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Editorial on the Research Topic
Highlights in musculoskeletal pain 2021/22
Musculoskeletal pain refers to acute or chronic pain that affects musculoskeletal structures such as

bones, muscles, ligaments, tendons, and nerves, which has become the main cause of disability

around the world (1). According to the World Health Organization (WHO), there are 1.75

billion people globally with some form of chronic musculoskeletal pain (2). This condition

greatly impacts people’s life quality and well-being, and creates enormous socio-economic

burdens (3). Musculoskeletal pain comprises numerous types, and the prevalence varies. The

most common one is low back pain, which affects 30%–40% of adult patients; whilst

fibromyalgia only 2% (4). The prevalence of knee pain is 10%–15%, and 15%–20% for neck

and shoulder pain (5). Some risk factors have been identified to be associated with

musculoskeletal pain, such as smoking, diet, depression, and sedentary lifestyle (6). Though

progresses have been made in terms of neural mechanism and management strategy of

musculoskeletal pain, challenges still exist especially for the chronic musculoskeletal pain

characterized by sustained emotional distress and functional disability. In this special Research

Topic Highlights in Musculoskeletal Pain 2021/22, we collated a series of articles that provide

new knowledge about the epidemiology, mechanism or treatment of musculoskeletal pain.
Overview of the articles included in this Research Topic

Total twelve articles were collected in this Research Topic: four pieces of original clinical

research, three review articles, two original basic studies, one survey report, one hypothesis

and one perspective article.

Yalew et al. conducted a cross-sectional investigation among restaurant service staff in

Ethiopia to assess the prevalence of work-related low back pain and the associated factors.

More than two-fifth of those surveyed reported discomfort in low back area. Several

predisposing factors associated were identified such as female, long standing duration while

working and carrying out repetitive actions. Recommendations to prevent low back pain for

restaurant service staff were provided, including regular exercise and delivering safety training.

In another cross-sectional investigation in India, Sankaran et al. focused on school-going children

aged 10–16 from an urban and rural location, exploring the prevalence of musculoskeletal pain

among them and its relationship with backpack weight. They reported a high prevalence of
frontiersin.org
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musculoskeletal pain in these children, and demonstrated a significant

association between backpack weight and musculoskeletal pain.

To study how muscle-muscle interactions act, Dunn et al. tested

the modulating effect on hypertonic saline (HS)-induced forearm

muscle pain by concurrent infusion of normal saline (NS) into

adjacent, contralateral, and remote muscles, that is, the ipsilateral

hand, contralateral forearm, and contralateral leg. They showed

that subperceptual simultaneous infusion of NS into all these three

areas raised the HS-induced overall muscle pain in the forearm.

These results implicated the involvement of central nerval system

underlying the muscle-muscle interactions.

Administration of non-steroidal anti-inflammatory drugs (NSAIDs)

has been noticed to increase the risk of renal complication. Hayashi

et al. observed the renal function change of chronic musculoskeletal

pain patients with long-term administration of NSAID followed by

tramadol hydrochloride/acetaminophen combination tablets (TA).

They found that the estimated glomerular filtration rate (eGFR) of

patients with NSAIDs administration for 12 months was reduced

on cessation of this drug, but there was no reduction of eGFR after

TA administration for the following 12 months. This study

provides further evidence to highlight the strategy of multimodal

analgesic medication against musculoskeletal pain in terms of the

potential safety benefit.

Three review articles focused on the role of glia underlying

mechanism of nociception. Boakye et al. comprehensively reviewed

the process of microglia activation by secondary mediators released

from primary afferent neurons, and further the microglia-neuron

interaction in the spinal dorsal horn by tertiary mediators released

from activated microglia, following peripheral nerve injury in

neuropathic pain conditions. They presented an interesting paradox

that since many different mediators shared similar effect in the

peripheral and central nervous system, how inactivating one

mediator can cause the overall pain to be relieved. They also

highlighted the different roles of mediators between females and males.

The mini review completed by Gazerani discussed the involvement

of peripheral satellite glial cells (SGCs) in pain signaling. The potential

future directions in pain research were pointed out by summarizing

the promising avenues and the meaningful topics regarding SGCs.

Understanding the potential role of SGCs will aid the development

of new therapeutics to target pain in the future.

Cedeño et al. reviewed the role of glial cells underlying

mechanisms of pain alleviation by spinal cord stimulation using

neuropathic pain model in animals. They showed that the

approach of differential target multiplexed programming (DTMP)

of spinal cord stimulation significantly modulates the

transcriptomic profile of neuron and glia cells toward normal

levels, indicating a shift in the neuron-glial environment involves

in the analgesic effect of spinal cord stimulation.

In their original research article, Ahmed et al. explored whether a

gap junction protein (connexin 43) expressed in the trigeminal

ganglion is involved in persistent inflammatory hyperalgesia in the

temporomandibular joint (TMJ) of both male and female animals.

They reported that there was an increased connexin 43 expression

following inflammation in TMJ in female rats rather than males.

Interestingly, inhibiting connexin 43 in trigeminal ganglion

reversed TMJ inflammation-induced masseter muscle overactivity
Frontiers in Pain Research
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in a sex-independent way, indicating that connexin 43 was

involved in the enhancement of jaw muscle activity in both males

and females under TMJ inflammation.

In another original research article, Wang et al. explored the effect of

c-Jun N-terminal kinase (JNK) on modulating glutamine synthetase (GS)

in astrocytes. They observed that GS was activated and phosphorylation

of JNK was increased in astrocytes after exposure to lipopolysaccharide

(LPS). The changes in GS were reversed following endocannabinoid 2-

arachidonoylglycerol (2-AG) administration, but the activation of JNK

was not affected, suggesting the phosphorylation of JNK has no effect

on modulating of GS in astrocytes by 2-AG.

Clingan et al. presented a brief survey of currently available spinal

cord stimulator hardware sold in the United States for the treatment

of chronic pain. They introduced the features, indications, and

limitations which make each product unique. Understanding each

product’s nuances will aid the selection of most appropriate device

for patients with chronic pain.

In their hypothesis and theory article, Tuckey et al. proposed a novel

mechanism of interstitial inflammatory stasis and lymphatic drainage

impairment underlying chronic musculoskeletal pain. They hypothesize

that inflammatory substance may be entrapped in interstitial space and

lymphatic pathways following immune activity or trauma, leading to

the interstitial stasis of inflammation. Then the sympathetic

mechanism was activated which further decrease blood perfusion and

disable the local lymphatic pumping, leading to additional interstitial

stasis. This feed-forward loop may play a vital role in the development

and maintenance of chronic musculoskeletal pain.

In their perspective article, Schmid et al. come up with a novel

cross-disciplinary approach to fill important knowledge gaps in low

back pain research, by connecting methods from neuroscience and

biomechanics research including functional magnetic resonance

imaging, psychological analysis, optical capturing of motion and

digital modeling of musculoskeletal system. This novel approach

may aid the clarify of motor-control strategy with different

phenotypes and the development of better treatment options.
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Survey of Spinal Cord Stimulation
Hardware Currently Available for the
Treatment of Chronic Pain in the
United States
Josephine A. Clingan 1, Ashish Patel 2 and Dermot P. Maher 3*

1 Southeastern Interventional Pain Associates, Atlanta, GA, United States, 2Geisinger Medical Group, Danville, PA,

United States, 3 Johns Hopkins School of Medicine, Baltimore, MD, United States

Background: The number of spinal cord stimulator (SCS) units sold in the United States

(US) for the treatment of chronic pain has increased with a corresponding expansion in

the number of different SCS platforms available. Each marketed stimulator has several

unique features, indications, and limitations, which distinguish one from the other and

makes the selection of appropriate hardware possible for optimal patient care. There are

an even greater number of similar and overlapping features between SCS.

Measures: We used market analysis techniques to survey the currently available

SCS technology. We then reviewed published device specifications and manuals for

comparison of features.

Outcomes: As of 2020, there are nine commonly used SCS platforms made by four

manufacturers including four SCS units from Abbott, three from Boston Scientific, and

one each from Medtronic and Nevro.

Conclusions: A working understanding of each SCS product’s nuances is needed for

selecting the most appropriate device with which to manage chronic pain patients. Here

we present a brief survey of currently available SCS hardware in the US and the features

that make each product unique.

Keywords: spinal cord stimulation, neuromodulation, chronic pain, practice management, pain treatment, medical

devices

INTRODUCTION

The point prevalence of chronic low back pain (cLBP) among all adults in the United States (US)
is 13.1% (1). Several factors have been identified to confer a more than doubling of the adjusted
odds ratio (aOR) of cLBP including being between 50 and 69 years old (aOR 2.03–2.07), having
less than a high school education (aOR 2.27), having an annual household income <$20,000 (aOR
2.29), income derived primarily from disability (aOR 2.62), depression (aOR 3.30–10.62 depending
on severity), sleep disturbances (aOR 3.90), and other medical comorbidities (aOR 2.49–6.09) (1).
The lifetime prevalence of acute LBP is nearly 80% in the United States (2). There is concern that as
the US population ages and attains increasing risk factors for the development of cLBP, there will
be a need for increased treatments (3).
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The treatment of cLBP pain represents a major financial
burden on the US health-care system. The 12 month health-
care expenditures of adult patients with LBP in the US was
found to be $25,613 (95% confidence interval $25,569–$25,657)
among patients who underwent spine surgery compared to $795
($790–800) among patients who chose non-surgical treatments
(4). The two major considerations when choosing a spinal cord
stimulation (SCS) system are efficacy, which is often equivalent
to spine surgery, and cost, which is substantially less than spine
surgery. SCS represents a continuously evolving technology with
evidence for cost-effective management of cLBP. The use of
older, non-rechargeable implanted pulse generators (IPGs) was
associated with similar incremental cost utilization ratio (ICUR)
compared to surgical reoperation for the treatment of LBP (0.59
vs. 0.83) (5). The use of SCS for the treatment of neuropathic leg
and LBP was associated with higher upfront costs compared to
conventional medical therapy ($19,486 vs. $3,994) but increases
in health-care-related quality of life and EuroQol-5D (EQ-5D)
scores at 6 months (6).

The utilization of SCS therapy for the treatment of
chronic painful conditions continues in the US due to well-
documented efficacy. The rapid development of SCS systems
over time necessitate continuously updated reviews of available
hardware (7). There exists a number of different products
available in the US, each with its own unique features,
indications, and limitations. The purpose of this review is to
succinctly present the unique and differentiating aspects of
commonly available SCS systems currently available on the
US market. The intention of the review is that it will be a
periodically updated resource that will reflect changes in available
SCS products.

METHODS

This study only gathered data that was publicly available. As
such, the study did not require Internal Review Board approval.
Internet search tools including MEDLINE, EMBASE, Google
scholar, and Google were used to identify SCS products. Searches
included terms such as “spinal cord stimulation” “dorsal column
stimulation.” Title and abstracts were iteratively reviewed for
relevance with particular emphasis placed on high-quality health-
care market assessments and product details provided by either
device manufactures or independent, non-biased sources (e.g.,
FDA and other government agencies). Data was excluded if
it described products that were not approved and available
for patients to use in the United States in 2020 for the
intended implantation in spine. This resulted in the exclusion
of SCS devices available in other countries as well as for
other indications, such as vagal nerve stimulators, which were
not relevant to our analysis. Additionally, reviews focusing
on mechanism of action or clinical effectiveness were not
included as this was not the primary goal of the manuscript. All
authors were involved in gathering and interpreting information.
Unique features of products were then confirmed using from
several sources, including product manuals, medical conference
proceedings, published investor and business development

reports, publicly available company due diligence reports, peer-
reviewed medical literature, and device manufacturer-produced
literature. When necessary, clarification was made through
requesting additional documentation from device manufacturer
sales teams and engineering support personnel. Endnote X9 was
used to manage references and data sources (Clarivate Analytics,
Philadelphia PA).

RESULTS

There are currently nine different SCS units commonly-available
for the treatment of pain in the United States. The features of
each device are presented in Table 1. Data was derived from
a number of sources (8–16). Eight of the product’s leads are
intended to be placed over the dorsal columns of the spinal
cord, and one product’s leads are intended to be placed over
the dorsal root ganglion. While the dorsal root ganglion is not
technically a part of the spinal cord, the provided mechanism
of action and treatment indications of this device makes it more
appropriately discussed with spinal cord stimulators rather than
peripheral nerve stimulators. Different batteries have unique
warranty of between 2 and 10 years, while most are expected
to last longer than this prior to the need to be replaced. Four
of the systems do not use rechargeable batteries and five of the
systems do use rechargeable batteries. Recharging times range
from 15 to 120min. The frequency and rate of recharging is
generally a function of the stimulation settings. With regards to
MRI compatibility, five of the spinal cord stimulator systems are
full-body conditional, and two are compatible with only head and
extremity imaging, one is not MRI compatible, one is compatible
only with cranial imaging. Each device has a unique definition
of conditionality with MRI that should be carefully considered
prior to imaging. Two of the devices do not need to be deactivated
while driving, and seven do need to be deactivated while driving
when used to treat LBP and/or lower extremity pain. Seven are
capable of burst frequency programing. The exact definition of
“burst frequency programming” varies between devices and is
provided in the footnotes of Table 1. The sizes of the IPG for each
system are presented in Table 2. The Medtronic Intellis system
currently has the thinnest IPG. Older units that still appear
on company websites but are not highly marketed are listed in
Table 3.

CONCLUSIONS

The ongoing development of SCS technology has led to the
commercialization of several products on the US market, each
with unique properties. This ever-expanding armamentarium
allows physicians to individualize pain treatment and overcome
previously existing treatment barriers. The current selection
of SCS technologies has improved over previous generations
through the refinement of SCS technologies including the
miniaturization of IPGs, extended battery life, unique/novel
waveforms and programming options, improved designs to ease
trials and implantation, and a reduction in limitations of use,

Frontiers in Pain Research | www.frontiersin.org 2 November 2020 | Volume 1 | Article 5729079

https://www.frontiersin.org/journals/pain-research
https://www.frontiersin.org
https://www.frontiersin.org/journals/pain-research#articles


C
lin
g
a
n
e
t
a
l.

S
u
rve

y
o
f
S
p
in
a
lC

o
rd

S
tim

u
la
tio

n
H
a
rd
w
a
re

TABLE 1 | Features of currently available spinal cord stimulation systems.

Manufacturer Device Date of

FDA

approval

Upgradeable

software

Battery

life*

Rechargeable

battery

Recharging

frequency

MRI

compatibility

Turn off

while

driving

Turn off

while

sleeping

Burst

capable

Unique

factors

Other

Boston

Scientific

WaveWriter January

2018

No Five year

warranty,

usually lasts

12 years

Yes 15–30min

daily

Head only Yes At patient’s

discretion

Yes 1. Paresthesia-free stimulation

at 1.2 kHz

2. Paresthesia-free

“micro-burst” programing

3. Can run both burst and tonic

stimulation simultaneously

Currently involved in

litigation with Nevro

over patent laws

concerning frequency

Precision

Montage

May 2016 No Five year

warranty

Yes 120min

every 2–3

days

Full body

conditional

Yes At patient’s

discretion

Yes

Precision

Novi

June 2015 No Two year

warranty,

usually lasts

5 years

No No Yes At patient’s

discretion

Yes 1. Capable of burst or 1.2KHz

stimulation but not

recommended as it will

decrease battery life

2. Cannot do burst and 1.2

KHz simultaneously

Medtronic Intellis July 2017 Yes Nine year

warranty

Yes 60min every

1–5 days

Full body

conditional

Yes At patient’s

discretion

No 1. Can use “low dose” 40 Hz”

or “high dose” 1000Hz

stimulation

1. Purchased

Stimgenics in January

2020 for undisclosed

amount. Conducting

RCT for incorporation

of proprietary waveform

that targets glial cells

2. Smallest battery

Nevro Senza

Omnia

November

2019

Yes Minimum 10

year

Yes 45min daily Full body

conditional

No No Yes 1. Does not require mapping

2. can simultaneously run burst

with high frequency (10 kHz) or

lower frequency

Abbott Proclaim XR

Recharge-

Free

September

2019

Yes Five year

warranty

No NA Full body

conditional

Yes At patient’s

discretion

Yes 1. No need to recharge

2. Can be controlled through

Apple device, such as iphone,

with Bluetooth connection

3. Postural changes affect

stimulation intensity

Proclaim

Elite with

burst

October

2016

yes Up to 10

years

No NA Full body

conditional

Yes At patient’s

discretion

Yes 1. No need to recharge

2. Can be controlled through

Apple device, such as iphone,

with Bluetooth connection

3. Postural changes affect

stimulation intensity
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TABLE 2 | Size comparison of implantable pulse generators.

Manufacturer Device Size (depth × height × length) mm

Boston Scientific Precision Plus 10 × 54 × 45

Precision Novi 11.3 × 70.9 × 49.5

Medtronic Intellis 6 × 57 × 47

Nevro Senza II 10 × 56 × 46

Omnia 10 × 56 × 46

Abbott/ St. Jude Eon Mini 9 × 50 × 57

Prodigy MRI 9 × 48 × 53

Proclaim Elite 13 × 56 × 50

Proclaim XR 13 × 56 × 50

Proclaim DRG 13 × 61 × 50

mm, millimeter.

TABLE 3 | Older products not discussed but still appear on company product

websites.

Name FDA approval date

Boston Scientific Precision 2004

Boston Scientific Precision Plus 2005

Boston Scientific Precision Spectra 2013

Medtronic Restore Advanced 7/2006

Medtronic Restore Ultra 2/2008

Medtronic Restore Sensor 11/2011

Medtronic Prima Advanced Surescan MRI 2013

Nevro Senza 2015

Nevro Senza II 2018

such as the expansion of MRI compatibility. We anticipate that
this market will continue to be develop.

DISCUSSION

The technology for SCS is continuously improved with the
goals of refining current treatment applications and expanding
therapeutic indications. In 2019, there was a decrease in the US
SCS market overall. However, by 2025 the US SCS market is
expected to increase by 5–10% compounded annual growth (17).

The most common new trend is the development of multiple
waveform-capable product lines and individual products, such
as the non-rechargeable Abbott Proclaim (burst and traditional)
and the Nevro Omnia (burst, traditional, and high frequency).
The optimal waveform and programming for the treatment
of different painful phenotypes is currently being investigated
in several ongoing clinical trials with results expected in 2022
or later (NCT03681262, NCT03957395, and NCT03014583).
Currently there is a paucity of evidence from direct comparison
of different waveforms in pragmatic clinical trial settings to
adequately inform healthcare decisions.

The development of future SCS technology, including novel
platforms and programming, will continue to occur in order
to satisfy ongoing and unmet patient needs. Predictions of
any new technology remains would be vague for two reasons.
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First, any new SCS technology would need to be formally
evaluated in clinical trials for both safety and effectiveness prior
to commercialization. Second, the need for protections of novel
intellectual property makes very little information available to
the public. Future iterations of this or similar manuscripts will
strive to provide details of such new and emerging technology.
SCS leads are a crucial component of an implantable SCS system.
The use of different numbers and types of leads (paddles vs.
percutaneous, one lead or two) can result in significant changes
in the clinical profile of many SCS systems and is an additional
important consideration for implanting physicians to consider.

The evidence on SCS for the treatment of pain is expanding.
While the focus of this manuscript was to survey the
characteristics of the hardware, unique clinical outcomes
and head-to-head comparisons are extremely important
considerations. The currently published reviews of SCS clinical
utility do not allow for several practical questions to be answered
such as the ability to decrease opioid use or increase in functional
capacity. There is also a dearth of large-scale and long-term data

regarding the utilization of high-cost health-care resources after
implantation of a spinal cord stimulator, such as the avoidance
of spine surgery. With the increased utilization of SCS to treat
LBP in non-previously operated spines, additional data will be
needed to delineate the most effective SCS treatment algorithms
in these patients. Physicians who use SCS to treat pain are now
faced with several options in the US market with both unique
and overlapping features.
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We have previously shown that during muscle pain induced by infusion of hypertonic

saline (HS), concurrent application of vibration and gentle brushing to overlying and

adjacent skin regions increases the overall pain. In the current study, we focused

on muscle-muscle interactions and tested whether HS-induced muscle pain can be

modulated by innocuous/sub-perceptual stimulation of adjacent, contralateral, and

remote muscles. Psychophysical observations were made in 23 healthy participants.

HS (5%) was infused into a forearm muscle (flexor carpi ulnaris) to produce a stable

baseline pain. In separate experiments, in each of the three test locations (n = 10 per

site)—ipsilateral hand (abductor digiti minimi), contralateral forearm (flexor carpi ulnaris),

and contralateral leg (tibialis anterior)—50 µl of 0.9% normal saline (NS) was infused

(in triplicate) before, during, and upon cessation of HS-induced muscle pain in the

forearm. In the absence of background pain, the infusion of NS was imperceptible to all

participants. In the presence of HS-induced pain in the forearm, the concurrent infusion

of NS into the ipsilateral hand, contralateral forearm, and contralateral leg increased the

overall pain by 16, 12, and 15%, respectively. These effects were significant, reproducible,

and time-locked to NS infusions. Further, the NS-evoked increase in pain was almost

always ascribed to the forearm where HS was infused with no discernible percept

attributed to the sites of NS infusion. Based on these observations, we conclude that

intramuscular infusion of HS results in muscle hyperalgesia to sub-perceptual stimulation

of muscle afferents in a somatotopically unrestricted manner, indicating the involvement

of a central (likely supra-spinal) mechanism.

Keywords: normal saline, muscle afferent, somatotopy, muscle pain, hypertonic saline, hyperalgesia,

central sensitization

INTRODUCTION

For most individuals, it is relatively easy to distinguish between innocuous and noxious stimuli.
However, in a subset of individuals afflicted with chronic pain, there is a disturbance of normal
somatosensory function, such that a normally innocuous stimulus can evoke pain, for example, the
emergence of tactile allodynia in patients with sciatica (1). This can have a debilitating impact on
both the individual and society (2, 3).
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Studies using hypertonic saline (HS) infusions have shown a
touch-evoked pain (allodynia) that extends to overlying (4) and
adjacent (5, 6) skin regions. Intramuscular HS administration
produces a deep musculoskeletal pain that often extends or refers
to distal regions (7–9). Repeated intramuscular injections of HS
reveal plastic processes with a decrease in the area and intensity of
local pain and an increase in the expression of referred pain (10)
in addition to the emergence of pain hypersensitivity that extends
bilaterally (11). These complex interactions cannot readily be
explained by changes in peripheral circuitry and appear to mimic
characteristics of chronic pain conditions such as fibromyalgia.
Within such chronic pain conditions, current arguments favor
an explanation based on a central change in, or sensitization
of, the neural function that results in the observed widespread
and diffuse musculoskeletal pain, pressure-pain hypersensitivity,
cutaneous allodynia, and tactile dysesthesia (12–14).

In the current study, a HS infusionmodel was used to examine
whether the interaction previously observed between muscle and
skin (4, 6, 11) can be replicated between adjacent and remote
muscles. We hypothesized that the presence of background
nociceptive activity using HS infusion would produce a state of
central sensitization resulting in an exacerbation of the overall
pain (hyperalgesia) to the application of a normally innocuous
stimulus (normal saline, NS). We also hypothesized that this
effect would occur regardless of whether the NS was infused into
an adjacent or a remote muscle.

METHODS

Twenty-three healthy naïve participants aged 18–28 years
(six females), with no reported history of musculoskeletal or
neurological disorders, were recruited for this study. Participants
were asked to abstain from intensive bouts of exercise for 48 h
preceding the experiment so as not to sensitize the target muscles
(15). Six participants took part in multiple arms of the study
across different experimental sittings (30 experiments total),
the inclusion of these participants in multiple study arms was
random. One participant took part in all arms of the study,
whilst a further five participated in both the contralateral and
remote testing procedures. To minimize the risk of a placebo
effect or familiarization with the protocol, repeat participants did
not undertake experiments in any prescribed order with control
recordings in the absence of HS-infusion (i.e., no-pain) obtained
at the commencement of each separate experiment session across
each of the test locations.

Informed written consent was obtained from each participant
prior to the experiment. This study was approved by the Human
Research Ethics Committee (approval numbers: H9190 and
H13204) of Western Sydney University in accordance with the
revised Declaration of Helsinki.

Participants were comfortably seated in a chair throughout the
experiment. HS and NS were infused using a Syringe Infusion
Pump (Harvard Apparatus, South Natick, Massachusetts, USA)
and a 25G winged infusion set. Importantly, the Syringe Infusion
Pump used for NS-infusion was obscured from sight and did
not include any audible cues. Pain ratings were continuously

recorded using the ADInstruments ResponseMeter connected to
the ADInstruments PowerLab (ADInstruments, Dunedin, New
Zealand). The Response Meter had a slide control, and the pain
scale was divided into ten equal segments within a range of
0 (no pain) to 10 (worst pain). In addition, participants were
asked to verbally report the location of pain during the course
of the experiment.

Infusion of Hypertonic Saline
Across all parts of the study, 5% HS was infused into the belly of
the flexor carpi ulnaris (FCU) muscle of the forearm for∼10min
to establish a stable baseline pain. The muscle belly was palpated
whilst the participant performed light flexion and adduction of
the wrist to identify the boundaries of the FCU muscle. The
needle was inserted∼0.8–1 cm into the center of the muscle belly
at an angle perpendicular to the skin at the site of insertion. The
infusion rate of HS in the FCU varied between subjects (30–175
µl/min) to establish amoderate pain intensity preferably between
4 and 6 (out of 10) on the pain scale. Once a stable baseline pain
was achieved, no further changes were made to the infusion rate.

Infusion of Normal Saline
After a stable baseline pain was maintained for at least a minute,
NS (0.9%) at room temperature was concurrently infused at the
rate of 50 µl/min for 1min per trial (tested in triplicate). This
duration was chosen based on the data collected in a pilot study
which indicated a delay of several seconds before the onset of an
increase in pain levels. The delayed response has been reported in
previous studies (6, 16). The triplicate NS trials were performed
at 1-min intervals.

Participants were asked to continuously rate the overall pain
intensity, and any changes thereof, on the pain scale. Care was
taken to avoid the use of suggestive language with participants
informed that the HS-induced pain could remain the same,
increase or decrease during the co-infusion with NS.

In addition to concurrent HS-NS infusions, NS alone was
infused in triplicate trials prior to the commencement and upon
cessation of HS-evoked pain in all experiments. Typically, the
HS-evoked pain disappeared over a time course of under 10min.
After a 3- to 5-min wait following cessation of pain, NS infusion
was repeated at each site. Collectively,∼450 µl of NS was infused
per muscle.

Part 1: Interactions With Adjacent Muscles
NSwas infused into the ipsilateral abductor digiti minimi (ADM)
muscle of the hand to examine potential interactions between
adjacent muscles in response to HS-induced acute muscular
pain. The muscle belly of the ADM was identified by palpation
whilst the participant abducted the fifth digit of their hand. The
infusion needle was inserted to a depth of ∼0.5 cm into the
center of the ADM muscle belly. The ADM muscle was chosen
as it shares the same peripheral innervation (ulnar nerve) as the
HS-infused FCU.
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Part 2: Contralateral Interactions
NS was infused into the belly of the contralateral
FCU muscle of the forearm to test whether the HS-
NS interactions were limited to muscles within the
same nerve territory or spread to contralateral muscles
as well. The needle location and insertion for the
contralateral FCU were identical to the HS-infusion site
described prior.

Part 3: Remote Interactions
NS was delivered to the belly of the tibialis anterior (TA)
muscle of the contralateral leg to determine the spatial extent
of inter-muscle interactions in an acute pain state. The muscle
belly of the TA was identified by palpation during dorsiflexion
of the ankle. The needle was inserted into the middle of the
belly of the TA muscle perpendicular to the skin to a depth
of∼1 cm.

Statistical Analysis
Repeated measures two-way analysis of variance (RM 2-way
ANOVA) was used to compare pain ratings at baseline (HS
infusion alone) with evoked responses (co-infusion of NS and
HS) at each location (adjacent, contralateral, and remote).
Where a significant change (P < 0.05) was found, individual
comparisons were made using Tukey’s multiple comparison
test. The normal distribution of data was confirmed in all
groups using D’Agostino and Pearson omnibus normality test.
Pain scores for the baseline (HS) and co-infusion (HS and
NS) conditions are presented as mean ± standard error of
the mean (SEM) for all parts of the study. Statistical analysis
was performed using GraphPad Prism (version 7.04, La Jolla,
California, USA).

RESULTS

Prior to the induction and following the cessation of HS-evoked
muscle pain, all participants reported NS infusion (50 µl/min)
to be innocuous (i.e., rated as 0 out of 10 on the pain scale) and
imperceptible regardless of the NS infusion site (Figure 1A). The
infusion of 5% HS into the FCU always resulted in a diffuse, deep
pain in the muscle that extended down the medial aspect of the
forearm. This baseline pain remained stable in the absence of NS
co-infusions (Figure 1A) and did not significantly differ between
the different parts of the study (P = 0.66).

At all three test locations (adjacent, contralateral, and remote),
the co-infusion of NS significantly increased the overall pain
in all trials (T1-3, P < 0.0001, Figures 1B–D left-hand panel).
All observed increases in pain scores during co-infusion were
transient and time-locked to the NS-infusion, with the pain
returning to baseline (HS) within 1min of the cessation of
NS co-infusion (example shown in Figure 1A). Further, the
increases in pain scores did not vary in amplitude based on
the location (adjacent, contralateral, and remote) of the NS
co-infusion (P = 0.30).

The pooled mean response of all participants in each part of
the study, with respective HS andHS+NS data points linked, are

shown in the right-hand panel of Figures 1B–D and described
further in the following sections.

Part 1: Interactions With Adjacent Muscles
The infusion of HS into the FCU resulted in a pooled mean
score of 4.3 ± 0.5 (n = 10). When NS was co-infused into
the adjacent ADM in the presence of this background pain,
the pooled mean score increased to 5.0 ± 0.4 (Figure 1B).
This constitutes a pain increase of ∼16% and when comparing
baseline and co-infusion pain scores the increase in pain ratings
was significant [P < 0.0001, F(1,27) = 318.5]. This indicates that
muscle pain can be modulated by low-threshold/sub-perceptual
stimulation of an adjacent muscle.

Part 2: Contralateral Interactions
The infusion of HS into the FCU resulted in a pooled
mean score of 4.3 ± 0.1 (n = 10). The co-infusion of
NS into the contralateral FCU increased this pooled
mean score to 4.8 ± 0.2 (Figure 1C). This represents
a ∼12% increase in the pain scores during co-infusion,
an effect found to be significant [P < 0.0001, F(1,27)
= 156.7]. This demonstrates that muscle pain can
be modulated by normally sub-perceptual stimulation
across contralateral muscles, thereby suggesting a central
(spinal/supra-spinal) phenomenon.

Part 3: Remote Interactions
Within this aspect of the study, participants reported a pooled
mean score of 4.0 ± 0.1 in response to infusions of HS
into the FCU (n = 10). During concomitant infusion of
NS into the contralateral TA, participants reported a pain
increase of 15% with the pooled mean score increasing
to 4.6 ± 0.1 (Figure 1D). A comparison of the baseline
and co-infusion pain scores revealed a significant difference
[P < 0.0001, F(1,27) = 97.84]. The observed interaction between
the site of noxious muscle stimulation and remote innocuous
muscle stimulation alludes to the involvement of a supra-
spinal mechanism.

In Figure 2, triplicate responses for each individual (n = 10
per test location) at all three test sites (n = 90) to transient NS
infusion during HS infusion (i.e., HS + NS) have been plotted
as a function of the baseline pain evoked by HS alone. When
plotted in this manner, all data points fell to the left of the line
of equivalence (x = y or HS = HS + NS) indicating that the NS
infusion evoked a reproducible pain increase across a broad range
(pain scale 1.4–6.7) of baseline pain levels.

When participants were asked about the location of
pain, all participants—except 2 in part 1 and one each
in parts 2–3—ascribed it to the forearm where hypertonic
saline was infused with no discernible percept attributed
to the sites of NS infusion. This was true not only for
HS-evoked pain but also for pain increases during HS-NS
co-infusions. The four subjects who did not ascribe the
pain increase to the HS-infusion site instead ascribed it
to the NS-infusion site. Importantly, these subjects always
reported NS-infusion as imperceptible at the local site under
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FIGURE 1 | Pain intensities in response to HS-infusion and subsequent to transient NS-infusions at various sites across the body. An example raw trace of a

participant’s pain ratings throughout an experimental sitting is shown (A). In the absence of background pain, infusions of NS for 1min (T1, T2, T3 with infusion

time-course shown by the overlying bar) were imperceptible. During baseline HS-induced muscle pain in the FCU, co-infusion of NS (triplicate, left B–D) produced a

reproducible increase in overall pain. Following the cessation of HS infusion and the associated background pain (0 out of 10 on the pain scale), NS trials were once

again imperceptible. In all three sessions, HS pain was generated in the FCU, and the test location for NS infusion was the adjacent ADM muscle (B), the contralateral

FCU (C), or the contralateral TA muscle (D, remote). At each test location, NS co-infusion during HS background pain resulted in a reproducible and significant

increase in overall pain (P < 0.0001, right B–D). The transient pain increase was reproducible across trials at all sites. Significant changes (P < 0.0001, #) were

confirmed between baseline (HS) and co-infusion (HS + NS) using RM 2-way ANOVA.

control and recovery conditions (no HS-pain). This suggests
that NS infusion was almost always nonpainful regardless
of whether there was HS pain or not, but in the presence

of HS pain, the NS co-infusion resulted in hyperalgesia
at the HS site, and this modulation of HS pain was not
somatotopically restricted.
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FIGURE 2 | Triplicate data points for each participant during HS-NS

co-infusion plotted as a function of baseline pain. When triplicate responses

from each participant at each location (n = 10 per location, total n = 90) to NS

infusion during HS infusion (HS + NS) are plotted as a function of baseline pain

(i.e., HS alone) all data points fall to the right of the line of equivalence (x = y or

HS = HS + NS). This indicates that the NS infusion evoked a reproducible

effect between trials and across all test sites and over a broad range of

baseline pain levels.

DISCUSSION

The current study has provided evidence that muscle pain can
be modulated (hyperalgesia) by sub-perceptual stimulation of
muscle afferents in a somatotopically unrestricted manner. This
finding not only builds upon the previous observation that an
intramuscular HS infusion can result in allodynia in the overlying
and adjacent skin regions (4, 6, 17) but the spatial extent of
this modulation, spanning several spinal segments, suggests the
involvement of a central, likely supra-spinal, mechanism.

The sub-perceptual nature of repeated intermittent NS
infusions (50 µl over 1min) under control (no HS-pain)
condition suggests that localized muscle distension does not
activate the nociceptors (18) but may activate low-threshold
stretch-sensitive receptors within the muscle. In this respect,
these weak mechanical stimuli resemble the inability of
weak (micro) intraneural electrical stimulation to produce a
discernible pain sensation at recording sites dominated bymuscle
spindles (19, 20).We have also previously shown that intradermal
infusions of NS (50 µl/min for 2min) do not produce a
percept (5).

The conversion of the sub-perceptual NS stimulus to one
that enhances pain, during HS infusion in the FCU muscle,
is unlikely to be due to peripheral sensitization given the
anatomical separation (forearm vs. hand, >15 cm) and the small
volume of intermittently infused NS. Likewise, the increase
in pain evoked by NS-infusion into the contralateral forearm
is more consistent with a central involvement. Furthermore,
the interaction between the FCU and the contralateral TA

suggests that the central involvement likely extends to supra-
spinal structures. Assertions as to the exact location of this
central involvement cannot be resolved by this study, but the
acute/short-lasting and reversible nature of these interactions
do suggest that the requisite circuitry may already be present,
and thus an elaborate anatomical reorganization need not be
necessary for these to occur.

The broad-ranging muscle-muscle interactions observed
here appear to be in marked contrast to the somatotopically
constrained interactions observed in the skin; for example,
the confinement of secondary hyperalgesia to the region
immediately surrounding intradermal capsaicin injection
(21–23) or the inability of microstimulation of large-diameter
mechanoreceptors innervating a skin region beyond the site of
secondary hyperalgesia to produce a painful percept (16).

The effects observed in the current study aremost likely driven
by a transient and reversible episode of central sensitization
(increased excitability and synaptic efficacy of central nociceptive
pathways) (24) in response to the HS-induced muscle pain.
The HS infusion alone was run for ∼10min prior to the
commencement of NS co-infusion, and this may have resulted
in a state of central sensitization. Indeed, the clinical correlates of
central sensitization (25, 26) are apparent in a HS-infusion model
with hyperalgesia and allodynia reported in this and previous
work (4, 6, 11, 17).

The generalized modulation of the exacerbated pain response
at the HS-induced muscle site during NS-infusion in the
adjacent, contralateral, and remote muscles is noteworthy and
warrants further study using more quantitative measures
of pain localization than verbal reporting. Further, the
quality and temporal characteristics of this hyperalgesia
need further investigation. In addition to the prerequisite
of ongoing nociceptive input (HS infusion), we observed
that the onset of NS-evoked increase in pain tended to be
delayed by several seconds, which suggests a possible need for
temporal summation.

Previous findings in humans have shown that repeated
intramuscular HS injections in the TA result in a pressure-
pain hypersensitivity developing across both the ipsilateral and
contralateral TA muscles (11). Further, it has been shown
in animals that a unilateral forelimb injury can produce
sensory perturbations in the contralateral limb (27). In the
case of intramuscular HS, the evidence for centralized effects
necessitates the need for control data collection prior to any
HS administration and warrants an investigation into other
commonly used pain models.

In the current study, the co-infusion of sub-perceptual NS
resulted in increased HS-pain (i.e., hyperalgesia). In HS and
other experimental models as well as chronic pain conditions,
tactile and thermal stimuli can produce allodynia (pain to a
normally nonpainful stimulus) and hyperalgesia (increased pain
from a painful stimulus) (1, 4, 6), but paradoxically, these
modulatory stimuli—both painful and nonpainful—can also
reduce pain with slow gentle brushing of the skin shown to
reduce cutaneous heat pain (28). Conditioned pain modulation is
a well-recognized phenomenon in which a painful stimulus can
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be inhibited by a second painful stimulus applied to a different
body site (i.e., pain inhibits pain) (29–31). The underlying
mechanisms are not fully understood but likely involve a complex
interplay between excitatory and inhibitory circuits in the central
nervous system.
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Chronic pain is known to be caused by sensitization within the pain circuits. An imbalance

occurs between excitatory and inhibitory transmission that enables this sensitization to

form. In addition to neurons, the contribution of central glia, especially astrocytes and

microglia, to the pathogenesis of pain induction and maintenance has been identified.

This has led to the targeting of astrogliosis and microgliosis to restore the normal

functions of astrocytes and microglia to help reverse chronic pain. Gliosis is broadly

defined as a reactive response of glial cells in response to insults to the central nervous

system (CNS). The role of glia in the peripheral nervous system (PNS) has been less

investigated. Accumulating evidence, however, points to the contribution of satellite glial

cells (SGCs) to chronic pain. Hence, understanding the potential role of these cells

and their interaction with sensory neurons has become important for identifying the

mechanisms underlying pain signaling. This would, in turn, provide future therapeutic

options to target pain. Here, a viewpoint will be presented regarding potential future

directions in pain research, with a focus on SGCs to trigger further research. Promising

avenues and new directions include the potential use of cell lines, cell live imaging,

computational analysis, 3D tissue prints and new markers, investigation of glia–glia

and macrophage–glia interactions, the time course of glial activation under acute and

chronic pathological pain compared with spontaneous pain, pharmacological and non-

pharmacological responses of glia, and potential restoration of normal function of glia

considering sex-related differences.

Keywords: satellite glial cells (SGCs), pain, sensory ganglia, trigeminal ganglion (TG), dorsal root ganglion (DRG),

nociception, peripheral nervous system

INTRODUCTION

Chronic pain is a debilitating and common condition (1), and it has a substantial impact on affected
individuals, society, and the health-care system (2). It is generally accepted that pathological
chronic pain is caused by a maladaptive process that occurs when an imbalance is present between
excitation and inhibition signaling pathways underlying pain (3). Both functional and structural
alterations have been identified. Altered neuronal activity, manifested as sensitization of peripheral
primary sensory neurons in the sensory ganglia [e.g., dorsal root ganglia (DRG) and trigeminal
ganglia (TG)] and central sensitization of nociceptive neurons within the central nervous system
(CNS), including the spinal cord, trigeminal nucleus, brain stem, and cortex, has been reported

20

https://www.frontiersin.org/journals/pain-research
https://www.frontiersin.org/journals/pain-research#editorial-board
https://www.frontiersin.org/journals/pain-research#editorial-board
https://www.frontiersin.org/journals/pain-research#editorial-board
https://www.frontiersin.org/journals/pain-research#editorial-board
https://doi.org/10.3389/fpain.2021.646068
http://crossmark.crossref.org/dialog/?doi=10.3389/fpain.2021.646068&domain=pdf&date_stamp=2021-03-10
https://www.frontiersin.org/journals/pain-research
https://www.frontiersin.org
https://www.frontiersin.org/journals/pain-research#articles
https://creativecommons.org/licenses/by/4.0/
mailto:gazerani@hst.aau.dk
https://doi.org/10.3389/fpain.2021.646068
https://www.frontiersin.org/articles/10.3389/fpain.2021.646068/full


Gazerani SGC’s Future in Pain Research

(4). Treatment of chronic pain is complicated and often results
in inadequate response or side effects. Attempts are ongoing
for a better understanding of pain processes, mechanism-based
treatment and targeting, implications of multidisciplinary pain
management, and patient-centered strategies (5).

Generally, there has been increasing interest in the role of the
non-neuronal components of the nervous system (glial cells) in
the health and diseases of the nervous system (6–8). These cells
have been markedly recognized to contribute to the development
or maintenance of abnormal neuronal excitability (9). In this line,
accumulating evidence supports the contribution of glial cells in
the initiation or maintenance of chronic pain (10). Major glial
residents in the CNS, namely, astrocytes andmicroglia, have been
the subject of extensive research, and their important role in
the pathogenesis of persistent pain is becoming definitive (11–
13). Cross talk between astrocytes, microglia, and neurons has
been suggested to promote pathological chronic pain or pain
chronification, i.e., transition from acute to chronic pain (14).
Interestingly, in the context of pain, gliopathy (e.g., astrogliosis
and microgliosis) seems to play distinct roles (10, 15). Gliosis
is non-specifically defined as a reactive response of glial cells in
response to insults to the CNS. Differences in the response of
microglia and astrocytes depend on the type of pain (16), the time
course of insult (17), and sex (18). Excellent reviews are available
to comprehend the role of astrocytes and microglia in chronic
pain (10, 19–24). Recently, the potential role of other central glia,
oligodendrocytes, has also been investigated, and current findings
collectively support their participation in the central pain process
and contribution to persistent pain (25). Targeting central glia
to reverse chronic pain or to prevent its development has also
emerged (26, 27).

Glial cells of the peripheral nervous system (PNS) have also
been investigated in the context of chronic pain pathology
and targeting (28–30). These cells include satellite glial cells
(SGCs), Schwann cells (SCs), and enteric glial cells (EGCs). The
latter two cell types are less investigated than SGCs. Within
ganglia, SGCs surround the cell bodies of neurons very closely
and create a unique structure, a unit of neuron–SGC, which
is not found in other parts of the nervous system (31). In
different painmodels with a neuropathic or inflammatory nature,
SGCs have been shown to undergo alterations in structure and
function (31, 32). Consequently, the neuronal activity of sensory
ganglia neurons is affected, which is reflected in hyperactivity of
neurons, neuron–SGC coupling, elevated responses to adenosine
triphosphate (ATP), release of cytokines, and downregulation
of potassium channels (32). It is proposed that this increase in
neuronal activity is linked to the development of chronic pain.
A distinct pattern is seen in SGCs following insult to the PNS.
A recent review summarized common changes that occurred
in SGCs in four major pain models: systemic inflammation,
postoperative pain, diabetic neuropathy, and postherpetic pain
(32). SGC alterations have been documented in response to both
injury and inflammation. These cells, therefore, have become
another potential target for therapeutic purposes, i.e., for the
prevention or treatment of chronic pain. An argument has been
formed around preference in targeting these cells, as SGCs are
located outside the blood–brain barrier (BBB), which might

offer a better potential for blocking pain transmission at the
periphery. Considering that these cells seem first to respond
to injury or inflammation prior to central glial cells, they may
also offer potential for minimizing the risk of chronification
and transition from peripheral to central sensitization (15, 33).
Elegant reviews are available to deepen the knowledge of what
has been investigated and found in exploring the roles of SGCs
in pain (32, 34–37) or its targeting (27). The purpose is therefore
not to provide a comprehensive systematic review of the current
literature on the role of glial cells in pain, since several excellent
reviews are already available, where the readers are referred to
(10, 19–24, 32, 34–37). Instead, this paper aims to provide a
viewpoint on potential future directions and avenues to stimulate
further interest and to form scientific hypotheses with a focus
on peripheral glia, mainly SGCs. Further investigation of glia in
relation to pain and its targeting is not only a truly fascinating
field of science but also highly valuable in understanding pain
mechanisms and mechanistic-based optimized targeting.

FUTURE DIRECTIONS FOR SATELLITE

GLIAL CELLS IN PAIN RESEARCH

Satellite Glial Cells’ Characterizations by

Aid of Novel Tools
Historically, SGCs were considered cells that share some
common features with astrocytes; hence, the expression of some
proteins that were known for astrocytes was expected in these
cells, such as glial fibrillary acidic protein (GFAP), glutamine
synthetase, glutamate aspartate transporter, and connexin 43 gap
junction (31, 38). However, it was determined that these cells have
their own morphology and characteristics that are unique, and
differences might exist between SGCs that are located in the DRG
and those located in the TG. Heterogeneity was also observed in
terms of the morphology and distribution of these cells within
sensory ganglia around different neuronal populations, e.g., with
different sizes (39). These observations highlighted the fact that
the characterization of these cells in the TG and DRG under
physiological and pathological pain with different natures (e.g.,
neuropathic and inflammatory) is valuable. This is crucial when
pain conditions in humans are modeled in laboratory animals
and to test potential targets for pain. It has gradually become
evident that accurate information on SGC and macrophage
morphology and function will facilitate research on the roles of
these cells in pain and as potential therapeutic targets (15, 28).
Perhaps one of the limitations that have slowed down the process
has been the lack of proper methods or tools to facilitate dynamic
visualization of these cells.

A recent study (40) focused on the characterization of
SGCs and macrophages in the DRG. The authors applied the
method of specific gene expression or deletion and examined
Ca2+ dynamics in these cells. Both immunohistochemistry
and 2-photon Ca2+ imaging have been used to characterize
SGCs in the DRG in the available and most commonly used
genetically modified mouse lines that are used to study astrocytes
or microglia. Interestingly, findings from this study pointed
out that the majority of lines used in studying astrocyte
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functions were not efficient in studying SGCs in the DRG, with
the exception of two mouse lines. The authors used mouse
lines of S100β-eGFP, ALDH1L1-eGFP, GFAP-Cre::GCaMP6f,
GLAST-CreERT2::GCaMP6f, Cx30-CreERT2::GCaMP6f, and
Cx43-CreERT2::GCaMP6f for SGCs in the DRG and similar lines
for astrocytes in the visual cortex (40). The double transgenic
line Cx43-CreERT2::GCaMP6f permitted inducible GCaMP6f
expression in more than 90% of DRG SGCs (92.6%), where the
expression of GCaMP6f in neurons was only 4%. It remains to
be determined whether GCaMP6f is expressed in other cells
within the DRG, such as endothelial cells, fibroblasts, or SCs
(40). Interestingly, not only was the expression of Cx43 found
to be very stable, but also it was upregulated after injury insult
in the PNS (40). Hence, it seems that this mouse line can be
a useful tool in pain research focused on PNS and pain. The
results from this study (40) also demonstrated that the knock-in
CX3CR1-eGFP mouse line presents specific eGFP expression
in the majority of microglial cells and macrophages in both
the DRG and the visual cortex. Therefore, this line can be an
option when studying specific targeting of SGCs in the DRG.
These two validated mouse lines (Cx43-CreERT2::GCaMP6f
and CX3CR1-eGFP) could be used as proper tools for further
investigation of SGCs in the DRG under healthy and painful
conditions (40). This direction presents new avenues toward the
development and application of research tools to enable progress
in research on SGCs in relation to pain. For example, it has been
proposed that genetically encoded animals can allow studying
sensory neuron–SGC interactions (41, 42). This would provide
potential for studying the specific roles of target genes that are
expressed in SGCs following pathological pain. This approach
has similarly been proposed for investigating the roles of SCs in
neuropathic pain (30).

Another attempt is to properly isolate SGCs to characterize
them and study their function (43). This approach has been
used to examine whether isolation would dramatically change
the natural milieu that SGCs normally experience in vivo. A
contradiction exists in the literature, but cell-based platforms
have been used for the characterization of SGCs (44–47) and
their function (48, 49). Recent studies have shown that the
transcriptomes of SGCs can be determined under normal and
pain conditions (50). Next-generation RNA sequencing by Jager
et al. (50) provided the first evidence on the state of SGCs
under normal conditions and following peripheral nerve injury.
Findings from this study show similarities between naïve SGCs
and astrocytes, being enriched in genes associated with the
immune system and cell-to-cell communication. Data from this
study (50) show that 3 days following injury, several genes linked
to cholesterol biosynthesis are downregulated in SGCs, and this
pattern was also present 14 days postinjury. SGC transcriptional
analysis, however, shows a signature that 14 days postinjury, a
higher expression of genes associated with MHCII and migration
of leukocytes is present. Access to the full transcriptome has been
offered by the authors (on the gene omnibus database) (50) and
can serve as an important and valuable tool to understand cell
function and regulation of different gene products. This study
is also the first to provide evidence that postinjury perineuronal
proliferating cells are not SGCs but macrophages.

Transcriptomics, focused on the characterization of individual
cells, is increasingly used (51). This approach is valuable because
single-cell RNA sequencing allows analysis of subtypes of SGCs
and comparison of these cells in different sensory ganglia in one
species or comparison between species, for example, between
rodents and humans. This line of research will be particularly
important when researchers are focused on pain conditions that
are specific to one type of sensory ganglia, for example, dental
pain, headache, and other types of orofacial pain that need a focus
on SGCs in the TG (52, 53).

In addition, due to the nature of translational gaps between
human glia and glia in rodents (54), the identification of
human sensory ganglion cells would reveal similarities and
differences and hence provide a more accurate understanding
based on transcriptome profiling. Some attempts have already
been initiated (55, 56). Having access to human sensory ganglia
(healthy and pain patients) for research would close the gaps in
the findings obtained from rodent models (32). A study in 2018
(55) examined the transcriptomic analyses of DRGs obtained
from human donors and mouse tissues, including DRGs. This
study has also created an online, searchable repository to provide
access to data on cross-species analysis of DRGs. This would be
highly valuable to speed up the screening of valuable targets for
therapeutic purposes (55). This indeed also emphasizes an urgent
need to access databases for researchers working in SGC-related
pain research.

Extracellular vesicles (EVs) are released by cells into the
extracellular space. EVs are secreted by a range of cell types,
can be isolated, and can be characterized. Their roles in the
nervous system (e.g., in cell–cell communication) under health
and disease have been reviewed recently (57). Proteomic profiling
of EVs shed from SGCs has been reported (45), and the
findings have revealed differentially regulated proteins when
SGCs are stimulated by lipopolysaccharides (LPSs; mimicking
inflammation). These proteins include junction plakoglobin and
myosin 9, which can be considered markers of SGC responses
under inflammatory conditions.

An elegant recent review (58) summarized the ncRNAs in
neuropathic pain within the PNS and the CNS. The findings
cover both neuronal and non-neuronal cell sources of these
molecules and, interestingly, those related to SGCs in the
TG and DRG. For example, NONRATT021972 and uc.48+
upregulate the ionotropic purinoreceptor P2X7 in SGCs (59, 60).
Interestingly, inhibition of uc.48+ has been shown to reduce
mechanical hypersensitivity in a ratmodel of trigeminal neuralgia
by inhibiting the expression of the P2X7 receptor in trigeminal
SGCs (61).

ncRNAs’ roles in pain are not limited to neuropathic pain. A
recent study (62) provided information on the role of lncRNA
X inactivate-specific transcript (XIST) in inflammatory pain.
In this study, a complete Freund’s adjuvant (CFA) model of
inflammatory pain was established in rats, where high expression
of XIST and voltage-gated sodium channel (VGSC) 1.7 (Nav1.7)
was observed in the DRG. When the authors applied XIST
inhibition, pain behavior (reflected on mechanical withdrawal
threshold) and SGC expression of GFAP, inflammatory cytokine
levels of interleukin-6, and tumor necrosis factor-α were
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diminished (62). In contrast, downregulation of XIST increased
the mechanical pain threshold and decreased the expression of
miR-146a. To identify the role of XIST, the authors ran an in vitro
test and identified that XIST acted as a sponge ofmiR-146a, which
targeted Nav1.7 and concluded that based on these observations,
XIST can regulate SGCs in the DRG under inflammatory pain
condition and hence can be a future therapeutic target (62).

Therefore, the identification of signatures or biomarkers in
SGCs can offer a further characterization of these cells under
health and pathological pain conditions. The literature presents
some data available for both the DRG (50) and TG (45, 63).
lncRNAs and circRNAs and the computational construction
of interaction networks between lncRNAs/circRNAs–
miRNAs–mRNAs can provide new directions and potential
therapeutic targets.

Computational Modeling of Satellite Glial

Cells’ Behavior Within the Sensory Ganglia
Another path that researchers started exploring is the potential
of computational modeling. For example, a group of researchers
(64) have tried to investigate and determine the characteristics
of intercellular communication between sensory neurons in
the DRG and SGCs by applying ATP. Researchers of this
study have proposed that the neural engineering approach
provides a physiologically constrained computational model
that can be used for several purposes, in addition to
physiological communication of neurons and SGCs (64), for
example, understanding of various factors that control this
communication, such as changes in receptor expression or
activity, e.g., Kir 4.1 current density that occurs in SGCs under
pain. Perhaps by expansion in the use of artificial intelligence
in neural engineering, this field can also benefit from further
advancement to deepen the knowledge on predictive parameters
affecting SGC–neuron interactions in relation to pain. Such an
attempt has been presented for neuron–astrocyte interactions
(65). Biocomputational modeling can potentially provide a
platform to test hypotheses about SGC–neuron interactions
or SGC–SGC interactions and parameters influencing those
interactions within the sensory ganglia.

Satellite Glial Cells’ Role in Nerve Repair
Research on nerve repair has long focused on sensory neurons
and their signaling alterations after injury in addition to SCs
that insulate axons (66–68). Only recently have sparks been
raised about the contribution of SGCs that envelop the neuronal
soma. Evidence started to accumulate supporting their roles in
nerve repair. A recent study (69) provided results indicating
that the synthesis of fatty acids in SGCs promotes sensory
neuron repair after injury and results in regeneration. In this
study (69), first, the researchers identified a new marker in
SGCs via transcriptional profiling, which is called Fabp7/BLBP
(fatty acid binding protein 7/brain lipid-binding protein). Upon
nerve injury, alterations in gene expression were observed
in SGCs that were mainly related to fatty acid synthesis
and peroxisome proliferator-activated receptor alpha (PPARα)
signaling. Based on this observation, researchers (69) modeled
the injury condition, where deletion of fatty acid synthase (Fasn)

resulted in the absence of axon regeneration. To reverse this
condition, they applied fenofibrate, which is a PPARα agonist,
and axon regeneration returned in mice lacking Fasn in SGC.
These findings (69) demonstrated that fatty acid synthesis in
SGC is a crucial step in nerve repair in adults after peripheral
nerve injury. In the context of pain, this can offer a new
direction in regenerative responses after nerve injury promoted
by SGCs. Interestingly, astrocytes have been identified as essential
for the development and function of axons in vivo, and lipid
metabolism in these cells has been found to be a critical
step in this process (70). Therefore, the authors of this study
(69) have suggested further investigations to identify how lipid
metabolism in SGCs influences axon regeneration, for example,
via a paracrine effect or other mechanisms. In addition, they
left open questions for further investigation of the potential
effects of fenofibrate on centrally projecting sensory axon growth
(69). The clinical implication of fenofibrate to yield beneficial
neuroprotective effects has already been discussed for diabetic
retinopathy (71) and brain trauma (69, 72). Considering the
complexity of the changes that occur after peripheral nerve
injury and the involvement of several cell types, it has been
suggested to investigate interactions between SCs, fibroblasts, and
macrophages in addition to sensory nerves and SGCs (73). This
would facilitate a better understanding of cell-specific roles in
repair phenomena following peripheral nerve injury. In addition,
much remains to be investigated in relation to myelinating
and non-myelinating forms of SCs (74). Identification of cell–
cell interactions might be achievable by new high-resolution
live imaging techniques (75) to characterize dynamic changes
in neuropathies over time, e.g., changes in SGCs of damaged
nerves or development of new SGCs, and identification of
acute vs. chronic responses for event time-course analyses. In
addition, it has been demonstrated that macrophages interact
with SGCs within sensory ganglia (76). Therefore, the interaction
of SGCs with other cells is valuable to consider in future
studies and how the interaction may influence the overall
neuronal response.

It has been shown that transplantation of SCs might be a
promising method to promote neural repair. SCs from rats were
cultured andmicroencapsulated in a research study (77) and then
administered to rats that underwent chronic constriction injury
(CCI). Data showed that microencapsulated SC transplantation
could block the expression of the purinergic receptor P2X3 in the
DRG and diminish the behavioral components of a neuropathic
pain model (77). It is not yet known whether such a method can
be applicable for SGCs considering that fatty acid synthesis in
SGCs has been identified as a crucial step in nerve repair in adults
after peripheral nerve injury (69).

An increased number of studies are becoming available to
present the responses of SCs, in particular to nerve injury and
contributions to neuropathic pain (30, 78). An emerging line
of investigation related to SCs in pain is the identification
and characterization of different roles of myelinating and non-
myelinating SCs in neuropathic pain. There is also interest in
drugs that can target SCs in addition to the possibility of SC
transplantation as potential future options in the treatment of
neuropathic pain (30).
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Recently, a specialized type of peripheral glial cell was
discovered in the skin (79), where it produces a mesh-
like network that plays an essential role in sensing noxious
stimuli to thermal and mechanical stimuli. These glial cells
are closely associated with unmyelinated nociceptors and
convey nociceptive information to the nerve; hence, they
are called nociceptive SCs. Further investigation is expected
to emerge on these cutaneous SCs and their role, now
that they have been found to be able to initiate pain-like
behavior (79).

Functional Roles of Satellite Glial Cells
A general view is that activation of glial cells contributes to
the development of pain due to the release of proinflammatory
cytokines and chemokines and other substances and factors
that drive pain signaling, such as glutamate, calcitonin gene-
related peptide, and substance P (80). However, since glial cells
also release anti-inflammatory substances, one can consider that
beneficial effects might also be present, for instance, to reverse
neurotoxicity and pain (80). Considering this side of the coin,
we might be able to promote the protective function. This is
particularly interesting, as glial inhibitors per se have not been
successful in alleviating pain, mainly because the normal activity
of glia must remain reserved, as they have critical roles with
the PNS and CNS. This is not an easy path in the production
of glia-associated drugs because the way that glial cells behave
is complex and depends on numerous factors, such as the
type of stimuli, location, and length of stimuli. Information on
SGCs is very limited in this area, but some literature exists
for microglia and astrocytes. The challenge is still to determine
whether and how the proinflammatory nature of SGC activation
can be prevented while its anti-inflammatory nature can be
promoted. It has been shown that activation of central glia
by LPS leads to the release of proinflammatory cytokines,
but when growth factors or anti-inflammatory cytokines are
applied, glial cells release factors that can promote neuronal
survival (80).

This field needs further in vitro research (e.g., rodent and
human cell cultures), in vivo research (e.g., transplantation of
human glia in rodents), and translational research in humans
[e.g., by application of positron emission tomography (PET)
technique and tracers (81, 82), to follow glial activation at
different time points and in response to different stimuli
or in pain patients with acute or chronic pain conditions].
Eventually, by better understanding the molecular mechanisms
behind the role of glia in pain, proper, and safer therapeutic
agents might be developed. Focusing on central glia in this
line does not necessarily close the field for more research
in peripheral glia, including SGCs. In addition, considering
different pain conditions, one can reserve possibilities for the
activation of SGCs in the TG that contributes to orofacial
and craniofacial pain conditions vs. their activation in the
DRG that relates to pain in other body regions, even
though overlap occurs, for example, in diabetic neuropathy
manifested in the feet and eye (83) or musculoskeletal
pain (84).

Sex-Dependent Characteristics and

Function of Satellite Glial Cells
Considering that pain is a sexually dimorphic phenomenon (85)
and that some painful conditions are predominant in one sex
(e.g., migraine in females) or only exist in one sex (e.g., pelvic pain
due to endometriosis in females), it is important to include this
aspect in further glial-associated pain research (86). A number
of reports propose that pathological pain in males is regulated
by microglial signaling (21, 87); however, astrocyte signaling
seems not to show a sex-dependent nature in inflammatory and
neuropathic pain models (18).

The literature shows that following peripheral nerve injury,
proliferation, and morphological changes occur in microglia in
males and females (85). However, only in male animals has the
functional role of microglia been observed, which is proposed to
drive neuropathic pain (88, 89).

We still do not know whether any sex-related characteristics
or functional responses exist in the activation of SGCs following
PNS insult. Further research can present the value and
importance and whether any natural protective mechanism or
susceptibility might exist in either sex related to SGCs and
whether this can be manipulated or targeted for pain control.

Satellite Glial Cells in Sympathetic and

Parasympathetic Ganglia
The behavior of SGCs in the sympathetic ganglia has rarely been
investigated (32, 90); hence, the role of these cells is not yet clear.
A study from 2004 (91) reported that sciatic nerve transection
resulted in changes in both the DRG and lumbar sympathetic
ganglia, where neuroinflammatory responses were evident in
both ganglia, and interestingly, some markers were more affected
in the sympathetic ganglia than in the DRG, such as GFAP
reactivity, macrophage reactivity, and T cell responses (91).

Another study examined the recruitment of T-lymphocytes
and macrophages into lumbar sympathetic ganglia and DRG in a
rat model of spinal nerve ligation (SNL), where different patterns
of response were found. The authors suggested that this pattern
difference between these ganglia may provide information about
contribution of macrophages in neuronal insult and post injury
hyperexcitability (92). Another study (93) demonstrated that
when the sympathetic nerves in the superior cervical ganglia were
damaged, SGCs became activated and underwent alterations
consisting of coupling, higher sensitivity to ATP, and less
responsiveness to acetylcholine. Interestingly, in this study, SGCs
of the TG were not affected (93).

Glial coupling is not limited to autonomic ganglia and has
also been studied in sensory ganglia (41, 94). Coupling is
defined as the formation of connectivity between SGCs that can
be observed as an elevated number of gap junctions between
these cells, which was reported in response to peripheral nerve
injury (37). Next, electrophysiological methods and dye injection
were applied to confirm the initial observations that higher
coupling occurred postinjury. This finding has been reported
consistently in the literature in several pain studies in which
both inflammatory and neuropathic models were applied (95,
96). Consequently, it was reported that gap junction blockers
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such as carbenoxolone, meclofenamic acid, and palmitoleic acid
could diminish coupling between SGCs and reduce pain in
experimental animal models (97). Collectively, evidence supports
the notion that enhancement of SGC coupling through gap
junctions is associated with the development and maintenance
of neuropathic pain (37).

Among connexins, connexin 43 (Cx43), a gap-junction
protein that is expressed in activated SGCs (98), has been
investigated rather extensively. This has gained attention because
connexins could be targeted to block pain. Connexin proteins
are presented with 20 subtypes and, among other roles,
function as gap junctions between cells. Recent studies highlight
the role of connexins in the induction and maintenance of
chronic pain, where their modulation has resulted in pain
amelioration in several chronic pain models (99). Interestingly,
chemotherapy-induced neuropathic pain, for example, following
the administration of oxaliplatin and taxol, has been linked to
SGC activation, with a proposed mechanism involving coupling
by gap junctions (100). This has also been shown in vitro
(101). Blocking gap junctions, for example, by administration
of carbenoxolone, which blocks connexin 43, has been shown
to reduce chemotherapeutic-induced hypersensitivity in animal
models of pain (100).

Collectively, and based on limited available data (102),
research on SGC activation, coupling, and their influence
on neurons within autonomic ganglia (sympathetic and
parasympathetic) and sensory ganglia—in relation to pain—will
continue to emerge (32, 103). Further investigation would also
help identify the exact underlying mechanisms of gap junctions
and inhibitors in pain control (90). Drug-induced peripheral
neuropathy, as has been seen with chemotherapeutic agents, can
also be studied further, and research should examine the role of
SGCs in limiting the side effects of these agents.

Miscellaneous
In addition to pharmacological approaches as powerful tools
to study SGCs in pain research, it is also of great interest
to test non-pharmacological approaches, for example, whether
neuromodulation techniques that are used to alleviate pain of
different types could exert any effect on non-neuronal cells in
chronic pain.

Investigation of the effects of environmental factors on SGCs,
such as dietary control, microbiome, and other environmental
factors, such as stress, under health and pathological pain
conditions remains open.

The role of the SGC in the overall immune responses in
ganglia, for instance, pathogen defense against viral infection, is
becoming more evident. This avenue might not be directly linked
to pain research but will allow for further characterization of the
non-neuronal response of SGCs within PNS ganglia.

EGCs reside within the enteric nervous system (ENS) (104).
These cells have some common features with astrocytes from
the functional and structural points of view. EGCs regulate
ENS homeostasis, and violation of their normal function leads
to gastrointestinal disorders, such as functional gastrointestinal
disorders and inflammatory bowel diseases (105, 106). In
addition, EGCs have been identified to modify visceral pain

signaling via cross talk with neurons and immune cells. This
observation has potential in understanding the mechanisms
underlying chronic abdominal pain and its targeting (107, 108).
This direction of research is also proposing to expand further,
in particular in relation to an increasing amount of research on
gut microbiota and its interaction with the brain. In addition,
since enteric glia are affected by stress, they are considered to play
a substantial role in visceral hypersensitivity and the immune
response to stress (107).

CONCLUSION

In the past few years, several breakthroughs have been achieved
with a focus on glia and cross talk of glia with neurons
and other cells that have revolutionized pain research and
inspired implications for pain management in the future and
further research.

The development and availability of sophisticated technology
and tools (109) to study the molecular, genetic, morphological,
physiological, and pathological aspects of glia in vitro and in
vivo have definitely advanced the field. Translational research
has moved the field from experimental rodent models toward
human studies, although limited, but substantial achievements
have been made. Some clinical trials have attempted to use
available compounds with glial modulatory effects in humans
with various outcomes, such as vitamin D (110) and ibudilast
(111) in migraine patients, minocycline for lumbar radicular
neuropathic pain (112), and palmitoylethanolamide for the
treatment of different types of pain (113).

Investigation of human glia moves the field one step closer
to testing and potential application of strategies for prevention
and therapy of chronic pain, with fewer risks due to interspecies
gaps from preclinical to clinical stage. Realization of parameters
that can influence the complex behavior of glia has also advanced
formulation of testable hypotheses, for example, interactions
of SGCs with other SGCs, neurons, and macrophages that
collectively determine pain responses to nerve injury and
inflammation. Considering age and sex is gaining further
attention in studying glia in pain research.

Bioinformatics, neuronal engineering, complex modeling,
and dynamic and live assessment techniques together with
profiling these cells via quantitative methods such as mapping
the transcriptome and evaluating the responses of SGCs to
indirect environmental changes in the host that can influence
pain response and sensitivity have become more familiar to
researchers and have inspired drug designer and pharmaceutical
and non-pharmaceutical strategies tomaintain the protective and
positive functions of SGCs while shifting their negative influence
on pain toward pain relief.

In addition, finding the crucial role of SGCs in nerve repair
deserves further investigation. A focus on peripheral nerve
regeneration via the contribution of both SGCs and SCs sounds
logical. At a system level, one can also consider how much
knowledge can be obtained if information can be collected from
different types of glia within different systems, e.g., from both
PNS and CNS glia, considering the time course of acute and
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chronic pain and response to manipulating factors. This would
enhance the visibility of the big picture in the entire body system
to unmask some missing pieces.

These and several more dimensions, such as 3D tissue
prints, potential use of induced pluripotent stem cells (iPS
cells), and cell transplantation techniques, with a wide range
of research applications in this field, have become available
and should be further researched to not only advance the

fascinating science of glia but also to pave the way for potential
targeted therapy that can offer safer and efficient options for
pain patients.
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Background: The use of non-steroidal anti-inflammatory drugs (NSAIDs) is associated

with an increased risk of renal complications. Resolution of renal adverse effects

after NSAID administration has been observed after short-term use. Thus, the

present study aimed to investigate a series of patients with chronic musculoskeletal

pain who underwent long-term NSAID administration followed by switching to

tramadol hydrochloride/acetaminophen (TA) combination tablets to study the impact of

NSAID-induced renal adverse effects.

Methods: This was a longitudinal retrospective study of 99 patients with chronic

musculoskeletal pain. The patients were administrated with NSAIDs daily during the

first 12 months, followed by daily TA combination tablets for 12 months. Estimated

glomerular filtration rate (eGFR) and serum levels of aspartate aminotransferase and

alanine transaminase were measured at baseline, after NSAID administration and after

TA administration.

Results: eGFR was significantly reduced after 12-month NSAID administration (median,

from 84.0 to 72.8 ml/min/1.73 m2), and the reduction was not shown after the

subsequent 12-month TA administration (median, 71.5 ml/min/1.73 m2). Reduction in

eGFR was less in patients who received celecoxib (median,−1.8 ml/min/1.73 m2) during

the first 12months. There was no significant difference in aspartate aminotransferase and

alanine transaminase in each period.

Conclusions: Thus, patients receiving NSAIDs for 12 months displayed both reversible

and irreversible reduction of eGFR upon cessation of NSAIDs and switching to TA. Our

data highlight the potential safety benefit of utilizing multimodal analgesic therapies to

minimize the chronic administration of NSAIDs.

Keywords: anti-inflammatory agents, analgesics, drug-related side effects and adverse reactions, longitudinal

studies, kidney, musculoskeletal pain
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INTRODUCTION

The administration of non-steroidal anti-inflammatory drugs
(NSAIDs) to treat chronic musculoskeletal pain has become
widely used in the clinic due to its ability to provide effective
levels of pain relief (1–6). However, regular administration of
NSAIDs has an increased risk of gastrointestinal, cardiovascular,
and renal complications (1–6). There is a linear relationship
between NSAID cumulative dose and change in renal function
over a 2-year period (7). Despite the high incidence of
dose/duration-dependent renal adverse effects (estimated at 1–
5%) (7, 8), there is a paucity of data regarding the long-
term safety of NSAID therapy, and the risk of renal damage
has prompted an increasing appreciation in the value of
multimodal analgesia in the management of moderate-to-severe
pain. For example, tramadol hydrochloride/acetaminophen (TA)
combination tablets have emerged as a particularly useful option
for chronic pain management (5, 6).

Previous studies have demonstrated that the renal adverse
effects of NSAIDs are usually reversible (8–10), but such studies
have several limitations. For example, Chou et al. showed the risk
of kidney injury is higher in current NSAID users than in past
NSAID users vs. control (9), which suggests the renal risks from
NSAIDs could be reversible. However, they defined past NSAID
users as having a termination date of 31–180 days before the
index date, regardless of the administration period. Moreover,
Shukla et al. reported that rises in kidney injury biomarkers
resulting from regular NSAID therapy for spondyloarthritis are
seen as early as 1 week and continue to rise up to 6 weeks
(10). Notably, the same study also showed reversibility in the
rise of kidney injury biomarkers at 12 weeks upon stopping
the drug (10). Taken together, these studies show that regular
administration of NSAIDs results in chronic renal failure (8),
but patients taking NSAIDs for 6 weeks or less may have a
chance of recovery (10). Based on the potentially intolerable
adverse effects or suboptimal pain relief, substantial proportions
of musculoskeletal pain patients are often switched to a different
treatment within 12 months of initiating NSAID treatment (11–
13). However, no study to date has evaluated the potential safety
benefit of this common practice: reversing renal adverse effects
after cessation of long-term NSAID therapy.

Thus, the present study aimed to investigate a series of
patients with chronic musculoskeletal pain who underwent
long-term NSAID administration followed by switching to TA
combination tablets to study the impact of NSAID-induced renal
adverse effects.

MATERIALS AND METHODS

Subjects
The Research Ethics Committee of Amagasaki Central Hospital
approved this study (no. H23022501). Data were retrospectively
collected from medical records of 602 consecutive outpatients
with chronic musculoskeletal pain from July 2011 to February
2012 at a primary care clinic. Inclusion criteria included age ≥

20 years old, the existence of chronic musculoskeletal pain over
the follow-up period of 2 years, and receiving daily NSAIDs

during the first 12 months followed by receiving daily TA
combination tablets for 12 months. Chronic musculoskeletal
pain was defined as persisting, continuous, or intermittent
pain for longer than 3 months (14). Exclusion criteria were
cancer-related pain, presence of neurological signs, evidence
of bone fractures, recent surgery within the past 6 months,
positive pregnancy test, American Society of Anesthesiologists’
physical status ≥ 3, allergy or contraindication to the tested
substances, severe kidney [estimated glomerular filtration
rate (eGFR) < 30] or liver function disorders (Child–Pugh
classes A, B, and C), acute duodenal or ventricular ulcer, or
laboratory data outside of normal ranges. Finally, 99 patients
receiving daily NSAIDs during the first 12 months followed
by receiving daily TA combination tablets for 12 months were
analyzed in this study (Figure 1). The patients were included
regardless of administration dose. Concomitant medications
were not permitted.

The number of subjects was determined by a sample size
estimation using G∗Power software (v 3.0.10; Franz Faul, Kiel
University, Kiel, Germany). On the basis of the effect size of 0.3,
the minimum number of subjects was estimated to be 90 for an
α-level of 0.05 and a power (1–β) of 0.80.

Treatment Characteristics
NSAIDs used in the study included meloxicam, loxoprofen,
diclofenac, celecoxib, and others. During the latter 12 month
period, all study participants were administrated daily TA
combination tablets (Ultracet R©). Change of administration
dose was permitted. The initial dosage and administration
of TA was one tablet (tramadol hydrochloride 37.5mg and
acetaminophen 325mg) given orally four times per day (15).
The dose could be increased or decreased depending on patients’
symptoms, but no more than two tablets per administration
were permitted (up to a maximum of eight tablets daily). No
other supplementary analgesic medications were given during
the study. Discontinuation of medication for the treatment of
internal comorbidities was not required.

Outcomes
Patient characteristics included age, sex, major diagnosis,
comorbidities, number of medications for comorbidities, and
administration dose. Laboratory values were routinely collected
at baseline, after 12-month NSAID administration and after
12-month TA administration. Comparisons of laboratory
results during the 12 months with daily NSAIDs and during
the following 12 months with daily administration of TA
combination tablets were made in the same patient.

The primary outcome measure was serum levels of eGFR.
eGFR was calculated as follows (16): 194 × age-0.287 ×

serum creatinine-1.094 (if female, ×0.739). The eGFR values
(ml/min/1.73 m2) in a given range were stratified into one of
the following published chronic kidney disease (CKD) categories
(17): grade 1, normal or high, ≥90; grade 2, mildly decreased,
60–89; grade 3a, mildly to moderately decreased, 45–59; grade
3b, moderately to severely decreased, 30–44; grade 4, severely
decreased, 15–29; grade 5, kidney failure, <15; or dialysis.
Patients categorized with an increase in severity of at least
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FIGURE 1 | Flowchart of participants through the study. Ninety-nine patients were analyzed in this study.

one grade in the CKD category were enrolled for NSAID and
TA administration.

Secondary outcome measures were serum levels of aspartate
transaminase (AST) and alanine transaminase (ALT). Other
information regarding adverse events during treatment was also
collected. Treatment outcome measures were assessed at baseline
and after treatment, in each treatment, by using a pain-Numeric
Rating Scale (NRS) (18). The pain-NRS was used to measure pain
severity at each assessment, where 0 = no pain and 10 = worst
pain imaginable (18).

Statistical Analysis
Relative change in eGFR, AST, and ALT from baseline (xb)
and measurements was calculated using the equation (x–xb)/xb,
where x is the measured value. The normality of distribution for
each measurement was evaluated using the Shapiro–Wilk test for
continuous variables. The outcome variables were not normally
distributed; thus, continuous data are expressed as medians and
interquartile ranges (IQRs). Categorical variables were analyzed
using the chi-square test. Continuous variables were analyzed
using the Mann–Whitney U-test, the Kruskal–Wallis test, the
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Friedman test, the Steel–Dwass test, and the Spearman’s rank
correlation coefficient test.

All data were statistically analyzed using the SPSS 25.0J
program, and P < 0.05 were considered significant.

RESULTS

Of the 99 patients, 70 (71%) were female (Table 1). The
median age was 73 years (IQR, 47–81). Major diagnoses
(multiple allowed) of the patients included lumbago (n =

45), osteoarthritis (n = 28), and rheumatoid arthritis (n
= 3). NSAIDs taken during the first 12 months included
meloxicam (n = 31), loxoprofen (n = 25), diclofenac (n
= 13), and celecoxib (n = 20). No significant difference in

patient characteristics, pain conditions, comorbidities, number
of medications for comorbidities, and pain-NRS were observed
based on the particular NSAIDs used (Tables 1, 2). No other
serious and minor complications occurred during the 2-year
research period.

Themedian baseline for eGFRwas 84.0 ml/min/1.73m2 (IQR,
67.6–102.0), the median baseline for AST was 20.0 U/L (IQR,
17.0–24.0), and the median baseline for ALT was 16.0 U/L (IQR,
11.0–22.0) (Table 3). eGFR level was significantly correlated with
age at baseline (r = −0.606), after NSAID administration for
12 months (r = −0.682) and after TA administration for 12
months (r =−0.645).

As shown in Table 3 and Figure 2, eGFR levels after
NSAID administration for 12 months followed by TA for 12

TABLE 1 | Patient characteristics.

Overall

(n = 99)

Meloxicam

(n = 31)

Loxoprofen

(n = 25)

Diclofenac

(n = 13)

Celecoxib

(n = 20)

Other

(n = 10)

Demographics

Age [year] 73 [47–81] 68 [45–81] 80 [59–83] 73 [45–82] 71 [47–80] 77 [68–83]

Female, n (%) 70 (71%) 23 (74%) 17 (68%) 8 (62%) 16 (80%) 6 (60%)

Major diagnoses (multiple allowed)

Lumbago, n (%) 45 (45%) 11 (35%) 17 (68%) 5 (38%) 8 (40%) 4 (40%)

Osteoarthritis, n (%) 28 (28%) 7 (23%) 4 (16%) 4 (31%) 9 (45%) 4 (40%)

Rheumatoid arthritis, n (%) 3 (3%) 3 (10%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

Comorbidities

Diabetes, n (%) 4 (4%) 0 (0%) 2 (8%) 1 (8%) 0 (0%) 1 (10%)

Hypertension, n (%) 22 (22%) 4 (13%) 9 (36%) 4 (31%) 3 (15%) 2 (20%)

Chronic heart failure, n (%) 3 (3%) 0 (0%) 2 (8%) 0 (0%) 1 (5%) 0 (0%)

Dyslipidemia, n (%) 1 (1%) 0 (0%) 1 (4%) 0 (0%) 0 (0%) 0 (0%)

Hypothyroidism, n (%) 2 (2%) 2 (6%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

Osteoporosis, n (%) 5 (5%) 2 (6%) 1 (4%) 0 (0%) 2 (10%) 0 (0%)

Migraine, n (%) 1 (1%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 1 (10%)

Depression, n (%) 2 (2%) 0 (0%) 1 (4%) 0 (0%) 0 (0%) 1 (10%)

Number of medications for comorbidities, n (%)

0 61 (62%) 21 (68%) 11 (44%) 9 (69%) 14 (70%) 6 (60%)

1 24 (24%) 9 (29%) 9 (36%) 1 (8%) 4 (20%) 1 (10%)

2 9 (9%) 1 (3%) 4 (16%) 1 (8%) 2 (10%) 1 (10%)

3 3 (3%) 0 (0%) 1 (4%) 1 (8%) 0 (0%) 1 (10%)

4 2 (2%) 0 (0%) 0 (0%) 1 (8%) 0 (0%) 1 (10%)

Administration dose per day

NSAIDs [mg] 75 [10–180] 10 [10–10] 180 [75–180] 62.5 [75–110] 200

[200–200]

62.5 [12–450]

TA [tablets] 2 [1–4] 3 [2–4] 2 [1–3] 2 [2–4] 2 [1–4] 2 [1–3]

Pain-NRS [points]

Baseline 6 [5–7] 7 [5–7] 5 [5–7] 6 [5–7] 5 [4–6] 6 [4–6]

After NSAIDs for 12 months 5 [4–6] 5 [4–7] 4 [4–6] 5 [3–7] 4 [3–5] 6 [4–6]

After TA for 12 months 4 [3–5] 5 [3–7] 4 [3–5] 4 [3–5] 3 [2–5] 4 [2–6]

NRS, Numeric Rating Scale; NSAIDs, non-steroidal anti-inflammatory drugs; TA, tramadol hydrochloride/acetaminophen.

Data of sex, major diagnoses, and comorbidities are number and (%) of patients. Data of age, administration dose, and pain-NRS are medians and interquartile ranges [IQR].
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months were significantly reduced compared with baseline.
eGFR was significantly reduced during the first 12 months
with NSAID administration (median, from 84.0 to 72.8

TABLE 2 | Course of pain-NRS.

Lumbago Osteoarthritis Rheumatoid

arthritis

Baseline 5 [5–6] 5 [6–7] 7 [7–7]

After NSAIDs for 12 months 4 [4–6] 3 [4–6] 5 [5–5]

After TA for 12 months 3 [4–5] 2 [3–4] 3 [4–5]

NRS, Numeric Rating Scale; NSAIDs, non-steroidal anti-inflammatory drugs; TA,

tramadol hydrochloride/acetaminophen.

Data of pain-NRS are medians and interquartile ranges [IQR].

ml/min/1.73 m2), whereas the reduction was not shown during
the following 12 months with TA administration (median,
71.5 ml/min/1.73 m2). Some patients showed an increase
of eGFR after cessation of NSAIDs and switching to TA.
There was no significant difference in eGFR between after
the 12-month NSAIDs period and after the 12-month TA
period. With respect to the four specific NSAIDs, reduction
of eGFR was significantly less in patients taking celecoxib
(median, −1.8 ml/min/1.73 m2) than those on meloxicam
or diclofenac (Figure 3). As shown in Table 3 and Figures 4,
5, there was no significant difference in AST or ALT in
each period.

Table 4 shows the number of patients for each grade of the
CKD category. Of the 99 patients, 37 patients (37%) experienced
an increase in severity of at least one grade in the CKD

TABLE 3 | Course of laboratory levels.

Overall

(n = 99)

Meloxicam

(n = 31)

Loxoprofen

(n = 25)

Diclofenac

(n = 13)

Celecoxib

(n = 20)

Other

(n = 10)

eGFR [ml/min/1.73 m2]

Baseline 84.0

[67.6–102.0]

86.0

[75.7–104.0]

84.0

[65.1–93.8]

92.1

[65.0–116.5]

83.1

[57.1–98.1]

74.6

[64.3–88.3]

After NSAIDs for 12

months

72.8

[57.5–89.6]*

73.8

[60.9–89.6]*

72.1

[49.3–92.2]

72.6

[48.2–85.7]

76.2

[61.4–90.5]

66.7

[50.8–75.5]

After TA for 12 months 71.5

[57.7–88.7]*

72.9

[64.1–92.7]*

71.7

[53.7–90.4]

71.3

[56.2–97.5]

75.3

[58.0–84.5]

57.5

[43.8–77.3]

Changes during

NSAIDs use

−13.8

[−25.0–0.0]

−18.8 [−28.7

to −5.9]
†

−2.7

[−19.3–0.0]

−21.5 [−31.2

to −12.5]
†

−1.8

[−14.1–0.0]

−14.8 [−27.6

to −5.8]

Changes during TA use 0.4

[−7.5–11.8]

4.0

[−7.5–14.0]

1.9

[−6.6–13.5]

1.5

[−1.1–15.0]

−2.8

[−9.9–11.0]

−8.5

[18.6–8.7]

AST [U/L]

Baseline 20.0

[17.0–24.0]

20.0

[17.0–22.0]

22.0

[18.5–26.5]

21.0

[15.5–30.0]

19.0

[16.0–28.8]

22.5

[15.0–25.3]

After NSAIDs for 12

months

21.0

[16.0–25.0]

21.0

[16.0–24.0]

22.0

[16.5–26.0]

18.0

[15.5–21.0]

23.0

[15.0–31.0]

20.0

[16.5–22.5]

After TA for 12 months 19.0

[16.0–24.0]

19.0

[16.0–22.0]

22.0

[19.0–27.0]

18.0

[15.0–21.5]

19.5

[17.0–28.0]

17.0

[15.8–21.8]

Changes during

NSAIDs use

0.0

[−12.5–17.6]

5.0

[−6.3–17.6]

−4.3

[−15.0–16.3]

−4.5

[−22.8–6.7]

1.6

[−16.9–18.5]

0.0

[−18.2–19.1]

Changes during TA use −5.6

[−17.1–5.9]

−6.7

[−20.0–4.8]

0.0

[−7.7–14.4]

−5.3

[−14.8–0.0]

−10.2

[−16.6–6.5]

−16.7

[−20.0–3.3]

ALT [U/L]

Baseline 16.0

[11.0–22.0]

15.0

[11.0–20.0]

17.0

[11.0–27.5]

15.0

[10.5–29.5]

17.5

[10.3–23.5]

16.5

[10.0–25.0]

After NSAIDs for 12

months

15.0

[10.0–21.0]

14.0

[10.0–19.0]

16.0

[9.0–28.5]

12.0

[9.0–24.5]

15.0

[11.0–25.0]

15.0

[10.5–20.3]

After TA for 12 months 14.0

[10.0–21.0]

12.0

[9.0–16.0]

17.0

[12.0–23.0]

12.0

[8.0–19.5]

14.5

[11.0–25.8]

13.5

[10.0–21.0]

Changes during

NSAIDs use

0.0

[−25.0–23.5]

8.3

[−20.0–23.5]

−10.0

[−38.7–17.7]

−10.0

[−33.9−1.8]

6.5

[−29.6–37.2]

−9.2

[−25.3–19.8]

Changes during TA use −9.1

[−27.6–8.3]

−11.1

[−40.0–7.7]

0.0

[−26.1–20.8]

−12.5

[−28.1–17.8]

−8.1

[−27.3–8.4]

−10.1

[−34.2–5.0]

eGFR, estimated glomerular filtration rate; AST, aspartate transaminase; ALT, alanine transaminase; NSAIDs, non-steroidal anti-inflammatory drugs; TA,

tramadol hydrochloride/acetaminophen.

Data are medians and interquartile ranges [IQR]. These data were analyzed using Kruskal–Wallis test and Steel–Dwass test. Significance level was set at <5%. *Significant difference

vs. baseline.
†
Significant difference vs. celecoxib. eGFR after NSAIDs for 12 months and after TA for 12 months were significantly decreased than baseline, in overall and meloxicam.
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FIGURE 2 | Course of eGFR. eGFR, estimated glomerular filtration rate; NSAIDs, non-steroidal anti-inflammatory drugs; TA, tramadol hydrochloride/acetaminophen.

Each box plot represents the 75 percentile, median, and 25 percentile. Error bar shows standard deviation. eGFR after NSAIDs for 12 months and after TA for 12

months were significantly decreased than baseline. There was no significant difference between after NSAIDs for 12 months and after TA for 12 months. These data

were analyzed using Friedman test and Steel–Dwass test. Significance level was set at <5%. *Significant difference vs. baseline.

category during the first 12 months with NSAID administration.
Interestingly, the extent of severity varied by NSAID type, where
15% of patients on celecoxib (n = 3) were affected, compared
with 77% of patients on diclofenac (n = 10) (p = 0.003). On
the other hand, during the 24 months with NSAID and TA
administration, 35 patients (35%) increased severity by at least
one grade of the CKD category. There were 30 patients in more
than three categories after NSAIDs for 12 months, whereas 28
patients in more than three categories after TA for 12 months.
The number of patients increasing severity by at least one grade
of the CKD category over 24 months showed no significant
difference among the four specific NSAIDs used. The variables
other than NSAID type were not significantly different between
patients who fell into at least one grade worse of the CKD
category or not (Table 5).

DISCUSSION

The present study showed that NSAID administration
for 12 months significantly reduced serum levels of
eGFR. However, the reduction was not shown after 12
months of TA administration. Several patients showed an
increase of eGFR upon cessation of NSAIDs followed by
switching to TA.

Most forms of acute renal failure from NSAID administration
are short-term and reversible upon NSAID discontinuation

(8). The adverse effects of NSAIDs are the consequences
of inhibiting prostaglandin synthesis and can result in acute
renal failure. Moreover, there is the possibility that chronic
administration of any NSAIDs can cause chronic renal failure
in some patients despite previous data suggesting it is safe
(8, 19). The underlying pathology of chronicity is considered
chronic papillary necrosis or chronic interstitial nephritis (20).
NSAID administration for the short term for up to 6 weeks
may preserve the chance for recovery (10); however, there has
previously been no study to test the reversibility of renal adverse
effects after long-term NSAID use. The present study suggested
that the eGFR was not reduced after the cessation of NSAIDs
and switching to TA, but the reversibility as the change was
not significant.

NSAIDs inhibit the peripheral production of prostaglandins
and inflammatory processes (21). NSAIDs could have a role
in central neurons across the blood–brain barrier (22). In
osteoarthritis, NSAIDs could have favorable effects on articular
cartilage and osteoarthritis progression, although there are no
convincing data (23). The present study showed a decrease
in pain with a reduction of eGFR. The favorable and
unfavorable effects of NSAIDs should be considered. Drug-
induced renal failure is mostly induced by an antirheumatic
drug, calcineurin inhibitors, an antitumor drug, and NSAIDs
(24). The nephrotoxic potential of dual or triple combinations
of NSAIDs with renin–angiotensin system inhibitors and/or
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FIGURE 3 | Course of eGFR among specific NSAIDs. eGFR, estimated glomerular filtration rate; TA, tramadol hydrochloride/acetaminophen. Values are means of

change of eGFR, and the error bar shows standard error. Reduction of eGFR was significantly lesser in patients with celecoxib than those with meloxicam and

diclofenac. These data were analyzed using Kruskal–Wallis test and Steel–Dwass test. Significance level was set at <5%. *Significant difference among specific

NSAIDs.

diuretics yields a high incidence of acute kidney injury (25,
26). More than half of patients have no medications for
comorbidities in the present study. NSAIDs also have serious
adverse effects of heart attack and stroke. Other adverse effects
include stomach pain, constipation, diarrhea, gas, heartburn,
nausea, vomiting, and dizziness (27). The patients in the present
study showed no adverse effects. When the patients have any of
the adverse effects, a physician should reconsider the subscription
of NSAIDs.

The risk profiles of adverse effects are different for every
NSAID (28–30). A randomized control trial for patients
with osteoarthritis or rheumatoid arthritis shows celecoxib
treatment results in lower rates of renal adverse events than
did ibuprofen (28). In a meta-analysis of 114 clinical trials,
Zhang et al. showed that rofecoxib intensified the risk for
renal adverse effects. By contrast, among NSAIDs, celecoxib
had a low risk for renal adverse effects (29). Other NSAIDs

were not significantly associated with the risk, although some
trends were evident. Similarly, Winkelmayer et al. showed
rofecoxib, ibuprofen, and indomethacin were associated with
a higher risk of acute kidney injury than celecoxib (30).
In the present study, the reduction of renal function after
administering NSAIDs for 12 months tended to be less in
patients receiving celecoxib compared with patients receiving
other NSAIDs.

TA combination tablets, which combine tramadol
hydrochloride and acetaminophen, are a widely used analgesic
(15). Tramadol is a synthetic opioid receptor agonist with
analgesic properties that also has a unique monoaminergic
action through serotonin-noradrenaline reuptake inhibition
(31). Acetaminophen is one of the more traditional and better-
tolerated among fast-acting analgesics that block pain through
different pathways than opioids (32). The effectiveness of TA in
the treatment of chronic non-cancer pain is clinically acceptable,
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FIGURE 4 | Course of AST. AST, aspartate transaminase; NSAIDs, non-steroidal anti-inflammatory drugs; TA, tramadol hydrochloride/acetaminophen. Each box plot

represents the 75 percentile, median, and 25 percentile. Error bar shows standard deviation. There was no significant difference in each period. These data were

analyzed using Friedman test and Steel–Dwass test. Significance level was set at <5%.

FIGURE 5 | Course of ALT. ALT, alanine transaminase; NSAIDs, non-steroidal anti-inflammatory drugs; TA, tramadol hydrochloride/acetaminophen. Each box plot

represents the 75 percentile, median, and 25 percentile. Error bar shows standard deviation. There was no significant difference in each period. These data were

analyzed using Friedman test and Steel–Dwass test. Significance level was set at <5%.

and improvements in pain contribute to improvements in
quality of life in practice (15). Most of the adverse effects of TA
are non-serious (15, 33–35); it is suggested that liver enzymes

are elevated in the presence of acetaminophen at doses higher
than normal therapeutic levels (36). In addition, previous
work showed that concomitant treatment with opioids does
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TABLE 4 | Number of patients each grade of CKD category.

Overall

(n = 99)

Meloxicam

(n = 31)

Loxoprofen

(n = 25)

Diclofenac

(n = 13)

Celecoxib

(n = 20)

Other

(n = 10)

Baseline, n (%)

1 38 (38%) 13 (42%) 8 (32%) 8 (62%) 7 (35%) 2 (20%)

2 43 (43%) 16 (52%) 12 (48%) 2 (15%) 7 (35%) 6 (60%)

3a 13 (13%) 1 (3%) 3 (12%) 3 (23%) 5 (25%) 1 (10%)

3b 5 (5%) 1 (3%) 2 (8%) 0 (0%) 1 (5%) 1 (10%)

4 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

5 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

After NSAIDs for 12 months, n (%)

1 23 (23%) 7 (23%) 8 (32%) 2 (15%) 5 (25%) 1 (10%)

2 46 (46%) 17 (55%) 7 (28%) 6 (46%) 11 (55%) 5 (50%)

3a 19 (19%) 5 (16%) 5 (20%) 3 (23%) 3 (15%) 3 (30%)

3b 9 (9%) 2 (6%) 4 (16%) 2 (15%) 1 (5%) 0 (0%)

4 2 (2%) 0 (0%) 1 (4%) 0 (0%) 0 (0%) 1 (10%)

5 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

After TA for 12 months, n (%)

1 22 (22%) 8 (26%) 6 (24%) 3 (23%) 4 (20%) 1 (10%)

2 49 (49%) 18 (58%) 12 (48%) 5 (38%) 11 (55%) 3 (30%)

3a 16 (16%) 3 (10%) 2 (8%) 4 (31%) 4 (20%) 3 (30%)

3b 9 (9%) 1 (3%) 4 (16%) 0 (0%) 1 (5%) 3 (30%)

4 3 (3%) 1 (3%) 1 (4%) 1 (3%) 0 (0%) 0 (0%)

5 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

Fell into at least worse one grade of CKD category, n (%)

during NSAIDs use (12

months)

37 (37%) 13 (42%) 7 (28%) 10 (77%)
†

3 (15%)* 4 (40%)

during NSAIDs and TA

use (24 months)

35 (35%) 11 (35%) 7 (28%) 8 (62%) 4 (20%) 5 (50%)

NSAIDs, non-steroidal anti-inflammatory drugs; TA, tramadol hydrochloride/acetaminophen; CKD, chronic kidney disease.

Data are number and (%) of patients. Of 99 patients, 37 patients (37%) experienced an increase in severity of at least one grade in CKD category during first 12 months with NSAID

administration. On the other hand, during 24 months with NSAIDs and TA administration, 35 patients (35%) increased severity by at least one grade of CKD category. These data were

analyzed using chi-square test. Significance level was set at < 5%. *Significantly fewer number of patients.
†
Significantly more number of patients.

not lead to an elevation of liver enzyme levels (36). Similarly,
in our study, we did not observe any significant elevations in
liver enzymes.

There are several limitations in the present study. First,
the present study is a retrospective study limited only to
patients receiving daily NSAIDs during the first 12 months
followed by 12 months of administration of TA combination
tablets daily. There is no group receiving only daily NSAIDs
or TA combination tablets during the 24-month periods. The
renal function might already have reached a stable but lower
plateau in the present study. In addition, many patients had
concomitant medications. Thus, our observations must be
interpreted with caution. Second, the administration protocol
was variable, and the overall impact of administration dose
on serum levels was not determined. Third, patients were
mostly of advanced age in the present study. The reduction

of eGFR could be overestimated. Finally, we included only a
small number of participants with different pain conditions
at a single medical center. Further studies that investigate
larger patient cohorts and additional treatment regimens are
required to clarify the effects of long-term use of NSAIDs on
serum levels.

CONCLUSIONS

The present study suggests that patients who have undergone
long-term NSAID therapy for 12 months can experience
reversible or irreversible renal damage after the cessation of
NSAIDs and switching to TA, as determined by measuring eGFR.
Given this risk identified in our current series of patients, our data
highlight the potential safety of utilizing multimodal analgesic
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TABLE 5 | Comparison between patients with fell into at least worse one grade of CKD category or not.

During NSAIDs use

(12 months)

During NSAIDs and TA use

(24 months)

Fell category

(n = 37)

Not fell category

(n = 62)

Fell category

(n = 35)

Not fell category

(n = 64)

Demographics

Age [year] 76 [61–84] 72 [47–80] 73 [60–83] 73 [46–80]

Female, n (%) 11 (30%) 18 (29%) 12 (34%) 17 (27%)

Major diagnoses (multiple allowed)

Lumbago, n (%) 21 (57%) 24 (39%) 18 (51%) 27 (42%)

Osteoarthritis, n (%) 7 (19%) 21 (34%) 9 (26%) 19 (30%)

Rheumatoid arthritis, n (%) 1 (3%) 2 (3%) 1 (3%) 2 (3%)

Comorbidities

Diabetes, n (%) 3 (8%) 1 (2%) 2 (6%) 2 (3%)

Hypertension, n (%) 11 (30%) 11 (18%) 8 (23%) 14 (22%)

Chronic heart failure, n (%) 2 (5%) 1 (2%) 2 (6%) 1 (2%)

Dyslipidemia, n (%) 1 (3%) 0 (0%) 0 (0%) 1 (2%)

Hypothyroidism, n (%) 0 (0%) 2 (3%) 0 (0%) 2 (3%)

Osteoporosis, n (%) 1 (3%) 4 (6%) 1 (3%) 4 (6%)

Migraine, n (%) 0 (0%) 1 (2%) 0 (0%) 1 (2%)

Depression, n (%) 1 (3%) 1 (2%) 1 (3%) 1 (2%)

Number of medications for comorbidities

0, n (%) 21 (57%) 40 (65%) 23 (66%) 38 (59%)

1, n (%) 9 (24%) 15 (24%) 6 (17%) 18 (28%)

2, n (%) 4 (11%) 5 (8%) 4 (11%) 5 (8%)

3, n (%) 1 (3%) 2 (3%) 1 (3%) 2 (3%)

4, n (%) 2 (5%) 0 (0%) 1 (3%) 1 (2%)

Type of NSAIDs

Meloxicam, n (%) 13 (35%) 18 (29%) 11 (31%) 20 (31%)

Loxoprofen, n (%) 7 (19%) 18 (29%) 7 (20%) 18 (28%)

Diclofenac, n (%) 10 (27%)
†

3 (5%)* 8 (23%) 5 (8%)

Celecoxib, n (%) 3 (8%)* 17 (27%)
†

4 (11%) 16 (25%)

Other, n (%) 4 (11%) 6 (10%) 5 (14%) 5 (8%)

Administration dose per day

NSAIDs [mg] 75 [10–150] 160 [10–200] 75 [10–180] 100 [10–180]

TA [tablets] 2 [1–4] 2 [1–3] 2 [1–4] 2 [1–4]

NSAIDs, non-steroidal anti-inflammatory drugs; TA, tramadol hydrochloride/acetaminophen; CKD, chronic kidney disease.

Data of sex, major diagnoses, and comorbidities are number and (%) of patients. Data of age and administration doses are medians and interquartile ranges [IQR]. Of 99 patients, 37

patients (37%) experienced an increase in severity of at least one grade in CKD category during first 12 months with NSAID administration. On the other hand, during 24 months with

NSAIDs and TA administration, 35 patients (35%) increased severity by at least one grade of CKD category. These data were analyzed using chi-square test or Mann–Whitney U-test.

Significance level was set at <5%. *Significantly fewer number of patients. †Significantly more number of patients.

therapies to minimize the chronic administration of NSAIDs
wherever possible.
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Background and Objective: The glutamine synthetase (GS), an astrocyte-specific

enzyme, plays an important role in neuroprotection through the glutamate/glutamine

shuttle and can be modulated by endocannabinoid (eCB) 2-arachidonoylglycerol (2-AG)

through extracellular signal-regulated protein kinase ½ (ERK1/2) and p38 signaling

pathways. However, the role of c-Jun N-terminal kinase (JNK) signaling pathway in the

modulation of GS in astrocytes by 2-AG is not clear.

Materials and Methods: The expression of GS and JNK in astrocytes following

the exposure to lipopolysaccharide (LPS) was examined with Western blotting

and immunochemistry.

Results: The results revealed that short-term exposure to LPS activated GS and

increased phosphorylation of JNK in astrocytes in a time-dependent manner. Treatment

with 2-AG reversed the changes in GS but had no effect on the activation of JNK.

Conclusions: These findings suggest that the activation of JNK induced by LPS is not

involved in the modulation of astrocytic GS by 2-AG.

Keywords: JNK, cannabinoid receptor, 2-AG, astrocyte, glutamine synthetase

INTRODUCTION

The astrocytic glutamine synthetase (GS) canmodulate the extracellular concentration of glutamate
by converting glutamate into glutamine and is verified to be involved in a variety of neurological
disorders such as neurodegenerative diseases and chronic pain (1). Endocannabinoids (eCBs) are
endogenous mediators of lipid signaling with the capabilities to modulate the synaptic function
and to provide neuroprotective and anti-inflammatory effects (2). 2-Arachidonoylglycerol (2-AG)
is one of the most abundant eCBs and plays a potential role in protecting neurocytes from
injuries induced by inflammation and insults of neurodegenerative diseases (3). In addition,
previous studies found that 2-AG has the capacity of attenuating neuropathic pain and mechanical
hyperalgesia in several preclinical models of chronic pain (4, 5).

The previous study indicates that 2-AG is involved in the modulation of synaptic function,
neuroprotection, and stimulation of mitogen-activated protein kinase (MAPK) family by binding
to and activating the G-protein-coupled receptors (GPCR), cannabinoid receptor type 1 (CB1R),
and cannabinoid receptor type 2 (CB2R), which are expressed in astrocytes (6, 7). A variety of
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studies also indicate that the activation of CB1R or CB2R
produced effects of anti-inflammation, antinociception, and
neuroprotection (8), and activation of MAPK signaling (9). In
addition, activation of CB1R or CB2R can inhibit the activation
of MAPK cascade induced by stress, and the discrepancy remains
to be further studied. Our recent study indicates that astrocytic
MAPK subunits, extracellular signal-regulated protein kinase
½ (ERK1/2) and p38, are involved in the modulation of GS
by CB1R and CB2R (10). Other studies indicate that c-Jun
N-terminal kinase (JNK) participates in the CB1R-mediated
inflammation signaling (11) and CB2R-mediated suppression of
leukocyte migration under inflammation (12). However, there is
no study about whether JNK participates in the modulation of
astrocytic GS by eCBs. Taking into consideration the importance
of cannabinoids (CBs) and astrocytic GS in chronic inflammatory
pain, it is necessary to eliminate the role of JNK in astrocytic GS
in CB-mediated chronic inflammation, which may be helpful for
therapeutic strategy.

MATERIALS AND METHODS

This study was approved by the Ethics Committees of Animal
Usage of Lanzhou University, Southern Medical University, and
Shenzhen University.

Primary Cultures of Astrocyte
The primary culture of astrocytes was performed as described
previously (10). In brief, the newborn Sprague-Dawley (SD) rats
(postnatal 1–3 days) from the experimental animal center of
the Gansu University of Chinese Medicine were decapitated and
the cerebral hemispheres were aseptically harvested into Hank’s
balanced salt solution (HBSS). After the removal of meninges,
the cerebral cortices were trimmed into small pieces, followed
by digestion with 0.25% trypsin-ethylenediaminetetraacetic
acid (EDTA) (Gibco Life Technology, CA, USA), mechanical
dissociation by gentle pipetting with Pasteur pipette, and then
centrifugation at 400 g for 5min. The cells were resuspended in
a culture medium supplemented with 90% Dulbecco’s Modified
Eagle Medium/Nutrient Mixture F-12 (DMEM/F12) (Gibco Life
Technology, CA, USA) and 10% fetal bovine serum (FBS;
PAN-Biotech, Germany) and plated at a density of 3–5 ×

105 cells/cm2 in 25 cm2 flasks. Cells in flasks were cultured
at 37◦C in a carbon dioxide (CO2) incubator for 5–7 days
to reach the first confluence. To achieve high pure astrocytes
(>95%), the confluent cells in flasks were shaken at 200 rpm
overnight to diminish contamination from microglia. Afterward,
the astrocytes were evenly passaged into 35mm dishes and
treated with 1µg/ml lipopolysaccharide (LPS), which is one
commonly used chemical to induce inflammation and can
activate astrocytes via the JNK signaling pathway (13), JNK
phosphorylation inhibitor SP600125, or with 0.01 µM 2-AG.

Abbreviations: 2-AG, 2-arachidonylglycerol; CBR, cannabinoid receptor;

ERK1/2, extracellular signal-regulated protein kinase 1/2; GS, glutamine

synthetase; LPS, lipopolysaccharide; MAPK, mitogen-activated protein kinase.

Protein Isolation and Western Blotting
According to the previous report, the Western blotting was
carried out with the manual (10). In brief, astrocytes in 35mm
dishes were lysed in 100 µl radioimmunoprecipitation assay
(RIPA) lysis buffer containing 1% phenylmethanesulfonyl
fluoride (PMSF) after different treatments. Lysates were
centrifuged at 12,000 rpm for 10min to remove cell debris,
and the pellet was diluted with 30 µl sample buffer. The
total protein in lysates was measured for concentration by
bicinchoninic acid (BCA) and loaded onto 10% sodium dodecyl
sulfate (SDS)-polyacrylamide gels at 5–20 µg/lane and then
separated by electrophoresis and transferred to polyvinylidene
difluoride (PVDF) membranes. Following the non-specific
binding sites blockade with 5% non-fat milk in Tris-buffered
saline with Tween-20 (TBST) for 2 h at room temperature (RT),
the PVDF membranes were incubated overnight at 4◦C with
primary antibodies according to the manual of the manufacturer
[at a dilution of 1:1,000 for JNK and phospo-JNK (p-JNK)
antibodies, #9252 and #9255, Cell Signaling Technology, MA,
USA; or 1:10,000 for GS antibody; #ab176562, Abcam, St.
Louis, MO, USA] and then washed extensively with TBST three
times, 10min for each time, and incubated with corresponding
secondary antibodies (1:10,000; Cell Signaling Technology, MA,
USA) at RT for 2 h. The membranes were then washed three
times with TBST at 10-min intervals, and the immunolabeled
protein bands on membranes were detected by using an
enhanced chemiluminescence kit.

Immunocytochemistry
After different treatments, the astrocytes cultured on coverslips
were fixed with 4% paraformaldehyde for 30min and rinsed
with phosphate-buffered saline (PBS). The fixed cells were
then permeabilized with 0.4% Triton X-100 for 20min, rinsed
again with PBS, incubated with 3% normal goat serum
(NGS) for 30min, and then incubated with different primary
antibodies (GS, 1:5,000; JNK and p-JNK, 1:500) overnight at
4◦C, respectively. After 24 h, the coverslips were rinsed with
PBS and incubated with corresponding secondary antibodies
conjugated with Alexa Fluor R© 488 (green staining) or 594 (red
staining) (Invitrogen, UK) for 2 h at RT. Then, the coverslips
were mounted onto the slide with a mounting medium with

4
′

,6-diamidino-2-phenylindole (DAPI) for the observation of
nuclei and sealed with nail gel. The cells were visualized by
immunofluorescence microscope (Olympus, Japan).

Statistical Analysis
All experiments were performed in triplicate and repeated at least
three times. STATA software version 14.2 (Stata Corp, College
Station, TX, USA) was used for statistical analysis, and the data
were expressed as the mean ± SEM. One-way ANOVA followed
by the Newman-Keuls test was used to assess the significant
differences, and p< 0.05 was considered as significantly different.

Frontiers in Pain Research | www.frontiersin.org 2 July 2021 | Volume 2 | Article 68205142

https://www.frontiersin.org/journals/pain-research
https://www.frontiersin.org
https://www.frontiersin.org/journals/pain-research#articles


Wang et al. Astrocytic Glutamine Synthetase and Endocannabinoid

FIGURE 1 | Exposure to lipopolysaccharide (LPS) induced changes in the expression of glutamine synthetase (GS) and activation of c-Jun N-terminal kinase (JNK).

Astrocytes were treated with 1µg/ml LPS for different times, and protein levels of GS (A,B) and phospo-JNK (p-JNK) (A,C) were analyzed using Western blotting.

Error bars were ± SEM. n = 3. *p < 0.05, **p < 0.01, and ***p < 0.001 vs. control. ns, not significant.

RESULTS

Lipopolysaccharide (LPS) Activated
Expression of GS and Phosphorylation of
JNK and Translocation in Primary
Astrocytes of Rats
Similar to our previous study (10), 1µg/ml LPS was used
to activate the astrocytes. To investigate the effects of LPS
on the JNK pathway and expression of GS in astrocytes, the
expressions of p-JNK, JNK, and GS in primary astrocyte culture
were evaluated using Western blotting after treatment with
DMEM/F12 containing 1µg/ml LPS at 0min, 15min, 30min,
1 h, 2 h, 3 h, and 6 h. The data showed that the exposure to LPS
induced time-dependent biphasic changes in the expression of
GS in astrocytes, i.e., in contrast to baseline (0min), expression
of GS began to increase at 30min (1.62± 0.08, p < 0.01), peaked
at 1 h (1.86 ± 0.08, p < 0.001), declined to control level at 2–3 h,
and then decreased at 6 h (0.57 ± 0.05, p < 0.01; Figures 1A,B).
Regarding the JNK pathway, LPS significantly increased the
phosphorylation of JNK in a time-dependent manner while
without effect on the total JNK. The protein level of p-JNK
increased at 15min (6.96 ± 0.63, p < 0.01), reached a maximal
level at 30min (18.12 ± 0.90, p < 0.001), and then gradually
declined but was still higher at 6 h (5.60 ± 0.49, p < 0.01) than
control (Figures 1A,C). In addition, previous studies indicated
that the JNK pathway exerted its role through translocation from
the cytoplasm to nucleus (14). As expected, 1µg/ml LPS for 1-
h exposure induced the translocation of JNK from cytoplasm to
nucleus, which was prevented by JNK phosphorylation inhibitor
SP600125 (Figure 2). In addition, SP600125 also prevented the
expression of GS by LPS.

2-Arachidonoylglycerol (2-AG) Reversed
Changes in LPS-Induced GS Independently
on the p-JNK Pathway
To explore the effects of 2-AG on the activation of astrocytes
induced by exposure to LPS, the astrocytes were exposed to
1µg/ml LPS for 1 h and were chosen on the basis of the acquired
data from Figure 1. The cells were pretreated with 1µM2-AG for

1 h and/or 1µg/ml LPS for 1 h. Compared with control (0µg/ml
LPS), exposure of astrocytes to 1µg/ml LPS for 1 h significantly
elevated the expressions of p-JNK (2.18 ± 0.18, p < 0.01) and
GS (3.41 ± 0.29, p < 0.01) and treatment with 2-AG could
significantly reverse the changes in the expression of GS induced
by exposure to LPS (1.13 ± 0.09, p < 0.01) when compared with
LPS group (Figures 3A,B) but without significant effect on the
expression of p-JNK (Figures 3A,C).

Dephosphorylation of JNK Increased the
Expression Level of GS
According to the above results, phosphorylation of JNK is not the
pathway of 2-AG modulating the expression of GS in astrocytes.
To further address the question of whether the JNK pathway
was involved in the process of regulating the expression of GS,
a specific inhibitor for the JNK signaling pathway, SP600125, was
used to investigate the relationship between the JNK pathway and
the expression of GS in astrocytes. SP600125 at the concentration
of 50µM and 100µM could significantly inhibit LPS-induced
activation of JNK in a dose-dependent manner (16.71 ± 0.75,
p < 0.05; 5.03 ± 0.33, p < 0.001) when compared with LPS
alone (22.41± 1.18) (Figures 4A,C). Meanwhile, SP600125 at the
concentration of 50 and 100µM could also significantly suppress
the LPS-induced upregulation of expression of GS in a dose-
dependent manner (1.15± 0.84, p < 0.01; 0.79 ± 0.06, p < 0.01)
when compared with LPS alone (2.14 ± 0.15) (Figures 4A,B).
In addition, SP600125 also inhibited the translocation of p-
JNK (Figure 2). Briefly, these data suggested that LPS activated
JNK resulting in the upregulation of expression of GS. In the
other words, GS was the downstream target of JNK signaling
in astrocytes.

DISCUSSION

Previous studies indicate that GS is involved in suppressing
the development of glutamate/ammonia neurotoxicity and a
variety of neurological diseases, such as neuropathic pain and
inflammatory pain (1). Intriguingly, both the increase and the
decrease of GS are reported in the same diseases, such as
hepatic encephalopathy, traumatic brain injury, and epilepsy, but
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contrarily, controlling the expression of GS can diminish these
diseases. Consistent with our previous study (10), this study
finds that exposure to LPS resulted in the expression of GS in a
biphasic form in astrocytes, i.e., the expression of GS is increased
with short-term exposure to LPS and decreased with long-term
exposure to LPS.

The MAPK family of kinases including p38 and ERK
participate in pain and neurodegenerative diseases and exist in
activated astrocytes induced by pathological stimulation (6). Our
previous study indicates that exposure to LPS could activate p38
and ERK1/2 in astrocytes with different patterns (10). In this
study, we find that inhibition of JNK blocks the increase in GS

FIGURE 2 | Inhibition of phosphorylation of JNK prevented the translocation of

JNK and upregulation of GS induced by exposure to LPS. Astrocytes were

pretreated with SP600125 for 1 h and exposed to 1µg/ml LPS for 1 h.

Immunocytochemistry assay was used to analyze the translocation of JNK

and changes in the expression of GS. Scar bar = 10µm.

by LPS, of which the mechanism may be through suppression of
glucocorticoid receptor transcriptional activity (15). This study
further indicates that exposure to LPS produces a uniphasic
activation of JNK in astrocytes, which enriches the involvement
of MAPK signaling in LPS-induced changes in GS in astrocytes.
However, the mechanism remains to be further studied.

2-Arachidonoylglycerol (2-AG) is an eCB that binds to CB1R

and CB2R expressed in astrocytes. The previous study found
that astrocytic p38 can be activated by 2-AG, while blocking

CB1R can produce an inhibitory effect on the modulation

of 2-AG on p38 (9), implying that 2-AG participates in the
modulation of MAPK signaling in astrocytes. Our previous study

suggests that, under the condition of short-term exposure to LPS,

activation of p38 could increase the expression of GS, and 2-
AG could suppress the increased expression of GS by inhibiting

the phosphorylation level of p38. While under the condition of

long-term exposure to LPS, activation of ERK1/2 results in a
decrease of expression of GS and 2-AG reverses the decrease of

expression of GS through reducing the activation of ERK1/2 (10).

It should be noted, in our previous study, that although ERK1/2
and p38 are activated by short-term exposure to LPS and long-

term exposure to LPS, respectively, the activation is relatively
weaker compared to long-term and short-term exposure to LPS,
respectively. This study indicates that JNK is activated during
the short-term exposure to LPS, while 2-AG has no effect on
the phosphorylation of JNK. However, other studies indicate
that JNKs are involved in the CB1R-mediated inflammation
signaling (11) and CB2R-mediated suppression of leukocyte
migration under inflammation (12). These results imply that
activation of JNK may be the upstream pathway of the astrocytic
extracellular matrix (ECM) system in modulating inflammation,
which remains to be further investigated.

In conclusion, this study indicated that exposure to LPS for
the short term and long term can produce different changes in
the activities of GS in astrocytes with activation of JNK. ECB 2-
AG modulates the expression of GS induced by exposure to LPS,
which is not dependent on the activation of JNK. Themechanism
of JNK in modulating the astrocytic expression of GS remains to
be further studied.

FIGURE 3 | 2-Arachidonoylglycerol (2-AG) suppressed the upregulation of expression of GS but had no effect on phosphorylation of JNK induced by exposure to

LPS in astrocytes. Astrocytes were pretreated with 0.01µM 2-AG for 2 h and exposed to 1µg/ml LPS for 1 h. The protein levels of GS (A,B) and p-JNK (A,C) were

measured using Western blotting. Error bars were ± SEM. n = 3. **p < 0.01, and ***p < 0.001. ns, not significant.
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FIGURE 4 | Inhibition of phosphorylation of JNK prevented the effect of LPS-induced upregulation of expression of GS. Astrocytes were pretreated with SP600125

for 1 h and exposed to 1µg/ml LPS for 1 h. The protein levels of GS (A,B) and p-JNK (A,C) were measured using Western blotting. Error bars were ± SEM. n = 3. *p

< 0.05, **p < 0.01, and ***p < 0.001. ns, not significant.
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Glial cells play an essential role in maintaining the proper functioning of the nervous

system. They are more abundant than neurons in most neural tissues and provide

metabolic and catabolic regulation, maintaining the homeostatic balance at the synapse.

Chronic pain is generated and sustained by the disruption of glia-mediated processes

in the central nervous system resulting in unbalanced neuron–glial interactions. Animal

models of neuropathic pain have been used to demonstrate that changes in immune

and neuroinflammatory processes occur in the course of pain chronification. Spinal cord

stimulation (SCS) is an electrical neuromodulation therapy proven safe and effective

for treating intractable chronic pain. Traditional SCS therapies were developed based

on the gate control theory of pain and rely on stimulating large Aβ neurons to induce

paresthesia in the painful dermatome intended to mask nociceptive input carried out

by small sensory neurons. A paradigm shift was introduced with SCS treatments that

do not require paresthesia to provide effective pain relief. Efforts to understand the

mechanism of action of SCS have considered the role of glial cells and the effect of

electrical parameters on neuron–glial interactions. Recent work has provided evidence

that SCS affects expression levels of glia-related genes and proteins. This inspired the

development of a differential target multiplexed programming (DTMP) approach using

electrical signals that can rebalance neuroglial interactions by targeting neurons and glial

cells differentially. Our group pioneered the utilization of transcriptomic and proteomic

analyses to identify the mechanism of action by which SCS works, emphasizing the

DTMP approach. This is an account of evidence demonstrating the effect of SCS on

glia-mediated processes using neuropathic pain models, emphasizing studies that rely

on the evaluation of large sets of genes and proteins. We show that SCS using a DTMP

approach strongly affects the expression of neuron and glia-specific transcriptomes

while modulating them toward expression levels of healthy animals. The ability of DTMP

to modulate key genes and proteins involved in glia-mediated processes affected by

pain toward levels found in uninjured animals demonstrates a shift in the neuron–glial

environment promoting analgesia.

Keywords: spinal cord stimulation, neuropathic pain, animal models, mechanism of action, neuronal-glial

interactions
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INTRODUCTION

Pain is a natural reflex that protects an individual from
potentially harmful stimuli. Specialized nerve terminals conduct
information from the periphery and internal organs to the
brain via sensory ganglia and distinct tracts in the spinal cord
(SC). When a certain stimulus (mechanical, chemical, thermal,
emotional) exceeds a particular threshold, the brain interprets it
as pain. Pain is a complex quale encompassing a concerted and
balanced interplay of biological processes orchestrated through
cellular signaling and interactions throughout the entire nervous
system. Acute pain accompanies injuries and is necessary to
initiate and sustain a healing and self-protection process to
return the damaged tissues to normality. Once the affected
part of the body is healed, pain recedes, and the system goes
back into balance. However, many individuals continue to
experience pain beyond what constitutes the normal healing
process from injuries. In this case, persistent or chronic pain
sets in due to distorted and unbalanced processing of events.
Our understanding of chronic or persistent pain, although
limited, has evolved greatly in the last 60 years. Many pain
theories have been developed (1, 2), most of them centered on
neuronal processing, driven by the fact that neurons are the
main carriers of sensory information to the brain. Indeed, the
most recent of these, gate control theory (GCT) (3), has served
as the foundational development of electrical neuromodulation
therapies such as spinal cord stimulation (SCS), dorsal root
ganglion stimulation (DRGS), and peripheral nerve stimulation
(PNS) for the treatment of intractable chronic neuropathic pain
(4–6). Conventional modalities of these treatments consist of
applying electric signals to the dorsal columns of the SC, or the
DRG, or a peripheral nerve to induce paresthesias that are steered
to overlap the affected pain dermatomes. These paresthesias
result from the stimulation of neurons in Aβ fibers and are
intended to gate out the noxious input transmitted through
small, unmyelinated, and slow conductive fibers (7). It is also
plausible that conventional SCS exerts an inhibitory effect on
wide dynamic range neurons via Aβ fibers or directly on these
fibers, which are also known to contribute to neuropathic pain
(8, 9). Caylor et al. provide a comprehensive review of the various
mechanisms of action of SCS (10).

SCS has been proven to be an effective and safe reversible
treatment of intractable chronic neuropathic pain of the trunk
and limbs (11). Rooted in the foundations of the GCT of pain,
it was developed to target neurons to induce paresthesia in the
painful area, with electrical signals pulsed at a rate of 40-60Hz.
Technological developments of this paresthesia-based traditional
SCSmodality have resulted in improvements in clinical outcomes
in which ∼50% of treated patients with post-laminectomy pain

syndrome obtained ≥50% pain relief (12). Other developments

based on the utilization of electrical signals that do not rely
on paresthesia have flourished in the last decade (13). Electrical

pulses delivered at rates above what was traditionally utilized
served as the foundational basis for the development of therapies
that use bursts (pulses at 500Hz delivered every 25 µs) or
faster-uninterrupted pulses (>1 kHz). One of such treatments
that utilized 10 kHz pulses provided superior outcomes (∼80%

of patients obtained ≥50% pain relief) relative to treatment
with traditional SCS (14). These results spurred the review of
the mechanism of actions that had remained centered on the
neuronal doctrine embedded in further developments of the
GCT (15).

A largely ignored fact in electrical neuromodulation is the now
well-established key role of glial cells in the pathology of chronic
pain (16, 17). In a pain state, microglia, the resident immune
cells of the central nervous system (CNS), become activated
into various phenotypes that promote pro-inflammatory and
anti-inflammatory processes via the expression and release of
cytokines, chemokines, and gliotransmitters (18). Intracellular
activation of signaling cascades may cause these changes
to become persistent by perpetuating an inflammatory state.
Activation of inflammatory processes also triggers the activation
of astrocytes, the glial components of the tripartite synapse.
These cells modulate calcium signaling, regulate extracellular
potassium, and buffer the effect of neurotransmitters (19).
Astrocytes monitor the homeostasis of the synaptic clefts and
provide neuronal nutrients (glutamine and L-serine) used in
the synthesis of neurotransmitters (glutamate, GABA, glycine,
and D-serine). Astrocytes communicate via calcium waves
through gap junctions and regulate calcium-mediated processes
central to the signaling of immune and inflammatory processes.
They also capture nutrients from the circulatory system and
regulate blood supply at the blood–brain barrier while releasing
vasoactive molecules. These cells are associated with maintaining
a chronic pain state as key players in the long-term potentiation
of nociception. In addition to microglia and astrocytes,
oligodendrocytes are now recognized to be involved in chronic
pain (20, 21). Mature oligodendrocytes myelinate neuronal
axons and thus play an important role in maintaining proper
signal conduction. Precursor oligodendrocyte cells (OPCs) are
mobile and are known to populate and migrate from white and
gray matter. These cells can mature to become myelinating as
required by the CNS and assist astrocytes via cell-to-cell signaling
processes in monitoring the homeostatic balance of the system.

Over a decade ago, Vallejo et al. (22) suggested that
electrical stimulation of neural tissue could also target glial
cells, acknowledging that they play a fundamental role in the
establishment and maintenance of neuropathic pain. This idea
has been supported by reports demonstrating that astrocytes and
oligodendrocytes respond to electrical stimulation and that such
response may be modulated by modifying the characteristics
of the electric signal (23–26). Furthermore, Sluka et al. (27)
showed that standard low rate (LR) SCS reversed the expression
of protein markers associated with glial activation in a rat spared
nerve injury (SNI) model of neuropathic pain. Vallejo et al.
(28) later showed, using high-throughput transcriptomics, that
LR SCS affected the expression of hundreds of genes associated
with neuroinflammation, immune response, and ion transport
regulation, among others, in the SNI model. Similar results were
obtained by Guan et al. (29, 30) using transcriptomic-based
analysis of the effects of LR SCS in the rat chronic constricted
injury (CCI) model and the rat chemotherapy-induced painful
neuropathy (CIPN) model. These studies also validated the
involvement of glial cells in immune response and inflammatory
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processes associated with the pain models. Vallejo et al. (31–
33) have used the knowledge obtained from their molecular
biology-based research to develop an SCS approach in which
multiple signals are multiplexed to target neurons and glial
cells differentially. This approach has been successfully translated
to the clinic (34), in which differential target multiplexed SCS
programs have provided superior pain relief (∼80% of subjects
with ≥50% relief) relative to traditional SCS.

This manuscript provides insight into what has been learned
using animal models of SCS on the modulation of glial-
based processes, emphasizing evidence obtained using molecular
biology methods.

MATERIALS AND METHODS

Animal Models in Spinal Cord Stimulation
Used for Glial-Mediated Processes
Animal models for SCS have been recently reviewed (35). Three
pain models have mostly been used for studying the molecular
effects of SCS on neuropathic pain.

SCS in the Spared Nerve Injury Model
Details of the implementation of the SNI model for SCS are
provided by Vallejo et al. (31, 36). The model targets the sciatic
nerve at the point of trifurcation into the peroneal, tibial, and
sural nerves in the hindlimb of the animal, located under the
biceps femoris muscle. Both the tibial and peroneal nerves were
ligated with a silk suture, and 2–4mm of the nerve was sectioned
and removed, leaving the sural nerve intact. Nerve injury caused
long-lasting mechanical and thermal hypersensitization in the
operated limb. For SCS, a cylindrical quadripolar lead was
implanted in the dorsal epidural space of the L1-L2 vertebral
level via a laminectomy at the L4 level. The lead cable was
securely anchored to the muscle tissue around the L5 spinal
process to reduce migration risk. The lead cable terminals were
connected to a block with an ethernet plug attached to a custom-
made harness. An ethernet spiral cable connected the block to
an assembly that was connected to an external neurostimulator,
which delivered the electrical signals to be studied. This setup
is capable of providing continuous SCS for many days. In their
work, Vallejo et al. (31) have studied various SCS modalities,
including traditional low rate (LR, 50Hz, 20 or 150 µs pulse
width, PW), high rate (HR, 1.2 kHz, 50 µs PW), or differential
target multiplexed programming (DTMP, 50Hz and 1.2 kHz, 50
and 150 µs PW). Current intensities were set at 70% of the motor
threshold (MT). The effects were studied at an early stage of the
pain model, as SCS was started 5 days post-SNI surgery.

The SNI was also similarly implemented by Sluka et al., except
for using a quadripolar paddle lead implanted via laminectomy
at the T13 level (27, 37). Signals were pulsed at 4 or 60Hz with
voltage intensities set at 90% of the MT and delivered 6 h a day
for 4 days. PW was likely 250 µs based on another report from
this group that utilized the same rate and intensity (37). SCS was
started 2 weeks post-nerve injury.

SCS in the Chronic Constriction Injury Model
Details of the implementation of the CCI for SCS are provided
by Guan et al. (29, 38). The model targets the sciatic nerve in the
hindlimb of the animal located under the biceps femoris muscle.
Rather than axotomizing the nerve branches, the sciatic nerve
trunk proximal to the trifurcation is loosely ligated with four 4-
0 silk sutures about 0.5mm apart. Nerve injury also developed
into a stable and persistent painmodel. A quadripolar paddle lead
covering the T13-L1 vertebral levels was epidurally implanted
via a laminectomy at the T13 level in this implementation.
Lead cables were tunneled subcutaneously rostrally to exit at the
cervical level near the head. These were connected to an external
neurostimulator which delivered electrical signals at 50Hz, 200
µs PW, and current intensities set to 80% of the MT. SCS was
delivered twice a day (2 h per session) for 3.5 consecutive days.
SCS was started 36 days post-nerve injury.

SCS in the Chemotherapy-Induced Painful

Neuropathy Model
Details of the implementation of the CIPN for SCS are
provided by Guan et al. (30). This model uses intraperitoneal
administration of paclitaxel (1.5 mg/kg) for 4 consecutive days.
Animals reached maximum hypersensitivity manifested in the
limbs about 2 days after the final dose of paclitaxel. A quadripolar
paddle lead was epidurally implanted via a laminectomy at the
T13 vertebral level. The lead-covered the dorsal T13-L1 levels.
Lead cables were tunneled subcutaneously rostrally to exit near
the head. These were connected to an external neurostimulator
which delivered electrical signals at 50Hz, 200 µs PW, and
current intensities set to 80% of the MT. SCS was delivered
preemptively for 14 days (6–8 h per day), starting 1 day before
starting paclitaxel injection.

Molecular Biology Methods
Transcriptomics Using Microarrays
High-throughput quantification of gene expression using
microarray technology was used by Vallejo et al. (28) to
study the effects of traditional LR SCS (see section SCS in
the Spared Nerve Injury Model above) on the stimulated SC
section (dorsal ipsilateral quadrant) and the L5 DRG of SNI
animals and uninjured animals. This was the first time the
transcriptome of SCS was reported. RNA from 48 samples (2-5
from 6 experimental groups) was extracted and quantitated
from frozen tissue, preserved in RNAlater solution, using
standard procedures (39). The RNA was hybridized to Agilent
rat gene expression 4 × 44 microarray kits. Half of the samples
were labeled with Cy5 and the other half with Cy3 fluorescent
dyes. When a particular hybridized RNA of the sample is
complementary to the cDNA probe in the microarray, the
fluorescent dye is activated and detected using optical methods.
The arrays used in this work interrogated 26,930 genes using
30,367 probes in the microarrays.

Transcriptomics Using RNA Sequencing
Although microarray analysis is a convenient way of quantifying
a large amount of protein-coding messenger RNAs (mRNAs),
it is limited to those genes that have been characterized and
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built into the microarrays. In contrast, RNA sequencing allows
sampling of the total RNA in a sample, including mRNA, micro
RNAs (miRNAs), and long non-coding RNAs (lncRNAs). This
methodology was used first by Guan et al. (29) to determine
the effect of traditional LR SCS on the CCI (see section SCS in
the Chronic Constriction Injury Model above) and later by the
same group (30) to study the effect of LR SCS on CIPN (see
section SCS in the Chemotherapy-Induced Painful Neuropathy
Model above). Ipsilateral L4–L6 SC segments were dissected and
stored in a DNA/RNA shield solution. RNA was extracted and
quantitated using standard methods. Five hundred ng of total
RNAwas used to build strand-specific sequencing libraries. These
were built after polyadenyl [poly(A)] selection of mRNA using a
commercial kit. Samples were barcoded using a kit that contains
adapters and primers designed for high amplification efficiency.
The RNA sequencing libraries were quantified using quantitative
polymerase chain reaction (qPCR). Libraries were normalized,
pooled, and sequenced in an Illumina HiSeq4000 to a depth of
33.6 million reads per sample.

Recently, Vallejo et al. (31) used RNA sequencing to study the
effect of DTMP on gene expression in the stimulated ipsilateral
cord compared with LR and HR SCS in SNI animals (see section
SCS in the Spared Nerve Injury Model above). RNA from frozen
dorsal ipsilateral quadrants of the L1-L2 SCs of 20 animals (4 per
experimental group) stored in RNAlater was isolated using the
TriZol commercial kit. RNA libraries were constructed using a
commercial kit after poly(A) enrichment of mRNA from a 1 µg
sample of total RNA. RNA was coded by chemically fragmenting
the mRNA, annealing with random hexamers, and converting
to double-stranded cDNA ligated to indexed adaptors. The
cDNAwas amplified, quantitated, and polled using qPCR. Pooled
barcoded libraries were sequenced in an Illumina HiSeq 4000
and quality controlled using software algorithms that select and
map mRNAs to the rat genome (NCBI Rnor_6.0 Annotation
Release 106).

Gene Expression Using Reverse Transcription qPCR
Vallejo et al. (40) used quantitative reverse transcription PCR
(RT-qPCR) to study the modulatory effects of phase polarity and
extent of anodic charge of LR signals (50Hz, 50 µs cathodic PW,
the intensity at 66% of the MT) on a panel of 21 genes associated
with glial-related processes. Vallejo et al. (28) and Guan et al.
(29) also used RT-qPCR to validate their high throughput results.
Transcripts from the genes of interest were identified in the rat
genome to design sequence-specific primers using bioinformatic
tools (41). Column-purified RNA extracted from experimental
samples was reverse-transcribed into first-strand cDNA using a
commercial kit. Quantitation was carried out by amplification of
cDNA using qPCR. Amix of cDNA, reverse and forward primers,
polymerase, deoxy-nucleotide triphosphates (dNTPs), and a
fluorescent DNA-intercalation probe was thermally cycled under
appropriate conditions. Gene expression levels were quantitated
in triplicate by measuring the Cq values from the thermal
amplification cycles using the 11Cq method (42). An internal
control gene was used to normalize the expression of genes of
interest, obtaining a 1Cq. Differential gene expression between

experimental groups compared their corresponding 1Cq values
and obtaining a 11Cq.

Immunohistochemistry
Immunohistochemistry was used by Sluka et al. (27) as well as
Guan et al. (38) to detect proteins associated with glial activation
related to treatment with traditional LR SCS (see section SCS in
the Spared Nerve Injury Model above). Anesthetized rats were
transcardially perfused with heparinized saline (10%) followed by
paraformaldehyde (4%) with 15% picric acid. SCs were dissected
and fixed for 1 h in paraformaldehyde and frozen after immersion
in 30% sucrose. Sections (20µm thick) were frozen cut onto
slides for staining. Before exposure to specific antibodies, slides
were blocked with 3% goat serum followed by avidin-biotin.
Overnight exposure to anti-mouse GFAP antibodies (1:5,000)
and goat anti-Rabbit MCP-1 antibodies (1:500) were used to stain
active astrocytes. GFAP and MCP-1 staining were developed by
exposing slides to biotinylated goat anti-mouse IgG and goat
and goat anti-rabbit IgG, respectively, followed by exposure to
Streptavidin-488 for fluorescent detection. Active microglia were
stained by exposure to anti-mouse OX-42 antibodies (1:2,500)
and developed using the same process for developing astrocyte
stains. Slides from five animals per group were imaged using
fluorescence microscopy and analyzed using imaging software
(ImageJ) to differentially quantify the amount of antibodies in
stimulated and non-stimulated cords.

High-Throughput Proteomics and

Phosphoproteomics
Vallejo et al. (43) pioneered high throughput protein profiling
methods for studying the effect of traditional LR SCS on the SNI
model of neuropathic pain. The global proteomic analysis used
by this group identified and quantitated proteins in a sample
using liquid chromatography and tandem mass spectrometry
(LC/MS/MS). Proteins from SC tissues (see section SCS in the
Spared Nerve Injury Model above) were separated, purified,
and quantitated using standard procedures that used non-ionic
buffers compatible with the LC method (44). Proteins were
trypsinized after reduction and alkylation of cysteine residues.
Tryptic peptides were purified and desalted, and labeled with
isotopic tags (TMT 10plex) for simultaneous processing and
quantitation. Labeled samples were equally mixed and separated
using LC into 18 fractions. Each fraction was then subjected to
LC/MS/MS in quadruplicate. Mass spectra of tagged peptides
were searched against the Uniprot curated proteome of the
rat to identify proteins based on unique peptide profiles using
bioinformatics software (45). Identified proteins were quantified
from normalized spectral intensities of their unique peptides.

Post-translational modifications of proteins serve as
a diverse source of regulatory and signaling moieties.
Protein phosphorylation by kinases is one such process.
Phosphoproteomics has been used to investigate glia-mediated
regulation of pain-related processes. Phosphorylated proteins
are enriched from the total protein sample via reversed-phase
solid-phase extraction, followed by phospho-enrichment using
immobilized metal affinity chromatography (IMAC) (46) with
iron-basedmagnetic beads (PTMScan R© Fe-IMAC, Cell Signaling
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Technology, Danvers MA). Unbound peptides were washed out,
and immobilized phosphopeptides eluted with basic pH buffer.
Reversed-phase purification was performed before LC/MS/MS
analysis, carried out as described above for whole proteomics.

Bioinformatics and Statistical Analyses
Using high-throughput methods is the vast amount of data that
needs to be analyzed to gain useful insight. Various algorithms
have been created for mining the data using curated databases
(47). Vallejo et al. (28, 31) have used weighted gene coexpression
network analysis (WGCNA) (48) to catalog genes according to
their expression trends based on the various treatment groups.
The WGCNA groups genes in a hierarchical fashion in modules.
Pairwise comparisons between expression patterns in a given
module for treatment groups are based on an eigengene value,
representing the degree of variance. Significance P-values for
multiple comparisons of eigengenes were corrected using the
false discovery rate (FDR) method (49).

To determine the biological relevance of genes in a module,
individualmodules were subjected to a gene ontology enrichment
analysis (GOEA), emphasizing their involvement in biological
processes curated into gene ontology terms. Various software
options are used to carry out the GOEA (50). The method ranks
the GO terms based on the number of genes in the module
(i.e., experimental gene set) represented in a given curated GO
term. Significance P-values for multiple comparisons based on
the ranks were corrected using the FDR method.

Protein interaction network maps can be constructed
using web-based bioinformatics tools, such as string-db (51),
generating them from curated literature reports. Tools can
also provide clustering based on connectivity indexing and
GOEA and analysis based on Reactome and protein domains,
which allow categorization of proteins based on their biological
relevance. The FDR method is used to rank the results based
on significance.

Experimental Designs
Experimental designs were well-controlled, including at a
minimum a stimulation sham (SCS turned off). Others
included naïve and injury sham (uninjured) animals. Table 1
summarizes the experimental designs of the work cited in the
previous sections.

RESULTS AND DISCUSSION

Modulation of Glia-Related Gene
Expression by SCS
Transcriptomics and qPCR have been used to study the
modulatory effects of SCS in SC and DRG tissues. In their
transcriptomics work on the SNI, Vallejo et al. (28) showed that
72 h of continuous treatment with traditional LR SCS modulated
gene expression in the SC related to neuroinflammation and
immune response. This included glia-related genes such as Lyz2,
Cd68, Cd74, Cxcl16, RT1-Bb, RT1-Da, RT1-Db1, Tlr2, Itgb2,
Aif1, and Tspo. Some of these genes are markers of microglial
activation (e.g., Cd68, Cd74, Itgb2) and astrocyte activation (e.g.,
Tlr2, Cxcl16), which are usually elevated by nerve injury and

the inflammatory process. Interestingly, LR SCS elevated the
expression of these genes. Furthermore, the increase occurs in
the absence of injury for some of these genes, implying that
LR SCS may activate glial cells. Transcriptomics work reported
by Guan et al. (29) on the effect of LR SCS on the CCI are
remarkably similar, despite the differences in pain models, their
chronicity, stimulation times, and SC segments analyzed. This
work found that traditional LR SCS upregulated immune- and
inflammatory-related processes and that this treatment elevated
expression of markers of astrocyte (Gfap, Ccl2) and microglia
(Cd68, Itgam) activation in the SC, caudal to the stimulation
site. This group followed up with one study (36) in which they
measured microglia mRNA markers for specific M1-like (pro-
inflammatory) and M2-like (anti-inflammatory) phenotypes in
the L4–L6 SC. They found that expression levels of two M1-like
markers (Cd16 and Cd32) were significantly elevated by the CCI,
whileCd16 was further increased by low rate SCS. The expression
levels of the M1-like marker i-Nos were elevated by treatment
but were not by the CCI. None of the three M2-like markers
(Arg1, Cd163, and Tgfb) were affected by either the CCI or SCS.
These authors also showed that intrathecal administration of a
low dose (.067 µg/µl) of the microglia inhibitor, minocycline,
in conjunction with LR SCS, provided analgesic effect after
acute (2 h) SCS. Cedeño et al. (32) analyzed a microglia-specific
transcriptome (101 genes) and found that the SNI upregulated
79% of these genes relative to naïve animals and that LR SCS
reversed the expression levels of only 23% of genes toward the
naïve level, in contrast with what was obtained with DTMP
and HR SCS. Indeed, they found that the expression profile of
the microglia transcriptome associated with LR SCS treatment
negatively correlated with the expression profile of naïve animals.
This group followed up with a report (33) in which larger
microglia transcriptomes associated with resting (1,569 genes),
post-injury (3,706 genes), and neuroprotective (1,588 genes)
states were analyzed. They found that expression levels relative
to SNI in both post-injury and neuroprotective states upon LR
SCS correlated weakly with those found for naïve animals. This
was consistent with the fact that only ∼50% of genes in these
transcriptomes returned toward naïve levels upon treatment with
LR SCS. Glial activation induces the release of pro-inflammatory
cytokines (such as Tnfa, Il1b, and Il6) and a reduction of anti-
inflammatory ones (such as Il10 and Il4). Tilley et al. (52, 53)
measured some of these in stimulated SC and the L5 DRG of
SNI animals and those treated with LR SCS using RT-qPCR.
They found that the SNI elevated the expression level of Tnfa
in the SC relative to injury-sham. Furthermore, they found that
LR SCS further increased Tnfa expression in both injured and
uninjured animals. Interestingly, changes in Tnfa correlated well
with the changes observed in the microglial activation marker,
Itgam, and the astrocyte activation marker, Gfap. Itgam was also
increased in the L5 DRG due to the SNI and further increased
by LR SCS, while the level of Il1b was significantly elevated in
the DRG due to LR SCS. Shu et al. (38) also found that LR
SCS significantly increased il1b in the L4-L6 SC of CCI animals.
However, Tnfa levels were not changed. It is noteworthy to
highlight the similarity of the findings by Tilley et al. in the
DRG and those by Shu et al. in the L4-L6 SC, considering that
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TABLE 1 | Summary of experimental designs in preclinical investigations of SCS.

Model Tissues

analyzed

SCS treatments Controls SCS time References.

SNI (14d) SCa LR (4Hz, 250 µs, 90% MT)

LR (60Hz, 250 µs, 90% MT)

At T10-T12

No-SCS 6 h/day for 4 days Sato et al. (27)

SNI (4d) L1-L2 SC L5

DRG

LR (50Hz, 20 µs PW, 70% MT)

At L1-L2

No-SCS

No-SNI (implanted)

SNI (no implant)

Sham for SNI

(no implant)

72 h continuous Vallejo et al. (28)

SNI (5d) L1-L2 SC DTMP (50 Hz/1.2 kHz, 50/150 µs PW, 70% MT)

LR (50Hz, 150 µs PW, 70% MT)

HR (1.2 kHz, 50 µs, 70% MT)

At L1-L2

No-SCS

Naïve

48 h continuous Vallejo et al. (31)

SNI (5d) L1-L2 SC LR (50Hz, 50 µs PW cathodic, variable anodic PW,

66% MT)

At L1-L2

No-SCS

No-SNI

24 h continuous Vallejo et al. (40)

CCI (36d) L4-L6 SC LR (50Hz, 200 µs PW, 80% MT)

At T10-T12

No-SCS 2 h/day for 3.5

days

Stephens (29)

CCI (18d) L4-L6 SC LR (50Hz, 200 µs PW, 80% MT)

At T10-T12

No-SCS 3h per session (2

per day) for 3.5

days

Shu et al. (38)

CIPN L4-L6 SC LR (50Hz, 200 µs PW, 80% MT)

At T10-T12

No-SCS

CIPN (no implant)

Naïve

6-8 h/day for 14

daysb
Sivanesan et al.

(30)

aVertebral levels analyzed were not reported.
bStarted preemptively 1 day before inducing the pain model.

SCS was applied more rostrally. Thus, preclinical results based
on transcriptomics suggest that traditional LR SCS may enhance
microglial activation. Based on molecular biology, these reports
complement the existing mechanisms of action of conventional
SCS, which have mostly been centered on the effect of electrical
stimulation on neuronal activity (10). Themodulation of glial cell
activity by SCS suggests that the mechanisms of action should
also account for these cells in their interactions with neurons and
their combined contribution to neuropathic pain.

Vallejo et al. (40) found that the expression levels of glia-

related genes could be modulated by modifying the anodic
content of the electrical signal. Although this may not have a

direct clinical application due to the charge unbalanced signals,

it illustrates that the properties of electrical signals may influence
glial activation and, thus, its effects on neuroinflammation and

neuropathic pain relief. Figure 1 shows that an increase in the

amount of anodic charge in a bipolar signal correlates strongly

with a decrease in the expression levels of glial activation markers
Aif1, Gfap, Cd68, Tspo, Cd74, and Cxcl16.

These findings are congruent with previous evidence

demonstrating that glial cells respond to the application of
electric fields. Roitbak and Fanardjian (54) showed that the

membrane of cortex astrocytes of a cat could be depolarized

by changing the parameters (intensity, polarity, and rate) of
pulsed electrical signals. Lee et al. (23–25) also demonstrated

that electrical stimulation of astrocytes in the brain of rodents
induced the release of glutamate. This release is dependent
on the properties of the electric signal, including rate, pulse

FIGURE 1 | Differential expression levels of mRNA associated with glial

activation as a function of the anodic content of pulsed signals at a low rate

(50Hz, 50 µs PW cathodic, 66% MT). Data from Vallejo et al. (40).

width, intensity, and extent of charge balance. Yamazaki
et al. (55) also demonstrated that electrical stimulation of
oligodendrocytes could modulate conduction velocities in the
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FIGURE 2 | (A) Mechanical hypersensitivity relative to Pre-SNI. (B) Hot hypersensitivity. The dashed line denotes the mean of all animals pre-SCS, Continuous line

denotes the mean baseline of all animals (pre-SNI). (C) Cold hypersensitivity. The dashed line denotes the mean of all animals pre-SCS, Continuous line denotes the

mean baseline of all animals (pre-SNI). Figures reproduced from Vallejo et al. (31). SNI, spared nerve injury; SCS, spinal cord stimulation.

FIGURE 3 | Heat maps illustrating expression levels due to the effect of DTMP, LR, and HR SCS on genes enriched in biological processes that involve neuron–glial

interactions, compared with the effect of the pain model (No-SCS). The white color indicates that the expression is that of a naïve animal. Reproduced from Vallejo et

al. (31). DTMP, differential target multiplexed programming; HR, high rate; LR, low rate; SCS, spinal cord stimulation.

axons they myelinate. Another important fact is that glial cells
are the most abundant cells in the spinal cord (56, 57). A recent
human anatomical study showed about 13 glial cells per every
neuronal soma in the gray matter of the dorsal horn closest to
the SCS field in the T8-T11 levels (57).

Considering that glial cells are the most abundant in
the spinal cord, play a fundamental role in chronic pain,
and are electrically excitable, Vallejo et al. developed an
SCS approach in which various pulsed electric signals are
multiplexed in space and time to target glial cells and neurons
differentially. They found that differential target multiplexed
programming (DTMP) provided significant improvements in
both mechanical and thermal hypersensitivity in SNI rats (see
Figure 2) (31). Improvement in mechanical hypersensitivity
was also significantly better than that obtained using LR or
HR SCS.

Transcriptomics validated that, relative to naïve animals, the
SNI upregulated hundreds of genes involved in regulating the
immune system, inflammation, and signal transduction. DTMP
modulated more of these genes than both HR and LR SCS.
More importantly, DTMP significantly reversed the expression
levels of 166 of such genes within 10% of the expression levels
found in naïve animals. In contrast, HR SCS and LR SCS only
modulated 70 and 91 of such genes, respectively, within 10%
of the naïve expression levels. DTMP also reduced expression
levels of genes associated with microglia and astrocyte activation
(i.e., Itgam and Gfap, respectively), which the pain model had
increased. This work also illustrated that DTMP provides a
more substantial modulatory effect on genes associated with
pain-related processes than HR and LR SCS (see Figure 3).
These results indicate that DTMP may provide its analgesic
effect throughmodulation of immune-related processes, synaptic
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FIGURE 4 | Heat maps for cell-specific transcriptomes illustrating differential expression levels (i.e., fold changes) of genes in naïve, DTMP-treated, HR-treated, and

LR-treated animals relative to untreated (No-SCS) animals. From left to right: microglia-specific, astrocyte-specific, oligodendrocyte-specific, neuron-specific

transcriptomes. Reproduced from Cedeno et al. (32). DTMP, differential target multiplexed programming; HR, high rate; LR, low rate; SCS, spinal cord stimulation.

signaling, and neurotransmission and rebalancing neuronal-glial
interactions that the onset of neuropathic pain had perturbed.

In an analysis of cell-specific transcriptomes, Cedeño
et al. (32) demonstrated that DTMP is more effective at
modulating neurons and glial cells (microglia, astrocytes,
and oligodendrocytes) transcriptomes toward the gene profile
found in naïve animals (Figure 4). For instance, neuron (72
genes), microglia (101 genes), astrocyte (188 genes), and
oligodendrocyte (154 genes) transcriptomes of DTMP-treated
animals significantly correlated positively and strongly with that
of naïve animals (RPearson ≥ 0.65). In contrast, for HR-treated
animals, only themicroglia transcriptome significantly correlated
positively and strongly (RPearson = 0.61) with the naïve one,
while the neuron transcriptome significantly correlated positively

and moderately (RPearson = 0.41). Furthermore, no cell-specific
transcriptome of LR-treated animals correlated strongly. Instead,
the microglia transcriptome of LR-treated animals significantly
correlated negatively and weakly (RPearson = −0.20) with the
naïve profile, meaning that many microglia genes were further
upregulated by LR SCS relative to the SNI effect.

This result is congruent with the previous findings on the
effects of LR SCS on microglia activation. In further work,
Smith et al. (33) reported on the effects of DTMP, HR, and
LR on microglia transcriptomes associated with their resting
state and states associated with pro-inflammatory processes (so-
called M1-like) and neuroprotective processes (so-called M2-
like). In agreement with Cedeño et al., it was found that
DTMP provided the largest modulatory effect on the SNI. The
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FIGURE 5 | Heat maps illustrating differential expression levels of microglia-related genes known to be involved in pro- and anti-inflammatory processes for naïve,

DTMP-treated, HR-treated, and LR-treated animals relative to untreated animals (No-SCS). Reproduced from Smith et al. (33). DTMP, differential target multiplexed

programming; HR, high rate; LR, low rate; SCS, spinal cord stimulation.

microglial transcriptomes of DTMP-treated animals significantly
correlated positively and strongly (RPearson = 0.58–0.65) with
naïve profiles. HR treatment also produced significant positive
correlations although moderate (RPearson = 0.42–0.48). Although
LR treatment also produced significant positive correlations, only
the resting microglia transcriptome correlated moderately with
the naïve profile (RPearson = 0.39). Both the M1-like and M2-
like transcriptomes correlated weakly (RPearson = 0.17). A further
look at selected microglia genes within these transcriptomes,
which had been reported in the literature to be associated with
pro- and anti-inflammatory processes, clearly indicated that
treatments with DTMP and HR better match (Figure 5) the
profile of naïve animals. On the other hand, LR treatment further
upregulated expression levels of pro-inflammatory genes that the
SNI had increased.

Another important result of Cedeño et al. (32) is that
DTMP provided strong modulation of astrocyte-specific
and oligodendrocyte-specific genes, with more than 65%
of genes modulated back to within 15% of their naïve
levels (with more than 78% expression recovery). These

glial cell types are the most abundant in the spinal cord
(57), constituting about 80% of the combined microglia,
astrocyte, and oligodendrocyte populations. The role of
astrocytes in chronic neuropathic pain is well-established
(19). Thus, a reversal of expression levels by DTMP toward
naïve levels indicates a rebalancing of neuron-astrocyte
interactions at synapses. An understanding of the role of
oligodendrocytes in neuropathic pain is emerging. Ablation of
oligodendrocytes in murine spinal cords induced neuropathic
pain-like behavior (20). For instance, SNI increased expression
levels of Mobp, an oligodendrocyte marker. An increase
in expression levels of the protein encoded by this gene
(myelin oligodendrocyte basic protein) was found in patients
with neuropathic pain associated with HIV infection (21).
Expression levels of the gene S1pr5, which is only expressed
by oligodendrocytes, were also increased by the SNI. This
gene is associated with signaling via sphingosine-1-phosphate
(S1P) that triggers the migration of OPCs. Both of these
genes were significantly modulated by DTMP toward naïve
expression levels (31).
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FIGURE 6 | (A) Expression levels of microglia marker OX-42 and astrocyte markers GFAP and MCP-1 as based on Sato et al. (27) for LR SCS at 4 or 60Hz (250 µs

PW, 90% MT, 6 h/day for 4 days) in the SNI model (14 days). (B) Expression levels of microglia marker OX-42 and astrocyte marker GFAP based on Shu et al. (38) for

LR SCS at 50Hz [200 µs PW, 80% MT, 3h (2× day) for 3.5 days] in the CCI model (18 days). SCS, spinal cord stimulation.

Modulation of Glia-Related Protein
Expression by SCS
Sluka et al. (27) reported first on the effect of SCS on glia-
related protein expression in the dorsal horn of SNI animals.
They found that the expression levels of OX-42 (also known as
ITGAM, a marker of microglial activation), MCP-1 (also known
as CCL2), and GFAP (markers of astrocyte activation) were
significantly elevated, relative to naïve animals, after 14 days of
the SNI (Figure 6A). They found that LR SCS treatment for 6
h/day for 4 consecutive days at either 4 or 60Hz significantly
decreased expression levels of these markers. Interestingly, in a
recent study, Shu et al. (38) found that although expression levels
of GFAP and OX-42 were significantly elevated by the CCI (18
days) relative to naïve animals (Figure 6B), LR SCS treatment at
50Hz (6 h/day in two 3 h sessions for 3.5 days) did not decrease
the expression of these proteins. In contrast, they found that

LR SCS significantly increased the expression of OX-42 relative
to the expression in untreated animals. Lack of congruence

on the effects of LR SCS with the previous work by Sato et
al. was attributed, in part, to experimental differences (animal

models, SCS protocols, and post-injury times). Preliminary
results of a proteomics-based analysis in our laboratory show

that continuous 48 h of DTMP significantly decreased expression

levels of astrocyte markers GFAP and VIM, which had been
significantly increased by the SNI (Figure 7). Besides these two
proteins, the SNI also upregulated S100A8 and S100A9, calcium-
binding proteins known to induce astrocyte differentiation in
inflammatory processes, and CNTF, a protein expressed by
astrocytes during gliosis. DTMP decreased their expression levels
toward naïve levels. The study also found that the pain model
increased expression levels of three phosphorylated isoforms
of GFAP (p-GFAP at residues T31, S80, and T148) and 11
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FIGURE 7 | Modulatory effect of DTMP on protein expression levels of astrocyte-related proteins in the spinal cords of SNI (pain model). The green line denotes the

normalized expression level in naïve animals. DTMP, differential target multiplexed programming; SNI, spared nerve injury.

phosphorylated isoforms of VIM (p-VIM at residues S7, S10,
S18, S39, S51, S56, S73, S325, S430, T436, and S549). DTMP
decreased expression levels of the three p-GFAP isoforms and
10 of the p-VIM isoforms toward levels in naïve animals.
Although the role of these phosphorylated isoforms has not
been elucidated, phosphorylation and dephosphorylation of
filament proteins such as GFAP and VIM may be associated
with signaling processes in which the phosphorylated isoforms
are intermediate states linked with processes tightly associated
with it such as neurotransmission regulation (i.e., glutamate
or GABA buffering) and calcium-mediating signaling of
inflammatory pathways.

Astrocytes play an important role at the synaptic cleft, where
they monitor the homeostatic balance of nutrients, ions, and
neurotransmitters. An analysis of the proteomics of the effect of
DTMP on the regulation of ion transport within the spinal cord
of SNI animals found that proteins expressed by astrocytes are
key elements in the establishment of neuropathic pain and the
analgesic effect of DTMP. For example, KIR4.1 is a potassium
ion (K+) channel that allows entry of K+ into astrocytes while
inhibiting the release of BDNF mediated by astrocytic Na+/K+

ATPases such as ATP1A2 and ATP1B2. KIR4.1, ATP1A2, and
ATP1B2 were found to be upregulated by DTMP. Buffering
of K+ into the astrocytes facilitates the activity of neuronal
KCC2, a K+/Cl− symporter that maintains the homeostatic
balance of chloride in neurons, which is known to play an
important role in GABA-regulated post-synaptic inhibition.
DTMP also reversed the effect of the SNI on the enzymes
PHGDH and PSAT1, involved in the synthesis of L-serine, an
essential amino acid in the production of neurotransmitters D-
serine and glycine. Neurons cannot synthesize L-serine. The
reduction of PHGDH levels has been previously associated with
the reduction of L-serine and neuropathic pain. Thus, an increase

of PHGDH and PSAT1 by DTMP treatment is congruent with
the important role of glial synthesis of important nutrients that
keep homeostatic balance in the synapsis. Further emphasis is
on the modulating role of DTMP on astrocytes in regulating
ionotropic and metabotropic glutamate (GLU) receptors. For
instance, the SNI significantly decrease expression levels of
the metabotropic glutamate receptor MGLUR5, which DTMP
reversed. Neuropathic pain also affects intracellular second
messenger pathways that involve calcium ions (Ca2+). Large
concentrations of intracellular Ca2+ in glial cells are associated
with inflammatory pathways. The SNI increased the expression
of IP3R1, a protein of the endoplasmic reticulum that aids the
release of Ca2+ into the cytoplasm. DTMP significantly reversed
its expression. The decrease of intracellular Ca2+ in astrocytes
would reduce its release into gap junctions that link astrocytes to
each other in propagating calcium waves, which is considered a
key process in the sensitization of distal neural tissues. Further
analyses of the role of calcium signaling in the SNI and the
effects of DTMP are underway. The investigations into the
modulatory role of DTMP on the NFkB signaling pathway in
inflammation and neuroprotective role via modulation of the
caspase-apoptosis pathway.

CONCLUDING REMARKS AND THE NEXT
FRONTIERS

Recognizing the role of glial cells in chronic neuropathic pain
is a relatively recent advancement in our understanding of its
mechanism of action, particularly in a line of thought that
focused on a doctrine that has placed neurons as the only
active player. If this fact is accepted, it is also rational to think
that treatments for chronic neuropathic pain must also account
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for their presence and role. Until recently, the field of SCS
was bound to a theory of pain that, although useful for its
development and advancements, had ignored many fundamental
processes related to the interactions of the neurons with their
surrounding glial cells. The advent of molecular biology tools
has also provided an opportunity to explore neural tissues
beyond what electrophysiological measurements could tell us
from the perspective of neuronal behavior. These tools have
opened the door to a molecular understanding of biological
processes associated with pain that can facilitate the optimization
of SCS approaches, targeting both neurons and glial cells in
such a way that their interactions, perturbed by the onset and
persistence of chronic pain, can be rebalanced. The recent
preclinical work highlighted in this report should encourage
others to move into the next frontiers in our understanding of the
mechanism of action of SCS and the value of this comprehension
to improving clinical outcomes. At the preclinical level, we need
to understand further the effects of the electrical signals applied
in SCS at the cellular level and the development of chronic pain.
Cell sorting techniques and single-cell RNA sequencing would
provide more specificity. In situ proteomics and peptidomics of
neural tissues, using laser-based desorption ionization techniques
(such as MALDI) coupled with tandem MS/MS will also provide
a way of “imaging” the spatial distribution of proteins in neural
tissue and how pain models and treatments affect these. The
investigation of other post-translational changes in proteins

(acetylation, glycosylation, etc.) would also help understand the
persistence of chronic pain since particular isoforms of modified
proteins may drive this. Other interesting frontiers include the
link between epigenetics and chronic pain, the potential role of
genetic predisposition, and environmental factors in establishing
and maintaining chronic pain. In a more practical sense, clinical
validation of the hypotheses formulated by preclinical discoveries
is perhaps the next frontier. This would require searching for
suitable pain-related biomarkers that can be identified and
quantitated in easily accessible fluid samples or using imaging
techniques such as MRI.
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Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, MN,
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Temporomandibular joint disorders (TMD) consist of a heterogeneous group of conditions

that present with pain in the temporomandibular joint (TMJ) region and muscles of

mastication. This project assessed the role of connexin 43 (Cx43), a gap junction

protein, in the trigeminal ganglion (TG) in an animal model for persistent inflammatory

TMJ hyperalgesia. Experiments were performed in male and female rats to determine

if sex differences influence the expression and/or function of Cx43 in persistent

TMJ hyperalgesia. Intra-TMJ injection of Complete Freund’s Adjuvant (CFA) caused a

significant increase in Cx43 expression in the TG at 4 days and 10 days post-injection

in ovariectomized (OvX) female rats and OvX females treated with estradiol (OvXE),

while TG samples in males revealed only marginal increases. Intra-TG injection of

interference RNA for Cx43 (siRNA Cx43) 3 days prior to recording, markedly reduced

TMJ-evoked masseter muscle electromyographic (MMemg) activity in all CFA-inflamed

rats, while activity in sham animals was not affected. Western blot analysis revealed

that at 3 days after intra-TG injection of siRNA Cx43 protein levels for Cx43 were

significantly reduced in TG samples of all CFA-inflamed rats. Intra-TG injection of the

mimetic peptide GAP19, which inhibits Cx43 hemichannel formation, greatly reduced

TMJ-evoked MMemg activity in all CFA-inflamed groups, while activity in sham groups

was not affected. These results revealed that TMJ inflammation caused a persistent

increase in Cx43 protein in the TG in a sex-dependent manner. However, intra-TG

blockade of Cx43 by siRNA or by GAP19 significantly reduced TMJ-evoked MMemg

activity in both males and females following TMJ inflammation. These results indicated

that Cx43 was necessary for enhanced jaw muscle activity after TMJ inflammation in

males and females, a result that could not be predicted on the basis of TG expression of

Cx43 alone.

Keywords: connexins, estrogen status, hyperalgesia, sex differences, temporomandibular joint, trigeminal

ganglion

INTRODUCTION

Temporomandibular joint disorders (TMD) represent a diverse group of conditions accompanied
by pain in the temporomandibular joint (TMJ) region and muscles of mastication. TMD is the
most common non-dental orofacial pain condition and is the main reason for TMD patients to
seek medical treatment (1, 2). Although routine clinical examinations in TMD typically find little
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evidence of tissue or nerve damage (3, 4), results from more
invasive diagnostic methods such as synovial fluid sampling (5)
or jaw muscle microdialysis sampling (6, 7) suggest that TMD
is characterized as a persistent mild inflammatory condition. A
second prominent feature of TMD is the higher prevalence in
women than men (8, 9). Pressure pain thresholds are reportedly
lower in female than male TMD patients (10) and vary over the
menstrual cycle (11) to further suggest that estrogen status is a
key factor for TMD pain in women.

Chronic pain conditions are thought to be driven and
maintained by combination of peripheral and central neural
mechanisms (12, 13). The TMJ and masticatory muscles are
supplied by sensory neurons whose cell bodies lie within the
trigeminal ganglion (TG) and dorsal root ganglia of the upper
cervical spinal cord (14–16). Results from in vitro studies suggest
that TMJ nociceptors are sensitized after local inflammation (17)
and are further enhanced by estrogen treatment (18). Other
studies have shown that ion channels in TG neurons associated
with nociception are upregulated by TMJ inflammation and
further enhanced by elevated estrogen conditions (19, 20).
A key mechanism linking inflammation to sensitization of
nociceptors involves activation of satellite glial cells (SGC), a
class of non-neuronal cells that surround sensory neurons. SGCs
serve a homeostatic function and amplify the effects of local
inflammation on the excitability of nociceptors by releasing pro-
nociceptive molecules (21–23). Inflammation of the TMJ region
activates SGCs in the TG (24–27) resulting in an increase in
coupling between SGCs and the formation of gap junctions (28).
Connexin 43 (Cx43) is the most common gap junction protein
in the TG and is mainly restricted to SGCs (29–32). Although
Cx43 expression is regulated in a sexually-dimorphic manner in
other tissues (33, 34), no previous studies have determined if
sex differences and/or estrogen status alter Cx43 expression and
function in an animal model for TMJ hyperalgesia.

The present study also was designed to address the key
features of TMD in an animal model. Thus, we used an
intra-TMJ injection of Complete Freund’s Adjuvant (CFA)
at a dose (10 µg) that produces minimal signs of tissue
damage (35). Second, we monitored changes in a specific jaw-
related muscle behavior, masseter muscle electromyography
(MMemg), a signature activity that persists throughout the 10
day observation period following CFA injection. MMemg activity
is a valid measure of jaw hyperalgesia since intra-TMJ injection
of algesic agents evokes activity in a dose-dependent manner
that correlates with pain reports in humans (36). Third, we
determined if Cx43 expression and its role in TMJ hyperalgesia
are sexually dimorphic and/or are dependent on estrogen status
to address the issue that the vast majority of preclinical studies
for pain have been conducted in male animals (37, 38).

MATERIALS AND METHODS

General Animal Preparation
A total of 133 adult male, ovariectomized females (OvX)
and estradiol-treated OvX female (OvXE) rats (250–350 g,
Sprague–Dawley, Harlan, Indianapolis, IN) were used in these
experiments. OvX females were purchased commercially and

used within 2 weeks of ovariectomy. OvXE rats were injected
with estradiol (E2, 30 µg/kg, sc) 1 day prior to processing
tissue for immunohistochemical or molecular analyses or for
muscle recording. This dose of E2 results in a blood level of
E2 consistent with the surge of E2 seen in the proestrous phase
of cycling female rats (39). Vaginal lavage samples were taken
on the day of the experiment to confirm the estrogen status
of females. Samples from OvX rats had mainly small nucleated
leukocytes, while samples from OvXE rats had mainly large
nucleated epithelial cells consistent with the early diestrous and
proestrous stages of the estrous cycle, respectively. Animals were
housed in pairs and given free access to food and water. Climate
and lighting were controlled (25 ± 2◦C, 12:12-h light/dark cycle,
light on at 7:00A.M.). All animal protocols were approved by the
Institutional Animal Care and Use Committee of the University
of Minnesota (USA) and according to guidelines set by The
National Institutes of Health guide for the Care and the Use of
Laboratory Animals (PHS Law 99-158, revised 2015).

Complete Freund’s Adjuvant Into TMJ
Rats were anesthetized with 5% isoflurane and the fur overlying
the TMJ was shaved. A single dose of CFA (10 µg, 10 µl) was
injected into the left TMJ via a 33-gauge needle inserted into
the TMJ-capsule (∼3mm in deep) and animals survived for 4 or
10 days prior to tissue collection or muscle recording. Controls
received an injection of PBS. All rats received a single dose
of carprofen (25 mg/kg, i.p) immediately after the intra-TMJ
injection. It is not likely that carprofen affected these results
since tissue collection and muscle recording were performed 10
days later.

Immunohistochemistry
Separate groups of males, OvX and OvXE female rats (sham, 4
day CFA, 10 day CFA, four rats per group) were anesthetized with
pentobarbital sodium (50 mg/kg, i.p) and the depth of anesthesia
was confirmed by the loss of hindlimb withdrawal reflex.
Rats were perfused transcardially with heparinized phosphate
buffered saline (PBS) followed by 10% buffered formalin.
TGs were removed and postfixed overnight in 10% formalin.
Transverse sections (30µm) were cut on a vibratome and
collected in 0.01M PBS. Free-floating sections were incubated in
blocking buffer (PBS, 0.1% Triton X-100, 1% secondary serum)
for 1 h and then incubated with anti-mouse primary antibody
for glial fibrillary acidic protein (GFAP, Abnova MAB107670,
Walnut, CA) and anti-rabbit primary antibody for Cx43 (Cell
Signaling 3512, Danvers, MA) at 1:1,000 in PBS with 0.1% Triton
X-100 overnight at 4◦C. Specificity of the antibody to Cx43 was
determined previously (40). Sections were rinsed in PBS (x3)
and then incubated with anti-mouse Cy2 secondary antibody
(Jackson Immunoresearch 715228151 West Grove, PA) and
anti-rabbit Cy5 secondary antibody (Jackson Immunoresearch
711175152 West Grove, PA) at 1:500 in PBS in the dark for 2–
3 h. Sections were rinsed in PBS (x3), placed on slides and cover
slipped with ProLong Gold with 4,6-diamino-2-phenyindole
(DAPI, Invitrogen, Carlsbad, CA). Fluorescent-labeled sections
were viewed on a Zeiss LSM 700 confocal microscope at 40X
magnification. Images were taken at the level of the junction
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of the maxillary and mandibular (5–7 images per rat). Staining
of Cx43 was corrected for brightness without substraction for
background, quantified by densitometry using NIH ImageJ
Software and quantified without prior knowledge of treatment.
Digital gain settings for Cx43 = 1.5 and for GFAP = 1.0.
Statistical analyses of densitometry results were assessed by
analysis of variance (ANOVA) and p < 0.05 was set as the level of
significance without prior knowledge of treatment.

Real-Time Polymerase Chain Reaction
TGs (four per group) were removed from rats following
perfusion with saline and RNA LATER solution (Molecular
BioProducts, San Diego, CA). RNA was extracted using
the Trizol method (Invitrogen, Carlsbad, CA). cDNA was
synthesized using iScript cDNA kit (Bio-Rad, Hercules, CA).
RT-PCR was performed in triplicate on 2 µL cDNA with
QuantStudio 3 (Applied Biosystems) using iQ SYBRgreen
supermix (Bio-Rad). Data was analyzed using the 11CT
method using UBC as a reference gene. Primer sets were UBC
F-tcgtacctttctcaccacagtatctag, R- gaaaactaagacacctccccatca and
CX43 F: 5′-taagtgaaagagaggtgccca-3′ R: 5′-gtggagtaggcttggacctt-
3′. 40 cycles were employed at 95◦C for 15 s, 59◦C for 30 s, and
72◦C for 30 s.

Western Blot
TGs (four per group) were removed after saline perfusion,
homogenized, and protein extracted using the Trizol
method (Invitrogen, Carlsbad, CA). Protein concentration
was determined with bicinchroic acid (BCA) assay (Pierce,
Rockford, IL). A protein aliquot of 30 µg was separated on
4–15% polyacrylamide gels (Bio-Rad, Hercules, CA) and
transferred to nitrocellulose membrane. Membranes were
incubated with Cx43 antibody (3512, Cell Signaling, Danvers,
MA), followed by Anti-rabbit IRDye 680 (1:15,000, LI-COR,
Lincoln, NE). Proteins were visualized with an Odyssey infrared
scanner (LI-COR) and arbitrary optical density was determined.
Normalizing controls were utilized by simultaneous staining with
glyceraldehyde 3-phosphat dehydrogenase (GAPDH) antibody
(1:1,000, WH0002597M1, Sigma, St. Louis, MO) followed by
goat anti-mouse IRDye 800 (1:15,000, LI-COR). Protein levels
were quantified via densitometry using NIH ImageJ Software.

Interference RNA for Cx43
Animals were anesthetized with pentobarbital sodium (50mg/kg,
i.p) and maintained with isoflurane (1–2%). The fur overlying
the scalp was shaved and povidone-iodine was applied before
surgery. Lidocaine gel (2%) was applied to scalp wound margins
and the body temperature was maintained at 38◦C with a heating
blanket. The animals were placed in a stereotaxic apparatus and
a small hole (3–4mm) was drilled into the left parietal bone
(3.5–4mm anterior to the auricle and 3–4mm lateral to the
midline). The siRNA solution (600 µg, 200 nL, Stealth RNAi
Gja1RSS351267, Invitrogen, Carlsbad, CA) was injected into the
left TG 7 days after intra-TMJ injection of CFA via a 33-gauge
needle inserted through a 26-gauge guide cannula positioned
stereotaxically and was kept in position at least 10min after the
injection to minimize leakage. The wound margin was closed

with sutures and povidone-iodine solution was applied to the
surgical wound area. A single dose of carprofen (25 mg/kg,
i.p) was injected in each animal to minimize post-surgical pain.
Animals survived for 3 days after siRNA injection (i.e., 10
days after intra-TMJ injection of CFA). Sham controls for CFA
received an intra-TMJ injection of PBS only with no further
treatment and survived 10 days.

Masseter Muscle Electromyography

Recording
Rats (5–6 rats per group) were anesthetized with urethane (1.5
g/kg) and maintained with supplemental isoflurane (1–2%). The
animal was placed in a stereotaxic apparatus and a pair of copper
electrodes was implanted in the left masseter muscle (0.12mm
diameter, 5mm interpolar distance) with a 26-gauge needle. A
skin incision was made just above the zygomatic process of the
temporal bone and a 26-gauge guide cannula was positioned
in the TMJ-capsule (∼3mm in deep). At least 1 h elapsed after
cannula placement and before recording. MMemg was recorded
under two separate protocols. In the first series following siRNA
treatment, MMemg was recorded in response to intra-TMJ
injections (PBS, 0.01, 0.1, and 1mM ATP, 20 µl) delivered via
a 33-gauge needle inserted through the guide cannula over 30 s
in a cumulative dose design at 20min intervals. In the second
series, GAP19 (10mM, 200–300 nl, Tocris, Minneapolis, MN),
a mimetic peptide and specific inhibitor of Cx43 hemichannel
formation was injected as a single dose (10mM, 0.2 µl) into
the TG via a 26-gauge guide cannula and a 33-gauge injection
cannula 10min prior to repeated intra-TMJ injections of ATP
(1mM, 20µl). In both series MMemg was recorded continuously
for 6min for each stimulus period; 3min prior to each ATP test
stimulus to establish the baseline activity and 3min after test
stimulus. The rationale for using ATP as a test stimulus was
based on earlier studies demonstrating that ATP can be injected
repeatedly without causing tachyphylaxis or sensitization (39).

At the end of the experiment the rat was given a bolus
of urethane and perfused transcardially with heparinized PBS
and RNase-Away like buffer (60mL). TGs following MMemg
recording sessions were removed and (4 TGs per group,
ipsilateral to PBS or CFA injection) were processed for mRNA
and protein levels of Cx43. The location of the TG injection
site was verified histologically from 1 to 2 rats per group
upon removal.

MMemg Data Analysis
MMemg activity was sampled at 1,000Hz, amplified (×10 k),
filtered (bandwidth 300–3,000Hz), displayed and stored online
for analyses. EMG activity was sampled continuously for 6min,
for 3min prior to each TMJ stimulus and for 3min after the
stimulation was applied. Baseline activity was quantified as the
total area under the curve (Total MMemg) for the 3min epoch
(µV-s per 3min) sampled immediately prior to stimulation.
TMJ-evoked MMemg activity was calculated as AUC post-ATP
injection minus the baseline.
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Statistical Analyses
Densitometry was assessed from 5 to 7 TG sections per
rat (4 rats per treatment group) and expressed as average
percent positive area (Figure 1). Sections were analyzed without
prior knowledge of treatment. Values were compared by one-
way ANOVA and individual group differences assessed by
Neuman–Keuls. Total MMemg activity was assessed by three-
way ANOVA and corrected for repeated measures on one factor
(5–6 rats per group; Figure 2). Significant treatment effects
were assessed by Newman–Keuls after ANOVA. The data were
presented as mean ± SEM and the significant level set at p <

0.05. Based on results from previous studies (41, 42), it was
calculated that a sample size of n = 5 per treatment group
would provide 80% power at p < 0.05. Experiments were
performed on sham and TMJ-inflamed rats selected in random
order. Western blots were performed on TG samples collected
from four rats per treatment group (Figure 3). Values were
log transformed to reduce error variance and then compared
by two-way ANOVA and between group differences assessed
by Neuman–Keuls after ANOVA. Total MMemg activity was
assessed by three-way ANOVA and corrected for repeated
measures on one factor (Figure 4). Significant treatment effects
were assessed by Newman–Keuls after ANOVA and included 5–
6 rats per treatment group. The data were presented as mean
± SEM and the significance level set at p < 0.05. Experiments
were performed on sham and TMJ-inflamed rats selected in
random order.

RESULTS

Immunohistochemistry
Glial fibrillary acidic protein (GFAP) and Cx43 were often
co-localized and appeared as stained elements surrounding
small and moderate diameter TG neurons of TMJ-inflamed
OvXE rats (Figures 1Aa–c) and male rats (Figures 1Ad–f).
Figure 1B summarizes the percentage of Cx43 stained area
in the TG of sham animals which was very low for males
and females. By contrast, Cx43 displayed a marked and sex-
dependent increase in Cx43 area at 4 days and 10 days
after CFA [F(8,27) = 7.01, p < 0.001]. Both OvX and
OvXE groups displayed significant (p < 0.01) and similar
increases in Cx43 staining after CFA, while Cx43 staining in
CFA-treated males was not statistically different from sham
males (p < 0.1).

MMemg and siRNA Cx43
To determine if TG expression of Cx43 altered TMJ-evoked
MMemg activity, siRNA for Cx43 was microinjected into the left
TG 3 days prior to the recording session. As seen in Figure 2A,
sham males displayed small but significant increases in ATP-
evoked MMemg activity [F(3,51) = 7.45, p < 0.001] that were
similar after siRNA knockdown of Cx43 [F(3,51) = 13.7, p
< 0.001]. By contrast, CFA-treated males displayed significant
increases in ATP-evoked MMemg activity in the absence of
siRNA [F(3,51) = 62.9, p < 0.001] and much smaller after siRNA
[F(3,51) = 10.5, p < 0.001]. Treatment main effects revealed
that siRNA reduced the evoked MMemg activity compared to

FIGURE 1 | (A) Expression of glial fibrillary acidic protein (GFAP) and

connexin43 (Cx43) in the trigeminal ganglion of an OvXE (a–c) and male rat

(d–f) 10 days after intra-TMJ injection of CFA. Scale = 30µm. (B)

Densitometry values expressed as percentage of positive area for Cx43 in

male, OvX and OvXE rats under sham conditions and at 4 and 10 days after

intra-TMJ injection of CFA based on an average of immunostaining as shown

by the examples in panel (A). *p < 0.05, **p < 0.01 vs. sham; ap < 0.05 vs.

males. Sample size = 4 rats per group, average of 5–7 images per rat.

rats without siRNA treatment [F(3,17) = 26.84, p < 0.001].
Figure 2B revealed that OvX sham females displayed small but
significant increases in ATP-evoked MMemg activity [F(3,51)
= 7.66, p < 0.001] that were similar siRNA knockdown of
Cx43 [F(3,51) = 9.63, p < 0.001]. CFA-treated OvX females
(Figures 2B, 3B) displayed large ATP-evoked MMemg responses
[F(3,51) = 104, p < 0.001] that were completely prevented by
siRNA treatment [F(3,51) = 2.98, p >0.1]. Overall treatment main
effects revealed that siRNA reduced the ATP-evoked MMemg
responses in OvX rats compared to OvX rats without siRNA
treatment [F(3,17) = 64.13, p < 0.001]. Figure 2C revealed that
OvXE sham females displayed large increases in ATP-evoked
MMemg activity [F(3,51) = 10.2, p < 0.001] that were marginally
reduced by siRNA knockdown of Cx43 [F(3,51) = 2.89, p <

0.05]. CFA-treated OvXE females displayed the greatest ATP-
evoked MMemg responses [F(3,51) = 100, p < 0.001] and
were completely prevented by siRNA treatment [F(3,51) = 1.79,
p >0.1]. Overall treatment main effects indicated that intra-
TG siRNA treatment greatly reduced evoked MMemg activity
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FIGURE 2 | siRNA for Cx43 inhibits intra-TMJ ATP-evoked MMemg activity in

(A) male, (B) OvX and (C) OvXE females treated with CFA 10 days prior to

recording. Note that responses to TMJ stimuli in sham (PBS-injected) rats were

not affected. *p < 0.05, **p < 0.01 vs. PBS stimulation; ap < 0.05, bp < 0.01

siRNA treated vs. untreated rats. Sample size = 5–6 rats per treatment group.

compared to rats without siRNA treatment [F(3,17) = 69.64,
p < 0.001]. RT-PCR analyses of TG samples revealed no
significant sex differences for Cx43 among siRNA-injected sham
animals (1CT: male = −5.37 ± 2.25; OvX = −5.58 ± 3.7;
OvXE = −5.58 ± 1.15, mean ± SD) or at 10 days after
CFA (1CT: male = −6.06 ± 0.83; OvX = −6.92 ± 5.31;
OvXE = −4.53 ± 1.8, mean ± SD). Figures 3A,B displays
the western blot for males and OvXE females at 10 days post-
CFA, respectively, with and without siRNA knockdown of Cx43.
The results for western blots for all groups are summarized in
Figure 3C revealing that siRNA for Cx43 significantly reduced
TG expression of Cx43 in bothmales and females [F(1,18) = 10.11,
p < 0.001].

MMemg and Pharmacological Blockade of

Cx43 Formation by GAP19
To determine if acute blockade of Cx43-dependent hemichannel
formation affected ATP-evoked MMemg responses, the peptide
mimetic inhibitor of Cx43, GAP19, was microinjected into
the left TG of sham male, OvX and OvXE rats and in

FIGURE 3 | Western blots for Cx43 of TG tissue from OvXE (A) and male rats

(B) at 10 days after CFA and treated with siRNA for Cx43 or with PBS by

intra-TG injection 3 days prior to tissue collection. (C) Summary of the effects

of siRNA for Cx43 on protein levels in the TG of male, OvX, and OvXE females.

*p < 0.05; **p < 0.01 vs sham controls; ap < 0.05, bp < 0.01 vs males vs.

sham controls. Sample size = 4 rats per group.

FIGURE 4 | Acute microinjection of GAP19 into the TG reduces the enhanced

TMJ-evoked MMemg activity of 10 day CFA-treated males, OvX and OvXE

females, while responses in sham rats were not affected. **p < 0.01 vs.

pre-injection response; bp < 0.01 sham vs. CFA groups; #p < 0.01 vs. all

other groups. Sample size = 5 rats per group.

rats at 10 days after CFA treatment. As seen in Figure 4,
CFA-induced enhancement of TMJ-evoked MMemg activity
was significant for males and female groups [overall response

Frontiers in Pain Research | www.frontiersin.org 5 August 2021 | Volume 2 | Article 71587165

https://www.frontiersin.org/journals/pain-research
https://www.frontiersin.org
https://www.frontiersin.org/journals/pain-research#articles


Ahmed et al. Connexin 43 and TMJ Hyperalgesia

main effects F(3,72) = 44.19, p < 0.001]. GAP19 injection
did not significantly affect the ATP-evoked MMemg responses
in sham males, OvX or OvXE females [F(3,72) = <1.0, p >

0.1]. By contrast, ATP-evoked responses in CFA-treated males
[F(3,72) = 8.55, p < 0.001], OvX females [F(3,72) = 22.2, p
< 0.001] and OvXE females [F(3,72) = 58.7, p < 0.001] all
displayed marked decreases in evokedMMemg activity following
GAP19 administration.

DISCUSSION

These results revealed a significant increase in Cx43 expression
in the TG of OvX and OvXE females that persisted for at least 10
days after mild inflammation of the TMJ, while Cx43 expression
in males displayed only marginal increases. Two different
approaches were used to assess the functional contributions
of Cx43 to TMJ-evoked hyperalgesia. First, small interference
mRNA for Cx43 was injected into the TG to silence Cx43
expression in sham and 10 day CFA-treated rats. This resulted
in a significant reduction in TMJ-evoked MMemg activity in
males and both female groups after TMJ inflammation, but
not in sham animals, that was matched by a corresponding
decrease in Cx43 protein in TG samples. Second, the mimetic
peptide, GAP19, a specific inhibitor of hemichannel formation
in nervous tissue (43), was injected acutely into the TG of
sham and CFA-inflamed rats. This approach also caused a
marked decrease in TMJ-evoked MMemg activity in all CFA-
treated animal groups, while evoked activity in sham rats was
not affected.

Despite numerous preclinical studies directed at
understanding the underlying mechanisms for TMJ hyperalgesia,
little progress has been made in developing new pharmacological
treatments that are specific for TMD pain (1, 44, 45). Several
reasons may contribute to this apparent lack of progress;
however, one limitation may be the mismatch between the
features of animal models for TMJ nociception and the clinical
signs in TMD patients. The present study was designed to
minimize these mismatches. TMD patients display few overt
signs of tissue damage or inflammation yet often present with
fluctuating bouts of pain in a non-progressive manner (46–48).
By contrast, rodent models for TMJ hyperalgesia often involve
treatments that cause significant tissue damage. Indeed, an
intra-TMJ injection of even a dose of CFA as low as 10 µg
is sufficient to elevate TMJ tissue levels of proinflammatory
cytokines and to increase meal duration in rats (35), while
CFA doses of 25 µg or greater cause soft tissue damage and
progressive bone erosion (49, 50). A second feature of a valid
model for TMJ hyperalgesia is the ability to monitor a surrogate
measure of TMJ hyperalgesia. The present study monitored
MMemg activity which is a behavior that specifically assesses
jaw function and persists throughout the 10 day observation
period following CFA treatment. Other direct measures of
TMJ hyperalgesia in awake rats such as a decrease in gnawing
behavior (51, 52) or bite force (53, 54) and an increase in
grimace scale values (52) are seen following intra-TMJ injection
of CFA; however, changes in these behaviors are transient

and often only a few days. Increased meal duration has been
shown to persist for many days after CFA in rats (55); however,
this required much larger doses of CFA than that used in the
present study (250 µg vs. 10 µg). A third feature of the present
model was the comparison of results in males vs. females under
high and low estrogen status. Despite the higher prevalence
of TMD in females than males (8, 9), few preclinical studies
have directly compared responses of males and females for TMJ
hyperalgesia. The rationale for using ATP as a test stimulus
to evoke MMemg activity was based on two lines of evidence.
First, earlier we determined that a 1mM concentration of
ATP reliably evoked trigeminal brainstem activity and could
be injected repeatedly at 20min intervals within the TMJ
without causing persistent sensitization or tachyphylaxis (56)
and secondly, that ATP is a normal constituent of synovial
fluid and evokes increases in pain intensity in a dose-dependent
manner (57).

A critical unresolved issue in chronic TMD is the relative
contribution of peripheral sensitization of nociceptors in driving
long-term changes in central neural processing. Although
synovial fluid sampling in TMD patients reveal increased levels
of pro-nociceptive molecules such as serotonin and glutamate,
the levels of molecules and the magnitude of pain intensity
are not well-correlated (5). It is widely accepted that both
peripheral and central neural mechanisms contribute to most
chronic pain conditions (12, 13). The inhibitory effects of local
knockdown of Cx43 within the TG by siRNA or by acute
blockade of Cx43-dependent hemichannel formation on TMJ-
evoked MMemg activity suggest that Cx43 contributes to a
persistent peripheral driving force to enhance TMJ hyperalgesia
after inflammation. Cx43 is the most abundant of several
connexins expressed in the TG (30). Previous studies have
reported that Cx43 expression in the TG was elevated at 8–
10 days after trigeminal nerve injury (58, 59), at 3 days after
tooth pulp inflammation (31) and 1 day after TMJ inflammation
(32) in male rats. Garrett and Durham (30) reported increases
in Cx26, Cx36, and Cx40 at 3 days after TMJ inflammation in
male rats with no increase in Cx43 in the TG. Interestingly,
we also found only marginal increases in Cx43 in the TG of
male rats at 4 and 10 days after CFA, while marked increases in
Cx43 were seen for OvX and OvXE female groups. This finding
underscores the necessity of performing preclinical studies on
female as well as male animals. There may be several reasons for
the apparent mismatch between the marginal increase in Cx43
expression in the TG after TMJ inflammation and the significant
reduction in TMJ-evoked MMemg activity and the reduction
in Cx43 protein after siRNA in males. First, we cannot exclude
that testosterone offers some level of protection to developing
TMJ hyperalgesia after inflammation as has been suggested
previously (60–62). Second, TG neurons that drive the TMJ-
evoked MMemg activity in males may be more sensitive to
increases in Cx43 compared to females and may require only
minimal changes to be effective. Third, estrogen reduces the
degradation of Cx43 in cardiac tissue (63) and thus, due to its
rapid turnover (64), Cx43 protein may remain elevated for longer
times in females. The short half-life of Cx43 may also explain the
lack of change in mRNA at 3 days after siRNA injection. Fourth,
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it is possible that post-translation requirements such as the rate
of phosphorylation may be different in males and females (64).
Indeed, earlier we reported that estrogen status and inflammation
interact through kinase-dependent mechanisms to enhance TMJ
hyperalgesia (65).

The present study used a model for TMJ hyperalgesia that
addressed several of the features typically seen in TMD patients
to conclude that Cx43 plays a critical role in maintaining TMJ
homeostasis after low levels of inflammation. Inhibition of Cx43
by siRNA or by acute blockade of Cx43-dependent hemichannel
formation by GAP19 caused a significant decrease on TMJ-
evoked MMemg, a valid surrogate measure of TMJ hyperalgesia,
in both males and females. Lastly, we found similar changes
in Cx43 expression in the TG and inhibitoion of response
magnitudes to siRNA or GAP19 on TMJ-evoked MMemg in
OvX and OvXE females. These results suggest that that estrogen
status alone is not a significant determinant of the influence of
Cx43 on TMJ hyperalgesia. However, the fact that inhibition
of Cx43 function significantly reduced the effects on TMJ
hyperalgesia in both males and females suggest that approaches
that target Cx43 may be a novel therapeutic approach to manage
TMD pain.
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Persistent low back pain (LBP) is a major health issue, and its treatment remains

challenging due to a lack of pathophysiological understanding. A better understanding

of LBP pathophysiology has been recognized as a research priority, however

research on contributing mechanisms to LBP is often limited by siloed research

within different disciplines. Novel cross-disciplinary approaches are necessary to fill

important knowledge gaps in LBP research. This becomes particularly apparent when

considering new theories about a potential role of changes in movement behavior (motor

control) in the development and persistence of LBP. First evidence points toward the

existence of different motor control strategy phenotypes, which are suggested to have

pain-provoking effects in some individuals driven by interactions between neuroplastic,

psychological and biomechanical factors. Yet, these phenotypes and their role in

LBP need further validation, which can be systematically tested using an appropriate

cross-disciplinary approach. Therefore, we propose a novel approach, connecting

methods from neuroscience and biomechanics research including state-of-the-art optical

motion capture, musculoskeletal modeling, functional magnetic resonance imaging and

assessments of psychological factors. Ultimately, this cross-disciplinary approach might

lead to the identification of different motor control strategy phenotypes with the potential

to translate into clinical research for better treatment options.

Keywords: low back pain, kinematics, pain-related fear, motor control, functional magnetic resonance imaging

INTRODUCTION

Low back pain (LBP) is one of the most common conditions regarding years living with a
disability throughout the world (1). The prevailing form of LBP does not have a clearly identifiable
nociceptive source and is termed non-specific LBP (2).While many of these cases resolve within the
first year, some still experience pain 1 year after onset, i.e., they develop a recurrent or chronic form,
resulting in an enormous individual, economic and societal burden (1, 3). The clinical management
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of LBP is often limited to symptomatic interventions addressing
the pain and its consequences, whereby effect sizes for these
interventions are only low to moderate (2, 4, 5). This spurs a call
for re-examining and identifying novel mechanisms associated
with the development and persistence of LBP.

So far, research on LBP has identified several pathogenic
mechanisms involving biophysical, genetic, social and
psychological contributors (6). Research on LBP-related
factors has revealed both biological and behavioral changes. On
a biological level, LBP has been linked to disc degeneration,
inflammation, and atrophy, fat infiltration and fiber type
transition of paraspinal muscles (7–9). On a behavioral level,
LBP has been shown to be associated with changes in movement,
which can be described as changes in motor control (thereby
affecting spine posture, stability, and movement) observed at the
level of the nervous system [spinal- (10) and supraspinal (11)
processes] as well as the musculoskeletal system (biomechanical
mechanisms including muscle activity and kinematics) (12).
Furthermore, psychological factors constitute important and
non-negligible risk factors for the development and persistence
of LBP (13).

However, as recently stated, research on these different
pathomechanisms of LBP is often limited by significant
knowledge gaps arising from siloed research within different
research disciplines, highlighting the need for cross-disciplinary
approaches that have the potential to identify important
interactions between different mechanisms contributing to
LBP (14). This becomes particularly evident when considering
new theories about the role of subject-specific motor control
strategies in LBP (movement behavior phenotypes which can
predispose to and result from pain/injury) with potential long
term consequences (12, 15, 16). In this context, LBP-associated
changes in motor control are suggested to exert polydirectional
and pain-provoking effects, involving interactions between
neuroplastic, psychological and biomechanical factors that have
not yet been systematically validated (15–17). Hence, to study
such interactions and their role in the development and
persistence of LBP, an appropriate cross-disciplinary approach
that incorporates methods from neuroscience and movement
biomechanics research is required.

Therefore, after a summary of the relevant literature,
we present a novel cross-disciplinary approach combining
neuroscientific and movement biomechanics research methods
with the aim of identifying different motor control strategy
phenotypes and their role in LBP as well as their underlying
supraspinal, psychological, and biomechanical features.
Ultimately, this approach might help to fill important knowledge
gaps in LBP research with the potential to translate into clinical
research for better treatment options.

BIOMECHANICAL MECHANISMS

Numerous studies have investigated biomechanical alterations
in LBP, mainly by observing spine/trunk kinematics and muscle
activity during functional activities as well as during steadily held
postures with and without experimentally induced perturbations.

Investigations of functional activities in LBP patients compared
to healthy controls indicate trends toward a reduced lordotic
posture and range of motion (RoM) in the lumbar spine
during activities such as standing, walking, running, chair
rising or picking up an object (18–20). In terms of muscle
activity, studies show less clear trends, but instead a large
variety of muscle activity patterns, ranging from higher lumbar
extensor muscle activity to no differences or even lower activity
in LBP patients compared to healthy controls (21). Studies
combining kinematic and electromyographic experiments with
musculoskeletal modeling report higher lumbar spine loading
in LBP patients, which can be mainly explained by postural
adaptations and increased trunkmuscle activity (22, 23). Postural
control studies with LBP patients revealed a delay in trunkmuscle
activity onset in response to both predictable and unpredictable
perturbations (24, 25). These findings indicate that LBP patients
experience a variety of motor control impairments, likely due
to interaction deficiencies between sensory and motor systems
that are responsible for goal-oriented spine posture, stability and
movement (26, 27). Due to the large inter-individual variation,
especially in terms of muscle activity patterns, van Dieën et al.
(12) suggested that this might reflect the existence of multiple
motor control strategies along a spectrum between two distinct
phenotypes, resulting from adaptations in motor control to
LBP and interference of LBP with motor control. Although
not systematically tested yet, the “tight control” phenotype
is suggested to involve increased trunk muscle excitability to
provide tight control over trunk movements at the cost of
higher tissue loading, whereas the “loose control” phenotype
is characterized by a reduced excitability of trunk muscles
to avoid high tissue loading at the cost of loose control
over movement (12). Both motor control phenotypes might
also be associated with supraspinal adaptions (e.g., cortical
reorganization) (16), due to e.g., less dynamic motor behavior
and impaired sensory feedback.

SUPRASPINAL PROCESSES

More than 20 years ago and using magnetencephalography,
researchers detected a shifted sensory representation of
tactile input from the back in chronic LBP patients in the
primary somatosensory cortex (28). Moreover, changes of
paraspinal muscle representations in the primary motor cortex
have been observed in chronic LBP patients, i.e., the motor
cortex representations of the longissimus and deep multifidus
muscles showed increased overlap compared to healthy
controls, suggesting less fine-grained (“smudging”) cortical
representations of paraspinal muscles (29). Such changes in
the cortical organization of paraspinal muscles have also been
shown to be associated with delayed activation of the transversus
abdominis during rapid arm movements in patients with
recurrent LBP, indicating a relationship between brain changes
and motor control in LBP (11). However, it is still unclear
whether the observed cortical sensorimotor changes in chronic
LBP represent an epiphenomenon, simply triggered by altered
sensory input [in particular from muscle spindles, the main
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transmitters of proprioceptive information (30)] and altered
motor output, or if they are causally involved in the occurrence of
recurrent and chronic LBP. The primary somatosensory cortex is
well-known for encoding sensory aspects of pain (31) and recent
research indicates that this region is hyperactive in chronic
pain conditions, potentially driven by long-lasting disinhibition
as shown in animal models of chronic pain and in humans
(32, 33) Hence, the alterations in the primary somatosensory
cortex in chronic LBP patients could be causally related to the
experience of persistent LBP. Alternatively, the observed cortical
sensorimotor changes might indirectly provoke persistent LBP
by a reduced ability to (top-down) control paraspinal muscles.
This might limit trunk movement variability and therefore spinal
load distribution with unfavorable biomechanical and pro-
nociceptive consequences such as increased loading on spinal
tissues (12, 15). Indeed, current evidence suggests an association
between brain changes and altered motor control in chronic LBP
(34), which should be further explored to disentangle potential
clinically relevant interactions between brain mechanisms
and dysfunctional motor control strategies in LBP. Yet, while
extensive knowledge exits about the cortical representation of
various body parts and their potential reorganization based on
environmental changes [e.g., the somatotopic representation
of the hand and digits (35) and their cortical arrangement
based on everyday hand use (36)], very little is known about a
potential cortical topographic organization of sensory afferents
from the back (e.g., along the thoracolumbar axis). In 2018,
intra-cortical stimulation of the primary somatosensory cortex
revealed the sensory representations of the thorax and abdomen
(37) but still, the cortical representation of the back along the
thoracolumbar axis, and in particular of proprioceptive afferents,
is unclear. With regards to this, reorganization of proprioceptive
input from paraspinal muscles is likely to be more important
pathophysiologically for the chronification of LBP [compared to
tactile input (38)], but the cortical somatotopy of proprioceptive
input from the back has not yet been studied. Detailed cortical
maps of paraspinal afferent input might therefore be of major
importance to further explore potential relationships between
brain changes and unfavorable motor control strategies (e.g.,
tight control strategy) in LBP.

PSYCHOLOGICAL FACTORS

Pain-related fear and associated avoidance behavior as well as
depression and anxiety have received extraordinary attention in
the last two decades because they were empirically identified
as important psychological factors in the development and
persistence of LBP (3, 8, 39, 40). According to the Fear Avoidance
model (41), misinterpretations of pain as a sign of harm in
combination with negative affectivity and pain catastrophizing
can lead to pain-related fear and avoidance behavior which
might further aggravate pain, disability and depression (8).
Indeed, positive relationships between pain-related fear, LBP
intensity and disability have been found in systematic reviews
and meta-analyses (39, 42), and fear avoidance beliefs have
been shown to be associated with poor treatment outcome

in patients suffering from LBP within a time period of <6
months (43). However, the predictive value of pain-related
fear regarding the development of LBP is limited (39) and
psychological factors in general (when considered in isolation)
explain only a small proportion in outcomes such as pain
intensity (44, 45). Yet, recent research has shown an association
between pain-related fear and dysfunctional motor behavior
in LBP patients and healthy individuals (46–48), indicating
significant interactions between psychological factors and motor
control (psychomotor interactions), which can promote potential
clinically relevant consequences such as limitedmotor variability,
increased paraspinal muscle co-contraction and loading on
spinal tissues (15). Research on the role of pain-related fear in
LBP should therefore systematically involve measures of motor
control (such as spinal movement biomechanics) to identify
potential pain-provoking interactions. With regards to this, a
recently published meta-analysis including 52 studies found that
higher levels of pain-related fear, catastrophizing and depression
were significantly associated with reduced amplitudes of spinal
movement and larger muscle activity, independently from pain
intensity (49). Due to rather small effect sizes, however, it was
concluded that more experimental studies with more specific and
individualized measures of psychological factors, pain intensity,
and spinal motor behavior are needed to better understand
the underlying psychomotor interactions and to inform current
treatment strategies.

BUILDING BRIDGES: A
CROSS-DISCIPLINARY APPROACH

To investigate potential interactions between psychological
factors, biomechanical mechanisms and supraspinal processes
in LBP (Figure 1), we propose a cross-disciplinary approach,
aiming at bridging between the “silos” neurosciences and
movement biomechanics. The methodological basis comprises
the assessment of psychological factors through questionnaires,
biomechanical assessments of movement during functional
activities based on high-resolution optical motion capturing and
musculoskeletal modeling as well as the establishment of cortical
topographic maps of paraspinal afferent input using functional
magnetic resonance imaging (fMRI).

Questionnaires
To assess pain-related fear, self-reports are an adequate
direct measure of subjective feelings of fear that are easily
accessible for clinicians and researchers (50). The most
common self-reporting tools for assessing pain-related fear are
questionnaires based on psychological constructs such as fear
of movement/(re)injury [Tampa Scale for Kinesiophobia, TSK
(51)], perceived harmfulness of daily activities [Photograph Series
of Daily Activities, PHODA (52)] or fear avoidance beliefs [Fear
Avoidance Beliefs, FABQ (53)]. However, it must be noted that
even though recent neuroscientific and biomechanical evidence
supports the diversity of pain-related fear constructs (46, 48, 54),
it is still unclear how specific the different questionnaires are in
assessing the various psychological constructs (55). Combining
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FIGURE 1 | Illustration of interactions between pain-related fear (upper blue shaded area), biomechanical mechanisms and supraspinal processes (motor control;

lower orange shaded area).

these questionnaires with biomechanical and neuroscientific
measures might lead to a better understanding of the underlying
psychological constructs. In addition, to reveal potential
commonalities or differences between pain-related fear and
general anxiety, the State-Trait Anxiety Inventory questionnaire
(STAI) will be used to assess the participants’ current level of
anxiety (S-Anxiety) as well as aspects of “anxiety proneness” in
general (T-Anxiety) (56, 57). To assess depressive symptoms, the
Patient Health Questionnaire (PHQ-9) will be used (58).

Assessing the Biomechanics of Spinal
Movement
The functional biomechanics of the spine are investigated using
a comprehensive non-invasive experimental and computational
approach, which combines state-of-the-art optical motion
capture with advanced musculoskeletal modeling. Motion data
are collected in a motion analysis laboratory, where participants
are equipped with 58 retro-reflective skin markers according to a
previously developed configuration (59) (Figure 2) and asked to
perform various activities of daily living. These include walking
and running on a level ground, climbing up and down a 5-step
staircase, standing up from and sitting down on a chair, lifting
up and putting down a 5 kg-box as well as performing vertical

jumpmaneuvers. A 27-camera Vicon motion capture system and
several force plates are used to record three-dimensional marker
trajectories and ground reaction forces (GRFs), respectively
(Figure 2). The suitability of this method for quantifying spinal
motion during functional activities, which was previously used
to investigate three-dimensional spinal kinematics in healthy
populations as well as various patient populations including
non-specific chronic LBP (20) was supported by comprehensive
investigations of validity as well as within- and between-session
reliability (60, 61).

For estimating intersegmental kinematics and spinal loading,
we developed male and female musculoskeletal full-body models
with a highly detailed spine (Figure 2) using the OpenSim
modeling environment (62). To account for individual subject
characteristics, the models are adjusted for each participant by
considering segmental lengths and masses as well as sagittal
plane spinal shape derived from the skin markers. Simulations
are driven by the marker trajectories and GRFs collected in the
motion analysis laboratory. Initial predictions of spinal loading
in healthy pain-free individuals showed high consistency with
reported in vivo measurements (62), supporting the suitability
of this approach for accurately investigating LBP-related
biomechanical adaptations in large patient populations.
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FIGURE 2 | Left: Experimental and computational approach for quantifying movement biomechanics during functional activities. (A) Application of retro-reflective skin

markers in a full-body configuration. (B) Capturing marker trajectories using infrared camera-based motion capture system. (C) Motion data-driven musculoskeletal

full-body model with a detailed thoracolumbar spine. Right: Illustration of a subject wearing pneuVID elements in a MR environment. PneuVID can apply

computer-controlled vibrotactile stimuli between 10 and 150Hz (and amplitudes 0.5–1mm) to a customizable stimulation area between 1 and 4 cm2 of each vibration

unit. The vibration device controller (not shown) allows bilateral or unilateral vibrotactile stimulations of different body parts, including paraspinal tissue, in various

stimulation settings.

To account for LBP-related changes in muscle activity, we
are planning to include electromyographic (EMG)measurements
of the main trunk stabilizers and to use this information as
additional input for our models. This will further increase
prediction accuracy, especially when participants present activity
patterns such as increased antagonistic muscle coactivation,
which was shown to have direct implications on spinal loading
(22, 23).

Cortical Mapping of the Back
Non-invasive human brain imaging techniques such fMRI
with its high spatial resolution provide suitable tools for the
investigation of the cortical representation of different body parts
(63). We developed a novel MR-compatible vibration device
(pneumatic spinal vibration device, pneuVID, Figure 2), which
can apply computer-controlled vibrotactile stimuli between 10
and 150Hz to different thoracolumbar segmental levels. This is
the first apparatus specifically designed for paraspinal muscle
vibration on different segmental levels in an MR environment.
The pneuVID has been successfully tested for MR compatibility
and permits MRmeasurements in supine position to allow better
and more comfortable subject positioning (using special pillows
for the back to embed the vibration units) and head fixation.

Using the pneuVID in combination with high spatial
resolution fMRI (3 or 7 Tesla), detailed cortical maps of
paraspinal afferent input can be explored using different
vibration frequencies: Applying vibratory stimulation at
frequencies between 60 and 80Hz and amplitudes of 0.5–1mm
on paraspinal muscles has been shown to be a potent stimulus
for muscle spindle activation (and therefore proprioceptive
signaling) (26). In contrast, stimulus frequencies around
20Hz will primarily activate receptors in superficial skin
layers (e.g., Meissner’s corpuscles) (64). Thus, by using
randomized fMRI stimulation protocols including different
vibration frequencies at various thoracolumbar segmental
levels, the current approach has the potential to identify and
differentiate cortical proprioceptive somatotopic maps from
tactile somatotopic maps of the back and compare them
between healthy controls and LBP patients of different symptom
durations. It must be noted, however, that it is currently
unclear which trunk muscle spindles are affected in their
activation profiles by pneuVID stimulation. We assume that
mainly superficial muscles along the thoracolumbar axis (i.e.,
longissimus and spinalis muscles) are targeted. Nonetheless,
since the stimulation sites are also located over the rotatores
and multifidi muscles, these structures, which are important in
providing proprioceptive information [with the rotatores breves
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muscles having the highest density of muscle spindles of the
lumbar and thoracic muscles (65)] might also be affected.

FILLING THE GAPS

Using the methodologies spanning different research disciplines
as described above, the current approach has the potential to
address important questions in LBP research:

(1) Do loose/tight motor control strategy phenotypes indeed
exist and/or do other motor control strategies exist?
Biomechanical assessments of dynamic movement tasks,
involving subject-specific spine kinematics, segmental
loadings and paraspinal muscle forces during daily activities
(lifting, walking running etc.), will be performed to
investigate potential relationships with LBP duration,
disability, and psychological factors. Relevant features will
be extracted for subsequent data analysis (e.g., unsupervised
cluster analysis) with the goal of classifying different motor
control strategy phenotypes that are possibly associated
with different LBP symptom durations (acute, subacute, and
chronic stages).

(2) Can a topographic cortical organization of thoracolumbar
sensory input be identified? How does this cortical
organization relate to the identified motor control strategy
phenotypes in LBP? For example, it is plausible that degraded
paraspinal proprioceptive feedback (e.g., provoked by a
tight control strategy) is causally linked to LBP-provoking
alterations in motor control via neuroplastic cortical
changes (e.g., “smudging” of cortical maps of paraspinal
afferent input) (16). For the first time, we therefore aim
to test whether cortical maps of thoracolumbar afferent
input demonstrate a relationship with spinal movement
patterns, LBP duration and psychological factors. Novel
insights into these relationships would pave the way for
future investigations of causal interactions between cortical
changes and motor control strategies using longitudinal
study designs.

As recently stated, a better understanding ofmusculoskeletal pain
depends on reconnecting the brain with the rest of the body (14).
Our approach including investigations of potential interactions

between supraspinal processes and biomechanical mechanisms
contributes to this reconnection and could facilitate a transfer of
the knowledge generated within the past 20 years of research on
motor control related neuroplasticity into clinical practice.

CLINICAL IMPACT

Provided that the suggested motor control strategy phenotypes
can be reliably identified using the approach described in
this article, the knowledge generated might lead to important
implications for clinical research and interventions. For example,
it has been proposed that a persistent “tight control strategy”
may be specifically targeted by reducing muscle excitability
and co-contraction while increasing movement variability in
motor control exercise (12). With regards to this, our approach
might provide promising behavior- and neuroimaging-based
outcomes to test the potential therapeutic effect of individualized
motor control exercises and how they compare to other
treatment approaches.
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Background: Recently, heavy school backpacks have become a significant concern

among parents and health professionals, as well as the media, but evidence for the same

is limited in the Indian context.

Aim: To find the prevalence of musculoskeletal pain among school-going children and

its relationship with backpack weight.

Design: Cross-sectional study.

Method: This study was carried out among school-going children from grade 6 to 10

with age of 10 to 16 years from an urban and rural location. Schools were selected

randomly from all enlisted schools in the district of Khurdha, Odisha state of India. A

structured questionnaire was administered to assess symptoms of musculoskeletal pain.

Anthropometric measurements along with backpack weight were taken.

Statistical Analysis: Chi-square test was performed for categorical variables and

Student’s t-test for continuous variables. Multivariate regression analysis was performed

to identify factors with maximum effect on musculoskeletal pain.

Results: The prevalence of musculoskeletal pain was 18.8% in the preceding year.

Backpacks weights were higher among children of urban schools as compared with

rural areas. Children from urban schools were more likely to have pain than those from

rural schools (OR 1.88, 95% CI 1.41–2.49). Those children with a backpack weight more

than 10% of body weight had almost twice the risk of musculoskeletal pain compared to

backpack weight less than 10% (OR 1.91, 95% CI 1.4–2.6) in univariate analysis where

as no significant association was found on multivariate analysis.

Conclusion: The prevalence of musculoskeletal pain was high in school-going children.

In children, carrying higher backpack weight, and a higher percentage of the backpack

to bodyweight had a significant association with musculoskeletal pain. Gender, height,

body mass index, and backpack weight to body weight > 10% had no association with

musculoskeletal pain.

Keywords: backpack, back pain, musculoskeletal pain, bag weight, school bag
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INTRODUCTION

The age of school-going children ranges between 6–16 years,
and these children go through various physical and psychosocial
developmental stages and phases of accelerated growth of skeletal
and soft tissue, especially during puberty. Any repetitive stress
in this age group may have far-reaching consequences into
adulthood. Recently, heavy school backpacks have become a
great concern among parents, health professionals, and themedia
(1, 2). Some studies suggest that with the use of heavy school
backpacks, there is an increase in the incidence of low back
pain, abnormal posture, and other musculoskeletal problems
(3–8). Children with Backpack weight > 10% of their body
weight has higher prevalence musculoskeletal pain than those
with backpack weight < 10% (9). On the contrary, some other
studies suggest that although there is a high prevalence of back
pain among children, it has no association with the weight
of backpacks carried and may be due to other factors than
mechanical ones (10–13).

Many countries, such as India, have tried to ascertain a
specific percentage of body weight to restrict the load carried
by children in their school backpacks (14, 15). The European
countries have backpack limits of 10% of body weight, while
American occupation therapy recommends a limit of 15% body
weight, but these recommendations are also highly diverse and
there are no set international guidelines on this subject. Some
studies have also claimed that there is a gender variation and
that the body mass index (BMI) plays an essential role in
the causation of low back pain among school-going children,
although there is not enough concrete evidence to justify this
(5, 6). In India, the Ministry of Human Resource Development
has recommended a bag weight of up to 5 kg for children in
grade 10, 4.5 kg for grades 8 and 9, and 4 kg for grades 6 and
7. Previous studies have reported having a higher backpack for
private schools as compared to public schools. The impact of
the backpack on musculoskeletal pain (MSP) with respect to
public and private schools has not been well-established though.
Thus, with such varied literature, it is perplexing to healthcare
professionals and others alike if there is a need for putting
limitations of weights that children can carry in their backpacks
and what amendments should be included in the limitations that
should be put depending on the demographic profile of these
children. There is limited literature on the burden of MSP and
its associated factors in India, specifically in rural areas from
the eastern part of India. This study aimed to determine the
prevalence of musculoskeletal pain in school-going children and
its relation to backpack weight.

METHODS

A cross sectional study on school-going children from urban
and rural locations was conducted. Participating schools were
selected randomly from the enlisted schools in the district
of Khurdha, Odisha state of India. Every school within the
Bhubaneswar Municipal Corporation limits was classified as
urban and the others as rural. A number was assigned to all
schools, and selection was done randomly. After ethical clearance

by the institute ethics committee and permission from the school
authorities and parents was obtained, students from the 6 to 10
grade willing to participate in the study were included. Children
were excluded if they had any of the following: (i) any evidence
of congenital or inherited musculoskeletal disorders (ii) using
other forms of school bags other than backpacks like a bag
with wheels etc. After explaining the details of the study, a
structured questionnaire was administered, and anthropometric
measurements were taken. The questionnaire was explained to
the students, and their understanding was checked by asking
them their understanding of each question. Investigators helped
the students by simplifying the questions and clarifying doubts
that arose.

Sample Size
A previous Indian study found the prevalence of low back pain in
the pediatric population to be 53.9% (12). Keeping this in mind,
we calculated the sample size by the formula Z2

∗p∗(1 – p)/I2;
where Z is the 95% confidence interval, p is the prevalence taken
(53.9%), and I is the relative error (taken as 10% in this study)
that is 5.39. So, the sample size calculated was 329. Because of the
cluster sampling technique, a design factor of 4 was multiplied to
reach the final sample size of 1,316.

Data Collection
Demographic details, such as name, date of birth (DOB),
gender, and grade and section were collected. Anthropometric
measurements including height, weight of child, and weight of
child with backpack and other accessories were obtained. A
digital electronic scale with an accuracy of 0.01 kg calibrated
over a range of known weights, and a stadiometer accurate to
0.1 cm were used for anthropometric measurements. The weight
of each student was measured first without schoolbag, then after,
carrying his schoolbag, which also included a tiffin box and
water bottle inside it, to obtain the total weight. The difference
of the two weights was recorded as the schoolbag weight, and
then, the schoolbag weight percentage compared with the body
weight was calculated. Similarly, height was determined using
the stadiometer with students standing straight on it without
shoes and looking at Frankfurt plane with heel, buttock, shoulder
and occiput touching the stadiometer. BMI was calculated using
formula weight (kg)/(height in mt)2.

To assess for musculoskeletal symptoms, the Modified Nordic
Musculoskeletal Disorders Questionnaire was used (16). This
validated questionnaire has a clear image showing different body
areas labeled for easy understanding especially for children.

Data were analyzed using the STATA software, Chi-square
test for categorical variables, and student’s t-test for continuous
variables. Multivariate regression analysis was performed to
identify factors having a maximum effect on musculoskeletal
pain. A p-value of <0.05 was considered significant.

RESULT

We collected data of 1,329 children across four different (two
urban and two rural) categories of schools from 10 to16 years
and between grades 6 and 10. Out of these 1,329 children, 685
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TABLE 1 | Demographic details of school children.

Demographic

details

Urban

(mean ± SD)

Rural

(mean ± SD)

P-value

Number of children 685 644

Age 14.37 ± 1.16 13.17 ± 1.34

Sex

Boy 353 310

Girls 332 334

Type of school

Public 348 (26%) 332 (25%)

Private 337 (25%) 312 (24%)

Weight (kg) 52.5 ± 13.6 44.8 ± 11.7 <0.05

Height (mt) 1.57 ± 0.09 1.52 ± 0.09

BMI (kg/m2 ) 21.01 ± 4.43 19.26 ± 4.90

Weight of

backpack (kg)

4.62 ± 1.73 3.49 ± 1.26 <0.05

Percent backpack

to body wt (%)

7.55 ±3.06 8.27 ±2.73 <0.05

children belong to an urban area, whereas 644 children were
from a rural area. We collected data from both public (680
children) and private (649 children) schools. Thus, a total of four
categories of children were accounted for—urban public, urban
private, rural public, and rural private schools. The number of
children belonging to urban private, urban public, rural private,
and public school are mentioned in above (Table 1).

The mean age of urban school children was 14.4 years whereas
that of rural school was 13.4 years. The mean weight of children
of urban schools was 52.5 kg (±13.6) kg, and that of rural schools
was 44.8 kg (±11.7).

We measured the backpack weight of both urban and rural
children and looked for the association of backpack weight with
musculoskeletal manifestation in the form of pain in shoulder
joint and elbow joint, neck and back. The mean weight of
backpacks of the children in the urban schools was 4.62 (±1.74)
kg, whereas that in the rural school was 3.5 (±1.26) kg (Table 2).
The mean backpack weight difference among children from
private (4.76 ± 1.63 kg) and public (3.42 ± 1.33 kg) schools was
statistically significant. When backpack weight was calculated in
terms of percentage of body weight, the urban school children
(7.55 % ± 3.06) had a lower percentage as compared with the
rural school children (8.27% ± 2.73) (Table 1). This probably
was secondary to higher body weight in urban school children
as compared with rural schools. When compared among various
grades in private and public schools, the difference was significant
except for the 6 grade (Table 3).

The frequency of pain in different groups of children in urban
and rural areas is given in Table 4. There were 250 (18.8%)
children who experienced any degree of pain the preceding year.
The major sites of pain reported in this study were the shoulder
joints (39.2%), knee (19.6%), back (18%), and neck (10.4%).
Children from urban and private schools had a higher prevalence
of pain (Table 4); 175 out of 1,056 children (16.6%) with
backpack weight < 10% of body weight has musculoskeletal pain

TABLE 2 | Association of backpack weight among urban vs. rural, public vs.

private schools and various grades.

Characteristics Weight of

backpack (kg)

(mean ± SD)

P-value

Residence

Urban

Rural

4.62 ± 1.74

3.5 ± 1.26

<0.05

Type of school

Public

Private

3.42 ± 1.33

4.76 ± 1.63

<0.05

Grade

6th 4.08 ± 1.309

7th 4.43 ± 1.64

8th 4.05 ± 1.76 0.012

9th 4.09 ± 1.47

10th 3.86 ± 1.77

TABLE 3 | Association of backpack weight among public vs. private schools

across grades.

School grades Weight of

backpacks (kg)

Weight of

backpacks(kg)

P-value

Public school Private school

(Mean ± SD) (Mean ± SD)

6th 3.91 ± 1.38 4.13 ± 1.29 0.40

7th 3.72 ± 1.41 5.05 ± 1.56 <0.05

8th 3.26 ± 1.42 5.06 ± 1.63 <0.05

9th 3.56 ± 1.09 5.06 ± 1.63 <0.05

10th 3.23 ± 1.36 5.16 ± 1.89 <0.05

whereas 75 out of 273 children (27.5%) with backpack weight
more than 10% of bodyweight has musculoskeletal pain. Mean
backpack weight, percentage of backpack weight to body weight,
backpack weight more than recommended weight, and backpack
weight more than 10% of body weight are significantly associated
with musculoskeletal pain in univariate analysis (Table 4).

A multivariate regression analysis was performed to assess
the relationship between back pain and various independent
variables such as gender, school type (private vs. public school),
backpack weight, percentage backpack, obesity, and back pack
weight more than recommended weight. In logistic regression, a
significant association was found between the weight of backpack
and musculoskeletal pain in children. Gender had no association
with pain. Children having backpack weight higher than that
recommended (as per HRD ministry), or with backpack weight
more than the recommended weight or higher percentage of
backpack to body weight did not have any association with pain
in multivariate analysis (Table 4).

DISCUSSION

There is a growing concern among parents regarding the increase
in school bag weight in children of school-going age. There is very
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TABLE 4 | Risk factors associated with musculoskeletal pain.

Parameter Musculoskeletal

pain—present

N (%)

Musculoskeletal

pain—absent

N (%)

Odds ratio (OR)

95% CI

Adjusted odds ratio

95% CI

P-value

Resident

Urban

Rural

160 (64%)

90 (36%)

525 (48.7)

554 (51.3)

1.88

(1.41-2.49)

0.93

(0.42-2.03)

<0.001

School

Public

Private

117 (46.8%)

133 (53.2%)

563(52)

516 (48)

0.81

(0.61-1.06)

0.82

(0.58-1.05)

0.12

School type

Urban public

Urban private

Rural public

Rural private

64 (25.6%)

96 (38.4%)

53 (21.2%)

37 (14.8%)

284 (26.3)

241 (22.3)

279 (25.9)

275 (25.5)

N/A N/A N/A

Sex

Girls

Boys

136 (54.4%)

114 (45.6%)

530 (51)

549 (49)

1.24

(0.94-1.63)

0.13

School grade

6th

7th

8th

9th

10th

13 (5.20%)

28 (11.20%)

45 (18.00%)

117 (46.80%)

47 (18.80%)

118 (10.9)

142 (13.1)

287 (26.6)

306 (28.4)

226 (21.0)

N/A N/A N/A

Obese vs. Non-obese

Non-obese

Obese

195 (78)

55 (22)

874 (81)

205 (19)

0.83

(0.59-1.16)

1.00

(0.67-1.50)

0.28

Recommended wt for

grades (HRD Ministry)

Below

Above

124 (49.6)

126 (50.4)

728 (67.5)

351 (32.5)

0.47

(0.36-0.63)

0.78

(0.61-1.55)

<0.001

Backpack % to body weight

<10%

>10%

175 (30)

75 (70)

881 (18)

198 (82)

1.91

(1.4-2.6)

0.95

(0.62-1.45)

<0.001

BMI

Overall

Urban

Rural

20.53 ± 4.44

21.59 ± 4.32

18.85 ± 4.04

20.07 ± 4.8

20.83 ± 4.4

19.35 ± 5.02

N/A N/A 0.16

0.05

0.21

Mean weight of

backpack (kg)

4.74 ± 1.83 3.92 ± 1.58 N/A N/A <0.05

Mean backpack % to

body weight

8.67 ± 3.23 7.72 ± 2.8 N/A N/A <0.05

Risk factor associated with pain after univariate (OR) and multivariate analysis (Adjusted OR). OR, Odds ratio; CI, Confidence interval; N/A, Not applicable.

limited evidence on excessive backpack weight causing health
issues in children. There are few studies published that have
addressed this growing concern. It has been found in studies
that backpack weight significantly contributes to musculoskeletal
pain in the form of back pain, shoulder pain, and neck pain.
The data from India are further limited. Although the Ministry
of Human Resources and Development (HRD) has recent
recommendations for backpack weight for various grades, its
effect on the musculoskeletal system is not well-studied.

In this study, we found the prevalence of musculoskeletal pain
among school children to be 18.8%, whereas the prevalence was
reported to be 35.4% in a study from Uganda (3) while that was
documented to be 40% in school children in ameta-analysis done

by Calvo-Munoz et al. (17). The backpack weight is significantly
high in children from private schools and among urban schools.
This result is similar to that of a study from Uganda conducted
by Mwaka et al. (3). This may be due to students of urban
schools carrying more textbooks along with tiffin and lunch
box and water bottles as compared with their rural counterparts
in public schools. As per this study, shoulder, knee, and neck
are the commonly reported sites of pain by children, which
is similar to a study published by Parthibane et al. (18). We
did not find any significant gender difference in the prevalence
of musculoskeletal pain in school children as compared with
previous studies where boys were reported to have a lower risk
of pain than girls (19, 20). Boys perhaps reported a higher
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prevalence of pain in view of greater exposure to sports and
intense activities, whereas Akbar et al. had reported a higher
prevalence in young females (21). This may be due to a higher
perception of pain as reported by Kovacs et al. (22). We did
not find BMI to be a risk factor for developing pain in school
children, although previous studies have reported an association
(7). Children using a heavier backpack were at a higher risk
of having musculoskeletal pain. This was unlike that reported
previously, where no association was found between backpack
weight and pain (23). Similarly, we did not find any association
between the percentage of backpack weight to body weight with
musculoskeletal pain. Although many professional occupational
bodies worldwide, along with the American Academy of
Pediatrics, recommend backpack weight not to exceed 11-15%
of body weight, we did not get any significant association in
this study. Similarly, we also could not find any association
between musculoskeletal pain and the maximum recommended
backpack weight by the HRD ministry. Cohort studies will be
better to investigate such association of backpack weight and
musculoskeletal pain.

Limitation
We collected data from the students themselves; parents were not
involved in data collection although consent was taken a priori.
We did not conduct a detailed clinical examination, nor did we
take a detailed history of injury, lifestyle, sitting posture, etc. as
other factors contributing to the pain.

CONCLUSION

The prevalence of musculoskeletal pain among school children
was found to be 18.8%. Children carrying a heavier backpack
and with a higher percentage of backpack to body weight had a
significant association with MSP. Gender and backpack weight
to body weight > 10% had no association with musculoskeletal
pain. The current HRDministry-recommended backpack weight
for each grade was noted to have a higher risk of having pain

as per our study. Hence, more studies are needed to determine
the appropriate maximum backpack weight for school children
of different grades.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

ETHICS STATEMENT

The studies involving human participants were reviewed
and approved by Institute Ethics Committee, AIIMS
Bhubaneswar. Written informed consent to participate in
this study was provided by the participants’ legal guardian/next
of kin.

AUTHOR CONTRIBUTIONS

SS and SP were involved in data collection and entry, participated
in data analysis, and wrote the first draft of the manuscript.
JJ conceptualized the study, coordinated the execution of the
project, critically reviewed the draft manuscript, and acted as
guarantor. RD and AS supervised data collection, interpreted the
data, and critically reviewed the draft manuscript. All the authors
have approved the final version of the manuscript.

FUNDING

This work was supported by Indian Academy of Pediatrics
(Research Award Grant Undergraduate Category).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fpain.
2021.684133/full#supplementary-material

REFERENCES

1. Patnaik LM. School Bag Weight Issue Under HC Glare. Times of India

[Newspaper on the internet]. (2019). Available online at: http://m.timesofindia.

com/city/bhubaneswar/school-bag-weight-issue-under-hcglare/amp_

articleshow/68919231.cms (accessed May 15, 2019).

2. Mohidin R. Govt Wants Lighter School Bags; Panels Set Up. The Tribune

[Newspaper on the internet]. (2017). Available online at: wants lighter-school-

bags-panel-set-up/460300 (accessed May 15, 2019).

3. Mwaka ES, Munabi IG, Buwembo W, Kukkiriza J, Ochieng J.

Musculoskeletal pain and school bag use: a cross sectional study among

Ugandan pupils. BMC Res Notes. (2014) 7:222. doi: 10.1186/1756-0500-

7-222

4. Spiteri K, Busuttil ML, Aquilina S, Gauci D, Grech V, Camilleri E. School bags

and back pain in children between 8 and 13 years: a national study. Br J Pain.

(2017) 11:81-6. doi: 10.1177/2049463717695144

5. Al-Saleem SA, Ali A, Ali SI, Aishamrani AA, Almulhem AM, Al-

Hashem MH. A study of school bag weight and back pain among

primary school children in Al-Ahsa, Saudi Arabia. Epidemiology. (2016)

6:1. doi: 10.4172/2161-1165.1000222

6. Adeyemi AJ, Rohani JM, Rani MRA. Interaction of body mass index and age

in muscular activities among backpack carrying male school children. Work.

(2015) 52:677-86. doi: 10.3233/WOR-152102

7. Dianat I, Javadivala Z, Allahverdipour H. School bag weight and the

occurrence of shoulder, hand/wrist and lower back symptoms among

Iranian elementary school children. Health Promot Perspect. (2011) 1:76-

85. doi: 10.5681/hpp.2011.008

8. Vaghela NP, Parekh SK, Padsala D, Patel D. Effect of backpack loading

on cervical and saggital shoulder posture in standing and after dyanamic

activity in school going children. J Family Prim Care. (2019) 8:1076-

81. doi: 10.4103/jfmpc.jfmpc_367_18

9. Bauer D, Freivalds A. Backpack load limit recommendation for middle school

students on physiological and psychophysical measurements. Work. (2009)

32:339-50. doi: 10.3233/WOR-2009-0832

10. Watson KD, Papageorgiou AC, Jones GT, Taylor S, Symmons DPM, Silman

AJ, et al. Low back pain in school children: the role of mechanical and

psychosocial factors. Arch Dis Child. (2003) 88:12-7. doi: 10.1136/adc.88.1.12

11. Kaspiris A, Grivas TB, Zafiropoulou C, Vasiliadis E, Tsadira O. Non-

specific low back pain during childhood. J Clin Rheumatol. (2010) 16:55-

60. doi: 10.1097/RHU.0b013e3181cf3527

Frontiers in Pain Research | www.frontiersin.org 5 August 2021 | Volume 2 | Article 68413382

https://www.frontiersin.org/articles/10.3389/fpain.2021.684133/full#supplementary-material
http://m.timesofindia.com/city/bhubaneswar/school-bag-weight-issue-under-hcglare/amp_articleshow/68919231.cms
http://m.timesofindia.com/city/bhubaneswar/school-bag-weight-issue-under-hcglare/amp_articleshow/68919231.cms
http://m.timesofindia.com/city/bhubaneswar/school-bag-weight-issue-under-hcglare/amp_articleshow/68919231.cms
https://doi.org/10.1186/1756-0500-7-222
https://doi.org/10.1177/2049463717695144
https://doi.org/10.4172/2161-1165.1000222
https://doi.org/10.3233/WOR-152102
https://doi.org/10.5681/hpp.2011.008
https://doi.org/10.4103/jfmpc.jfmpc_367_18
https://doi.org/10.3233/WOR-2009-0832
https://doi.org/10.1136/adc.88.1.12
https://doi.org/10.1097/RHU.0b013e3181cf3527
https://www.frontiersin.org/journals/pain-research
https://www.frontiersin.org
https://www.frontiersin.org/journals/pain-research#articles


Sankaran et al. Relation of Backpack Weight and Musculoskeletal Pain

12. Yamato TP, Maher CG, Traeger AC, Wiliams CM, Kamper SJ. Do schoolbags

cause back pain in children and adolescents? A systematic review. Br J Sports

Med. (2018) 52:1-6. doi: 10.1136/bjsports-2017-098927

13. Oka GA, Remade AS, Kulkarni AA. Back pain and school bag weight- a

study on Indian children and review of literature. J PediatrOrthop B. (2019)

28:397-404. doi: 10.1097/BPB.0000000000000602

14. Dockrell S, Simms C, Blake C. Schoolbag weight limit. Can it be defined? J Sch

Health. (2013) 83:368-77. doi: 10.1111/josh.12040

15. PTI. HRD Ministry Limits School Bag Weights, Scraps Homework for Class I

and II Students. The New Indian Express [Newspaper on the internet]. (2018).

Available online at: http://www.newindianexpress.com/nation/2018/nov/26/

hrd-ministry~limits~school~bag-weights-scraps-homework-for-class-I-

and-II-students-1903495.html (accessed December 20, 2020).

16. Kuorinka I, Jonsson B, Kilbom A, Vinterberg H, Sorenson FB, Anderson G,

et al. Standardised Nordic Questionnaires for the analysis of musculoskeletal

symptoms. Appl Ergon. (1987) 18:233-7. doi: 10.1016/0003-6870(87)90

010-X

17. Calvo-Munoz I, Gomez-Conesa A, Sanchez-Meca J. Prevalence of low back

pain in children and adolescents: a meta analysis. BMC Pediatric. (2013)

13:14. doi: 10.1186/1471-2431-13-14

18. Parthibane S, Majumdar A, Kalidoss VK, Roy G. Prevalence and patterns of

musculoskeletal pain among school students in Puducherry and its association

with sociodemographic and contextual factors. Indian J Pain. (2017) 31:119-

26. doi: 10.4103/ijpn.ijpn_26_17

19. Moore M, White G, Moore D. Association of relative backpack weight with

reported pain, pain sites, medical utilization, and lost school time in children

and adolescents. J Sch Health. (2007) 77:232–9. doi: 10.1111/j.1746-1561.2007.

00198.x

20. De Paula A, Silva J, Paschoalli L, Fujji JB. Backpacks and school children’s

obesity: challenges for public health and ergonomics. Work. (2012) 41:900–

6. doi: 10.3233/WOR-2012-0261-900

21. Akbar F, AlBesharah M, Al-Baghli J, Bulbul F, Mohammad D,

Qadoura B, et al. Prevalence of low back pain among adolescents

in relation to the weight of school bags. BMC Musculoskelet

Disord. (2019) 20:37. doi: 10.1186/s12891-019-2398-2

22. Kovacs FM, Fernandez C, Cordero A, Muriel A, Gonzalez-Lujan L, Gil del

Real MT. Non-specific low back pain in primary care in the Spanish National

Health Service: a prospective study on clinical outcomes and determinants of

management. BMCHealth Serv Res. (2006) 6:57. doi: 10.1186/1472-6963-6-57

23. Macedo RB, Coelho-E-Silva MJ, Sousa NF, Valente-Dos-Santos J, Machado

Rodrigues AM, Cumming SP, et al. Quality of life, school backpack weight

and nonspecific low back pain in children and adolescents. J Pediatr (Rio J).

(2015) 91:263–9. doi: 10.1016/j.jped.2014.08.011

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2021 Sankaran, John, Patra, Das and Satapathy. This is an open-access

article distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided

the original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Pain Research | www.frontiersin.org 6 August 2021 | Volume 2 | Article 68413383

https://doi.org/10.1136/bjsports-2017-098927
https://doi.org/10.1097/BPB.0000000000000602
https://doi.org/10.1111/josh.12040
http://www.newindianexpress.com/nation/2018/nov/26/hrd-ministry~limits~school~bag-weights-scraps-homework-for-class-I-and-II-students-1903495.html
http://www.newindianexpress.com/nation/2018/nov/26/hrd-ministry~limits~school~bag-weights-scraps-homework-for-class-I-and-II-students-1903495.html
http://www.newindianexpress.com/nation/2018/nov/26/hrd-ministry~limits~school~bag-weights-scraps-homework-for-class-I-and-II-students-1903495.html
https://doi.org/10.1016/0003-6870(87)90010-X
https://doi.org/10.1186/1471-2431-13-14
https://doi.org/10.4103/ijpn.ijpn_26_17
https://doi.org/10.1111/j.1746-1561.2007.00198.x
https://doi.org/10.3233/WOR-2012-0261-900
https://doi.org/10.1186/s12891-019-2398-2
https://doi.org/10.1186/1472-6963-6-57
https://doi.org/10.1016/j.jped.2014.08.011
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/pain-research
https://www.frontiersin.org
https://www.frontiersin.org/journals/pain-research#articles


HYPOTHESIS AND THEORY
published: 23 August 2021

doi: 10.3389/fpain.2021.691740

Frontiers in Pain Research | www.frontiersin.org 1 August 2021 | Volume 2 | Article 691740

Edited by:

Jin Y. Ro,

University of Maryland, United States

Reviewed by:

Zilong Wang,

Southern University of Science and

Technology, China

Frank Willard,

University of New England,

United States

*Correspondence:

Brian Tuckey

btuckey@tuckeypt.com

Specialty section:

This article was submitted to

Musculoskeletal Pain,

a section of the journal

Frontiers in Pain Research

Received: 07 April 2021

Accepted: 19 July 2021

Published: 23 August 2021

Citation:

Tuckey B, Srbely J, Rigney G,

Vythilingam M and Shah J (2021)

Impaired Lymphatic Drainage and

Interstitial Inflammatory Stasis in

Chronic Musculoskeletal and

Idiopathic Pain Syndromes: Exploring

a Novel Mechanism.

Front. Pain Res. 2:691740.

doi: 10.3389/fpain.2021.691740

Impaired Lymphatic Drainage and
Interstitial Inflammatory Stasis in
Chronic Musculoskeletal and
Idiopathic Pain Syndromes: Exploring
a Novel Mechanism

Brian Tuckey 1*, John Srbely 2, Grant Rigney 3, Meena Vythilingam 4 and Jay Shah 5

1Department of Physical Therapy, Tuckey and Associates Physical Therapy, Frederick, MD, United States, 2Department of

Human Health and Nutritional Sciences, University of Guelph, ON, Canada, 3Department of Psychiatry, Oxford University,

Oxford, United Kingdom, 4Department of Health and Human Services, Center for Health Innovation, Office of the Assistant

Secretary for Health, Washington, DC, United States, 5Department of Rehabilitation Medicine, Clinical Center, National

Institutes of Health, Bethesda, MD, United States

A normal functioning lymphatic pump mechanism and unimpaired venous drainage

are required for the body to remove inflammatory mediators from the extracellular

compartment. Impaired vascular perfusion and/or lymphatic drainage may result in

the accumulation of inflammatory substances in the interstitium, creating continuous

nociceptor activation and related pathophysiological states including central sensitization

and neuroinflammation. We hypothesize that following trauma and/or immune

responses, inflammatory mediators may become entrapped in the recently discovered

interstitial, pre-lymphatic pathways and/or initial lymphatic vessels. The ensuing interstitial

inflammatory stasis is a pathophysiological state, created by specific pro-inflammatory

cytokine secretion including tumor necrosis factor alpha, interleukin 6, and interleukin

1b. These cytokines can disable the local lymphatic pump mechanism, impair vascular

perfusion via sympathetic activation and, following transforming growth factor beta

1 expression, may lead to additional stasis through direct fascial compression of

pre-lymphatic pathways. These mechanisms, when combined with other known

pathophysiological processes, enable us to describe a persistent feed-forward loop

capable of creating and maintaining chronic pain syndromes. The potential for

concomitant visceral and/or vascular dysfunction, initiated and maintained by the same

feed-forward inflammatory mechanism, is also described.

Keywords: interstitial inflammatory stasis, cytokines, lymphatic dysfunction, counterstrain techniques, myofascial

pain and dysfunction, idiopathic diseases, fascia

INTRODUCTION

Chronic pain is the leading cause of disability with up to 49% of the population experiencing pain
<3 months duration. The estimated cost of chronic pain and associated opioid use disorder in the
USA is currently between $560 and 635 billion annually (1). Chronic pain is positively correlated
with age (2) and, given the rapidly aging demographic, the burden of chronic pain will continue to
impose significant challenges to our healthcare system.
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Myofascial pain syndrome (MPS) is among themost common,
yet least understood forms of chronic musculoskeletal pain, and
is a frequent cause of primary care physician and pain clinic
visitation (1, 2). Few people live without experiencing muscle
pain following injury, overuse, strain, or trauma. Although pain
associated with MPS frequently resolves in a few weeks, in
some cases it can persist long after the inciting event and/or
spread to distant, uninjured tissues (3, 4). Although MPS
is typically characterized by the expression of pain localized
to myofascial tissues, it is also associated with a broad and
growing profile of non-musculoskeletal symptoms including
fatigue, sleep disturbance, and visceral pain syndromes (5). These
associations suggest a shared pathophysiology between MPS
and several common idiopathic conditions (e.g., visceral pain
syndromes). The pathophysiological mechanisms underlying this
association, however, are not fully understood and remain largely
undescribed.

It is well-established that persistent, peripheral nociceptive
sources can initiate, maintain, and perpetuate chronic pain states.
This occurs, in part, through central mechanisms including
retrograde inflammation produced by dorsal root reflexes (6),
and/or areas of secondary hyperalgesia produced by glial cell
neuroinflammation (3). However, in idiopathic peripherally
generated chronic pain, our understanding of the pathological
processes that generate and maintain ongoing nociceptive input
is limited. Examples include whiplash associated disorders
which present with pain, proprioceptive and autonomic-
linked symptoms despite a lack of correlative pathological
evidence on computer tomography and/or magnetic resonance
imaging [for review see (7–10)]. Additionally, existing pain
hypotheses are limited in their ability to address many of the
pathophysiological findings common to both chronic pain and
idiopathic visceral/vascular syndromes. This includes elevated
levels of plasma and interstitial pro-inflammatory cytokines
in myofascial (11, 12) and visceral pain syndromes (13), and
evidence of sympathetic nerve activation (SNA) in MPS (14–
16), visceral disease (17, 18), and vascular disorders (19).
Microvascular disturbances and impaired lymphatic function
have also been identified in both MPS (20) and visceral disease
(21), supporting the concept of a shared pathophysiology.

Considering the limitations in current understanding, we
hypothesize that elevated pro-inflammatory cytokine levels,
through specific pathophysiological mechanisms, adversely
impact vascular hemodynamics and lymphatic function in the
extracellular compartment. Impaired venous and lymphatic
drainage can create a state of inflammatory interstitial stasis (IIS),
which results in ongoing nociceptive bombardment of the dorsal
horn (central sensitization). Recent anatomical discovery and
advances in pre-clinical and clinical research, enable us to further
elucidate the potential pathophysiological factors involved in
this process. This includes contraction of fascial myofibroblasts
following local TGF-b1 expression (22) which we hypothesize can
cause pre-lymphatic/lymphatic vessel contraction and/or fibrosis.
And the effect of specific pro-inflammatory cytokines including
tumor necrosis factor alpha (TNF-a), interleukin-6 (IL-6) and
interleukin (IL-1b) in cessation of the normal lymphatic pump
mechanism (23), the development of chronic pain states (24) and

the creation of long-term microvascular disturbance following
stimulation of segmentally linked somato/visceral-sympathetic
reflexes (23, 24).

These concepts, including others critical to our IIS hypothesis,
will be described in the sections to follow and presented
schematically in flowchart format. Figure 1 (flowchart 1)
specifically highlights the fascial, sympathetic, and lymphatic
pathophysiological mechanisms related to IIS. Figure 2 is a
comprehensive flowchart which incorporates the concepts in
Figure 1 and additional, previously documented mechanisms,
that may contribute to the development of IIS.

Pro-Inflammatory Mediators and

Peripheral Afferent Nociceptors
Tissue injury and/or inflammation leads to the local release of
algogenic substances including glutamate, serotonin, bradykinin,
adenosine triphosphate, protons (low pH), Substance P, nerve
growth factor (NGF), and norepinephrine (NE) all of which
are transmitted to the central nervous system by primary
afferent nociceptors (nociceptors) [for review see Willard (25)].
Nociceptors have unmyelinated free nerve endings that terminate
peripherally in the extracellular matrix (ECM), and respond to
both inflammatory and mechanical stimuli (26, 27). Virtually
all tissues are innervated by nociceptors including fascia (28),
tendons (29), blood vessels (30, 31), nerve sheaths (32),
ligaments, menisci, synovium, bone (33), visceral tissues or
capsules in the case of solid organs (34), vertebral discz (35)
and meninges (36). Primary afferent nociceptors enter the
dorsal root segmentally, where they trifurcate forming ascending,
descending and segmental level fibers. Thus, these small caliber
fibers can influence the segmental level of entry and several
segments above and below (37). This anatomical structure
enables singular activated nociceptors to have heterosegmental
nociceptive and reflexive impact. Research specifically highlights
the role of visceral afferents in pain production as their activity
is synaptically transmitted deep in the dorsal horn to convergent
viscero-somatic neurons, which receive nociceptive input from
the skin and deep somatic tissues of the corresponding
dermatomes, myotomes and sclerotomes (38). Additionally,
injury and/or immune responses will result in the production
of pro-inflammatory cytokines from various cells, including
endothelial cells, macrophages, dendritic cells, and fibroblasts.
These substances lower nociceptor activation thresholds in
the periphery (25) and, if persistent, can create structural
and/or functional changes in the spinal cord including central
sensitization (39). Thus, clinical consideration must be given to
viral, infectious, traumatic, post-surgical and/or overuse histories
as each can facilitate the cellular release of pro-inflammatory
cytokines that result in nociceptor activation.

Neurogenic Inflammation
Persistent nociceptive bombardment of the dorsal horn
leads to primary afferent depolarization of convergent
somatosensory pathways (40) and dorsal root reflexes which
result in neurogenic inflammation or the retrograde release
of proinflammatory neuropeptides including substance P and
calcitonin gene-related peptide CGRP, into peripheral tissues (6).
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FIGURE 1 | Trauma and/ or immune responses lead to PC production, most notably IL-1β, IL-6 and TNF-α. PANs of multiple tissues embedded in the ECM are

stimulated, transporting these substances to the DRG and DH where glial cells are stimulated leading to central and peripheral neuroinflammation/sensitization.

Nociceptive bombardment stimulates somato/visceral-sympathetic reflexes causing the release of NE, resulting in peripheral vasoconstriction (including fascial

vasculature) while the cytokines IL-1β, IL-6, TNF-α which deactivate the local lymphatic pump mechanism and simultaneously stimulate fibroblasts to differentiate into

myofibroblasts. TGF-b1 released by fibroblasts & myofibroblasts, causes contraction of fascial tissues compressing pre-lymphatic pathways. Impaired hemodynamics

from vasoconstriction, deactivation of the lymphatic pump mechanism and compression of pre-lymphatic pathways create areas of hypoxia and IIS. Continued PAN

stimulation results in a pathophysiological feed-forward loop of lymphatic stasis, nociceptor stimulation and sympathetic activation which manifests in chronic pain,

sub-threshold action potentials and idiopathic visceral/vascular dysfunction.
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FIGURE 2 | Nociceptive bombardment (various sources) produces PCs including IL-1β, IL-6, TNF-α etc. PANs of multiple tissues embedded in the ECM are

stimulated, transporting these substances to the DRG, causing antidromic release of neuropeptides from the DRG into the injured and neurosegmentally linked

tissues, exacerbating the response beyond the region of primary hyperalgesia. Glial cells in the DH are stimulated leading to central and peripheral

neuroinflammation/sensitization. PAN entry into the DH at multiple levels alters the activity of alpha and gamma motor neurons, creating multi-segmental muscle

guarding reflexes, and myofascial compression of pre-lymphatic pathways. Simultaneously, somato/visceral-sympathetic reflexes are stimulated, causing the release

(Continued)
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FIGURE 2 | of NE, resulting in peripheral vasoconstriction (including fascial vasculature) while cytokines IL-1β, IL-6, TNF-α deactivate local lymphatic propulsion and

stimulate fibroblasts to differentiate into myofibroblasts. TGF-b1 released by fibroblasts & myofibroblasts, creates local fascial contraction, perimysial stiffness (gamma

motor activation) and compression of pre-lymphatic pathways. Due to the combined mechanisms, areas of hypoxia and inflammatory stasis develop which

continuously stimulate local PANs. A pathophysiological feed-forward loop of lymphatic stasis, nociceptor stimulation and SNA manifests in chronic pain,

sub-threshold action potentials and idiopathic visceral/vascular dysfunction.

In support of this concept, IL-1β injections into the dorsal root
ganglia (DRG) and dorsal horn are able to induce secondary
hyperalgesia, via retrograde inflammation, in the intraperitoneal,
intracerebroventricular and intra-plantar tissues of rats (41, 42).
This central to peripheral mechanism is a separate phenomenon
from spinal glial cell neuroinflammation and expands the
inflammatory process into contiguous, non-injured peripheral
tissues, creating regions of secondary hyperalgesia (pain
experienced outside the original injury site) (3). Glial cell
neuroinflammation occurs from nociceptive signals derived
from muscle (43), joint (44) and/or visceral (45) tissues and can
initiate the transition from acute to chronic pain states following
central sensitization (46).

Pro-inflammatory cytokines generated by trauma or immune
responses can also be transported from the periphery, via
axonal or non-axonal mechanisms, to the DRG and dorsal
horn, facilitating the induction of central sensitization (47),
which has important implications to the concept of IIS.
Additionally, Xie 2006, demonstrated that, once inflamed, the
DRG not only produces pro-inflammatory cytokines but also
decreases its production of anti-inflammatory cytokines (48),
which further exacerbates the peripheral inflammatory process.
Importantly, studies indicate that specific pro-inflammatory
cytokines including IL-1β, IL-6, and TNF-α, are particularly
associated with glial cell neuroinflammation and chronic pain
states (49).

The Role of Muscle Guarding Reflexes in

the Pathophysiology of Trigger Points
Muscle guarding reflexes are the body’s protective, involuntary
motor responses to reduce nociception (50). Stimulation
of sensitized dorsal horn nociceptive neurons is known
to alter the activity of the alpha motor neuron pool, thus
creating one type of the muscle guarding reflex (51, 52). For
example, stimulation of the kidney, ureter, or colon in rabbits
induces variable, paravertebral muscle responses depending
on the organ stimulated (53). Additionally, biochemical
stimulation of nociceptors via bradykinin, and serotonin,
can activate the gamma motor neuron system (54), which
excites segmental stretch reflexes, limits muscle flexibility,
and can contribute to formation/perpetuation of myofascial
trigger points (MTrPs) (55). MTrPs, the hallmark of MPS, are
defined as hyperirritable nodules in a taut band of skeletal
muscle. They are the principal cause of musculoskeletal pain
and are characterized as either active or latent (56). Active
MTrPs are known to produce spontaneous local and or
referred pain at rest, whereas latent MTrPs do not. Latent
MTrPs are typically considered the “dormant,” subthreshold
state, of the active MTrP (57). Tender points (TPs) on the

other hand, are described as areas of tenderness occurring in
muscle, the muscle-tendon junction, bursa, or fat pad, and are
typically considered characteristic of fibromyalgia syndrome
(58). Although it is to be emphasized that MTrP and TP
are separate entities, recent research utilizing intramuscular
electromyographic registration of spontaneous electrical activity,
has demonstrated that most fibromyalgia TP sites are located
inside the local and or neurological referred pain patterns of
active MTrPs (59) and almost all fibromyalgia TP sites, as
specified by the American College of Rheumatology criteria
are known MTrP locations (60). This clinically observed
overlap in referred pain patterns suggests some degree of
shared pathophysiology.

It is important to note that tissue texture abnormalities
including MTrPs are not always confined to a single
segmental level as activated nociceptors can also expand
receptive fields to non-contiguous areas, contributing to the
development of MTrPs in distant locations (4). Neurogenic
inflammation, muscle guarding reflexes and the potential
impact of MTrPs on central sensitization are important
concepts in the pathogenesis of MPS according to existing
pain hypotheses.

RECENT MYOFASCIAL PAIN HYPOTHESES

The Integrated Hypothesis
Included among the three most prevailing MPS models, is
an expansion of Simons’ Integrated Hypothesis described
by Gerwin et al. in 2004. It proposes that MTrPs are
initiated by local acute or chronic myotendinous injuries
including unaccustomed eccentric exercise and or sustained
work-related strain (61). Sustained muscle contraction, if
persistent, theoretically leads to hypoxia “possibly by the
development of high pressures within the contracting muscles”
which may explain the significant elevation of vasoactive,
inflammatory, and algogenic substances demonstrated in active
MTrPs (62). Lowered tissue pH, which inhibits the activity of
acetylcholinesterase, combined with the release of calcitonin
gene-related peptide (causing increased acetylcholine release),
would theoretically contribute to the observed increase in
motor end plate activity and focal hypertonicity associated
with MTrPs (63). This cycle, if combined with “other
factors that predispose to focal hypoperfusion” including
“sympathetic nervous system involvement” could be self-
sustaining, and unless interrupted, could lead to the initiation
and perpetuation of active MTrPs. For multiple reasons,
including those discussed in the next section, the integrated
hypothesis is no longer considered well-supported by the
existing literature.
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The Neurogenic Hypothesis
Theoretical and clinical limitations related to the integrated
hypothesis led to the development of the Neurogenic Hypothesis
in 2010 (63). Srbely also published a second paper (62)
contrasting the Neurogenic Hypothesis with the Integrated
Hypothesis as it relates to MPS. Srbely noted that MTrPs are
linked to non-musculoskeletal conditions and exist in the absence
of precipitating mechanical injury. This includes urogenital
syndromes (64), and a documented case of herpes zoster infection
in which the MTrP resolved following antibiotic therapy (65).
Additionally, infectious, psychogenic, and endocrine causes have
been attributed to MTrP formation (66), which cannot be
adequately explained by the persistent release of acetylcholine
or increased motor endplate activity that follows mechanical
injury. He hypothesized that MTrPs are neurogenic expressions
of central sensitization, potentially evoked and maintained by
an underlying primary pathology (e.g., osteoarthritis or visceral
disease) located within the common neurologic segment of the
MTrP. The local, anatomic, and physiologic changes observed
at MTrP sites, he argued, are due to neurogenic inflammation,
triggered by segmentally linked, central sensitization. Srbely
states that these neurogenic and inflammatorymechanisms could
also account for some of the biochemical changes documented in
MTrPs during interstitial sampling studies, including decreased
pH and increased concentrations of SP (67). The autonomic
effects related to MTrPs, he postulated, may also be attributed
to central sensitization (68). Subsequently, the Neurogenic
Hypothesis expanded the potential causes of MPS to include
pathological non-muscular tissues (e.g., degenerative joints)
and visceral structures owing to the anatomic convergence of
sensory pathways in the dorsal horn. The importance of chronic
primary pathologies in driving this pathophysiologic process
highlights the need to understand the mechanisms and origins of
potential nociceptive sources that contribute to the maintenance
of an ongoing state of central sensitization. Although the
Neurogenic Hypothesis integrates well-established physiologic
mechanisms (central sensitization and neurogenic inflammation)
to characterize the pathophysiology of chronic inflammatory
muscle disease, it currently lacks sufficient supporting evidence
in human models.

The Neuro-Fasciagenic Model of Somatic

Dysfunction
Fascia has also been implicated in the formation andmaintenance
of chronic pain states. For example, Tozzi, in 2014 published
an article describing the structural, functional, and neurological
properties of fascia arguing that a purely fascial-based rationale
could be developed to explain the palpable features (tissue
texture changes, asymmetry, restriction of motion, and
tenderness) associated with somatic dysfunction (69). He
reviewed the existing literature describing over 50 fascial-based
factors including neuromuscular, structural, mechanical, fluid,
electromagnetic and hormonal influences that may combine
“through various types of interactions” to create somatic
dysfunction. This manuscript highlighted the considerable body
of research which suggests that fascia may be involved in the

development of somatic dysfunction and chronic pain states.
However, the specific mechanism by which fascia contributes to
the creation of an ongoing nociceptive source, was not described
by Tozzi.

INTERSTITIAL INFLAMMATORY STASIS

HYPOTHESIS

Somatosympathetic Reflexes
For our IIS hypothesis it is important to recognize the
role the sympathetic nervous system (SNS) plays in the
generation andmaintenance of chronic pain states and idiopathic
visceral/vascular dysfunction. Stimulation of A delta and
C small fiber, unmyelinated nociceptors from virtually all
tissue types, reach lamina I and deep into the dorsal horn
where they can produce varying degrees of pre and post-
ganglionic sympathetic responses termed somato-sympathetic
and/or visceral-sympathetic reflexes (70). Activation of these
reflexes results in the release of NE from postganglionic
neurons, which generally elicits peripheral vasoconstriction
responses (23), which have been shown to reduce local muscle
blood flow (perfusion) by up to 25% (24). These reflexes are
the neurological link between peripheral nociceptors and the
SNS, and involve segmental, medullary, and/or supramedullary
structures (70–72). Experimental evidence supporting SNS
involvement in chronic pain states includes reduced muscle
perfusion demonstrated in chronic myalgia patients (14), and
decreased (improved) spontaneous electromyographic activity
recorded from MTrPs, after local injection of a sympathetic
antagonist (15). Additionally, the electrical activity in a MTrP
locus was shown to increase after emotional stress and was
also successfully abolished following local, alpha-adrenergic
blockade (16).

It is known that muscle tissue receives both vasoconstrictive
and vasodilatory innervation; however, neurogenic vasodilation
has not been demonstrated in resting human muscle tissue [for
review see (7, 73)]. Therefore, following nociceptor stimulation
and NE exposure (from somato/visceral-sympathetic reflex
activity), peripheral vasoconstriction will override the effects
of any local vasodilatory neuropeptides (e.g., from neurogenic
inflammation). The resultant sympathetic nerve activation (SNA)
may lead to disturbances in arterial and venous microcirculation
which have been documented in myalgia patients (74, 75) with
observed morphological changes including swollen endothelial
cells and the local destruction of myofilaments (76). These
microcirculatory disturbances have also been identified in MPS
patients, within the MTrP locus (77) and are specifically
characterized by local muscle hypoxia and reduced washout
of inflammatory substances (7). Additional confirmation of
vasoconstriction at active MTrP sites was documented utilizing
diagnostic ultrasound to analyze the vascular environment
surrounding MTrPs. The study concluded that active MTrPs
have a constricted vascular bed including an enlarged overall
vascular volume indicating venous stasis (20). In this state of
impaired venous return, peripheral pro-inflammatory cytokine
concentrations can reach the threshold necessary to further
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stimulate local, chemosensitive nociceptors, establishing a
vicious feed-forward cycle which facilitates MTrP formation
via nociceptor/DRG sensitization, and continued activation
of somato-sympathetic reflexes. The mechanism described is
a reflexive, segmental phenomenon that does not require
supraspinal sympathetic activation and can act as a primary factor
in the development of IIS.

In addition to local SNA from somato/visceral-sympathetic
reflexes, psychological considerations are also critical to the
development of an accurate and comprehensive pain model
(Figure 2) as chronic stress may lead to increased peripheral
inflammation and NE production. Transient activation of the
hypothalamus-pituitary-adrenal axis (HPA) is the body’s normal
response to an acutely stressful or traumatic event. However,
a chronic trauma/stress related disorder like post-traumatic
stress disorder is associated with dysregulation of the HPA
with resultant elevations of plasma NE (78), cerebral spinal
fluid IL-6 levels (79), and cerebral spinal fluid substance P
levels (80). The additional long term physiological effects of
chronic stress include decreased cortisol production with a
subsequent elevation of plasma IL-6 levels (81, 82), which may
increase the risk of developing cardiovascular disease and or
autoimmune disorders (83–85). Elevated levels of IL-6, IL-
17A and a dysregulated HPA have also been observed in
fibromyalgia patients demonstrating additional overlap between
chronic pain states and idiopathic organ/endocrine dysfunction
(11, 86). Taken together, these findings highlight the potential
contribution of psychological factors in the development of
systemic inflammation. In the context of this manuscript, the
known correlation between chronic pain and post-traumatic
stress disorder may be of significance as elevated levels of IL-6
(inflammation) and NE (vasoconstriction) would create the ideal
interstitial environment for the development of IIS.

Sampling Studies of Chronic Myofascial

Pain Patients
In direct support of the IIS concept, sampling studies of
interstitial fluid have identified catecholamines and various
algesic substances in MPS patients. Microdialysis sampling of
interstitial fluid in the locus of active MTrPs has demonstrated
lower pH levels and elevated levels of inflammatory mediators
including bradykinin, substance P, TNF-a, IL-1b, IL-6,
interleukin-8, serotonin, andNEwhen compared to latentMTrPs
and/or controls (12). Elevated NE levels are direct evidence of
SNA and local vasoconstriction in active MTrPs. With regards
to fibromyalgia, a review of 25 selected studies revealed higher
serum levels of IL-6 vs. controls (11). Neuropeptides have also
been identified in cerebrospinal fluid (CSF) in response to
noxious stimuli. For example, elevated levels of substance P were
observed within the CSF of fibromyalgia patients (87) at levels up
to three-times greater than healthy controls (88). Additionally,
fibromyalgia patients have been found to have significantly
increased CSF concentrations of NGF (89), interleukin-8 (90)
and intrathecal glutamate (91). Sensitization of the dorsal horn
due to nociceptor activation following IIS can result in glial
cell activation, and subsequent release of pro-inflammatory

mediators in the CSF, mediating the transition from acute local
pain to chronic widespread pain. For example, the potential
contribution of IIS to CSF inflammation specifically offers a
pathophysiological rationale for post-traumatic fibromyalgia
syndrome (92). We emphasize that the theoretical contribution
of IIS to CSF inflammation in fibromyalgia patients does
not preclude additional sources of CNS inflammation in
fibromyalgia including neuroendocrine contributions. The
potential relationship between IIS and elevated levels of NGF
in fibromyalgia patients will also be covered in the subthreshold
endplate potential section to follow.

Newly Identified Interstitial Pre-Lymphatic

Pathways
In 2018 (93), researchers utilizing confocal laser endomicroscopy,
identified previously undescribed interstitial, pre-lymphatic
sinuses or pathways in the dermis, vascular adventitia,
submucosa of the viscera, bronchi, adipose tissue and in all fascial
tissues of the musculoskeletal system. These macroscopically
visible, fluid-filled spaces were confined by thick, well-organized,
collagen bundles and have no previously described anatomical
correlate. It was further described as a “compressible and
distensible” interstitial space in which interstitial fluid or
pre-lymphatic fluid accumulates and flows. Interestingly, the
pathways were primarily associated with tissues involved in
frequent movement such as the musculoskeletal system, lungs,
and/or digestive tract. The peristaltic nature of these tissues
would ostensibly augment the normal movement of interstitial
flow created by the circulatory system. Notably, the authors
stated that these pre-lymphatic pathways would have important
implications in tissue function and pathology including
edema, metastasis, disease, and fibrosis. They cited specific
examples of impaired interstitial flow, the pathophysiology of
which could be explained by occlusion of these pre-lymphatic
channels including, characteristic duct edema present in
acute bile duct obstruction, and the enlarged extracellular
spaces noted in keloid scarring (94). With regards to our
hypothesis, if lymphatic pathways are impeded by scarring
or tissue contraction (discussed in sections to follow), areas
inflammatory stasis, may be created capable of continuously
stimulating chemosensitive nociceptors (e.g., visceral, vascular,
musculoskeletal), and thus act as an ongoing nociceptive source
to the CNS.

The Lymphatic Pump (Intrinsic) Mechanism

and Interstitial Inflammatory Stasis
In the lymphatic system, pre-lymphatic channels connect to
initial lymphatics vessels which are composed of a thin layer
of endothelial cells, although completely lack muscle cells
(95). They are physically tethered to the surrounding tissue
structure through anchoring filaments (96) thus can be impacted
by tensions in the surrounding extracellular compartment.
More proximally, lymph fluid empties into collecting lymphatic
vessels which contain smooth muscle cells and contain
unidirectional valves to prevent retrograde flow. The primary
mechanism of lymphatic propulsion is provided by lymphangions
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which are the specialized, contractile segments of lymphatic
collecting vessels. Therefore, lymphatic fluid is independently
and actively driven by rhythmic, phasic, heart-like contractions
of successive lymphangions (defined as the muscle segment
between successive valves) eventually emptying into the venous
circulation (97). Lymphatic vessels are critically modulated by
fluid pressure and inflammatory mediators. As such, lymphatic
vessels act to resolve the inflammatory process by increasing
lymphangion contractile frequency in response to inflammation
(98). This lymphatic, homeostatic, clearing mechanism, has
been demonstrated in response to multiple inflammatory
mediators including substance P, CGRP, neuropeptide Y,
vasoactive intestinal polypeptide, prostaglandins, IL-1b and
TNF-a (99–101).

Despite the action of this intrinsic anti-inflammatory
mechanism, pathophysiological disruption of normal lymphatic
propulsion is known to occur, leading to excess inflammation
in the extracellular compartment. For example, lymphatic
dysfunction has been identified in human patients suffering from
inflammatory bowel disease (e.g., Crohn’s and ulcerative colitis)
as evidenced by lymphatic vessel obstruction, dilation, and
submucosal edema (21). Notably, surgical resection of diseased
areas, returns the morphological appearance of lymphatic vessels
to normal supporting the concept of a functional lymphatic
disturbance (102). Recent research has shed light on this
phenomenon as it is now known that specific cytokines, namely
IL-1b, IL-6 and TNF-a, can actually disable the normal lymphatic
pump mechanism during acute inflammatory events, creating
a “dramatic, rapid reduction in lymphatic propulsive flow
and frequency (22).” This may occur to prevent the spread
of infectious and/or inflammatory agents beyond the region
needed for a localized immune response; however, it results
in lymphatic stasis. The importance of this research to our
IIS hypothesis will become apparent in the following sections
as these specific cytokines, trapped in the interstitium, may
facilitate the transition from acute to chronic pain by long-term
impairment of the local lymphatic pump mechanism.

Fascial Contractility
The Foundation of Osteopathic Research and Clinical
Endorsement or FORCE group has recently written several
articles intended to develop a modern definition of fascia.
“The fascia is any tissue that contains features capable of
responding to mechanical stimuli. The fascial continuum is the
result of the evolution of the perfect synergy among different
tissues, liquids, and solids, capable of supporting, dividing,
penetrating, feeding, and connecting all the districts of the
body: epidermis, dermis, fat, blood, lymph, blood and lymphatic
vessels, the tissue covering the nervous filaments (endoneurium,
perineurium, epineurium), voluntary striated muscle fibers and
the tissue covering and permeating it (epimysium, perimysium,
endomysium), ligaments, tendons, aponeurosis, cartilage, bones,
meninges, involuntary striated musculature and involuntary
smooth muscle (all viscera derived from the mesoderm)” (103).
Fascia is composed of cells including macrophages and mast
cells (104); however, its foundational cell is the fibroblast which
is the principal cell responsible for production of the ECM. As

cited previously, virtually all fascial tissues (viscera, ligaments,
nerves, disc tissue etc.) contain unmyelinated nociceptors,
and thus have the potential to become primary nociceptive
sources. Cytokines, including the IL-6, TGF-β1, and IL-1β
have a significant impact on fibroblasts, stimulating them to
differentiate into myofibroblasts, a contractile form expressing
α-smooth muscle actin. These contractile cells are associated
with pathological conditions including palmar fibromatosis
and hypertrophic scarring (105). Importantly, myofibroblasts
have also been identified in normal, non-pathological tissues
including the fascia cruris (106), ligaments (107), tendons (108),
bronchial connective tissues (109), organ capsules (110), and
several other collagenous connective tissues (111). Following
inflammatory exposure, myofibroblasts are known to secrete
additional cytokines including TGF-β1, IL-1β, etc. which may
increase the rate of ECM synthesis, creating fibrosis (112).
The production of the cytokine TGF-β1 by fibroblasts takes on
additional clinical significance as normal (non-pathological)
fascia samples were recently demonstrated to contract following
TGF-β1 exposure. Both rat and human samples of the lumbar
fascia, plantar fascia, and sections of the fascia lata were analyzed
and found to contain significant numbers of myofibroblasts.
Following application of TGF-β1 to the lumbar fascia, tissue
contractions were measured and calculated to be at an estimated
force of 2.63N (113). The potential clinical impact of this
contraction is below the threshold for mechanical spinal
stability; however, is above the threshold for mechanosensory
stimulation impacting gamma motor neuron activity and
therefore musculoskeletal function (114). Adding additional
support to this concept, Schleip found a strong positive
correlation between myofibroblast cell density and contractile
response, with a generalized increase in myofibroblast density in
perimysial tissues (where most spindle capsules are embedded)
(113). This corresponds with previous research demonstrating
perimysial changes in myofascial pathologies (115) and supports
the hypothesis of Stecco et. al. that MPS could be influenced
by abnormal perimysial fascial stiffness (116). Important to
our hypothesis, the fascia-myofibroblast contractile responses
measured following TGF-b1 expression may be capable of
partially or fully occluding pre-lymphatic flow through initial
lymphatic vessels and/or “compressible” interstitial pathways
as described previously by Benias et al. (93). This process may
act as an independent, purely fascial-based mechanism, capable
of disrupting interstitial lymphatic drainage, creating localized
regions of IIS.

Inflammatory Stasis and Fibrosis
Fibrosis or scar tissue formation is defined as thickening of
the ECM that is preceded by inflammation or physical tissue
injury. Since the same pro-inflammatory cytokines (IL-6, TGF-
β1 etc.) involved in our proposed interstitial stasis model are
also the exact cytokines described in the process of excessive,
non-physiological scar tissue formation (fibrosis), it is plausible
there is a shared pathophysiology. Increased ECM synthesis
by fibroblasts in response to inflammation is known to cause
fibrosis but may also cause the formation of fibrotic clusters
called fibrotic foci (117) which are associated with idiopathic
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lung fibrosis. The overproduction of collagen I bymyofibroblasts,
severely impairs regional tissue architecture and is considered
the key component in all types of organ fibrosis (118). In fact,
a similar mechanism (to our described hypothesis) has been
previously observed in the scarring process citing excessive
neuroinflammatory stimuli, prolonged production of growth
factor TGF-b1 and overproduction of the ECM (119–121). Since
chronic inflammation is the driving force behind myofibroblast
proliferation, interruption of the inflammatory process can
resolve the fibrotic process (118). For example, viral clearance
by interferon, prevents associated liver fibrosis in viral hepatitis
patients. Unfortunately, many forms of fibrosis following injury
and/or infection are idiopathic (e.g., idiopathic pulmonary
fibrosis and/or kidney fibrosis) and intractable as the source of
chronic inflammation is unknown. Recognition and resolution
of the feed forward, multi-tissue, hypothetical IIS mechanism we
describe, by manipulative or pharmacological interventions, may
help resolve the symptoms associated with non-physiological
scarring and potentially interrupt the process of idiopathic
organ fibrosis.

The Role of Inflammatory Interstitial Stasis

in the Generation of Subthreshold

Potentials
Subthreshold action potentials (SAPs) generated from areas of
IIS may also play a significant role in the process of central
sensitization, chronic pain, and the development of latent
MTrPs. Pro-inflammatory cytokines (including IL-1b and TNF-
a), released in response to tissue stressors and/or immune
responses, strongly induce nerve growth factor (NGF) synthesis
(122). NGF receptor activation and signaling alters nociception
via direct nociceptor sensitization at the site of injury and
can change gene expression in the DRG, which collectively
increases nociceptive signaling from the periphery to the CNS
(123). Considering that NGF production is related to peripheral
cytokine exposure, NGF production would logically be more
likely to occur in zones of IIS. Elevated pro-inflammatory
cytokines concentrations would induce NFG production in
dorsal horn glial cells, creating SAPs (124). This may have clinical
significance as elevated levels of NGF have been identified in
the CSF of fibromyalgia patients (89). Therefore, latent MTrPs
may be clinical manifestations of sub threshold pro-inflammatory
cytokine concentrations in areas of IIS. Although latent MTrPs
are not associated with spontaneous pain, they can cause local
and even referred pain upon deep palpation. Mense hypothesized
that latent MTrPs send nociceptive, subthreshold signals toward
the dorsal horn of the spinal cord (125), which would effectively
cause central sensitization without the perception of pain. He
emphasized that latent MTrPs may be of particular importance
in chronic myalgia as pathological changes in muscle tissue are
typically associated with subthreshold input and low frequency
activation of nociceptors (125).

To summarize, latentMTrPsmay be related to SAPs generated
in response to low level pro-inflammatory cytokine exposure in
lesser areas of IIS. These nociceptive signals could both initiate
and/or maintain central sensitization. The involved tissues and

neuromeric fields would logically be prone to injury and or may
become symptomatic (suprathreshold) following any additional
trauma and/or inflammatory insult.

Hypothesis Summary (Interstitial

Inflammatory Stasis)
Based on the research presented, a novel lymphatic and
fascial-based hypothetical mechanism can be described, having
major implications in chronic pain states and idiopathic organ
syndromes. Tissue injury and/or inflammation from immune
responses causes the release of cytokines into neighboring
tissues. This inflammatory reaction triggers fibroblasts to release
additional cytokines including IL-1b, IL-6 and TGF-β1 thereby
exacerbating the local nociceptive and inflammatory processes.
These specific cytokines simultaneously disable the local,
lymphatic pump mechanism. If interstitial concentrations of IL-
1b, IL-6 and or TNF-a reach the threshold necessary to cause
significant, local expression of TGFb-1, lymphatic propulsion
may become impaired due to fascial (myofibroblast) contraction
and or vessel fibrosis. These specific algogenic cytokines,
now trapped locally in the interstitium, may continuously
stimulate chemosensitive nociceptors and facilitate the transition
from acute to chronic pain by long-term impairment of the
local lymphatic pump mechanism. This is despite eventual
recovery of the systemic lymphatic pump. The resultant cytokine
exposure will also activate local somato/visceral-sympathetic
reflexes, impairing regional vascular perfusion. Therefore, this
hypothetical, pathophysiological hemodynamic process is due
to a combination of impaired vascular perfusion and long-term
disruption of the local lymphatic pump mechanism. The areas
of interstitial stasis generated may exist in any one of the newly
identified musculoskeletal, visceral, adventitial and/or dermal
interstitial pathways. The resultant stasis and elevated interstitial
cytokine concentrations may create a feed-forward nociceptive
loop, which results in continuous stimulation of musculoskeletal
and or non-musculoskeletal nociceptors, maintaining the
process. The hypothesis is not selectively dependent on pathology
and or any specific source of inflammation, as multiple tissue
nociceptors are capable of initiating and maintaining IIS.

Applying the IIS hypothesis to musculoskeletal pain research,
the cytokines (IL-1b, IL-6, TNF-a) shown to disable the lymphatic
pump mechanism are the exact cytokines found to be primarily
involved in the perception of pain (24), fascial contraction
following TGF-b1 production (22, 105), and were also among
those elevated in active MTrP sampling studies (11, 12).
Additional experimental support for the IIS hypothesis is the
fact that long-term, impaired lymphatic drainage was recently
identified in the pathogenesis of lymphedema. Histological
examination of lymphatic vessels in 29 secondary lymphedema
patients demonstrated “contracted-type” and “sclerotic-type”
collecting vessels in areas of lymphatic stasis. These vessels
were found to have occluded lumens causing impairment of the
normal lymphatic-pumpmechanism.Most significantly, many of
the contractile cells responsible for impairing lymphatic drainage
were identified as myofibroblasts, not vascular smooth muscle
cells, and were characterized by increased ECM synthesis (126).
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Also in support of the IIS hypothesis is a finding of Asano et al.
who demonstrated increased levels of inflammatory cytokines,
namely TNF-a and IL-1b, in the walls of dysfunctional lymphatic
collecting vessels (127). This lead Carthy to suggest that the
transformation into myofibroblasts may have been triggered by
local inflammation (128). Considered collectively, these recent
research findings from the field of lymphedema, lend support to
the hypothesis that ongoing impairment of the normal lymphatic
pump mechanism (IIS) being involved in the generation and
maintenance of chronic pain states.

Using irritable bowel syndrome as a non-musculoskeletal
example, compelling evidence exists that increased inflammation
in the enteric mucosa or neural plexuses may initiate the
development of IBS-like symptoms (129). In a recent
study of acute gastroenteritis infection patients, 23% were
found to develop IBS-like symptoms within 3 months after
infection. Altered gut physiology including evidence of chronic
inflammation was still present at 3 months in both the
symptomatic and asymptomatic groups, implicating post-
infectious peripheral inflammation as a contributing factor.
When the symptomatic and asymptomatic patients were
compared based on psychosocial factors, elevated stress profiles
(potentially, HPA dysregulation) were strongly associated
with those who would eventually develop IBS-like symptoms
(13). In this example, elevated sympathetic drive from stress
would feed into the peripheral stasis mechanism we describe.
As the associated elevation in NE and IL-6 levels (related to
chronic stress) may induce vasoconstriction, reduce lymphatic
propulsion, increase fibroblast to myofibroblast differentiation
and create nociception. This emphasizes the fact that both
peripheral and central factors must be considered in idiopathic
pain states.

Based on the findings presented, we propose the following
feed-forward pathophysiological hypothesis for MPS, and
certain idiopathic visceral/vascular conditions. Figure 1 is a
simplified view of our IIS hypothesis including only biochemical,
sympathetic, fascial, and lymphatic influences. Figure 2 is a
comprehensive pain model detailing multiple factors (including
those described in Figure 1) related to the development of IIS and
the subsequent pathophysiological outcomes.

DISCUSSION

Our proposed hypothesis expands existing pain models by
highlighting the mechanisms by which IIS may be initiated
and act as an ongoing peripheral nociceptive source. Via
this mechanism, fascial, visceral, vascular and or neural pre-
lymphatic pathways may entrap inflammatory mediators, which
would continually stimulate local nociceptors, contributing to
central sensitization, chronic pain, and sympathetic activation.
Importantly, algesic substances trapped in the interstitium
(not blood stream), have the potential to create a state
of recalcitrant, non-healing pain, that may be resistant to
pharmacological intervention.

As Figure 2 demonstrates, the precipitating factors and
pathophysiological mechanisms behind each patient’s symptoms
are unique and may often occur in combination within the
same neuromeric field. Therefore, the neurological concepts
of temporal and spatial summation would have important
implications in the proposed model as pain can be initiated
by a single repeated stimulus over time (temporal summation)
or by multiple different pain generating mechanisms converging
onto the dorsal horn (spatial summation). Even in cases of
known pathology, patients may be asymptomatic (e.g., the single
nociceptive source fails to override the inhibitory pain system)
or may become asymptomatic following successful treatment
of convergent, non-pathological, nociceptive sources. Therefore,
assessment and treatment of all potential pain-producing tissues
and mechanisms, as suggested by the proposed model, improves
the likelihood of a patient reaching the goal of pain free function.
Additionally, an argument could also be made for the treatment
of latent MTrPs which would reduce central sensitization related
to SAPs, helping to maintain pain-free function.

As stated previously, the proposed model is not exclusive
to peripherally generated chronic pain as IIS may also offer
a physiological rationale for idiopathic visceral and vascular
dysfunction. Neurovascular bundles from all spinal segments
also innervate vertebral and spinal cord vessels, making
them capable of inducing spinal vasospasm by activating
SNA (130, 131). Vasoconstriction of spinal arteries and veins
may contribute to the pathophysiology of common disorders
including radiculopathies, myopathies, idiopathic neuropathies,
degenerative disc disease and/or degenerative joint disease.
Theoretically, SAPs (produced by NGF) may also induce
segmentally linked vasoconstriction following sympathetic
activation which could serve as a possible explanation for the
high incidence of spinal degenerative changes in asymptomatic
individuals (over 73% of subjects tested) (132, 133). Specifically,
subthreshold nociceptive signals generated by IIS could create
vasoconstriction of segmental arteries that supply the vertebrae,
leading to asymptomatic or silent spinal degeneration over time.

Persistent nociceptive input from IIS may also directly
impact cranial tissues innervated by the spinal trigeminal
nucleus which receives afferent input from the upper 3 cervical
segments. In support of this concept, nociceptive inputs into the
spinal trigeminal nucleus, including those produced by MTrPs,
have been implicated in tension-type headache (19) and may
logically, via SNA, contribute to other idiopathic cranial disorders
including post-concussion syndrome. Additionally, second order
nociceptive neurons projecting to higher centers through
the dorsal column, can activate the “brain-gut axis” which
links the autonomic nervous system to the neuroendocrine,
immune, and enteric nervous systems (134). This could
interfere with the normal efferent innervation of the viscera
causing abnormal hormonal secretion and/or disruption of
gastrointestinal motility (17). Collectively, these findings suggest
that alleviating ongoing nociceptive sources related to interstitial
stasis may be able to resolve the underlying pathophysiological
mechanism responsible for idiopathic spinal, digestive, endocrine
and cranial disorders.
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Potential Non-pharmacological

Interventions (Related to the Proposed

Model)
The need for effective non-pharmacological interventions for
pain is increasing with efforts to reduce opioid addiction.
One promising intervention purported to deactivate nociceptors
and alleviate tissue inflammation is Counterstrain (previously
called Strain and Counterstrain) (135). Counterstrain utilizes
cutaneous TPs/MTrPs to diagnose and treat MPS and idiopathic
conditions. Once a TP is located, the body is gently placed
into specific positions of ease that have been clinically identified
to alleviate TP tension and tenderness. Tissue decompression
(through positioning or local tissue manipulation) is believed to
silence activated nociceptors, reducing the afferent barrage to the
dorsal horn. Reduced nociception, deactivates segmental muscle
guarding reflexes, reducing myofascial tension and capillary
pressure. The treatment position is thenmaintained for up to 90 s
to allow regional inflammation (interstitial pro-inflammatory
cytokines) to gradually dissipate. Based on our hypothetical
model, the associated reduction in interstitial NE concentrations
during the release would also deactivate somato/visceral-
sympathetic reflexes, helping to restore arterial and venous
perfusion. Simultaneous reductions in IL-1b, IL-6 and TGF-
b1 concentrations would normalize lymphatic propulsion
and reduce myofibroblast (facial) contraction blocking pre-
lymphatic pathways.

The impact of Counterstrain on inflammation has been
investigated at the cellular level, demonstrating improvements
in tissue morphology. Researchers repetitively strained human
fibroblasts for 8 h in a two-dimensional tissue matrix while
measuring the effects on fibroblasts, including cytokine
production. A 60-second Counterstrain (or indirect osteopathic
manipulative treatment) was then applied which produced
beneficial effects on fibroblast morphology, reversing the
inflammatory effects (46% reduction in fibroblast IL-6
production after 24 h) when compared to control (136).
Recently Counterstrain has been renamed Fascial Counterstrain
and expanded to include over 800 anatomically named
structures, treatments, and diagnostic TPs. This pain-free,
non-invasive treatment warrants further investigation as it may
have the capacity to alleviate microvascular stasis in all tissues,
breaking the feed-forward cycle that creates myofascial pain and
potentially idiopathic visceral/vascular syndromes.

Acupuncture, unlike Counterstrain, does not directly target
peripheral inflammation (IIS) but is purported to work by
dampening nociceptive input to the dorsal horn. Melzack and
Wall’s gate theory (137) proposes that the superficial dorsal
horn of the spinal cord can be excited or opened by nociceptors
and closed by stimulation of large A-beta nerve fibers. Since
electroacupuncture is known to stimulate A-beta fibers (138)
it is presumed that acupuncture works by activating this
pain-gating mechanism. Alternatively, manual acupuncture is
known to stimulate A-delta fibers (139) that synapse directly
with inhibitory interneurons within the dorsal horn and can
inhibit central pain transmission through enkephalin-dependent
mechanisms (140). Recent studies of a similar intervention,

termed dry needling, have demonstrated antinociceptive effects
when treatments were targeted segmentally to discrete MTrP
locations as compared to non-MTrP sites (141, 142). Dry
needling may also be effective in reducing nociception generated
by IIS.

Although the underlying mechanisms driving these
interventions remain unclear, it is likely that local and
segmentally targeted therapies will be of value in the treatment
of chronic pain states generated peripherally by IIS.

Experimental Validation of the Proposed

Model
A central tenet to this hypothesis is the development of a
functional disturbance in the lymphatic pump mechanism.
The current gold standard for quantifying lymphatic flow
includes lymphangiography and lymphoscintigraphy, which have
been previously employed to investigate disturbances in the
lymphatic pump mechanism including blockage of lymphatic
flow (143). More recent technologies, including near-infrared
fluorescent optical imaging and/or transit-time ultrasound
technique, provide real-time quantitative measures of lymphatic
flow which could also be employed to identify functional
lymphatic disturbances in somatic and/or visceral tissues.

Initial cross-sectional studies comparing clinical cohorts to
healthy controls may also be useful in highlighting differences in
lymphatic propulsion in support of our hypothesized reduction
in lymphatic flow in chronic MPS. We would expect to
observe decreased lymphatic flow localized within the region
of hyperirritable MTrPs, in contrast to normal tissue. The
role of fascial contractures in this mechanism may be further
studied by examining for evidence of fibroblast activation
biopsied from muscle tissue of fibromyalgia patients (specifically
in tissues found to have lowered pain-pressure thresholds).
This includes excess TGF-β1 expression, elevated levels of
inflammatory mediators, increased myofibroblast concentrations
and/or evidence of excess ECM secretion.

These human studies could be followed by controlled
animal injury studies to investigate the causal relationships
between cytokine accumulation and altered lymphatic flow.
Previous animal models have been developed to assess the
effect of lipopolysaccharide (LPS) induced production of TNF-
a, IL-6 and IL-b (144). These could be used to assess
lymphatic stasis utilizing near-infrared fluorescent optical
imaging. Immunohistochemistry can be employed to detect
TGF-b1 expression (145), which would introduce the potential
for fascial contraction and/or fibrosis related to the production
of the specific cytokines theoretically associated with IIS.
Histological analyses of the fascial tissues could be performed to
confirm the presence of fibrotic changes and fascial contractions.
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Intractable neuropathic pain is a frequent consequence of nerve injury or disease.

When peripheral nerves are injured, damaged axons undergo Wallerian degeneration.

Schwann cells, mast cells, fibroblasts, keratinocytes and epithelial cells are activated

leading to the generation of an “inflammatory soup” containing cytokines, chemokines

and growth factors. These primary mediators sensitize sensory nerve endings,

attract macrophages, neutrophils and lymphocytes, alter gene expression, promote

post-translational modification of proteins, and alter ion channel function in primary

afferent neurons. This leads to increased excitability and spontaneous activity and

the generation of secondary mediators including colony stimulating factor 1 (CSF-1),

chemokine C-Cmotif ligand 21 (CCL-21), Wnt3a, andWnt5a. Release of thesemediators

from primary afferent neurons alters the properties of spinal microglial cells causing them

to release tertiary mediators, in many situations via ATP-dependent mechanisms. Tertiary

mediators such as BDNF, tumor necrosis factor α (TNF-α), interleukin 1β (IL-1β), and

other Wnt ligands facilitate the generation and transmission of nociceptive information

by increasing excitatory glutamatergic transmission and attenuating inhibitory GABA and

glycinergic transmission in the spinal dorsal horn. This review focusses on activation of

microglia by secondary mediators, release of tertiary mediators from microglia and a

description of their actions in the spinal dorsal horn. Attention is drawn to the substantial

differences in the precise roles of various mediators in males compared to females.

At least 25 different mediators have been identified but the similarity of their actions

at sensory nerve endings, in the dorsal root ganglia and in the spinal cord means

there is considerable redundancy in the available mechanisms. Despite this, behavioral

studies show that interruption of the actions of any single mediator can relieve signs of

pain in experimental animals. We draw attention this paradox. It is difficult to explain

how inactivation of one mediator can relieve pain when so many parallel pathways

are available.

Keywords: central sensitization, dorsal horn, nerve injury, neuropathy, cytokine, chemokine, growth factor,

synaptic transmission
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INTRODUCTION

This review outlines aspects of the etiology of neuropathic pain
at both the spinal and peripheral level. A variety of chemical
mediators effect communication between the various cell types
involved in the generation of pathological pain. We focus on
mediators that affect spinal microglia, mediators released from
microglia and their actions on their target cell types.

Peripheral nerve trauma, post herpetic neuralgia, spinal
cord injury, traumatic brain injury, stroke and neuropathies
associated with chemotherapy, diabetes or HIV infection can
give rise to intractable neuropathic pain (1–13). Neuropathic
components also contribute to pain associated with COVID-
19, multiple sclerosis, fibromyalgia, migraine, osteoarthritis,
rheumatoid arthritis, autoimmune disease, and complex regional
pain syndromes (14–23). Although the signs and symptoms of
neuropathic pain are similar in males and females, it is now
well-established that the underlying cellular mechanisms are
very different (24–33). Unlike nociceptive pain, which signals
and protects an individual from tissue injury, neuropathic pain
persists long after tissue healing and recovery has taken place
(2). It is therefore maladaptive and serves no obvious biological
purpose (5, 34, 35).

Many of the investigations into the etiology of neuropathic
pain involve controlled, traumatic perturbations leading to
defined and reproducible injuries to the spinal cord or peripheral
nerves. Surgical, chemical or genetically-induced lesions to
rodent peripheral neurons are followed by in vivo or ex vivo
investigations of the properties of primary afferent, spinal or
supra-spinal neurons. These are correlated with behavioral
studies that seek to assess pain intensity by indices such as
thermal or mechanical allodynia and hyperalgesia (36–40).
Improvements in behavioral approaches within the last 15
years have focused on assessing pain in terms of its accepted
definition as “An unpleasant sensory and emotional experience
associated with, or resembling that associated with, actual or
potential tissue damage,” (41). Thus, contemporary operant
models seek to provide quantification of pain per se as opposed
to nociception (39). For example, rodents may be required to
make a conscious choice between being in a pain-inducing
environment and an otherwise undesirable environment such as
a brightly illuminated space (4, 42–44). The time spent in the
undesirable environment gives an index of the pain the animal is
experiencing. A complementary approach to pain quantification
involves assessment of behaviors such as social interaction, nest-
building, ultrasonic vocalization, burrowing behavior and “facial
grimace score” (45–47).

Regardless of the methodology used to assess the behavioral
consequences of peripheral nerve injury, it is generally
accepted that;

1. Peripheral nerve injury promotes Wallerian degeneration of
severed axons, macrophage, neutrophil and T-lymphocyte
invasion, Schwann cell, fibroblast, mast cell, and epithelial
cell activation and the generation of an “inflammatory soup”
containing primarymediators such as chemokines, cytokines,

Wnt ligands, neuropeptides, and growth factors (see Table 1
and Figure 1).

2. Primary mediators sensitize sensory nerve endings, attract
additional macrophages and lymphocytes, alter gene
expression, promote post-translational modification of
proteins, and alter ion channel function in primary afferent
neurons. This leads to increased excitability, spontaneous
activity and the generation of secondary mediators (see
Table 2 and Figure 1).

3. Secondary mediators such as colony stimulating factor 1
(CSF-1), chemokine (C-C motif) ligand 21 (CCL21), and
wingless-type mammary tumor virus integration site family,
member 5A (Wnt5a) are released from primary afferent
terminals in the spinal dorsal horn. They affect the properties
of spinal microglial cells causing them to release tertiary
mediators. In this way, spinal microglia can detect and
respond to peripheral nerve injury.

4. Microglial-derived tertiary mediators such as BDNF, TNF-
α, and IL-1β (Brain derived neurotrophic factor, tumor
necrosis factor alpha, and interleukin-1β) increase excitatory
transmission and attenuate inhibitory synaptic transmission
in the superficial dorsal horn (see Table 3 and Figure 1).

5. This and other aspects of synaptic plasticity facilitate
the transfer of nociceptive information and promote
misprocessing of sensory information leading to central
sensitization at both the spinal and supra-spinal level.

6. Although it was once believed that altered microglial function
was transient and confined to the onset phase of neuropathic
pain, newer data implicates sustained alteration of microglial
function in its long term maintenance. This is associated with
long-term changes in astrocyte function.

7. Cell type involvement is sex dependent. Whereas, microglia
play a predominant role in central sensitization in males,
this is effected by macrophages and T-lymphocytes
in females.

8. In addition to release of mediators, recent evidence suggests
that cell to cell communication may be affected by the transfer
of materials such as microRNA’s in secreted extracellular
vesicles or exosomes.

Each of these steps will be discussed below with special emphasis
on the actions of secondary mediators on microglial activity
and the release and actions of tertiary mediators in the spinal
dorsal horn (Figure 1). Cytokine/chemokine/growth factor/glial
cell interactions are also involved in modulation of sensory
information in supraspinal structures following peripheral nerve
injury. This includes the mesolimbic system (185) thalamus,
sensory cortex, and amygdala (186–188). Interestingly, microglial
activation appears on the contralateral side following nerve injury
thus reflecting the projections of ascending tracts. Activation
is not seen in areas which are not involved in pain processing
such as the motor cortex (186). This implies that microglial
activation in higher centers is not simply the result of diffusion
of messengers via the cerebrospinal fluid (CSF). The present
review will however focus on microglia activity within the spinal
dorsal horn.
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TABLE 1 | Primary mediators from site of nerve injury.

Primary mediator Generated and/or released by

injured peripheral tissue

Mimicking neuropathic pain

in vivo

Alleviation of neuropathic

pain in knockouts or by

antagonists etc. in vivo

Demonstrated effect on

dorsal root ganglion neurons

IL-1β (48–54) (55, 56) (48, 57–60) (61–65)

IL-15 (66) (67)*

IL-17 (68, 69) (21, 70) (21, 71, 72) (21)

IL-18 (73)

LIF (74, 75) (75) (76–78)†

(79)††

TNF-α or β (48, 50, 51, 54, 80–82) (48, 54, 55, 80, 83) (48, 52, 83–87) (83, 88–92)

Prostaglandins and other

eicosanoids

(54, 93, 94)** (95)*** (96)

(95)***
(94) (97, 98)

(95)***

NGF (99) (100, 101) (99, 100, 102, 103) (101, 104)

Substance P (105, 106) (107) (108, 109) (110–112)

MCP-1/CCL2 (49, 52, 113–116) (116) (52, 116, 117) (116, 118, 119)

CXCL-1 (120, 121) (122–124)

CXCL-4 (125) (123, 125, 126) (125)

Histamine (127) (128) (128–130) (128, 130)

Wnt3a (131–134) (133) (131, 133) (131, 133)

Wnt5a (135)

Released from Site of injury and affect primary afferent neurons.

*Implied from observations on osteoarthritis patients.

**Measured increased cyclo-oxygenase 2 (COX 2) levels.

***This work addresses the actions of the novel eicosanoid 5,6 epoxyeicosatrienoic acid (5,6 EET).
†
These 3 papers show LIF promotes sprouting of perivascular sympathetic axons in DRG.

† †
This paper demonstrated a direct action of LIF on DRG neurons.

NERVE INJURY, WALLERIAN
DEGENERATION, INFLAMMATION AND
GENERATION OF PRIMARY MEDIATORS

Wallerian degeneration of injured peripheral nerves is associated
with neutrophil, macrophage and T-lymphocyte infiltration,
mast cell, endothelial cell, keratinocyte and fibroblast activation
and alteration of Schwann cell properties (2, 54, 68, 80,
98, 189–196). All of these cell types produce and release a
variety of inflammatory mediators and a few anti-inflammatory
agents at the site of injury (2, 190, 197) and Table 1. These
primary mediators include pro-inflammatory agents such as
interleukin 1β (IL-1β) (48–50, 55, 57–59, 141), leukemia
inhibitory factor (LIF) (74–76, 79, 198), interleukin 15 (IL-
15) (66), interleukin 17 (IL-17) (21, 68, 70), interleukin 18
(IL-18) (199) tumor necrosis factor (TNF-α) (48, 51, 80, 83,
85–88, 200–203), monocyte chemoattractant protein 1 (MCP-
1/CCL2) (49, 113–115, 118), chemokine (C-X-C motif) ligand
1 (CXCL1) (120–124) and CXCL4 (125), histamine (127–
130), and the secreted glycoproteins Wnt3a (wingless-type
mammary tumor virus integration site family, member 3A) and
Wnt5a (133, 135). For a more complete list see Moalem and
Tracey (54).

As discussed below, most of these mediators excite peripheral
nerve endings as well as the cell bodies of primary afferent
fibers in the dorsal root ganglion (DRG) (53). Release of pro-
inflammatory primary mediators both at the site of injury and

within the DRG provokes changes in the cell bodies, axons
and peripheral endings of both injured and uninjured primary
afferent axons (141, 204–206).

Satellite glial cells that surround the cell bodies of dorsal
root ganglia (DRG) neurons represent an additional source
of primary inflammatory mediators (2, 78, 142, 207–209). IL-
1β may also be derived from macrophages that invade DRG
after injury (141) as well as from sensory neuron resident
macrophages (210). Peripheral nerve injury causes extensive
satellite glial cell activation (as defined by glial fibrillary acidic
protein [GFAP] immunoreactivity). This is prevented by local
perfusion of TTX or bupivacaine. Na+ channel block also
reduces levels of NGF at a time when activated glia (Schwann
cells) are an important source of NGF. This implicates injury-
induced increased spontaneous activity in primary afferents
in the activation of satellite glial cells (211). This aligns
with the general concept of “neurogenic neuroinflammation”
whereby intense neuronal activity can orchestrate immune cell
activation (212).

In addition to the interactions of inflammatory mediators

with neurons, many of them promote plasma extravasation and

exhibit chemoattractant properties, both of which enable the

recruitment of immunocompetent leucocytes and lymphocytes

to the site of injury (54, 66, 68, 194). As already mentioned, these

myeloid and lymphoid cells themselves release a host of cytokines

and chemokines thereby instigating a positive feedback process in
the initiation of neuroinflammation.
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FIGURE 1 | Sites of action of primary, secondary, and tertiary mediators in signaling of neuropathic pain. Sources of primary mediators include Schwann cells (s),

epithelial cells (e), mast cells (m-c), t-lymphocytes (t-l), macrophages (m), fibroblasts (f), and neutrophils (n).

TABLE 2 | Secondary mediators released from primary afferents.

Secondary mediator Generated and/or released by

DRG neurons

Mimicking neuropathic pain

in vivo

Alleviation of neuropathic

pain in knockouts or by

antagonists etc. in vivo

Demonstrated effect on

microglia

CSF-1 (136–142) (138) (138, 139) (138–140)

(143)*

CCL21 (144–146) (144, 147) (144, 147–149) (144, 148)

Released from primary afferents to affect spinal microglia†.

*This paper provides indirect evidence, CSF-1 releases BDNF from microglia as monitored by increased dorsal horn excitability, some of the effect of CSF-1 on excitability is abrogated

by BDNF binding protein.
†Wnt3a may be released from primary afferent terminals after nerve injury but is thought to signal directly to dorsal horn neurons without the intervention of microglia (134).

Although inflammation is a primary response to tissue injury,
it should be noted that some of the primary mediators associated
with neuropathic pain also serve to initiate neuronal recovery

and repair (213). Thus, production of NGF at the site of nerve
injury (99, 100, 102, 103, 214) may be viewed as both an initiator
of inflammation and an activator of neuronal regeneration and

Frontiers in Pain Research | www.frontiersin.org 4 August 2021 | Volume 2 | Article 698157102

https://www.frontiersin.org/journals/pain-research
https://www.frontiersin.org
https://www.frontiersin.org/journals/pain-research#articles


Boakye et al. Microglia in Neuropathic Pain

TABLE 3 | Tertiary mediators produced by microglia to affect spinal dorsal horn neurons.

Tertiary mediator Generated and/or released by

microglia

Mimicking neuropathic pain

in vivo

Alleviation of neuropathic

pain in knockouts or by

antagonists etc. in vivo

Demonstrated effect on

spinal dorsal horn neurons

BDNF (150, 151) (152–154) (150, 151, 153, 155) (4, 143, 150, 154, 156–165)

IL-1β (166–168) (166, 169)

(55)*
(2, 54, 57–60, 166, 170–174) (175–179)

TNF-α (54, 180) (40, 181) (84, 203, 277, 386). (175, 182–184)

Microglia to spinal dorsal horn neurons.

*These experiments involved injection of IL-1β into peripheral nerve, thus its ability to produce allodynia most likely reflected its peripheral role as a primary mediator.

repair. Moreover, functional recovery after peripheral nerve
injury may depend on the pro-inflammatory cytokines IL-1β and
TNF (48).

The situation with GDNF family ligands such as artemin
is complex, whilst some reports describe its pro-inflammatory
action and possible involvement in neuropathic pain, others
suggest that artemin may be anti-inflammatory and activation of
its receptors provide pain relief (215–219).

Interleukin 4 (IL-4) produced by peripheral nerve injury
has exclusive anti-inflammatory and anti-nociceptive actions
(220). These findings relate to the generalization that both
inflammatory and anti-inflammatory mediators are released by
nerve injury and it is disturbance of the balance between these
two processes that can lead to pain (197).

Downstream Effectors of Mediator Actions
Although receptors for individual cytokines are selective for
their respective ligands, the downstream transduction pathways
often converge, resulting in translocation of transcription factors
to the nucleus and transcription of additional downstream
mediators. Common signaling pathways activated following
cytokine receptor activation include (1) nuclear factor-κB (NF-
κB), (2) the mitogen-activated protein kinases (MAPKs), (3)
the janus kinase (JAK) and signal transducer and activator
of transcription (STAT), and (4) the Smad family signaling
pathways (50, 187).

By contrast, chemokines, histamine and neuropeptides such as
substance P signal via heptahelical G-protein coupled receptors
(221, 222).

At least some of the actions of inflammatory cytokines
involve activation of cyclo-oxygenase 2 (105, 223, 224) and
products such as prostaglandins (93, 94, 167, 180, 225, 226) and
prostacyclin (227).

Wnt ligands (Wnt; wingless-type mammary tumor virus
integration site family) are a family of 19 secreted glycoproteins
that are important and versatile mediators of cell–cell
communication, cell morphology and development. Ligands
signal by the canonical Wnt pathway, the non-canonical planar
cell polarity pathway, and the non-canonical Wnt/calcium
pathway (133, 228). Wnt3a acts through the canonical pathway
which involves β catenin. Wnt5a acts through the non-canonical
β catenin independent planar cell polarity pathway and the
Ryk (134).

The downstream mediators of BDNF activation of TrkB
and NGF activation of TrkA are well-characterized and include
the phosphatidyl inositol-3 (PI3)-kinase (also known as Akt
or protein kinase B), phospholipase C-γ1 and the ras-MAPK
pathway, also known as the extracellular receptor kinase
(ERK) pathway (229). Since ras-MAPK is a mediator of
both neurotrophin and cytokine receptor activation, there is
considerable interest in its potential as a drug target (230–232).

EFFECTS OF PRIMARY MEDIATORS ON
PRIMARY AFFERENT NEURONS

Gene array analysis of perturbations in primary afferent neurons
following nerve injury have identified marked changes in genes
coding for neuropeptides, cytokines, chemokines, receptors, ion
channels, signal transduction molecules and synaptic vesicle
proteins (146, 233) as well as changes in expression of long non-
coding RNA’s (234) and microRNA’s (235–238). The latter post-
transcriptionally regulate the protein expression of hundreds
of genes in a sequence-specific manner (239). For example
the microRNA (miRNA-let-7b) can be released from DRG
neurons by neuronal activation. It acts in a paracrine function
to induce rapid inward currents and action potentials in other
DRG neurons by inducing toll like receptor 7 (TLR7)/TRPA1-
dependent single-channel activities. Intraplantar injection of
miRNA-let-7b elicits rapid spontaneous pain via TLR7 and
TRPA1 (240). These observations again align with the concept
of neurogenic neuroinflammation (212).

In addition, miR-21-5p which is released in the exosomal
fraction of cultured DRG neurons, may be involved in neuron-
macrophage communication after nerve injury (238, 241). The
concept of cell-to-cell transport of material via exosomes or
extracellular vesicles represents an exciting new direction for pain
research (238, 241–245). A recent review focussed on release of
extracellular vesicles from microglia (246).

Changes in DRG Excitability and Ion
Channel Function
Recordings from rodent DRG neurons both ex vivo and in
vitro confirmed that peripheral nerve injury increases their
excitability and may provoke spontaneous discharge of action
potentials (247–253). This peripheral sensitization and ongoing,
aberrant spontaneous activity is a well-established harbinger of
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central sensitization and chronic pain (5, 7, 9, 251, 252, 254–
260). Spontaneous activity is also known to promote activation
of spinal microglia and astrocytes (211, 212). Suppression of
this activity in vivo by either pharmacological (257, 261) or
optogenetic methodologies (262) leads to abatement of injury-
induced allodynia and attenuation of hyperalgesia.

Increased DRG excitability is driven by increased
expression and/or function of voltage-gated Na+, Ca2+

and hyperpolarization activated cyclic nucleotide gated channels
(HCN channels) (263–265) as well as decreased expression
and/or function of K+ channels (260) and altered expression,
modulation and function of acid sensing ion channels (ASIC
channels) and transient receptor potential (TRP) channels
including TRPV1, TRPA1, and TRPM8 (215, 266–268).

Acute and/or long term exposure of DRG neurons
to pro-inflammatory primary mediators such as IL-1β
(interleukin 1β), IL-17 (interleukin 17), TNF (tumor
necrosis factor), MCP-1/CCL-2 (monocyte chemoattractant
protein-1/chemokine ligand 2), stromal cell-derived factor 1
(CXCL12), Wnt3a or prostaglandin E2 increases their excitability
(21, 61, 64, 65, 88, 91, 116, 118, 119, 123, 125, 131, 133, 269, 270).

In general, the effects of primary mediators on cation channel
function parallel the changes provoked by peripheral nerve
injury (62, 63, 92, 125, 184, 271, 271–274) and it is now well-
established that these excitatory actions play an indispensable
role in the development and/or persistence of neuropathic pain.
For example, administration of antibodies to interleukin I-
receptor (IL-lR) or its genetic deletion or overexpression of
interleukin receptor antagonist (IL-RA) reduce pain behavior in
mice with experimental neuropathy thereby implicating IL-1β in
the onset of neuropathic pain (2, 54, 57, 58, 202). Although IL-
1β is involved at several points in the sensory system following
nerve injury (176, 179, 187, 275, 276), its peripheral actions
are underlined by the observation that local microinjection of
recombinant IL-1β at the site of sciatic nerve injury in IL-
1β-knock-out mice lowers mechanical pain thresholds to levels
observed in injured wild-type animals (48).

The role of IL-17 has been studied in the paclitaxel model
of chemotherapy induced pain. In addition to increasing DRG
excitability, both IL-17 and paclitaxel facilitate sEPSC activity and
attenuate sIPSC activity in the lamina II outer of themouse dorsal
horn. Selective knockdown of IL-17R in certain dorsal horn cells
reduces paxlitaxel-induced hypersensitivity. Taken together these
findings provide strong support for a role for IL-17 in this type of
chronic pain (21).

Actions and involvement of TNF-α as a primarymediator very
much parallel those of IL-1β Levels of TNF-α are elevated in
sciatic nerve after injury (82, 85) and Nadeau et al. (48) showed
that microinjection of TNF-α into TNF-knock-out mice lowered
mechanical pain threshold in a similar fashion to IL-1β TNF-α
also upregulates Nav1.7 in DRG (89) and inhibition of TNF-
α signaling results in attenuation or accelerated recovery from
injury induced neuropathic pain (52, 84, 277). TNF-α receptors
are also upregulated (84). Unlike IL-1β, TNF-α does not appear
to participate in macrophage to DRG neuron signaling (141) but
like IL-1β actions of TNF-α are not confined to the peripheral
nervous system (180, 187, 277).

Although IL-6 is markedly upregulated in the peripheral and
central nervous systems following nerve injury (50–52, 278, 279)
and is released by macrophages at the site of nerve injury (51,
279), it fails to affect DRG excitability (53) yet has been reported
to attenuate peripheral nociceptive transmission (280). This
contradicts the finding that sciatic chronic constriction injury
(CCI) failed to induce hypersensitivity to cutaneous heat and
pressure in mice with a null mutation of the IL-6 gene (281). Its
potential role as a primary mediator thus remains to be resolved.
One possibility is that IL-6 serves as an “off signal” to ensure
the transient nature of injury-induced neuroinflammation. It
may fulfill this function in the spinal cord where it promotes a
desensitized phenotype ofmicroglia (282). Some lines of evidence
implicate IL-15, IL-17, and IL-18 as primary mediators in the
generation of neuropathic pain (Table 1).

Wnt3a also increases sensory neuron excitability via
upregulation of P2X3 and TRPA1 receptor channels and
stimulates production of inflammatory cytokines such as
TNF-α and IL-18. Intraplantar injection promotes mechanical
hypersensitivity and thermal hyperalgesia. These effects are
prevented by inhibition of disheveled; one of the downstream
effectors of Wnt3a action (133). Nerve injury also provokes
the release of Wnt5a from Schwann cells and since its cognate
receptors are upregulated in DRG neurons (135), it, like Wnt3a,
may serve as a primarymediator in the onset of neuropathic pain.

Appearance of ectopic excitatory α-adrenoceptors and
sprouting of perivascular sympathetic axons both within DRG
and on nerve terminals at the site of injury is yet another means
by which primary afferent excitability is increased (283–287),
leading to signs of neuropathic pain in animal models (288).
Sympathetic-sensory interaction is a characteristic feature of
complex regional pain syndromes in humans (289). This may
reflect a neurotrophic action of LIF or NGF on noradrenergic
perivascular axons (76–78) and/or may be a consequence of
spontaneous afferent activity (290).

Changes in Expression of Cytokines, Wnt
Ligands, and Neuropeptides in Primary
Afferent Neurons; Primary Mediators
Promote Production of Secondary
Mediators
Neuropeptides
Nerve injury alters expression of neuropeptides and their cognate
receptors in DRG cell bodies (291–293). Studies have focussed
on galanin, NPY, calcitonin gene related peptide (CGRP) and
substance P. Since there is evidence for a role of a diffusible
substance in soma—soma interactions (294), neuropeptides may
play a role in controlling DRG excitability (295). For example,
substance P is released in a Ca2+ dependent manner from DRG
cell bodies (296) and its expression is increased after nerve injury
(106, 297). Because large DRG neurons start to express excitatory
substance P receptors after nerve injury, it may well play a role in
pain etiology (298). This is because alterations in the properties
of large DRG neurons and their associated low threshold Aβ fiber
axons play major role in neuropathic pain (249, 299–303).
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CGRP is also released in DRGwhere it may fulfill an excitatory
autocrine and/or paracrine function in a similar fashion to
substance P (122, 295, 304, 305).

Chemokines, Cytokines, and Wnt Ligands
Nerve injury upregulates mRNA and/or protein for a variety
of secreted proteins, including chemokines, Wnt ligands, and
cytokines and/or their receptors in primary afferent neurons.
This includes IL-6 and its receptor (209, 278), MCP-1/CCL2
and CC chemokine receptor 2 (CCR2) (270, 306–308), TNF-α
(309), IL-1β and IL-10 (306, 310), CCL-21 (146), and Wnt5a
(134). As will be discussed below, several of these substances
are released from primary afferent nerve terminals and serve
as secondary mediators in the dorsal horn; conveying altered
peripheral activity to microglia and/or to dorsal horn neurons.
The weight of the evidence supports a secondary mediator role
for CSF-1 and for the chemokine CCL-21 (Table 2).

SECONDARY MEDIATORS FROM
PRIMARY AFFERENT TERMINALS ALTER
FUNCTION OF SPINAL MICROGLIA

Signaling Between Injured Peripheral
Nerve and Spinal Microglia
Following nerve injury, several substances generated in and
released from primary afferents serve as secondary mediators

that influence the properties of spinal microglia (238). In this
way microglia can detect and mount a response to peripheral
nerve injury.

Secondary Mediator Role of CSF-1
Injury-induced release of inflammatory mediators such as
interleukin 1β from satellite glial cells and invading macrophages
in DRG induces Csf1 in the cell bodies of primary afferent
neurons (136, 137, 141, 142). mRNA for colony stimulating factor
(CSF-1) is also upregulated by nerve injury as is mRNA for the
CSF-1 receptor in spinal microglia (138). Intrathecal injection
of recombinant CSF-1 induces microglial proliferation and
renewal as well as mechanical allodynia in naïve animals (138–
140). When Csf1 gene expression is selectively depleted from
sensory neurons, nerve injury-induced CSF-1 expression and the
development of mechanical hypersensitivity are prevented as is
the injury-induced microglial activation and proliferation (141).

Release of CSF-1 from primary afferent terminals transforms
the phenotype of resting microglia such that they expresses the
ionotropic ATP receptor, P2X4R (138, 139, 143). The membrane
adaptor protein DAP12 is required for nerve injury-induced
upregulation of P2X4R but not formicroglial proliferation. Taken
together, with the observation that long term exposure of dorsal
horn neurons to CSF-1 increases their excitability (143), these
data support its role as a secondary mediator signaling between
injured primary afferents and microglia which then release
tertiary mediators such as BDNF and IL-1β (150, 157, 311).

ATP derived from dorsal horn neurons activates P2X4
receptors onmicroglia, promoting Ca2+ influx and BDNF release
(151, 312–318). As will be discussed below, this mechanism

is crucial to glial signaling and the development of central
sensitization in males (313, 319) but not in females (27, 320).

MCP-1/CCL2 Plays a Neuromodulatory Role Within

Injured DRG but Is Unlikely to Function as a

Secondary Mediator Between Nerves and Microglia
Mice lacking the CCR2 receptor for the chemokine MCP-1/CCL-
2 fail to develop signs of neuropathic pain following nerve
injury (118, 321), a MCP-1/CCL2 antagonist blocks paclitaxel-
induced neuropathic pain (52) and over expression of CCR2
enhances nociceptive responses (322). MCP-1/CCL2 is not found
in undamaged peripheral nerves but is strongly upregulated
following injury (221, 323). This may be a consequence of
the action of TNF-α and spontaneous neural activity (118,
324). MCP-1/CCL2 is expressed in vesicles in DRG soma
(117, 270) and is released from DRG cell bodies in a Ca2+

dependent manner (270). This evoked release is increased
under neuropathic conditions (115, 325). Injury has also been
reported to increase immunoreactivity for CCR2 in dorsal horn
microglia (326) and spinal administration of CCL2 promotes
microglial activation (325, 327). Although these findings might
be expected if MCP-1/CCL2 serves as a secondary mediator
between primary afferents and spinal microglia, recent work casts
doubt on this conclusion. For example, Jung et al. (117) did
not detect MCP-1/CCL2 in primary afferent terminals and other
studies of microglia in vivo failed to confirm the presence of
CCR2 either before or after nerve injury (117, 146, 328). Now
that more specific biomarkers for cell types are available, one
possible explanation for this discrepancy is that CCR2 may be
expressed on infiltrating monocytes or on astrocytes rather than
on microglia (221, 329, 330).

Rather than functioning as a secondary mediator between
primary afferents and spinal microglia, MCP-1/CCL2 may fulfill
an autocrine or paracrine function within DRG (118, 270).
This possibility is supported by the aforementioned observation
that MCP-1/CCL2 is released from DRG cell bodies in a
Ca2+ dependent manner (270). It has also been shown to
excite injured DRG neurons by transactivation of TRPA1 and
TRPV1 channels (115, 118). MCP-1/CCL2 may thus stimulate
first order neurons in the pain cascade and/or carry out
its classical chemokine function to attract CCR2-expressing
peripheral monocytes/macrophages to the spinal cord (117, 146).
MCP-1/CCL2 may also promote the release of the excitatory
neuropeptide CGRP within DRG (122).

Secondary Mediator Role for CCL-21
Intrathecal administration of chemokine (C-C motif) ligand
21 (CCL21) rapidly induces pain-like behavior in naive mice
whereas CCL21 neutralizing antibodies or blockade of its cognate
CXCR3 receptors with (+/–)-NBI-74330 diminishes pain-related
behavior in nerve injured animals (147). The failure of CCL21
deficient mice to display tactile allodynia following nerve injury
(148) has been ascribed to the failure of microglia to upregulate
the P2X4 receptor for ATP (144, 146). CCL21 is upregulated
in DRG following nerve injury, vesicles containing CCL21
are preferentially transported into axons (145), CCL21 affects
microglial function (148) and it can be released from terminals
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of injured or “endangered” neurons (149, 331). Taken together,
these findings suggest that CCL21 is more likely than MCP-
1/CCL2 to function as a secondary mediator between primary
afferents and microglia following injury (146, 221). CCL21 has
also been reported to signal to astrocytes (332).

What Is the Role of Stromal Cell-Derived Factor-l

Alpha (CXCL-12/SDF-lα)?
Stromal cell-derived factor-l alpha (SDF-lα) also known as C-
X-C motif chemokine 12 (CXCL12), and its cognate receptor
CXCR4, are constitutively present in DRG neurons and satellite
glia, spinal astrocytes and microglia (333, 334). Peripheral nerve
injury upregulates both CXCL12 and CXCR4 in DRG and/or
spinal cord (123, 221, 333, 335, 336) as a possible consequence
of the action of TNF-α (336). The functional significance of
these changes is demonstrated by the observation that CXCL12-
induced Ca2+ response in DRG neurons is enhanced in nerve
injured animals (123). Intrathecal administration of CXCL12
induces hypersensitivity in naive rats in a CXCR4 dependent
manner (333, 333). In addition intrathecal injection of CXCL12
neutralizing antibody or the CXCL12 antagonist, AMD3100
transiently reverses allodynia after peripheral nerve injury (123,
336).

CXCL12 has been implicated in pain signaling following
spinal cord injury (337) and may be involved in hyperalgesic
priming (338). In view of this and the findings presented above,
it is clear that the CXCL12–CXCR4 system has an important
role in modulation of neuropathic pain. It may be particularly
involved in astrocyte signaling and long term pain maintenance
(333). Despite this, we could find no reports that CXCL12 is
released from injured primary afferents to affect microglia. It thus
remains to be determined whether CXCL12 functions as a bona
fide secondary mediator.

What Is the Role of Fractalkine (CX3CL1)?
Fractalkine (CX3CL1) is produced constitutively by spinal cord
neurons (339, 340) and its receptors (CX3CR1) are primarily
expressed by dorsal horn microglia (340, 341). These are
upregulated after nerve injury via an IL-6 dependent mechanism
(342). Intrathecal injection of fractalkine produces mechanical
allodynia and thermal hyperalgesia whereas injection of a
neutralizing antibody raised against CX3CR1 delays the onset
of mechanical allodynia and/or thermal hyperalgesia in two
different neuropathic pain models (341). This is consistent
with the observation that mice lacking CX3CR1 do not display
allodynia following peripheral nerve injury (343).

Fractalkine exists in both a membrane tethered form and
as a soluble protein (344). Nerve injury increases the level of
soluble fractalkine in cerebrospinal fluid (345) and this release by
cathepsin S appears obligatory for the expression of neuropathic
pain (221, 346). Soluble fractalkine promotes microglia activation
and the generation of tertiarymediators including IL-1β and TNF
(167, 341).

Cathepsin S is itself released from microglia by an ATP-P2X7
dependent mechanism (347). Since fractalkine immunoreactivity
does not localize with CGRP, IB4 or NF200 in the dorsal
horn, it has been suggested that under neuropathic conditions,

stimulation of primary afferent fibers induces release of cathepsin
S from microglia, which liberates soluble fractalkine from dorsal
horn neurons, thereby contributing to the amplification and
maintenance of chronic pain (345). Since production of soluble
fractalkine requires prior release of cathepsin S from already
activated microglia, it cannot be regarded as a straightforward
secondary mediator, signaling between neurons and microglia in
the same way as CCL21 or CSF-1.

Because antibodies raised against CX3CR1 reduce nociceptive
responses when administered 5–7 days after CCI, the prolonged
release of fractalkine may contribute to the maintenance as
opposed to the onset of neuropathic pain. This may relate to
the observation that nerve injury provokes de novo expression of
CX3CL1 in dorsal horn astrocytes (340).

Fractalkine signaling has also been implicated in synaptic
degeneration seen in HIV patients who experience painful
neuropathy (8). This can be modeled in mice by intrathecal
injection of the viral coat protein gp120. This upregulates
fractalkine and knockout of its cognate receptor CX3CR1
protects synapses from gp120-induced toxicity. Inhibition of the
Wnt/β-catenin signaling blocks both gp120-induced fractalkine
upregulation and synaptic degeneration. Injection of gp120
stimulates Wnt/beta-catenin-regulated fractalkine expression via
NMDA receptors and the NMDA antagonist APV, Wnt/beta-
catenin signaling suppressor DKK1, or knockout of CX3CR1
alleviate gp120-inducedmechanical allodynia. Taken together the
results suggest that HIV-1 gp120 provokes synaptic degeneration
in dorsal horn by activating microglia via Wnt3a/beta-catenin-
regulated fractalkine expression.

What Is the Role of Interferon Gamma?
Several lines of evidence implicate interferon gamma (IFN-
γ) in the etiology of neuropathic pain. Spinal microglia in
naive animals express the appropriate receptor (IFN-γR) and
stimulation with IFN-γ induces both tactile allodynia and
altered microglia function. Genetic ablation of IFN-γR impairs
nerve injury-evoked activation of ipsilateral microglia and tactile
allodynia (348). The purinergic P2X4 receptor is upregulated in
IFN-γ stimulated—microglia and, as will be discussed below, the
appearance of such receptors plays a crucial role in the onset of
neuropathic pain in males (151, 312, 314, 316, 317). IFN-γ has
also been shown to increase dorsal horn excitability (349, 350)
and to facilitate synaptic transmission between C-fibers and
Lamina 1 neurons via a microglial dependent mechanism (351).
Although the level of IFN-γ is increased in spinal cord following
peripheral nerve injury (352), this may originate from invading
T-lymphocytes. This implies that IFN-γ does not have a major
role as a secondary mediator to effect communication between
injured primary afferents and microglia.

Microglial-Independent Signaling Between
Primary Afferents and Dorsal Horn Neurons
Apart from the role of glutamate and its involvement in long term
potentiation (353), there are several situations where secondary
messengers generated in, and released from primary afferents
exert direct long term effects on dorsal horn neurons. For
example, the primary mediator role of the secreted glycoprotein
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Wnt3a has already been alluded to Simonetti et al. (133). Recent
evidence suggests that Wnt3a promotes the release of another
ligand, Wnt5a from primary afferents which in turn promotes
dendritic retraction of dorsal horn neurons (134). This occurs
without the intervention of microglial signaling.

The secondary mediator CSF-1 decreases excitatory drive to
inhibitory neurons in dorsal horn via a BDNF independent
process (143). Since the presence of CSF-1 receptors on neurons
has been questioned (354), it remains to be determined whether
this reflects a direct effect of CSF-1 on neurons or whether other
microglial derived tertiary mediators are recruited.

RELEASE OF TERTIARY MEDIATORS
FROM MICROGLIAL CELLS

Release of BDNF in the Spinal Dorsal Horn
Initial studies on the release and actions of BDNF were
predominantly done on male rodents in an attempt to avoid
possible complications imposed by the female oestrous cycle.
More recent data strongly suggest major differences in the
mechanism of central sensation in females compared to males;
microglial derived BDNF is probably not involved in females
(24, 26, 27, 313, 320, 355). In males however, numerous lines
of behavioral and cellular data strongly implicate the release of
BDNF from spinal microglia in the etiology of neuropathic pain
(4, 143, 150, 152, 154, 156, 157, 161, 164, 315, 356–359).

As already mentioned, the secondary mediator CSF-1 is
released from injured primary afferents and interacts with its
receptors onmicroglial cells (137). This leads to the up regulation
of several genes that are implicated in the development of
neuropathic pain. This includes Itgam (encoding CD11b),Cx3cr1
(encoding the fractalkine/CX3CL1 receptor, CX3CR1), Bndf
(encoding BDNF), and Ctss (encoding cathepsin S) (139). BDNF
which acts by increasing dorsal horn excitability, is a major
tertiary mediator in the development of central sensitization
(4, 143, 150, 151, 156, 157, 163, 314, 315).

Long-term exposure of dorsal horn neurons to CSF-1 also
increases their excitability and this effect is abrogated by the
BDNF binding protein TrkB-fc (143). These findings underline
the importance of a sensory neuron—CSF-1—microglia—BDNF
signaling process in the onset of neuropathic pain (4, 9, 139, 238,
360).

Role of ATP and P2X4 in BDNF Release
Although stimulation of primary afferents releases ATP and
generates P2X mediated EPSC’s in a subpopulation of lamina
II neurons (361), primary afferent neurons do not appear to be
the main source of ATP following peripheral nerve injury. It
may rather derive from neurons in the superficial dorsal horn
itself (362). BDNF release from microglia is brought about by
ATP activation of upregulated P2X4R (151, 168, 312, 314, 316–
318). This release is biphasic. An early phase occurs within 5min,
whereas a late phase peaks 60min after ATP stimulation. The
late phase of release is associated with an increased level of
BDNF within the microglia. Both phases of BDNF release are
dependent on extracellular Ca2+ but the late phase of release and
accumulation is dependent on transcription and translation. This

suggests that activation of P2X4R initially releases a pre-existing
pool of BDNF and subsequently promotes de novo synthesis of
BDNF. This vesicular release of BDNF is abolished by inhibiting
SNARE (soluble N-ethylmaleimide-sensitive factor attachment
protein receptor)-mediated exocytosis and the P2X4R-evoked
release and synthesis of BDNF are dependent on activation of
p38-mitogen-activated protein kinase (MAPK) (312, 314–317).

Activation of P2X4 on microglia and release of BDNF are
involved in the onset of neuropathic pain in males, but as
already mentioned, not in females. This is congruent with the
observation that spinal microglia from female rodents do not
express P2XR (26).

Role of ATP and Metabotropic P2Y Receptors in

BDNF Release
There is also evidence for a role for metabotropic P2Y receptors
in microglial activation and the onset of neuropathic pain (363–
365). This involves P2Y6, 11, 12, 13, and 14 (366–369). Whilst
P2Y6 signals through Gq/11 and P2Y12, 13, and 14 signal through
Gs, P2Y11 signals through both Gq and Gs (222).

P2Y12 mRNA and protein are increased in microglia
after peripheral nerve injury and intrathecal injection of a
P2Y12 antagonist or antisense knockdown of P2Y12 expression
suppresses the development of injury-induced pain behaviors
and the phosphorylation of microglial p38 MAPK. By contrast,
intrathecal infusion of a P2Y12 agonist into naive rats mimics the
nerve injury-induced activation of microglial p38 and increases
pain behaviors (366). Since phosphorylation of p38MAPK by
P2X4 agonists has been implicated in BDNF release (314) this
may also be affected by P2Y12 activation.

Spared nerve injury also induces a p38MAPK-dependent
increase in P2Y6, 13, and 14 mRNA in microglia. This is
thought to depend on activation of ROCKRho-associated coiled-
coil-containing protein kinase (370). Since intrathecal injection
of the specific P2Y6 antagonist MRS2578, the specific P2Y13
antagonist MRS2211 or P2Y14 antisense, attenuate mechanical
pain hypersensitivity, these three receptors may function as
downstream effectors that mediate some of the actions of ATP
in microglia (367, 371).

Wnt Signaling and BDNF Release
Wnt signaling can also promote BDNF release (359, 372). This
phenomenon has been examined in models of HIV pain which
involve exposure of sensory neurons to viral coat proteins such
as gp120 (12, 372). Intrathecal injection of gp120 produces
mechanical allodynia and increases expression of Wnt3a, β

catenin andmicroglial BDNF in themurine spinal cord. Blockade
of Wnt or BDNF signaling alleviates mechanical allodynia as
does inhibition of microglial activation with minocycline (12).
Zhang et al. (359) have suggested a mechanism whereby

Wnt signaling provides an important link between increased
neuronal activity and BDNF expression. Increased glutamatergic
neuronal activity activates NMDA receptors and increases the
level of intraneuronal Ca2+ This promotesWnt protein synthesis
and release via MAPK/CREB signaling (373, 374). Activation
of frizzed receptors on microglia promotes Wnt signaling via
β catenin leading to increased BDNF expression and release.
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This is a further illustration of the concept of “neurogenic
neuroinflammation” whereby intense neuronal activity promotes
immune cell activation (212).

BDNF in Inflammatory vs. Neuropathic Pain
Inflammatory pain as induced by formalin or carrageenan
exposure is attenuated using the Cre-loxP system to selectively
delete BDNF from nociceptive sensory neurons. Despite this,
these animals display normal signs of neuropathic pain following
nerve injury (375). Whilst BDNF thus appears to be involved in
both inflammatory and neuropathic pain (376), in the first case
it is derived from peripheral nociceptors whereas in the second
case it is derived from ATP-activated microglia.

Time Course of Microglia Activation and Long-Term

Effect of BDNF
Whereas, early studies of microglia activation in response to
peripheral nerve injury focussed on short term changes (312),
more recent work has shown that microglial activation in rodent
dorsal horn persists for more than 3 months after injury (377).
Activation even persists beyond the known involvement of pro-
inflammatory cytokine signaling. Thus, selective depletion of
spinal microglia with the targeted immunotoxinMac1-saporin or
sequestration of BDNF with the selective binding agent TrkBFc
almost completely reversed thermal and mechanical alloynia in
both the acute (2 week) and chronic (3 month) phase after injury.
By contrast, neutralizing cytokine signaling using intrathecal
injection of a cocktail of antibodies against IL-β, TNF-α, and IL-6
significantly attenuated tactile and cold allodynia at 2 weeks but
not at 3 months after injury. These findings may have therapeutic
relevance as they suggest different mediators should be targeted
in the management of acute vs. chronic neuropathic pain (377).

BDNF, TrkB, and Antidepressants
It has recently been reported that some antidepressants bind
to TrkB and augment BDNF signaling (378). Since the many
lines of evidence outlined above implicate BDNF in central
sensitization, augmentation of TrkB signaling by antidepressants
would be expected to exacerbate pain. Despite this, tricyclic
antidepressants and serotonin-noradrenaline reuptake inhibitors
are first line treatments in neuropathic pain management (379).
The relationship between these disparate observations remains to
be studied and resolved.

Release of IL-β in the Spinal Dorsal Horn
IL-1β plays a modulatory or effector role in nociception in the
periphery, dorsal root ganglia, spinal cord and higher centers.
These effects assume particular importance in the etiology of
neuropathic pain. Corroborative evidence for a role of IL-1β
neuropathic pain comes from the observation that inhibition of
matrix metalloproteases responsible for IL-1β processing leads to
attenuation of pain in a rodent model (170).

Whilst the CSF-1, P2X4-microglia-BDNF pathway is well-
characterized, less is known about the release of IL-1β. In the
spinal cord, it is produced and released from macrophages,
astrocytes and microglia (2, 380, 381). Release from microglia
is a consequence of activation of P2X7 receptors (166, 168,

311, 319) and may be provoked by the action of fractalkine
(167). In agreement with this, it has recently been reported
that the Cav1 channel blocker, cilnidipine blocks microglial
P2X7 receptors, impairs IL-1β release and reverses nerve injury-
induced mechanical hypersensitivity (173). It has also been
suggested that P2X4R interact intracellularly with P2X7R to
augment P2X7R-mediated IL-1β release (168).

Release of IL-1β is unlikely to reflect a SNARE dependent
process as has been suggested for BDNF (314). IL-1β is known
to be processed intracellularly from its inactive pro-form by
caspase-1 into its mature bioactive form (382). Release from
macrophages and dendritic cells and partially from neutrophils,
may be brought about via the formation of gasdermin D pores
in the cell membrane (382–384). One recent report implicates
gasdermin D in IL-1β release from microglia in Toxoplasma
gondii (parasitic protozoan) infections (385) but it remains to
be determined whether a similar mode of release is engaged in
neuropathic pain. In this situation, IL-1β release may involve its
excocytosis via panexin channels (166).

Release of TNF-α in the Spinal Dorsal Horn
The role of TNF-α as a peripheral primary mediator has already
been alluded to and several studies have shown that signs of
neuropathic pain may be alleviated by perturbation of TNF-
α signaling (84, 203, 277, 386). Several lines of evidence also
support a role of TNF-α as a tertiary mediator responsible for
signaling between microglia and dorsal horn neurons.

Nerve injury increases levels of TNF-α mRNA in spinal
microglia and microglia derived cytokine induces COX2 and
PGI2 synthase expression in endothelial cells suggesting that a
TNF-α mediated glia-endothelial cell interaction is involved in
the generation of neuropathic pain (180).

Release of Wnt 5a in the Spinal Dorsal Horn
Wnt proteins are upregulated in the spinal cord of various pain
models (3, 11, 134, 199). In a very consistent manner as seen
in the pathogenesis of HIV-associated pain, Wnt ligands (e.g.,
Wnt5a) are specifically upregulated in the SDH of “pain-positive”
HIV patients (11). By regulating the pathogenesis of gp 120—
induced pain, Wnt5a sensitizes pain-processing SDH neurons
through the JNK/TNF-α signaling pathway.

ACTIONS OF THE TERTIARY MEDIATOR
BDNF IN THE DORSAL HORN

In male rats, intrathecal administration the BDNF binding
protein TrkB-Fc prevents the development of mechanical
allodynia after spared nerve injury (387). Several cellular
mechanisms have been implicated in the excitatory actions of
microglial-derived BDNF that lead to central sensitization.

BDNF Increases Excitatory Drive to
Excitatory Neurons and Decreases That to
Inhibitory Neurons
In rat spinal organotypic cultures, 5–6 d exposure to BDNF
increases excitatory synaptic drive to excitatory lamina II neurons
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whilst decreasing excitatory drive to inhibitory neurons (157,
356). In mice, effects of BDNF are dominated by increased
excitatory drive to excitatory neurons. Whereas, presynaptic
TrkB and p75 neurotrophin receptors are involved, postsynaptic
effects are mediated exclusively by TrkB (143). Whilst the
passive and active properties of lamina II neurons such as
rheobase, resting potential, input resistance and excitability are
little affected (143, 157, 356), the altered synaptic activity is
capable of increasing spontaneous action potential discharge in
excitatory neurons whilst reducing it in inhibitory neurons (356).
Three observations show that these actions of BDNF are relevant
to injury-CSF-1-microglia evoked central sensitization. Firstly
BDNF—induced changes in synaptic transmission and its lack of
effect on the intrinsic excitability of lamina II neurons very much
parallel those invoked by peripheral nerve injury (157, 388, 389).
Secondly, Ca2+ responses evoked by neuronal depolarization
are enhanced by BDNF and also by conditioned medium
from lipopolysaccharide-activated microglia. The effect of this
conditioned medium is attenuated by sequestering BDNF with
TrkBd5 (157). Thirdly, the putative microglial modulator CSF-
1 increases synaptic excitation of excitatory lamina II neurons
in mice and this effect is abrogated by sequestering BDNF with
TrkBfc (143) whereas, as already mentioned, CSF-1 reduces
excitation of putative inhibitory neurons in a BDNF-independent
mechanism, suggesting that injured primary afferents can also
signal directly to dorsal horn neurons without the involvement
of microglia (143).

BDNF and NMDA Receptor Function
Effects of BDNF on Postsynaptic NMDA Receptors
The BDNF effects alluded to above relate primarily to AMPA
receptor mediated transmission as neurons were studied at a
holding potential of −70mV (143, 157, 356, 388, 389). There is
however a considerable body of evidence to support a role for
altered NMDA receptor function in the etiology of pathological
pain. This is supported by the occasional success realized with
NMDA blockers such as ketamine in the clinic (390, 391).
The link between NMDA receptor function and BDNF was
established over 20 years ago by the observation that it enhances
excitatory responses to NMDA in rat spinal cord in vitro (392).
BDNF phosphorylates GluN1 via ERK and PKC (393). It also
acts through TrkB to phosphorylate the GluN2B subunit by
the Src-family kinase Fyn and thereby potentiates excitatory
NMDA receptor-mediated currents (165). Interestingly, this
potentiation appears to require the coincident BDNF mediated
Cl− disinhibition. The exact molecular mechanism of this
interaction remains to be elucidated as it does not appear to
reflect increased NMDA receptor availability as a result of GABA-
induced depolarization (165).

Effects of BDNF on Presynaptic NMDA Receptors
BDNF also acts via TrkB and a Src-family kinase to potentiate
the function of presynaptic NMDA receptors on primary
afferent terminals (394). It has been reported that presynaptic
NMDA receptors only potentiate glutamate release from
primary afferents after nerve injury (395). This further

underlines the presynaptic BDNF effect in the development
of central sensitization.

BDNF Decreases Inhibition by Perturbation
of Chloride Gradients
Peripheral nerve injury reduces expression of the potassium-
chloride exporter (KCC2) in spinal lamina 1 neurons (396, 397).
The resulting accumulation of intracellular Cl− causes normally
outward, inhibitory GABAergic synaptic currents mediated by
Cl− influx to become inward excitatory currents mediated by Cl−

efflux (396–398). Since the knockdown of spinal KCC2 in non-
injured rats reduces pain thresholds and induces neuropathic
pain behaviors, these changes contribute to the pathophysiology
of central sensitization (150, 396).

In male rats, BDNF mediates this downregulation of KCC2
(164). Thus, administration of ATP activated microglia, but not
control microglia, reproduces the shift in anion gradient seen
after nerve injury as does application of BDNF. Also, blocking
TrkB or using interfering RNA against BDNF reverses both
injury induced pain behaviors and the shift in anion gradient
(150). Further analysis of this phenomenon reveals that changes
in KCC2 expression in deep dorsal horn neurons are confined
to nociceptive neurons that project via the spinothalamic tract
whereas wide dynamic range (WDR) neurons that are activated
by a variety of sensory modalities are unaffected (399). It has
also been shown that neurons in lamina I are more susceptible
to changes in Cl− gradient than those in lamina II (397) and
biophysical and modeling analysis shows this loss is especially
effective in promoting increased neuronal firing (400). These
are important observations as lamina I and deep dorsal horn
nociceptive neurons are the most important sites for relay of
nociceptive information to the brain (303, 401, 402). Since loss
of GABAergic inhibition enables non-noxious Aβ fiber-mediated
excitatory transmission to acess the superficial spinal dorsal horn,
this process plays a major role in the establishment of allodynia
(300, 403, 404).

Reversal of the Cl− gradient may rationalize the observation
that BDNF increases GABA release in the dorsal horn (159, 161,
405). Under these conditions GABA produces inward currents
(396) whichwould be enhanced and therefore strongly excitatory.

BDNF and Induction of Long-Term
Potentiation
Long term potentiation (LTP) of synaptic transmission
contributes to central sensitization in the dorsal horn (353, 406–
408). LTP of C-fiber responses can also be augmented by BDNF
(387) and LTP induced by high frequency nerve stimulation
is occluded by BDNF treatment (409). This reflects functional
upregulation GluN2B subunits of NMDA receptors by activation
of the tyrosine phosphatase SHP2 (409) or Fyn kinase-mediated
phosphorylation of GluN2B subunit at tyrosine 1472 (387).
These authors also showed intrathecal administration of BDNF
scavenger TrkB-Fc prior to surgery could prevent the nerve
injury-induced increase of both phosphorylated Fyn and
phosphorylated GluN2B expression and as mentioned above
it also prevented the development of mechanical allodynia
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after spared nerve injury. The importance of these effects was
recently underlined by the observation that spinal LTP induced
by high frequency stimulation as well as microglial activation
and upregulation of BDNF are inhibited by antibodies to CSF-1.
This strongly implicates CSF-1/nerve injury driven microglial
derived BDNF in the generation of spinal LTP (408).

BDNF, Intracellular Ca2+ Oscillation, and
Spontaneous Bursting Activity
Manipulations that increase neuronal excitability can induce
synchronous waves in the level of cytosolic Ca2+ that propagate
across the whole dorsal horn (410–412). Similarly, K+-induced
depolarization invokes oscillatory activity as monitored by
spontaneous field potentials (413). It has also recently been
shown that action potential discharge encodes cytosolic Ca2+

levels in lamina 1 neurons and even a single action potential
can provoke a measurable Ca2+ response (414). This implies that
spontaneous bursting activity and oscillations of cytosolic Ca2+

level may be closely related. Although long term application of
BDNF does not change the resting membrane potential, input
resistance of rat dorsal horn neurons in organotypic culture
(158) it promotes oscillations in the level of intracellular Ca2+

in some neurons whilst depressing it in others (163). There
appear to be several mechanisms whereby oscillations may be
set up, for example those observed by Alles et al. (163) and
Chapman et al. (411) were prevented following blockade of
AMPA glutamate receptors whereas those by Asghar et al. (413)
were merely attenuated. The oscillations recorded by all three
groups were however blocked by TTX, again underlining the
tight assocaition between action potential activity and Ca2+

signalling which in turn may enable Ca2+-dependent gene
expression. Whilst the oscillations appeared to be primarily
originating from neurons the possible contribution of signal
from astrocytes cannot completely be ruled out. Although any
direct relationship between these oscillations and neuropathic
pain mechanisms remains to be established, sciatic nerve injury
has been reported to induce spontaneous bursting activity in a
subgroup of dorsal horn neurons in vivo (415). MRI studies have
also revealed oscillatory activity in the spinal cord of neuropathic
pain patients (416). It may be posited therefore that oscillations
in Ca2+ level and spontaneous bursting activity contribute to the
bouts of spontaneous “electric shock like” pain experienced by
those afflicted with painful neuropathies (163).

BDNF in Injury-Induced Synaptic
Reorganization in Dorsal Horn Neurons
As already mentioned, peripheral nerve injury produces neuron
type specific effects on synaptic transmission in the dorsal horn;
excitation of excitatory neurons is increased whereas excitation
of inhibitory neurons is decreased (143, 156–159, 356, 388, 389).
In addition to altered neurotransmitter release and alterations
in postsynaptic sensitivity, connectivity is lost at some synapses
(8, 417, 418) but new connections and/or reorganization of
dendritic spines occurs at others (408, 419).

Microglia are clearly capable of releasing mediators which
promote neuronal loss in an animal model of multiple sclerosis

(140) and synaptic degeneration in a model of HIV pain (8). This
process of microgliosis is also seen following peripheral nerve
injury (420, 421). As discussed below, these processes are likely
to reflect the action of microglia-derived BDNF and in the case
of HIV pain may reflect phagocytosis of damaged synapses by
activated microglia (8).

Is BDNF Involved in Injury-Induced Loss of Primary

Afferent Terminals Onto Inhibitory Neurons?
Peripheral nerve injury promotes transient loss of glutamatergic
excitatory terminals from non-peptidergic IB-4 positive
nociceptive fibers in the substantia gelatinosa (418, 422).
These fibers form the synaptic terminals of the “type 1”
synaptic glomeruli (423) which contact GABAergic neurons
(402, 424). Morphological changes may therefore contribute
to injury-induced reductions in the amplitude and frequency
of spontaneous and miniature EPSCs in tonic firing, putative
inhibitory neurons (388). This attenuation of excitatory drive to
inhibitory neurons would be expected to contribute to an overall
increase in dorsal horn excitability (158). Since BDNF also
reduces mEPSC amplitude and frequency in putative inhibitory
neurons in rat dorsal horn (356) it is possible that BDNF accounts
for loss of primary afferent terminals (418, 422). This possibility
requires further investigation as BDNF stimulates overall axon
growth and regeneration in the spinal cord (425, 426).

This differs from the situation in mice where BDNF does not
affect excitatory drive to inhibitory neurons (143). It remains to
be determined whether this simply reflects a species difference
or whether it is a consequence of the more rigorous criteria to
define inhibitory neurons in mice (143, 412) compared to rats
(157, 356).

BDNF is not involved in injury-induced loss of GABA
terminals. Nerve injury also promotes loss of GABAergic
inhibitory terminals in laminae I and II of the dorsal horn
(422, 427). Because BDNF enhances GABAergic transmission
at various synaptic loci in the dorsal horn (158, 159, 161), the
nerve injury-induced loss of inhibitory terminals is unlikely to
involve BDNF.

BDNF May Increase Primary Afferent Terminals on

Excitatory Neurons
In rats, both nerve injury and BDNF increase excitatory synaptic
drive to putative excitatory neurons (157, 356, 388, 389, 428)
and a similar effect of BDNF is seen in mice. CSF-1 also
increases synaptic drive in a BDNF dependent fashion (143).
These observations parallel the observation that both BDNF
and CSF-1 increase CGRP containing terminals in response to
nocigenic high frequency stimulation (408) as these terminals
primarily innervate excitatory neurons (402).

BDNF and Astrocyte Activation
In addition to its actions on neurons as described above,
BDNF also activates astrocytes such that they release additional
mediators that participate in the establishment of central
sensitization (429).
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ACTIONS OF THE TERTIARY MEDIATOR
INTERLEUKIN 1β IN THE DORSAL HORN

IL-1β levels are increased in the cerebrospinal fluid (CSF) of
patients with complex regional pain syndrome (275) and in spinal
cords obtained post-mortem from patients with painful HIV
related neuropathy (3). Although there are several reports of
the effectiveness of IL-1β antagonists and genetic impairment of
cytokine function in animal models of neuropathic pain (57–
59, 171) studies of the effectiveness of the modified human
interleukin 1 receptor antagonist protein (anakinra) in the clinic
have been limited by the pharmacokinetic issues imposed by the
blood brain barrier (171).

As mentioned above, release of IL-1β from microglia is
primarily affected by activation of P2X7 receptors (166, 173,
311, 319) and/or by the action of fractalkine (167). In a similar
fashion to BDNF, IL-1β increases overall dorsal horn excitability,
glutamate release from primary afferents and excitatory synaptic
transmission between primary afferent C-fibers and lamina 1
neurons (167, 176, 430).

Effects of IL-1β on Synaptic Transmission
in the Spinal Dorsal Horn
Like BDNF, IL-1β does not affect the membrane potential or
rheobase of lamina II neurons, suggesting that most of its effect
on dorsal horn excitability can be ascribed to changes in synaptic
transmission (175, 176). We found that exposing organotypic
cultures of rat spinal cord to 100 pM IL-1β for 6–8 d increased the
amplitude of spontaneous EPSC’s (sEPSC) in putative excitatory
“delay” neurons, and decreased the frequency of spontaneous
IPSC’s (sIPSC). These are somewhat similar to those seen with
peripheral nerve injury (388, 389). IL-1β would therefore be
expected to increase dorsal horn excitability and to facilitate
the transfer of nociceptive information. This was confirmed
by the observation that Ca2+ responses evoked by exposure
of neurons to 20mM K+ were augmented by IL-1β exposure
(176). However, other actions of IL-1β included disinhibition of
putative inhibitory “tonic” neurons and although the frequency
of sIPSC’s in putative excitatory “delay” neurons was decreased,
their amplitude was increased. The latter observations may be
rationalized if GABA assumes an excitatory role in the injury
situation due to perturbation of Cl− gradients by BDNF (150).

We used long-term application of IL-1β to parallel the time
course of injury-induced changes in spinal cytokine levels (48,
176). Our findings are paralleled by the observations that acute
application of IL-1β increases the amplitude of AMPA and
NMDA currents in the spinal dorsal horn (178) and increases
glutamate release via an interaction with presynaptic NMDA
receptors (430). Acute cytokine application also enhances both
the frequency and amplitude of sEPSCs in unidentified lamina
II neurons (175). These authors reported a reduction in the
frequency and amplitude of sIPSCs. The differences between this
work and ours may not only represent the different time course
of cytokine activation as Kawasaki et al. used 600 pM IL-1β in
their work whereas we used a somewhat lower concentration

of 100pM and observed differential actions on excitatory vs.
inhibitory neurons.

Further analysis of fractalkine—microglia—IL-1β signaling
led Clark et al. (167) to propose the following sequence of
events. Soluble fractalkine activates CX3CR1 on microglial
cells leading to the rapid release of IL-1β. IL-1β activates
IL-1r on lamina 1 neurons and modulates function of
postsynaptic NMDA receptors such that Ca2+ influx is increased
when they are activated by glutamate. Elevated levels of
intracellular Ca2+ in lamina I neurons activates phospholipase
A2 leading to the liberation of arachidonic acid and the
generation of prostaglandins. Within a fewminutes of fractalkine
application, prostaglandins increase transmitter release from
primary afferents both directly and indirectly via iNOS activation
and release of NO from microglia.

Presynaptic NMDA receptors have also been implicated in
spinal actions of IL-1βwhere signaling between IL-1r andNMDA
may be affected by the sphingomyelinase/ceramide signaling
pathway to enhance glutamate release from the primary afferents
in neuropathic rats (395, 430). IL-1β enhances endocytosis of
glial glutamate transporters in the dorsal horn astrocytes through
activating protein kinase C (431), the resultant augmentation
of glutamate responses represents a complementary mechanism
where cytokine enhances excitatory synaptic transmission.

ACTIONS OF THE TERTIARY MEDIATOR
TNF-α IN THE DORSAL HORN

Acute activation of TNF receptor 1 by TNF-α inhibits the
excitability of a subset of spinal GABAergic neurons. This
effect involves p38 mitogen-activated protein kinase dependent
suppression hyperpolarization-activated cation current (Ih)
(182). These effects have been reported to diminish with time
suggesting TNF-α may be primarily involved with the induction
rather than the persistence of neuropathic pain (40).

Although fractalkine action on microglia and potentiation
of synaptic transmission in the dorsal horn involves IL-1β
but not TNF-α (167), it does appear to facilitate long term
potentaition (183). This has led to the suggestion that the
differential contributions of TNF-α and IL-1β to fractalkine-
induced enhancement of synaptic transmission may reflect the
well-characterized phenotypic diversity of microglia (432). Thus,
activation of microglia by different secondary mediators may
result in release of specific mixtures of tertiary mediators which
in turn promote diverse effects on synaptic transmission (183).

GENERAL COMMENTS REGARDING
INJURY-INDUCED SIGNALING IN THE
SPINAL DORSAL HORN

Role of Astrocytes; Initiation and
Maintenance of Neuropathic Pain
Astrocytes become rapidly and persistently activated after
peripheral nerve injury, suggesting they play a role in both the
onset and maintenance of central sensitization (3, 433–435).
As mentioned above, recent evidence also implicates microglial
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function in the long-term maintenance of neuropathic pain in
animal models (377) but this may not be the case in all types of
neuropathic pain in the clinic (3).

It is well-established that IL-1β from microglia stimulates
astrocytic production of TNF–α and IL-6 as well as IL-1β itself
(381, 434) thereby amplifying the initial IL-1β signal. Microglial
derived IL-1β reduces the capacity of astrocytes to take up
glutamate (179, 430) as a result of internalization of the astrocytic
glutamate transporter (EAAT2) (179). Loss of EAAT2 function
induces hyperalgesia, augmentation of glutamatergic synaptic
responses and increased sensitivity of dorsal horn neurons to
primary afferent stimulation (436, 437). Activated astrocytes
have also been reported to release the NMDA receptor co-
agonist D-serine (438) thereby augmenting overall dorsal horn
excitability. Evidence for astrocyte involvement in the clinic has
been obtained by post-mortem studies of HIV-patients with
painful neuropathy (3). These authors showed that expression
levels of the microglial markers CD11b and Iba1 were not
elevated whereas the astrocytic markers GFAP and S100 beta
were clearly increased. This was accompanied by increased levels
of TNF-α and IL-1β, as well as components of MAPK signaling
pathway, including pERK, pCREB, and c-Fos.

Since astrocytes are not the primary focus of this review,
readers are directed to the recent review by Ji et al. (435)
which underlines the role of astrocytic gap junctions and
astrocyte derived chemokines in pathological pain. Several other
comprehensive reviews have appeared (439–441) and recent
work has underlined the role of astrocyte derived IL-17 in
paxlitaxel induced pain (21).

Ubiquitous Nature of Mediator Release and
Effect
We have used the term primary mediator to cover substances
released from the site of nerve injury, secondary mediator to
describe substances released from primary afferent terminals and
tertiary mediators to define substances released from microglia
(Figure 1). Whereas, BDNF selectively released from microglia
can be described as a tertiary mediator, production and effect of
cytokines and chemokines is far more widespread. For example,
IL-1β which is a classical macrophage derived signal, can be
released from Schwann cells, microglia, astrocytes, neutrophils,
granulocytes, mast cells and endothelial cells (2, 190, 381, 434,
442, 443) it would thus be classified both as a primary and tertiary
messenger. In general it can be said that cytokines such as IL-1β
can be released from more or less any cell type in response to
an appropriate stimulus. IL-17 appears to be a primary mediator
which is also released from spinal astrocytes in a model of
chemotherapy pain (21).

Opening of the blood brain barrier is a well-known correlate of
nerve injury induced allodynia (50, 444) and this may be initiated
by aberrant afferent nerve activity (445). This enables lymphocyte
and macrophage invasion of neural tissue. In addition, mediators
generated in damaged nerves, microglia, Schwann cells or
astrocytes might be expected to enter the circulation and
exert actions throughout the body. This is supported by the
observation that plasma levels of IL-1β are elevated in rodents

subjected to spared nerve injury (446) or exposure to paclitaxel
which models chemotherapy pain (52).

Mediators generated in the spinal cord would also be expected
to have access to other brain regions via the CSF. IL-1β levels
are increased in the CSF of patients with complex regional
pain syndrome (275) and with thoracic disc herniation (447).
Inflammatory mediators may also be elevated in the CSF of
osteoarthritis patients (15).

Taken together these finding suggest that the diffusion of
spinally and DRG generated mediators may gain access to other
brain regions via both the CSF and systemic circulation. This may
lead to mirror image pain following unilateral nerve injury (448)
and/ormediator actions in higher brain regions that contribute to
the analysis of nociceptive phenomena, the affective components
of pain, sickness syndrome and formation of memory traces (446,
449). For example, microglia activation and BDNF release in the
mesolimbic reward circuitry may contribute to the negative affect
associated with chronic pain (185). With the possible exception
of BDNF, all of the mediators described (cytokines, chemokines
and Wnt ligands) can be released from multiple cell types and
as such may play a role in the initiation or maintenance of
neuropathic pain throughout the nervous system. Discussion of
the actions of mediators in higher brain centers is outside the
scope of this review.

Sex
Neuropathic pain is seen more frequently in women than in
men (29) and it is now recognized that understanding of
divergent pain mechanisms in males vs. females is crucial to the
development of appropriate therapeutic approaches (28, 33, 450,
451).

Investigations over the last 15 years or so have started to
unravel cellular and molecular mechanisms that may contribute
to this difference (29, 31–33, 452, 453). For example, microglia
are not required for mechanical sensitivity to pain in female mice
which require activation of adaptive immune cells such as T-
lymphocytes (27, 320). The difference may result from a lack of
P2X4 receptors in the microglia of females (26, 313). Despite
this, behavioral responses to nerve injury in female rats are
similar to those seen in males and both involve downregulation
of KCC2 and perturbation of Cl- gradients (25). Because BDNF
is not necessary for the development of allodynia in female
rodents (27), the mediator released from adaptive immune cells
remains to be determined. Similar findings have been found in
the Freund’s adjuvant in vivo model of inflammatory pain in
rodents and confirmed in human neurons (33). These authors
also showed that ex vivo BDNF enhanced synaptic NMDA
receptor responses in lamina I neurons from males but not
from females and that ovariectomy eliminated these differences.
Importantly, the findings illustrate how sexual convergence onto
shared cellular and behavioral endpoints, such as allodynia, pain
sensitivity or KCC2 downregulation, may mask sex differences
in underlying molecular and cellular mechanisms (28). Other
recent work has shown that macrophage invasion of DRG
is predominant in males and not in females although both
show similar amounts of allodynia following peripheral nerve
injury (454).
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The realization that different mechanism are engaged to
generate neuropathic pain in males vs. females has obvious
therapeutic implications. For example, blockade of Nav1.8
channels in the peripheral nervous system with A-803467 is
more effective in females than in males in a rodent model
of joint neuropathic pain (455). Might blockers of Nav1.8 be
more effective in women than in men? On the other hand,
restoration of KCC2 function (456)may be effective in bothmales
and females?

Multiplicity of Signaling Processes
Different Injuries Different Mediators?
It is well-known that different types of nerve injury provoke
different types or behavioral or physiological response. Thus,
while mechanical allodynia produced by spared nerve injury
persists for many weeks, that produced by chronic constriction
injury is short-lived and recovery is seen in about 4 weeks
(38, 142). Similarly, changes in synaptic transmission in the
superficial dorsal horn aremore robust after sciatic CCI than after
complete sciatic nerve section (axotomy) (389). These findings
may be consistent with an earlier observation that CCI promotes
stronger and more long lasting upregulation of the primary
mediators TNF-α, IL-1β, IL-10, MCP-1/CCL-2 in nerve stumps
than nerve crush (306). Whilst neuropathic pain associated with
multiple sclerosis is characterized by loss of spinal neurons (140),
this effect is not produced with CCI (457, 458).

Recent work has shown how the nature of peripheral injury
dictates the precise spinal circuitry involved in the generation of
mechanical allodynia (459). Thus, neuropathic injuries generate
allodynia by activation of excitatory protein kinase C gamma
positive (PKCγ) neurons at the lamina II/III interface (460)
whereas mechanical allodynia induced by inflammation involves
excitatory calretinin positive neurons in inner lamina II (461).
Cholecystokinin (CCK) positive neurons in laminae III-IV are
important in both situations. Peirs et al. (459) also distinguished
punctate allodynia (as produced by Von Frey filaments) from
dynamic allodynia (produced by brushing a cotton swab across
the hindpaw skin). This allowed them to identify a subset of CCK
neurons which expressed the musculoaponeurotic fibrosarcoma
oncogene homolog (Maf) and the transient vesicular glutamate
transporter 3 (tVGLUT3), which are primarily involved in
conveying dynamic rather than punctate allodynia.

Other work using knockout mice has shown that deficiency
of CCL19/21 attenuates nerve injury evoked pain but not
the hyperalgesia evoked by the autoimmune encephalomyelitis
model of multiple sclerosis (149).

The above findings point to the possibility that different types
of injury provoke the generation of different sets of mediators
(276). This may be due to differential damage to various subsets
of primary afferent fibers.

A Paradox
The above sections outline the actions of many of the proposed
primary, secondary and tertiary mediators involved in the
development and persistence of neuropathic pain. There are
several pathways by which a peripheral nerve injury can lead
to pain but as shown in Tables 1–3, interruption of the actions
of any single mediator seems to be capable of alleviating pain.
For example, ATP activation of P2X7 receptors on microglia
promotes release of IL-1β and activation of P2X receptors
promotes release of BDNF. This would imply that it would
be necessary to prevent the action of both IL-1β and BDNF
to prevent the development of allodynia but it is known that
inhibition of the actions of either individual mediator is effective.
In other words if BDNF is inhibited why can’t pain be initiated by
IL-1β If IL-1β is inhibited why can’t pain be initiated by BDNF?
Also as mentioned above the actions of inflammatory mediators
are mediated by a limited number of downstream signaling
processes: ERK-MAPK signaling seems particularly important
in this regard. If one signaling cytokine is blocked or knocked
out why aren’t its downstream effector mechanisms activated by
other cytokines?

A better understanding of the interactions between mediators
and their receptors and downstream effectors is clearly required
for a more complete understanding of mechanisms underlying
neuropathic pain in animal models that will lead to a better
understanding of pain etiology in individual patients. This in turn
may enable the application of personalized medicine approaches
to pain management (459, 462).
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Low back pain and its
determinants among wait sta�
in Gondar town, North West
Ethiopia: A cross-sectional study
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Alemu Kassaw Kibret and Moges Gashaw

Department of Physiotherapy, School of Medicine, College of Medicine and Health Sciences,

University of Gondar Comprehensive Specialized Hospital, Gondar, Ethiopia

Background: Low back pain is a common public health issue in the working

population and one of the leading causes of disability. It is the leading cause of

work-related conditions and the most common reason for filing a workers’

compensation claim in low- and middle-income countries. Ethiopia is a

developing country; there is a shortage of working materials, skilled labor, and

a lack of awareness of ergonomics posture, which lead to lifting heavy objects,

long periods of standing, repetitive twisting, and same sustained posture for

long periods of time without a shift. As a result, the purpose of this study was

to assess the prevalence and associated factors of work-related low back pain

among restaurant wait sta� in Gondar, Ethiopia, in the year 2019.

Methods: Institution-based cross-sectional study, including 420 restaurant

wait personnel, was undertaken from 1 March to 30 April 2019. A simple

random sampling procedure was used to choose the restaurants and wait

sta�. A standardized Nordic questionnaire was used to collect data. Data were

entered into Epi Info 7 and analyzed in SPSS version 20. The univariate and

multivariate logistic regression analyses were calculated. The significance of

associations was reported by a P-value of < 0.05 and an adjusted odds ratio

(AOR). The model fitness checked by the Hosmer–Lemeshow goodness of fit

test was used.

Result: In this study, a total of 420 participants (99.53% response rate) ranging

in age from 17 to 53 years old participated, with 184 (43.8%) participants

reporting low back pain at some point in the past 12 months. Female

participants had a higher prevalence of 130 (70.6%). Sex (AOR = 2.98; 95%

CI: 1.07–8.30), frequent exercise (AOR 0.47; 95% CI: 0.24, 0.93), extended

standing (AOR 8.82; 95% CI: 3.30, 20.32], and repetitive tasks (AOR 7.49; 95%

CI: 4.29, 13.19) were all found to be significant predictors in low back pain.

Conclusion: More than two-fifth of waitresses and waiters reported low back

discomfort at some point in the past 12 months. Predisposing factors for low

back discomfort among restaurant wait sta� included being female, standing
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for long periods of time while serving, and performing repetitive tasks. Regular

exercise was found to be a protective factor against low back pain in wait

sta�. Delivering ongoing safety training is among the most potent essential

measures required in preventing low back pain.

KEYWORDS

low back pain, wait sta�, waiters, waitress, Gondar, Ethiopia

Introduction

Musculoskeletal injuries are a broad term that refers to a

variety of inflammatory, degenerative diseases, and disorders

that cause pain and functional impairments in people who are

exposed to work activities and conditions that contributed to the

development or exacerbation of the condition but did not act as

the sole cause (1). Despite the identification of several associated

factors (such as work posture, long periods of standing, moving

heavy objects, repetitive twisting forward and backward, obesity,

and aging), the reasons for low back pain remain unknown,

making diagnosis challenging (2).

According to the WHO, 50–70% of workers suffer from

work-related musculoskeletal disorders (WMSDs). WMSDs

afflict around 317 million people each year, with 6,300 people

dying every day (3). According to the United States Bureau of

Labor Statistics, back injuries account for 20% of all workplace

injuries and illnesses and nearly 25% of annual workers’

compensation payouts. Based on a recent assessment by the

United States National Safety Council, overexertion is the most

common cause of occupational injury, accounting for 31% of

all injuries (4). In many parts of the world, low back pain

is the leading cause of activity limitation and work absence,

imposing a substantial financial load on individuals, families,

and governments (5).

Low back pain is described as “pain and discomfort, situated

below the costal edge and above the inferior gluteal folds,

with or without leg pain,” according to European standards

for preventing low back pain (6). Low back pain (LBP) is a

common health concern among the general public, and it is

one of the leading causes of disability, negatively impacting

work performance and wellbeing. Work-related low back pain

(WLBP) is a musculoskeletal condition that is described as any

back pain thought to be induced by occupational exposures.

This illness is also known as overuse syndrome, repetitive strain

injury, or cumulative trauma disorder (7). WLBP is a type of low

back pain that occurs due to work and is clinically determined

to have been caused, at least in part, or exacerbated by the work

environment (8).

In affluent countries, a variety of initiatives have been

implemented to mitigate the impact. As a result, the severity and

cost of lower back pain are decreasing, absenteeism from work

and medical costs are falling, working conditions are improving,

and many factors that lead to the development of lower back

pain are being discovered (8). However, the burden of low back

pain was exacerbated in developing countries because the types

of work, working conditions, and other factors contributing to

the development of lower back pain among different working

groups, including restaurant wait staff, were unknown (9).

In Ethiopia, the tourism industry is occasionally booming

and hiring a large number of people in the hotel and other

sectors. However, the working environment is hazardous to

the worker, and health and safety systems are inadequately

implemented. Furthermore, most working materials and skilled

manpower are insufficient, thus the behavior of work in wait

staff requires lifting heavy objects, long periods of standing,

repetitive twisting, and the same sustained posture for long

periods of time without a shift. These can be the leading

causes of low back pain in Ethiopia, and there was a lack of

information on the prevalence and associated factors of low

back pain among waiters and waitresses in Ethiopia, particularly

in Gondar town. As a result, the purpose of this study was

to determine the prevalence and associated factors of low

back pain.

Materials and methods

Study design, area, and period

A cross-sectional study was conducted among restaurant

wait staff in Gondar, Ethiopia. The research was carried

out from 1 March to 30 April 2019 in Gondar, a town in

northern Ethiopia. It is located 750 km from Addis Ababa,

Ethiopia’s capital city. In Gondar, there are 101 restaurants, and

1,309 restaurant workers serve customers in food preparation,

cooking, distribution, food hygiene, service cleaning, and

cashier positions.

Source population and study population

All the restaurant wait staff working at restaurants (hotels)

and the selected restaurants in Gondar town were the source and

study population of this study, respectively.
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Inclusion and exclusion criteria

All the restaurant wait staff working at Gondar town

restaurants for at least 12 months were included in this study,

whereas restaurant wait staff with physical deformities

(such as excessive lumbar lordosis, increased thoracic

kyphosis, and scoliosis) (10), a history of traumatic low

back pain, back surgery, or medically diagnosed low back pain

were excluded.

Sample size determination

The sample was determined by using a single population

proportion formula on the following assumption (11). Level of

significance (α): 5% (with a confidence level of 95%), marginal

error: 5% P: is the prevalence of low back pain among waiters

that is 50% because no studies were conducted in this area in

our country.

The Z-value of 1.96 was used at 95% CI (n: sample size, P:

proportion, d: marginal error).

(Za/2)
2
∗ P(1− P)

d2

(1.96)2 ∗ 0.5(0.5)

0.052

n = 384

The total sample size (n) with a 10% nonresponse rate

becomes 422.

Sampling procedure

A simple random sampling was used to select the

study subjects. The study participants were selected from 40

restaurants in Gondar town. Each restaurant consisted of

an average of 13 waiting staff. To ensure representativeness,

first, a proportional allocation of the participants was done

for each restaurant, and then waiters and waitresses from

those restaurants were selected using a simple random

sampling approach.

Operational definition

Body mass index

Weight in kilogram divided by the square of the

height in meters (kg/m2); underweight < 18.50 kg/m2,

normal 18.50–24.99 kg/m2, and overweight ≥ 25

kg/m2 (12).

Low back pain

A pain and discomfort, localized below the costal margin

and above the inferior gluteal folds, with or without leg pain (13).

Nonspecific low back pain

A type of low back pain not attributed to recognizable,

known specific pathology (14).

Repetitive task

Workers put to repetitive tasks that recur every 30 s in the

same direction in < 30 s (15).

Regular physical exercise

Performing any type of physical exercise for 30min at least

two times each week (8).

Prolonged standing

Standing for more than 4 h (16).

Data collection instrument

Face-to-face interviews were used to gather information.

The study participants’ low back pain was assessed using

the standardized Nordic questionnaire for the evaluation of

musculoskeletal symptoms. The questionnaire was designed

to determine the prevalence of musculoskeletal issues in a

certain population while also considering where they occur

in the body (17). The questionnaire had four components,

which are sociodemographic, personal and psychological,

occupational and ergonomic, and low back pain-related

questions (Supplementary File I).

Data quality control

The questionnaire was written in English, translated into

Amharic, and then back into English by language experts. The

questionnaire’s Amharic translation was pretested in Bahir Dar

town’s eateries with 5% of the total sample size and required

corrections weremade based on the results. Three data collectors

were in charge of data collection. The principal investigator

(ES) provided the data collectors with a 2-day comprehensive

training on how to approach study participants, how to use the

questionnaire and guidelines, and data collection procedures.

The investigators kept a close eye on the data collection

technique and evaluated the obtained questionnaire on a regular

basis for accuracy, completeness, and consistency.
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Data management and analysis

The obtained data were coded and reviewed for

completeness, missing values, and clarity by the primary

investigator and supervisor at the time of data entry. The

Epi Info 7 was used to enter the coded data, which was then

exported, processed, and analyzed using SPSS version 20.

Frequency, mean, SD, and tables were used to present the

findings of descriptive statistics. Binary logistics regression

was conducted to identify the associations between dependent

and independent variables. Independent variables with p-

values of 0.2 in the univariate analysis were taken to the

multivariate logistic regression analysis to control the effects of

potential confounders.

A p-value of 0.05 (95%CI) and an adjusted odds ratio (AOR)

were used to determine the significance of the associations. The

model fitness was checked by the Hosmer–Lemeshow goodness

of fit test, with a p-value > 0.05.

Results

Sociodemographic characteristics of
study participants

A total of 420 participants aged 17–53 years participated in

this study. This is a 99.53% response rate and is beyond the

power calculated sample size (n= 384).

Out of the 420 respondents interviewed, 257 (61.2%) of the

participants were female participants. Two-thirds (63.3%) of the

participants were aged 17–24 years. The mean (SD) year of

experience of the waiters was 1.9 (0.6) years. Two-thirds (65%)

of the respondents had work experience of 2–5 years. Three-

fourths (70.7%) of participants had part-time jobs in addition

to their waiting jobs. More than half (63.3%) of the participants’

work conditions were during the daytime (Table 1).

Individual and behavioral characteristics
of the participants

Out of 420 respondents interviewed, 200 (47.6%)

participants had a BMI of 18.50–24.99 kg/m2. More than

two-fifths (43.1%) of the participants took ergonomic training,

one-third (28.1%) of the participants had knowledge about

lower back ergonomics, and more than one-third (39.7%) of the

participants never had regular exercise before. Three-fourths

(74.7%) of the participants were satisfied with their comfortable

daily activity. A total of 132 (71.7%) waiters felt happy at work,

but 117 (27.9) waiters were bothered by feeling senseless and

under little pressure due to their work, and also 259 (61.7%)

waiters felt fatigued due to their workload (Table 2).

TABLE 1 Socio-demographic characteristics of restaurant wait sta� in

Gondar town, Ethiopia, 2019 (n = 420).

Variable Category Frequency

(n)

Percent

(%)

Age 17–24 265 63.1

25–34 137 32.6

35–53 18 4.27

Sex Female 257 61.2

Male 163 38.8

Marital status Currently unmarried 298 71.0

Currently married 122 29.0

Religion Orthodox 359 85.5

Protestant 29 6.9

Muslim 24 5.7

Catholic 7 1.7

Education level Can’t read and write 8 1.9

Can read and write 22 5.2

Primary school 82 19.5

Secondary school 220 52.4

Collage and above 88 21.0

Work condition status Day 266 63.3

With shift day and night 137 32.6

Night 17 4.1

Year of experience 0–1 102 24.3

2–5 273 65.0

6–10 40 9.5

≥11 5 1.2

Additional job Yes 297 70.7

No 123 29.3

Occupational and ergonomics factors of
the restaurant wait sta�

Out of 420 participants, 84.5% of the participants felt

LBP while bending or twisting. Nearly, three-fourths of the

participants (69.3%) complain about LPB during standing.

Almost all of the participants (92.4%) did not complain about

LBP during sitting position (Table 3).

Low back pain prevalence among
restaurant wait sta�

Of 420 respondents, 184 (43.8%) respondents experienced

low back pain throughout their job careers. Of the respondents

with LBP in the last 6 months, 52 (12.4%) respondents were

absent from their work due to LBP. In this study, the prevalence

of LBP was higher among female waiters (70.6%) than among
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TABLE 2 Personal and psychological characteristics of restaurant wait

sta� in Gondar town, Ethiopia, 2019 (n = 420).

Variables Category Frequency

(n)

Percent

(%)

BMI <18.50 155 37

18.50–24.99 200 47.6

>25 65 15.4

Ergonomic training Yes 181 43.1

No 239 56.9

Knowledge of back

ergonomics

Yes 118 28.1

No 302 71.9

Habit of doing

regular exercise

Never exercise 166 39.5

Sometimes 180 42.9

Usually 74 17.6

Are you satisfied for

being waiter

Yes 314 74.8

No 106 25.2

Comfortable with daily

activity

Yes 334 79.5

No 86 20.5

Mental stressed being

waiter

Yes 142 33.8

No 278 66.2

Sleep disturbance Yes 99 23.6

No 321 76.4

Feeling senseless and

little pleasure

Yes 117 27.9

No 303 72.1

Fatigue because of daily

workload during

Yes 259 61.7

No 161 38.3

Satisfied with income Yes 179 42.6

No 241 57.4

Satisfied with work Very dissatisfied 158 37.6

Dissatisfied 80 19

Neutral 51 12.1

satisfied 122 29.0

Very satisfied 9 2.1

male waiters [54 (29.3%)]. Among the BMI group of waiters,

a higher prevalence of LBP was observed in the lowest BMI

groups (<25) of waiters. It is also higher among waiters who

had sleeping disturbance [127 (69.1%)] than those who had no

sleeping disturbance [57 (30.9%)].

Factors associated with low back pain

In the multivariate logistic regression analysis, sex, regular

exercise, prolonged standing, and repetitive tasks were variables

that were significantly associated with low back pain among

restaurant wait staff.

Female restaurant wait staff had 2.98 times more low back

pain than male wait staff [adjusted odds ratio (AOR): 2.98

(1.07–8.30)]. Restaurant wait staff who exercised on a regular

TABLE 3 Occupational and ergonomics factors of restaurant wait sta�

in Gondar town, Ethiopia, 2019 (n = 420).

Variable Category Frequency

(n)

Percent

(%)

Bending / twisting Yes 356 84.8

No 64 15.2

Lifting Yes 72 17.1

No 348 82.9

Standing Yes 291 69.3

No 129 30.7

Sitting Yes 32 7.6

No 388 92.4

Forming repetitive tasks Yes 115 27.4

No 305 72.6

Working in an awkward /

cramped position

Yes 25 6

No 395 94

Working when physically

fatigued

Yes 23 5.5

No 397 94.5

Feel pain on your low back

more at night shift different

from the day

Yes 77 18.3

No 343 81.7

basis was 53% less likely to have low back pain than restaurant

wait staff who did not do exercise on a regular basis [AOR): 0.47

(0.24–0.93)]. The odds of having low back pain were 8.82 times

higher for restaurant wait staff who had prolonged standing than

for restaurant wait staff who did not have prolonged standing

[AOR: 8.82 (3.30–20.32)]. Restaurant wait staff who had a

repetitive task had 7.49 more low back pain than restaurant wait

staff who did not have a repetitive task [AOR: 7.49 (4.29–13.19)]

(Table 4).

Discussion

The purpose of this study was to determine the prevalence

of low back pain and its associated factors among restaurant

wait staff in Gondar, Ethiopia. The overall prevalence of low

back pain among restaurant wait staff was 43.8%, and variables

such as sex, regular exercise, prolonged standing, and repetitive

tasks were significantly associated with low back pain among

restaurant wait staff.

The magnitude of work-related low back pain in this study

is lower than in research, which was conducted in Taiwan

(52.7%) (18). This difference observed in the prevalence rate

of LBP could be due to the difference in the study setting,

sample size, and the study participant’s characteristics. The

Taiwan study was conducted among 905 restaurants and hotel

workers with a large sample size when compared to the present

study. Another possible reason might be the difference in
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TABLE 4 Bi-variable and multivariable logistic regression analysis on factors associated with low back pain among restaurant wait sta� in Gondar

town, Ethiopia, 2019 (n = 420).

Variables LBP Crude OR (95% CI) Adjusted OR (95% CI) p-value

Yes No

Sex Female 130 (50.6%) 127 (49.4%) 3.15 (2.04–4.85) 2.98 (1.07–8.30) 0.04*

Male 40 (24.5%) 123 (75.5%) 1 1

Marital status Not Currently married 107 (35.9%) 191 (64.1%) 1 1

Currently married 63 (51.6%) 59 (48.4%) 1.90 (1.24–2.91) 1.11 (0.65–1.87) 0.70

Additional part of job Yes 124 (67.4%) 173 (73.3) 0.75 (0.49,1.15) 0.90 (0.42–1.94) 0.79

No 60 (32.6%) 63 (26.7) 1 1

Regular exercise Never exercise 70 (42.2%) 96 (57.8%) 1 1

Sometimes 60 (33.3%) 120 (66.7%) 0.69 (0.44–1.06) 0.62 (0.31–1.27) 0.19

Usually 40 (54.1%) 34 (45.9%) 1.61 (0.93–2.8) 0.47 (0.24–0.93) 0.03*

Prolonged standing Yes 149 (51.2%) 142 (48.8%) 5.39 (3.20–9.08) 8.82 (3.30–20.32) 0.00*

No 21 (16.3%) 108 (83.7%) 1 1

Forming repetitive tasks Yes 87 (75.7%) 28 (24.3%) 4.77 (3.07–7.40) 7.49 (4.29–13.19) 0.00*

No 83 (27.2%) 222 (72.8%) 1 1

1, reference category; AOR, Adjusted odds ratio; CI, confidence interval; COR, crudes odds ratio; *statistically significant at p < 0.05.

the study characteristics between the study participants. The

Taiwan study assesses the work-related LBP pain with their

pain intensity, while the present study did not assess the pain

intensity and excluded the study participants who presented

a previous history of LBP. In addition, a study done in Iran

among steel workers found that 63.81% had experienced LBP

(19). The main difference is that this study is conducted on

restaurant workers, while the Iranian study was conducted

among steel construction workers, which need high force and

different ergonomic postures. The job of the wait staff is also

manual. However, maybe a more plausible explanation could

be the relatively higher intensity/level of manual work is higher

among the steel industry workers. Furthermore, the study done

in Ethiopia among teachers found that 57.5% had low back pain

(16). This variation could be attributed to the sample size and

the population studied in the preceding study, which included

teachers suffering from low back pain. Similarly, in the study

done in Ethiopia, Gondar, work-related low back pain among

low-wage workers was 58.1% (10). The possible reason for this

variation could be the variation in work nature, working time,

and level of understanding of the ergonomics position. Teachers

most commonly work in a standing position, while wait staff

uses their back during bending and lifting.

In contrast, the prevalence of work-related low back pain

among restaurant wait staff is higher than in studies conducted

in the United States, at 18% among restaurant wait staff (20). The

possible explanation for the variation in the current study may

be that there is low access to information about occupational

health and safety practices (21). Furthermore, this study’s results

are much higher than the studies done on first-class restaurant

workers in Turkey (26%) (22). This variation might be due

to the difference in the study participant and ways of the

assessment procedure. The Turkey study was conducted in the

selective study population with pain intensity and pain coping

mechanism assessment among the first class wait staff, but

our study was conducted among the whole wait staff which

is not categorized by classes and underground mine workers

in Zambia (24%) (23). The possible explanation for variation

could be the difference in the sample size and sampling method.

The Zambian study was conducted among 202 mining workers

recruited with a stratified sampling technique, while this study

was conducted with a large sample increased by double among

wait staff with a simple random technique.

The findings of this research revealed that sex is significantly

associated with work-related low back pain, which means a

female is 3 times [AOR (1.07–8.30)] more likely to have work-

related low back pain than compared to amale. This result was in

line with the study, which was conducted in Iran (24), a literature

review done in (25), and a systematic review done in Africa (26),

Gondar, Ethiopia (16). One possible explanation is that women

are more obese than men, which cause low back pain. Another

possible explanation is that men exercise more frequently than

women. Furthermore, women have a lower pain tolerance than

men, and they are more likely to report any pain condition.

Osteoporosis, menstruation, pregnancy, and childbirth may all

play a role in the increased occurrence of LBP in women (16, 27).

The other variable that was significantly associated with

work-related low back pain was regular physical exercise.

Waiters/waitresses who exercised on a regular basis were 53%

[AOR (0.24–0.93)] less likely to develop LBP than those who did

not do regular exercise. This is similar to the research conducted

in the United States (28), a systematic review done on leisure

time physical activity and low back pain (29), Addis Ababa,

Ethiopia (8), Gondar, Ethiopia (16). The possible explanation

might be that shortened and weak muscles can cause LBP

as they can cause misalignment of the spine. Exercises can
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strengthen, lengthen, and make the muscles of the back strong

to support and keep the spine in perfect alignment for proper

functioning (30).

Regarding prolonged standing, it was one of the associated

factors of low back pain. In our research, it was about 9 times

[AOR (3.30–20.32)] more likely to develop low back pain than

not standing for a prolonged time. This is in line with the study

conducted in Ethiopia, Addis Ababa (8), and Gondar, Ethiopia

(16). Standing for extended periods of time places an undue

strain on the lumbar spine and other anatomical systems, which

can result in LBP.

In our study, performing repetitive tasks was one of the

associated factors with low back pain in our study, and it was

7 times [AOR (4.29–13.19)] more likely to cause low back pain

than not doing repetitive tasks. This result is the same as the

study done in Taiwan (31). The repetition of identical motions,

but also the repetition of multiple activities with motions that

are quite similar utilize the same muscles and tissues. As a

result, joints and muscles are vulnerable to repetitive motion

injuries, and muscles may not have enough time to recover from

the strain before the motion is repeated. There is additional

data that show a strong link between repeated work and lower

back pain (8). The organization should facilitate the wait staff ’s

frequent resting and create an environment for regular exercise.

The wait staff should avoid prolonged standing and practice

ergonomic health and safety procedure to prevent work-related

low back pain.

Conclusion

More than two-fifths of waitresses and waiters reported

low back discomfort at some point within 12 months.

Waitresses with low back discomfort were more likely to

be female, stand for lengthy periods of time while serving,

and do repetitive tasks. Regular exercise was found to be

a protective factor against low back pain in restaurant

waiter employees. It is preferable to provide waiters/waitresses

with ergonomic training in regard to prolonged standing,

repetitive tasks, and exercise recommendations. Adjusting

organizational measures, promoting and practicing frequent

rest breaks, regular exercising, avoiding prolonged standing,

and the formation of repetitive tasks delivering ongoing

safety training is among the most potent essential measures

required in preventing low back pain. The organization

should implement and follow occupational health and safety

service protocols.

Strength and limitations of the study

This study assessed the burden of LBP among wait staff

with a large sample size. Despite this, this study has certain

limitations. The cross-sectional form of this study precludes

a follow-up, which would have provided a better design for

discovering variables connected to low back pain. Patients’ self-

reported data were also used to attain the results. This could

have been influenced by recollection bias. Another possible

limitation could be the absence of the control group, which

makes it difficult to identify the actual proportion of low back

pain resulting from the work condition.
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