised
mechanisms remain unknown, and must be determined
experimentally in vivo.

An important prediction from our structure-directed models is
that SUN1’s luminal region consists of three structural units
separated by flexible linkers. The α1, α2 and SUN domains are
formed by approximately 87% of the 460 amino-acid luminal region,
with remaining amino-acids forming flexible linkers. The first linker
of 33 amino-acids bridges from the transmembrane region to the
α1 coiled-coil, the second linker of 22 amino-acids connects this to
the α2 coiled-coil, and then the final linker of 5 amino-acids joins
this to the initial coiled-coil of the SUN domain (this linker is absent
in the autoinhibited SUN domain conformation). Their flexible
nature is indicated by amino-acid composition (including a large
proportion of glycine and proline residues), lack of predicted
secondary structure and structured-directed Alphafold2 models.
The presence of these flexible linkers suggests that SUN1 does
not form a continuous rod-like coiled-coil between nuclear
membranes. Instead, it likely forms a string of linked rigid
structural units with conformational freedom to move relative to
one another within the lumen (Figure 7), in agreement with
previously proposed models (Jahed et al., 2021). Our model is
based on the SUN-KASH complex having a 6:6 stoichiometry as

this is the only oligomeric state that has been observed in crystal
structures and in solution (Sosa et al., 2012; Wang et al., 2012; Zhou
et al., 2012; Cruz et al., 2020; Gurusaran and Davies, 2021).
Nevertheless, our model of the SUN1 luminal region is
compatible with other SUN-KASH stoichiometries, such as 3:3 or
larger oligomers, which could potentially form in proximity of the
outer nuclear membrane in vivo (Jahed et al., 2021).

What is the benefit of SUN1’s luminal region consisting of
linked coiled-coil domains rather than forming a single continuous
coiled-coil? Firstly, the presence of intervening flexible linkers may
facilitate coiled-coil folding by overcoming the topological challenge
of coiling chains of up to 300 amino-acids around each another.
Secondly, conformational freedom between coiled-coil and SUN
domains provides a simple explanation for how SUN1 can reorient
from perpendicular to parallel to the nuclear membrane as it crosses
the nuclear lumen to form SUN-KASH 6:6 complexes (Gurusaran
and Davies, 2021). Indeed, the change in helical angulation could be
achieved by a single 90° bend in one linker (as shown in the model),
or through progressive angulation at each linked step (Figure 7).
Finally, linked coiled-coil domains could in principle adapt to
changing tension forces, adopting conformations that are more
angled or perpendicular to the nuclear membrane in response to
forces in these directions. Importantly, our models demonstrate that
flexible linkers must be largely stretched for LINC complexes to
reach across nuclear widths of >40 nm (Watson, 1955). This is
consistent with the need for flexible linkers to bear tension during
force transduction by the LINC complex.

We observed that the SUN1 α1 and α2 coiled-coil domains are
dissociating oligomers that form stable trimers when joined by their
intervening linker. It was previously shown that SUN2’s CC1 coiled-
coil domain (corresponding to α2) with subsequent SUN domain
also dissociates (Nie et al., 2016; Jahed et al., 2018b), whereas its full
luminal region forms a stable trimer (Sosa et al., 2012). Hence our
findings may be conserved in SUN2, in which the predicted coiled-
coil upstream of CC1 may have a stabilising role analogous to
SUN1’s α1 domain. The presence of flexibly linked discrete coiled-
coil domains raises the possibility of domain-swap interactions in
which α1 and α2 sequences may form coiled-coil structures with
chains from different SUN1 molecules (Figure 7). This is unlikely to
occur in solution as the proximity of tethered sequences greatly
favours the formation of coiled-coils between the same chains.
However, we speculate that it may occur in vivo if
SUN1 molecules are present at a sufficiently high local
concentration for upstream interactions to occur with similar
likelihood between chains of the same or distinct downstream
trimers. This has two potentially beneficial consequences. Firstly,
dissociation and reassociation with different chains may overcome
tangles that could develop as the luminal structure adapts to altering
tension forces and structural changes. Secondly, domain-swap
interactions may facilitate force propagation by providing branch
sites within the LINC complex axis. Hence, they may contribute to
the force integration and distribution provided by oligomer state
alteration between KASH5 dimers, SUN1-KASH5 6:6 complexes
and SUN1 trimers (Gurusaran and Davies, 2021; Garner et al.,
2022), disulphide bond formation between SUN1 trimers (Lu et al.,
2008), and other higher-order interactions between SUN proteins
(Jahed et al., 2018a), to facilitate force transduction through a
branched LINC complex network. This model is consistent with
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the observation that SUN1’s luminal domain has been shown to
form oligomers that are larger than trimers upon expression in
cellular systems (Hennen et al., 2018).

Here, we have used the example of the meiotic LINC complex to
illustrate the structure-function relationships inherent in LINC
complex architecture. Indeed, the transmission of microtubule-
generated forces to achieve the meiotic chromosome movements
exemplifies the challenges of LINC-mediated force transduction and
the necessity for adaptivity, load bearing and distribution by SUN1’s
luminal structure (Ding et al., 2007; Horn et al., 2013b).
Nevertheless, the LINC complex has several other specialised
roles such as in hearing (Horn et al., 2013a), and is essential for
nuclear structure, shape and positioning (Crisp et al., 2006; Luxton
et al., 2010; Alam et al., 2015; Kozono et al., 2018). Hence, the
molecular models for luminal SUN1 and LINC complex architecture
presented herein should be directly applicable to the generalised and
specialised functions of the LINC complex in its many and varied
cellular roles.

Materials and methods

Recombinant protein expression and
purification

Sequences corresponding to human SUN1 (amino-acids
362–401, 421–584, 362–584, 362–785; Uniprot accession O94901)
were cloned into pMAT11 vectors (Peranen et al., 1996) for
expression as TEV-cleavable N-terminal His-MBP- fusion
proteins. Constructs were expressed in BL21 (DE3) cells
(Novagen®) in 2xYT media, induced with 0.5 mM IPTG for 16 h
at 25°C. Cells were lysed by sonication in 20 mM Tris pH 8, 500 mM

KCl, and fusion proteins were purified from clarified lysate through
consecutive Ni-NTA (Qiagen), amylose (NEB) and HiTrap Q HP
(Cytiva) ion exchange chromatography. Affinity tags were removed
by incubation with TEV protease and cleaved samples were purified
by HiTrap Q HP ion exchange chromatography and size exclusion
chromatography (HiLoad™ 16/600 Superdex 200, Cytiva) in 20 mM
HEPES pH 7.5, 150 mM KCl, 2 mM DTT. Protein samples were
concentrated using Pall 10 kDa Microsep™ Advance centrifugal
devices, except for SUN1 362–401 where Pall 3 kDa Microsep™
Advance centrifugal devices were used, and were stored at −80°C
following flash-freezing in liquid nitrogen. Protein samples were
analysed by SDS-PAGE with Coomassie staining, and
concentrations were determined by UV spectroscopy using a
Cary 60 UV spectrophotometer (Agilent) with extinction
coefficients and molecular weights calculated by ProtParam
(http://web.expasy.org/protparam/).

Crystallisation and structure solution of
SUN1 α1

SUN1 362–401 protein crystals were obtained through vapour
diffusion in sitting drops, by mixing 100 nL of protein at 3.5 mg/mL
with 100 nL of crystallisation solution (0.09 M Sodium nitrate,
0.09 M Disodium phosphate, 0.09 M Ammonium sulfate, 0.1 M
imidazole pH 6.5, 0.1 M MES (acid), 37.5% MPD (racemic),
37.5% PEG 1K, 37.5% PEG 3350) and equilibrating at 20°C for
10–20 days. Crystals were flash frozen in liquid nitrogen. X-ray
diffraction data were collected at 0.9795 Å, 100 K, as
2000 consecutive 0.10° frames of 0.040 s exposure on an
Eiger2 XE 16 M detector at beamline I04 of the Diamond Light
Source synchrotron facility (Oxfordshire, United Kingdom) on 12/

FIGURE 7
Model for the luminal structure of SUN1 within the meiotic LINC complex. The luminal region of SUN1 consists of α1 and α2 trimeric coiled-coil
domains, and a C-terminal globular SUN domain that interact head-to-head within 6:6 complexes with KASH5 proteins. These discrete domains are
linked together, and to the transmembrane region (at the INM), by flexible unstructured sequences. These intervening flexible linkers provide the
possibility for domain-swap interactions between adjacent 6:6 LINC complexes that my contribute to branching within a force-transducingmeiotic
LINC complex network. Additional components, such as dynein and dynactin, are not depicted to enhance clarity.
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05/2019. Data were processed usingAutoPROC (Vonrhein, 2011), in
which indexing, integration, scaling were performed by XDS
(Kabsch, 2010) and Aimless (Evans, 2011). Crystals belong to
monoclinic spacegroup P21 (cell dimensions a = 31.31 Å, b =
35.99 Å, c = 46.10 Å, α = 90°, β = 104.54°, γ = 90°), with a
SUN1 trimer in the asymmetric unit. Data were corrected for
anisotropy using the UCLA diffraction anisotropy server (https://
services.mbi.ucla.edu/anisoscale/) (Strong et al., 2006), imposing
anisotropic limits of 2.4 Å, 2.1 Å, 2.1 Å, with principal
components of 19.50 Å2, −9.18 Å2 and −10.31 Å2. Structure
solution was achieved through fragment-based molecular
replacement using ARCIMBOLDO_LITE (Rodriguez et al., 2009),
in which six helices of 18 amino acids were placed by PHASER
(McCoy et al., 2007) and extended by tracing in SHELXE utilising its
coiled-coil mode (Caballero et al., 2018). A correct solution was
identified by a SHELXE correlation coefficient of 52.9%. Model
building was performed through iterative re-building by PHENIX
Autobuild (Adams et al., 2010) andmanual building inCoot (Emsley
et al., 2010). Additional density was observed for cysteine residue
C376 of chain B, which was modelled as alternative conformations
of a reduced cysteine and peroxysulfenic acid (2CO), which refined
to occupancies of 0.38 and 0.62, respectively. The structure was
refined using PHENIX refine (Adams et al., 2010), using isotropic
atomic displacement parameters, against anisotropy-corrected 2.
07 Å data, to R and Rfree values of 0.2438 and 0.2551 respectively,
with 100% of residues within the favoured regions of the
Ramachandran plot (0 outliers), clashscore of 6.38 and overall
MolProbity score of 1.35 (Chen et al., 2010). The final
SUN1 model was analysed using the Online_DPI webserver
(http://cluster.physics.iisc.ernet.in/dpi) to determine a Cruikshank
diffraction precision index (DPI) of 0.25 Å (Kumar et al., 2015).

Molecular dynamics

Molecular dynamics (MD) simulations were performed using
AMBER ff19SB and OPC forcefields (Case et al., 2022) in OpenMM
(Eastman et al., 2017), run locally on NVIDIAGeForce RTX 3090 GPU
cards through a Google Colab notebook that was modified from the
“Making-it-rain” cloud-based MD notebook (Arantes et al., 2021). The
SUN1 trimer was placed in a water box 10 Å larger than the structure,
and was neutralised at a KCl concentration of 150 mM, by AMBER
tleap (Case et al., 2022). The structure was equilibrated for 200 ps, and
then run for 1 μs at 310 K and 1 bar pressure, using periodic boundary
conditions, with the Langevin Middle Integrator and MonteCarlo
Barostat, with integration times of 2 fs The run was repeated three
times. MD trajectories were analysed using pytraj (Roe and Cheatham,
2013; Hai Nguyen et al., 2016).

Size-exclusion chromatography multi-angle
light scattering (SEC-MALS)

The absolute molar masses of SUN1 protein samples were
determined by multi-angle light scattering coupled with size
exclusion chromatography (SEC-MALS). SUN1 protein samples
at > 5 mg/mL (unless otherwise stated) were loaded onto a
Superdex™ 200 Increase 10/300 GL size exclusion

chromatography column (Cytiva) in 20 mM HEPES pH 7.5,
150 mM KCl, 2 mM DTT, at 0.5 mL/min, in line with a DAWN®

HELEOS™ II MALS detector (Wyatt Technology) and an Optilab®

T-rEX™ differential refractometer (Wyatt Technology). For
induction and disruption of zinc-binding, samples were pre-
incubated with 2 mM zinc acetate or 10 mM EDTA overnight
prior to analysis. Differential refractive index and light scattering
data were collected and analysed using ASTRA® 6 software (Wyatt
Technology). Molecular weights and estimated errors were
calculated across eluted peaks by extrapolation from Zimm plots
using a dn/dc value of 0.1850 mL/g.

Spectrophotometric determination of zinc
content

The presence of zinc in protein samples was determined through a
spectrophotometric method using the metallochromic indicator 4-(2-
pyridylazo) resorcinol (PAR) (Sabel et al., 2009). Protein samples at
70 μM, corresponding to SUN1 α1 wild-type and C376A, were digested
with 0.6 μg/μL proteinase K (NEB) at 60°C for 1 h. Of the supernatant,
10 μL of each protein digestion was added to 80 μL of 50 μM 4-(2-
pyridylazo)-resorcinol (PAR) in 20 mM Tris, pH 8.0, 150 mM KCl,
incubated for 5 min at room temperature, and UV absorbance spectra
were recorded between 600 and 300 nm (Varian Cary
60 spectrophotometer). Zinc concentrations were estimated from the
ratio between absorbance at 492 and 414 nm, plotted on a line of best fit
obtained from analysis of 0–100 μM zinc acetate standards.

Size-exclusion chromatography small-angle
X-ray scattering (SEC-SAXS)

SEC-SAXS experiments were performed at beamline B21 of the
Diamond Light Source synchrotron facility (Oxfordshire,
United Kingdom). Protein samples at concentrations >5 mg/mL
were loaded onto a Superdex™ 200 Increase 10/300 GL size
exclusion chromatography column (Cytiva) in 20 mM HEPES
pH 7.5, 150 mM KCl at 0.5 mL/min using an Agilent 1200 HPLC
system. The column outlet was fed into the experimental cell, and
SAXS data were recorded at 12.4 keV, detector distance 4.014 m, in
3.0 s frames. Data were subtracted and averaged, and analysed for
Guinier regionRg and cross-sectionalRg (Rc) using ScÅtter 4.0 (http://
www.bioisis.net), and P(r) distributions were fitted using PRIMUS
(Konarev et al., 2003). Crystal structures and models were fitted to
experimental data using CRYSOL (Svergun and Koch, 1995).

Circular dichroism (CD) spectroscopy

Far UV circular dichroism (CD) spectroscopy data were collected
on a Chirascan VX CD spectrometer (School of Chemistry, University
of Edinburgh). CD spectra were recorded in 10 mM Na2HPO4/
NaH2PO4 pH 7.5, 150 mM NaF, at protein concentrations between
0.1–0.3 mg/mL, using a 0.5 mm pathlength quartz cuvette (Applied
Photophysics), at 0.2 nm intervals between 260 and 185 nm at 4°C.
Spectra were averaged across three accumulations, corrected for buffer
signal, smoothed and converted to mean residue ellipticity ([θ])
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(x1,000 deg. cm2. dmol−1. residue−1). CD thermal denaturation was
performed in 10 mM Na2HPO4/NaH2PO4 pH 7.5, 150 mM NaF, at
protein concentrations between 0.1–0.3 mg/mL, using a 0.5 mm
pathlength quartz cuvette (Applied Photophysics). Data were
recorded at 222 nm, between 4°C and 95°C, at 0.5°C intervals with
ramping rate of 2°C per minute, and were converted to mean residue
ellipticity ([θ222]) and plotted as % unfolded ([θ]222,x-[θ]222,5)/([θ]222,95-
[θ]222,5). Melting temperatures (Tm) were estimated as the points at
which samples are 50% unfolded.

SUN1 and SUN1-KASH5 luminal structural
modelling

Models were generated using a local installation of Alphafold2
v2.2.2 (Jumper et al., 2021). This installationwasmodified to control the
use of templates from the PDB and allow additional templates from
newly solved crystal structures. Models of the SUN1 luminal trimer
(amino-acids 326–785) were generated through the multimer pipeline
(Evans et al., 2021), using PDB structures 5YWZ (Xu et al., 2018), 5ED9
(Nie et al., 2016) and the newly reported α1 crystal structure 8AU0, as
the sole templates. The constituent α1 and α2-SUN domains of the
resultant model were re-positioned in line, and their intervening linkers
were re-modelled in “relaxed” linear conformations. For the model of
the meiotic SUN1-KASH5 luminal LINC complex, the α2-SUN trimer
(amino-acids 421–785) was first modelled in trimeric SUN domain
conformation by the Alphafold2 multimer pipeline (Evans et al., 2021;
Jumper et al., 2021), using PDB structures 5ED9 (Nie et al., 2016) and
6R2I (Gurusaran and Davies, 2021) as the sole templates. The SUN
domain trimer of the resultant structure was replaced with one KASH5-
bound trimer of the SUN1-KASH5 6:6 core complex structure (PDB
accession 6R2I; Gurusaran and Davies, 2021), with re-modelling of the
intervening flexible linkers. The structure was combined with the
α1 domain flanked by flexible linkers of the previous SUN1 luminal
trimer model, and was replicated for the second KASH5-bound trimer
of the complex, to achieve a full model of the SUN1-KASH5 luminal 6:
6 structure. Alphafold2 multimer modelling data were analysed using
modules from the ColabFold notebook (Mirdita et al., 2022). Models
were edited, combined and flexible linkers were remodelled using the
PyMOL Molecular Graphics System, Version 2.0.4 Schrödinger, LLC,
and Coot (Emsley et al., 2010).

Protein sequence and structure analysis

Multiple sequence alignments were generated using Jalview
(Waterhouse et al., 2009), and molecular structure images were
generated using the PyMOL Molecular Graphics System, Version
2.0.4 Schrödinger, LLC.

Statistics and reproducibility

All biochemical and biophysical experiments were repeated at least
three times with separately prepared recombinant protein material.
Molecular dynamics simulations were performed in triplicate by
repeating every step of the simulation from the same structural model.
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Beyond tradition: exploring the
non-canonical functions of
telomeres in meiosis
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The telomere bouquet is a specific chromosomal configuration that forms during
meiosis at the zygotene stage, when telomeres cluster together at the nuclear
envelope. This clustering allows cytoskeleton-induced movements to be
transmitted to the chromosomes, thereby facilitating homologous
chromosome search and pairing. However, loss of the bouquet results in more
severe meiotic defects than can be attributed solely to recombination problems,
suggesting that the bouquet’s full function remains elusive. Despite its transient
nature and the challenges in performing in vivo analyses, information is emerging
that points to a remarkable suite of non-canonical functions carried out by the
bouquet. Here, we describe how new approaches in quantitative cell biology can
contribute to establishing the molecular basis of the full function and plasticity of
the bouquet, and thus generate a comprehensive picture of the telomeric control
of meiosis.
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1 Introduction

The genetic diversity of gametes is facilitated by DNA recombination between
homologous chromosomes during meiosis (Petronczki et al., 2003; Hunter, 2015; Zickler
and Kleckner, 2015). Strong nuclear movements driven by cytoskeletonmotors play a central
role in promoting the search and pairing of homologous chromosomes within the
nucleoplasm. These movements increase the likelihood of homologous chromosomes
meeting and also destabilize interactions between non-homologous chromosomes
(Yamamoto et al., 1999; Scherthan et al., 2007; Koszul et al., 2008; Baudrimont et al.,
2010; Wynne et al., 2012; Woglar and Jantsch, 2014; Christophorou et al., 2015; Lee et al.,
2015; Chacon et al., 2016). For nuclear motion to be transmitted to the chromosomes
efficiently, the chromosomes must stay associated with the nuclear envelope (NE). In
meiosis, specific associations between telomeres and the NE during the zygotene stage lead to
the formation of dynamic clusters of telomeres that are visible through live imaging as groups
of telomeres in motion (Chikashige et al., 1994; Klutstein and Cooper, 2014; Mytlis et al.,
2023). In some species, these telomere clusters concentrate near a specific region of the NE,
often close to the centrosome, resulting in a chromosomal configuration resembling a
bouquet of flowers with the telomeres forming the gathered stems. This distinctive meiotic-
specific arrangement is thus called the telomere bouquet (Scherthan, 2001). The formation of
telomere clusters at the NE, including the telomere bouquet, has been observed in
Opisthokonts (fungi and animals) and in plants (Zickler and Kleckner, 2016), suggesting
that the origin of telomere bouquet formation is likely contemporaneous with the emergence
of the meiotic DNA recombination program in the early evolution of eukaryotes.
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For many years, telomere bouquet formation was believed only
to facilitate the pairing and subsequent recombination of
homologous chromosomes. It was assumed that chromosomes
passively followed nuclear movements, with the telomere bouquet
acting merely as a spreader of motion. However, loss of the bouquet
results in severe defects in meiotic progression that cannot be fully
explained by its canonical role (Tomita and Cooper, 2007; Klutstein
et al., 2015; Katsumata et al., 2016; Moiseeva et al., 2017). The
complete function of the telomere bouquet has remained a mystery,
due primarily to the challenge of manipulating and visualizing its
transient nature in most eukaryotes (Scherthan, 2001; Fernandez-
Alvarez and Cooper, 2017). Advances in quantitative cell biology,
coupled with the availability of predictive models and new
unsupervised tools based on deep learning for data analysis, now
offer opportunities to explore meiotic chromosomal dynamics at
high spatial and temporal resolutions. Using these techniques,
previously undetectable patterns in telomeric movements have
been identified and modelled, providing insights into their
biological relevance. From the huge volume of information being
generated through these approaches, it is becoming evident that the
formation of the telomere clusters in meiosis and the nuclear
movements are not random or stochastic. Hence, these recent
advances offer exciting opportunities to better understand the
molecular basis of the telomeric control of gametogenesis.

2 Assembly and disassembly of the
telomere bouquet: key to ensuring
faithful gametogenesis

The assembly of the telomere bouquet during meiosis coincides
with the initiation of the nuclear movements (Yoshida et al., 2013).
However, the nuclear movements seem to end before bouquet
disassembly (Ruan et al., 2015; Moiseeva et al., 2017). Two
components are required for the formation and dissolution of
telomere–NE associations: specific telomere bouquet proteins that
strengthen the interaction with the NE and promote telomere
clustering; and NE proteins that facilitate the interaction with the
telomeres, the most common of which is the linker of nucleoskeleton
and cytoskeleton (LINC) complex (Hiraoka and Dernburg, 2009;
Sosa et al., 2012; Burke, 2018).

The proteins responsible for the meiotic telomere–NE
associations are mostly meiotic-specific and have been identified
in various organisms: TERB1, TERB2, and MAJIN in mice (da Cruz
et al., 2020; Shibuya et al., 2015; Shibuya et al., 2014; Daniel et al.,
2014); HIM-8, ZIM-1, ZIM-2, ZIM-3, and MLJ-1 in Caenorhabditis
elegans (Phillips et al., 2005; Phillips and Dernburg, 2006; Phillips
et al., 2009; Kim et al., 2023); Ndj1 and Csm4 in Saccharomyces
cerevisiae (Conrad et al., 1997; Trelles-Sticken et al., 2000; Conrad
et al., 2007; Conrad et al., 2008; Kosaka et al., 2008; Wanat et al.,
2008); and Bqt1 and Bqt2 in Schizosaccharomyces pombe
(Chikashige et al., 2006). However, the sequences of these
proteins are not conserved between vertebrates and other
metazoans, or even among fungal species. This suggests not only
that the proteins responsible for telomere-NE associations have
undergone significant turnover during evolution but also that
different protein sequences can facilitate the interaction between
telomeres and the NE and support bouquet formation. The

variability in these protein sequences poses a challenge to the
identification of these components in other model organisms that
exhibit bouquet formation, such as Arabidopsis thaliana.

Telomere bouquet proteins are typically recruited at the
telomeres thanks to their direct interaction with shelterin
complex (formed by telomere-specific proteins associate with
arrays of DNA repeats that protects chromosome ends), which
form a protein bridge that connects the telomeres to the LINC
complex (de Lange, 2005; Conrad et al., 2007; Hiraoka and
Dernburg, 2009; Starr and Fridolfsson, 2010; Rao et al., 2011;
Rubin et al., 2020). The LINC complex, which is highly
conserved in evolution, plays a crucial role in mediating nuclear
movements. The complex consists of a Sad1/UNC-84 (SUN)-
domain protein and a Klarsicht, ANC-1, Syne Homology
(KASH)-domain protein, both of which interact in the space
between the inner and outer nuclear membranes (Hiraoka and
Dernburg, 2009). Several studies have demonstrated physical
interactions between telomere bouquet proteins (e.g., TERB1/2,
Ndj1, and Bqt1) and SUN-domain proteins (e.g., SUN-1/2 in
mice, Mps3 in S. cerevisiae and Sad1 in S. pombe) (Chikashige
et al., 2006; Conrad et al., 2007; Conrad et al., 2008; Shibuya et al.,
2014). By contrast, the KASH-domain proteins, which are not as
highly conserved during evolution as the SUN-domain proteins,
interact with cytoskeleton motors in the cytoplasm. Together, these
interactions form an intricate network that underpins the
orchestration of nuclear movements during meiosis.

Studies in yeast and nematodes have highlighted a strong
association between defects in telomere bouquet disassembly and
the phosphorylation status of the SUN-domain protein. In budding
yeast, the phosphorylation state of Mps3 plays a crucial role in the
duration of telomere–NE associations; meiosis-specific
phosphorylation introduces negative charges in the luminal
region of Mps3, which regulate its localization on the NE for
meiotic chromosome motion (Prasada Rao et al., 2021).
Phosphorylation of the SUN-domain protein in C. elegans, SUN-
1, is regulated by the widely conserved kinases CDK-1, PLK-2 and
CHK-2 (Penkner et al., 2009; Sato et al., 2009; Labella et al., 2011;
Woglar et al., 2013; Prasada Rao et al., 2021). In addition,
posttranslational modifications of foundational telomere proteins,
such as Rap1, may affect their interaction with telomere bouquet
proteins; in fission yeast, phosphorylation of Rap1, together with its
intrinsic negative charge, control the assembly and disassembly of
the bouquet, these features are important for forming interactions
with its binding partners Bqt1 and Bqt2 (Amelina et al., 2015).

3 Cytoskeleton dynamics in telomere
bouquet assembly and disassembly

Actin and dynein are highly conserved motor proteins that have
a crucial role in generating forces for nuclear movements during the
telomere bouquet stage across various species (Yamamoto et al.,
1999; Miki et al., 2002; Koszul et al., 2008; Wynne et al., 2012; Link
and Jantsch, 2019). However, the duration, trajectory, and
morphology of these nuclear movements vary significantly
between species (Rubin et al., 2020; Kim et al., 2022; Sole et al.,
2023). For instance, in S. cerevisiae, the nuclear membrane
undergoes deformations presumably related to rapid telomere-led
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movements, in which telomeres move in clusters (Hayashi et al.,
1998; Scherthan et al., 2007; Conrad et al., 2008). By contrast, in the
fission yeast S. pombe, the entire nucleus oscillates between the cell
poles while the telomeres remain grouped beneath the spindle pole
body (SPB), the centrosome equivalent in yeast. This type of
movements is commonly referred to as horsetail nuclear
movements (Chikashige et al., 1994; Chikashige et al., 2006).
Similarly, metazoans demonstrate diverse chromosome
morphologies during the telomere bouquet stage: in C. elegans,
for example, chromatin adopts a crescent shape while being pushed
by the nucleolus to one side of the nucleus (Rog and Dernburg, 2013;
Rog and Dernburg, 2015; Link and Jantsch, 2019). Conversely, in
Drosophila melanogaster and mice, characteristic movements
involve microtubule-driven chromosomal rotations (Cooley and
Theurkauf, 1994; Shibuya et al., 2014). The molecular reasons for
the variety of movement types observed in different organisms
remain poorly understood. The number of chromosomes could
potentially play a role in determining the type of movement. For
instance, species with low number of chromosomes, such as fission
yeast, may require a more vigorous type of movement. Other factors
that could potentially influence movement patterns include the
presence of the synaptonemal complex (SC), a structure
transiently formed during meiosis to facilitate recombination
between homologous chromosomes (Page and Hawley, 2004).
Organisms lacking the SC, like S. pombe or the ciliate
Tetrahymena thermophila (Loidl, 2021), may need to employ
different dynamics for the movement of their chromosomes
compared to organisms with the SC.

The elimination of either actin or dynein, depending on the
species, results in the cessation of nuclear movements, which
subsequently impedes telomere motions (Miki et al., 2002; Koszul
et al., 2008; Wynne et al., 2012). This in turn blocks DNA pairing
and recombination, leading to defective chromosome segregation
and reduced gamete viability. A meiosis-specific microtubule
organizing centre has been identified in certain species, such as S.
pombe (Saito et al., 2005; Tanaka et al., 2005; Funaya et al., 2012).
This microtubule organizing centre, Hrs1, reinforces the dynamic
movement of microtubules that is required to pull the SPB back and
forth. Loss of Hrs1 results in a slowdown of nuclear movements and,
eventually, disassembly of the telomere bouquet.

The formation of the telomere bouquet involves the action of
cytoskeleton forces, which cluster the telomeres at specific regions of
the NE. In fission yeast, telomere clustering relies on various
microtubule motors, kinesins, microtubules and a meiosis-specific
microtubule-organizing center named telocentrosome (Yoshida
et al., 2013). In particular, the telocentrosome plays a pivotal role
in the formation of the telomere bouquet by facilitating the
recruitment of the gamma tubulin complex and the movement of
telomeres along the NE, from their interphase position, to the SPB
(Yoshida et al., 2013). Interestingly, similar structures involving cilia
are conserved in zebrafish and mice. These cilia promote the
formation of the telomere bouquet by generating microtubule
arrays that accumulate at specific regions of the NE (Mytlis et al.,
2022).

By contrast, the disassembly of the bouquet appears to be
independent of the nuclear movements (Ruan et al., 2015;
Moiseeva et al., 2017), suggesting that it occurs after these
movements have ended. It is likely that the disassembly of the

bouquet is dependent on the completion of other DNA events
during meiosis.

4 The multifaceted nature of the
telomere bouquet

Several studies–particularly in fission yeast, where live imaging
allows for a more detailed analysis–have revealed unexpected
functions of the telomere bouquet. For instance, the Cooper and
Yamamoto labs have shown that the absence of bouquet formation
compromises the formation of spindle microtubules, which are
crucial for chromosome segregation (Tomita and Cooper, 2007;
Katsumata et al., 2016). Elimination of telomere bouquet proteins
such as Bqt1 or Bqt2 leads to defects in spindle formation and thus to
aberrant chromosome segregation. These defects are associated with
problems in the localized NE disassembly, a process that necessitates
the proximity of telomeres to create a hole in the NE for the insertion
of the duplicated SPBs. This stage of NE disassembly beneath the
SPB is analogous to the NE breakdown stage observed in mammals
(Fernández-Álvarez et al., 2016) (Figure 1). The proximity of
telomeres to the NE likely triggers a modification in the SUN-
domain protein, Sad1, in S. pombe, leading to the reorganization of
Sad1 to form a ring, which in turn promotes local NE disassembly
and SPB insertion (Fernández-Álvarez et al., 2016; Bestul et al.,
2017).

The formation of the telomere bouquet controls another crucial
function in the meiotic program: centromere reassembly. During
meiosis, centromeres must be disassembled in preparation for
specialized chromosome segregation in the first round of nuclear
division. During bouquet formation, a microenvironment is created
around the SPB that is characterized by the proximity of
centromeres and telomeres, resulting in the transfer of
heterochromatin factors from the telomeres to the centromeres
(Klutstein et al., 2015; Hou et al., 2021).

Moreover, the Hiraoka and Tomita labs discovered that defects
in DNA replication and repair prolong the duration of nuclear
movements and the telomere bouquet stage in fission yeast (Ruan
et al., 2015; Moiseeva et al., 2017). This finding indicates that
bouquet assembly and disassembly are coordinated with crucial
chromosomal events. Furthermore, we have found that DNA repair
may affect not only the duration of the bouquet but also the
behaviour of telomeric movements during meiosis. Specifically,
persistent DNA damage alters the trajectory of telomeres during
the horsetail movement, likely facilitating DNA repair between
homologous chromosomes to ensure accurate meiotic
progression (Leon-Perinan and Fernandez-Alvarez, 2020; Leon-
Perinan and Fernandez-Alvarez, 2021).

5 Alternative conformations of the
telomere bouquet and their
evolutionary significance

In addition to being studied extensively in Opisthokonts,
telomere bouquet formation has been identified in species of the
Chloroplastida and Alveolata groups, indicating its likely evolution
from the origin of eukaryotes along with the meiotic program
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(Scherthan, 2001; Zickler and Kleckner, 2016; Hurel et al., 2018).
Although bouquet formation is conserved in evolution, it displays
some conformational plasticity, which has led to variations in the
number and distribution of telomere clusters along the NE that in
turn result in differences in chromosome polarization and the
trajectories of telomere movements between species (Rubin et al.,
2020; Sole et al., 2023). Notably, two common variations involve the
diversity of the meiosis-specific telomere protein sequences that
support telomere-NE associations (Rubin et al., 2020; Kim et al.,
2022) and the unexpected interchangeability between telomeres and

centromeres. In certain scenarios, a so-called centromere bouquet
can replace the telomere bouquet (Stewart and Dawson, 2008; Loidl
et al., 2012; Fennell et al., 2015) (Figure 1).

As described above, loss of the telomere bouquet in fission yeast
causes severe defects in local NE disassembly and, consequently, in
the SPB insertion into the NE and spindle formation (Tomita and
Cooper, 2007; Pineda-Santaella and Fernández-Álvarez, 2019;
Pineda-Santaella et al., 2021). However, approximately 50% of
bouquet-mutant cells can form normal spindles by using
centromeres in prophase to create a bouquet-like structure

FIGURE 1
Telomere-Centromere interchange during the bouquet formation stage in S. pombe.During the bouquet stage, there is an exchangeability between
telomeres and centromeres in their role of facilitating the SPB insertion into the nuclear envelope (NE). The schematic in (A) illustrates three scenarios of
chromosome-LINC interactions in fission yeast: 1) in normal telomere bouquet formation (left), telomere-LINC interaction enables chromosomes to
follow the SPBmovements through the interaction of the telomere bouquet protein Bqt1 with the SUN-domain protein, Sad1. 2) In bouquetmutants
(right), where bqt1 and/or bqt2 are deleted, interaction between telomeres and Sad1 is disrupted. However, centromeres are capable of contacting Sad1,
forming an alternative “centromere” bouquet conformation. 3) The middle panel shows a combined scenario, bouquetΔ in conjunction with the
Sad1.2 allele, resulting in the inhibition of both telomere-LINC and centromere-LINC interactions. In (B), the left panel depicts the triggering of partial NE
disassembly by telomere-LINC interaction, facilitating the SPB insertion into the NE and spindle formation. This signalling can also be controlled by the
centromeres (right). Lack of interaction between telomeres/centromeres and the LINC complex disrupts the SPB insertion process, thereby
compromising spindle formation (middle panel) (more information in (Fennell et al., 2015; Fernández-Álvarez et al., 2016).
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(Fennell et al., 2015) (Figure 1). Given that centromeres and
telomeres represent distinct chromosomal regions, the common
features that support this capacity for substitution have yet to be
uncovered. The molecular bases that underpin this
interchangeability are intriguing, given that telomeres and
centromeres do not commonly share functions.

In the protist T. thermophila, the nucleus undergoes substantial
stretching in meiotic prophase, with chromosomes adopting a
bouquet-like arrangement in which telomeres and centromeres
attach to opposite poles of the nucleus. Centromere clustering
was found to be more important than telomere clustering for
homologous pairing, suggesting that centromere clustering may
have been the primordial mechanism for chromosome pairing
(Tian et al., 2020). In D. melanogaster, it is the centromeres
rather than the telomeres that support the formation of the
bouquet (Rubin et al., 2020). It remains an enigma as to why
telomeres perform this function in certain organisms while
centromeres assume this role in others. This intriguing and
unconventional nature of these occurrences raises the question of
whether it is of significance whether it is telomeres or centromeres
carrying out these functions.

Another question that we are currently exploring is how to
cluster telomeres at the NE without the highly conserved LINC
complex. Whereas the sequence of telomere bouquet proteins may
be highly divergent between species, the presence of the LINC
complex–which has a crucial role in transmitting movement to
the chromosomes–has remained highly conserved since the origin of
eukaryotes. We have found that in some Basidiomycota fungi, such
as the pathogen Ustilago maydis, all the machinery of the meiotic
recombination program and the telomeric proteins (e.g., Taz1 and
Rap1) are conserved (Kojic et al., 2013), but the LINC complex is
missing. This raises questions about which elements are essential for
bouquet formation and which have undergone more turnover
throughout evolution. Finding the answers to these questions will
help us to determine whether meiotic chromosome movements and
the formation of the telomere bouquet have driven the evolution of
the meiotic program.

6 New imaging techniques provide
insights into telomere motion

Both the canonical and non-canonical functions of the telomere
bouquet are closely related to the chromosomal conformations
during this stage. The canonical function involves transmitting
forces generated in the cytoplasm through the movement of the
telomere clusters along the NE (Scherthan, 2001; Zickler and
Kleckner, 2016; Mytlis et al., 2023). By contrast, the non-
canonical functions of the bouquet as a regulator of meiotic
spindle formation or centromere assembly require the telomeres
to be in close proximity to the NE. This is so that the localized NE
disassembly can be triggered, which is necessary for proper spindle
formation (Tomita and Cooper, 2007; Fernández-Álvarez et al.,
2016), or to create the microenvironment that supports centromere
reassembly during meiotic prophase (Klutstein et al., 2015; Hou
et al., 2021). We have observed that telomere trajectories along the
NE during bouquet stage in fission yeast are not stochastic but
instead follow movement patterns that are imperceptible by direct

human observation but are computationally identifiable and
mathematically predictable (Leon-Perinan and Fernandez-
Alvarez, 2021). Hence, telomere movements along the NE change
trajectory and velocity in response to specific chromosomal events,
such as DNA repair. Tracking this behaviour in detail is key to
understanding the functions of telomere clustering and to
uncovering new connections to meiosis.

Many studies have investigated recognizable chromosome
movement patterns using tracking schemes to monitor
chromosome behaviour in organisms such as S. cerevisiae
(Scherthan et al., 2007; Conrad et al., 2008; Gonzalez-Arranz
et al., 2020), C. elegans (Baudrimont et al., 2010; Wynne et al.,
2012; Labrador et al., 2013; Woglar and Jantsch, 2014; Rog and
Dernburg, 2015) and S. pombe (Ding et al., 2004; Chacon et al., 2016;
Moiseeva et al., 2017). Time-lapse fluorescence microscopy is
commonly used to follow the movements of particles, including
proteins like dynein, as well as chromosomal loci (Mine-Hattab and
Rothstein, 2012; Ananthanarayanan et al., 2013). Methods such as
mean square displacement, velocity measurements, and automatic
and cross-correlation analyses have been used to evaluate long-range
spatiotemporal patterns, generating a high volume of information
about chromosome dynamics at specific loci (Mine-Hattab and
Chiolo, 2020). For example, these approaches have been used in
budding yeast to identify and characterize rotational meiotic
movements that result from both nuclear rotation and individual
chromosome movements (Lee et al., 2015). Studies in human cells
have shown that chromosome end motion is both highly
heterogeneous and inversely related to telomere length (Wang
et al., 2008) and that telomeres display intermittent
accumulations in specific local niches that depend on their
exposure to different types of stress (Benelli and Weiss, 2022).
One of the most relevant findings in recent years is the
observation that upon exposure to DNA-damaging agents,
telomeres are more likely to move away from their sites on the
NE. These discoveries demonstrate that a combination of factors,
including the release of chromatin-NE tethering, internal chromatin
connections, and microtubule dynamics, work together to mobilize
the genome in response to DNA damage (Therizols et al., 2006;
Mine-Hattab and Rothstein, 2012; Lawrimore et al., 2017; Mine-
Hattab and Chiolo, 2020).

These findings, together with the optimization of model
organisms for visualizing chromosome dynamics, such as
zebrafish (Blokhina et al., 2019; Imai et al., 2021; Mytlis et al.,
2022; Mytlis et al., 2023) and Arabidopsis thaliana (Hurel et al.,
2018), are paving the way for exciting new research opportunities in
this field.

However, these types of techniques have limitations arising from
their time-ensemble nature (Mine-Hattab and Chiolo, 2020). For
example, different modes of motion can produce the same mean
square displacement curves or velocity distributions, since
trajectories that are effectively different can nevertheless produce
identical distribution summaries. This means that specific patterns
of chromosome movements, particularly those not yet linked to a
known biological process, cannot be easily identified. Hence,
complementary strategies to explore chromosome dynamics are
being developed. For example, novel imaging techniques with a
low signal-to-noise ratio offer exciting prospects for further
investigations into homologous pairing (Nozaki et al., 2021).
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FIGURE 2
Unveiling Telomere Movement Patterns in Fission Yeast and Prospects for Cross-Species Applications (A) Illustration depicting the process
employed to analyze telomere positioning in fission yeast. Quantification and tracking of telomere positioning, representation of telomere motion in the
y-axis, the most informative in case of S. pombe. (B) Zygotene-stage telomere movements exhibit distinct characteristics across species. Linear
movements covering short distances along the nuclear envelope (NE) are observed in S. cerevisiae and C. elegans, while D. melanogaster displays
rotational movements. M. musculus displays both types. (C) Outline of the process used to identify telomere movement patterns. Key steps involve
determining the primary axis of movement—such as the y-axis for fission yeast’s oscillatory motion—tracking trajectories via in vivo telomere labelling,
segmenting time intervals, and clustering based on various variables like linear/angular velocity and period. Comparisons between wild-type and mutant
strains unveil the presence or absence of ‘motifs’ and their distribution throughout prophase.
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Correlative conventional and PALM (photoactivated localization
microscopy) imaging enhances our capacity to analyse the mobility
and time-averaged nanoscopic structural characteristics of locus-
specific chromatin with single-molecule sensitivity (Mehra et al.,
2022). Using point-spread-function engineering and deep-learning-
based image analysis, we can now conduct live imaging of telomere
diffusion (Naor et al., 2022).

7 Harnessing data mining and causality
analysis for predictive modelling

A major limitation in developing a predictive model is the need
for large sample sizes. Data mining and time-window approaches
offer solutions to some of these limitations. For example, researchers
are now automatically creating synthetic variations of chromosome
movements during the telomere bouquet stage based on wild-type
and mutant datasets. The creation of in silico versions of budding
yeast strains and their analysis using experimental data and
simulations have revealed important information about the active
motion of telomeres and the biological implications of the bouquet
(Penfold et al., 2012; Marshall and Fung, 2016; Marshall and Fung,
2019; Navarro et al., 2022). For example, this approach has revealed
that active telomere forces can increase the selectivity of
chromosome pairing (Marshall and Fung, 2019). Complementary
approaches are using segment-discovery libraries, like segclust2d
and segmenTier, and matrix profile calculations to extract
information about chromosome movement from time-lapse
experiments. At the same time, causality analysis algorithms,
such as Peter-Clark algorithm, variable-lag transfer entropy and
variable-lag Granger causality, can be used to identify whether
changes in one variable (e.g., chromosome morphology) affect
another variable (e.g., chromosome movement) (Leon-Perinan
and Fernandez-Alvarez, 2021). As these algorithms help to
establish causal relationships, they provide valuable information
for understanding the mechanisms and regulation of chromosome
dynamics during meiotic prophase in various organisms.

8 Summary

The telomere bouquet is conserved in eukaryotes and has both
canonical and non-canonical functions. Its canonical functions
involve transmitting the forces generated in the cytoplasm to
promote the chromosome movements needed to facilitate
homologous pairing, while its non-canonical functions include
regulating meiotic spindle formation, meiotic centromere
assembly and DNA events such as replication and repair. New
techniques–including time-lapse fluorescence microscopy, tracking
schemes, and data mining–are now enabling researchers to
circumvent the limitations of previous experimental approaches.
These techniques have been used to identify patterns of
chromosome movement, such as rotational meiotic movements,
and modifications to the trajectory of chromosomes in response to
DNA events (Figure 2). Combining these techniques with causality
analysis algorithms and other advances in quantitative cell biology,
such as low-signal-to-noise imaging and deep-learning-based

analysis, offers opportunities to explore chromosomal motion at
even higher spatial and temporal resolutions. These techniques offer
new insights into homologous pairing and nanoscopic structural
features of chromatin.
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Nuclear Pore Complexes (NPCs) are embedded in the nuclear envelope (NE),
regulating macromolecule transport and physically interacting with chromatin.
The NE undergoes dramatic breakdown and reformation during plant cell division.
In addition, this structure has a specific meiotic function, anchoring and
positioning telomeres to facilitate the pairing of homologous chromosomes.
To elucidate a possible function of the structural components of the NPCs in
meiosis, we have characterized several Arabidopsis lines with mutations in genes
encoding nucleoporins belonging to the outer ring complex. Plants defective for
either SUPPRESSOR OF AUXIN RESISTANCE1 (SAR1, also called NUP160) or SAR3
(NUP96) present condensation abnormalities and SPO11-dependent
chromosome fragmentation in a fraction of meiocytes, which is increased in
the double mutant sar1 sar3. We also observed these meiotic defects in mutants
deficient in the outer ring complex protein HOS1, but not in mutants affected in
other components of this complex. Furthermore, our findings may suggest
defects in the structure of NPCs in sar1 and a potential link between the
meiotic role of this nucleoporin and a component of the RUBylation pathway.
These results provide the first insights in plants into the role of nucleoporins in
meiotic chromosome behavior.

KEYWORDS

Arabidopsis, meiosis, nuclear pore complex, NUP96, NUP160, SAR1, SAR3

Introduction

The nuclear pore complex (NPC) is one of the largest non-polymeric protein complexes
in eukaryotic cells (Knockenhauer and Schwartz, 2016). The main function of the NPC is to
mediate the selective nucleocytoplasmic transport of macromolecules while allowing the free
diffusion of molecules smaller than 40 kDa (Raíces and D’Angelo, 2012; Meier et al., 2017).
Most of the proteins forming the NPCs, known as nucleoporins, are evolutionarily
conserved, as well as the octagonal symmetry of these complexes (Gall, 1967; Hoelz
et al., 2011; Lin and Hoelz, 2019). The NPC is organized in different subcomplexes
composed of more than 30 different nucleoporins (Tamura and Hara-Nishimura, 2013;
Li and Gu, 2020). In addition to their main role as trafficking channels, NPCs also act as hubs

OPEN ACCESS

EDITED BY

Alexei Arnaoutov,
Eunice Kennedy Shriver National Institute
of Child Health and Human Development
(NIH), United States

REVIEWED BY

Inna Lermontova,
Leibniz Institute of Plant Genetics and
Crop Plant Research (IPK), Germany
Christopher Makaroff,
Miami University, United States
Olivier Da Ines,
Institut de Génétique, Reproduction &
Développement (iGReD), France

*CORRESPONDENCE

Mónica Pradillo,
pradillo@bio.ucm.es

RECEIVED 30 August 2023
ACCEPTED 21 November 2023
PUBLISHED 04 December 2023

CITATION

Fernández-Jiménez N,
Martinez-Garcia M, Varas J, Gil-Dones F,
Santos JL and Pradillo M (2023), The
scaffold nucleoporins SAR1 and SAR3 are
essential for proper meiotic progression
in Arabidopsis thaliana.
Front. Cell Dev. Biol. 11:1285695.
doi: 10.3389/fcell.2023.1285695

COPYRIGHT

© 2023 Fernández-Jiménez, Martinez-
Garcia, Varas, Gil-Dones, Santos and
Pradillo. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original author(s)
and the copyright owner(s) are credited
and that the original publication in this
journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Cell and Developmental Biology frontiersin.org01

TYPE Original Research
PUBLISHED 04 December 2023
DOI 10.3389/fcell.2023.1285695

211

https://www.frontiersin.org/articles/10.3389/fcell.2023.1285695/full
https://www.frontiersin.org/articles/10.3389/fcell.2023.1285695/full
https://www.frontiersin.org/articles/10.3389/fcell.2023.1285695/full
https://www.frontiersin.org/articles/10.3389/fcell.2023.1285695/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fcell.2023.1285695&domain=pdf&date_stamp=2023-12-04
mailto:pradillo@bio.ucm.es
mailto:pradillo@bio.ucm.es
https://doi.org/10.3389/fcell.2023.1285695
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://doi.org/10.3389/fcell.2023.1285695


for relevant processes such as chromatin organization, gene
transcription, replication stress resolution or DNA repair (Blobel,
1985; Beck and Hurt, 2017; Lamm et al., 2021). In these cases, NPCs
could act as membrane-bound sliding platforms to associate the
underlying chromatin with other protein complexes localized in the
nucleus (Strambio-De-Castilla et al., 2010; Raices and D’Angelo,
2012).

The overall organization of the NPCs is highly conserved among
evolutionarily distant eukaryotes, although there is a significant
variability in the composition of nucleoporins (Fiserova et al.,
2009; Tamura et al., 2011; 2013; Fernandez-Martinez and Rout,
2021). Nucleoporins assemble into different subcomplexes forming
the inner, outer, andmembrane rings. Moreover, the central channel
is filled by phenylalanine-glycine-rich (FG) nucleoporins, and a
nuclear basket and cytoplasmic filaments are anchored to the
nuclear and cytoplasmic outer rings, respectively (Alber et al.,
2007; Beck and Hurt, 2017; Meier et al., 2017). The outer ring
complex nucleoporins form Y-shaped complexes, and accordingly,
this NPC module is also known as the Y-complex (Stuwe et al.,
2015). This complex is also called NUP107-160 in plants and
vertebrates and Nup84 (or Nup84-Nup133) in yeast (Lutzmann
et al., 2002; Walther et al., 2003; Meier et al., 2017; Nordeen et al.,
2020). The outer ring complex plays essential roles in NPC assembly,
microtubule polymerization at kinetochores, and DNA repair
(Walther et al., 2003; Nagai et al., 2008; Mishra et al., 2010). In
Arabidopsis thaliana, members of this complex are involved in
flowering time regulation, abiotic stress and immune responses,
as well as in hormone signaling (Gu, 2018; Zhang A. et al., 2020;
Cheng et al., 2020; Nie et al., 2023). In this species, defective mutants
for members of this complex, such as nup160 and nup96, were
identified in a screening for suppression of auxin resistance
phenotypes. For this reason, these mutants are also called
suppressor of auxin resistance1 (sar1) and sar3, respectively, and
exhibit pleiotropic growth defects including an early flowering
phenotype (Cernac et al., 1997; Parry et al., 2006; Wiermer et al.,
2012).

Meiosis is a specialized cell division required to generate haploid
gametes from diploid parent cells. During early prophase I,
homologous chromosomes pair, synapse and exchange genetic
information. These processes are facilitated by the movement of
telomeres along the nuclear envelope (NE) (Koszul and Kleckner,
2009). The transmission of cytoplasmic forces to telomeres is
mediated by the LINC (LInker of the Nucleoskeleton and
Cytoskeleton) complexes (Starr, 2009; Klutstein and Cooper,
2014). These complexes consist of SUN and KASH proteins that
span the inner and outer nuclear membranes (INM and ONM),
connecting nuclear and cytoplasmic structures. Disrupting the
function of the LINC complex impairs chromosome movements,
leading to defects in synapsis andmeiotic recombination (Ding et al.,
2007; Murphy et al., 2014; Varas et al., 2015; Zhang F. et al., 2020).
This role for LINC complexes seems to be conserved in yeast,
animals, and plants (Burke, 2018). It has been suggested that
LINC complexes and NPCs could be functionally related. Indeed,
in HeLa cells SUN1 interacts with NPCs being important for their
distribution (Liu et al., 2007). However, studies showing a possible
meiotic function for NPCs are scarce and mostly focused on yeast.
Several of these studies have associated the function of certain
nucleoporins with kinetochores and chromosome segregation

(Yang et al., 2015; Hattersley et al., 2016; 2022). In
Saccharomyces cerevisiae, the nuclear basket nucleoporins
Nup2 and Nup60 transiently detach from the NPC core during
the first meiotic division and promote chromosome dynamics
during meiosis (Chu et al., 2017; Komachi and Burgess, 2022;
King et al., 2023). Until now, no work in plants has linked NPCs
to chromatin organization and chromosome behavior during
meiosis. In this regard, it is important to note that in contrast to
the situation in yeast, in plants, the NE breaks down to allow the
connection between the chromosomes and the cytoplasmic spindle
(Meier et al., 2017).

In this study, we focus on the meiotic role of nucleoporins
belonging to the outer ring complex of the NPC, in particular
NUP160 (SAR1) and NUP96 (SAR3). Analysis of the meiotic
process in pollen mother cells (PMCs) has revealed that
SAR1 and SAR3 are essential for ensuring proper chromatin
condensation and meiotic repair of double-strand breaks (DSBs).
Additionally, the findings may suggest that SAR1 is important for
preserving the integrity of NPCs in prophase I and that its meiotic
function could be linked to that of AXR1, a subunit of the
RUB1 activating enzyme, which regulates the protein degradation
activity of SKP1-CULLIN1-F-BOX (SCF) complexes. Our work
provides, for the first time, important insights into the function
of NPCs in plant meiosis.

Materials and methods

Plant material and growth conditions

All plants used in this study were Arabidopsis thaliana (L.)
Heynh, Columbia (Col-0) accession. Mutant lines were obtained
from the European Arabidopsis Stock Centre: sar1-4 (SALK_
126801), sar3-4 (SALK_117966), hos1-3 (SALK_069312), nup85-2
(SALK_113274), and seh1-1 (SALK_022717). Double mutants were
built using: spo11-1-5 (SALK_009440) (Pradillo et al., 2007), and
axr1-31 (SALK_013238) (Martínez-García et al., 2020). Seeds were
sown on soil directly or after transfer from MS plates (Murashige
and Skoog, 1962). Plants were grown under long-day conditions
(16 h light/8 h dark) at 19°C. Homozygous plants were identified by
PCR screening using primers listed in Supplementary Table S1.

Cytogenetic analyses

Fixation of flower buds and spreading of male meiocytes were
performed according to Ross et al. (1996). The fluorescent in situ
hybridization (FISH) technique was carried out as described by
Sanchez-Moran et al. (2001) with minor modifications. The DNA
probes used in the analysis of chromosomal configurations at
metaphase I were 45S rDNA (pTa71; Gerlach and Bedbrook,
1979) and 5S rDNA (pCT4.2; Campell et al., 1992). At least
three plants of each genotype were analyzed. To analyze pollen
grains, we used fresh material and transferred anthers to a 1%
solution of carmine in 45% acetic acid, we heated the slide slowly
over an alcohol burner (~30 s) and used the squash method. A
Nikon Eclipse E400 phase-contrast microscope with a Nikon DMX-
12005-E400 digital camera were used for image acquisition.
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To detect meiotic recombination proteins, we performed the
spreading technique described by Armstrong et al. (2009) with the
modifications included in Varas and Pradillo (2018). To detect
histone modifications and NE proteins, we applied the squash
technique detailed in Oliver et al. (2013). Information about the
dilution and source of primary antibodies is included in
Supplementary Table S2. The secondary antibodies used were
anti-rabbit Alexa Fluor 555-conjugated (Invitrogen, Molecular
probes; 1:500), anti-rat Alexa Fluor 555-conjugated (Invitrogen,
Molecular probes; 1:500), anti-mouse FITC-conjugated (Agrisera;
1:100), and anti-rabbit FITC-conjugated (Merck; 1:50). Cells were
imaged using an Olympus BX61 epifluorescence microscope with an
Olympus DP71 digital camera. Quantification of foci was performed
using ImageJ. We scored all images blind to genotype.

RNA FISH

To evaluate mRNA nuclear accumulation, we followed the
protocol described in Parry (2014) using samples from roots and
flower buds. The samples were incubated with a Cy3 labelled
oligo(dT) probe. For quantification, we compared pixel intensity
between the nucleus and the cytoplasm (ImageJ) and calculated the
fold change (ratio nucleus/cytoplasm) in each cell respect to Col-0.
Cells from at least three different slides were analyzed for each tissue.

Statistical analyses

Microsoft Office Excel and GraphPad Prism were used for data
organization and statistical analysis, respectively. Mann-Whitney U
test and one-way ANOVA with post hoc Tukey test were performed
to compare independent samples. Fisher’s Exact test and Chi-square
test were used to compare frequencies.

Results

Mutants defective in outer ring complex
nucleoporins show abnormal male meiosis

The mutants analyzed in this study were previously characterized by
Cernac et al. (1997) and Parry et al. (2006). These authors revealed that
sar1 and sar3 show a pleiotropic phenotype with early flowering,
dwarfism, and abnormal auxin response. These mutants also have
altered expression of certain defense genes and nuclear mRNA
accumulation (Meier and Brkljacic, 2009; Wiermer et al., 2012). In
addition, the pleiotropic defects in the single mutants were
exacerbated in the double mutant sar1 sar3, suggesting the disruption
of an NPC specific function associated to the loss of several subunits
(Parry et al., 2006). The reduced production of seeds in these plants was
attributed to their developmental defects and abnormal inflorescences
(Parry et al., 2006).

In this work, we have confirmed the fertility defects in sar1 and sar3
(Supplementary Figure S1) and observed that this phenotype is
aggravated in the double mutant sar1 sar3, which is completely sterile.
In addition, this double mutant has viability problems, as only 2% of
sar1 sar3 double mutant plants were obtained in the offspring of double

heterozygous plants. The detailed cytological characterization of pollen
mother cells (PMCs) that we conducted in these mutants revealed that
these fertility defects are due to abnormalities duringmeiosis. In the single
mutants sar1 and sar3, most of the meiocytes were apparently
indistinguishable from the control: homologous chromosomes were
associated along their entire length in pachynema; five bivalents, with
no alterations in chromosome condensation, were observed atmetaphase
I; and chromosomes and sister-chromatids segregated correctly at
anaphase I and II, respectively, giving rise to balanced tetrads with the
same amount of genetic material in each nucleus (Supplementary Figure
S2). However, alterations in chromatin condensation and chromosome
fragmentation appeared at different stages corresponding to bothmeiotic
divisions in a percentage of meiocytes (sar1: 13.52%, n = 636; sar3:
19.08%, n = 1,373). No anomalies were observed at leptonema, but from
zygonema onwards some PMCs showed aberrant chromatin
condensation. In metaphase I, entangled bivalents were observed and
segregation problems, as well as chromosome fragments, were detected in
both meiosis I and II. All these defects led to the formation of tetrads and
polyads with differentially condensed and unbalanced nuclei (Figure 1A).
Abnormal meiocytes were not limited to specific flower buds or anthers
but appeared alongside populations of normal cells (Figure 1B;
Supplementary Figure S1). The percentage of abnormal meiocytes was
much higher in the double mutant (57.02%, n = 114) than in the single
mutants, which also differed from each other (Figure 1C; Supplementary
Tables S3, S4). In addition, the proportion of meiocytes with
chromosomal fragmentation was increased in the double mutant
compared to the single mutants (Supplementary Table S5).

In order to elucidate whether these defects were a consequence
of the alteration of any component of the outer ring complex, we
analyzed other mutants defective for this subunit. HIGH
EXPRESSION OF OSMOTICALLY RESPONSIVE GENES1
(HOS1) functions in the regulation of flowering through
controlling the protein level of CONSTANT, like SAR1 and
SAR3 (Cheng et al., 2020; Li et al., 2020). The cytological
analysis of male meiosis in hos1 revealed the same type of
alterations as those observed in sar1 and sar3 mutants
(Supplementary Figure S2). Problems in chromatin condensation
and chromosomal fragmentation were detected, although meiocytes
without any abnormalities could also be observed. Interestingly,
these meiotic alterations do not appear when other components of
the outer ring, such as NUP85 (n = 166) or SEH1 (n = 36), are absent
(Supplementary Figure S2). Both sar1 (mutant in which we detected
meiosis abnormalities) and nup85 (mutant in which we did not
detect any meiosis abnormalities) show mRNA accumulation in the
nucleus, not only in root cells, but also in flower bud cells
(Supplementary Figure S3). Therefore, these results show that the
different outer ring components are not equally important during
meiosis, and that the meiotic defects do not appear to arise as a
consequence of the mRNA accumulation.

Synapsis and chiasma frequency, as well as
the pattern of certain epigenetic marks, are
normal in most sar1 meiocytes

In order to conduct a more exhaustive study of the meiotic
process, the sar1mutant was chosen as representative of the meiotic
problems observed in the outer ring complex mutants. Since the
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FIGURE 1
Cytological analysis of meiotic defects in sarmutants. (A) Chromosome spreads of male meiocytes fromWT, sar1-4, sar3-4 and the double mutant
sar1-4 sar3-4. Mutants show hypercondensed meiocytes at pachynema, entangled chromosomes at metaphase I, chromosome fragments and
unbalanced segregations at telophase I, unbalanced nuclei and chromosome fragments at metaphase II, and polyads with nuclei displaying unevenly
condensed chromatin. (B) Examples from sar1-4 showing abnormal meiocytes (arrowheads) surrounded by normal meiocytes in both meiotic
divisions. (C) Proportion of abnormal and normal meiocytes in sar1-4, sar3-4 and the double mutant sar1-4 sar3-4. Fisher’s exact test was performed to
analyze differences between mutants (p-value: ns–non-significant, *p < 0.05, **p < 0.01, ***p < 0.001). I: Meiosis I; II: Meiosis II. Scale bars = 5 µm.
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meiotic problems began to be detected in zygonema-pachynema, we
carried out an analysis of the synaptonemal complex (SC) formation
by immunolocalization of ASY1 (protein associated to the axial/
lateral element) and ZYP1 (transverse filament protein) on prophase
I chromosome spreads (Armstrong et al., 2002; Higgins et al., 2005).
We also detected two cell populations with respect to SC formation.
In all meiocytes in which the chromosome morphology was
indistinguishable to the WT (Supplementary Figure S2), the
pattern corresponding to the ASY1+ZYP1 proteins revealed
normal behavior: bright linear signals of ASY1 in the unsynapsed
regions during zygonema and short stretches of ZYP1 that extended
until full synapsis at pachynema (Figure 2; Supplementary Figure
S4). In the case of meiocytes with extreme chromosomal
condensation, we observed a continuous ASY1 signal in
zygonema, despite the small size of these nuclei (Figure 2A).
However, in these abnormal meiocytes we could not detect a
continuous ZYP1 signal, observing only some aggregates without
a defined pattern (Figure 2B). Thus, chromosomal axes appear to
form correctly in sar1meiocytes, and although synapsis is normal in
most sar1 meiocytes, some have problems achieving synapsis.

To determine whether, despite not detecting problems in synapsis
and bivalent formation, there is any defect in meiotic recombination in
normal-lookingmeiocytes in sar1, the frequency of chiasmata per cell at
metaphase I was analyzed. To facilitate the interpretation of bivalent
morphology and the localization of chiasmata, we performed 45S and
5S rDNA FISH (Sanchez-Moran et al., 2001) (Figure 3A). This analysis
could not be applied to meiocytes with aberrant chromatin

condensation, although we observed an arrangement of the FISH
signals indicating some level of pairing, since homologous
chromosomes were close together in the nucleus and presented
some co-orientation at metaphase I (Figure 3B). The mean cell
chiasma frequency in the WT was 10.20 ± 0.14 (n = 69), with a
range of variation from 8 to 13. In sar1 no significant differences were
found with respect to this value, since the mean was 10.07 ± 0.21 (n =
43), varying from 7 to 14 (U = 1,393; p = 0.579) (Figure 3C).

Histone post-translational modifications are thought to play a
pivotal role in chromosome condensation during meiosis (Fuchs
et al., 2006; Xu et al., 2009). To test whether there was any variation
in the epigenetic pattern of abnormally condensed meiocytes, we
immunolocalized histone modifications associated to euchromatin
and heterochromatin, as well as a modification specific of the
chromosomal condensation process. Specifically, we analyzed the
pattern corresponding to H3K4me3 (euchromatin-specific
methylation), H3K9me2 (heterochromatin-specific methylation),
and H3S10ph (phosphorylation associated to chromosome
condensation) (Supplementary Figure S5). H3K4me3 is observed
in all chromosomal regions except pericentromeric heterochromatin
(Oliver et al., 2013). No variations from the WT were detected in
sar1 prophase I meiocytes. In the case of sar1 hypercondensed
meiocytes, H3K4me3 also had a similar pattern, appearing in most
of the chromatin area. On the other hand, H3K9me2, which is
restricted to pericentromeric regions throughout meiosis (Oliver
et al., 2013), showed no variations in sar1 meiocytes compared to
WT, since signals were always observed in the chromocenters or

FIGURE 2
Immunolocalization of meiotic chromosome axes and synaptonemal complex in sar1-4. Squash preparations of male meiocytes showing the
meiotic chromosome axis protein ASY1 (green) and the synaptonemal complex transverse filament protein ZYP1 (magenta). (A) Zygonema. Chromosome
axes appear to be normal despite condensation defects in sar1-4. (B) Pachynema. Although full synapsis is observed in normal-looking sar1-4meiocytes,
ZYP1 forms numerous chromosomic aberrant aggregates in hypercondensed sar1-4 meiocytes, revealing problems in synaptonemal complex
formation in these cells. Scale bars = 5 µm.
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brightest DAPI regions. Surprisingly, no changes were observed in
the H3S10ph pattern either. This mark appears in Arabidopsis from
diplonema onwards, a stage in which the chromatin is more
condensed (Oliver et al., 2013). We could expect the presence of
this modification in sar1 meiocytes with hypercondensation.
However, no signal corresponding to this epigenetic mark was
detected despite chromatin compaction. Therefore, the
condensation abnormalities observed in sar1 meiocytes are not
due to alterations in these histone modifications, at least at the
cytological level.

Chromosomal fragmentation defects
observed in sar1 are SPO11-dependent

Analysis of PMCs from sar1 plants revealed fragmented
chromosomes from anaphase I onwards in a percentage of
meiocytes, leading to the formation of polyads containing
microspores with unequal amounts of DNA (Figure 1). To
ascertain whether DSBs formed by SPO11 could be the source of
the chromosome fragmentation observed in SAR1-deficient plants,
we generated sar1 spo11-1 double mutants. Meiosis in spo11mutants
is characterized by the presence of ten univalents at metaphase I,
which segregate randomly during anaphase I (Grelon et al., 2001). In
the absence of either SPO11-1 or SPO11-2, no DSBs occur at the
onset of meiosis, therefore the integrity of the chromosomes in spo11
mutants is intact.

The meiotic phenotype of the double mutant sar1 spo11-1 was
very similar to that observed in the spo11-1 single mutant, and no
formation of SC or bivalents was detected. Ten univalents were
invariably observed at metaphase I (n = 42) and no evidence of

chromosomal fragmentation was found in any of the successive stages
of meiosis (Figure 4A). Therefore, sar1 chromosomal fragmentation
problems are caused by the failure to repair SPO11-induced DSBs.

Detailed analysis of sar1 spo11-1 PMCs revealed that although
chromosomal fragmentation disappears, this double mutant still
shows alterations in chromatin condensation (Figure 4B). In fact,
the percentage of abnormal meiocytes (with alterations in chromatin
condensation and/or chromosome fragmentation) during the first
division did not vary significantly from that observed in the sar1
single mutant (Figure 4C; Supplementary Table S6). In contrast, we
detected a reduction in the frequency of abnormal meiocytes
observed during the second division in the double mutant. The
differences become apparent at the second division because at this
divisionmost of the abnormal meiocytes quantified in the sar1 single
mutant have chromosomal breaks, whereas at the first division most
of the abnormal sar1 meiocytes have chromatin condensation
problems. Therefore, the chromosome condensation
abnormalities observed in the sar1 single mutant do not appear
to arise from a specific meiotic alteration or at least from defects in
the processing of DSBs. There is no evidence to suggest that
hypercondensation has a pre-meiotic nature, as we did not
identify any issues with chromatin condensation in somatic cells
(Supplementary Figure S5). Furthermore, as mentioned before, all
the observed leptotene meiocytes appeared to be normal-looking.

γH2AX and RAD51 foci are significantly
reduced in hypercondensed sar1 meiocytes

To further examine the meiotic homologous recombination
(HR) process in sar1 meiocytes, we detected phosphorylated

FIGURE 3
Cytological analysis of chiasma frequency in sar1-4. 45S rDNA (green) and 5S rDNA (magenta) probes were used for chromosome identification.
DAPI is showed in gray. (A)WT and normal-looking sar1-4meiocytes atmetaphase I. Numbers identify each bivalent. (B) Abnormal sar1-4meiocytes. The
position of the FISH signals indicates pairing in prophase I and some co-orientation of homologous chromosomes in metaphase I. (C)Quantification of
chiasma frequency per cell in WT and sar1-4 (see the text for more details). Scale bars = 5 µm.
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histone H2AX (γH2AX) and RAD51 foci by immunolocalization.
γH2AX is deposited at DNA damage sites and is commonly used as a
DSB-marker (Lowndes and Toh, 2005), and the recombinase
RAD51 is loaded on ssDNA during meiotic recombination
(Kurzbauer et al., 2012). The number of foci corresponding to
both proteins was quantified in both normal appearing and
hypercondensed sar1 meiocytes (Figure 5; Supplementary Figure
S6). We used ASY1 protein as a prophase I progression marker
(Armstrong et al., 2002).

The number of γH2AX foci in sar1 normal-looking meiocytes
(196.61 ± 6.76; n = 46) was comparable as that observed in WT
meiocytes (200.04 ± 6.02; n = 47), whereas we detected a significant
reduction in the number of γH2AX foci in sar1 hypercondensed
meiocytes (66,00 ± 10,96; n = 15) (Figures 5A, B; Supplementary
Table S7). The results for the quantification of the number of
RAD51 foci were very similar, as no differences were found
between normal-looking sar1 (152.71 ± 7.49; n = 14) and WT
meiocytes (149.42 ± 7.03; n = 36), whereas the number of

RAD51 foci was drastically reduced in sar1 hypercondensed cells
(44.8 ± 5.03; n = 5) (Figures 5C, D; Supplementary Table S7). These
results confirm that the meiotic recombination process, in line with
the results obtained for synapsis, is severely compromised in sar1
hypercondensed meiocytes.

Nuclear envelope distribution of NPCs is
altered in abnormal sar1 meiocytes

Since the absence of the outer ring complex nucleoporins may
compromise the integrity of the NPCs, we decided to analyze the
distribution of these complexes, as well as that of the LINC
complexes in the NE of sar1 meiocytes. For the study of LINC
complexes, we applied an immunolocalization to detect SUN
proteins (Figure 6; Supplementary Figure S7). In WT meiocytes
these proteins present a distribution pattern along the entire NE
during prophase I, disappearing at the end of this stage (n = 107). In

FIGURE 4
Cytological analysis of PMCs from the doublemutant sar1-4 spo11-1-5. (A)Chromosome spreads ofmalemeiocytes in spo11-1-5 and sar1-4 spo11-
1-5. Homologous chromosomes fail to undergo synapsis and ten univalents are observed at metaphase I in both mutants. The presence of univalents
leads to mis-segregations of chromosomes at anaphase I, unbalanced nuclei during second meiotic division and polyads. (B) Example of
hypercondensed (arrowhead) and normal-looking (arrow) meiocyte in the double mutant sar1-4 spo11-1-5. (C) Proportion of abnormal and normal
meiocytes in sar1-4 (blue) and sar1-4 spo11-1-5 (orange). Fisher’s exact test was performed to analyze differences between the mutants (p-value:
ns–non-significant, *p < 0.05, **p < 0.01, ***p < 0.001). I: Meiosis I; II: Meiosis II. Scale bars = 5 µm.
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the case of sar1, no differences were found in the pattern of these
proteins with respect toWT, with a continuous signal also appearing
around the entire NE, both in normal-looking meiocytes (n = 25)
and in hypercondensed meiocytes (n = 9). As expected, we observed
a reduction of the NE surface in the latter, in line with their
hypercondensed chromatin state. Thus, the distribution of LINC
complexes is apparently not affected by the absence of a structural
nucleoporin.

Regarding NPCs, in WT cells the distribution pattern is similar
to that of the LINC complexes, with a signal appearing along the
entire NE during prophase I (Figure 6). We confirmed that normal-
looking sar1 meiocytes (n = 103) do not display variations in the
distribution pattern of NPCs with respect toWTmeiocytes (n = 83).
However, in sar1 hypercondensed meiocytes, no trace of the signal
corresponding to NPCs was detected at any location in the nucleus
(n = 76), revealing that these cells present severe structural
abnormalities in the NPCs.

The interplay between SAR1 and AXR1

Nucleoporins SAR1 and SAR3 are called by these names
because they were firstly identified in a screening for

suppression of the axr1 resistance to auxin phenotype (Cernac
et al., 1997; Parry et al., 2006). The axr1 mutation produces a
dramatic effect on plant morphology (Lincoln et al., 1990) and,
interestingly, meiotic defects consisting of abnormal synapsis at
prophase I, univalents at metaphase I, unequal chromosome
segregation at anaphase I, and unbalanced tetrads or polyads
(Jahns et al., 2014). The origin of these meiotic abnormalities is
poorly understood, although it has been suggested that they could
be related to the protein modifications associated to the
RUBylation pathway (Jahns et al., 2014).

Since mutations in either SAR1 or SAR3 suppress most aspects
of the phenotype conferred by axr1 (Cernac et al., 1997; Parry et al.,
2006; Supplementary Figure S8), we wondered if this suppression
also affects axr1 meiotic defects. To find out if this was the case, we
generated the double mutant sar1 axr1 and analyzed its meiotic
phenotype. The results showed that the characteristic meiotic
problems associated with axr1 disappear in sar1 axr1
(Figure 7A). In the double mutant, we observed full synapsis at
pachynema, five bivalents at metaphase I, equal distribution of
chromosomes during both meiotic divisions, and balanced
tetrads. This means that in the double mutant the asynaptic
phenotype of axr1 disappears, as well as the problems in bivalent
formation.

FIGURE 5
Immunolocalization of γH2AX and RAD51 in sar1-4. Chromosome spreads of male meiocytes showing γH2AX (magenta) and the recombinase
RAD51 (magenta). ASY1 (green) has been used as a cytological marker to identify the meiotic chromosome axes. (A) WT, normal-looking and
hypercondensed sar1-4 zygotene cells showing ASY1 (green) and γH2AX foci (magenta). (B) Quantification of γH2AX foci in zygotene cells. (C) WT,
normal-looking and hypercondensed sar1-4 zygotene cells showing ASY1 (green) and RAD51 foci (magenta). (D) Quantification of RAD51 foci in
zygotene cells. One-way ANOVA with a Tukey’s post hoc test was performed in both cases (p-value: ns–non-significant, p *** < 0.001). Scale
bars = 5 µm.
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To analyze the different chromosome configurations in more
detail, the FISH technique was applied (Supplementary Figure S8). In
WTmeiocytes most of the bivalents are closed (ring bivalents), with at
least one chiasma in each arm (76.2%; n = 69), and the same occurs in
sar1 (85.5%; n = 43), in which no univalents are detected either. In
axr1most of the bivalents are open (rod bivalents), without chiasmata
in one of the arms (47.2%; n = 72), although there are also closed
bivalents (24.2%) and univalents (28.6%). In the double mutant
sar1 axr1, most bivalents appeared in closed configuration (70.4%;
n = 50), recovering the WT phenotype (p = 0.155). Obligatory
chiasma formation is almost restored in this double mutant, as
univalents disappear. We detected only 4% of the cells with a
single pair of univalents (2/50). To further analyze recombination
events, we conducted an immunolocalization to detect MLH1, a
marker of most crossovers in Arabidopsis (Jackson et al., 2006).
This analysis showed no significant differences between the WT
(8.09 ± 0.40), sar1 (8.03 ± 0.38), and sar1 axr1 (8.42 ± 0.25) (F =
0.469, p = 0.627) concerning MLH1 foci (Supplementary Figure S8).

Regarding to the presence of abnormal meiocytes, in the double
mutant sar1 axr1 there was a decrease in the percentage of these
meiocytes, as well as in sar1 spo11 (Figures 7B, C). We observed
fewer abnormal meiocytes than in the sar1 single mutant in the first
meiotic division, although the difference between both mutants was
not significant. The reduction was statistically significant in the
second meiotic division (Supplementary Table S8). Furthermore, in
sar1 axr1, the proportion of hypercondensed meiocytes was higher
than that of fragmented meiocytes in the second division, in contrast
to the sar1 single mutant (Supplementary Table S5).

Discussion

The results of this work have revealed that some of the structural
nucleoporins that belong to the outer ring complex of the NPC are
necessary for proper meiosis progression. Several of the nucleoporin-
defective mutants of this complex show a pleiotropic phenotype,
including developmental deficiencies and reduced fertility (Cernac
et al., 1997; Parry et al., 2006). We have demonstrated that the
semi-sterile phenotype is due to failures in meiosis, highlighting the
importance of the NPCs in this cell division.

SAR1 and SAR3, as well as HOS1, are
necessary to ensure the proper progression
of meiosis

The cytological analysis of PMCs in sarmutants has determined the
presence of abnormal meiocytes, both in first and second division. The
altered meiotic phenotype is characterized by the presence of cells with
extreme chromatin condensation, especially during the first division, in
addition to the appearance of chromosomal fragments from anaphase I
onwards, which generates unbalanced tetrads and even polyads at the
end of meiosis. These abnormal meiocytes appear along with others in
which meiosis is properly achieved. The percentage of meiocytes with
alterations varies between the mutants sar1 and sar3 and increases
considerably in the double mutant sar1 sar3 (Figure 1), which might
suggest a certain degree of independence in their functions. In the
double mutant, problems in vegetative development and fertility are

FIGURE 6
Immunolocalization of SUN proteins and NPCs in sar1-4. Squash preparations of WT, normal-looking and hypercondensed sar1-4 zygotene cells.
(A) SUN proteins (magenta) combined with DAPI (gray). A continuous signal around the entire NE is present in both normal-looking and hypercondensed
sar1-4meiocytes, as well as in theWT. (B)NPCs (green) combinedwith DAPI (gray). Normal-looking sar1-4meiocytes are indistinguishable fromWT cells,
whereas in hypercondensed sar1-4 meiocytes NPCs appear to be absent. Scale bars = 5 µm.
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also exacerbated respect to the singlemutants, suggesting that the loss of
both nucleoporins produce a severe defect inNPC function (Parry et al.,
2006). We also found similar meiotic alterations in hos1
(Supplementary Figure S2). HOS1 is an outer ring complex
nucleoporin that functions as an E3 ubiquitin ligase preventing
precocious flowering. Interestingly, SAR1 and SAR3 also contribute
to flowering time regulation by ensuring the stability and association of
HOS1 with the NPC (Cheng et al., 2020; Li et al., 2020). It is possible
that these nucleoporins affect a common regulatory mechanism
between flowering and meiosis, since we have not detected meiotic
problems in other mutants defective in the outer ring complex (nup85,
seh1), which, unlike the previous ones, do not exhibit a significant
flowering phenotype (Li and Gu, 2020). These mutations also do not
aggravate the somatic abnormalities observed in sar1, suggesting some
functional diversity between these nucleoporins that belong to the same
NPC subcomplex (Wiermer et al., 2012; Parry, 2014). On the other
hand, an accumulation of polyadenylatedmRNAwas found in all outer
ring complex mutants in which RNA export was analyzed (Parry,

2015). Therefore, the observed meiotic alterations do not seem to be
related to this mRNA accumulation (Supplementary Figure S3). It is
likely that these nucleoporins do not only function in the context of
NPCs. Indeed, NPCs undergo large-scale structural rearrangements
during cell division and, for example, the nuclear basket transiently
dissociate from the NPC core during meiosis in budding yeast (King
et al., 2023). It is not known whether something similar occurs in
Arabidopsis, but in any case, HOS1, apart from its E3-ubiquitin ligase
activity, is associated with chromatin to influence gene expression in
this species (Lazaro et al., 2012; Jung et al., 2014). In the case of
SAR1 and SAR3, no such association has been confirmed. Further
experiments will be required to confirm whether the meiotic functions
of these nucleoporins are related to their structural function within
the NPC.

sar1 and sar3 present abnormalities in mRNA accumulation or
nuclear morphology in all somatic cells (Cernac et al., 1997; Parry
et al., 2006; Parry, 2014). However, they only show meiotic
alterations in a percentage of meiocytes. Although there is no

FIGURE 7
Cytological analysis of PMCs from the doublemutant sar1-4 axr1-31. (A)Chromosome spreads ofmalemeiocytes in axr1-31 and sar1-4 axr1-31. The
singlemutant axr1-31 shows defects in synapsis, presence of univalents at metaphase I, unbalanced nuclei during the secondmeiotic division, and tetrads
with micronuclei. These meiotic defects are suppressed in the double mutant sar1-4 axr1-31. (B) Example of hypercondensed (arrowhead) and normal-
looking (arrow) meiocyte in the double mutant sar1-4 axr1-31. (C) Proportion of abnormal and normal meiocytes in sar1-4 (blue) and sar1-4 axr1-31
(orange). Fisher’s exact test was performed to analyze differences between themutants (p-value: ns–non-significant, ***p < 0.001). I: Meiosis I; II: Meiosis
II. Scale bars = 5 µm.
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clear explanation for this result, it is possible that in some meiocytes
other nucleoporins cannot supply the function of SAR proteins.
Alternatively, it could be a timing problem, with defects occurring in
meiocytes in which meiosis is slower. In any case, the presence of
normal-looking meiocytes together with abnormal meiocytes has
been described in other mutants. For example, mutations in BQT1, a
gene encoding a protein that tether telomeres to the spindle-pole
body during prophase I, affect spindle formation in about half of
meiotic cells in fission yeasts (Klutstein et al., 2015). In Arabidopsis,
mutants lacking JASON, a protein essential for proper spindle
orientation, or NSE2, a protein belonging to the SMC5/
6 complex, generate normal and unreduced meiotic products
(Erilova et al., 2009; De Storme and Geelen, 2011; Yang et al.,
2021). Mutants affected in CYCA2 genes or CYCB3;1 also show
alterations in a fraction of meiocytes (Bulankova et al., 2013).

The suppression of chromosome fragmentation in sar1 spo11
has evidenced that fragments produced by the absence of the
nucleoporin are generated by the inability to properly repair the
recombination intermediates formed from meiotic DSBs (Figure 4).
These defects in DNA repair may be due to failures in the
recruitment of proteins involved in the early stages of HR, as
evidenced by a reduction in the number of γH2AX and
RAD51 foci (Figure 5). Another possibility is that, due to the
absence of the nucleoporin, HR proceeds more slowly in some
meiocytes and this triggers failures in the repair of DSBs. In any case,
despite these problems in HR, the chromosome axes seem to form
correctly, even in the abnormal meiocytes, according to the results
obtained for ASY1. However, the process of synapsis is
compromised (Figure 2). The absence of synapsis is most likely
caused by problems in DNA homology search during DSB repair,
which is a prerequisite for the progression of synapsis (Osman et al.,
2011). In addition, the entangled chromosomes observed at
metaphase I in sar1, sar3, and hos1 (Figures 1, 3; Supplementary
Figure S2) are reminiscent of those observed in recombination-
defective mutants such as rad51, xrcc3, rad51c or mnd1
(Kerzendorfer et al., 2006; Pradillo et al., 2012; 2014).
Interestingly, SUMOylation in plants, as well as in yeast, appears
to be linked to the NPC, and SUMOylated proteins accumulate in
mutants defective for NUA (structural component of the nuclear
basket) and SAR1 (Muthuswamy and Meier, 2011). In fission yeast,
the Y-complex nucleoporin Nup132 is involved in the regulation of
SUMOylation during meiosis, and mutants deficient for this
nucleoporin exhibit upregulated SUMOylated proteins including
Pim1, Top1, and Top2 (Yang et al., 2023). Hyper-SUMOylation of
Top2 alters meiotic chromosome architecture (Li et al., 2013). In
Arabidopsis, topII mutants show condensation defects, entangled
chromosomes, and high levels of DNA fragmentation (Martinez-
Garcia et al., 2018). It is tempting to speculate that the meiotic
phenotype observed in Arabidopsis Y-complex deficient mutants is
somehow related to alterations in the SUMOylation of proteins with
meiotic function.

Distribution of NPCs is altered in
hypercondensed meiocytes

The excessive chromatin condensation observed in sar1 does not
seem to originate from the problems in HR, as it does not disappear

in the sar1 spo11 double mutant (Figure 4). These abnormally
condensed meiocytes have a morphology similar to that of cells
undergoing cell death. This process is characterized by cell
shrinkage, chromatin condensation, and DNA fragmentation
(Kerr et al.,1972; Reape et al., 2008). Hendzel et al. (1998)
pointed out that during cell death, chromatin condensation is not
an active process associated with histone phosphorylation as occurs
in mitosis or meiosis (Houben et al., 1999; Manzanero et al., 2000;
Oliver et al., 2013). In this case, condensation would be the result of
the degradation of euchromatin, nuclear matrix and lamin, in
addition to the aggregation of heterochromatin. However, we
have not detected appreciable variations in euchromatin- or
heterochromatin-specific epigenetic marks in the abnormally
condensed cells, at least at the cytological level, as variations at
the molecular level cannot be ruled out (Supplementary Figure S5).
Chromosome condensation problems in meiosis have been
described in mutants defective for the condensin complex
(Siddiqui et al., 2003; Smith et al., 2014) or mmd1 (male meiocyte
death1) mutants (Yang et al., 2003; Wang et al., 2016). Nevertheless,
unlike sar mutants, these mutants do not show any defects in the
appearance of chromosomes during early prophase I and present
chromatin decondensation at later stages (Yang et al., 2003; Smith
et al., 2014).

The altered distribution of NPCs in the NE could be the source
of the problems in chromatin compaction, since in abnormally
condensed meiocytes there is no defined pattern for NPCs, unlike in
normal-looking meiocytes (Figure 6). This phenotype reveals the
importance of SAR1 in the structure of NPCs. The absence of signal
corresponding to NPCs in these meiocytes is not due to NE
disintegration, as the signal corresponding to SUN proteins is
observed around the chromatin. Perhaps the apparent collapse of
NPCs could have some reversibility, and this explains why meiotic
changes only occur in a percentage of cells. Indeed, in HeLa cells
depletion of the Nup107-160 complex results in nuclei with a
continuous NE but no NPCs, although the defect in NPC
assembly could be reversed by adding Nup107-160 complex
containing fractions (Walther et al., 2003). In addition, depletion
of this complex also induces cell death following a spindle
checkpoint-dependent delay during mitosis (Rieder and Maiato,
2004; Zuccolo et al., 2007). In plants, the spindle checkpoint is not as
tightly regulated as in yeast or animals, and it could even not
function or be much relaxed during meiosis (Komaki and
Schnittger, 2016). In this sense, mutants with severe
recombination problems can complete meiosis, although no
gamete is functional (Wijnker and Schnittger, 2013). In sar
mutants the hypercondensed meiocytes appear to progress
through meiosis, giving rise to the masses of entangled
chromosomes observed at metaphase I (Figure 1). This is of
particular interest because studying meiosis in these mutants may
provide information on the possible meiotic function of these
nucleoporins that cannot be obtained from studies using other
model organisms.

SAR1, AXR1, and the auxin response

AXR1 is a component of the RUBylation pathway targeting,
among others, cullin proteins (Mergner and Schwechheimer, 2014).
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axr1 plants display auxin-related growth defects that are suppressed
by eliminating the function of SAR1 or SAR3 (Cernac et al., 1997;
Parry et al., 2006). In the present work, we have shown that the sar1
mutation also reverses the altered meiotic phenotype of axr1, which
is completely different from that of sar1 (Jahns et al., 2014). In
sar1 axr1 the synapsis problems disappear and the formation of the
obligatory chiasma, required for bivalent formation, is restored
(Figure 7). In the case of the somatic phenotype, it has been
suggested that sar mutants delay the nuclear import of Aux/IAA
negative regulators, thus ameliorating the defect in axr1, which
initially inhibits auxin gene expression (Parry et al., 2006). The
reversal of the axr1 meiotic phenotype in sar1 axr1 may also be
explained in this way. On the other hand, neither sar1 nor sar3
exhibit auxin hypersensitivity, revealing a complex relationship
between the NPC and the auxin response (Parry et al., 2006;
Robles et al., 2012). Surprisingly, there are no studies showing a
clear link between auxins and meiosis. This deserves further
investigation in the future.

Alternatively, the reversal of the meiotic phenotype in sar1 axr1
might be related to the RUBylation pathway. It has been suggested
that AXR1 functions during meiotic recombination through the
activation of a CRL4 (CULLIN RING LIGASE4) complex involved
in the ubiquitylation of specific protein targets, since a cul4 mutant
exhibit a meiotic phenotype reminiscent of that observed in axr1
(Jahns et al., 2014). Curiously, the SUMO and ubiquitin-proteasome
systems function coordinately in meiotic chromosome organization
and the regulation of meiotic recombination in mouse (Prasada Rao
et al., 2017). The presence of upregulated SUMOylated proteins in
sar1may somehow compensate for the lack of CRL4 activity in axr1.
Further analyses will be required to connect the function of these
post-translational modifications to the NPCs.

Concluding remarks

During meiosis, LINC complexes contribute to promote
telomere-driven chromosome movement at prophase I and
this function is highly conserved in evolution (Kim et al.,
2022). Strikingly, these complexes are also required for the
distribution of NPCs in the NE (Liu et al., 2007). Surprisingly,
few studies have analyzed the distribution of NPCs in plants,
although they appear to have a non-homogeneous distribution
during the early stages of meiosis (Holm, 1977; Zickler and
Kleckner, 1998; Cowan et al., 2002). Similarly, little is known
about how NPCs can influence chromosome behavior during
meiosis. This study reveals a meiotic role for SAR1 and SAR3,
scaffold nucleoporins belonging to the outer ring complex, in
plant meiosis. These findings will lead to new lines of research to
better understand how NE organization is modulated in the
dynamic chromosome events during meiosis and the specific
function of NPCs in this type of cell division.
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