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Editorial on the Research Topic 


The tumor and microenvironment crosstalk in breast cancer: from biology to therapeutic opportunity


Breast cancer (BC) is a complex process controlled and coordinated by the crosstalk between tumor cells and the several components of the tumor microenvironment (TME), which carry out both pro- and anti-tumor activities in early and advanced settings and play an active role in shaping therapy response. This Research Topic includes eleven papers, four reviews (Wu et al., Song et al., Liu et al., Thu et al.) and seven original articles (Liu et al., Guo et al., Li et al., Zhong et al., Kim et al., Unal et al., Torres-Sanchez et al.), that explore the cellular and molecular players of the breast TME to highlight their pathological implication in BC progression and patient’s outcome. Studying the tumor and microenvironment crosstalk could pave the way toward novel strategies for BC treatment, further supporting the need of more precise tools for personalized therapy planning.

Cancer associated fibroblasts (CAFs) are the most relevant cells in BC TME. Based on cell transcriptome profiling data, Li et al. studied the expression of long noncoding RNAs (lncRNAs) and their regulatory role in TME and immunity, generating a CAF-specific lncRNA (FibLnc) score associated with BC clinical features. From a total of 95 lncRNAs that were found specifically highly expressed in CAFs, 7 were identified to be BC survival-related and were used to construct a survival risk assessment model. The FibLnc score showed good prognostic power in several BC gene expression datasets. The relationship between FibLnc score, mutation status, and drug response was also analyzed, showing that the FibLnc score was able to reflect response to anti-PD-1 or CTLA4 immunotherapy in BC.

Immunotherapy has been frequently coupled with chemotherapy in the treatment of triple negative BC (TNBC), although its use has raised several concerns, since it is a complex and quite expensive treatment. Moreover, only a small portion of patients respond well to these novel therapies, evidencing the need to identify reliable predictive biomarkers and to explore other treatment options. In a retrospective study by Kim et al., a total of 40 samples from metastatic TNBC treated with immune checkpoint inhibitor (ICI) was analyzed for expression of 6 protein markers. The analysis indicated that the lymphocyte-activating gene 3 expression is a predictive biomarker for ICI response. BC with high density of LAG-3+CK+ cells had worse outcomes with PD-L1/PD-1 inhibitor, whereas BC with high density of LAG-3+CK- cells had better outcomes in terms of progression-free survival. Therefore, both tumor-intrinsic and stromal LAG-3 expression are important. In particular, multivariate analysis indicated that tumor LAG-3 was an independent biomarker, suggesting its involvement in driving resistance to PD-1/PD-L1 inhibitors in TNBC. Liu et al., instead, tested the efficacy of compound kushen injection (CKI) as an alternative TME modulator. This is a National Medical Products Administration (NMPA)-approved in China as anticancer agent. It increased chemotherapy efficacy by improving the amount of cytotoxic CD8+ T-cells in the tumor, coupled with the T-cells activation and the inhibition of tumor-promoting signaling pathways. Their results support the use of CKI as agent able to potentiate the anti-TNBC effects of chemotherapy.

The crucial role played by TME in immunomodulation was also assessed by Torres-Sanchez et al., which focused their attention on the Rho GTPase Rac and on Cdc42 as molecular targets involved in the crosstalk between cancer and immune cells. Starting from the hypothesis that Rac and Cdc42 inhibitors (Rac/Cdc42i) target also immunosuppressive immune cells, they performed in vitro and in vivo evaluations demonstrating the effectiveness of Rac/Cdc42i to reduce Rac and Cdc42 activation in macrophages, influencing their cytoskeleton functionality, rather than viability. Indeed, Rac/Cdc42i decreased myeloid cells activation and infiltration into mammary cancers, affecting also IL6 secretion and inducing an antitumor TME by inhibition of metastatic cancer cells, and immunosuppressive myeloid cells.

Since inflammation is the most important feature of TME, the group of Guo et al. analyzed the gene expression of 160 samples of TNBC in comparison to normal tissue samples, with the aim to define a signature of inflammation-related genes (IRGs) able to predict prognosis and treatment response. Thanks to the identification of clusters of IRGs, they developed and validated a prognostic signature that was integrated with clinical data to develop a model for prognosis prediction. High and low risk populations were identified and assessed for their deregulated genes and pathways, and for their IC50 values of chemotherapy and targeted therapy, evidencing how low-risk TNBC were also more sensitive to treatments.

Not only the presence of IRGs signature, but also the presence of a specific microbiota could be a biomarker for BC diagnosis and prognosis. Thu et al. proposed a systematic revision of the literature and a meta-analysis in the attempt to study: (i) microbiota alterations in BC patients, (ii) the impact of treatments on microbial modification and (iii) the impact of microbiome patterns on BC patients receiving the same treatment. They identified some bacterial species elevated in BC patients, despite a low intestinal microbial diversity, evidencing the presence of a complex network that links microbiome, BC and treatment options that required further studies.

In recent years, the association between programmed cell death pathways and the antitumor immunity in BC progression has drawn attention. As an inflammation-related death process, pyroptosis forms an inflammatory microenvironment and has a double-edged impact on both boosting and restraining tumor growth. The crucial factors in the pyroptosis pathways were reviewed by Wu et al. and include inflammatory cytokines (IL-1b and IL-18), inflammasomes (NLRPC4, NLRP3, NLRP1, AIM2), and gasdermins (GSDMA/C/D/E). It has been shown that pyroptosis takes part in the initiation and progression of immune response in BC through interaction with tumor-associated macrophages, myeloid-derived suppressor cells (MDSC), T lymphocytes, dendritic cells and natural killer cells, which promote metastasis, invasion, and angiogenesis in BC. At the same time, active gasdermins delivered to BC cells may destroy tumor cells and enhance immunotherapy. Further understanding of pyroptosis and its functions in BC may provide hints for more actionable targets and candidate drugs to augment immunotherapy efficiency in BC. Another programmed cell death process closely related to BC development is ferroptosis. BC cells exhibit vulnerability to ferroptosis. Ferroptosis is also involved in the regulation of immune microenvironment and immunotherapy resistance in cancer. By using machine learning approaches, a prognostic signature composed of ferroptosis-related genes and hypoxia-related genes (HFRS) was constructed (Zhong et al.). The HFRS was trained on The Cancer Genome Atlas (TGCS) BC cohort and validated on the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) BC cohort to predict overall survival in BC patients. The high- and low-HFRS patients showed differences in tumor immune cell infiltration, with the high-HFRS group more associated with reduced anti-tumor immunity. Unlike pyroptosis and ferroptosis, cuproptosis is a non-apoptotic programmed cell death pathway induced by the accumulation of intracellular copper. A recent study analyzed the association between cuproptosis and the immune microenvironment in BC (Song et al.). The expression profile of 12 cuproptosis-related genes (CRG) was assessed to construct a CRG signature with prognostic significance. Performing the unsupervised clustering algorithm, BC patients were classified into two cuproptosis patterns (Cluster A and Cluster B), where Cluster B showed more advanced clinicopathological characteristics, worse overall survival and enrichment in most immune cells and important immune checkpoints. Furthermore, the TME characteristics differed significantly in the high- and low-CRG_score groups, suggesting CRGs should be explored to tailor personalized immunotherapy in BC patients.

The crosstalk between BC cells and tissue microenvironment has finally emerged as a crucial mechanism that dictates the formation of metastases in distant organs. The microenvironment factors involved in the formation of liver metastasis and their interaction with BC cells were recently reviewed by Liu et al. Liver sinusoidal endothelial cells, hepatocytes, M2-polarized macrophages, Kupffer cells, CAFs, hepatic stellate cells, neutrophils, MDSC and regulatory T cells are involved in one or multiple phases of BC liver metastasis by direct interaction with BC cells to regulate extravasation and tumor cell seeding, or by releasing cytokines, growth factors, proteases, reactive oxygen species, and recruiting inflammatory cells, thus forming the premetastatic niche, favoring angiogenesis in the micrometastasis and inducing immune tolerance. To date, there are a few studies exploring novel interventional agents targeting the key signaling proteins in the hepatic microenvironment as potential treatment option for BC liver metastasis. Interesting examples are Bafetinib, which blocks the tumor-hepatocytes interaction, and PLD inhibitors, which reduce tumor-promoting macrophages and neutrophil infiltration in primary BC and liver metastasis.

In conclusion, this Research Topic highlights recent advances in the understanding of the pathological implications of the TME in BC progression, suggesting novel prognostic markers and potential therapeutic targets that deserve particular attention to tie these findings to clinical relevance.
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Pyroptosis is a brand-new category of programmed cell death (PCD) that is brought on by multitudinous inflammasomes, which can recognize several stimuli to pilot the cleavage of and activate inflammatory cytokines like IL-18 and IL-1β is believed to have dual effects on the development of multiple cancers including breast cancer. However, pyroptosis has different effects on cancers depending on the type of tissues and their distinct heredity. Recently, the association between pyroptosis and breast cancer has received more and more attention, and it is thought that inducing pyroptosis could be used as a cancer treatment option. In addition, a great deal of evidence accumulating over the past decades has evinced the crosstalk between pyroptosis and tumor immunological therapy. Thus, a comprehensive summary combining the function of pyroptosis in breast cancer and antitumor immunity is imperative. We portray the prevalent knowledge of the multidimensional roles of pyroptosis in cancer and summarize the pyroptosis in breast cancer principally. Moreover, we elucidate the influence of inflammasomes and pyroptosis-produced cytokines on the tumor microenvironment (TME) of breast cancer. Taken together, we aim to provide a clue to harness pyroptosis rationally and apply it to augment immunotherapy efficiency for breast cancer.
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Introduction

The Global Cancer Statistics 2020 showed that breast cancer is now the most prevalent worldwide cancer, constituting 11.7% of the anticipated 2.3 million global cancer cases, and being the first cause of cancer death among women (1). From a morphological, phenotypic, and molecular perspective, breast cancer is very heterogeneous (2). Its histological classification is primarily grounded on the expression or occurrence of hormone receptors including human epidermal growth factor receptors 2 (HER2) and estrogen receptors (ER), progesterone receptors (PR), and the proliferation marker Ki-67. There are four main categories of breast cancer according to the presence/absence of molecular markers mentioned above: HER2+ (ER−, PR−, HER2+), luminal A (ER+ and/or PR+, HER2−, Ki-67<14%), luminal B (ER+ and/or PR+, HER2+ or HER2−, Ki-67 >14%) and triple-negative breast cancer (TNBC) (ER−, PR−, HER2−) (3). About 10% of breast cancer patients grow into metastatic disease and 90% are not metastatic when the diagnosis was made. The Therapeutic measures of breast cancer are classified into systemic therapy and local therapy based on the subtype and the degree of metastasis (4). For diagnosed breast cancer patients present with nonmetastatic, the therapies are aimed at eradicating the full extent of the tumor and preventing tumor metastasis and recidivism. Local therapy includes surgery and postoperative radiation while neoadjuvant (preoperative) and adjuvant (postoperative) treatment are defined as systemic therapy. The standard systemic therapy is dependent on the breast cancer subtype, including chemotherapy alone for TNBC, endocrine therapy which is the cornerstone of HER2−/ER+/PR+ breast cancer, and immunotherapy (i.e., trastuzumab and pertuzumab) for HER2+ breast cancer. Currently, almost all patients present with metastatic breast cancer remain incurable virtually, local therapy together with systemic therapy is normally prescribed to the therapeutic purpose of relieving the symptoms and extending life (5). Although radical surgical resection is the most curative therapy, patients diagnosed with later-stage breast tumors face a significant risk of morbidity and death rates, which poses an enormous challenge for the prognosis and therapeutic effect of breast cancer. In addition, the prognosis of patients with advanced-stage tumors remains abysmal because of the resistance to radiotherapy and chemotherapy.

The paradigm of treatment has shifted from standardized treatment regimens to “precision medicine” as a result of advancements in breast cancer diagnosis and management, which targets the particular genetic composition of the tumor (6). For that reason, the deep insight into the potential molecular mechanism of breast cancer therapy may serve as a precondition to develop new treatment strategies. It is urgent to explore additional clinical approaches for effective breast cancer intervention and increase these tumors’ sensitivity to chemotherapy and radiotherapy. Emerging evidence has revealed that pyroptosis has positive significance for developing new multiple malignant tumors including breast cancer therapy regimens, degrading the tolerance to chemotherapy, and prolonging patients’ life span. Pyroptosis, a type of PCD relating to or causing lysis and inflammation, is actuated by diverse incitements. And extensive research has been carried out on proptosis and various diseases. Since the advent of the protein known as gasdermin D (GSDMD), which is engaged in the pyroptotic process in 2015, abundant treatments have been developed to trigger pyroptosis for cancer. Pyroptosis also has a close correlation with the transition of immunity in the TME, which can use the immune response to mediate pyroptosis and treat cancer (7). Due to its hypoergia in the lymphocytic infiltrate, cancer mutational load, and responsiveness to anti-programmed death-1/programmed death ligand-1 (PD-1/PD-L1) treatment, breast cancer was historically thought to be immunologically “cool” and “quiet”. However, in the last few decades, with the evolutionary discoveries on immune checkpoints and breakthroughs of molecular biology, immunotherapy has achieved remarkable success in breast cancer treatments (8). And a substantial amount of evidence has demonstrated that effective monotherapy necessitates sustained anti-cancer immunity to lower tumor recurrence. Despite the fact that pyroptosis has drawn more attention because of its conflicting effects on immunotherapy and cancer, a less elaborated summary covered the functions of pyroptosis and the close connection between the innate immune system and pyroptosis-mediated treatment in breast cancer has been reported. Hence, it is compulsory to fill this vacancy and provide guidelines for our future directions to make use of such a mighty implement in the fight against breast cancer and the treatment option.

This review covers an introduction to pyroptosis and a summary of all the current knowledge about its roles in the tumorgenesis and development of breast cancer, as well as its molecular mechanism in breast cancer. Through a systematic search based on four common databases, the current pyroptosis mechanisms of breast cancer mediated by gasdermins, the main executors of pyroptosis, will be described in detail. We also concentrate on how pyroptosis regulates tumor immunity. The possible roles of pyroptosis-related inflammasomes, gasdermins, and cytokines like interleukin-1β (IL-1β) and interleukin-18 (IL-18) in the TME of breast cancer are further elucidated to explore potential targets contributing to fight against breast cancer. With this review, we attempted to broaden our understanding of pyroptosis and how it interacts with immune treatment for breast cancer, which will provide an avenue for illuminating more actionable targets and candidate drugs for potential pyroptosis-related breast cancer therapy.



Overview of pyroptosis

In a multicellular organism, it is extremely important to keep the proper equilibrium between cell survival and mortality in the physiological process and disease course. Among those processes, PCD plays a significant role in homeostasis (9). PCD refers to the tightly regulated, genetically controlled, self-orchestrated processes of cell death relying on certain genes that encode signals. Based on considerable research on biochemical features and intricate mechanisms, multiple PCD forms have been found containing apoptosis, autophagy, necroptosis, ferroptosis, pyroptosis, PANoptosis, etc (10). Pyroptosis is an inflammatory PCD mediated by inflammasomes which can cleave the gasdermin family proteins and awaken the inactive cytokines like IL-1β and IL-18 (11). Pyroptosis differs from other forms of PCD in morphology and biochemistry because it finally leads to the creation of cell membrane perforations, the loss of ion homeostasis, the release of inflammatory mediators, and the emergence of huge bubbles from the plasma membrane (12).

Pyroptosis is firstly discovered in rapid macrophage death induced by Shigella flexneri in 1992 and was regarded as apoptosis at first because of the similar characteristics (13). However, further studies showed this induction of macrophage apoptosis resulted in a considerable release of IL-1, specifically IL-1β, and only modest levels of IL-6 and TNF-α (14). Subsequent studies indicated that the biochemistry of this apoptosis induced by Salmonella had a remarkable resemblance to necrosis. At the same time, the caspase-1 was activated, which clearly distinguished it from other kinds of cell deaths. Beyond that, the membranes of apoptosis cells were complete while the integrity of the infected macrophages cell membrane was ruined (15, 16). Those distinctions above showed that the macrophage death induced by Salmonella was different from its apoptotic counterpart. Thus, in 2001, Boise et al. (17) embraced the concept that death induced by Salmonella was programmed as discussed by Boise and Collins and coined the appellation pyroptosis to describe it. The terminology “pyroptosis” derives from the Greek terms “pyro,” which refers to fire or fever, and “ptosis,” which means “falling” (18). From then on, though there have been a plethora of reports related to pyroptosis, the upstream and downstream mechanisms of caspase-1 activation were still unclear. In 2002, Fabio Martinon (19) firstly reported the identification of a compound called inflammasome that activates caspase, which was a breakthrough in the understanding of the activation of the caspase-1. Since then, various inflammasomes composed of different receptors of caspase-1 activation have been identified. Afterward, in 2015, Shao et al. firstly discovered that GSDMD was a target cleavaged by caspase-1 (20) (Figure 1), which uncovered the downstream mechanisms of pyroptosis. In addition to this, more and more pieces of evidence have shown that pyroptosis is also brought on by gasdermin E (GSDME) triggered by caspase-3 (21) (Figure 1). So far, there are six categories of human gasdermins classified based on the difference in the conserved domain: gasdermin A (GSDMA), gasdermin B (GSDMB), gasdermin C (GSDMC), GSDMD, GSDME/DFNA5 (deafness, autosomal dominant 5)), and DFNB59/Pejvakin) (22). While mice possess ten gasdermins including three homologs GSDMA (GSDMA1-3), four homologs GSDMC (GSDMC1-4), and one homolog each of GSDMD, GSDME, and DFNB59. Except for DFNB59, the gasdermins proteins are conserved in the N-terminal domain and involved in certain biological functions, especially in forming plasma membrane pores and inducing pyroptosis (23, 24).




Figure 1 | Schematic molecular mechanisms representation of pyroptosis pathway. Numerous factors such as DAMPs and PAMPs trigger the canonical inflammasome pyroptosis pathway to occur and activate pro-caspase-1. Cytoplasmic sensors of those stimuli include NLRs, AIM2, and Pyrin. Pro-IL-1β and pro-IL-18 then mature as a result of activated caspase-1. In the non-canonical pathway, activated caspase-11/4/5 is facilitated by direct recognition of intracellular LPS. Activated caspase-1/11/4/5 release the N-terminal domain of GSDMD (GSDMD-N) from the auto-inhibitory C-terminal domain of GSDMD (GSDMD-C) by cleaving full GSDMD. When GSDMD-N reaches the plasma membrane, it oligomerizes and creates a pore that ultimately aids in cell lysis. The formation of pore supports the secretion of intracellular content (HMGB1, LDH, ATP) and the inflammatory cytokines IL-18 and IL-1β activated by caspase-1. Caspase-8 may additionally cleave GSDMD and GSDMC through other pyroptosis pathways. Besides it, caspase-3/4/9, granzyme B (GZMB), and granzyme A (GZMA) may all act on GSDME and GSDMB, respectively.



Experiments carried out on mice and human cells have repeatedly demonstrated that pyroptosis is induced by different caspases. According to the study reported by Kayagaki et al. (25), there are two distinct pyroptosis pathways: the canonical pathway which leads to the activation of inflammasome caspase-1, and the non-canonical pathway, which involves the activation of inflammasome caspase-11. And Subsequent studies have shown that the orthologs of mouse caspase-11, caspase-4, and caspase-5 function on noncanonical pathways in human cells (26–28) (Figure 1). Inflammasomes serve as the molecular platform to activate caspase-1-mediated inflammatory responses, which promote the secretion of bioactive IL-1β and IL-18 and induce pyroptosis ultimately. Sensor molecules, typically pattern recognition receptors (PRRs), and adaptor apoptosis-associated speck-like protein (ASC) are the building blocks of inflammasomes (29). In the canonical inflammasome pathway, the recruitment of ASC and pro-caspases to form inflammasomes occurs as a result of PRRs recognizing damage- or pathogen-associated molecular patterns (DAMPs or PAMPs). PRRs related to pyroptosis mainly encompassed three gene families: intracellular nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs), absent in melanoma 2 (AIM2)-like receptors (ALRs), and Pyrin (30). Depending on the type, PRRs can recognize different DAMPs or PAMPs. NLR inflammasomes can be initiated by adenosine triphosphoric acid, bacterial toxins, exogenous pathogens, and endogenous damage signals (31) while AIM2 mainly responds to cytosolic DNA stimulation during bacterial or viral infection (32). PRRs comprise either leucine-rich repeats (LRR) or DNA binding HIN-200 domain in the C-terminal sever as ligand recognition and autoinhibition and caspase recruitment (CARD) or pyrin (PYD) domains in the N-terminal that control the signaling event (33). A central nucleotide-binding oligomerization domain (NOD/NACHT) domain is also in NLR proteins and utilizes ATP to activate the signaling complex (31). After the C-terminal domain recognizes the stimuli from the corresponding DAMPs or PAMPs, the conformation of PRRs changes to relieve self-inhibition. And the ASC is made up of PYD and CARD docks onto the PRRs hub via PYD-PYD interactions and then recruits pro-caspase-1 employing CARD-CARD interactions to create the typical inflammasome (34). The pro-caspase‐1 recruited to the inflammasome is activated to form caspase‐1 which catalytically slices GSDMD in the middle linker to separate the domain of N-terminal (GSDMD-N) and C-terminal (GSDMD-C) rapidly, removing the inhibitable action on the GSDMD-N. In the plasma membrane, GSDMD-N then bind to the phosphoinositide in the cell membrane to generate oligomeric holes (20), leading to elevated membrane permeability, swelling, bubble formation, and the ultimate plasma membrane rupture to release high mobility group protein (HMGB1), lactate dehydrogenase (LDH, and)ATP (35–37). Besides it, caspase-1 has the ability to cut the precursor protein of IL-1β and IL-18 and maturate those molecules, which are then released into the nearby immunological system and eventually stimulate the complete immune response to eliminate invading pathogens. Meanwhile, mature IL-1 and IL-18 can be secreted through membrane pores created by GSDMD. In conclusion, caspase‐1‐dependent pyroptosis mediated by inflammasome assembly constitutes the classical canonical pathway.

Activated caspase-4/5/11 triggers pyroptosis specifically connect with the lipid A through binding bacterial lipopolysaccharide (LPS) in the non-canonical pathway, which triggers caspase-4/5/11 oligomerization and activation to autonomously cleaves the GSDMD, eventually leading to pyroptosis (38). Caspase-4/5 does not mature proproteins IL-1β and IL-18, but caspase-11 does promote a modest amount of IL-1β release dependent on the mediation of NLRP3 inflammasome (25). The release of ATP induced by caspase-11 activates an ion channel, resulting in cell rupture and potassium (K+) efflux which in turn triggers NLRP3 inflammasome and inevitably stimulated the release of IL-1β (39, 40).

Pyroptosis can also be initiated by certain additional caspases, including caspase-3 (21) and caspase-8 (41) as well as caspase-9 (42) (Figure 1). Using either caspase-8 or caspase-9, the death receptor-mediated or the mitochondrial apoptotic pathway activates caspase-3 (43). With the treatment of chemotherapy drugs or viral infection, caspase-3 selectively cleavages GSDME to release the GSDME-N, which subsequently stimulates the activation of the pyroptosis (21, 44). Zhang et al. (42) also uncovered that Spatholobus suberctus Dunn percolation extract (SSP) elevated caspase-4 and caspase-9 to cleave GSDME, inducing the permeabilization of the cell membrane and pyroptosis. Moreover, antibiotic chemotherapy drugs can induce pyroptosis in a GSDMC manner mediated by caspase-8 (45). And recent studies also indicated that cytosolic caspase-8 was capable of cleaving GSDMD to induce pyroptosis when it was activated by ligands of Toll-like receptors 3 and 4 (TLR3 and TLR4) or tumor necrosis factor (TNF) (41, 46, 47). More unexpected is that pyroptosis can also be activated by granzymes (GZMs) released by natural killer (NK)cells and cytoplasmic granules within cytotoxic T cells (CTLs) (Figure 1). Liu et al. (48) initially stated that Granzyme B (GZMB) liberated from chimeric antigen receptor T cells allowed them to briefly stimulate caspase-3 in leukemic cells and cause GSDME-dependent pyroptosis in 2020. Furthermore, studies identified that GZMB can straightway incise GSDME to trigger pyroptosis (49). Additionally, it has been demonstrated that the lymphocyte-derived granzyme A (GZMA) hydrolyzes GSDMB at Lys229/Lys244 site to cause tumor cell pyroptosis in the same year (50).



The roles of pyroptosis in cancer

Cancer cells are characteristic of unlimited proliferation and organisms try to take advantage of the regulation of the protective mechanism of normal cells to restrict cell proliferation and suppress tumor development in normal physiological conditions (51). However, cancer cells have numerous tactics to escape or curb the cell death process that mediates the natural cell death process. The daedal molecular management of the internet signal-mediated death process is known to participate in the initiation, proliferation, metastasis, and even treatment effect of malignant cells. Thus, stimulation of cellular demise may be a possible therapeutic target for cancers. Emerging shreds of evidence have shown that pyroptosis occurs in various malignant cells. As an inflammatory cell death, the crucial elements in the pyroptosis such as inflammasomes, gasdermin proteins, and inflammatory cytokines, take part in the transformation and development of malignancy. In addition, accumulating studies indicate that pyroptosis is involved in all stages of carcinogenesis. Thus, induction of pyroptosis could be considered an auspicious treatment compound for manipulating various cancers in the upcoming days (52).

The association involving pyroptosis with cancer is intricated, and the influences of pyroptosis on cancer are disparate based on depending on the tissues and genetic make-up of an individual. Pyroptosis presents two aspects of influences on multiple cancers. On the one side, the microenvironment created by pyroptosis modulates the process of tumor formation and progression including tumor growth, invasion, and metastasis. Chronic pyroptosis causes the liberation of the inflammatory cytokines IL-1, IL-18, LPH, and HMGB1, which could form an inflammatory microenvironment and actuate tumorigenesis. It has been reported in a review that NLRP3, IL-1β, and IL-18 motivate the development of tumors in lung cancer, melanoma, and breast cancer. Gao Tan also proved that HMGB1 could promote colorectal cancer tumorigenesis via the activation of the ERK 1/2 pathway (53). On the other side, pyroptosis induction suppresses the occurrence and development of cancers. Some researchists have elicited that several anti-cancer drugs can trigger pyroptosis to restrict malignancies. PPVI was reported by Jin-Feng Teng to markedly inhibit the growth of non-small cell lung cancer through the activation of caspase-1/GSDMD -mediated pyroptosis (54). In osteosarcoma, it has been demonstrated that Dioscin can inhibit tumor growth through GSDME-dependent pyroptosis (55). The main explication for the double-edged impacts of pyroptosis maybe is that inflammatory cytokines mediated by pyroptosis lead to chronic inflammation which propels the risk of oncogenesis (56) while acute pyroptosis activation results in cell mortality and restrains the progression of cancer (45). And beyond that, pyroptosis has advantages in overcoming chemotherapeutic drug resistance which is a deficiency in apoptosis. Pyroptosis inducers and chemotherapy regimens used together can improve the therapeutic efficacy. Qiao et al. (57) have substantiated that α-NETA triggered the GSDMD-mediated pyroptosis induced by caspase-4 in epithelial ovarian cancer. Several classical chemotherapy drugs including cisplatin, paclitaxel, 5-fluorouracil, and doxorubicin (DOX) was also reported to induce caspase-3/GSDME-modulated pyroptosis in various cancer cells (58–60). During the last several years, a considerable amount of small molecules currently were designed to execute pyroptosis in the cancer cell as therapeutic strategies. It thus appears that pyroptosis is quite significant in the development of cancer pathogenesis and cancer treatment. However, an extra exhaustive analysis of the processes and modulation of pyroptosis in cancer will favor the understanding of pyroptosis-related caner and develop more therapeutic targeting of pyroptosis.



Pyroptosis and tumor immunity

Cancer immunotherapy achieves remarkable treatment effects in various types of cancer, but its efficacy for most tumors is still not well managed. The immune reaction of the tumor to immunotherapy is often reliant on the immunogenicity of cancer cells (61). Neoplastic cells with highly mutagenic can escape immunosurveillance, which generates tumors and resists anti-tumor immunity. Except for the immunostimulatory therapeutic regimens such as immune-checkpoint inhibitors (ICIs), adoptive cell transfer therapy, and dendritic cell-based vaccines, the attention of investigators is beginning to turn closer to the immunobiology of dying cancer cells. It is currently appreciated that pyroptosis-mediated therapy for anti-cancer which may either subdue or expand their immunogenic ability has already achieved notable success. The inflammatory reaction is closely connected to pyroptosis which has specific morphological features and drills into the cell membrane, causing the secretion of inflammatory factors, which ends up straight amplifying the systemic immune reaction.

As an inflammatory cell death, the immune system response brought on by pyroptosis has pro- and antitumorigenic effects in all periods of tumor occurrence. Pyroptosis activation and the secretion of cytokines related to pyroptosis either change the TME and accelerate cancer progression via employing immune evasion tactics to escape immune surveillance or stimulate the immunological system by igniting immune cells which generate immunological memory to achieve tumor regression and decrease the resistance to tumor immunotherapy (62). A previous study published by Pachathundikandi (63) demonstrated that Helicobacter pylori could induce pyroptosis via manipulating the generation of NLRP3 inflammasome and inflaming a mass of IL-1β or IL-18 release in human immune cells to reduce host immunity in gastric tumor development. Another study has confirmed that pyroptosis induced by NLRP3 and IL-1β secretion might adjust the TME towards an immune suppressive milieu, which facilitates cancer proliferation and invasion in mouse and human breast cancer (64). These study results suggested that inflammasomes trigged-pyroptosis can encourage immunosuppression or subvert immune response in TME, which provides the advantage to tumor cells eluding host cell immunologic reactions and provide protection against tumor progression. Instead, recent research has thrown new light on how immune cells undergo pyroptosis to expedite powerful immune reactions to exert their antineoplastic function. Sorafenib was demonstrated (65) that acts through direct immune modulation involving caspase-1-related MΦ pyroptosis and the following release of inflammasome-cytokine enhanced the cytotoxicity of NK cytotoxicity for the efficient tumor cell killing. Coincidentally, Yokoyama et al. (66) also revealed that the cotreatment of secretoglobin 3A2 and LPS significantly actuated pyroptosis of macrophages. This was urged by the caspase-11/NLRP3 inflammasome, which pressed on through immune regulation and decreased cancer cell proliferation in vitro and xenograft tumors in mice. Similarly, other researchers demonstrated that GSDMD levels were higher in activated CD8+ T cells and the lack of GSDMD could degrade their cytolytic capacity (67).

Apart from the analysis provided above, tumor-infiltrating immune cells were reported to active pyroptosis in cancer cells. Recently research discovered the GZM released from cytotoxic lymphocytes via the granule exocytosis pathway is crucial in pyroptosis. GZMA from the NK cell and CTLs were proven to induce pyroptosis in murine tumor cells via the cleavage of GSDMB, which not only enhances the antitumor immunity but also promotes tumor clearance (50). Similarly, Zhang et al. (49) have shown that GZMB interceded by killer cytotoxic lymphocytes shared the same cleavage site of GSDME with caspase-3 and triggered pyroptosis in many cancers, augmenting killer-cell immunity and enhancing the phagocytosis of tumor cells. Moreover, recent research showed that pyroptosis and ICIs work collaboratively to influence each other. Activation of pyroptosis in objective cells improves the sensitivity of the ICI-resistant cancers to checkpoint barricade and enhances antitumor activity (68). In mice bearing TNBC cell 4T1. Wang et al. (69) set up a bioorthogonal system applying GSDMA3 and anti-PD-1 mAb, which markedly sensitized to anti-PD-L1 cancer immunological therapy and decreased tumor growth. Last but not least, along with increased knowledge of the latent immunosuppressive mechanism of pyroptosis, several novel strategies for cancer therapy that drive cancer cells to pyroptosis and then increase the efficaciousness of cancer immunotherapy have achieved an unqualified success (70). Various new technologies and treatments can increase cancer risk cells to undergo pyroptosis, which can stimulate the immune system by promoting strong immune cell activity and accumulating and upregulating various immunological components to boost the effectiveness of immunotherapeutics. Veronica et al. (71) described a novel high-frequency irreversible electroporation technique to remove tumors, which inhibited 4T1 progression and stimulated a pro-inflammatory shift in TME related to pyroptosis. In turn, the level of tumor attenuation and metastatic lesions correlates with cellular immunity. Gao et al. (72) also substantiated the infusion of methotrexate-containing plasma-membrane microvesicles could induce GSDME-dependent pyroptosis of cholangiocarcinoma cells and the subsequent secretion of intracellular contents activate the production of proinflammatory cytokines from patient-derived macrophages, which ultimately stimulated a secondary wave of neutrophils to the tumor for the therapy of cholangiocarcinoma. Additionally, Fan et al. (73) introduced a novel strategy of combining decitabine which was able to reverse GSDME silencing with chemotherapy nanodrugs LipoDDP for causing cancer cells to activate the caspase-3 pathway and eventually stimulated the occurrence of pyroptosis. This combined chemotherapy-based pyroptosis promoted immunity cell activation and ulteriorly enhances the immunological effects of chemotherapy to annihilate the activities, metastasis, and recurrence of tumors.

These studies illustrated the effects of pyroptosis on tumor immunity are complicated. Pyroptosis-associated inflammasomes and cytokines are incorporated into tumorigenesis and the TME, which not only develop the tumor but also induce pyroptosis. The interesting thing is that pyroptosis can inhibit tumors and stimulate immune response which suppresses tumor escape in turn. In addition, the pyroptosis of immune cells also has a certain effect on tumors. All in all, the two-way connection between tumor immunocompetence and pyroptosis is going to be a promising investigation of hot issues for tumor immunotherapy.



Searching strategy

To identify the eligible studies about the current molecular mechanisms of pyroptosis in breast cancer, we have conducted a systematic search in four common databases [PubMed, Cochrane Library, EMBASE (OVID), and PsychINFO] prior to June 1, 2022. The searching strategy was: [(“Breast Neoplasms”[Mesh]] OR (((((((((((((((((((((((((((((((((((((Breast Neoplasm) OR (Neoplasm, Breast)) OR (Breast Tumors)) OR (Breast Tumor)) OR (Tumor, Breast)) OR (Tumors, Breast)) OR (Neoplasms, Breast)) OR (Breast Cancer)) OR (Cancer, Breast)) OR (Mammary Cancer)) OR (Cancer, Mammary)) OR (Cancers, Mammary)) OR (Mammary Cancers)) OR (Malignant Neoplasm of Breast)) OR (Breast Malignant Neoplasm)) OR (Breast Malignant Neoplasms)) OR (Malignant Tumor of Breast)) OR (Breast Malignant Tumor)) OR (Breast Malignant Tumors)) OR (Cancer of Breast)) OR (Cancer of the Breast)) OR (Mammary Carcinoma, Human)) OR (Carcinoma, Human Mammary)) OR (Carcinomas, Human Mammary)) OR (Human Mammary Carcinomas)) OR (Mammary Carcinomas, Human)) OR (Human Mammary Carcinoma)) OR (Mammary Neoplasms, Human)) OR (Human Mammary Neoplasm)) OR (Human Mammary Neoplasms)) OR (Neoplasm, Human Mammary)) OR (Neoplasms, Human Mammary)) OR (Mammary Neoplasm, Human)) OR (Breast Carcinoma)) OR (Breast Carcinomas)) OR (Carcinoma, Breast)) OR (Carcinomas, Breast))) AND ((“Pyroptosis”[Mesh]) OR ((((((((((((Pyroptoses) OR (Pyroptotic Cell Death)) OR (Cell Death, Pyroptotic)) OR (Death, Pyroptotic Cell)) OR (Deaths, Pyroptotic Cell)) OR (Pyroptotic Cell Deaths)) OR (Caspase-1 Dependent Cell Death)) OR (Caspase 1 Dependent Cell Death)) OR (Inflammatory Apoptosis)) OR (Apoptoses, Inflammatory)) OR (Apoptosis, Inflammatory)) OR (Inflammatory Apoptoses))). To find additional relevant research, we also examined the reference lists in the related articles manually.

Figure 2 showed the search flowchart for identifying the eligible studies reporting the relationship between breast cancer and pyroptosis. In the initial database search, 299 publications were detected, of which 67 came from PubMed, 147 from EMBASE, 75 from the Cochrane Library, and 10 from the PsychINFO database. After excluding duplicates and those studies with reasons, 14 eligible studies (42, 45, 77, 78, 83, 86, 91, 93, 97, 103, 106, 107, 108, 109) were finally included. Table 1 summarizes the biomolecular mechanisms of pyroptosis in breast cancer mentioned in the 14 included studies.




Figure 2 | Flow chart of study selection to identify the relevant studies reported on the association between pyroptosis and breast cancer.




Table 1 | Mechanisms of pyroptosis in breast cancer.





Molecular mechanism of pyroptosis in breast cancer

The central mediators of pyroptosis are proteins from the Gasdermin family (86).

The majority of previous research about pyroptosis concentrated on caspase-1/4/5/11 and GSDMD, and this kind of cell death was frequently referred to as inflammatory cell death. However, scientists focused their emphasis on another gasdermin family which directly ruins the cell membranes and serve as executor in pyroptosis with the intensive investigation recently (86). Six categories of gasdermins have been identified which have different roles in breast cancer respectively (Table 2) and the specific molecular mechanism of pyroptosis in breast cancer will be briefly introduced below through the six members of the gasdermins. Among these, GSDMD and GSDME have been thoroughly examined in pyroptosis, and the two executioners will be investigated in depth below (Figure 3).


Table 2 | The introduction and features of GSDMs.






Figure 3 | Signaling pathways regulating pyroptosis in breast cancer. (Mechanisms involving only mouse cells were drawn in blue indicator lines while human cells were drawn in red indicator lines, and mechanisms involving both mouse cells and human cells were drawn in black indicator lines.) Caspase-3/GSDME-dependent pyroptosis is induced through activating molecules including Bax, AIM2, caspase-4, caspase-9, DRD2, and UCP1 and AMPK/SIRT1/NF-κB/Bax axis and STAT3/ROS/JNK axis involved in the process. Besides it, the suppression of TGF-β signaling via MDA5- and RIG-I- also trigger caspase-3/GSDME dependent pyroptosis. MEG3/NLRP3, miR-200b/JAZF1, JAK2/STAT3 signaling pathway, and NF-κB participate in the caspase-1/GSDMD-pyroptosis.PD-L1 under hypoxia switches TNFα-derived-apoptosis to noncanonical pyroptosis triggered by caspase-8 and is dependent on GSDMC.



The following is explored in depth with these two executioners, GSDMD and GSDME, two of these molecules that have been thoroughly examined in pyroptosis.



Potential strategies targeting GSDMD-mediated pyroptosis

The oldest known gasdermin related to pyroptosis is GSDMD. Caspase-1/4/5/11 in the canonical pyroptosis pathway and caspase-8 in the non-canonical pyroptosis pathway may both cleave GSDMD. According to a spearman correlation analysis of breast cancer and adjacent noncancerous growths carried out by Wu et al. (90), there was positive relevancy among the expression of GSDMD, caspase-1, and IL-1β, which is compliant with the GSDMD regulated pyroptosis development law. Meanwhile, breast cancer pathological grade and TNM staging were adversely connected with the levels of pyroptosis-associated proteins expression, which concludes that the occurrence, growth, metastasis, and prognosis of breast cancer are significantly influenced by GSDMD.



NF-κB/caspase-1/GSDMD

Nuclear factor-kappa B (NF-κB), a factor controlling DNA transcription, is well recognized for its control over cell division and involvement in inflammatory immune responses (93). Pizato et al. (74) demonstrated that Dihydroartemisinin (DHA) triggered diverse pyroptosis biomarkers in TNBC cells MDA-MB-231 from humans and murine TNBC cells 4T1, which induced pyroptosis eventually. The results of the study showed that DHA first causes NF-κB nuclear translocation and an increase in ASC expression. Then, after being exposed to DHA, breast cancer cells secreted more IL-1β and moved HMGB1 from the nucleus to the cytoplasm via activating caspase-1 and GSDMD. Moreover, Wang et al. (75) confirmed that nobiletin can inhibit breast tumor growth by inducing pyroptosis in miR-200b/JAZF1/NF-κB manner.



MEG3/NLRP3/caspase-1/GSDMD

As emerging regulators of cell pyroptosis, long noncoding RNAs (lncRNAs) have drawn widespread interest recently (94, 95). As a type of lncRNA, maternally expressed gene 3 (MEG3) has been studied extensively in oncogenesis and actions. And a recent study found that MEG3 controlled the MEG3/miR-223/NLRP3 axis to prevent pyroptosis (96). Another research proved that MEG3 knockdown mitigated lung damage induced by hyperoxia by blocking pyroptosis (97). All those evidences revealed that MEG3 participated in the process of pyroptosis. Honglin Yan (76) also showed that Cisplatin (DDP) had the effect of an anti-tumor on TNBC, which is brought on by up-regulating MEG3 to cause pyroptosis in NLRP3/caspase-1/GSDMD manner. Similarly, the activating impact of DDP on pyroptosis was also eliminated by MEG3 knockdown, which indicates that MEG3 is crucial for pyroptosis in breast cancer.



JAK2/STAT3/NLRP3/caspase-1/GSDMD

Previous studies have shown that JAK/STAT axis is pivotal in cell metabolism and mammary cancer cell proliferation (98). And it has been noted that the stimulation of JAK2/STAT3 causes the breast stemness gene expression and could be a novel prognostic indicator for metastasis of breast cells (99). Lately, Liu et al. (77) hypothesized that polydatin has an anti-cancer effect on TNBC mice fed a fat-rich diet via inducing pyroptosis in JAK2/STAT3 manner. In the experimental models, polydatin downregulated the phosphorylation of STAT3 and JAK2 and enhanced the expression of NLRP3, caspase-1, IL-1β, and IL-18 to take part in the activation of pyroptosis.



Potential strategies targeting GSDME mediated pyroptosis

GSDME, also called DFNA5 was originally discovered as a gene for hearing loss because of the association between mutation and a specific autosomal dominant non-syndromic in deafness 1988 (100). In ER-negative breast cancer, GSDME is overexpressed and may be involved in the carcinogenesis independent of hormonal response (91). Compared to matching normal breast tissue, Kim et al. (92) found that the GSDME promoter frequently methylates in primary breast cancer tissue samples, and this methylation generally reduced the gene expression of GSDME. The study also showed that only cell lines with estrogen receptor-positive were found to have this methylation. Additionally, in breast cancer patients, the methylation status of GSDME was linked to lymph node metastases. Thus, the right chemotherapy agents for the therapeutics of breast cancer should be chosen based on levels of GSDME expression to enhance the sensitivity to chemotherapy medications and reduce drug resistance. According to recent reports, the cleavage of GSDME is facilitated by chemotherapy medicines via activating caspase-3 which is a key apoptosis executor, eventually switching apoptosis to pyroptosis as secondary necrosis (21, 44). Even more to the point, these cells participate in pyroptosis only in presence of GSDME. Thus, chemotherapy drugs can induce GSDME-expressing breast cancer cells to undergo caspase-3-triggered pyroptosis (44).



AIM2 or MDA5 or RIG-I/caspase-3/GSDME

AIM2, a part of the inflammasome involved in pyroptosis, can stimulate caspase-1 and caspase-8 activity at the same time and cause the caspase-3 to be split (101). A recent study reported by Yaqiong Li (78) indicated that breast cancer cells undergo pyroptosis via the AIM2/caspase-3/GSDME pathway active by DHA. In terms of the mechanism, DHA stimulated the production of AIM2, and AIM2 upregulated the expression of GSDME by triggering caspase-3. In addition, among PRRs which consist of inflammasomes, it is hypothesized that the tumor growth was inhibited by activating retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs) like melanoma differentiation-associated gene 5 (MDA5) and RIG-I (102). Transfection of poly I: C, a commonly utilized artificial double-stranded RNA (dsRNA) analog, has been probed to activate RLRs and evaluated in clinical trials. In a recent study, Yusuke Tamura (79) showed that transfection of poly I: C inhibited transforming growth factor-β (TGF-β) signaling via MDA5 and RIG-I and promoted caspase-3/GSDME dependent pyroptosis in TNBC. Moreover, the pyroptosis could be attenuated by forcing constitutively active Smad3 expression, which is phosphorylated by downstream components of TGF-β signaling. And additional RLR ligands for the treatment of cancer may exhibit semblable repressive functions on TGF-β signaling and enhance pyroptosis in the light of the findings.



BAK or BAX/caspase-3/GSDME

Some antitumor therapeutic regimens caused the cell death of cancer in the mitochondrial manner regulated by BCL2 family proteins. BAK and BAX are BCL2 family members that can generate holes on the outer membrane of the mitochondrial after activation, leading to the secretion of constituents such as cytochrome C inside the mitochondrial membrane and activating the caspase cascade (44, 103, 104). An experiment conducted by Lei Hu (105) proved that breast cancer cells were stimulated to undergo pyroptosis via BAK or BAX/caspase-3/GSDME axis with the treatment of TNFα+CHX and navitoclax. Furthermore, the C-terminal of GSDME was discovered to be palmitoylated by several ZDHHC proteins to stimulate its dissociation from N-terminal, which escalated chemotherapy drug-induced pyroptosis. The study supported not only the notion that the activation of BAK and BAX regulate the cleavage of GSDME but also that either solitary BAK or BAX activation might trigger the caspase-activating chain and following pyroptosis processes. Likewise, Tang et al. (80) demonstrated that Cadmium (Cd) exposure can give rise to GSDME-dependent pyroptosis in TNBC, and the activation of the Bax/caspase-3 axis is crucial to this activity. Furthermore, several drugs can activate BAX to participate in the pyroptosis of breast cancer and exert its anticancer effects. Metformin, a widely prescribed medicine to treat diabetes, reportedly promoted AMP-activated protein kinase (AMPK) activation, which is vital in various cancer cachexia and its downstream signaling pathway (106). SIRT1, an NAD+-dependent deacetylase, modulates NF-B to serve a variety of tasks in an immune reaction and inflammatory processes (107). A previous study revealed that metformin could derive caspase3/GSDME-mediated pyroptosis and significantly increase LDH levels in breast cancer by enhancing AMPK/SIRT1/NF-κB/Bax signaling (108). The underlying mechanisms were that metformin activated AMPK and induced mitochondrial dysfunction. On one hand, activated AMPK also caused SIRT-1 and NF-B p65 to be raised, encouraging the activation of Bax and the liberation of cytochrome C, which then initiated caspase-3 and the formation of GSDME-N and finally lead to pyroptosis. Metformin can also boost the manufacturing of reactive oxygen species (ROS) in the mitochondria, which will favorably upregulate the expression of Bax. Additionally, metformin therapy causes cancer cells to undergo pyroptosis mediated by caspase3/GSDME when mitochondrial dysfunction triggers the AMPK/SIRT1 pathway.



ROS/caspase-3/GSDME

ROS which is the active form of oxygen has been shown to monitor apoptosis and autophagy in cancer cells (109) and is associated closely with the caspase-GSDME pathway (81, 110). The MAPK signaling pathway has been included as one of the pathways controlled by ROS (111). JNK, a member of the MAPK family of stress-activated protein kinases, is essential for several cellular processes (112). Yan et al. (82) revealed that triclabendazole could induce pyroptosis involving caspase-3, GSDME, and the mitochondrial apoptotic mediated by ROS/JNK/Bax axis in breast cancer cells. Additionally, Zhang et al. (81) suggested that caspase-3-regulated GSDME caused pyroptosis via the ROS/JNK or ROS/caspase-8 signaling pathway with the treatment of DOX in breast cancer cells lately. The accumulation of ROS triggered by DOX was able to promote the phosphorylation of JNK or the cleavage of caspase-8. Both p-JNK and caspase-8 could further activate caspase-3 through a cascade reaction. Haein An (83) also showed that tetraarsenic hexoxide inhibited the development and metastasis of TNBC via activating the mitochondrial ROS-mediated caspase-3/GSDME axis and inducing pyroptosis by preventing the mitochondrial STAT3 activation. Besides it, Zhang et al. (42) uncovered that SSP upregulated ROS generation and elevated caspase-4 and -9, subsequently cleaved GSDME and induced pyroptosis in breast cancer. While GSH, a suppressant of ROS, notably attenuated the ROS triggered by SSP and rescued pyroptosis.



Other pathways

Jing Xia (84) demonstrated that a high level of mitochondrial protein UCP1 caused mitochondrial damage and malfunction and inhibited the proliferation and malignant characteristics of TNBC depending on caspase-3/GSDME mediated pyroptosis. Furthermore, a study reported by Yiqing Tan (85) novelly manifested the role of DRD2 in suppressing breast cancer tumorigenesis and further revealed that DRD2 educated M1 macrophages and restricted the NF-κB pathway, triggering pyroptosis in breast cancer.



Potential strategies targeting GSDMB mediated pyroptosis

The only gasdermin member absent from the rodent genome is GSDMB (also called PRO2521, GSDML in the past) (113). Four GSDMB splice variants have been identified and each one could have a unique function in cancer. Of particular attention here is that GSDMB prefers to attach to membranes differently than other gasdermins. The phosphoinositide of the cell membrane can be contacted by both the whole length of GSDMB and the N-terminal domain (114). Marta Hergueta-Redondo (87) uncovered the initial functional significance of GSDMB in breast cancer and the overexpression of GSDMB are closely linked to increased metastasis and reduced survival in breast cancer patients. What’s more, in HER2− breast cancer patients, GSDMB expression correlates with elevated metastasis and bad outcomes of patients (88). Those all manifest that GSDMB may be a novel evaluation and prognosticate marker for breast cancer. Regarding the activation of GSDMB, several studies suggested that apoptotic rather than inflammatory caspase-3/6/7 can cleave GSDMB while other investigations reported that caspase-1 is responsible for the GSDMB cleavage (89, 114). Besides it, it also has been reported that GZMA can cleave GSDMB in murine cancer cells recently (50).



Potential strategies targeting GSDMC mediated pyroptosis

In individuals with breast cancer, a high level of GSDMC was connected to a bad prognosis. Junwei Hou (45) showed that PD-L1 under hypoxia switched TNFα-derived-apoptosis to pyroptosis mediated by noncanonical caspase-8 in MDA-MB-231 and 4T1 cells, eventually contributes to tumor necrosis. The correlation research indicated hypoxic stress can initiate tumor necrosis because of accelerated tumor development and insufficient blood flow and TNF-α has long been recognized to engender cancer necrosis (89). In breast cancer, hypoxic stress-activated p-Y705- STAT3 is physically linked to PD-L1 and facilitated its strong translocation of nuclear through the importin α/β signaling (45). To transcriptionally stimulate GSDMC expression, PD-L1 formed a complex with p-Y705-STAT3 and bound to the STAT3-binding site of the GSDMC promoter. Then TNFα-activated caspase-8 preferentially cleaved GSDMC, lysing GSDMC to produce GSDMC-N which eventually induces pyroptosis. The study (45) also implied that treatments consisting of one of the four antibiotics (epirubicin, daunorubicin, actinomycin-D, and doxorubicin), may result in significant inflammatory that may have an impact on the survival and anticancer immunotherapy of GSDMC+ cancer patients.



Potential strategies targeting other GSDMs mediated pyroptosis

There is only one subtype of GSDMA in the human while the murine gene expresses three paralogs designated as GSDMA1, GSDMA2, and GSDMA3. In 2018, the crystal structure of the mouse GSDMA3 pore was settled (115), which offered vital insight into the cytomembrane pore formed by gasdermins. Wang et al. (69) fabricated a bioorthogonal chemical system to aggregate and release the active GSDMA3 to breast cancer 4T1 cells, which not only provoked pyroptosis but also enlarged immune response. Nonetheless, there is currently a paucity of research between GSDMA and breast cancer. Further research is needed to determine whether GSDMA can cause pyroptosis through any undiscovered mechanisms. As mentioned, most gasdermins possess a uniform architecture except DNFB59 whose C-terminal domain has been cut off. Its mutation is concerned with auditory neuropathy through expression in inner ear hair cells. While there isn’t yet evidence linking DNFB59 to breast cancer and it also has not been proven to cause pore generation.



Relationship between pyroptosis and breast cancer immune regulation

Cancer cell death triggered by certain initiating stimuli can be immunogenic and is commonly known as immunogenic cell death (ICD). Pyroptosis can elicit a robust inflammatory response and is considered a newly characterized form of ICD in some cases (49). More and more research has suggested that controlled activation of pyroptosis can induce anti-tumor immunity (50, 69). In the following sections, the relationship between pyroptosis and breast cancer immunity is described according to the inflammasomes, gasdermins, and inflammatory cytokines involved in the process of pyroptosis.



The modulatory effects of inflammasomes from pyroptosis on immunity

Tschopp and colleagues (19) identified a caspase-activating complex as an inflammasome in 2002, which was the first time the idea of inflammasomes was raised. Inflammasomes are multiprotein signaling platforms that respond to pathogenic microorganisms and endogenous danger signals through innate immunity, leading to inflammation and pyroptosis, which coordinate antimicrobial host defenses (116). Inflammasomes are composed of sensor and adaptor proteins. As presented above, inflammasome sensors PRRs, which are innate immune receptors and associated with tissue damage and pathogen infection, are grouped based on their structural features into NLRs, AIM2, and Pyrin (30). The NLR family includes several subfamilies divided into NLRP or NLRC based on N-terminal effector domains which contain PYD or CARD (117). In particular, via controlling innate and adaptive immunity as well as tumor growth, NLRP1, NLRP3, NLRC4, and AIM2 have an effect on how breast cancer develops. (Figure 4).




Figure 4 | The modulation of breast cancer immunity is associated with pyroptosis. The crucial elements in the pyroptosis pathways, including inflammasomes (NLRPC4, NLRP3, NLRP1, AIM2), gasdermins (GSDMA/C/D/E), and inflammatory cytokines IL-1β and IL-18 take part in the initiation and progression of immune response in the TAM of breast cancer and affect the immune cells including macrophage, myeloid-derived suppressor cell, T lymphocyte, dendritic cell and natural killer cell, which promote the metastasis, invasion, and angiogenesis of breast cell. At the same time, active gasdermins delivered directly to breast cancer cells will greatly enhance immunotherapy.





NLRP3

It has been proven that the level of NLRP3 was aberrantly high in the microenvironment and the NLRP3 activation enhanced tumorigenesis and metastasis as well as the invasion of myeloid cells like tumor-associated macrophages (TAMs) and myeloid-derived suppressor cells (MDSCs) in breast cancer orthotopic models (118). In addition, the researchers uncovered that the NLRP3 inflammasome promoted the infiltration and metastasis of lymph nodes in patients with HER2+ breast cancer through the lymphatics downstream of S1PR1 signaling in macrophages (119). From that, one hypothesis is that the inhibition of the NLRP3 may impede breast cancer tumorigenesis. Hu et al. (120) investigated the response of polymeric nanocarriers in vivo immune and the results showed that administration of PEI 25 kD could induce high oxidative stress and NLRP3-inflammasome activation, which greatly promoted breast cancer metastasis in liver and lung tissues. Likewise, Zhang et al. (121) hypothesized that miR-223-3p may make a suppressive effect on breast cancer proliferation and immunosuppression in vitro and in vivo by inactivating the NLRP3 inflammasome.



NLRP1

Yuxian Wei (122) discovered that primary breast cancer tissue had higher levels of NLRP1 expression compared to neighboring non-cancerous tissue and there was a link between NLRP1 expression and clinical indexes such as Ki-67 levels, TNM stage, and lymph node metastasis. Moreover, the high level of NLRP1 expression in MCF-7 cell facilitated the proliferation, migration, invasion, and tumorigenicity of mice by inducing epithelial-mesenchymal transition (EMT). Besides it, Jiao et al. (123) speculated that the secreted factors of hUCMSCs were able to induce pyroptosis in the MCF-7 cell via upregulating NLRP1 and caspase-4 according to the RNA sequencing studies. And classified 14 significant pathways identified by KEGG analysis and found that they are mainly related to the immune system. Next, Jiao et al. (124) further confirmed that the pyroptosis caused by hUCMSC-CM in MCF-7 cells is induced by the NLRP1 inflammasome complex through relevant experiments. However, the mechanisms of how NLRP1 exerts its tumor suppression effect in the immune system need further research.



NLRC4

The differential expression of NLRC4 has investigated the potential role of NLRC4 in different kinds of tumor types. More and more studies have attested that higher NLRC4 expression in breast cancer and glioma (125). Hana Jin and Hye Jung Kim (126) determined that NLRC4 inflammasome regulated by tumor necrosis factor-α (TNF-α) or ATP dependent on P2Y2R is engaged in breast cancer cells invasion and angiogenesis Moreover, breast cancer patients who are obese tend to have more myeloid cells that infiltrate tumors, which activated NLRC4 and mature IL-1β. Obesity-associated NLRC4 inflammasome activation could also mediate the adipocyte-mediated vascular endothelial growth factor A (VEGFA) expression and angiogenesis, which speed up the course of invasion in breast cancer (127).



AIM2

A study reported by I-Fen Chen (128) demonstrated that the expression of AIM2 restrained breast cancer tumorigenicity and proliferation in vivo and vitro. Furthermore, combined with innate immune agonists, high intensity focused ultrasound (HIFU) in conjunction with innate immune stimulators could upregulate multiple innate immune receptors including AIM2 in mice with multi-focal breast cancer, which enhanced response to innate immune agonists (129). Su et al. (130) also reported an unexpected finding that AIM2 is recruited to the phagosomes and activated following antibody-dependent cellular phagocytosis (ADCP), which subsequently caused immunosuppression in HER2+ breast cancer. Recently, Yaqiong Li (101) found that DHA inhibited tumorigenesis by inducing AIM2/caspase-3/GSDME regulated pyroptosis in breast cancer cells. Those all indicated a potent antitumor activity of AIM2 and its association with immunity in breast cancer.

These researches indicate that the high expression and activation of inflammasomes NLRP3, NLRP1, and NLRC4 may promote breast cancer progression including growth, metastasis, and invasion. Given the inhibition of NLRP3 inflammasome in blocking breast cancer progression, various agents inhibiting inflammasomes can be utilized for therapeutic strategies. Inflammasomes are closely related to immune response while the studies about the relationship between immunotherapy of breast cancer and inflammasomes are scarce, which is a gap that needs to be filled.



The effect of the gasdermin family on the modulation of immunity

As mentioned above, a variety of researches indicate that targeted delivery of bioactive gasdermin molecules to the tumor can induce impressive antitumor immunity. Additionally, the GSDME and GSDMB are cleaved directly by granzyme in cancer cells also, in turn, enhancing anticancer immunity (49, 50, 69) (Figure 4). Wang et al. (69) establish a bioorthogonal chemical technique to release bioactive GSDMA into tumor cells and discovered that less than 15% of cancer cells’ pyroptosis was adequate to eradicate the entire 4T1 mammary tumor graft. While in immunodeficient mice, this clearance of the tumor vanished, which revealed that GSDMA could be essential for augmenting antitumor immune function. As shown in research, PD-L1 (45) enhanced the expression of the GSDMC following hypoxia, and caspase-8 then specifically cleaved the GSDMC, which caused the TNFα derived from macrophages to trigger breast cancer pyroptosis in vivo and inhibit antitumor immunity in addition to facilitating tumor development. In addition, the antitumor immunity of GSDMC+ cancer patients were also related to the strength of the treatment with inflammation caused by antibiotics. GSDMD was also proved to mediate pyroptosis and effectively stimulate tumor immunogenicity, promoting the maturation of dendritic cells (DC) cells and fully activating T cells reliant adaptive immune responses in TNBC, ultimately eradicating distant cancers while killing the original tumor (131). GSDME reportedly exerts positive effects on immunity in cancer. Zhang et al. (49) observed that GSDME was able to increase the amount and capabilities of NK cells and CD8+ lymphocytes to engulf cancer cells whereas, in the TME of the GSDME -/- murine TNBC cell, the infiltration of CD8+ lymphocytes and NK cells reduced. Zhao et al. (132) constructed a biomimetic nanoparticle-containing indocyanine green and decitabine, which up-regulated GSDME expression synergistically by inhibiting the methylation of DNA. Then the BNP facilitated caspase-3 cleavage to GSDME and caused pyroptosis of breast cancer cells and followed by a robust systemic antitumor immunity for the suppression of growth and distant tumor metastasis. In summary, gasdermins are essential in the TME of breast cancer and more novel strategies should be explored to deliver active gasdermins directly to breast cancer cells, which will greatly enhance immunotherapy in breast cancer.



Immune system modulation by inflammatory cytokines produced by pyroptosis

Pyroptosis is distinguished by the secretion of inflammatory cytokines IL-1 and IL-18 from GSDMD-forming holes, as well as the inflammatory reactions brought on by inflammasomes. after pyroptotic cell rupturing (36). Multitudinous studies showed that IL-1β and IL-18 also serve an essential function for the immune system (133). The function of IL-1β and IL-18 in breast cancer are multiple as described above. On one hand, the expression of inflammatory cytokines transports immune cells into the TME, which stimulates the development of breast cancer. In addition, inflammatory cytokines can stimulate immunity cells and immunological cytokines, suppressing the tumorigenesis, growth, and metastasis of breast cancer cells (Figure 4).

Most malignancies, including breast cancer, have elevated levels of IL-1β which is bounteous in the TME, in which it can avail tumor proliferation, but also antitumor activities (134). Besides this, IL-1β also make an effect on immunity such as accelerating adaptive T cell-mediated immunity and promoting CD4+ and CD8+ T cells maturation (135). The translocation of MDSCs and TAMs into the TME was triggered by NLRP3-mediated pyroptosis and the liberation of IL-1 at primary and metastatic locations, which induced the growth and metastasis of human breast cancer (118). Another study also demonstrated that NLRP3 pyroptosis caused IL-1β maturation and the resulting CCL5, CXCL12, CCL2, and CXCL5 expression, which enhanced metastasis of breast cancer by recruiting MDSC and M2 macrophages (136). On the contrary, Guo et al. (137) discovered that innate immune cells that invade remote metastasis-initiating cancer cells (MIC) microenvironments could express IL-1β and evoke a systemic inflammatory response in certain primary tumors. In individuals with lymph node-positive breast cancer, improved prognosis, and distant metastasis-free outcomes are strongly correlated with high primary tumor IL-1 expression. This shows that breast cancer is affected differently depending on whether IL-1 is expressed by immune cells or tumor cells. In addition, the environment with inflammatory infiltrates is indispensable for the generation of drug resistance in cancer cells. It was disclosed that IL-1β could enhance the tumor protein 63 (TP63) isoform ΔNP63α, a chemoresistance-associated gene, adding to the cisplatin acquired resistance in breast cancer cells (138). While Irena Kaplanov (139) also demonstrated that blocking IL-1β facilitates immunosuppression in the TME of first-generation orthotropic mammary cancers. Apart from that, IL-1β inhibition acted in synergy with anti–PD-1 could lead to the restoration of the T cell-mediated tumor immunity for optimal tumor killing.

IL-18 was initially identified for its propensity to cause anti-CD3-stimulated T cells to create an IFN-induing factor.to produce IFN-γ-induing factor from anti-CD3-stimulated T cells (140). It is broadly considered that IL-18 serves as a key executor in launching anticancer immune functions such as modulating immune system components through attracting or differentiating NK cells, T cells, monocytes, and so on (141, 142). By triggering immune cells and immune cytokines, human mesenchymal stem cells from the umbilical cord (hUMSCs)-expressing IL-18 have been shown to suppress the growth, invasion, and metastasis of breast cancer cells in vitro, lowering the proliferation index of the marker Ki-67, and halting tumor progression (143). Conversely, IL-18 also comes to terms with tumor immune responses to support cancer evasion. IL-18 derived from breast cancer promoted PD-1 expression in NK cells and increased their immunosuppressive fraction, which is connected to bad outcomes in TNBC patients (144). According to a recent study, Leptin could induce IL-18 expression in both TAMs controlled by NF-B/NF-B1 and breast cancer cells controlled by PI3K-AKT/ATF-2 signaling, which, eventually, leads to the invasion and metastasis of breast cancer cells (145).



Future perspectives of pyroptosis in breast cancer

Since a closed association between pyroptosis and breast cancer as well as antitumor immunity, targeting pyroptosis or gene-related pyroptosis may be a treatment option for breast cancer patients and will undoubtedly become a focused area in the future. Meanwhile, with the development of bioinformatics, the association among pyroptosis, clinical outcome, and the effectiveness of immunotherapy are further comprehensively analyzed by evaluating genes and long non-coding RNAs (lncRNAs) linked to pyroptosis (146–148), which is also beneficial to discover new genes and mechanisms. However, there are only a limited number of experimental and clinical investigations that have investigated the link between pyroptosis and breast cancer. Recognizing the multidimensional roles of pyroptosis in breast cancer and applying it in cancer therapy research is still at an initial stage. In the short run, laboratories and medical institutions have an incentive to conduct studies and clinical tests with the mechanism that functions in initiating pyroptosis. Meanwhile, as a model of inflammatory death, the factors related to pyroptosis can form an inflammatory microenvironment and have a duple influence on encouraging and preventing tumor growth. The mechanism of pyroptosis and the associated factor in breast tumors must thus be further investigated in well-designed research to provide fresh therapeutic alternatives.

The study of pyroptosis is a broad and rapidly evolving field. Despite tremendous improvements in our knowledge of how pyroptosis may function in cancer and how it affects innate and adaptive immunity, several suggestions for future investigations are still worthwhile recommended. Growing evidence consistently suggested that the introduction of pyroptosis may be a valid way to treat immunity resistant cancers, which not only hold back the occurrence of the tumor but also is indispensable to anti-tumor immunotherapy (68). In that case, intensive studies are needed to develop pyroptosis based therapeutic approaches in conjunction with immunotherapy to enhance the general control of cancer. To advance our understanding of cancer research, it is important to study the effectiveness, toxicity, and adverse effects of such combinations. Moreover, further studies to explore the interplay between pyroptosis and immunotherapy agents such as ICIs will be critical when optimizing the combination therapy. And the combos and schedules in terms of time and order should be gaining prominence in preclinical testing to optimize any positive effects inside the tumor. In the end, there are still a few open questions that need ironing out. Despite the discovery of several compounds or agents that can regulate pyroptosis and present profound antitumor effects on the TME, they might not specifically target the pyroptosis pathway. More forward, one of the greatest challenges is the design of potent personalized medicine activating pyroptosis in individuals subjected to extensive safety testing. In a nutshell, the possibility of using pyroptosis as a target for anticancer modalities by galvanizing antitumor immune responses into action may develop successful therapeutic strategies.



Conclusion

PCD is a highly regulated network that determines cell destiny and most extensively discussed subject in terms of cancer therapy. As an inflammatory PCD, pyroptosis is critical for the formation, growth, metastasis, and treatment including immunotherapy of various cancers. Despite the continuous disclosure of the molecular characteristics of the gasdermin family in pyroptosis of cancer, additional investigation into the signaling pathway, the precise mechanism of regulation, and the pathogenic prominence of pyroptosis still need innovative exploration.

Due to its diversity and medication tolerance, breast cancer has overtaken all other malignancies in terms of the number of diagnoses and is the primary cause of cancer mortality in women (1). Browsing the previous research, few works are focused on the fundamental mechanism and activity of pyroptosis in breast cancers. Various molecules and signaling pathways are implicated in gasdermins and subsequently induce pyroptosis of breast cancers (Figure 3). NF-κB, MEG3, JAZF1 targeted by miR-200b, JAK2/STAT3 pathway activate GSDMD while UCP1, DRD2, AMPK/SIRT1/NF-κB/BAK pathway, and STAT3/ROS/JNK pathway participate in the activation of GSDME as well as some PRRs such as AIM2, MDA5, and RIG-I can also activate GSDME. Apart from that, the complex that contains PD-L1 and STAT3 can upregulate GSDMC expression under hypoxia. In vivo, the current clinical testing does not allow the identification of pyroptosis. It is absolutely imperative to develop non-invasive molecular imaging approaches that can reliably identify the kind of cell death. which needs a detailed understanding of the mechanism of pyroptosis to explore feasible prognostic markers. Reduced survival is directly connected to high levels of GSDMB/C expression, which makes them a promising prognostic marker. GSDMD and GSDME, two essential pyroptosis substrates, play significant roles in the etiology and pathogenesis of breast cancer. The level of GSDME expression varies by the type of breast cancer which manifest it could be a novel premonitory marker in breast cancer while GSDMD expression is not clear fully. More research is required to reinstate GSDMB/C/E expression in breast carcinoma cells and create particular GSDMB/C/E agonists or inhibitors to make full use of it for the treatment. As for GSDMD, intensive studies on the modulation and mechanisms of the GSDMD are needed to deepen our understanding of GSDMD-mediated breast cancer and to develop GSDMD-targeting strategies that could specifically activate the pyroptosis.

More recently, increasing evidence suggested that the immunological environment in breast cancer is diverse and dynamic (149) and pyroptosis is essential for controlling the immunoreaction against breast cancer. Both pyroptosis-related inflammasomes including NLRP1, NLRP3, NLRC4, AIM2, and the following inflammatory cytokines IL-1β and IL-18 are associated with the immune system in breast cancer (Figure 4). Special attention required is that both activations of those inflammasomes and inflammasome-cytokines promote cancer development in certain cases, which is in line with the pyroptosis in non-canonical inflammasome pathways tend to evoke anti-tumor immunity. So selective delivery of active gasdermin proteins such as GSDMA/B/C/E via non-canonical inflammasome pathway in breast cancer will be another efficient strategy to antitumor. Recent studies have revealed that single chemotherapy or single immuno-oncological therapy cannot obtain an ideal therapeutic effect for breast cancer because of the immunosuppressive microenvironments. Thus, combining immunotherapy with the new treatments currently accessible has demonstrated to be quite promising. The induction of pyroptosis in breast cancer cells has generated a source for the restoration of antitumor immunity. For these reasons, the exposition on the connection between pyroptosis in non-canonical inflammasome pathways and the regulation of immune response to explore therapeutic regimens without immunosuppressive actions will provide great promise for breast cancers.

From the plenty of research accumulated above, considerable efforts are focused on the breast cancer-specific mechanisms applied for exerting pyroptosis, but there are still some problems to be solved, such as what functions other gasdermin proteins have in pyroptosis and how other factors regulate pyroptosis activation during protumor processes. Further comprehensive and better research on the function of pyroptosis in breast cancer and its crosstalk with immune therapy will be necessary.
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Background

Cuproptosis is a newly discovered programmed cell death dependent on overload copper-induced mitochondrial respiration dysregulation. The positive response to immunotherapy, one of the most important treatments for invasive breast cancer, depends on the dynamic balance between tumor cells and infiltrating lymphocytes in the tumor microenvironment (TME). However, cuproptosis-related genes (CRGs) in clinical prognosis, immune cell infiltration, and immunotherapy response remain unclear in breast cancer progression.



Methods

The expression and mutation patterns of 12 cuproptosis-related genes were systematically evaluated in the BRCA training group. Through unsupervised clustering analysis and developing a cuproptosis-related scoring system, we further explored the relationship between cuproptosis and breast cancer progression, prognosis, immune cell infiltration, and immunotherapy.



Results

We identified two distinct CuproptosisClusters, which were correlated with the different patterns between clinicopathological features, prognosis, and immune cell infiltration. Moreover, the differences of the three cuproptosis-related gene subtypes were evaluated based on the CuproptosisCluster-related DEGs. Then, a cuproptosis-related gene signature (PGK1, SLC52A2, SEC14L2, RAD23B, SLC16A6, CCL5, and MAL2) and the scoring system were constructed to quantify the cuproptosis pattern of BRCA patients in the training cohort, and the testing cohorts validated them. Specifically, patients from the low-CRG_score group were characterized by higher immune cell infiltration, immune checkpoint expression, immune checkpoint inhibitor (ICI) scores, and greater sensitivity to immunotherapy. Finally, we screened out RAD23B as a favorable target and indicated its expression was associated with breast cancer progression, drug resistance, and poor prognosis in BRCA patients by performing real-time RT-PCR, cell viability, and IC50 assay.



Conclusions

Our results confirmed the essential function of cuproptosis in regulating the progression, prognosis, immune cell infiltration, and response to breast cancer immunotherapy. Quantifying cuproptosis patterns and constructing a CRG_score could help explore the potential molecular mechanisms of cuproptosis regulating BRCA advancement and provide more effective immunotherapy and chemotherapy targets.
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Introduction

Breast cancer (BRCA) is one of the most common malignant cancers among women worldwide, with a high incidence and recurrence rate (1, 2). According to the latest statistics from 2022, breast cancer alone accounts for nearly one-third of all new cancer diagnoses (287,850 new cases) in women in the United States (3). Despite diagnostic and therapeutic strategies that have taken into consideration the heterogeneity of breast cancer (4), there are presently insufficient strategies to improve the prognosis of recurrence-free survival (RFS) and overall survival (OS) in breast cancer. At the same time, the resistance of breast cancer patients to chemotherapy, radiotherapy, or endocrine therapy makes maintaining their long-term survival an urgent challenge. In recent years, attention has been focused on the role of the tumor microenvironment (TME) in regulating breast cancer progression and prognosis and the effect of immunotherapy in breast cancer treatment (5–7). However, there is still a lack of sensitive immune-related diagnostic and therapeutic targets for breast cancer.

Cuproptosis, unlike apoptosis, ferroptosis, pyroptosis, and necroptosis, is a kind of non-apoptotic programmed cell death induced by the accumulation of intracellular copper (8, 9). Direct binding to lipid-acylated mitochondrial proteins of the tricarboxylic acid (TCA) cycle to aggregate them, followed by proteotoxic stress, is the crucial mechanism for the initiation of cuproptosis. Previous studies have illustrated the relationship between copper homeostasis and human diseases, including Wilson disease and other neurological copper disorders (10, 11), cancers (12–15), abnormal fetal development (16), and so on. However, there are no studies on the association between the newly defined cuproptosis and breast cancer oncogenesis, immune microenvironment, or immunotherapy. Therefore, exploring the physiological and pathological activities associated with cuproptosis, elucidating its underlying mechanisms affecting breast cancer progression, and identifying sensitive and effective targets for breast cancer diagnosis and treatment are crucial for early detection, diagnosis, and treatment of breast cancer.

In this study, a comprehensive assessment of the expression profile of 12 cuproptosis-related genes in breast cancer was performed to comprehensively analyze the role of CRGs on TME and immunotherapy. First, the BRCA patients in the training cohort were stratified into two cuproptosis-related clusters based on CRGs expression levels. The differentially expressed genes (DEGs) in these two clusters were then used to classify the patients into three cuproptosis-related gene subtypes. Further, differentially expressed genes with prognostic significance were used to construct a cuproptosis-related gene signature (PGK1, SLC52A2, SEC14L2, RAD23B, SLC16A6, CCL5, and MAL2) and scoring system. Three independent external testing cohorts also confirmed the stability and reliability of the scoring system. We used the cuproptosis-related gene score (CRG_score) to classify patients into high and low-CRG_score subgroups to predict overall survival (OS) and the immune landscape in BRCA, thus accurately predicting the patient long-term prognosis and response to immunotherapy. Finally, RAD23B was selected as a valuable target for in vitro experimental validation.



Materials and methods


Data acquisition and preprocessing

The gene expression profile cohort and its corresponding clinical data of BRCA patients were obtained from The Cancer Genome Atlas (TCGA) (https://portal.gdc.cancer.gov/) and the Gene Expression Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/geo/) databases. Specifically, the training cohort consisted of the BRCA dataset of TCGA (113 standard samples and 1091 BRCA samples) and GSE20685 (327 BRCA samples) (Table S1). The testing cohorts consisted of the GSE7390 (198 BRCA samples), the GSE58812 (107 BRCA samples), and the GSE42568 (104 BRCA samples). All the gene expression data were fragments per kilobase million (FPKM) and transformed into transcripts per kilobase million (TPM) values for further analysis using the R language (version 4.1.2), the “edge” R package (Storey et al., 2021, R package version 2.26.0). Reducing the batch impact induced by non-biotechnological variations, was achieved by using the “ComBat” method in the “SVA” R package (Leek et al., 2021, R package version 3.42.0.).



Construction of CuproptosisClusters and PCA analysis

The 12 cuproptosis-related genes, including FDX1, LIPT1, LIAS, DLD, DBT, GCSH, DLAT, PDHA1, PDHB, SLC31A1, ATP7A, ATP7B, were retrieved from previously published literature (8). To identify different cuproptosis patterns in BRCA, we performed consensus classification using the “ConsensusClusterPlus” R package (17). The tendency and smoothness of the cumulative distribution function (CDF) curve were used to figure out the clustering number (17). Principal component analysis (PCA) was conducted with the help of the function “prcomp” in the R package “stats” (R Core Team, 2021).



Clinical characteristics and prognosis analysis in different CuproptosisClusters

Utilizing the “survival” (Therneau et al., 2021, R package version 3.2-13) and “survminer” R packages (Kassambara et al., 2021, R package version 0.4.9.), we conducted the Kaplan–Meier plot to estimate the prognostic values of BRCA patients in different molecular subtypes (18, 19). Clinical features (age, stage T, and stage N) were also compared among molecular subtypes.



Gene set variation analysis in different CuproptosisClusters

Using the “GSVA” R package (20), the gene set variation analysis (GSVA) was conducted to estimate the differences in biological processes responsible for the characteristic patterns of cuproptosis (20, 21).



Estimation of TME in different CuproptosisClusters

By performing the “estimate” R package (Yoshihara et al., 2016, R package version 1.0.13/r21.), the immune score of every BRCA sample was evaluated in the ESTIMATE algorithm (22). Furthermore, the fractions of 23 human immune cell subsets in the TME of different BRCA molecular subtypes were also estimated using a single-sample gene set enrichment analysis (ssGSEA) algorithm (23–26). The expression of 32 critical immune checkpoints retrieved from previous research was compared in different BRCA molecular subtypes (27).



Identification of DEGs in different CuproptosisClusters, functional analysis, and construction of gene subtypes

We identified 968 DEGs among the different CuproptosisClusters using the “limma” package (28) in R with a fold-change of 6 and an adjusted p < 0.001. The functional analysis (GO and KEGG) was conducted on the DEGs using the “clusterprofiler” R package (17, 29, 30). The gene set file (c2.cp.kegg.v7.2.symbols.gmt) was obtained from the MSigDB database (https://www.gsea-msigdb.org) (30, 31). To investigate the molecular function of these cuproptosis-related DEGs mentioned above, we performed survival analysis and picked out 25 DEGs with significant prognostic values (p < 0.001) for further study (Table S8) (28, 32). Then, consensus classification was performed using the ConsensusClusterPlus” R package based on the 25 prognostic genes to divide patients into three gene subtypes (Figure S2, k = 3; gene subtypes A, B, and C).



Development and validation of the cuproptosis-related gene model and CRG_score

We performed the LASSO Cox regression model using the “glmnet” R package (33, 34) to filter down the candidate cuproptosis-related genes. Finally, the 5 genes and their coefficients were kept. We obtained the penalty parameter (λ) according to the minimum criteria. After standardizing the data from the training cohort by the “scale” R package (Hadley Wickham and Dana Seidel, 2022, R package version 1.2.0.), the CRG_score was calculated as follows:

CRG_score = (0.00523335734652904 * PGK1) + (0.0185186220360186 * SLC52A2) − (0.0261649532232335 * SEC14L2) + (0.0129284730002406 * RAD23B) − (0.0297061289632435 * SLC16A6) − (0.0142610013224485 * CCL5) + (0.0014557255170858 * MAL2).

We also calculated the CRG_score of the testing cohorts using the same formula. We divided the patients from the training and testing cohorts based on the median CRG_score, and the high- and low-CRG_score groups. We performed the Kaplan–Meier analysis of overall survival using “survival” and “survminer” R packages, and ROC curve analysis using the “timeROC” R package (35). Then the calibration plots of the nomogram were executed to predict the prognosis value between the predicted 3-, 5-, and 8- or 10-year survival events and the virtually observed outcomes. Lastly, a stratified analysis was done to see if the CRG_score could still predict in different subgroups of age (65 or 65), stage T (T1-2 or T3-4), and stage N (N0 or N1-3).

Finally, we reduced the batch impact of testing cohorts (GSE7390, GSE58812, and GSE42568; n = 409) using “ComBat” method. By performing the PAM50 algorithm (36) with the “genefu” R package (37), we then assessed the molecular subtypes for each patient from testing cohorts. Samples were classified into the normal-like (n = 13), basal-like (n = 126), HER2+ (n = 57), luminal A (n = 111), and luminal B (n = 102) subtypes (Table S2). Each subtype was then used as an independent external validation cohort and CRG_score was calculated respectively. Survival and ROC curve analysis were then performed, as mentioned above.



Analysis of chemotherapeutic drugs effects in high-and low-CRG_score groups

The semi-inhibitory concentration (IC50) values of chemotherapeutic drugs in high- and low-CRG_score groups were calculated using the “pRRophetic” R package (Paul Geeleher, 2014, R package version 0.5.).



Analysis of protein expression in clinical specimen

The Human Protein Atlas (HPA) database contains sections from 46 normal human tissues and over 20 human cancers labeled with antibodies targeting more than 11000 human proteins (38). Based on the laser power and detector gain parameters used for image acquisition, combined with the image’s visual appearance, the staining intensity is rated as negative, weak, moderate and strong (39). The scoring method of protein expression is the same as described previously (40).



Cell culture and transfection

Our human breast cancer cell lines were obtained from the Shanghai Institute of Biochemistry and Cell Biology, including MCF10A, SUM-159, MDA-MB-231, BT549, and MCF7 cells. MCF10A and SUM159 cells were cultured in DMEM/F12 (1:1) medium, MDA-MB-231 and MCF7 cells were cultured in a DMEM medium, and BT549 cells were cultured in an RPMI-1640 medium, with all recommended supplements, respectively. All cells were cultured at 37°C in a humidified incubator in an atmosphere of 5% CO2.

SUM-159 and MCF7 cells were transfected with corresponding siRNAs using Lipofectamine 8000 (#C0533, Beyotime, Nanjing, China) following the manufacturer’s protocol. The RAD23B siRNA constructs and a negative control siRNA were as follows: RAD23B-1, 5’- CUCCAGCAUCAGCGACAGCAUTT −3’ and 5’- AUGCUGUCGCUGAUGCUGGAGTT −3’; RAD23B-2, 5’- AGAAGCUGGAAGUGGUCAUAUTT −3’ and 5’- AUAUGACCACUUCCAGCUUCUTT −3’; NC siRNA, 5’- UUCUCCGAACGUGUCACGUdTdT −3’ and 5’- ACGUGACACGUUCGGAGAAdTdT −3’.



Cuproptosis cell model construction and mRNA expression analyses

To promote the occurrence of Cuproptosis (8), SUM-159 and MCF7 cells were treated with 100 nM elesclomol (+1 µM CuCl2 in medium) for a 2-hour-pulse. After 24 h, cells were harvested and lysed. The real-time RT-PCR was performed as previously described (40). All primers were synthesized (Sangon Biotech, Shanghai, China) and listed in Table S3.



Cell viability and IC50 assay

After transfection for 48h, SUM-159 and MCF7 cells (5 × 103 cells/well) were loaded on a 96-well plate and cultivated for 0 h, 24 h, 48 h, and 72 h for cell viability assays or 48 h for the IC50 assay of Paclitaxel (0, 0.125, 2.5, 5, 10, 20 µM/L). After incubation with 20 μL of 3-(4.5-Dimethylghiazol-2-yl)-2,5-diphenyltetrazolium Bromide (MTT; 5 mg/mL; Absin Bioscience, Shanghai, China; Catalog no. abs50010) for 4 h at 37°C, the culture medium was removed, and 150 μL dimethyl sulfoxide (DMSO; Sigma, St. Louis, MO, USA) was added. Afterward, the cells were shaken for 15 min in the dark, and the optical density (OD) at 490 nm was measured using a Benchmark microplate reader (Bio-Rad, Hercules, CA, USA).



Statistical analysis

All the data analysis was conducted by R (version 4.1.2) and in vitro experimental data were analyzed with the GraphPad Prism 5 (GraphPad Software, Inc., La Jolla, CA, USA). The Log-rank test, Spearman test, Wilcoxon test, Student’s t-test, and Two-way ANOVA tests were applied in this study. p < 0.05 was considered as significant. P-values were adjusted to control for the false discovery rate (FDR) using the Benjamini-Hochberg method (41). Each experiment was done in triplicate and repeated at least three times.




Results


The landscape of cuproptosis-related genes in BRCA

Figure 1 shows the overall design and flow chart of this study. The expression of twelve cuproptosis-related genes (CRGs) was obtained from previous studies (8). By performing the “limma” package, we analyzed the mRNA expression of CRGs based on the data of 113 normal and 1091 BRCA tissues from TCGA. As shown in Figure 2A, the transcriptional levels of DLAT, PDHB, SLC31A1, and ATP7B were significantly higher in the BRCA tissues than in the normal tissues. At the same time, FDX1, LIPT1, LIAS, DLD, DBT, GCSH, PDHA1, and ATP7A were significantly lower. Furthermore, we developed the correlation network containing twelve CRGs in Figure 2B (red: positive correlations; blue: negative correlations). Then, univariable Cox regression analysis also showed significant differences in overall survival between patients with high or low expression of the CRGs (Table S4). Specifically, LIPT1 (HR = 0.79, 95% CI: 0.65–0.95, p < 0.01), PDHB (HR = 0.97, 95% CI: 0.94–1.00, p < 0.01), and ATP7B (HR = 0.96, 95% CI: 0.93–1.00, p < 0.01) were “protective” factors for BRCA patients with HR < 1, while the DLAT (HR = 1.06, 95% CI: 1.02–1.09, p < 0.01), SLC31A1 (HR = 1.03, 95% CI: 1.01–1.05, p < 0.01), DBT (HR = 1.05, 95% CI: 0.94–1.18, p < 0.01), PDHA1 (HR = 1.01, 95% CI: 0.99–1.03, p < 0.05), ATP7A (HR = 1.00, 95% CI: 0.93–1.09, p < 0.05), and DLD (HR = 1.02, 95% CI: 0.99–1.04, p < 0.05) were “risk” factors with HR > 1.




Figure 1 | The Flowchart of the Study Design.






Figure 2 | The Landscape of Cuproptosis-Related Genes in BRCA. (A) The gene expression levels of CRGs in BRCA compared to normal tissue (Wilcoxon test; blue: normal; red: BRCA). (B) The correlation network of the 12 CRGs (red: positive correlation; blue: negative correlation). (C) The frequency of CNV variation in CRGs (green: CNV deletion; red: CNV amplification). (D) The location of the CNV alteration of the CRGs changes on 23 chromosomes. (E) The genetic alteration on a query of CRGs. CRGs, cuproptosis-related genes; BRCA, breast cancer; CNV, copy number variant. *p < 0.05, **p < 0.01, ***p < 0.001.



To explore their mutation landscape, the single nucleotide variation (SNV) and copy number variation (CNV) data were downloaded from the TCGA database. Moreover, CNVs were prevalent and mostly involved deletion, though DLD had a high frequency of amplification (Figure 2C). Figure 2D shows the locations of the CNV alterations in the CRGs on their respective chromosomes. Next, we analyzed the incidence of somatic mutations in these 12 CRGs, which showed that 29 (2.94%) of the 986 BRCA samples had mutations in the CRGs. Specifically, ATP7A had the highest mutation frequency (1%), followed by ATP7B, while others did not have any significant mutations (Figure 2E). Therefore, our findings on the landscape of CRGs in BRCA showed that they might play an essential role in the development and progression of BRCA.



Identification of CuproptosisClusters in BRCA

To further explore the expression pattern of CRGs implicated in BRCA tumorigenesis, we integrated patients from TCGA-BRCA (n = 1091) and GSE20685 (n = 327) as training cohort. First, the comprehensive landscape of CRG interactions and their prognostic value in the BRCA training cohort was demonstrated in a cuproptosis network (Figure 3A). We did the unsupervised clustering analysis using the “ConsensusClusterPlus” R package and picked k= 2 based on the empirical cumulative distribution function (CDF) plots, which suggested the highest intragroup correlations and the lowest intergroup correlations compared with others (Figures 3B, C, and Figure S1). Thus, two CRG-expression patterns were observed: CuproptosisCluster A and CuproptosisCluster B. Furthermore, the BRCA patients in the training cohort could be completely distinguished (Figure 3D). We also performed the Kaplan–Meier (K-M) survival analysis of the two clusters, suggesting a poor overall survival of patients in Cluster B (Figure 3E). Finally, we examined the clinical and pathological characteristics of the two BRCA clusters and the expression of the CRGs (Figure 3F).




Figure 3 | Identification of CuproptosisClusters in BRCA. (A) The interaction among CRGs in BRCA (green: favorable factors for overall survival; purple: risk factors for overall survival). (B) The relative change in area under consensus CDF curve for k=2 to 9. (C) The consensus clustering of BRCA patients for k = 2. (D) The PCA analysis of the two CuproptosisClusters. (E) The OS of the two CuproptosisClusters (Log-rank test). (F) The heatmap for the connections between clinicopathologic features and the two CuproptosisClusters (blue: low expression; red: high expression). CDF, cumulative distribution function; PCA, Principal component analysis; OS, overall survival. *p < 0.05, **p < 0.01, ***p < 0.001.





Characteristics of the TME in CuproptosisClusters of BRCA

To thoroughly analyze the role of cuproptosis-related genes in the TME of BRCA, we conducted the GSVA enrichment analysis. As shown in Figure 4A, cluster A was significantly enriched in progesterone-mediated oocyte maturation, cell cycle, oocyte meiosis, cysteine and methionine metabolism, basal transcription factors, homologous recombination, DNA replication, mismatch repair, glycosphingolipid biosynthesis lacto and neolacto series, pathogenic escherichia coli infection, proteasome, pyruvate metabolism, pentose phosphate pathway, glycolysis gluconeogenesis, pyruvate metabolism, citrate cycle TCA cycle, terpenoid backbone biosynthesis, amino sugar and nucleotide sugar metabolism. Moreover, the results of the ssGSEA algorithm indicated that CuproptosisClusters A and B were rich in different innate immune cell infiltrations with significance (Figure 4B). We also examined the expression of 32 immune checkpoints in two clusters, which showed a higher expression of most immune checkpoints (BTLA, CDC20R1, CD244, CD27, CD274, CD28, CD40, CD40LG, CD48, CD80, CTLA4, HHLA2, ICOS, IDO1, IDO2, KIR3DL1, LAG3, LGALS9, PDCD1, TIGIT, TMIGD2, TNFRSF9, TNFSF14) in cluster B (Figure 4C). In addition, NRP1 and TNFRSF14 were highly expressed in cluster A. Using the “estimate” package, we evaluated the TME score in Figure 4D. Cluster A had a higher stromal score, while Cluster B had a higher immune score. According to the results above, we identified two clusters with distinct immunological and metabolic characteristics, suggesting that cuproptosis may affect the immune microenvironment and metabolic processes that lead to breast cancer progression.




Figure 4 | Characteristics of the TME in CuproptosisClusters of BRCA. (A) The GSVA of biological pathways between the two CuproptosisClusters (Spearman test, blue: inhibited pathways; red: activated pathways). (B) The abundance of 23 infiltrating immune cell types in the two CuproptosisClusters (Spearman test). (C) The expression levels of 32 immune checkpoints in the two CuproptosisClusters (Wilcoxon test). (D) The TME score of the two CuproptosisClusters (Spearman test). GSVA, gene set variation analysis; TME, tumor microenvironment. **p < 0.01, ***p < 0.001.





Identification of gene subtypes based on CuproptosisClusters of BRCA

Next, we identified 968 CuproptosisCluster-related DEGs by performing the “limma” package further to explore the different biological behaviors of each cluster (Table S5). Firstly, functional enrichment and GO (Gene Ontology) analysis and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analysis were conducted among the CuproptosisCluster-related genes (Figure 5A, B, Table S6 and S7). Then a univariable Cox regression analysis was performed to screen out 25 genes with significant prognostic values (p < 0.001) for the subsequent investigation (Table S8). Moreover, we applied the consensus to divide patients into three gene subtypes based on the 25 prognostic genes (Figure S2). As shown in Figure 5C, patients of gene subtype A showed the best OS, while patients of gene cluster C showed the worst OS (p < 0.001). The comparison of the clinicopathological characteristics and the expression of DEGs between the three gene subtypes was shown in the heatmap (Figure 5D). Finally, we observed the different expressions of the cuproptosis-related genes in the three gene subtypes (Figure 5E).




Figure 5 | Identification of Gene Subtypes based on CuproptosisClusters of BRCA. (A, B) The GO and KEGG enrichment analyses of DEGs among the two CuproptosisClusters. (C) The overall survival of the three gene subtypes (Log-rank test). (D) The heatmap for the connections between clinicopathologic features and the three gene subtypes (blue: low expression; red: high expression). (E) The differences in the expression of 12 cuproptosis-related genes among the three gene subtypes (Wilcoxon test). DEGs, differentially expressed genes; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes. *p < 0.05, **p < 0.01, ***p < 0.001.





Development of the cuproptosis-related gene signature and CRG_score in the BRCA training cohort

To further investigate the underlying mechanisms regulating breast cancer progression, we constructed a cuproptosis-related gene signature by performing the LASSO regression analysis based on the 25 prognostic subtype-related genes. And the Cuproptosis-Related Gene Score (CRG_score) was calculated as follows: CRG_score = (0.00523335734652904 * PGK1) + (0.0185186220360186 * SLC52A2) − (0.0261649532232335 * SEC14L2) + (0.0129284730002406 * RAD23B) − (0.0297061289632435 * SLC16A6) − (0.0142610013224485 * CCL5) + (0.0014557255170858 * MAL2). To better estimate the characteristics of patients with different levels of CRG_score, we divided the BRCA training cohort into high- and low-CRG_score groups depending on the median CRG_score. The alluvial diagram depicted the distribution of BRCA patients within the two cuproptosis clusters, three gene subtypes, and two CRG score groups (Figure 6A). As shown in Figure 6B, gene subtype C had significantly higher CRG_scores than the other two gene subtypes. Moreover, cuproptosis cluster B had higher CRG_scores than cluster A (Figure 6C). Figure 6D also showed the distribution plot of the survival of each BRCA patient from the training cohort, which indicated a higher death probability in the high-CRG_score group. The Kaplan-Meier curve consistently suggested a worse prognosis for the high-CRG_score group than the low-CRG_score group (p < 0.001; Figure 6E). Moreover, we performed the time-dependent receiver operating characteristic (ROC) analysis to calculate the AUC values of this cuproptosis-related gene signature (0.741 for 3-year, 0.707 for 5-year, and 0.716 for 10-year; Figure 6F). We also conducted a nomogram plot analysis, which suggested an excellent advantage for CRG_score in long-term survival prediction (Figure 6G). Finally, the calibration chart revealed an excellent performance of the CRG_score among the predicted and observed overall survival with a C index of 0.69 (Figure 6H).




Figure 6 | Development of the Cuproptosis-Related Gene Signature and CRG_score in the BRCA Training cohort. (A)The alluvial diagram showing the connection between CuproptosisClusters, gene subtypes, and CRG_score. (B) The level of CRG_score in the three gene subtypes (Wilcoxon test). (C) The level of CRG_score in the two CuproptosisClusters (Wilcoxon test). (D) The ranked dot and scatter plots of CRG_score distribution and patient survival status in BRCA training cohort. (E) The overall survival of the high and low CRG_score groups in BRCA training cohort (Log-rank test). (F) The ROC curves for the predictive efficiency of the CRG_score in BRCA training cohort (green: 3 year; blue: 5 year; red: 10 year). (G) The Nomogram to predict 3-, 5- and 10-year OS in the BRCA training cohort. (H) The Calibration plots of the nomogram to predict OS at 3-, 5- and 10-year (green: 3 year; blue: 5 year; red: 10 year). CRG_score, Cuproptosis-Related Gene Score; ROC, receiver operating characteristic. *p < 0.05, **p < 0.01, ***p < 0.001.





Validation of the cuproptosis-related gene signature in BRCA testing cohorts

To validate the reliability and reproducibility of our cuproptosis-related gene signature, we calculated CRG_scores of three independent external validation BRCA groups, including GSE7390 with 198 BRCA patients, GSE58812 with 107 BRCA patients, and GSE42568 with 104 BRCA patients. Then the patients in each testing cohort were classified into high- and low-CRG_score groups based on the median CRG_score value. Patients with high CRG_scores in all three testing cohorts showed worse survival status (Figures 7A–C). Similarly, survival analysis revealed a significantly better overall survival of patients with low CRG_scores than those with high CRG_scores (p = 0.001, 0.038, 0.003, respectively; Figure 7D–F). Moreover, the high AUC values also suggested an excellent ability of the CRG_score to predict the long-term prognosis of BRCA patients in testing cohorts (Figures 7G–I). Thus, the results above showed a similar tendency to the training cohort, indicating the cuproptosis-related gene signature was stable and reliable.




Figure 7 | Validation of the Cuproptosis-Related Gene Signature in BRCA Testing Cohorts. BRCA Testing Cohorts: GSE7390 (n = 198), GSE58812 (n = 107), and GSE42568 (n = 104). (A–C) The ranked dot and scatter plots of CRG_score distribution and patient survival status in BRCA testing cohorts (GSE7390, GSE58812, and GSE42568 sets, respectively). (D–F) The overall survival of the high and low CRG_score groups in BRCA testing cohorts (GSE7390, GSE58812, and GSE42568 sets, respectively). (G–I) The ROC curves for the predictive efficiency of the CRG_score in BRCA training cohort (red: 3 year; blue: 5 year; yellow: 8 year; green: 10 year).



Moreover, to further clarify the applicability of different molecular subtypes of breast cancer to our predictive gene signature, the PAM50 algorithm was conducted on the testing cohorts (GSE7390, GSE58812, and GSE42568; n = 409). The distribution of molecular subtypes according to the PAM50 signature was as follows: 13 normal-like (3%), 126 basal-like (31%), 111 luminal A (27%), 102 luminal B (25%), and 57 HER2+ (14%). We also calculated the CRG_scores of each PAM50 subtype and divided them into high- and low-CRG_score groups based on the median CRG_score value, respectively. The survival and ROC curve analyses were also performed for each PAM50 subtype (Figure S3). Patients of luminal A and HER2+ subtypes showed a better prognosis in the low CRG_score group (Figures S3C, E), while the survival of other subtypes was not statistically significant. In addition, the AUC values for all of the PAM50 subtypes were high, which indicated that our CRG_score could predict the long-term prognosis of BRCA patients with different molecular subtypes.



Relationship of clinical characteristics and TME characteristics with CRG_score in the BRCA training cohort

Further, we investigated the clinical characteristics of the training cohort’s high- and low-CRG_score groups. For ages, patients aged ≥65 had a higher CRG_score, and the high CRG_score of patients of different ages was positively related to poor prognosis (Figure 8A). Then a relatively higher CRG_score was observed in patients with T1-2 and a lower CRG_score in patients with T3-4. In addition, the low CRG_scores of patients with different T stages suggested a better overall survival than the high CRG_score group (Figure 8B). Similarly, patients with N1-3 were correlated with a relatively high CRG_score, while the low CRG_score of patients with different N stages both lived longer than those in the high-CRG_score group (Figure 8C). Therefore, patients with a high CRG_score of types ≥65 age, stage T1-2, and stage N1-3 had worse long-term survival.




Figure 8 | Relationship of Clinical Characteristics and TME Characteristics with CRG_score in the BRCA Training Cohort. The relationship between age (A), T (B), N (C) and CRG_score. The TNM system of cancer staging reflects the extent of tumor growth, where primary tumor (T), and nodal status for metastasis (N) (Wilcoxon test for boxplot; Log-rank test for survival analysis). (D) Survival analysis of ImmuneScore, StromalScore, ESTIMATEScore, and TumorPurity in BRCA patients (Log-rank test). (E) The TME score of the two CuproptosisClusters in the high and low CRG_score groups (Spearman test). (F) The abundance of 23 infiltrating immune cell types in the high and low CRG_score groups (Spearman test). *p < 0.05, **p < 0.01, ***p < 0.001.



To analyze the relationship between TME and CRG_score, we calculated the TME score (ImmuneScore, StromalScore, ESTIMATEScore, and TumorPurity) using the “estimate” package (Figure 8D). We divided patients into low- and high-TME score groups depending on the median values. We found that low ImmuneScore and ESTIMATEScore were significantly correlated with poor overall survival (p < 0.001, p = 0.025, respectively), while high TumorPurity was significantly correlated with worse overall survival (p=0.025). Moreover, there was no significant correlation between the prognosis of BRCA patients and StromalScore. Besides, a low CRG_score was also significantly associated with ImmuneScore, StromalScore, and ESTIMATEScore (Figure 8E). Furthermore, the relationship between the cuproptosis-related gene signature and immune cell abundance was further estimated in box plots and scatter diagrams (Figure 8F). Here, the results above revealed a close relationship between the cuproptosis-related gene prognostic model and TME, which suggested the possibility of immunotherapy targeting cuproptosis-related genes to block BRCA progression.



Prediction of immunotherapy response in high- and low-CRG_score groups in BRCA

Since cuproptosis played an essential role in the TME, we further investigated its influence on immunotherapy for BRCA. First, the expression of 32 critical immune checkpoints in high- and low-CRG_score groups was examined (Figure 9A). We observed that most immune checkpoints were significantly overexpressed in the low-CRG_score group. Next, we investigated the application of CRG_score in the therapy of BRCA. The BRCA immunotherapy profile of patients from the TCIA database revealed that the low-CRG_score group had higher ICI scores than the high-CRG_score group and was more responsive to the immunotherapy than the high-CRG_score group (Figure 9B). In addition, we assessed the responses of the high- and low-CRG_score groups to conventional and novel chemotherapeutic agents. The high-CRG_score group was more sensitive to lapatinib, nilotinib, pazopanib, metformin, lenalidomide, camptothecin, cytarabine, bexarotene, midostaurin, shikonin, temsirolimus, and vorinostat. In contrast, the low-CRG_score group was more responsive to paclitaxel, imatinib, sorafenib, and rapamycin (Figure 9C). Therefore, BRCA patients with high-CRG_score were characterized by abundant immune infiltration, high expression of immune checkpoints, and better response to immunotherapy and chemotherapy.




Figure 9 | Prediction of Immunotherapy Response in High- and Low-CRG_score groups in BRCA. (A) The expression levels of 32 immune checkpoints in the high and low CRG_score groups (Wilcoxon test). (B) The immunotherapy response between the high and low CRG_score groups (Wilcoxon test). (C) The relationships between CRG_score and chemotherapeutic sensitivity (Wilcoxon test). *p < 0.05, **p < 0.01, ***p < 0.001.





Expressions pattern of cuproptosis-related gene signature in BRCA

To further explore the important role of the cuproptosis-related gene signature in breast cancer, we analyzed their protein expression patterns in the normal and tumor samples in the Human Protein Atlas (HPA) database (Figure 10A). RAD23B protein was strongly expressed in breast cancer tumor tissues, SLC52A2 was moderately expressed, and SEC14L2 was weakly expressed. Additionally, PGK1 was not expressed in most breast cancers, some were weakly expressed, and few were moderately expressed. As for SLC16A6, CCL5, and MAL2, their protein expression was almost negative in breast cancer tissues based on the results of the HPA database. According to the previous study (8), we also examined the transcriptional expression of our cuproptosis-related gene signature in the cuproptosis cell model. As shown in Figure 10B, RAD23B was significantly down-regulated in SUM159 and MCF7 cells after cuproptosis induction; SLC16A6 was significantly down-regulated in MCF7 cells, while other genes showed no significant change.




Figure 10 | Expressions of Cuproptosis-Related Gene Signature in BRCA. (A) Representative IHC images of PGK1, SLC52A2, SEC14L2, RAD23B, SLC16A6, CCL5, and MAL2 across clinical specimens of normal and tumor samples in the Human Protein Atlas (HPA) database. Bar charts represent IHC staining intensities of PGK1 (11 patients), SLC52A2 (10 patients), SEC14L2 (10 patients), RAD23B (12 patients), SLC16A6 (10 patients), CCL5 (11 patients), and MAL2 (11 patients). (B) The relative mRNA expression of PGK1, SLC52A2, SEC14L2, RAD23B, SLC16A6, CCL5, and MAL2 in the cuproptosis cell model (RT-PCR). *p < 0.05, **p < 0.01.



We also analyzed the mRNA expression of the cuproptosis-related gene signature in breast cancer tissues, suggesting a higher transcriptional expression of all 7 cuproptosis-related genes in BRCA tissues than in adjacent normal tissues (Figure S4A). Furthermore, overall survival analysis showed a worse prognosis for patients with high expression of PGK1, SLC52A2, RAD23B, and MAL2; while patients with up-regulated SEC14L2, SLC16A6, and CCL5 could live longer (Figure S4B).



The role of RAD23B in the regulation of breast cancer progression, chemotherapy and immunotherapy in vitro

The protein and mRNA expression levels of RAD23B were significantly higher in breast cancer tissues than in paraneoplastic tissues, and its expression was positively correlated with poor prognosis in BRCA patients. Moreover, the expression of RAD23B was decreased in the cuproptosis cell model, which indicated that it acted as a “risk” factor and antagonized cuproptosis in BRCA progression. Therefore, RAD23B was selected as a promising target for in-depth experimental validation. As shown in Figure 11A, the transcriptional expression of RAD23B was examined in breast epithelial cell lines (MCF10A), luminal breast cancer cells (MCF7), and triple-negative breast cancer cells (MDA-MB-231, SUM-159, and BT549). Due to the high expression of RAD23B in SUM-159 and MCF7 cells, two RAD23B siRNA (small interfering RNA) constructs were used to knockdown its expression in these two cell lines (Figure 11B). After the reduction of RAD23B, cell viability was significantly inhibited (Figure 11C). The MTT assay reduced the IC50 of Paclitaxel in the RAD23B down-regulated groups compared with that of the control group (Figure 11D). To further explore the expression pattern of RAD23B in breast cancer, we examined the mRNA expression level of RAD23B in 34 pairs of breast cancer tissues and adjacent normal breast tissues. It suggested that RAD23B was significantly overexpressed in breast cancer tissues than in adjacent normal breast tissues, and its expression was positively correlated with pathological grade (Figure 11E, F). Finally, we also tested the mRNA expression of PD1 and PDL1 in breast cancer tissues by performing real-time RT-PCR. Then the correlation between RAD23B and PD1/PDL1 was evaluated (Figure 11F; r = 0.774, p < 0.001; r = 0.577, p < 0.001, respectively).




Figure 11 | The Role of RAD23B in the Regulation of the Breast Cancer Progression, Chemotherapy and Immunotherapy in Vitro. (A) The mRNA expression levels of RAD23B in different breast cancer cell lines (RT-PCR). (B) The relative mRNA expression of RAD23B in SUM-159 and MCF7 breast cancer cells (RT-PCR; One-way ANOVA). (C) The cell viability assay after RAD23B reduction in SUM-159 and MCF7 breast cancer cells (MTT; Two-way ANOVA). (D) The IC50 of Paclitaxel after RAD23B reduction in SUM-159 and MCF7 breast cancer cells (MTT). (E) The relative mRNA expression of RAD23B in 34 pairs of breast cancer tissues and adjacent normal breast tissues (RT-PCR; Student’s t-test). (F) The relative mRNA expression of RAD23B in different pathologic stages of breast cancer tissues (RT-PCR; Student’s t-test). (G) Correlation between RAD23B mRNA expression and PD1/PDL1 mRNA expression (RT-PCR; Spearman test). *p < 0.05, **p < 0.01, ***p < 0.001.






Discussion

Because of breast cancer’s high incidence and recurrence rates, its treatment has been an ongoing challenge for decades (4). Numerous studies have attempted to determine the significance of the immune microenvironment in breast cancer progression, and immunotherapy may be a viable treatment option for breast cancer patients (42–44). However, immunotherapy for breast cancer patients is still in its infancy, and more investigation is needed to benefit more people.

As an essential cofactor of key enzymes, copper must maintain a dynamic low concentration to maintain normal physiological activity. A few studies have noted the role of cooper in regulating cancer progression. It has been reported that the serum level of copper was significantly increased in the BRCA group compared to the control group, indicating its function in the early detection and monitoring of breast cancer (13, 24, 25). In triple-negative breast cancer (TNBC), inhibition of mitochondrial copper shifted tumor cells from respiration to glycolysis to reduce energy production, ultimately inhibiting tumor growth and improving prognosis (26–28). Recently reported, an excess load of intracellular copper could induce cell death termed cuproptosis (8). Independent of known cell death pathways, cuproptosis does not activate caspase-3 and cannot be blocked by apoptotic inhibitors (8). This study mainly discussed 12 cuproptosis-related genes, including FDX1, LIPT1, LIAS, DLD, DBT, GCSH, DLST, DLAT, and PDHA1, PDHB, SLC31A1, ATP7A, and ATP7B. These genes are primarily involved in processes such as glycolysis and the tricarboxylic acid (TCA) cycle (45, 46), steroids (47, 48), and vitamin D metabolism (49). SCL31A1 as a copper importer and ATP7A and ATP7B as copper exporters are essential for maintaining intracellular copper concentration (50, 51). As Peter et al. suggested, overexpression of SCL31A1 and deletion of ATP7B may increase susceptibility to cuproptosis (8). In addition, the knockout of nine genes (FDX1, LIAS, LIPT1, DLD, DLAT, PDHA1, PDHB, GCSH, and DBT) conferred resistance to cuproptosis (8). Although various studies have highlighted the significance of copper in breast cancer, there is a dearth of studies on the association between cuproptosis and breast cancer, mainly its function in the immune microenvironment and immunotherapy of breast cancer.

Our study first summarized the expression and mutation patterns of CRGs based on TCGA-BRCA and GSE20685. Although the frequency of global alterations was only 2.94%, all CRGs showed significant differences in expression and prognosis in BRCA samples compared to normal samples. Performing the unsupervised clustering algorithm, we classified breast cancer patients into two cuproptosis patterns (CuproptosisCluster A and CuproptosisCluster B). Compared to patients with Cluster A, those with Cluster B showed more advanced clinicopathological characteristics and a worse OS. A global examination of the TME for both clusters revealed that Cluster B presented enrichment in most immune cells and important immune checkpoints. In addition, Cluster A showed a higher stromal score with significance, while Cluster B had a higher immune score. Thus, the results above indicated that these two clusters were closely associated with TME in BRCA, implying a crucial role of CRGs in the immune regulation of breast cancer. Next, three cuproptosis-related gene subtypes were identified according to the DEGs of the two CuproptosisClusters. To further explore the role of cuproptosis in BRCA progression and TME, a cuproptosis-related gene signature (PGK1, SLC52A2, SEC14L2, RAD23B, SLC16A6, CCL5, and MAL2) and the CRG_score were constructed based on the training cohort and validated in the testing cohorts, as well as PAM50 subtyped testing cohorts. Furthermore, patients in high-CRG_score groups showed a worse prognosis under different clinicopathological features. And patients with a low-CRG_score exhibited enrichment in most immune cells and important immune checkpoints, and are more sensitive to immunotherapy. Also, a quantitative nomogram depending on CRG_score and tumor stage facilitated the prognostic stratification of breast cancer patients, further promoting the clinical application of CRG_score. In summary, the characteristics of TME differed significantly in the high- and low-CRG_score groups, suggesting CRGs could provide reasonable recommendations for personalized immunotherapy for breast cancer patients.

Regarding the cuproptosis-related gene signature, previous studies have identified the crucial roles of these seven genes in cell metabolism. PGK1, an ATP-generating enzyme, mediates mitochondrial metabolism and promotes tumorigenesis (52). SLC family genes such as SLC52A2 and SLC16A6 are important transporters in metabolic processes, and their dysregulation is associated with various diseases (53–56). SEC14L2 encodes lipid binding proteins and facilitates the uptake of Vitamin E (57). RAD23B is involved in nucleotide excision repair (NER) and is associated with cell apoptosis (58). CCL5, expressed and secreted by activated and normal T cells, could regulate the migration and chemotaxis of inflammatory cells (59–61). MAL2 has been reported to work as an essential component of the machinery for transcytosis in hepatoma HepG2 cells (62). However, there is still no research focus on the relationship between these seven genes and breast cancer cuproptosis. We then analyzed the protein expression of these seven genes in breast cancer tissues from the HPA database and their mRNA expression in the cuproptosis cell model. In particular, RAD23B was screened out for in vitro experimental validation. The results of RT-PCR, cell viability, and the IC50 assay illustrated that RAD23B expression was positively correlated with breast cancer progression, drug resistance, and poor prognosis in BRCA patients. More importantly, both PD1 and PDL1 were positively correlated with RAD23B, suggesting that patients with up-regulated RAD23B were more sensitive to immune checkpoint-blocking therapy targeting the PD-1/PD-L1 axis. Thus, our results confirmed the important role of cuproptosis in TME and immunotherapy for breast cancer, providing new ideas for immunotherapy with blocked immune checkpoints. Similarly, our cuproptosis-related scoring system was of great utility for clinical patient stratification, predicting the efficacy of adjuvant chemotherapy and patient prognosis. Also, our study laid an important research foundation for the role of cuproptosis in controlling the progression of breast cancer and made it easier to study its molecular mechanisms in more depth in the future.

Although we have performed a comprehensive analysis of cuproptosis in breast cancer and screened out potential targets to lay the foundation for future exploration of breast cancer progression, this study still has some limitations. Since our breast cancer samples are only obtained from retrospective studies from the TCGA and GEO databases, more cases from prospective research are required. In addition, experimental studies in vivo and in vitro are needed to validate our findings. Furthermore, additional research is necessary to identify the specific molecular mechanisms of cuproptosis regulating breast cancer progression.
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Breast cancer is the most common malignant disease in female patients worldwide and can spread to almost every place in the human body, most frequently metastasizing to lymph nodes, bones, lungs, liver and brain. The liver is a common metastatic location for solid cancers as a whole, and it is also the third most common metastatic site for breast cancer. Breast cancer liver metastasis (BCLM) is a complex process. Although the hepatic microenvironment and liver sinusoidal structure are crucial factors for the initial arrest of breast cancer and progression within the liver, the biological basis of BCLM remains to be elucidated. Importantly, further understanding of the interaction between breast cancer cells and hepatic microenvironment in the liver metastasis of breast cancer will suggest ways for the development of effective therapy and prevention strategies for BCLM. In this review, we provide an overview of the recent advances in the understanding of the molecular mechanisms of the hepatic microenvironment in BCLM formation and discuss current systemic therapies for treating patients with BCLM as well as potential therapeutic development based on the liver microenvironment-associated signaling proteins governing BCLM.
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Introduction

Breast cancer (BC) is the most common malignant disease in female patients worldwide (1, 2). Intrinsic BC subtypes by gene expression profiling include luminal A, luminal B, luminal/human epithelial growth factor receptor 2 (HER-2), HER-2 enriched, basal-like, and triple-negative (TN) non-basal (3). Currently, the 5-year survival rate for BC is over 90%. However, about 50% of patients diagnosed with BC will develop distant metastases (4), and the 5-year survival rate declines to less than 20% once distant metastases have developed (5, 6).

BC can spread to almost every place in human body, most frequently metastasizing to lymph nodes, bones, lungs, liver, and brain (7–9). The liver is one of the most common metastatic locations for solid malignant tumors, and it is also the third common metastatic organ for BC (10). Patients with breast cancer liver metastasis (BCLM) often suffer deterioration of liver function due to the aggravation of BC burden, which will threaten the lives of BC patients (11). The survival is only 4-8 months if BCLM is left untreated (12). Therefore, the treatment of BCLM is a significant issue globally. Thus far, no standard therapy has been established for BCLM (13). Currently, the treatments for BCLM include chemotherapy, immunotherapy (triple negative disease), targeted systemic therapies including endocrine therapy (luminal subtype), HER-2 target therapy (HER-2 enriched subtype), radiotherapy, and palliative therapy (11, 14). However, patients with BCLM frequently exhibit poor response to the current therapies and experience high mortality rates (15).

BCLM is a complex process. Its biological basis has not been well delineated. It has been found that the hepatic microenvironment plays a significant role in BCLM (16). An understanding of hepatic microenvironment in the liver colonization of metastatic BC cells is essential for developing novel and effective therapy for BCLM. In this review, we provide an overview of recent advances in molecular mechanisms of the hepatic microenvironment in BCLM formation and discuss current systemic therapies as well as potential therapeutic development based on the liver microenvironment-associated signaling proteins governing BCLM.



Organ tropism of breast cancer metastasis

It is a long-standing observation that different subtypes of BC show distinct propensity of metastasizing to specific organs (3, 17, 18). Luminal breast cancer (LBC) preferentially metastasizes to the bones, while HER-2 and basal-like BC often develop visceral metastases including brain, liver and lung metastasis (19). Some studies report that the HER-2 enriched subtype found to exhibit a higher risk of developing liver metastasis (18, 20, 21). In contrast, other studies report that basal-like BC has a lower rate of liver metastasis (3). Although there are some discrepancies in reports about preferential organ sites of breast cancer metastasis, it is now accepted that particular metastatic sites are associated with different breast cancer subtypes (22).

It is well-established that preferred metastatic sites are mechanistically determined by molecular, cellular and microenvironment factors rather than random dissemination (23). Features of organ circulation may have a key role in determining the sites of metastatic disease as capillary networks in tissue arrest the circulating BC cells (10). Organs that receive similar amounts of blood and circulating tumor cells show differing abilities to accommodate disseminating BC cells and form metastases. This finding indicates that the “mechanical arrest” may not be the only explanation for organ tropism of BC metastasis (24, 25). Another explanation is the “seed and soil” hypothesis, which proposes the metastases form only when the disseminated BC cells are compatible to the distant organ microenvironment (26). The ability of BC cells to interact with tissue resident cells and the microenvironment factors may also determine the metastatic organs of BC (24). Therefore, the crosstalk between BC cells and liver tissue components provides key mechanisms that dictate BCLM (27–29). In this review, we will describe and summarize our current knowledge on the BCLM process.



Metastatic phase of breast cancer liver metastasis

The formation of BCLM involves a series of complex biological processes. The BC cells will undergo epithelial-to-mesenchymal transition (EMT), detach from the primary tumor, and intravasate through endothelial barriers into the blood circulation system (30, 31). Macrophages and mesenchymal stem cells (MSCs) contribute to EMT at primary BC. Cancer-associated fibroblasts (CAFs) and myeloid progenitor cells are recruited to invasive edge of primary BC and promote intravasation (31). Platelets are also involved in the survival of BC cells in circulation to extravasation sites (31). After circulating tumor cells extravasate into the parenchyma of the liver (32),they will enter a dormant state or form clinically detectable macrometastases (33, 34). BCLM is considered to comprise multi-steps: 1) The intravasation phase; 2) The premetastatic phase (35–37); 3) the tumor-infiltrating microvascular phase; 4) the pre-angiogenic micrometastatic phase; 5) the angiogenic micrometastatic phase; 6) the growth phase (38). The process of BCLM is summarized in Table 1 and Figure 1.


Table 1 | The phases of breast cancer liver metastasis.






Figure 1 | The process of liver metastasis formation in breast cancer. The whole process can be separated into six steps: 1) Intravasation phase: cancer cells intravasate into the circulation system under help of immune cells; 2) Premetastatic phase: HSCs, KCs, and immune cells in hepatic microenvironment form premetastatic niche; 3) Tumor-infiltrating microvascular phase: cancer cells extravasate into liver parenchyma through LSECs; 4) Pre-angiogenic micrometastatic phase: HSCs and immune cells are recruited into micrometastases and activate local stromal response; 5) Angiogenic micrometastatic phase: micrometastases become vascularized and interact with cells in the microenvironment; 6) Growth phase: metastases expansion under the stimulation of hepatocytes, HSCs, and immune cells. (HSC, Hepatic stellate cell; KC, Kupffer cell; LSEC, Liver sinusoidal endothelial cells).



Of the aforementioned steps, the “premetastatic phase” is essential for organ-specific metastasis formation and has recently gained much attention. Numerous studies have proposed that primary tumor-derived secreting factors are associated with the premetastatic niche formation in distant organs (36, 66). The vascular endothlial growth factor (VEGF) and transforming growth factor-β (TGF-β) show critical roles in premetastatic niche formation to promote BC metastasis (41–43). Moreover, chronic psychological stress can promote metastatic colonization of circulating BC cells by promoting a premetastatic niche through activating β-adrenergic signaling (36). BC secreted exosomes can fuse preferentially with organ-specific cells at their predicted destination to prepare the premetastatic niche and exosomal integrins can be used to predict organ-specific metastasis (44). In the liver, exosomes secreted from BC cells can reach liver and fuse with Kupffer cells to form premetastatic niche (44). Exosomal integrin αvβ5 uptake by Kupffer cells can induce Src phosphorylation and S100 gene expression to determine liver metastasis (44). Tumor-derived tissue inhibitor of metalloproteinases 1 (TIMP-1) was also found to induce liver metastasis via hepatic stromal cell derived factor 1 (SDF-1) and neutrophil recruitment (45). Despite these recent discoveries, the roles and mechanisms of premetastatic step in BCLM are currently not well understood.



Hepatic microenvironment of breast cancer liver metastasis

The hepatic microenvironment into which disseminated BC cells invade and colonize is pivotal for the formation of BCLM. The hepatic microenvironment is highly regulated, relying heavily on the interaction between BC cells and resident cell populations (67). These interactions help nurture liver tissue to become fertile grounds for tumor cell seeding. The roles of different types of cells in the microenvironment of liver metastases are summarized in Table 2 and described below.


Table 2 | The roles of different cells in the microenvironment of breast cancer liver metastasis.




Cancer stem cells

Cancer stem cells (CSCs) can interact with the hepatic microenvironment such as extracellular matrix, hypoxia or growth factors, all of which contribute to the metastasis (70). Knaack et al. cultured pancreatic cancer CSCs in vitro together with hepatic stellate cells and myofibroblasts to demonstrate the importance of these stromal cells in liver metastasis formation (71), indicating a connection between CSCs and liver microenvironment. Furthermore, Zhang et al. showed the CD44high/CD24- breast CSC population can activate TGF-β1 signaling and increase the invasive capacity and liver metastasis of BC (68). In line with this study, the cell surface adhesion molecule CD44 was found to enhance breast tumor invasion and metastasis to the liver (69).



Liver sinusoidal endothelial cells

When breast tumor cells enter the hepatic microcirculation, they first encounter liver sinusoidal endothelial cells (LSECs). LSECs are double-edged swords, as they can not only promote but also inhibit BCLM formation in the hepatic tissue microenvironment.

Regarding the tumoricidal activities of LSECs, many studies have shown that the tumor cells can obstruct the sinusoids to trigger an ischemia and inflammatory response. LSECs release cytotoxic cytokines, which have damaging effects in adjacent tumor cells (73–77). LSECs can also remove or degrade the enzymes that promote angiogenesis and metastasis (78). Whether the tumoricidal action of LSECs exert a prominent effect on BCLM remains to be determined.

On the other hand, tumor cells can activate Kupffer cells (KCs) to secrete proinflammatory cytokines, which induce LSECs to express adhesion molecules and help tumor cells extravasate into hepatic parenchyma (49–51, 72). Also, LSECs allow tumor cells directly adhere to the membrane proteins and promote metastasis (105). Although these findings came from studies on colorectal cancer or lung cancer, it is postulated that LSECs also possess tumor-promoting activities in BCLM.

Furthermore, some critical molecules from LSECs or their surrounding microenvironment are involved in liver metastasis (64). The expression of chemokine (C-X-C motif) receptor 4(CXCR4) in cancer cells is associated with increased expression of chemokine ligand CXCL12 in LSECs’ microenvironment and CXCR4-CXCL12 signaling drives metastasis (64). Intercellular adhesion molecule 1 (ICAM-1), signal transducer and activator of transcription (STAT)3, programmed cell death-ligand 1 (PD-L1), and microRNA-20a with its targeted proteins expressed by LSECs also play a pivotal role in the interaction between LSECs and cancer cells and thereby promote liver metastasis (64).



Hepatocytes

The main function of hepatocytes is helping metastatic BC cells in seeding and colonization of the liver. BC cells can directly interact with hepatocytes by forming tight-junction-like complexes with hepatocytes in the Disse space, the space between hepatocytes and sinusoids (83). Interestingly, metastatic BC cells exhibit a lower adherent ability with LSECs compared to the hepatocytes (52), suggesting that hepatocytes facilitate BC cell seeding in the liver.

Hepatocytes can release growth factors, such as insulin-like growth factor 1 (IGF-1) and hepatocyte growth factor (HGF) which promote liver metastasis (53). The overexpression of RON receptor has been reported in BC and RON can be activated by HGF-like protein secreted by hepatocytes. RON activation promote cancer cells growth, invasion and metastasis (53).



Liver macrophages and Kupffer cells

Liver macrophages can be divided into monocyte-derived recruited macrophages and liver resident KCs (84). The M1 to M2 repolarization of tumor-associated macrophages (TAMs) can prevent immunogenic, inflammatory responses while inducing neoangiogenesis and matrix remodeling, thus promoting breast cancer progression and metastasis (57, 58). It has been demonstrated that the EMT of BC cells is regulated by M2 macrophages in the liver metastatic microenvironment (39).

KCs, unlike monocyte-derived recruited macrophages, are permanent resident monocytes in the sinusoids. They can fuse with exosomes derived from BC cells and contribute to the premetastatic niche formation (44). On one hand, KCs can exhibit tumoricidal activity by releasing reactive oxygen species (ROS), cytotoxic cytokines, proteases, and recruitment of other inflammatory cells (85, 87, 88), particularly when the burden of tumor cells invading liver is excessive. The anti-tumor activity of KCs might base on the reruitment of natural killer (NK) cells by secreting inflammatory factors granulocyte macrophage colony stimulating factor (GM-CSF) and interferonγ(IFN-γ) (53). KCs can also decrease metastatic BC by increasing level of tumor necrosis factor (TNF)-α and interleukin (IL)-1β (53). On the other hand, KCs can also promote liver metastasis through secreting growth factors and cytokines including HGF, VEGF, IL-6, matrix metalloproteinase (MMP)9 and MMP14, as demonstrated in colorectal cancer studies (53, 59–61). However, whether KCs have these dichotomous effects in BCLM awaits to be examined.



Cancer-associated fibroblasts and hepatic stellate cells

The cancer-associated fibroblasts (CAFs) in the hepatic microenvironment are widely considered to be derived from hepatic stellate cells (HSCs) (106). It was found that HSCs can be induced to trans-differentiate into a proliferative and motile form called myofibroblasts by growth factors released from tumor cells or KCs during the development of micrometastases (107, 108). Functionally, activation of HSCs promotes liver metastasis by enhancing tumor cell adhesion, invasion, survival, and proliferation (56). Activated HSCs can also initiate angiogenesis by organizing endothelial cells (ECs) into a neovascular network and inducing LSECs and ECs to form vascular tubes within metastases (62, 63). Vascular endothlial growth factor receptor (VEGFR) are mainly distributed on the endothelial surface of tumor vessels, inhibit VEGFR can significantly suppress liver metastasis of BC. Hypoxia induced factor (HIF)-1 can activate TWIST and promote the binding of VEGF to VEGFR to contribute BCLM (92).

In addition, activated HSCs suppress antitumor immune response by inducing T cell apoptosis and releasing TGF-β (46, 93), consistent with the well-established notion that immune suppression by CAFs is mediated by CXCL12 or nicotinamide adenine dinucleotide phosphate oxidase 4 (NOX4), leading to exclusion of CD8+ T cells85,86. Notably, HSCs can modify the extracellular matrix (ECM), thereby facilitating or impairing BC cell migration and invasion (89, 90). Relaxin (RLN), an anti-fibrosis peptide in liver tissue preferentially target metastatic BC cells and activated HSCs. The increased expression of RLN can inhibit BCLM, where RLN gene might be a novel target for treating BCLM (92).



Neutrophils

Neutrophils are innate immune cells. Clinical studies have demonstrated that increased neutrophil-to-lymphocyte ratio or immune-infl;ammation index is associated with poor survival in BC patients (109–111). Neutrophils can inhibit tumor growth through releasing cytolytic factors and recruiting CD8+ cytotoxic T cells or macrophages in the hepatic microenvironment (40, 54, 99). On the other hand, neutrophils have also been shown to promote cancer progression and metastasis via distinct mechanisms. For example, they can anchor circulating BC cells and enhance migration of BC cells. The tumor-interacting neutrophils may promote BCLM in a CD90-TIMP-1 juxtacrine-paracrine manner (55). Of note, a recent report showed that aged neutrophils can robustly enhance BCLM through releasing neutrophil extracellular traps, reactive oxygen species, VEGFs, and MMP-9 (96), which are involved in the well-known neutrophil response to infection and injury.



Myeloid-derived suppressor cells and regulatory T cells

The myeloid-derived suppressor cells (MDSC) and regulatory T cells (Tregs) are known as immunosuppressive cells, and they induce an immune tolerance state that permits tumor growth by evading T-cell-mediated killing (47, 48, 65, 112). MDSCs can be recruited to the liver metastasis site by chemokines released by LSECs, KCs and HSCs (100). These MDSCs, especially S100A8/Gr1-positive MDSCs (101), can enhance the growth and aggressiveness of BC cells and consequently liver metastasis by producing arginase and IL-6 (102–104). Much effort has gone into the development of approaches to eliminate MDSCs, but these attempts have been met with little success (113). Notably, studies have shown that Tregs can exacerbate the development of liver metastasis in intra-abdominal malignancies (114). A direct relationship between Treg accumulation and BCLM has not been reported yet, and there remains an intriguing question as to the role of Tregs in BCLM.




Prognostic factors of breast cancer liver metastasis

Liver metastatic cancer cells spread through the systemic circulation and therefore liver metastases are rarely isolated (115). Only about 5-10% of patients with BCLM have isolated metastases confined to the liver with no evidence of metastatic disease at other sites (12, 116). The median survival time of untreated patients with BCLM is limited to a few months and is dependent on several prognostic factors (12, 117).

Survival of patients with metastatic BC is affected by many different clinical features, including age, race, marital status, performance status, tumor size, lymph node status, number of metastatic sites, history of treatments, and subtype (118). For BCLM patients, Eichbaum et al. found a prognostic benefit for BCLM patients who were hormone receptor (HR)+ and had an expression of Ki-67 <20% and p53 <50% (119). Similarly, in a review of 4,285 BCLM patients, Xie et al. found that those with the HR+/HER-2+ subtype had the longest median survival of 31.0 months. Patients who were HR-/HER-2+ had a median survival of 22.0 months, and those who had triple negative breast cancer (TNBC) had the shortest median survival of 8.0 months (120). It has been observed that patients with TNBC have the lowest survival after liver metastases in many other studies as well, given the lack of effective therapy (121, 122). In general, factors that may predict worse survival after liver metastasis include the triple negative phenotype, time from curative therapy to liver metastases, burden of tumor cells, and high histological grade of primary (115, 123, 124).

To date, there are few studies on prognostic molecular markers for patients with BCLM. Tian et al. showed that mutations in AKT1, ESR1, ERBB2, FGFR4, APOBEC cytidine deaminase, and defective DNA mismatch repair were significant genetic determinants for BCLM development and progression (125). The study by Yang et al. found that the PPFIA1 gene was markedly elevated in BCLM and associated with decreased disease-free survival (DFS) in HR+ BCLM patients (126). In HER-2+ BC patients, mutant CCND1 (P241P) and PIK3CA (E542K) led to significantly reduced DFS (127).



Current systemic therapies for breast cancer liver metastasis

Systemic therapy remains the cornerstone of BCLM management. However, BCLM patients who are treated with systemic therapy have poor survival, particularly for triple negative or HR- subtypes (128). If treated with chemotherapy alone, the median survival of BC patients with solely liver metastasis or with limited disease elsewhere is between 19 months (with pre-taxane chemotherapy regimens) to 22-26 months (with taxane-containing regimens) (129). The five-year overall survival (OS) of patients with BCLM treated with systemic therapy is 8-12% (117, 130). It is highly likely that new systemic therapies recently approved for TNBC and HER-2+ BC may improve clinical outcomes in patients with BCLM.

For patients with non-TNBC subtypes, there are options for targeted systemic therapies. In the setting of metastatic HER-2+ tumors, trastuzumab in combination with systemic therapy is associated with longer OS and progression-free survival (PFS) compared to those treated with systemic therapy (14, 131, 132). Rossi et al. found that in patients with metastatic HER-2+ BC who were treated with trastuzumab and had liver-lung metastases (n=328), 4-year survival was 32.1% (133). Further, there has been significant innovation in HER-2-directed therapies in recent years. Currently, there are two Food and Drug Administration (FDA)-approved HER-2-directed antibody-drug conjugates (ADCs), trastuzumane-emtansine (T-DM1) and trastuzumab-deruxtecan (T-DXd), for HER-2+ metastatic BC (134). Interestingly, the DESTINY-Breast04 clinical trial showed that T-DXd also prolonged PFS and OS in HER-2-low metastatic BC patients than chemotherapy (135). Recently, the third HER-2-directed ADC, disitamab vedotin (RC48), received approval for treatment of metastatic gastric or gastroesophageal junction cancer in China in 2021. It may also soon become a treatment modality for HER-2+ metastatic BC (134). At present, there are a total of 11 ADCs that target HER family receptors in clinical trials.

In terms of HR+ disease, endocrine therapy in combination with cyclin-dependent kinase 4 & 6 inhibitors have shown to be effective in patients with both bone-only and visceral metastases (136). He et al. reviewed HR+ patients who were treated with fulvestrant. Fifty-one patients had liver-only metastases, and their PFS was 3.7 months (137). Recently, the SOLAR-1 trial revealed that the alpelisib plus fulvestrant treatment had a significantly benefit in median OS (37.2 months) compared to fulvestrant alone (22.8 months) for PIK3CA-mutant/HR+/HER-2- BC patients with lung and/or liver metastasis (138). Further, several new oral bioavailable selective estrogen receptor modulators/degraders (SERMs/SERDs), including lasfoxifene, bazedoxifene, LSZ102, and RAD1901, for ESR1 gene mutation are currently under clinical investigations to treat ESR1-mutant or endocrine therapy resistant metastatic BC (139). It remains to be determined whether SERMs/SERDs are effective treatment modalities for BCLM.

In contrast to other BC subtypes, there is no first-line targeted therapy for TNBC. The clinical impact of chemotherapy as the standard treatment of TNBC is limited (140). Sacituzumab govitecan (SG) is an antibody-drug conjugate composed of antibody targeting human trophoblast cell-surface antigen 2 (Trop-2), coupled to topoisomerase I inhibitor (SN-38) via a proprietary hydrolyzable linker. In ASCENT study, 42% of patients had liver metastasis. The median PFS (5.6 months) and OS (12.1 months) of metastatic TNBC patients in the SG group were significantly longer than in the chemotherapy group (141). Furthermore, immune checkpoint inhibitors (ICIs) in several clinical trials have shown positive results for treating metastatic BC recently (142). A phase III trial (KEYNOTE-355) utilized pembrolizumab plus chemotherapy to treat metastatic TNBC. For patients with PD-L1 expression (combined positive score [CPS] ≥10), median PFS was 9.7 months in pembrolizumab group vs. 5.6 months in placebo group (143). Another study used pembrolizumab and capecitabine for metastatic BC (144). However, metastatic BC only had moderate response to ICIs. PD-L1 positive, first-line therapy, high tumor-infiltrating lymphocytes, and high CD8+ T cell infiltrating are associated with better response to ICIs (142). BCLM reportedly had a lower response rate to ICI treatment when compared with the other metastatic locations (142). Therefore, exploring new targets and developing more effective therapy for BC with liver metastasis are urgently needed and would have tremendous clinical impact.



Hepatic microenvironment related therapeutic implications for BCLM

Given the critical roles of different cells in the hepatic microenvironment in BCLM formation, it is tempting to explore novel therapeutic approaches based on available interventional agents targeting the key signaling proteins in these cells. These potential treatment options for BCLM are summarized in Table 3 and described below.


Table 3 | Hepatic microenvironment related therapeutic implications in breast cancer liver metastasis.



For BC stem cells in the hepatic microenvironment, the cell surface adhesion molecule CD44 has been shown to potentiate the invasion and metastasis of BC cells to the liver (68, 69). These studies suggest that CD44 may be a novel target for inhibiting BCLM. One phase I study utilized bivatuzumab mertansiene to treat metastatic BC patients with positive CD44v6, and estimated the pharmacokinetics and safety of the treatment (145). This study demonstrated that the bivatuzumab mertansine targeting CD44v6 could be a potential therapeutic option for metastatic BC patients that express CD44v6 (145).

Claudin-2 is a molecule that plays a key role in the formation of tight junctions. Previous studies have shown that liver metastatic BC cells express high levels of Claudin-2 and the protein is critical for the adhesion between BC cells and hepatocytes by acting as an adhesion molecule (52). Afadin, a Claudin-2-interacting partner, is also involved in BC cell metastasis to the liver (79). Furthermore, the Claudin-2 expressed by liver metastatic BC cells can increase the expression of integrin complexes in the surface of BC cells, leading to enhanced adhesion of BC cells to ECM components, such as type IV collagen and fibronectin (80). Although primary human BC samples express low levels of Claudin-2, most of the liver metastatic BC samples were found to display higher expression levels of Claudin-2 (80). Further supporting the significant role of Claudin-2 in BCLM formation, Tabaries et al. demonstrated that blocking tumor-hepatocyte interactions by inhibiting Claudin-2 expression using the Lyn-selective kinase inhibitor Bafetinib (INNO-406) can suppress BCLM growth (81). Currently, most studies on Bafetinib are in the preclinical stage, and there are a few phase I and phase II clinical trials of Befetinib in chronic leukemia, prostate cancer, and brain cancer.

The epithelial cell adhesion E-cadherin may also play an important role in BC cell interaction with hepatocytes. BC cells, which undergo EMT to escape from primary tumors, have been shown to re-express E-cadherin upon entering the liver microenvironment (82). This upregulation contributes to the adhesion with hepatocytes and promotes BC cell survival by activating extracellular regulated protein kinases (ERK) signaling (82, 146). Although the clinical relevance of breast tumor-hepatocyte or breast tumor-ECM interactions has not been well evaluated, disruption of interactions between BC cells and hepatocytes or ECM may serve as a potential strategy to inhibit BCLM. Furthermore, results of some preclinical studies suggest that ROS1 inhibitors, such as crizotinib, may be utilized to treat E-cadherin defective BC. The preclinical data provided theoretical basis to support the phase II clinical trials to evaluate the safety and efficacy of ROS1 inhibitors in E-cadherin defective BC patients (147). Currently, ROS1 inhibitors are widely used to treat lung cancer patients with ROS1 mutations, and there are also phase I and phase II clinical trials for ROS1 inhibitors to treat patients with other advanced or metastatic solid tumors.

For macrophages, targeting M2 macrophage polarization has been proposed as an anti-cancer treatment approach. The STAT6, a key effector and mediator of IL-4 and IL-13 function, is a potential therapeutic target in this regard (58). Notably, phospholipase D-2 (PLD-2) is an important player in BC progression and metastasis. In preclinical studies, PLD inhibitors [FIPI (dual PLD1/PLD2 inhibitor) or VU0155072-2 (PLD2 inhibitor)] were found to reduce the tumor-promoting macrophages and neutrophil infiltration in primary breast tumors and liver metastasis, thereby suppressing BCLM (86). In addition, Cao et al. showed that cabazitaxel could affect macrophages and improve the immunotherapy targeting CD47 in TNBC (148). The activation of macrophages by cabazitaxel combined with the CD47 blocking effect could drastically enhance the tumoricidal activity against TNBC cells, thus suppressing BCLM (148). Cabazitaxel is widely utilized to treat patients with metastatic castration resistant prostate cancer. Several phase I and phase II trial studies have shown the efficacy of cabazitaxel in metastatic BC patients so far (149). One recently study showed an increased NK cells in dormant heptic microenvironment. Interleukin-15 based immunotherapy could ensure a large number of NK cells to maintain dormancy and prevent BCLM through interferon-γ signalling (94). Actived HSCs secreted chemokine CXCL12 could induce NK cells quiescence through CXCR4 to promote BCLM (94). Normalizing NK cell pool might be a novel way to prevent BCLM.

For neutrophils, the immature low-density neutrophils (iLDNs) mobilized by cancer cell-derived granulocyte colony stimulating factor (G-CSF) can promote BCLM (150), and the liver metastatic growth may be facilitated by neutrophil-derived transferrin in BC (97). The neutrophil or the transferrin receptors depletion could inhibit transferrin production in the metastatic microenvironment and suppress BC metastasis (97). Furthermore, P53 may be a key regulator of pro-metastatic neutrophils. It was shown that blockade of Wnt secretion by LGK974, a Porcupine inhibitor blocking acylation of Wnt, or shRNA in p53-null BC cells reverse subsequent neutrophilic inflammation, resulting in reduced BCLM growth (98). To date, the WNT inhibitor LGK974 is under a phase I clinical study in patients with malignancies (151). Recently, Wang et al. found that the KIAA1199 could promote immunosuppressive neutrophils to infiltrate into the liver microenvironment, which indicated that KIAA1199 might be a potential therapeutic target to treat the liver metastasis (152). In addition, KIAA1199 carries out its function through the TGFβ-CXCL3/1-CXCR2 signaling pathway. Restoration of immune infiltration in the liver metastasis microenvironment can potentially be achieved by inhibiting KIAA1199 pharmacologically, and thereby allowing for suppression of liver metastasis and enhancement the response to ICI treatment (152). Further in vivo studies and clinical trials are needed to establish the utility of KIAA1199 inhibition in the treatment of BC with liver metastasis.



Conclusion

Although recent advances in the understanding of the molecular mechanisms of hepatic microenvironment in BCLM using various in vitro and in vivo models shed light on potential therapeutic targets, much work is needed to tie these findings to clinical relevance. Concomitantly, identification of biomarkers to predict BCLM risk, progression, treatment response, and patient survival will have a significant clinical impact. Further in-depth investigation of critical pathways and genetic changes underlying human BCLM would pave the way for developing new approaches for preventing and treating BCLM.
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Background

Due to lack of enough specific targets and the immunosuppressive tumor microenvironment (TME) of triple-negative breast cancer (TNBC), TNBC patients often cannot benefit from a single treatment option. This study aims to explore the regulatory effects of Compound kushen injection (CKI) plus chemotherapy on the TME of TNBC from a single cell level.



Methods

A mouse TNBC model in BALB/c mice was established to evaluate the antitumor efficacy and toxicity of CKI combined with chemotherapy. Flow cytometry was used to observe the influence of CKI on the lymphocyte populations in the tumor bearing mice. Both bulk RNA sequencing (RNA-seq) and single-cell RNA-seq (scRNA-seq) were applied to portray the modulation of CKI combined with chemotherapy on the TME of TNBC mice.



Results

CKI significantly enhanced the anticancer activity of chemotherapy in vivo with no obvious side effects. Flow cytometry results revealed a significantly higher activation of CD8+ T lymphocytes in the spleens and tumors of the mice with combination therapy. Bulk RNA-seq indicated that CKI could promote the cytotoxic immune cell infiltrating into tumor tissues. Meanwhile, scRNA-seq further revealed that CKI combined with chemotherapy could enhance the percentage of tumor-infiltrating CD8+ T cells, inhibit tumor-promoting signaling pathways, and promote T cell activation and positive regulation of immune response. In addition, CKI showed obvious anticancer activity against MDA-MB-231 breast tumor cells in vitro.



Conclusions

The combination of CKI and chemotherapy might provide a higher efficiency and lower toxicity strategy than a single chemotherapy drug for TNBC. CKI potentiates the anti-TNBC effects of chemotherapy by activating anti-tumor immune response in mice.





Keywords: compound kushen injection, triple-negative breast cancer, 4T1 tumor bearing mice, single cell RNA-sequencing, T lymphocytes



Introduction

Due to the lack of well-recognized therapeutic targets and enough treatment options, triple-negative breast cancer (TNBC) as a highly heterogeneous breast cancer subtype still has a high risk of early relapse and visceral metastasis, a shorter disease-free survival, and a dismal prognosis (1, 2). Although conventional chemotherapy is the standard treatment for TNBC and has improved clinical outcomes, many patients with TNBC show limited responses and often develop chemotherapy resistance and recurrence (3–5). In recent years, the treatment strategy based on molecular subtyping and genomic profiling is beginning to be applied to refractory metastatic TNBC (6). Although immunotherapy exhibited promising therapeutic effects for TNBC in combination with chemotherapy or molecularly targeted therapy, only a small portion of patients respond well to the novel therapy (6–9). Thus, considering the complexity of immunotherapy and their normally high treatment costs, it becomes more meaningful to develop newer combination therapies with broad-spectrum anticancer activity, high efficiency and low toxicity for TNBC based on existing chemotherapy drugs (10).

The tumor microenvironment (TME) plays a crucial role in the regulation of tumor progression, and the components of TME have been recognized as a biomarker for predicting patients’ prognosis and response to therapy across various solid tumors (11, 12). Especially in TNBC, increased tumor-infiltrating lymphocytes (TILs) are not only associated with favorable outcomes but also have the potential to serve as an indicator of a better response to chemotherapy, neoadjuvant chemotherapy, as well as anti-programmed cell death 1 (PD-1) or anti-programmed cell death 1 ligand 1 (PD-L1) immunotherapy (12–17). Transcriptomics research provides an important technical support for the in-depth exploration of tumor complexity and heterogeneity, and it also promotes the discovery of novel biomarkers and the development of potentially useful therapeutic strategies (11, 18–20). Recent technological advances in single-cell RNA-seq (scRNA-seq) have enabled a more detailed presentation of the fundamental properties of tumor-infiltrating immune cells, and a comprehensive single cell atlas of tumor-infiltrating T cell subpopulations across various cancer types has been constructed (21, 22). Recently, single-cell analysis has been used to deciphering the complex TME of TNBC patients receiving anti-PD-1 treatment (21, 23), while no single cell studies have been reported in dissecting the mechanisms of Chinese patent medicine on TME. Therefore, dissecting the effects and underlying regulatory mechanisms of Chinese patent medicine on the TME of TNBC at a single cell level is urgently needed.

Compound kushen injection (CKI, also known as Yanshu injection) is a National Medical Products Administration (NMPA)-approved anticancer Chinese patent medicine in China, which is extracted from the roots of two medicinal plants Kushen (Radix Sophorae Flavescentis) and Baituling (Rhizoma Heterosmilacis) through standardized Good Manufacturing Practice (GMP) (24, 25). A variety of anti-tumor active compounds in CKI like matrine and oxymatrine have been widely described (26, 27). CKI alone or it combined with chemotherapy or radiotherapy has been extensively adopted in clinical practice to treat liver cancer, gastric cancer, breast cancer, lung cancer, colorectal cancer, and other cancer types, suggesting that CKI possesses a broad spectrum of anti-cancer property (27–36). It is noteworthy that accumulating evidence suggests that CKI not only synergizes the efficacy and reduces the toxic side effects of chemotherapy or radiotherapy, but also improves patients’ quality of life and immune functions (28, 30, 31). CKI is the second most commonly used anticancer Chinese patent medicine, and the use rate of CKI was highest among the Chinese patent medicines used in 17 cancer types. In addition, CKI is also the second frequently used anticancer Chinese patent medicine in breast cancer (37). For breast cancer, according to the results of a meta-analysis, which comprised 16 randomized controlled trials (RCTs) enrolling a total of 1,315 patients, CKI in combination with chemotherapy indicates a better performance status and a reduced adverse drug reactions in the postoperative patients with breast cancer (31). Moreover, it has been reported that CKI can suppress human breast cancer stem-like cells by mediating the inactivation of the canonical Wnt/β-catenin pathway (29). Interestingly, a recent research aiming to discuss the roles of CKI on tumor immunity reveals that CKI alleviates the immunosuppressive effects of tumor-associated macrophages and afterwards relieves the its immune suppression on CD8+ T cells, which eventually improves the effects of low-dose sorafenib and reduces the adverse effects of chemotherapy (24). These clinical and experimental evidence suggested that CKI has great potential to serve as an adjuvant for anticancer immunotherapy. Our previous research also revealed possible immunotherapy biomarkers of CKI on TNBC by transcriptome data mining (38). Therefore, considering the immunoregulatory effects of CKI on the TME of HCC and its broad-spectrum anticancer activity, we aimed to study whether the combination of CKI and chemotherapy could increase the anti-tumor immunity in TNBC.

In this study, we aimed to assess the efficiency and toxicity of CKI combined with chemotherapy in controlling TNBC tumor growth and study the regulatory effects of the combination therapy on TME from a single cell level. A mouse breast cancer model in BALB/c mice with 4T1 cells was established to evaluate the antitumor efficacy of CKI combined with chemotherapy. Flow cytometry was used to observe the influence of CKI on the lymphocyte populations in the mice bearing 4T1 tumors. Single cell and bulk RNA sequencing were used to portray the modulation of CKI combined with chemotherapy on the TME of 4T1 tumor bearing mice.



Materials and methods


Ultra-high performance liquid chromatography-tandem mass spectrometry analysis

CKI (Batch No: 20200329), with total alkaloid concentration of 25 mg/mL, was gifted by Beijing Zhendong Pharmaceutical Research Institute Co., Ltd., China. Nine control compounds were used in this study, including matrine (HPLC: 98.7%), oxymatrine (HPLC: 92.9%), sophocarpine (HPLC: 99.84%), oxysophocarpine (HPLC: 93.1%), sophoridine (HPLC: 98.8%), N-methylcytisine (HPLC ≥ 98.0%), macrozamin (HPLC: 98.9%), trifolirhizin (HPLC ≥ 98.0%), and sophoranol (HPLC ≥ 95.0%).

LC-MS/MS was conducted to identify the components of CKI. The CKI was diluted 50-fold in 40% methanol solution and mixed well by vortex. The solution was centrifuged at 13,000 rpm for 15 minutes, and the obtained supernatant was used for LC-MS analysis. Meanwhile, every single standard compound was also diluted in 40% methanol solution and the concentration was 1 ug/mL. LC analysis was performed on a Thermo UHPLC vanquish system with a ACQUITY UPLC HSS T3 column (2.1 mm×100 mm, 1.8 µm) at 25°C, with water-formic acid (H2O-FA) (99.9:0.1, v/v) as mobile phase A and acetonitrile-formic acid (ACN-FA) (99.9:0.1, v/v) as mobile phase B. A gradient elution with the flow rate of 0.3 mL/min was executed as follows: 95% buffer A:5% buffer B for 0-17 min, 2% buffer A:98% buffer B for 17-17.2 min, and 95% buffer A:5% buffer B for 17.2-20 min. The MS analysis was performed on a Thermo Q-Exactive HFX system, with the electrospray ionization (ESI) source in both positive and negative ion modes. The spray voltages were set to 3.8 kV and -3.0 kV in positive and negative ion modes, respectively. The source gas parameters for sheath gas, aux gas and spare gas were set at 45, 20 and 0 units, respectively. The temperatures of capillary and probe heater were set at 320°C and 370°C, respectively. The scan range was set at m/z 90-1300.



Cell culture and in vitro experiments

MDA-MB-231 human triple-negative breast cancer cells (Bena Culture Collection, China) were cultured in Dulbecco’s Modified Eagle’s Medium (DMEM) (Corning, USA) supplemented with 10% fetal bovine serum (FBS) (Corning, USA) and 1% penicillin/streptomycin (Gibco, USA). 4T1 murine triple-negative breast cancer cells (Shanghai Fuheng Biotechnology Co., Ltd., China) were cultured in RPMI-1640 medium (Corning, USA) supplemented with 10% FBS (Corning, USA) and 1% penicillin/streptomycin (Gibco, USA). All cells were cultured at 37°C in a humidified incubator with 5% CO2.

The MDA-MB-231 cell line was used to investigate the anti-cancer effect of CKI. MDA-MB-231 cells were plated in 96-well plates in DMEM supplemented with 10% FBS and 1% penicillin/streptomycin, at a density of 2×105 cells/mL and maintained at 37°C in a 5% CO2 humidified incubator for 24 h. The cells were then treated with different concentrations of CKI (0.125, 0.25, 0.5, 1, 2, 4, 8 and 16 mg/mL) for 24, 48 and 72 h respectively. Cell survival was assessed using Cell Counting Kit-8 (CCK-8) (Dojindo, Japan) reagent. The optical density (OD) was detected at 450 nm using a microplate reader (Molecular Devices, USA). Based on the half-maximal inhibitory concentration (IC50) values and cellular state, the MDA-MB-231 cells with 2 mg/mL CKI treatment for 48 h were chosen for bulk RNA sequencing (RNA-seq). For clone formation assay, MDA-MB-231 cells (500 cells/well) were placed into 6-well plates and cultured for 10 days, and then the cells were treated with 0.375, 0.75 and 1.5 mg/mL CKI for 10 days, respectively. For wound-healing assay, MDA-MB-231 cells were treated with 0.375, 0.75 and 1.5 mg/mL CKI for 6, 12, 24 and 48 h, respectively.



Animal models

BALB/c mice (female, 4-5 weeks old) were obtained from SPF (Beijing) Biotechnology Co., Ltd. (China) and fed in a pathogen-free vivarium under standard conditions. The principles and experimental protocols of animals used were approved by the Animal Care and Protection Committee of Beijing University of Chinese Medicine. The 4T1 tumor cell suspension was diluted in PBS and injected subcutaneously (0.1 mL, 1×106 cells/mouse) into the left flank of each mouse. When the tumor size grew to around 60 mm3, the mice were randomly divided into six groups (n=8 in each group). The mice in the control group were injected intraperitoneally with saline every day for 17 days. The mice in the CKI group were injected intraperitoneally with CKI (4 mL/kg) every day for 17 days. The mice in the cisplatin (DDP) group were injected intraperitoneally with DDP (3 mg/kg) every three days for six times. The mice in the paclitaxel (PTX) group were injected intravenously with PTX (10 mg/kg) every three days for six times. The mice in the DDP+CKI combination therapy group were injected intraperitoneally with CKI (4 mL/kg per day) and DDP (3 mg/kg once every 3 days) for 17 days. The mice in the PTX+CKI combination therapy group were injected intraperitoneally with CKI (4 mL/kg per day) and were injected intravenously with PTX (10 mg/kg once every 3 days) for 17 days. Changes in tumor sizes were determined by measuring the tumor diameter in two dimensions with a caliper every 3 days. The tumor volumes (V) were calculated based on the formula: V=(width2×length)×0.52. The mice were sacrificed after the completion of the experiment. Tumor tissues and major organs (liver, heart, spleen, lung, and kidney) were excised, washed, fixed, and embedded into paraffin. The fixed samples were then sliced, subjected to the hematoxylin and eosin (H&E) staining and optical microscopy study. The apoptosis of tumor tissues was evaluated by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining. The TUNEL assay was performed with the In Situ Cell Death Detection Kit (Roche, USA) to detect the apoptotic cells in frozen sections of tumor tissues.



Flow cytometry analysis

For flow cytometry analysis of in vivo experiments, mouse tumors and spleens were quickly excised and then mechanically dissociated with scissors in sterile PBS. Splenocytes were filtered in 70 mM cell strainers. Tumor fragments were digested in 10% FBS (Thermo-Gibco), 0.5 mg/mL Collagenase from Clostridium histolyticum Type IV (Sigma-Aldrich), 0.15 mg/mL DNase I (Sigma-Aldrich) and RPMI 1640 (Thermo-Gibco) for 60 min at 37°C with rotation to promote dissociation. Single-cell suspensions were passed through a 70 μm cell strainer. Red blood cells in spleen samples were then lysed with RBC lysis buffer (BioLegend) for 10 min at room temperature, and lysis reactions were quenched by the addition of 20 mL PBS. Samples were centrifuged at 300 g for 5 min at 4°C. Cells were initially blocked with TruStain FcX™ (anti-mouse CD16/32 antibody, BioLegend) for 10 min at 4°C before staining with antibody panels. Then cells were stained with fluorescently labeled antibodies at a 1:100 dilution in Cell Staining Buffer (BioLegend) for 30 min at 4°C. Single-cell suspensions were stained with panel 1: PE-Cy7 anti-mouse CD45 (BioLegend), FITC anti-mouse CD3 (BioLegend), BV510 anti-mouse CD8a (BioLegend), and PerCP/Cy5.5 anti-mouse CD4 (BioLegend); panel 2: PerCP-Cy5.5 anti-mouse CD45 (BioLegend), FITC anti-mouse CD3 (BioLegend), and APC anti-mouse CD49b (BioLegend). All data was acquired by BD LSRFortessa flow cytometer (BD Bioscience) and analyzed with FlowJo software.



Bulk RNA-seq and data analysis

The tumor tissues of three mice in each group were used for bulk RNA-seq. Furthermore, the MDA-MB-231 cells with or without 2 mg/mL CKI treatment for 48 h were also used for bulk RNA-seq (n=6 per group). RNA-seq analysis was performed according to standard procedures, including RNA quantification and qualification, library preparation for transcriptome sequencing, clustering, and sequencing. Sequencing of total RNA from mice tumor tissues and MDA-MB-231 cells after indicated treatments was accomplished by Shanghai Applied Protein Technology Co., Ltd., China.

The quality of raw reads was checked with FastQC (version 0.11.9, Babraham Bioinformatics), and the sequences containing low-quality bases or adapters were trimmed using Trim_galore (version 0.6.6, Babraham Bioinformatics). The index of the reference genome (mouse: GRCm39, human: GRCh38; Ensembl Release 104) was built using the STAR software (version 2.7.9a) (39), and subsequently the trimmed reads were further aligned to the STAR genome index. Meanwhile, resulting bam files were sorted using samtools (version 1.10) (40). Then, the expression values of read counts and transcripts per million (TPM) were calculated by RSEM (v1.3.3) (41). Gene sets developed by Bagaev et al. (11), Jimenez-Sanchez et al. (42), and Sun et al. (43) were used with single-sample gene set enrichment analysis (ssGSEA) (44) to provide enrichment scores for each of the immune signatures. Human genes were transferred into murine homologous genes by manually retrieving the GeneCards website (https://www.genecards.org/). The moderated t-test based on an empirical Bayesian approach (implemented in the limma package (45)) was used to determine differential signatures and the significance level cutoff was set at P < 0.05. Differential expression analysis was performed with the DESeq2 package (46), and fold changes (FCs) were shrunk with the ashr method (implemented in the “lfcShrink” function of DESeq2) (47). The significance threshold for differential gene expression screening was set as adjusted P < 0.05 and |log2FC| > 1.



10x genomics single cell RNA sequencing

The tumor tissues of the mice treated with saline, CKI, PTX and PTX+CKI were used to perform scRNA-seq (3 mice in each group). Fresh surgically resected tissue was washed with sterile PBS and minced with scissors. The tissue samples were immediately transferred to pre-cooled Tissue Storage Solution (Shanghai Biotechnology Corporation) and were shipped at 4°C. Tissue processing was completed within 48 h of collection. The tissues were transported in sterile culture dish with 10 mL 1×Dulbecco’s Phosphate-Buffered Saline (DPBS; Thermo Fisher) on ice to remove the residual tissue storage solution, then minced on ice. We used dissociation enzyme 0.1% Type I Collagenase (Sigma) dissolved in RPMI 1640 (Thermo Fisher) with 10% Fetal Bovine Serum (FBS; Thermo Fisher) to digest the tissues. The tissues were dissociated at 37°C with a shaking speed of 50 rpm for about 40 min. The dissociated cells were repeatedly collected at interval of 20 min to increase cell yield and viability. Cell suspensions were filtered using a 70 μm nylon cell strainer and red blood cells were removed by 1×Red Blood Cell Lysis Solution (Thermo Fisher). Dissociated cells were washed with 1X DPBS containing 2% FBS. The cells were stained with 0.4% Trypan blue (Thermo Fisher) to check the viability on Countess® II Automated Cell Counter (Thermo Fisher).

We performed 3’ gene expression profiling on the single-cell suspension using the Chromium™ Single Cell 3’ Solution from 10x Genomics, following the manufacturer’s instructions. Reverse transcription, cDNA amplification and library preparation were performed using the Chromium Next GEM Single Cell 3’ GEM, Library & Gel Bead Kit v3.1 (10x Genomics) according to manufacturer’s instructions, with about 20,000 cells loaded onto a 10x Genomics cartridge for each sample. Cell-barcoded 3’ gene expression libraries were sequenced on an Illumina NovaSeq 6000 platform with 150 bp paired-end reads. The construction and sequencing of RNA libraries were performed at Shanghai Biotechnology Corporation, China.

The Cell Ranger toolkit (10x Genomics, version 6.1.2) was used to align reads to mouse reference genome (mm10, GENCODE vM23/Ensembl 98), assign cell barcodes, and generate the unique molecular identifier (UMI) matrices. The resulting count matrices showing the number of transcripts (UMIs) of each gene for a given cell were analyzed with R software (version 4.2.1) and the Seurat package (version 4.1.1) (48) in R, according to the standard pipeline with default parameters, unless mentioned otherwise. Scrublet (49) was utilized to each sequencing library to detect potential doublets, and they were removed when we performed clustering for T cell subgroups. The cells expressing less than 500 genes and the genes detected in less than 10 cells were preliminary filtered out from the raw UMI matrix. Then, the number of genes and UMI counts for each cell were further quantified, and the cells with the threshold of 500-5500 genes, 1500-40000 UMIs, fewer than 10% mitochondrial gene counts and fewer than 1% hemoglobin genes counts were kept to ensure that most of the cells with high quality were included for downstream analyses. The UMI count data was normalized with regularized negative binomial regression (50) after regressing for the percentages of mitochondrial genes and cell cycle. Individual Seurat objects were then integrated using the canonical correlation analysis (CCA) method (51), and top 3,000 most variable genes from each sample were combined for CCA vector identification. T-Distributed Stochastic Neighbor Embedding (t-SNE) dimensional reduction and clustering were performed based on the 20 most informative principal components (PCs). Clusters of cells were identified with the Louvain algorithm by employing the “FindClusters” function in Seurat, with a resolution of 0.8. DEGs were defined by a Wilcoxon Rank Sum test implemented in the “FindAllMarkers” function from Seurat. Clusters that were identified as T lymphocytes were extracted, and a second round of dimension reduction and clustering was performed on these subsets for further distinguishing T cell populations. The gene list used for dysfunctional T cells were adopted from Li et al. (52), and the cytotoxic gene list was used (including Gzma, Gzmb, Gzmg, Gzmk, Gzmm, Prf1, Fasl, Ifng, Tnf, Il2ra and Il2) (53).

The 50 hallmark gene sets described in the Molecular Signatures Database (MSigDB, version 7.4.1) (54), the 29 gene signatures developed by Bagaev et al. (11) and the T cell signatures introduced by Sun et al. (43) were used to perform ssGSEA, respectively. The moderated t-test based on an empirical Bayesian approach (implemented in the limma package) was applied to determine significantly changed pathways, and the significance cutoff was set at P < 0.05. GSEA analysis was performed based on immune system-related pathways deposited in Kyoto Encyclopedia of Genes and Genomes (KEGG) and immune-related biological processes deposited in Gene Ontology (GO) by employing the clusterProfiler package (55).



Statistical analysis

Unless otherwise stated, independent experiments were run at least in triplicates (n=3). The results were expressed as means ± standard error of the mean (SEM). The Shapiro-Wilk test was used to check the normality of the variables before comparison. Two-tailed unpaired Student’s t-test was used for comparison of variables with normal distribution between two groups. One-way ANOVA was used for comparison of normal distributed variables among more than two groups. P < 0.05 was considered statistically significant. The P values were adjusted for multiple test correction with the Benjamini-Hochberg algorithm to reduce false positive rates. All statistical analyses were done using R (version 4.2.1).




Results


Identification of main constituents in CKI

We performed both positive and negative ion modes for UHPLC-Q-Exactive-MS analysis. The base peak intensity (BPI) chromatogram profile of CKI was shown in Supplementary Figure 1. In the positive ion mode, we identified 14 peaks and 15 compounds, eight of which were unambiguously confirmed by comparing the accurate masses and retention times with reference standards (Supplementary Figure 1A). In the negative ion mode, we identified 14 peaks and 11 compounds, one of which were unambiguously confirmed by comparing the accurate masses and retention times with reference standards (Supplementary Figure 1B). The 26 compounds identified in this study were shown in Supplementary Table 1. These compounds included eight alkaloids and derivatives (41, 5, 8, 9, 10, 111, 112, 113, 13), five organic acids and derivatives (3, 14, 19, 20, 21), five organic oxygen compounds (2, 42, 6, 16, 17, 18), three benzenoids (7, 12, 25), two phenylpropanoids and polyketides (24, 28), one organic nitrogen compound (1), one lipids and lipid-like molecule (22), and one organoheterocyclic compound (26). Consistent with previous findings (35, 38, 56), we have also determined six alkaloids matrine, oxymatrine, N-methylcytisine, sophoridine, sophocarpine and oxysophocarpine, which have been known as the primary active ingredients of CKI.



Antitumor effects of CKI combined with chemotherapy in vivo

The overall workflow of in vivo experiments was shown in Figure 1. Antitumor efficacy of CKI, DDP, PTX, DDP+CKI, and PTX+CKI was assessed in vivo on a 4T1 tumor model (Figure 2A). Nine days after 4T1 transplantation in the abdominal subcutaneous tissue of female BALB/c mice, the mice bearing 4T1 tumors were treated with different therapeutic regimens to examine their antitumor efficacy. Two days after the last dose, mice were sacrificed and tumors were excised for further experiments (Figure 2B). Body weight of the mice did not change significantly in any of the groups during 27 days of administration (Figure 2C). Following the drug treatments, the tumor volumes of mice were measured (Figures 2D–G). Saline-treated mice (control) showed a faster growth in the breast tumor with time compared to all other groups (Figure 2D). The tumor volumes of DDP+CKI and PTX+CKI group were significantly smaller than that of the control group (Figures 2E–G). Compared to DDP and PTX monotherapy, the combination of CKI and DDP/PTX presented a more significant inhibitory effect on tumor growth (DDP+CKI vs. DDP on day 21, P < 0.001, Figure 2E; PTX+CKI vs. PTX on day 21, P = 0.051, Figure 2E; DDP+CKI vs. DDP on day 24, P = 0.068, Figure 2E; PTX+CKI vs. PTX on day 24, P < 0.01, Figure 2F). These results indicated that the anti-tumor effect of DDP and PTX in vivo could be effectively enhanced by CKI. Histopathological studies of isolated tumors of mice after drug treatment exhibited that all the five treatment groups promoted the apoptosis and necrosis of tumor cells, and the effect of combination therapy was superior to monotherapy (Figure 2I left). Meanwhile, the apoptosis of tumor tissues was detected by TUNEL staining. The results illustrated that the combination therapy group had much more apoptotic cells compared with all other groups (Figure 2H, Figure 2I right), which further confirmed that the combination of CKI with chemotherapy synergistically suppressed tumor growth. No noticeable abnormality was found in the heart, liver, spleen, lung, or kidney functions (Figure 3).




Figure 1 | Workflow of this study. (A) Efficacy of DDP+CKI and PTX+CKI in vivo. (B) Flow cytometry and bulk RNA-seq analyses. (C) scRNA-seq analysis.






Figure 2 | Efficacy of monotherapy and combination therapy on 4T1 mammary carcinomas. (A) Schematic representation of drug injection schedule. (B) Extracted tumor images of the mice from each treatment group on the last day after treatment. Only five samples in each treatment group were showed. (C) Body weight changes of mice burdened with 4T1 tumors in different groups. (D) Growth kinetics of 4T1 tumors in different groups. (E) Evaluation of 4T1 tumor volumes after treatment on day 21. (F) Evaluation of 4T1 tumor volumes after treatment on day 24. (G) Evaluation of 4T1 tumor volumes after treatment on day 27. (H) The apoptosis in tumor tissues quantified by counting the rate of TUNEL-positive cells. (I) Representative HE staining and TUNEL immunofluorescent staining images of tumor sections. For TUNEL staining, the green fluorescence represents apoptotic cells. The representative specimens were examined at 200x magnification for HE staining (scale bar=50 μm) and 400x magnification for TUNEL staining (scale bar=20 μm). Data represent the mean ± SEM (Figure 2C–G: n=8 in each group, Figure 2H: n=3 in each group).






Figure 3 | Representative HE staining images of major organs from mice treated with different formulations. The representative specimens were examined at 200x magnification (Scale bar=50 μm).





The combination of CKI and chemotherapy enhances the proportion of immune cell subpopulations in vivo

To investigate the immune responses exerted by CKI in vivo, we analyzed the immune cell populations from the spleen and tumor tissues of mice by flow cytometry. For the cell subsets in spleens, the mice treated with saline witnessed a decreased number of immune cells compared to the normal control mice, and the T cell population (CD3+), CD8+ T lymphocytes (CD3+CD8+), CD4+ T cells (CD3+CD4+) and NK cells (CD3-CD49+) of the mice treated with DDP+CKI or PTX+CKI were significantly higher than that of the saline-treated mice (Figure 4). Meanwhile, the mice with combination therapy showed a significantly higher number of T lymphocytes and NK cells in spleens compared with the monotherapy-treated mice (Figure 4). For the cell subsets in tumors, the mice treated with combination therapy also showed an increased number of immune cells compared to the saline-treated mice, and the CD3+ T, CD8+ T, and NK cell populations of the mice treated with DDP+CKI or PTX+CKI was significantly higher than that of the saline-treated mice (Figure 5). Meanwhile, the mice with combination therapy showed a significantly higher number of tumor-infiltrating CD3+ T, CD8+ T, and NK cells compared with the monotherapy-treated mice (Figure 5).




Figure 4 | Flow cytometry analysis of immune cell populations within the spleens. (A) Representative flow cytometry plots of CD3+ T cells, CD4+ T cells, CD8+ T cells, and NK cells within the spleens of the mice receiving different treatments. The percentage of CD3+ T cells (B), CD4+ T cells (C), CD8+ T cells (D), and NK cells (E) within spleens of the mice receiving different treatments. The data are presented as mean ± SEM (n=3). *0.01 < P < 0.05, **0.001 < P < 0.01, ***P < 0.001.






Figure 5 | Flow cytometry analysis of immune cell populations within tumors and immune infiltrating analysis based on RNA-seq data. (A) Representative flow cytometry plots of CD3+ T cells, CD8+ T cells, and NK cells within the tumors of the mice receiving different treatments. The percentage of CD3+ T cells (B), CD8+ T cells (C), and NK cells (D) within tumors receiving different treatments. The data are presented as mean ± SEM (n=3). *0.01 < P < 0.05, **0.001 < P < 0.01, ***P < 0.001.





Bulk RNA-seq analysis of 4T1 tumor bearing mice

The RNA-seq data of the 4T1 mouse treated with DDP, PTX, DDP+CKI and PTX+CKI was shown in Supplementary Table 5. We quantified the relative tumor infiltration levels of immune cell types based on transcriptome profiling of tumour tissues by using the ssGSEA approach (implemented in the GSVA package). We used the normalized enrichment score (NES) of every immune cell signature to indicate the relative abundance of each immune cell in the 4T1 tumor-bearing mice. As for the gene signatures developed by Bagaev et al., the mice treated with combination therapy witnessed a remarkablely higher enrichment scores of the signatures associated with cytotoxic T and NK cells, such as effector cells, effector cell traffic, T cells, and NK cells (Figures 6A, D). With regard to the gene signatures developed by Jimenez-Sanchez et al., all the mice with DDP+CKI or PTX+CKI treatment showed a remarkablely higher enrichment scores of cytotoxic cells, T cells CD8, and NK cells than the mice with a single chemotherapy (Figures 6B, E). Similarly, for the gene signatures developed by Sun et al., the mice in the combination therapy group were also witnessed a significantly higher enrichment scores in CD8+ and CD4+ T cells than the mice with monotherapy (Figures 6C, F). In summary, the results indicated that CKI could promote the cytotoxic immune cell infiltrating into tumor tissues.




Figure 6 | Estimation of immune cell infiltration in tumor tissues based on ssGSEA. Relative abundance of tumor-infiltrating immune cells in the tumor tissues of the 4T1 tumor bearing mice treated with DDP or DDP+CKI, which was calculated based on the signatures developed by Bagaev et al. (A), Jimenez-Sanchez et al. (B), and Sun et al. (C), respectively. Relative abundance of tumor-infiltrating immune cells in the tumor tissues of the 4T1 tumor bearing mice treated with PTX or PTX+CKI, which was calculated based on the signatures developed by Bagaev et al. (D), Jimenez-Sanchez et al. (E), and Sun et al. (F), respectively. The P values were generated by the limma package. *0.01 < P < 0.05, **0.001 < P < 0.01, ***P < 0.001.





ScRNA-seq analysis of the TME in 4T1 tumor bearing mice

To characterize the influence of CKI combined with PTX on the TME of TNBC mice, we performed droplet-based scRNA-seq for the mice treated with saline, CKI, PTX and PTX+CKI. In total, we sequenced 174434 cells, with an average of 14536 cells per sample. We detected a total of 32285 genes with an average of 1087 genes and 3263 unique molecular identifiers (UMIs) in each cell (Supplementary Figure 2A; Supplementary Table 2). After performing quality control based on total UMIs, the number of expressed genes, the percentages of UMIs from mitochondrial genes, ribosomal genes, dissociation-associated genes, and hemoglobin genes, we reserved a total of 17925 genes and 104940 cells, with an average of 1900 genes and 5998 UMIs detected per cell (Supplementary Figure 2B; Supplementary Table 3). We annotated epithelial cells, neutrophils, macrophages, T cells, monocytes, dendritic cells, fibroblasts, B cells and mast cells through the expression of canonical cell type gene markers. (Figures 7A–C; Supplementary Figures 3, 4A–C). Four major cell clusters were epithelial cells (Epcam+, Krt18+, Krt7+), neutrophils (S100a8+, S100a9+, Csf3r+, Retnlg+), macrophages (C1qa+, C1qb+) and T cells (Cd3d+, Cd3e+, Cd2+), including 48634, 15444, 15261 and 12181 cells, respectively. Five minor cell clusters were monocytes (Cd68+, Cd14+), dendritic cells (Clec9a+, Xcr1+, Batf3+), fibroblasts (Col1a1+, Col3a1+), B cells (Cd79a+, Ms4a1+) and mast cells (Cpa3+, Tpsab1+), including 8541, 1656, 1608, 1112 and 503 cells, respectively. The mice receiving CKI intervention showed a higher percentage of T cells and a lower percentage of epithelial cells compared with the mice without CKI treatment (Figures 7D–G, Supplementary Figure 4D).




Figure 7 | Comprehensive dissection and clustering of single cells from 4T1 mice. (A) T-SNE plot within each sample type, color-coded by cell types.(B) Heatmap of average expression of canonical marker genes for different cell types. (C) Volcano plot showing top 10 up- and down-regulated DEGs for each cell type. (D) Difference in the proportion of different cell types. (D) Difference in the proportion of different cell types. (E) Difference in the proportion of epithelial cells between the PTX+CKI and PTX group. (F) Difference in the proportion of T cells between the mice with or without CKI intervention. (G) Difference in the proportion of T cells between the PTX+CKI and PTX group.



The T cell subcluster was further classified into exhausted CD8+ T cells, cytotoxic CD8+ T cells, conventional CD4+ T cells (CD4+ Tconv), NK cells, regulatory T cells (Treg), γδ T cells, Naive T cells, NKT cells and exhausted CD4+ T cells, including 4788, 2364, 1220, 869, 603, 346, 297, 265 and 128 cells, respectively (Figures 8A–C, Supplementary Figures 5, 6A–D). The mice treated with PTX+CKI showed a higher percentage of CD8+ T cells compared with the mice treated with PTX, while cytotoxic CD8+ T cells had no statistical significance (Figures 8D, E, Supplementary Figure 6E). Overall, the mice in the PTX+CKI and CKI groups showed a higher average expression of canonical T cell markers (Cd3d, Cd3e, Cd3g), CD8+ T cell markers (Cd8a, Cd8b1) and cytotoxic CD8+ T cell markers (Gzma, Gzmb, Gzmk, Prf1, Fasl, Ifng, Nkg7, Tnf) than the mice without CKI intervention (Figures 8F–H).




Figure 8 | Dissection and clustering of T lymphocytes in 4T1 mice. (A) T-SNE plot within each sample type, color-coded by cell types. (B) Violin plot of average expression of canonical marker genes for different cell types. (C) Heatmap of dysfunctional and cytotoxic effector gene signature scores in T cells. (D) Difference in the proportion of different cell types. (E) Difference in the proportion of CD8+ T cells between the PTX+CKI and PTX group. (F) Difference in the expression levels of canonical marker genes for T and cytotoxic T cells. (G) Difference in the expression levels of canonical marker genes for T and cytotoxic T cells between the mice with or without CKI intervention. (H) Difference in the expression levels of canonical marker genes for T and cytotoxic T cells between the PTX+CKI and PTX group.



GSVA analysis based on hallmark gene sets showed that tumor-promoting signaling pathways were inhibited in the PTX+CKI group, such as TGF beta signaling, MYC targets variant 1 and MYC targets variant 2 (PTX+CKI vs. saline and PTX+CKI vs. PTX, Figures 9A, B). GSVA analysis based on immune gene sets exhibited that the signatures associated with cytotoxic T and NK cells were activated in the PTX+CKI group versus the PTX group, like effector cells, effector cell traffic, NK cells, T cells (Figures 9C, D), CD8Tcm, CD8Teff and CD8Tem (Figures 9E–G). GSEA analysis based on KEGG pathways showed that the PTX+CKI group were enriched in T cell-related pathways compared with the PTX group, like T cell receptor signaling pathway, Th1 and Th2 cell differentiation, Th17 cell differentiation, natural killer cell mediated cytotoxicity, and PD-L1 expression and PD-1 checkpoint pathway in cancer (Figures 10E, F). GSEA analysis based on GO biological processes showed that the PTX+CKI group were enriched in the biological processes associated with the activation of immune response and T cells, like positive regulation of adaptive and innate immune response, lymphocyte activation involved in immune response, and positive regulation of T cell activation, proliferation, differentiation and migration (PTX+CKI vs. PTX, Figures 10G–I). Moreover, we found that the PTX+CKI vs.saline group and the PTX+CKI vs. PTX group shared 58% down-regulated genes and 69% up-regulated genes, implying the potential synergy of CKI with PTX (Figures 10A–D).




Figure 9 | GSVA analysis of single cells from 4T1 mice. (A) Differential hallmark pathway activities in the PTX+CKI group versus the saline group. (B) Differential hallmark pathway activities in the PTX+CKI group versus the PTX group. (C) Heatmap showing enrichment scores (based on the signatures developed by Bagaev et al.) in the four groups. (D) Difference in the enrichment scores of the signatures related to cytotoxic T and NK cells among the four groups (based on the signatures developed by Bagaev et al.). (E) Heatmap showing T cell enrichment scores (based on the signatures developed by Sun et al.) in the four groups. (F) Difference in the T cell enrichment scores (based on the signatures developed by Sun et al.) among the four groups. (G) Difference in the T cell enrichment scores (based on the signatures developed by Sun et al.) between the PTX+CKI group and the PTX group. ***P < 0.001.






Figure 10 | GSEA analysis of single cells from 4T1 mice. (A) Volcano plot showing DEGs between the mice treated with PTX+CKI and saline. (B) Volcano plot showing DEGs between the mice treated with PTX+CKI and PTX. The red dot represents up-regulated genes (adjusted P < 0.01 and log2FC > 0.25) and the green dot represents down-regulated genes (adjusted P < 0.01 and log2FC < -0.25). (C) Venn plot showing consistently down-regulated DEGs. (D) Venn plot showing consistently up-regulated DEGs. (E) Immune-related KEGG pathways enriched in the PTX+CKI group compared with the PTX group. (F) T cell receptor signaling pathway enriched in the PTX+CKI group compared with the PTX group. (G) Immune-related GO biological processes enriched in the PTX+CKI group compared with the PTX group. (H) Positive regulation of immune response enriched in the PTX+CKI group compared with the PTX group. (I) Positive regulation of T cell activation enriched in the PTX+CKI group compared with the PTX group.





CKI inhibits proliferation, clone formation and migration of MDA-MB-231 cells

We assessed the effect of CKI on the viability of human breast cancer MDA-MB-231 cells, and the results presented that CKI inhibited the growth of MDA-MB-231 cells in a dose-dependent manner. After 24, 48, and 72 h of CKI treatment, the IC50 values of CKI on MDA-MB-231 cells were 2.62 ± 0.52 mg/mL, 1.89 ± 0.10 mg/mL, and 1.419 ± 0.39 mg/mL, respectively (Figure 11A; Supplementary Figure 4). Based on the IC50 values and cellular state, the MDA-MB-231 cells with 2 mg/mL CKI treatment for 48 h were chosen for the RNA sequencing. The clone formation assay also indicated that CKI strongly repressed the proliferation of MDA-MB-231 cells (Figures 11B, D). Wound-healing assay showed that the wound closure rate of the control group was higher than that of the CKI-treated group, and 1.5 mg/ml CKI obviously inhibited the migration of MDA-MB-231 cells at 24 and 28 h (Figures 11C, E). The RNA-seq data of CKI-perturbed MDA-MB-231 cells was shown in Supplementary Table 6. The results of RNA-seq data analysis for the CKI-perturbed cell line samples and control samples were shown in Figures 11F–K. We found a total of 1024 significantly differential genes (540 down-regulated and 484 up-regulated), which contained 853 protein coding genes and 134 long non-coding RNAs (lncRNAs) (Figures 11F, G; Supplementary Table 4). Analysis of hallmark pathway gene signatures highlighted that proliferation-related pathways like MYC targets variant 2 (Figure 11H), E2F targets (Figure 11I), MYC targets variant 1 (Figure 11J), and G2M checkpoint (Figure 11K) were significantly down-regulated in the CKI treatment group compared with the control group. Collectively, these results highlighted the antitumor functions of CKI in vitro. As a whole, the schematic diagram showing the overall effects of CKI on TNBC in vitro and in vivo (Figure 12).




Figure 11 | Dose-dependent inhibitory effects of CKI on the proliferation, clone formation and migration of MDA-MB-231 cells. (A) The viability of MDA-MB-231 cells treated with different concentrations of CKI for 24, 48, and 72 h, respectively. (B) Clone formation images of MDA-MB-231 cells treated with different concentrations of CKI. (C) Wound healing images of MDA-MB-231 cells treated with different concentrations of CKI for 6, 12, 24 and 48 h, respectively. (D) Bar plot showing clone formation rates. (E) Bar plot showing wound healing rates. (F) Heatmap of significantly differential genes. Top 20 up- and down-regulated genes in the differential genes with base mean larger than the median value were shown. (G) Volcano plot of significantly differential genes. The red dot represents up-regulated genes (adjusted P < 0.05 and log2FC > 1) and the green dot represents down-regulated genes (adjusted P < 0.05 and log2FC < -1). Top 10 up- and down-regulated differential genes were labeled. (H) GSEA analysis of genes involved in MYC targets variant 2 pathway. (I) GSEA analysis of genes involved in E2F targets pathway. (J) GSEA analysis of genes involved in MYC targets variant 1 pathway. (K) GSEA analysis of genes involved in G2M checkpoint pathway. Data represents mean ± SD (n=3 per group). *0.01 < P < 0.05, **0.001 < P < 0.01, ***P < 0.001. ns, non-significant.






Figure 12 | Schematic diagram shows the effects of CKI on TNBC in vitro and in vivo.






Discussion

Chemotherapy is a standard therapeutic regimen to treat triple-negative breast cancer (TNBC); nevertheless, chemotherapy alone does not bring more improvement of clinical benefits and often leads to drug resistance in patients. Cancer immunotherapies that target tumor-specific T cells, especially reactivating CD8+ T cells to promote anti-tumor immunity, have successfully provided a clinical benefit to cancer patients (22, 57–59). Recently, CD8 status has been proposed to determine which TNBC patients have a higher possibility to benefit from immunotherapy (9). However, the strategies attempting to reactivate CD8+ T cells tend to have possible drug toxicities and high costs, and targeting CD8+ T cells alone does not provide enough efficacy for successful cancer treatment considering the complexity of the immunosuppressive microenvironment (9, 60). Moreover, the efficacy of immunotherapy varies dramatically across cancer types, and only a minor subset of TNBC patients is associated with immunotherapy benefits (8, 10, 22). Thus, it becomes more important to develop newer approaches for breast cancer treatment using the existing chemotherapy drugs.

CKI has been clinically approved by NMPA for treating cancer-induced pain (25), and CKI alone or it combined with chemotherapy or radiotherapy has been widely used and improved therapeutic and prognostic benefits (29, 31). Meanwhile, previous research has reported that CKI could remodel the tumor immune microenvironment of hepatocellular carcinoma (HCC) via modulating the function of macrophages and CD8+ T cells (24). Given the immunoregulatory roles of CKI on HCC and its broad-spectrum anticancer activity, we attempted to explore whether the combination of CKI and chemotherapy could enhance the anti-tumor immunity in TNBC. Numerous studies have found that CKI exerts significant inhibition on the migration and invasion of MDA-MB-231 cells, and it also induces both apoptosis and cell cycle arrest (56, 61–63). In addition, the energy metabolism and DNA repair pathways of MDA-MB-231 cells are reduced after CKI intervention (62). Our previous research also reveals potential immunotherapy biomarkers of CKI on TNBC by applying transcriptome data mining (38). Collectively, existing clinical and experimental results indicate that CKI holds a great promise as an adjuvant for anticancer immunotherapy.

In this study, we assessed the antitumor efficacy and toxicity of DDP+CKI or PTX+CKI in a 4T1 murine breast cancer model using BALB/c mice. The results showed that the combination of CKI with chemotherapy synergistically suppressed tumor growth without obvious organ toxicity. The flow cytometry analysis showed an elevated percentage of CD3+, CD4+, CD8+ T lymphocytes and NK cells in the spleens and tumors of combination therapy-treated mice, suggesting the immunomodulatory effects of CKI when it was combined with chemotherapy. Based on the bulk RNA-seq data of the tumor tissues of 4T1 mice, we adopted different curated gene lists for immune cell infiltrating analysis to maximally ensure the reliability of our research. The results demonstrated that the gene sets correlated with T, cytotoxic CD8+ T and NK cells were significantly activated in the combination therapy group versus the monotherapy group. Notably, all the results support that the cytotoxic T and NK cells in the mice treated with combination therapy were significantly activated compared to the mice treated with a single chemotherapy.

The scRNA-seq analysis for the TME of 4T1 tumor bearing mice showed that the mice in the PTX+CKI group had a higher percentage of total T lymphocytes and CD8+ T cells than the PTX-treated mice. Meanwhile, the mice in the PTX+CKI and CKI groups showed a higher average expression of canonical marker genes of T, CD8+ T and cytotoxic CD8+ T cells than the mice without CKI intervention. However, although the number of cytotoxic CD8+ T cells in the PTX+CKI group was much higher than that in the PTX group, the percentage of cytotoxic CD8+ T cells had no statistical significance between the two groups. Two possible reasons may contribute to such results: on the one hand, the combination of CKI and PTX may only increase the number of cytotoxic CD8+ T cells in TME without changing the ratio of cytotoxic CD8+ T cells to total T lymphocytes; on the other hand, the small sample size limited statistical power, so more scRNA-seq samples in a large number of animals are needed to further observe the results. Furthermore, we found that the pathways and biological processes associated with the activation of immune response, lymphocytes, T cell, cytotoxic T cells and NK cells were enriched in the PTX+CKI group versus the PTX group. Altogether, CKI could promote the cytotoxic immune cell infiltrating into tumor tissues, eventually improving the therapeutic outcomes of DDP and PTX. Analysis of bulk RNA-seq data on CKI-treated MDA-MB-231 cells displayed that proliferation-related pathways like MYC targets, G2M checkpoint and E2F targets were significantly down-regulated in the CKI-treated tumor cells compared with the control cells. All these results highlighted the antitumor functions of CKI in vitro and in vivo. In summary, this study found that CKI modulated TME while DDP or PTX directly targeted tumor cells, and these distinct modes of action promoted anticancer activity and achieved significant tumor suppression.

To our knowledge, this is the first study that employs the scRNA-seq technology to investigate the antitumor effects of Chinese patent medicines. Our findings may be useful in further developing a combination of drugs with high efficiency and low toxicity to control cancer growth in TNBC, and our analytic methods would lay the foundation for further dissecting the mechanisms of compound medicines on TME. However, our study was limited to the small sample size, which may reduce the statistical significance of our results. Further studies in a large number of samples are needed to deeply investigate the immunoregulatory mechanisms of CKI in combination with chemotherapy.



Conclusions

In conclusion, the combination of CKI and chemotherapy might provide a higher efficiency and lower toxicity strategy than a single chemotherapy drug for TNBC. Our study provides evidence that CKI combined with chemotherapy triggers effective antitumor immunity by activating immune cells in a murine breast cancer model.
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Supplementary Figure 1 | UHPLC-Q-Exactive-MS analysis of CKI. (A) Chromatographic fingerprints of CKI in the positive ion mode. (B) Chromatographic fingerprints of CKI in the negative ion mode.

Supplementary Figure 2 | Quality control of the samples detected by scRNA-seq. (A) Distribution for gene, UMI, mitochondrial gene percentage, ribosomal gene percentage and hemoglobin gene percentage before filtering. (B) Distribution for gene, UMI, mitochondrial gene percentage, ribosomal gene percentage and hemoglobin gene percentage after filtering.

Supplementary Figure 3 | T-SNE plot of representative marker genes for major cell types.

Supplementary Figure 4 | Additional figures for dissection and clustering of major cell types. (A) UMAP plot within each sample type, color-coded by cell types. (B) Violin plot of average expression of canonical marker genes for different cell types. (C) Dot plot of average expression of canonical marker genes for different cell types. (D) Average proportion of cells derived from each sample, color-coded by samples.

Supplementary Figure 5 | T-SNE plot of representative marker genes for T cell populations.

Supplementary Figure 6 | Additional figures for dissection and clustering of T cell populations. (A) UMAP plot within each sample type, color-coded by cell types. (B) Volcano plot showing top 10 up- and down-regulated DEGs for each cell type. (C) Heatmap of average expression of canonical marker genes for different cell types. (D) Dot plot of average expression of canonical marker genes for different cell types. (E) Average proportion of cells derived from each sample, color-coded by samples.

Supplementary Figure 7 | Additional figures for dose-dependent inhibitory effects of CKI on the proliferation of MDA-MB-231 cells. (A) Line chart showing the correlation between cell viability and treatment duration. (B) Difference in the viability of MDA-MB-231 cells treated with different concentrations of CKI for 24, 48, and 72 h, respectively. Data represents mean ± SD (n=3 per group). *0.01 < P < 0.05, **0.001 < P < 0.01, ***P < 0.001, ns, non-significant.
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Long noncoding RNAs (lncRNAs) have been reported to play a key role in regulating tumor microenvironment and immunity. Cancer-associated fibroblasts (CAFs) are abundant in many tumors. However, the functional and clinical significance of lncRNAs specifically expressed in CAFs has not been fully elucidated. In this study, we identified a list of 95 CAF-specific lncRNAs (FibLnc), including HHLA3, TP53TG1, ST7-AS1, LINC00536, ZNF503-AS1, MIR22HG, and MAPT-AS1, based on immune cell transcriptome expression profiling data. Based on the Cancer Genome Atlas and Gene Expression Omnibus datasets, we found that the FibLnc score predicted differences in overall patient survival and performed well in multiple datasets. FibLnc score was associated with the clinical stage of patients with breast cancer but did not significantly correlate with the PAM50 classification. Functional analysis showed that FibLnc was positively correlated with signaling pathways associated with malignant tumor progression. In addition, FibLnc was positively correlated with tumor mutational load and could predict immunotherapy response in patients with breast cancer receiving anti-PD-1 or anti-CTLA4 therapy. Our proposed FibLnc score was able to reflect the status of the immune environment and immunotherapeutic response in breast cancer, which could help explore potential therapeutic decisions and regulatory mechanisms of CAF-specific lncRNAs.
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Introduction

Breast cancer is one of the most common cancers worldwide and is the second leading cause of tumor-related deaths in women (1–3). The treatment options for breast cancer usually include a combination of surgical excision, radiation therapy, and drug therapy (hormonal therapy, chemotherapy, and/or targeted biologic therapy) to treat microscopic cancer that spreads from the breast tumor through the bloodstream (4). Breast cancer patients have a good prognosis in early diagnosis, but only around 25% will survive their cancer for 5 years or more after they are diagnosed at stage IV (5). Therefore, there is an urgent need to develop new molecular targets and therapeutic strategies.

The tumor microenvironment (TME), which has been a topic of interest, contains stromal cells, immune cells, and noncellular components that may influence the diagnosis and prognosis of patients with breast cancer (6, 7). Various tumors actively engage with their microenvironment, which is a factor that strongly influences tumor progression and metastasis. TME has been shown to be an important cause of tumor resistance to antichemotherapy drugs (8, 9). In addition, some immune cells, such as macrophages, secrete TGF-β, which reduces the abundance of succinate dehydrogenase, and promotes increased glycolysis, thus enhancing tumor growth and immunosuppression (10, 11).

Recently, numerous studies have shown that breast cancer-associated fibroblasts play a role in the development and progression of breast cancer, and cancer-associated fibroblasts (CAFs) are the most abundant cellular component of the breast cancer microenvironment, with high expression of many growth factors, such as hepatocyte growth factor, transforming growth factor beta, and fibroblast growth factor. Most of these genes promote invasion and metastasis (12, 13). Breast cancer-associated fibroblasts can also regulate triamcinolone resistance through activation of the MAPK and PI3K/Akt pathways and phosphorylation of ERα (14). These findings suggest that studies on CAFs in the breast cancer microenvironment may further elucidate the complex relationship between cancer cells and their microenvironment and identify new targets for the treatment of breast cancer. Long noncoding RNAs (lncRNAs) have been reported to play a key role in regulating TME and tumor immunity (15). However, the functional and clinical significance of lncRNAs specifically expressed in CAFs have not been fully elucidated. Therefore, there is an urgent need to explore the potential therapeutic decisions and regulatory mechanisms of CAF-specific lncRNAs.

In this study, we generated a CAF-specific lncRNA (FibLnc) score that could predict the differences in overall patient survival and perform well in multiple datasets. The FibLnc score was found to be associated with the clinical stage of patients with breast cancer and signaling pathways related to malignant tumor progression. In addition, FibLnc was positively correlated with tumor mutational load and could predict immunotherapy response in patients with breast cancer receiving anti-PD-1 or anti-CTLA4 therapy. The robust and powerful FibLnc score was able to reflect the immunotherapeutic response in breast cancer and provide insightful suggestions for exploring potential therapeutic decisions and regulatory mechanisms of CAF-specific lncRNAs.



Results


CAFs are the major components in breast cancer TME

The overall immune and stromal infiltration levels and tumor purity were calculated for The Cancer Genome Atlas (TCGA) breast cancer samples (Table S1). We analyzed the differences in immune and stromal infiltration scores between the tumor and normal patients. Expectedly, the stromal infiltration score was significantly higher in normal samples than in tumor samples, and a similar phenomenon was observed in paired samples (Figures 1A, B). However, the level of immune infiltration did not differ significantly between the tumor and normal patients. When further comparing the correlation of clinical factors with cellular infiltration scores in patients with breast cancer, its association with stromal infiltration level was more significant than with immune infiltration scores (Figures 1C, D, and S1). The stromal infiltration level was more significantly different in different PAM50 subtypes than immune infiltration level, interestingly, we also found that immune infiltration level was not significantly associated with tumor stage and age of patients, but stromal infiltration level were significantly different in different groups of samples. These suggesting that stromal infiltration level may be more associated with tumor progression. Furthermore, the immune and stromal scores were significantly correlated with tumor purity (Figures 1E, F). In addition, we found that the level of stromal infiltration was significantly negatively associated with survival (Figure 1G), while that of immune infiltration was associated with a better prognosis in patients with breast cancer (Figure S1F). As shown in Figure 1H, CAFs were the most relevant cells in the microenvironment of patients with breast cancer with the level of stromal infiltration, suggesting a potential crucial function of CAFs in regulating breast cancer tumor microenvironment. Previous studies have shown that CAFs suppress the activity of immune cells, leaving tumor patients in an immunosuppressed state (16, 17), which is consistent with the opposite prognostic predictive value of immune and stromal infiltration scores in patients with breast cancer.




Figure 1 | Stromal scores are associated with clinical features and outcomes. (A) Analysis of unpaired differences in the distribution of immune and stromal scores in tumors and normal tissues adjacent to the tumor. (B) Analysis of pairwise differences in immune and stromal score distribution in tumors and normal tissues adjacent to the tumor. (C) Analysis of the differences in the distribution of immune and stromal scores among different PAM50 subtypes. (D) Analysis of the differences in the distribution of immune and stromal scores among different TNM stages. (E, F) Association between immune/stromal scores and tumor purity inferred using the ESTIMATE algorithm. (G) Survival analysis of the low and high stromal scores. (H) Correlation between TME cell abundance and immune score.





Construction of FibLnc risk score model

LncRNAs play a regulatory role in the TME. Based on single-cell line expression matrix data from several databases, 95 lncRNAs were identified to be specifically highly expressed in CAFs (Figure 2A and Table S2). As shown in Figure 2B, the expression of these lncRNAs was significantly higher in CAFs than in normal cells. Next, we screened survival-related lncRNAs in breast cancer using univariate Cox regression analysis (Table S3) and constructed LASSO-Cox risk regression models based on these lncRNAs. After screening (Figure S2), the final seven lncRNAs, namely HHLA3, TP53TG1, ST7-AS1, LINC00536, ZNF503-AS1, MIR22HG, and MAPT-AS1, were used to calculate the FibLnc score. These lncRNAs were associated with the overall survival of patients with breast cancer and were differentially expressed in the high- and low-risk groups (Figures 2C, D). Principal component analysis showed significant differences in gene expression patterns between high- and low-risk groups (Figure 2E), and survival analysis further suggested that FibLnc scores were associated with worse overall patient survival (Figure 2F). We further validated this in several datasets (Figure S3) and found that the FibLnc score significantly differentiated patient overall survival.




Figure 2 | CAF-specific lncRNAs identification and model construction. (A) Differentially expressed lncRNAs between CAF and other TME cells. (B) The density plot of expression values of CAF-specific lncRNAs and other lncRNAs. (C) Forest plot of the seven lncRNAs used for model construction. (D) Heatmap of the expression level of eight lncRNAs used for model construction. (E) PCA analysis of the high- and low-risk subgroups. (F) Kaplan–Meier survival curves for patients in TCGA database assigned to high- and low-risk groups based on the risk score.





Evaluation of FibLnc risk score model

We compared the association between FibLnc score and different clinical factors and found that FibLnc score was significantly associated with age, PAM50 subtypes, and tumor node metastasis stages (Figures 3A, B; S4A). As shown in the figure, Basal and HER2+ subtypes exhibited highest FibLnc score, which is consistent with that patients classified into these subtypes have worse prognosis. The similar phenomenon could be seen in the association of tumor stage and FibLnc score. In contrast, a weak correlation was observed between the FibLnc score and the level of immune and stromal infiltration (Figure S4B). The FibLnc score showed good prognostic predictive power in several breast cancer gene expression datasets (Figure 3C). We further compared the prognostic assessment ability of the FibLnc score compared to clinical characteristics, and the results showed that the FibLnc score exhibited comparable or even slightly stronger performance (Figure 3D). In addition, the AUC of the FibLnc score in predicting patient survival status was 0.754 (Figure 3E) and showed a considerable performance in predicting survival beyond three years in different datasets (Figure 3F). We further constructed a nomogram to demonstrate the predictive performance of FibLnc scores compared to clinical factors. As shown in Figure S5, the FibLnc score showed stable and excellent performance in predicting one-, three-, five-year survival.




Figure 3 | Evaluation for the prognostic value of the FibLnc score. (A) Analysis of the differences in the distribution of FibLnc scores among different PAM50 subtypes. (B) Analysis of the differences in the distribution of FibLnc scores among different TNM stages. (C) Forest plot of Cox analysis in TCGA and Gene Expression Omnibus (GEO) datasets. (D) Forest plot of Cox analysis of the FibLnc score and clinical features. (E) ROC curve of FibLnc scores used for survival status prediction. (F) Time-dependent area-under-the-curve value in TCGA, GSE1456, GSE7390, GSE16446, GSE20685, GSE20711, and GSE42568.





Functional analysis of FibLnc risk score

We then analyzed the differentially expressed genes in the high- and low-risk subgroups (Figure 4A and Table S4). The high-risk subgroup significantly overexpressed LINC01234, which is known to be a key marker for tumor proliferation and metastasis. The enrichment analysis of hallmark and KEGG pathways suggested that many oncogenic pathways, such as mTOR signaling, MYC targets, E2F targets, and DNA replication signaling pathways, were significantly activated in high-risk groups (Figures 4B, C, Table S5, and Table S6). In addition, we also found that some immune checkpoints, such as CTLA4, ADRA2A, and GEM, were significantly upregulated in the low-risk group (Figure 4D). These results suggest that our FibLnc scores may be associated with the immune microenvironment. Based on the relative abundance of immune and stromal cells calculated using xCell, we found that the proportion of tumor-associated stromal cells was significantly higher in the low-risk group (Figure 4E). We further analyzed the relationship of FibLnc scores with immune-related regulators and found that it was significantly negatively correlated with the expression of some immunosuppressive factors, such as CTLA4 and PD1, and positively correlated with the expression of most MHC family members and immune-stimulating factors (Figure 4F).




Figure 4 | Functional analysis of the FibLnc score and breast cancer immune signature. (A) Differentially expressed genes between high- and low-risk subgroups. (B) Hallmark enrichment analysis of the distribution of FibLnc scores. (C) KEGG enrichment analysis of the distribution of FibLnc scores. (D) Analysis of the differences in the distribution of immune checkpoints between high- and low-risk subgroups. ns means P > 0.05, * means P ≤ 0.05, ** means P ≤ 0.01, *** means P ≤ 0.001, **** means P ≤ 0.0001. (E) Analysis of the differences in the distribution of immune cells between high- and low-risk subgroups. ns means P > 0.05, * means P ≤ 0.05, ** means P ≤ 0.01, *** means P ≤ 0.001, **** means P ≤ 0.0001.





FibLnc risk score is associated with mutation status and drug response

We further analyzed the relationship between FibLnc score, mutation status, and drug response. As shown in Figure 5A, FibLnc scores and mutation counts were significantly positively correlated. Many oncogenes, such as TP53 and PIK3CA (Figure 5B and Figure S6), were mutated more frequently in the high-risk group and may be associated with a worse prognosis in the group. We also found more truncation-related mutations in TP53 in the high-risk group than in the low-risk group (Figure 5C). In addition, the patterns of co-occurrence and mutually exclusive mutations in the high- and low-risk subgroups were also very different; for example, TP53 and PIK3CA were more mutually exclusive in the low-risk group, but this phenomenon was not observed in the high-risk group (Figure S7). We further predicted the response of the high- and low-risk groups to the drugs (Table S7) and found that the high-risk subgroup responded significantly to irinotecan, PRIMA-1MET, topotecan, etc., while the low-risk group responded to MK-8776, lapatinib, ibrutinib, etc (Figure 5D). We also found a significant positive correlation between FibLnc score and immune cell dysregulation score (Figure 5E) and a significantly stronger immune response to CTLA4 and PD1 inhibitors in the low-risk group than in the high-risk group (Figures 5F and S8).




Figure 5 | The FibLnc score predicts therapeutic benefits. (A) Correlation analysis of all mutation counts and FibLnc scores. (B) Mutation landscape difference between high- and low-risk subgroups. (C) Lollipop chart displaying mutation sites of TP53 proteins. (D) The ratio of normalized IC50 value of the 198 drugs between the high- and low-risk subgroups. (E) Correlation analysis of tumor-infiltrating immune cell dysfunction scores and FibLnc scores. (F) Distribution of IPS score of patients under anti-CTLA-4 or anti-PD-1 treatment between high- and low-risk subgroups.






Discussion

The TME consists of a series of stromal cells, immune cells, and noncellular components that may influence the diagnosis and prognosis of patients with breast cancer (6, 7). In this study, we evaluated the level of stromal and immune infiltration in TCGA breast cancer samples according to the ESTIMATE algorithm and found that the level of stromal infiltration was substantially lower in tumors than in normal samples, whereas that of immune infiltration was not significantly different, and the stromal score was significantly associated with patient survival. Based on this, we found that the abundance of CAFs was most associated with the level of stromal infiltration in patients with breast cancer. It has been shown that CAFs are a subpopulation of fibroblasts that promote tumor progression and metastasis by secreting various chemokines, cytokines, and degrading extracellular matrix proteins (18). CAFs can suppress Th1 immune responses by inhibiting Th1 cytokines while enhancing the immunosuppression of Th2 cytokines to promote tumor growth (19). Breast cancer-associated fibroblasts significantly enhance the invasive and migratory ability of the T47D breast cancer cell line (20, 21).

In recent years, it has been shown that the expression of some lncRNAs is cell-specific and their expression patterns are closely related to the tumor immune microenvironment. There are several studies of cancer-associated fibroblasts-derived lncRNAs affecting tumor cell signaling pathway changes previously. Zhang et al. (22) reported DNM3OS, a CAF-promoted lncRNA, influenced radio-resistance in esophageal squamous cell carcinoma through controlling the DNA damage response. Our study was a comprehensive analysis of CAF-related lncRNAs, whereas their study concentrated on the biological function of a particular CAF-related lncRNA. Using machine learning techniques, Liu et al. (23) created an immune-derived lncRNA profile for enhancing colorectal cancer outcomes. Instead of concentrating solely on CAF-related lncRNAs, this study also included immune-derived lncRNAs. LncRNA signatures have been widely described in colorectal cancer and are strongly associated to a number of biological activities, including cell death (24), epigenetic alteration (25), and tumor immunity (23). To better understand the mechanisms of CAF- derived lncRNAs in breast cancer, we identified CAF-specific lncRNAs called FibLnc and constructed a survival risk assessment model for patients with breast cancer. The FibLnc score has considerable potential for predicting patient survival status. Cross-validation showed that the FibLnc score performed well in various breast cancer gene expression datasets and showed high robustness in predicting survival probability. We performed a comprehensive review of the mechanisms and prognostic values of the seven lncRNAs used for modelling, all of them are associated with cancer progression, especially for MAPT-AS1, which is the most relevant gene with FibLnc score, is proved to be correlated with the cell growth, invasiveness and paclitaxel resistance in breast cancer cells through antisense pairing with MAPT. MAPT-AS1 may serve as a potential therapeutic target in ER-negative breast cancers (26).

Differential expression analysis showed that LINC01234 was the most differentially expressed gene. Several studies have shown that LINC01234 is closely associated with tumor cell proliferation and metastasis (27–29). LINC01234 has emerged as an important regulator that is upregulated in colon cancer and is associated with poor prognosis (30), and its knockdown significantly inhibitted tumorigenesis in hepatocellular carcinoma (31). In addition, mutational analysis showed that the high-risk group contained more mutations in cancer-related genes, such as TP53 and PIK3CA, which have been previously reported to be closely associated with cancer development (32, 33). This may explain why patients in the high-risk group had a worse prognosis.

In the drug sensitivity analysis, we found that the FibLnc score can help predict potential target agents. Some drugs, such as irinotecan, PRIMA-1MET, topotecan, MK-8776, lapatinib, and ibrutinib, showed different responses between the subgroups. In assessing patient response to anti-PD-1 or anti-CTLA4 immunotherapy, patients in the low-risk subgroup had relatively higher immunophenoscore (IPS), significantly lower immune cell dysfunction scores, and high expression of immune checkpoints, such as CTLA4 and PD-1, suggesting that they may respond better to immunotherapy.

However, limitations still exist. the signature was built and validated using retrospective samples, validation using prospective real-world samples was also required. Furthermore, our conclusions are mainly obtained by bioinformatics analysis and lack critical experimental validation. Although we performed cross-validation on multiple datasets to evaluate the robustness of the model, immunohistochemical validation of the expression of these modeled genes was necessary. Finally, we expounded the function and clinical significance of CAF-associated lncRNAs in breast cancer, but the molecular mechanism is still lacking. We need to carry out exhaustive verification of our analysis results in the future to clarify the biological mechanisms of CAF-associated lncRNAs in breast cancer.



Conclusions

In conclusion, we generated a FibLnc score that could predict the differences in overall patient survival and was found to perform well in multiple datasets. The robust and powerful FibLnc score was able to reflect the immunotherapeutic response in breast cancer and provide insightful suggestions for exploring potential therapeutic decisions and regulatory mechanisms of CAF-specific lncRNAs.



Methods


Gene expression dataset preparation

The level 3 gene expression matrix (log2 normalized) of breast cancer samples and corresponding clinical information from The Cancer Genome Atlas (TCGA) were downloaded from Xena Browser (https://xenabrowser.net/datapages/). The microarray matrices GSE1456, GSE7390, GSE16446, GSE20685, GSE20711, and GSE42568 and their corresponding clinical information were downloaded from the Gene Expression Omnibus database (https://www.ncbi.nlm.nih.gov/geo/). Gene expression matrices were collected from several cohorts, including the Human Primary Cell Atlas (34), Encyclopedia of DNA Elements (35), Blueprint (36), Database of Immune Cell Expression (37), and GSE107011. All matrices were then combined and normalized using the ComBat function of the R package ‘sva’ v3.42.0 (38) for further analysis.



Immune cell abundance and score estimation

xCell (39) was used to evaluate the relative abundance of immune and stromal cells in breast cancer samples based on the log2-transformed gene expression matrix downloaded from TCGA. The overall immune and stromal infiltration levels and tumor purity were calculated using the R package ‘estimate’ v1.0.13 (40).. First, we prepared the gene expression matrix of TCGA, then converted it into GCT format, and filter the genes of the matrix with the gene signature related to immune and stromal infiltration, and finally converted the gene expression matrix to immune and stromal infiltration matrix based on the ESTIMATE algorithm. The detailed process can be found in R package ‘estimate’ v1.0.13 and our source code (https://github.com/kodayu/FibLnc.git). The default parameters were used.



Identification of differentially expressed genes

Based on the downloaded count matrix of immune cell gene expression, we performed differential expression analysis using the R package ‘DESeq2’ (v1.30.1) to compare lncRNAs aberrantly expressed between fibroblasts and immune or stromal cells. lncRNAs with FoldChange > 1.5 and false discovery rate (FDR) < 0.05 in the analysis were considered FibLnc. Based on this procedure, 95 lncRNAs were screened for subsequent analyses.



FibLnc risk model construction

After identifying the differentially expressed genes, we further performed univariate Cox regression analysis on all lncRNAs based on clinical information from TCGA patients with breast cancer. For each lncRNA, we selected the median value of their expression as the cutoff, aliquoted the samples into two groups of high and low expression, and performed survival analysis. Finally, we screened all log-rank p < 0.05 lncRNAs as survival-related lncRNAs with CAF-specific expression in the breast cancer microenvironment and used them to construct prognostic models. The models were built based on the LASSO-Cox regression analysis function of the R package ‘glmnet’ v4.1-2, and seven lncRNAs were used to construct the final model after 1,000-time permutation and cross-validation. We defined the model risk score as the FibLnc score, and the FibLnc score was obtained by a linear combination of the expression of the seven genes and the corresponding regression coefficients, which could be represented as: FibLnc score = - 0.003 × HHLA3 - 0.002 × TP53TG1 – 0.519 × ST7-AS1 + 0.065 × LINC00536 + 0.304 × ZNF503-AS1 + 0.044 × MIR22HG – 0.392 × MAPT-AS1. We next divided TCGA breast cancer samples into high- and low-risk subgroups based on the optimal threshold for obtaining the maximum survival difference.



Mutation analysis

Somatic mutation information for TCGA breast cancer samples was downloaded from Xena Browser (https://xenabrowser.net/datapages/). Due to the numerous mutation types, we did not make a distinction when analyzing the mutational landscape and differences. Based on previous studies, in counting the differences in TP53 in the two subgroups of high and low risk, mutations that do not affect protein expression were considered wild-type, whereas those that affect the entire protein sequence, such as coding frameshifts and nonsense mutations, were considered truncating mutations (41). The R package ‘maftools’ v2.6.05 was used to analyze the mutation differences between the high- and low-risk subgroups. Statistical significance was set at P < 0.05.



Drug response analysis

We downloaded the gene expression matrix of 805 cell lines and their half-maximal inhibitory concentration (IC50) values under 198 drug treatments from the Genomics of Drug Sensitivity in Cancer database (42). Using the R package ‘oncoPredict’ v0.2, we used the downloaded data as a training set to build a ridge regression model, which was then applied to a new gene expression dataset to predict the clinical chemotherapy response. We predicted the IC50 values of the TCGA breast cancer samples for 198 drugs and normally transformed these values. We then used multiplicative changes in median values for the high- and low-risk subgroups to represent differences in drug response.



Bioinformatics analysis

DEGs in the high-and low-risk subgroups were calculated using the R package ‘DESeq2’ v1.30.1. We selected the genes with |log2FoldChange| > 1 and FDR < 0.05, as DEGs. Based on the calculated fold change of each gene, we performed gene set enrichment analysis using the GSEA function of the R package ‘clusterProfiler’ v3.18.1 (43). The genes used for the enrichment analysis included both the tumor hallmark signaling pathway and the Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathway. Survival analysis and curve plotting were performed using the R package ‘survminer’ v0.4.9. The time-dependent receiver operating characteristic (ROC) curve of TCGA patients with breast cancer with one-, three-, five-year survival was determined using the R package ‘timeROC’. The nomogram and calibration curves measuring the performance of FibLnc scores were visualized using the R package ‘RMS’ v6.2-0. The immune cell dysfunction score of TCGA samples was retrieved from the Tumor Immune Dysfunction and Exclusion database (http://tide.dfci.harvard.edu/download/). The IPS of TCGA breast cancer samples was downloaded from The Cancer Immunome Atlas (https://tcia.at/home). Generally, a higher tumor-infiltrating cell exclusive score and a lower IPS predict a worse response to immunotherapy.
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Background

Hypoxia is involved in tumor biological processes and disease progression. Ferroptosis, as a newly discovered programmed cell death process, is closely related to breast cancer (BC) occurrence and development. However, reliable prognostic signatures based on a combination of hypoxia and ferroptosis in BC have not been developed.





Method

We set The Cancer Genome Atlas (TCGA) breast cancer cohort as training set and the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) BC cohort as the validation set. Least Absolute Shrinkage and Selection Operator (LASSO) and COX regression approaches were used to construct ferroptosis-related genes (FRGs) and hypoxia-related genes (HRGs) prognostic signature (HFRS). The CIBERSORT algorithm and ESTIMATE score were used to explore the relationship between HFRS and tumor immune microenvironment. Immunohistochemical staining was used to detect protein expression in tissue samples. A nomogram was developed to advance the clinical application of HFRS signature.





Results

Ten ferroptosis-related genes and hypoxia-related genes were screened to construct the HFRS prognostic signature in TCGA BC cohort, and the predictive capacity was verified in METABRIC BC cohort. BC patients with high-HFRS had shorter survival time, higher tumor stage, and a higher rate of positive lymph node. Moreover, high HFRS was associated with high hypoxia, ferroptosis, and immunosuppression status. A nomogram that was constructed with age, stage, and HFRS signature showed a strong prognostic capability to predict overall survival (OS) for BC patients.





Conclusion

We developed a novel prognostic model with hypoxia and ferroptosis-related genes to predict OS, and characterize the immune microenvironment of BC patients, which might provide new cures for clinical decision-making and individual treatment of BC patients.





Keywords: hypoxia, ferroptosis, prognostic model, breast cancer, tumor microenvironment




1 Introduction

Breast cancer has been the most prevalent tumor in women worldwide and is the leading cause of cancer-related death among women with malignant diseases (1, 2). With the advancement of diagnosis and treatment, the overall survival of primary breast cancer has been greatly improved; however, advanced breast cancer is still refractory, and some patients who were diagnosed with distant metastasis that lose the chance of surgery therapy were required more efficient target drugs to improve their prognosis. Breast cancer is a heterogeneous tumor; individual treatment and biological feature depiction of each patient is a field that calls for exploration (3). Although age at diagnosis, tumor stage, and histological grade are considered as prognostic factors, there are few reliable biomarkers based on personal gene expression pattern to facilitate clinical assessment (4–7). Therefore, it is important to discover novel prognostic factors and potential therapeutic targets for individual treatment.

Hypoxia is a feature of solid tumors generated since the supply could not meet the consumption of oxygen under rapid tumor proliferation, and form a tumor microenvironment (8, 9). Hypoxia could induce tumor angiogenesis, cell proliferation, metastasis, and invasion and promote tumor immune suppression and escape, while reducing apoptosis, differentiation, and ferroptosis to accelerate tumor progression (8, 10–12). Ferroptosis, as a newly discovered regulatory cell death, was closely related to tumor development (13, 14). Increasing evidence revealed that targeting ferroptosis induced treatment response in BC (15–17). More importantly, hypoxia has been proven to participate in the regulation of ferroptosis (18, 19). Some studies demonstrated that hypoxia blocks ferroptosis in hepatocellular carcinoma, and HIF-1α-induced lncRNA PMAN promoted gastric cancer peritoneal dissemination by inhibiting ferroptosis (20, 21). However, the association between hypoxia and ferroptosis in BC has not been reported yet.

Immune microenvironment regulation was critical in tumor progression, which has been wildly verified to be associated with hypoxia status (22, 23). Some studies have reported that hypoxia inducible factor-1α (HIF-1α) increased PD-L1 expression and antigen non-specific T-cell suppression, and promote the differentiation of MDSC to immune suppressive TAM in various kinds of tumors including breast cancer (24–27). HIF-1α could negatively regulate the functions of CD4+ and CD8+ T lymphocytes, and depletion of HIF-1α enhanced T cell response (28, 29). Interestingly, many evidences indicated that ferroptosis was also involved in the regulation of the immune microenvironment and immunotherapy resistance in cancers (30–33). Thus, there was potential interaction between hypoxia and ferroptosis, and either of them was associated with immune microenvironment regulation in cancers.

Given that hypoxia and ferroptosis are related to breast cancer prognosis, there were few studies that reported the crosstalk between hypoxia and ferroptosis, and no prognostic signature has been established in BC for risk stratification and immune microenvironment profiling. This study firstly combined ferroptosis-related genes (FRGs) with hypoxia related genes (HRGs) to construct a prognostic signature HFRS to predict BC prognosis and immune status.




2 Materials and methods



2.1 Data acquisition

The mRNA expression data and corresponding clinicopathological information of BC patients were obtained from the TCGA and METABRIC websites. A total of 1075 BC patients from the TCGA database were enrolled in the training cohort, and 1399 patients with completed clinical information from the METABRIC database were included as a validation cohort, after excluding patients who lacked tumor stage and survival information. By intersecting the ferroptosis-related genes in the FerrDb database and Molecular Signatures Database3, 47 FRGs were retrieved; 243 HRGs were downloaded from the hypoxia-related gene set “winter_hypoxia_metagenes” in Molecular Signatures Database 3 (MSigDB: https://www.gsea-msigdb.org/gsea/msigdb). Gene expression data from these databases were normalized by the R package “limma”. Supplementary Table 1 shows the clinicopathological information of TCGA and METABRIC cohort in this study. Identification of PAM50 subtypes of all the patients was performed by the ‘genefu’ R package based on gene expression profiles.




2.2 Development of the HFRS

Univariate COX regression analysis was used to screen prognostic genes among 47 FRGs and 243 HRGs in the TCGA cohort. Then, 15 FRGs and HRGs significantly associated with prognosis identified in univariate regression analysis (p< 0.001) of BC patients were input into the Least Absolute Shrinkage and Selection Operator (LASSO) The COX regression model was used to identify the critical genes and the corresponding regression coefficient by using the R package “glmnet” (Friedman et al., 2010). We constructed a hypoxia and ferroptosis prognostic signature (HFRS) for the BC patients with 10 FRGs and HRGs selected by LASSO COX analysis. HFRS scores were calculated for all patients according to the formula: lambda.min = 0.0027

	

	

Where xi is the expression level of each FRG or HRG and Coefi is the coefficient.

Then the R package “survminer” was used to calculate the optimal cut-off value (this is an outcome-oriented method providing a value of a cut-off point that corresponds to the most significant relation with survival) and the patients were divided into two subgroups (low-HFPS and high-HFRS group) according to the optimal cut-off value.




2.3 Functional analysis

Gene Set Enrichment Analysis (GSEA) was used to investigate the pathways enriched in the low-HFRS subgroup and high-HFRS subgroup and identified significant enrichment pathways with normalized enrichment score >1, nominal p< 0.05, and false discovery rate q< 0.25. Differentially expressed genes (DEGs) between the high HFRS and low-HFRS groups were obtained using the R package “Deseq2” (| log2(Fold change) |>1 and adjust p<0.05) and were input into “ClusterProfiler” R package for functional enrichment and pathway analysis, including the Kyoto Encyclopedia of Genes and Genomes Pathway (KEGG pathway) and Gene Ontology (GO) analysis. The FRGs and HRGs significantly associated with the prognosis (p< 0.001) of BC patients were subjected to construct a protein–protein interaction (PPI) network by MetaScape (https://metascape.org/).




2.4 Analysis of immune cell infiltration

To investigate the difference in immune infiltration status between patients in the high- and low-HFRS group, the CIBERSORT algorithm was used to analyze the immune cell type-specific gene expression profiles of BC patients with the LM22 signatures. Moreover, we also used the ESTIMATE method to calculate immune cell characteristics for BC patients. We downloaded the Immunophenoscores (IPS) of BC patients of the TCGA cohort from the TCIA database (https://tcia.at/) to predict the sensitivity of immune therapy of the high- and low-HFRS groups.




2.5 Analysis of genetic alteration in BC patients

The R package “Maftools” was used to visualize the single nucleotide variation (SNV) profile of TCGA BC patients with mutation data, and compared the different mutation patterns between the high- and low-HFRS groups. The copy number variation (CNV) of HFRS genes and their correlation with mRNA expression were analyzed in the GSCAlite (http://bioinfo.life.hust.edu.cn/web/GSCALite/) website.




2.6 Immunohistochemistry staining of HFRS gene protein expression in tissues

We collected 20 pairs of BC tissues and adjacent normal breast tissues from Wuhan Pu-Ai Hospital, which was approved by the ethics committees of Pu-Ai Hospital (No. KY2022-050-02). The BC tissues and adjacent normal breast tissues were fixed with 10% formalin, embedded by paraffin, and sectioned; then we selected the optimal tissue sections for degreasing and immunohistochemistry staining. Protein expression levels were evaluated semi-quantitatively following the Allred scoring system guidelines and scored separately by two qualified pathologists (34). Then, the sections were scanned to obtain high-resolution digital images using a 3DHISTECH scanner (Pannoramic, TaiBei). Antibodies used in this study are as follows: BTG1 (Proteintech, Cat No. 14879-1-AP). SLC16A2 (Abcam, ab192828). In addition, immunohistochemical staining images of the remaining eight HFRS genes were obtained from the Human Protein Atlas (HPA).




2.7 Statistical analysis

In this study, all statistical analysis was conducted by R 4.1.1. Univariate COX regression was used to identify independent prognostic risk factors. Multivariate COX regression analysis was used to construct a nomogram to predict OS for BC patients. The predictive efficiency of the nomogram was verified in METABRIC cohorts. The R package ‘rms’ was used in the construction and validation of the nomogram. In addition, The ROC curve and AUC were used to analyze the prognosis predictive accuracy of nomogram and other prognostic factors via R package “timeROC”. For descriptive statistics, mean ± standard deviation (SD) or median (range) was used for continuous variables; Student’s t-test and Mann–Whitney U test were used to analyze the difference between two groups of continuous variables. Fisher exact test or Wilcoxon’s test was used to compare the difference of clinical features of categorical variables between two groups when appropriate. Two-tailed p< 0.05 was considered as statistically significant.





3 Results



3.1 Construction of the HFRS in the TCGA cohort

The study design is shown in the flow chart (Figure 1), The GO pathways analysis conducted in the Metascape website showed that these genes were enriched in hypoxia, metabolites, energy, and oxidative stress-related pathways (Figure 2A). Univariate COX regression was used to screen for hypoxia-related prognostic genes (HRGs) and ferroptosis-related prognostic genes (FRGs) in the TCGA cohort. In the condition of p< 0.001, there were 15 prognostic HRGs and FRGs that were significantly associated with the prognosis of BC patients (Supplementary Table 2). Subsequently, 15 prognostic FRGs and HRGs were subjected to the LASSO-Cox regression analysis, and we screened 10 genes (BTG1, CCT6A, KRT14, P4HA2, PGK1, SLC16A2, TPD52 and STC2 as HRGs, CISD1 as FRGs, and TF as both HRG and FRG) to construct a hypoxia and ferroptosis prognostic combined signature (HFRS) (Figure 2B). HFRS scored the BC patients in TCGA cohort and the patients were further divided into the high-HFRS group (n = 414) and low-HFRS group (n = 661) according to the optimal cut-off value. Kaplan–Meier curves and log-rank test showed that patients in the high-HFRS group had a significantly worse prognosis than the low-HFRS group (p< 0.001) (Figure 2C). The distributions of the survival status and HFRS score are shown in Figure 2D. The ROC curves indicated an efficient prognostic predictive capacity of HFRS for the overall survival of BC patients; the AUC of 1, 3, and 5 years were 0.72, 0.73, and 0.72, respectively (Figure 2E).




Figure 1 | Study flowchart.






Figure 2 | Construction and validation of hypoxia and ferroptosis-related gene risk signature(HFRS) in BC patients. (A) The barplot shows the enrichment of Go pathways significantly associated with prognostic HRGs and FRGs. (B) LASSO regression analysis identified 10 hub genes to construct HFRS signature. (C) Kaplan–Meier curves show the significant difference in overall survival between high- and low-HFRS groups in TCGA cohort. (D) The ranked dot plot indicates the HFRS_score distribution; scatter plot present the patients’ survival status in TCGA cohort. (E) The ROC curves of HFRS for predicting 1, 3, and 5 years overall survival in TGCA cohort. (F) The K-M curves show the significant difference in overall survival between high- and low-HFRS groups in the METABRIC cohort. (G) The ranked dot plot indicates the HFRS_score distribution; scatter plot presents the patients’ survival status in the METABRIC cohort (H) The ROC curves of HFRS for predicting 1, 3, and 5 years overall survival in METABRIC cohort. (I) The PCA plot based on HFRS gene expression show the distinct subgroups of TCGA BC cohort. (J) The PCA plot based on HFRS gene expression divided the METABRIC BC cohort to two subgroups.






3.2 Validation of the HFRS in the METABRIC cohort

HFRS scores of BC patients in the METABRIC cohort were calculated by the same signature model, and the patients were divided into the low-HFRS group (n = 639) and high-HFRS group (n = 760) according to the optimal cut-off value. The results of the METABRIC cohort are generally consistent with those of the TCGA cohort; patients in the high-HFRS group had significantly poorer prognosis (Figure 2F). The distribution of survival status and HFRS score also indicated that patients with higher HFRS scores had shorter overall survival time and higher mortality (Figure 2G). The ROC curve showed that HFRS score also had strong predictive power in the METABRIC cohort. The AUCs were: 0.73 (1 year), 0.68 (2 years), and 0.65 (3 years) (Figure 2H). In addition, the PCA suggested that the BC patients could be distinctively clustered by PCA according to HFRS as well (Figures 2I, J).




3.3 Prognostic analysis and genetic alteration of the 10 FHRS genes

Univariate COX regression analysis of 10 HFRS genes showed that BTG1, KRT14, STC2, and TF were protective factors in BC (0< Hazard Ratio (HR)< 1; p< 0.001), while CCT6A, P4HA2, PGK1, TPD52, SLC16A2, and CISD1 were risk factors (HR > 1; p< 0.001) for the overall survival of BC patients (Figure 3A). In addition, the heat map shows the differential expressions of 10 HFRS genes in TCGA breast cancer samples. The expressions of PGK1, CCT6A, P4HA2, TPD52, SLC16A2, and CISD1 increased with the HFRS scores while the expression of BTG1, KRT14, STC2, and TF decreased with the HFRS scores. In addition, the distribution of HFRS gene expressions was also associated with the tumor stage of BC patients (Figure 3B). We further explored the genetic alteration of HFRS genes in cancers. We investigated the single nucleotide variations (SNVs) of HFRS genes in different cancers and observed that some genes (CCT6A, TF, KRT14, P4HA2, PGK1, SLC16A2, and STC2) were frequently mutated in COAD, STAD, UCEC, and SKCM (Figure 3C). In BRCA, BLCA, HNSC, and LUAD, the copy number variations (CNVs) of some genes were positively correlated with mRNA level (Figure 3D). Moreover, we found that TPD52, TF, and CCT6A were more frequently heterozygous amplified while STC2, CISD1, and P4HA2 were more likely to occur in heterozygous deletion in cancers (Figure 3E). In contrast, homozygous amplification and deletion of HFRS genes were very rare in cancers (Figure 3F).




Figure 3 | Prognosis value and expression of HFRS hub genes. (A) Forest plot shows the prognostic value of 10 prognostic genes in signature. (B) Heat map shows the relationship between mRNA expression levels of 10 HFRS genes, HFRS score, and tumor stage features in the TCGA cohort. (C) The mutation frequencies of 10 HFRS genes in pan-cancer. (D) The correlation between CNV and mRNA expression of HFRS genes in pan-cancer using Pearson analysis. The size of bubble indicated the -log10 (FDR) value. (E, F) The profiles of heterozygous (E) and homozygous (F) amplification/deletion of 10 HFRS genes in cancers.






3.4 Clinical effects of HFRS on breast cancer patients

To investigate whether the HFRS score was associated with clinicopathological characteristics of BC patients, we compared the HFRS score of BC patients according to different clinical subgroups such as BC patients of age >65; positive lymph node status and TNM stage III/IV had significantly higher HFRS scores. The result suggested that HFRS related to clinical features of BC patients, and might reflect tumor burden (Figures 4A, D, G). In addition, we identified overall survival in different clinical subgroups using Kaplan–Meier curves. The result suggested that BC patients with low HFRS had better OS than the patients with high HFRS in both age >65 and ≤65 subgroups (Figures 4B, C), and the same results were observed in negative and positive lymph node subgroups (Figures 4E, F), stage I/II, and III/IV subgroups (Figures 4H, I). Moreover, except for the age subgroup (p = 0.26), the similar HFRS distribution in these subgroups was observed in the subgroups of the METABRIC BC cohort (Figures 4J–L). In addition, we found that patients with higher tumor grade had significantly higher HFRS (Figure 4M). These results indicated that the HFRS was an effective signature to predict prognosis and was associated with BC clinical characteristics.




Figure 4 | The relationship between HFRS score and clinicopathological features in BC patients. (A, D, G) The boxplots shows the comparison of HFRS risk score of BC subgroups stratified with different clinicopathological features (age>65 or<=65; positive or negative lymph node status; III/IV or I/II tumor stage) in TCGA cohort. (B, C) Comparison of the overall survival of patients with high- and low- HFRS risk score in age>65 (B) and age<=65 (C) subgroups. (E, F) KM curves to show the different overall survival of patients with high or low HFRS risk scores in lymph node positive (E) and lymph node negative (F) subgroups. (H, I) Comparison the survival of patients with high or low HFRS risk score in tumor stage III/IV (H) and tumor stage I/II (I) subgroups. (J–M) The boxplots shows the significant difference HFRS risk score levels of patients with different clinicopathological features(age, tumor stage, lymph node status and primary tumor grade) in METABRIC cohort.






3.5 Analysis of ferroptosis and hypoxia status

To explore whether HFRS could assess the ferroptosis status of BC patients, we first compared the expression of ferroptosis suppressors and drivers in high and low-HFRS groups. As shown in Figure 5A, in the TCGA cohort, except for STAT3 and HSPB1, the expression of the rest ferroptosis suppressors (ACSL3, ATF4, CA9, CD44, FTH1, GPX4, HELLS, HMOX1, HSF1, HSPA5, HSPB1, NQO1, SCD, SLC7A11) was significantly higher in the high-HFRS group (Figure 5A). To validate the result, we also analyzed the expression of the above genes in the METABRIC cohort, and the result was similar to those of the TCGA cohort (Figure 5B). In addition, we also compared the expression of ferroptosis drivers between the two groups in the TCGA cohort and METABRIC cohort. The results showed that in the low-HFRS group, the expression of more than half of the ferroptosis drivers (ALOX12 ANO6, ATF3, ATG5, ATG7, EGFR, CHAC1, EGLN2, ELAVL1, IREB2, KEAP1, NCOA4, and VDAC2 in TCGA cohort; ALOX12, ALOX15, ANO6, ATM, BAP1, DPP4, EGLN2, ELAVL1, IDH1, IREB2, KEAP1, NCOA4, SAT1, and VDAC1 in the METABRIC cohort) were significantly higher than in the high-HFRS group (Supplementary Figures 1A, B). These results suggested that ferroptosis might be induced in patients of the low-HFRS group.




Figure 5 | The different expression of ferroptosis and hypoxia regulations between high and low HFRS risk groups. (A, B) The boxplots shows the difference in ferroptosis suppressors mRNA expression between the high- and low-HFRS groups of the TCGA (A) and METABRIC (B) cohorts. (C) The heat map shows the association between Reactome hypoxia-related pathways and HFRS score in TCGA BC samples. (D) The boxplot shows the significant difference in the enrichment score of HALLMARK_CANCER_HYPOXIA between high- and low-HFRS risk groups. (*p< 0.05; **p< 0.01; ***p< 0.001; ****p< 0.0001, n.s., not significant).



We further explored the hypoxia status of BC patients in the TCGA cohort by using GSEA analysis to estimate the enrichment scores of hypoxia and hypoxia-induced factors (HIFs) signal-related gene sets from REACTOME website. As shown in Figure 5C, these gene sets were enriched in the high-HFRS group, indicating that hypoxia status may be induced in the high-HFRS group. Furthermore, the box gram shows that the HALLMARK_CANCER_HYPOXIA enrichment score was significantly higher in high-HFRS group than low-HFRS group (p< 0.05) (Figure 5D). These results also implied that BC patients with high HFRS exhibit high hypoxia status.




3.6 Analysis of tumor immune cell infiltration

To investigate whether HFRS was associated with tumor immune microenvironment, the GSVA was used to analyze the enrichment of KEGG and GO pathways in high-HFRS and low-HFRS groups. KEGG analysis revealed that the following pathways were significantly activated in the high-HFRS group: fatty acid metabolism, HEDGEHOG signaling pathway, MAPK signaling pathway, TP53 signaling pathway, and others. The T-cell receptor signaling pathway, antigen processing, and presentation were significantly enriched in the low-HFRS group (Figure 6A). In addition, gene ontology (GO) biopathway analysis revealed that hypoxia and ferroptosis genes in low-HFRS group were significantly enriched in the immune-related functional sets such as natural killer cell-mediated immunity, T cell activation involved in immune response, and immune response regulating signaling pathway (Figure 6B). Thus, besides reflecting hypoxia and ferroptosis status, the HFRS might also be related to the tumor immune microenvironment.




Figure 6 | The relationship between tumor immune cell infiltration and HFRS in BC patients. (A, B) KEGG analyses and GO analyses for hypoxia and ferroptosis-related genes of the high- and low-HFRS groups. (C) Comparison of the immune cells infiltration between the high- and low-HFRS groups of the TCGA cohort by the CIBERSORT algorithm. (D) The violin plots show significant difference in stromal, immune ESTIMATE scores and tumor purity of between high- and low-HFRS risk groups in TCGA cohort. (*p< 0.05; **p< 0.01; ****p< 0.0001, n.s., not significant).



We further investigated the difference in tumor immune cell infiltration between low- and high-HFRS patients. In CIBERSORT analysis, the fraction of B_cells_naive, Monocytes, NK_cells_activated, T_cells_CD4_memory_resting, T_cells_CD8, and T_cells_gamma_delta was significantly higher in the low-HFRS group, while Macrophages_M0/M2 and Tregs were significantly lower in the TCGA BC cohort (Figure 6C). The different infiltration fraction of 28 immune cells in the high- and low-HFRS groups was compared by ssGSEA as well (Supplementary Figure 2). Results of ssGSEA were generally consistent with those of CIBERSORT analysis. For instance, Activated_B_cell, Natural_Killer_cell, Activated_CD8_T_cells, and Monocyte were significantly highly infiltrated in samples of the low-HFRS group, while the Regulatory_T_cell was highly infiltrated in high-HFRS BC samples. Moreover, high infiltration of myeliod-derived suppressor cell and Immature_dendritic_cell and a lower Mast_cell were detected in the high-HFRS group by ssGSEA. These data revealed that the HFRS score was associated with immune cell infiltration in breast cancer.

In addition, the results of the ESTIMATE analysis showed that the immune score and tumor purity of the low-HFRS group were significantly higher than in the high-HFRS group, while the ESTIMATE score was lower than in the high-HFRS group (Figure 6D). Moreover, the IPS scores of the low-HFRS group were significantly higher than in the high-HFRS group in all the four subgroups (ips_ctla4_neg_pd1_neg, ips_ctla4_neg_pd1_pos, ips_ctla4_pos_pd1_neg, ips_ctla4_pos_pd1_pos) (Supplementary Figure 3). Thus, these results revealed that high HFRS might be associated with reduced anti-tumor immunity and decreased tumor purity.




3.7 Analysis of pathway and process enrichment

We identified a total of 272 DEGs between the high-HFRS group and the low-HFRS group with the criteria | log2(fold change) | > 1 and p< 0.05 (Supplementary Figure 4A). Then, DEGs were subjected to GSEA analysis based on REACTOME gene sets. The results showed that the DEGs were significantly enriched in the following terms: cell cycle and cellular response to hypoxia (Supplementary Figures 4B, C). Moreover, several tumor-related pathways and metabolism-related gene sets were enriched in the high-HFRS subgroup, such as CHOLESTEROL_HOMEOSTASIS, MTORC1_SIGNALING, TP53-PTEN related gene sets, MYC targets V1, E2F_TARGETS, PIK3-AKT-MTOR signaling (Supplementary Figures 4D, E–H). These results suggested that HFRS might be related to multiple tumor biology processes via communicating with cell cycle regulation, hypoxia microenvironment, energy metabolism, and oncogenic signal pathways, and may provide a new perspective and help us to find the potential therapeutic targets from cancer-related pathways.




3.8 Analysis of the gene mutation profile of different HFRS groups

To investigate the difference of gene mutation between the high- and low-HFRS groups, we analyzed the simple nucleoside variation profile of two groups in the TCGA cohort. As shown in Figures 7A, B, in the low-HFRS group, the top five genes with mutation frequency were PIK3CA (39%), TP53 (26%), CDH1 (18%), TTN (13%), and GATA3 (12%), while those in the high-HFRS group were TP53 (47%), PIK3CA (27%), TTN (22%), GATA3 (12%), and MUC16 (11%). TP53 is one of the most important tumor suppressor genes, whose mutation could lead to tumor occurrence and progression, and might be associated with suppressed ferroptosis and anti-tumor immunity (35, 36). TP53 mutation indicated worse prognosis in breast cancer (37). In this study, we found that the mutation frequency of TP53 in high HFRS was higher than in low HFRS (47% vs. 26%), which also suggested that high HFRS might be associated with TP53 mutation-induced prognostic risk.




Figure 7 | Mutation landscape and prognostic factors of BC patients. (A, B) Oncoplots show the mutated genes in the high-HFRS (A) and low-HFRS (B) groups of the TCGA cohort. (C) Forrest plots of univariate and multivariate analyses show the independent prognostic predictors in the TCGA and METABRIC cohorts.






3.9 HFRS is an independent prognostic factor for BC

To identify the clinical factors to predict the prognosis in BC, we used univariate and multivariate Cox regression analysis to estimate the hazard ratio with HFRS score and other clinicopathological features in both cohorts. The results of univariate Cox regression analysis showed that HFRS was a strong risk factor for OS in BC patients (in the TCGA cohort, HR: 2.941, 95% confidence interval (CI): 2.214–3.906, p< 0.001; in the METABRIC cohort, HR: 1.429, 95% CI:1.263–1.617, p< 0.001; Figures 7C, E). The multivariate regression analysis showed that HFRS was an independent prognostic factor for BC patients (in TCGA, HR: 5.512, 95% CI: 2.756–8.932, p< 0.001; In METABRIC, HR: 1.251, 95% CI:1.101–1.420, p< 0.001; Figures 7D, F). Then, the survival analysis of DFS and RFS of BC patients showed that patients with higher HFRS score have significantly shorter DFS and RFS (Supplementary Figure 5). The above results indicated that HFRS was an independent prognostic factor for BC patients.




3.10 Construction and validation of nomogram base on HFRS

We developed a nomogram based on HFRS and other independent prognostic factors (TNM stage) in the TCGA cohort to affiliate the application of HFRS in clinical practice (Figure 8A), which was validated in the METABRIC cohort. Calibration curves show that the predicted rates were highly concordant with the actual rates for 1-, 3-, and 5-year survival in the TCGA cohort (Figures 8B–D), and 1-, 3-, 5-, 8- and 10-year survival in the METABRIC cohort (Figures 8E–I). Moreover, ROC curves show that the prognostic predictive ability of the nomogram model in BC patients was better than other factors (including HFRS score, age, and TNM stage). The AUCs of 1, 3, and 5 years reached 0.81, 0.81, and 0.79 in TCGA cohort (Figures 8J–L) and 0.74, 0.70, and 0.67 (1, 3, and 5 years) in the METABRIC cohort (Figures 8M–O). These results indicated that the nomogram, based on HFRS score and TNM stage, has a strong and stable ability to predict the OS of BC patients.




Figure 8 | Construction and validation of nomogram. (A) The nomogram based on HFRS risk score, age and tumor stage for predicting overall survival of BC patients. (B–D) Calibration plots of the nomogram for predicting the probability of OS at 1, 3, and 5 years in the TCGA cohort. (E-I) The calibration plots of the nomogram for predicting 1-, 3-, 5-, 8-, and 10-year OS in the METABRIC cohort. (J–L) ROC curves of nomogram, risk score, tumor stage, age for predicting 1-, 3-, 5-year OS in the TCGA cohort. (M–O) ROC curves of nomogram, risk score, tumor stage, age for predicting 1-, 3-, 5-year OS in the METABRIC cohort.






3.11 Protein expression of 10 HFRS genes in normal breast tissues and BC tissues

To explore the protein expression of HFRS genes in BC tumor tissues and normal breast tissues, we first collected the immunohistochemical staining images of several HFRS genes from HPA; the protein expression of CCT6A, CISD1, P4HA2, PGK1, TPD52 were higher in tumor tissues than in normal tissues, while KRT14, TF, STC2 were more highly expressed in normal breast tissues (Figure 9A). Then, we found that the protein expression of SLC16A2 was higher in BC tumor tissues, whereas that of BTG1 was higher in adjacent normal tissues by immunohistochemical staining assay (Figure 9B, Supplementary Figure 6).




Figure 9 | The protein expression of HFRS genes in normal and tumor samples. (A) Representative immunohistochemistry images of CCT6A, CISD, KRT14, P4HA2, PGK1, STC2, TF, and TPD52 expression between BC tissues and adjacent normal tissues. (B) IHC staining shows the protein expression of SLC16A2 and BTG1 in BC tissues and adjacent normal tissues. Scale bar: 100μm.







4 Discussion

Breast cancer is a highly heterogeneous solid tumor, calling for individualized treatment for BC patients to improve prognosis. Though current surgery, endocrine, chemotherapy, and target therapy could improve the overall survival of BC patients, a large proportion of patients recur or progress, which leads to poor prognosis. Thus, investigating the differentially expressed genes and their roles in tumor malignant biological processes might help to analyze clinicopathological features of individual patients and offer precise therapeutic regimens and estimate outcomes for BC patients.

Hypoxia is one of the most impactful hallmarks of solid tumors that could influence tumor progression such as promoting tumor cell proliferation, invasion, and regulating cell cycle, energy metabolism, and immune escape (38–40). Recently, many studies have demonstrated that hypoxia status was considered as an important characteristic of the tumor microenvironment that has a close relationship with immune therapy sensitivity (41–43). Regarding breast cancer, hypoxia could induce cell growth by activating the glycogen metabolic program, improve migration, angiogenesis, and regulate apoptosis (44, 45). Moreover, hypoxia suppresses immune effector gene expression in immune cells, leading to immune effector cell dysfunction and resistance to anti-PD-1 therapy in triple-negative breast cancer (46).

Ferroptosis, a newly identified programmed cell death, has been found to have a relationship with tumor occurrence and development (47). Repression of ferroptosis could promote tumor progression, using anti-tumor drugs such as PI3K-AKT-mTOR pathway inhibitors (GDC-0941, MK-2206) which could promote sensitivity to ferroptosis in breast cancer cells (48). Some studies revealed that metformin could induce ferroptosis in breast cancer, which suggested that the patients simultaneously suffering from BC and type 2 diabetes could prolong their survival by metformin; however, further clinical trials were needed to provide more convincing evidence (49–51).

Despite the progress that has been made, the identification of effective prognostic biomarkers and the development of drugs targeting hypoxia and ferroptosis remain scarce. Antitumor therapeutic strategies directly targeting the hypoxic microenvironment are mostly focused on developing nanoparticles, and drugs targeting ferroptosis were far from clinical application (52). Reassuringly, recent studies have attracted our attention. It has been found that hypoxia can inhibit ferroptosis in hepatocellular carcinoma and breast cancer (53). Alternatively, ferroptosis could enhance the radiosensitivity of hypoxic tumor cells by amplifying oxidative stress or inhibiting antioxidant regulation (54). The nanoplatform-based tumor reoxygenation, which could generate the active superoxide radical ( ), together with H2O2-participated iron-involved Fenton reactions of ferroptosis, plays a synergistic role in overcoming hypoxia-induced chemotherapy resistance of osteosarcoma in vivo (55). These inspiring findings suggest that simultaneously suppressing hypoxia and inducing ferroptosis sensitivity of tumors may produce a potently synergistic antitumor effect.

Herein, we hypothesize that we could identify hypoxia and ferroptosis-related genes that associated with breast cancer prognosis, clinical characteristics, and immune microenvironment, to provide potential biomarkers and molecular targets for anti-tumor drug development and construct efficient gene signatures that could predict prognosis and simultaneously reflect tumor microenvironment characteristics as well as the ferroptosis status of breast cancer.

In this study, we included BC patients from the TCGA dataset and screened prognostic genes related to hypoxia and ferroptosis from known gene sets (MsigDB and ferroDB). The Lasso–Cox method was used to construct a predictive model (HFPS) based on these genes and divided BC patients into high- and low-risk groups. Notably, the high-risk group showed significantly worse overall survival, higher TNM stage, higher rate of lymph node invasion, and a lower rate of ER positive than the low risk group which could help us to implement individual strategies in clinical practice. The results were validated in the METABRIC BC cohort. Moreover, to predict the prognosis of patients, we constructed a nomogram model based on HFRS and prognostic clinical factors including age and TNM stage to predict 1-, 3-, 5-year overall survival of BC patients. The high predictive ability was validated by calibration curves, and ROC curves in both TCGA and METABRIC cohorts, which could help to make individual clinical decisions for patients.

Then we identified that there were more suppressive ferroptosis and higher hypoxia status in high-HFRS patients than in low-HFRS patients. In GSEA analysis, the key gene sets that assess tumor hypoxia status such as WINTER_HYPOXIA_METAGENE, WINTER_HYPOXIA_UP, HARRIS_HYPOXIA, and REACTOME_CELLULAR_RESPONSE_TO_HYPOXIA were highly enriched in patients with high HFRS. These results implied that BC patients with high HFRS were more likely to form hypoxia microenvironment. The mRNA expression of ferroptosis drivers were reduced in high HFRS group, while ferroptosis suppressors were highly expressed. Some evidence demonstrated that targeting ferroptosis-related genes and promoting ferroptosis sensitivity of tumor cells were promising approaches for reducing cancer progression (56). Thus, patients with a higher HFRS which also present a repressed ferroptosis status might profit from therapeutic drugs that could induce ferroptosis such as Lapatinib and Cisplatin (57–59).

By analyzing the immune microenvironment phenotype of the high- and low-HFRS groups, we found that the immune cell infiltration of B_cell_naive, T_cell_CD4, T_cell_CD8, and Tregs, macrohpage_M0, M2, monocytes, NK_cell_activated, and NK_cell_resting were significantly different between the high-and low-HFRS group by CIBERSORT analysis. In further ssGSEA analysis, we confirmed that HFRS score was negatively correlated with activated CD8 T cell and activated B cell, while it was positively correlated with MDSCs and Tregs. Studies have reported that repressed CD4, CD8 and T cell and activated B cells infiltration indicated an immune suppression microenvironment in cancer. MDSCs mediated immune suppression via expansion and differentiation of Tregs and limiting NKs, DCs, and the polarization of macrophages to M2-phenotype, and were associated with clinical outcome of BC (60). Tregs has been wildly reported to promote cancer immune escape and contribute to BC progression (61, 62). Studies have reported that tumor immune cell infiltration could be regulated by hypoxia status and related pathways. In breast cancer, hypoxia boosted CD8+ T cell infiltration in tumor tissue and increased sensitivity to immune checkpoint blockade (63). The CD4+ T cell has been wildly demonstrated to possess cytotoxic programs and can directly kill cancer cells (64). Hypoxia or HIF-1α signal pathway could influence CD4+ T cell function, metabolism, differentiation, and infiltration to enhance immunosuppression in tumors (65, 66). Suthen et al. reported that Tregs and immunosuppressive myeloid subsets were found to be significantly enriched in the hypoxia tumor tissue regions (67). Furthermore, patients in high the HFRS group showed significantly higher Stromal score and Immune score, while they have lower tumor purity in ESTIMATE analysis, which indicated that HFRS was associated with immune microenvironment of BC. In conclusion, high HFRS was positively correlated with immunosuppression in BC cancers.

Some of the HFRS genes have been demonstrated to serve as tumor oncogenes or tumor suppressors and might be correlated with tumor biological behavior and prognosis in diverse kinds of cancers. BTG1 has been reported as a tumor suppressor inhibiting tumor proliferation and migration and increasing anti-tumor therapy sensitivity in some kinds of tumors (68–70), including breast cancer (71–74). However, some studies reported that its overexpression promoted tumor malignancy in colorectal cancer (75). Researches demonstrated that STC2 could impair breast cancer cell growth, migration, and cell viability, which was consistent with our results (76, 77). In colorectal cancer, the upregulated STC2 was associated with a poorer prognosis (78). Lin et al. also reported that STC2 promoted pancreatic cancer migration, invasion, and EMT (79). A pan-cancer research found that STC2 was closely related to tumor immune microenvironment including immune cell infiltration, ICGs, MMRs, TMB, and MSI (80). One bioinformatic analysis reported that overexpression of CCT6A in tumor tissue was associated with poor breast cancer prognosis (81). Jie Jiang et al. reported that upregulated CCT6A in Ewing sarcoma was correlated with a worse prognosis (82). A similar result was observed in hepatocellular carcinoma (83). Studies of Bilandzic et al. implicated the basal epithelial marker KRT14 as an absolute determinant for ovarian cancer cells’ spheroid integrity, mesothelial attachment, invasive potential, and chemotherapy resistance, which could provide some in vitro evidences to explain the role KRT14 plays in cancer (84, 85). Thus, exploring the detail function of KRT14 in breast cancer is required in further studies. Recently, P4HA2 has been demonstrated to play important roles in tumor, but its function in cancers might be different. For example, P4HA2 induced EMT and promote tumor growth, migration, and invasion in cervical cancer and glioma (86, 87), while in prostate and pancreatic cancer, it served as a tumor suppressor (88, 89). Consistent with our findings, studies demonstrated that high P4HA2 expression was associated with poor survival in breast cancer (90, 91). PGK1 is a glycolytic enzyme that catalyzes the conversion of 1,3-diphosphoglycerate to 3-phosphoglycerate and participates in tumor angiogenesis (92, 93). Many studies reported PGK1 as a prognostic gene in cancers, and it has been demonstrated to promote EMT and the progression of breast cancer (94–99). SLC16A2 is a member of SLC16 gene family, that encodes monocarboxylate transporters, but its function in cancer has not been identified yet, which required further investigation (100). TF is also known as Transferrin which is essential for ferric iron transporting into cells and could influence iron metabolism in human, and might be involved in ferroptosis regulation in tumor cells indirectly (101). In addition, the knockdown of transferrin leads to decreased lapatinib-related BC cell death, but further in vivo experiments were absent (16). TPD52 is an oncogene and closely associated with prostate, breast cancer, and other cancers (102–104), which was consistent with our results. CISD1 reduces ferroptosis via iron-sulfur cluster biogenesis and was identified as prognostic ferroptosis-related genes in bladder cancer, lung cancer, and hepatocellular carcinoma (53, 105, 106). Although these researches provided some evidence to demonstrate its relation with tumor disease, its function in breast cancer has not been investigated yet. Thus, our study identified HFRS genes that might provide potential targets for the development of clinical therapeutic regimens.

Previous studies mainly focus on ferroptosis or hypoxia-related genes to develop prognostic models, but there is no study to consider the cell death regulation and microenvironment heterogeneity of breast cancer together. Our study firstly explored the effect of combining hypoxia and ferroptosis on breast cancer prognosis by constructing a novel predictive signature (HFRS) with hypoxia and ferroptosis-related genes. Additionally, HFRS could distinguish ferroptosis, hypoxia status, immune cell infiltration, and clinical characteristics of BC patients, which might help to make individual therapeutic strategies. Meanwhile, to improve the sensitivity and specificity of HFRS, we established a nomogram based on HFRS and clinical prognostic factors, which could also facilitate the clinical application of HFRS.
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Introduction

Immune checkpoint inhibitor (ICI) is one of the standard treatment strategies in triple negative breast cancer (TNBC). However, the benefit of ICI with chemotherapy is limited in metastatic TNBC. In this study, we evaluated the effect of PD-L1 and LAG-3 expression on tissue microenvironment of mTNBC treated with ICI.





Methods

We reviewed representative formalin-fixed paraffin embedded specimens from metastatic or archival tumor tissues of TNBCs who treated with PD-1/PD-L1 inhibitors in metastatic setting. We used the Opal multiplex Detection kit with six antibodies (anti-PD-L1, anti-LAG-3, anti-CD68, anti-panCK, anti-CD8, anti-CD107a/LAMP antibody).





Results

We evaluated the association between LAG-3+cells and survival outcome regarding CK expression. Stromal LAG-3+/CK+ and LAG-3+/CK- cells were not associated with ICI-progression free survival(PFS) (P=0.16). However, LAG-3+ cell distributions in the tumor area impacted on ICI-PFS. A high density of LAG-3+CK+ cells was associated with shorter ICI-PFS compared with low densities of both LAG-3+CK+ and LAG-3+CK- cells (1.9 vs. 3.5 months). In addition, a high density of LAG-3+CK- cells had a relatively longer ICI-PFS compared with other groups (P=0.01). In terms of total area, the pattern of densities of LAG-3+CK+ cells and LAG-3+CK- cells were similar to those in the tumor area In addition, ICI-PFS of LAG-3+CK- and LAG-3+CK+ cell densities in the total area was equal to that in the tumor area.





Discussion

In conclusion, our findings revealed tumor-intrinsic LAG-3 expression was the resistance mechanism toward PD-1/PD-L1 inhibitors in mTNBCs. Multivariate analysis also suggested that LAG-3 expression in tumor cells was an independent predictive biomarker.
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Introduction

Triple negative breast cancer (TNBC), defined as estrogen receptor (ER)-, progesterone receptor (PgR)-, and human epidermal growth factor receptor 2 (HER2)-negative breast cancer (BC) has poor prognosis compared to other BC subtypes (1). In addition, effective targeted agents for TNBC are rare, and traditional cytotoxic chemotherapy has been the basis of treatment for metastatic TNBC (mTNBC) (2).

To date, immune checkpoint inhibitor (ICI) is one of the standard treatment strategies in TNBC. A phase II clinical trial of pembrolizumab, an anti-PD-L1 antibody, monotherapy revealed the therapeutic potential of PD-L1-positive mTNBC (3). KEYNOTE-355, a phase III study of pembrolizumab with cytotoxic chemotherapy, showed better survival after combination treatment in PD-L1-positive mTNBC as the first-line treatment compared to cytotoxic chemotherapy only (4). In addition, atezolizumab and anti-PD-L1 inhibitor with nab-paclitaxel have also shown efficacy as a first-line treatment in PD-L1-positive TNBC in phase III IMpassion in 130 clinical trial (5). However, the benefit of ICI with chemotherapy is limited in mTNBC, and studies to find predictive biomarkers and resistance mechanisms have been performed.

PD-L1 status and tumor infiltrating lymphocytes (TILs) are well-known predictive biomarkers of ICI (6, 7). The tumor microenvironment (TME), which consists of T cells, macrophages, fibroblasts, and many other cells, was suggested as a predictive biomarker and resistance mechanism of ICI (8). In addition, other immune checkpoint regulators such as indoleamine 2,3-dioxygenase 1 (IDO1), lymphocyte activating gene-3 (LAG-3), and T cell immunoglobulin and mucin domain-containing-3 (TIM-3) have potential as prognostic and predictive biomarkers of mTNBC treated with ICI (9–11).

LAG-3 is a transmembrane protein found on activated T cells and natural killer (NK) cells, where it mainly functions as a receptor that delivers inhibitory signals (12). Recent clinical trials of LAG-3 antibody demonstrated its antitumor activity (13). In addition, a PD-L1/LAG-3-bispecific antibody has been developed as another ICI (14).

In this study, we evaluated the effect of PD-L1 and LAG-3 expression on TME of mTNBC treated with ICI. This study was aimed to identify the role of LAG-3 expression in mTNBC with ICI and to establish the availability of an LAG-3 inhibitor.





Methods




Study population

Metastatic TNBC patients who received ICI were enrolled in this analysis. We collected BC tissues regardless of archival or fresh tissue in a metastatic setting. Baseline demographic characteristics, histologic characteristics, and previous treatment history were collected from clinical data. This study was performed in accordance with the principles of the Declaration of Helsinki and the Korean Good Clinical Practice guidelines. Collection of specimens and associated clinical data used in this study was approved by the Institutional Review Board of Samsung Medical Center (IRB File No. 2022-08-122), and we received informed consents for human-derived materials.





Pathologic preparation

We obtained representative formalin-fixed paraffin embedded (FFPE) specimens from metastatic or archival tumor tissues of TNBCs. Then, we dissected FFPE to a 2 µm thickness and fixed them to coated slides (Bond Plus slides, Leica, Germany). We applied bond RX auto-strainer for de-paraffinization, rehydration, and heat-induced epitope retrieval (HIER). An ER1 (citrate-based pH 6) solution heated at 98°C for 20 minutes was used for HIER condition.





Automation immunohistochemistry detection

We used the Opal multiplex Detection kit (Akoya, MA, USA) for slide staining based on the manufacturer’s instructions. We used six antibodies and six colored Opal dyes for staining. Anti-PD-L1 antibody (22C3, DAKO) was incubated first, and then horseradish peroxidase (HRP) conjugated secondary antibody (Ms+Rb polymer, Akoya) and Opal dye 570 were attached. Anti-LAG-3 antibody (EPR4392, Abcam), secondary antibody, and Opal dye 520 were conjugated in the second cycle, followed by anti-CD68 antibody (KP1, Novocastra), secondary antibody, and Opal dye 620; anti-panCK antibody (AE1/AE3, DAKO), secondary antibody, and Opal dye 690; and anti-CD8 antibody (SP57, Ventana), secondary antibody, and Opal dye 480. Last, anti-CD107a/LAMP antibody (H4A3, abcam), secondary antibody, TSA-DIG (Akoya), and Opal 780 were conjugated. In the final step, slides were treated with ProLong Gold AntiFade reagent with a DAPI mount (Invitrogen, 50 µl for each slide). After manufacturing, slide analysis was performed using a Vectra Polaris imaging system (Akoya) and inForm software (Version 2.8.0; Akoya).





Statistical analysis

Correlations between clinical characteristics and tumor response were analyzed by two-sided Student’s t-test and Fisher’s exact test. Evaluations of the median values of protein expression between two groups were performed using independent two sample t-test after Levene’s test.

The response rate (ORR) for ICI was measured using RECIST, version 1.1, and was defined to include patients who achieved complete response (CR) or partial response (PR). The disease control rate (DCR) for ICI was defined as CR, PR, or stable disease (SD). Progression-free survival (PFS) for ICI was defined as the elapsed time from the first date of ICI treatment to detection of disease progression. Overall survival (OS) was defined as the duration between date of diagnosis of metastatic disease and death. Distant Recurrence Free Survival(DRFS) was the duration between initial date of BC diagnosis and the date of distant recurrence. PFS and OS were analyzed using the Kaplan-Meier method. Cox proportional hazard regression was used to estimate hazard ratios (HRs) and 95% confidence intervals (CIs). Two-tailed p-values < 0.05 were considered statistically significant, and IBM SPSS Statistics ver. 21 (IBM Co., Armonk, NY) was used for analysis of all data.






Results




Baseline characteristics

In total, 40 mTNBC patients were analyzed (Supplementary Figure 1). Clinical characteristics of these patients are described in Table 1. The median age at mTNBC diagnosis was 43 (range: 23.5, 64.5) years, and there were three patients with de novo disease (7.5%). Germline BRCA state was tested in 32 patients, and 4 (12.5%) harbored the germline BRCA1 mutation. Of 37 recurred BC patients, 90% were treated with anthracycline or taxane. In addition, capecitabine was used in 42.5% patients as an adjuvant setting after neoadjuvant chemotherapy. Pembrolizumab was used in 52.5% of mTNBC patients, and the remaining were treated with atezolizumab. ICI as the first-line treatment was used in 57.5% of patients, and 22.5% of patients received ICI after a third line of treatment in a metastatic setting.


Table 1 | Baseline clinical and pathologic characteristics (N=40).



In terms of tissue status, 40% were archival tissues and 60% were metastatic biopsies. Breast was the most common organ (51.5%), followed by skin (12.5%), brain (10.0%), and liver (7.5%).





Response to immune checkpoint inhibitor

We describe the process of ICI treatment for 40 patients in Figure 1. Of these patients, tumor assessment was performed in 37. Three patients died due to disease progression without tumor assessment and were classified as progression of disease (PD). The ORR for ICI was 27.5% (11 of 40 patients). No patient achieved CR, although 11 showed PR. In particular, the ORR for atezolizumab was 15.8%, and that for pembrolizumab was 38.1% (p=0.16). With regard to treatment lines, ORR for first-line ICI was 34.8%, that for second-line treatment was 40%, and that of third or additional lines was 8.3% (p=0.16). The DCR for ICI was 42.5%, that for atezolizumab was 19%, and that for pembrolizumab was 57% (p=0.06). A 52% DCR was observed with first-line ICI treatment, 60% DCR with second-line ICI, and 8.3% for the third or additional lines (p=0.02).




Figure 1 | Swimmer’s plot for progression free survival according to immune checkpoint inhibitor treatment in metastatic setting.



In this analysis, the median follow-up duration was 14.1 months (interquartile range [IQR]:7.5, 25.2). Median PFS for ICI (ICI-PFS) was 3.5 months (95% confidence interval [CI]:1.6, 5.5) and median OS was 18.5 (95% CI: 5.6, 31.4) (Supplementary Figures 2A, B). PFS for pembrolizumab was 4.2 months compared with 2.7 months for atezolizumab (p=0.34), while the OS for pembrolizumab was 18.5 months and that for atezolizumab was 17.3 months (P=0.64) (Supplementary Figures 2C, D). Regarding ICI treatment lines for metastatic disease, the first line showed PFS of 4.2 months, the second line 1.4 months, and the third or additional line 2.0 months (p=0.08) (Supplementary Figure 2E).

Other clinical factors affecting ICI-PFS and OS were analyzed. Among baseline clinical factors, patients younger than 40 years had shorter ICI-PFS compared with those older than 40 years (2.7 vs. 6.2 months, P=0.04). An OS of 17.3 months for patients younger than 40 was observed compared with 24.8 months for those older than 40 years (p=0.52) (Figures 2A, B). In addition, the distant recurrence-free interval (DRFI) affected ICI-PFS and OS (median ICI-PFS [DRFI <24 vs. >24 months]: 3.1 vs. 8.8, P=0.08; median OS [DRFI <24 vs. >24 months]: 15.7 vs. 50.3, p=0.02) (Figures 2C, D). Other clinical factors, germline BRCA mutation, and de novo disease did not affect PFS and OS (data not shown).




Figure 2 | (A) Immune checkpoint inhibitor progression free survival (ICI_PFS) according to age at breast cancer diagnosis; (B) Overall survival (OS) according to age at breast cancer diagnosis; (C) ICI_PFS according to distant recurrence free interval (DRFI); (D) OS according to DRFI.







Expression of six proteins in TNBC

Tumor cell and stromal cell counts and cell densities (cells/mm2) were analyzed (Supplementary Table 1). All specimens had 1000 or more tumor cells, and stromal cell count was 1000 or more in 36 specimens (90%). We evaluated the six protein markers CK, CD8, CD68, and CD107a by cell type and PD-L1 and LAG-3 as immune checkpoint markers. Among the four cell-type proteins, CK+ cells and CD107a+ cells were more frequently observed in tumor cells compared with stromal cells (p <0.01 and p<0.01). In addition, the densities of CD8+ cells were similar between tumor and stroma (p=0.77). The other cell type markers CD107a+ CD8+ and CD68+CD107a- were similarly distributed in tumor and stroma (p=0.27 and p=0.50) (Supplementary Table 1).

For immune checkpoint markers, LAG-3 was more densely expressed in tumor cells compared with stromal cells (p=0.01). LAG-3+/CK+ cells were more frequently observed in tumor cells (p<0.01), while LAG-3+/CK- cells were more populous in stromal cells (p=0.01). Among LAG-3+CK- cells, LAG-3+/CD107a+ were frequently observed in stromal cells (p=0.01), while LAG-3+CD8+ cells were not (p=0.19). PD-L1+ cells were denser in tumor cells compared with stromal cells (p<0.01). However, PD-L1+/CD8+ cell density did not differ in tumor and stroma (p=0.37) (Supplementary Table 1; Supplementary Figure 3).





Prognostication value of immune cell distribution

We evaluated the relationship between cell densities in tumor and stroma. In CD8+ cells, cell density in the tumor area was positively correlated with that in stroma (Supplementary Figure 4A). CD107a+ cells were more commonly observed in tumors than in stroma (Supplementary Figure 4B). In addition, several tissues had no or few CD107a+CD8+ cells in either tumor or stroma, and some tissues had cells in both areas (Supplementary Figure 4C).

CD8+ cells were associated with ICI-PFS (Figure 3A). A high density of CD8+ cells in stroma had a better ICI-PFS rate compared with a low density of CD8+ cells (9.1 vs. 2.7 months; P=0.02). In OS, there was no difference between high and low density of CD8+ cells in stroma (29.4 vs. 15.7 months; P=0.28) (Figure 3B). However, the densities of CD8+ cells in tumor and total area including tumor and stroma were not associated with ICI-PFS and OS.




Figure 3 | (A) Immune checkpoint inhibitor progression free survival(ICI_PFS) according to level of stromal CD8+ cells; (B) Overall survival (OS) according to level of stromal CD8+ cells; (C) ICI_PFS according to level of stromal CD107a+CD8+ cells; (D) OS according to level of stromal CD107a+CD8+ cells.



In addition, CD107a+CD8+ cells in stroma were associated with ICI-PFS (high vs. low: 7.9 vs. 2.7 months; P=0.02) and OS (high vs. low: 25.5 vs. 14.2 months; P=0.08) (Figures 3C, D). CD107a+ cells, CD68+CD107a- cells, and CD107a+CD8- cells were not associated with ICI-PFS and OS.





Prognostic value of PD-L1 and LAG-3 expression

Stromal PD-L1+ and tumor PD-L1+ cell densities were positively correlated (Supplementary Figure 5A). Our survival analysis suggested that stromal, tumor, and total PD-L1 expression did not relate to ICI-PFS and OS (Supplementary Figures 5B, D). We also evaluated the relationship between PD-L1+LAG-3+ cells and PD-L1+/LAG-3- cells in tumor and stroma. There was no relationship between PD-L1+LAG-3+ cells or PD-L1+LAG-3- cells and either cell distribution or survival outcome (Supplementary Figures 5E–H).

LAG3 expression was analyzed in stroma, tumor and total specimen area. In contrast to PD-L1 expression, stromal and tumor LAG-3 expression was not correlated, but stromal LAG-3 expression was directly correlated with total LAG-3 expression (Supplementary Figures 6A-C). Additional survival analyses suggested that stromal, tumor, and total LAG-3 expression was not associated with ICI-PFS (Supplementary Figures 6D–F).

Regarding CK expression, the densities of LAG-3+/CK+ cells and LAG-3+/CK- cells were not correlated in tumor and stroma (Figures 4A, C). We evaluated the association between LAG-3+cells and survival outcome regarding CK expression. Stromal LAG-3+/CK+ and LAG-3+/CK- cells were not associated with ICI-PFS (P=0.16) (Figures 4A, B). However, LAG-3+ cell distributions in the tumor area impacted ICI-PFS (Figures 4C, D). A high density of LAG-3+CK+ cells was associated with shorter ICI-PFS compared with low densities of both LAG-3+CK+ and LAG-3+CK- cells (1.9 vs. 3.5 months). In addition, a high density of LAG-3+CK- cells had a relatively longer ICI-PFS compared with other groups (P=0.01). In terms of total area, the pattern of densities of LAG-3+CK+ cells and LAG-3+CK- cells were similar to those in the tumor area (Figure 4E). In addition, ICI-PFS of LAG-3+CK- and LAG-3+CK+ cell densities in the total area was equal to that in the tumor area (Figure 4F).




Figure 4 | (A) Correlation between the level of LAG-3+CK+ cells and LAG-3+CK- cells in stroma (cells/mm2); (B) Immune checkpoint inhibitor progression free survival(ICI_PFS) according to level of LAG-3+CK+ cells in stroma(cells/mm2); (C) Correlation between the level of LAG-3+CK+ cells and LAG-3+CK- cells in tumor(cells/mm2); (D) ICI+PFS according to level of LAG-3+CK+ and LAG-3+CK- cells in tumor(cells/mm2); (E) Correlation between the level of LAG-3+CK+ cells and LAG-3+CK- cells in total area(cells/mm2); (F) ICI+PFS according to level of LAG-3+CK+ and LAG-3+CK- cells in total area (cells/mm2).



We also evaluated LAG-3+ cell distribution according to tumor LAG-3+CK+/LAG-3+CK- cell densities. In this analysis, high LAG-3+/CK+ cells were associated with total LAG-3+ cells in tumor (Figure 5A), while total LAG-3+CK- cells were associated with total LAG-3+/CD8+ cells (Figure 5D). In addition, PD-L1+LAG-3+ cell density was associated with LAG-3+CK+ and LAG-3+CK- cell proportions (Figure 5F).




Figure 5 | (A) Level of tumor LAG3+ cells; (B) Level of tumor LAG-3+CK+ cells; (C) Level of tumor LAG-3+CK- cells; (D) Level of tumor LAG-3+CD8+ cells; (E) Level of LAG-3+CD107a+ cells; (F) Level of PD-L1+LAG-3+ cells according to tumor LAG-3+CK+/LAG-3+CK- cells.



In addition, the associations between other immune markers in tumor and total areas were evaluated (Figure 6). High LAG-3+CK- cell density in tumor was associated with high tumor and total PD-L1+ cell densities, high tumor and total CD8+ cell densities, as well as high tumor and total PD-L1+CD8+ cell densities (Figures 6A–F). However, tumor and total CD107a+ cell densities were not associated with tumor LAG-3+/CK- cells (Figures 6G, H).




Figure 6 | 
(A) Level of tumor PD-L1+ cells; (B) Level of total PD-L1+ cells; (C) Level of tumor CD8+ cells; (D) Level of total CD8+ cells; (E) Level of tumor PD-L1+CD8+ cells; (F) Level of total PD-L1+CD8+ cells; (G) Level of tumor CD107a+ cells; (H) Level of total CD107a+ cells according to tumor LAG-3+CK+/LAG-3+CK- cells.



Multi-IHC results for expressed immune-related proteins including LAG-3 are shown in Figure 7. The upper three multi-IHC images from mTNBCs had relatively long ICI-PFS, whereas the lower images of mTNBCs show no response to ICI. In the upper three images, LAG-3 expression was not related to CK+ cells, but the lower images suggest that LAG-3 expression was concentrated in CK+ cells.




Figure 7 | Multiplex Immunohistochemistry according to ICI response; Figures on upper column (A–C) presented TNBC with LAG3 expression (green, EPR4392, Abcam) not related to CK+ cells (red, AE1/AE3, DAKO) and having long ICI-PFS whereas figures on lower column (D–F) presented TNBC with LAG3 expression on CK+ cells and having short ICI-PFS.







Multivariate analysis for ICI-PFS

Multivariate analysis was performed for evaluating prognostic values. In this analysis, LAG-3/CK status in tumor and DRFI were associated with ICI-PFS. High LAG-3+/CK+ and low LAG-3+/CK- cells were also associated with poor ICI-PFS (hazard ratio[HR]: 4.35, 95% confidence interval [CI]: 1.48, 12.77, p=0.028), and TNBCs with under 24 months of DRFI had worse ICI-PFS compared with those had more than 24 months of DRFI (HR:3.66, 95% confidence interval [CI]:1.19, 11.25, p=0.024) (Table 2).


Table 2 | Multivariate analysis of clinico-pathological factors for ICI-PFS (n=37).








Discussion

We evaluated the three immune cells CD8+ T cells, natural killer (NK) cells, and macrophages and the two immune checkpoint proteins PD-L1 and LAG-3 in metastatic TNBC treated with the ICIs pembrolizumab and atezolizumab. In this analysis, LAG-3+/CK+ cells were an independent prognostic factor for ICI-PFS, whereas PD-L1 status did not affect ICI-PFS. In addition, stromal CD8+cells and CD8+CD107a+cells were associated with ICI-PFS, but multivariate analysis suggested that these two immune cells had no impact on ICI response.

To date, many cancer patients have been treated with anti-PD-1 or anti-PD-L1 inhibitor combined with cytotoxic chemotherapeutic agents, other ICIs, or targeted agents. In many tumors, PD-L1 status indicates the response to anti-PD-1 and PD-L1 inhibitors according to companion diagnosis associated with clinical trials (15). VENTRA PD-L1 (SP142) assays provide evidence of TNBC patients eligible for atezolizumab treatment and suggest that atezolizumab treatment would be of benefit in TNBC with PD-L1 expression in 1% or more of tumor-infiltrating immune cells (15, 16). Pembrolizumab also could be used depending on PD-L1 status, as represented by the tumor proportion score, which is the percentage of viable tumor cells showing partial or complete membrane staining relative to all viable tumor cells (15, 17). These criteria for ICI treatment were based on clinical trial-proven companion diagnostic assessments (18–20). However, many patients with mTNBCs had short PFS even though mTNBCs were treated by ICIs according to guidelines based on companion diagnostics (4, 5, 21). Indeed, the result of clinical trial of pembrolizumab was effective to TNBC in neoadjuvant setting regardless PD-L1 status (4, 22).

Our study suggests that LAG-3 expression was a poor prognostic marker of ICI response in mTNBC. However, LAG-3+CD8+ cells were suggested as a protective prognostic biomarker in mTNBC with ICI treatment. A previous study of LAG-3 expression in BC suggested that LAG-3 expression was more frequently observed in ER- BC BCs compared with ER+ BCs, and LAG-3 expression in TILs was associated with better prognosis compared with TNBC without LAG-3 expression (23). Another study also suggested that LAG-3 expression guaranteed good prognosis even though it was considered a resistance mechanism for PD-1 axis blockers (24). They also evaluated LAG-3 expression in immune cells but not tumor cells.

These previous studies demonstrated that LAG-3 was expressed on immune cells, though only one study mentioned that tumor-intrinsic LAG-3 protein expression. They evaluated LAG-3 expression in renal cell carcinoma (RCC) cells, and high LAG-3+ RCC was correlated with an elevated level of tumor-infiltrating immune cells. In addition, RCC with high tumor-intrinsic LAG-3 protein expression had worse OS compared with RCC with low LAG-3 expression (25, 26). This result agreed with that of our study, and we suggest that both tumor-intrinsic LAG-3 expression and LAG-3 expression on immune cells are important.

LAG-3 was one immune checkpoint expressed on the cell membrane of NK cells, B cells, TIL, and dendritic cells, and they may have a synergistic interaction with PD-1/PD-L1 as immune checkpoints (27). This was an inhibitory regulator that control signaling pathways of T cells and antigen presenting cells and LAG-3 signaling pathway inhibited early events in primary activation of human CD4 and CD8 T cells (28, 29). In addition, tumor microenvironment with PD-1 and LAG-3 co-expression mediated the immune escape effect of tumor cells (30). Given the resistance mechanism of ICIs was mediated by additional immune checkpoints, LAG-3 played one of escape mechanism of PD-1/PD-L1 inhibitors and induced ICI-resistance (31, 32). Therefore, LAG-3 inhibition was the mechanism to overcome PD-1/PD-L1 inhibitor resistance, and pre-clinical studies have suggested that dual knockdown of LAG-3 and PD-1 increases survival in mice with transplanted tumors (33). In addition, recent clinical trials of LAG-3/PD-1 combination therapy for melanoma had positive outcome (13). To date, clinical trials of LAG-3/PD-1 combination and LAG-3/PD-1 bispecific antibody in solid tumors have progressed, and we are anticipating the results of these clinical trials.

Our cohort consisting of mTNBCs had poor prognosis. Up to 70% of patients underwent distant recurrence of TNBC in 24 months of initial BC diagnosis, and 12 of 37 patients experienced distant BC recurrences in 12 months. This indicated that such patients rarely respond to cytotoxic chemotherapy in a metastatic setting and have short OS. Therefore, our study suggested that the role of LAG-3 expression in mTNBCs with poor prognosis is related to unmet treatment needs.

In our study, we showed that BC with high LAG-3+CK+ cell numbers had worse treatment outcomes with PD-L1/PD-1 inhibitor, whereas BC with high LAG-3+CK- cell numbers had better outcomes compared to those with both low LAG-3+CK+ and low LAG-3+CK- cells. In addition, tumor and total CD8+ cell densities were highest in BC high-density LAG-3+CK- cells compared with other BC groups. This had in common with tumor infiltrating tumor (TIL)s a role as an indicator of good survival outcomes in BC. Moreover, BC with high LAG-3+CK-/low LAG-3+CK+ cell densities had high PD-L1+ and PD-L1+CD8+ cell densities. Therefore, these PD-L1+ immune cell infiltrations were positively associated with response to PD-L1/PD-1 inhibitors. Overall, tumor-intrinsic LAG-3+ expression indicates poor response to PD-1/PD-L1 inhibitors in mTNBCs, but LAG-3+ in CK- cells, consisting of immune cells including PD-L1+ cells, results in the opposite response for PD-1/PD-L1 inhibitors. This also could explain why the results of clinical trials for TNBCs with PD-L1/PD-1 inhibitors were controversial according to PD-L1 state.

Our study had some limitations. First, we only evaluated 37 metastatic TNBC tissues of 40 patients who treated with PD-1/PD-L1 inhibitor. In addition, we did not use immune RECIST (iRECIST) criteria to evaluate tumor response treated with ICIs (34). However, recent meta-analysis suggested that response evaluation with iRECIST did not differ to that with RECISIT 1.1 on response-related endpoint including ORR. Therefore, our evaluation of tumor response might be sufficient even though we did not use iRECIST criteria in this study.

Despite the small numbers of evaluated tissues, our study suggests that tumor-intrinsic LAG-3 expression is the resistance mechanism toward PD-1/PD-L1 inhibitors in mTNBCs. Multivariate analysis also suggested that LAG-3 expression in tumor cells was an independent predictive biomarker. A further large-scale, translational study for LAG-3 expression in TNBC is warranted to confirm the role of tumor-intrinsic LAG-3 expression in mTNBC treated with PD-1/PD-L1 inhibitors. In addition, our study could be used to design clinical trials of LAG-3 inhibitor, a new, promising ICI for TNBCs.
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Supplementary Table 1 | Cell counts and cell densities of multiplex immunohistochemistry
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Introduction

Dysbiosis characterises breast cancer through direct or indirect interference in a variety of biological pathways; therefore, specific microbial patterns and diversity may be a biomarker for the diagnosis and prognosis of breast cancer. However, there is still much to determine about the complex interplay of the gut microbiome and breast cancer.



Objective

This study aims to evaluate microbial alteration in breast cancer patients compared with control subjects, to explore intestine microbial modification from a range of different breast cancer treatments, and to identify the impact of microbiome patterns on the same treatment-receiving breast cancer patients.



Methods

A literature search was conducted using electronic databases such as PubMed, Embase, and the CENTRAL databases up to April 2021. The search was limited to adult women with breast cancer and the English language. The results were synthesised qualitatively and quantitatively using random-effects meta-analysis.



Results

A total of 33 articles from 32 studies were included in the review, representing 19 case-control, eight cohorts, and five nonrandomised intervention researches. The gut and breast bacterial species were elevated in the cases of breast tumours, a significant increase in Methylobacterium radiotolerans (p = 0.015), in compared with healthy breast tissue. Meta-analysis of different α-diversity indexes such as Shannon index (p = 0.0005), observed species (p = 0.006), and faint’s phylogenetic diversity (p < 0.00001) revealed the low intestinal microbial diversity in patients with breast cancer. The microbiota abundance pattern was identified in different sample types, detection methods, menopausal status, nationality, obesity, sleep quality, and several interventions using qualitative analysis.



Conclusions

This systematic review elucidates the complex network of the microbiome, breast cancer, and therapeutic options, with the objective of providing a link for stronger research studies and towards personalised medicine to improve their quality of life.
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1 Introduction

Breast cancer has been a major concern for women for several decades, with an estimated 2.3 million cases in 2020 and a global frequency of 11.7% (1). To date, four subtypes of invasive breast cancer have been identified: luminal subtype A, which exhibits high levels of estrogen receptor (ER) and progesterone receptor (PR), but low expression of human epidermal growth factor receptor 2 (HER2) and cell proliferation index; luminal subtype B, which exhibits ER/PR+, HER2, and high proliferation index; HER2+ breast cancer subtype; and triple-negative breast cancer (TNBC) subtype (2). The likelihood of breast cancer is typically increased by several risk factors, namely, age, sex, obesity, family history, genetic mutation, estrogen level, and sedentary lifestyles (3–5). The human microbiota, on the other hand, has drawn considerable interest as a key risk modulator due to its unique function in controlling steroid hormone metabolism by activating various enzymes, including hydroxysteroid dehydrogenase (6, 7).

The gut microbiota is an abundant ecosystem of highly diversified microorganisms, with the Firmicutes and Bacteroidetes phyla accounting for approximately 90% of the gut microbiota, including Lactobacillus, Clostridium, Enterococcus, Dialister and Ruminicoccus of Firmicutes and Bacteroides, Alistipes, and Prevotella of Bacteroidetes (8). An imbalance of the human gut microbiota known as dysbiosis causes a number of health problems (9–11). A comparison of many breast samples reveals differences in the quantity and microbial diversity of several specific genera between healthy people and patients, despite the absence of conclusive evidence that dysbiosis causes breast cancer (12, 13). It also acknowledges the relationship between different gut microbial profiles and different subtypes of breast cancer (14). Furthermore, although there was no significant variation in abundance between premenopausal breast cancer patients and controls, the structure and functions of the gut microbial community differed between postmenopausal breast cancer patients and healthy controls (15). As a result, the impact of microbial instability in the breast, as well as the function of microbial communities in the development of breast cancers, has been thoroughly established.

Tumour tissue and high-risk tissue had a much lower breast microbial diversity than tumour-neighbouring normal or healthy control tissue adjacent to the tumour. For example, the breast tumour microbiome contained a higher proportion of the Pseudomonadaceae and Enterobacteriaceae families, the genera Pseudomonas, Proteus, Porphyromonas, and Azomonas, compared with other tissues (16). On the other hand, propionibacterium and Staphylococcus were rare in tumour tissue but were important components of healthy control, high-risk, and neighbouring normal tissues (16).

Breast cancer and the oral microbiota, in particular, appear to be linked. The risk of breast cancer has been found to be higher in women who have periodontal disease, caused by specific bacteria such as the red complex (Porphyromonas gingivalis, Tannerella forsythia, and Treponema denticola) and the orange complex (Fusobacterium nucleatum, Prevotella intermedia, Prevotella nigrescens, Peptostreptococcus micros, Streptococcus constellatus, Eubacterium nodatum, Campylobacter showae, Campylobacter gracilis, and Campylobacter rectus) (17–19).

The gut microbiota secretes bioactive bacterial metabolites, such as reactivated estrogens, amino acid metabolites, short-chain fatty acids (SCFAs), or secondary bile acids (BAs), which can affect disease progression (20–22). For its estrogen reactivation activity, the role of gut microbial β-glucuronidase (GUS) in the pathogenesis of breast cancer has been proposed, and GUS is encoded by Bacteroidetes and Firmicutes in the human gastrointestinal tract (23). Glutamine-proline-glycine metabolism became active in different subtypes of breast cancer, and amino acid transporter-2 metabolites were up-regulated to serve energy homeostasis and protein and nucleotide biosynthesis (22). SCFAs are essential in cell homeostasis, affecting the colon and other organs through blood flow, and are produced by two major bacterial groups: Bacteroidetes produce propionate and acetate, while Firmicutes produce butyrate (24). BAs, which are soluble derivatives of cholesterol produced in the liver, were previously thought to be carcinogenic agents but can have antineoplastic properties in cases of breast cancer (25).

As a result, the impact of the gut microbiome is multifaceted and important in controlling the host immune system in the pathophysiology of the development of breast cancer and the response and resistance to various cancer therapies (26–28). Through studies in animals, chemotherapy was found to alter the intestinal flora, which can result in adverse effects from early breast cancer treatment including weight gain or neurological disorders (29). Experimental research also showed a link between the gut microbiota and clinical outcomes and therapeutic responsiveness in different subtypes of breast cancer (30, 31). In particular, a study finds that gut bacteria are significantly more prevalent in breast cancer patients than in healthy people, which is detrimental to the prognosis of the disease (29). Thus, for therapeutic purposes and for the prognosis of the disease, detailed insights into the breast cancer oncobiome are important.

In recent decades, numerous studies revealed the impact of the microbiome on different organ-specific cancers and the action of bacterial metabolites in the human host on several signaling pathways, for example, E-cadherin/β-catenin pathway, breaking DNA double strands, promoting apoptosis, and altering cell differentiation (32–34). In particular, there are still several questions between the human microbiome and breast cancer development: “What pattern of the microbiome profile do breast cancer patients have in contrast to nonbreast cancer subjects”; “How different treatments modify the microbiome”; and “What is the microbiome profile in the same treatment”. To address these, a systematic literature review and meta-analysis on breast cancer and microbiome are conducted and the specific objectives are to evaluate microbiota alteration in breast cancer patients compared with nonbreast cancer subjects, to explore microbiota modification from a range of different treatment strategies, and to identify the impact of microbial pattern on the same treatment-receiving breast cancer patients.



2 Materials and methods



2.1 Protocol and registration

The systematic review of the literature was registered on PROSPERO ID 2021 CRD42021288186.



2.2 Literature search

The PRISMA statement guidelines were followed to conduct systematic review and meta-analysis (35). The study search strategy was developed based on the PICO/PECO (Population, Intervention/Exposure, Comparison or Controls, and Outcome) framework (36, 37). Two authors (MT and KC) independently examined each study for inclusion in the systematic review using PubMed (https://pubmed.ncbi.nlm.nih.gov/), Embase (www.embase.com), and the Cochrane Library (www.cochranelibrary.com). This was conducted using a full search term strategy, as detailed in Supplementary Table S1. The search was limited to adult women with breast cancer and the English language. Studies that included only nonhuman subjects or were not peer reviewed were excluded. Both epidemiological and intervention studies were considered from these databases and mainly focused on the interlink between breast cancer patients and the gut microbiome that was being extracted up to April 2022. Discrepancies were resolved by group discussion at each step.



2.3 Study selection

Article selection was carried out by two independent reviewers (MT and KC) for eligible studies using prespecified inclusion and exclusion criteria, followed by the full text review process. All relevant full-text articles were taken for further data extraction. The inclusion criteria for the meta-analysis were established as follows (1): Epidemiologic studies on how the microbiome profile in breast cancer patients differed from the pattern in nonbreast cancer control and (2) intervention studies on how treatment in breast cancer patients affected the microbiome and vice versa. Exclusion was performed in (1) the studies such as animal studies, in vitro, review articles, non-peer-reviewed articles, protocols, letters, editorial, commentary, recommendations, and guidelines and (2) the studies on breast cancer survivors. Disagreements between review authors were resolved by consensus at every phase of the selection of the systematic review selection.



2.4 Data extraction

The two independent authors (MT and KC) performed the data extraction for the following variables: (1) authors, year of publication, study period, study type, and country that implemented the study; (2) demographic characteristics such as menopause, menarche, and hormonal status; (3) related characteristics, including cytokine levels and enzyme activities; and (4) Parameters for the diversity profile. All relevant text, tables, and figures were examined during data extraction, and discrepancies between the two authors were resolved by discussion or consensus.



2.5 Risk of bias

The two independent authors (MT and KC) evaluated the risk of bias (ROB) in the extracted intervention studies. However, studies are nonrandomised trials, and therefore ROBINS-I (Risk Of Bias in Nonrandomised Studies—of Interventions) tool was applied to assess ROB (38). For included cohort and case-control studies, the two independent authors (MT and KC) performed the ROB evaluation using the Newcastle–Ottawa Quality Assessment Scale (NOS) developed from an ongoing collaboration between the Universities of Newcastle, Australia, and Ottawa, Canada, for quality assessment in a meta-analysis (39). The tool was used to assess the following domains: bias arising from the selection process, bias arising from the comparability process, and bias arising from the outcome/exposure process. Any disagreement was resolved by consensus. If there was not enough information to consider, the corresponding authors were emailed and their response was waited for 2 weeks. In the event of no response, it proceeded with the available data and any disagreement was resolved through discussion.



2.6 Statistical analysis

For intervention studies, mean differences (MDs) and a 95% confidence interval (95% CI) between groups were indicated for microbiome diversity outcomes. The characteristics of the participants, the study period, the type of study, and the location of the study were evaluated for clinical and methodological heterogeneity. The I2 statistics were used for the assessment of statistical heterogeneity (40). The heterogeneity level was as defined in Chapter 9 of the Cochrane Handbook for Systematic Reviews of Interventions. For clinical, methodological, and statistical heterogeneity, the random effects meta-analysis using the DerSimonian and Laird method was utilized by RevMan 5, v.5.4.1 (https://training.cochrane.org/online-learning/core-software/revman/; accessed 31 October 2022).




3 Results



3.1 Study selection

The literature search found 2,761 articles from the databases, of which 758 duplicates were removed prior to selection. From the initial 2,003 studies, the title and abstract selection were carried out and 1,884 articles were excluded according to the inclusion and exclusion criteria. Next, we retrieved 119 articles for full text screening and checked their eligibility for meta-analysis. Among them, 86 studies were excluded due to the following conditions: 50 studies were articles not peer reviewed, 11 targeted the wrong population, seven raised wrong outcomes, four were protocol papers, three were editorial, three were wrong interventions, three were wrong study design, one were wrong comparator, two were review articles, one was duplicate, and one was not reported in English. Last, 33 articles from 32 studies, with an enrolment of 3,448 participants covering the study period from 2004 to 2019, were included in the systematic review and meta-analysis of the literature, representing 19 case-control, eight cohort, and five non-randomised intervention studies (Figure 1).




Figure 1 | Flow diagram of the study selection in the systematic literature review.





3.2 Study characteristics

The extracted studies were published from 1990 to 2020 in 11 countries, contributed mainly by the United States and China. We included different types of study, such as cohort, case-control, and intervention studies, and the age range participated was 18 to 90 years (Table 1).


Table 1 | Baseline characteristics of the included studies.





3.3 Characteristics of the subject

Overall, the combined mean of the age of the participant is 54.3, with a standard deviation of 5.4. Regarding the menopausal status of the participants, there are three main groups: premenopausal, perimenopausal, and postmenopausal subjects. Among 66.4% of breast cancer cases, patients with postmenopause are 46% of the cancer patients are ≥ 13 years of age at menarche. In the study, 53.6% of breast cancer patients are from the United States, followed by Ghana with 16% and China with 14.6% (Table 2).


Table 2 | Demographic characteristics of participants.





3.4 Risk of bias

The ROB of the included studies was summarised by the study design group. ROB in case-control studies was evaluated mainly on selection, comparability, and exposure (Figure 2). The recruitment of subjects for 10 researches (14, 15, 17, 19, 41, 42, 50, 52–54) involved independent validation, while the subjects for the remaining research (13, 18, 43–49, 51) were often collected through databases or archival medical records. Four studies had the potential for selection biases: two (41, 42) did not disclose the selection procedure, one (18) used a genomics data repository to find patients but did not make a clear selection statement, and one (50) employed subjects from an Army-related hospital. Although control individuals from six trials (15, 19, 41, 42, 53, 54) were recruited from the community, the majority of control subjects was obtained as hospital controls, such as women who underwent breast reductions or cosmetic surgeries. Amongst them, two studies (48, 50) used mild cases as controls and one study (52) put the other cases of malignancy as controls. All cases and control subjects had comparability according to the study design, and the additional comparability measures were the same Mediterranean diet, age, and hormonal status by menopause. The exposure of the studies (13, 14, 17, 43–48) was identified by surgical records, while the other studies (15, 18, 19, 41, 42, 49–51, 53, 54) used written medical records. The same method of ascertainment and the same rate for both groups followed all the selection of subjects.




Figure 2 | Risk of bias of the included case-control studies via Newcastle–Ottawa scale.



The selection, comparability, and ROB result in eight cohort studies (55–62) were also evaluated (Figure 3). A study (55) recruited participants from a volunteer group that was not representative of the community, but the other exposed cohorts (56, 57, 59–61) were recruited from nonmastectomy breast surgeries, patients planning breast cancer surgeries, or biopsy−confirmed breast cancer patients. All cohort studies had comparable study controls based on study designs and used medical records prior to outcome analysis. Probably there was sufficient time for follow-up; however, one still needs to outline a claim for the sufficiency. In a cohort study (60), some participants with admixed ancestry were excluded from the final analysis to reduce bias. No statement was found in other studies (55–59) on the suitability of follow-up.




Figure 3 | Risk of bias of the included cohort studies via Newcastle–Ottawa scale.



Most research domains were classified as having a low ROB in the ROB assessment of nonrandomized intervention trials (63–67) (Figure 4). Among them, four studies omitted details about the participant selection procedure and a confounding bias existed in one study (64). Another study (66) showed a tendency towards interventions that were not intended.




Figure 4 | Risk of bias assessment for non-randomized intervention studies.





3.5 Qualitative analysis

Due to various sampling locations, different sequencing approaches, and various geographical and biological conditions, there was generally a lot of qualitative data when analysing microbial communities from different research. As a result, case-control, cohort, and non-randomised intervention studies were used to qualitatively analyse all the extracted studies (Tables 3, 4), taking into account the study period, sample information, mean population age, microbial detection methods, microbiome type, and profile of microbial diversity.


Table 3 | Characteristics of cohort studies and their microbial profiling and diversity.




Table 4 | Characteristics of non-randomized intervention trials and their microbial profiling and diversity.





3.6 Microbial composition and diversity in breast cancer

A general significant reduction in gut bacterial species observed for the breast cancer group was found in two studies (44, 54) (MD = −20.16; 95% CI = −34.66 to −5.66; p = 0.006); however, the heterogeneity value is high (I2 = 87%; p = 0.006) (Figure 5).




Figure 5 | Meta-analysis forest plot representing the risk of breast cancer by different microbial profiling indexes like: (A) observed species; (B) Shannon index; and (C) faith’s PD.



The general estimates of the Shannon index (MD = −0.35; 95% CI = −0.48 to −0.22; p < 0.00001) and the Faith PD index (MD = −5.25; 95% CI = −6.35 to −4.15; p < 0.001) from the studies (44, 54) reported that a significant reduction in gut microbial α-diversity was found in patients with breast cancer compared with healthy subjects (Figures 5B, C).




4 Discussion

The systematic review of the literature spanned three decades and included data from nearly a dozen countries on the breast, oral, or gut microbiome and breast cancer. Meta-analysis revealed microbial changes and diversity in breast cancer patients versus controls. The review bridged a gap that allowed us to connect previous microbiome studies in breast cancer patients using qualitative and quantitative meta-analysis tools.

Forest plots from two studies (44, 54) indicated that breast cancer patients have a lower α-diversity as measured by the Shannon index, observed species, and Faith’s phylogenetic diversity (PD), than healthy individuals. For the detection of microbial α-diversity, common parameters include Chao1, Fisher’s alpha, Faith’s PD, Simpson, Abundance-based coverage estimators (ACEs), and Good’s coverage indices (68). Some parameters simply count the number of species or operational taxonomic units (OTUs) present in an area, while others consider the abundance or frequency of the OTUs. As a result, most of the researchers used more than one diversity index, and combining and analysing different indexes in the current study were difficult; therefore, the number of studies for meta-analysis was limited.

The human intestinal microbiota is dominated by two bacterial phyla, Firmicutes and Bacteroidetes, which represent more than 90% of the total community, as well as other subdominant phyla such as Proteobacteria, Actinobacteria, and Verrucomicrobia (69). Bacteroidetes, which make up 45–55% of all bacteria, are all Gramme-negative bacteria (70). When they are particularly high, with values greater than 70–75%, it appears that they put the host at risk of diabetes and possibly other inflammatory diseases, especially when there is a high percentage of Proteobacteria present. Firmicutes, even if present in a lower percentage than Bacteroidetes, are believed to account for 40–45% of the total fecal microbiota under normal conditions (70). The study by Ma et al. found a reduced relative abundance of Firmicutes and Bacteroidetes, increased levels of Proteobacteria, Actinobacteria, and Verrucomicrobia at the phylum level, and decreased abundance of Faecalibacterium prausnitzii in fecal samples from 25 breast cancer patients (50). Furthermore, the Firmicutes/Bacteroidetes (F/B) ratio in breast cancer patients was significantly higher than in controls (53). It was also discovered that the absolute numbers of total bacteria and three bacterial groups (Firmicutes, Faecalibacterium prausnitzii, and Blautia) differed significantly according to the patient’s BMI, as shown in Table 3 (55). All of these demonstrated the gut microbial pattern, as well as a transform in the F/B ratio, which contributes to an increased risk of breast cancer.

A study described that the breast microbiota of tumour tissue has Proteobacteria (48%), Actinobacteria (26.3%), Firmicutes (16.2%), and others (9.5%) of miscellaneous phyla (18). From the included studies (17, 43, 47, 48, 51, 56, 57, 60), an increased relative abundance of Bacillus, Enterobacteriaceae, Staphylococcus, Fusobacterium, Atopobium, Gluconacetobacter, Hydrogenophaga, Lactobacillus, Corynebacterium, Actinomyces, Propionibacteriaceae, Clostridia, Bacteroidia, WPS_2, Ruminococcaceae, Acidaminococcus, Acinetobacter, Akkermansia, Bacteroides, Sutterella, Agrococcus, Ralstonia, Methylobacterium, and Sphingomonas were also discovered. Furthermore, a distinct breast tissue microbiota was found in different breast skin tissues, breast skin swabs, buccal swabs, and deep microbial communities between benign and malignant breast disease (48). Furthermore, there appears to be a geographical difference between the Canadian and Irish breast tissue microbiome (Figure 4), but there is still evidence to prove that (48). Furthermore, the study showed a distinct profile of the breast tissue microbiome with increased species richness compared with the overlying skin tissue, suggesting that the differences may be due to the difference in their environment and ecosystem (48).

The researchers discovered a 10-fold increase in bacterial load in breast tumours, as well as an inverse correlation between bacterial count in tumour tissue and breast cancer stage, with stage 3 patients having the lowest 16S ribosomal DNA copy numbers in a study comparing the breast microbiota between breast tissue and their paired normal tissue (43). A significant increase in Methylobacterium radiotolerans (p = 0.015) was found in breast tumours, while Sphingomonas yanoikuyae (p = 0.009) was found in low abundance in paired normal tissue (43). However, a study found similarities in the breast microbiota between the tumour and adjacent normal tissues using weighted UniFrac distances (57). The number of breast microbiota was found to increase in breast tumours, but there was less diversity compared with normal tissues paired.

Identifying the microbiome of the four BC subtypes may reveal a link between the microbiota and the therapeutic response (71, 72). The oncobiome of each BC cancer subtype is unique and contains a wide range of microbial signatures. ER had the most diverse oncobiome, while TN had the least (31). Furthermore, the presence or absence of specific microbes distinguishes each BC subtype and, therefore, the level of detection of these microbes was predictive of patient outcomes.

Among the multiple drivers of microbial differences, a common element is menopausal status. We found that patients with premenopausal breast cancer had an increased fecal profile of Enterobacteriaceae, aerobic Streptococci, Lactobacilli, and anaerobic bacteria, including Clostridia, Bacteroides, and Lactobacilli (41). A similar behaviour of the anaerobic flora was found in patients with late menopause. The urine microbiome of peri/postmenopausal patients also showed a reduced abundance of Lactobacilli and an elevated profile of many genera, including but not limited to anaerobic bacteria such as Varibaculum, Porphyromonas, Prevotella, Bacteroides, and members of the Clostridia class (17). More details of the microbiota in different groups are described in Tables 3, 4.

Although the role of species in the equilibrium of the GI environment is unclear, an increase in bacterial concentration can modulate estrogen metabolism through deconjugation and contribute to total bacterial enzyme activity (41). For example, the enzymes β-glucuronidase and β-glucosidase are produced by E. coli and S. faecalis, respectively. From an observation study of the enzymatic activity of fecal bacteria, it was recognised that the activity in postmenopausal women was lower than that of premenopausal cases. The expression of high to low enzymes, such as esterase C4, esterase-lipase, leucine and valine acrylamidase, acid phosphatase, α-galactosidase, and β-glucuronidase, was found in healthy subjects, while leucine and valine acrylamidase, β-glucuronidase, and esterase-lipase were higher in women with postmenopausal breast cancer (42). Therefore, it showed intersubject variability for enzymatic activities.

To explore the impact of cancer chemotherapy, Napenas et al. performed a profile of the oral microbiome on nine newly diagnosed breast cancer patients before and after receiving treatment (63). In general, 41 species were detected in total (Supplementary Table S2), and interestingly, > 85% of the detection (33/41) were newly identified species in chemotherapy patients. It revealed that seven species and 25 species appeared only before and after cancer chemotherapy, respectively, and the increase in species per patient had a mean of 2.6 (SD = 4.7, p = 0.052) after chemotherapy (63).

Chiba et al. (65) evaluated modulation of the tumour microbiome by neoadjuvant chemotherapy using breast tumour microarrays (Table 5). It demonstrated no significant changes in total bacterial load in untreated and treated patients; however, bacterial diversity was significantly reduced in the treated tumour. The classification at the phylum level did not show significant changes between the two groups, but the analysis at the genus level showed a significant elevation in Pseudomonas species and a reduction in the abundance of Prevotella in the treated cases (65). In addition, it indicated the modulation of chemotherapy in the tumour microbiome and the correlation of some genera in patients with tumour recurrence (65). Another study by Guan et al. showed significant differences in beta diversity before and after chemotherapy with single agent capecitabine and metronomic regimens (Table 5) and supported the reduction of bacterial diversity in the intervention group but was not statistically significant (67). In general, it was indicated that particular microorganisms are associated with tumour recurrence and that chemotherapy and neoadjuvant chemotherapy change the microbial composition and diversity in breast and oral tumours.

A study investigated the microbiome profile in fecal DNA only in women and control subjects; then, the case and control study discovered a significantly altered microbial community in cases (p = 0.006) compared with controls and less alpha diversity (p = 0.004) (17). Another study (66) revealed that early and late menarche was associated with a low number of OTU (p = 0.036), particularly reduced Firmicute expression (p = 0.048), and a low chao1 index (p = 0.020) (Table 2). Therefore, menopause and menarche status are associated with lower gut microbiome diversity, according to research, but more research is needed in large study populations to identify replicable patterns in taxa impacted by menopause (73, 74).

Goedert et al. (44) showed that a twofold higher level of estrogen expression was found in postmenopausal patients; however, the difference did not change the microbiota and the association with cancer. Banerjee et al. (2018) found that an increased abundance of Brevundimonas was detected in cases of ER+ breast cancer and triple-positive breast cancer (TPBC) compared with cases of ER- breast cancer and TNBC. In addition, a high abundance of Mobiluncus and Mycobacterium was predominantly identified in ER breast cancer samples. Furthermore, Acinetobacter was the most prominent in HR+ breast cancer and HER2+ breast cancer cases, Brevundimonas in TPBC samples, and Caulobacter in TNBC samples (14). Interestingly, a distinct pattern of microbial profile was explored in patients with TNBC using pan-pathogen array technology and was summarised as in (Table 5) (46).


Table 5 | Characteristics of case-control studies and their microbial profiling and diversity.



A study also explored the level of expression of antibacterial response genes in tumour tissue, paired normal tissue, and healthy tissue and found that a third of antibacterial genes were significantly down-regulated in breast tumour cases after normalising with a housekeeping gene β-actin, interestingly there are no more up-regulated genes (43). Furthermore, a significant reduction was observed in the transcripts of the microbial sensors, Toll-like receptors (TLR)–2, TLR-5, and TLR-9 (p = 0.0298, p = 0.0201, and p = 0.0021, respectively) was observed in tumour tissue while there was a similar expression level of TLR1, TLR4, and TLR6 in healthy and tumour tissue. Furthermore, tumour tissues showed significantly decreased expression of cytoplasmic microbial sensors (NOD1 and NOD2) and downstream signaling molecules for innate microbial sensors such as CARD6, CARD9, and TRAF6 (p = 0.0207, p = 0.0040, and p = 0.0119, respectively). The levels of bactericidal/permeability increasing protein (BPI), myeloperoxidase (MPO) and proteinase 3 (PRTN3) are significantly reduced (p = 0.0133, 0.002, and 0.0022, respectively) (46). Although further research is needed to confirm the influence of the local microenvironment of breast tissue, these findings demonstrated a significant decrease in antimicrobial responses in breast tumour tissue (43).

However, the meta-analysis study has some limitations. First, several matrices for detecting alpha diversity were utilised in different studies, and there are probably no standardised tools for measurement. Therefore, only a few studies were able to analyse quantitatively. Second, some mean values cannot be found in the papers and supplementary files, and the email contacts for 2 weeks were reachable only to some; perhaps the contacts were changed, or the data were not archived for a long period. Therefore, qualitative analysis was applied to the data provided for the articles.

In general, our meta-analysis suggests the fecal, tumour, or oral microbiome profile of breast cancer patients, differences in microbiota abundance by menopausal status, menarche and cancer stages, and the change in the microbial pattern before and after chemotherapy. However, the microbiome investigation is still in its infancy for breast cancer patients, and the sample size is normally limited due to high sequencing costs. Therefore, more studies with a larger cohort of patients would be required to identify the biological and pathological significance of the findings in the meta-analysis. We expected that the review could fill the gap linking to better understand the connection between breast cancer and the microbiome.
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Background

Inflammation is one of the most important characteristics of tumor tissue. Signatures based on inflammatory response-related genes (IRGs) can predict prognosis and treatment response in a variety of tumors. However, the clear function of IRGs in the triple negative breast cancer (TNBC) still needs to be explored.





Methods

IRGs clusters were discovered via consensus clustering, and the prognostic differentially expressed genes (DEGs) across clusters were utilized to develop a signature using a least absolute shrinkage and selection operator (LASSO). Verification analyses were conducted to show the robustness of the signature. The expression of risk genes was identified by RT-qPCR. Lastly, we formulated a nomogram to improve the clinical efficacy of our predictive tool.





Results

The IRGs signature, comprised of four genes, was developed and was shown to be highly correlated with the prognoses of TNBC patients. In contrast with the performance of the other individual predictors, we discovered that the IRGs signature was remarkably superior. Also, the ImmuneScores were elevated in the low-risk group. The immune cell infiltration showed significant difference between the two groups, as did the expression of immune checkpoints.





Conclusion

The IRGs signature could act as a biomarker and provide a momentous reference for individual therapy of TNBC.





Keywords: inflammatory response, TNBC, immune microenvironment, immunotherapy, prognosis





Introduction

The incidence rate of breast cancer (BC) increases each year among women, making it the most common malignant tumor for women (1). According to the expression of hormone receptors, we call a type of breast cancer that lacks the expression of estrogen receptor (ER), progesterone receptor (PR) and human epithelial growth factor receptor 2 (Her-2) as triple negative breast cancer (TNBC) (2, 3). TNBC is a special type of BC, accounting for 10%~20% of the disease (4). TNBC does not express hormone receptors and Her-2, cannot benefit from endocrine therapy and Her-2 targeted therapy, and their pathological characteristics, treatment and prognosis are very different from those of other types of breast cancer, which has attracted much attention (5). Due to the lack of effective treatment, the prognosis of TNBC is very poor (6). Therefore, it is urgent to develop a model to evaluate the prognosis and provide personalized treatment for TNBC patients. In addition, a comprehensive analysis rather than a single factor is necessary to find reliable prognostic biomarkers that can help guide the treatment strategy of patients with TNBC.

Inflammation is one of the most important characteristics of tumor tissue (7). Many physical environmental factors, including dietary factors, carcinogenic microorganisms, pollutants, tobacco smoke and particulate matter, can cause chronic inflammation of multiple organs and systems (8, 9). Without intervention, chronic inflammatory reaction may lead to the occurrence of tumor (10). Signatures based on inflammatory response-related genes (IRGs) correlate to prognosis and treatment response in a variety of tumors, including bladder cancer (11), pancreatic tumor (12), esophageal cancer (13) and hepatocellular carcinoma (14). However, the role of inflammation related genes in TNBC remains unclear.

As mentioned above, targeting biomarkers related to inflammatory response may be a promising new option for tumor treatment. A large number of inflammation-related regulatory factors are related to the progression of TNBC (15). However, TNBC is a disease caused by multiple genes and pathways (16). Considering the limitations of a single biomarker, we screened the prognostic relevance of multiple IRGs and constructed a novel signature for risk stratification and prognostic evaluation of patients. Here, our goal is to establish an inflammatory related prognosis model to predict the outcome of TNBC. We used TCGA and GEO databases to develop and validate the prognostic characteristics based on IRGs, which can evaluate the prognosis and treatment response of patients with TNBC.





Materials and methods




Data obtain

The TCGA database (https://portal.gdc.cancer.gov) was searched to obtain the gene expression data (measured in fragments per kilobase million, or FPKM) of 160 TNBC tumor samples, 111 normal tissue samples, and the related clinical data. TCGA-TNBC was randomly categorized into the train and test groups according to the 1:1 ratio with R software (Supplementary Table S1). The GSE21653 and GSE58812 were downloaded from GEO database (https://www.ncbi.nlm.nih.gov/geo/) (Supplementary Files S1, S2). A search of the MSigDB database (http://www.broad.mit.edu/gsea/msigdb/) yielded 200 IRGs. We identified the gene set from the MSigDB database by inputting the Keywords “inflammatory” and selecting the Filters “hallmark gene set + homo sapiens” in the “Search Human Gene Sets” section, and the genes are listed in Supplementary Table S2.





Consensus clustering analysis

The R package “limma” and “ConsensusClusterPlus” were used for consistent cluster classification of TNBC. The filter of |log fold change (FC)| was set as 1 and the filter of FDR was set as 0.05 (17). The association between clusters and overall survival (OS) was analyzed by R packet “survival” (18, 19). The results were analyzed by R packages “pheatmap”, “survival” and “survminer” as heat map and Kaplan-Meier (KM) curves (20). The “limma” program was employed to determine the differentially expressed genes (DEGs) between two clusters with the criteria of logFC >1 and FDR < 0.05. Scores of infiltrating immune cells were derived via the MCPcounter method, and the difference in infiltration between the two subtypes was assessed, and P < 0.05 was considered as significant (21).





Development and verification of the prognostic signature

Prognostic DEGs were determined by univariate Cox regression analysis, and P < 0.05 was considered to be significant. A prognostic signature was then derived by integrating four genes based on multivariate Cox regression and least absolute shrinkage and selection operator (LASSO) analyses (22). The median risk score was used to classify individuals with TNBC into two categories (low- and high-risk categories). Subsequently, the OS was compared by KM analysis, and P < 0.05 was considered as significant. OS and Receiver Operating Characteristics (ROC) of subgroups were analyzed with the “survival”, “survminer” and “timeROC” R packages for 1, 3, and 5 years (23). Specifically, the “ggplot2” R program was employed to conduct a principal component analysis (PCA) (24). By incorporating risk assessment with clinical data, a nomogram was developed. Next, multifactor ROC was implemented to verify the predictive accuracy of the nomogram.





Comparative analysis of the tumor microenvironment

Immune cell abundance (ImmuneScores) was calculated by the ESTIMATE (25). To examine the variation in diverse immune cells between two categories, we used the TIMER, CIBERSORT-ABS, QUANTISEQ, EPIC, MCPCOUNTER, and CIBERSORT, XCELL, algorithms (26). Differential immune microenvironment was probed via single-sample gene set enrichment analysis (ssGSEA) (27). The expression of immune-related genes was also determined, and P < 0.05 was considered as significant. Additionally, we also analyzed the response of two subgroup TNBC to immunotherapy.





Functional enrichment analysis

Putative cellular functions of DEGs were identified via the Gene Ontology (GO) analysis (28). Besides, underlying pathways related to DEGs were determined by Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, and P < 0.05 was considered as significant (29). To assess the probable biological functioning differences between high- and low-risk categories, a gene set variation analysis (GSVA) was carried out, and P < 0.05 was considered as significant (30).





Drug sensitivity analysis

We investigated the potential for the signature to serve as a predictor for medications used in chemotherapy and targeted treatment. Subsequently, the half-maximal inhibitory concentration (IC50) was computed with the pRRophetic method, and P < 0.05 was considered as significant (31). All the raw code was added in the Supplementary File S3.





RT-qPCR

The tumor cell MDA-MB-231 and normal cell MCF-10A were obtained from the Cell Bank of the Shanghai Institute of Biochemistry and Cell Biology (Shanghai, China). All cells were cultured in DMEM (Gibco), adding 10% FBS (Gibco), 1% penicillin-streptomycin. Trizol was employed to isolate total RNA, after which it was reverse-transcribed into the cDNA template. Next, RT-qPCR was conducted with SYBR Green Real-Time PCR Master Mix Plus (Toyobo). The internal reference gene utilized was β-Actin. The PCR sequence was added in the Supplementary File S4.






Results




Identification of IRGs clusters in TNBC

The link between IRGs expression and TNBC subtypes was first analyzed using a consensus clustering method. As depicted in Figures 1A, B, the CDF curve was applied to categorize patients with TNBC into two clusters (C1 and C2). In contrast with C2, C1 individuals diagnosed with TNBC had remarkably lower survival duration (Figure 1C). The correlation between IRGs clusters, clinical characteristics, and IRGs expression in TNBC patients was depicted in Figure 1D. The heatmap showed that the C1 and C2 TNBC had distinct IRGs expression pattern, and the cluster was significantly related to the N stage.




Figure 1 | IRGs clusters and clinical characteristics between TNBC samples in two clusters. (A) The cumulative distribution function curve illustrates the most effective way of IRGs clustering. (B) The consensus matrix of the clustering analysis via k-means clustering (k = 2). (C) Kaplan–Meier (KM) curves for the overall survival (OS) of TNBC patients among different IRGs groups. (D) Heatmap of IRGs expression in TNBC patients with different clinical characteristics and IRGs clusters. (E) The differences in immune cell infiltration between two clusters.



Since immune cells perform an instrumental function in the onset and advancement of TNBC, we next evaluated the variations in infiltrating immune cells between the two clusters. In cluster 1, the level of CD8 T cells, monocytic, cytotoxic lymphocytes, B cells, NK cells and T cells were lower than in cluster 2, which might partly explain the poor prognosis of C1 (Figure 1E).





Development of the IRGs prognostic signature

Using the “limma” program, DEGs were found between two clusters with the criteria of |log fold change (FC)| >1 and FDR < 0.05. Next, 10 prognosis-related DEGs were found by the univariate Cox analysis. Subsequently, we completed a LASSO analysis to remove the overfitting genes and the IRGs signature of four genes (HEYL, CXCL13, ANKRD35 and PDCD1LG2) was created (Figures 2A, B). The equation applied to derive the risk score is as indicated: risk score= (HEYL × (0.891821684945936) + (CXCL13 × (-0.322533080452241) + (ANKRD35 × (0.955719797833462) + (PDCD1LG2 × (-1.08495430822516).




Figure 2 | Construction of the prognostic signature. (A) LASSO coefficient profiles (y-axis) of the gene sets and the optimal penalization coefficient via 3-fold cross-validation based on partial likelihood deviance. (B) The dotted vertical lines represent the optimal values of l. The top x-axis has the numbers of gene sets, whereas the lower x-axis revealed the log (λ). (C) Risk score and survival outcome of each case. (D) Heatmap showed the expression of risk genes in two risk groups. (E) PCA. (F) The KM curve showed that patients in the high-risk group had a worse prognosis. (G) The AUC for 1-, 3- and 5-years survival.



Patients with TNBC were classified into low- and high-risk categories according to the median risk score (Figure 2C). The variations in the expression of these four genes between the two risk categories are illustrated in Figure 2D. PCA analysis showed the perfect separation of high- and low-risk TNBC (Figure 2E). Also, patients having high risk scores had a greater fatality rate (Figure 2F). Moreover, the ROC curve was performed to assess the IRGs signature, whose AUC values for 1-, 3- and 5-year were 0.909, 0.949, and 0.916, respectively (Figure 2G).





Validation of the IRGs signature

we verified the aforementioned findings in test datasets. All patients with TNBC in the test datasets were also divided into low- and high-risk categories. The K-M survival curve disclosed that the low-risk individuals exhibited a more favorable prognosis in contrast to those at high risk in TCGA-all, TCGA-test, GSE58812 and GSE21653 (Figures 3A–D). The AUC of 1-, 3-, and 5-year periods were 0.710, 0.771, and 0.809, correspondingly, in TCGA-all (Figure 3E), 0.620, 0.645, and 0.737 in TCGA-test (Figure 3F), 0.769, 0.776, and 0.774 in GSE58812 (Figure 3G), and 0.601, 0.664, and 0.621 in GSE21653 (Figure 3H). Furthermore, we performed subgroup analysis of survival for single clinical characteristic, finding that low-risk TNBC had significantly better prognosis than high-risk TNBC in age <= 65, T1 + 2, M0, N0, N1 + 3, Stage I+II (Supplementary Figures S1A–F). Next, we also compared with the prognosis model of others, and the C-index of our signature was higher than others (Supplementary Figure S1G). In addition, RT-qPCR was used to verify the expression of risk genes. Higher expression of CXCL13 and HEYL in tumor cell than normal cell was found, as well as the lower expression of ANKRD35 and PDCD1LG2 (Supplementary Figure S2).




Figure 3 | Validation of the prognostic signature. KM curve showed that patients in the high-risk group had a worse prognosis in TCGA-all (A), TCGA-test (B), GSE58812 (C) and GSE21653 (D). The AUC for 1-, 3- and 5-years survival in TCGA-all (E), TCGA-test (F), GSE58812 (G) and GSE21653 (H).







Construction of a nomogram for TNBC

Multivariate and univariate Cox regression analyses proved that risk score independently acted as a robust prognostic marker (P < 0.05) (Supplementary Figure S3A, B). An innovative nomogram was developed using the IRGs signature and clinical variables from the TCGA dataset to further exploit the IRGs signature’s prognostic potential (Supplementary Figure S3C). Following that, we portrayed the calibration plots in 1, 3, and 5 years, and the calibration curve performed well (Supplementary Figure S3D). Additionally, a ROC analysis was conducted to assess the nomogram’s prognosis-predicting value in comparison to other single variables (stage, N, M, T and age). For 1-year survival, the AUCs of nomogram and risk score were 0.887 and 0.696 (Supplementary Figure S3E). For 3-year survival, the AUCs of nomogram and risk score were 0.923 and 0.768 (Supplementary Figure S3F). For 5-year survival, the AUCs of nomogram and risk score were 0.892 and 0.804 (Supplementary Figure S3G). This novel nomogram proved to be an excellent model for prognosis prediction.





The TME analysis for high- and low-risk TNBC

Biological behavior of the tumor can be determined by the TME. ESTIMATE analysis revealed that the ImuneScores lower in the high-risk category in contrast with the low-risk category (Figure 4A). The distinctions of immune cell infiltration were also explored via CIBERSORT, MCPCOUNTER, QUANTISEQ, EPIC, TIMER, CIBERSORT-ABS, and XCELL. As shown in Figure 4B, the low-risk category had remarkably higher levels in most immune cells. In addition, ssGSEA analysis found less infiltration of the B cells, CD8+ T cells, tumor-infiltrating cell (TIL), Neutrophils, T helper cells, and T cells regulatory (Treg) in the high-risk patients in contrast with the low-risk patients (Figure 4C). Most immunologic functions, including T cells co-stimulation, CCR, Type II IFN response, and T cell co-inhibition were also improved in the low-risk patients (Figure 4D). This may explain why the low-risk category has a superior prognosis. Additionally, Figure 4E depicted the distribution of low- and high-risk individuals across multiple immune subtypes.




Figure 4 | Analysis of immune conditions of high- and low-risk groups. (A) Differences in immune score between the two groups. (B) The analysis of differences in immune cell infiltration between the two groups with Multiple algorithms. (C) The analysis of differences in immune cell infiltration between the two groups with ssGSEA. (D) The analysis of differences in immune functions between the two groups with ssGSEA. (E) The distribution of patients with high- and low-risk in different immune subtypes. "*" represented P <0.05, "**" represented P <0.01, and "***" represented P <0.001.



We next examined the low- and high-risk patients in terms of the expression patterns of immune-related genes. A majority of immune-related genes were discovered to be expressed at low levels in the high-risk category (Figures 5A–D). The public dataset TCIA (The Cancer Immunome Atlas, https://tcia.at/home) was then used to estimate the responsiveness of CTLA-4 and PD-1 immune checkpoint inhibitors based on the above results. A striking finding of the analysis was that low-risk patients responded more strongly to anti-CTLA-4 and anti-PD-1 treatments as compared with high-risk patients (Figures 5E–H). Furthermore, low-risk patients respond better to immunotherapy in contrast with those at high-risk in immunotherapy dataset (Figure 5I).




Figure 5 | Assessment of Immunotherapy response of high- and low-risk groups. (A–D) The immune-related gene expression levels in different groups. (E–H) Violin plots showed the relationship between IPSs and risk groups. (I) Prediction of immunotherapy response. "*" represented P <0.05, "**" represented P <0.01, and "***" represented P <0.001.







Functional enrichment of the IRGs signature

GO and KEGG enrichment analyses were conducted to investigate the latent biological roles of the IRGs signature. The GO result revealed that the DEGs between low- and high-risk TNBC were primarily enriched in lymphocyte mediated immunity, immunoglobulin complex and immune receptor activity (Figures 6A, B). The KEGG result suggested that the DEGs were primarily enriched in immune-related signaling pathway, including cytokine-cytokine receptor interaction, chemokine signaling pathway, and Th1 and Th2 cell differentiation (Figures 6C, D). Moreover, GSVA results showed substantial differences of signaling pathways between patients with high- and low-risk TNBC (Figure 6E).




Figure 6 | Function analysis. (A, B) GO analysis of differential genes between high and low-risk groups. (C, D) KEGG analysis of differential genes between high- and low-risk groups. (E) GSVA enrichment analysis in high- and low-risk groups.







Drug sensitivity analysis

We correlated the TNBC patients’ risk scores with the IC50 values of chemotherapy and targeted treatment medications to learn more about the possible variations in drug sensitivity between low- and high-risk categories. The IC50 values of 9 drugs (AC220, BI-2536, CGP-60474, CP466722, FMK, FR-180204, STF-62247, TAK-715 and VX-680) were significantly higher in high-risk group, indicated that low-risk TNBC were more sensitive to the drugs (Figure 7).




Figure 7 | Drug sensitivity analysis in high and low-risk groups.








Discussion

TNBC is a subtype with the worst prognosis in breast cancer, and visceral metastasis occurs at the early stage of the disease. The recurrence rate is high after surgical resection, the lack of molecular targeted drug, the poor effect of endocrine therapy, the different effects of postoperative chemotherapy, and the short survival period of TNBC patients need to find a new treatment (32). Tumor occurrence, development, and metastasis are associated with inflammation (33, 34). Research has confirmed that when the number of neutrophils and monocytes in peripheral blood is increased and the number of lymphocytes and monocytes is reduced, cancer is more prone to progression and recurrence (35). In this study, 10 IRGs related to prognosis of TNBC were screened by mining TCGA and GEO databases. The 10 screened IRGs were analyzed by LASSO to construct a prognosis model for TNBC. Multivariate Cox regression analysis confirmed the ability of the risk score to predict TNBC outcome independently. In both the train set and validation set, survival rates differed between high-risk and low-risk groups.

In this study, the 4 genes that constructed the prognosis signatre for TNBC were HEYL, CXCL13, ANKRD35 and PDCD1LG2. HEYL is a downstream gene of the Notch and transforming growth factor-β pathways. Kuo et al. found that HEYL might be a tumor suppressor of liver carcinogenesis by activating P53-mediated apoptosis and up-regulating P53 gene expression (36). In vivo, HEYL modulates metastasis-forming capacity of spheroid cells derived from colorectal cancer patients (37). As a chemokine derived from a B-cell motif, CXCL13 plays an important role in the immune system (38). Blocking CXCL13 promotes apoptosis in MDA-MB-231 cells, inhibiting their proliferation. This effect may be related to the down-regulation of CXCL13 and the inhibition of CXCR5/ERK signaling pathway (39). Dai et al. Found that CXCL13 and its receptor CXCR5 were significantly correlated in ccRCC tissues. The prognosis of ccRCC patients with high CXCL13 and high CXCR5 expression was the worst. By binding to CXCR5 and activating the PI3K/AKT/mTOR signal pathway, CXCL13 promoted proliferation and migration of ccRCC cells (40). In colorectal cancer patients, PDCD1LG2 expression is negatively correlated with Crohn’s-like lymphoid reactions, suggesting a possible link between PDCD1LG2-expressing tumor cells and adaptive antitumor immunity (41). The increased expression of PDCD1LG2 in pancreatic cancer is related to higher tumor grade, poorer prognosis, higher clinical stage, and worse molecular subtype and FAK promotes immune escape of pancreatic cancer through regulating PDCD1LG2 (42). However, the role of these genes in TNBC remains to be further explored.

The tumor microenvironment (TME) is constituted of diverse immune cells, interstitial cells, extracellular matrix, and tumor blood vessels, which stimulate the onset and advancement of cancer. During tumor progression and tumorigenesis, immune cells infiltrate TME at varying levels (43). Our analysis illustrated that TNBC patients having high risk scores recorded lower ImuneScores. We found most of the immune cells (B cells, CD8+ T cells, Treg, T helper cells, Neutrophils and TIL) were substantially reduced in the high-risk patients in contrast with the low-risk patients. Additionally, the majority of immune-related genes tended to be downregulated in the high-risk population, whereas the low-risk category illustrated considerable improvement in immunologic function. Research suggests that immune cells are important components of anti-tumor immunity (44). One reason high-risk individuals have such a dismal prognosis is that they have fewer immune cells and attenuated immunological functioning. Results highlighted that low-risk individuals with TNBC responded more positively to immunotherapy compared to those in the high-risk category. The findings of this research shed light on the involvement of IRGs in TNBC and may be utilized to direct immunotherapeutic and chemotherapeutic interventions for TNBC patients.

In addition, this study also explored the differences in biological processes, signal pathways and immune functions between high-risk and low-risk groups. Through GO and KEGG enrichment analysis, the DEGs between high-risk and low-risk patients were analyzed, and the results showed that these genes were associated with immune-related signaling pathway, including lymphocyte mediated immunity, immune receptor activity cytokine-cytokine receptor interaction, Th1 and Th2 cell differentiation and chemokine signaling pathway. The analysis of immune cell and immune function further suggest that there is significant difference in immune cell and immune function between high-risk group and low-risk group. These results suggest that IRGs may participate in the regulation of the prognosis of TNBC by regulating immunity.

Nevertheless, our investigation does have a few drawbacks. Case selection bias could be present since the vast majority of analyses use data from publicly available data sets and all samples are retrieved retroactively. Second, The AUC value of the signature in the GSE21653 dataset was lower than 0.65, which might be due to the high heterogeneity of TNBC. TNBC was an invasive breast cancer type with variable genome; however, our signature is applicable to whole TNBC, limiting the lack of more detailed raw data. This problem can be solved using more detailed data in the future. Furthermore, the prediction of immunotherapy is based on some novel biomarkers such as ImmuneScore, IPS, and immunotherapy response via IMvigor210 cohort data. We lack the real-world data of immunotherapy response data for TNBC. Therefore, our next plan is to conduct relevant clinical research. Finally, additional in vitro and in vivo tests are warranted to corroborate our findings.

In summary, we designed a molecular cluster and prognostic signature based on IRGs, which aid in anticipating survival, directing immunotherapy, and determining clinical outcomes. This research potentially provides deeper insights into the function of IRGs in TNBC and facilitates the development of more effective therapies for this disease.
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Background

Metastatic disease lacks effective treatments and remains the primary cause of mortality from epithelial cancers, especially breast cancer. The metastatic cascade involves cancer cell migration and invasion and modulation of the tumor microenvironment (TME). A viable anti-metastasis strategy is to simultaneously target the migration of cancer cells and the tumor-infiltrating immunosuppressive inflammatory cells such as activated macrophages, neutrophils, and myeloid-derived suppressor cells (MDSC). The Rho GTPases Rac and Cdc42 are ideal molecular targets that regulate both cancer cell and immune cell migration, as well as their crosstalk signaling at the TME. Therefore, we tested the hypothesis that Rac and Cdc42 inhibitors target immunosuppressive immune cells, in addition to cancer cells. Our published data demonstrate that the Vav/Rac inhibitor EHop-016 and the Rac/Cdc42 guanine nucleotide association inhibitor MBQ-167 reduce mammary tumor growth and prevent breast cancer metastasis from pre-clinical mouse models without toxic effects.





Methods

The potential of Rac/Cdc42 inhibitors EHop-016 and MBQ-167 to target macrophages was tested in human and mouse macrophage cell lines via activity assays, MTT assays, wound healing, ELISA assays, and phagocytosis assays. Immunofluorescence, immunohistochemistry, and flow cytometry were used to identify myeloid cell subsets from tumors and spleens of mice following EHop-016 or MBQ-167 treatment.





Results

EHop-016 and MBQ-167 inhibited Rac and Cdc42 activation, actin cytoskeletal extensions, migration, and phagocytosis without affecting macrophage cell viability. Rac/Cdc42 inhibitors also reduced tumor- infiltrating macrophages and neutrophils in tumors of mice treated with EHop-016, and macrophages and MDSCs from spleens and tumors of mice with breast cancer, including activated macrophages and monocytes, following MBQ-167 treatment. Mice with breast tumors treated with EHop-016 significantly decreased the proinflammatory cytokine Interleukin-6 (IL-6) from plasma and the TME. This was confirmed from splenocytes treated with lipopolysaccharide (LPS) where EHop-016 or MBQ-167 reduced IL-6 secretion in response to LPS.





Conclusion

Rac/Cdc42 inhibition induces an antitumor environment via inhibition of both metastatic cancer cells and immunosuppressive myeloid cells in the TME.
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Introduction

Metastasis is the number one cause of death from breast cancer, with few effective clinical strategies to prevent the accelerated metastatic progression (1). During tumor initiation, growth, and metastasis, the innate and adaptive immune systems modulate anti- and pro-tumoral immune responses. Once established, tumor cells hijack the immune system to induce metastatic cancer cell migration into the circulatory system and evade immune-mediated cancer cell apoptosis (2, 3).

Cancer cell motility and invasion are essential drivers of metastasis, where the first intravasation step involves migration away from the primary tumor and extravasation into the new site of colonization using motile mechanisms (1, 3). Rac and Cdc42 are homologous Rho family GTPases that are essential for directed cell migration and promote epithelial-to-mesenchymal transition, transcription, cell proliferation, cell cycle progression, angiogenesis, apoptosis, vesicle trafficking, and cell adhesions. and thus, therapy resistance (4–6). Accordingly, deregulated expression/activity of Rac and Cdc42 is associated with increased invasion and metastasis, leading to poor patient prognosis. Even when Rac and Cdc42 are not overexpressed or mutated in cancer, they can be activated by a myriad of oncogenic cell surface receptors and guanine nucleotide exchange factors (GEFs) that exchange the GDP on inactive Rac/Cdc42 for a GTP.

In addition, immune cells such as macrophages, neutrophils, and Myeloid-Derived Suppressor Cells (MDSCs) are recruited to the tumor microenvironment (TME) to promote tumor cell invasion of the surrounding tissue, intravasation and survival in the circulation, as well as tumor cell arrest, extravasation, and persistent growth at metastatic sites, and is correlated with poor patient prognosis (7–13). Moreover, tumor-associated macrophages (TAMs) and neutrophils suppress CD8+ T cell infiltration, and thus anti-tumor immunity, to promote tumor progression and therapy resistance (14, 15). TAMs may become activated via Toll-like receptor (TLR) engagement leading to the secretion of cytokines and growth factors that promote an immunosuppressive environment as well as the survival of tumor cells (16, 17). Additionally, macrophages are phagocytic cells that after uptake of tumor antigens or apoptotic tumor cells have the capacity to modulate adaptive immune responses. Accordingly, therapies targeting macrophage infiltration into the tumor may provide additional treatment options for metastatic cancer patients (18).

Rac and Cdc42 also modulate the migration of macrophages and neutrophils, as well as phagocytosis, differentiation, and activation of M2-like macrophages and MDSCs, through the modulation of actin cytoskeleton structures and receptor-mediated signaling (19). Moreover, TLR signaling by invading pathogens or during cancer-associated inflammation, activate Rac1 and Cdc42 which leads to Nuclear Factor kB (NFκB) transcriptional activity and secretion of inflammatory cytokines such as interleukin-6 (IL-6) (20). Therefore, Rac is a pivotal regulator of leukocyte migration and activation relevant for immune suppression in the TME (2, 21–24).

We posit that Rac and Cdc42 orchestrate the cross-talk signaling and invasion of immune cells that migrate into the tumor and the metastatic cancer cells that leave the primary tumor. Whether the novel Rac and Cdc42 inhibitors, developed by our group, affect leukocyte migration and function, especially during cancer development, remains to be determined.

In our program to develop Rac/Cdc42 inhibitors as anti-metastatic cancer agents, we first characterized EHop-016, which inhibits Rac activation by the GEF Vav with a half maximal inhibitory concentration (IC50) of 1 μM and inhibits tumor growth and metastasis in mouse models (25). EHop-016 structure was improved to yield MBQ-167, which inhibits Rac/Cdc42 activation with 0.1 μM IC50. MBQ-167 induces a loss in cell polarity and cell surface actin extensions, cell cycle arrest, and apoptosis without affecting normal epithelial cells. MBQ-167 also inhibits metastatic breast cancer cell proliferation and primary tumor growth and strongly prevents metastasis (26, 27). Both EHop-016 and MBQ-167 are not toxic to rodents and MBQ-167 has an excellent safety profile in both rodents and dogs up to 1000 mg/kg BW. Moreover, EHop-016 and MBQ-167 have acceptable bioavailability in mouse plasma and tissue and MBQ-167 is available in tumors at sufficient concentrations to exert anticancer effects (28). The objective herein was to determine whether EHop-016 and MBQ-167 affect macrophage migration and function in the context of breast cancer. This study sheds light on the effects of Rac and Cdc42 inhibitors on immune response modulation within the tumor microenvironment.





Materials and methods




Reagents

Splenocytes were cultured in RPMI 1640 medium (from Fisher Scientific, Waltham, MA) supplemented with 10% fetal bovine serum, 50 units/mL penicillin, and 50 µg/mL streptomycin (from Fisher Scientific, Waltham, MA). Lipopolysaccharide (LPS) was obtained from Sigma-Aldrich (Burlington, MA). The following antibodies were obtained from Biolegend (San Diego, CA) and used for flow cytometry analysis: FITC anti-mouse CD11b (clone: 29F.1A12), PE-CF594 anti-mouse F4/80 (clone:BM8), PerCPCy5.5 anti-mouse CD11c (clone: N418), PE anti-mouse CD86 (clone: GL-1), BV421 anti- mouse MHC-class II (clone: M5/114.15.2). The following antibodies were obtained from Biolegend (San Diego, CA) and used for flow cytometry analysis: FITC anti-mouse CD11b (clone: 29F.1A12), PE-CF594 anti-mouse F4/80 (clone: T45-2342), BV605 anti-mouse Ly6C (clone: HK1.4), BV711 anti-mouse Ly6G (clone: 1A8) PerCPCy5.5 anti-mouse CD11c (clone: N418), PE anti-mouse CD86 (clone: GL-1), BV421 anti- mouse MHC-class II (clone: M5/114.15.2).





Cell lines

RAW 264.7 (TIB-71), murine macrophage-like cells, and THP-1 (TIB-202) cells were obtained from ATCC (Manassas, VA). The RAW 264.7 cells were cultured with DMEM media with 1% Penicillin/Streptomycin and 10% Fetal bovine serum (Fisher Scientific, Waltham, MA), and the THP- 1 cells were cultured in RPMI media. For experiments, the THP-1 monocytic cells were differentiated into macrophages with 100 nM phorbol 12-myristate 13-acetate (PMA) for 2 days. Cell lines were authenticated by ATCC.





Rac/Cdc42 activity assay

The GST-p21-binding domain of PAK1 conjugated to glutathione-Sepharose was used to pulldown active GTP bound Rac or Cdc42. The pulldowns (active Rac-GTP or Cdc42-GTP) and total cell lysates were separated in a 12% SDS-PAGE gel and identified by western blotting with anti-Rac specific or anti-Cdc42 antibodies (Cell Signaling, Inc., Danvers, MA). Integrated density of positive bands of active and total bands was quantified using Image J software, as per developer (NIH)’s instructions.





MTT assay

Promega (Madison, WI) CellTiter 96® Non-Radioactive Cell Proliferation Assay (MTT) was used to quantify the viability of macrophage cells treated with MBQ-167 and EHop-016 for 48 hrs. After the incubation, the MTT reagent was added to the experimental plates and left to incubate for 4 hrs at 37°C and 5% CO2. Results were obtained by reading the absorbance at 570 nm wavelength, and the appropriate controls used, as per manufacturer’s instructions.





Wound-healing assay

RAW 264.7 cells were seeded in a 24-well plate until 95-100% confluency, and serum starved overnight. A wound was created in the center with a pipet tip and treated with vehicle, MBQ-167, or EHop-016, for up to 48 hrs. Images were captured using a Keyence Microscope system and a wound- healing size tool plug-in for ImageJ software (US National Institutes of Health (NIH)) was used to quantify the wound area, as per developer’s instructions. The wound area was quantified at time 0 and 48hrs using the ImageJ plugin for wound healing assays. The % wound closure was calculated using the following formula: [Area of wound at 48hrs/Area of wound at 0hrs]x100.





Immunofluorescence microscopy

THP-1 cells were seeded 1X105 cells/mL and differentiated as described, then treated with vehicle, MBQ-167, or EHop-016 for 24 hrs. Cells were fixed with 3.7% formaldehyde and permeabilized with 0.2% Triton-X 100. Rhodamine Phalloidin Reagent (ab235138, Abcam, Cambridge, UK) was used to stain F-actin. Anti p-PAK (1/2/3) Thr 423/402/421 antibody (ab62155, Abcam, Cambridge, UK) conjugated to Alexa-488 (ab150077, Abcam, Cambridge, UK) was used to stain p-PAK. The intensity of the p-PAK fluorescence from the fluorescein-tagged secondary antibody specific for the primary anti-p-PAK antibody was quantified using Image J software. The image processing guidelines provided by the developers of Image J was used to quantify fluorescence area and integrated density.





In vitro culture of splenocytes

Single-cell suspensions from extracted spleens of naïve SCID mice were obtained after passing through a 70 µm cell strainer and red blood cells were lysed with ACK lysis buffer obtained from Abcam Gibco Thermo Fisher (Waltham, MA). Cells were cultured at 1X106 cells/mL with or without LPS at 10 µg/mL and treated with vehicle, MBQ-167, or EHop-016. After 24 hrs, supernatants were collected for cytokine quantification by ELISA, as per manufacturer’s instructions (R&D Systems, Minneapolis, MN) and the cells were harvested for flow cytometry analysis.





Animal protocols

As published by us, immunocompromised mice were inoculated at the mammary fat pad with a green fluorescent protein (GFP)-tagged human metastatic cancer cell lines HER2++BM or MDA-MB-231, while the immunocompetent BalB/c mice were inoculated with 4T-1 mouse breast cancer cells (27). Once the tumors reached ~100 mm3 in Experiment 1, nude mice with HER2++BM tumors were treated with vehicle (12.5% ethanol, 12.5% Cremophor, Sigma-Aldrich, St. Louis, MO) or 30 mg/kg BW EHop-016 intraperitoneally (IP) 3X a week for 55 days, as described in (29). Mouse tumors were extracted at necropsy, fixed in 10% buffered formaldehyde, and paraffin-embedded for immunohistochemistry and immunofluorescence, as described below.

Experiment 2 GFP- tagged HER2++BM cells were inoculated at the mammary fatpads of SCID mice. Mice were imaged in UVP iBox In Vivo imaging system (Analytik Jena, Jena, Germany), and fluorescence Tumor growth was analyzed by integrated density of fluorescence intensity using image J software. When the tumors were ~100 mm3, the mice were treated with vehicle (12.5% ethanol, 12.5% Cremophor) or 5 mg/kg BW MBQ-167 5X a week by IP for 60 days, as described in (27, 30). At the end of the study, tumors and spleens were processed for flow cytometry analysis as described below.

Experiment 3: Balb/C mice were inoculated at the mammary fatpad with GFP-4T-1 cells, when the tumors reached 100 mm3, the mice were treated with vehicle (0.5% methyl cellulose, 0.1% Tween 80 in PBS) or 50 mg/kg MBQ-167 per oral (P.O.) for 28 days (27). At the end of the study, tumors and spleens were processed for flow cytometry analysis, as described below.





Immunohistochemistry and immunofluorescence of tumor tissue

Formalin fixed paraffin embedded (FFPE) tumor samples were dewaxed in xylene and rehydrated in descending concentrations of alcohol. Antigen retrieval was performed using heat and a citrate-based Antigen Unmasking Solution (1:100 dilution) (Vector Laboratories, Burlingame, Ca, USA). Endogenous peroxidase was quenched with 3% v/v H2O2. The primary antibodies used were: F4/80 (1:1000 dilution) (ab16911, Abcam, Cambridge; MA, USA) and neutrophil elastase (1:1000 dilution) (ab68672, Abcam, Cambridge; MA, USA). Immunohistochemistry was detected using Dako Envision system-HRP (DAB) (anti-rabbit) (Dako; Glostrup, Denmark) or Dako LSAB System-HRP (DAB) (anti-mouse) (Dako; Glostrup, Denmark) according to the manufacturer’s instructions. Hematoxylin was used as a counterstain.

For immunofluorescence, the secondary antibody used was Alexa-Fluor 594 (anti-rabbit) 1:2000 (Molecular Probes, Life Technologies, Carlsbad, CA, USA) and nuclei were stained with DAPI 1:5000 (Santa Cruz Biotechnology, Santa Cruz, CA, USA). To quantify F4/80 and elastase, 3 random fields were chosen per slide and the total number of positive cells was counted for 5 slides/treatment. Statistical analysis was done using the Student’s T-test at a 95% confidence interval. n = 5 representative tumors per group.





Flow cytometry

At the end of each in vivo experiment, tumors and spleens were collected, and single-cell suspensions were obtained. The process for obtaining single-cell suspensions on spleens is described above. For isolation of tumor-infiltrating leukocytes (TILs), tumors were minced and digested using 0.5 mg/mL of collagenase D, followed by a Percoll gradient separation. The flow cytometry staining protocol was followed as described in (31). A cocktail of antibodies against CD11b, F4/80, Ly6C, Ly6G, CD11c, CD86, MHC-class II was used to quantify different myeloid cell populations and their activation status. Live/Dead Aqua cell marker (Thermo Fisher, Waltham MA) was used to exclude dead cells. Also, anti-CD16/CD32 antibody was used to prevent non-specific binding of antibodies to Fc receptors. Stained cells were fixed with BD Cytofix/Cytoperm (BD Bioscences, San Jose CA) and prepared for acquisition on a FACSCelesta analyzer (BD Bioscences, San Jose CA). Data were analyzed using FlowJo Software v10 (FlowJo, LLC, Ashland, OR).





ELISA assays

Concentrations of IL-6 on cell culture supernatants and mouse plasma were quantified by using commercially available ELISA kits from R&D Systems, as per manufacturer’s instructions (Minneapolis, MN).





Phagocytosis assays

Phagocytosis assays were conducted in RAW 264.7 cells, following treatment with EHop-016 (1-2 μM) or MBQ-167 (250-500 nM) for 6 hrs. Cells were then proceeded to phagocytize fluorescently-tagged Zymosan particles for 2.5 hrs (Abcam, Cambridge, UK). The fluorescence from the Zymosan particles was quantified at 490/520nM in a Bio-Rad fluorescence microplate reader using manufacturer’s directions for assay management, analysis software, and performance verification tools (Bio-Rad, Hercules, CA). Representative images were taken using a Keyence digital microscope, as per instructions provided with the Keyence software (Keyence, Corp, Osaka, Japan). The obtained values from the microplate reader were first subtracted to the no-cell negative control wells and the phagocytosis response calculated using: [experimental phagocytosis sample/positive phagocytosis control]x100 (Abcam, Cambridge, UK).






Results




Rac/Cdc42 inhibitors reduce Rac and Cdc42 activation in macrophage-like cell lines

We characterized the small molecule compound EHop-016 as a specific inhibitor of the interaction between the GEF Vav and Rac with an IC50 of 1 μM for Rac activation in breast cancer and leukemia cells (25, 32). EHop-016 inhibits Cdc42 activation and the viability of breast cancer cell lines at much higher concentrations (~10 μM) (25). The improved EHop-016 derivative MBQ-167 demonstrated 10X higher efficacy at 100 nM IC50 for inhibition of Rac1 activation and 78 nM for Cdc42 activation in breast cancer cells (26). To determine whether these inhibitors have similar effects on macrophages, we utilized the THP-1 human monocyte-like cell line differentiated into macrophages with phorbol 12- myristate-13-acetate (PMA). THP-1 cells were treated with 0 – 4000 nM EHop-016 or 0 – 500 nM MBQ-167 and a pulldown assay was performed using the Rac.GTP/Cdc42.GTP binding domain of their downstream effector p21-activating kinase (PAK). The westerns were probed with a pan Rac (1–3) antibody, but we expect the positive bands to be mostly Rac2, since hematopoietic cells, such as macrophages, predominantly express the Rac2 isoform (33). Rac and Cdc42 activation were only quantified from the adherent differentiated macrophages and not the non-adherent non-differentiated monocytes. Future studies will also ascertain if the Rac/Cdc42 inhibitors affect the undifferentiated monocytes.

EHop-016 reduced Rac-GTP levels by ~60% at 2 µM and by 80% at 4 µM in THP-1 human macrophages, while active or total Cdc42 remained unchanged up to 4 µM EHop-016 (Figure 1A). MBQ-167 reduced Rac-GTP levels by 20% at 250 nM and by 75% at 500 nM. MBQ-167 also inhibited Cdc42 activation in THP-1 macrophage-like cells by ~25% at 250 nM and by ~40% at 500 nM. At 500 nM, MBQ-167 also reduced Cdc42 expression, which may be due to the previously reported induction of anoikis by MBQ-167 at high concentrations (26) or a specific effect on Cdc42 expression or stability (Figure 1B). Therefore, EHop-016 and MBQ-167 inhibit Rac and Cdc42 activation in macrophage cell lines at concentrations ~5X higher than the effective concentrations for Rac and Cdc42 inhibition in breast cancer cell lines (See full length westerns in Supplementary Figure S1). This result can be attributed to the higher expression of Rac and Cdc42 in macrophages compared to breast cancer cells. As shown in Supplementary Figure S2, when equal protein was loaded from macrophage or MDA-MB-231 TNBC cell lysates, as demonstrated by equal Actin staining, a ~60% reduction in Rac expression and a 45% reduction in Cdc42 expression was observed in TNBC cells compared to THP-1 human macrophages (Supplementary Figure S2A). Similarly, a 60% reduction in Rac expression and an 86% reduction in Cdc42 expression in TNBC cells was observed when compared to RAW264.7 mouse macrophages (Supplementary Figure S2B).




Figure 1 | Effect of EHop-016 and MBQ-167 on macrophage Rac and Cdc42 activation. THP-1 monocytes were differentiated into macrophages, and adherent cells were treated with (A) EHop-016 (0 – 4000 nM) or (B) MBQ-167 (0-500 nM) for 24 hrs. Rac or Cdc42 activation was quantified by incubation of cell lysates with Sepharose beads containing GST-tagged p21-binding domain of PAK1. Pulldowns and total lysates were Western blotted with a pan Rac (1–3) or Cdc42 antibody. Top panel, Representative Westerns (N=3) are shown, with actin as a loading control. Bottom panel, Positive bands were quantified using ImageJ and Rac or Cdc42 activation quantified as Rac.GTP/total Rac or Cdc42.GTP/total Cdc42 relative to vehicle (1.0). N=5, **p<0.005, ***p<0.0005, ****p<0.00005.







Rac/Cdc42 inhibitors do not affect macrophage cell viability at effective concentrations

To determine whether Rac/Cdc42 inhibitors affect the viability of macrophages at the therapeutic window, i.e. IC50 of 1.1 µM for EHop-016 and IC50 of 100 nM for MBQ-167 in breast cancer cells (25, 26), we determined cell viability as measured by an MTT assay on RAW264.7 and THP-1 cell lines. In RAW 264.7 cells, MBQ-167 inhibited cell viability by 20% at 1 μM and by 25% at 2 μM, while EHop-016 had no effect at similar concentrations (Figure 2A). A similar ~20% decrease in cell viability was also observed at >1 μM MBQ-167 in THP-1 macrophage-like cells, with no response to EHop-016 at concentrations up to 2 μM (Figure 2B). We found that EHop-016 at 10 μM inhibited RAW 264.7 mouse macrophage-like cell viability by 50%; however, EHop-016 at the same concentration was more potent in the 4T-1 mouse TNBC cell line (Supplementary Figure S3). Since the MTT assay measures metabolic activity which may be affected by cell death and/or proliferation, we quantified the frequency of dead RAW 264.7 cells by flow cytometry after 24 hrs of incubation with the inhibitors. We determined that no effect on the percentage of live cells was detected after treatment (Supplementary Figure S4). These data demonstrate that the Rac/Cdc42 inhibitors MBQ-167 and EHop-016 inhibit Rac activity without affecting the viability of macrophage-like cells.




Figure 2 | Effect of EHop-016 and MBQ-167 on macrophage viability. RAW 264.7 mouse macrophage-like cells (A) or THP-1 monocytes differentiated into macrophages (B) were treated with 0-2000 nM MBQ-167 or EHop-016 for 48hrs and the viability determined by an MTT assay (N = 5). N=5, **p<0.005, ***p<0.0005, ****p<0.00005.







Rac/Cdc42 inhibitors reduce downstream signaling to the actin cytoskeleton and inhibit cytoskeletal extensions, migration, and phagocytosis

Activated (GTP bound) Rac and Cdc42 activate their common downstream effector p21-activated kinase (PAK) via phosphorylation to induce actin cytoskeleton reorganization into lamellipodia, filopodia, and invadopodia required for directed cell migration and invasion (34). Therefore, we wanted to determine the effect of Rac/Cdc42 inhibitors on the actin cytoskeleton on differentiated THP-1 macrophages by staining with Rhodamine phalloidin, which specifically stains F-actin filaments, and phosphorylated PAK (p-PAK, Alexa 488 fluorescence). THP-1 differentiated macrophages were treated with vehicle, EHop-016 or MBQ-167 for 24 hrs. Vehicle-treated differentiated THP-1 macrophages with PMA showed F-actin organized into cytoskeletal structures in polarized cells. p- PAK fluorescence was also observed both in the cytoskeletal extensions and in the cytosol and at the nuclear periphery. Treatment with EHop-016 at 2 µM reduced p-PAK levels and actin cytoskeletal structures compared to vehicle. F-actin was observed in a punctate distribution in the cytosol, which was more evident following 500 nM MBQ-167. MBQ-167 treatment resulted in loss of polarity in the macrophage cells, similar to the phenotype previously reported in breast cancer cell lines (26). This reduction in actin cytoskeletal structures in response to MBQ-167 was paralleled by reduced p-PAK staining intensity (Figures 3A, B). The reduction in p-PAK immunostaining in response to MBQ-167 or EHop-016 was also confirmed by Western blotting with antibodies to PAK or p-PAK. Results show a ~70% decrease in p-PAK levels by 250 and 500nM MBQ-167 and a 14% decrease by 1 μM and a ~30% decrease in p-PAK levels by 2 μM EHop-016 (Figure 3C).




Figure 3 | Rac/Cdc42 inhibitors reduce PAK activity, cell surface actin structures, cell migration, and phagocytosis of macrophages. (A) Rac/Cdc42 inhibitors reduce PAK activity and cell surface actin structures. THP-1 cells growing on coverslips were differentiated with PMA and treated with vehicle, MBQ-167 (1000 nM), or EHop-016 (2000 nM) for 24hrs. Cells were fixed and F-actin was stained with Rhodamine Phalloidin (red) and active PAK immunostained with phospho (p)-PAK Alexa 488 conjugated antibody (green). Left, representative images (400x). Right, representative images (200x). (B) quantification of staining intensity using image J software (N = 4 from 10 microscopic fields/biological replicate). (C) PAK phosphorylation in response to MBQ-167 and EHop-016. THP-1 macrophages were treated with 0, 250, or 500nM MBQ-167 or 0, 1, 2 μM EHop-016 for 24hrs and lysed. Cell lysates containing equal protein (25 μg) were Western blotted for PAK or active phospho (p-) PAK with specific antibodies to PAK 1,2,3 isoforms. Actin is shown as a loading control. Left, Representative Western blots. Right, Quantification of the integrated density of positive bands using Image J software. p-PAK/PAK relative to vehicle (100%) N=3. (D) Rac/Cdc42 inhibitors reduce macrophage cell migration. Raw 264.7 cells were grown to confluence and treated with vehicle, MBQ-167 (500 nM), or EHop-016 (2000 nM). A wound was created with a pipet tip and cells were allowed to migrate for 48hrs. Representative images (left) and image J quantification of wound area (right) for N=5 are shown. *p<0.05. (E) MBQ-167 and EHop-16 inhibit phagocytosis. RAW 264.7 cells were treated with EHop-016 (2000 nM) or MBQ-167 (500 nM) for 6hrs, then incubated with green fluorescent Zymosan particles for 2.5 hrs and imaged using a Keyence microscope system. Left, representative images (10x); right, quantification of ingested fluorescent particles. N=5. For all graphs, *p < 0.05, **p<0.005, ***p<0.0005, ****p<0.00005.



Since actin cytoskeleton reorganization is critical for cellular migration, we next determined the effect of Rac/Cdc42 inhibitors on cell migration. Wound-healing assays of RAW 264.7 cells show that EHop-016 at 2 µM significantly inhibited macrophage cell migration by 38.3%, while MBQ-167 at 500 nM significantly inhibited macrophage cell migration up to 66.6% (Figure 3D). This data suggests that Rac/Cdc42 inhibitors impair actin cytoskeleton reorganization to impede migration of macrophages. Since phagocytosis is an essential function of macrophages, which involves Rac and Cdc42 regulated actin cytoskeletal rearrangement (35), we tested the effect of Rac/Cdc42 inhibitors on the phagocytosis of fluorescent beads. Figure 3E shows that 500 nM MBQ-167 reduced phagocytosis of RAW 264.7 macrophages by 50%, while 2 μM EHop-016 exerted a 75% decrease in phagocytosis.





Rac and Cdc42 inhibitors reduce myeloid cell activation and infiltration into mammary tumors

To determine whether Rac and Cdc42 inhibitors affect leukocyte migration in vivo, we quantified leukocytes by immunofluorescence or flow cytometry in tumors or spleen in preclinical breast cancer mouse models. Immunocompromised athymic nude mice were implanted with GFP-HER2-BM human cancer cells in mammary fat pads and treated with vehicle or 30 mg/kg BW EHop-016 by intraperitoneal (IP) route 3 times a week for 55 days. We previously published that EHop-016 treatment resulted in ~90% reduction in tumor growth, angiogenesis, and metastasis (29). At the end of the study, GFP-fluorescent tumors (as ascertained by in situ fluorescence imaging) were extracted, fixed, and immunostained for macrophages (F4/80 positive). Results show reduced macrophage infiltration in tumors from EHop-016 treated mice compared to vehicle-treated mice (Figure 4A). We also observed decreased neutrophil infiltration in EHop-016 treated mice as quantified in immunostained tissues for elastase (Figure 4B).




Figure 4 | Effect of EHop-016 on leukocyte infiltration into mammary tumors. As described in (29), mammary fat pad tumors were established from GFP-HER2-BM cells in nude mice and treated with vehicle or 30 mg/kg BW EHop-016 by i.p. 3X a week for 55 days. Primary tumors were fixed and processed by immunostaining for (A) macrophages (F4/80) or (B) neutrophils (elastase) (right). Representative micrographs and quantification of positive staining is shown for N=5, *p<0.05. Scale bar 50μM.



The effect of MBQ-167 treatment on myeloid cell activation was also determined from spleens and tumors of imuunocompromised SCID mice implanted with GFP-HER2-BM cells in the mammary fat pad. When the tumors reached 100 mm3, mice were treated with 0 or 5 mg/kg BW MBQ-167 by intraperitoneal route 5 times per week. As reported by us, MBQ-167 treatment resulted in a 70% reduction in tumor growth and ~90% reduction in metastasis (30). At the end of the study (55 days), spleens and tumors were extracted and processed to quantify CD11b+F4/80+ macrophages, CD11b+Ly6G+ MDSCs and CD11b+Ly6C+ monocytes by flow cytometry using the gating strategy depicted on Supplementary Figure S5. Results show a ~30% significant decrease in spleen macrophages but not tumor macrophages in response to MBQ-167. When relative M1 (CD206 negative) or M2 (CD206 positive) macrophages were differentiated from spleens of SCID mice following MBQ-167, we did not find a distinction between M1 vs M2 macrophages in response to MBQ-167 treatment (Data not shown). When spleen extracts were analyzed for MDSCs, there was no significant change in CD11b+Gr1+ cells in spleens following MBQ-167 treatment; however, tumor MDSCs were significantly reduced by ~57% in response to MBQ- 167 treatment. In contrast, no differences in monocyte frequencies were observed in tumors or spleen after MBQ-167 (Figure 5).




Figure 5 | Effect of MBQ-167 on myeloid cells in mouse models. As published in (30), immunocompromised SCID mice were inoculated with GFP-HER2-BM cells, when the tumors reached 100 mm3, mice were treated 5X a week with 0 or 5 mg/kg MBQ-167 by IP for 55 days. At necropsy, tumors and spleens were extracted and subjected to flow cytometry using fluorescently tagged antibodies to identify macrophages (CD11b+F4/80+), MDSCs (CD11b+LY6G+), and monocytes (CD11b+Ly6C+) N = 4 – 5, *p<0.05.



In addition, we implanted immunocompetent Balb/c mice with 4T-1 mouse breast cancer cells and treated them with vehicle, 5 mg/kg, 25 mg/kg, 50 mg/kg or 100 mg/kg of MBQ-167 by oral gavage 5 times per week for 5 weeks. As reported, 50 mg/kg BW MBQ-167 treatment resulted in a significant 60% decrease in tumor growth and a 90% decrease in lung metastases (27). At the end of the study, spleens were collected, and processed to quantify CD11b+F4/80+ macrophages, CD11b+LY6C+ monocytes, and CD86+ activated myeloid cells by flow cytometry. A significant reduction was observed in macrophage and monocyte frequencies in spleens treated with MBQ-167 at concentrations of 25 mg/kg or higher. The most significant reduction was observed in mice treated with 50 mg/kg of MBQ-167 (Figures 6A–C). Moreover, the activation of macrophages and monocytes were also significantly reduced after 5 mg/kg and 25 mg/kg of MBQ-167, respectively (Figures 6D, E).




Figure 6 | As published in (27), immunocompetent Balb/c mice bearing mammary tumors (~100mm3) established from 4T-1 mouse breast cancer cells were treated with vehicle or 0-100 mg/kg MBQ-167 5X a week by oral gavage, for 5 weeks. The spleens were harvested at necropsy for flow cytometry analysis. (A) Representative plots for macrophage and monocyte frequencies gated on CD11b+Gr1- cells are shown. The % of macrophages (B) and monocytes (C) among total live lymphocytes and the expression of CD86 as mean fluorescence intensity on macrophages (D) and monocytes (E) is depicted (N = 6) *p < 0.05, **p<0.005, ***p<0.0005, ****p<0.00005.







Rac and Cdc42 inhibitors reduce IL-6 secretion in the TME

Macrophages are major producers of pro-inflammatory cytokines, therefore, to determine whether the Rac and Cdc42 inhibitors affect macrophage cytokine production, we quantified the levels of cytokines in vivo and in vitro. As described in (29), at the end of the 55-day study following 30mg/kg BW EHop-016, administered 3X a week by IP, to nude mice bearing GFP-HER2-BM mammary tumors, the plasma and tumors were extracted and subjected to cytokine arrays. As shown in Figure 7A, a cytokine array demonstrated no changes in interferon γ (IFNγ), IL-10, IL-12, Monocyte Chemoattractant Protein (MCP-1), or tumor necrotic factor α (TNFα); but demonstrated a 30% significant decrease in IL-6, as confirmed from an ELISA assay for IL-6 using plasma from the same mice (Figure 7B). This decrease was also reflected in IL-6 levels from tumor extracts as quantified by RT-PCR (Figure 7C).




Figure 7 | IL-6 is increased in response to Rac/Cdc42 inhibitors. As described in (29), mammary fat pad tumors were established from GFP-HER2-BM cells in athymic nude mice and treated with vehicle or 30 mg/kg BW EHop-016 by i.p. 3X a week for 55 days. At necropsy, plasma and tumors were extracted and subjected to a cytokine array. (A) Relative cytokines from plasma following 30 mg/kg BW EHop-016 administration. (B) IL-6 levels in mouse plasma following EHop-016 treatment. (C) Tumors were extracted and IL-6 mRNA in tumor tissue was measured by qRT-PCR. Fold change in mRNA expression relative to vehicle treated mice is shown. Average fold change ± SEM (N=4) *p<0.05. Splenocytes from SCID mice were cultured with or without LPS (10 µg/mL) and treated with the indicated concentrations of EHop-016 (D) or MBQ-167 (E). After 24hrs in culture, supernatants were collected and an ELISA assay was done to quantify IL-6. Statistical significance was calculated using Two-way ANOVA, **p < 0.005, ***p < 0.0005, N.



We also wanted to determine whether IL-6 production could be affected in vitro by Rac and Cdc42 inhibitors using primary myeloid cells. For this, we cultured spleen cells from SCID mice with the TLR4 agonist lipopolysaccharide (LPS), which triggers the production of IL-6. It is important to note that spleens from immunocompromised SCID mice mostly contain macrophages and neutrophils due to the lack of T and B lymphocytes. As expected, LPS increased IL-6 levels in cultured splenocytes, while EHop-016 significantly decreased this spike in LPS-stimulated IL-6 release at concentrations >800 nM (Figure 7D). Similarly, when myeloid cells were analyzed by flow cytometry, EHop-016 reduced IL-6 levels by ~50% starting at 800 nM EHop-016 (Supplementary Figure S6). A similar significant reduction in LPS-induced IL-6 levels were also observed from cultured splenocytes in response to >400 nM MBQ-167 (Figure 7E). The decrease in IL-6 release from LPS-induced splenocytes in response to Rac/Cdc42 inhibitors was relatively modest, compared to the >50% inhibition of IL-6 levels in plasma and tumors from mice treated with EHop-016 for ~2 months. This could be attributed to a cumulative effect of prolonged EHop-016 treatment or additional contribution from cells in the tumor microenvironment, as well as other IL-6 releasing cells such as fibroblasts, in these immunocompromised mice. Taken together, these data implicate Rac and Cdc42 in regulation of immune suppressive myeloid cells, which can be inhibited by the specific inhibitors EHop-016 and MBQ-167.






Discussion

Rac and Cdc42 are pivotal regulators of both innate and adaptive immune cell migration relevant for immune suppression in the TME (36–38). In hematopoietic cells, Vav1/Rac2 activity is essential for macrophage and neutrophil recruitment via adhesion and migration, as well as the phagocytic NADPH oxidase response (21, 39, 40). In addition, differentiation and activation of M2 like macrophages and MDSCs are also regulated by Rac (41, 42). PMA-induced differentiation of monocytes into macrophages activates Rac and Cdc42 without changing their expression (43–45).

The Rac and Cdc42 inhibitors, EHop-016 and MBQ-167, are potent inhibitors of cancer cell migration and metastasis, as our group has demonstrated in different cancer cell types (25– 27, 29, 30, 32, 46–48). However, the effect of these inhibitors on tumor metastasis may not only be caused by direct effects on cancer cells but also through their modulation of immune cells. Herein, we show that similar to their effects on Rac and Cdc42 activation in breast cancer cells, in macrophage-like cell lines, the Vav/Rac inhibitor EHop-016 inhibits Rac activation, and the dual inhibitor MBQ- 167 inhibits both Rac and Cdc42 activation, albeit at ~ 2X higher concentrations than their effective concentrations in cancer cells. Since we have shown MBQ-167 to be absorbed more readily into tumor tissue and to be sustained at longer hours (~8hrs) compared to the ~4hr half-life in plasma (27, 28, 49), we expect the Rac/Cdc42 inhibitors to be more effective in the TME, by affecting cancer and macrophage cell signaling, which results in decreased metastasis.

We also report that macrophage migration is reduced by Rac/Cdc42 inhibitors, without a significant effect on macrophage cell viability at the effective concentrations of 2000 nM for EHop- 016 and 500 nM for MBQ-167. This reduction in migration is paralleled by decreased PAK activity and impairment in actin cytoskeleton structures, similar to the effects observed on cancer cells by EHop-016 and MBQ-167 (25–27, 29). However, higher doses than the ones used for cancer cells were required to reduce macrophage migration in vitro. This suggests that different cell types have different sensitivities towards these inhibitors, which may be explained by differential expression levels of Rac and Cdc42, as shown in Supplementary Figure 3 where equal protein concentrations (25mg) from macrophage or breast cancer lysates with equal actin staining show double the concentration of Cdc42 in macrophages, compared to triple negative breast cancer (TNBC) cells. This may also be an isoform dependent effect because cancer cells express Rac1 and Rac3, while hematopoietic cells express Rac2. In a mouse model of HER2++ breast cancer (29), EHop-016 administration reduced macrophage numbers into tumors as well as metastasis. Since leukocytes are known to promote metastasis via cross-talk signaling with cancer cells (7, 24), the observation of reduced macrophage and neutrophil counts in mammary tumors following Rac inhibition validates a dual role for Rac/Cdc42 inhibitors in tumor malignancy. The reduced numbers of macrophages in the tumor may not only be due to impaired migration but to decreased macrophage differentiation since Rac and Cdc42 become activated during monocyte-macrophage differentiation; further studies are needed to demonstrate this (43).

Immune cells such as macrophages, neutrophils, and MDSCs, can be immunosuppressive in the TME and promote tumor cell invasion of the surrounding tissue, intravasation and survival in the circulation, as well as tumor cell arrest, extravasation and persistent growth at metastatic sites, and is correlated with poor patient prognosis (7–12). Between the two major classes of macrophages, the alternative or M2 class predominates in malignant tumors. M2 macrophages are defined by their ability to produce cytokines and soluble mediators that promote an immunosuppressive environment, angiogenesis, tissue remodeling and repair (17, 50, 51). Such immune cell-mediated release of cytokines and chemokines all signal via Rac and Cdc42 (52). Further investigation of the macrophages from the spleen also demonstrated that the activation state of macrophages and monocytes was significantly decreased, observed by a decrease in CD86 expression, following MBQ-167 treatment. Although we did not determine in vivo that this effect was directly through MBQ-167 on macrophages, it is known that the co-stimulatory molecule CD86 may be induced after TLR engagement, which signals through Rac/Cdc42 pathway. Thus, MBQ-167 may be affecting myeloid cell activation via TLR4 signaling (19). Therefore, targeting Rac and Cdc42 in tumor-associated macrophages (TAMs) could inhibit a cascade of events that promote a tumorigenic microenvironment. Since Rac and Cdc42-regulated MDSCs are known to exert immunosuppressive effects in the TME (41, 42, 53), we quantitated the MDSCs in SCID mice bearing HER2++ breast tumors following MBQ-167 treatment. Results show a significant 60% decrease in MDSCs from mammary tumors of mice that received MBQ-167, which indicates an immunoprotective role for Rac/Cdc42 inhibitors. Although this was not the focus of this manuscript, the effect of Rac/Cdc42 inhibitors on intratumoral T cell function is highly important to be determined to understand the impact of these inhibitors in not only innate but also adaptive immune cells.

We also found that Rac/Cdcd42 inhibitors may promote an anti-tumor microenvironment by inhibiting the secretion of the pro-inflammatory cytokine IL-6, which is mostly produced by tumor- associated macrophages. From a cytokine array, we found that IL-6 and not IL-10 or TNFα were significantly changed by Rac inhibition. This indicates a specific effect on IL-6 release, probably through NfκB signaling (20), to promote inflammatory mechanisms. Notably, IL-6 has been found to promote tumor cell proliferation, survival, angiogenesis, and escape from immune surveillance (54–56). IL-6 has been implicated in the dissemination of cancer cells leading to metastasis since it drives cancer cell proliferation and invasiveness while suppressing apoptosis (57). Moreover, IL-6 has been shown to induce the differentiation of M2 macrophages and activation of myeloid-derived suppressor cells (MDSCs) in prostate cancer models (58). Accordingly, we demonstrated that Rac/Cdc42 inhibitors reduced IL-6 secretion in vivo after EHop-016 treatment and also in splenocytes following LPS stimulation. Although IL-6 may be produced by macrophages and cancer cells in vivo, our results demonstrate that these inhibitors have the potential to reduce inflammatory mediators driving metastasis.

The ability of Rac/Cdc42 inhibitors to decrease pro-inflammatory cytokines implicates them as potential therapeutics for inflammatory conditions. IL-6 is involved in uncontrolled inflammation during autoimmune diseases and chronic inflammatory diseases. For example, IL-6 mostly produced by macrophages in synovial fluid is implicated in rheumatoid arthritis (59). For this reason, blockade of IL-6 is used as a treatment for rheumatoid arthritis and is in clinical trials for other inflammatory conditions, including cancer (60, 61). Therefore, therapeutic intervention with Rac/Cdc42 inhibitors may provide treatment options for inflammatory diseases.

Our results demonstrate the dual role of Rac/Cdc42 inhibitors in inhibiting cancer cell and macrophage migration as well as inflammatory cytokines driving metastasis. Future studies will be aimed in determining the effect of Rac/Cdc42 inhibitors on other immune cell types to better understand their dynamic modulation of the TME. Also, we will determine the effective concentrations for Rac/Cdc42 inhibitors to impair cancer cell and protumorigenic cell migration in the TME, while preserving the function of anti-tumor immune cells.
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Background

The Oncotype Dx recurrence score (ODx-RS) guides the adjuvant chemotherapy decision-making process for patients with early-stage hormone receptor-positive, HER-2 receptor-negative breast cancer. This study aimed to evaluate survival and its correlation with ODx-RS in pT1-2, N0-N1mic patients treated with adjuvant therapy based on tumor board decisions.





Patients and methods

Estrogen-positive HER-2 negative early-stage breast cancer patients (pT1-2 N0, N1mic) with known ODx-RS, operated on between 2010 and 2014, were included in this study. The primary aim was to evaluate 5-year disease-free survival (DFS) rates according to ODX-RS.





Results

A total of 203 eligible patients were included in the study, with a median age of 48 (range 26-75) and median follow-up of 84 (range 23-138) months. ROC curve analysis for all patients revealed a recurrence cut-off age of 45 years, prompting evaluation by grouping patients as ≤45 years vs. >45 years. No significant difference in five-year DFS rates was observed between the endocrine-only (ET) and chemo-endocrine (CE) groups. However, among the ET group, DFS was higher in patients over 45 years compared to those aged ≤45 years. When stratifying by ODx-RS as 0-17 and ≥18, DFS was significantly higher in the former group within the ET group. However, such differences were not seen in the CE group. In the ET group, an ODx-RS ≥18 and menopausal status were identified as independent factors affecting survival, with only an ODx-RS ≥18 impacting DFS in patients aged ≤45 years. The ROC curve analysis for this subgroup found the ODx-RS cut-off to be 18.





Conclusion

This first multicenter Oncotype Dx survival analysis in Turkey demonstrates the importance of Oncotype Dx recurrence score and age in determining treatment strategies for early-stage breast cancer patients. As a different aproach to the literature, our findings suggest that  the addition of chemotherapy to endocrine therapy in young patients (≤45 years) with Oncotype Dx recurrence scores of ≥18 improves DFS.
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Introduction

Breast cancer has now surpassed lung cancer as the most common cancer worldwide, accounting for 2.3 million new cases each year (1). Particularly in Turkey, breast cancer is the most prevalent cancer in women, constituting 24,175 cases (23.9%) in 2020 (2). Notably, a significant proportion of new patients, 27% and 45% respectively, were diagnosed at stages 1 and 2 (3). A majority of early-stage breast cancer patients, approximately 70%, present with hormone receptor (HR) positive and HER-2 negative profiles (4).

While adjuvant chemotherapy can decrease cancer-related mortality by 5-15% (5), its benefits for early-stage breast cancer patients (ER+, HER-2 -, pN0) remain contentious (6). Many studies have proposed that a substantial fraction of these patients may not require adjuvant systemic treatment (7, 8). Conversely, other research has indicated that adjuvant chemotherapy can decrease mortality rates by 1-5% in patients with early-stage hormone receptor positive lymph node negative breast cancer (5, 9).

Recently, the use of genomic tests, which aid in determining the efficacy of systemic chemotherapy, has increased (10). The prognostic and predictive value of the Oncotype Dx (ODx) test (Genomic Health, Redwood City, CA, USA), which evaluates 21 genes, has been validated for patients with HR positive, HER-2 negative, and lymph node-negative breast cancer (11–14). Endorsed by the American Society of Clinical Oncology (ASCO), the National Comprehensive Cancer Network (NCCN), and other guidelines (11, 13), the ODx Recurrence Score (ODx-RS) test is utilized to gauge the advantage of adjuvant chemotherapy. Based on the ODx-RS, patients are categorized into three groups: low risk (RS<18), medium risk (RS 18-30), and high risk (RS>30), with their respective risks of distant recurrence at 6.8%, 14.3%, and 30.5% (15). While the low-risk group sees no benefit from chemotherapy, it is evidently beneficial for the high-risk group. The advantage for the intermediate-risk group, however, remains unclear (16).

Younger patients tend to have a higher risk of breast cancer recurrence and a lower survival rate compared to older patients (17). In the USA, 19% (48,080) of patients diagnosed with breast cancer are women under 50 years of age (18). In contrast, nearly 50% of patients in our breast cancer registry in Turkey were under the age of 50 due to the younger population structure (19). Given the more aggressive biological behavior of the tumor and distinct clinical features in young patients, this group warrants closer examination (20). Adjuvant chemotherapy has been shown to significantly reduce the risk of recurrence in young women, and the beneficial effects of adjuvant endocrine therapy on survival in hormone receptor positive patients are also recognized (21).

The aim of our study is to investigate the factors influencing recurrence in HR positive and HER-2 negative patients who have undergone surgery for early-stage breast cancer, and to identify the correlation between ODx-RS and disease-free survival (DFS) in Turkish breast cancer patients.





Methods




Study design and participants

A retrospective analysis was performed on all patients who had Oncotype Dx risk scores (ODx-RS) across ten medical centers between 2010 and 2014. From this group, 18 patients were excluded due to irregular follow-up visits, thus leaving us unable to obtain their final status. The study eventually included a total of 203 women diagnosed with hormone receptor positive, HER-2 negative early-stage breast cancer (pT1-2, pN0-N1mic, M0). These patients were treated in ten different hospitals across Turkey within the same timeframe and had ODx-RS assessments to inform the decision for chemotherapy.

Patient demographic, clinical, and pathological details including age, tumor size, histological grade, Estrogen receptor (ER) and Progesterone receptor (PR) status, Ki67 index, and lymph node status were recorded retrospectively. The ODx-RS was examined using tissue sections taken from surgically removed, formalin-fixed, paraffin-embedded samples in a centralized laboratory. If nuclear staining was moderate to strong in at least 1% of tumor cells upon immunohistochemical testing, ER and/or PR were considered positive. HER-2 expression was evaluated using immunohistochemical (IHC) staining. A score of 0 or 1 on the IHC staining was interpreted as negative for HER-2. In cases where the IHC score was 2, further assessment was conducted using a Fluorescence In Situ Hybridization (FISH) test. Only those with a negative FISH test result were included in the study. Patients were classified based on the clinical risk associated with their tumors. Clinical risk was categorized into two levels. ‘Low-risk’ classification was given under these conditions: a low-grade tumor up to 3 cm, an intermediate-grade tumor up to 2 cm, or a high-grade tumor up to 1 cm in size. If a tumor did not fit into any of these categories, it was considered ‘high-risk (22). Patients were divided into two groups according to ODx-RS: 0-17 and ≥18. An oncotype score cut-off value of 18 for chemotherapy administration was used, based on the NSABP-20 study (23). Our research aimed to remove uncertainty in treatment decisions by dividing patients into two groups: 0-17 and ≥18.

Even with the known ODx scores, the choice of adjuvant therapy was determined in weekly tumor board meetings. Patients were split into two categories: those who received hormone therapy alone and those who received chemotherapy (taxane-based and/or adriamycin-based regimens) in combination with hormone therapy (tamoxifen or aromatase inhibitors ± LHRH analog). The primary aim was the five-year Disease-Free Survival (DFS) rate, with DFS being defined as the period from treatment to local, distant disease recurrence or death from any cause.

Approval was granted by the Ethics Committee of Istanbul Bilgi University (Project number: 2022-40034-118).





Statistical analysis

Categorical values such as demographic and clinical characteristics were compared using the chi-square test. Descriptive statistical analysis was used to evaluate age across groups by considering median, lowest, and highest values. Five-year DFS values were evaluated with Kaplan-Meier analysis, and independent prognostic factors affecting DFS were identified using multivariate Cox regression. Receiver Operating Characteristics (ROC) curve analysis was conducted to determine the cut-off for adding chemotherapy. All statistical analyses were performed using SPSS 22.0, and a p-value <0.05 was considered statistically significant.






Results

The median age of patients was 48 years (ranging from 26 to 75), and the median follow-up period was 84 months (ranging from 23 to 138). The median Oncotype Dx risk score (ODx-RS) was 16 (ranging from 0 to 58). All patients (n=203,100%) were diagnosed with ER-positive breast cancer, and 173 (85.2%) were PR-positive. There were a total of 14 recurrences (6.89%), with 5 local recurrences (2.46%) and 9 distant recurrences (4.4%). Two patients died due to unrelated causes.

In the ROC curve analysis for recurrence among all patients, the age cut-off was determined as 45 years (Figure 1). Consequently, patients were divided into two groups: ≤45 years and >45 years.




Figure 1 | Analysis of age in the all patients for recurrence by ROC curve (cutoff age was found 45).



Seventy-four patients (36.5%) were aged ≤ 45 years. Endocrine therapy alone was administered to 146 (71.9%) patients, while 57 patients (28.1%) received a combination of systemic chemotherapy and endocrine therapy (CT+ET). The ODx scores ranged from 0-17 in 117 patients (57.6%), 18-30 in 69 patients (34%), and over 30 in 17 patients (8.4%) (Table 1).


Table 1 | Characteristics of the patients at baseline.



There was no significant difference in Disease-Free Survival (DFS) rates when using 50 years as the age threshold (DFS: 92.3% vs. 97.7%, p=0.107). However, patients older than 45 years demonstrated significantly better DFS than those aged 45 years or younger (DFS: 98.4% vs. 89.2%, p=0.009, HR:3.62, 95% CI:1.28-10.1; p=0.015).

There was no significant difference in DFS between the endocrine-only group and the chemo-endocrine group (93% vs. 95.9% respectively, p=0.14). The analysis of menopausal status revealed significantly higher DFS in postmenopausal patients in both the overall cohort and in the endocrine-only group (five-year DFS rates: premenopausal 91.9%, postmenopausal 97.8%, p=0.01, all groups; premenopausal 92.0%, postmenopausal 98.6%, p=0.01, endocrine-only group) (Table 2).


Table 2 | Evaluation of DFS by Kaplan-Meier analysis.



In the chemo-endocrine group, DFS was similar between patients aged ≤45 years and those >45 years (87.4% vs 93.1%, p=0.26). In contrast, the endocrine-only group exhibited higher DFS in patients >45 years compared to those ≤45 years (98.9% vs. 90.4%, p=0.024). When dividing patients based on the ODx-RS as 0-17 and ≥18, the former group had significantly higher DFS (98.2% vs 83.3%, p=0.005) (Figure 2A). In patients ≤45 years in the endocrine-only group, those with an ODx score ≥18 showed significantly lower DFS compared to those with an ODx score <18 (68.8% vs 97.1%, p=0.002) (Figure 2B).




Figure 2 | (A) (left): DFS analysis according to the cut-off ODx score of 18 in patients in the all endocrine-only group (For ODx score<18 DFS: 98.2%; for ODx score ≥18 DFS: 83.3%, p=0.002). (B) (right): DFS analysis according to the cut-off ODx score of 18 in patients aged ≤45 years in the endocrine-only group (For ODx score<18 DFS: 97.1%; for ODx score ≥18 DFS: 68.8%, p=0.002).



Age (≤45 vs >45), ODx score (<18 vs ≥18), and menopausal status were factors influencing DFS in the univariate analysis of the endocrine-only group. Multivariate analysis revealed independent effects of ODx score (<18 vs ≥18) and menopausal status on DFS (ODx score (<18 vs ≥18) HR:8.15, 95% CI: 2.01-32.9, p=0.003; premenopausal vs. postmenopausal HR:8.24, 95% CI: 1.02-66.1; p=0.04) (Table 3).


Table 3 | Factors affecting DFS in the endocrine-only group.



In patients aged ≤45 years in the endocrine-only group, only the ODx score (<18 vs ≥18) was found to influence DFS (HR:13.4, 95% CI: 1.56-115; p=0.01) (Table 4).


Table 4 | Factors affecting DFS in patients aged ≤45 years in the endocrine-only group*(subgroup analyses).



In the ROC curve analysis for patients aged ≤45 years in the endocrine-only group, the ODx cut-off score for predicting recurrence was determined as 18. The sensitivity and specificity for this cut-off were 83.3% and 81.4, respectively, with a positive predictive value of 26% and a negative predictive value of 97% (p=0.025) (Figure 3).




Figure 3 | Analysis of patients ≤ 45 years of age in the endocrine-only group by ROC curve (cutoff ODx score was found 18).







Discussion

While the NCCN guidelines do not specify an age cut-off, the ASCO guidelines have set an age cut-off of 50 years based on the Tailor X study. In these studies, patients were divided into two groups, and treatment modalities were arranged according to this age limit of 50 (24–26). This practice is attributed to the typically poorer prognosis of younger patients and the fact that chemotherapy primarily reduces the risk of recurrence due to ovarian suppression (20, 27–29). Furthermore, younger patients often have fewer comorbid diseases, thus demonstrating better tolerance for chemotherapy (20, 28, 29). In contrast to the prevailing literature, we found no significant difference in disease-free survival (DFS) between groups separated by the age of 50 (DFS: 92.3% vs. 97.7%, p=0.107). However, a significant survival difference was observed between groups separated by the age of 45 (DFS 89.2% vs 98.4%, p=0.009). This difference is thought to be attributable to the lower proportion of young patients in the MINDACT and Tailor X studies, the main reference studies, where the majority of the population comprised patients over 50 years of age (21, 22). The EORTC 10041/BIG 03-04 MINDACT study, which used the ≤45 age cut-off for categorizing patients, reported that the tumor biological features of patients in this age group were more aggressive than those in other groups (30). In our ROC curve analysis of all patients for recurrence, the cut-off age was 45 years (Figure 1). Consequently, patients were evaluated by dividing them into two groups, ≤45 years and >45 years. Another reason for this adjustment is the notably higher rate of breast cancer patients in Turkey in younger populations compared to Western countries. In a study we conducted with 20,000 breast cancer patients in Turkey, the rate of patients under the age of 40 was 16.5% (19), whereas an analysis of SEER data showed that the prevalence of patients under the age of 40 was merely 1.1% (31). Additionally, the Tailor X study determined that the age most benefitting from chemotherapy was 45 years old, and it also indicated that the benefit of chemotherapy diminishes as age exceeds 45 years (21). In our study, we found a significant DFS difference between patients aged ≤45 years and patients aged >45 years in the endocrine group, while this difference was not observed in the chemo-endocrine group (Table 2). These findings underscore the importance of adding chemotherapy to endocrine therapy in young and selected patient groups, as corroborated by the literature.

When we planned the ODx cut-off value as 18 in patients ≤45 years in the ET subgroup, we observed that the DFS rate of patients with an ODx-RS of 18 or above decreased significantly (Figure 2). Since the patients in this subgroup had the lowest DFS rates, the cut-off value was determined as 18 in the ROC curve analysis for this patient population (Figure 3). An ODx-RS ≥18 in the endocrine-only subgroup aged 45 years and younger was identified as an independent risk factor affecting DFS (Table 4). It was determined that the addition of chemotherapy to endocrine therapy was beneficial in patients aged ≤45 years with an ODx score of 18 or above, and the addition of chemotherapy to patients with an ODx-RS of less than 18 did not benefit due to the very high negative predictive value (97%). In the Eastern Cooperative Oncology Group E2197 phase III study, in patients younger than 50 years of age, the 10-year risk of recurrence was in the low-risk (Odx-RS<18) group; it has been observed that the risk of recurrence is significantly lower than the patients with ODx-RS 18-30 and >30 (32) [% (95% CI): 1.9 (0.5–7.9), 8.1 (3.4–19.6), 10.3 (5.4–19.7), p=0.17) respectively]. In the NSABP-14 study, which included only endocrine therapy patients, distant recurrence was observed at a rate of 6.8% in patients with RS below 18, 14.3% in patients with 18-30, and 30.5% in patients over 30 (33). In this study, it was observed that the recurrence rate was significantly lower in patients with ODX-RS < 18 than in patients over 18 (33). Park et al. concluded that there was a 9% increase in the risk of death from breast cancer for each unit increase in ODx-RS in patients with an RS between 18 and 30 (34). In our study, it was determined that each unit increase in the oncotype score in women aged ≤45 years in the endocrine group increased the risk of recurrence by 1.2 times (HR:1.21, 95%Cl; 1.04-1.40, p=0.012) (Table 4).

In our study, we found DFS to be statistically significantly lower in premenopausal patients compared to postmenopausal patients, across all patients and in the endocrine-only group. Interestingly, no significant difference was identified in the chemo-endocrine group (Table 2). The reason for not detecting a significant survival difference in patients in the chemo-endocrine group is likely due to the contribution of chemotherapy-induced ovarian suppression observed in premenopausal patients, as reported in the Tamoxifen and Exemestane Trial and the Suppression of Ovarian Function Trial (SOFT and TEXT) (35–37). There are numerous studies investigating the relationship between the ODx-RS and certain clinicopathological features (15, 38, 39). In our previous prospective clinical study, we discovered a negative correlation between PR, Ki67 level, and ODx-RS (40). In our study, an ODx RS≥18 (HR: 6.83, 95% CI: 1.70-27.3; p=0.007) and menopause status (HR: 8.24, 95% CI: 1.02-66.1; p=0.04) were identified as independently affecting DFS. However, no relationship was found between DFS and histological grade, PR negativity, clinical risk score, tumor diameter, pathological stage, lymphatic invasion, or vascular invasion (Table 3).

This study has several limitations. It’s a retrospective study with a small cohort size from multiple institutions, which necessitates further studies with larger sample sizes. Also, this cohort is predominantly composed of an ethnic minority patient population, which may affect the generalizability of the results. Despite being the largest national study within our country, reaching more patients could help us draw clearer conclusions that are more reflective of the Turkish population, considering our ever-growing population size and the genetic/ethnic variability in our population. Finally, the follow-up time was short, and events were too scarce to perform a stratified analysis. Therefore, more detailed data with a longer follow-up time on a larger multicenter scale are encouraged to evaluate whether early-stage breast cancer patients can be exempted from chemotherapy. A study with a much larger number of patients should be conducted in our country, especially for postmenopausal patients.

In contrast to the Tailor X study, which examined the ODx-RS of 0-10, 11-26, and >26 by dividing patients into three groups (21), in our study, we aimed to organize the treatment modality so that there was no group in which the treatment decision was uncertain by dividing the patient group into 0-17 and ≥18.

Our study is the first multicenter Oncotype Dx survival analysis in Turkey. This study demonstrates that the Oncotype Dx recurrence score and age are crucial factors in making treatment decisions for patients diagnosed with early-stage breast cancer. A study with a much larger number of patients is necessary in our country, especially for postmenopausal patients. In conclusion, our study has shown that adding chemotherapy to endocrine therapy in young (≤45 years) patients with Oncotype Dx recurrence scores of 18 and above contributes to DFS.
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31 (17.7%)

172 (82.3%)

117 (57.6%)
69 (34%)

17 (8.4%)

nts

Eli
52 (35.6%)

94 (64.4%)

106 (72.6%)

40 (27.4%)

107 (73.3%)

39 (26.7%)

75 (51.4%)

71 (48.6%)

25 (17.1%)
102 (69.9%)

19 (13.0%)

130 (89.0%)

16 (11.0%)

92 (63.0%)

54 (37.0%)

134 (91.8%)
11 (7.5%)

1(0.7%)

109 (77.3%)

32 (22.7%)

120 (85.1%)

21 (14.9%)

110 (75.3%)

36 (24.7%)

140 (95.9%)

6 (4.1%)

74 (50.7%)
41 (28.1%)

31 (21.2%)

22 (17.8%)

124 (82.2%)

110 (75.3%)
35 (23.9%)

1 (0.6%)

#chi square test, IDC, invasive ductal carcinoma. ET, endocrine therapy; CT, chemotherapy.

*invasive lobuler carcinoma, mucinous, metaplastic, micropapiller, cribriform, papiller tsentinel lymph node biopsy.
P-values that are less than 0.05 are accentuated in bold within the table.
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22 (38.6%)

5 (61.4%)

27 (47.4%)

30 (52.6%)

46 (80.7%)

11 (19.3%)

36 (63.2%)

1(36.8%)

3 (5.3%)
36 (63.2%)

18 (31.6%)

43 (75.4%)

14 (24.6%)

19 (33.3%)

38 (66.7%)

41 (71.9%)
7 (12.3%)

9 (15.8%)

34 (64.2%)

19 (35.8%)

36 (67.9%)

17 (32.1%)

7 (12.2%)

50 (87.8%)

49 (89.5%)

6 (10.5%)

20 (35.1%)
26 (45.6%)

11 (19.3%)

9 (17.5%)

48 (82.5%)

7 (12.2%)
34 (59.6%)

16 (28.2%)

p value

0,69

0,001

0,27

0,12

| 0,002

0,01

<0,001

<0,001

0,06

0,007

<0,001

0,08

0,04

0,89

<0,001
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2 11 (27.5) Line of previous CTx' in a metastatic setting
3 21 (52.5) 0 23 (57.5)
Unknown 8 (20.0) 1 5(12.5)
Tissue organ 2 3(7.5)
Breast 21 (52.5) 3 or more 9 (22.5)
Skin 5(12.5) Germline BRCA
status
Brain 4 (10.0) Negative 28 (70.0)
Liver 3(7.5) Pathologic 4 (10.0)
variant
Lymph node 2 (5.0) Unknown 8 (20.0)
Ovary 2 (5.0) Immune
checkpoint
inhibitor
Lung v 1(25) Pembrolizumab 21 (52.5)
Pleura 1(25) Atezolizumab 19 (47.5)
Peritoneum 1(2.5) Tissue status
Archival 16 (40.0)
Metastatic 24 (60.0)

1: Chemotherapy; 2: Radiotherapy; 3: Breast cancer.
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(42)

(45)

(74)

(75)

(76)

(77)

(78)

(79)

(80)

(81)

(82)

(83)

(84)

(85)

Model

MDA-MB-231 cell

4T1 cell

BT-549 cell

(mouse model with MDA-MB-231 cells)

MDA-MB-231 cell

4TI cell

(mouse model with MDA-MB-231 cells
and 4T1 cells)

MDA-MB-231 cell
4T1 cell

MCEF-7 cell
BT-549 cell

MDA-MB-231 cell
(mouse model with MDA-MB-231 cells)

4T1 cell
(mouse models with 4T1 cells)

MCE-7 cell
MDA-MB-231 cell (mouse model with
MDA-MB-231 cells)

Hs578T cell

BT-549 cell

4T1 cell

(mouse model with 4T1cells)

MDA-MB-231 cell

MDA-MB-231 cell
T47D cell

MCE-7 cell
MDA-MB-231 cell
(mouse model MDA-MB-231 cells)

MDA-MB-231 cell
4T1 cell

Hs578T cell
EO771 cell

MDA-MB-231 cell
BT-549 cell

MDA-MB-231 cell
4T1 cell

BT549 cell
YCCBI cell

Biomolecular mechanism

SSP promotes inflammasome caspase-4/9 to cleave GSDME, which causes pyroptosis and membrane
permeabilization.

PD-L1 switches TNFo-derived-apoptosis to caspase-8-mediated pyroptosis under hypoxia.

Docosahexaenoic acid leads to NF-kB nuclear translocation and induces caspase-1/GSDMD dependent
pyroptosis.

Nobiletin promotes the caspase-1/GSDMD pyroptosis via the regulation of the miR-200b/JAZF1 axis.
Cisplatin activates pyroptosis by activating MEG3/NLRP3/caspase-1/GSDMD axis.

By blocking the JAK2/STATS3 signaling pathway, polydatin increases the pyroptosis in a caspase-1/GSDMD

manner.

Dihydroartemisinin causes pyroptosis via the activation of the AIM2/caspase-3/GSDME axis.

Transfection of poly I: C promotes caspase-3/GSDME dependent pyroptosis by the suppression of TGF-B
signaling depending on MDA5- and RIG-I.

Acute cadmium exposure can cause Bax to become activated, which in turn triggers caspase-3-mediated
GSDME-mediated pyroptosis.
Doxorubicin triggers caspase-3/GSDME-related pyroptosis via the ROS/JNK axis.

Triclabendazole causes caspase-3 to become activated and cleave GSDME, which induces pyroptosis.

Tetraarsenic hexoxide activates caspase-3/GSDME by enhancing the generation of mitochondrial ROS.

Overexpression of mitochondrial protein UCP1 activates caspase-3/GSDME-dependent pyroptosis.

DRD2, a tumor suppressor, encourages M1 macrophages and limits NF-B signaling to cause pyroptosis.

(Mouse cells: 4T1 cell, EO771 cell; Human cells: MDA-MB-231 cell, MCE-7 cells, BT549 cell, YCCB1cell, Hs578T cell, T47 cell).
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Characteristics Benig

Participants, n 2362 238 868
Age (M = SD) 54.3 (5.4)

Menopausal status, n (%)

Pre-menopausal 200 (32.5%) 13 (44.8%) 90 (51.7%)
Peri-menopausal 7 (1%) 8 (27.6) 0(0)
Post-menopausal 409 (66.4%) 8 (27.6) 84 (48.3)
Menarche, n (%)

Age < 11 years 11 (30) 0(0) 0(0)
Age 12 years 9 (24) 0(0) 0(0)
Age > 13 years 17 (46) 0(0) 0(0)
Countries, n (%)

USA 1217 (53.6) 44 (18.5) 209 (24.1)
Ghana 379 (16.0) 102 (42.9) 414 (47.7)
China 344 (14.6) 63 (26.5) 99 (11.4)
Korea 121 (5.1) 0(0) 0(0)
Italy 86 (3.6) 0(0) 75 (8.6)
Canada 72 (2.6) 24 (10.1) 28 (32)
Ireland 33 (14) 0(0) 5(0.6)
France 31(13) 0(0) 0(0)
Israel 28(1.2) 5(2.1) 0(0)
Switzerland 10 (0.4) 0(0) 36 (4.1)
Taiwan 3(0.0) 0(0) 2(0.2)
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Microbiota
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tion
method

Bacterial profile and diversity

According to the patient’s BMI, the absolute counts of total bacteria (55)
and three bacterial groups (Firmicutes, Faecalibacterium prausnitzii,
and Blautia) vary significantly.

Wi nglen T S::mbm by Overveght and obese parents v, normal BMI ptints: | totl
Luu (2017) | NA . 62.3 > Firmicutes, F. prausnitzii, Blautia sp., and E. lenta bacteria, also
patients real-time relatively | F. prausnitzi.
9PCR According to the clinical phases and histoprognostic grades, the
percentage and absolute counts of specific bacterial species, such as C.
coccoides, F. prausnitzii, and Blautia, changed significantly.
The patients were divided into 3 groups (TIL-H, TIL-M, and TIL-L) (58)
based on the levels of tumour—infiltrating lymphocytes (TILs).
‘When comparing the TIL-L and TIL-H groups, as well as when
Gut comlgaring all gmupj, the B-diversity distribution was statistically
: g significant. (p < 0.01
Shi (2019) 2017 Facces samplesiof S0BC. | o0 microbiota by (Ggenus leveg TIL-L vs. TIL-H: 1 Mycobacterium, Rhodococcus,
patients Illumma. Catenibacterium, Bulleidia, Anaerofilum, Sneathia, Devosia and TG5,
Sequencing but | Methanosphaera and Anaerobiospirillum. (p < 0.05)
(Species level) TIL-L vs, TIL-H: 1 stercoris, barnesiae, coprophilus,
flavefaciens and C21_c20 species, whereas | producta and komagatae.
(p <0.05)
Enterobacter of Enterobacteriaceae: Trelative abundance in high (59)
Fluorine-18-fluorodeoxy-glucose (18F-FDG) intestinal uptake (IU)
Gut group compared with low TU group (p < 0.001).
Yoon (2019) 2016- Faeces samples of 121 50.26 + microbiota by Unclassified Ruminococcaceae trended towards being in lower relative
2017 BC patients 9.09 Tllumina abundance in the high TU group compared with the low group (p <
Sequencing 0.001).
No statistical significant difference in a-diversity and p-diversity (p =
0.102) of gut microbial taxa between the lower and higher IU groups.
Gut Nonresponsive patients had decreased o-diversity and abundance of (61)
DiModica 2017~ Facces samples of 24 BC . microbiota by | Lachnospiraceae, Turicibacteriaceae, Bifidobacteriaceae, and
(2021) 2019 patients " Tllumina Prevotellaceae compared with those who had a complete pathological
Sequencing response.
Phylum level: Women with poor sleep quality had 1 Firmicutes (p = (62)
0.021) and | Bacteroidetes. Enterobacteriaceae was much higher in the
no-sleep disturbance group. (p = 0.028)
Genus level: Women with poor sleep quality harboured 1
Acidaminococcus and | genera such as Alloprevotella, Desulfovibrio,
Lachnospiraceae_UCG-003, Paraprevotella, Anaerotruncus, Prevotella_2,
46.95 + Gut
Faeces samples of 36 BC | 9.87 vs. microbiota by and Tyzzerella_4.
Yao (2020) 2019 . . Alloprevotella: Adversely related to peak pain during movement within
patients 49.18 + Tllumina
pda Sequencing the first ?4 .hours. Fr = 0592, p = 0.001) ‘
Desulfovibrio: Anxiety symptoms are adversely linked. (r = 0.448, p =
0.006)
Faecal microbiota richness: | as the sleep quality deteriorated.
No difference in o-diversity between the two groups.
A substantial difference between the two groups was discovered using
PERMANOVA (p = 0.02).
Propionicimonas and Micrococcaceae, Caulobacteraceae,
L Breast Rhodobacteraceae, Nocardioidaceae, and Methylobacteriaceae, which
Needle biopsies from 72 microbiota by appeared to be ethnic-specific, were among the enhanced microbial
Meng (2018) = NA BC patients and 22 52 B : ; I
benign patients Illumma‘ bu?markers in canf:erous nssrm ) )
Sequencing With the progression of malignancy, the Bacteroidaceae declined, and
that of Agrococcus increased.
The OTUs provided 4 phyla (Proteobacteria, Firmicutes, Bacteroidetes, | (57)
Core Needle Biopsy Breast and Actinobacteria).
Costantini NA (CNBs) and Surgical 55 microbiota by | Ralstonia, Methylobacterium, and Sphingomonas accounted for roughly
(2018) Excision Biopsy (SEBs) Ion PGM 50-75% of relative abundances.
from 16 BC patients Sequencing The Staphylococcus and Pseudomonas and the Bradyrhizobiaceae and
Rhodocyclaceae families accounted for 25-50% of the total.
A total of 20 bacterial phyla and 419 genera were found in which (60)
Proteobacteria (59.4%) was the most common phylum, followed by
Actinobacteria (19.1%), Firmicutes (17.7%), and Bacteroidetes (1.9%).
Top 5 bacterial genera are Ralstonia (19.1%), Staphylococcus (6.4%),
unclassified Bradyrhizobiaceae (5.5%), Rubrobacter (5.4%), and
Pseudomonas (4.1%).
Microbiota compositional differences were found between WNH and
BNH groups of TNBC patients, but no significant differences were
i detected for TPBC patients.
Freshfrazenitissueiaf 23 The p-diversity infeess of bt WNH (ANOVA, p = 002) and BNH
BC patients, including Breast ; : +
Thyagarajan 13 White non-Hispanic mlerobiotaby (AMOVA.. P = 0.07) showed differences in tumour and normal tissue of
NA NA . TNBC patients.
(2020) (WNH) and 10 Black [Humina BNH patients with TNBC: Shannon diversity (p = 0.05) and evenness
non-Hispanic (BNH) Sequencing

patients

(p = 0.04) in tumour tissues were significantly lower than the normal
adjacent tissue.

'WNH patients with TNBC: Shannon diversity (p = 0.04) and richness
(ACE, p = 0.004; Chaol, p = 0.006) of tumour tissue were significantly
higher than the normal adjacent tissue, and higher richness (ACE, p =
0.06; Chaol, p = 0.06) in tumour than in normal tissue.

All with TPBC: No significant difference of microbial o-diversity
between tumour and adjacent tissue, but higher richness (ACE, p =
0.04; Chaol, p = 0.05) of tumour tissue than the normal tissue was
found.

NA, not available; BC, breast cancer; TPBC, triple-positive breast carcinoma; TNBC, triple-negative breast carcinoma; TILs, tumour-infiltrating lymphocytes; OTUs, operational taxonomic

units; ACE, abundance-based coverage estimator; AMOV A, analysis of molecular variance.
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Napefias
(2010)

Fruge
(2020)

Wu
(2020)

Chiba
(2020)

Guan
(2020)

2004-
2006

2014-
2017

NA

2004-
2014

NA

Buccal mucosa
samples from 9
newly diagnosed BC
patients collected
before and after
chemotherapy (CTx)

Faecal samples from
overweight and obese
32 EOBC patients
were collected at
baseline visits shortly
after diagnosis and
follow-up visits
before surgery

Faecal samples from
4 BC patients with
no CTx, 13 with neo-
adjuvant therapy, and
16 with adjuvant
therapy.

Fresh frozen tissue
samples from 18 pre-
treatment groups, 15
neoadjuvant CTx
(Neo-CTx) groups,
and 9 recurrence
group

Fresh frozen tissue
samples from 15 BC
patients and 16
benign patients

SD)

First-round CTx with

533 +12.1 | adriamycin 60 mg/m* and
Cytoxan 600 mg/m®
Attention-control arms:
diet + exercise (average 30
+ 9 days)

61+9 Weight-loss arm: diet +
exercise + proper
guidance (average 30 + 9
days)

Neoadjuvant and adjuvant

50.6 £123 CTx, radiation, and
surgery

Pre-Tx: 65.3

+8.9

Neo-CTx: Neo-CTx (Doxorubicin

589 +10.1 Treatment)

Recurrence:

64.3+79
CTx with single-agent

s0 capecitabine in either

conventional regimens
(1,000-1,250 mg/m? twice

method

Oral
microbiota
by ABI
Sequencing

Gut

microbiota
by Illumina
Sequencing

Gut
microbiota
by Tllumina
Sequencing

Breast
microbiota
by Tllumina
Sequencing
and breast
tumour
microarrays

Breast

microbiota
by Illumina
Sequencing

There were 41 species found in pre- (> 85%) (63)
and post-CTx samples, with Gemella
haemolysans and Streptococcus mitis
dominating.

Seven species (17%) emerged only before
treatment, while 25 (61%) appeared only after
CTx.

Species that appeared exclusively after CTx
belong to Lachnospiraccae, Acidaminococcus,
Clostridiales, Oribacterium, Johnsonella,
Peptostreptococcus, Aggregatibacter,
Haemophilus, Bacteroidetes, and species such
as Filifactor alocis, Veillonella parvula,
Lactobacillus gasseri, Granulicatella adicans,
and Selenomonas noxia.

No significant relative abundance of (64)
Akkermansia muciniphila (AM) over time (p
= 0.419) between low AM (LAM) and high
AM (HAM).

An additional 40 OTUs differed between
LAM and HAM (p < 0.2), with more
Prevotella and Lactobacillus genera in HAM
vs. LAM and lower Clostridium,
Campylobacter, and Helicobacter.

Significant differences of B-diversity between
LAM and HAM. (p = 0.002)

Microbial richness and o-diversity were
found to be larger in HAM (p < 0.05), with
HAM individuals having roughly 25% more
species present in stool samples at baseline. (p
=0.008)

In total, 13 taxa differed between those with (66)
HER2+ vs. HER2- tumours (p < 0.001), 3
taxa between ER+ and ER~ tumours, and 2
taxa between PR+ and PR~ tumours.

No significant o-diversity or phyla
composition by ER/PR status, tumour grade,
stage, parity, and body mass index, but had
significant relationships with HER2 status
and age at menarche.

HER2+ vs. HER2- BC showed 12-23% lower
a-diversity (p = 0.034), revealing low
Firmicutes (p = 0.005), and high
Bacteroidetes (p = 0.089).

Neo-CTx shifted the breast tumour (65)
microbiota, and specific microbes were
correlated with tumour recurrence.

No significant difference in bacterial load at
phylum-level, but indicated a significant
increase of Pseudomonas and drop of
Prevotella. (p < 0.05)

A significant reduction of bacterial diversity
(p < 0.05) was found within the tumour.
No alteration of bacterial load and diversity
in the recurrence group, but provided a
significant increase (p < 0.05) of
Brevundimonas and Staphylococcus with no
changes of Pseudomonas and Prevotella.

Lower unweighted-Unifrac index was found (67)
in the metronomic group than routine group.

(p = 0.025)

No significant drop in three o-diversity

daily, given on days 1-14
every 3 weeks) or
metronomic regimens
(500 mg, thrice daily)

indices in the metronomic in compared with
routine group.

Patients with Slackia gut microbiota had a
significantly shorter median progression-free
survival (PFS) (9.2 vs. 32.7 months, p =
0.004) while patients with Blautia obeum had
a longer PFS (32.7 vs. 12.9 months, p =
0.013).

NA, not available; BC, breast cancer; EOBC, early stage breast cancer; CTx, chemotherapy; Neo-CTx, neoadjuvant chemotherapy; OTUs, operational taxonomic units; ACE, abundance-based
coverage estimator; AMOV A, analysis of molecular variance.
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PrM patients: 1 Enterobacteriaceae (E. coli and lactose non-fermenters; p (41)
< 0.001), aerobic streptococci, and lactobacilli; anaerobes (Clostridia,
Bacteroides, and Lactobacilli; p < 0.001); No significant increase for

Minelli BC patients (4 PrM
iy NA patents ({Fi] NA by Microbial anaerobic cocci.
(1990) and 14 PoM) and 30 . -
R cultures PoM < 5 years: 1 Bacteroides, and Clostridia. (p < 0.001)
ealthy subjects
L PoM > 5 years: 1 Lactobacilli, E. coli, Enterobacteria, Bacteroides, and
Clostridia. (p < 0.05)
The bacterial load and species of BC was significantly higher than that of | (42)
healthy women.
Benini Faeces samples of 28 Gut microbiota PrM patients: 1 E. coli, aerobic and anaerobic Lactobacilli, Bacteroides,
(fg"g"z‘)‘ NA BC patients and 45 NA by Microbial and Clostridia. (p < 0.01)
healthy subjects cultures PoM < 5 years: 1 E. coli and Bacteroides, | Enterococci. (p < 0.01)
PoM > 5 years: 1 E. coli, Bacteroides, and Clostridia (p < 0.05); | Fungi.
(p <0.01)
Goedert Sequencing revealed 1,561 microbial taxa. (44)
(2015) A significant difference in genus composition of gut microbiota between
patients and controls (unweighted UniFrac p = 0.009).
Faeces samples of 48 Gut microbiota  Decreased a-diversity of gut microbiota (p < 0.004) at patients than that | (45)
NA BC patients and 48 62 by Ilumina of controls, except for the Shannon index (p = 0.09).
Goedert controls Sequencing Showed alteration of the composition of their IgA-positive (p = 0.02) and
(2018) IgA-negative (p = 0.05) intestinal microbiota and significant reduction of
o-diversity (p < 0.05) in BC patients after adjusting for estrogens and
other factors.
PrM: There were significant differences in the relative abundance of 45 species (15)
37.06 vs. o between PoM patients and controls; 38 species were enriched in PoM
Faeces samples of 62 Gut microbiota . . 3 ; : 3
Zhu (2018) | NA BC patients and 71 3552 by Hlumina patients, including E. coli, Klebsiella sp_1_1_55, Prevotella amnii,
P PoM: 4 . Enterococcus gallinarum, Actinomyces sp. HPA0247, Shewanella
controls Sequencing ; s y
57.45 vs. putrefaciens, Erwinia amylovora, and 7 species were less abundant,
56.89 including Eubacterium eligens and L. vaginalis.
Found 49 significantly different flora and 26 different metabolites (50)
Faeces samples of 25 Lo between groups.
Gut biot:
2017~ BC patients and 25 u mlCl?O ot BC: | Firmicutes, Bacteroidetes, and Faecalibacterium; 1
Ma (2020) 5 s NA by Illumina i 5 : ;
2018 benign patients as . Verrucomicrobiota, Proteobacteria, and Actinobacteria.
Sequencing i & -
controls Revealed significant difference of B-diversity between groups and lower
o-diversity in BC group. (p < 0.05)
It was divided into weight-gain (WG) and weight-loss (WL) groups (52)
based on the weight difference > 3% after neoadjuvant chemotherapy.
i, |
i ichia, i it und i
Yulzari NA BC and 5 benign NA by Illumina the WG gr:)yupp TSP
2020, 2 tient: S i 3
( ) cancer patients equencing Their B-diversity (p = 0.012) revealed significant differences between the
groups, and significant increase in o-diversity (p = 0.01) in the WG
women.
Firmicutes/Bacteroidetes ratio was largely higher in BC than controls. (53)
BC patients: | Acidobacteria, Nitrospirae, Fusobacteria, and
Cyanobacteria/Chloroplast; 1 Synergistetes; the top 10 bacterial species
Facces samples of 54 Gl pioroiota Ihﬂ‘t signiﬁ.canﬂy dec.reased are AIIisone.Iltf, Megasphamjr, Pediacoc‘cus.
N 39.74 vs. R Abiotrophia, Granulicatella, and Clostridium_sensu_stricto belonging to
He (2021) 2019 BC patients and 28 by Illumina o : 4 2
3754 ! Firmicutes, Serratia and Enhydrobacter belonging to Proteobacteria,
controls Sequencing i X . . 3
Fusobacterium belonging to Fusobacteria, and Slackia belonging to
Actinobacteria.
PrM BC patients and normal PrM women could be distinguished by
Pediococcus and Desulfovibrio.
The o-diversity metrics are strongly and inversely associated with the (54)
Faeces samples of 379 BC: 50.8 z 3 odds of BC, and for those in the highest vs. lowest tertile of observed
A Gut microbiota )
Byrd - BC, 102 benign NM: o ASVs, the odds ratio was 0.21 (pyena < 0.001).
(2021) patients (NM), and 414 38.8 SZ " No significant difference of o.-diversity for NM and BC grade/molecular
healthy controls (NC). | NC:469 | ~cauenciné subtype.
The B-diversity distance matrices and multiple taxa with possible
estrogen-conjugating and immune-related functions are associated with
BC. (p < 0.001)
96.6% of all samples are Proteobacteria, Firmicutes, Actinobacteria, (43)
Bacteroidetes, and Verrucomicrobia.
Breast An inverse association of BC stage and bacterial load was observed in
Xuan NA 20 tumour tissue and 6343 microbiota by tumour tissue but not in paired normal tissue.
(2014) 20 paired normal tissue : Pyrosequencing,  BC patients (100%, p = 0.015): 1 Methylobacterium radiotolerans
Tllumina (66.67%, 2/3 OTUs)
Paired normal tissue (95%, p = 0.0097): 1 Sphingomonas yanoikuyae
(50%, 4/8 OTUs)
Obtained 121 OTUs based on 97% sequence similarity which includes 7 (13)
Breast tissue from different phyla, 57 g.enelta, a.nd 25 spefles, ) .
. ) ) Phyla: Proteobacteria, Firmicutes, Actinobacteria, Bacteroidetes,
Canadians including ! o .
27 BC, 11 benign, and Breast Deinococcus-Thermus, Verrucomicrobia, and Fusobacteria.
Urbaniak > gn, ‘microbiota by Canadian: Bacillus (11.4%), Acinetobacter (10.0%), Enterobacteriaceae
2012 5 healthy subjects, and ~ NA o .
(2014) h ) Ton-Torrent (8.3%), Pseudomonas (6.5%), Staphylococcus (6.5%), Propionibacterium
Irish accounting for 33 N ;
- sequencing (5.8%), Comamonadaceae (5.7%), Gammaproteobacteria (5.0%), and
BC patients and 5
health: Prevotella (5.0%)
eal
¥ Irish: Enterobacteriaceae (30.8%), Staphylococcus (12.7%), Listeria
welshimeri (12.1%), Propionibacterium (10.1%), and Pseudomonas (5.3%)
. Breast Prevalent viral, bacterial, fungal, and parasitic genomic sequences were (46)
FFPE tissue samples U X
’ microbiota by detected in the TNBC samples.
) from 100 BC patients, : : : :
Banerjee ) Tllumina Bacterial profile in TNBC: Prevalence of Arcanobacterium (75%),
NA 17 adjacent healthy NA . ' ) ) P
(2015) " £ the patient Sequencing and followed by Brevundimonas, Sphingobacteria, Providencia, Prevotella,
ssue of the patients,
b e pan-pathogen  Brucella, Eschherichia, Actinomyces, Mobiluncus, Propiniobacteria,
Feey Microarray Geobacillus, Rothia, Peptinophilus, and Capnocytophaga.
The microbial profiles differed between normal adjacent tissue of BC (47)
P s tssiie:of _— patients and tissue from healthy c(.)nlmls .(p < 0.01), and the sirnvilarity
: g i was found between the normal adjacent tissue and the tumour tissues.
Urbaniak 45 BCs, 13 benign microbiota by ; . .
NA ) 53i5 N BC patients: 1 Bacillus, Staphylococcus, Enterobacteriaceae,
(2016) patients, and 23 Tllumina :
health: il S y Comamondaceae, and Bacteroidetes.
ealthy controls equencin
24 . s Healthy subjects: 1 Prevotella, Lactococcus, Streptococcus,
Corynebacterium, and Micrococcus.
Bieast The microbiota of breast tissue, breast skin swabs, and buccal swabs (48)
) Fresh frozen tissue of - differed from the microbiota of breast skin tissue, and also between BC
Hieken . microbiota by : G
NA 17 BC and 16 benign 60 . and benign breast tissue.
(2016) . Tlumina . . .
patients N BC patients: 1 Fusobacterium, Atopobium, Gluconacetobacter,
Sequencing ;
Hydrogenophaga, and Lactobacillus
Breast Microbiota a7
No significant differences in o.-diversity or microbial composition
between BC and paired normal tissue in those patients. (p = 0.32)
Significant difference of breast microbiota between groups (p = 0.03) at
which decreased Methylobacterium (p = 0.03) were found.
Breast tissue, mid- Breast, urine, Oral Microbiota
Wan, 2014 stream urine, and oral and oral No significant compositional differences and diversities of oral
(2017g) 2016 rinse from 57 BC 52.82 microbiota by microbiota.
patients and 21 healthy Tllumina Urine Microbiota
subjects Sequencing No distinct clusters between groups (p = 0.09).
It was largely different by menopausal status (p = 0.02), with peri/post-
menopausal women showing reduced Lactobacillus.
Independent of menopausal status, BC patients had high gram-positive
organisms including Corynebacterium (p < 0.01), Staphylococcus (p =
0.02), Actinomyces (p < 0.01), and Propionibacteriaceae (p < 0.01).
BC tissue: Proteobacteria (48%), Actinobacteria (26.3%), Firmicutes (18)
i st Bloeks oF theast ) (16.2%), O%hers (9.5%) from \‘lvanous phyla; 1 abundance for S. pyogenes
Thompson microbiota by and L. rossiae. L. fleischmannii and, to a lesser extent, N. Subflava were
NA 668 BC and 72 healthy NA N 3 N N . )
(2017) sibiects Tlumina found. H. influenza was associated with genes involved in tumour
Jects. Sequencing growth pathways.
Non-cancerous adjacent tissue: The abundance ranges from 0.5 to 19.3%,
though these species make up 85.64% of the entire microbiota in breast
tissue.
The TNBC and TPBC samples had unique patterns, however, the ER+ (14)
and HER2+ samples had comparable microbial signatures.
st Fungi: only 7 fungal families (Aspergillus, Candida, Coccidioides,
re
FFPE tissue samples ) . Cunninghamella, Geotrichum, Pleistophora, and Rhodotorula).
. 2 microbiota by < . . .
Banerjee NA from 148 BC patients NA Tt Parasites: Ancylostoma, Angiostrongylus, Echinococcus, Sarcocystis,
(2018) and 20 healthy . Trichomonas, and Trichostrongylus were uniquely associated with TPBC.
) Sequencing and L ) . )
subjects. 3 Balamuthia signatures were associated significantly with hormonal BC
Microarray " i
samples, and that of Centrocestus, Contracaecum, Leishmania, Necator,
Onchocerca, Toxocara, Trichinella, and Trichuris were detected
significantly only with TNBC samples.
Normal vs. Tumour: | Pseudomonadaceae (Proteobacteria), (49)
Sphingomonadaceae (Bacteroidetes), and Ruminococcaceae (Firmicutes);
1 Actinomycetaceae (Actinobacteria)
Tumour: 1Clostridia, Bacteroidia, WPS_2, Ruminococcaceae (LDA > 4)
Normal pairs: 1 Pseudomonadaceae, Sphingomonadaceae, and
Caulobacteraceae (LDA > 5).
Fresh frozen tissue Breast Stage 1: 1 Proteobacteria; Ruminococcaceae (Firmicutes), and
reas
Smith from 64 BC patients, microbiota b Hyphomicrobium (Proteobacteria).
NA 11 adjacent healthy 45 _ td Stage 2: 1 Euryarchaeota, Firmicutes, and Spirochaetes; Sporosarcina
(2019) X N Tllumina o
tissue of the patients, P— (Firmicutes)
and 8 healthy subjects. ARERERE Stage 3: 1 Thermi, Gemmatimonadetes, and Tenericutes; Bosea
(Proteobacteria)
Luminal A tumours: T Xanthomonadales (Proteobacteria) (LDA > 5);
Luminal B tumours: 1 Clostridium (Firmicutes);
HER?2 tumours: 1 Akkermasia (Verrucomicrobia) (LDA = 4)
TNBC: Streptococcaceae in TNBC; also Streptococcaceae, Ruminococcus
(both Firmicutes) (LDA > 3.5)
There were significant differences in bacterial diversity between tumour (51)
Breast and normal breast tissue, as well as differences in composition between
Klann Breast tissue samples aiicrabistaib women and breasts from the same woman.
NA of 10 BC patientsand  NA g i The most abundant phyla are Bacteroidetes, Firmicutes, Proteobacteria,
(2020) Tlumina N
36 healthy samples. P— and Actinobacter.
& e The most abundant OTUs are Ruminococcaceae and Acidaminococcus,
Acinetobacter, Akkermansia, Bacteroides, and Sutterella.
Bacterial species were more diverse and more likely to be present at high (19)
fDNA of 3 BC Br.east ) lev.els in EOBC. patien{s. )
Huang 2006- Stihis i 2 Kaalili N& microbiota by Acinetobacter johnsonii XBBI and low Mycobacterium spp. were
(2018) 2015 l: abjects Y Tllumina discovered in all healthy females but were also found in an EOBC
d Sequencing patient, but large titers of bacterial cfDNA in EOBC patients were

obtained from Pseudomonas or Sphingomonas spp.

NA, not available; BC, breast cancer; IgA, immunoglobulin-A; PrM, pre-menopausal patients; PoM, post-menopausal patients; EOBC, early breast cancer; OTUs, operational taxonomic units;

cfDNA, cell-free DNA.
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Breast Cancer Cases Healthy Control Mean Difference Mean Difference
Study or Subgroup Mean SD Total Mean SD Total Weight IV, Random, 95% CI IV, Random, 95% CI
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Study type Participants, n

Minelli 1990 - Case-control Ttaly 48 25-52 (41)
Benini 1992 = Case-control Ttaly 73 25-52 (42)
Xuan 2014 - Case-control USA 20 - (43)
Urbaniak 2014 2012 Case-control Canada and Ireland 81 18-90 (13)
Goedert 2015 I (44)
- Case-control USA 96 50-74
Goedert 2018 (45)
Banerjee 2015 = Case-control USA 137 = (46)
Urbaniak 2016 - Case-control Canada 71 19-90 (47)
Hieken 2016 - Case-control USA 33 33-84 (48)
Wang 2017 2014-2016 Case-control USA 78 - a7
Thompson 2017 - Case-control USA 740 - (18)
Huang 2018 2006-2015 Case-control Taiwan 5 - (19)
Banerjee 2018 - Case-control USA 168 (14)
Zhu 2018 - Case-control China 133 - (15)
Smith 2019 - Case-control USA 83 18-72 (49)
Ma 2020 I 2017-2018 Case-control China 50 - [ (50)
Klann 2020 = Case-control Switzerland 46 - (51)
UzanYulzari 2020 - Case-control Israel 33 18-75 (52)
He 2021 2019 Case-control China 82 18-49 (53)
Byrd 2021 - Case-control Ghana 895 18-74 (54)
Luu 2017 - Cohort France 31 39.6-79.3 (55)
Meng | 2018 - Cohort China 94 29-77 1 (56)
Costantini 2018 = Cohort Ttaly 16 46-82 (57)
Shi 2019 2017 Cohort China 80 <45, 45-59, 260 (58)
Yoon 2019 2016-2017 Cohort Korea 121 32-78 (59)
Thyagarajan 2020 - Cohort USA 23 27-78 (60)
DiModica 2021 2017-2019 Cohort Italy 24 - (61)
Yao 2020 2019 Cohort China 36 - (62)
Napenas 2010 2004-2006 Non-randomized trials USA 9 33-69 (63)
Fruge 2020 2014-2017 Non-randomized trials ~ USA 32 = (64)
Chiba 2020 2004-2014 Non-randomized trials USA 42 - (65)
Wu 2020 - Non-randomized trials USA 37 (66)

Guan 2020 - Non-randomized trials China 31 36-66 (67)
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Oncotype score (<18 vs 218) 134 1.56-115 0,01
Oncotype score 1.21 1.04-1.40 0,01
Age 0.99 0.80-1.23 0,96
PR >20 1.32 0.15-11.3 0,80
Tumor size 0.97 0.86-1.08 0,58
Histologic grade (1vs 2-3) 1.43 0.16-12.3 0,74
| Stage 1 vs Stage 2 0.41 0-1806 0,55
Clinical risk score (low vs high) 0.89 0.16-4.89 0,90
Lympbhatic invasion 0.26 0-31.2 0,31
Vascular invasion 0.039 0-146 0,32

* Insufficient number of postmenopausal patients under the age of 45 to assess menopausal status.
P-values that are less than 0.05 are accentuated in bold within the table.
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P-values that are less than 0.05 are accentuated in bold within the table.
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Chemo-endocrine Group*

Age <45yr 87.4 0,26
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Postmenopausal 95.2

*DFS could not be evaluated because there was no recurrence in patients with an ODx<18 in
the chemoendocrine group. ET, endocrine therapy; CT, chemotherapy.
P-values that are less than 0.05 are accentuated in bold within the table.
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Cell type

Cancer stem
cells (CSCs)

Liver
sinusoidal
endothelial
cells
(LSECs)

Hepatocytes

Liver
macrophages

Kupffer cells
(KCs)

Cancer-
associated
Fibroblasts
(CAFs)
Hepatic
stellate cells
(HSCs)

Neutrophils

Myeloid-
derived
suppressor
cells
(MDSCs)

Regulatory T
cells (Tregs)

Molecules or cytokines

TGF-B1 pathway promote liver metastasis of breast cancer by inducing the
CD44"¢"/CD24" breast cancer stem cell population (68, 69)

TNF-0. or IL-1 stimulate the attachment of tumor cells to LSECs and lead
extravasation (49-51); LSECs secret fibronectin induce EMT and promote
metastasis (72); CXCL12, ICAM-1, STAT3, PD-L1 and microRNA-20a expressed
by LSECs interact with cancer cells and involve in liver metastasis (64)

Claudin-2 (52, 79-81), E-cadherin (82) promote the adhesion between tumor cells
and hepatocytes; hepatocytes release IGF-1 and HGF to promote metastasis (53);
HGF-like protein secreted by hepatocytes activate RON to promote metastasis

(53)

M1 to M2 repolarization induced by IL-4, IL-13 and STAT6 pathway contribute to
metastasis (57, 58, 84, 85); PLD-2 promote TAMs infiltration in breast tumor and
liver metastasis (86)

KCs relase oxygen metabolites, cytotoxic cytokines, proteases, TNF-or and IL-1p to
damage disseminated tumor cells (53, 85, 87, 88); KCs decrease cancer cells by
promoting secreting GM-CSF and IFN-y (53); KCs release growth factors (HGF,
VEGF), cytokines (TNF-0, II-1, IL-1pB, IL-6 and IL-10), MMP9 and MMP14 to
promote extravasation (49-51, 53) and outgrowth of metastases (53, 59-61)

CAFs promote metastasis through exhibiting antitumor immune suppression
depends on CXCL12 or NOX4 signaling (89, 90)

Activated HSCs promote metastasis through exhibiting antitumor immune
suppression response by releasing potent immune suppressor TGF-p (46); HIF-1
activates TWIST and promotes the binding of VEGF to VEGFR to contribute liver
metastasis (92); RLN target activated HSCs inhibit metastasis (92)

Neutrophils inhibit tumor growth by releasing cytolytic factors (40); aged
neutrophil promote metastsis by releasing promoting factors (96); neutrophil-
derived transferrin promote metastasis (97); loss of p53 in cancer cells triggers
‘WNT-dependent systemic inflammation promote metastasis (98)

MDSCs can be recruited to the metastases by chemokines (CXCL1 and CXCL2)
(100); S100A8/Grl-positive MDSCs (101) can promote growth and aggressiveness
of cancer cells by producing arginase and IL-6 (102-104)

Interaction with other cells

Interaction between CSCs and liver microenvironment cells promote
metastasis (70, 71)

Obstruction of the sinusoids by tumor cells can lead ischemia, trigger
inflammatory response and damage disseminated tumor cells (73~
78)

Tumor-hepatocyte interactions promote liver metastasis (52, 79-83)

M2 macrophage phenotype regulate EMT of breast cancer cells, and
promote liver metastasis (39)

KCs fused with exosomes secreted from cancer cells and contributed
to the premetastatic niche formation (44); KCs damage disseminated
tumor cells through recruitment of NK cells (85, 87, 88)

CAFs modify ECM which may facilitate cancer cell migration or act
as barrier (91)

Activated HSCs promote metastasis by organization of ECs into neo-
vessel network (62) and inducing LSECs and ECs to form vascular
tube (63); activated HSCs promote metastasis by inducing T cell
apoptosis and NK cells quiescence (93, 94); HSCs modify ECM
which may facilitate cancer cell migration or act as barrier (91, 95)

Neutrophils inhibit tumor growth through recruiting CD8" cytotoxic
T cells or macrophages (54, 99); physical interaction of neutrophils
with tumor cells enhance migration of tumor cells into the
extravascular space (55)

Tumor cells recruiting MDSCs can induce immune tolerance state to
contribute tumor growth (47, 48)

Tregs contribute metastasis by inhibiting antitumorigenic T-cell (65)

TAM, Tumor-associated macrophage; EMT, Epithelial-to-mesenchymal transition; NK cells, Natural killer cells; ECM, Extracellular matrix; EC, Endothelial cell; TGE-P, Transforming
growth factor-B; TNF, Tumor necrosis factor; CXCL, Chemokine (C-X-C Motif) ligand; NOX4, Nicotinamide adenine dinucleotide phosphate oxidase 4; IL, Interleukin; STAT, Signal
transducer and activator of transcription; PLD, Phospholipase D; HGF, Hepatocyte growth factor; ICAM-1, Intercellular adhesion molecule 1; PD-L1, Programmed cell death-ligand 1; IGF-
1, Insulin-like growth factor 1; HIF, Hypoxia induced factor; GM-CSF, Granulocyte macrophage colony stimulating factor; IFN-y, Interferon y; MMP, Matrix metalloproteinase; VEGE,
Vascular endothlial growth factor; VEGER, Vascular endothelial growth factor recepter; RLN, Relaxin.
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Hepatic
micoenvironment
cells

Breast cancer stem cells

Hepatocytes

Macrophages

NK cells
Neutrophils

Related moleculars or pathway

CD44, TGE-B1 pathway

Claudin-2, ECM components (such as fibronectin and type IV
collagen), integrin complexes

E-cadherin, ERK pathway
STATS, IL-4 and IL-13, CD47

Interleukin-15, interferon-y, CXCL12 and CXCR4
G-CSF, P53, WNT, KIAA1199, TGFB-CXCL3/1-CXCR2 axis

Therapeutic implications

bivatuzumab mertansine

Lyn-selective kinase inhibitor Bafetinib (INNO-406)

ROS1 inhibitors (crizotinib)

PLD inhibitors [FIPI (dual PLD1/PLD2 inhibitor) or
VU0155072-2 (PLD2 inhibitor)], cabazitaxel

Interleukin-15 based immunotherapy

LGK974 (a Porcupine inhibitor blocking acylation of
‘Wnant), KIAA1199 inhibitors

References

(68, 69, 145)
(52, 79-81)

(82, 146, 147)
(58, 86, 148,
149)
(94)
(97,98, 150~
152)

ECM, Extracellular matrix; PLD, Phospholipase D; NK cells, Natural killer cells; TGE-B, Transforming growth factor-B; ERK, Extracellular regulated protein kinases; IL, Interleukin; STAT, Signal
transducer and activator of transcription; CXCL, Chemokine (C-X-C Motif) ligand; CXCR, Chemokine (C-X-C motif) receptor; G-CSF, Granulocyte colony stimulating factor. Figure legends.
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Phase of liver
metastasis

1. The intravasation
phase

2. The premetastatic
phase

3. The tumor-infiltrating
microvascular phase

4. The pre-angiogenic
micrometastasis phase

5. The angiogenic
micrometastasis phase

6. The growth phase

Function

Primary breast cancer cells detach from surrounding cells and
intravasate into the circulation system

Form “premetastatic niche” in the liver permit breast cancer cells
entry and outgrowth

Breast cancer cells arrest in the sinusoidal vessels and lead to cancer
cell extravasation

Host stromal cells are recruited into avascular micrometastases in
the liver

Metastatic breast tumors in the liver become vascularized through
several possible interactions with the microenvironment

Metastatic breast tumors in the liver become a “clinical”
macrometastases

Involved cells References

MSCs; macrophages; endothelial cells; platelets; CAFs; (30, 31, 39,

myeloid progenitor cells; DCs; neutrophils 40)

HSCs; CAFs; KCs; MDSCs; Tregs; neutrophils (35-37, 41—
48)

M2 macrophages; HSCs; CAFs; neutrophils; LSECs;  (32-34, 39, 40,

hepatocytes; KCs 49-56)

M2 macrophages; LSECs; neutrophils; HSCs; KCs (40, 53, 56~

63)
M2 macrophages; LSECs; neutrophils; HSCs; KCs (40, 53, 56—
63)
Hepatocyes; HSCs; LSECs; M2 macrophages; (38, 47, 48,

neutrophils; MDSCs; Tregs; KCs 56-61, 64, 65)

MSC, Mesenchymal stem cells; DC, Dendritic cell; HSC, Hepatic stellate cell; CAF, Cancer-associated Fibroblast; KC, Kupffer cell; MDSC, Myeloid-derived suppressor cell; Treg, Regulatory
T cell; LSEC, Liver sinusoidal endothelial cells.
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